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Dedicated to Yutaka Yamamoto
on the occation of his sixtieth birthday



Preface

This Festschrift, published on the occasion of the sixtieth birthday of Yutaka Ya-
mamoto (‘YY’ as he is occasionally casually referred to), contains a collection of
articles by friends, colleagues, and former Ph.D. students of YY. They are a tribute
to his friendship and his scientific vision and oeuvre, which has been a source of
inspiration to the authors.

Yutaka Yamamoto was born in Kyoto, Japan, on March 29, 1950. He studied
applied mathematics and general engineering science at the Department of Applied
Mathematics and Physics of Kyoto University, obtaining the B.S. and M.Sc. degrees
in 1972 and 1974. His M.Sc. work was done under the supervision of Professor
Yoshikazu Sawaragi. In 1974, he went to the Center for Mathematical System The-
ory of the University of Florida in Gainesville. He obtained the M.Sc. and Ph.D.
degrees, both in Mathematics, in 1976 and 1978, under the direction of Professor
Rudolf Kalman.

His stay at the Center for Mathematical System Theory and the influence of Rudy
Kalman had a decisive influence on YY’s research outlook. He became deeply con-
vinced of the importance of rigorous thinking, the relevance of clear problem formu-
lation, and the value of questioning hypotheses. Kalman’s paper ‘On the general the-
ory of control systems’ (1st IFAC Congress, Moscow, 1960) which YY read when
he was a junior student in Kyoto opened his eyes to the relevance of mathematics in
systems and control theory. Trained as a control engineer, his view of the field had
been somewhat limited to classical control theory, and he became fascinated with
the potential of mathematical concepts in engineering. This motivated him to study
the theoretical aspects of systems and control, and it brought him eventually to the
Center for Mathematical System Theory in Florida and to the style of doing research
that was in vogue at the Center. He also learned to appreciate the importance that an
international visitor program can have in a scientific environment. He later recreated
many of these aspects in his own research group in Kyoto.

YY’s Ph.D. dissertation, entitled Realization Theory of Infinite-Dimensional Lin-
ear Systems, deals with the construction of state models for infinite-dimensional
systems. In particular, the existence and uniqueness of canonical realizations for
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such systems is proven. This topic remained one of the central themes of his re-
search throughout his career.

Through his Ph.D. work, YY realized that the construction of a canonical real-
ization for infinite-dimensional systems is intrinsically difficult. While a canonical
model can be realized through a closed subspace of the output function space, it is
difficult to go beyond there. He discovered that part of the difficulty lies in the fact
that the state is in general not determined by the output data over a finite-time inter-
val. This led him to the concept of pseudorational impulse responses. This class of
systems allows a fractional representation of the impulse response over the ring of
distributions with compact support. The compactness of the support makes it pos-
sible to construct a state space from bounded-time data. This in turn gives rise to
characterizations of spectra, reachability criteria, stability properties, etc.

After completing his Ph.D., Yutaka Yamamoto returned to Kyoto University,
where he has had a position since. He rose through the ranks: assistant professor
from 1978 to 1987, associate professor from 1987 to 1997, and professor since
1997. His present affiliation is Professor in the Department of Applied Analy-
sis and Complex Dynamical Systems, the Graduate School of Informatics, Kyoto
University.

The class of pseudorational impulse responses provides an excellent platform for
studying a class of learning control systems, called repetitive control. The stability
criteria for pseudorational class played a central role in YY’s proof of the internal
model principle for such systems.

Through the study of infinite-dimensional systems, YY became interested in
sampled-data control systems. When he took interest in this area, the subject of
sampled-data control had been quite messy. The setting of the problem involves
two time sets: a continuous one and a discrete one. Due to this hybrid nature, for-
mulas were complicated and not very transparent. There are often ripples between
sampling points and intersample information may be lost. In a CDC paper in 1990,
YY introduced a function space technique that allows one to model sampled-data
systems with a single discrete time set, while describing the intersample behavior
through a function space setting. This technique, now called lifting, has become
standard in the study of sampled-data systems, and makes the whole theory com-
pletely transparent. It has become possible to optimize the intersample behavior
with a digital controller.

While studying digital control systems, YY observed that the same problem is en-
countered in digital signal processing, where one also needs to reconstruct intersam-
ple signals from the sampled data. In order to do this, usually Shannon’s sampling
theorem is employed and the intersample signal is recovered with as low frequency
components as possible. YY noticed that by assuming a model for the signal genera-
tor, the ideas of sampled-data control theory can greatly improve the high-frequency
performance. This contribution led to three patents, one for digital/analog convert-
ers, one (jointly with Masaaki Nagahara) for a sample rate converter, and yet another
for compression audio (jointly with Sanyo Electric Corporation). These ideas were
implemented in the production of sound-processing Large Scale Integrated circuits
by Sanyo. These LSIs expand the limited frequency range of compressed audio
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signals up to the range of compact discs and have been used in mobile phones, MP3
players, digital voice recorders, etc. The net production as of June 2009 reached 9
million chips.

YY’s research laboratory at Kyoto University has become one of the leading
centers in the field of Systems and Control in Japan. It hosts an active program
of international visitors and seminars. These follow the style he met as a graduate
student in the Center for Mathematical System Theory in Florida. Seminars are not
passively listened to, but involve active audience participation and questioning, to
the benefit of all. Well-known to visitors are YY’s halting remarks ‘just wait’ . This
may refer to the fact that the visitor neglected to leave the visitor’s uncivilized shoes
in the corridor before entering YY’s office, or to stop the visitor from erasing a
sloppy formula from YY’s whiteboard before the high tech mechanism mounted on
the board could record a copy of the scribblings. But mostly the ‘just wait’ means
that a technical point was not perfectly clear. YY’s visitors are always treated to a
demonstration of the superior high-frequency performance of the ‘YY filter’ in the
audio room of his laboratory. Even if the visitor’s hearing is not up to the finesses of
the high frequency drop-off, there is always Maria Callas or Wilhelm Furtwängler
to compensate these inadequacies, not to mention an occasional glass of Brunello di
Montalcino that makes the YY filter experience into an unforgettable one.

Yutaka Yamamoto has been deeply committed to improve the quality of the re-
search efforts of Japan in the field of Systems and Control. He has written tutorial
essays and given talks at Japanese control conferences, guiding young researchers
in giving presentations and writing articles in English. YY has been very active in
professional organizations in Japan and internationally. He has been chair of the
MTNS steering committee, and the General Chair of the MTNS held in Kyoto in
2006. He has been vice president of the IEEE Control Systems Society from 2005
to 2008, and is an active participant in the board of SICE (the Society for Instrument
and Control Engineers) and ISCIE (the Institute of Systems, Control and Informa-
tion Engineers), two Japanese engineering societies. He was on the board of ISCIE
from 2006, with a term as president, until 2009.

YY has published or edited 5 books, and wrote close to 200 journal or con-
ference papers. His work has been honored by awards and best paper prizes. He
received the prestigious George S. Axelby outstanding paper award in 1996 for the
paper ‘A Function Space Approach to Sampled-Data Control Systems and Tracking
Problems’, published in the IEEE Transactions on Automatic Control, volume AC-
39, pages 703–712 (1994), and the best paper prize from SICE in 1987, 1990, and
1997. In 2007, he received the Commendation for Science and Technology by the
Minister of Education, Culture, Sports, Science and Technology. In 2009, he also
received the ISCIE Best Industrial Application Award (jointly with four other au-
thors in Sanyo Electric Corporation) for his work on high frequency compensation
for compressed digital audio using sampled-data control.

Yutaka Yamamoto married Mamiko in 1979 in Kyoto. They live in Kyoto, and
have two children, Sho and Kaoru.

The editors are grateful to all authors for their efforts in writing their article, and
for meeting the time schedule. We thank the editorial staff of Springer Verlag for
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accepting this collection of articles as a volume for the Lecture Notes in Control and
Information Sciences, and for making this book available in time for the Symposium
on Systems, Control, and Signal Processing.

This volume contains articles by invited speakers for the symposium to celebrate
the sixtieth birthday of Yutaka Yamamoto in Kyoto University on March 29–31,
2010.

November 2009
The editors

Jan C. Willems (K. U. Leuven)
Shinji Hara (University of Tokyo)
Yoshito Ohta (Kyoto University)

Hisaya Fujioka (Kyoto University)
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Old and New Directions of Research in System
Theory

Rudolf Kalman

Dedicated to Professor Yutaka Yamamoto on his 60th birthday by his doctorfather.

Abstract. The problem of classical electrical network synthesis (flourished between
1920–1970) is subjected to scientific critique. Conclusions: the first attacks on the
problem were frustrated and eventually defeated by a naive over-reliance on engi-
neering/physical intuition and shoving the mathematical issues whenever possible
under the rug; now, by concentrating on essential mathematics, much of it known
since the 19th century, research will be revived with spectacular prospects of scien-
tific progress.

1 Newton

The first big result in System Theory was Newton’s gravitational law (1686). Why
so? Because it linked (perhaps forever) two things which were until then, and still
are now, considered to be objectively separate: the natural real world of physics
and the world of mathematics. Newton’s theorem: “The empirical description of
motions in the solar system (known as Kepler’s Laws) is abstractly the same as the
physical model based on the inverse-square gravitational law”. Newton had been
studying this problem in the early 1680’s, purely from the mathematical point of
view using as “data” Kepler’s Laws that had by then been known for over fifty years.
No one knows if the great man had fully understood that this result was the decisive
first step in creating system theory. Note, however, that Book III of the Principia is
titled “System of the World”. Newton certainly knew that he was penetrating into the
secrets of the real (physical) world by the inspiration and active help of mathematics.
Recall the full title of the Principia and the famous manifesto “Hypotheses non
fingo” (1713). I discuss the issues in more detail in [9].

2 Foster and Cauer

It took more than 250 years until the next step was attempted, by an American
engineer at Bell Telephone Laboratories, Ronald M. Foster (1896–1998). I came to
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4 R. Kalman

regard his 1924 paper, “A reactance theorem” [4] as a contribution as decisive as
Newton’s, but in Foster’s case linking the man-made real world of engineering with
mathematics.

Foster’s great enabler was Oliver Heaviside (1850–1925), as a genius not inferior
to Kepler, who showed, with great insight but less than requisite precision, that the
impedance of an electric RCL network (resistors, capacitors and inductors) can be
described, with very high accuracy, as Z(s) = p(s)/q(s), where p, q are polynomials
with real coefficients and s an algebraic indeterminate (the famous Heaviside “oper-
ator”). If you give s the value i2π f , Z(s) is a complex number, the physical measure
of the impedance of the network at the frequency f . This is a fact, known for about
100 years. It was also, for a long time, regarded as the best way of thinking about
impedance, avoiding the crazy idea of the Heaviside “operator”.

Heaviside’s Z(s) — just like Kepler’s laws — is a precise external description
of a system, in this case of an electric network. Foster’s theorem, in its modern
form, says, “If Z(s), viewed as a function of the complex variable s, has a certain
property then Z can be realized in the physical sense, namely as an electric network
built from two kinds of components selected from among the classical three: R (re-
sistors), C (capacitors) and L (inductors), in such a way that the impedance of the
resulting network is exactly the given Z(s).” Properties of Z dictate which one and
only one of the three choices CL, RC, or RL is the appropriate one for the realization.
Foster’s technique of proof, expanding Z(s) into partial fractions, leads to networks
generated by series (or parallel) cascading of parallel (or series) pairs of the two
components CL, RC, or RL. This results in two families of “Foster canonical forms”
depending on whether one works with Z(s) = “impedance” or its reciprocal Y (s) =
“admittance”. Many more details are given in [8, Chapters 3 and 4].

In the interest of historical correctness it should be noted that [4] treated only
the CL (lossless) case; it was immediately seen, however, that the RC and RL cases
followed trivially from it. Further consideration showed that CL was a borderline
case of marginal interest. It need not be discussed here.

Foster’s proof was easy and pretty, so much so that a bright young student,
Wilhelm Cauer (1900–1945), having just been awarded his diploma at Technische
Hochschule Charlottenburg in Berlin, immediately noticed another easy way to re-
alization: expanding Z(s) as a continued fraction. The resulting networks were of
the ladder type, again in two variants, the “Cauer canonical forms”. When Cauer
finished there was a big surprise: although the Foster and Cauer networks bore no
resemblance to one another they were equally effective: given a Z(s) either they
could both realize Z(s) or neither could do the job.

Thus the field of “passive network synthesis” was born, a common offspring of
two legitimate fathers. Again see [8, Chapters 3 and 4].

What, if anything, was wrong with all this?
Neither Foster nor Cauer gave an explicit realizability condition directly com-

putable from the parameters (coefficients of p and q) of Z. This is clearly an unsat-
isfactory aspect of the theorems of Foster and Cauer and calls for an explanation.
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In the 1920’s, and until much later, electric RCL networks were always passive,
meaning the components R, C, L had positive real values. This positivity condition
on the components necessarily induces a certain condition on Z(s). In 1924 such
a positivity condition on Z was completely unknown, hence also unknown to Fos-
ter. But Foster noticed that the coefficients of the partial fraction expansion of Z(s)
could be identified with the component values of certain networks (later labeled as
Foster “canonical” networks) — so component positivity had to be equivalent to Z
positivity defined as the positivity of the coefficients created by the computation of
the partial fraction expansion of Z. Cauer’s idea resulted in another definition of Z
positivity, namely the positivity of coefficients created by the computation of the
partial fraction expansion of Z. The explanation for the surprise: the two definitions
of Z positivity were proved to be equivalent via the idea of network realization (at
that time called “synthesis”). Alas, these equivalent conditions were both algorith-
mic. Not algebraic, as Heaviside would have liked it.

Background Remark. Observe that partial fraction expansions (with real coeffi-
cients) exist whenever p or q have real roots while continued fraction expansions
(with real coefficients) exist always. Hence the Foster-Cauer theorems, from the
very beginning, could have been stated in a more general form: “Any Z(s) has a
quasi-realization (component values nonzero but not necessarily positive) by one
of the two RC or RL network types provided a (Foster) partial fraction or a (Cauer)
continued fraction expansion exists with real coefficients; when all such coefficients
are positive then Z(s) has a true (component values all positive) realization.” Even
more trivially, any expansion of Z with an “interpretation” as a network induces a
quasi-realization; and if all coefficients of the expansion are positive, a (true) re-
alization; each expansion of Z that corresponds to a network generates its own “Z
positivity” condition. Let me warn the reader, however, that no expansion of Z be-
yond Foster-Cauer has found a permanent niche in the literature.

The proofs of Foster and Cauer gave few clues about the totality of possible real-
izations. Finding new realizations of Foster-Cauer impedances was a hot and presti-
gious research topic in theoretical electrical engineering departments, especially at
MIT. Guillemin’s book [8] contains a long discussion of various possibilities — but
without yielding definitive results like an elegant characterization of Foster-Cauer
impedances.

3 Brune

This state of affairs around 1925 was something of an international research scandal,
or, better said, a rare opportunity. The obvious goal was to remove the restrictions
implicit in Foster-Cauer realizations and find conditions on Z equivalent to realiz-
ability by a network composed of arbitrary interconnections of positive-valued R, C
and L. The race was “won” by Otto Brune (1901–1982), a South African engineer,
in the form of a spectacular MIT doctoral dissertation. It acknowledged only the
influence of Cauer and was quickly published as [3].
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The much-sought-after characterization of Z, as formulated by Brune, is the con-
tent of the following definition:

Z(s) is (a) positive real (function) iff Re(s) > 0 implies Re(Z(s)) > 0.

And Brune’s theorem is:

(a) The impedance Z(s) of any electric network composed of passive components
is positive real.

(b) If Z(s) is positive real it is realizable by a network having as components passive
(positive) R, C, L as well as ideal transformers T .

An “ideal transformer” T is physically the same as a pair of maximally closely
coupled (positive) inductances. This is a 2-port network component while R, C, L are
all 1-port components. Viewed as coupled inductors T is a thing which is physically
possible but as a manufactured product it is very difficult to make it a good physi-
cal approximation of its mathematical description. Viewed abstractly T is a special
kind of passive component such that there is no need to worry about it having a
“value” that must be positive. Coupled resistors and coupled capacitors are likewise
physically possible but have not generated interesting technology in the past.

Part (a) of Brune’s theorem was proved by using physically-motivated arguments
related to passivity (no energy is generated within the network). Part (b) was proved
by exhibiting a realization algorithm.

The question arises again: what, if anything, is wrong with Brune’s theorem and
his realization algorithm?

Really, only one thing: An ideal transformer T is a cute theoretical invention
but not a practical network component. And it is also mathematically awkward.
Engineers ask: where is the achievement?

There is a lemma in linear algebra, arising from Quantum Mechanics in the
late 1920’s, that almost trivializes Brune’s theorem: “Any pair of positive definite
quadratic forms may be simultaneously diagonalized.” It was well known by 1930,
again because matrix theory had become energized by problems emerging from
Quantum Mechanics, that any R, C, L network (allowing also arbitrary coupling be-
tween inductors as well as coupling between resistors and between capacitors) can
be represented by a matrix triple {R, C, L} — this amounts to packaging all R, C
and L in the network into correspondingly labeled matrices. When all network com-
ponents are passive then these matrices will be positive definite. The diagonalizing
transformations needed in the lemma turn out to be system-compatible, in other
words, they preserve impedance. Hence the lemma can be immediately applied to
two-kinds-of-components networks, making contact with the Foster-Cauer devel-
opments. A triple of matrices, in general, cannot be transformed into pure diagonal
form; applying the theorem to the triple {R, C, L} it is possible to diagonalize, say,
R and C but then L must be abandoned to its fate and will remain nondiagonal. Thus
an arbitrary network cannot necessarily be reorganized preserving impedance but
eliminating coupling between inductors. So a T occurring in a Brune realization
cannot always be removed. Conclusion, based on the lemma: there is an essential
difference between the RC, RL and the RCL cases.
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4 Bott-Duffin

It was clearly understood that Brune’s theorem makes no claim that T are un-
avoidable components for realizing any positive real Z, or unavoidable for realizing
even some subclass of these Z’s. There was no proof of the unavoidability of ideal
transformers and what may have been lacking was a better method of realization.
Nonetheless, 18 years after Brune the community of passive network synthesizers
was shaken as if by an earthquake by another brilliant doctoral dissertation, this time
in mathematics, by Raoul Bott (1923–2005). The new theorem required only half a
journal page [2].

Bott’s theorem: “If Z(s) is positive real it can be realized by a network con-
structed from passive (positive) components R, C, L”. The proof (a direct conse-
quence of a technical lemma about “positive real”) was constructive, it provided a
realization algorithm with explicit formulas.

Ironically, the shock that Brune’s theorem was to be superceded by
something defying engineering intuition was instantly tempered by bitter disap-
pointment: the realization created by Bott’s theorem was hopelessly impractical,
because the number of components required grew exponentially with n = deg(Z) =
max(deg(p), deg(q)). See [8, Chapter 10] for a soon-after-the-event analysis. In
1953 as an undergraduate student at MIT I learned this material in Guillemin’s grad-
uate course while he was working on the book.

Passive network synthesis, theory and application, never came to grips with this
strangely paradoxical situation. By 1970 the field was dead. Earlier, the 1950’s saw
the birth of “modern” system theory, which dealt with similar problems and gener-
ated many new ideas, results, techniques. So an autopsy of the corpse has become
possible. What would we find? The preceding discussion points to two deeply buried
issues:

(i) System passivity (“positive real”) versus component passivity (“R > 0, C > 0,
L > 0”);

(ii) Minimality: how many components are needed and of what kind?

What is the system-theoretic meaning of: “Z(s) = positive real”? Brune’s theo-
rem claims that any R, C, L network, consisting only of passive (positive) compo-
nents has this property. Indeed, this was Brune’s main mathematical contribution.
Unfortunately, his thesis does not contain a crucially important, and utterly trivial,
clarifying remark, namely, that, while

passive components =⇒ passive system

(an intuitively obvious statement, acceptable in the network context to most physi-
cists and engineers), the converse calls for a proof, and in fact the converse is obvi-
ously false in almost any system context. Very unfortunately, Brune’s readers did not
spot the big hidden issue: were the converse true, it would have justified “positive
real” as a sharp characterization of a system built from passive components. Since
the converse is not true, “positive real” is nothing more than a Z-testable condition
for a system (as a whole) to be passive.
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This misunderstanding had fateful consequences. It is recognizable on almost
every page of [8], indeed Guillemin dedicated the book to “Otto Brune who laid the
mathematical foundations for modern realization theory”. Wrong, but not Brune’s
fault.

“Modern” linear system theory studies systems as a whole, linear components
linearly interconnected. Passivity as a linear system property has been routinely and
thoroughly researched over the past 50 years, and it has been known for decades that
“positive real” is an elegant and concise characterization of a passive linear system
when it is viewed in its external (transfer function) description. Part (a) of Brune’s
theorem is a permanent contribution. But in trying to prove the converse, part (b),
Brune had, no doubt unknowingly, violated Newton’s command

“Hypotheses non fingo”.

For the instruction of the common man here is Newton’s inelegant Latin translated
into colloquial English, “Be sure never to add anything extraneous to an already
defined problem (even if that makes the problem easier to solve).”

In Brune’s defense, it must be said that he did abide, perhaps also unknowingly,
by Occam’s Razor, “Do not pile up extraneous assumptions without dire need”.
He added just one component, T , and he needed that T very badly to prove his
realization algorithm.

Occam’s Razor is part of the erudition of all historians of science, some of whom
may have forgotten, or never did know, that 400 years after Occam but 300 years
before our time Newton had seen the issue with great clarity but only when he,
Newton, was already 70 years old.

5 Foster Again; His Tactics and Catalog

Unlike his definition of “positive real”, Brune’s realization algorithm was never re-
garded as the last word, precisely because of its reliance on T . What could be done
to avoid T ? There is a brute-force way to check if T is unavoidable. One might pro-
ceed by enumerating all R, C, L networks and see whether or not they exhaust all
positive real impedances. Here is what one would have to do:

(i) List all finite graphs (undirected, connected, no self loops, ...) with two dis-
tinguished vertices (the network terminals, or the 1-port, with respect to which
impedance is to be defined). Each branch of such a graph is to correspond to
a single (1-port) component R, C, L. This out rules out T (4 terminal points),
transistors (3 terminals points), etc.

(ii) Then list all possible networks obtained by populating the branches of the
graphs in (i) by R, C, L. Do this minimally, avoiding redundancies such as putting
the same type of component on two parallel or two series branches. Exclude from
the list networks identical under relabeling of vertices. Make sure there are not
too many resistors, so use at most #R ≤ #C + #L + 1.

(iii) Continue by computing Z corresponding to each network of (ii). In doing so
view the values of R, C, L as undetermined (but nonzero) real numbers. A branch
with a component of zero impedance is a short circuit, the two end vertices of the
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branch must be identified, the branch becomes a self-loop and is eliminated. A
branch with a component of zero admittance (infinite impedance) is a cut branch,
it is deleted from the graph. Therefore zero (or infinite) component values are
forbidden in this problem formulation, necessarily so to make the graph of the
network well defined.. Each resulting Z will be a pair of polynomials with unde-
termined real coefficients except that coefficients may be determined as identi-
cally zero. Each such Z may correspond to several distinct networks. Record the
results as a list of {impedance, {corresponding networks}}.

(iv) Using the (large) list of {impedance, {corresponding networks}} generated in
step (iii) invert the process: Given a Z, determine the component values in each
of the networks corresponding to Z as explicit functions of the parameters (coef-
ficients of p, q) of Z.

(v) Inequalities on component values to assure positivity are inequalities on coeffi-
cients of Z. See if these inequalities allow every positive real Z to be positively
realized.

Assuming these steps can be carried out effectively, step (iv) is the solution of
the R, C, L quasi-realization problem without using T ; as before, “quasi-realization”
means that component values, never zero, may be positive or negative. Because of
this, the question still remains, “Does the set {impedances, {corresponding passive
R, C, L networks}} contain all positive real impedances?” Answering it is the task
in step (v).

I have just described the research strategy explored by Foster in the 1940’s. It
required calculations that must have spanned several years. The calculations were
carried on up to and including the generic biquadratic case: n = deg(p) = deg(q) = 2,
no identically zero coefficients (Z property); #R = #C + #L + 1 (network property).
The results, up to and including step (iv), were recorded in an unpublished M.S. (!!!)
thesis [10]. They are of a truly amazing complexity, especially considering the fact
that the (re)search was limited to first-order (linear) and second-order (quadratic)
networks on which there exists, in mathematical physics and engineering, an ocean
of literature without even a hint at the complexity that Foster had discovered.

To give an idea of the contents: over 130 graphs need to be considered (list (i)),
there are exactly 108 distinct networks to be looked at (list (ii)), and roughly 1000
formulas, The generic biquadratic impedance alone has 59 distinct network realiza-
tions, of which 49 are generic networks (3 resistors) and 10 are subgeneric networks
(2 resistors). There is absolutely no indication of how the computations were made
— a pity. But the catalog is valuable experimental data, to be checked for accuracy
and explained by theory.

Foster’s main objective, presumably, was to characterize the set {Z minimally
realizable without T}, step (v). In this, he failed — no results in [10] concerning step
(v). Foster must have been frightened by the complexity revealed by his brute-force
analysis of his question, his fears turning into despair when, just a few months after
[10], Bott gave the answer to his question, by a totally different and very elegant
approach.

Yet Foster need not have been discouraged, he was on the right track. He had
separated the problem into two natural parts:
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• realization without regard to positivity of components, and
• separate consideration of the passivity of Z and the positivity of the components

of its realization.

The treatment of the first part is complete in [10], and there is no indication that
the second part was attempted at all. Note also also that everything recorded in [10]
revolves around minimal networks, yet “minimality”, as a system-theoretic notion,
is nowhere used, defined or discussed. Bott’s theorem, with due hindsight, offers
us a first glimpse into the still unexplored jungle of nonminimal realizations — it
had nothing to do with Foster’s basic research strategy, Bott (wisely) dropped the
topic immediately after his doctorate, and no one was able to do anything with it
after him. Such is the psychology of scientific creativity — Foster never published
anything significant about the subject after Bott. [10] remains buried in the library,
outside the view of GOOOOGLE and its competitors. And yet ...

6 The Road Ahead

In Foster’s last serious publication known to me, there is [5, page 868] the fol-
lowing claim, without proof, presumably distilled from the results recorded in the
catalog [10]:

“Let all undetermined coefficients of Z be positive (they are positive whenever
all component values of a realization are positive) and consider the resultant Res(Z)
of Z.

If Res(Z) > 0 then Z has a minimal quasi-realization of either the RC or RL type,
and only of that type, depending on whether the invariant B(Z) = a0b2 − a2b0 is
positive or negative.

If Res(Z) < 0 then Z has a minimal quasi-realization of the RCL type, and only
of that type.”

The prima donna here is evidently Res(Z). I explain the terminology. The classi-
cal algebraic object known as the “resultant” (and there are also multiple resultants,
subresultants, etc.) measures whether or not a pair of polynomials have a common
factor, in which case the resultant is zero. It can be represented as the determinant of
the classical Sylvester matrix — Res(Z) = det(Sylv(Z)) — and in many other ways;
there is active and growing interest in such things in computational algebra, real
algebraic geometry, theory of elimination, ... In [5] Foster calls the resultant “dis-
criminant” (which is actually a special kind of resultant)—-this is a clue pointing to
bad communication between algebraists and those, like Foster, outside algebra, as
late as the 1960’s. Today that situation is greatly changed, there are special treatises
dealing with resultants, ... See [7] and, more recently, [1].

It should be noted that this theorem (for n > 2 at present only a conjecture)
is totally outside to the mathematical mainstream in Foster-Cauer-Brune environ-
ment of the 1920’s. Then Heaviside’s genius-class idea — that the “operator” s
was an algebraic thing, not a complex number representing some kind of frequency
— was viewed with conservative skepticism and the preferred way of looking at
impedances was that Z(s) was as a complex function. This has blocked any possi-
bility of computing Res(Z). In fact, common factors of p, q were supposed to be
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“divided out” during some stage of the computation of Z from the network. This
kind of nonsensical applied mathematics was eliminated only after the advent of
“modern” system theory in the early 1960’s.

That Foster’s claim is true, up to and including the biquadratic case, seems to rest
on checking each of the 108 cases in the Ladenheim catalog. It is clearly a theorem
and a proof is badly needed.

The role of Res(Z) in the theorem is striking. Res(Z) is an algebraic object that
disappears from sight when Z(s) is viewed as a function. With the help of Res(Z)
the possible minimal quasi-realizations of Z are classified into three disjoint types,
RC, RL, RCL. The classification into the three types is exhaustive because B(Z) = 0
implies Res(Z) < 0 and because Res(Z) = 0 means that deg(Z) is reduced by at least
1 so the networks corresponding to Z are nonminimal. Passivity plays no role at
this point. But concrete, elegant, explicit conditions for true minimal realizations
(R > 0, C > 0, L > 0) remain elusive. They seem to be an automatic consequence of
condition Res(Z) > 0 for two-kinds-of-components networks but in the RCL case
the exact passivity conditions are opaque because they do not depend solely on the
sign or value of Res(Z).

Example. Consider the Z-class given by Z(s) = p(s)/q(s), p(s) = a1s+ a0, q(s) =
b2s2 + b1s + b0 (a sub-biquadratic). There are a total of 7 minimal networks
corresponding to this Z-class. The RCL networks are shown in Figures 1–3, cor-
responding to [10, cases 47–49]. The RC networks [10, cases 43–46] are shown in
Figures 4–7. There are no RL networks in this Z-class because B(Z) > 0.

R1 C

R2

L
C

R1

R2

L

C

R

L

Fig. 1 Fig. 2 Fig. 3

C2

R1

C1

R2 R2

C1

C2

R1

C2

R1

R2

C1 C1

C2

R1

R2

Fig. 4 Fig. 5 Fig. 6 Fig. 7

Because of “minimality” the networks are restricted to the following component
count: since deg(Z) = 2, #C + #L = 2; because Z has 5 nonzero coefficients the
number of components is 5 − 1 = 4, hence #R = 2. So the networks relevant to our
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Z-class must have 4 branches. Except, Fig. 3 has only 3 branches, with C, L, and
(only one) R. Why? As required by our chosen Z-class, the impedance of the net-
work in Fig. 3 has five (not-identically-zero) coefficients, but these cannot be in-
dependent since the graph of the network of Fig. 3 has only 3 branches. Therefore
there must exist an algebraic condition satisfied by the coefficients of Z of the net-
work of Fig. 3. To find this condition we need to compute the coefficients of Z as a
function of the network components R, C, L. For Fig. 3 this is easy, and in any case
were given (correctly!) in [10] as

a1 = L, a0 = R, b2 = CL, b1 = RC, b0 = 1.

(These expressions are obtained via the convention of specifying the component
values as resistance, inductance (impedances) and capacitance (admittance); in our
special case, the convention causes Z to be in a “normalized” form with a0 equal to
1.) The condition we are looking for is easily seen to be

a0b2 − a1b1 = 0,

which is satisfied by any choice of nonzero R, C, L in Fig. 3.
The network in Fig. 3 is a realization of exactly that subclass of the our sub-

biquadratic Z for which the above condition holds. There are similar results for the
generic biquadratic Z, as can be verified in [10].

The RC networks in Figures 4–7 were not entirely new in 1948. Fig. 7 is a Foster
canonical form, Figures 5–6 are Cauer canonical forms, and Fig. 4 is a Foster-like
form. Another interesting fact is that all these networks have industrial applica-
tions: they provide the required RIAA equalization in (long-playing) phonograph
(records) preamplifiers. In a careful scholarly article [11] Stanley Lipschitz, a South
African Engineer (like Brune), working at the University of Waterloo, researched
the engineering literature pertaining to such amplifiers, including service manuals
and circuit diagrams of various manufacturers, and concluded that those shown in
Figures 4–7 were the “four most commonly used equalization networks” [11, page
480, Fig. 1 (a)–(d)]. Of course, Lipschitz’s empirical approach didn’t (couldn’t)
prove that there were no other such networks. What is seen here is a genuine ex-
perimental confirmation of discoveries arising from Foster’s research strategy of the
1940’s. Moreover, in a physiology research paper [6, page 525, Fig. 1] we find the
same four networks. There are probably other examples that could be dug up.

7 A Reflection on the Preceding

Apparently at the time of [4] nobody noticed that it continued the Newtonian tradi-
tion: Newton disposed (up to the three-body problem) of the one-kind-of-component
problem (movement of point masses under the gravitational force), then Foster did
the same for the two-kinds-of-components problem, though he apparently did not
see the problem clearly until 40 years later [5]. The three-kinds-of-components
problem, in networks, is still largely open, but then there are also the (electron,
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proton, neutron) systems called atoms. Dare we dream of bringing DNA into the
picture — it seems to be a four-kinds-of-components problem.

8 Conclusion

Much remains to be done. But the Promised Land has been sighted from several
directions.
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Regular Positive-Real Functions and the
Classification of Transformerless Series-Parallel
Networks

Jason Zheng Jiang and Malcolm C. Smith

Abstract. This paper studies series-parallel electrical or mechanical networks using
the recently introduced concept of regular positive-real functions. Previous work
showed that series-parallel five-element networks with two reactive elements are
always regular and that six such networks can realise all regular biquadratic immit-
tances. In this paper we consider five- and six-element networks with three reactive
elements. We describe a classification procedure to find an efficient subset of such
networks which may realise any non-regular biquadratic that can be synthesised by
this class of networks.

1 Introduction

The possibility to realise any positive-real function as the driving-point immittance
of a network consisting of resistors, capacitors and inductors only was established
by Bott and Duffin in [1]. The construction appears to be wasteful in terms of the
number of elements used, however subsequent research has failed to solve the ques-
tion of “minimal realisation”. For about 20 years following the publication of [1]
there was an attempt to classify simple networks by exhaustive enumeration. Nowa-
days this literature is hard to digest and verify, and there is no complete statement
of the results that were obtained. In this paper we take a fresh look at the classifi-
cation of series-parallel networks using the recently introduced concept of regular
positive-real functions. The work is motivated by a new mechanical network ele-
ment (the inerter) which has revived interest in passive network synthesis [16].

2 The Concept of Regularity and Its Properties

In this section we recall the concept of regularity and some of its properties given
in [8, 9].
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Definition 1. A positive-real function Z(s) is defined to be regular if the smallest
value of Re (Z( jω)) or Re

(
Z−1( jω)

)
occurs at ω = 0 or ω = ∞.

Lemma 1. Let Z(s) be a regular positive-real function. Then αZ (s), Z (β s), Z
(
s−1

)
,

Z−1(s) are all regular, where α , β > 0.

Lemma 2. Let Z(s) be a regular positive-real function. Then Z(s)+R and Z−1(s)+
R−1 are both regular, where R is nonnegative.

The next lemma follows from the fact that the impedance Z (s) or admittance Y (s)
of any network that has all reactive elements of the same kind has Re(Z( jω)) and
Re(Y ( jω)) monotonic ([5, Chapter 2.2]).

Lemma 3. Any network that has all reactive elements of the same kind can only
realise regular immittances.

Lemma 4. Any network that has a path between the two external terminals 1 and 1′
or a cut set ([15]) that places 1 and 1′ in different connected parts consisting of one
type of reactive element can only realise regular immittances.

Proof. This follows since either the impedance or the admittance has a zero at s = 0
or ∞ (see [14, Theorem 2]).

We now focus attention on biquadratics

Z(s) =
As2 + Bs+C
Ds2 + Es+ F

, (1)

where A,B,C,D,E,F ≥ 0. It is well known [4, 17, 2] that Z (s) is positive real if and

only if σ = BE −
(√

AF −√
CD

)2 ≥ 0.

The classification of networks is facilitated by the following transformations on
the impedance Z (s):

1. Multiplication by a constant α ,
2. Frequency scaling: s → β s,
3. Frequency inversion: s → s−1,
4. Impedance inversion: Z → Z−1.

In network realisations, the first two transformations correspond to element scaling,
the third to replacing inductors with capacitors of reciprocal values (and vice versa),
and the fourth to taking the network dual. The third and fourth transformations to-
gether allow networks to be arranged into groups of four, which we call network
quartets (see Fig. 1). Such families have appeared in [3] with the terminology “Un-
tergruppe”. It should be noted that a network quartet may sometimes reduce to two
or even one distinct network(s). It follows from Lemmas 1 and 2 that if a network
can only realise regular immittances, then so will the other networks in the quartet
and also the networks obtained by adding a resistor in series or in parallel with the
original one.
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Fig. 1 Transformations re-
lating members of a network
quartet.

3 Networks That Can Only Realise Regular Biquadratics

In this section we present a series of lemmas which will facilitate our classification
of networks in the next section.

Lemma 5. ([6, 8]) The network quartet in Fig. 2 (which contains only two distinct
networks) can only realise regular immittances.

Lemma 6. ([6]) The network shown in Fig. 3 can only realise regular immittances.

Lemma 7. ([7]) The network shown in Fig. 4 can only realise regular biquadratic
immittances.

Lemma 8. ([7]) The networks shown in Fig. 5 can only realise regular biquadratic
immittances.

Fig. 2 A series-parallel network quartet (which reduces to two distinct networks) that can
only realise regular immittances.

Fig. 3 A series-parallel five-
element network with three
reactive elements which
can only realise regular
immittances.



18 J.Z. Jiang and M.C. Smith

Fig. 4 A series-parallel six-
element network with three
reactive elements which
can only realise regular
biquadratics.

Fig. 5 Three series-parallel six-element networks with three reactive elements which can only
realise regular biquadratics.

4 Series-Parallel Networks That Can Realise Non-regular
Biquadratics

In this section we present a complete classification of low-complexity series-parallel
networks using the concept of regular positive-real functions and the lemmas devel-
oped in Section 3.

Lemma 9. ([11]) For arbitrary impedances Z1(s), Z2(s) and positive constants a, b,
c, the networks of Figs. 6 (a) and (b) are equivalent under the transformations: a′ =
a(a + b)/b, b′ = a + b, c′ = c((a + b)/b)2 [a = a′b′/(a′ + b′), b = b′2/(a′ + b′),
c = c′ (b′/(a′ + b′))2].

Theorem 1. ([8, 6]) A biquadratic immittance can be realised by series-parallel
five-element networks with two reactive elements (and all element values non-
negative) if and only if it is regular.

Theorem 2. All series-parallel networks with three reactive and two resistive ele-
ments (and all element values nonnegative) can only realise regular immittances
except for the network quartet of Fig. 8.

Proof. If no distinction is made among the elements, there are 24 distinct
two-terminal series-parallel structures with five elements [13, 12]. In Fig. 7, 12
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Fig. 6 Two equivalent net-
works related by the trans-
formations in Lemma 9.

Fig. 7 One-Half of the
Two-Terminal Five-Element
Series-Parallel Structures.

five-element structures are shown which together with their duals make up the 24
structures. (These are the structures with 6 or 5 vertices and one half of those with
4 vertices.) Based on Lemma 1, the analysis may be performed on these structures
only. Based on Lemma 3, we only need to investigate the networks containing both
kinds of reactive elements. Therefore, it is sufficient to consider only the assign-
ments of elements with two capacitors and one inductor, since immittances which
are regular remain so after the s → s−1 transformation (Lemma 1).

It is straightforward to see using Lemmas 2, 4 and 5 that structures 1–5, 7–11 can
only realise regular immittances. For example, in structure 7, only the case where
the series element is a resistor needs to be considered by Lemma 4. Then, if the two
capacitors are in the same or different parallel branches Lemma 4 applies and the
network consists of a resistor in series with a regular immittance, which can only
realise regular immittances by Lemma 2.

For structure 6, if there are two resistors or two reactive elements in the upper
branch, Lemmas 2 and 4 show that the network can only realise regular immittances.
When one resistor is in each branch the network can only realise regular immittances
by Lemmas 4 and 5.
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Structure 12 is regular if the lower branch contains two resistors or two capaci-
tors, by Lemmas 2 and 4. If the lower branch contains an inductor and capacitor the
series element in the upper branch must be a resistor (otherwise Lemma 4 applies)
in which case Lemma 9 can be used on the upper branch to transform to a network
with a resistor in parallel with a network which, by Lemma 4, can only realise reg-
ular immittances, and then Lemma 2 applies. If the lower branch contains a resistor
and inductor the structure is regular by Lemma 5 or Lemma 4. It remains only to
consider the case where the lower branch contains a resistor and capacitor. If the se-
ries element in the upper branch is a capacitor (resp. resistor) the network can only
realise regular immittances by Lemma 4 (resp. Lemma 6). If the series element is
an inductor the network takes the form of Fig. 8 (a). ��

Fig. 8 The series-parallel three-reactive five-element network quartet that can realise non-
regular biquadratics.

Theorem 3. A non-regular biquadratic immittance can be realised by a series-
parallel network with three reactive and three resistive elements if and only if it
is realisable by some network in the four network quartets of Figs. 10, 11, 12, 13.

Proof. If no distinction is made among the elements, there are 66 distinct two-
terminal series-parallel structures with six elements [13]. These structures may be
divided into two classes, any structure in one class having its dual in the other. Based
on Lemma 1, the analysis may be performed upon only one class. In Fig. 9, all the
series-parallel six-element structures in one class are presented according to a num-
bering of Vasiliu [19]. Based on Lemma 3, we only need to investigate the networks
containing both kinds of reactive elements. Furthermore, it is sufficient to consider
only the assignments of elements with two capacitors and one inductor by Lemma 1.

It is apparent that structures 1–6, 24 must reduce to a network with at most five
elements. It can be checked that structures 7–23 will either reduce to a network with
fewer than six elements or can only realise regular immittances by Lemmas 2 and 4.
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Fig. 9 One-Half of the Six-Element Series-Parallel Structures.

For structure 25, if it does not reduce to a five-element network the upper branch
contains all three kinds of elements and the lower branch has the resistor in series.
After applying the transformation of Fig. 6 to the lower branch, there is a resistor in
parallel with a network which can only realise regular immittances by Lemma 4.

For structure 26, if it does not reduce to a five-element network the upper branch
has a resistor and capacitor and the lower branch has a resistor in series. After ap-
plying the transformation of Fig. 6 to the lower branch, we obtain a network which
has a resistor in parallel with the network of Fig. 3. The resulting network can only
realise regular immittances by Lemmas 2 and 6.

For structure 27, if it does not reduce to a five-element network it takes the form
of Fig. 4, which can only realise regular biquadratics by Lemma 7.

For structure 28 there must be one resistor in the lower branch, otherwise the
network reduces to five-elements (using Lemma 9 in some cases). If there is a
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Fig. 10 One of the four network quartets of the series-parallel three-reactive six-element
networks that can realise non-regular biquadratics.

Fig. 11 One of the four network quartets of the series-parallel three-reactive six-element
networks that can realise non-regular biquadratics.

resistor and inductor in the lower branch the network takes the form of Fig. 5(c)
(or a form which can be transformed to it with two applications of Lemma 9) which
can only realise regular biquadratic immittances by Lemma 8. It remains to consider
the cases of a resistor and capacitor in the lower branch. If a capacitor is the series
element (in the upper branch) the network can only realise regular immittances by
Lemma 4. If the inductor is the series element (in the upper branch) it reduces to
the network of Fig. 10 (a) using Lemma 9. If a resistor is the series element (in the
upper branch) there are three cases: two of these (Figs. 5 (a) and (b)) are eliminated
by Lemma 8. The third is eliminated using Lemma 9 followed by Lemmas 2 and 4.

For structure 29 the top branch must be a resistor by Lemma 4. The rest of the
structure can only realise non-regular immittances if it takes the form of Fig. 8 (a)
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Fig. 12 One of the four network quartets of the series-parallel three-reactive six-element
networks that can realise non-regular biquadratics.

Fig. 13 One of the four network quartets of the series-parallel three-reactive six-element
networks that can realise non-regular biquadratics.

(see the proof of Theorem 2). Hence, the only possibility to realise non-regular
immittances is the network of Fig. 12 (a).

For structure 30 there must be one resistor in the lower branch otherwise the
network reduces to at most five elements. If the other element in the lower branch is
an inductor, the network can only realise regular immittances by Lemma 4 or it will
reduce to a network with four elements. Hence the other element in the lower branch
must be a capacitor and the only possibility to realise non-regular immittances is the
network of Fig. 11 (a).

For structure 31 the series element must be a resistor by Lemma 4. Again the rest
of the structure can only realise non-regular immittances if it takes the form of Fig. 8
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(a) (see the proof of Theorem 2). Hence, the only possibility to realise non-regular
immittances is the network of Fig. 13 (a).

For structure 32, if it does not reduce to a network with at most five elements,
there must be one resistor in the lower branch. If the reactive element in the lower
branch is an inductor the network can always be transformed to Fig. 5 (c) using
Lemma 9, which means that the network can only realise regular biquadratics. If
the reactive element in the lower branch is a capacitor there are only two cases
which do not reduce to five-element networks. One of these can only realise regular
immittances by Lemma 4, the other being the network of Fig. 10 (a).

For structure 33, we need consider only the case where there is a single resistor
in the upper branch and two resistors in the lower branch, since if there are three
resistors in one of the branches the network reduces to four elements. There must
be a capacitor in the lower branch because otherwise the network can only realise
regular immittances by Lemma 4 or the network reduces to five elements. Applying
Lemma 9 to the lower branch we obtain a resistor in parallel with a network which
can only realise non-regular immittances if it takes the form of Fig. 8 (a) (see the
proof of Theorem 2). Hence, after transformations, the only possibility to realise
non-regular immittances is the network of Fig. 12 (a). ��
The networks contained in the quartet of Figs. 8, 10–13 have appeared in the work
of Ladenheim [10] and Vasiliu [18] and [19]. The contribution of this paper has been
to develop a procedure which proves that these five quartets are a complete set in
the following sense: that they can realise all the non-regular biquadratics which can
be synthesised by the two classes of networks considered. In [6], [7] the class of
non-regular biquadratics realisable by these five quartets is described explicitly.

5 Conclusions

This paper has studied some simple classes of series-parallel networks using the
recently introduced concept of regular positive-real functions. The concept has been
shown to be useful to efficiently identify the most convenient and powerful networks
to realise driving-point immittance functions.
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Ports and Terminals

Jan C. Willems

Abstract. A terminal of an electrical circuit is a wire that allows the circuit to in-
teract with its environment through a potential and a current. Interconnection is
defined as variable sharing: two terminals share the same potential and current. A
port of an electrical circuit is a set of terminals that satisfy port-KCL (Kirchhoff’s
current law). Power and energy that enter a circuit is defined for ports. Terminals
are for interconnection, ports are for energy transfer. A port of a mechanical system
is a set of terminals that satisfy port-KFL (Kirchhoff’s force law).

1 Introduction

It is a pleasure to contribute an article to this Festschrift in honor of Yutaka Ya-
mamoto on the occasion of his 60-th birthday. I had the privilege to develop a fruitful
research collaboration with him over the last decade, leading to a number of articles
[11]–[17] combining ideas from behavioral theory with system representations in
terms of rational and pseudorational symbols. I am also grateful to him for hosting
me on several pleasant extended visits to Kyoto University over this period.

The aim of this article is to explain the distinction that should be made in physical
systems between interconnection of systems on the one hand, and energy transfer
between systems on the other hand. Interconnection happens via terminals, while
energy transfer happens via ports. We consider systems that interact through termi-
nals, as wires for electrical circuits, or pins for mechanical systems. We develop the
ideas mainly in the context of electrical circuits, but, towards the end of the paper,
we also study mechanical systems.

2 Behavioral Circuit Theory

We view a circuit as follows. An electrical circuit is a device, a black-box, with
wires, called terminals, through which the circuit can interact with its environment.
This interaction takes place through two real variables, a potential and a current, at
each terminal. The current is counted positive when it flows into the circuit. For the
basic concepts of circuit theory, see [2], [6], or [1]. The setting developed in [5] and
[6] has the same flavor as our approach.
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The behavior of N-terminal circuit is a subset B ⊆ (
R

2N
)R

; (V, I) ∈ B means
that the time-function (V, I) = (V1,V2, . . . ,VN , I1, I2, . . . , IN) : R → R

N ×R
N is com-

patible with the architecture and the element values of the circuit.
Circuit properties are conveniently defined in terms of the behavior.

A circuit obeys Kirchhoff’s voltage law (KVL) if (V1, . . . ,VN , I1, . . . , IN) ∈ B and
α : R → R imply (V1 + α, . . . ,VN + α, I1, . . . , IN) ∈ B.
A circuit obeys Kirchhoff’s current law (KCL) if (V1, . . . ,VN , I1 . . . , IN) ∈ B implies
I1 + · · ·+ IN = 0.

KVL means that the potentials are defined up to an arbitrary additive constant
(that may change in time), while KCL means that the circuit stores no net charge.

3 Interconnection

Electrical Electrical
circuit 1 circuit 2

1′

2′

N′ − 1

1

2

N − 1

N

N′

We view interconnection as the connection of two terminals, as shown in the
figure below. We start with two circuits, one with N and one with N′ terminals. We
assume that one terminal (terminal N) of the first circuit is connected to another
terminal (terminal N′) of the second circuit. The interconnection equations are

VN = VN′ and IN + IN′ = 0.

This yields a new circuit with N +N′ −2 terminals, with behavior B1 �B2 defined
in terms of the behavior B1 of the first circuit and B2 of the second (we consider
the connected terminals as internal to the interconnected circuit) as follows.
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B1 �B2 := {(V1,V2, . . . ,VN−1,V1′ ,V2′ , . . . ,VN′−1, I1, I2, . . . , IN−1, I1′ , I2′ , . . . , IN′−1)
| ∃ V, I such that (V1, V2, . . . , VN −1,V, I1, I2, . . . , IN −1, I) ∈ B1

(V1′ ,V2′ , . . . ,VN′−1,V, I1′ , I2′ , . . . , IN′−1,−I) ∈ B2}.

The idea is that the connected terminals share the voltage and the current (up to a
sign) of after interconnection. Note that the product of the shared variables has the
dimension of power. The same idea of interconnection applies to the interconnection
of two terminals of the same circuit, and to the connection of more terminals of two
or more circuits way by connecting one pair of terminals at the time.

Interconnection preserves many circuit properties. In particular, if B1 and B2

obey KVL, or KCL, then so does B1 �B2.

4 Ports

In this section, we introduce a notion that is essential to the energy exchange of a cir-
cuit with its environment and between circuits. Consider a circuit with N terminals,
and single out p terminals, which, for simplicity, we take to be the first p terminals.

Electrical
circuit

1
2

p

N − 1

N

Terminals {1,2, . . . , p} form a (electrical) port :⇔
(V1,V2, . . . ,Vp,Vp+1, . . . ,VN , I1, I2, . . . , Ip, Ip+1, . . . , IN) ∈ B

⇒ I1 + I2 + · · ·+ Ip = 0.

We call this relation port KCL. KCL implies that all the terminals combined form a
port. It can be shown that for linear passive circuits satisfying KVL and KCL, port
KCL is equivalent to port KVL, defined by

(V1, . . . ,Vp,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B, and α : R → R

⇒ (V1 + α, . . . ,Vp + α,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B.

If terminals {1,2, . . . , p} form a port, then we define the power that flows into the
circuit at time t along these p terminals to be equal to

power = V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t),

and the energy that flows into the circuit along these p terminals during the time-
interval [t1,t2] to be equal to
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energy =
∫ t2

t1
(V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t)) dt.

Note that port KCL implies that the additive constant from KVL does not appear in
the expressions of power and energy.

The above formulas for power and energy are not valid unless these terminals
form a port ! In particular, it is not possible to speak about the energy that flows
into the circuit along a single wire — a conclusion that is physically quite obvious.
Power and energy flow are not ‘local’ physical entities, but they involve action at a
distance. Note that the terminals of a 2-terminal circuit that internally consists of the
interconnection of circuits that all satisfy KVL and KCL form a 1-port, since KVL
and KCL are preserved under interconnection. In particular, a 2-terminal circuit that
is composed of resistors, capacitors, inductors, transformers, gyrators, memristors,
etc. forms a 1-port. However, a pair of terminals of a circuit with more than two
terminals rarely forms a 1-port. In particular, for the circuit shown below, the termi-
nals {1,2,3,4} form a port, but there is no reason why the terminal pairs {1,2} and
{3,4} should form ports.

1

2

3

4

An example of an element that consists of more than one port is a transformer.

1

2

3

4

The behavioral equations of an ideal transformer are

V1 −V2 = n(V3 −V4), I3 = −nI1, I1 + I2 = 0, I3 + I4 = 0, with n the turns ratio.

Clearly {1,2} and {3,4} form ports, and the energy that flows into the port {1,2} is
equal to the energy that flows out of the port {3,4}.

5 Internal Ports

In order to study the energy flow inside a circuit, we introduce in this section cir-
cuits with both external and internal terminals. Consider a circuit with N external
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Electrical
circuit

external terminals

internal terminals

1
2

N

1′ 2′ N′

terminals and also N′ internal terminals. Assume that the internal terminals are
directed.

We can define the behavior of this circuit analogously as we did for circuits with
only external terminals. A set of terminals, say {1′,2′, . . . , p′}, forms an internal
port :⇔ for all elements of the behavior, I1′ + I2′ + · · · + Ip′ = 0. A circuit has in
general external ports, consisting of only external terminals, internal ports, con-
sisting of only internal terminals, and mixed ports, consisting of both external and
internal terminals. The internal ports allow to consider the power and energy flow
between parts of a circuit.

For example, it is possible this way to consider the energy transferred into the
ports formed by terminals {1,2} and {3,4} of the circuit below, since these pairs
form internal ports.

1 port1 port
1

2

3

4

6 Terminals Are for Interconnection, Ports for Energy Transfer

As explained before, interconnection means that certain terminals share the same
potential and current (up to a sign). This is distinctly different from stating that the
power or the energy flows from one side of an interconnection to the other side.
Power and energy involve ports, and this requires consideration of more than one
terminal at the time. For example, the two circuits in the figure below share four
terminals, but it is not possible to speak of the energy that flows from circuit 1
to circuit 2, unless the connected terminals form internal ports. Similarly, it is not
possible to speak about the energy that flows from the environment into circuit 1, or
from the environment into circuit 2, unless the external terminals of system 1 and of
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circuit 2
Electrical Electrical
circuit 1

system 2 form ports. Of course, assuming KVL and KCL, the external terminals of
the interconnected system always form a port.

Setting up the behavioral equations of a circuit involves interconnection and vari-
able sharing. Exchange of power and energy involves ports. Interconnections need
not involve ports or power and energy transfer. These observations put into per-
spective power-based modeling methodologies of interconnected systems, as bond
graphs [7, 3] and port-Hamiltonian systems [9, 4]. In [10] we propose a modeling
methodology for interconnected systems based on tearing, zooming, and linking,
which involves interconnection by sharing variables, but in which power considera-
tions do not take a central place.

7 Mechanical Systems

We view a mechanical system as a device, a black box, with pins, called terminals,
through which the system can interact with its environment. This interaction takes
place through two vectors, a position and a force, for each terminal. Even though
angles and torques play an important role in mechanical systems, we do not consider
these here. The position and the force are elements of R for rectilinear motion, or of
R

2 for motions in the plane, or of R
3 for spatial motion. We indicate the fact that we

want to leave open which of these cases we consider by the notation qk : R → R
•

and Fk : R → R
•.

Mechanical
system

Mechanical
system

terminals
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

The behavior of the mechanical system is a subset B ⊆ ((R•)2N)R; (q,F) ∈ B
means that the position/force time-function (q,F) = (q1,q2, . . . ,qN ,F1,F2, . . . ,FN) :
R → (R•)N × (R•)N is compatible with the architecture and the element values of
the mechanical system.
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F

q

F1 F1

q1
q1

F2F2

q2
q2

Basic building blocks for mechanical systems under rectilinear motion are
masses, springs, and dampers. Their behavioral equations are

mass: M
d2

dt2 q = F,

spring: q1 − q2 = ρ(F1), F1 + F2 = 0,

damper:
d
dt

q1 − d
dt

q2 = d(F1), F1 + F2 = 0,

with ρ : R → R the spring characteristic, and d : R → R the damper characteristic.
We now list some properties of mechanical systems that are conveniently defined

in terms of the behavior.
A mechanical system is invariant under uniform motions if (q1, . . . ,qN , F1, . . . ,FN)∈
B and v : t ∈ R 
→ (a+bt)∈ R

•, a,b ∈ R
•, imply (q1 +v, . . . ,qN +v,F1, . . . ,FN)∈B.

A mechanical system obeys Kirchhoff’s force law (KFL) if (q1,q2, . . . ,qN ,F1,F2,
. . . ,FN) ∈ B implies F1 + F2 + · · ·+ FN = 0.
The spring and the damper obey KFL, but the mass does not. Invariance under uni-
form motions, a most basic premise of mechanics, is important in the sequel.

The interconnection of two mechanical systems is defined by interconnecting two
terminals at the time, identifying the positions of the interconnected terminals, and
putting the sum of the forces acting on the interconnected terminals equal to zero.
The interconnecting equations are

qN = qN′ and FN + FN′ = 0.

Note that the product of the shared variables does not have the dimension of power.
This yields, with notation analogous to the one used for circuits,

B1 �B2 := {(q1,q2,. . .,qN−1,q1′ ,q2′ ,. . .,qN′−1,F1,F2,. . .,FN−1,F1′ ,F2′ ,. . .,FN′−1)
| ∃ q,F such that (q1, q2, . . . ,qN −1, q,F1, F2, . . . ,FN −1, F) ∈ B1

(q1′ ,q2′ , . . . ,qN′−1,q,F1′ ,F2′ , . . . ,FN′−1,−F) ∈ B2}.

This leads to interconnection of different terminals of the same mechanical system,
and to interconnection of many pairs of terminals of two or more mechanical sys-
tems. Interconnection preserves invariance under uniform motion and KFL.

8 Mechanical Ports

We now introduce conditions that allows to study power and energy flow in mechan-
ical systems. Consider a mechanical system, and single out p terminals, which, for
simplicity, we take to be the first p terminals.
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Terminals {1,2, . . . , p} form a (mechanical) port :⇔
(q1, . . . ,qp,qp+1, . . . ,qN ,F1, . . . ,Fp,Fp+1, . . . ,FN) ∈ B,

⇒ F1 + F2 + · · ·+ Fp = 0.

We call this relation port KFL. Note that KFL implies that all terminals combined
form a port. Also, the external terminals of the interconnection of port devices form
again a port. Note that including masses with external forces acting on them form a
difficulty for KFL.

If terminals {1,2, . . . , p} form a port, then we define the power that flows into the
mechanical system at time t along these p terminals and the energy that flows into
the circuit along these p terminals on the time-interval [t1,t2] to be equal to

power = F1(t)�
d
dt

q1(t)+ F2(t)�
d
dt

q2(t)+ · · ·+ Fp(t)�
d
dt

qp(t),

energy =
∫ t2

t1

(
F1(t)�

d
dt

q1(t)+ F2(t)�
d
dt

q2(t)+ · · ·+ Fp(t)�
d
dt

qp(t)
)

dt.

The above formulas for power and energy are not valid unless these terminals
form a mechanical port ! Note that port KFL implies that power and energy are
invariant under the additive constant that can be added to the velocities due to in-
variance under uniform motion. A mass, a spring and a damper obey invariance
under uniform motion. A spring and a damper form a mechanical port, but a mass
does not. The inerter [8] is a mass-like device that is a port. In order to be able to
consider the energy that flows into a mechanical system, we should make sure that
the total external force acting on the masses is zero. This can be obtained, albeit in a
physically artificial way, by introducing a ‘ground’, an infinite mass that cannot be
accelerated, on which the negative of the total force acts, and with respect to which
positions are measured, as illustrated below.

F1 F2

F3

FN

−(F1 + F2 + · · ·+ FN)
M1

M2 M3

MN

q1

q1

q2

q3

We now compute the kinetic energy stored in N moving masses with masses
M1,M2, . . . ,MN , positions q1,q2, . . . ,qN ∈ R

3, and with forces F1,F2, . . . ,FN ∈ R
3

acting on them. By Newton’s second law, Mk
d2

dt2 qk = Fk. If we assume that KFL is
satisfied, F1 + F2 + · · ·+ FN = 0, then it is readily verified that
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d
dt

(
1
4 ∑

i, j∈{1,2,...,N}

Mi Mj

M1 + M2 + · · ·+ MN

∥∥
∥
∥

d
dt

qi − d
dt

q j

∥∥
∥
∥

2
)

= ∑
i∈{1,2,.. ,N}

F�
i

d
dt

qi.

Hence the kinetic energy equals

Ekinetic =
1
4 ∑

i, j∈{1,2,...,N}

Mi Mj

M1 + M2 + · · ·+ MN

∥
∥
∥
∥

d
dt

qi − d
dt

q j

∥
∥
∥
∥

2

.

Ekinetic is invariant under uniform motions, as a physically meaningful quantity
should be. The expression for Ekinetic can also be justified by computing the en-
ergy that can be stored in a spring or dissipated in a damper, mounted between the
masses, while bringing all the masses to the same velocity. This expression is dis-
tinct from the classical expression of the kinetic energy,

Eclassical =
1
2 ∑

i∈{1,2,...,N}
Mi

∥
∥∥
∥

d
dt

qi

∥
∥∥
∥

2

.

In fact, without requiring KFL, there holds

d
dt

(
1
2 ∑

i∈{1,2,...,N}
Mi

∥
∥
∥∥

d
dt

qi

∥
∥
∥∥

2
)

= ∑
i∈{1,2,...,N}

F�
i

d
dt

qi.

The classical expression Eclassical for the kinetic energy can be made compatible
with the expression for Ekinetic by assuming the presence of an infinite mass at rest
on which the force −(F1 + F2 + · · ·+ FN) acts without accelerating it, and applying
the formula for Ekinetic.
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On the Sample Complexity of Probabilistic
Analysis and Design Methods

Teodoro Alamo, Roberto Tempo, and Amalia Luque

Abstract. In this paper, we study the sample complexity of probabilistic methods
for control of uncertain systems. In particular, we show the role of the binomial dis-
tribution for some problems involving analysis and design of robust controllers with
finite families. We also address the particular case in which the design problem can
be formulated as an uncertain convex optimization problem. The results of the paper
provide simple explicit sample bounds to guarantee that the obtained solutions meet
some pre-specified probabilistic specifications.

This paper is dedicated to Yutaka Yamamoto on the occasion of his 60th birthday.

Keywords: randomized algorithms, probabilistic robustness, uncertain systems,
sample complexity.

1 A Randomized Approach to Analysis and Design of Control
Systems

In recent years, research on probabilistic analysis and design methods for systems
and control has significantly progressed. Specific areas where we have seen con-
vincing developments include uncertain and hybrid systems [11], [13]. A key tech-
nical ingredient of this approach is the use of the theory of rare events and large
deviation inequalities which suitably bound the tail of the probability distribution.
These inequalities are crucial in the area of Statistical Learning Theory [12, 13].
The use of this theory for feedback design of uncertain systems has been initiated
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in [13]. Recently, significant improvements regarding the sample complexity have
been provided in [1]. For the special case of convex optimization problems, the sce-
nario approach has been introduced in [3] for probabilistic controller design.

In this section we first introduce some preliminary notation and definitions as
well as two randomized strategies. In Section 2 we provide bounds for the binomial
distribution which are used in Section 3 to analyze the probabilistic properties of
different schemes involving randomization. The paper draws to a close in Section 4.

We assume that a probability measure PrW over the sample space W is given.
Given W , a collection of N independent identically distributed (i.i.d.) samples
w = {w(1), . . . ,w(N)} drawn from W is said to belong to the Cartesian product
W N = W × ·· · × W (N times). Moreover, if the collection w of N i.i.d. samples
{w(1), . . . ,w(N)} is generated from W according to the probability measure PrW ,
then the multisample w is drawn according to the probability measure PrW N . The
scalars η ∈ (0,1) and δ ∈ (0,1) denote probabilistic parameters. Furthermore, ln(·)
is the natural logarithm and e is the Euler number. For x ∈ IR, x > 0, �x� denotes the
largest integer smaller than or equal to x.

Typically, for a robustness problem, the design parameters, along with different
auxiliary variables, are parameterized by means of a decision variable vector θ ,
which is denoted as “design parameter”, and is restricted to a set Θ . On the other
hand, the uncertainty w is bounded in the set W . That is, each element w ∈ W
represents one of the admissible uncertainty realizations. We also consider a binary
measurable function g : Θ × W → {0,1} and a real measurable function f : Θ ×
W → IR which serve to formulate the specific design problem under attention. In a
control context, the binary function g : Θ ×W → {0,1}, is defined as

g(θ ,w) :=
{

0 if θ meets control specifications for w
1 otherwise.

Given θ ∈ Θ , there might be a subset of the elements of W for which the con-
straint g(θ ,w) = 0 is not satisfied. This concept is rigorously formalized by means
of the notion of “probability of violation” which is now introduced.

Definition 1 (probability of violation). Consider a probability measure PrW over
W and let θ ∈ Θ be given. The probability of violation of θ for the function g :
Θ ×W → {0,1} is defined as

E(θ ) := PrW { w ∈ W : g(θ , w) = 1 }.

Given θ ∈ Θ , it is generally difficult to obtain the exact value of the probability of
violation E(θ ) since this requires the solution of a multiple integral. However, we
can approximate its value using the concept of empirical mean. For given θ ∈ Θ ,
the empirical mean of g(θ ,w) with respect to the multisample w = {w(1), . . . ,w(N)}
is defined as

Ê(θ ,w) :=
1
N

N

∑
i=1

g(θ ,w(i)).
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Clearly, the empirical mean Ê(θ ,w) is a random variable. Since g(·, ·) is a binary
function, Ê(θ ,w) is always within the closed interval [0,1].

The utility of randomized algorithms stems from the fact they can circumvent the
complexity of nonconvex design problems of the type

min
θ∈Θ

J(θ ) subject to g(θ ,w) = 0, for all w ∈ W (1)

where J : Θ → (−∞,∞) is a measurable function which normally represents the con-
troller performance. In this setting, one can draw N i.i.d. samples {w(1), . . . ,w(N)}
from W according to probability PrW and solve the sampled optimization problem

min
θ∈Θ

J(θ ) subject to g(θ ,w(�)) = 0, � = 1, . . . ,N. (2)

Since obtaining a global solution to the previous problem is a difficult task in the
general case, we analyze in this paper the probabilistic properties of any suboptimal
feasible solution. If one allows at most m violations of the N constraints, the follow-
ing sampled problem can be used to obtain a probabilistic relaxation to the original
problem (1)

min
θ∈Θ

J(θ ) subject to
N

∑
�=1

g(θ ,w(�)) ≤ m. (3)

The idea of allowing some violations of the constraints is not new and can be found,
for example, in the context of identification [2]. The randomized strategies corre-
sponding to problems (2) and (3) have been recently studied in [1], see also [11, 13].
In order to analyze the probabilistic properties of any feasible solution to problem
(3), we introduce the following definition.

Definition 2 (probability of failure). Given N, η ∈ (0,1), the integer m where 0 ≤
m ≤ N and g : Θ ×W → {0,1}, the probability of failure, denoted by p(N,η ,m) is
defined as

p(N,η ,m) := PrW N {w ∈ W N : There exists θ ∈ Θ

such that Ê(θ ,w) ≤ m
N

and E(θ ) > η}.

We remark that the probability of failure is slightly different from the probability
of one-sided constrained failure introduced in [1]. Therefore, if the probability of
failure p(N,η ,m) is no greater than δ then every feasible solution θ ∈Θ to problem
(3) satisfies E(θ ) ≤ η with probability no smaller than 1−δ . From a practical point
of view, the objective is to obtain explicit expressions yielding a minimum number
of samples N such that the inequality p(N,η ,m) ≤ δ holds.

We notice that the probability of failure can be easily bounded by the binomial
distribution if Θ consists of a unique element. That is, if Θ = {θ̂} is a singleton,
then
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p(N,η ,m) = PrW N

{
w ∈ W N : Ê(θ̂ ,w) ≤ m

N
and E(θ̂ ) > η

}

= PrW N

{

w ∈ W N :
N

∑
�=1

g(θ̂ ,w(�)) ≤ m and E(θ̂ ) > η

}

≤ PrW N

{

w ∈ W N :
N

∑
�=1

g(θ̂ ,w(�)) ≤ m and E(θ̂ ) = η

}

=
m

∑
i=0

(
N
i

)
η i(1 − η)N−i. (4)

On the other hand, if Θ consists of an infinite number of elements, a deeper
analysis involving Statistical Learning Theory is needed [11], [13]. In Subsection
3.3 of this paper, we address this problem under the assumption that Θ consists of a
finite number of elements.

In Subsection 3.4 we study the probabilistic properties of the optimal solution
of problem (2) under the assumption that g(θ ,w) = 0 is equivalent to f (θ ,w) ≤ 0,
where f : Θ ×W → IR is a convex function with respect to θ in Θ . In this case the
result is not expressed in terms of probability of failure because it applies only to
the optimal solution of problem (2), and not to every feasible solution.

2 Explicit Sample Size Bounds for the Binomial Distribution

Given a positive integer N and a nonnegative integer m, m ≤ N, and η ∈ (0,1), the
binomial distribution is given by

B(N,η ,m) :=
m

∑
i=0

(
N
i

)
η i(1 − η)N−i.

The problem we address in this section is the explicit computation of the sample
complexity, i.e. a function Ñ(η ,m,δ ) such that the inequality B(N,η ,m) ≤ δ holds
for any N ≥ Ñ(η ,m,δ ), where δ ∈ (0,1). As it will be illustrated in the follow-
ing section, the inequality B(N,η ,m) ≤ δ plays a fundamental role in probabilistic
analysis and design methods. Although some explicit expressions are available, e.g.
the multiplicative and additive forms of Chernoff bound [5], the results obtained in
this paper are tuned on the specific inequalities stemming from the control problems
described in Section 3. Because of space limitations reasons, the proofs of the state-
ments of this section are not included. The proofs are given in a technical report,
which is available upon request.

The following technical lemma provides an upper bound for the binomial distri-
bution B(N,η ,m).

Lemma 1. Suppose that η > 0 and that the nonnegative integers m and the positive
integer N satisfy m ≤ N. Then,
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B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ am

(η
a

+ 1 − η
)N

, ∀a ≥ 1.

We notice that each particular choice of a ≥ 1 provides an upper bound for B(N,η ,
m). When using Lemma 1 to obtain a given sample complexity result, the chosen
value for a plays a significant role.

Lemma 2. Given δ ∈ (0,1) and the nonnegative integer m, suppose that the integer
N and the scalars η ∈ (0,1) and a > 1 satisfy the inequality

N ≥ 1
η

(
a

a − 1

)(
ln

1
δ

+ m ln a

)
. (5)

Then, m ≤ N and

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ δ .

Obviously, the best sample size bound is obtained taking the infimum with respect
to a > 1. However, a suboptimal value easily follows setting a equal to the Euler
constant, which yields the sample size bound

N ≥ 1
η

(
e

e − 1

)(
ln

1
δ

+ m

)
.

Since e
e−1 < 1.59, we obtain N ≥ 1.59

η
(
ln 1

δ + m
)
. If m > 0 then the choice a =

1+
ln 1

δ
m +

√
2

ln 1
δ

m provides a less conservative bound (which is very close to the op-
timal one based on extensive numerical experiments) at the price of a more involved
expression.

Corollary 1. Given δ ∈ (0,1) and the nonnegative integer m, suppose that the inte-
ger N and the scalar η ∈ (0,1) satisfy the inequality

N ≥ 1
η

(

m+ ln
1
δ

+

√

2m ln
1
δ

)

. (6)

Then,

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ δ . (7)

This corollary improves upon the explicit expression obtained when using the mul-
tiplicative form of the Chernoff bound [11], which turns out to be

N ≥ 1
η

⎛

⎝m+ ln
1
δ

+

√(
ln

1
δ

)2

+ 2m ln
1
δ

⎞

⎠ .
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3 Sample Complexity for Probabilistic Analysis and Design

We now illustrate some control problems in the context of randomized algorithms
where one encounters inequalities of the form

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ δ .

In particular we show how the results of the previous section can be used to obtain
explicit sample size bounds guaranteeing that the probabilistic solutions resulting
from different randomized approaches meet some pre-specified probabilistic prop-
erties.

3.1 Worst Case Performance Analysis

We recall here a result presented in [10] for the probabilistic worst case performance
analysis.

Theorem 1. Suppose that given function f : Θ ×W → IR, and θ̂ ∈Θ , the multisam-
ple w = {w(1), . . . ,w(N)} is drawn from W N according to probability PrW N . Suppose
also that

γ = max
�=1,...,N

f (θ̂ ,w(�)).

If

N ≥ ln 1
δ

ln 1
1−η

,

then PrW {w ∈ W : f (θ̂ ,w) > γ} ≤ η with probability no smaller than 1 − δ .

The proof of this statement, that can be found in [10], relies on the fact that PrW {w ∈
W : f (θ̂ ,w) > γ} ≤ η with probability no smaller than 1 − (1 − η)N. Therefore, it
suffices to take N such that B(N,η ,0) = (1 − η)N ≤ δ .

3.2 Analysis of the Probability of Violation

In the following theorem we provide a sample complexity result that characterizes
how the empirical mean converges in probability to the true probability of violation.

Theorem 2. Given θ̂ ∈ Θ , ρ , η with 0 ≤ ρ < η < 1 and δ ∈ (0,1), if

N ≥ ln 1
δ

(
√η −√ρ)2

then PrW N {w ∈ W N : Ê(θ̂ ,w) ≤ ρ and E(θ̂ ) > η} ≤ δ .
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Proof. We notice that

PrW N {w ∈ W N : Ê(θ̂ ,w) ≤ ρ and E(θ̂) > η} =

PrW N

{
w ∈ W N : Ê(θ̂ ,w) ≤ �ρN�

N
and E(θ̂ ) > η

}
≤ B(N,η ,�ρN�).

Therefore it suffices to show that the proposed sample size bound guarantees
B(N,η ,�ρN�) ≤ δ . Using Corollary 1 and taking into account that ρN ≥ �ρN�
we obtain that this is in fact the case if

N ≥ 1
η

(

ln
1
δ

+ ρN +

√

2ρN ln
1
δ

)

=
1
η

(√

ln
1
δ

+
√

ρN

)2

− 2 −√
2

η

(√

ρN ln
1
δ

)

.

This inequality is satisfied if

N ≥ 1
η

(√

ln
1
δ

+
√

ρN

)2

.

Equivalently,
(√

η −√ρ
)√

N ≥
√

ln 1
δ which yields N ≥ ln 1

δ
(
√η−√ρ)2 . 
�

For small values of γ = ρ
η , the obtained sample size using Lemma 2 is

ln 1
δ

η(1 −√γ)2 ≈ ln 1
δ

η
.

This bound is significantly better (for small values of η and γ) than that correspond-
ing to the additive form of the Chernoff bound [5], which for this case has a sample
complexity given by

ln 1
δ

2(η − ρ)2 =
ln 1

δ
2η2(1 − γ)2 ≈ ln 1

δ
2η2 .

On the other hand, the multiplicative form of the Chernoff bound [11] provides the
sample size bound

2η ln 1
δ

(η − ρ)2 =
2ln 1

δ
η(1 − γ)2

which is worse than that provided by Theorem 2 for small values of γ = ρ
η . Finally,

we remark that the bound presented in Theorem 2 can be also obtained by means of
a result stated in [9], which is the so-called Okamoto bound.
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3.3 Finite Families for Design

We consider here the nonconvex sampled problem (3) for the case when Θ con-
sists of a set of finite cardinality nC. As a motivation consider the case when,
after an appropriate normalization procedure, the design parameter set is rewrit-
ten as Θ̂ = { θ ∈ IRnθ : ‖θ‖∞ ≤ 1 }. Suppose also that a gridding approach is
adopted. For each component θ j, j = 1, . . . ,nθ of the design parameters θ ∈ IRnθ ,
only nCj equally spaced values are considered. That is, θ j is constrained into the

set ϒj = { −1 + 2(t−1)
(nCj −1) : t = 1, . . . ,nCj }. With this gridding, the following finite

cardinality set Θ = { [θ1, . . . ,θnθ ]� : θ j ∈ ϒj, j = 1, . . . ,nθ } is obtained. We no-
tice that the cardinality of the set is nC = ∏nθ

j=1 nCj . Another situation in which the
finite cardinality assumption holds is when a finite number of random samples in
the space of design parameter are drawn according to a given probability, see e.g.
[6, 7, 14].

The following property states the relation between the binomial distribution and
the probability of failure under this finite cardinality assumption.

Lemma 3. Suppose that the cardinality of Θ is no larger than nC. Then,

p(N,η ,m) ≤ nC

m

∑
i=0

(
N
i

)
η i(1 − η)N−i = nCB(N,η ,m).

Proof. Denote ñC ≤ nC the cardinality of Θ . Therefore, Θ can be rewritten as Θ =
{θ (1),θ (2), . . . ,θ (ñC)}. Then,

p(N,η ,m) = PrW N {w ∈ W N : There exists θ ∈ Θ

such that Ê(θ ,w) ≤ m
N

and E(θ ) > η}

≤
ñC

∑
j=1

PrW N {w ∈ W N : Ê(θ ( j),w) ≤ m
N

and E(θ ( j)) > η}

≤ ñC

m

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ nC

m

∑
i=0

(
N
i

)
η i(1 − η)N−i. 
�

Consider now the optimization problem (3). It follows from Lemma 3 that in order
to guarantee that every feasible solution θ̂ ∈ Θ satisfies E(θ̂ ) ≤ η with probability
no smaller than 1 − δ , it suffices to take N such that nCB(N,η ,m) ≤ δ , where nC

is an upper bound on the cardinality of Θ . As it will be shown next, the required
sample complexity in this case grows with the natural logarithm of nC. This means
that we can consider finite families with high cardinality and still obtain reasonable
sample complexity bounds.

Theorem 3. Suppose that the cardinality of Θ is no larger than nC. Given the non-
negative integer m, η ∈ (0,1) and δ ∈ (0,1), if

N ≥ inf
a>1

1
η

(
a

a − 1

)(
ln

nC

δ
+ m ln a

)
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then p(N,η ,m) ≤ δ . Moreover, if

N ≥ 1
η

(
m+ ln

nC

δ
+
√

2m ln
nC

δ

)

then p(N,η ,m) ≤ δ .

Proof. From Theorem 3 we have that p(N,η ,m) ≤ δ provided that B(N,η ,m) ≤ δ
nC

.
The two claims of the property now follow directly from Lemma 2 and Corollary 1
respectively. 
�
We remark that taking a equal to the Euler constant, the following sample size bound

N ≥ 1
η

(
e

e − 1

)(
ln

nC

δ
+ m

)

is obtained from Theorem 3. If m > 0 then a suboptimal value for a is given by

a = 1 +
ln nC

δ
m

+

√

2
ln nC

δ
m

.

Suppose now that a multisample w is drawn from W N according to probability
PrW N and that 0 ≤ ρ < η < 1. Then, every feasible solution θ of the optimization
problem

min
θ∈Θ

J(θ ) subject to Ê(θ ,w) ≤ ρ (8)

satisfies E(θ ) ≤ η , with probability no smaller than 1 − δ , provided that

N ≥ ln nC
δ

(
√η −√ρ)2

and that the cardinality of Θ is not larger than nC. The proof of this statement follows
the same lines as the proof of Theorem 3 and it is not included here because of space
limitations. This result improves upon a similar one presented in [8], in which the

sample size N grows as
ln

nC
δ

2(η−ρ)2 .

3.4 Optimal Robust Optimization for Design

In this subsection, we study the so-called scenario approach for robust control in-
troduced in [3], see also [4] for recent results in this area. Suppose that in order to
address the general semi-infinite optimization problem (1), one resorts to random-
ization. That is, N i.i.d. samples {w(1), . . . ,w(N)} from W according to probability
PrW are drawn and one solves the following problem
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min
θ∈Θ

J(θ ) subject to g(θ ,w(�)) = 0, � = 1, . . . ,N. (9)

We consider here the particular case in which J(θ )= c�θ , the constraint g(θ ,w) = 0
is convex in Θ for all w ∈ W , the solution of (9) is unique1. These assumptions are
now stated precisely.

Assumption 1 (convexity). Let Θ ⊂ IRnθ be a convex and closed set. We assume
that

J(θ ) := c�θ and g(θ ,w) :=
{

0 if f (θ ,w) ≤ 0,
1 otherwise

where f : Θ ×W → [−∞,∞] is convex in Θ for any fixed value of w ∈ W .

Assumption 2 (feasibility and uniqueness). The optimization problem (9), for all
possible multisample extractions {w(1), . . ., w(N)}, is always feasible and attains a
unique optimal solution. Moreover, its feasibility domain has a nonempty interior.

We state here a result proved in [4] that relates the binomial distribution to the
probabilistic properties of the optimal solution obtained from (9).

Lemma 4. Let Assumptions 1 and 2 hold. Suppose that N, η ∈ (0,1) and δ ∈ (0,1)
satisfy the following inequality

nθ −1

∑
i=0

(
N
i

)
η i(1 − η)N−i ≤ δ . (10)

Then, with probability no smaller than 1 − δ , the optimal solution θ̂N to the opti-
mization problem (9) satisfies the inequality E(θ̂N) ≤ η .

We now state an explicit sample size bound to guarantee that the probability of
violation is smaller than η with probability at least 1 − δ .

Theorem 4. Let Assumptions 1 and 2 hold. Given η ∈ (0,1) and δ ∈ (0,1), if

N ≥ inf
a>1

(
a

η(a − 1)

)(
ln

1
δ

+(nθ − 1) ln a

)
(11)

or

N ≥ 1
η

(

ln

(
1
δ

)
+ nθ − 1 +

√

2(nθ − 1) ln
1
δ

)

(12)

then, with probability no smaller than 1 − δ , the optimal solution θ̂N to the opti-
mization problem (9) satisfies the inequality E(θ̂N) ≤ η .

Proof. From Lemma 4 it follows that it suffices to take N such that B(N,η ,nθ −1)≤
δ . Both inequalities (11) and (12) guarantee that B(N,η ,nθ −1) ≤ δ (see Lemma 2
and Corollary 1 respectively). This completes the proof. 
�

1 We remark that this uniqueness assumption can be relaxed in most cases, as shown in
Appendix A of [3].
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We remark that a sample size bound which depends linearly on 1
η is obtained taking

a equal to the Euler constant

N ≥ 1
η

(
e

e − 1

)(
ln

1
δ

+ nθ − 1

)
.

This bound always improves upon other recent bounds given in the literature, see
e.g. [1]. If nθ > 1 then a suboptimal value for a is given by

a = 1 +
ln 1

δ
nθ − 1

+

√

2
ln 1

δ
nθ − 1

.

4 Conclusion

In this paper we have derived sample complexity results for various analysis and
design problems related to uncertain systems. In particular we provided new re-
sults which guarantee that a binomial distribution expression is smaller than a pre-
specified value. These results are subsequently exploited for the analysis of worst
case performance and constraint violation. With regard to design problems we con-
sidered the case of finite cardinality of controller families and the special case when
the design problem can be recast as a robust convex optimization problem.

Acknowledgement. This work was supported by the MCYT-Spain and the Euro-
pean Commision which funded this work under projects DPI2007-66718-C04-01
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A Constant Factor Approximation Algorithm
for Event-Based Sampling

Randy Cogill, Sanjay Lall, and João P. Hespanha

Abstract. We consider a control system in which sensor data is transmitted from the
plant to a receiver over a communication channel, and the receiver uses the data to
estimate the state of the plant. Using a feedback policy to choose when to transmit
data, the goal is to schedule transmissions to balance a trade-off between commu-
nication rate and estimation error. Computing an optimal policy for this problem is
generally computationally intensive. Here we provide a simple algorithm for com-
puting a suboptimal policy for scheduling state transmissions which incurs a cost
within a factor of six of the optimal achievable cost.

1 Introduction

We consider a control system in which sensor data is transmitted from the plant
to a receiver over a communication channel, and the receiver uses the data to es-
timate the state of the plant. Sending data more frequently leads to increased use
of limited communication resources, but also allows the average estimation error to
be reduced. Conversely, of course we may reduce the use of the channel if we are
willing to allow larger estimation errors.
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We consider feedback policies for choosing when to transmit data. That is, in-
stead of simply choosing a transmission rate, at the plant measurements are used
to decide whether to transmit data to the controller. This type of measurement is
called Lebesgue or event-based sampling in [2]. Several other authors have consid-
ered both control and filtering problems using such sampling schemes, in particu-
lar [2, 7, 8, 9, 18, 26, 28].

The plant is modeled by a discrete-time linear system, and at each time step
the channel allows exact transmission of the state. The cost function of interest in
this problem is a weighted sum of the estimation error and the transmission rate.
The optimal controller for a given weight then lies on the Pareto-optimal trade-
off curve, and choosing the weight allows one to select the trade-off between rate
and error.

For this cost function, the problem of finding the optimal policy was consid-
ered in [27], where the authors show that the problem of computing an optimal
scheduling policy can be addressed in the framework of Markov decision processes,
and consequently the value iteration algorithm can be used to compute an optimal
policy. Although this provides an algorithm for computing an optimal policy, the
computation required to compute such a policy quickly becomes prohibitive as the
system’s state dimension increases.

Since the optimal policy is very difficult to compute, we consider approximately
optimal policies. Specifically, the main result of this paper is to give a simple algo-
rithm for computing a policy, and show that this policy is guaranteed to achieve a
cost within a factor of six of the optimal achievable cost. This result is Theorem 1
below.

Approximation algorithms have been widely used for addressing computation-
ally intractable problems. While some NP-hard problems may be approximated to
arbitrary accuracy, others may not be approximated within any constant factor. It
is therefore extremely promising that the particular problem of rate-error trade-off
considered in this paper is approximable within a constant factor of six. It is not
currently known whether policies achieving better approximation ratios may be ef-
ficiently obtained.

Finally, due to space constraints, all proofs have been omitted from this paper.
Proofs of the theorems in this paper can be found in [6].

2 Problem Formulation

Here we will present the problem that will be considered throughout this paper. In
the following subsection, it will be shown how this problem is a generalization of
the problem of networked estimation.

We have dynamics

et+1 = (1 − at)Aet + wt e0 = 0, (1)
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where A ∈ R
n×n, and for each t ∈ N the state is et ∈ R

n and the action is at ∈
{0,1}. Here w0,w1, . . . is a sequence of independent identically distributed Gaussian
random vectors, with wt ∼ N (0,Σ), where Σ � 0. Define the function r : R

n ×
{0,1} → R to be the cost at time t, given by

r(et ,at) = (1 − at)eT
t Qet + λ at (2)

where Q � 0 and λ > 0. We would like to choose a state-feedback control policy
μ : R

n → {0,1} to make the average cost incurred by the policy μ small. Here the
average cost J is defined as

J(μ) = limsup
N→∞

1
N

N−1

∑
t=0

E
(
r(et ,μ(et)

)
(3)

See [1] for background on this choice of cost. Here, each at is determined according
to the static state-feedback policy at = μ(et), and then the sequence e0,e1, . . . is
a Markov process. Therefore, the problem of choosing a policy which minimizes
the cost J is can be addressed using the theory of Markov decision processes. The
cost J given by equation (3) is called the average per-period cost, and we focus
specifically on the problem of choosing a policy to minimize this. For convenience,
define the space of policies

P = { f : R
n → {0,1} | f is measurable}

Then the above problem can be stated as follows.

Problem 1 (RATE-ERROR TRADE-OFF). Given A, Σ � 0, Q � 0, λ > 0, and γ > 0,
find a state feedback policy μ ∈ P such that

J(μ) ≤ γ

Minimizing the cost J balances a trade-off between the average size of et , as
measured by the quadratic form defined by Q, and the frequency with which et

is reset to the level of the noise by setting at = 1. The problem of computing an
optimal policy was considered in [27], and a numerical procedure for finding such a
policy was given. However, the computation required to compute an optimal policy
increases rapidly with the state dimension. In the following section we present an
easily computable and easily implementable policy for this problem which incurs a
cost within a provable bound of the optimal achievable cost. Specifically, we focus
our attention on the set of problem instances where Q and A are such that AT QA −
Q � 0 and Q � 0. In particular, this implies that ρ(A) ≤ 1 and the system is therefore
at least marginally stable. We show that in this case there is a simple policy which
always achieves a cost within a factor of six of the optimal cost. It is worth noting
that, in general, both the policy which always transmits and the policy which never
transmits may achieve cost arbitrarily far from optimal.
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2.1 Application to Networked Estimation

Suppose we have the dynamical system

xt+1 = Axt + wt x0 = 0

yt = atxt

where for each t ∈ N the state xt ∈ R
n and at ∈ {0,1}. As above, w0,w1, . . . is a

sequence of independent identically distributed zero mean Gaussian random vectors
with covariance Σ � 0. We have a per-period cost of

c(xt ,at ,bt) = (1 − at)(xt − bt)T Q(xt − bt)+ λ at (4)

and we would like to choose two controllers. The first is the function μ : R
n →

{0,1}, and the second is the sequence of functions φt indexed by t where φt :
{0,1}t ×R

nt → R
n. These are connected according to

at = μ(xt)
bt = φt(a0, . . . ,at−1,y0, . . . ,yt−1)

Again, we are interested in the cost

J(μ ,φ0,φ1, . . . ) = limsup
N→∞

1
N

N−1

∑
t=0

E
(
r(xt ,at ,bt)

)

The interpretation is shown in Figure 1, where the linear dynamics xt+1 = Axt + wt

is denoted by G. The dashed lines indicate a communication channel. At each time
t the transmitter μ chooses whether to transmit the signal xt to the receiver φ . Each
transmission costs λ . The receiver would like to estimate the state xt of G, and
choose bt to minimize the error xt − bt as measured by the quadratic form Q. The
cost r is used to compute the trade-off, parametrized by λ , of estimation error against
frequency of transmissions.

w G
x

μ

a

y

θ b

Fig. 1 Networked Estimation.

The estimator φ considered in Xu and Hespanha [27] is as follows. Let bt =
φt(a0, . . . ,at−1,y0, . . . ,yt−1), and define φ by the realization

bt+1 = (1 − at)Abt + atAxt b0 = 0
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If the random variables a0,a1, . . . are independent of x0,x1, . . . then this is the time-
varying Kalman filter, and bt is the minimum mean square error estimate of xt given
measurements y0, . . . ,yt−1.

We now have the dynamics
[

xt+1

bt+1

]
=

[
A 0

atA (1 − at)A

][
xt

bt

]
+

[
I
0

]
wt

We change coordinates to [
et

ft

]
=

[
I −I
0 I

][
xt

bt

]

to give [
et+1

ft+1

]
=

[
(1 − at)A 0

atA A

][
et

ft

]
+

[
I
0

]
wt

In these coordinates, the cost c specified in equation (4) is exactly equal to the
cost (2), and e evolves according to the dynamics (1). With this choice of φ therefore
the optimal choice of μ is found by solving the RATE-ERROR TRADE-OFF problem.

3 Main Results

In this section we present the main result of this paper, which is that for a slightly
restricted version of the RATE-ERROR TRADEOFF problem, there is a simple policy
which achieves cost within a constant factor of optimal. Define for convenience

Jopt = inf
μ∈P

(

liminf
N→∞

1
N

N−1

∑
t=0

E
(
r(et ,μ(et)

)
)

The policy that we consider is a simple quadratic threshold policy. The main result
of this paper is as follows.

Theorem 1. Suppose A ∈ R
n×n, Q � 0, Σ � 0, and AT QA−Q � 0. Then there exists

a unique matrix M ∈ S
n satisfying

1
1 + trace(ΣM)

AT MA − M +
Q
λ

= 0 (5)

Furthermore, define the policy μ by

μ(e) =

{
0 if eT Me ≤ 1

1 otherwise
(6)

For this policy, the cost satisfies

J(μ) ≤ 6Jopt (7)
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Proof. The result follows immediately from Theorems 2 and 3 which are proved
below.

Note that implementation of the policy μ requires an algorithm for computing the
unique solution M of equation (5). It is easily shown that this equation can be solved
by performing a bisection search and solving a sequence of Lyapunov equations.

4 Bounds for the Communication Cost

4.1 Upper Bounds

We are now ready to the upper bound on J(μ) is obtained, where μ is the policy
in (6). The following lemma provides the upper bound and also shows that one may
use semidefinite programming, combined with a line search, to find policies that
minimize this upper bound.

Lemma 1. Suppose M � 0 and H � 0 are symmetric positive semidefinite matrices,
and α ∈ R. If

AT HA − H + Q− αM � 0

(λ − α)M − H � 0

α − λ ≤ 0

α ≥ 0

(8)

Then the policy

μ(e) =

{
0 if eT Me ≤ 1

1 otherwise

achieves a cost which satisfies

J(μ) ≤ trace(ΣH)+ α

We now make use of this result to provide an explicit upper bound.

Theorem 2. Suppose A ∈ R
n×n, Q � 0, Σ � 0 and AT QA − Q � 0. Let M be the

unique solution to

1
1 + trace(ΣM)

AT MA − M + Q/λ = 0

Then the policy

μ(e) =

{
0 if eT Me ≤ 1

1 otherwise

achieves

J(μ) ≤ 2λ trace(ΣM)
1 + trace(ΣM)
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4.2 Lower Bounds

For the class of instances of RATE-ERROR TRADEOFF with A and Q satisfying
AT QA−Q � 0, we can show that the policy μ of equation (6) achieves a cost within
a constant factor of optimal. To complete the presentation of the main result of this
paper, we now determine a lower bound on Jopt which guarantees that for this class
of instances,

J(μ) ≤ 6Jopt

This result can be established using the lemmas below, the proofs of which can
be found in [6].

Lemma 2. Suppose Y � 0 and q ∈ R
n, and w ∼ N (0,Σ) is a Gaussian random

vector. Let f be the random variable

f = (q + w)TY (q + w)

Then

E f = qTYq + trace(ΣY ) (9)

E( f 2) = (qTYq)2 + 4qTYΣY q +
(
trace(ΣY )

)2
(10)

+ 2trace(ΣY ΣY )+ 2qTY q trace(ΣY )

and further

E( f 2) ≤ (qTY q)2 + 6qTY q trace(ΣY )+ 3
(
trace(ΣY )

)2

Lemma 3. Suppose there exists a positive semidefinite matrix C � 0 and s ∈ R such
that (

s− 6trace(CΣ)
)
ATCA − sC + Q � 0

s2 ≤ 4λ

ATCA −C � 0

(11)

Then for all policies μ ∈ P

J(μ) ≥ s trace(CΣ)− 3
(
trace(CΣ)

)2

Lemma 4. Suppose there exists M � 0 such that

1
1 + trace(ΣM)

AT MA − M + Q/λ = 0

AT MA − M � 0

Then for all policies μ ∈ P we have

J(μ) ≥ λ trace(ΣM)
3
(
1 + trace(ΣM)

)
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Lemma 5. Suppose Q � 0 and AT QA−Q � 0, and α ∈ R satisfies 0 ≤ α < 1. Then
there exists a unique M ∈ S

n such that

αAT MA − M + Q = 0 (12)

and the matrix M is positive definite and satisfies

AT MA − M � 0

Finally, the lemmas above can be combined to obtain the following theorem.

Theorem 3. Suppose A ∈ R
n×n, Q � 0, Σ � 0 and AT QA − Q � 0. Let M be the

unique solution to

1
1 + trace(ΣM)

AT MA − M + Q/λ = 0

Then for all policies μ ∈ P we have

J(μ) ≥ λ trace(ΣM)
3
(
1 + trace(ΣM)

)

5 Conclusions

In this paper we considered a simple, yet fundamental estimation problem involving
balancing the trade-off between communication rate and estimation error in net-
worked linear systems. This paper extended work of [27], where it was shown that
this problem can be posed as a Markov decision process. Here we show that there
is a simple, easily computable suboptimal policy for scheduling state transmissions
which incurs a cost within a factor of six of the optimal achievable cost.
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A Unified Approach to Decentralized
Cooperative Control for Large-Scale Networked
Dynamical Systems

Shinji Hara

Abstract. A class of large-scale networked dynamical systems with decentralized
information structures such as multi-agent dynamical systems can be represented by
an LTI system with a generalized frequency variable. This paper summarizes recent
results on the fundamental analysis, namely stability conditions, H2-norm com-
putations, and H∞-norm conditions, for LTI systems with generalized frequency
variables. We also show an analytic condition for the existence of protein level’s
periodic oscillations in cyclic gene regulatory networks as an application.

1 Introduction

There are many large scale systems in both nature and artificial systems, which
consist of a bunch of subsystems interacted each other, and our target dynamical
systems in modern engineering have become more and more complex and subject
to multitude of system dimensions. To cope with these challenges, many studies of
different approaches in a variety of areas have been made in the last decade. One of
the bulk flows in these studies is the decentralized cooperative control of the multi-
agent dynamical systems (See e.g., [12] and references therein.). There have been
many researches in the form of proposing a specific approach within an individual
problem formulation, but very few results are available so far to provide a unifying
theoretical framework.

This situation motivates us to establish a unified approach for the analysis
and synthesis of multi-agent dynamical systems in which agents with dynamics
exchange information each other and autonomously cooperate. To this end our
research group recently proposed a linear time-invariant (LTI) system with a gener-
alized frequency variable as one of the unifying expressions for multi-agent dynam-
ical systems [3, 4]. Specifically, the transfer function G (s) representing the overall
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dynamics of a multi-agent system is described by simply replacing s by a ratio-
nal function φ(s) in a transfer function G(s), i.e., G (s) := G(φ(s)). We call φ(s)
the generalized frequency variable, because s in a continuous-time transfer function
represents the frequency variable. The system description has a potential to provide
a theoretical foundation for analyzing and designing homogeneous large-scale net-
worked dynamical systems in a variety of areas. For example, the framework of the
generalized frequency variable can be applied to the analysis and synthesis of cen-
tral pattern generators (CPGs) [8] and gene-protein regulatory networks [1, 14, 7]
as well as consensus and formation problems as surveyed in [12].

The very fundamental properties including controllability/observability have been
discussed in [3, 4], and Reference [16] provided two systematic ways of stability
check, namely an algebraic condition and LMI condition, which are different from
graphical tests in [13, 12]. A Hurwitz type stability criterion for characteristic poly-
nomials with complex coefficients in [2] was used for the derivation of the former
condition, and it can be reduced to a set of LMIs by applying a generalized Lya-
punov theorem in [6]. Recently, H2 and H∞ norm computations for fairly general
class of multi-agent dynamical systems have been investigated in [5]. The H2 norm
computations are useful for evaluating a variety of control performances including
rapidness of consensus, and the H∞ norm relates conditions for robust stability and
robust performances, which bring us a systematic treatment of heterogeneous multi-
agent dynamical systems.

This paper summarizes recent results on the fundamental analysis for LTI sys-
tems with generalized frequency variables. After introducing the system description
in Section 2, stability conditions, H2-norm computations, and H∞-norm conditions
are shown in Sections 3, 4, 5, respectively. Section 6 is devoted to an application
to cyclic gene regulatory networks, where an analytic condition for the existence of
protein level’s periodic oscillations.

We use the following notation. The sets of real, positive real, complex and natural
numbers, are denoted by R, R+. C, and N, respectively. The complex conjugate of
z ∈ C is denoted by z̄. For a matrix A, its transpose and complex conjugate transpose
are denoted by AT and A∗, respectively. For a square matrix A, the set of eigenvalues
is denoted by σ(A). The symbols Sn and S+

n stand for the sets of n × n real sym-
metric matrices and its positive definite subsets. For matrices A and B, A⊗B means
their Kronecker product. The open left-half complex plane and the closed right-half
complex plane are denoted by C− and C+, respectively.

2 Linear Time-Invariant System with Generalized Frequency
Variable

We here define a class of linear time-invariant (LTI) systems with generalized fre-
quency variables and provide their dynamical system representations in the fre-
quency and time domains. Specifically, consider the LTI system described by the
transfer function
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Fig. 1 LFT representation of G(s)
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Fig. 2 LFT representation of G (s)

G (s) = C

(
1

h(s)
In − A

)−1

B + D = Fu

([
A B
C D

]
, h(s)In

)
, (1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, h(s) is a single-input single-
output, νth-order, strictly proper transfer function, and Fu denotes the upper linear
fractional transformation. The system G (s) can be viewed as an interconnection
of n identical agents, each of which has the internal dynamics h(s) rather than an
integrater in the standard system depicted in Fig. 1,. As shown in Fig. 2, the inter-
connection structure is specified by A, and the input-output structure for the whole
system is specified by B, C, and D. Defining the transfer function

G(s) = C(sIn − A)−1B + D, (2)

the system can be described as

G (s) = G(φ(s)), φ(s) := 1/h(s). (3)

Note that the variable s in (2) characterizes frequency properties of the transfer func-
tion G(s) and that G (s) is generated by simply replacing s by φ(s) in G. Hence, we
say that the system (1) is described by the transfer function G with the generalized
frequency variable φ(s) [3, 4].

Let h(s) have a minimal realization h(s) ∼ (Ah,bh,ch,0), where Ah ∈ R
ν×ν , bh ∈

R
ν , ch ∈ R

1×ν . It can be readily shown that a realization of G (s) is given by G (s) ∼
(A ,B,C ,D), where

A = In ⊗ Ah + A ⊗ (bhch) ∈ R
nν×nν , B = B ⊗ bh ∈ R

nν×m,

C = C ⊗ ch ∈ R
p×nν , D = D ∈ R

p×m.
(4)

It should be also noticed that (A ,B,C ,D) is a minimal realization if (A,B,C,D)
and (Ah,bh,ch,0) are both minimal realizations [3, 4].

3 Stability Conditions

Thanks to the preserving property on minimality of the realizations, we have the
equivalence between the BIBO stability and the internal stability. In other words,
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The LTI system with generalized frequency variable G (s) given by (3) is BIBO
stable (all the poles of G (s) are in C−), if and only if

HA(s) :=
(

1
h(s)

I − A

)−1

= (φ(s)I − A)−1 , (5)

is exponentially stable or HA(s) is proper and analytic in the closed right half com-
plex plane. In other words, we can check the stability of an LTI system with gen-
eralized frequency variable φ(s) = 1/h(s) from the pair (A, h(s)), and we have the
following theorem [16].

Theorem 1. Let a matrix A ∈ R
n×n, and a strictly proper rational function h(s) =

n(s)/d(s) be given and define HA(s) by (5) and p(λ ,s) by

p(λ ,s) := d(s)− λ n(s). (6)

Suppose that n(s) and d(s) are coprime. The following five statements are equiva-
lent.

(i) HA(s) is stable.
(ii) For all λ ∈ σ(A), all the eigenvalues of Ah +λ bhch belong to the open left-half

complex plane.
(iii) σ(A) ⊂ Λ := { λ ∈ C | p(λ ,s) is Hurwitz }.
(iv) σ(A) ⊂⋂ν

k=1 Σk,
where Σk := { λ ∈ C | l�k(λ )∗Φkl�k(λ ) > 0 }.

(v) For each k = 1,2, . . . ,ν , there exists Xk ∈ S+
n such that

L�k(A)T (Φk ⊗ Xk)L�k(A) > 0. (7)

Here,

l�(λ ) :=

⎡

⎢
⎢⎢
⎣

1
λ
...

λ �−1

⎤

⎥
⎥⎥
⎦

, L�(A) :=

⎡

⎢
⎢⎢
⎣

I
A
...

A�−1

⎤

⎥
⎥⎥
⎦

,

and the positive integer �k ∈ N and Φk ∈ S�k for k = 1,2, . . . ,ν are specified by
applying a Hurwitz-type stability test for polynomials with complex coefficients in
[6] to the corresponding closed-loop characteristic polynomial p(λ ,s).

It is clear that Condition (ii) is equivalent to that of (i), and the former will be used
for the the H2-norm computation in the next section. The equivalence among (i),
(iii), (iv), and (v) was proved in [16], Condition (iv), or a Hurwitz type condition,
gives us an algebraic condition so that all the eigenvalues of A should belong to
guarantee the stability of the total system. Condition (v), or Lyapunov type condi-
tion, provides an LMI feasibility problem, where we need no prior computation of
the set of all eigenvalues of A.

The following is an algorithm based on Condition (v) for checking stability of
the LTI system with generalized frequency variable. It includes a simple example
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of h(s) = (cs + d)/(s2 + as + b), where we assume that n(s) = cs + d and d(s) =
s2 + as+ b are coprime to illustrate the proposed procedure.

Algorithm: Let h(s) and A be given.

1. Write h(s) = n(s)/d(s) with n(s), d(s) coprime. Define the polynomial p(λ ,s)
by (6).

p(λ ,s) = s2 + as+ b − λ (cs+ d)

= s2 +(a − cx − jcy)s+ b −dx− jdy,

where x and y are the real and imaginary part of λ , respectively.
2. Obtain a necessary and sufficient condition for p(λ ,s) to be a Hurwitz polyno-

mial in s by applying a Hurwitz type stability test for polynomials with complex
coefficients in [2]. Let Δk(λ , λ̄ ) > 0 (k = 1,2, . . . ,ν) be the resulting condition.

Δ1(λ , λ̄ ) = a − cx = a − cλ − cλ̄ > 0,

Δ2(λ , λ̄ ) =

∣
∣
∣
∣
∣∣

a − cx 0 dy
1 b − dx cy
0 −cy a − cx

∣
∣
∣
∣
∣∣

= −1
2

c2d(λ 2λ̄ + λ λ̄ 2)+
1
2
(acd + 3bc2 − d2)λ λ̄

+
1
4

(
adc + bc2 + d2) (λ 2 + λ̄ 2)− 1

2
(2abc + ad2)(λ + λ̄)+ a2b > 0.

3. Obtain the maximum degree �k − 1 of λ in Δk(λ , λ̄ ) and the coefficient matrix
Φk of Δk(λ , λ̄ ) for k = 1,2, . . . ,ν , where the (i, j) entry of Φk is the coefficient
of λ i−1λ̄ j−1 in Δk(λ , λ̄ ).

�1 = 2, �2 = 3, Φ1 =
[

2a −c
−c 0

]
,

Φ2 =
1
4

⎡

⎣
4a2b −2a2d − 4abc acd + bc2 + d2

−2a2d − 4abc 6acd + 2bc2 − 2d2 −2c2d
acd + bc2 + d2 −2c2d 0

⎤

⎦ .

4. For k = 1,2, . . . ,ν , form the LMIs

L�k(A)T (Φk ⊗ Xk)L�k(A) > 0, Xk ∈ S+
n . (8)

5. Check whether there exists Xk satisfying (8) for each k = 1,2, . . . ,ν . If feasi-
ble/infeasible, then the system is stable/unstable.

The proposed algorithm can systematically check the stability condition for the
LTI system with the generalized frequency variable φ(s) = 1/h(s) and the inter-
connection matrix A. Recall that stability of G (s) can also be determined through
existing methods, e.g., Lyapunov inequality A X +X A T < 0. However, the size
of the matrices in this LMI is nν ×nν . On the other hand, the main stability theorem



66 S. Hara

is given in terms of ν LMIs in which the sizes of the matrices are n × n. Thus, the
computational burden associated with our stability condition can be much less than
that of the standard Lyapunov method if the system dimension is high.

4 H2-Norm Computations

This section is devoted to the H2 norm computations for G (s), where we assume
that D = O to assure the boundedness of the norm and that A is diagonalizable for
the notational simplicity.

The following theorem can be derived for the H2 norm computation [5].

Theorem 2. For a given stable G (s) with D = O in (1). We assume that A is diag-
onalizable and that A is represented by A = TΛT −1 with a non-singular matrix T
and Λ = diag(λ1,λ2, . . . ,λn). Then, we have

‖G ‖2
2 = tr

[(
Θ ⊗ (c∗

hch)
)
P
]

= tr
[(

Π ⊗ (bhb∗
h)
)
Q
]
, (9)

where Π := T −1BB∗(T −1)∗, Θ := T ∗C∗CT , and the (i, j) block of P,Q for i =
1,2, . . . ,n, j = i, i+1, . . . ,n denoted by Pi j,Qi j ∈ C

ν×ν ,(i = 1,2, . . . ,n, j = 1,2, . . . ,
n) are the unique solutions of the following Sylvester equations:

ÂiPi j + Pi jÂ
∗
j = −πi jbhb∗

h, (10)

Â∗
i Qi j + Qi jÂ j = −θi jc

∗
hch, (11)

where Âi := Ah +λibhch, and πi j , θi j are the (i, j) elements of Π and Θ , respectively.

If we restrict the class of systems, we have the more compact result.

Corollary 1. For a given stable G (s) with D = O in (1). We assume that A is a
normal matrix which is represented by A = TΛT −1 with a unitary matrix T and
Λ = diag(λ1,λ2, . . . ,λn) and that B = I. Then, we have

‖G ‖2
2 = tr

[(
(T ∗C∗CT )⊗ (c∗

hch)
)
P
]
, (12)

where P is the block diagonal matrix defined by P = diag(P1,P2, . . . ,Pn),Pi ∈ C
ν×ν

with Pi (i = 1,2, . . . ,n) being the unique solutions of the Lyapunov equation

ÂiPi + PiÂ
∗
i = −bhb∗

h (13)

where Âi := Ah + λibhch.

The proof is straightforward from Theorem 2 using the facts T is unitary and Π = I.
The corollary exploits the normal structure of the interconnection matrix A to re-
duce the computational complexity. We only need to solve n independent Lyapunov
equations with size ν × ν for the H2 norm computation.
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Another corollary which corresponds to the results in [11, 10] is given if we
further assume the C = In in the corollary.

5 H∞-Norm Conditions

The following theorem provides two exact conditions for the H∞ norm of a special
class of G (s) [5].

Theorem 3. For a given positive number γ > 0 and an LTI system with generalized
frequency variable G (s) represented by (1), we assume that A is a normal matrix,
i.e., AA∗ = A∗A, B = In, C = In, and D = On. Then the following statements are
equivalent.

(i) ‖G ‖∞ < γ
(ii) For all λ ∈ σ(A), ∥

∥
∥
∥

h
1 − λ h

∥
∥
∥
∥

∞
< γ. (14)

(iii) For all λ ∈ σ(A) and φ ∈ Φ := {1/h( jω) : ω ∈ R},
∣
∣
∣
∣

1
φ − λ

∣
∣
∣
∣< γ. (15)

Thus, the H∞ norm calculation of the system (1) can be decomposed into that of
n subsystems with a complex coefficient in this special case. Condition (iii) gives a
graphical test, and there are three ways to compute the H∞ norm based on Condition
(ii), where we use the γ iteration to get the precise value. The three methods are
based on the bounded real lemma (LMI), the eigenvalue condition of the associated
Hamiltonian matrix, and the corresponding polynomial KYP lemma. See [5] for the
details.

There are two remarks on Theorem 3.

• Since the H∞ norm constraint corresponds to the allowable uncertainty bound in
the context of robust control, the conditions for ‖G ‖∞ < γ in Theorem 3 relates
a robust stability condition. As shown in [5] the corresponding class of perturba-
tions to the nominal system h(s)I is the feedback type, and the class of perturbed
system without inter connection matrix A is given by

Hγ := { (I + h(s)Δ(s))−1h(s) | Δ(s) ∈ ΔΔγ }.

ΔΔγ :=
{

Δ(s)
∣
∣
∣
∣ proper & stable, ‖Δ‖∞ ≤ 1

γ

}
,

In other words, the result for the H∞ norm computation can be applied to the
allowable uncertainty bound of feedback type to assure the feedback stability.
Hence, this is a powerful tool for examination of the stability of heterogeneous
multi-agent dynamical systems. It should be noticed that the result relates an
investigation in [13] for the identical diagonal perturbation case.
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P P P P
Gene Gene Gene Gene

Protein Protein Protein

Protein 

Fig. 3 Gene regulatory network with cyclic structure [7]

• The same approach can be applied to the wider class of systems if A is a normal
matrix. One of the interesting classes is a feedback loop system in the H∞ loop
shaping design, since it relates the normalized coprime factor perturbations and
it includes both the sensitivity and complementarity sensitivity functions. The
target transfer function is given by

L (s) :=
[

A
I

]
(I − h(s)A)−1 [h(s)I I

]
,

and the exact H∞ norm condition is derived in [5].

6 Application to Gene Regulatory Networks

This section is devoted to an application of the stability results in Section 3 to large-
scale cyclic gene regulatory networks, where we show an analytic condition for the
existence of protein level’s periodic oscillations.

The well-known central dogma of molecular biology is that protein is synthe-
sized following the two steps called transcription and translation: genes on a DNA
are first transcribed into mRNAs, and then a mRNA is translated into one or mul-
tiple copies of corresponding proteins. Further, some proteins, called transcription
factors, are known to activate or repress the transcription of other genes. Then, such
chemical interactions between transcription factors and genes can be described by
gene regulatory networks.

We here consider the gene regulatory network where a transcription factor of one
gene activates or represses the transcription of another gene in a cyclic way as de-
picted in Fig. 3 [15]. Note that this cyclic feedback structure is one of the substantial
chemical pathways in living organisms, and is also observed in metabolic pathways,
tissue growth regulations, cellular signaling pathways and neuron models (see [9]
and references therein). Then, the dynamics of the above cyclic gene regulatory
networks is modeled as, for i = 1,2, · · · ,N,

ṙi(t) = −airi(t)+ βi fi(pi−1(t)),
ṗi(t) = ciri(t)− bipi(t),

(16)

where ri ∈ R+ and pi ∈ R+ denote the concentrations of the i-th mRNA and its cor-
responding protein synthesized in the i-th gene, respectively. Let p0(t) := pN(t) and
r0(t) := rN(t) for the sake of notational simplification. Positive constants ai,bi,ci
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and βi represent the followings: ai and bi denote the degradation rates for the i-th
mRNA and protein, respectively; ci and βi denote the translation and transcription
rates, respectively. A monotonic function fi(·) : R+ → R+ represents either activa-
tion or repression of the transcription. As one pair of the candidates for fi(·), the
following Hill functions are often introduced in biochemical characterization:

fi(pi−1) =
1

1 + pν
i−1

, fi(pi−1) =
pν

i−1

1 + pν
i−1

(17)

We here assume that the gene regulatory network has odd number of repressive
interactions between genes, or it holds that

δ :=
(

d f1

d pN

)
·
(

d f2

d p1

)
· · ·
(

d fN

d pN−1

)
< 0. (18)

We can show that the protein concentrations of the cyclic gene regulatory network
either (i) converge to an equilibrium state, or (ii) oscillate periodically [7]. Thus,
if such a unique equilibrium state is locally unstable, there exists a set of initial
values so that protein concentrations do not converge to the equilibrium level and
eventually enter into a non-constant periodic orbit.

In order to analyze the local stability of (16), we now consider its linearized
model around the equilibrium state:

[
ṙi

ṗi

]
=
[−ai 0

ci −bi

][
ri

pi

]
+
[

βi

0

]
ui, ui := ζi pi−1, (19)

where ζi := f ′
i (p∗

i−1). Note that condition (18) is equivalent to ∏N
i=1 ζi < 0.

If we assume that the network consists of nearly the same bases of genes, it can
be assumed that a1 = · · · = aN(=: a) and b1 = · · · = bN(=: b). Then, the network
system can be represented by an LTI system with generalized frequency variable
represented by

G (s) := (φ(s)I − A)−1, φ(s) := 1/h(s), (20)

where

h(s) :=
1

(Tas+ 1)(Tbs+ 1)
; Ta := 1/a, Tb := 1/b (21)

and

A :=

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 0 0 · · · ζ1R2
1

ζ2R2
2 0 0 · · · 0

0 ζ3R2
3 0 · · · 0

...
...

. . .
. . .

...
0 0 · · · ζNR2

N 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

. (22)
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Applying Theorem 1 to the system leads to

Ω+ :=
{

−y + jx ∈ C

∣
∣
∣
∣ y <

1
4

Q2x2 − 1

}
(23)

as the instability region Ω+ for the eigenvalues matrix A defined by (22), where

Q :=
√

TaTb

(Ta + Tb)/2

(

=
√

ab
(a + b)/2

)

. (24)

Note that Q is the ratio between the arithmetic and geometric means of mRNA and
protein time constants, Ta and Tb.

We can see from the special structure of A that the eigenvalues of A are simply
computed as, for k = 1,2, · · · ,N,

λk = Le j(2k−1)π/N, L :=

∣
∣
∣∣
∣

N

∏
�=1

R2
�ζ�

∣
∣
∣∣
∣

1
N

. (25)

This together with the instability region Ω+ yields the following analytic criterion
for the existence of periodic oscillations [7].

Theorem 4. Consider the cyclic gene regulatory network with gene dynamics (16)
where ai = a, bi = b, (i = 1,2, · · · ,N), and its linearized system H (s) in (20).
Assume that the condition in (18) holds. Then, there exist the periodic oscillations
of protein concentrations pi (i = 1,2, · · · ,N), if the following condition holds:

L :=

∣
∣∣
∣
∣

N

∏
�=1

R2
�ζ�

∣
∣∣
∣
∣

1
N

>

2

(
−cos( π

N )+
√

cos2( π
N )+ Q2 sin2( π

N )
)

Q2 sin2( π
N )

(26)

We briefly remark on the relation between our results and the conventional ones.
The analysis by Samad et al. [14] was performed based on the direct computation
of the eigenvalues of the Jacobian matrix, and then analytic criteria for N = 2,3
cases were presented. We can easily see that their results coincide with the ones in
Theorem 2 where N = 2,3.

7 Conclusion

In this paper, we have considered LTI systems with generalized frequency vari-
ables φ(s), described as C(φ(s)I − A)−1B + D as one of the unifying expressions
for homogeneous multi-agent dynamical systems. Such systems arise from inter-
connections of multiple identical subsystems, where h(s) := 1/φ(s) is the common
subsystem dynamics, and A is the connectivity matrix characterizing the information
exchange among subsystems.
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This paper summarized recent results on the fundamental analysis, namely stabil-
ity conditions, H2-norm computations, and H∞-norm conditions, for LTI systems
with generalized frequency variables. We have also shown an analytic condition for
the existence of protein level’s periodic oscillations in cyclic gene regulatory net-
works as an application. Although the class of such systems can be directly applied
only to homogeneous multi-agent dynamical systems, it has a potential to be applied
to heterogeneous multi-agent dynamical systems if we consider the robust stability
conditions.
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Control and Stabilization of Linear Equation
Solvers

Uwe Helmke and Jens Jordan

Abstract. This work connects with and partially extends the pioneering work by
the group of Y. Yamamoto on systems theory techniques for numerical algorithms
([22, 18]). We consider iterative linear equation solvers such as Richardson iteration,
GMRES(m) and more generally, Krylov subspace methods from a control theoretic
viewpoint. The motivation for this research lies in the need to improve convergence
properties by suitable feedback design strategies as well as extending the applicabil-
ity of linear equation solvers to wider classes of, possibly non-normal, matrices. We
derive necessary as well as sufficient conditions for controllability of polynomially
shifted linear equation solvers and consider optimal control feedback strategies via
Riccati equations.

1 Introduction

One of the main tasks in numerical linear algebra is to solve large systems of lin-
ear equations Ax = b. The literature provides a large number of iterative solution
methods and software packages. Nevertheless, it is fair to say, that these methods
work only under severe restrictions on the matrix A. To this date there is no iterative
equation solver known, that works for a generic set of matrices. Krylov subspace
methods, such as conjugate gradient iteration or GMRES(m) work well for posi-
tive definite or normal matrices. However, for non-normal matrices the dynamics
of Krylov methods can become quite complex and is far from being fully under-
stood. In fact, for indefinite symmetric matrices, GMRES(m) exhibit continua of
non-trivial equilibrium points that may prevent the algorithm to converge to the de-
sired solution. The situation becomes worse for matrices far from normality, forcing
the algorithm to loose fast local convergence or create regimes of chaotic behavior
in the phase space; see Embree [6].
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The variables of such methods – such as shifts or relaxation parameters – can
be regarded as control parameters. Thus we obtain control systems, which can be
studied with the various tools from control theory. One of the first approaches in
this direction can be traced back to the early work of Bellman [2]. In section 14.9
Computing as a control process Bellman writes:

We have already referred to the fact that computing can be considered to be
a control process in which we want to blend complexity, time, and accuracy
in some appropriate way. It should, in addition, be treated in many cases as
an adaptive control process in which results of the previous calculation are
used to guide the subsequent calculations, producing not only a choice of
parameters but a choice of algorithms

During the past ten years a number of feedback control and stabilization tasks for
numerical algorithms have been considered. This includes the work by Gustafsson,
Lundh and Söderlind [8] and Gustafsson [9] on step-size control in ODE-solvers;
investigations on controllability of eigenvalue methods and linear equation solvers
by Fuhrmann and Helmke [11], Helmke and Wirth [15], Helmke, Jordan and Lan-
zon [14], Jordan [16]; the work by Wakasa and Yamamoto [22] and Kashima and
Yamamoto [18] on robust stability of linear equation solvers, and the textbook by
Bhaya and Kaszkurewicz [3].

Throughout this paper, F denotes either the field of real numbers R or the field
of complex numbers C, respectively. We consider three different types of iteration
schemes for solving a linear equation Ax = b: the Richardson method, restarted
polynomial iteration and linear control schemes. Richardson’s method refers to the
bilinear control system on F

n

xt+1 = xt + ut(b − Axt), x0 ∈ F
n.

Clearly, a fixed point of this iteration is a solution of the linear equation Ax = b.
The literature proposed different shift strategies for certain families of matrices;
see, e.g., Opfer and Schober [19], Smorlaski and Saylor [20], Golub and Overton
[10], Calvetti and Reichel [4]. In particular, the constant shift strategy ut = u yields
the trivial splitting method, which converges if and only if Spec(I − uA) lies in
the unit disc. Another interesting shift strategy is given by the feedback law ut =
r∗
t Art/‖Art‖2 with rt = b − Axt. This approach yields GMRES(1) i.e.,

xt+1 = arg min
x∈xt+Span(b−Axt)

‖b − Ax‖.

It is known, that GMRES(1) converges if A + A∗ is positive definite, but not for
arbitrary matrices.

A generalization of Richardson’s method are restarted polynomial iterations of
order m

xt+1 = (I − pt(A)A)xt + pt(A)b, x0 ∈ F
n. (1)

Here the controls pt are polynomials of degree at most m. Polynomial restarted
iteration can be regarded as restarted Krylov methods. See Sorensen [21] for an



Control and Stabilization of Linear Equation Solvers 75

overview on Krylov methods and polynomial restarting. Note that this setting
includes GMRES(m); see Eiermann, Ernst and Schneider [5], Joubert [17] and
Embree [6] for convergence results. A somewhat counter-intuitive phenomenon ap-
pears, i.e. increasing the number m of inputs in such feedback schemes does not nec-
essarily improve the convergence properties. In particular, Embree [6] constructed
simple examples where GMRES(1) converges while GMRES(2) stagnates.

To improve controllability properties we introduce linear control schemes as an
alternative to the bilinear Richardson method. Explicitly, we consider

xt+1 = (I − A)xt + But + b, x0 ∈ R
n (2)

that has A−1b as an fixed point for the zero control ut = 0. Here, the choice of
B can be used to improve the convergence behavior. Generically, convergent shift
strategies ut = Kxt can be constructed using standard linear quadratic controller
design. This results in a globally convergent iterative algorithm, called LQRES, for
solving linear systems; see [13].

This works builds on the pioneering research by Yutaka Yamamoto and his group,
who proposed robust control ideas for solving systems of linear equations. It is a
pleasure to acknowledge the inspiration we gained from reading their papers. Happy
birthday, Yutaka!

2 Controllability of Restarted Polynomial Iterations

We begin with an analysis of the controllability properties of Richardson’s method

xt+1 = xt + ut(b − Axt), x0 ∈ F
n (3)

with controls ut ∈ F. Clearly, for any input sequence (ut)t∈N the state trajectory
(xt)t∈N converges to a solution of Ax = b if and only if the sequence of residuals
rt := b−Axt converges to zero. Thus, the dynamics of (3) is equivalent to that of the
residuals

rt+1 = (I − utA)rt . (4)

Given any initial condition r0 ∈ F
n, we consider the reachable set R(r0) of (4), i.e.

the set of states of which can be reached from r0 with a finite number of control
steps. We say that the Richardson method is controllable on M ⊂ F

n if M ⊂ R(r0)
holds for all r0 ∈ M.

Let W be the set of proper A-invariant subspaces and NA := F
n \ ⋃

W∈W W .
Clearly, for any A-invariant subspace W , r0 ∈ W implies R(r0) ⊂ W . In the fol-
lowing we assume that A is cyclic, i.e. there exists x ∈ F

n such that x,Ax, . . . ,An−1x
is a basis of F

n. Clearly, the set of cyclic matrices is dense in the set of all matrices
and for any cyclic matrix A, the subset NA is open and dense in F

n. In the com-
plex case F = C, easy algebraic arguments similar to the analysis of inverse power
iterations in [11], [16] show, that NA ⊂ R(r0) for any r0 ∈ NA.



76 U. Helmke and J. Jordan

Theorem 1. Let F = C and A ∈ C
n×n be cyclic. Then, Richardson’s method is con-

trollable on NA.

The real case F = R turns out to be much more complicated. In the following we
show that Richardson’s method is controllable on NA if A is real diagonalizable. Our
arguments use some results of Jordan [16], where reachable sets of iteration schemes
are analyzed in a general framework using the semigroup structure of reachable sets.
Consider SA := {∏T

t=1(I −utA) |T ∈ N,ut ∈ R} ⊂ R
n×n. Clearly, SA is a semigroup

with respect to matrix multiplication. Moreover,

R(r0) = SAr0 := {Sr0 |S ∈ SA}.

In [16] it is shown, that the invertible elements of SA form a group, provided the
eigenvalues of A are real. This yields the following controllability result.

Theorem 2. a) There exists an open set of invertible cyclic real n × n-matrices A
for which such Richardson’s method is controllable on NA. In particular this is
the case if A has n different real eigenvalues.

b) For n > 2, Richardson’s method is not controllable on NA, if A has a purely
imaginary eigenvalue.

Proof. The semigroup SA ∩GLn(R) is a subgroup of the centralizer group Z(A) :=
{B ∈ GLn(R) |BA = AB}. Let GA be the smallest subgroup of Z(A) such that SA ∩
GLn(R) ⊂ GA. We show that (i) GA = ZA and thus SA ∩GLn(R) = GA provided all
eigenvalues of A are real and (ii) ZA acts transitively on NA. Then, SA ∩GLn(R) = GA

follows, since NA = (SA ∩GLn(R))r0 is for any r0 ∈ NA a subset of R(r0).
Let mA be the minimal polynomial of A. Since A is cyclic, ZA = {p(A) | p ∈

R[x] coprime to mA} (see [7]). Any invertible p(A) can be written in the form
p(A) = ∏N

t=1(A − utI)(A − vt I)−1 with N ∈ N and ut ,vt ∈ R \ Spec A (see [16]).
Thus, (i) holds, since TZA−1 ⊂ GA ⊂ ZA and ZA−1 = ZA.

Recall that NA consists of all points x ∈ R
n, which are not in a proper A-invariant

subset. Therefore, x,Ax, . . . ,An−1x is a basis of R
n if x ∈ NA. In other words, any w ∈

NA can be written in the form w = p(A)x with some polynomial p ∈ R[x] of degree
at most n − 1. Moreover, p(A) is invertible, since it maps the basis x,Ax, . . . ,An−1x
on the basis w,Aw, . . . ,An−1w. Thus, ZA acts transitively ob NA.

Now we show statement b). Without loss of generality we assume

A =
(

A1 A2

0 A3

)
with A1 =

(
0 Im λ

−Im λ 0

)
.

For N ⊂ R
n we denote the topological closure of N with N. We show that 0 /∈ SAr0

for any r0 ∈ NA, and thus R(r0)\NA �= /0. Since GA is abelian and acts transitively on
NA, any r ∈ NA can be written as r0 = S̃−1

1 S̃2r with S̃1, S̃2 ∈ SA ∩GLn(R). Therefore,
it is enough to show 0 /∈ SAr0 for one r0 ∈ NA, since Snr → 0 with r ∈ NA and
Sn ∈ SA,n ∈ N implies Snr0 → 0 and therefore 0 ∈ SAr0. Let r0 = (1,1,1 . . . ,1)	.
Assuming that {0}∩SAr0 �= /0. Then there exists a sequence
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sn :=
(

Bn B′
n

0 B′′
n

)
∈ SA,

with Bn ∈ R
2×2 such that Bn(1,1)	 → 0 for n → ∞. Since

Bn ⊂ P(A1) :=
{(

a b
−b a

)∣
∣
∣
∣ a2 + b2 �= 0

}

and detBn = det(∏N
t=1(I − utA1)) ≥ 1 we obtain

‖Bn(1,1)	‖2 =
√

(a + b)2 +(a − b)2 =
√

2det(Bn) ≥
√

2.

Thus {0}∩SAr0 = /0.

The existence of a shift strategy u = (ut)t∈N such that (4) converges to a solution of
Ax = b implies 0 ∈ R(r0). Thus, as an immediate consequence of Theorem 2 we
obtain necessary condition for the existence of shift strategies such that Richardson
methods converges to a solution of Ax = b.

Corollary 1. If A ∈ R
n×n has a purely imaginary eigenvalue and x0 ∈ R

n is any
generic initial condition, then Ax = b can not be solved by any Richardson method.

Finally, we consider restarted polynomial iteration of degree m

xt+1 = xt − pt(A)(b − Axt), (5)

where pt ∈ R[x] with deg pt < m. Such methods are also called restarted Krylov
methods, since

xn+1 ∈ xt +Km(A,rt)

where Km(A,rt ) := span(rt ,Art . . . . ,Am−1rt) denotes the Krylov space with respect
to A and rt := b − Axt . . Similar to Richardson’s method, the dynamics of the itera-
tion can be equivalently described by the dynamics of the residual sequence (rt )t∈N.
We obtain

rt+1 = (I − Apt(A))rt . (6)

An polynomial interpolation argument shows, that the corresponding system semi-
group coincides with the centralizer group, provided m ≥ 2. This implies the fol-
lowing controllability result.

Theorem 3. Let A be invertible and cyclic. The restarted polynomial iteration
scheme of degree m ≥ 2 is controllable on NA.

3 Linear Control Schemes

Another approach to design iterative methods for solving linear equations Ax = b is
based on linear controller design techniques. Here an additional tuning parameter
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Fig. 1 Comparison of LQRES with different parameters B. We apply LQERS on the example
problem of Embree (see [6]). The example is known to produce extreme behavior for restarted
GMRES algorithms. In particular GMRES(2) fails to converge while GMRES(1) converges.
We compare the relative residuals after n outer iteration steps. The algorithm converges for
different parameters B1 = (3, 1, 1)	, B2 = [B1, (1, 1, 1)	] and B3 = [B1, (−1, −2, −3)	].
However, the speed of convergence can be tuned by the choice of B.

arises, the choice of a suitable input matrix B. Thus, given A ∈ R
n×n and b ∈ R

n,
we want to find a matrix B ∈ R

n×m and a shift sequence ut ∈ R
m, t ∈ N, satisfying

limt→∞ ut = 0 such that
xt+1 = (I − A)xt + But + b (7)

converges to A−1b. Without loss of generality we assume that b lies in the image
space of B. Otherwise we replace B by B̃ := [b,B] ∈ R

n×(m+1). Assuming that A is
invertible, we have

x = A−1b =
n−1

∑
j=0

α j(I − A) jb

for some α j ∈ R, j = 0, . . . ,n−1. Thus A−1b is in the reachable subspace defined by
(I − A,B). The dynamics of the residuals rt := b − Axt is given by the linear system

rt+1 = (I − A)rt − ABut, r0 ∈ R
n.

Based on standard ideas from Riccati-based linear quadratic controller design, we
construct an explicit shift sequence such that (7) converges globally to the solution
of Ax = b. Thus, under the assumption that (I−A,−AB) is discrete-time stabilizable,
rt converges to zero for the feedback law ut = −Krt with
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Fig. 2 LQRES applied on a Hilbert matrix of dimension 5 and b = (1,0,0,0,0)	 . The ele-
ments of the Hilbert matrices are given by ai, j = 1

i+ j−1 . It is known that this matrix is poorly
conditioned. We compare the relative residuals after n outer iteration steps. We observe that
the speed of convergence increases when the number of columns of B gets larger.

K = −(Im + B	A	PAB)−1B	A	P(I − A). (8)

Here P is the unique solution of the algebraic Riccati equation

P = In + Ã	PÃ+(B̃	PÃ)	(Im + B̃	PB̃)−1B̃	PÃ (9)

with Ã = I −A and B̃ = −AB. This yields the following LQRES-algorithm [13, 14].

Algorithm (LQRES)

(i) Choose B such that (I − A,−AB) is stabilizable
(ii) Calculate the unique positive definite solution of the Riccati equation (9).
(iii) Calculate K as in Equation (8).
(iv) Iterate the closed loop system

xt+1 = (I − A)xt + BK(b − Axt)+ b. (10)

Classical LQG theory implies ∑∞
t=0(‖rt‖2 + ‖ut‖2) = r	

0 Pr0. Therefore the se-
quence of residuals (rt)t∈N converges to a zero, thus proving

Theorem 4. If (I − A,−AB) is stabilizable then LQRES converges to a solution of
Ax = b.
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Fig. 3 Comparisons of GMRES(2), LQRES and LQRESD(2) on the example of Embree
(See Figure 1). We compare the relative residuals after n outer iteration steps. As stated in
[6], GMRES(2) diverges. LQRES and the cheaper LQRES(2) converge.

Fig. 4 Comparisons of GMRES(2), LQRES and LQRESD(50). We compare the relative
residuals after n outer iteration steps. Here A is a randomly generated problem of size 50×50.
Here B is a randomly generated 50×3-matrix.
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We now address some of the difficulties and advantages of the above method. Cer-
tainly, a solution to step (i) does not exist for arbitrary choices of A. However, for
generic choices of A, step (i) is always solvable. Moreover, the freedom in choosing
B can be exploited to improve convergence speed (see Figure 1 and Figure 2). In any
case, the existence of a matrix B with (I −A, −AB) stabilizable is far less restrictive
than assuming cyclicity of A. If A is invertible (which we always assume) then we
can choose m = n and any invertible B will do the job. However, this would increase
the computational complexity in inverting the m×m matrix in (8),(9). Thus, a good
design of B has to meet a trade-off between the size of B and the ease to satisfy the
stabilizability constraint.

If the eigenvalues λ of A satisfy |1 − λ | < 1, then one can always choose B = 0.
In this case, LQRES coincides with the Richardson’s method with constant shifts
u ≡ 1. In particular, LQRES may converge in cases, where Richardson’s iteration
fails for all possible shift strategies. An example is

A =
(

0 −1
1 0

)
and b =

(
1
0

)
.

Corollary 1 shows that Ax = b is not solvable for any Richardson method. In con-
trast, (I − A,−AB) is stabilizable with B := b and thus LQRES converges.

If m is relatively small, then step (iii) does not cause serious numerical problems.
However, the computationally expensive part lies in the preconditioning process of
solving the algebraic Riccati equation (9). In fact, any known method for solving
the algebraic Riccati equation is more expensive then solving the linear equation
Ax = b. Nevertheless, we believe that variations of LQRES, e.g. by using subopti-
mal techniques for solving equation (9), may yield attractive numerical alternatives
to established linear equation solvers. One possible approach in this direction might
be model predictive control, where the solution to the algebraic Riccati equation
P is replaced by the solution PM after M steps of the dynamic Riccati difference
equation. Preliminary numerical experiments with this method LQRESD(M) have
shown useful convergence and stability properties (see Figure 3 and Figure 4). An-
other approach might be based on open loop optimal control strategies, e.g. via
relaxed dynamic programming. Thus, the sky seems open for further investigations
and improvements of iterative linear equation solvers.

Acknowledgements. Dedicated to the 60th Birthday of Yutaka Yamamoto.
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Nonlinear Output Regulation:
A Unified Design Philosophy

Alberto Isidori

Abstract. In this paper, we extend to the case of higher relative degree and uncertain
high-frequency gain a recently proposed method for the solution of problems of
output regulation for nonlinear systems. The method is applicable to systems with
possibly unstable zero dynamics, in which case the problem at issue is addressed
by rendering an appropriate auxiliary system stable, with a constrain on the gain.
The dynamics of this auxiliary system only depend on the zero dynamics of the
controlled plant, while the constraint on the gain only depends on some parameters
of the exogenous input which have to be tracked.

Keywords: nonlinear output regulation, nonminimum-phase systems, robust
control.

This paper is dedicated to Yutaka Yamamoto on the occasion of his 60-th birthday.

1 Introduction

In this Chapter, we present a unified approach to the solution of problems of out-
put regulation for minimum-phase and non-minimum-phase nonlinear systems. We
consider a system having relative degree r > 1 between control input u ∈ R and
regulated output e ∈ R described in normal form as
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ẇ = s(w)
ż = f (w,z,ξ ,ζ )
ξ̇ = Aξ + Bζ
ζ̇ = q(w,z,ξ ,ζ )+ b(w,z,ξ ,ζ )u
e = Cξ

(1)

in which z ∈ R
m, ξ ∈ R

r−1, and

A =

⎛

⎜
⎜
⎜
⎝

0 1 0 · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎝

0
0
·
0
1

⎞

⎟
⎟
⎟
⎠

, C = (1 0 0 · · · 0) .

Here, w ∈ R
s is a vector of inputs which cannot be controlled and include exogenous

commands, disturbances and model uncertainties. This exogenous input is assumed
to be a (undefined) member of the family of all solutions of a fixed ordinary differ-
ential equation of the form

ẇ = s(w) (2)

obtained when the initial condition w(0) is allowed to vary on a prescribed set W .
This system is usually referred to as the exosystem. The initial states of (1) and (2)
are assumed to range over fixed compact sets X and W , the latter being invariant
under the dynamics of (2). Motivated by well-known standard design procedures
(see e.g. [5]), we assume throughout that the measured output y coincides with the
entire partial state (ξ1, . . . ,ξr−1,ζ ) i.e.

y = col(ξ1, . . . ,ξr−1,ζ ) .

The states w and z, on the contrary, are not available for measurement and this is
what makes the problem challenging.

The functions characterizing the model (1) are assumed to be smooth functions
of their arguments. In addition, we assume the existence of a pair of real numbers
(b0,b1) such that

0 < b0 ≤ b(w,z,ξ ,ζ ) ≤ b1 . (3)

The problem of output regulation is to design a controller

ξ̇ = ϕ(ξ ,y)
u = γ(ξ ,y)

with initial state in a compact set Ξ , yielding a closed-loop system in which

• the positive orbit of W × X × Ξ is bounded,
• lim

t→∞
e(t) = 0, uniformly in the initial condition (on W × X × Ξ ).

We observe that, in the general setup presented above, the vector w of exogenous
inputs may well include (constant) uncertain parameters, which are hence assumed
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to range on a given compact set. Thus, if a controller solves the problem at issue,
the goal of asymptotic regulation is achieved robustly with respect to (constant)
parameter uncertainties.

The theory of output regulation of nonlinear systems, which uses a combina-
tion of geometry and nonlinear dynamical systems theory, was initiated by pioneer-
ing works of [9, 8]. Since these early contributions, the theory has experienced a
tremendous growth, culminating in the recent development of design methods able
to handle the case of parametric uncertainties affecting the autonomous (linear) sys-
tem which generates the exogenous signals (such as in [15]), the case of nonlinear
exogenous systems (such as in [2]), or a combination thereof (as in [13]). A thor-
ough presentation of several recent advances in this area can also be found in the
recent books [11, 7, 14]. Most of these contributions, though, only address the case
of systems having a stable zero dynamics. In the recent paper [3], a method ap-
plicable to a class of systems with possibly unstable zero dynamics was proposed,
which is based on a re-interpretation of a method discussed earlier in [12]. Systems
considered in [3] were systems having relative degree 1 and unitary high-frequency
gain. In this paper we extend the method to the case of higher relative degree and
uncertain high-frequency gain. If the zero dynamics of the systems are stable, the
method essentially reduces to the design method of [13]. On the other hand, if the
zero dynamics of the system are unstable, the method consists in rendering an ap-
propriate auxiliary system stable, while respecting a constrain on a suitably defined
gain. The dynamics of the auxiliary system only depend on the zero dynamics of the
controlled plant, while the constraint on the gain only depends on some parameters
of the exogenous input which have to be tracked.

2 The Plant and the Basic Assumptions

The point of departure for the solution of the problem is, as usual, the assumption of
the existence of a (smooth) manifold which can be rendered invariant by feedback
and on which the regulated output vanishes (see [9]). In the case of system (1),
this amounts to the assumption of the existence of a smooth map π : W → R

m

satisfying
∂π
∂w

s(w) = f (w,π(w),0,0) ∀w ∈ W . (4)

This being the case, it is readily seen that the set

S ∗ = {(w,z,ξ ,ζ ) : w ∈ W,z = π(w),ξ = 0,ζ = 0}

is rendered invariant by the control

u∗(w) = − q(w,π(w),0,0)
b(w,π(w),0,0)

(5)
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and, indeed, the regulated variable e = ξ1 vanishes on this set. The input u∗(w) is
the input which forces e to remain identically zero.

The second step in the solution of the problem usually consists in making as-
sumptions that make it possible to build an “internal” model for the control u∗(w).
In a series of recent papers, it was shown how these assumptions could be progres-
sively weakened, moving from the so-called assumption of “immersion into a linear
observable system” (as in [8]) to “immersion into a nonlinear uniformly observ-
able system” (as in [2]) to the recent results of [13], in which it was shown that no
assumption is in fact needed for the construction of an internal model if only contin-
uous (thus possibly not locally Lipschitz) controllers are acceptable. Motivated by
these latest developments we assume, in what follows, the existence of d ∈ N, a map
F : R

d → R
d , a d ×1 column vector G0, a map γ : R

d → R and a map τ : W → R
d

satisfying
∂τ
∂w

s(w) = F(τ(w))+ G0γ(τ(w)) ∀w ∈ W

u∗(w) = γ(τ(w)) ∀w ∈ W .
(6)

Coherently with the assumptions on (1), F(·), γ(·) and τ(·) are assumed to be
smooth maps.

Remark 1. Under the (mild) assumption that

Ld
s u∗(w) = φ(u∗(w),Lsu

∗(w), . . . ,Ld−1
s u∗(w)) , (7)

for some d ∈ N and some smooth φ(x1, . . . ,xd) and all w ∈ W , conditions (6) can be
fulfilled by taking

F(x) =

⎛

⎜
⎝

x2

· · ·
xd

φ(x1, . . . ,xd)

⎞

⎟
⎠− G0x1 γ(x) = x1 , (8)

in which case
τ(w) = col(u∗(w), . . . ,Ld−1

s u∗(w)) .

This includes the (classical) case of linear internal models. Recent advances in the
theory of nonlinear observers (see e.g. [13]) show that, if d is large enough, and
F(x) = F0x with F0 Hurwitz and (F0,G0) controllable, a C1 map τ(·) and a C0 map
γ(·) which do fulfill (6) always exist. �

3 The Control

We consider, in what follows, a dynamic controller, with internal state (ϕ ,η),
“driven” by the measured variables (ξ ,ζ ). The control in question is modelled by
equations of the form
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u = γ(η)+ β Ṅ(ϕ)+ v

ϕ̇ = L(ϕ)− Mv

η̇ = F(η)+ G0[γ(η)+ v]

v = −k[ζ − Hξ − N(ϕ)]

(9)

in which F(·),G0,γ(·) satisfy (6) for some τ(·), while L(·),N(·), M,H are smooth
maps and, respectively, vectors of appropriate dimensions, and β ,k are real num-
bers. It is assumed (without loss of generality) that

∂N
∂ϕ

M = 0 (10)

in which case

Ṅ(ϕ) =
∂N
∂ϕ

L(ϕ) .

Changing ζ into
θ = ζ − Hξ − N(ϕ)

yields a closed-loop system of the form

ẇ = s(w)

ż = f (w,z,ξ ,Hξ + N(ϕ)+ θ )

ξ̇ = Aξ + B[Hξ + N(ϕ)+ θ ]

ϕ̇ = L(ϕ)− Mv

η̇ = F(η)+ G0[γ(η)+ v]

θ̇ = Q(w,z,ξ ,Hξ + N(ϕ)+ θ )+ b(w,z,ξ ,Hξ + N(ϕ)+ θ )[γ(η)+ v]

+Δ(w,z,ξ ,Hξ + N(ϕ)+ θ )Ṅ(ϕ) ,

in which we have set

Q(w,z,ξ ,ζ ) = q(w,z,ξ ,ζ )− H(Aξ + Bζ )

Δ(w,z,ξ ,ζ ) = b(w,z,ξ ,ζ )β − 1 ,

with control
v = −kθ .

Remark 2. Note that, in case the coefficient b(w,z,ξ ,ζ ) only depends on the
measured variables (ξ ,ζ ), one can choose β = 1/b, obtaining in this way Δ(w,z,
ξ ,ζ ) = 0. �

The system thus obtained can be regarded as a system with input v and output θ ,
having relative degree 1, in which v to is chosen as v = −kθ , that is as a negative
output feedback. To facilitate the analysis, we bring this system in normal form.
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Since b(w,z,ξ ,ζ ) is bounded as in (3), by the method of the characteristics one can
obtain a globally defined change of coordinates

X : η �→ x = X(w,z,ξ ,ϕ ,η ,θ )

in which X satisfies

∂X
∂η

G0 +
∂X
∂θ

b(w,z,ξ ,Hξ + N(ϕ)+ θ ) = 0 .

At θ = 0, the map X is the identity map, namely X(w,z,ξ ,ϕ ,η ,0) = η which in
turn implies

[∂X
∂η

]

θ=0
= I .

Actually, it is not difficult to find a closed form for X , which turns out to be

X(w,z,ξ ,ϕ ,η ,θ ) = η − G0

∫ θ

0

1
b(w,z,ξ ,Hξ + N(ϕ)+ t)

dt .

From this, using our earlier assumption (10), it is readily seen that

∂X
∂ϕ

M = 0 .

Likewise, by the method of the characteristics one can obtain a globally defined
change of coordinates

K : ϕ �→ χ = K(w,z,ξ ,ϕ ,θ )

in which K satisfies

∂K
∂ϕ

M − ∂K
∂θ

b(w,z,ξ ,Hξ + N(ϕ)+ θ ) = 0 .

At θ = 0, the map K is the identity map, namely K(w,z,ξ ,ϕ ,0) = ϕ which in turn
implies

[∂K
∂ϕ

]

θ=0
= I .

The inverses of K and X define a pair of maps

ϕ = K̂(w,z,ξ ,χ ,θ )
η = X̂(w,z,ξ ,χ ,x,θ )

which, at θ = 0, are identities in χ and – respectively – in x, that is

K̂(w,z,ξ ,χ ,0) = χ , X̂(w,z,ξ ,χ ,x,0) = x .
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Changing coordinates in this way yields a system of the form

ẇ = s(w)

ż = f (w,z,ξ ,Hξ + N(K̂)+ θ )

ξ̇ = Aξ + B[Hξ + N(K̂)+ θ ]

χ̇ =
∂K
∂ϕ

[
L(K̂)+ M

(Q
b

(w,z,ξ ,θ + N(K̂)+ Hξ )+
Δ
b

Ṅ(K̂)+ γ(X̂)
)]

+Rχ

ẋ = F(X̂)− G0

(Q
b

(w,z,ξ ,θ + N(K̂)+ Hξ )+
Δ
b

Ṅ(K̂)
)

+ Rx

θ̇ = Q(w,z,ξ ,Hξ + N(K̂)+ θ )+ b(w,z,ξ ,Hξ + N(K̂)+ θ )[γ(X̂)+ v]

+Δ(w,z,ξ ,Hξ + N(K̂)+ θ )Ṅ(K̂) ,

(11)

in which, for readability, we have omitted the indication of the arguments of K̂, X̂
and Δ/b, and we have set

Rχ =
∂K
∂w

s(w)+
∂K
∂ z

f (w,z,ξ ,Hξ + N(K̂)+ θ )+
∂K
∂ξ

(Aξ + B[Hξ + N(ϕ)+ θ ])

Rx =
∂X
∂w

s(w)+
∂X
∂ z

f (w,z,ξ ,Hξ + N(K̂)+ θ )+
∂X
∂ξ

(Aξ + B[Hξ + N(ϕ)+ θ ])

+
∂X
∂ϕ

L(K̂) .

Note that at θ = 0 both these terms vanish, because at θ = 0 the map K is simply an
identity in ϕ and the map X is simply an identity in η .

The system obtained in this way can be seen as feedback interconnection of a
system with input θ and state (w,z,ξ ,χ ,x) and of a system with input (w,z,ξ ,χ ,x)
and state θ . As a matter of fact, setting

p = col{w,z,ξ ,χ ,x}

the system cam be viewed as a system of the form

ṗ = F(p)+ G(p,θ )θ

θ̇ = H(p)+ H(p,θ )θ + b(p,θ )v
(12)

with control to be chosen as
v = −kθ . (13)

The advantage of seeing system (11) in this form is that we can appeal to the
following result (see e.g. [13]).
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Theorem 1. Consider a system of the form (12) with v as in (13). The functions
F(p) and H(p) are locally Lipschitz and the functions G(p,θ ) and H(p,θ ) are
continuous. Let P be an arbitrary fixed compact set. Suppose that b(p,θ ) > 0 for
all (p,θ ). Suppose there exists a set A which is locally exponentially stable for

ṗ = F(p) ,

with a domain of attraction that contains the set P. Suppose also that

H(p) = 0, ∀p ∈ A .

Then, for any choice of a compact set Θ , there is a number k∗ such that, for all
k > k∗, the set A ×{0} is locally exponentially stable, with a domain of attraction
that contains P ×Θ .

If the assumption of this Theorem are fulfilled and, in addition, the regulated vari-
able e = ξ1 vanishes A , we conclude that the proposed controller is able to solve
the problem of output regulation.

4 The Structure of the Core Subsystem

All of the above suggests the use of the degrees of freedom in the choice of the
parameters of the controller in order to fulfill the hypotheses of Theorem 1. At θ = 0
we have

K̂ = χ , X̂ = x ,
∂K
∂ϕ

= 0 , Rχ = 0 , Rx = 0 ,

and hence, in the (w,z,ξ ,χ) coordinates, system ṗ = F(p) reads as

ẇ = s(w)

ż = f (w,z,ξ ,Hξ + N(χ))

ξ̇ = Aξ + B(Hξ + N(χ))

χ̇ = L(χ)+ M
(Q

b
(w,z,ξ ,Hξ + N(χ))+

Δ
b

Ṅ(χ)+ γ(x)
)

ẋ = F(x)− G0

(Q
b

(w,z,ξ ,Hξ + N(χ))+
Δ
b

Ṅ(χ)
)

.

(14)

while the map H(p) reads as

Q(w,z,ξ ,Hξ + N(χ))+ b(w,z,ξ ,Hξ + N(χ))γ(x)

+ Δ(w,z,ξ ,Hξ + N(χ))Ṅ(χ) .
(15)
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Theorem 1 above identifies an auxiliary problem which, if solved, makes it possi-
ble to use the controller (9) for the solution of the problem of output regulation for
the original plant: shape the internal model {F(x),G0,γ(x)} and find, if possible,
a triplet {L(χ),M,N(χ)} in such a way that system (14) possesses a compact in-
variant set A which is locally exponentially stable and attracts all admissible initial
conditions, and that both ξ1 and the map (15) vanish on this set.

Recall now that, by assumption, there exists π(w) and τ(w) satisfying (4) and
(6). Hence, it is readily seen that if L(0) = 0 and N(0) = 0, the set

A = {(w,z, ξ , χ , x) : w ∈ W, z = π(w), ξ = 0, χ = 0, x = τ(w)}

is a compact invariant set of (14). Moreover, by construction, the map (15) vanishes
on this set. Trivially, also ξ1 vanishes on this set. Thus, it is concluded that if the set
A can be made local exponentially stable, with a domain of attraction that contains
the compact set of all admissible initial conditions, the proposed controller, for large
k, solves the problem of output regulation.

System (14) is not terribly difficult to handle. As a matter of fact, it can be re-
garded as interconnection of three much simpler subsystems. To see this, set

za = z− π(w)
x̃ = x − τ(w)

and define

fa(w,za,ξ ,ζ ) = f (w,za + π(w),ξ ,ζ )− f (w,π(w),0,0)

ha(w,za,ξ ,ζ ) =
Q
b

(w,za + π(w),ξ ,ζ )− Q
b

(w,π(w),0,0)

and

Δa(w,za,ξ ,ζ ) =
Δ
b

(w,za + π(w),ξ ,ζ ) = β − 1
b(w,za + π(w),ξ ,ζ )

.

In the new coordinates thus introduced, the invariant manifold A is simply the set

A = {(w, za, ξ , χ , x̃) : w ∈ W, (za, ξ , χ , x̃) = (0, 0, 0, 0)} .

Bearing in mind (4), (6) and (5), it is readily seen that

ża = fa(w,za,ξ ,Hξ + N(χ))

and
Q
b

(w,z,ξ ,Hξ + N(χ)) = ha(w,za,ξ ,Hξ + N(χ))− γ(τ(w)) .

In view of this, using again (6), the core subsystem (14) can be seen as a system
with input ū and output ȳ defined as
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ẇ = s(w)

ża = fa(w,za,ξ ,Hξ + N(χ))

ξ̇ = Aξ + B(Hξ + N(χ))

χ̇ = L(χ)+ M[ha(w,za,ξ ,Hξ + N(χ))+ Δa(w,za,ξ ,Hξ + N(χ))Ṅ(χ)+ ū]

˙̃x = F(x̃ + τ(w))− F(τ(w))− G0[ha(w,za,ξ ,Hξ + N(χ))

+ Δa(w,za,ξ ,Hξ + N(χ))Ṅ(χ)]

ȳ = γ(x̃ + τ(w))− γ(τ(w))
(16)

subject to unitary output feedback ū = ȳ .
System (16), in turn, can be seen as the cascade of an “inner loop” consisting of

a subsystem, which we call the “auxiliary plant”, modelled by equations of the form

ẇ = s(w)
ża = fa(w,za,ξ ,Hξ + ua)
ξ̇ = (A + BH)ξ + Bua

ya = ha(w,za,ξ ,Hξ + ua)+ Δa(w,za,ξ ,Hξ + ua)va ,

(17)

controlled by
χ̇ = L(χ)+ M[ya + ū]
ua = N(χ)
va = Ṅ(χ) ,

(18)

cascaded with a system, which we call a “weighting filter”, modelled by equations
of the form

˙̃x = F(x̃ + τ(w))− F(τ(w))− G0ya

ȳ = γ(x̃ + τ(w))− γ(τ(w)) . (19)

� �
�
�

�

�

� Aux Contr Aux Plant Filter
ū

ua

va

ya ȳ

Fig. 1 The feedback structure of system (14)

All of this is depicted in Fig. 1. Having interpreted system (14) as the system
resulting from a unitary output feedback on system (16), the idea is now to use the
degrees of freedom in the design to make the latter a stable system and to force its
gain to be a simple contraction.
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5 The Asymptotic Properties of the Core Subsystem

System (16) is the cascade of two subsystems: the “inner loop”, consisting of (17)
and (18), and the “filter” (19). An obvious prerequisite for stability is the stability of
both subsystems of the cascade. Stability of the filter (19) is not an issue. As a matter
of fact, appealing to the results of [6] and proceeding as in [2], it is not difficult to
prove the existence of a filter (with F(·) and γ(·) as in Remark 1) which is globally
input-to-state stable, actually with a linear gain function.

As far as the inner loop is concerned, the simplest situation in which the design
paradigm outlined above can be successfully implemented is the case in which the
controlled plant is globally asympotically and locally exponentially minimum phase,
i.e. satisfies the following assumptions (see e.g. [1]):

• the function f (w,z,ξ ,ζ ) in (1) does not depend on ξ2,ξ3, . . . ,ξr−1,ζ
• there exists a smooth positive definite and proper function V (za), with quadratic

bounds for small |za|, satisfying

∂V
∂ za

fa(w,za,0,0) ≤ −α(|za|)

some class K∞ function α(·) which is quadratic for small values of the argument.

In this case, in fact, setting M = 0, N = 0, and letting χ̇ = L(χ) to be any arbitrary
globally stable system, it is always possible, by known methods, to find a vector H
that makes the inner loop stable (in a semiglobal sense) with an arbitrarily small
linear gain function.

If, on the contrary, the plant is not minimum-phase, a more sophisticated design
is necessary, seeking L(·),M,N(·) and H in such a way as to obtain — whenever
possible — a stable inner loop, with a gain function which, composed with the gain
function of the filter (19), would respect the small gain condition required for the
stability of (14). A number of relevant cases in which this is possible have been
recently presented in the literature (see [3] and [4]). They include the complete so-
lution of the problem in the case of a (linear) controlled plant having an arbitrary
number of zeros at the origin (while all other zeros have negative real part) and a
discussion of the case in which the controlled plant has a zero with positive real part.
In the latter case, it has been shown that the method is applicable if the frequencies
which characterize the harmonic components of the exogenous input exceed a min-
imal value determined by the gain needed to make the inner loop stable. This is a
nice example showing that, in a non-minimum phase system, a tradeoff exists be-
tween stability and performance. In fact, the minimal gain needed to stabilize the
unstable zero dynamics of the original plant determines a lower limit on the fre-
quencies of the exogenous inputs for which the desired tracking properties can be
achieved.
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An Estimated General Cross Validation
Function for Periodic Control Theoretic
Smoothing Splines

Maja Karasalo, Xiaoming Hu, and Clyde F. Martin

Abstract. In this paper, a method is developed for estimating the optimal smoothing
parameter ε for periodic control theoretic smoothing splines. The procedure is based
on general cross validation (GCV) and requires no a priori information about the un-
derlying curve or level of noise in the measurements. The optimal ε is the minimizer
of an estimated GCV cost function, which is derived based on a discretization of the
L2 smoothing problem for periodic control theoretic smoothing splines.

1 Introduction

In this paper, we consider the problem of estimating representations of objects or
contours using a type of continuous closed curves, the periodic control theoretic
smoothing splines. The splines are retrieved from noisy measurements of an un-
known, underlying contour. Intended applications include mapping, identification
and path planning for autonomous agents. The focus of this paper is the issue of
the level of smoothing, determined by the magnitude of the so called smoothing
parameter ε .

It is well known that an interpolating spline generated from noisy measurements
yields a poor estimate of the underlying curve, as the spline will pass through every
measurement point. An interpolating spline may be regarded as a smoothing spline
with ε = ∞, while a periodic smoothing spline with ε → 0 approaches a circle. The
theory of regular smoothing splines, and the particular issue of choice of smoothing
parameter, is treated in [13, 14, 15]. Control theoretic smoothing splines have been
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studied in [1]–[7] and it has been shown in [5] that such splines, where the curve
is found through minimizing a cost function, act as filters and are better suited for
noisy measurements. A thorough treatment of control theoretic smoothing splines
is provided in the book [8].

The particular type of periodic control theoretic smoothing spline explored in
this paper has been previously presented in [9, 10, 11]. These publications cover
error convergence properties for a recursive formulation of the smoothing spline
problem. Experimental results indicate that the convergence is fairly robust with
respect to the choice of smoothing parameter ε , but a formal method of finding the
optimal value of ε has so far been lacking in our work. In this paper, a method is
developed for determining the appropriate level of smoothing, assuming the shape
of the underlying contour, as well as the level of noise in the measurements, is
unknown. We propose an estimate of the general cross validation (GCV) function,
based on the estimated influence matrix for the smoothing spline problem. A general
expression for the influence matrix based on Bernoulli polynomials is derived in
[12]. However, this expression is computationally heavy. In [16, 17, 18], the trace
of the influence matrix is estimated and an estimate of the GCV function itself is
obtained by Taylor expansion. [19, 20] and others use singular value decomposition
to estimate the GCV function. In this paper, on the other hand, we derive an estimate
of the influence matrix and GCV function, based directly upon a discretization of the
underlying spline problem. The method is straightforward and easy to implement,
and the accuracy can be chosen arbitrarily by adjusting the number of discretization
points.

The paper is organized as follows. The contour estimation problem is formally
stated in Section 2. In Section 3, we derive a discretization of the optimization prob-
lem. The GCV approach to optimal smoothing is reviewed in Section 4 and the spe-
cific estimated GCV function is introduced. This constitutes the main contribution
of the paper. Finally, simulation results are presented in Section 5 and conclusions
are drawn in Section 6.

2 Preliminaries

Consider the problem of reconstructing continuous, closed curves in R
2 from noisy

and sparse measurement data. This problem arises for instance in mapping applica-
tions for mobile robots. A formal problem statement follows.

Given a data set D = {(ti,zi) : i = 1, ...,N}, where ti ∈ [0,2π ] is the polar
coordinate angle and zi is the radius in polar coordinates. If zi = r(ti) + ξi, ξi ∈
N(0,σ2), where r(ti) are samples from a closed smooth curve, how to find the func-
tion r(t) that best represents the underlying curve, with respect to smoothness and
closeness to measurement data?

The solution is found by solving the following polar second derivative L2 smooth-
ing problem:
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Problem 1

min
u(t)∈L2[0,T ]

J(u,r) =
∫ 2π

0
u(t)2dt +

ε2

N

N

∑
i=1

(r(ti)− zi)2 (1)

s. t. r′′(t) = u(t)
r(0) = r(2π)

r′(0) = r′(2π).
(2)

The solution of Problem 1 is the optimal compromise between smoothness of the
output curve, due to the integral term in J(u,r), and faithfulness to the data set, due
to the summation term. The magnitude of the smoothing parameter ε > 0 determines
how much credibility is given to measurement data. A large value brings the spline
close to the data points, while a small value yields a smoother spline and thus more
filtering. The main topic of this paper is how to determine the best choice of ε , based
on the discretization of Problem 1 reviewed in the next section.

3 Discretization

Using a proper choice of approximation formulas, Problem 1 is reduced to an un-
constrained quadratic programming problem (QP), suitable for numeric implemen-
tation. With this particular choice of discretization the periodic boundary condition
is embedded in the QP, facilitating the analysis of convexity and solvability for the
problem.

Let the vectors r̂ = {r̂m} and û = {ûm} be the discretizations of the spline r(t)
and control u(t), and let t̂ = {t̂m} be the corresponding discretization of t. Here
m = 1, ...,M and the sampling rate h is defined so that (M+1)h = 2π . We emphasize
that (t̂m, r̂m) are equidistant samples from the spline r(t) while (ti,zi), i = 1, . . . ,N
are noisy measurement data from the true curve. Let z = {zi} denote the vector
of radius measurements. Note that when the continuous function r(t) is expressed
in discretized form as a vector pair (t̂, r̂), the periodicity constraint translates to
(t̂1, r̂1) = (t̂M+1, r̂M+1), where M + 1 indicates the point after the last point of the
vector. ûm can be approximately expressed as functions of r̂, using numerical differ-
entiation:

ûm = r̂′′
m = (1/h2)(r̂m−1 − 2r̂m + r̂m+1). (3)

Construct the matrix Φ:

Φm,m−1 = Φm,m+1 = 1
Φ1,M = ΦM,1 = 1
Φm,m = −2
Φ j,l = 0 otherwise.

(4)

Then û = 1
h2 Φ r̂. Note that the periodicity is implicitly expressed in Φ . The dis-

cretization of the integral is
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∫ 2π

0
u(t)2dt ≈ 1

h3 r̂T ΦT Φ r̂. (5)

For the summation term, construct the M × N matrix F :

Fm,i =
{

1 if t̂m = ti, for some m ∈ [1,M], i ∈ [1,N]
0 otherwise

(6)

F expands a vector of N measurements to an M-vector with the measurements in-
serted at the corresponding sampling times and zeros elsewhere. We get

ε2

N

N

∑
i=1

(r(ti)− zi)2 ≈ ε2

N

(
r̂T FFT r̂ + zT z− 2(Fz)T r̂

)
. (7)

Remark 1. We assume that the sampling times are unique so that there is one data
point for each value of i. In reality, ti may not coincide with a grid point tm, but with
M >> N, choosing the grid point closest to ti gives a negligible error.

Finally, the discretization of Problem 1 is

Problem 2
min

r̂
J(r̂) = 1

2 r̂T Hr̂ + cT r̂ (8)

where H = 1
h3 ΦT Φ + ε2

N FFT

c = − ε2

N Fz,

Proposition 1. Define F � (ε2/N)FFT . Assume that Fmm > 0 for at least one value
of m ∈ [1,M] (this is equivalent to having a non-empty data set). Then the QP (8)
has a unique solution.

Proof. If H is positive definite, the QP (8) is strictly convex and has the unique
solution

r̂ = −H−1c. (9)

The matrix 1
h3 ΦT Φ is by construction a symmetric positive semidefinite matrix, but

not positive definite since rank(Φ) = M − 1. The single zero eigenvalue of Φ has
the eigenvector v0 = [1,1, . . . ,1]T . F is diagonal with nonnegative elements and has
rank N. Now, any x ∈ R

M can be decomposed as

x = v + αv0, α ∈ R, v ⊥ v0, (10)

so that
xT ΦT Φx = vT ΦT Φv ≥ 0, (11)

with equality only for v = 0. Therefore,

xT Hx =
1
h3 vT ΦT Φv + xT Fx. (12)
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If x is nonzero, at least one of v and α is nonzero. If v �= 0, 1
h3 vT ΦT Φv > 0, and

consequently xT Hx > 0. If v = 0, α �= 0 we get

xT Hx = α2vT
0 Fv0 > 0. (13)

	

In the next section, the general cross validation method is reviewed and a specific
GCV function for the QP (8) is proposed, that estimates the optimal value of the
smoothing parameter ε .

4 Generalized Cross-Validation

The general cross validation method for smoothing splines was first developed by
Wahba et al. in for instance [12], [13]. Here, a review is provided for general cross
validation as proposed by [12], where the smoothing parameter is estimated for a
problem similar to Problem 1. Subsequently we derive an estimate of the general
cross validation function for Problem 1.

Background

[12], [13] study a smoothing spline problem with solution gN,λ (t), defined by

gN,λ (t) � argmin
g:g(n)(t)∈L2

λ
∫ 1

0
(g(n)(t))2dt +

1
N

N

∑
i=1

(g(ti)− zi)2, (14)

where g(n) is the n-th derivative of g(t) and (ti,zi) are noisy samples of an underlying
function gtrue(t). gN,λ (t) is a linear function of the data zi. In particular, this means
that [

gN,λ (t1), . . . ,gN,λ (tN)
]T = S(λ ) [z1, . . . ,zN ]T (15)

for a unique matrix S(λ ), denoted the in f luence matrix. Si, j(λ ) is a measure of how
much the measurement z j influences the spline gN,λ at ti.

Ideally, the smoothing parameter λ should be chosen to minimize the average
square error, defined by

R(λ ) � 1
N

N

∑
i=1

(gN,λ (ti)− gtrue(ti))2. (16)

However, minimizing R(λ ) requires knowledge of gtrue(t), at least at the measure-
ment points. In [12] an estimate λGCV of the minimizer of (16) is found by minimiz-

ing the Generalized Cross Validation (GCV) function VGCV(λ ). Denote by g[k]
N,λ (t)

the smoothing spline obtained when removing the k-th data point prior to minimiz-
ing the cost function (14). Then VGCV(λ ) is defined by
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VGCV(λ ) � 1
N

N

∑
k=1

ωk(λ )(g[k]
N,λ (tk)− zk)2 =

1
N ‖(I − S(λ ))z‖2

(
1
N trace(I − S(λ ))

)2 , (17)

for ωk(λ ) �
(

1 − skk(λ )
1
N trace(I − S(λ ))

)2

, (18)

where term k in the sum is a measure of how well the spline g[k]
N,λ (t) predicts the

data point zk, and ωk(λ ) is a weight that compensates for unequal spacing of the
data. It is shown in [12] that λGCV = argminλ VGCV(λ ) has the following appealing
property:

lim
N→∞

E(R(λGCV))
minλ E(R(λ ))

= 1, (19)

where E(·) is the expectation value of (·). In other words, the expected mean square
error using λGCV tends to the minimum possible expected mean square error as
N → ∞.

In the next section, an estimate of the influence matrix for Problem 1 is derived.

GCV for Periodic Control Theoretic Smoothing Splines

In this section, we derive a GCV cost function for periodic control theoretic smooth-
ing splines, based on an estimate Ŝ(ε) of the influence matrix for Problem 1. This
constitutes the main result of the paper.

The estimate Ŝ(ε) is computed from the discretization reviewed in Section 3 and
takes into consideration the constraints (2).

This paper follows the convention used in [9, 10, 11]. To clarify, the relation
between the smoothing parameters in (1) and (14) is ε2 = 1/λ . Ŝ(ε) should satisfy

[rN,ε (t1), . . . ,rN,ε (tN)]T = Ŝ(ε) [z1, . . . ,zN ]T , (20)

where rN,ε (t) is the optimal solution to Problem 1, given the data set (ti,zi) and the
smoothing parameter ε . Recall that the vectors t̂, r̂ ∈ R

M constitute the discretization
of the spline r(t). Let r̂ti denote the element of r̂ corresponding to r(ti). The matrix
F defined by (6) ”picks out” those elements of r̂:

⎡

⎢
⎣

r̂N,ε,t1
...

r̂N,ε,tN

⎤

⎥
⎦= FT

⎡

⎢
⎣

r̂N,ε,t̂1
...

r̂N,ε,t̂M

⎤

⎥
⎦= FT r̂. (21)

Equation (9) yields

r̂N,ε = −H−1c =
ε2

N
H−1Fz =

ε2

N

(
1
h3 ΦT Φ +

ε2

N
FFT

)−1

Fz. (22)
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Therefore, we define

Ŝ(ε) � ε2

N
FT
(

1
h3 ΦT Φ +

ε2

N
FFT

)−1

F (23)

V̂GCV(ε) �
1
N ‖(I − Ŝ(ε))z‖2

( 1
N trace(I − Ŝ(ε))

)2 . (24)

[18] states that S(λ ) is symmetric and positive semidefinite. It is straightforward to
show that the estimate (23) retains these properties.

5 Simulations

In this section, simulation results are provided to demonstrate properties of the pro-
posed GCV method. First, an example is shown to illustrate the usefulness and per-
formance of the GCV method. Then we investigate whether the asymptotic result
(19) holds for the estimate εGCV. Throughout this section, the following notation is
used:

εGCV = argminε V̂GCV(ε)
εmin = argminε E(R(ε)), with R(ε) � 1

N ∑N
i=1(rN,ε (ti)− rtrue(ti))2

rN,ε = the spline computed using (N,ε)
rtrue = the underlying contour.

(25)

In simulation, the feasible region for ε was restricted to the interval Δε = [1,1000].
Deviations of εGCV were computed as ‖εGCV − εmin‖/Δε .

Importance of Choice of Smoothing

Here, an example is provided to demonstrate advantages of optimal smoothing. With
an added noise σ = 0.1mean(rtrue) and using N = 100, M = 800, splines are gen-
erated with ε = εmin, ε = εGCV, ε = 10εmin and ε = 0.1εmin to compare results
for different values of ε . Splines are shown in Figure 1, while the resulting cost
functions R(ε) and V̂GCV(ε) are shown in Figure 2. The advantages of optimal
smoothing are clear from the figures. Due to space limitations, only one example
contour is included. More examples are available at http://www.math.kth.
se/˜karasalo/GCV.pdf. In total, simulations were run for 25 test cases, with
σ , N and M as above and the mean deviation of εGCV was less than 7%.

Asymptotic Properties

In this section we investigate whether the asymptotic result (19) holds for the esti-
mate εGCV, i.e. if

lim
N→∞

E(R(εGCV))
minε E(R(ε))

= 1. (26)

http://www.math.kth.se/~karasalo/GCV.pdf
http://www.math.kth.se/~karasalo/GCV.pdf
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Fig. 1 Importance of Choice of Smoothing: Splines generated with different values of ε .
Top left: ε = εmin. Top right: ε = εGCV. Bottom left: ε = 10εmin. Bottom right: ε = 0.1εmin.
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Fig. 2 Importance of Choice of Smoothing: Cost functions.

This asymptotic optimality may be regarded as the most important property of
the smoothing parameter. We have performed simulations for M = 1000 and N =
{1, 2, . . . , 1000} for 25 arbitrary contours and a noise level of σ = 0.1mean(rtrue).
Results are provided in Figure 3. We show mean values of εGCV, εmin, R(εGCV)
and R(εmin) for the 25 contours. εGCV was generally a fair estimate of εmin, with
a mean deviation of about 11%. R(εGCV) stays close to R(εmin) and shows a clear
decrease as N increases. Finally, resulting error quotients are shown for increasing
N. R(εGCV)/minε R(ε) is decreasing toward 1, as expected.
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Fig. 3 Asymptotic Properties: Mean values of over 10 test contours as N → M. Left: Mean
values of ε . Middle: Mean values R(εGCV) and R(εmin). Right: R(εGCV)/minε R(ε). Mean
values over 10 test cases for N → M.

6 Conclusions

In this paper, a general cross validation function was derived based on a discretiza-
tion of a periodic control theoretic smoothing spline problem. An estimate of the
optimal smoothing parameter ε was found by minimizing a GCV cost function
V̂GCV(ε), without a priori information about the underlying closed curve or the qual-
ity of data. Theoretical and simulation results regarding properties of V̂GCV(ε) and
the corresponding influence matrix Ŝ(ε) were provided and an example was shown
to illustrate the usefulness and performance of the method.
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Stable H ∞ Controller Design for Systems with
Time Delays

Hitay Özbay

Abstract. One of the difficult problems of robust control theory is to find strongly
stabilizing controllers (i.e. stable controllers leading to stable feedback system)
which satisfy a certain H ∞ performance objective. In this work we discuss stable
H ∞ controller design methods for various classes of systems with time delays. We
consider sensitivity minimization problem in this setting for SISO plants. We also
discuss a suboptimal design method for stable H ∞ controllers for MIMO plants.

This paper is dedicated to Yutaka Yamamoto on the occasion of his 60th birthday.

1 Introduction

In this paper we will give an overview of recent results on design for various types
of systems with time delays. The problem of finding a stable stabilizing controllers
has been studied since 1970s, see [4, 8, 12, 18, 19] for finite dimensional systems
and [1, 5, 6, 10, 16] for systems. This list is by no means complete; the reader can
find various approaches and results from the references of the papers listed here.

In particular, [6] considers a class of SISO time delay systems with possibly
infinitely many poles in C+. Under the condition that the number of zeros in C+ is
finite, stable stabilizing controllers achieving a desired sensitivity level can be found
using Nevanlinna-Pick interpolation.

Another approach for finding stable H ∞ controllers is to use the parameteriza-
tion of all controllers achieving a desired H ∞ performance level, then look for a
feasible free parameter which stabilizes the controller. In the context of time de-
lay systems, this method has been studied in [5] where the suboptimal controller
structure of [3, 17] is used.

By extending a result of [21], it is possible to obtain a large subset of all stable
stabilizing controllers for a class of systems with time delays, [10]. Then, in this
subset, we can search for controllers satisfying a desired H ∞ performance level.
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Definitions of various stable controller design problems are given in Section 2. In
Section 3 we discuss the Nevanlinna-Pick interpolation approach from [6] for stable
H ∞ controller design for SISO time delay systems. The result of [10] is illustrated
with an example in Section 4. Concluding remarks are made in Section 5.

2 Problem Definition and Preliminary Remarks

Consider the feedback system shown in Figure 1, where C is the controller and P is
the plant. We say that the system is stable if S := (1+PC)−1, PS and CS are in H ∞;
in this case we say that C stabilizes P and write C ∈ C (P), where C (P) represents
the set of all controllers stabilizing P. All stable stabilizing controller are denoted
by C∞(P) := C (P)∩H ∞.

Fig. 1 Feedback System

We can define the following problems.

SS0 Given P find a controller C in C∞(P).
SS1 Given P, W1 and ρ > 0, find a controller C ∈ C∞(P) such that ‖W1S‖∞ ≤ ρ .
SS2 Given P, W1, W2 and ρ > 0, find a controller C ∈ C∞(P) such that

∥
∥
∥
∥

[
W1S

W2(1 − S)

]∥∥
∥
∥

∞
≤ ρ .

SS0PD Given P find (if possible) a controller C ∈ C (P) such that

C(s) = Kp + Kd
s

τd s+ 1

for some Kp,Kd ∈ R and τd > 0.

In this paper we will discuss SS0 and SS1 for various classes of time delay systems.
The problem SS2 is a difficult one; it can be solved by trying to find a feasible
free parameter in the parameterization of all suboptimal controllers, see [5]. Due to
page limitations, we will also leave SS0PD aside, but it can be solved by finding a
characterization of the set of all stabilizing (Kp,Kd) pairs for each fixed τd > 0, see
e.g. [13] and its references. An alternative approach for SS0PD would be to use the
results of [7, 11], where a simple but conservative design method is proposed for
proportional plus derivative (PD) controller synthesis for systems with time delays.
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For finite dimensional systems, it is well known that the problem SS0 is solvable
if and only if P satisfies the PIP (the number of poles between every pair of blocking
zeros on the extended real axis is even), [19]. This result remains valid for a large
class of time delay systems, see e.g. [1].

Let us consider a plant in the form

P(s) = N(s)/D(s) (1)

where N,D ∈ H ∞ are strongly coprime, [14]. Assume that N has finitely many
zeros, z1, . . . ,z� (assume they are distinct for simplicity) in the extended right half
plane, R+e = R+ ∪{∞}. A controller C ∈ H ∞ is in C (P) if and only if U,U−1 ∈
H ∞, where U = D + NC. Note that when C ∈ H ∞ we have U(zi) = D(zi). The
problem of finding a feasible U is solvable if and only if the set {D(z1), . . . ,D(z�)}
is sign invariant, which is equivalent to PIP.

3 Nevanlinna-Pick Interpolation for Stable H ∞ Controller
Design

Consider the plant (1) defined in the previous section with ensuing assumptions.
Besides zeros on the positive real axis, plant may have other zeros in C+, let us
enumerate them as z�+1, . . . ,zn, and assume that they are distinct. Let D(zi) > 0 for
all i = 1, . . . , � (i.e., PIP is satisfied). In order to find a controller C ∈ C∞(P) we can
construct a unimodular U (i.e. U,U−1 ∈ H ∞) such that

U : C+ → Wγ with U(zi) = D(zi) i = 1, . . . ,n (2)

where the range Wγ is defined as

Wγ := {re jθ ∈ C : ε < r < γ , − π < θ < π} (3)

for some sufficiently small number ε > 0 and a finite number γ > ε . Note that U(s)
should not take negative values for s ∈ R+e (otherwise U−1 does not exists because
in that case U(s) takes both positive and negative values for s ∈ R+ meaning that it
has a zero in R+), so negative real axis is excluded from Wγ . Clearly γ should be
large enough so that D(zi) ∈ Wγ for all i = 1, . . . ,n. Also note that with the above
definition we guarantee the upper bounds ‖U‖∞ < γ and ‖U−1‖∞ < ε−1. Once a
feasible U is found, the controller is given by

C(s) =
U(s)− D(s)

N(s)

which is stable by interpolation conditions, and we have S = DU−1 and PS = NU−1.
For technical reasons, assume for the moment that the plant does not have a zero

at +∞, i.e. all zi’s are finite. Since Wγ is a simply connected domain there is a
conformal map
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φγ : Wγ → D.

Let ϕ be a conformal map from C+ to D. Define

αi = ϕ(zi) ∈ D, βi = φγ (U(zi)) ∈ D, i = 1, . . . ,n.

Then, finding a bounded analytic U satisfying (2) is equivalent to finding a bounded
analytic function

ϑ : D → D such that ϑ(αi) = βi, i = 1, . . . ,n.

This is the Nevanlinna-Pick problem and it is solvable if and only if a Pick matrix
is positive definite, [3, 20]. The associated Pick matrix is constructed from αi’s and
βi’s, which depend on the original problem data zi’s, D(zi)’s and γ . If this problem
is feasible, then U can be found from ϑ as

U(s) = φ−1
γ (ϑ(ϕ(s))).

Thus SS0 can be solved from the above procedure. Note that when the plant has a
zero at +∞, then under the ϕ this point is mapped to a point on the unit circle. So,
we need to construct ϑ from D to D. This case requires a slight extension of the
classical Nevanlinna-Pick interpolation; for a solution see Section 2.11.3 of [3].

Although γ puts a bound on ‖U−1‖∞, in order to find a controller for SS1 we need
to have a bound for ‖W1S‖∞ = ‖W1DU−1‖∞. For this purpose, let us first consider
an inner-outer factorization of D = DiDo and assume Do is invertible in H ∞. If the
plant does not have a pole on the Im-axis then this assumption holds, and D−1

o can
be seen as part of N. So, we can take D = Di and under this assumption ‖W1S‖∞ =
‖W1U−1‖∞. Let W−1

1 ∈ H ∞ and define

F(s) :=
1
ρ

W1(s)U−1(s).

Under the above assumptions, the problem SS1 is solvable if and only if there exists
an F such that F,F−1 ∈ H ∞ with

F : C+ → W1 and F(zi) =
W1(zi)
ρ D(zi)

i = 1, . . . ,n.

By using the conformal maps as defined above, this problem can be transformed to
a Nevanlinna-Pick problem. Once a feasible F is found a controller solving SS1 is
given by

C =
ρ−1W1F−1 − D

N
,

which is stable by interpolation conditions and it leads to S = ρDW−1
1 F satisfying

the H ∞ performance condition:

‖W1S‖∞ = ‖ρF‖∞ ≤ ρ .
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In [6] the function F is considered to be in the form F(s) = e−G(s). Since
F−1(s) = eG(s) and ‖F−1‖∞ < ε−1, we are looking for a bounded analytic G such
that associated interpolation conditions hold and

G : C+ → C
σo
+ := {s ∈ C+ : 0 < Re(s) < σo = ln(ε−1)},

where ε > 0 is as in (3). Again, by a series of conformal maps construction of a
feasible G can be reduced to a Nevanlinna-Pick problem, see [6] for details.

Now we want to give an example from [6] for the class of plants which can be
handled in the above framework. Consider

P(s) =
(s+ 1)+ 4e−3s

(s+ 1)+ 2(s− 1)e−2s =
1e−0s +

(
4

s+1

)
e−3s

1e−0s + 2
(

s−1
s+1

)
e−2s

=:
R(s)
T (s)

where R(s) has four zeros in C+: z1,2 ≈ 0.31± j0.85 and z3,4 ≈ 0.1± j2.7, so define

Ni(s) =
4

∏
i=1

s− zi

s+ zi
.

Note that relative degree of the plant is zero hence +∞ is not a zero of P, so we do
not have to deal with interpolation conditions at the boundary. Also, the plant has
infinitely many poles in C+; in this situation we define

T̄ (s) := e−2sT (−s)
(

s− 1
s+ 1

)
= 2 +

(
s− 1
s+ 1

)
e−2s

and check that T̄ (s) is stable and it does not have zeros in C+. Thus the plant admits
the following coprime factorization

P(s) =
Ni(s)No(s)

Di(s)
with Di(s) =

T (s)
T̄ (s)

, No(s) =
R(s)
Ni(s)

1
T̄ (s)

.

If we choose σo = ln(ε−1) = 3, i.e. ε = e−3 ≈ 0.05, and W1(s) = (1+0.1s)/(s+1),
then we can find a solution for SS1 with ρ = 1.0815, and the resulting F is given as

F(s) = exp

(

−σo

2
− j

σo

π
ln

(
1 + G̃(s)

1 − G̃(s)

))

where

G̃(s) ≈ j
−0.99(s− 3.473)(s+ 1)(s2 − 0.03s+ 7.56)
(s+ 3.415)(s+ 1.007)(s2 + 0.034s+ 7.57)

.

As ε → 0 we see that the smallest ρ for which SS1 is solvable decreases to 1.0726.
At this point we should mention that the zeros z3,4 have not been taken into

account in [6], so the numerical example given there is not correct (it is correct
only for a plant with two zeros z1,2 in C+ with same interpolation conditions). It
is interesting that z1,2 are the dominant zeros in the sense that when interpolation
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conditions due to z3,4 are ignored the smallest ρ for which SS1 is solvable can be
computed to be 1.0704 as ε → 0.

4 Suboptimal Stable H ∞ Controllers

In this section we first consider SS0 for MIMO plants in the form P = D−1N, where
all entries of N(s) and D(s) are in H ∞. A controller C is in C∞(P) if all entries of
C are in H ∞, and U = D + NC is unimodular, i.e. U and U−1 have all its entries
in H ∞. In this setting N,D,C,U are appropriate size matrices whose entries are
in H ∞. For notational convenience, without specifying the matrix size we write
D,N,C,U ∈ H ∞.

The system given below illustrates one possible class of plants which can be
studied in this framework:

P(s) =
(s− 4)e−3hs

(s+ 1 − 2e−0.4s)

[
1

s+2
−1
s+4

1
s+3

0 0 e−hs

s+1+e−s

]

, h > 0 (4)

which can be factored as P(s) = D(s)−1Ni(s)No(s)N1(s) where Ni is inner, No is
finite dimensional outer and N1 is right invertible infinite dimensional outer matrix:

Ni(s) =
s− 4
s+ 4

e−3hs
[

1 0
0 e−hs

]
, No(s) =

1
s+ 1

I,

N1(s) =
s− p

s+ 1 − 2e−0.4s

[ s+4
s+2 − 1 s+4

s+3
0 0 s+4

s+1+e−s

]

and D(s) =
s− p
s+ 1

I with p > 0 being the only root of s+1−2e−0.4s = 0 in C+ (note

that p ≈ 0.5838). For this plant, a controller C ∈ H ∞ is in C∞(P) if and only if

U = D+ NiNoN1C

is unimodular. Note that N1 admits a right inverse

N†
1 (s) =

s+ 1 − 2e−0.4s

s− p

⎡

⎢
⎣

2 s+2
s+4 0

1 s+1+e−s

s+3

0 s+1+e−s

s+4

⎤

⎥
⎦ ∈ H ∞.

If we define C = N†
1C1 where C1 ∈ H ∞ is free, then this controller is in C∞(P) if

U = D+ NiNoC1 is unimodular.
Let R := (D− I), then C ∈ C∞(P) if C1 ∈ H ∞ satisfies

‖R + NiNoC1‖∞ < 1. (5)
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Fig. 2 γo versus h

The problem of finding a suitable C1 is an H ∞ control problem and can be solved
using one of many alternative techniques from the literature, see e.g. [9]. For the
numerical example given above, the problem (5) has a solution if and only if

γo := inf
Q∈H ∞

∥∥
∥
∥

p + 1
s+ 1

− (s− 4)
(s+ 4)(s+ 1)

e−4hsQ

∥∥
∥
∥

∞
< 1. (6)

Using the results of [3, 9] we can compute γo < (p+1) from the smallest root ωo of

tan−1 ωo + 2tan−1 ωo

4
+ 4hωo = π , where ωo =

√
(p + 1)2

γ2
o

− 1.

Figure 2 shows γo as a function of h. It implies that for the given plant we can find
a controller C ∈ C∞(P) using this method if and only if h < 0.3377.

Let us now study SS1 for the SISO version of the plants considered in this section,
P = N/D. A controller C = Q ∈ H ∞ solves SS1 if U = D+NQ is unimodular and
‖ρ−1W1DU−1‖∞ ≤ 1, equivalently

|ρ−1W1( jω)D( jω)| ≤ |D( jω)+ N( jω)Q( jω)|, ω ∈ R.

Using R := D− 1 we see that a sufficient condition for the above is

|ρ−1W1( jω)D( jω)|2 + |R( jω)+ N( jω)Q( jω)|2 ≤ 1/2 ω ∈ R.
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Assume that ρ >
√

2‖W1D‖∞, then we can find Vρ ∈ H ∞ such that V −1
ρ ∈ H ∞ and

|Vρ( jω)|2 =
1
2

−|ρ−1W1( jω)D( jω)|2 ω ∈ R.

With this spectral factorization, SS1 is solvable if

γ1 := inf
Q1∈H ∞

‖V−1
ρ R + NQ1‖∞ < 1. (7)

If (7) holds, then C = VρQ1 is an admissible solution of SS1 for all Q1 ∈ H ∞

satisfying ‖V−1
ρ R + NQ1‖∞ < 1.

Let us now consider this problem for the plant P = N/D

D(s) =
s− p
s+ 1

, N(s) =
s− 4

(s+ 4)(s+ 1)
e−4hs,

with p = 0.5838 and h > 0. Take ρ = 2 and W1(s) = s+1
10s+1 , and check that ρ >√

2‖W1D‖∞ =
√

2p. Below table shows the values of γ1 for varying h. We see that
the largest h for which we can find a solution to SS1 using this method is 0.1354.

h 0 0.01 0.05 0.10 0.13 0.1354 0.14 0.15 0.2
γ1 0.45 0.52 0.71 0.89 0.98 0.9991 1.013 1.041 1.165

It is interesting to compare the results of this table with Figure 2. For each fixed
h we have γ1 > γo. This is expected since SS1 is more stringent than SS0. In fact,
due to added conservatism in our approach to SS1, for each fixed h we have that
γ1 → √

2γo as ρ → ∞.

5 Conclusions

Stable H ∞ controller design problems are discussed and two alternative methods
are illustrated for two different classes of plants with time delays. Here we con-
sidered the sensitivity minimization problem only. Generalization of the proposed
methods to mixed sensitivity minimization is a non-trivial problem which remains
unsolved.
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Dynamic Quantization for Control

Toshiharu Sugie, Shun-ichi Azuma, and Yuki Minami

Abstract. This paper overviews a series of the authors’ recent contributions to
dynamic quantizer design for control. The problem considered here is to find a
dynamic quantizer such that the resulting quantized system is an optimal approx-
imation of an ideal unquantized system.We show here a fundamental solution to
this problem and briefly review several results toward real applications.

1 Introduction

As a bridge between the infinite and finite worlds, the quantization has been a key
issue in science and engineering fields. For example, it can be seen in

• signal processing analog-to-digital conversion,
• information theory source coding,
• statistics cluster analysis,
• operations research facility location.

By the quantization, one can convert infinitely large number of noise-corrupted data
to compact data.

Also in the systems and control field, the quantization has attracted much atten-
tion in last decade, due to the increasing need for hybrid control and networked
control (e.g., see [1, 2, 3, 4]). From various points of view, many results have been
obtained so far; for example, the quantizer coarseness for stabilization has been
characterized in e.g., [5, 6, 7, 8, 9], and good quantizers (or switching controllers)
for control have been developed in e.g., [1, 2, 10, 11].
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On the other hand, the authors have been interested in “dynamic quantizers”,
which map continuous-valued signals into discrete-valued ones depending on the
past history of both signals. Compared with static quantizers, dynamic quantizers
have much better performance, which has motivated us to pursue their potential
for control. So far, for a class of dynamic quantizers, called the ΔΣ modulators in
the signal processing community [12], we have obtained several key results which
clarify the optimal quantization structure and the performance limitation in control
systems. In this paper, we briefly review a series of the authors’ results in [13, 14,
15, 16, 17].

The problem addressed here is as follows: when a plant and a controller are given
for the quantized feedback system in Fig. 1 (a), find a dynamic quantizer such that
the system in (a) optimally approximates the usual feedback system in Fig. 1 (b), in
terms of the input-output relation. If the problem is solved with small approximation
error, one can directly apply controllers designed for the usual system in (b) to
the quantized system in (a), even if the plant input is restricted to belonging to a
fixed discrete set. This gives a big advantage to construct quantized control systems
subject to discrete-valued signal constraints.

In the following sections, we first derive an expression of the performance
of dynamic quantizers. Based on this, an optimal dynamic quantizer in a closed
form is presented. Finally, the authors’ recent studies toward real applications are
introduced.

Notation: Let R, R+, and N be the real number field, the set of positive real num-
bers, and the set of natural numbers (positive integers), respectively. We denote
by 0 the zero matrix of appropriate dimensions. For the matrix M := {Mi j}, let
abs(M) denote the matrix composed of the absolute value of each element, i.e.,
abs(M) = {|Mi j|}, and let M+ be the pseudo-inverse. For the vector sequences
X := (x1,x2, . . .) and Y := (y1,y2, . . .), we use X −Y to express the vector sequence
(x1 − y1,x2 − y2, . . .). For the vector x, the matrix M, and the vector sequence X , the
symbols ‖x‖, ‖M‖, and ‖X‖ express their ∞-norms (i.e., ‖X‖ := supi∈N ‖xi‖).

2 Dynamic Quantizer Design Problem

Consider the feedback system ΣQ in Fig. 1 (c), which is a generalized version of the
quantized feedback system in (a).

The system G is given by

G :

⎧
⎨

⎩

x(k + 1) = Ax(k)+ B1r(k)+ B2v(k),
z(k) = C1x(k)+ D1r(k),
u(k) = C2x(k)+ D2r(k)

(1)

where x ∈ Rn is the state, r ∈ Rp and v ∈ Rm are the inputs, z ∈ Rl and u ∈ Rm are
the outputs, k ∈ {0}∪N is the discrete time, and A ∈ Rn×n, B1 ∈ Rn×p, B2 ∈ Rn×m,
C1 ∈ Rl×n, C2 ∈ Rm×n, D1 ∈ Rl×p, D2 ∈ Rm×p are constant matrices. The initial
state is given as x(0) = x0 for x0 ∈ Rn.
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Fig. 1 Quantized and unquantized (usual) feedback systems.

On the other hand, Q is the dynamic quantizer in the following form:

Q :

{
ξ (k + 1) = Aξ (k)+B1u(k)+B2v(k),

v(k) = q(Cξ (k)+ u(k)) (2)

where ξ ∈ RN is the state of dimension N, u ∈ Rm is the input, v ∈ Vm :=
{0,±d,±2d, . . .}m is the output, and A ∈ RN×N, B1,B2 ∈ RN×m, C ∈ Rm×N are
constant matrices. The function q : Rm → Vm is the nearest-neighbor static quan-
tizer, where V is the discrete set on which each output takes its value and d ∈ R+ is
the quantization level. The initial state is given as ξ (0) = 0 for guaranteeing that Q
is drift-free, i.e., v(k) = 0 for u(k) = 0 (k = 0,1, . . .). This quantizer determines its
output depending upon its current input and past input sequence.

Next, we prepare some symbols. For the system ΣQ, let ZQ(x0,R) denote the
controlled output sequence (z(1),z(2), . . . ,z(∞)) for the initial state x0 and the ref-
erence input R := (r0,r1, . . .) ∈ �p

∞ (i.e., x(0) = x0 and r(k) = rk), and let zQ(k,x0,R)
be the output at time k. In addition, we consider the feedback system Σ in Fig. 1 (d),
corresponding to a generalized version of (b), for which the symbols Z(x0,R) and
z(k,x0,R) are similarly defined. Then as a performance index of Q, we define the
maximum output difference:

E(Q) := sup
(x0,R)∈Rn×�

p
∞

‖ZQ(x0,R)− Z(x0,R)‖. (3)

This is the difference between the system ΣQ in Fig. 1 (c) and the ideal system Σ in
(d), in terms of the input-output relation. Then our problem is formulated as follows.



118 T. Sugie, S.-i. Azuma, and Y. Minami

Problem 1. For the system ΣQ, suppose that the quantization level d ∈ R+ is given
and assume that Σ is stable (the matrix A + B2C2 is Schur).
(i) Determine the value of E(Q) for given Q.
(ii) Find a Q (i.e., parameters (N,A,B1,B2,C)) minimizing E(Q) under the stability
condition:

sup
k∈N

‖x(k)‖ < ∞, sup
k∈N

‖ξ (k)‖ < ∞ (∀(x0,R) ∈ Rn × �p
∞). (4)

��

Problems (i) and (ii) respectively correspond to the analysis and design problems.
If E(Q) is small, the input-output relation of the ideal system Σ is almost preserved
in ΣQ. This provides us a practical method of control systems design with discrete-
valued signal constraints. For example, consider the feedback system in Fig. 1 (a),
and suppose that P has to be actuated by discrete-valued signal. Then the perfor-
mance would be good with

• any controller K achieving desirable performance in the ideal system in Fig. 1
(b),

• any dynamic quantizer Q such that E(Q) is small.

Note that Problem 1 is nonconvex. In fact, since ZQ involves a discontinu-
ous function q, the function ‖ZQ(x0,R) − Z(x0,R)‖ is nonconvex with respect to
(x0,R). Furthermore, the problem (ii) is a minimax problem between (x0,R) and
(N,A,B1,B2,C).

3 Analytical Solutions

Under the following assumptions, we can obtain an analytical solution to Problem 1.

(A1) rank D2 = m (D2 is full row rank).
(A2) For Ã := A + B2C2, there exists a k ∈ {0}∪N such that C1Ã0B2 = C1Ã1B2 =

· · · = C1Ãk−1B2 = 0 (if k ≥ 1) and rank C1ÃkB2 = l.
(A3) The system Σ ′ in Fig. 2 has no unstable system zero.

Note in (A2) that C1ÃkB2 (k = 0,1, . . .) express the impulse response matrices of the
system Σ ′ in Fig. 2 (from s to z).

Even if these assumptions do not hold, a practical solution to Problem 1 is ob-
tained, which will be explained in Remark 1 and Section 4.

3.1 Performance Expression

A solution to Problem 1 (i) is given as follows.

Theorem 1 ([14, 15]). For the system ΣQ, assume (A1) ((A2) and (A3) are not
necessary). If



Dynamic Quantization for Control 119

+ + 

G
z 

 
r 

Σ'

s 

 

u v 

 
0 

Fig. 2 A subsystem of quantized system ΣQ.

[C1 0]
[

Ã B2C

0 A+B2C

]k [
0

B1+B2

]
= 0 (∀k ∈ {0}∪N), (5)

then

E(Q) =

∥
∥
∥
∥∥

∞

∑
k=0

abs

(

[C1 0]
[

Ã B2C

0 A+B2C

]k [
B2

B2

]) ∥∥
∥
∥∥

d
2

; (6)

otherwise

E(Q) = ∞. (7)

��

Theorem 1 gives an exact expression of E(Q), which enables us to compute the
value of E(Q) for given dynamic quantizer Q.

The intuitive meaning of this result is as follows. Let us introduce the new vari-
able w ∈ [−d/2,d/2]m:

w(k) := q(Cξ (k)+u(k))− (Cξ (k)+u(k)), (8)

which expresses the quantization error of the static quantizer q in (2). This allows
us to represent Q as

Q :

{
ξ (k + 1) = (A+B2C)ξ (k)+ (B1 +B2)u(k)+B2w(k),

v(k) = Cξ (k)+ u(k)+ w(k) (9)

and to formally regard Q as a linear system with the external inputs u and w. With
this expression, the error system for ΣQ and Σ is illustrated as Fig. 3, where H is a
subsystem (which is linear) of (9). Then (5) means that the impulse response matri-
ces from r to zQ − z are zero. Thus if (5) does not hold, ‖zQ − z‖ can be arbitrarily
large by some large r, which gives (7). On the other hand, the right hand side of (6)
is composed of

• the impulse response matrices from w to zQ − z,
• the upper bound of the static quantization error w, i.e., d/2.

So it follows that the right hand side represents the influence of the static quantiza-
tion error on the output difference zQ − z.
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Fig. 3 Error system between quantized system ΣQ and unquantized system Σ .

Remark 1. Even if (A1) is not satisfied, the weak version of Theorem 1, in which the
right-hand side of (6) becomes an upper bound of E(Q), holds. Therefore, although
it is rather conservative, the value of E(Q) can be estimated. ��

3.2 Optimal Dynamic Quantizers

We next show a solution to Problem 1 (ii).

Theorem 2 ([13, 15]). For the system ΣQ, assume (A1)–(A3). Then a solution to
Problem 1 (ii) is given by

Q∗ :

{
ξ (k + 1) = Ãξ (k)− B2u(k)+ B2v(k),

v(k) = q(−(C1Ãτ B2)+C1Ãτ+1 ξ (k)+ u(k)) (10)

and the minimum value of E(Q) is given by

E(Q∗) = ‖C1Ãτ B2‖
d
2

(11)

where τ is the value of k satisfying the condition in (A2). ��

Theorem 2 provides an optimal quantizer, where Assumptions (A1) and (A2) relate
to the minimality of E(Q∗) and (A3) does to the stability of ΣQ.

This result explains an optimal quantization structure as follows. Suppose that
Q∗ is applied to the error system in Fig. 3. Then the impulse response matrices from
r to zQ − z are (0,0, . . .), and those from w to zQ − z are given by
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( 0, . . . , 0, C1Ãτ B2, 0, 0, . . .) (12)
↑

τ-th

which, actually, corresponds to the minimum. So Q∗ plays a role to satisfy (5) and
to reduce the signal transfer from w to zQ − z as small as possible.

Example 1. Consider the system ΣQ for the feedback system in Fig. 1 (a). Here, P
and K are the discrete-time plant and controller obtained from the continuous-time
ones

Pc :

⎧
⎨

⎩
ẋP(t) =

[
0.1 3

−0.8 2

]
xP(t)+

[
0
1

]
v(t),

z(t) = [1 2]xP(t), y(t) = [1 0]xP(t),

Kc :

⎧
⎨

⎩
ẋK(t) =

[
−10 3
−14.7 −6.1

]
xK(t)+

[
0
1

]
r(t)+

[
10.1
11.5

]
y(t),

u(t) = −[2.4 8.1]xK(t)+ r(t)

and the zero-order hold with the sampling period h := 0.1. For Q∗, the quantization
level is given by d := 2.

Fig. 4 shows the simulation result on the time responses of the system ΣQ, where
x0 := [0.5 −0.5 0 0] (x := [x

P x
K ]) and r(k) ≡ 0. In addition, the output response

of Σ in Fig. 1 (b) is also shown by the thin line in the third figure, where x0 and r
are set to the same values. Though v is a coarse discrete-valued signal in ΣQ, we see
that the output behavior of ΣQ is almost the same as that of Σ . ��

4 Advanced Topics

To apply to real systems, the above basic theory has to be generalized. In this section,
we introduce recent results toward this direction.

Numerical Optimization Based Design of Dynamic Quantizers

Since the above discussion holds under several assumptions, the results (especially,
Theorem 2) can be applied to a limited class of systems. As an alternative, a de-
sign method based on numerical optimization has been developed in [14]. There,
by exploiting special structure of Problem 1, the problem is reduced into a linear
programming problem, which allows us to efficiently optimize the dynamic quan-
tizer without any strong assumption. A MATLAB implementation entitled “ODQ
toolbox” is available at the web site [18].

Decentralized Dynamic Quantizers

As shown in Fig. 5 (a), it is often necessary to have a decentralized structure in
the quantizer. In [16], the above results have been extended to the decentralized
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Fig. 5 Decentralized dynamic quantizers [16].

case. Furthermore, an experimental evaluation has been performed with the seesaw-
cart system in Fig. 5 (b). There, it is successfully achieved to stabilize the unstable
system under the severe condition that the plant input takes one of three values and
the controller input does one of seven values.
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(a) Original image (8-bit colors). (b) Halftone image (2-bit colors).

Fig. 6 Binary halftoning by a 2D optimal dynamic quantizer [17].

n-Dimensional Dynamic Quantizers

In [17], the authors have extended the optimal quantizers to an n-dimensional (n-D)
version. This can be used not only for control of n-D systems but also for image
processing. Fig. 6 shows an example of applying the result to the halftone image
processing, which is to transform a grayscale image to a binary image keeping the
quality to the eye. This shows the potential of our framework to other fields out of
control.

5 Conclusion

The authors’ recent results on the control-oriented dynamic quantizers have been
reviewed. We hope that this will be utilized to real control applications.

Acknowledgment. The authors would like to thank Mr. Ryosuke Morita, Kyoto Univer-
sity, for supplying data.
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Abstract. In deterministic gossiping, pairs of nodes in a network holding in general
different values of a variable share information with each other and set the new value
of the variable at each node to the average of the previous values. This occurs by
cycling, sometimes periodically, through a designated sequence of nodes. There is
an associated undirected graph, whose vertices are defined by the nodes and whose
edges are defined by the node pairs which gossip over the cycle. Provided this graph
is connected, deterministic gossiping asymptotically determines the average value
of the initial values of the variables across all the nodes. The main result of the paper
is to show that for the case when the graph is a tree, all periodic gossiping sequences
including all edges of the tree just once actually have the same rate of convergence.
The relation between convergence rate and topology of the tree is also considered.
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1 Introduction

We postulate a set of n + 1 agents each holding a value of a scalar variable, and
exchanging information according to a certain protocol with the aim of all arriving
at common knowledge of the average of the n + 1 initial values. Such a problem
is typically termed a consensus problem. Consensus problems are treated in many
references, for example [1, 2, 3, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17].

A key aspect of any consensus problem is that agents normally exchange infor-
mation with a limited subset of the other agents. This aspect is most easily modelled
by a graph, whose vertices correspond to the agents, and whose edges correspond
to the agent pairs between which information can be exchanged. The graph is di-
rected if exchange is one way, and undirected if two-way; undirected graphs are
much more commonly considered. In this form of consensus, and in a discrete-time
framework, the value at time (k + 1) at agent i is set equal to the average of the
values at time k at agent i and all its neighbors. Among the variants on the basic
problem, some of the preceding references have also considered problems involv-
ing consensus with a leader, time-delays, time-varying connection graphs, random
graphs, and the introduction of shift register storage at individual agents. Virtually
every result requires an assumption of connectivity in the underlying graph, which
is intuitively reasonable. A key issue in any consensus problem is defining the rate
of convergence, or equivalently, the time constant governing convergence (which is
usually exponential).

A special type of consensus algorithm is exemplified by a gossiping algorithm. In
a gossiping algorithm, at any instant of time, at most one pair of agents can interact,
i.e. exchange and average their values. Gossiping references include [4, 5, 7, 10] An
underlying graphical structure is assumed for a gossiping algorithm, and the graph
must be connected. One can conceive of synchronous or asynchronous selection of
edges, and random or deterministic selection of edges. In the latter case, selection
of edges on a periodic basis provides an attractive analytical framework.

In this work, we consider gossiping algorithms where the underlying graph is a
tree, the simplest connected graph of course, and there is a deterministic periodic
protocol causing each edge to be activated once in the underlying period. Each in-
dividual gossip can be described by a doubly stochastic matrix (call it a gossiping
matrix), and the composition of n successive gossips (the number of edges in a tree
on a graph of n + 1 vertices) corresponds to a product of such gossiping matrices,
which is again a doubly stochastic matrix. The eigenvalue with second largest mag-
nitude of this matrix effectively defines the speed of convergence of the algorithm
(the largest eigenvalue of course is 1). Obviously, one might expect different speeds
for different orderings in the product of the same n gossiping matrices. In fact, this is
not the case. It will be shown that the convergence rates are the same for all possible
periodic gossip sequences of a given graph with a tree structure.

In the next sections, we shall first consider first a tree that is simply a path graph,
and then consider a tree which has just one node of degree greater than 2, before
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considering more general trees. While we show that the ordering of edges within a
tree is immaterial in determining the spectrum of the composition of the individual
gossip matrices over the cycle, the shape of the tree is relevant. Trees with the same
number of edges do not all have the same associated convergence rate.

2 Gossiping in a Path Graph Tree

Consider a tree with n + 1 vertices, forming a single path. See Figure 1. There are
edges between vertices i, i+ 1 for i = 1, . . . ,n. Call Si the matrix which is the direct
sum of the (i−1)× (i−1) identity matrix, the 2×2 matrix with 1/2 for each entry,
and the (n − i − 1) × (n − i − 1) identity matrix. Then Si is the stochastic matrix
modelling gossiping between nodes i, i + 1. Let us call such a gossiping matrix a
primitive gossiping matrix. For future reference, we observe, noting the proof is
easy, that

Fig. 1 A path graph tree; Si is the gossiping matrix when nodes i, i+1 gossip

Lemma 1. Let the Si be as defined above. Then the matrices Si,S j commute if and
only if |i− j| ≥ 2, i.e. if and only if Si and S j correspond to nonadjacent edges.

Below, we state a theorem, omitting the proof because of space limitations, which
draws on this lemma and the facts that:

1. For any two square matrices A,B of the same size the eigenvalues of AB and of
BA are the same.

2. (Consequence of the above). The spectrum of any product A1A2 . . .An is un-
changed by cyclic permutation of the Ai

For a given tree, let us call a gossiping sequence complete when the edges of
the tree are ordered, and gossips are executed in the corresponding order; thus each
edge is used once and only once to define a complete sequence. Call the associated
product of primitive gossip matrices a composite gossiping matrix. Call an infinite
gossiping sequence periodic when the same complete sequence is repeatedly used.
The main result now for a path tree is:

Theorem 1. Let the Si be as defined above. Let π : {1,2, . . . ,n} → {1,2, . . . ,n} be
an arbitrary permutation. Then the eigenvalues of S1S2 . . .Sn are the same as the
eigenvalues of Sπ(1)Sπ(2) . . .Sπ(n)

Proofs of all theorems are omitted due to length limitations. In some cases, outlines
will be provided. The tools used in proving Theorem 1 are the lemma above, and the
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two well-known facts following it. This means that if the particular primitive gos-
siping matrices Si are replaced by more general matrices, Ti say, with the property
that Ti,Tj commute if |i − j| ≥ 2, then the theorem will hold with the Si replaced
by Ti. Note that the convergence rate associated with a periodic gossip sequence is
given by the second largest magnitude of an eigenvalue of the composite gossiping
matrix, and so the theorem in effect is asserting that the convergence rate to the av-
erage of the variables at each node is independent of the ordering of the complete
gossip sequence.

There is a second important invariant of the ordering that we will make use of
below. The proof of the theorem is not so obvious, but actually rests on very similar
observations to those used in proving Theorem 1.

Theorem 2. Let the Si be as defined above. Let π : {1,2, . . . ,n} → {1,2, . . . ,n} be
an arbitrary permutation and let T = Sπ(1)Sπ(2) . . .Sπ(n) be the associated product.
Partition T as

T =
[

A b
c d

]
(1)

where d is scalar. Define the transfer function associated with node n + 1 as

w(z) = d + c(zI − A)−1b (2)

Then w(z) is independent of the ordering of the primitive gossiping matrices in T .

Theorem 1 actually almost follows from Theorem 2, in view of the easily derived
formula:

|zI − T | = [z− w(z)]|zI − A| (3)

In the event that {A,b,c,d} is a minimal realization of w(z), Theorem 1 is an imme-
diate consequence of Theorem 2.

3 Trees with One Node of Degree Greater Than 2

In this section, we start to generalize the trees for which we can make statements
about many gossip matrix product orderings having the same spectra (and indeed

Fig. 2 First generalization of path graph tree; Si denote gossiping matrices and Ti products of
gossiping matrices.
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the same transfer function associated with a certain vertex). The main result deals
with trees in which there is just one node with degree greater than 2, see Figure 2,
and establishes that again, there is a single spectrum independent of the product
ordering. We term such trees star trees.

It is helpful to fix some notation. Suppose a star tree has (n + 1) nodes with
one node of degree p > 2. Number this as the (n + 1)-th. Index the paths be-
tween this node and the leaf nodes as 1,2, . . . , p with the length of the paths given
by n1,n2, . . . ,np, so that n = ∑i ni. Number the nodes by working from the leaf
end of the first path to the last node before the node of degree p, then by work-
ing from the outer end of the second path to the last node before the node of
degree p, and so on. Order links in the same manner. The associated primitive
gossiping matrices are S1,S2, . . . ,Sn1 for path 1, then Sn1+1, . . . ,Sn1+n2 for path 2,
and so on, through to Sn. For each i = 1,2, . . . , p, define a composite gossiping
matrix by

Ti = Sni−1+1Sni−1+2 . . .Sni (4)

where also n0 = 0
Using this notation, we first record a lemma in which the number of possible

spectra is greatly reduced. The proof runs similarly to the proof of the result for
path graphs, but again is omitted.

Lemma 2. Consider a star tree with (n+1) nodes and p paths from leaf nodes to a
vertex of degree p, with numbering as described above. Then for an arbitrary com-
plete gossip, the spectrum of the product of the gossip matrices will be the same as
the spectrum of T1T2 . . .Tp or some permutation thereof. The permutation in ques-
tion can be obtained by deleting all Si from the product corresponding to the com-
plete gossip, other than those with i = n1, i = n1 + n2, . . . , i = n and then replacing
Sn1+n2+...+n j by Tj.

If for example, p = 3, there are apparently two possible spectra which might result,
corresponding to the spectra of T1T2T3 and T1T3T2. Note that all other four orderings
in a product of the three Ti are cyclic permutations on one of these two, and thus have
the same spectrum. For the tree of Figure 2, there are apparently six spectra, viz.
those of T1T2T3T4, T1T2T4T3, T1T3T2T4, T1T3T4T2, T1T4T2T3, T1T4T3T2. Nevertheless,
we prove in the theorem below, perhaps surprisingly, that all such spectra are in fact
the same.

Theorem 3. Adopt the same hypotheses as in Lemma 2. Then for an arbitrary com-
plete gossip, the spectrum of the product of the gossip matrices is independent of
the ordering of the individual gossips. A formula for the characteristic polynomial
whose roots determine the spectrum is obtainable as follows. Let the matrix Ti be
partitioned as
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Ti =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

In1 0 . . . 0 0 . . . 0
0 In2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . Ai 0 . . . bi

0 0 . . . 0 Ini+1 . . . 0
...

...
...

...
. . .

...
0 0 . . . ci 0 . . . di

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

Here, bi,ci,di are respectively a column ni-vector, a row ni-vector and a scalar, while
Ai is an ni × ni matrix. Define wi(z) = di + ci(zI − A)−1bi. Then the eigenvalues of
the complete gossiping matrix are the zeros of 1 − z−1 ∏p

i=1 wi(z).

Outline of Proof: From the preceding lemma, we know that the spectrum will be
the same as the spectrum of T1T2 . . .Tp or the same product but after permutation of
the Ti. To prove the claim of the theorem, it is enough to show that the spectrum of
T1T2 . . .Tp is given by the zeros of 1 − z−1 ∏p

i=1 wi(z). Then the desired result will
follow since this last expression is independent of the ordering of the Ti. We demon-
strate the formula for the case p = 3; the method of proof is obviously generalizable.
One can compute

T1T2T3 =

⎡

⎢
⎢
⎣

A1 b1c2 b1d2c3 b1d2d3

0 A2 b2c3 b2d3

0 0 A3 b3

c1 d1c2 d1d2c3 d1d2d3

⎤

⎥
⎥
⎦ (6)

One can check that this composite gossiping matrix is also the state update matrix
for the closed-loop system depicted in the Fig. 3. The spectrum of the associated
state update matrix corresponds to the zeros of the characteristic polynomial of the
closed-loop system depicted in the figure. Consider the elementary redrawing of
the figure, shown in Fig. 4, for which the characteristic polynomial formula follows
easily.

Fig. 3 The corresponding closed-loop system.

Remark 1. The particular form of the Si is not relevant in the above result. Each Ti

could be the gossiping matrix of a rather large tree, rather than a path graph.
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Fig. 4 Elementary redrawing of Fig. 3.

Remark 2. Partition the composite matrix T1T2T3 in a similar manner to each of the
Ti, thereby defining an n×n matrix A, column and row n-vectors b and c and a scalar
d. Then it is straightforward to check for the transfer function associated with node
n + 1 that there holds

w(z) := d + c(zI − A)−1b =
3

∏
i=1

wi(z) (7)

This second conclusion is a general one of course, and we sum it up as follows:

Theorem 4. Adopt the same hypothesis as in Theorem 3. Let T be the matrix of the
complete gossip, and write it as

T =
[

A b
c d

]
(8)

Associate with node n + 1 the transfer function w(z) = d + c(zI − A)−1b. Then
w(z) = ∏p

i=1 wi(z).

We are now ready to consider general trees.

4 General Trees

In effect, we will treat general trees using an induction process. One of the inductive
steps is as follows.

Lemma 3. Let T0 be an arbitrary tree of (n+1) vertices, and let v0 be an arbitrary
vertex. Augment the tree by adding an edge from v0 to a new vertex v, and call this
new tree T . Adopt a node ordering such that v0,v are the second last and last node,
i.e. the (n + 1)-th and (n + 2)-th node of T . Suppose that a complete gossiping
matrix for T0 is given by

T0 =
[

A0 b0

c0 d0

]
(9)

where d0 is a scalar, and suppose that the following two properties hold:
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1. The spectrum of T0 is independent of the ordering used to generate it.
2. The transfer function w0(z)= d0 +c0(zI −A0)−1b0 associated with node v0, num-

bered n + 1, is independent of the ordering used to generate T0

Then the corresponding properties hold for any complete gossiping matrix T for T ,
i.e. if

T =
[

A b
c d

]
(10)

where d is a scalar, then the spectrum of T and the transfer function w(z) =
d + c(zI − A)−1b associated with node v, numbered n + 2, are independent of the
ordering used to form T .

This lemma can be proved by appeal to Theorem 3 to establish the spectral result.
The transfer function result can be obtained by adjusting the argument of Theorem
4, which calculates the transfer function of v0, in order to calculate the transfer
function associated with v.

Finally, we can state our main result.

Theorem 5. Let T be a tree, and let T be a composite gossip matrix associated with
a complete gossip sequence. Then the spectrum of T is independent of the order of
the individual gossips. Further, the transfer function associated with any node is
also independent of the order of the gossips.

Proof. Any tree may be regarded as being built by a sequence of operations which
successively add branches to an existing tree. In the light of the last Lemma 3 and
the earlier theorems, an inductive proof exists to establish the spectral result. To
establish the transfer function result, choose a node in the tree. Associate with each
of the branches incident on that node a subtree. The associated transfer function is
by a trivial variant on Theorem 4 a product of the individual transfer functions for
the individual trees, and the inductive argument again applies.

5 Examples

In this section, we provide a series of simulations verifying the analytical results.
Moreover, extensive simulations for 12-edge trees with one node of degree greater
than 2 partially unveil some relationships between the topology and the convergence
rate (as measured by the second largest eigenvalue). We attempt to summarize the
observed patterns here.

Simulations for path tree graphs are easily created and the results are immediate.
For more general trees, we used a pseudo-code for generating a sufficiently random
tree and random gossip order. Simulation results are consistent with analysis, that
is, the spectrum is independent of the order and only determined by the topology of
the tree.
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Specify the number of nodes V in the tree
Create a root node (1), add node (2) and edge (1,2)
Set (2) to be the forking node

WHILE (there is unconnected node(s))
DO {
– generate a random branch number K
– create K new nodes (or until there are V nodes)
– edges between every new node to forking node
– select a new forking node among the K new nodes
}

Create the gossip matrix for every edge
Pseudo random permutation of all edges and order them accordingly
Obtain the product of gossip matrices in that order

With a view to linking the convergence rate of a complete gossip to the topology
of a tree, we conducted simulations for 12-edge trees with one node of degree greater
than 2; for convenience, we call such trees the “star-trees”.

Let us denote the tree with [n1,n2,n3, . . .] where the ni denote the length (i.e.
number of edges) of the branches, and the ni are sorted in descending order.

The results are summarized in Table 1. Note that the path tree-[12], which is the
same as [11,1] or any [n,12 − n], is included for comparison only.

From the table, we observe two patterns (with small exceptions denoted with ∗):

Pattern 1. For 12-edge star-trees with at least one branch length exceeding 4, there
exists a partial order of these trees corresponding to the convergence rate of the
gossiping sequence

Pattern 2. For 12-edge star-trees with at least 8 branches and maximum branch
length 3, the more branches it has, the slower its corresponding gossiping se-
quence converges. For trees with same number of branches, no specific rules are
derived for their order.

It can be noted that there are a number of entries which have no specific pattern,
and more investigation is required to understand these. Moreover, it is important
to verify the validity of the above patterns for star-trees of other sizes. We would
expect that the convergence rate will be affected by at least the depth (length of the
longest branch) and the breadth (number of branches) of the tree. We are conducting
more simulations to explore these points further.
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Table 1 12-edge star-trees and their second largest eigenvalue

Tree |λ2| remark

[12] 0.9427 path tree
[11,1] 0.9427 path tree
[10,2] 0.9427 path tree
[10,1,1] 0.9413 Pattern 1 follows
[9,2,1] 0.9393
[9,1,1,1] 0.9380
[8,3,1] 0.9368
[8,2,2] 0.9344
[8,2,1,1] 0.9333
[7,3,2] 0.9285
[6,3,2,1] 0.9145
[5,4,3] 0.9045
[5,4,2,1] 0.9045
[5,2,1, ...,1] 0.8849
[5,1, ...,1] 0.8830 * Exception to Pattern 2

[4,4,4] 0.8848 * no patterns observed here
[4,4,3,1] 0.8737 onwards due to exceptions
[4,4,2,2] 0.8780 *
[4,1, ...,1] 0.8393
[3,3,3,3] 0.8256
[3,3,2,2,2] 0.7500
[3,2,2,2,2,1] 0. 7500
[3,2,1, ...,1] 0.7500
[3,1, ...,1] 0.7532 *
[2,2,2,2,2,2] 0.7667 *
[2,2,2,2,2,1,1] 0.7510 *

[2,2,2,2,1,1,1,1] 0.7366 Pattern 2 follows
[2,2,2,1, ...,1] 0.7409
[3,2,1, ...,1] 0.7500
[3,1, ...,1] 0.7532
[2,2,1, ...,1] 0.7673
[2,1, ...,1] 0.8000
[1,1, ...,1] 0.8315

6 Conclusions

The main result of this paper is that for a fixed tree, a composite gossip matrix
obtained by multiplying together primitive gossip matrices corresponding to each
edge of the tree has a spectrum that is independent of the ordering of these matrices.
This means that it is straightforward to determine the convergence rate of a periodic
gossip. The rate depends on the ‘shape’ of the tree. Our examples of 12-edge star-
trees show the complexity of making a connection of the two. More research is
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required to properly understand what aspects of a tree are associated with the fastest
convergence rates.

The reader may also wonder what will happen in the case of graphs with cycles;
for example, could it be that the main result of this paper actually applies to more
general graphs? The answer is no. We have verified for a graph which is a pure cycle
of 6 nodes and 6 edges that the convergence rate for a periodic gossip does indeed
depend on the ordering of the edges in a complete gossip sequence.
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Distributed PageRank Computation with Link
Failures

Hideaki Ishii and Roberto Tempo

Abstract. The Google search engine employs the so-called PageRank algorithm
to rank the search results by quantifying the importance of each web page. In this
paper, we continue our recent work on distributed randomized computation of Page-
Rank, where the pages locally determine their values by communicating with linked
pages. In particular, we propose a distributed randomized algorithm with limited in-
formation, where only part of the linked pages is required to be contacted. This is
useful to enhance flexibility and robustness in computation and communication.

This paper is dedicated to Yutaka Yamamoto on the occasion of his 60th birthday.

1 Introduction

The performance of search engines heavily relies on the capability of listing search
results so that users can quickly have access to the desired information. One effective
and objective way to quantify the importance or popularity of the web pages is by
simply examining the link structure of the web. The so-called PageRank algorithm
at Google follows such an idea and ranks pages higher when they have links from
more important pages (see, e.g., [3, 4, 19]).

To execute the PageRank algorithm, however, the size of the web poses serious
difficulties. Google is said to have over 8 billion web page indices and moreover
computes the PageRank in a centralized fashion. In view of the rapid growth of
the web, it is critical to develop more efficient computational methods. In this re-
gard, a line of current research is towards distributed computation of the PageRank.
In [25], block structures in the web are exploited to apply Markov chain methods
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while the work of [1] utilizes techniques from Monte Carlo simulation. In [6, 18],
the application of numerical analysis methods known as asynchronous iterations [2]
is discussed. Other works include [17], where adaptive methods allocate computa-
tional resources depending on the rate of convergence.

In our recent work [13], we developed a distributed randomized approach for the
PageRank computation; for recent advances on probabilistic methods in systems
and control, see [22]. The approach is distributed in that each page computes its
own PageRank value locally by communicating with the pages that are connected
by direct links. That is, each page exchanges its value with the pages to which it
links and those linked to it. Randomization is with respect to the time that each
page decides to initiate the communication. The time is randomly chosen and is
independent among the pages. Hence, there is no need of a fixed order among the
pages or a leader agent that specifies the pages to start updates. It is also stressed
that relatively small communication and computation are required for the agents.
On the other hand, in [14], we considered a centralized scheme for computing the
bounds on the PageRank values when the web data contains uncertainties.

In this paper, we further explore the approach of [13] to enhance flexibility and
robustness under limited information; an earlier version of this work has appeared
in [15]. Specifically, we are interested in situations where each page initiating an up-
date contacts only part of its linked pages. We continue to work in the probabilistic
setting, and such pages are determined in a random manner. The links not used for
communication at the time of updates will be referred to as the failing links. This
feature would be useful, for example, when the computation/communication load
among the pages must be reduced, but the rate of updates should be kept at the same
level. In this respect, this scheme is more flexible than that in [13] because in addi-
tion to the rate of updates for each page, the rate for link selection may be specified.
This algorithm can be also applied when communication is unreliable due to link
failures and/or packet losses. In such a case, it may not be possible to contact all
linked pages at the same time. A simple way to model packet losses is to consider
them as an outcome of Bernoulli random processes, which has been widely adopted
in the fields of networked control and consensus; see, e.g., [7, 8, 11, 12, 20]. This
channel model can be incorporated into the proposed scheme.

As discussed in [13], it is important to note that the proposed distributed ran-
domized approach has been motivated by the recent development in the multi-agent
problems. In particular, our approach has strong ties with the stochastic versions of
the consensus problems (e.g., [9, 21, 23, 24]). From the viewpoint of consensus, it
is natural to treat the web as a network of agents capable of local computation as
well as communication with neighbors. It is further emphasized that there are simi-
larities at the technical level. In the algorithm for PageRank computation, stochastic
matrices play a crucial role, but in a slightly different form than consensus problems.

This paper is organized as follows: We first provide an overview of the Page-
Rank problem in Section 2. This is followed by Section 3, where we summarize the
distributed approach of [13]. In Section 4, we present a distributed algorithm which
allows for link failures and prove its convergence. We illustrate the results through a
numerical example in Section 5. Finally, in Section 6, concluding remarks are given.
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Notation: For vectors and matrices, inequalities are used to denote entry-wise in-
equalities: For X ,Y ∈ R

n×m, X ≤Y implies xi j ≤ yi j for i = 1, . . . ,n and j = 1, . . . ,m;
in particular, we say that the matrix X is nonnegative if X ≥ 0 and positive if X > 0.
A probability vector is a nonnegative vector v ∈ R

n such that ∑n
i=1 vi = 1. By a

stochastic matrix, we refer to a column-stochastic matrix, i.e., a nonnegative matrix
X ∈ R

n×n with the property that ∑n
i=1 xi j = 1 for j = 1, . . . ,n. Let 1 ∈ R

n be the
vector with all entries equal to 1 as 1 := [1 · · · 1]T . Similarly, S ∈ R

n×n is the matrix
with all entries being 1. The norm ‖·‖ for vectors is the Euclidean norm.

2 The PageRank Problem

The PageRank problem is now briefly described based on, e.g., [3, 4, 19]. Consider
a network of n web pages indexed from 1 to n. The network is represented by the
directed graph G = (V ,E ). Here, V := {1,2, . . . ,n} is the set of vertices corre-
sponding to the web page indices while E ⊂ V ×V is the set of edges representing
the links among the pages. The vertex i is connected to the vertex j by an edge, i.e.,
(i, j) ∈ E , if page i has an outgoing link to page j, or in other words, page j has an
incoming link from page i.

The objective of the PageRank algorithm is to assign some measure of impor-
tance to each web page. The PageRank value, or simply the value, of page i ∈ V is
a real number denoted by x∗

i ∈ [0,1]. The values are ordered: x∗
i > x∗

j implies that
page i is more important than page j.

The pages are ranked according to the rule that a page having links from impor-
tant pages is also important. This is done in such a way that the value of one page
equals the sum of the contributions from all pages that have links to it. Specifically,
we define the value of page i by

x∗
i = ∑

j∈Li

x∗
j

n j
,

where Li := { j : ( j, i) ∈ E }, i.e., this is the set of page indices that are linked to
page i, and n j is the number of outgoing links of page j. It is customary to normalize
the total of all values as ∑n

i=1 x∗
i = 1.

Let the values be in the vector form as x∗ ∈ [0,1]n. Then, the PageRank problem
can be restated as

x∗ = Ax∗, x∗ ∈ [0,1]n,
n

∑
i=1

x∗
i = 1, (1)

where the link matrix A = (ai j) ∈ R
n×n is given by

ai j :=

{
1
n j

if j ∈ Li,

0 otherwise.
(2)

The value vector x∗ is a nonnegative unit eigenvector corresponding to the eigen-
value 1 of A. In general, for this eigenvector to exist and then to be unique, it is
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sufficient that the web as a graph is strongly connected1. However, the web is known
not to be strongly connected. Thus, the problem is slightly modified as follows.

First, note that in the real web, the so-called dangling nodes, which are pages
having no links to others, are abundant. To simplify the discussion, we redefine
the graph by bringing in artificial links. As a result, the link matrix A becomes a
stochastic matrix, having at least one eigenvalue equal to 1.

Next, to guarantee the uniqueness of this eigenvalue, a modified version of the
values has been introduced in [3] as follows: Let m ∈ (0,1), and let the modified
link matrix M ∈ R

n×n be defined by

M := (1 − m)A +
m
n

S. (3)

This matrix is a positive stochastic matrix. By the Perron theorem [10], the eigen-
value is simple and is the unique one with maximum modulus, and the correspond-
ing eigenvector is positive. Hence, we redefine the value vector x∗ by using M as

x∗ = Mx∗, x∗ ∈ [0,1]n,
n

∑
i=1

x∗
i = 1. (4)

We note that in the original paper [3], a typical value for m is chosen as m = 0.15.
This value is employed in the rest of the paper.

Because of the large dimension of the link matrix M, the computation of the value
vector x∗ relies on the power method. That is, x∗ is computed through the recursion

x(k + 1) = Mx(k) = (1 − m)Ax(k)+
m
n

1, (5)

where x(k) ∈ R
n and the initial condition x(0) ∈ R

n is a probability vector. Notice
that the second equality can be established because A is stochastic and thus x(k) is
a probability vector, resulting in Sx(k) ≡ 1.

The following lemma shows that, using this method, we can asymptotically find
the value vector (e.g., [10]).

Lemma 1. For any initial condition x(0), in the update scheme (5) using the modi-
fied link matrix M, it holds that x(k) → x∗ as k → ∞.

We now comment on the convergence rate of this scheme. Denote by λ1(M) and
λ2(M) the largest and the second largest eigenvalues of M in magnitude. Then, for
the power method applied to M, the asymptotic rate of convergence depends on the
ratio |λ2(M)/λ1(M)|. Since M is a positive stochastic matrix, we have λ1(M) = 1
and |λ2(M)| < 1. Furthermore, it is shown in [19] that the structure of the link matrix
M leads us to the bound |λ2(M)| ≤ 1 − m. For the value m = 0.15, the asymptotic
rate of convergence is bounded by 0.85.

1 A directed graph is said to be strongly connected if for any two vertices i, j ∈ V , there is a
sequence of edges which connects i to j.



Distributed PageRank Computation with Link Failures 143

3 Distributed Randomized Approach

In this section, we summarize the distributed randomized algorithm for computing
the PageRank values from [13].

Consider the web with n pages described in Section 2. The basic protocol em-
ployed in this scheme is as follows: At each time k, the page i initiates its PageRank
value update (i) by sending its value to the pages to which it is linked and (ii) by
requesting the pages that link to it for their values. All pages involved here update
their values based on the newly available information.

These updates can take place in a fully distributed and randomized manner. The
decision to make an update is a random variable. In particular, this is determined
under a given probability α ∈ (0,1] at each time k, and hence, the decision can be
made locally at each page. The probability α is however a global parameter, and all
pages in the web use the same value.

Formally, the proposed distributed update scheme is described as follows. Let
ηi(k) ∈ {0,1}, i = 1, . . . ,n, be i.i.d. Bernoulli processes given by

ηi(k) =

{
1 if page i initiates an update at time k,

0 otherwise

for k ∈ Z+, where their probability distributions are specified by

α = Prob
{

ηi(k) = 1
}
. (6)

The process ηi(k) is generated at the corresponding page i, and when its value is 1,
then the page will follow the protocol outlined above so that an update is initiated.
Let η(k) := [η1(k) · · · ηn(k)] be the notation in a vector form.

Now, consider the distributed update scheme given by

x(k + 1) = (1 − m̂)Aη(k)x(k)+
m̂
n

1, (7)

where x(k)∈ R
n is the state whose initial condition satisfies x(0)≥ 0 and ∑n

i=1 xi(0)=
1; m̂ ∈ (0,1) is the parameter used instead of m in the centralized case, and let

m̂ =
[1 − (1 − α)2]m
1 − m(1 − α)2 . (8)

The distributed link matrices Aq for q ∈ {0,1}n are given as follows:

(
Aq
)

i j :=

⎧
⎪⎨

⎪⎩

ai j if qi = 1 or q j = 1,

1 − ∑h: qh=1 ah j if qi = 0 and i = j,

0 if qi = q j = 0 and i 
= j,

i, j ∈ V . (9)

These matrices have the following properties: (i) If qi = 1, then the ith column and
the ith row are the same as those in the original link matrix A. (ii) If qi = 0, then the
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ith diagonal entry is chosen so that the entries of the ith column add up to 1. (iii) All
other entries are 0. Hence, these matrices are constructed to be stochastic.

In this scheme, each page i also computes the time average of its own state xi.
Let y(k) be the average of the past and current states x(0), . . . ,x(k) as

y(k) :=
1

k + 1

k

∑
�=0

x(�), k ∈ Z+. (10)

We say that, for the distributed update scheme, the PageRank value x∗ is obtained
through the time average y if, for each initial condition x(0), y(k) converges to x∗ in
the mean-square sense as follows:

E
[∥
∥y(k)− x∗∥∥2

]
→ 0, k → ∞. (11)

This type of convergence is known as ergodicity for stochastic processes.
For completeness, we restate the main result of [13].

Theorem 1. Consider the distributed update scheme (7). For any update probability
α ∈ (0,1], the PageRank value x∗ is obtained through the time average y as in (11).

We comment on this distributed update scheme. As can be seen in (7), the scheme
can be implemented decentrally. Clearly, each page communicates only with pages
sharing direct links. Such links correspond to the nonzero entries of the link matrix
A. The parameter α determines the probability of updates to occur and thus the
communication load among the pages. At page i, the amount of computation is
fairly small since the state xi(k) and its time average yi(k) are scalars.

This distributed update scheme can also be viewed as a generalization of the
original centralized scheme (5) in Section 2. By using the update probability of α =
1, all pages initiate their updates at all times. In this case, we have η(k) ≡ [1 · · · 1]
and thus, the distributed link matrix Aη(k) is equal to the original A. Furthermore,
the parameter m̂ coincides with m.

4 A Distributed Scheme with Link Failures

In this section, we extend the distributed approach to handle situations where only
part of the links are used for communication when a page initiates an update. That is,
we examine how an update can be carried out when not all values from linked pages
are available; we say that link failures occur in this case. We continue to work in the
probabilistic setting and assume that such links are randomly selected. This scheme
would be useful when the communication load among the pages must be reduced or
when some pages cannot be reached because of link failures and/or packet losses.

The set of failing links where no communication takes place at time k is denoted
by Δ(k). This is a subset of the edges that link to or from the pages initiating the
updates; we denote such a set by Eη(k), which is formally defined by

Eq :=
{
(i, j) ∈ E : qi = 1 or q j = 1

}
, q ∈ {0,1}n. (12)
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For the set Δ(k) at time k, we assume that if (i, j) ∈ Δ(k) and ( j, i) ∈ Eη(k), then
( j, i) ∈ Δ(k) for (i, j) ∈ Eη(k). This represents symmetry in the link failures; if a
link from one page to another is failing at time k, then the link in the other direction
must be failing as well. The set Δ(k) is a random process specified by the link failure
probability δ ∈ [0,1) under the probability distribution

δ = Prob
{
(i, j) ∈ Δ(k) | η(k) = q

}
, ∀(i, j) ∈ Eq, q ∈ {0,1}n, k ∈ Z+. (13)

This shows that the links through which information of other pages is not transmit-
ted are probabilistically selected under a fixed probability. Such failure models are
employed in the context of networked control and consensus [7, 8, 11, 12, 20].

To take account of failing links, consider the distributed update scheme given by

x(k + 1) = (1 − m̂)Aη(k),Δ (k)x(k)+
m̂
n

1, (14)

where x(k) ∈ R
n, the initial condition x(0)≥ 0 satisfies ∑n

i=1 xi(0)= 1, and m̂ ∈ (0,1)
is the parameter used instead of m in the centralized case. The matrices Aq,D for
q ∈ {0,1}n and D ⊂ Eq are the distributed link matrices with link failures.

The objective here is to design this distributed update scheme by finding the
appropriate link matrices Aq,D and the parameter m̂ so that the PageRank values are
computed through the time average y of the state x. We follow an approach similar
to that in Section 3 and, in particular, construct the link matrices so that they possess
the stochastic property.

Distributed link matrices and their average: The first step in the design is to
introduce the distributed link matrices and analyze their properties.

Let the distributed link matrix with link failures be given as follows:

(
Aq,D

)
i j :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if ( j, i) ∈ D ,

(Aq)i j if ( j, i) /∈ D and i 
= j,

1 − ∑h∈V , h 
= j
( j,h)/∈D

(Aq)h j if i = j
(15)

for q ∈ {0,1}n, D ⊂ Eq, and i, j ∈ V . Note that by definition, (i, i) /∈ Eq, ∀i,q.
By the definition of link failures, if the link ( j, i) ∈ E is failing, then the (i, j)

entry of the link matrix must be equal to zero. The link matrices defined above take
account of such zero entries, but are still designed to be stochastic. This property is
critical in showing the convergence of the scheme. In practice, this structure implies
that if page j initiates an update and sends its value to page h over a link that is
potentially failing, it must know whether page h received the value (and used it
for its own update) or not. This can be observed in the ( j, j) entry in (15) since it
consists of the (h, j) entry of Aq.

We now analyze the average dynamics of the distributed update scheme deter-
mined by the link matrices just introduced. We define the average link matrix by
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A := E
[
Aη(k),Δ (k)], (16)

where E[ · ] is the expectation with respect to the processes η(k) and Δ(k). This
matrix A is nonnegative and stochastic because all Aη(k),Δ (k) share this property.

The following proposition shows that the average link matrix A has a clear rela-
tion to the original link matrix A.

Proposition 1. (i) The average link matrix A given in (16) can be expressed as

A =
[
1 − δ − (1 − δ )(1 − α)2]A +

[
δ +(1 − δ )(1 − α)2]I. (17)

(ii) There exists a vector z0 ∈ R+n which is an eigenvector corresponding to the
eigenvalue 1 for both matrices A and A.

Mean-square convergence of the distributed scheme: In order to show the con-
vergence property of the distributed update scheme, we now introduce the modified
version of the link matrices. First, we rewrite the update scheme of (14) in its equiv-
alent form as

x(k + 1) = Mη(k),Δ (k)x(k), (18)

where the matrices Mq,D for q ∈ {0,1}n and D ⊂ Eq are given by

Mq,D := (1 − m̂)Aq,D +
m̂
n

S. (19)

These matrices are called the modified distributed link matrices. This equivalent
form of (18) can be obtained because the link matrices Aq are stochastic matrices;
thus, the state x(k) remains a probability vector for all k, implying Sx(k) ≡ 1.

Also, let the average matrix of Mη(k),Δ (k) be

M := E[Mη(k),Δ (k)]. (20)

Here, the distributed link matrices are positive stochastic matrices, which means that
the average matrix M enjoys the same property.

The next step in designing the update scheme is to determine the parameter m̂.
The specific aim here is to show that the average of the modified distributed link
matrices and the link matrix M from (3) share an eigenvector corresponding to the
eigenvalue 1. Since such an eigenvector is unique for M, it is necessarily equal to
the value vector x∗.

Similarly to the case in Section 3, the parameter m̂ is chosen differently from m
in the centralized scheme. Let m̂ be given by

m̂ =

[
1 − δ − (1 − δ )(1 − α)2

]
m

1 − m
[
δ +(1 − δ )(1 − α)2

] . (21)

The next lemma states an important property of the link matrices for this m̂.
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Lemma 2. The parameter m̂ in (21) and the average link matrices M in (20) have
the following properties:

(i) m̂ ∈ (0,1) and m̂ ≤ m.
(ii) M = m̂

m M +
(
1 − m̂

m

)
I.

(iii) For the average matrix M, the eigenvalue 1 is simple and is the unique eigen-
value of maximum modulus. The value vector x∗ is the corresponding eigen-
vector.

We can show by (iii) in the lemma that, in an average sense, the distributed update

scheme obtains the correct values, i.e., E[x(k)] = M
k
x(0) → x∗ as k → ∞.

We are now ready to state the main result of this paper.

Theorem 2. Consider the distributed scheme with link failures in (14). For any up-
date probability α ∈ (0,1] and link failure probability δ ∈ [0,1), the PageRank value

x∗ is obtained through the time average y in (10) as E
[∥∥y(k)− x∗∥∥2]→ 0, k → ∞.

The proof follows along similar lines as that in [13]. Specifically, one way to es-
tablish the convergence is by the general Markov chain results of, e.g., [5]. Another
approach is to employ the proof developed in the paper [13] by adapting it to the
current update scheme. This proof is found to be useful to study the rate of conver-
gence and to include an update termination feature. Under this feature, each page is
allowed to stop its update when an approximate value is obtained; this is important
because computation as well as communication loads can be reduced.

We have remarks on the asymptotic rate of convergence for the average state
E[x(k)]. Similarly to the discussion in Section 2, the convergence rate is dominated
by the second largest eigenvalue λ2(M) in magnitude. By |λ2(M)| ≤ 1 − m as we
have seen in Section 2 and (ii) in Lemma 2, this eigenvalue can be bounded as

|λ2(M)| =
m̂
m

|λ2(M)|+ 1 − m̂
m

≤ 1 − m

1 − m
[
δ +(1 − δ )(1 − α)2

] .

It is clear that this bound is a decreasing function of α and an increasing function of
δ . That is, higher probability α in updates and/or smaller δ results in faster average
convergence. Faster convergence is, nevertheless, realized by additional computa-
tion and communication, which are affected by both α and δ .

5 Numerical Example

In this section, we present a numerical example to verify the efficacy of the results.
We generated a web with 1,000 pages (n = 1,000), where the links among the pages
were randomly determined. The first ten pages are designed to have high PageRank
values and are linked from over 90% of the pages. For other pages, the numbers of
links are between 2 and 333. The parameter m was taken as m = 0.15.

Simulations were carried out using three algorithms: The first one is the origi-
nal distributed scheme in Section 3, which is run without any link failures and is
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Fig. 1 The error e(k) in the
PageRank: ‖e(k)‖1 for the
original scheme without link
failures (dashed line), the
original scheme (dash-dot
line), and for the proposed
scheme (solid line); ‖e(k)‖∞
for the proposed scheme
(dotted line).
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for reference. The second one is the same original scheme, but failing links are
present, that is, when some values from linked pages are not available, they are
considered to be zero. The last one is the proposed scheme with link failures in
Section 4. For all three cases, the probability of update for the pages was taken as
α = 0.01.

We executed the algorithms with the link failure probability δ = 0.02. Sample
paths of the state x were computed from time 0 to 8,000. The initial state x(0) was
taken the same for all algorithms and was randomly chosen as a probability vector.
We computed the error e(k) := y(k)− x∗ in the PageRank value estimate. In Fig. 1,
we show the �1 norm of e(k). The original scheme without link failures (dashed
line) and the proposed scheme (solid line) have comparable performance, and the
difference is not visible in the plot. In contrast, for the original scheme with failing
links, the error stops decreasing and stays at a relatively high level of 0.1. This
is interesting because the probability δ of link failures is quite small, but has a
significant effect. One reason is that the original link matrices are in effect no longer
stochastic. As a result, the final value y(k) at k = 8,000 for this scheme is not a
probability vector and, in fact, we obtained ∑i yi(k) = 0.900. We also plotted in
Fig. 1 the �∞ norm of the error e(k) for the proposed case. This corresponds to the
maximum individual error. We observe that it rapidly decreases.

6 Conclusion

In this paper, we studied extensions of the distributed randomized approach for the
PageRank computation proposed in [13]. We considered the effect of link failures
under which not all the links are used for communication in the update. This scheme
is, in particular, useful to model failures in the network as well as to reduce the
communication/computation load for the pages. In future research, we will address
issues related to aggregation of webpages for PageRank computation [16].
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Predicting Synchrony in a Simple Neuronal
Network

Sachin S. Talathi and Pramod P. Khargonekar

1 Introduction

Human brain is comprised of hierarchically structured networks of neurons with
feedforward and feedback connections across the hierarchy [17]. It has a remark-
able ability to process sensory information and generate motor actions at millisec-
ond time scales [20]. In recent years, new theories have emerged that view the brain
as an active and adaptive system in which there is a close connection between cog-
nition and action [5]. Instead of viewing cognition as building universal, context
independent models of the external world [4, 14], cognition is considered to play an
important role in the generation of correct action responses in a context dependent
adaptive manner [19]. Accordingly, the modern perspective is to relate cognitive
functions with coherent behavior of large number of neural populations [3, 19, 35].
This modern view has been particularly relevant for understanding the binding prob-
lem which deals with the question of how does the brain integrate sensory infor-
mation on object properties (color, shape, . . . ) to identify the object as a coherent
whole [27]. Since many objects in the world are multi-sensory, a coherent represen-
tation of the object requires integration of responses across different sensory modal-
ities including in various combinations the haptic, visual, olfactory and auditory
properties. It is believed that neural synchrony at millisecond level precision is cru-
cial in implementing such an integration across different cortical regions. Although
there has been a growing interest in understanding the role for neural synchrony in
cognitive processes involved in normal brain functioning, a number of recent works
have also examined the relevance of neural synchronization in various neurologi-
cal diseases such as epilepsy [21], schizophrenia [24], autism [26] and Alzheimers
disease [30].
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Neural synchrony generally refers to the fact that large numbers of heterogeneous
interconnected neurons fire in a precisely coordinated manner to generate very dis-
tinct oscillations in different frequency bands. A number of theoritcal studies have
employed computational models of neurons and their interactions to in order to
understand the mechanisms underlying the generation of such synchronized oscil-
lations [1, 9, 12, 34]. While for large neuronal networks, detailed computational
simulations is the main approach [2, 36, 37, 39], it is possible to conduct analytical
investigations for small networks with the hope that these analytical tools will shed
light on synchronized behavior in large neuronal networks [16, 29, 31, 38].

In recent years, there has been much work in the control theory community on
consensus in networks of dynamical systems. In particular, the survey paper by Pa-
ley et al. [23] contains a large list of references on oscillator models and collective
action. Indeed, neural synchrony is a form of consensus and collective behavior.
The possibility of controlling pathological brain synchrony in neurological diseases
such as Parkinson’s disease and epilepsy through electrical stimulation, has also
spurred interest in the control community to device novel control algorithms, that
are based on intrinsic neural populations dynamics [6]. As such, we expect that in
the future there will be new research directions at the interface of research efforts
by computational neuroscientists and control theorists.

In this paper, our goal is to demonstrate how weak coupling theory and spike time
response curves can be used to analyzed patterns of synchrony in a small network
of interacting neurons. We present our analysis of phase locked synchronous states
emerging in a simple unidirectionally coupled interneuron network (UCIN) com-
prising of two heterogeneously firing neuron models coupled through a biologically
realistic inhibitory synapse. The paper is divided into following sections. Section
2 provides the mathematical background on the neuron models used in the present
study and the weak coupling theory of interacting pulse coupled oscillators. In sec-
tion 3, we analyze patterns of synchrony in the UCIN using weak coupling theory
and nonlinear interaction map derived using spike time response curves. Section 4
presents some concluding remarks.

We are very pleased to dedicate this paper to Professor Yutaka Yamamoto on
his 60th birthday. One of us (PPK) has had the good fortune and privilege of being
friends with him for nearly 30 years, and also collaborated with him in research on
sampled-data control and filtering problems. The present paper is loosely connected
to signal processing research in that the brain is one of the most remarkable signal
processing and understanding machines in existence.

2 Background

In this section, we will briefly describe some background material from com-
putational neuroscience which is relevant for analysis of synchrony in neuronal
networks.



Predicting Synchrony in a Simple Neuronal Network 153

2.1 Mathematical Model of Neuronal Dynamics

We model neuronal dynamics following the universally accepted Hodgkin-Huxley
formalism [13] (conductance based neuron models [28]). The basic neuron model
satisfies the following current-balance equation for the flow of current through the
neuronal membrane.

CM
dv(t)

dt
+ Ina(t,v(t))+ Ik(t,v(t))+ IL(v(t))+ Idc = 0 (1)

where, t is typically measured in ms, v(t) is the neuronal membrane potential in

mV, and CM
dv(t)

dt is the capacitive component of the membrane current, with CM be-
ing the membrane capacitance in μF/cm2. The current through voltage gated sodium
channel is Ina(t,v(t)) = gnam3(t)h(t)(v(t)−Ena) and the current through the voltage
gated potassium channel is Ik(t,v(t)) = gkn4(t)(v(t)− Ek). The leak current result-
ing from passive flow of all other ions through the membrane is modeled through
Il = gl(v(t)− El). Here gC and EC (C≡na,k,l), represent the maximal conductance
in mS/cm2 and the reversal potential for ion channels in mV respectively. The in-
trinsic firing frequency of each neuron is dependent on the constant current Idc input
to each neuron. The variables X(t) ≡ {m(t),h(t),n(t)} which represent the fraction
of open ion channels, satisfy the following first order kinetic equation

dX(t)
dt

= φ(αX (v(t))(1 − X(t))− βX(v(t))X(t)) (2)

The model parameters are set to those obtained by Wang and Buzsaki (WB) [37] to
simulate the dynamics of a fast spiking cortical interneuron. Specifically the func-
tional form for αX(V ) and βX(V ) (X≡m,n,h) are provided in table 1 and the model
parameters are (gna,gk,gl)=(35,9,0.1) mS/cm2; (Ena,Ek,El)=(50,−90,−65) mV and
φ = 5.

Table 1 Functions αX and βX for the WB neuron model

X αX (V ) βX (V )

m 0.1(V+35)
1−e−0.1(V+35) 4e−(V+60)/18

h 0.07e−(V +58)/20 1
1+e−0.1(V+28)

n 0.01(V+34)
1−e−0.1(V+34) 0.125e−(V +44)/88

2.2 Phase for Limit Cycle Oscillators

Following the well known approach due to Winfree [40], Guckenheimer [11] and
Ermentrout [8, 9], we will simplify the analysis of neuronal dynamical networks by
using transformation to phase variables. In general, the neuron model described in
equations 1 and 2 can be written as
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dx
dt

= f (x,α) (3)

We will assume that this system has a normally hyperbolic attracting limit cycle
x0(t) with period T0 which is a function of parameter α such that x0(t +T0) = x0(t).
Equation 3 can then be simplified by defining a scalar phase variable φ(x0) ∈ [0
1) such that the phase evolution has a simple form dφ/dt = 1/T0. Thus, with each
point on the limit cycle, there is a unique associated phase.

Now consider a point x∗ in the basin of attraction of the limit cycle x0(t). It is
then clear that there is a unique phase φ∗ ∈ [0 1) such that the trajectories of dynam-
ical system defined in 3 starting with initial conditions x∗ and x0(φ∗T0) converge
asymptotically. We define phase of the point x∗ to be φ∗. The set of points x∗ in the
basin of attraction with a given phase φ∗ define an isochrone [40]. With the notion
of phase defined in the vicinity of the limit cycle through isochrons, the nonlinear
system (3) then induces a differential equation for phase in the basin of attraction:

dφ
dt

= g(x(t)) (4)

It is important to observe that g(x) = 1/T0 if x ≡ x0.

2.3 Weakly Coupled Oscillators

In order to analyze interactions among neurons and the effect of external stimulus,
let us now introduce a small periodic force ε p(x, t) = ε p(x,t + P) with period P (ε
measure the strength of the forcing term) which is in general different from T0:

ẋ = f (x, α)+ ε p(x, t) (5)

Using the notion of isochrons defined above, the phase dynamics for equation 5 in
the neighborhood of the unperturbed system x0(t) can now be written as

dφ(x)
dt

= ω0 + ε �x φ .p(x, t) (6)

For weak coupling ε << 1, the deviation of x from the limit cycle x0 is negligible,
and in the first order approximation we can evaluate the rhs of eq 6 on the limit
cycle:

dφ(x)
dt

≈ ω0 + ε �x φ .p(x0, t) (7)

On the limit cycle, there is one-one correspondence between the state variable x and
the phase φ . We therefore have a closed equation for phase:

dφ
dt

= ω0 + εH(φ , t) (8)
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where H(φ ,t) = Z(φ).p(x0(φ),t) is unit period function of φ and P period function
of t referred to as the “averaged” interaction function [8]. The function Z(φ) :=
�xφ is purely a function of the oscillator limit cycle and captures the effect of
perturbation on the phases. It is commonly referred to as the infinitesimal phase
response curve (iPRC) or the linear response function [15]. It can be shown that
Z(φ) is the adjoint eigenfunction for the linearization of the differential equation
given in equation 3, about the stable limit cycle x0(t) [8, 9], which naturally turns
out to be a linear periodic system. Recently, a computationally efficient algorithm
using properties of this linear periodic system has been proposed in [10].

A special case of the above setup arises when the periodic perturbation ε p is the
output of another neuron. In this case, H(φ ,t) = H(φ ,φ ′

) = Z(φ).p(φ ,φ ′
), where

φ ′
represents the phase variable for the driver neuron. In the case of weak coupling,

to the extent that the change in phase φ , dφ/dt << ω0 over one cycle of unperturbed
oscillator, the effective perturbation can be approximated by averaged perturbation
over one cycle of the unperturbed oscillator [7],

H(φ ,φ
′
) =

∫ 1

0
dθZ(φ + θ ).p(φ + θ ,φ

′
+ θ ) (9)

In case the perturbation is an independent function of the driver and the driven oscil-
lators, i.e., p(φ ,φ ′

) ≡ p(φ ′
).q(φ), equation 9 can be written as a correlation integral

H(φ
′ − φ) =

∫ 1

0
dθZ(θ − (φ

′ − φ)).p(θ ).q(θ − (φ
′ − φ)) (10)

and the phase dynamics of the perturbed oscillator is given by

dφ
dt

= ω0 + εH(φ
′ − φ) (11)

3 Analysis of Phase Locked States in a Coupled Neuronal
Network

As mentioned in the Introduction, analysis of synchrony in networks of interacting
heterogeneous neurons is important for understanding information processing in
the brain. Here we present a relatively simple example of two synaptically coupled
WB neurons (see Figure 1a inset). We analyze phase locked states for this special
network.

3.1 Description of the Network

As shown in Figure 1, WB neuron labelled A fires at intrinsic frequency ωA(IA
dc)

and receives periodic synaptic perturbation from a WB neuron B, which fires
with intrinsic frequency ωB(IB

dc) with IB
dc �= IA

dc . The synaptic coupling is mod-
eled as: Is = gs(vB(t),t)(ER − vA(t)), where g is the strength of synaptic coupling,
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a b
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gH
(Δ

φ
)

B A

IA
dc
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dc

UCIN

Fig. 1 (a) Arnold tongue for the phase locked states of the unidirectionally coupled interneu-
ron network (UCIN). The region bounded by blue curves represent the Arnold tongue for the
UCIN generated through numerical simulation of equations 1,2 and 16 for the two coupled
neurons and the synapse. The region bounded by curve in black represents the steady state so-
lution to equation 18 resulting from weak coupling approximation. Inset shows the schematic
diagram of the UCIN. (b) Description of procedure to determine steady state fixed point so-
lution to equation 14, for the specific case of heterogeneity H=-4 % resulting from the choice
of IA

dc = 0.5 μA/cm2 producing ωA ≈ 32.2 Hz and IA
dc = 0.48 μA/cm2 producing ωB = 30.9

Hz. The synaptic coupling strength is set at g = 0.0052 mS/cm2. The fixed point Δφ∗ cor-
responds to the stable state solution of equation 14 satisfying conditions in equations 15 and
16 respectively. Inset shows the time series of membrane potential (neuron A in black and
neuron B in red) for the particular case considered, when the weak coupling approximation
is able to predict the existence of stable phase locked state Δφ∗.

vX {X≡A,B} is the membrane potential, ER = −75 mV is the reversal potential
of the synapse and s(v,t) represents the fraction of neurotransmitters bound to the
membrane of the post-synaptic cell (neuron A) resulting from the release of these
neurotransmitters by neuron B at any given time. It satisfies the following ordinary
differential equation

ds(t)
dt

=
s0(vB(t))− s(t)

τ(s1 − s0(vB(t)))
(12)

where s0(v) = 0.5(1+ tanh(100(v−0.1))) and the parameters τ and s1 are set such
that the synaptic rise time τR = τ(s1 − 1) = 0.1 ms and the synaptic decay time
τD = τs1 = 8 ms.

3.2 Weak Coupling Approach

If φA and φB represent the phase variables of A and B respectively, then we have in
the weak coupling limit
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dφA

dt
= ωA + gH(Δφ)

dφB

dt
= ωB (13)

where H(Δφ) =
∫ 1

0 Z(θ − Δφ)s(θ ).(ER − v(θ − Δφ))dθ and Δφ = φB − φA. The
ordinary differential equation for the phase difference Δφ is:

d(Δφ)
dt

= Δω − gH(Δφ) (14)

where Δω = ωB −ωA is the difference in the intrinsic firing rates of the two coupled
neurons. Stable fixed point solution Δφ∗ of equation 14 corresponds to the phase
locked state of synchronous oscillations between the two coupled neurons in the
UCIN. The fixed point solution satisfies

H(Δφ∗) = Δω/g (15)

and the local stability of Δφ∗ is guaranteed provided

dH(Δφ)
dΔφ

|Δφ∗ > 0 (16)

Two key parameters of the UCIN that influence phase locking behavior are the
heterogeneity Δω and the synaptic coupling strength g. We will now use weak cou-
pling theory to estimate the set of {Δω , g} which corresponds to phase locked
synchronous states of UCIN and compare these to the set {Δω , g} which result in
phase locked solutions of UCIN using full nonlinear model as described through
equations 1, 2 and 12.

Weak coupling theory estimate of {Δω , g} can be obtained by solving equations
15 and 16. Detailed explanation of the this computation is provided in Figure 1b.
The resulting domain of {Δω , g} is referred to as the Arnold Tongue [25], which
is depicted as the region bounded by black curves in Figure 1a. Arnold tongue for
full UCIN is obtained by fixing the firing frequency of neuron A to ωA ≈ 32Hz and
varying the intrinsic firing frequency of neuron B ωB by changing the dc drive IB

dc on
to the neuron B, thereby varying the degree of heterogeneity H = 100 ωB−ωA

ωA
in the

intrinsic firing rates of the two coupled neurons. The phase locked states correspond
to the value of synaptic strength g that result in < ωA > /ωB = 1, where < ωA >
is the frequency of neuron A when the UCIN settles into steady state. The Arnold
tongue so obtained is the region bounded by curves in blue in Figure 1a. We see
from Figure 1a that the weak coupling theory based estimate of the Arnold tongue
matches that generated through numerical simulations only in the vicinity of {0,0}.
However, there is a significant mismatch for higher values of synaptic strength and
heterogeneity in the network.
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3.3 Analysis of the Strong Coupling Case

In this section, we will introduce the concept of spike time response curves
(STRC’s), and demonstrate its utility in the analysis of phase locked states in the
UCIN in the regions where weak coupling theory fails. In order to motivate the
concept of STRC, consider a spontaneously firing neuron with period T0. At time t
following a voltage peak in the firing cycle of a neuron a perturbation, e.g., a depo-
larizing current pulse is applied. It shifts the time of the next voltage peak as in Fig-
ure 2. Let Tj (j=1,2,...) represent the times of jthvoltage peak after the perturbation.

The quantities Φ j,α = T0−Tj
T0

, which measure the shift in the phase of neuron in re-
sponse to a perturbing stimulus are called the STRC’s. The parameter α corresponds
to the dependence of STRC on the characteristics of the perturbation input. If the
perturbation impulse occurs through a chemical synapse, a case of particular impor-
tance to the analysis of the UCIN we consider here, α represents the set of synaptic
parameters such as the rise time of the synapse τR, the decay time of the synapse τD,
the synaptic reversal potential ER and the synaptic coupling strength g. The STRC’s
can be computed numerically by solving the nonlinear dynamical equations for a
given neuron receiving the perturbation and measuring the length of subsequent
firing cycles [1]. For the network under consideration, we specifically computed
STRC’s for an intrinsically firing WB neuron with frequency ω ≈ 32 Hz receiv-
ing perturbation through an inhibitory synapse with reversal potential ER = −75
mV, g = 0.15 mS/cm2 τD = 8 ms, τR = 0.1 ms. In Figure 3a, we show the STRC’s
Φ j(δ t) (j=1,2) as a function of the time δ t at which it receives the perturbation.

We will now use these STRC’s obtained numerically for different levels of synap-
tic coupling strengths g to derive a nonlinear map for the evolution of phase differ-
ence Δφ between the two coupled neurons in the UCIN. In Figure 3b, we show a
schematic diagram of spike times of the two neurons when they are phase locked.
Let tn

X {X≡A,B} be the time of nth spike generated from neurons A and B respec-
tively. Define δ n to be the time in the nth firing cycle of neuron A when it receives
synaptic perturbation from neuron B. If Pn

A represents the length of nth firing cy-
cle of neuron A, then from Figure 3b, we have Pn

A = tn+1
A − tn

A = Fn
A + Rn

A, where
Fn

A = δ n + TAΦ2(δ n−1) is the entrained firing interval defining the time elapsed be-
tween the firing of neuron A at time tn

Aand the firing of pre-synaptic neuron B at
time tn

B [22]. In writing this equation, we assume that the oscillator returns back on
to the limit cycle in between periodic perturbations. Analysis of phase locked state

Fig. 2 Schematic diagram representing the effects of external perturbation on the subsequent
firing periods of a neuron firing with intrinsic period T0
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Fig. 3 (a) The STRC’s Φ1 (black line) and Φ2 (red line) for a WB neuron receiving perturba-
tion through an inhibitory synapse with parameters ER = −75mV, τD = 8 ms, and τR = 0.1
ms. All higher order STRC’s Φ j (j>2) are zero. (b) Schematic diagram representing spike
timing for neurons A and B in the unidirectionally coupled interneuron network (UCIN) when
they are phase locked. (c) Arnold tongue for the phase locked states of the UCIN represented
by region bounded by blue lines obtained through numerical simulation of equations 1, 2
and 12. The curves in black are obtained as a steady state solution to the nonlinear map in
equation 18.

between oscillators when this condition is not met has been recently performed
by [32, 33] and is beyond the scope of this article.The entrained recovery interval
defining the time interval between the firing of the pre-synaptic neuron at time tn

B and
the next firing of neuron A at time tn+1

A is then given as Rn
A = TA(1 + Φ1(δ n))− δ n,

which follows from the definition of Φ1. From Figure 3b, we have

TB = tn+1
B − tn

B = Rn
A + Fn+1

A (17)

resulting in the following nonlinear map for the evolution of δ n

δ n+1 = δ n + TB − TA(1 + Φ1(δ n)+ Φ2(δ n)) (18)

The stable fixed point solution of the nonlinear map given through equation 18 rep-
resent the phase locked state of the UCIN. The fixed point δ ∗ of equation 18 satisfies
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1 + Φ∞(δ ∗) = TB/TA, where Φ∞(x) = Φ1(x)+ Φ2(x). The local stability of δ ∗ re-

quires 0 < dΦ∞(x)
dx |x=δ ∗ < 2. In Figure 3c, the curves shown in black enclose the

region of stable fixed point solution to equation 18. We see that the nonlinear map
derived from STRC’s is successfully able to predict the Arnold tongue correspond-
ing to the phase locked solution for the UCIN even in the strong coupling limit.

4 Discussion

Our primary aim is to develop a research program at the intersection of control,
signal processing and computational neuroscience. Here we focused on analysis of
synchrony in a simple network of two heterogeneous neurons interacting through
a strong inhibitory synapse, the UCIN. Weak coupling theory is general and has
proved effective in the analysis of large homogeneous neuronal networks interacting
through weak coupling. [18]. It has limitations for the analysis of realistic biological
networks [2]. Our analysis of the UCIN specifically demonstrates the limited appli-
cability of weak coupling theory in predicting synchronous phase locked states of
the network. We show that nonlinear maps derived from STRC’s can better predict
synchronous phase locked states generated by the network in more biologically real-
istic conditions of moderate to high heterogeneity and strong synaptic interactions.

Understanding the dynamics of large heterogeneous neuronal networks is a ma-
jor area of research, see e.g., [2]. Analysis of such large networks is primarily done
using numerical simulations. Mathematical analysis of small networks (UCIN, for
example) has been shown to be fruitful in providing insights into the dynamics of
large neuronal networks. In particular, White et al. [38], used a simple two cell net-
work to shed light on two distinct mechanisms which synchrony in large networks
can be lost. Similarly, Skinner et al. [29], have shown that coherent states observed
in two cell networks in the presence of heterogeneity are preserved in large neuronal
networks suggesting that a strategy of analysis on small network dynamics might be
a useful way to understand the contribution of biophysical parameters in the gen-
eration of synchronous states in large biological networks. Finally, it is hoped that
interdisciplinary efforts will lead to new mathematical analysis techniques that will
apply to large heterogeneous neuronal networks.
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On the Stability and Instability of Padé
Approximants�,��

Christopher I. Byrnes and Anders Lindquist

Abstract. Over the past three decades there has been interest in using Padé ap-
proximants K with n = deg(K) < deg(G) = N as “reduced-order models” for the
transfer function G of a linear system. The attractive feature of this approach is that
by matching the moments of G we can reproduce the steady-state behavior of G
by the steady-state behavior of K, for certain classes of inputs. Indeed, we illustrate
this by finding a first-order model matching a fixed set of moments for G, the causal
inverse of a heat equation. A key feature of this example is that the heat equation is
a minimum phase system, so that its inverse system has a stable transfer function G
and that K can also be chosen to be stable. On the other hand, elementary examples
show that both stability and instability can occur in reduced order models of a stable
system obtained by matching moments using Padé approximants and, in the ab-
sence of stability, it does not make much sense to talk about steady-state responses
nor does it make sense to match moments. In this paper, we review Padé approxi-
mants, and their intimate relationship to continued fractions and Riccati equations,
in a historical context that underscores why Padé approximation, as useful as it is,
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is not an approximation in any sense that reflects stability. Our main results on sta-
bility and instability states that if N ≥ 2 and �,r ≥ 0 with 0 < �+ r = n < N there is
a non-empty open set U�,r of stable transfer functions G, having infinite Lebesque
measure, such that each degree n proper rational function K matching the moments
of G has � poles lying in C

− and r poles lying in C
+. The proof is constructive.

1 Introduction

The power moments

E(Xk) =
∫ +∞

−∞
xk p(x)dx (1)

of a random variable X defined on R have played a prominent role in probability
ever since their use by Chebychev in his proof of the Central Limit Theorem. Their
importance is largely due to their interpretation in terms of the Taylor coefficients

φ (k)
X (0) = ikE(Xk)

of the characteristic function

φX(ξ ) =
∫ ∞

−∞
eiξ x p(x)dx = p̂(ξ ),

which is the Fourier transform of the probability density function.
Similarly, if G(s) = C(sI − A)−1B is the transfer function of a strictly proper

linear systems (A,B,C), then the moments of G may be defined [14, pp. 112–113] as

ηk = (−1)k dkG
dsk (0). (2)

If σ(A) ⊂ C
−, the moments of the system coincide with the the power moments

ηk = (−1)k dkG
dsk (0) =

∫ ∞

0
tkg(t)dt

of the impulse response g(t) = CeAtB, for k ≥ 0. For example, η0 is the DC gain,
−CA−1B, of the system. In this case, since whenever limt→∞ f (t) exists and s f̂ (s)
has no poles in the closed right plane we have

lim
t→∞

f (t) = lim
s→0

s f̂ (s),

for any other stable linear system whose transfer function K(s) satisfies

dkK
dsk (0) = (−1)kηk, 0 ≤ k ≤ d (3)
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the difference between the responses to a fixed polynomial input u(t) = a0 + · · ·+
adtd will decay to zero as t → ∞. In particular, any lower order stable interpolant K
will have the same step response as G. Of course, similar remarks about steady-state
behavior apply to the more general moment matching problem for the data

ηk(s0) =
∫ ∞

0
tkg(t)e−s0t dt = (−1)k dkG

dsk (s0)

whenever s0 = iω0 and G and K are stable, as the next example shows.

Example 1. Consider the controlled heat equation system [8]:

zt(x, t) = zxx(x,t) (4)

z(0, t) = 0, (5)

zx(1, t) = u (6)

z(x,0) = ϕ(x). (7)

y(t) = z(1, t), (8)

with transfer function

H(s) =
sinh(

√
s)√

scosh(
√

s)
.

We wish to design a stable controller K(s) so that the cascade interconnection
H(s)K(s) provides steady state tracking of the desired output yR(t) when driven by
the input yR(t). In fact, since the heat equation has a stable, causal inverse system

zt(x, t) = zxx(x,t) (9)

z(0, t) = 0, (10)

zx(1, t) = yr (11)

z(x,0) = ψ(x). (12)

ur(t) = z(1, t), (13)

with transfer function G(s) = H−1(s), one can indeed use G as a feedforward con-
troller. On the other hand, if the reference trajectory is given, for example, by
yR(t) = Asin(2t) then a finite dimensional cascade controller can be obtained by
using any rational stable function satisfying the interpolation conditions

K(2i) = G(2i) = 1.0856 + 0.6504i, (14)

K(−2i) = G(−2i) = 1.0856 − 0.6504i, (15)

rounding to four decimals. Indeed, driving

K(s) = 1.4108
s− .1525

s+ 1
(16)

with yR(t) produces the steady-state control law, uR(t) = 1.2655sin(2t + 0.5397).
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In the simulations depicted above, we have taken initial condition ϕ(x) = −4(1−
2x). The steady state behavior of the state trajectory is illustrated in Figure 1. The
steady state behavior of the output trajectory is illustrated in Figure 2.

In contrast to our first example, however, even interpolation data generated by a
stable second order system need not have a stable first order interpolant.

Example 2. Consider the critically damped harmonic oscillator with transfer
function

G(s) =
1

s2 + 2s+ 1
(17)

and the induced one-parameter family of interpolation problems
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Kω(iω) = G(iω), Kω (∞) = G(∞) = 0, (18)

where for any fixed ω ∈ R we seek a first order, stable interpolant Kω .
First note that −π/2 < ∠G(iω) < 0 for any stable, strictly proper G with a pos-

itive high-frequency gain, while π/2 < ∠G(iω) < π for any stable, strictly proper
G with a negative high-frequency gain. On the other hand, −π < ∠G(iω) < −π/2
for ω > 1, as is illustrated in Figure 3. In particular, the interpolation problem (18)
has no stable, first order solution when ω > 1.

Our final example illustrates the existence of stable rational interpolants for an open
set of interpolation data.

Example 3. Consider the stable, minimum phase system with transfer function

Gε(s) =
s+ 1 + ε

s2 + 2s+ 1
(19)

and the one-parameter family of interpolation problems

Kε (i) = Gε(i), Kε (∞) = Gε(∞) = 0, (20)

where for any fixed ε ∈ R we seek a first order, stable interpolant Kε . Of course, for

ε = 0, we can take K0(s) =
1

s+ 1
. More generally, a stable first-order interpolant

exists whenever −1 < ε < 1. Indeed, in this case we have −π/2 < ∠Gε(iω) < 0
from which it is easy to construct a stable first order interpolant Kε .



170 C.I. Byrnes and A. Lindquist

As Example 1 illustrates, there is potential use for such approximants K with
deg(K) < deg(G) as “reduced-order models” for G (see, e.g., [1]) when the class
of inputs is restricted to sinusoids of a given frequency, provided the interpolant K
is stable. On the other hand, Examples 2 and 3 show that both stability and insta-
bility can occur in reduced order models of a stable system obtained by matching
moments. In this paper we shall develop some qualitative results about the stabil-
ity and instability of strictly proper rational functions which match a sequence of
moments of a rational transfer function at s = 0. We expect that similar results hold
for moments computed along the imaginary axis. Roughly speaking, any transfer
function K, stable or not, matching ηk(0), for k = 0, . . . , ñ < d is a Padé approxima-
tion to G. In Section 2, we review Padé approximants in more rigorous detail in a
historical context that underscores why Padé approximation, as useful as it is, is not
an approximation in any sense that reflects stability. In Section 3, we state our main
results on stability and instability.

2 Padé Approximants, Continued Fractions and Riccati
Equations

Over the past three decades there has been interest in using Padé approximants K
with deg(K) < deg(G) as “reduced-order models” for G (see, e.g., [1]). Rigorously,
a Padé form of type (m,n) for G is a pair of polynomials (P,Q) with deg(P) ≤
m, deg(Q) ≤ n such that

Q(s)G(s)− P(s) = O(sn+m+1) (21)

as s → 0. If n = 0, then (up to constant) P is the Taylor polynomial Tm of degree m.
If n,m ≥ 1 then K(s) = P(s)/Q(s) is the ratio of two polynomials so that one might
expect to obtain better approximations to G than Tm and, in many senses, this is true,
explaining in part the ubiquity of Padé approximants. We shall be interested in the
case m ≤ n and note that whenever

G(s)− K(s) = O(sn+m+1) (22)

as s → 0, then (21) holds. As Example 4 shows, the converse, however, is not true
in general.

Padé approximants have found a remarkably wide array of applications in math-
ematics, engineering and science [18]. In particular, Padé’s advisor, Hermite [13],
used Padé approximants in 1873 to prove that e is transcendental. Euler [9] had
already proved that e is irrational in 1739, by developing a continued fraction ex-
pansion for e1/z and evaluating at z = 1 to obtain

α = α0 +
1

α1 +
1

α2 +
1

α3 + · · ·

(23)
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where (α0,α1,α2, · · · ) = (2,1,2,1,1,4,1,1,6, · · ·). Since a number is rational if and
only if its continued fraction expansion is finite, Euler concludes that e is irrational,
but his proof that the continued fraction does not terminate is a remarkable method
for summing a continued fraction by solving a Riccati equation. In 1775, Euler [10]
returned to this observation in a paper (see also [3]) in which he shows that any
continued fraction of the form

f (z) =
1

π1(z)+
1

π2(z)+
1

π3(z)+ · · ·

(24)

can be summed by solving a Riccati differential equation and that the solution of
any Riccati equation can be expressed as a continued fraction of the form (24). As
one of several examples, he gives the continued fraction

e2/z + 1

e2/z − 1
= z+

1

3z+
1

5z+
1

7z+ · · ·

(25)

for the hyperbolic function coth(1/z) which, when evaluated at z = 2, gives another
proof that e is irrational.

Recall that a best rational approximant to a real number r is a rational num-
ber p/q such that |r − p/q| is smaller than any other rational approximation with
a smaller denominator. Among the remarkable properties of continued fraction ex-
pansions of a real number r is that the rational numbers obtained from the par-
tial sums pn/qn obtained from (α0,α1, . . . ,αn,0, . . . ) turn out to be the sequence
of best rational approximants to r and any best rational approximant to r arises in
this way. For example, the continued fraction expansion of π yields the sequence
3/1,22/7,333/106, . . . of best rational approximants. In general, one can show [12,
p. 151] the stronger result that for any p/q �= pn/qn

0 < q ≤ qn =⇒ |qr − p| > |qnr − pn| (26)

Similarly, the partial sums obtained from a continued fraction expansion (24) for a
function f (z) form a sequence of Padé approximants (22).

Example 4. Padé approximants can be formed at any point in the extended com-
plex plane, including s = ∞ as is treated in [18]. For example, given the Laurent
expansion

G(s) = γ0 + γ1/s+ γ2/s2 + . . . , (27)

consider the problem of finding partial realizations for the sequence of Markov pa-
rameters (γ1,γ2,γ2 . . . )= (0,1,0,1,0,0, . . .) generated by the fourth order linear sys-
tem with transfer function G(s) = (s2 +1)/s4 having a continued fraction expansion
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G(s) =
s2 + 1

s4 =
1

s2 − 1 +
1

s2 + 1

(28)

Indeed while (21) has a solution of type (1,1) the rational form of this expression
in (22) does not, reflecting the fact that there is no partial realization for degree 1.
On the other hand, G2(s) = 1/(s2 −1) is a second order partial realization obtained
by truncating the continued fraction expansion. For a generic G(s), the polynomials
πi(s) will be linear functions [11, 17].

Remark 1. By analogy with the use of continued fractions in number theory, one
might conclude that Padé approximants can be thought of as the “best” rational
approximants to f (z). However, while (26) is similar to (21) and |r− p/q| is similar
to (22), best in the sense of real and rational numbers is measured by absolute values
of differences of real numbers while best for Padé approximants is measured by
degrees of differences of polynomials and rational functions, which in general will
not detemine the location of poles or zeros.

3 Main Results

The set of proper rational functions

Rat∗(N) =
{

G : G(s) =
p(s)
q(s)

, deg(p) = deg(q) = N, (p,q) = 1

}
(29)

can be parameterized as an open, dense subset of R
2N+1 using the coefficients of the

polynomials

p(s) = pNsN + · · ·+ p1s+ p0, q(s) = sN + qN−1sN−1 + · · ·+ q0

We call G ∈ Rat∗(N) stable if all of its poles lie in the open left half plane C
− and

completely unstable if all of it poles lie in the open right half plane C
+. We are also

interested in the number � of poles of a rational function K lying in C
− and the

number r of poles of K lying in C
+. Thus, �+ r = n = deg(K).

Theorem 1. Suppose N ≥ 2 and �,r ≥ 0 with 0 < �+ r = n < N. For each pair �,r
there is a non-empty open cone U�,r ⊂ Rat∗(N) of stable transfer functions G such
that each degree n proper rational function K satisfying (3) with d = 2n has � poles
lying in C

− and r poles lying in C
+ .

In particular, for each n there does not exist a stable reduced order model of degree
n for an open set of stable G having infinite Lebesgue measure.

Corollary 1. Suppose N ≥ 2. For each n satisfying 1 ≤ n < N there is a non-empty
open cone Un ⊂ Rat∗(N) of stable transfer functions G such that each rational K
satisfying (3) with d = 2n is completely unstable.

On the other hand, we have the following parallel positive result.
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Corollary 2. Suppose N ≥ 2. For each n satisfying 1 ≤ n < N there is a non-empty
open cone Vn ⊂ Rat∗(N) of stable transfer functions G such that each rational K
satisfying (3) with d = 2n is stable.

Proof. Each of the subsets

W N
1 = {G ∈ Rat∗(N) : G(0) �= 0, G(∞) �= 0}, W N

2 = {G ∈ Rat∗(N) : q0 �= 0}

is open and dense in Rat∗(N) and so is their intersection W N = W N
1 ∩W N

2 . The
function

T : W N → W N defined by T (G)(s) = G(1/s)

is a homeomorphism since it is continuous and its own inverse. Moreover, the map
s → 1/s leaves both C

− and C
+ invariant. Therefore, it suffices to prove Theorem 1

on W N replacing (3) with the partial realization problem

dkK
dsk (∞) = (−1)kγk, 0 ≤ k ≤ 2n, (30)

where γ0,γ1,γ2, . . . are the Markov parameters given by (27). Since solutions to
the partial realization theorem are unchanged under multiplication by a non-zero
constant, it is clear that the open sets described in Theorem 1 are cones and that it
therefore suffices to prove that they are non-empty. Since we are interested only in
the number of poles in open half-planes and stability, we can also suppress γ0 so that
we may assume that G is strictly proper. In this case, we are interested in the open
dense set UN = W N ∩V N where

V N = {G : det(γi+ j−1)i, j=1,...,N �= 0}

which is known to be open and dense [5]. For any G ∈ V N , any degree n rational
function K satisfying (3) with d = 2n is unique and can be constructed using the
following algorithm.

Following [11], we associate a parameter sequence ρ = (ρ1, . . . ,ρ2N) to each
G ∈ V N , where ρ ∈ V N = {ρ : ρi �= 0, i = 1, . . . ,2N}. In [6, Lemma 1], it is shown
that the map φ : V N → V N defined by φ(G) = ρ is a homeomorphism. From ρ one
can [11] construct K(s) = Pn(s)/Qn(s) from the three-term recursions:

Pn(s) = (s− ρ2n)Pn−1(s)− ρ2n−1Pn−2(s); P0 = 0, P−1 = −1 (31)

Qn(s) = (s− ρ2n)Qn−1(s)− ρ2n−1Qn−2(s); Q0 = 1, Q−1 = 0. (32)

Finally, in [6, Lemma 3], an open dense subset UN ⊂ UN is constructed so that the
map ρ → (QN ,QN−1,ρ1) is a global, continuous change of coordinates.

Matters being so, we are now prepared to conclude the proof of Theorem 1 by
induction on N. For N = 2, we have n = 1 and so either � = 1, r = 0 or � = 0, r = 1.
In the first case, we construct the open subset
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U1,0 = {(Q2,Q1,ρ1) ∈ U2 : Q2 is stable, Q1 is stable, ρ1 �= 0}.

In the second case, we construct the open subset

U0,1 = {(Q2,Q1,ρ1) ∈ U2 : Q2 is stable, Q1 is unstable, ρ1 �= 0}.

The latter construction is a special case of [6, Theorem 1], which was done in the
case n = r = N − 1.

We now assume Theorem 1 is true for N − 1. In particular, for every 1 ≤ �+ r =
n ≤ N − 2 there exists an open subset U�,r ⊂ UN−1 of stable rational functions
PN−1/QN−1 so that the degree n partial realization has � poles in C

− and r poles
in C

+. In the parameter sequence coordinates, we need to supplement the open
set of corresponding (ρ1, . . . ,ρ2N−2) by adding two more coordinates ρ̃2N−1, ρ̃2N

is such a way that QN is stable and the corresponding subset U�,r ⊂ UN of points
(ρ1, . . . ,ρ2N−2, ρ̃2N−1, ρ̃2N) is open. We first choose ρ̃2N < 0, so that the first term
d(s) = (s− ρ̃2N)QN−1(s) appearing in the expression (32) for QN is a Hurwitz poly-
nomial. We next write n(s) = Qn−2(s) and k = −ρ̃2N−1 so that (32) is the closed loop
denominator d(s)+kn(s) for the feedback system consisting of the stable open-loop
system g(s) = n(s)/d(s) with the feedback law u = −ky. In particular, for ρ̃2N−1

sufficiently small, the closed-loop system is stable and QN is a Hurwitz polynomial.
Therefore, we have proved Theorem 1 for n ≤ N − 2.

Finally, suppose n = N−1. For any decomposition �+r = n, in the (QN ,QN−1,ρ1)
coordinates on UN we shall choose QN to be a Hurwitz polynomial and QN−1 to
have � poles in C

− and r poles in C
+. The corresponding subset U�,r ⊂ UN is again

clearly open.

Remark 2. The importance of continued fractions in the deterministic partial realiza-
tion problem was recognized in [15] and developed more comprehensively in [11],
using the results in [16, 17]. These results were used in [6] to study the stability and
instability properties of partial realizations, early results which are now generalized
by Theorem 1. The inductive proof of Theorem 1 is constructive in each step and
is phrased in terms of basic facts about root-loci. This is intimately related to the
stability and instability proofs given in [6] using the Nyquist stability criterion. The
geometry of the deterministic partial realization problem and its smooth parameter-
izations were studied in [5] using differential topology. The stochastic realization
problem, which has proven much harder to analyze, was most recently studied us-
ing methods from algebraic geometry and differential topology in [7] in which it is
shown, among other things, that there is no generic value for the degree of a minimal
partial stochastic realization of a given covariance sequence (γ0, . . . ,γn), in contrast
to the deterministic partial realization problem.
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On the Use of Functional Models in Model
Reduction

Paul A. Fuhrmann� and Uwe Helmke��

Abstract. It has been known for some time that the Sylvester equation plays a sig-
nificant role in interpolation, feedback control, observer theory and model reduc-
tion problems. In this paper, in place of state space techniques, we use polynomial
models to replace the standard Sylvester equation by a polynomial version. The
polynomial Sylvester equation is closely related to a Bezout equation. We use this
functional setting to unify various model reduction techniques.

Keywords: model reduction, interpolation, Hankel norm approximation, balanced
truncation, tensor products.

1 Introduction

It has been known for some time that the matrix Sylvester equation

AX − BX = C (1)

plays a significant role in interpolation, feedback control, observer theory and model
reduction problems. For an excellent introduction to the model reduction area, the
area of focus of this paper, we refer to Antoulas [1] where one can find many in-
stances how the Sylvester equation appears in model reduction tasks. In this paper,
in place of state space techniques, we use polynomial models to replace the stan-
dard Sylvester equation by a polynomial version. Thus, instead of (1) we consider
the polynomial Sylvester equation
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D2(z)X1(z)− X2(z)D1(z) = R(z), (2)

in two unknowns X1,X2, being rectangular polynomial matrices. Here the nonsingu-
lar polynomial matrices D1,D2 are suitable functional models for the matrices A,B
and R(z) is related to C. A possible choice would be D1(z) := zI −A,D2(z) = zI −B.

What is the advantage of such a functional model approach to the Sylvester equa-
tion? A first answer is in the reduced computational complexity of solving associ-
ated polynomial Sylvester equations. For example, if A,B are companion matrices of
monic polynomials, then (2) becomes a scalar Bezout equation, for which fast solu-
tion methods are available. This should be compared with the standard approach to
solving (1), that reformulates the equation via column vec operations and Kronecker
matrix product as a standard linear equation

(A ⊗ I − I ⊗ B̃)vec(X) = vec(C). (3)

Despite the increased size of the Kronecker form matrices, quite a lot of the special
structure in the matrices A,B,C,X gets lost by this process. Thus one is asking
for less invasive approaches that preserve the parametric information on the data.
Polynomial models provide the right language for doing so.

A second answer is linked to the pivotal role functional models play in unify-
ing frequency domain data and state space representations. This is exactly the idea
underlying polynomial models; see e.g. Fuhrmann [3, 8]. In fact, the Sylvester equa-
tion provides the link between various methods from model reduction, making its
appearance in both projection type and Krylov type methods; see Gallivan, Van-
derdorpe and Van Dooren [13]; Genin and Vandendorpe [14] as well as in inter-
polation results; see Gallivan, Vandendorpe and Van Dooren [12], Fanizza, Karls-
son, Lindquist and Nagamune [2], Sorensen [21]. The drawback in most current
approaches to the model reduction problem using state space construction is that
both the geometric information, and even more so, the interpolation information has
to be encoded in an indirect way. This can be overcome by using functional models
which exhibit in a clearer way the functional properties of a transfer function. For
example, the connection between orthogonal projections in the Hardy space context
and the Lyapunov equation is most clearly described in Fuhrmann and Gombani [9].
In the case of scalar transfer functions, both Hankel norm approximations as well
as balanced approximation can be approached via the use of a polynomial Sylvester
like equation which turns out to be a derivative of the polynomial Bezout equation.
The use of the polyomial Sylvester equation allows us to interpret directly the re-
sults in terms of interpolation. These methods were worked out in Fuhrmann [6, 7]
and extended in Fuhrmann and Ober [11].

Throughout this paper we will deal only with the case of scalar transfer functions,
i.e. with SISO systems. Due to severe space constraints, we have not been able
to give anything close to a detailed description of how the polynomial Sylvester
equation enters into model reduction theory via interpolation methods. Instead, we
focus on describing just a few instances, such as partial realizations, Hankel norm
approximation and projection methods. Other topics, such as balanced truncation,
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rational approximation and connections to Bezoutians and finite section Hankels are
left out.

2 Polynomial Models and the Sylvester Equation

2.1 Polynomial Models and Tensor Products

We briefly introduce the language of polynomial models and explain some re-
cent ideas concerning tensor products. Polynomial models were introduced in
Fuhrmann [3], which is still a good source for the full details. For simplicity, we
restrict ourselves completely to the scalar case of single input-single output systems
and associated polynomial models of scalar polynomials.

The canonical decomposition of Laurent series over a field F into its polynomial
and strictly proper parts, respectively, leads immediately to the direct sum repre-
sentation F((z−1)) = F[z]⊕ z−1

F[[z−1]], with corresponding projections π+,π− on
F[z],z−1

F[[z−1]] respectively given by

π+

N

∑
−∞

fiz
i =

N

∑
i=0

fiz
i, π−

N

∑
−∞

fiz
i =

−1

∑
i=−∞

fiz
i.

For any f ∈ F((z−1)), we refer to Res ( f ) = f−1 as the residue of f .
Given a monic polynomial q(z) ∈ F[z], we define a projection πq : F[z] → F[z] by

πq f = qπ−(q−1 f ) for f ∈ F[z]. (4)

Clearly, Kerπq = qF[z]. We define the polynomial model Xq by

Xq = Imπq. (5)

It follows from (4) that f ∈ Xq if and only if q−1 f is strictly proper. Moreover, Xq is
a finite-dimensional F vector space of dimension dimXq = degq(z). Introducing in
Xq an F[z]-module structure by

p · f = πq(p f ), p ∈ F[z], f ∈ Xq, (6)

the map πq : F[z] −→ Xq becomes a surjective F[z]-homomorphism. Hence, using
Kerπq = qF[z], we have the F[z]-isomorphism with the quotient module

Xq � F[z]/q(z)F[z]. (7)

A special case of (6) is the shift operator Sq : Xq −→ Xq by

(Sq f )(z) = z f (z)− q(z)ξ f , f ∈ Xq, (8)

where ξ f = (q−1 f )−1 is the residue of q−1 f . Thus Sq defines the module action on
Xq, i.e. p · f = p(Sq) f .



180 P.A. Fuhrmann and U. Helmke

On the space F((z−1)) of truncated Laurent series, we introduce a bilinear form,
given, for f (z) = ∑

n f
j=−∞ f jz j and g(z) = ∑ng

j=−∞ g jz j, by

[ f ,g] =
∞

∑
j=−∞

f jg− j−1. (9)

Clearly, the sum in (9) is well defined, as only a finite number of summands are
nonzero. Given a subspace M ⊂ F((z−1)), we let M⊥ = { f ∈ F(z)|[m, f ] = 0,∀m ∈
M}. It is easy to check that F[z]⊥ = F[z]. We can identify the dual of the space of
F[z] with z−1

F[[z−1]]. By defining a new pairing

〈 f ,g〉 = [d−1 f ,g] = [ f ,d−1g] (10)

for all f ,g ∈ Xd . Under the pairing introduced in (10), we can identify the dual
space of Xd with Xd . Moreover, we have S∗

d = Sd . For the full details of duality in
the context of polynomial models, see Fuhrmann [4, 8].

Given two monic polynomials q(z),q(z) ∈ F[z] of degrees degq = n,degq = n, re-
spectively, with associated polynomial models Xq,Xq, one can construct tensor prod-
uct spaces in four different ways. For us the following construction of the Kronecker
product model will be sufficient. We refer to Fuhrmann and Helmke [10] for the full
details. We define the F-Kronecker product of two scalar polynomials q,q ∈ F[z] as
the map q⊗F q : F[z,w] −→ F[z,w] given by (q⊗F q)x(z,w) = q(z)x(z,w)q(w). This
map induces a projection πq⊗Fq in F[z,w] defined by

πq⊗Fq x(z,w) = (q ⊗F q)(π z
− ⊗ πw

−)(q ⊗F q)−1x(z,w). (11)

We obtain the F-Kronecker product model as Xq(z)q(w) := Imπq⊗Fq. By inspec-
tion, Xq(z)q(w) coincides with the F-vector space of all polynomials in two variables
x(z,w) ∈ F[z,w] for which q(z)−1x(z,w)q(w)−1 is strictly proper in both variables.
Thus the elements x ∈ Xq(z)q(w) are exactly the polynomials x(z,w) that have degrees
< n in z and < n in w, respectively. Xq(z)q(w) is thus a finite-dimensional vector space
of dimension dimXq(z)q(w) = nn. Moreover, Xq(z)q(w) has a natural F[z,w]-module
structures, given by

p(z,w) · x(z,w) = πq⊗Fq(p(z,w)x(z,w)), x(z,w) ∈ Xq(z)q(w) (12)

where p(z,w) ∈ F[z,w]. Therefore, the Kronecker product model has two indepen-
dent, commuting shift operators, one by multiplication with z and the other by mul-
tiplication with w.

2.2 The Polynomial Sylvester Equation

Given matrices A ∈ F
p×p and B ∈ F

m×m, the classical Sylvester operator is the
F-linear map SA,B : F

p×m −→ F
p×m defined by SA,BX = AX − XB. Of course, the

Sylvester equation then is, for C ∈ F
p×m, the linear matrix equation
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AX − XB = C. (13)

How do we solve such linear matrix equations? One straightforward way would be
to vectorize the equation. Thus, using column vec-operations we identify the matrix
space F

p×m with F
pm and (13) becomes equivalent with the standard linear equa-

tion in mp variables (A⊗ I − I ⊗ B̃)vec(X) = vec(C). Obviously, such a process has
several drawbacks. One is the large complexity of solving such a equations, which
grows in the order of (mp)3; thus the standard Gaussian elimination process cannot
be applied for large scale problems. Second, the structure of the matrices and solu-
tions may get lost in the Kronecker-vec description and cannot be easily recovered.
An example of this type is passivity preserving model reduction for passive systems.
In this case, the special structure is totally obliterated by the vec-operations. For the
purpose of model reduction, we find it therefore more interesting, as well as useful,
to consider the Sylvester map when A,B have functional representations in terms of
suitable polynomial model spaces associated with nonsingular polynomial matrices.
This can be done in full generality, without any assumption on A,B. However, in the
scalar case that we consider here, this restriction amounts to require that A,B are
cyclic matrices with characteristic polynomials q,q, respectively. In either case, it is
convenient to use tensor products of polynomial models.

Given arbitrary monic polynomials q ∈ F[z],q ∈ F[w], the polynomial Sylvester
operator is the linear map S : Xq(z)q(w) → Xq(z)q(w) defined by

(S x)(z,w) = πq⊗q((z− w)x(z,w)). (14)

Using (8), it can be shown that the Sylvester map can be written as follows

(S x)(z,w) = [zx(z,w)− x(z,w)w]− [q(z)p(w)− p(z)q(w)]

for suitable polynomials p(z), p(z) for which p(z)/q(z) = p(z)/q(z) is strictly
proper. Note that every nonzero scalar two variable polynomials x(z,w), t(z,w) ∈
Xq(z)q(w) are such that q(z)−1t(z,w)q(w)−1 and q(z)−1x(z,w)q(w)−1 are strictly
proper in the variables z,w. Therefore, the Sylvester equation

S x(z,w) = πq(z)q(w)(z− w)x(z,w) = c(z,w) (15)

is solvable in Xq(z)q(w) if and only if there exists polynomials p(z) and p(z) with
p/q, p/q strictly proper for which

q(z)p(z)− p(z)q(z)+ c(z,z) = 0. (16)

We will refer to (16) as the polynomial Sylvester equation (PSE). In that case, the
solution is given by

x(z,w) =
q(z)p(w)− p(z)q(w)+ c(z,w)

z− w
. (17)
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Similarly, a two-variable polynomial matrix x(z,w) ∈ Xq(z)q(w) solves the homoge-
neous polynomial Sylvester equation (HPSE), if and only if there exist polynomi-
als p(z) and p(z) with p/q, p/q strictly proper and

q(z)p(z)− p(z)q(z) = 0 (18)

such that

x(z,w) =
q(z)p(w)− p(z)q(w)

z− w
. (19)

We now show how the polynomial Sylvester equation helps to solve matrix
Sylvester equations. Given the polynomials q(z) = zn + qn−1zn−1 + · · · + q0 and
q(z) = zn +qn−1zn−1 + · · ·+q0, we define the companion matrices, using Kalman’s
notation, by

C�
q =

⎛

⎜
⎜
⎜
⎜
⎝

0 −q0

1 ·
. ·
. ·

1 −qn−1

⎞

⎟
⎟
⎟
⎟
⎠

, C�
q =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
. ·
.

1
−q0 . . . −qn−1

⎞

⎟
⎟
⎟
⎟
⎠

. (20)

The companion matrices C�
q and C�

q are similarly defined. The above arguments lead
to the following result.

Theorem 1. Let n × n and n × n matrices A := C�
q and B := C�

q be given, and C ∈
F

n×n. Let c(z,w) = ∑n
i=1 ∑n

j=1 ci jzi−1wj−1. Then X = (xi j) ∈ F
n×n is a solution of

the matrix Sylvester equation
AX − XB = C

if and only if x(z,w) := ∑n
i=1 ∑n

j=1 xi jzi−1wj−1 solves the polynomial Sylvester equa-
tion

S x(z,w) = πq(z)q(w)(z− w)x(z,w) = c(z,w)

Thus, for A,B defined by C�
q,C�

q, the solutions to the polynomial Sylvester equa-
tion (16) yield a complete parametrization of all solutions to the above matrix
Sylvester equation. Note, that the computational complexity of solving the poly-
nomial Sylvester equation (16) is much lower than that of the matrix Sylvester
equation, i.e. < (nn)3. Thus, the special structure of the companion matrices A,B
is effectively encoded into (16). For arbitrary matrices A,B, the connection with
the classical Sylvester equation is a bit more complicated and requires a general-
ization of the above construction to matrix Kronecker product polynomial model of
D1(z) := zI−A and D2(w)−B. For the details, which we omit, we refer to Fuhrmann
and Helmke [2009].

The analysis of two-variable polynomial model spaces reduces the analysis of
the general Sylvester equation to a polynomial equation of Bezout type. This ex-
tends the method for the analysis of the Lyapunov equation which was motivated
by Kalman [19] and introduced in Willems and Fuhrmann [24]. A special case is
of course the homogeneous Sylvester equation which has a direct connection to
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the theory of Bezoutians. In case, as often arises in practice, that the characteristic
polynomials of q(z) and q(z) are coprime, the polynomial Sylvester equation can be
solved by solving a scalar Bezout equation, which can be easily done using the Eu-
clidean algorithm. We note in passing, that a systematic use of two-variable polyno-
mial equations in stability theory has first appeared in Willems and Fuhrmann [24];
see also Willems and Trentelman [25] for related material using the language of
quadratic differential forms. A rather non-systematic and adhoc approach without
any reference to functional models has been recently given by Peeters and Rapis-
arda [20]; the connection with tensor products of polynomial models has been ap-
parently overlooked by these authors.

Note that the polynomial Sylvester equation (16) can be interpreted on several
different levels. First, it is a linear equation in the vector space Xq(z)q(w). However,
any element c(z,w) ∈ Xq(z)q(w) can be interpreted as an element C ∈ HomF(Xq,Xq),
i.e. as a linear transformation from Xq to Xq defined by C g = 〈g,c(z, ·)〉, thus the
polynomial Sylvester equation becomes an operator equation. Finally, taking matrix
representations with respect to bases of choice in Xq and Xq, the Sylvester equation
becomes a matrix equation in F

n×n.

3 Model Reduction

In this section we apply the polynomial Sylvester equation to the problem of model
reduction, i.e. to the approximation of a large scale linear system by a lower or-
der, easier to compute with but such that the approximation error is kept under
control. We will treat only the scalar case, i.e. the case of a SISO system with its
transfer function given by g(z) = p(z)/q(z), where we assume that the polynomi-
als p(z),q(z) are coprime. Furthermore, we assume g(z) to be strictly proper, i.e.
that deg p < degq. Our aim is to show how the polynomial Sylvester equation can
be used directly for model reduction purposes both using the interpolation method
or the projection method. We will show also how the important methods of Han-
kel norm approximation and balanced truncation relate to the polynomial Sylvester
equation.

3.1 The Sylvester Equation and Interpolation

The simplest case of model reduction by interpolation is that of approximation at
∞ up to a certain order. Given a strictly proper rational function g(z) having the
expansion g(z)= ∑∞

j=1
g j

z j at ∞, we look for a lower degree function g(z) that matches
the Markov parameters of g(z), i.e.coefficients {g j}∞

j=1, up to a certain order. A
realization of g(z) is called a partial realization of g(z).

Theorem 2. Let g(z) = p(z)/q(z) be strictly proper with q(z), p(z) ∈ F[z] coprime
polynomials. Let q(z), p(z) ∈ F[z] be the unique solution of the polynomial Bezout-
Sylvester equation

q(z)p(z)− p(z)q(z)+ 1 = 0 (21)
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that satisfies the degree constraints

degq < degq, deg p < deg p. (22)

Then g(z) = p(z)/q(z) is a partial realization of g(z) that approximates g(z) at ∞
up to order n + n.

It is well known from antiquity that the Bezout-Sylvester equation can be solved
by using the Euclidean algorithm, i.e. by recursively using the division rule of poly-
nomials. The approximant can be obtained by use of the Lanczos polynomials which
are orthogonal polynomials corresponding to a Hankel matrix associated with g(z).
We shall not dwell on this and refer to Gragg and Lindquist [16] or Fuhrmann [8].

So far, we used only the Bezout-Sylvester equation. If we replace it by the poly-
nomial Sylvester equation

q(z)p(z)− p(z)q(z)+ r(z) = 0, (23)

where ρ = degr < degq, then again there exists a unique solution that satisfies the
degree constraints (22). Thus for the error transfer function we obtain

e(z) = g(z)− g(z) =
p(z)
q(z)

− p(z)
q(z)

=
r(z)

q(z)q(z)
.

This shows that g(z) can be obtained by interpolating the values of g(z), and its
derivatives up to appropriate orders, as well as at ∞ to the order of n + n− ρ .

3.2 The Sylvester Equation and the Projection Method

Assume we have a SISO system with a transfer function g(z) given by the min-
imal realization, in the state space X , g(z) = D +C(zI − A)−1B which we want
to approximate by a transfer function having the minimal realization, in the state
space X , g(z) = D +C(zI − A)−1B and which has a lower McMillan degree. Let
Y , W : X −→ X be injective linear maps with W ∗ : X −→ X a suitable adjoint,
for which we have

W ∗Y = I, A = W ∗AY , B = W ∗B, C = CY , D = D. (24)

The assumption that W ∗Y = I shows that we have the direct sum decomposition
X = ImY ⊕ KerW ∗. With respect to this direct sum, and choosing appropriate
bases, we have the matrix representations

A =
(

A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)

A = A11, B = B1, C = C1.

(25)
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This shows that the approximating system is a projection of the original system. It
goes without saying that the properties of the approximating system depend on the
choice of subspaces.

Our principal result in this section is the following theorem which shows that
solving the polynomial Sylvester equation leads to a reduced model obtained by the
projection method. With g(z) = p(z)/q(z) we associate the shift realization, in the
state space Xq,

Σq−1 p :=

⎧
⎨

⎩

A = Sq

Bα = pα, α ∈ F

C f = (q−1 f )−1,
(26)

whereas with g(z) = p(z)/q(z) we associate the shift realization

Σpq−1 :=

⎧
⎨

⎩

A = Sq

Bα = α, α ∈ F

Cg = (pq−1g)−1.
(27)

Theorem 3. Let q(z), p(z) ∈ F[z] be coprime polynomials. Let q(z), p(z) ∈ F[z] be
the unique solution of the polynomial Sylvester equation (23) that satisfies the de-
gree constraints (22). For the realizations defined by (26) and (27), define linear
maps Y : Xq −→ Xq, W : Xq −→ Xq and W ∗ : Xq −→ Xq as follows:

Y = p(Sq)πq

W = q(Sq)qπqq−1

W ∗ = πqq(Sq).
(28)

With such choices, equations (24) are satisfied.

3.3 Hankel Norm Approximation

Since the fundamental work of Adamjan, Arov and Krein, and in particular the in-
fluential paper by Glover [15], Hankel norm approximations became a standard tool
of modern control theory. In Fuhrmann [6, 7], precise results on the geometry of
the approximation problem were derived. For the full details of the short description
below, we refer to these two papers. Our aim in this section is to show how Hankel
norm approximation is related to a polynomial Sylvester equation and the optimal
approximant determined by interpolation. To do this, we have to depart from the
convention adopted before of taking the solution of the Sylvester equation that sat-
isfies the degree constraints (22). The reason for this is the following. It has been
stated in the literature, see for example Sorensen and Antoulas [22] or Gallivan,
Vandendorpe and Van Dooren [12], that for model reduction we may assume that
if the transfer function of the system is strictly proper then so is the approximant.
Our analysis of Hankel norm approximation shows that this is obviously false when
norm bounds for the error function are involved. In fact, in the Hankel norm approx-
imation case, the error function turns out to be a constant multiple of an all-pass
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function, so the optimal approximant cannot be strictly proper. A simple example is
g(z) = 2(z− 1)−1 ∈ H∞− with ‖g‖∞ = 2. A 0-th order approximant then is −1 with
‖e‖∞ = 1.

We consider a scalar rational, strictly proper and, antistable transfer function φ =
n
d ∈ H∞− , with n,d coprime polynomials and H∞− the Hardy space of bounded analytic
functions in the left half plane. The corresponding Hankel operator Hφ : H2

+ −→ H2−
is defined by Hφ f = P−φ f , where P− is the orthogonal projection of L2 onto H2−. The
assumed rationality of φ implies that Hφ has finite rank, i.e. that dimHφ = degd < ∞.
Note that by the definition of the Hankel operator, we have ||Hφ || ≤ ||φ ||∞. It is well
known that approximating a compact, and in particular a finite rank operator, by
operators of lower rank is related to its singular values, i.e. to the eigenvalues of
A∗A and AA∗. The spectral analysis of these, self adjoint, operators hinges on the
Schmidt pairs. It has been shown that the Schmidt pair of the Hankel operator Hφ

corresponding to the singular value μ has the representation { p
d , p∗

d∗ }, where the
polynomial p is a solution of the fundamental polynomial equation

np = λ d∗p∗ + dπ , (29)

with λ real and |λ | = μ . Specializing the results of Fuhrmann [1994] to the generic
case of distinct singular values, then the number of antistable zeros of pk is k −1. In
particular, pn is antistable. From (29), we obtain

n
d

− πk

pk
= λk

d∗p∗
k

d pk
, (30)

whichimplies that ||H n
d
− H πk

pk

|| = μk. Clearly, rankH πk
pk

≤ k − 1.

For the present purposes, the point to note is that from (29) it follows that πk
pk

interpolates the values of φ = n
d at the 2n − 1 zeros of d∗p∗

k . In the special case of
k = n, the polynomials d∗, p∗

k are both stable, so all interpolation points are in the
open left half plane.

We wish to point out that the fundamental polynomial equation (29) is not, in
spite of the similarity, a polynomial Sylvester equation. Thus it cannot be solved
using the Euclidean algorithm. Instead, one has to solve a generalized eigenvalue
problem. This is to be expected as an operator norm is involved. Even so, for the
case k = n, equation (30) is equivalent to the Bezout equation, but over H∞

+ ,

n
d∗

(
1
λn

pn

p∗
n

)
− d

d∗

(
1
λn

πn

p∗
n

)
= 1. (31)
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Quadratic Performance Verification for
Boundary Value Systems

Hisaya Fujioka

Abstract. A quadratic performance of boundary value systems is considered. The
problem of positive-definiteness test for a self-adjoint operator defined by a quadratic
form is reduced to that for a finite matrix without approximations.

1 Introduction

It is well-known that the compression operator G0 of the form

G0 :

{
d
dt x0(t) = A0x0(t)+ B0u0(t), x0(0) = 0,

y0(t) = C0x0(t)+ D0u0(t)

defined on L2[0, h] for h > 0 plays an important role in system and control theory. In
particular, by lifting signals [13], a sampled-data system is transformed to a discrete-
time time-invariant system with compression and related operators as coefficients of
the state space representation. When the singular values of G0 are of interest, we face
with G ∗

0 G0 which is a special case of the boundary value system [9] of the form

G :

{
d
dt x(t) = Ax(t)+ Bu(t), Ωx(0)+ϒ x(h) = 0,

y(t) = Cx(t)+ Du(t).
(1)

The study of boundary value systems has started in 80’s. See, e.g., [9, 6, 7]. Ap-
plications of boundary value systems include a class of spatio-temporal systems [8]
and lifted sampled-data systems [14, 10].

In this article we consider a quadratic performance of boundary value systems
and derive a numerically tractable condition to verify it. The quadratic performance
is a generalization of contractiveness studied in [3], and is defined by a quadratic
form in the next section. A preliminary version of this article is found in conference
proceedings [2] where a related optimization problem is also studied.

Notation: The number of elements of a finite set S is denoted by |S|.
Hisaya Fujioka
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2 Problem Statement

Consider a boundary value system

d
dt

x(t) = Ax(t)+ Bu(t), Ωx(0)+ϒ x(h) = 0 (2)

satisfying the well-posedness condition

det(Ξ) �= 0, Ξ := Ω +ϒ eAh, (3)

and the associated quadratic form φ : L2[0, h] → R

φ(u) =
∫ h

0

[
x(t)
u(t)

]∗ [
Q S
S∗ R

][
x(t)
u(t)

]
dt (4)

where h > 0, and A, B, Ω , ϒ , Q = Q∗, R = R∗, and S are matrices of compatible
dimensions. In particular Ω and ϒ are square. Note that (2) has a unique solution
x ∈ L2[0, h] for a given u ∈ L2[0, h] if and only if (3) is satisfied [9].

The purpose of this article is to develop a numerically tractable method to check
whether the following condition holds:

Condition 1. There exists an ε > 0 satisfying

φ(u) ≥ ε‖u‖2
2

for all u ∈ L2[0, h].

One can verify that ‖G ‖ < γ for G in (1) if and only if Condition 1 holds with

[
Q S
S∗ R

]
=
[
C D
0 I

]∗ [−I 0
0 γ2I

][
C D
0 I

]
.

It is required to verify Condition 1 with

[
Q S
S∗ R

]
=
[
C D
0 I

]∗ [0 I
I 0

][
C D
0 I

]

in [5, Theorem 2] for an H∞ design of PWM systems. Several other examples can
be found in [4].

Remark 1. As opposed to the study of related properties to Condition 1 for infinite-
horizon state-space systems such as disipativeness [12], no assumptions are made
on problem data except (3). In particular, controllability of (A, B) is not assumed.
Note that (A, B) can be uncontrollable even if (2) is minimal. See [7] for detail.
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3 Main Results

We first point out the following necessary condition. The proof is obvious so it is
omitted.

Property 1. Condition 1 is satisfied only if R > 0.

In order to state the main result of this article, we use the following matrices:

Â :=
[

A 0
−Q −A∗

]
, B̂ :=

[
B

−S

]
, Ĉ :=

[
S∗ B∗] ,

Ω̂ := diag(Ω , eA∗hϒ ∗Ξ−∗), ϒ̂ := diag(ϒ , Ω ∗Ξ−∗eA∗h).

Hamiltonian matrices H and Hmin are also defined by

H := Â − B̂R−1Ĉ, Hmin := Âmin − B̂minR−1Ĉmin

supposing that R > 0, where (Âmin, B̂min, Ĉmin) is a minimal realization of the related
transfer function P defined by:

P(s) := Ĉ(sI − Â)−1B̂+ R.

The following theorem is the main result of this article:

Theorem 1. Suppose that R > 0. Let θ ∈ [0, 2π) satisfy

ejθ �∈ eig(eAh), ejθ �∈ eig(eHh) (5)

and define Z ⊂ Z by

Z := { i ∈ Z : ∃λ1, λ2 ∈ R, jλ1, jλ2 ∈ eig(Hmin), λ1 ≤ ωi ≤ λ2}, ωi :=
2π i+ θ

h
.

Then Condition 1 is satisfied if and only if
[

K 0
0 I

]
+
[

L
V

]
M
[
L∗ V ∗]> 0

where matrices K, L, and M are defined by

K :=

⎡

⎢
⎣

P(jωi1) 0
. . .

0 P(jωi|Z|)

⎤

⎥
⎦ , L :=

⎡

⎢
⎣

Ĉ(jωi1 I − Â)−1

...
Ĉ(jωi|Z|I − Â)−1

⎤

⎥
⎦ ,

M := −1
h
(ejθ I − eÂh)(Ω̂ +ϒ eÂh)−1(e−jθ Ω̂ +ϒ̂)J, J :=

[
0 −I
I 0

]
.

Here the j-th element of Z is denoted by i j. The matrix V is given by the following
factorization:
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V ∗V = WZ −WZ, WZ := J ∑
i∈Z

(
(jωiI − Â)−1 − (jωiI − H)−1) ,

WZ :=
1
2

J
(
(ejθ I − eÂh)−1(ejθ I + eÂh)− (ejθ I − eHh)−1(ejθ I + eHh)

)
.

The proof is found in the next section.

Remark 2. One can verify that M, WZ, and WZ are all Hermitian, and WZ −WZ ≥ 0.
See the proof for detail.

The following property provides a systematic way to determine θ satisfying (5). The
proof is straightforward so it is omitted.

Property 2. Let θ0 be defined by

θ0 := argmax
θ∈Θ

(
min
λ∈Λ

|θ − λ |
)

,

Λ :=
{

λ : λ ∈ eig(eAh)∪ eig(eHh), 1 − 1√
2

≤ |λ | ≤ 1 +
1√
2

}
,

Θ :=
{

0,
2π

|Λ |+ 1
,

2π ·2
|Λ |+ 1

, . . . ,
2π |Λ |
|Λ |+ 1

}
.

Then θ0 satisfies

|θ0 − λ | ≥ min

(
sin

π
|Λ |+ 1

,
1√
2

)

for all λ ∈ eig(eAh)∪ eig(eHh).

Note that θ0 can be easily obtained by direct computation and comparison since
|Θ | = |Λ | + 1 ≤ |eig(eAh) ∪ eig(eHh)| + 1. When all the matrices of the problem
data are real-valued, one can find θ ∈ [0, π ] satisfying (5) and Property 2 can be
simplified.

4 Proof of Theorem 1

In this section the following notation will be used: For an operator O on a Hilbert
space X we write O > 0 if there exists a positive scalar ε > 0 satisfying

〈Ox, x〉 ≥ ε‖x‖2

for all x ∈ X . The boundary value system (1) is denoted by

G
BVS= (A, B, C, D; Ω , ϒ ).

Invoking formulas in [9, 6], one can verify that
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φ(u) = u∗Pu, P :
BVS= (Â, B̂, Ĉ, R; Ω̂ , ϒ̂ ).

It is obvious that Condition 1 is equivalent to P > 0 and P is self-adjoint by the
construction of φ .

The basic procedure of the proof is a generalization of that in [1, 3]: Suppose that
there exist ñ, m̃ ∈ N and a unitary operator Ũ : L2[0, h] → C

ñ ⊕ X̃ for a Hilbert space
X̃ satisfying that

Ũ PŨ ∗ =
[

K̃ 0
0 ˜K

]
+
[

L̃
L̃

]
M̃
[
L̃∗ L̃ ∗] , ˜K > 0 (6)

where K̃ = K̃∗: C
ñ → C

ñ, ˜K = ˜K ∗: X̃ → X̃ , M̃ = M̃∗: C
m̃ → C

m̃, L̃: C
ñ → C

m̃,
and L̃ : X̃ → C

m̃. Then P > 0 is equivalent to
[

K̃ 0
0 I

]
+
[

L̃
Ṽ

]
M̃
[
L̃∗ Ṽ ∗]> 0, Ṽ := ˜K − 1

2 L̃ . (7)

By decomposing X̃ into ker(Ṽ ∗) and its orthogonal complement, (7) turns to
⎡

⎣
K̃ 0 0
0 I 0
0 0 I

⎤

⎦+

⎡

⎣
L̃
0
Ṽ

⎤

⎦M̃
[
L̃∗ 0 Ṽ ∗]> 0

which is equivalent to [
K̃ 0
0 I

]
+
[

L̃
Ṽ

]
M̃
[
L̃∗ Ṽ ∗]> 0 (8)

where Ṽ is defined by the full rank factorization:

Ṽ ∗Ṽ = W̃ , W̃ := L̃ ∗ ˜K −1L̃ .

Noting that W̃ : C
m̃ → C

m̃, (8) is a finite dimensional condition. It is not difficult to
see that one can replace Ṽ by any matrix factorization of W̃ .

In the sequel we will show that one can set K̃ = K, L̃ = L, M̃ = M, and W̃ =
WZ −WZ . Note that one can confirm that P(jωi) and M are Hermitian.

Following [1], let us consider U : L2[0, h] → �2(Z) mapping f �→ ϕ defined by

ϕi :=
1√
h

∫ h

0
e−jωit f (t)dt

as a candidate of Ũ . It is obvious that U is unitary, and hence the following lemma
shows that U satisfies the first condition of (6), i.e., U PU ∗ can be expressed as a
sum of a block diagonal and a finite rank operators:

Lemma 1. For v ∈ �2(Z), one has

(U PU ∗v)i = P(jωi)vi + Ĉ(jωiI − Â)−1M ∑
j∈Z

(jω j I − Â)−∗Ĉ∗v j.
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Proof. Consider a boundary value system Fi, j defined by

Fi, j := E ∗
i PE j, Ei :

BVS= (jωiI, I, I, 0; I, 0).

Invoking formulas in [9, 6], one can verify that

Fi, j
BVS= (Āi, j, B̄, C̄, 0; Ω̄ , ϒ̄ ), Ω̄ := diag(0, Ω̂ , I), ϒ̄ := diag(I, ϒ̂ , 0),

Āi, j :=

⎡

⎣
jωiI Ĉ R

0 Â B̂
0 0 jω jI

⎤

⎦ , B̄ :=

⎡

⎣
0
0
I

⎤

⎦ , C̄ :=
[−I 0 0

]
.

Noting that the impulse response to the j-th input channel of Ei is given by

ui(t) = ejωit e j

where e j denote the j-th standard basis,

(U PU ∗v)i =
1
h ∑

j∈Z

Fi, j(0, 0)v j.

Here Fi, j is the kernel of Fi, j:

(Fi, jv)(t) =
∫ h

0
Fi, j(t, τ)v(τ)dτ.

From the formula in [9, Eq. (2.7)], Fi, j(0, 0) is given by

Fi, j(0, 0) = C̄(Ω̄ +ϒ̄ eĀi, jh)−1Ω̄ B̄.

After manipulations with the equality

(jω jI − Â)−1B̂ = J(jω jI − Â)−∗Ĉ∗,

one finally gets

Fi, j(0, 0) = h
(
δi, jP(jωi)+ Ĉ(jωiI − Â)−1M(jω j I − Â)−∗Ĉ∗) .

This completes the proof. ��
The next property shows that U satisfies the second condition of (6) as well:

Property 3. Suppose R > 0 and define ωi and Z as in Theorem 1. One has

P(jωi) > 0

for all i ∈ Z\ Z.

Proof. One can see that P(jω) > 0 for ω ∈ R of sufficiently large absolute values
since R > 0. Hence attentions should be paid for ω ∈ R with which P(jω) is singular.
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Non-singularity of R implies that jω ∈ eig(Hmin) is satisfied for ω ∈ R if P(jω)
is singular. See, e.g., [16, Lemma 13.15]. Hence the statement is trivial if Hmin does
not have eigenvalues on the imaginary axis. Otherwise let ω̄min, ω̄max ∈ R be the
minimal and the maximal element of the set

{λ ∈ R : jλ ∈ eig(Hmin)}.

Then P(jω) > 0 is satisfied for all ω ∈ R satisfying either ω < ω̄min or ω > ω̄max.
Since ω̄min ≤ ωi ≤ ω̄max if i ∈ Z, the statement is satisfied. ��
Thus we can take K, L, M, and �2(Z\Z) as K̃, L̃, M̃, and X̃ respectively. Finally we
see that

W̃ = ∑
i∈Z\Z

(jωiI − Â)−∗Ĉ∗(P(jωi))−1Ĉ(jωiI − Â)−1

= −J ∑
i∈Z\Z

(jωiI − Â)−1B̂(P(jωi))−1Ĉ(jωiI − Â)−1

= J ∑
i∈Z\Z

((jωiI − H)−1 − (jωiI − Â)−1)

= J ∑
i∈Z

((jωiI − H)−1 − (jωiI − Â)−1)−WZ

The first term turns to WZ by invoking Proposition 5 in [1]. This completes the proof
of Theorem 1.

5 Concluding Remarks

A quadratic performance of boundary value systems has been considered. It has
been shown that the quadratic performance verification can be reduced to checking
eigenvalues of a matrix without approximations.

Related open issues include derivation of computationally cheaper sufficient con-
ditions and applications to analysis and design problems, e.g., gain-scheduled con-
trol synthesis for sampled-data systems as partially discussed in [4].
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Lyapunov Stability Analysis of
Higher-Order 2-D Systems

Chiaki Kojima, Paolo Rapisarda, and Kiyotsugu Takaba

Abstract. We prove a necessary and sufficient condition for the asymptotic stability
of a 2-D system described by a system of higher-order linear partial difference equa-
tions. We use the definition of asymptotic stability given by Valcher in “Character-
istic Cones and Stability Properties of Two-Dimensional Autonomous Behaviors”,
IEEE Trans. Circ. Syst. — Part I: Fundamental Theory and Applications, vol. 47,
no. 3, pp. 290–302, 2000. This property is shown to be equivalent to the existence
of a vector Lyapunov functional satisfying certain positivity conditions together
with its divergence along the system trajectories. We use the behavioral framework
and the calculus of quadratic difference forms based on four variable polynomial
algebra.

1 Introduction

Discrete- and continuous-time two-dimensional (in the following abbreviated as
2-D) systems have application in all those situations when the evolution of the to-
be-modeled system depends on two independent variables. In this paper we adopt
the behavioral framework pioneered by J. C. Willems in the 1-D case (see [13]),

Chiaki Kojima
Department of Information Physics and Computing, Graduate School of Information Science
and Technology, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
e-mail: chiaki_kojima@ipc.i.u-tokyo.ac.jp

Paolo Rapisarda
Information: Signals, Images, Systems group, School of Electronics and Computer Science,
University of Southampton, SO171BJ Southampton, United Kingdom
e-mail: pr3@ecs.soton.ac.uk

Kiyotsugu Takaba
Dept. of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606–8501, Japan
e-mail: takaba@amp.i.kyoto-u.ac.jp

J.C. Willems et al. (Eds.): Persp. in Math. Sys. Theory, Ctrl., & Sign. Pro., LNCIS 398, pp. 197–206.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

chiaki_kojima@ipc.i.u-tokyo.ac.jp
pr3@ecs.soton.ac.uk
takaba@amp.i.kyoto-u.ac.jp


198 C. Kojima, P. Rapisarda, and K. Takaba

and extended to the 2-D case by P. Rocha (see [14]) and other authors. In this set-
ting the main object of study is the behavior, the set consisting of all the trajectories
admissible by the physical laws describing the system trajectories.

The notion of stability, because of its important consequences in the analysis and
design of control systems and of filters, has attracted considerable interest also in
the case of 2-D systems. The issue of what the correct definition of stability is for
this situation presents first and foremost the difficulty of extending the notion of
“past” and “future”, self-evident in the 1-D framework, to the case of two indepen-
dent variables, where there is no obvious such splitting of the independent variables
domain. An eminently reasonable position is to let the laws describing the physical
phenomenon themselves dictate what the direction is of the evolution of the system.
This is the approach pioneered by M. E. Valcher in [15] and followed in this paper.

In this paper we present a necessary and sufficient condition for the asymptotic
stability of 2-D systems based on Lyapunov functions. This idea is by no means
original, having been applied already in [10, 1]; however, those approaches relied
entirely on a specific (“state-space”) type of representation of the system, while we
deal with systems described in a general form, namely as the solutions of a system
of partial difference equations. Moreover, the “generalized Bézoutian” introduced in
[4] is shown in this paper to be the scalar version of a generalized Bézoutian arising
naturally as a Lyapunov function for 2-D systems.

Sections 2 and 3 of this paper contain background material on 2-D systems and
quadratic difference forms, respectively. Section 4 contains the main result of this
paper, namely a stability criterion for higher-order systems of difference equations
based on Lyapunov analysis.

In this paper, the concepts and tools of the behavioral approach, and of quadratic
difference forms will be put to strenuous use. The reader not familiar with them is
referred to [12, 13, 14, 16] for a thorough exposition.

Notation: We denote with R
r×w[ξ1,ξ2] (respectively, R

r×w[ξ1,ξ2,ξ −1
1 ,ξ −1

2 ]) the set
of all r×w matrices with entries in the ring R[ξ1,ξ2] of polynomials in 2 indetermi-
nates, with real coefficients (respectively in the ring R[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ] of Laurent

polynomials in 2 indeterminates with real coefficients). Given a nonzero Laurent
polynomial p(ξ1,ξ2) = ∑�,m p�,mξ �

1 ξ m
2 ∈ R[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ], the Laurent variety of

p is defined as

VL(p) := {(α,β ) ∈ C×C | αβ �= 0, p(α,β ) = 0}

This definition extends to sets I of Laurent polynomials, with V (I ) being
the intersection of the Laurent varieties of all polynomials in the set. For R ∈
R
r×w[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ], the characteristic ideal is the ideal of R[ξ1,ξ2] generated

by the determinants of all w×w minors of R, and the characteristic variety is the set
of roots common to all polynomials in the ideal. Further properties and definitions
can be found in [3].

A set K ⊂ R× R is called a cone if αK ⊂ K for all α ≥ 0. A cone is solid
if it contains an open ball in R × R, and pointed if K ∩−K = {(0,0)}. A cone
is proper if it is closed, pointed, solid, and convex. It is easy to see that a proper
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cone is uniquely identified as the set of nonnegative linear combinations of two
linearly independent vectors v1,v2 ∈ R

2. In the following we will often consider the
intersection of a cone K with Z×Z; whenever it will be clear from the context, we
will be denoting this set with K instead of with K ∩Z×Z.

We denote with P1 the closed unit polydisk:

P1 := {(α,β ) ∈ C×C | |α| ≤ 1, |β | ≤ 1}

Given a set S ⊂ Z×Z, its (discrete) convex hull is the intersection of the convex
hull of S (seen as a subset of R× R) and of Z× Z. In the following we will also
refer to the (discrete) convex hull associated with an element p ∈ R[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ],

meaning the (discrete) convex hull of the support of p, i.e. the set

supp(p) := {(x1,x2) ∈ Z×Z | the coefficient of ξ h
1 ξ k

2

in p(ξ1,ξ2,ξ −1
1 ,ξ −1

2 ) is �= 0}

We denote with W
T the set consisting of all trajectories from T to W. We denote

with σ1, σ2 the shift operators defined as

σi : (Rw)Z
2 → (Rw)Z

2
i = 1,2

(σ1w)(x1,x2) := w(x1 − 1,x2)
(σ2w)(x1,x2) := w(x1,x2 − 1)

2 2-D Behaviors

We call B a linear discrete-time complete 2-D behavior if it is the subset of (Rw)Z
2

consisting of all solutions to
R(σ1,σ2)w = 0 (1)

where R ∈ R
r×w[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ]. We call (1) a kernel representation of B. The set

of all such behaviors is denoted with L w
2 .

B ∈ L w
2 is autonomous if there exists a proper cone K ⊂ R×R such that

[
w1,w2 ∈ B and w1|K ∩Z×Z = w2|K ∩Z×Z

]
=⇒ [w1 = w2]

Such a cone K ∩Z×Z will be called a proper characteristic cone for B. Observe
that if w ∈ B is such that w|K ∩Z×Z = 0, then w = 0. The following result holds.

Theorem 1. Let B ∈ L w
2 be autonomous, and let B = ker R(σ1,σ2) for some

R ∈ R
r×w[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ]. Then there exist H ∈ R

•×•[ξ1,ξ2,ξ −1
1 ,ξ −1

2 ] right fac-
tor prime, and Δ ∈ R

w×w[ξ1,ξ2,ξ −1
1 ,ξ −1

2 ] nonsingular, such that R = H ·Δ .
Moreover, denote δ := det(Δ) ∈ R[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ]. The following statements

are equivalent:

1. The proper cone K is characteristic for B;
2. The proper cone K is characteristic for ker Δ(σ1,σ2);
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3. The proper cone K is characteristic for ker δ (σ1,σ2);
4. The discrete convex hull Hδ of δ satisfies the following two conditions:

4a. −Hδ ⊂ K ;
4.b. −Hδ ⊂ K intersects the generating lines of K only in (0,0).

It can be shown (see [2]) that if B ∈ L w
2 is such that B = ker R(σ1,σ2) for some

right factor prime matrix R ∈ R
r×w[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ], then B is autonomous and

finite-dimensional; then (see Lemma 2.4 of [15]) every proper cone is characteristic.
If B is autonomous, and B = ker R(σ1,σ2) for some nonsingular Laurent ma-

trix R, then B is called a square autonomous behavior. Observe that Theorem 1
shows that for any autonomous behavior B whose kernel representation can be fac-
tored as HΔ with H right factor prime and Δ nonsingular, the characteristic cone is
determined by its “square autonomous part” ker Δ(σ1,σ2).

We now introduce the concept of stability introduced by Valcher in [15]. We
examine the finite-dimensional case first.

Definition 1. Let B ∈ L w
2 be autonomous and finite-dimensional, and let K be any

proper cone of Z×Z. B is K -stable if

[w ∈ B] =⇒
[

lim
(i, j) ∈ K

|i|+ | j|→ +∞

‖w(i, j)‖ = 0

]

The following algebraic characterization of finite-dimensional stable behaviors
(see [15, Theorem 3.3, p. 297]) holds. In order to avoid cumbersome details, we
follow [15], and only consider proper cones generated by unimodular integer matri-
ces, which are then isomorphic to the first orthant of Z× Z, in the sense that there
exists a (linear, bijective) transformation T : Z

2 → Z2 such that T (K ) is the first
orthant.

Theorem 2. Let B = ker H(σ1,σ2), with

H(ξ1,ξ2) = ∑
�,m

H�,mξ �
1 ξ m

2 ∈ R
•×w[ξ1,ξ2,ξ −1

1 ,ξ −1
2 ]

right factor prime (see [3] for the definition), and let K be a proper cone isomor-
phic to the first orthant. Denote with T the transformation mapping K to the first
orthant, and denote with (t1(�,m), t2(�,m)) the image of (�,m) ∈ Z × Z under T .
Define

HT (ξ1,ξ2) := ∑
�,m

H�,mξ t2(�,m)
1 ξ t1(�,m)

2

Then the following two statements are equivalent:

1. B is K -stable;
2. Every (α,β ) in the Laurent variety of the maximal order minors of HT satisfies

|α| > 1 and |β | > 1.
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In order to state the definition of stability for the square case, we need to introduce
the following notation: given a proper cone C , we denote with δ (C ) its boundary,
i.e. the generating lines of C . We denote with (δ (C ))n the set consisting of the
points of Z×Z whose distance from δ (C ) is less than n:

(δ (C ))n := {(i, j) ∈ Z×Z | min{|i− h|+ | j − k| with (x1,x2) ∈ δ (C )} ≤ n}

Definition 2. Let K be a proper cone such that −K is characteristic for a square
autonomous behavior B ∈ L w

2 . B is K -stable if there exists n ∈ N, n > 0 such that

[w ∈ B,w bounded in (δ (−K ))n] =⇒
[

lim
(i, j) ∈ K

|i|+ | j|→ +∞

‖w(i, j)‖ = 0

]

The following is Theorem 3.6 of [15].

Theorem 3. Let B = ker Δ(σ1,σ2) be a square autonomous behavior, and let K be
a proper cone for B which is T-isomorphic to the first orthant. Denote δ := det(Δ),
and assume without loss of generality that Hδ ⊂ K and that Hδ ∩δK = {(0,0)}.
Denote with (t1(�,m),t2(�,m)) the image of (�,m) ∈ Z×Z under T . Define

ΔT (ξ1,ξ2) := ∑
�,m

Δ�,mξ t1(�,m)
1 ξ t2(�,m)

2

Then the following two statements are equivalent:

1. B is K -stable;
2. The Laurent variety of det ΔT does not intersect the closed unit polydisk P1.

3 Bilinear and Quadratic Difference Forms for 2-D Systems

In order to represent bilinear and quadratic functionals of the variables of continuous-
time 2-D systems, 4-variable polynomial matrices are used (see [12]). We now illus-
trate quadratic difference forms for 2-D discrete systems; some preliminary results
are in [9].

In order to simplify the notation, define the multi-indices k := (k1,k2), l :=
(l1, l2), and the notation ζ := (ζ1,ζ2) and η := (η1,η2), and ζ kη l := ζ k1

1 ζ k2
2 η l1

1 η l2
2 .

Let R
w1×w2 [ζ ,η ] denote the set of real polynomial w1 ×w2 matrices in the 4 indeter-

minates ζi and ηi, i = 1,2; that is, an element of R
w1×w2 [ζ ,η ] is of the form

Φ(ζ ,η) = ∑
k,l

Φk,lζ kη l

where Φk,l ∈ R
w1×w2; the sum ranges over the nonnegative multi-indices k and l,

and is assumed to be finite. This matrix induces a bilinear difference form (BDF in
the following) LΦ
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LΦ : (Rw1)Z
2 × (Rw2)Z

2 −→ (R)Z
2

LΦ(v,w) := ∑
k,l

(σkv)�Φk,l(σ lw)

where the k-th shift operator σk is defined as σk := σ k1
1 σ k2

2 , and analogously for σ l.
The 4-variable polynomial matrix Φ(ζ1,ζ2,η1,η2) is called symmetric if w1 =

w2 =: w and Φ(ζ1,ζ2,η1,η2) = Φ(η1,η2,ζ1,ζ2)�, concisely written as Φ(ζ ,η) =
Φ(η ,ζ )�. In this case, Φ induces also a quadratic functional

QΦ : (Rw)Z
2 −→ (R)Z

2

QΦ (w) := LΦ(w,w)

We will call QΦ the quadratic difference form (in the following abbreviated with
QDF) associated with the four-variable polynomial matrix Φ .

In this paper we also consider vectors Ψ ∈ (Rw1×w2 [ζ ,η ])2, i.e.

Ψ(ζ ,η) =
[

Ψ1(ζ ,η)
Ψ2(ζ ,η)

]
=: col(Ψi(ζ ,η))i=1,2

with Ψi ∈ R
w1×w2 [ζ ,η ] and with col(Ai)i=1,2 the matrix obtained by stacking the two

matrices Ai, both with the same number of columns, on top of each other. Such Ψ
induces a vector bilinear difference form (abbreviated VBDF), defined as

LΨ : (Rw1)Z
2 × (Rw2)Z

2 −→ (R2)Z
2

LΨ (v,w) :=
[

LΨ1(v,w)
LΨ2(v,w)

]
.

Finally, we introduce the notion of (discrete) divergence of a VBDF. Given a
VBDF LΨ = col(LΨ1 ,LΨ2)

�, we define its divergence as the BDF defined by

(div LΨ )(w1,w2) :=
(
LΨ1(w1,w2)− σ1(LΨ1(w1,w2))

)

+
(
LΨ2(w1,w2)− σ2(LΨ2(w1,w2))

)
(2)

for all w1,w2. It is straightforward to verify that in terms of the 4-variable polyno-
mial matrices associated with the BDF’s, the relationship between a VBDF LΨ and
its divergence LΦ = div LΨ is expressed as

Φ(ζ1,ζ2,η1,η2) = (1 − ζ1η1)Ψ1(ζ1,ζ2,η1,η2)+ (1 − ζ2η2)Ψ2(ζ1,ζ2,η1,η2)

In order to characterize those BDFs which are the divergence of some VBDF, we
need to introduce the “del” operator, defined as

∂ : R
w1×w2 [ζ1,ζ2,η1,η2] −→ R

w1×w2 [ξ1,ξ2,ξ −1
1 ,ξ −1

2 ]

∂Φ(ξ1,ξ2) := Φ(ξ −1
1 ,ξ −1

2 ,ξ1,ξ2)

The following result holds true.
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Proposition 1. A BDF LΦ is the divergence of some VBDF LΨ if and only if
∂Φ(ξ1,ξ2) = 0.

Proof. Necessity is straightforward. Sufficiency can be proved using a Gröbner ba-
sis argument, which can be extended entrywise to polynomial matrices. �
The definition and properties described above can be adapted to a vector quadratic
difference form (VQDF) in a obvious manner.

A QDF QΔ induced by Δ ∈ R
w×w[ζ1,ζ2,η1,η2] is nonnegative if QΔ (w(x1,x2)) ≥

0 ∀(x1,x2) ∈ Z
2 and ∀ w ∈ (Rw)Z

2
. This will be denoted with QΔ ≥ 0 or Δ(ζ ,η) ≥ 0.

We call QΔ positive, denoted QΔ > 0 or Δ(ζ ,η) > 0, if QΔ ≥ 0 and QΔ (w(x1,x2)) =
0 ∀(x1,x2) ∈ Z

2 implies w = 0. Often in the following we will also consider QDFs
induced by matrices of the form Δ(e−iω ,ζ2,eiω ,η2), i.e. matrices in the indetermi-
nates ζ2,η2 with coefficients being polynomials in eiω for some ω ∈ R. The defini-
tion of nonnegativity and positivity in this case is readily adapted from above.

4 Necessary and Sufficient Lyapunov Conditions for Stability of
2-D Systems

Using Theorem 3, we now concentrate on stability with respect to the proper cone
consisting of the first orthant of Z×Z; we denote this set with K0 in the following.
Moreover, we only consider the case of square autonomous systems. We begin this
section with a straightforward but important refinement of Proposition 3.5 of [15].

Proposition 2. Let B ∈ L w
2 be square and autonomous, and let Δ ∈ R

w×w[ξ1,ξ2]
nonsingular be such that B = ker Δ(σ1,σ2). Assume that δ := det Δ is such that
Hδ is a subset of K0, the first orthant of Z×Z, that intersects the coordinate axes
only in the origin. Then the following statements are equivalent:

1. B is K0-stable;
2. For all ω ∈ R, the polynomial δ (e jω ,ξ2) has all its roots outside of the closed unit

disk {z2 ∈ C | |z2| ≥ 1}, and the polynomial δ (ξ1,e jω ) has all its roots outside of
the closed unit disk {z1 ∈ C | |z1| ≥ 1}.

Proof. The proof follows from Theorem 3 and from the equivalence of statements
i) and iv) in Proposition 3.1 of [5]. �
In order to state the main result of this paper we need some notation; we denote
with Per2 ⊂ (Rw)Z

2
the set consisting of all trajectories v ∈ (Rw)Z

2
such that the

restriction of v to the lines {(x1,x2) | x2 ∈ Z} is periodic for all fixed x1 ∈ Z, i.e.

Per2 :=
{

v ∈ (Rw)Z
2 | v(x1, ·) ∈ (Rw)R is periodic for all fixed x1 ∈ Z

}
;

analogously

Per1 :=
{

v ∈ (Rw)Z
2 | v(·,x2) ∈ (Rw)R is periodic for all fixed x2 ∈ Z

}
.
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Theorem 4. Let B ∈ L w
2 be square and autonomous, and R ∈ R

w×w[ξ1,ξ2] nonsin-
gular be such that B = ker R(σ1,σ2). The following statements are equivalent:

(1) B is K0-stable;
(2) There exists a VQDF QΦ = col(QΦ1 ,QΦ2) and a QDF QΔ such that

(2a) div QΦ
B= −QΔ ;

(2b) QΦ1(w),QΔ (w) > 0 for all w ∈ B∩Per2, and QΦ2(w),QΔ (w) > 0 for all
w ∈ B∩Per1.

(3) There exist Φ = col(Φ1,Φ2) and Δ , with Φ1, Φ2, Y ∈ R
w×w[ζ1,ζ2,η1,η2], Δ ∈

R
w×w
s [ζ1,ζ2,η1,η2] such that

(3a) (1 − ζ1η1)Φ1(ζ1,ζ2,η1,η2)+ (1 − ζ2η2)Φ2(ζ1,ζ2,η1,η2)
= −Δ(ζ1,ζ2,η1,η2)
+R(ζ1,ζ2)�Y (ζ1,ζ2,η1,η2)+Y(η1,η2,ζ1,ζ2)�R(η1,η2);

(3b) Φ1(ζ1,ζ2,η1,η2)
B∩Per2

> 0, Φ2(ζ1,ζ2,η1,η2)
B∩Per1

> 0, and

Δ(ζ1,ζ2,η1,η2)
B∩Peri

> 0, i = 1,2.

We refer to a VQDF QΦ satisfying (2a) and (2b) as a Lyapunov function for B.

Proof. The equivalence of statements (2) and (3) is straightforward.
We now prove the implication (3) ⇒ (1). Consider any trajectory in B of the

form w(t1,t2) = v λ t1 μ t2 for some v ∈ C
w and λ ,μ ∈ C. We now prove that if μ lies

on the unit circle, i.e. μ = eiω for some ω ∈ R, then | λ |> 1. Once this will have
been established, statement (1) follows from Proposition 2.

Let ζ1 = λ , η1 = λ , ζ2 = μ = e−iω , η2 = μ = eiω in (3a):

(1 − λλ ) v�Φ1(λ ,e−iω ,λ ,eiω )v = −v�Δ(λ ,e−iω ,λ ,eiω )v

The right-hand side of this equation is strictly negative; on the left-hand side
v�Φ1(λ ,e−iω ,λ ,eiω )v > 0, and consequently it follows that 1−λλ < 0. An analo-
gous argument is used when w(t1, t2) = v eiωt1 μ t2 . This proves the claim.

The proof of implication (1) ⇒ (3) is established by producing matrices Φi ∈
R
w×w
S [ζ1,ζ2,η1,η2], i = 1,2, and Δ ∈ R

w×w
S [ζ1,ζ2,η1,η2] such that (3a)–(3b) hold.

Write R(ξ1,ξ2) = ∑L1
i=0 Ri(ξ2)ξ L1

1 = ∑L2
i=0 R′

i(ξ1)ξ L2
2 , where Li is the highest

power of ξi in R, i = 1,2. Define the four-variable polynomial matrix

H(ζ1,ζ2,η1,η2) := R(ζ1,ζ2)�R(η1,η2)−ζ L1
1 ζ L2

2 ηL1
1 ηL2

2 R(η−1
1 ,η−1

2 )�R(ζ−1
1 ,ζ−1

2 ) . (3)

Observe that ∂H = 0; conclude from Proposition 1 that there exists Φ = col(Φ1,Φ2)
∈ R

2w×w[ζ1,ζ2,η1,η2] such that div Φ(ζ1,ζ2,η1,η2)= H(ζ1,ζ2,η1,η2). Moreover,
it is easy to see using Proposition 3.2 of [6] that

Φ1(ζ1,e
−iω ,η1,e

iω)=
R(ζ1,e−iω)�R(η1,eiω )−ζ L1

1 ηL1
1 R(η−1

1 ,e−iω)�R(ζ−1
1 ,eiω)

1 − ζ1η1
.

(4)
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From Proposition 2 it follows that since B is K0-stable the polynomial det(
R(ξ1,eiω)

)
is anti-Schur (meaning all its roots have modulus greater than one) for

all ω ∈ R. It follows from Corollary 1 of [8] that for all ω ∈ R Φ1(ζ1,e−iω ,η1,eiω )>
0, since (4) is equivalent with Φ1 being the R-canonical solution of an ω-dependent
polynomial Lyapunov equation in two variables (see equation (4) of [8]) for the be-

havior described in kernel form by R(ξ1,eiω ). From this it follows that Φ1
B∩Per2

> 0.
An analogous argument based on the same considerations and on the fact that

R(eiω ,ξ2) is anti-Schur for all ω ∈ R, shows that Φ2(e−iω ,ζ2,eiω ,η2) > 0 for all
ω ∈ R.

In order to conclude the proof, define

Y (ξ1,ξ2) :=
1
2

R(ξ1,ξ2)

Δ(ζ1,ζ2,η1,η2) := ζ L1
1 ηL1

1 ζ L2
2 ηL2

2 R(η−1
1 ,η−1

2 )�R(ζ−1
1 ,ζ−1

2 )

The fact that Δ(ζ1,e−iω ,η1,eiω) > 0 and Δ(e−iω ,ζ2,eiω ,η2) > 0 for all ω ∈ R

follows from the K0-stability of B, which implies for all ω ∈ R that R(ξ1,eiω ) and
R(eiω ,ξ2) are anti-Schur. �
Remark 1. The 4-variable polynomial matrices Φ = col(Φ1,Φ2) and Δ given in the
proof of Theorem 4 are germane to the multivariable Bézoutian

R(ζ )�R(η)− R(−η)�R(−ζ )
ζ + η

used in analyzing stability of 1-D continuous-time systems (see section 3 of [16]).
In the 2-D single-variable (w = 1) case, stability conditions based on the positivity
of the coefficient matrix of an ω-dependent Bézoutian have been obtained in [4, 5].

Of course, there are more Lyapunov functions than the Bézoutian. The computa-
tion of Lyapunov functions via a (4-variable) polynomial Lyapunov equation as in
[11, 16] is the subject of an ongoing investigation.
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From Lifting to System Transformation

Yoshito Ohta

Abstract. This paper studies two kinds of generalizations of the lifting technique
originally introduced for the sampled-data control theory. First, the lifting technique
is extended when arbitrary inner function is used. Another direction for the exten-
sion is the system transformation for stochastic systems. The latter can be applied to
the continuous-time system identification problem. It turns out that the PO-MOESP
algorithm can be exploited to identify the coefficient matrices.

1 Introduction

The lifting technique introduced in [11] paved the way for the study sampled-data
control systems. A continuous-time system is represented by an equivalent discrete-
time system whose input and output spaces are functional spaces. This turns out a
right tool for the sampled-data H∞ control problems. This paper tries to extend the
technique.

In the original lifting technique, the space decomposition for the input and output
signals is based on the orthogonal complement of a shift invariant subspace. This
suggests that for any inner function, using the orthogonal complement of the shift-
invariant subspace, we can define a lifted system [6]. This framework was useful in
studying Hankel singular values of a class of infinite-dimensional systems.

When the inner function is rational, the orthogonal complement of the shift-
invariant subspace is finite-dimensional. When a particular basis is used, the lifted
system becomes transformed system. This transformation is called system Hambo
transform, which was studied in [1, 2, 3, 4]. In [7], the relation of the lifting tech-
nique and the system transformation was discussed.

The system transformation for stochastic systems is considered, and it is shown
that the solutions to the continuous-time and transformed systems are equivalent.
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Furthermore, an application for the subspace identification method is discussed. The
preliminary versions of this subject were published in [8, 9].

2 Preliminary

Let L2(0,∞) be a space of square integrable functions of time 0 < t < ∞. Let H2(C+)
be a space of analytic functions on the open right half plane such that

‖û‖ = sup
ν>0

(
1

2π

∫ ∞

−∞
|û(ν + jω)|2 dω

)1/2

< ∞.

The Plancherel’s theorem implies that the spaces L2(0,∞) and H2(C+) are iso-
morphic by the Fourier transform. Similarly, the spaces L2(−∞,0) and H2(C−)
are defined, and they are isomorphic. Then the space L2(−∞,∞) of square inte-
grable functions of time −∞ < t < ∞ is regarded as the direct sum L2(−∞,∞) =
L2(−∞,0) ⊕ L2(0,∞). This relation is carried over into the frequency domain by
the Fourier transform. Let L2( jR) be the space of square integrable functions of
frequency where the measure on the imaginary axis is dω/(2π). Then we have
L2( jR) = H2(C−)⊕ H2(C+).

An inner function φ is a bounded analytic function on the open right half plane
such that |φ( jω)| = 1 or φ∼( jω)φ( jω) = 1 almost everywhere on the imaginary
axis, where φ∼(s) = φ(−s) is the para-conjugate. Unless φ is constant, the space
φH2(C+) is a proper closed subspace of H2(C+), and hence the orthogonal com-
plement of the shift-invariant subspace φH2(C+), i.e., S = H2(C+)� φH2(C+), is
not a zero subspace.

Let Λφ be the multiplicative operator on L2(−∞,∞)

Λφ u = F−1φFu,

where F is the Fourier transform. For simplicity, we write S= L2(0,∞)�Λφ L2(0,∞).
Using the subspace S, the spaces L2( jR) and H2(C+) are written as

L2( jR) =
∞⊕

k=−∞
φ kS, H2(C+) =

∞⊕

k=0

φ kS, (1)

respectively, where φ k = (φ∼)−k for k < 0. Similarly, we have

L2(−∞,∞) =
∞⊕

k=−∞
Λ k

φ S, L2(0,∞) =
∞⊕

k=0

Λ k
φ S. (2)

From (2), any u ∈ L2(−∞,∞) can be represented as u = ∑∞
k=−∞ Λ k

φ uk, where uk ∈ S.
Hence the map

u �→ {· · · ,u−1,u0,u1, · · · } (3)
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from L2(−∞,∞) to the space of square summable sequence in S is a norm-preserving
bijection. The Fourier transform induces a frequency domain counter-part of (3):

û �→ {· · · , û−1, û0, û1, · · · } . (4)

Example 1. When φ(s) = e−sh, the space S = L2(0,h). Hence (2) becomes

L2(−∞,∞) =
∞⊕

k=−∞
L2(kh,(k + 1)h).

This was used in the context of sampled-data control [11].

3 Lifted System

Consider a continuous-time linear system described by

dx
dt

= Ax + Bu, y = Cx + Du. (5)

When A does not have eigenvalues on the imaginary axis, by decomposing the sys-
tem into stable and anti-stable parts and solving the anti-stable part backward in
time, the system (5) defines an input-output map L2(−∞,∞) → L2(−∞,∞) : u �→ y.
By the Fourier transform, the system (5) also defines a map L2( jR) → L2( jR) : û �→
ŷ. Let H(s) = D+C (sI − A)−1 B be the transfer function of the system (5), which is
bounded on the imaginary axis. Then the input-output map of (5) is nothing but the
multiplication by H, or ŷ = H(s)û.

(· · · ,u−1,u0,u1, · · ·) (· · · ,y−1,y0,y1, · · ·)
� Lifted

System �

u y
� Continuous-time

System �

�
�Map (3) �

� Map (3)

Fig. 1 Continuous-time and lifted systems

Given an inner function φ , the signal transformation map (3) is well-defined.
Consider the diagram shown in Fig. 1. The input-output map defined by the
continuous-time system (5) together with the signal transformation map (3) defines
a so-called lifted system. Furthermore, it can be shown that this system is time-
invariant. Assume that the system (5) is stable for the sake of simplicity. Define
operators, A : R

n → R
n, B : S → R

n, C : R
n → S, and D : S → S as follows:
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Aξ = φ∼(A)ξ

Buk =
∫ 0

−∞
e−AτB

(
Λφ∼uk

)
(τ)dτ

Cξ = F−1
{

C (sI − A)−1 ξ − φ(s)C (sI − A)−1 φ∼(A)ξ
}

,

Duk = F−1
{

h(s)Fuk − φ(s)C (sI − A)−1 Buk

}
.

Then the discrete-time system

ξ (k + 1) = Aξ (k)+ Buk, yk = Cξ (k)+ Duk (6)

is a state-space representation of the lifted system. When A is anti-stable, we assume
that φ is analytic at the spectrum of −A. Then the operators A, B, C, and D can be
defined. See [6] for detail.

Example 2. When φ(s) = e−sh, the signal space can be written as in Example 1.
Then the operators for the system (6) are

Aξ = eAhξ

Buk =
∫ 0

−h
e−AτBuk(h + τ)dτ

(Cξ )(t) = CeAtξ , t ∈ (0,h) ,

(Duk)(t) = Duk(t)+C
∫ t

0
eA(t−τ)Buk(τ)dτ.

This is the lifted system considered in [11] to solve sampled-data control problems.

4 Rational Inner Function

When φ is a rational inner function, the space S = H2(C+) � φH2(C+) is finite
dimensional. If we introduce a basis of S, then the operators of the lifted system (6)
are matrices, and hence we have an ordinary discrete-time system.

The following is a way to introduce an orthonormal basis of S. Suppose that

φ(s) = Dφ +Cφ
(
sI − Aφ

)−1
Bφ (7)

is a balanced realization with order nφ . Define

v̂(s) =
[
v̂1(s) v̂2(s) · · · v̂nφ (s)

]
= Cφ

(
sI − Aφ

)−1
. (8)

Then it turns out that
{

v̂1, · · · , v̂nφ

}
is an orthonormal basis of S ⊂ H2(C+), or, to

put is shortly, v̂ is an orthonormal basis. For the time domain,

v(t) := F−1v̂
[
v1(t) v2(t) · · · vnφ (t)

]
= Cφ eAφ t (9)

is an orthonormal basis of S ⊂ L2(0,∞).
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(· · · , ũ−1, ũ0, ũ1, · · ·) (· · · , ỹ−1, ỹ0, ỹ1, · · ·)
� Transformed

System �

u y
� Continuous-time

System �

�
�

Maps (3)
and (10)

�
�

Maps (3)
and (10)

Fig. 2 Continuous-time and transformed systems

Multiplicating φ successively to (8), we have an orthonormal basis of H2(C+),{
v̂,φ v̂,φ2v̂, · · ·}. Including negative powers of φ , we obtain an orthonormal basis

of L2( jR),
{· · · ,φ−1v̂, v̂,φ v̂, · · ·}. By the inverse Fourier transform, we have an or-

thonormal basis of L2(0,∞) and L2(−∞,∞), respectively. These bases are called
generalized orthonormal basis functions.

Example 3. Let φ(s) = (p − s)/(p + s), p > 0 be a first order inner function.
Then the space S is one dimensional space spanned by v̂(s) =

√
2p/(p + s). The

set
{

v̂,φ v̂,φ2v̂, · · ·} is an orthonormal basis of H2(C+), and called the Laguerre
basis.

We assume that the system (5) is single-input single-output for the sake of simplicity.
Any element uk ∈ S is a linear combination of the basis, and hence there exists
ũk ∈ Rnφ such that uk = vũk. Hence the map

{· · · ,u−1,u0,u1, · · ·} �→ {· · · , ũ−1, ũ0, ũ1, · · · } (10)

is a norm-preserving bijection.
Using the maps (3) and (10), we see that the input-output map of the continuous-

time system (5) defines a map of the transformed system as is shown in Fig.2. For
this let X and Y be the solution to the Sylvester equations,

AX + XAT
φ + BBT

φ = 0, AT
φY +YA +CT

φC = 0,

respectively. Define

Ã = φ∼(A), B̃ = X , C̃ = Y, D̃ = H∼(AT
φ ). (11)

Then the transformed system has the state-space representation

ξ̃ (k + 1) = Ãξ̃ (k)+ B̃ũk, ỹk = C̃ξ̃ (k)+ D̃ũk. (12)

The system (12) is called system Hambo transform, and studied extensively in [4].

5 Stochastic System Transformation

Consider a continuous-time linear stochastic system

dx = Axdt + Bdw, x(0) = 0, dη = Cxdt + Ddw, (13)
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where w is a Wiener process, and η is the measurement process. We assume that A
is stable. We say that (w,η) is a solution of (13) if it satisfies:

x(t) =
∫ t

0
eA(t−τ)Bdw(τ), η(t) =

∫ t

0
Cx(τ)dτ + Dw(t). (14)

Let φ be a rational inner function having a balanced realization (7). Define ma-
trices Ã, B̃, C̃, and D̃ as in (11). Consider a discrete-time stochastic system

ξ̃ (k + 1) = Ãξ̃ (k)+ B̃w̃k, ξ (0) = 0, ỹk = C̃ξ̃ (k)+ D̃w̃k, (15)

where w̃ is a discrete-time white Gaussian process. We say that (w̃, ỹ) is a solution
of (15) if it satisfies

ỹk = D̃w̃k +
k−1

∑
i=0

C̃Ãk−i−1B̃w̃i.

Theorem 1. Suppose that (w,η) is a solution of the continuous-time stochastic sys-
tem (13). Define

w̃(k) =
∫ ∞

0
Λ k

φ v(t)Tdw(t), ỹ(k) =
∫ ∞

0
Λ k

φ v(t)Tdη(t). (16)

Then the integral (16) exists, w̃ is a discrete-time white Gaussian process, and (w̃, ỹ)
is a solution of the discrete-time stochastic system (15).

To prove the converse direction, we need a couple of definitions. A stochas-
tic process α has independent increments if α(t1) − α(t0), α(t2) − α(t1), . . .,
α(tk) − α(tk−1) are independent for any 0 ≤ t0 < t1 < · · · < tk. A stochastic pro-
cess α is time-homogeneous if α(t + h)− α(s+ h) and α(t)− α(s) have the same
distribution for any t, s, and h > 0. Consider stochastic processes α and β . We say
β is a version of α if P{α(t) = β (t)} = 1 for any t. Consider a function f on the
closed interval J = [t,t]. A function f is said to be Hölder continuous with exponent
d if

sup
a,b∈J, a �=b

| f (a)− f (b)|
|a − b|d

is finite.

Theorem 2. Consider a discrete-time white Gaussian process w̃. Suppose that (w̃, ỹ)
is a solution of the discrete-time system (15). Define

ck(t) =
∫ t

0
Λ k

φ v(τ)dτ, k = 0,1,2, · · · , (17)

w̌(t) =
∞

∑
k=0

ck(t)w̃(k) (18)

η̌(t) =
∞

∑
k=0

ck(t)ỹ(k). (19)
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Then the processes (18) and (19) are well-defined, and the sum converges in
the mean square sense on any bounded interval [0,t]. The process w̌ is time-
homogeneous, has independent increments, and has a version that is Hölder contin-
uous with exponent 0 < d < 1/2 almost surely for any [0,t]. Furthermore, (w̌, η̌) is
a solution of the continuous-time system (13).

Remark 1. Theorems 1 and 2 establish the equivalence of the continuous-time
stochastic system and the transformed discrete-time stochastic system in terms of
solutions. Preliminary results were originally presented in [8].

6 Applications

In this section, we briefly describe applications of aforementioned frameworks to
control systems theory.

6.1 Hankel Singular Values

Let ψ be a bounded function on the imaginary axis. Define Γψ : H2(C−) → H2(C+),
f̂ �→ Π+ψ f̂ , where Π+ is the projection from L2( jR) to H2(C+). This operator is
called the Hankel operator with the symbol ψ . The importance of Hankel operators
is found in the area of model reduction and the H∞ sensitivity minimization prob-
lem. The H∞ sensitivity minimization problem for input delay systems was studied
in [12], where a Hamiltonian determinant condition for the attainable norm was de-
rived. The Hamiltonian formula was extended to include a system having a general
inner function in [5].

If ψ = φH, where φ is an inner function, and H(s) = D +C (sI − A)−1 B is a
stable rational function, the Hankel singular value σ > σess can be characterised by
Schmidt pairs

Γψ f̂ = σ ĝ, Γ ∗
ψ ĝ = σ f̂ , (20)

where σ2
ess is the essential spectral radius of Γ ∗

ψ Γψ .
Let Ã, B̃, C̃, and D̃ be as in (11). Notice that the multiplication by φ in the trans-

formed domain is a unit time delay. Hence the equation (20) can be represented by
the following state-space equations:

ξ̃ (k + 1) = Ãξ̃ (k)+ B̃ fk−1, k = 0,−1,−2, · · ·
σg0 = C̃ξ̃ (0)+ D̃ f−1, σgk = C̃Ãk−1ξ̃ (1), k = 1,2, · · · ,
ζ̃ (k) = ÃTζ̃ (k + 1)+ C̃Tgk+1, k = −1,0,1, · · · ,

σ f−1 = B̃Tζ̃ (0)+ DTg0, σ f−k = B̃TÃTk−2ζ̃ (−1), k = 2,3, · · · .

A non-trivial solution ( f ,g) is a Schmidt pair of the Hankel operator. The existence
of such a solution is equivalent to the following Hamiltonian determinant condition:
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det

([
I − 1

σ P
0 0

]
−
[

0 0
− 1

σ Q I

]
φ∼(H)

)
= 0, (21)

where

H =

⎡

⎢
⎣

A + 1
σ 2 B

(
I − 1

σ 2 DTD
)−1

DTC 1
σ B
(

I − 1
σ 2 DTD

)−1
BT

− 1
σ CT

(
I − 1

σ 2 DDT
)−1

C −AT − 1
σ 2 CT

(
I − 1

σ 2 DDT
)−1

DBT

⎤

⎥
⎦ ,

and P and Q are the controllability and observability Gramians:

AP+ PAT + BBT = 0, QA + ATQ+CTC = 0

For detail, see [6].

6.2 Continuous-Time System Identification

The system model for continuous-time system identification is

dx = Axdt + B1dw+ B2udt, x(0) = x0, dη = Cxdt + D1dw+ D2udt, (22)

where A is stable, w is a Wiener process, and u ∈ L∞ is a known signal. We assume
that x0 is zero-mean Gaussian and is independent from w. Let 0 ≤ t0 < t1 < · · · <
ti < · · · be a sequence of time instances such that ti+1 − ti ≥ tmin for some tmin > 0.

Define

xi = x(ti) ũk,i =
∫ ∞

0
Λ k

φ v(t)Tu(t + ti)dt,

w̃k,i =
∫ ∞

0
Λ k

φ v(t)Tdw(t + ti), ỹk,i =
∫ ∞

0
Λ k

φ v(t)Tdη(t + ti).

For fixed integers p, q and N, define

XN =
[
x0 x1 · · · xN−1

]
, (23)

Wp,q,N =

⎡

⎢
⎢⎢
⎣

w̃p,0 w̃p,1 · · · w̃p,N−1

w̃p+1,0 w̃p+1,1 · · · w̃p+1,N−1
...

...
...

...
w̃p+q−1,0 w̃p+q−1,1 · · · w̃p+q−1,N−1

⎤

⎥
⎥⎥
⎦

. (24)

The matrices Up,q,N, and Yp,q,N are similarly defined.
Let Ã, B̃1, B̃2, C̃, D̃1, and D̃2 be defined mutatis mutandis as in (11). Construct

the matrices
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Γq =

⎡

⎢
⎢
⎢
⎣

C̃
C̃Ã

...
C̃Ãq−1

⎤

⎥
⎥
⎥
⎦

, Hi,q =

⎡

⎢
⎢
⎢⎢
⎣

D̃i 0 · · · 0

C̃B̃i D̃i
. . . 0

...
. . .

. . .
...

C̃Ãq−2B̃i C̃Ãq−3B̃i · · · D̃i

⎤

⎥
⎥
⎥⎥
⎦

, i = 1,2.

From the results in Section 5, we see that the following algebraic equation holds:

Yp,q,N = ΓqXN + H1,qWp,q,N + H2,qUp,q,N . (25)

The equation (25) suggests that a discrete-time subspace identification method
can be applied to estimate the coefficient matrices. A major difference is that though
the columns of the matrix (24) are white sequences the row are not. However, we
can prove the following.

Theorem 3. The matrices XN, Up,q,N, and Wp,q,N defined by (23) and (24) satisfy

lim
N→∞

1
N

Wq,q,NUT
0,q,N = 0, lim

N→∞

1
N

Wq,q,NUT
q,q,N = 0,

lim
N→∞

1
N

Wq,q,NXT
N = 0, lim

N→∞

1
N

Wq,q,NW T
0,q,N = 0

almost surely.

Remark 2. We assume that the input u satisfies the so-called PE (persistency of ex-
citation) condition. Then from Theorem 3, it follows that the PO-MOESP algo-
rithm [10] yields consistent estimates of the system matrices.

7 Conclusion

This article reviewed lifting technique when the signal space is represented by the
orthogonal complements of the shift invariant subspace defined by an arbitrary inner
function. The lifted system is a discrete-time linear time-invariant system such that
commutative diagram holds. When the inner function is rational and specific basis
is introduced, the lifted system is represented by the transformed system, which is
sometimes called system Hambo transform.

The system transform is extended to the system whose input is a random process.
This theory can be applied to the continuous-time system identification problem.
Using the transformed data, the PO-MOESP subspace identification algorithm can
be utilized.
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Contractive Systems with Inputs

Eduardo D. Sontag

Dedicated to Y. Yamamoto on the occasion of his 60th birthday

Abstract. Contraction theory provides an elegant way of analyzing the behaviors
of systems subject to external inputs. Under sometimes easy to check hypotheses,
systems can be shown to have the incremental stability property that all trajectories
converge to a unique solution. This property is especially interesting when forc-
ing functions are periodic (a globally attracting limit cycle results), as well as in
the context of establishing synchronization results. The present paper provides a
self-contained introduction to some basic results, with a focus on contractions with
respect to non-Euclidean metrics.

1 Introduction

The most common approach to analyzing global stability properties of nonlinear
dynamical systems is through Lyapunov functions. However, in many applications,
Lyapunov functions are not always easy to find, especially if steady states are not
known a priori. Remarkably, a stronger property than stability, namely the con-
traction (or incremental stability) requirement that all solutions should converge
(exponentially) towards each other, is sometimes easier to work with. Contractive
dynamics result when the logarithmic norm, or matrix measure, of the Jacobian
of the vector field is uniformly negative on the state space. Different norms are
appropriate to different problems, just as different Lyapunov functions have to be
carefully picked. Non-Euclidean norms have been found to be useful in the study of
many bio-molecular problems, see for example [13].

The study of contractions in the context of stability theory dates back at least to
the work of Demidovich ([4]), who established the basic convergence results with
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respect to Euclidean norms, and independently to Yoshizawa ([20, 21]); see [10] for
a historical discussion. In control theory, contraction theory has been popularized
and extended by Slotine and coworkers, see for instance [7], [6], [19] where appli-
cations to nonlinear control, observer problems, and synchronization and consensus
problems in complex networks have been developed, as well as by Nijmejer and
coworkers in the context of nonlinear regulator problems, see for example [11]. In
this latter work, the authors use the phrase “convergent dynamics” to refer to prop-
erty that there exists a (necessarily unique) globally asymptotically stable solution
to which all other solutions converge.

This paper gives a self-contained exposition, with simple proofs, of some basic
results in contraction theory, It seems difficult to find such simple proofs in the liter-
ature, particularly for contractions with respect to non-Euclidean norms. We empha-
size that the presentation is expository, and no substantial new results on contraction
theory are claimed.

Definitions and statements of the main results are provided in Section 2, and
proofs are given in Section 3.

Section 4 briefly discusses the application of contraction theory to the synchro-
nization of coupled identical dynamical systems, following an idea of Slotine and
collaborators (“virtual systems”). Also discussed there is a minor extension in which
simultaneous convergence, not merely synchronization, is achieved.

For periodically forced contractive systems, globally attracting limit cycles arise,
a sort of “entrainment” property. Such a property is false for general systems that
have a well-defined steady-state response to constant inputs, for which even chaotic
behavior may arise under periodic forcing ([16]).

In closing this introduction, we remark that a modern approach to contractive
dynamics steps away from the consideration of Jacobians, and defines contraction
properties by means of “logarithmic Lipschitz constants” directly associated to the
vector field. This elegant approach, nicely surveyed in [14], is powerful and intu-
itive, and allows immediate generalizations to infinite-dimensional problems. How-
ever, in order to verify the property for particular examples, Jacobians must still be
employed.

2 Definitions and Statements of Main Results

We consider in this paper systems of ordinary differential equations, generally time-
dependent:

ẋ = f (t,x) (1)

defined for t ∈ [0,∞) and x ∈ C, where C is a subset of R
n. It will be assumed

that f (t,x) is differentiable on x, and that f (t,x), as well as the Jacobian of f with
respect to x, denoted as J(t,x) = ∂ f

∂x (t,x), are continuous in (t,x). In applications
of the theory, it is often the case that C will be a closed set, for example given
by non-negativity constraints on variables as well as linear equalities representing
mass-conservation laws. For a non-open set C, differentiability in x means that the
vector field f (t, ·) can be extended as a differentiable function to some open set
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which includes C, and the continuity hypotheses with respect to (t,x) hold on this
open set.

We denote by ϕ(t,s,ξ ) the value of the solution x(t) at time t of the differential
equation (1) with initial value x(s) = ξ . It is implicit in the notation that ϕ(t,s,ξ ) ∈
C (“forward invariance” of the state set C). This solution is in principle defined only
on some interval s ≤ t < s + ε , but we will assume that ϕ(t,s,ξ ) is defined for all
t ≥ s. Conditions which guarantee such a “forward-completeness” property are often
satisfied in applications, for example whenever the set C is closed and bounded, or
whenever the vector field f is bounded. (See for example Appendix C in [15] for
more discussion, as well as [1] for a characterization of the forward completeness
property.) Under the stated assumptions, the function ϕ is jointly differentiable in
all its arguments (this is a standard fact on well-posedness of differential equations,
see for example Appendix C in [15]).

We recall (see for instance [9] or [5]) that, given a vector norm on Euclidean space
(|·|), with its induced matrix norm ‖A‖, the associated matrix measure μ is defined
as the directional derivative of the matrix norm in the direction of A and evaluated
at the identity matrix, that is: μ(A) := limh↘0

1
h (‖I + hA‖− 1) . For example, if

|·| is the standard Euclidean 2-norm, then μ(A) is the maximum eigenvalue of the
symmetric part of A. Matrix measures, also known as “logarithmic norms”, were
independently introduced by Germund Dahlquist and Sergei Lozinskii in 1959, [3,
8]. The limit is known to exist, and the convergence is monotonic, see [17, 3].

Definition 1. The system (1), or the time-dependent vector field f , is said to be
infinitesimally contracting on a set C ⊆ R

n if there exists some norm in C, with
associated matrix measure μ , such that, for some constant c > 0 (the contraction
rate), it holds that:

μ (J (x,t)) ≤ −c, ∀x ∈ C, ∀t ≥ 0. (2)

The key result is that infinitesimal contractivity implies global contractivity:

Theorem 1. Suppose that C is a convex subset of R
n and that f (t,x) is infinites-

imally contracting with contraction rate c. Then, for every two solutions x(t) =
ϕ(t,0,ξ ) and z(t) = ϕ(t,0,ζ ) of (1), it holds that:

|x(t)− z(t)| ≤ e−ct |ξ − ζ | , ∀t ≥ 0 . (3)

If A is a non-empty forward-invariant set for the dynamics, then every solution must
approach A . Indeed, take any ζ ∈ A and any trajectory x(t) = ϕ(t,0,ξ ); then, with
z(t) = ϕ(t,0,ζ ), dist(x(t),A ) ≤ |x(t)− z(t)| ≤ e−ct |ξ − ζ | → 0 as t → ∞. In par-
ticular, if an equilibrium exists, then it must be unique and globally asymptotically
stable, and the same is true for periodic orbits. More interestingly, periodic orbits
are assured to exist if the vector field is periodic, as would happen for a system with
inputs ẋ = f (x,u) under a periodic input u(·). We discuss this next.

Given a number T > 0, we will say that system (1) is T -periodic if it holds that
f (t + T,x) = f (t,x) ∀t ≥ 0, x ∈ C . Notice that a system ẋ = f (x,u(t)) with input
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u(t) is T -periodic u(t) is itself a periodic function of period T . The basic theoretical
result about periodic orbits is as follows.

Theorem 2. Suppose that:

• C is a closed convex subset of R
n;

• f is infinitesimally contracting with contraction rate c;
• f is T -periodic.

Then, there is a unique periodic solution x̂(t) : [0,∞) → C of (1) of period T and,
for every solution x(t), it holds that |x(t)− x̂(t)| → 0 as t → ∞.

Cascades of contractive systems are again contracting. To state this fact precisely,
let us consider a system of the following form:

ẋ = f (t,x)
ẏ = g(t,x,y)

where x(t) ∈ C1 ⊆ R
n1 and y(t) ∈ C2 ⊆ R

n2 for all t. We write the Jacobian of f with
respect to x as A(t,x) = ∂ f

∂x (t,x), the Jacobian of g with respect to x as B(t,x,y) =
∂g
∂x (t,x,y), and the Jacobian of g with respect to y as C(t,x,y) = ∂g

∂y (t,x,y),
When we say that ẏ = g(t,x,y) is infinitesimally contracting when x is viewed

as a parameter we mean that, with respect to some norm |·|), there is an estimate
μ(C(t,x,y)) ≤ −c2 < 0 for all x ∈ C1, y ∈ C2 and all t ≥ 0.

Theorem 3. Suppose that:

• the system ẋ = f (t,x) is infinitesimally contracting;
• the system ẏ = g(t,x,y) is infinitesimally contracting when x is viewed as a pa-

rameter;
• the mixed Jacobian B(t,x,y) is bounded.

Then, the cascaded system is infinitesimally contracting.

The basic contraction property insures that any solutions of ẋ = f (t,x) exponentially
converge to each other. The following result provides a “robustness margin” that
says that any solution of the original system and any solution of a perturbed system
ẋ = f (t,x)+ h(t) also exponentially converge to each other, provided that h(t) → 0
exponentially. This is a “converging-input converging output” property that provides
a weak type of input-to-state stability.

Theorem 4. Assume that the system ẋ = f (t,x) is infinitesimally contracting. Let
h(t) be a vector function satisfying |h(t)| ≤ Le−kt ∀t ≥ 0 for some k > 0 and L ≥ 0,
Then, there exist constants � > 0 and κ such that the following property holds:
For any solution x(t) = ϕ(t,0,ξ ) of the system ẋ = f (t,x), and any solution z(t) =
ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t),

|x(t)− z(t)| ≤ e−�t (κ + |ξ − ζ |) (4)

for all t ≥ 0.
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In general, the constant κ cannot be dropped from the estimate in Theorem 4. In-
deed, consider this counterexample: compare the solutions x(t) = 0 and z(t) = te−t

of ẋ = −x and ẋ = −x + e−t with ξ = ζ = 0 respectively.
Observe that any solutions of ẋ = f (t,x)+ h1(t) and ẋ = g(t,x)+ h2(t) will also

converge to each other, if h1 and h2 satisfy the properties for h in Theorem 4, since
they both converge to any solution of the system with no h.

3 Proofs of Main Results

Proof of Theorem 1. We give the proof in a generalized form, in which convexity
is replaced by a weaker constraint on the geometry of the space, but the estimate on
trajectories is potentially weaker than in the convex case.

Let K > 0 be any positive real number and assume that a norm in R
n has been

chosen. We will say that a subset C ⊂ R
n is K-reachable if, for any two points x0

and y0 in C there is some continuously differentiable curve γ : [0,1] → C such that:
γ (0) = x0; γ (1) = y0; |γ ′ (r)| ≤ K |y0 − x0| for all r ∈ [0,1]. For convex sets C, we
may pick γ(r) = x0 + r(y0 − x0), so γ ′(r) = y0 − x0 and we can take K = 1. Thus,
convex sets are 1-reachable, and it is easy to show that the converse holds as well.

Note that a set C is K-reachable for some K if and only if the length of a
minimal-length (geodesic) smooth path connecting any two points x and y in C
and parametrized by arc length, is bounded by some multiple K0 of the Euclidean
norm |y − x|2. Indeed, re-parametrizing to a path γ defined on [0,1], we have:
|γ ′ (r)|2 ≤ K0 |y − x|2 . Since in finite dimensional spaces all norms are equivalent, a
suitable K as in the above estimate exists.

Lemma 1. Suppose that C is a K-reachable subset of R
n and that f (t,x) is in-

finitesimally contracting with contraction rate c. Then, for every two solutions
x(t) = ϕ(t,0,ξ ) and z(t) = ϕ(t,0,ζ ) it holds that:

|x(t)− z(t)| ≤ Ke−ct |ξ − ζ | ∀t ≥ 0 . (5)

Observe that Theorem 1 follows trivially from Lemma 1, since for convex sets we
may pick K = 1.

Proof. Given any two points x(0) = ξ and z(0) = ζ in C, pick a smooth curve
γ : [0,1] → C, such that γ (0) = ξ and γ (1) = ζ . Let ψ (t,r) = ϕ(t,0,γ (r)), that
is, the solution of system (1) rooted at ψ (0,r) = γ (r), r ∈ [0,1]. Since ϕ and γ
are continuously differentiable, also ψ (t,r) is continuously differentiable in both
arguments. We define w(t,r) := ∂ψ

∂ r (t,r). It follows that

∂w
∂ t

(t,r) =
∂
∂ t

(
∂ψ
∂ r

)
=

∂
∂ r

(
∂ψ
∂ t

)
=

∂
∂ r

f (ψ (t,r) ,t).

As ∂
∂ r f (ψ (t,r) ,t) = ∂ f

∂x (ψ (t,r) ,t) ∂ψ
∂ r (t,r), ∂w

∂ t (t,r) = J(ψ (t,r) , t)w(t,r), where

J(ψ (t,r) ,t) = ∂ f
∂x (ψ (t,r) ,t). Appealing to Coppel’s inequality (see e.g. [18]), we

have:
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|w(t,r)| ≤ |w(0,r)|e
∫ t

0 μ(J(τ))dτ ≤ K |ξ − ζ |e−ct , (6)

for all x ∈ C, t ≥ 0, and r ∈ [0,1]. By the Fundamental Theorem of Calculus,
we can write ψ (t,1) − ψ (t,0) =

∫ 1
0 w(t,s)ds. Hence, we obtain |x(t)− z(t)| ≤

∫ 1
0 |w(t,s)|ds. Now, using (6), the above inequality becomes:

|x(t)− z(t)| ≤
∫ 1

0

(
|w(0,s)|e

∫ t
0 μ(J(τ))dτ

)
ds ≤ K |ξ − ζ |e−ct .

This completes the proof of the lemma.

We remark that in some cases it might be possible to prove a strict contraction (K =
1) even if the domain is not convex, by appealing to the deeper theory of logarithmic
Lipschitz constants (see [14] for definitions and details). If the (lub) logarithmic
Lipschitz constant M[ f ] of the vector field is −c < 0, then an estimate (3) holds. In
general, M[ f ] is an upper bound on the supremum of μ(J(t,x)), with equality to the
supremum in the convex case.

Proof of Theorem 2. We assume now that the vector field f is T -periodic.

Remark 1. Periodicity implies that the initial time is only relevant modulo T . More
precisely:

ϕ(kT + t,kT,ξ ) = ϕ(t,0,ξ ) (7)

for all positive integers k, all t ≥ 0, and all x ∈ C. Indeed, let z(s) = ϕ(s,kT,ξ ),
s ≥ kT , and consider the function x(t) = z(kT + t) = ϕ(kT + t,kT,ξ ), for t ≥ 0. So,

ẋ(t) = ż(kT + t) = f (kT + t,z(kT + t)) = f (kT + t,x(t)) = f (t,x(t)) ,

where the last equality follows by T -periodicity of f . Since x(0) = z(kT ) =
ϕ(kT,kT,ξ ) = ξ , it follows by uniqueness of solutions that x(t) = ϕ(t,0,ξ ) =
ϕ (kT + t,kT,ξ ), which is (7). As a corollary, we also have that

ϕ(kT + t,0,ξ ) = ϕ(kT + t,kT,ϕ(kT,0,ξ )) = ϕ(t,0,ϕ(kT,0,ξ )) (8)

for all positive integers k, all t ≥ 0, and all x ∈ C, where the first equality follows
from the semigroup property of solutions (see e.g. [15]), and the second one from (7)
applied to ϕ(kT,0,ξ ) instead of ξ .

Define now P(ξ ) = ϕ(T,0,ξ ), where ξ = x(0) ∈ C.

Lemma 2. Pk(ξ ) = ϕ(kT,0,ξ ) for all positive integers k and ξ ∈ C.

Proof. We will prove the Lemma by recursion. In particular, the statement is true
by definition when k = 1. Inductively, assuming it true for k, we have:

Pk+1(ξ ) = P(Pk(ξ )) = ϕ(T,0,Pk(ξ )) = ϕ(T,0,ϕ(kT,0,ξ )) = ϕ(kT + T,0,ξ ).
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Theorem 5. Suppose that:

• C is a closed K-reachable subset of R
n;

• f is infinitesimally contracting with contraction rate c;
• f is T -periodic;
• Ke−cT < 1.

Then, there is an (unique) periodic solution x̂(t) : [0,∞) →C of (1) having period T .
Furthermore, every solution x(t) converges to x̂(t), i.e. |x(t)− x̂(t)| → 0 as t → ∞.

Theorem 2 is a corollary, because the assumption Ke−cT < 1 in Theorem 5 is auto-
matically satisfied when the set C is convex (i.e. K = 1) and the system is infinitesi-
mally contracting.

Proof. Observe that P is a contraction with factor Ke−cT < 1: |P(ξ )− P(ζ )| ≤
Ke−cT |ξ − ζ | for all ξ ,ζ ∈ C, as a consequence of Theorem 1. The set C is a
closed subset of R

n and hence complete as a metric space with respect to the
distance induced by the norm being considered. Thus, by the contraction map-
ping theorem, there is a (unique) fixed point ξ̄ of P. Let x̂(t) := ϕ(t,0, ξ̄ ). Since
x̂(T ) = P(ξ̄ ) = ξ̄ = x̂(0), x̂(t) is a periodic orbit of period T . Moreover, again by
Theorem 1, we have that |x(t)− x̂(t)| ≤ Ke−ct

∣
∣ξ − ξ̄

∣
∣ → 0. Uniqueness is clear,

since two different periodic orbits would be disjoint compact subsets, and hence at
positive distance from each other, contradicting convergence. This completes the
proof.

Notice that, even in the non-convex case, the assumption Ke−cT < 1 can be dropped,
provided that we assert only the existence of (and global convergence to) a unique
periodic orbit, whose period is kT for some integer k > 1. Indeed, the vector field is
also kT -periodic for any integer k. Picking k large enough so that Ke−ckT < 1, we
have the conclusion that such an orbit exists, applying Theorem 5.

Proof of Theorem 3. We assume that the system ẋ = f (t,x) is infinitesimally con-
tracting with respect to a norm |·|1, with contraction rate c1, that is, μ1(A(t,x)) ≤
−c1 for all x ∈ C1 and all t ≥ 0, where μ1 is the matrix measure associated to |·|1,
the system ẏ = g(t,x,y) is infinitesimally contracting with respect to a norm |·|2
with contraction rate c2, when x is viewed as a parameter in the second system,
that is, μ2(C(t,x,y)) ≤ −c2 for all x ∈ C1, y ∈ C2 and all t ≥ 0, where μ2 is the
matrix measure associated to |·|2, and that the mixed Jacobian B(t,x,y) is bounded:
‖B(t,x,y)‖ ≤ k, for all x ∈ C1, y ∈ C2 and all t ≥ 0, for some real number k, where
“‖·‖” is the operator norm induced by |·|1 and |·|2 on linear operators R

n1 → R
n2 .

We need to show that, under these assumptions, the complete system is infinites-
imally contracting. More precisely, pick any two positive numbers ρ1 and ρ2 such

that c1 − ρ2
ρ1

k > 0 and let c := min
{

c1 − ρ2
ρ1

k,c2

}
. We will show that μ(J) ≤ −c,

where J is the full Jacobian: J =
[

A 0
B C

]
, with respect to the matrix measure μ

induced by the following norm in R
n1+n2 : |(x1,x2)| = ρ1 |x1|1 + ρ2 |x2|2 . Since

(I + hJ)x =
[

(I +hA)x1
hBx1 +(I +hC)x2

]
for all h and x, we have that, for all h and x:

|(I + hJ)x| = ρ1 |(I + hA)x1|+ ρ2 |hBx1 +(I + hC)x2|
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≤ ρ1 |I + hA| |x1|+ ρ2 |hB| |x1|+ ρ2 |I + hC| |x2| ,

where from now on we drop subscripts for norms. Pick now any h > 0 and a unit
vector x (which depends on h) such that ‖I + hJ‖ = |(I + hJ)x|. Such a vector x
exists by the definition of induced matrix norm, and we note that 1 = |x| = ρ1 |x1|2 +
ρ2 |x2|2, by the definition of the norm in the product space. Therefore:

1
h

(‖I + hJ‖− 1) =
1
h

(|(I + hJ)x|− |x|)

≤ 1
h

(ρ1 |I + hA| |x1|+ ρ2 |hB| |x1|+ ρ2 |I + hC| |x2|− ρ1 |x1|− ρ2 |x2|)

=
1
h

(
|I + hA|− 1 +

ρ2

ρ1
h |B|

)
ρ1 |x1|+ 1

h
(|I + hC|− 1)ρ2 |x2|

≤ max

{
1
h

(|I + hA|− 1)+
ρ2

ρ1
k ,

1
h

(|I + hC|− 1)
}

,

where the last inequality is a consequence of the fact that λ1a1 +λ2a2 ≤ max{a1,a2}
for any non-negative numbers with λ1 + λ2 = 1 (convex combination of the ai’s).

Now taking limits as h ↘ 0, we conclude that μ(J) ≤ max
{

−c1 + ρ2
ρ1

k,−c2

}
= −c ,

as desired.

Proof of Theorem 4. We first make some general remarks about perturbed systems.
Consider additive perturbations of the system (1) of the following general form:

ẋ = F(x, t) = f (t,x)+ h(t,x) (9)

where the vector field h(t,x) is defined for t ≥ 0 and x ∈ C, with values in R
n, is

differentiable on x, and h(t,x) and its Jacobian H(t,x) = ∂h
∂x (t,x) are both continuous

in (t,x). We have the following simple observation:

Lemma 3. Assume that the system ẋ = f (t,x) is infinitesimally contracting with con-
traction rate c with respect to a norm |·|. Suppose that the Jacobian of the perturba-
tion satisfies:

‖H(t,x)‖ ≤ ch < c (10)

for all t ≥ 0 and all x ∈C. Then, the perturbed system (9) is infinitesimally contract-
ing with respect to the same norm.

Proof. The Jacobian of the new system is J̃(t,x) = J(t,x)+ H(t,x), and:

μ(J̃(x,t)) ≤ μ (J (x,t))+ μ((H (x, t)) ≤ c̃ := −c + ch

by subadditivity of matrix measures and the fact that the norm always upper-bounds
the matrix measure (see for instance [5, page 31]).

Some comments regarding Lemma 3 are as follows. (i) Suppose that h(t,x) does not
depend on x. Then (10) is trivially satisfied (ch = 0). (ii) Suppose that H(t,x) → 0
as t → ∞, uniformly on x ∈ C. Then the system ẋ = F(t − t0,x) is infinitesimally
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contracting. That is, for any two solutions x(t) = ϕ(t,t0,ξ ) and z(t) = ϕ(t,t0,ζ )
of (9) starting at time t0, we have that:

|x(t)− z(t)| ≤ e−c(t−t0) |ξ − ζ | , ∀t ≥ t0 ≥ 0 .

Indeed, by assumption we have that β (t) := supx∈C ‖H (x,t)‖ → 0 , so we can pick
any t0 > 0 so that ch = β (t0) < c. (iii) Consider any two solutions x(t) = ϕ(t,0,ξ )
and z(t) = ϕ(t,0,ζ ) starting at time t = 0. Since x(t) = ϕ(t, t0,x(t0)) and z(t) =
ϕ(t,t0,z(t0)), it follows that x(t)− z(t) → 0 as t → 0 (but not necessarily satisfying
an estimate |x(t)− z(t)| ≤ e−ct |ξ − ζ |).
Lemma 4. Assume that the system ẋ = f (t,x) is infinitesimally contracting with con-
traction rate c with respect to a norm |·|. Suppose that h and its Jacobian H are ex-
ponentially decreasing, in the sense that, for some k > 0: h(t,x)ekt is bounded and∥
∥H(t,x)ekt

∥
∥ ≤ ch < c ∀x ∈ C, ∀t ≥ 0 . Then, there exist constants � > 0 and κ such

that the following property holds: for any solution x(t) = ϕ(t,0,ξ ) of the system
ẋ = f (t,x), and any solution z(t) = ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t,x), the
estimate (4) is valid for all t ≥ 0.

In the special case that h is independent of x, this proves Theorem 4.

Proof. Consider the following auxiliary system, with p ∈ [0,1]:

ṗ = −kp

ẋ = Fp(t, p,x) = f (t,x) + ph(t,x)ekt

viewed as a cascade. The p-subsystem is infinitesimally contracting with respect to
the standard norm in R. The x-subsystem is infinitesimally contracting when p is

viewed as a parameter. Indeed, with: C(t, p,x) = ∂Fp
∂x (t, p,x) = J(t,x)+ pH(t,x)ekt ,

we have that μ(C(t, p,x)) ≤ −c + ch, as earlier. Moreover, the mixed Jacobian

B(t,x,y) = ∂Fp
∂ p (t, p,x) = h(t,x)ekt is bounded, by assumption. It follows from The-

orem 3 that the auxiliary system is also infinitesimally contracting with some rate �,
and the proof of that result shows that this contraction can be established with re-
spect to a norm of the form: |(p,x)| = ρ1 |p|1 + ρ2 |x|2 for some ρ1 > 0 and ρ2 > 0,
where |p|1 denotes the usual norm in R and |x|2 denotes the original norm on x.

Consider now any solution x(t) = ϕ(t,0,ξ ) of the system ẋ = f (t,x) and any
solution z(t) = ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t,x).

Introduce X(t) := (0,x(t)) and Z(t) := (e−kt ,z(t)). It is clear that X(t) and
Z(t) are the solutions of the auxiliary system corresponding to initial conditions
X(0) = (0,ξ ) and Z(0) = (1,ζ ) respectively. Because the auxiliary system is in-
finitesimally contracting, |X(t)− Z(t)| ≤ e−�t |X(0)− Z(0)| for all t ≥ 0, where
|X(t)− Z(t)| = ρ1e−kt + ρ2 |x(t)− z(t)|2 and |X(0)− Z(0)| = ρ1 + ρ2 |ξ − ζ |2 . So
ρ2 |x(t)− z(t)|2 ≤ e−�t (ρ1 + ρ2 |ξ − ζ |2) . Dividing by ρ2 and dropping the subscript
for norms, we have (4) with κ = ρ1/ρ2.
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4 Synchronization

We remark here on the use of contraction theory to show synchronization of coupled
systems, based on the introduction of “virtual dynamics” by Slotine and collabora-
tors (see for example [12]). For simplicity of notation, we consider time-invariant
dynamics, but the same considerations apply to time-dependent vector fields.

Suppose that we have two diffusion-interconnected identical systems:

ẏ = f (y)+ γ(z)− γ(y)
ż = f (z)+ γ(y)− γ(z)

where we think of γ as a coupling law and assume that γ is globally Lipschitz. Typ-
ically, γ is linear, so that γ(z)− γ(y) = D(z− y) for a matrix D (which is often a di-
agonal matrix). For example, suppose that the systems are linear: ẏ = Ay+D(z− y)
and ż = Az + D(y − z). Each system is individually (when D = 0) asymptotically
stable if and only A is a Hurwitz matrix (all eigenvalues have negative real part).
Using a change of variables (y,z) �→ (y − z,y + z), we may bring this system to a
block-diagonal form with blocks A−2D and A, and thus it is clear that the intercon-
nected system is asymptotically stable if and only both A and A − 2D are Hurwitz
matrices. Moreover, the same proof (the first block corresponds to y− z) shows that
for synchronization (y(t)− z(t) → 0) it is enough that A − 2D be a Hurwitz matrix.

For general, not necessarily linear systems, if the system ẋ = f (x) is infinitesi-
mally contracting, then the decoupled systems (obtained when γ = 0) each satisfies
that all solutions converge to each other.

More interestingly, a synchronization result can be established as follows. Con-
sider the following “virtual system”:

ẋ = f (x)− 2γ(x)+ h(t) (11)

(a different system results for each fixed input h(·)) and suppose that the vector
field f − 2h is infinitesimally contracting. Take a particular solution (y(t),z(t)) of
the coupled system. Then, y(t) and z(t) are two solutions of (11), when we pick
h(t) = γ(y(t)) + γ(z(t)). It follows that |z(t)− y(t)| ≤ e−ct → 0 for some c > 0,
showing that the y and z subsystems synchronize. Observe that this fact did not
require the contractivity of f , but only that of f − 2γ .

Still for this solution (y(t),z(t)) of the coupled system, we now define h(t) =
γ(z(t)) − γ(y(t)). Using the assumption that γ is globally Lipschitz, we have that
|w(t)| ≤ M |z(t)− y(t)| ≤ Me−ct , for some constant M. Now, if f is contracting,
we note that the equation satisfied by y is ẋ = f (x)+ h(t). As h(t) is exponentially
convergent to zero, Theorem 4 implies that y(t)− x(t) → 0 as t → ∞ for every so-
lution of the system ẋ = f (x). Pick any one particular such solution x0(·). Then,
y(t)− x0(t) → 0. We may repeat this argument for an arbitrary (y(t),z(t)), always
comparing to the same x0(·). In summary, we have the following conclusion: if
both f and f − 2η are infinitesimally contracting (not necessarily with respect to
the same norm), then all solutions of the coupled system converge to the diagonal
solution (x0(t),x0(t)).
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The preceding considerations make the following question natural: when does
contractivity of f (which is sufficient to provide a stability property for the isolated
systems) already imply contractivity of f − 2γ (so that synchronization to the un-
coupled solutions occurs)?

We provide next a condition for the case when every Jacobian D = D(x) of γ(x)
is a diagonal non-negative definite matrix. The question is, then, for the Jacobians
A = J(x): when does μ(A) ≤ c imply that also μ(A − 2D) ≤ c?

Recall that a norm on R
n is said to be monotonic or “axis oriented” if the fol-

lowing property holds for any two vectors in R
n: |yi| ≤ |xi| ⇒ |y| ≤ |x| . The usual

norms (L2, L1, L∞) are monotonic, as is any new norm of the type |x|P = |Px| for a
diagonal positive definite matrix P, if |·| is monotonic.

Theorems 2 and 3 of [2] say that the following properties are equivalent: (1) the
norm is monotonic, (2) |x| depends only on the absolute values of the components
of x, and (3) the associated operator norm satisfies that ‖E‖ = max j{E j j} for any
diagonal matrix E . So ‖I − hD‖ = max j{1−hD j j} = 1−hdii for some i, which im-
plies that (1/h)(‖I − hD‖− 1) = −dii and thus μ(D) = dii ≤ 0. From subadditivity
of matrix measures, we conclude that, for monotonic norms, μ(A + D) ≤ μ(A) ≤ c
and thus, for monotonic norms, we get contractivity of f − 2γ from that of f .
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Dissipativity and Stability Analysis Using
Rational Quadratic Differential Forms

Kiyotsugu Takaba

Abstract. This paper is concerned with analysis of linear dynamical systems using
rational quadratic differential forms (rational QDFs). The rational QDF is devised
for the purpose of less conservative analysis in the behavioral system theory. We
study the dissipativity of a linear system with respect to a supply rate defined by
a rational QDF . Based on this analysis, a stability condition of an interconnected
system is derived as a behavioral version of the passivity theorems with rational
multipliers or scaled small gain theorem.

1 Introduction

We often encounter the situation of studying quadratic functionals which describe
Lyapunov functions, energy functions, performance measures, etc. In particular,
such quadratic functionals play crucial roles in the stability analysis of intercon-
nected systems and robust control designs. Recent attempts in this direction in the
feedback control framework include the integral quadratic constraints (IQCs) [3]
and the quadratic separators [2]. These approaches utilize the quadratic functionals
which involve dynamic scaling or frequency-dependent weighting matrices in order
to reduce the conservativeness.

On the other hand, in the behavioral system theory pioneered by J. C. Willems
(see e.g. the textbook [6]), such quadratic functionals are treated as quadratic dif-
ferential forms (QDFs) that are typically characterized in terms of polynomial ma-
trices [10]. The QDFs have been applied to a number of control problems such
as LQ-optimal control [12], H∞ control [9, 11, 1], Lyapunov stability [4], stability
analysis of interconnections [5, 13, 7], etc. However, as observed at the beginning
of this section, we often need a more general formulation of QDFs to obtain less
conservative results.
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In this paper, we will introduce a generalized formulation of QDFs in terms of ra-
tional matrices [8]. We call such a QDF a rational QDF. By using the rational QDFs,
we will investigate the dissipativity of a linear time-invariant dynamical system, and
then derive a condition for the stability of an interconnected system consisting of
two controllable linear systems. The resulting stability condition is a generalization
of the well-known small gain and passivity theorems.

2 Linear Differential Systems

We first review some preliminaries from the behavioral system theory.
Throughout this paper, we are interested in a linear time-invariant dynamical sys-

tem which admits a kernel representation

R

(
d
dt

)
w = 0, R(ξ ) = R0ξ + R1ξ 2 + · · ·+ RL−1ξ L−1 + RLξ L ∈ R

•×w[ξ ] (1)

where w ∈ C∞(R,Rw) is the system variable. The behavior B is the set of all tra-
jectories which meet the dynamic laws of the system. In the case of (1), B is given
by B = kerR( d

dt ) = {w ∈ C∞(R,Rw)| R( d
dt )w = 0}. We will hereafter identify a dy-

namical system with its behavior for simplicity of exposition. We also denote by L w

the family of linear differential behaviors with w-dimensional system variable. Of
course, the kernel representation of a given B is not unique. The kernel representa-
tion R( d

dt )w = 0 is called minimal, if the number of rows in R(ξ ) is minimal among
all polynomial matrices inducing the kernel representations of the same system.

The system B is said to be asymptotically stable if ‖w(t)‖ → 0 (t → +∞) holds
for all w ∈ B. B = kerR( d

dt ) is asymptotically stable iff R(λ ) has full column rank
for all λ ∈ C+ := {λ ∈ C : Reλ ≥ 0}.

If B ∈ L w is controllable, it admits an image representation

w = M( d
dt )�, M ∈ R

w×l[ξ ] (2)

In this case, B = imM( d
dt ) = { w ∈ C∞(R,Rw) | ∃� ∈ C∞(R,Rl) s.t. w = M( d

dt )� }.
We can always choose an observable image representation in which M(ξ ) is right
prime, i.e. M(λ ) has full column rank for all λ ∈ C.

In order to define a quadratic differential form using a rational matrix, we will
need a rational representation of B ∈ L w. Along the line of Willems and Ya-
mamoto [14], we introduce the rational representation of a linear time-invariant
differential behavior as follows. Let G(ξ ) belong to R

v×w(ξ ). Then, the solution
of the “differential” equation G( d

dt )w− v = 0 is defined as follows:

[[
(w,v) satisfies G( d

dt )w− v = 0.
]] ⇔ [[

X( d
dt )w = Y ( d

dt )v
]]

(3a)

⇔∃z ∈ C∞(R,Rw) s.t.

[
v
w

]
=

[
N( d

dt )
D( d

dt )

]
z, (3b)

where the left and right coprime factorizations of G(ξ ) over R[ξ ] are given by
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G(ξ ) = X−1(ξ )Y (ξ ) = N(ξ )D−1(ξ ), (4)

X ∈ R
v×v[ξ ], Y ∈ R

v×w[ξ ],

N ∈ R
v×w[ξ ], D ∈ R

w×w[ξ ].

Consider the situation where w is arbitrarily given and v is determined from
G( d

dt )w− v = 0. Then, G( d
dt ) defines a point-to-set map as

G( d
dt ) : w �→{

v | X( d
dt )v = Y ( d

dt )w
}

=
{

v = N( d
dt )z

∣∣ D( d
dt )z = w

}
(5)

Of course, if G(ξ ) is a polynomial matrix, G( d
dt ) defines a point-to-point map from

C∞(R,Rw) to C∞(R,Rv).

3 Quadratic Differential Form Defined by a Rational Matrix

We start this section with the original definition of a quadratic differential form
given in terms of a polynomial matrix [10].

A quadratic differential form (QDF) QΦ is defined as a quadratic form of some
variables and their derivatives, that is

QΦ : C∞(R,Rw) → C∞(R,R), w �→ QΦ(w) :=
k

∑
i=0

k

∑
j=0

(
diw
dti

)	
Φi j

(
d jw
dt j

)
,

where Φi j ∈ R
w×w and Φ	

ji = Φi j (i, j = 0,1, . . . ,k). Obviously, QΦ has one-to-one
correspondence with a symmetric two-variable polynomial matrix

Φ(ζ ,η) =
k

∑
i=0

k

∑
j=0

ζ iη jΦi j ∈ R
w×w[ζ ,η ],

where ζ and η correspond to the differentiation on w	 and w, respectively. For the
detail of QDFs defined by polynomial matrices, the reader is recommended to refer
to Willems and Trentelman [10].

Let Φ ∈ R
w×w[ζ ,η ] be factored as

Φ(ζ ,η) =M	(ζ )ΣM(η), M ∈ R
v×w[ξ ], Σ ∈ R

v×v, detΣ 
= 0. (6)

Then, the QDF QΦ is equivalently expressed as

Qφ (w) = v	Σv, v = M( d
dt )w. (7)

In the similar way to (6) and (7), we generalize the definition of a QDF in terms of
a symmetric two-variable rational matrix. We call a symmetric two-variable rational
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matrix Φ ∈ R
w×w(ζ ,η) factorizable if there exist a rational matrix G ∈ R

v×w(ξ ), a
symmetric constant matrix Σ ∈ R

v×v and v ∈ N such that

Φ(ζ ,η) = G	(ζ )ΣG(η), detΣ 
= 0. (8)

We make the following assumption throughout this section.

Assumption 1. The two-variable rational matrix Φ ∈ R
w×w(ζ ,η) is symmetric, fac-

torizable and admits a factorization of (8).

Definition 1. [8] Under Assumption 1, the rational QDF QΦ induced by Φ ∈
R
w×w(ζ ,η) is the point-to-set map defined by

QΦ : w �→ QΦ(w) :=
{

s ∈ C∞(R,R)
∣
∣∣∃v ∈ G( d

dt )w s.t. s = v	Σv
}

(9)

where the map G( d
dt ) is defined as in (5).

It can be verified that the rational QDF QΦ is well-defined in the sense that it is
uniquely defined regardless of the choice of the factorization (8).

Let the right coprime factorization of G(ξ ) over R[ξ ] be given by G(ξ ) =
N(ξ )D−1(ξ ). Then, we see from (3b) that v ∈ G( d

dt )w is equivalent to the exis-
tence of z ∈ C∞(R,Rw) satisfying v = N( d

dt )z and w = D( d
dt )z. Hence, the rational

QDF QΦ can be rewritten as

QΦ(w) =
{

QΞ (z)
∣
∣ w = D( d

dt )z
}

, (10)

where QΞ is the polynomial QDF induced by Ξ(ζ ,η) = N(ζ )	ΣN(η).
In the following, we summarize the calculus of rational QDFs [8].
For two factorizable symmetric matrices Φ1, Φ2 ∈ R

w×w(ζ ,η), there holds

QΦ1+Φ2(w) ⊂ QΦ1(w)+ QΦ2(w) ∀w ∈ C∞(R,Rw). (11)

We introduce the notation
•

Φ (ζ ,η) := (ζ + η)Φ(ζ ,η). Then, the relation be-
tween QΦ and Q •

Φ
is given by

Q •
Φ

(w)=
{

r ∈ C∞(R,R)
∣∣∃s ∈ QΦ (w) s.t. r = d

dt s
}

. (12)

We say that QΦ or Φ(ζ ,η) is nonnegative, denoted by Φ ≥ 0, if

s(t) ≥ 0 ∀t ∈ R, ∀s ∈ QΦ(w), ∀w ∈ C∞(R,Rw).

A necessary and sufficient condition for the nonnegativity of the rational QDF QΦ
is that there exists a K ∈ R

•×w(ξ ) satisfying

Φ(ζ ,η) = K	(ζ )K(η).
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Definition 2. [8] (i) QΦ is called average nonnegative if
∫ ∞

−∞
s(t)dt ≥ 0 ∀s ∈ QΦ (w)∩D, ∀w ∈ C∞(R,Rw)..

(ii) QΦ is called average nonnegative on R− if

∫ 0

−∞
s(t)dt ≥ 0 ∀s ∈ QΦ(w)∩D, ∀w ∈ C∞(R,Rw).

Necessary and sufficient conditions for the average nonnegativity of QΦ is given by
the following theorem.

Theorem 1. [8] Let Φ ∈ R
w×w(ζ ,η) satisfy Assumption 1. Then, the following state-

ments are equivalent.

(i) QΦ is average nonnegative (on R−).
(ii) There exists a symmetric factorizable rational matrix Ψ ∈ R

w×w(ζ ,η) such that

•
Ψ −Φ ≤ 0 (and Ψ ≥ 0). (13)

(iii) There exist a (nonnegative) symmetric factorizable rational matrix Ψ ∈
R
w×w(ζ ,η) and a rational matrix F ∈ R

•×w(ξ ) such that

Φ(ζ ,η) = (ζ + η)Ψ(ζ ,η)+ F	(ζ )F(η). (14)

Moreover, among the solutions to (13), (14), there exists (Ψ ,F) such that F(ξ )D(ξ )
and D	(ζ )Ψ (ζ ,η)D(η) are polynomial matrices for the right coprime factors
(N,D) of G(ξ ) in (8).

4 Dissipativity Analysis

In this section, we define the dissipativity of a linear differential system in terms of
rational QDFs, and derive necessary and sufficient conditions for the dissipativity.

Definition 3. A linear behavior B ∈ L w is called dissipative with respect to QΦ if
∫ ∞

−∞
s(t)dt ≥ 0 ∀s ∈ QΦ(w)∩D, ∀w ∈ B.

B is called dissipative on R− with respect to QΦ if

∫ 0

−∞
s(t)dt ≥ 0 ∀s ∈ QΦ(w)∩D, ∀w ∈ B.

If we view s(t) as the supply rate (instantaneous energy flow) into the system B,
the above definition describes the situation that the net energy supplied to B from
its environment through the “multiplier” G( d

dt ) over R (R−) is nonnegative, namely
the system dissipates the supplied energy. It should be noted that, since the supply
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rate s(t) depends on the initial state of the multiplier G( d
dt ), s ∈ QΦ(w) is not unique

for a given trajectory w ∈ B.

Theorem 2. Let Φ ∈ R
w×w(ζ ,η) be symmetric and factorizable. Let B ∈ L w be

a controllable behavior whose observable image representation is given by w =
M( d

dt )�, M ∈ R
w×l[ξ ]. Then, the following statements are equivalent.

(i) B is dissipative (on R−) with respect to QΦ .
(ii) There exists a symmetric factorizable rational matrix Ψ ∈ R

w×w(ζ ,η) such that

•
Ψ −Φ

B≤ 0 (and Ψ
B≥ 0). (15)

(iii) There exist a (nonnegative) symmetric factorizable rational matrix Ψ̂ ∈
R
w×w(ζ ,η) and a rational matrix F̂ ∈ R

•×w(ξ ) such that

M(ζ )	Φ(ζ ,η)M(η) = (ζ + η)Ψ̂(ζ ,η)+ F̂	(ζ )F̂(η). (16)

In view of the equivalence (i)⇔(iii) in the above theorem, we immediately obtain
the following corollary.

Corollary 1. Let a rational matrix Φ ∈ R
w×w(ζ ,η) be symmetric and factorizable.

If B is dissipative on R− with respect to QΦ , then there holds

M(λ̄ )	Φ(λ̄ , λ )M(λ ) ≥ 0 for almost all λ ∈ C+ (17)

Proof of Theorem 2. For the limited space, we only give a proof for the dissipativity
w.r.t. QΦ .

(i)⇒(iii): Since QΦ(w) ⊇ QMT ΦM(�) holds for the solution of w = M( d
dt )�, the

dissipativity w.r.t. QΦ implies the average nonnegativity of QM	ΦM . It thus follows
from Theorem 1 that there exist a symmetric factorizable matrix Ψ̂ ∈ R

w×w(ζ ,η)
and F̂ ∈ R

•×w(ξ ) satisfying (16).
(iii)⇒(ii): Suppose that there exist a symmetric factorizable matrix Ψ̂(η ,η)

and F̂(ξ ) satisfying (16). Since M(ξ ) is right prime, there exist rational matri-
ces Ψ(ζ ,η), F(ξ ) and X(ζ ,η) such that Ψ̂(ζ ,η) = M	(ζ )Ψ (ζ ,η)M(η), F̂(ξ ) =
F(ξ )M(ξ ), and (16) reduces to

(ζ + η)Ψ(ζ ,η)− Φ(ζ ,η) = −F(ζ )	F(η)+ X(η ,ζ )	R(η)+ R(ζ )	X(ζ ,η),

where R ∈ R
•×w[ξ ] induces the kernel representation of B (R(ξ )M(ξ ) = 0). Since

B = kerR( d
dt ), it can be shown from the above equation that, for w ∈ B, there hold

Q •
Ψ−Φ

(w) = QΔ (w), Δ(ζ ,η) := −F(ζ )	F(η) ≤ 0.

This implies that
•

Ψ −Φ is nonpositive along B.

(ii)⇒(i): Let
•

Ψ (ζ ,η) and Φ(ζ ,η) be factored as
•

Ψ (ζ ,η) = G1(ζ )	Σ1G1(η)
and Φ(ζ ,η) = G2(ζ )	Σ2G2(η). Moreover, we introduce the right coprime fac-

torization over R[ξ ] as

[
G1(ξ )
G2(ξ )

]
=

[
N1(ξ )
N2(ξ )

]
D̂(ξ )−1. Since Ψ (ζ ,η) is factorizable
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and since N1(ζ )	Σ1N1(η) = (ζ + η)D̂(ζ )	Ψ(ζ ,η)D̂(η) is a polynomial matrix,
Ξ(ζ ,η) := D̂(ζ )	Ψ(ζ ,η)D̂(η) is also a polynomial matrix. Thus, in the same way
as (10), Q •

Ψ−Φ
(w) is expressed as

Q •
Ψ−Φ

(w) =
{

QN	
1 Σ1N1−N	

2 Σ2N2
(z)| D̂( d

dt )z = w
}

=
{

Q(ζ+η)Ξ (z)− QN	
2 Σ2N2

(z)| D̂( d
dt )z = w

}

=
{

d
dt

QΞ (z)− QN	
2 Σ2N2

(z)| D̂( d
dt )z = w

}

This implies that (15) is equivalent to

d
dt

QΞ (z)(t)− QN	
2 Σ2N2

(z)(t) ≤ 0 ∀t ∈ R, ∀z ∈ D̂−1( d
dt )w, ∀w ∈ B. (18)

Integrating this inequality from t = −∞ to +∞ yields
∫ ∞

−∞
QN	

2 Σ2N2
(z)(t)dt ≥ 0 ∀z ∈ (D̂−1( d

dt )w)∩D, ∀w ∈ B. (19)

Since N2(ξ ) and D̂(ξ ) are not right coprime in general, there holds

QΦ(w) ⊆
{

QN	
2 Σ2N2

(z)
∣
∣
∣ D̂( d

dt )z = w
}

.

That is, for any s ∈ QΦ(w), there exists z ∈ D̂−1( d
dt )w satisfying s = QN2Σ2N2(z).

Therefore, we conclude that (19) implies
∫ ∞

−∞
s(t)dt ≥ 0 ∀s ∈ QΦ(w)∩D, ∀w ∈ B.

This completes the proof of Theorem 2. ��
It should be noted that (18) is a version of dissipation inequality. In fact, QΞ (z) and
s = QN	

2 Σ2N2
(z) serve as the storage function and the supply rate, respectively, and

the inequality in (18) means that the rate of change of the stored energy QΞ (z) in the
system B and the multiplier G2( d

dt ) does not exceed the supply rate QN	
2 Σ2N2

(z).

5 Stability Analysis of Interconnected System

Consider the interconnection of two controllable linear systems B, B′ ∈ L w de-
picted in Fig. 1. Suppose that the behaviors B and B′ are defined by

B =
{

w ∈ C∞(R,Rw)
∣
∣∃� ∈ C∞(R,Rl) s.t. w = M( d

dt )�
}

B′ =
{

w′ ∈ C∞(R,Rw)
∣
∣∃�′ ∈ C∞(R,Rm) s.t. w′ = L( d

dt )�
′ }
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B

w = w′

B′� � �

QΦ

Fig. 1 Stability analysis of interconnected system

where M ∈ R
w×l[ξ ] and L ∈ R

w×m[ξ ]. Without loss of generality, we assume that the
image representations of both systems are observable, i.e. M(λ ) and L(λ ) have full
column rank for all λ ∈ C.

By equating w ∈ B and w′ ∈ B′, the interconnection B∩B′ is defined as

B∩B′ =
{

w ∈ C∞(R,Rw)
∣
∣∃�, �′ s.t. w = M( d

dt )� = L( d
dt )�

′ }
. (20)

It is easily seen that B∩B′ is asymptotically stable , i.e. ‖w(t)‖ → 0 (t → +∞) for
all w ∈ B∩B′, if and only if

[
M(λ ) − L(λ )

]
has full column rank for all λ ∈ C+.

The next theorem is the behavioral version of the passivity theorem with rational
multipliers and the scaled small gain theorem for a linear interconnected system.

Theorem 3. Assume that a symmetric rational matrix Φ ∈ R
w×w(ζ ,η) has the fac-

torization of (8), and that G(ξ ) has no poles in the closed right-half plane. The
interconnection B ∩ B′ is asymptotically stable if the following conditions are
satisfied.

(i) B is dissipative on R− with respect to QΦ−εI for some constant ε > 0.

(ii) B′ is dissipative on R− with respect to Q−Φ .

Proof. From Corollary 1, the condition (i) implies

M(λ̄ )	Φ(λ̄ , λ )M(λ ) ≥ εM(λ̄ )	M(λ ) ∀λ ∈ C+. (21)

Similarly, it follows from (ii) that

−L(λ̄ )	Φ(λ̄ , λ )L(λ ) ≥ 0 ∀λ ∈ C+. (22)

To prove the asymptotic stability of B∩B′, we have only to show that M(λ )x =
L(λ )y, λ ∈ C+ implies (x,y) = (0,0).

Multiplying (21) with x∗ and x yields

x∗M(λ̄ )	Φ(λ̄ , λ )M(λ )x ≥ ε‖M(λ )x‖2 (23)

Multiplying (22) with y∗ and y yields

−y∗L(λ̄ )	Φ(λ̄ ,λ )L(λ )y ≥ 0 (24)
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Since M(λ )x = L(λ )y, summing up (23) and (24) yields ε‖M(λ )x‖2 = 0. Hence,
we get M(λ )x = L(λ )y = 0. Since both M(λ ) and L(λ ) are of full column rank
by observability assumption, we obtain (x,y) = (0,0). Therefore, we conclude that
B∩B′ is asymptotically stable. ��
We conclude this section with another study of Theorem 3 in terms of the inequality
(15). By Theorem 2, the conditions (i), (ii) in Theorem 3 ensure that there exist
factorizable rational matrices Ψ , Θ ∈ R

w×w(ζ ,η) such that

•
Ψ −Φ + εI

B≤ 0, Ψ
B≥ 0 (25)

•
Θ +Φ

B′
≤ 0, Θ

B′
≥ 0 (26)

Let q ∈ QΨ+Θ (w) be given for w ∈ B ∩ B′. Since QΨ+Θ (w) ⊆ QΨ (w) + QΘ (w)
from (11), it follows from the second inequalities of (25) and (26) that QΨ+Θ is
nonnegative along B∩B′. Hence, q(t) is nonnegative for all t ∈ R.

We also see from (11) that Q •
Ψ+

•
Θ

(w) ⊆ Q •
Ψ−Φ+εI

(w) + Q •
Θ+Φ

(w) + Q−εI(w).

Hence, there exist s ∈ Q •
Ψ−Φ+εI

(w) and r ∈ Q •
Θ+Φ

(w) such that d
dt q = s+r−ε‖w‖2,

where s(t) ≤ 0, r(t) ≤ 0 ∀t hold from the first inequalities of (25) and (26). In
summary, we obtain

d
dt q(t)+ ε‖w(t)‖2 ≤ 0, q(t) ≥ 0 ∀t ∈ R, ∀q ∈ QΨ+Θ (w). (27)

Since q(t) is nonnegative for all t, by integrating the above inequality, we obtain

∫ T

0
‖w(t)‖2dt ≤ ε−1 ≤ q(0).

Therefore, we conclude that w ∈ B∩B′ is L2-bounded under the conditions (i), (ii).
Additionally, it turns out that q ∈ QΨ+Θ (w) serves as a Lyapunov function for B. In
fact, it is easily seen from (25), (26) that q ∈ QΨ+Θ (w) represents the total energy
stored in B∩B′, and hence (27) means that the energy function q ≥ 0 decays to its
steady-state value as times goes to infinity.

6 Conclusions

The rational QDF allows less conservative analysis of dynamical systems in the
behavioral framework. An important feature of a rational QDF is that it is a point-
to-set map unlike polynomial QDFs. In this paper, we have studied the dissipativity
of a linear differential system by using rational QDFs. Based on this analysis, we
have derived a behavioral version of the passivity theorem with rational multipliers
or the scaled small gain theorem for the stability of an interconnected system.
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On Behavioral Equivalence of Rational
Representations

Harry L. Trentelman

Abstract. This article deals with the equivalence of representations of behaviors of
linear differential systems. In general, the behavior of a given linear differential sys-
tem has many different representations. In this paper we restrict ourselves to kernel
representations and image representations. Two kernel representations or image rep-
resentations are called equivalent if they represent one and the same behavior. For
kernel representations defined by polynomial matrices, necessary and sufficient con-
ditions for equivalence are well-known. In this paper, we deal with the equivalence
of rational representations, i.e. kernel and image representations that are defined in
terms of rational matrices.

1 Introduction

It is a major pleasure and an honor to contribute this article to this book on the
occasion of the sixtieth birthday of Yutaka Yamamoto. Recently, Yutaka has been
working on the issue of representation of system behaviors. This has resulted in an
article, together with Jan C. Willems, in which the very useful concept of rational
representation of behaviors was introduced and studied, see [12]. It is the subject of
rational representations of behaviors that will also be the topic of the present article.

Indeed, an important issue in the behavioral approach to systems and control is
the issue of representation. In the behavioral approach, a system is defined in terms
of its behavior, which is the set of all time trajectories that are compatible with
the laws of the system (see [5]). In the context of linear, finite-dimensional, time-
invariant systems this leads to the concept of linear differential system. A linear
differential system is defined to be a system whose behavior is equal to the set of
solutions of a finite number of higher order, linear, constant coefficient differential
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equations. This set of differential equations is then called a representation of the
behavior, often called a kernel representation. It is well known that the behavior of
a given linear differential system admits many different kinds of representations.
Apart from higher order linear differential equations, the behavior of a linear dif-
ferential system can be represented for example in terms of finite-dimensional state
space models, possibly (but not necessarily) even distinguishing between inputs and
outputs (see [5], [10], [9]). Also, if it is controllable, it can be represented as the
image of a polynomial differential operator (we then speak of an image representa-
tion). Traditionally, kernel and image representations of linear differential systems
involve polynomial matrices. Recently, in [12], the concept of rational representa-
tion was defined and elaborated, extending the class of representations to kernel,
hybrid, and image representations involving rational matrices.

As noted above, a given linear differential system admits many different represen-
tations. Two representations are called equivalent if they represent one and the same
behavior. The issue of equivalence of representations of behaviors has been studied
before, in an input-output framework in [6], [7], [4], [13], [2], and [1], and in a be-
havioral framework in [5], [10], [8], and [3]. In the present paper, we will study the
equivalence of kernel representations and image representation in terms of rational
matrices. In particular, we consider the question how the rational matrices appearing
in equivalent rational kernel representations and rational image representations are
related.

The outline of this article is as follows. In the remainder of this section we will
introduce the notation, and review some basic material on polynomial and rational
matrices. In Section 2 we will review linear differential systems and their polyno-
mial and rational kernel and image representations. Section 3 deals with rational
annihilators of a given behavior, and their application to the problem of equivalence
of polynomial and rational kernel representations. Finally, in section 4 we will con-
sider the equivalence of polynomial and rational image representations.

As announced, first a few words about the notation and nomenclature used. We
use the standard symbols for the fields of real and complex numbers R and C. C

−
will denote the open left half complex plane. We use R

n, R
n×m, etc. for the real

linear spaces of vectors and matrices with components in R. C∞(R,Rw) denotes the
set of infinitely often differentiable functions from R to R

w. We use the notation
det(A), to denote the determinant of a square matrix A.

R(ξ ) will denote the field of real rational functions in the indeterminate ξ . The
following subrings of R(ξ ) will play a role is this paper. In the first place, as usual,
R[ξ ] will denote the ring of polynomials in the indeterminate ξ with real coef-
ficients. Then, R(ξ )P will denote the subring of R(ξ ) of all proper real rational
functions, i.e. all real rational functions of the form n/d with n,d ∈ R[ξ ] such that
deg(n) ≤ deg(d). Next, R(ξ )S will denote the subring of R(ξ ) of all stable real
rational functions, i.e. all real rational functions of the form n/d with n,d ∈ R[ξ ]
and d Hurwitz, i.e.. all roots of d lie in the open left half complex plane C

−. Fi-
nally, R(ξ )PS will denote the subring of R(ξ ) of all proper and stable real rational
functions, i.e. R(ξ )PS := R(ξ )P ∩R(ξ )S.
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We will use R(ξ )n,R(ξ )n×m, R[ξ ]n,R[ξ ]n×m, R(ξ )nP, R(ξ )n×m
P , etc. for the spaces

of vectors and matrices with components in R(ξ ), R[ξ ], R(ξ )P, R(ξ )S and R(ξ )PS,
respectively. If one, or both, dimensions are unspecified, we will use the notation
R(ξ )•×m, R(ξ )n×• or R(ξ )•×•, etc. Elements of R(ξ )n×m are called real rational
matrices, elements of R[ξ ]n×m are called real polynomial matrices.

Definition 1. A real polynomial matrix R ∈ R[ξ ]n×m is called left prime over R[ξ ]
if it has a polynomial right inverse, i.e. if there exists a real polynomial matrix M ∈
R[ξ ]m×n such that RM = I. R ∈ R[ξ ]n×m is called right prime over R[ξ ] if it has a
polynomial left inverse, i.e. if there exists a real polynomial matrix M ∈ R[ξ ]m×n

such that MR = I. A square polynomial matrix U ∈ R[ξ ]n×n is called unimodular if
it is invertible and its inverse is again a polynomial matrix (equivalently: det(U) is
a nonzero constant).

Definition 2. A proper real rational matrix R ∈ R(ξ )n×m
P is called left prime over

RP(ξ ) if it has a proper right inverse, i.e. if there exists a proper real rational matrix
M ∈ R(ξ )m×n

P such that RM = I. A stable real rational matrix R ∈ R(ξ )n×m
S is called

left prime over RS(ξ ) if it has a stable right inverse, i.e. if there exists a stable real
rational matrix M ∈ R(ξ )m×n

S such that RM = I. A proper stable real rational matrix
R ∈ R(ξ )n×m

PS is called left prime over R(ξ )PS if it has a proper stable right inverse,
i.e. if there exists a proper real rational matrix M ∈ R(ξ )m×n

PS such that RM = I. In the
same way, the notion of right primeness over these various subrings can be defined.

Equivalent characterizations of left and right primeness can be found in [12].

2 Linear Differential Systems

In this section we will review the basic material on linear differential systems and
their polynomial and rational representations.

In the behavioral approach to linear systems, a dynamical system is given by
a triple Σ = (R,Rw,B), where R is the time axis, R

w is the signal space, and the
behavior B is a linear subspace of C∞(R,Rw) consisting of all solutions of a set of
higher order, linear, constant coefficient differential equations. Such a triple is called
a linear differential system. The set of all linear differential systems with w variables
is denoted by Lw.

For any linear differential system Σ = (R,Rw,B) there exists a real polynomial
matrix R with w columns, i.e. R ∈ R[ξ ]•×w, such that B is equal to the space of
solutions of

R( d
dt )w = 0. (1)

If a behavior B is represented by R( d
dt )w = 0 (or: B = ker(R)), with R(ξ ) a real

polynomial matrix, then we call this a polynomial kernel representation of B. If R
has p rows, then the polynomial kernel representation is said to be minimal if ev-
ery polynomial kernel representation of B has at least p rows. A given polynomial
kernel representation, B = ker(R), is minimal if and only if the polynomial matrix
R has full row rank (see [5, Theorem 3.6.4]). The number of rows in any mini-
mal polynomial kernel representation of B, denoted by p(B), is called the output
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cardinality of B. This number corresponds to the number of outputs in any in-
put/output representation of B. For a detailed exposition of polynomial representa-
tions of behaviors, we refer to [5].

Recently, in [12], representations of linear differential systems using rational
matrices instead of polynomial matrices were introduced. In [12], a meaning was
given to the equation R( d

dt )w = 0, where R(ξ ) is a given real rational matrix. In
order to do this, we need the concept of left coprime factorization over R[ξ ].

Definition 3. Let R be a real rational matrix. The pair of real polynomial matrices
(P,Q) is called a left coprime factorization of R over R[ξ ] if

1. det(P) �= 0,
2. R = P−1Q,
3. the matrix (P(λ ) Q(λ )) has full row rank for all λ ∈ C.

A meaning to the equation
R( d

dt )w = 0, (2)

with R(ξ ) a real rational matrix is then given as follows: Let (P,Q) be a left coprime
factorization of R over R[ξ ]. Then we define:

Definition 4. Let w ∈ C∞(R,Rw). Then we define w to be a solution of (2) if it
satisfies the differential equation Q( d

dt )w = 0.

It can be proven that the space of solutions defined in this way is independent of
the particular left coprime factorization. Hence (2) represents the linear differential
system Σ = (R,Rw,ker(Q)) ∈ Lw.

Since the behavior B of the system Σ is the central item, often we will speak
about the system B ∈ Lw (instead of Σ ∈ Lw). If a behavior B is represented by
R( d

dt )w = 0 (or: B = ker(R)), with R(ξ ) a real rational matrix, then we call this a
rational kernel representation of B. If R has p rows, then the rational kernel repre-
sentation is called minimal if every rational kernel representation of B has at least p
rows. It can be shown that a given rational kernel representation B = ker(R) is min-
imal if and only if the rational matrix R has full row rank. As in the polynomial case,
every B ∈ Lw admits a minimal rational kernel representation. The number of rows
in any minimal rational kernel representation of B is equal to the number of rows in
any minimal polynomial kernel representation of B, and therefore equal to p(B),
the output cardinality of B. In general, if B = ker(R) is a rational kernel representa-
tion, then p(B) = rank(R). This follows immediately from the corresponding result
for polynomial kernel representations (see [5]).

In this paper we will also use the notion of right coprime factorization over R[ξ ]:

Definition 5. Let R be a real rational matrix. The pair of matrices (M,P) is called a
right coprime factorization of R over R[ξ ] if

1. det(P) �= 0,
2. R = MP−1,

3. the matrix

(
M(λ )
P(λ )

)
has full column rank for all λ ∈ C.
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Definition 6. A behavior B ∈ Lw is said to be controllable, if for all w1,w2 ∈ B,
there exists T ≥ 0, and w ∈ B, such that w(t) = w1(t) for t ≤ 0, and w(t) = w2(t −T )
for t ≥ T . It is stabilizable, if for every w ∈ B, there exists w′ ∈ B such that w′(t) =
w(t) for t ≤ 0, and limt→∞ w′(t) = 0.

The subset of Lw of all controllable behaviors is denoted by Lw
cont. Clearly, if B ∈

Lw
cont then it is stabilizable.
It is well-known that a behavior B ∈ Lw is controllable if and only if there exists

a real polynomial matrix M ∈ R[ξ ]w×• such that

B = {w ∈ C∞(R,Rw) | there exists � ∈ C∞(R,R•) such that w = M( d
dt )� } (3)

The representation (3) is called a polynomial image representation of B, and we
will write B = im(M). It can be shown that the polynomial matrix M can be cho-
sen of full column rank. Even more, M can be chosen to be right prime over R[ξ ],
equivalently, M(λ ) has full column rank for all λ ∈ C. In that case, in (3) the la-
tent variable � is uniquely determined by the manifest variable w, and the image
representation is called observable.

In [12], also the concept of rational image representation was introduced. We
will give a brief review here. Let H(ξ ) be a real rational matrix , and consider the
equation

w = H( d
dt )�. (4)

Of course (4) should be interpreted as

(
I − H( d

dt )
)
(

w
�

)
= 0,

in the context of (2). If H = D−1N is a left coprime factorization over R[ξ ] then
D−1 (D − N) is a left coprime factorization of (I − H) and therefore (w, �) satisfies
(4) if and only if D( d

dt )w = N( d
dt )�. For a given B ∈ Lw, the representation

B = {w ∈C∞(R,Rw) | there exists � ∈ C∞(R,R•) such that w = H( d
dt )� }, (5)

with H ∈ R(ξ )w×•, is called a rational image representation. In that case, we write
B = im(H). It was shown in [12] that B ∈ Lw admits a rational image representation
if and only if it is controllable.

3 Equivalence of Kernel Representations

In [12], several results on the representation of linear differential systems using
rational matrices over the rings R(ξ )P, R(ξ )S and R(ξ )PS were obtained. Given
B ∈ Lw, by definition it admits a polynomial kernel representation R( d

dt )w = 0, with
R ∈ R[ξ ]•×w. A basic result from [12] states that any B ∈ Lw also admits a rational
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kernel representation R( d
dt )w = 0, with R proper and stable, i.e. R ∈ R(ξ )•×w

PS (see
[12, Proposition 2]). Furthermore we quote Theorem 5 from [12]:

Theorem 1. Let B ∈ Lw. Then we have:

1. There exists R ∈ R(ξ )•×w
P , left prime over R(ξ )P, such that B is represented by

R( d
dt )w = 0.

2. There exists R ∈ R(ξ )•×w
S , left prime over R(ξ )S, such that B is represented by

R( d
dt )w = 0 if and only if B is stabilizable.

3. There exists R ∈ R(ξ )•×w
PS , left prime over R(ξ )PS, such that B is represented by

R( d
dt )w = 0 if and only if B is stabilizable.

4. There exists R ∈ R[ξ ]•×w, left prime over R[ξ ], such that B is represented by
R( d

dt )w = 0 if and only if B is controllable.

A basic issue in the behavioral theory is the equivalence of representations. Two
representations are called equivalent if they represent one and the same behavior.
Conditions for two minimal polynomial kernel representations to be equivalent are
well known (see [5, Theorem 3.6.4]):

Proposition 1. Let B1,B2 ∈ Lw. Let R1,R2 ∈ R[ξ ]•×w be such that R1( d
dt )w =

0 and R2( d
dt )w = 0 are minimal polynomial kernel representations of B1 and

B2 respectively. Then B1 = B2 if and only if there exists a unimodular poly-
nomial matrix U such that R2 = UR1.

In the sequel we want to address the question how this result can be extended to
rational kernel representations.

First, from [12, Section 7], we recall the concepts of polynomial and rational
annihilators of a given behavior. Here, we introduce the notion of R-annihilator,
where R is any of the three subrings R(ξ )PS, R(ξ )P or R(ξ )S of R(ξ ):

Definition 7. Let B ∈ Lw.

1. n ∈ R[ξ ]1×w is called a polynomial annihilator of B if n( d
dt )w = 0 for all w ∈ B.

2. n ∈ R(ξ )1×w is called a rational annihilator of B if n( d
dt )w = 0 for all w ∈ B.

3. Let R denote any of the subrings R(ξ )PS, R(ξ )P or R(ξ )S of R(ξ ). Any rational
annihilator n ∈ R1×w of B is called an R-annihilator of B.

We denote the set of polynomial annihilators of B ∈ Lw by B⊥R[ξ ] . The set of ra-
tional anihilators of B is denoted by B⊥R(ξ ) . For any of the subrings R = R(ξ )PS,
R(ξ )P or R(ξ )S, the set of R-annihilators is denoted by B⊥R . It is a well-known
result that for B ∈ Lw, B⊥R[ξ ] is a finitely generated submodule of the R[ξ ]-module
R[ξ ]1×w. Moreover, if B = ker(R) is a minimal polynomial kernel representation,
then this submodule is generated by the rows of R. In the context of rational repre-
sentations one needs to impose controllability:
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Theorem 2. Let R denote any of the subrings R(ξ )PS, R(ξ )P or R(ξ )S.

1. Let B ∈ Lw. Then B⊥R(ξ ) is a subspace of the R(ξ )-linear vector space R(ξ )1×w

if and only if B is controllable. In that case, if R( d
dt )w = 0 is a minimal rational

kernel representation of B, then the rows of R form a basis of B⊥R(ξ ) .
2. Let B ∈ Lw be controllable, and represented by R( d

dt )w = 0, where R ∈ R•×w

is left prime over R. Then B⊥R is a submodule of the R-module R1×w, and the
rows of R form a basis of B⊥R .

Proof. 1.) The first statement is the content of statement 1 of theorem 11 in [12].
Let R = P−1Q be a left coprime factorization over R[ξ ] of R. Then B = ker(Q)
is a minimal polynomial kernel representation. Let n ∈ B⊥R(ξ ) . Then by Def. 7,
n( d

dt )w = 0 for all w ∈ B. Let n = u−1v be a left coprime factorization of n over
R[ξ ]. Then by definition we have n( d

dt )w = 0 for all w ∈ B if and only if v( d
dt )w = 0

for all w ∈ B. Thus, by Def. 7, v ∈ B⊥R[ξ ] . Consequently, there exists a l ∈ R[ξ ]1×•
such that v = lQ. Hence n = u−1v = u−1lQ = (u−1lP)(P−1Q) = (u−1lP)R. Define
m := u−1lP. Then we have n = mR. Hence the rows of R span the subspace B⊥R(ξ )

of the R(ξ )-linear vector space R(ξ )1×w. Finally, as B = ker(R) is a minimal ra-
tional kernel representation, the rows of R are linearly independent over R(ξ ). We
conclude then that these rows form a basis of B⊥R(ξ ) .

2.) If B is controllable, then B⊥R forms a submodule of the R-module R1×w.
This can be proven along the same lines as the proof of Theorem 11 in [12].

Let R = P−1Q be a left coprime factorization over R[ξ ] of R. Then B = ker(Q)
is a minimal polynomial kernel representation. Let n ∈ B⊥R . Then by Def. 7,
n( d

dt )w = 0 for all w ∈ B. Let n = u−1v be a left coprime factorization of n over R[ξ ].
Then v( d

dt )w = 0 for all w ∈ B. Thus, by Def. 7, v ∈ B⊥R[ξ ] . Consequently, there
exists a l ∈ R[ξ ]1×• such that v = lQ. Hence n = u−1v = u−1lQ = (u−1lP)(P−1Q) =
(u−1lP)R. Define m := u−1lP. Then we have

n = mR. (6)

As R is left prime over R, there exists M ∈ Rw×• such that RM = I. Multiplying (6)
on both sides with M we obtain nM = mRM = m. As n ∈ R1×w and M ∈ Rw×•, we
conclude that m ∈ R1×•. Hence the rows of R span the submodule B⊥R . Finally, as
B = ker(R) is a minimal rational kernel representation, the rows of R are linearly
independent over R(ξ ) so also over R. We conclude then that these rows form a
basis of B⊥R . 
�
The following theorem addresses the question under what conditions two minimal
rational kernel representations represent the same controllable behavior:

Theorem 3. Let B1,B2 ∈Lw
cont. Let R1,R2 ∈ R(ξ )•×w be such that R1( d

dt )w =
0 and R2( d

dt )w = 0 are minimal rational kernel representations of B1 and B2
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respectively. Then B1 = B2 if and only if there exists a square, nonsingular
rational matrix W such that R1 = WR2.

Proof. As B1 = B2 we have B
⊥R(ξ )
1 = B

⊥R(ξ )
2 =: L. From Lemma 2, the rows of

R1 and R2 both form a basis for the subspace L of R(ξ )1×w. Then, from basic linear
algebra, there exists a square, nonsingular rational matrix W such that R1 = WR2.

Conversely, let R1 = P−1
1 Q1, R2 = P−1

2 Q2 be left coprime factorizations over
R[ξ ] of R1 and R2. Let W = LM−1 be a right coprime factorization over R[ξ ] of
W . Then both L and M are nonsingular. By definition we have B1 = ker(Q1) and
B2 = ker(Q2). Then,

R1 = W R2 ⇐⇒ P−1
1 Q1 = LM−1P−1

2 Q2

⇐⇒ L−1P−1
1 Q1 = M−1P−1

2 Q2

⇐⇒ (P1L)−1Q1 = (P2M)−1Q2.

Since B1 and B2 are controllable behaviors both Q1(λ ) and Q2(λ ) have full row
rank for all λ ∈ C. This implies that (P1L Q1)(λ ) and (P2M Q2)(λ ) have full row
rank for all λ ∈ C. Define R̃ := (P1L)−1Q1 = (P2M)−1Q2. This displays two left
coprime factorizations of R̃, so B1 = ker(Q1) = ker(Q2) = B2. 
�
Next, we address the question under which conditions two minimal rational kernel
representations over any of the subrings R =R(ξ )PS, R(ξ )P or R(ξ )S represent one
and the same controllable behavior. In this case we have:

Theorem 4. Let B1,B2 ∈ Lw
cont. Let R1,R2 ∈ R•×w be left prime over R, and

such that R1( d
dt )w = 0 and R2( d

dt )w = 0 are minimal rational kernel represen-
tations of B1 and B2 respectively. Then B1 = B2 if and only if there exists
a square, nonsingular real rational matrix W ∈ R•×•, with W −1 ∈ R•×• such
that R1 = WR2.

Note that W ∈ R•×• in the above theorem should hence have an inverse which is
again an element of R•×•. This condition can be restated as saying that W should
be a unimodular element of R•×•. In particular, for the ring R(ξ )PS, W should be
bi-proper and bi-stable, for the ring R(ξ )P, W should be bi-proper, and for the ring
R(ξ )S, W should be bi-stable.

Proof. As B1 = B2 we have B
⊥R
1 = B

⊥R
2 =: M. From Lemma 2, the rows of R1

and R2 both form a basis for the module M. Then from the theory of modules we
conclude that there exists a square, nonsingular real rational matrix W ∈ R•×• with
W−1 ∈ R•×•, such that R1 = WR2.
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The proof of the converse is similar to the corresponding part of the proof of
Theorem 3. 
�

4 Equivalence of Image Representations

As noted in Section 2, a given behavior B ∈ Lw admits a polynomial image rep-
resentation if and only it is controllable. In fact, we quote Theorem 9 from [12]:

Theorem 5. Let B ∈ Lw. Let R be any of the three subrings R(ξ )PS, R(ξ )P or
R(ξ )S of R(ξ ). Then the following statements are equivalent

1. B is controllable,
2. B admits a polynomial image representation,
3. B admits a polynomial image representation B = im(M) with M ∈ R[ξ ]w×• right

prime over R[ξ ],
4. B admits a rational image representation,
5. B admits a rational image representation B = im(M) with M ∈ Rw×• right

prime over R.

We will now study the problem of equivalence of image representations. For this,
the following result will be useful. The result states that right coprime factorization
of a rational image representation leads to a polynomial image representation.

Lemma 1. Let B ∈ Lw
cont. Let H ∈ R(ξ )w×• be such that B = im(H). Let H = MP−1

be a right coprime factorization over R[ξ ]. Then B =im(M).

Proof. Let H = D−1N be a left coprime factorization over R[ξ ]. It is well-known

that ker(D N) = im

(
M
−P

)
. Thus we obtain

B = {w ∈ C∞(R,Rw) | ∃� such that D( d
dt )w = N( d

dt )�}

= {w ∈ C∞(R,Rw) | ∃�,�′ such that

(
w
�

)
=

(
M( d

dt )
−P( d

dt )

)
�′}

= {w ∈ C∞(R,Rw) | ∃�′ such that w = M( d
dt )�

′}. 
�
We will now first study the question under which conditions two polynomial image
representations are equivalent, i.e. represent the same behavior.

Theorem 6. 1. Let B1,B2 ∈ Lw
cont. Let M1,M2 ∈ R[ξ ]w×• have full column

rank, and be such that B1 = im(M1) and B2 = im(M2). Then B1 = B2

if and only if there exists a nonsingular rational matrix R such that M2 =
M1R.

2. Let B1,B2 ∈ Lw
cont. Let M1,M2 ∈ R[ξ ]w×• be right prime over R[ξ ], and

such that B1 = im(M1) and B2 = im(M2). Then B1 = B2 if and only if
there exists a unimodular polynomial matrix U such that M2 = M1U.
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Proof. We first prove the ’only if’ part of statement 2. By right primeness, both
M1(λ ) and M2(λ ) have full column rank for all λ ∈ C, so correspond to observable
image representations. From B1 = B2 it follows that also the orthogonal comple-
ments coincide, i.e. B⊥

1 = B⊥
2 (see [11]). By observability we have B⊥

i = ker(M∼
i ),

where M∼
i (ξ ) := M�

i (−ξ ) (i = 1,2). By Proposition 1 there exists a unimodular
polynomial matrix V such that M∼

2 = VM∼
1 . This implies M2 = M1U , with U := V∼

again unimodular.
Next, we prove the ’only if’ part of statement 1. Both M1 and M2 have full col-

umn rank. Hence, we can factorize Mi = MiRi, with Mi right prime over R[ξ ] and
Ri a nonsingular polynomial matrix (i = 1,2). By nonsingularity, Ri( d

dt ) is surjec-
tive, and therefore im(Mi) = im(Mi) (i = 1,2). Consequently, B1 = B2 implies
im(M1) = im(M2). Then, by the ’only if’ part of statement 2, there exists a uni-
modular polynomial matrix U such that M2 = M1U . This implies M2 = M1R, with
R := R−1

1 UR2.
Finally we prove the ’if’ part of statement 1. Assume that M2 = M1R with R a

nonsingular rational matrix. Let R = KL−1 be a right coprime factorization of R over
R[ξ ]. Then we have M2L = M1K, with K and L nonsingular polynomial matrices.
Again by surjectivity of L( d

dt ) and K( d
dt ), we obtain B1 = im(M1) = im(M1K) =

im(M2L) = im(M2) = B2. This also proves the ’if’ part of statement 2. 
�
Next, we consider controllable behaviors represented by rational image representa-
tions.

Theorem 7. Let B1,B2 ∈ Lw
cont. Let H1,H2 ∈ R(ξ )w×• have full column rank,

and be such that B1 = im(H1) and B2 = im(H2). Then B1 = B2 if and only
if there exists a nonsingular rational matrix R such that H2 = H1R.

Proof. Let Hi = MiP
−1
i be a right coprime factorization over R[ξ ]. Then by Lemma

1, Bi = im(Mi) (i = 1,2). By Theorem 6, B1 = B2 implies that there exists a non-
singular rational matrix R such that M2 = M1R. Thus H2 = H1R, with R := P1RP−1

2
nonsingular. Conversely, if H2 = H1R then M2 = M1P−1

1 RP2. Then, by Theorem 6,
im(M1) = im(M2) so B1 = B2. 
�
The above results immediately yield the following:

Theorem 8. Let R be any of the subrings R(ξ )PS, R(ξ )P or R(ξ )S of R(ξ )
Let B1,B2 ∈ Lw

cont. Let H1,H2 ∈ Rw×• be right prime over R, and such that
B1 = im(H1) and B2 = im(H2). Then B1 = B2 if and only if there exists a
nonsingular rational matrix R ∈ R•×•, with R−1 ∈ R•×•, such that H2 = H1R.
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Proof. Assume that B1 = B2. By Theorem 7 there exists a nonsingular rational ma-
trix R such that H2 = H1R, so also H1 = H2R−1. There exist left inverses H+

1 ,H+
2 ∈

R•×w of H1 and H2, respectively. This yields R = H+
1 H2 and R−1 = H+

2 H1, both
in R•×•. 
�
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Modeling and Stability Analysis of Controlled
Passive Walking

Kentaro Hirata

Abstract. In this article, modeling and stability analysis issues of controlled passive
walking are discussed. On this memorable occasion of Professor Yamamoto’s 60th
birthday, it is shown that this research is deeply influenced by his pioneering works
on various aspects of infinite-dimensional systems theory.

1 Introduction

As the state-of-art biped walking by robots are widely recognised, research interests
for more advanced energy-efficient walking are growing [1, 4, 15, 24, 25]. One pos-
sible approach is to investigate a phenomenon called as Passive Dynamic Walking
(PDW).

Although decades have passed since the pioneering work by McGeer [17], still
the fact that such simple mechanical links without any control can walk down the
slope like a human has been fascinating us. In terms of their experiments, the au-
thors of [20] employed a novel non-invasive feedback control scheme to reduce the
sensitivity to the initial values and to realize the original steady-state periodic mo-
tion “as is” at the same time. What they did is to apply a constant torque during the
current step based on the difference of the past two successive step lengths. Based
on the observation that this is a discrete-time version of so-called delayed feedback
control [19], we started to investigate its continuous-time counterpart.

Note that its dynamical behaviour is highly complex from nonlinear, hybrid and
infinite-dimensional nature of the phenomenon considered. However, by introduc-
ing a Piecewise Affine (PWA) approximation of the walker dynamics during the
single support phase, the error dynamics against the original passive walking pat-
tern is represented by a kind of convolution operator in which the effects of initial
values and discontinuous state jumps are taken into consideration.

Kentaro Hirata
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Since it is shown that the spectral radius of this operator determines the stability
of the periodic orbit, the next natural question is how to compute it via numerical
procedures. We justify the computation via he fast sample and fast hold approxima-
tion by using the basic facts from the perturbation theory.

2 Piecewise Affine Dynamical Model for Passive Walking

For example, consider a compass walker on a slope as depicted in Fig. 1. Let the
point masses at the hip and the toes, the length of the leg, and the slope angle are
denoted by M, m, �, and γ , respectively. The angles between the stance leg and the
normal vector of the slope and between two legs are denoted by θ and φ , respec-
tively. Let τφ be the torque applied at the ankle. By assuming that the mass of each
link and the friction at the hip joint are negligible, the dynamics during the single
support phase is given by

Mφ

[
θ̈
φ̈

]
+
[

ml2 sin φ(2φ̇ − θ̇)φ̇
−ml2 sinφ θ̇ 2

]
+
[

gθ
gφ

]
=
[

0
τφ

]
, (1)

Mφ =
[

Ml2 + 2ml2(1 − cosφ) −ml2(1 − cosφ)
−ml2(1 − cosφ) ml2

]
,

gφ = −mgl sin(θ − φ − γ),

gθ = −Mgl sin(θ − γ)− τφ − sin(θ − γ)}.

Following [3], we simplify this model through the normalization (g = � = 1) and
an assumption on idealized mass ratio (m/M → 0). Further, by assuming that the
angles and the angular velocities involved are small, we linearize it. With the state
vector

x =
[

θ θ̇ φ φ̇
]T

,

and the control input u = τφ , the dynamics of the single support phase (1) is ex-
pressed as

ẋ(t) = Ax(t)+ Bu(t)+ b, x(0+) = x0, (2)

m

m

l

M

φ
θ

γ

Fig. 1 Walker configuration
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A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
1 0 −1 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
−1
0

−1

⎤

⎥
⎥
⎦ , b =

⎡

⎢
⎢
⎣

0
−γ
0

−γ

⎤

⎥
⎥
⎦ . (3)

For the time being, let u(t) ≡ 0. The contact condition of the swing leg against the
ground is given by

cx(t) = 0, (4)

with
c =

[−2 0 1 0
]
. (5)

Let τ0 be the time when (4) is satisfied1 and set x f = x(τ0), φ f = φ(τ0). The
conservation of the angular momentum just before and after the collision yields the
following instantaneous state transition rule2:

x(τ0+) = R(x f )x(τ0), (6)

where R(·) is a matrix valued function of α = [α1 α2 α3 α4]
T given by

R(α) =

⎡

⎢
⎢
⎣

−1 0 0 0
0 cosα3 0 0

−2 0 0 0
0 1 − cosα3 0 0

⎤

⎥
⎥
⎦ . (7)

Let S(α) = R(α)α . Since (6) implies

R(x f )x(τ0) = [R(α)α]α=x f
= [S(α)]α=x f

,

its Taylor expansion around x f is given by

S(x f + Δx f ) � R(x f )x f + R(x f )Δx f +
[

∂R(α)x f

∂α

]

α=x f

Δx f . (8)

Thus
S(x f + Δx f ) = x(τ0+)+ R̄Δx f , (9)

R̄ = R(x f )+
[

∂R(α)x f

∂α

]

α=x f

, (10)

1 Implicitly, the case that the next collision never happen, such as the walker falls down, is
excluded. Also as usual, ”the scuffing” is ignored [3, 4, 17].

2 By this transition, the angular velocities become discontinuous. One should note that the
angles are also discontinuous in this model since the stance leg and the swing leg exchange.
We can avoid the latter discontinuity by taking the angles of left and right legs as the state
variables. However, in that case, we must have two dynamical equations for the single
support phase in contrast to the current situation with only (1).
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can be used for the linearized perturbation analysis while (6) is required for the
analysis of the equilibrium point and the dynamical simulations. From (7), (10) is
given as

R̄ =

⎡

⎢
⎢
⎣

−1 0 0 0
0 β 0 0

−2 0 0 0
0 1 − β 0 0

⎤

⎥
⎥
⎦ , (11)

where β = cosφ f − θ̇ f sinφ f .
Thus we have a set of equations describing the motion of PDW as

ẋ(t) = Ax(t)+ b, x(0+) = x0,
cx(τ0) = 0,
x(τ0+) = R(x(τ0))x(τ0).

(12)

The existence of a period-one orbit is equivalent to that of an initial value x∗
0

results in
x(τ0+) = x∗

0. (13)

Suppose that there is an initial condition x∗
0 corresponds to a period-one orbit and

cv �= 0 for
v = Ax f + b. (14)

The latter one is the same as the transversality condition for more general case [4].
Now x f = x(τ0) satisfying x0 = R(x f )x f is an equilibrium point on the contact plane
cx = 0. A perturbation Δx added to x f at (just before) a collision results in a deviation
Δx+1from x f at the next collision. This is the so-called Poincaré map. A linearized
Poincaré map associated with PWA model of PDW is given by

P =
(

I − vc
cv

)
eAτ0R̄. (15)

The structure is similar to the one obtained in [23]. See [12] for details.
For γ = 0.009, there exists a period-one orbit with τ0 = 3.768 and

x f =
[−0.2 −0.218 −0.4 0.002

]T
. (16)

Corresponding linearized Poincaré map (15) is given by

P =

⎡

⎢⎢
⎣

−4.88 5.16 −0.50 0
−5.56 5.80 −0.56 0
−9.77 10.3 −1.01 0
−26.4 23.2 −2.19 0

⎤

⎥⎥
⎦ .

Since P is contractive, this period-one orbit is locally stable.
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Recently, the internal stabilizing mechanism of the passive dynamic walking is
also investigated based on the model description (12) [11, 21, 22].

3 Delayed Feedback Control

Consider a nonlinear system

ẋ(t) = f (x(t))+ u(t),
y(t) = cx(t), (17)

and suppose that (17) with u ≡ 0 has an unstable τ-periodic orbit, say y∗. If y∗ is
known explicitly, the control law

u(t) = K [y(t)− y∗(t)] , (18)

might work for its stabilization. However, since y∗ is an unstable periodic orbit, it is
difficult to obtain it a-priori in general. Pyragas proposed the following alternative
controller structure in [19] for this stabilization:

u(t) = K [y(t)− y(t − τ)] . (19)

From (19), it is obvious that u → 0 as y → y∗. Thus it is an ideal “non-invasive” way
of stabilization. This characteristic is also suitable when we intend to enhance the
stability of nominal periodic motions of the passive walker.

Note 1. The Laplace transform of the controller (19) contains 1 − e−τs, the recipro-
cal of the internal model 1

1−e−τs which appears in the repetitive controller. Thus the
role of poles and zeros on the unit circle are alternating in each control structure.
This symmetric property may be interesting besides the fact that both are using the
time delay in the control structure effectively for the compensation of periodicity.
Through the joint works such as [5, 6, 7, 18, 29], Professor Yamamoto contributed
to the development of the repetitive control theory.

Now consider the trajectory of the passive walker starting from x∗
0. Let x∗(t), t ∈

[0,τ0] be the nominal trajectory. We are interested in the effect of the perturbations
against x∗(τ0) and x∗(·) on the future trajectory. Let the time of the k-th state jump
be tk (t0 = 0), τk := tk − tk−1 and

xk
1 = x(tk), xk

2(ξ ) = x(tk−1 + ξ ), ξ ∈ [0,τk]. (20)

Define the deviation from the nominal trajectory by

Δxk
1 = xk

1 − x∗(τ0), Δxk
2(ξ ) = xk

2(ξ )− x∗(ξ ), ζ ∈ [0,τk].

According to the division of x(·), the control input u(·) is also divided as

uk(ξ ) := u(tk−1 + ξ ), ξ ∈ [0,τk]. (21)
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If we apply the following DFC-like feedback control3

uk(ξ ) = K[xk(ξ )− xk−1(ξ )], ξ ∈ [0,τk], (22)

then the corresponding local error dynamics is governed by
[

Δxk+1
1

Δxk+1
2 (·)

]
= F

[
Δxk

1
Δxk

2(·)
]
, k ≥ 0, (23)

where the operator F on Z = Rn ⊕{L2[0,τ0]}n is defined as

F z =

[
QeĀτ0

{
R̄z1 − ∫ τ0

0 e−Āξ B̄z2(ξ )dξ
}

eĀ·R̄z1 − ∫ ·
0 eĀ(·−ξ )B̄z2(ξ )dξ

]

, z =
[

z1

z2(·)
]
, (24)

with Q = I − vc
cv , Ā = A + BK and B̄ = BK. (See [13] for details.)

Note 2. The operation in (20) which converts x(·) into {xk
2(·)} is nothing but a lift-

ing. As is well understood, now lifting is a standard and familiar mathematical
tool commonly used in our field for the analysis of periodically time-varying sys-
tems. Undoubtedly it is a major influence of the seminal work [28] by Professor
Yamamoto, a function space approach to sampled-data control systems.

If we remove the effect of the state jump from (24), i.e., set Q and R̄ to be iden-
tity matrices, then the operator F represents the state transition of retarded delay-
differential equation (DDE)

ẋ(t) = F0x(t)− F1x(t − r), (25)

where F0 = Ā, F1 = B̄, and r = τ0. By introducing the following artificial input and
output as

ẋ(t) = F0x(t)− F1x(t − r)+ u(t), y(t) = x(t), (26)

one can consider an input/output map related to DDE (25). Since this input/output
map is contained in the class of pseudo-rational, this realization problem is within
the scope of [26, 27, 30]. While it gives the continuous-time abstract differential
equation on M2 space (see e.g., [2]), the state transition operator (24) is its discrete-
time counterpart.

4 Stability Analysis and Numerical Computation

Let σ(T ) and rσ (T ) denote the spectrum and the spectral radius of the operator T ,
respectively. It can be shown that the zero solution of

zk+1 = F zk

or, alternatively, the nominal periodic orbit x∗(·) under DFC is stable if and only if
rσ (F ) < 1 [10]. Thus we need to compute rσ (F ). Let us partition F compatibly
with z as

3 It is assumed that we extrapolate xk−1(·) when τk−1 < τk.
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F z =
[

F11 F12

F21 F22

][
z1

z2(·)
]
. (27)

We see that
[
F11 F12

]
is compact because its range is a finite-dimensional space.

Also
[
F21 F22

]
is, since it is a finite-rank perturbation of a Volterra operator on

L2[0,τ0]. Consequently, F becomes compact and every nonzero λ ∈ σ(F ) is an
eigenvalue of F . As shown in [13], the eigenvalues of F correspond to the roots of
transcendental equation

f (λ ) :=
∣∣
∣R̄Qe{A−(1−1/λ )BK}τ0 − λ I

∣∣
∣= 0. (28)

Then numerical methods for root finding based on the local search (such as New-
ton’s method) can be used to find an eigenvalue, but not the whole set of eigenvalues.
This is why we attempt to discretize F via a certain finite-dimensional approxima-
tion to obtain estimated distribution of eigenvalues.

Given N ∈ N, let SN and HN denote the sampling and the ZOH operators with
the sampling period τ0/N, respectively. Then, a rectangular approximation of z2(·)
part in the output of F yields

F̃N = H̃NS̃NF (29)

where

H̃N =
[

I 0
0 HN

]
, S̃N =

[
I 0
0 SN

]
.

This is the fast sampling and fast hold (FSFH) approximation of F . One can give
a mathematical justification for the spectral computation based on this discretiza-
tion scheme similarly to [31], where the numerical computation of the frequency
response for sampled-data systems is considered.

Let ΔN denote the difference between F and F̃N , i.e.,

F̃N = F + ΔN ,

and Dδ = {s ∈ C; |s| > δ}. For δ > 0, the spectrum of F outside of Dδ constitute
a finite system of eigenvalues in the sense of [16] and is continuous against the
perturbation ΔN if it is generalized convergent. Consider the family of functions
Φz := {φz| z ∈ U} with

φz =
[
F21 F22

]
z,

U = {z| z ∈ Z ,‖z‖Z = 1}, ‖z‖Z = ‖z1‖Rn +‖z2(·)‖{L2[0,h]}n .

As in [31], uniform equicontinuity of Φz is essential to prove that ‖ΔN‖ → 0 as
N → ∞ [10]. By exchanging the order of the operators in (29), one can derive a
matrix representation for FN = S̃NFH̃N as
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FN =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

QW NR QW N−1V · · · · · · QV
R̄ 0 · · · · · · 0

WR̄ V
. . .

...
...

...
. . .

. . .
...

W N−1R̄ W N−2V · · · V 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

, (30)

where

W = eĀτ0 , V = −
∫ τ0

0
eĀ(τ−ξ )B̄dξ . (31)

In [14], the numerical procedure described above is applied to the stability analysis
of experiments with real robot [20].

Example 1. As mentioned earlier, F with Q = R̄ = I represents the state evolution
of DDE of type (25). Let us consider the stability of

ẋ(t) = −1/2x(t)− x(t − h). (32)

It corresponds the closed-loop stability of the block diagram in Fig. 2 with G(s) =
2/(2s+ 1). Since the phase margin of G( jω) is π/3 at ω =

√
3/2, the closed-loop

system is stable for h ∈ [0,4
√

3π/9]. We verify the numerical accuracy of the com-
putation of σ(F ) via the eigenvalues of FN with Ā = −1/2, B̄ = −1, τ0 = 4

√
3π/9.

Table 1 shows the first 6 eigenvalues of FN for each N. Note that the eigenvalues
are sorted by the modulus in descending order. As guaranteed mathematically, each
eigenvalue approaches to a point in σ(F ) as N → ∞.

G(s)

e−hs

Fig. 2 Retarded delay-differential system

Table 1 Eigenvalues of FN

z1,z2 z3,z4 z5,z6 z7,z8, . . .

N = 100 −0.494±0.872 j 0.011±0.311 j 0.019±0.173 j · · ·
N = 200 −0.497±0.869 j 0.005±0.309 j 0.013±0.172 j · · ·
N = 400 −0.499±0.868 j 0.002±0.309 j 0.010±0.172 j · · ·
N = 800 −0.499±0.867 j 0.000±0.308 j 0.008±0.172 j · · ·
N = 1600 −0.500±0.866 j −0.001±0.308 j 0.008±0.171 j · · ·
true value −1/2±√

3/2 j −0.001±0.308 j 0.007±0.171 j · · ·
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However, in contrast to the frequency response, i.e., the singular value case, the
convergence of the spectrum computation in terms of the number of the division N is
relatively slow. This fact motivates the following subsequent works; application of
modified FSFH approximation [8], relaxation of causality of the hold operator [9].

5 Conclusions

This article illustrates modeling and stability analysis issues of controlled passive
walking via delayed feedback. The author received his Ph.D. degree under the su-
pervision of Professor Yutaka Yamamoto twelve years ago. I would like to express
my sincere gratitude for his passionate education and life-long influence. I hope I
can learn even a little about the scholarship from my Master Y, as a padawan learns
a lot about Jedi from Master Yoda in Star Wars.

References

1. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-
dynamic Walkers. Science 307, 1082–1085 (2005)

2. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems The-
ory. Springer, Heidelberg (1995)

3. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stabil-
ity, complexity, and scaling. ASME Journal of Biomech. Eng. 120(2), 281–288 (1998)

4. Grizzle, J., Abba, G., Plenstan, F.: Asymptotically stable walking for biped robots: anal-
ysis via systems with impulse effects. IEEE Trans. Automat. Control 46, 51–64 (2001)

5. Hara, S., Yamamoto, Y.: Stability of repetitive control systems. In: Proc. 24th IEEE
CDC, pp. 326–327 (1985)

6. Hara, S., Yamamoto, Y.: Stability of multivariable repetitive control systems — stability
condition and characterization of stabilizing controllers. Trans. SICE 22, 1256–1261
(1986) (in Japanese)

7. Hara, S., Yamamoto, Y., Omata, T., Nakano, M.: Repetitive control system — a new-type
servo system. IEEE Trans. Autom. Control 33, 659–668 (1988)

8. Hagiwara, T., Hirata, K.: Fast-lifting approach to the computation of the spectrum of
retarded time-delay systems. In: Proc. ECC 2009 (2009)

9. Hirata, K., Itokazu, A., Hagiwara, T.: On numerical computation of the spectrum of a
class of integral operators via non-causal hold discretization. In: Proc. of IFAC-TDS
2009 (2009)

10. Hirata, K.: On numerical computation of the spectrum of a class of convolution operators
related to delay systems. Trans. ISCIE 21(3), 82–88 (2008) (in Japanese)

11. Hirata, K.: On Internal stabilizing mechanism of passive dynamic walking. In: Proc.
SICE SI Division Annual Conf. (2008)

12. Hirata, K., Kokame, H.: Stability analysis of linear systems with state jump and effect
of feedback control. Trans. ISCIE 17(12), 553–560 (2004) (in Japanese)

13. Hirata, K., Kokame, H.: Delayed feedback control of linear systems with state jump.
Trans. ISCIE 18(3), 118–125 (2005) (in Japanese)

14. Hirata, K., et al.: Stability theory of delay systems revisited — from classics to DFC of
passive walker— Part I, II. Journal of SICE 45 (2006) (in Japanese)



262 K. Hirata

15. Hiskens, I.A.: Stability of hybrid system limit cycles: application to the compass gait
biped robot. In: Proc. 40th IEEE CDC, pp. 774–779 (2001)

16. Kato, T.: Perturbation Theory for Lienar Operators. Springer, Heidelberg (1980)
17. McGeer, T.: Passive dynamic walking. Int. J. Robotics Research 9(2), 62–82 (1990)
18. Nakano, M., Inoue, T., Yamamoto, Y., Hara, S.: Repetitive Control. SICE (1989) (in

Japanese)
19. Pyragas, K.: Continuous control of chaos by self-conbtrolling feedback. Physical Letters

A 170, 421–428 (1992)
20. Sugimoto, Y., Osuka, K.: Walking control of quasi-passive-dynamic walking robot quar-

tet III based on delayed feedback control. In: Proc. of the 5th Int. Conf. on CLWAR, pp.
123–130 (2002)

21. Sugimoto, Y., Osuka, K.: Stability analysis of passive dynamic walking — an approach
via interpretation of Poincare map’s structure. Trans. ISCIE 18(7), 19–24 (2005) (in
Japanese)

22. Sugimoto, Y., Osuka, K.: Hierarchical implicite feedback structure in passive dynamic
walking. Journal of Robotics and Mechatronics 20(4), 1–8 (2008)

23. Varigonda, S., Georgiou, T.T.: Dyanamics of relay relaxation oscillators. IEEE Trans.
Automat. Control 46(1), 65–77 (2001)

24. Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walk-
ers. IEEE Trans. Automat. Control 48, 42–56 (2003)

25. Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., Morris, B.: Feedback Control of
Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

26. Yamamoto, Y.: Realization of pseudo-rational input/output maps and its spectral proper-
ties. Mem. Fac. Eng. Kyoto Univ. 47, 221–239 (1985)

27. Yamamoto, Y.: Pseudo-rational input/output maps and their realizations: a fractional rep-
resentation approach to infinite-dimensional systems. SIAM J. Control and Optimiza-
tion 26, 1415–1430 (1988)

28. Yamamoto, Y.: A function space approach to sampled-data control systems and tracking
problems. IEEE Trans. Automat. Control 39, 703–712 (1994)

29. Yamamoto, Y., Hara, S.: The internal model principle and stabilizability of repetitive
control systems. Trans. SICE 22, 830–834 (1986) (in Japanese)

30. Yamamoto, Y., Ueshima, S.: A new model for neutral delay-differential systems.
Int. J. Control 43, 465–472 (1986)

31. Yamamoto, Y., Madievski, A.G., Anderson, B.D.O.: Approximation of frequency re-
sponse for sampled-data control systems. Automatica 35(4), 729–734 (1999)



An Optimization Approach to Weak
Approximation of Lévy-Driven Stochastic
Differential Equations

Kenji Kashima and Reiichiro Kawai

Abstract. We propose an optimization approach to weak approximation of Lévy-
driven stochastic differential equations. We employ a mathematical programming
framework to obtain numerically upper and lower bound estimates of the target
expectation, where the optimization procedure ends up with a polynomial program-
ming problem. An advantage of our approach is that all we need is a closed form
of the Lévy measure, not the exact simulation knowledge of the increments or
of a shot noise representation for the time discretization approximation. We also
investigate methods for approximation at some different intermediate time points
simultaneously.
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1 Introduction

Stochastic differential equations have long been used to build realistic models in
economics, finance, biology, the social sciences, chemistry, physics and other fields.
In most active fields of application, dynamics with possible sudden shift have be-
come more and more important. To model such shifts, one would like to employ
stochastic differential equations where the underlying randomness contains jumps.
For this purpose, the diffusion process is not sufficient since its sample paths are al-
most surely continuous. On the other hand, Lévy-driven stochastic differential equa-
tions, which contain diffusion as a special case, can formulate stochastic behavior
with jumps. Regardless of its practical importance, however, the theory and the com-
putational techniques of the Lévy processes have not been developed thoroughly as
in the diffusion case. As nice references on the subject, we refer to Applebaum [1].

From a practical point of view, the sample paths approximation of stochastic
differential equations has been a central issue for the purpose of numerical evalua-
tion and simulation on the computer. There are two notions of the approximation;
strong and weak approximations. The strong approximation schemes provide path-
wise approximations which can be employed in scenario analysis, filtering or hedge
simulation. For applications such as derivative pricing, the computation of moments
or expected utilities, the so-called weak approximations are sufficient, that is, we
need to estimate the expected value of a function. Other applications of the weak
approximation include the computation of functional integrals, invariant measures,
and Lyapunov exponents.

The theoretical properties of time discretization schemes are mostly studied for
the diffusion case. See [7] for detailed investigation. In fact, the weak approximation
of the Lévy-driven stochastic differential equations via Monte Carlo type methods
is still very difficult. Moreover, the other existing methods are applicable only to
some of the simplest Lévy processes. The main purpose of this paper is to propose
a new approach to weak approximation of Lévy-driven stochastic differential equa-
tions. Unlike Monte Carlo simulation with the time discretization approximation of
sample paths, we employ a mathematical programming framework to obtain numer-
ically upper and lower bounds of the target expectation.

To this end, we follow the methodologies investigated in various fields of ap-
plication by several authors, for example, Bertsimas, Popescu and Sethuraman [2],
Helmes, Röhl and Stockbridge [4], Lasserre, Prieto-Rumeau and Zervos [9], to men-
tion just a few2. Note that these results deal only with the pure diffusion case (i.e.,
without jump component) for which standard Monte Carlo methods are sufficient. In
this sense, it should be emphasized that our result is not a trivial extension. The main
drawback is the complexity of the Ito formula for Lévy-driven stochastic differen-
tial equations. As such, we need to carefully examine whether or not the resulting

2 It is known that there exist two dual formulation of this framework, both of which arrive at
a semi-definite programming in the end. One is the so-called generalized moment problem
that makes use of the semi-definiteness of (localizing) moment matrices. The other is a
polynomial optimization approach for which sum-of-squares relaxation efficiently works.
In this paper, our discussion is based on the latter formulation.
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optimization problems are practically solvable. Fortunately, as we show in the fol-
lowing sections, our approach covers various practically important Lévy-driven
stochastic differential equations.

The rest of this paper is organized as follows. Section 2 gives mathematical def-
inition of Lévy-driven stochastic differential equations. Section 3 introduces and
studies our optimization approach to the weak approximation. Section 4 provides
a numerical example to illustrate that our method is able to efficiently capture the
marginal distributions of Lévy-driven stochastic differential equations. Finally, Sec-
tion 5 concludes this paper.

2 Problem Formulation

Let us begin this section with general notations which will be used throughout the
text. For k ∈ N, ∂k indicates the partial derivative with respect to k-th argument. We
denote by Ck1,k2 the class of continuous functions with continuous differentiability
of k1-time for the first argument and of k2-time for the second argument.

Let X0 be given in R and let T > 0. Consider a one-dimensional stochastic dif-
ferential equation

dXt = a0 (t,Xt)dt + a1 (t,Xt)dWt +
∫

R0

b(t,Xt−,z) (μ − ν)(dz,dt) , t ∈ [0,T ],

where {Wt : t ≥ 0} is a standard Brownian motion and where μ is a Poisson ran-
dom measure on R0 whose compensator is given by the Lévy measure ν satisfying∫
|z|>1 |z|ν(dz) < +∞ and

∫
R0

(|z|2 ∧ 1)ν(dz) < +∞. In order for the solution of (1)
to be well defined, we impose the usual Lipschitz conditions and linear growth con-
ditions on a0, a1 and b. We henceforth equip our underlying probability space with
the natural filtration (Ft )t∈[0,T ] generated by {Xt : t ∈ [0,T ]}. Moreover, throughout
this study, we assume that b(t,x,z) �= 0 and ν �= 0 to avoid triviality.

Our interest throughout this study is in approximating the expectation

E [V (XT )] , (1)

with the given V satisfying E[|V (XT )|] < +∞. Note that the function V may have
discontinuities. For the computation of E[V (XT )], standard techniques include the
Monte Carlo simulation of sample paths through the time discretization of stochastic
differential equations, or even some exact knowledge of sample paths such as series
representation of the Poisson jump component.

3 Optimization Approach to Weak Approximation

3.1 Ito Formula and Supermartingale

We are now in a position to introduce our optimization approach to the weak ap-
proximation. Let X (⊆ R) be a support of {Xt : t ∈ [0,T ]} defined in (1). For
f ∈ C1,2([0,T ]×X ;R), the Ito formula yields
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d f (t,Xt ) =A f (t,Xt )dt + ∂2 f (t,Xt)a1(Xt)dWt

+
∫

R0

Bz f (t,Xt−)(μ − ν)(dz,dt), a.s.,

where

A f (t,x) :=∂1 f (t,x)+ ∂2 f (t,x)a0(x)+
1
2

∂ 2
2 f (t,x)a1(x)2

+
∫

R0

(Bz f (t,x)− ∂2 f (t,x)b(x,z))ν(dz).

and for z ∈ R0,
Bz f (t,x) := f (t,x + b(x,z))− f (t,x) .

Here, if

E

[∫ T

0
(∂2 f (t,Xt)a1(t,Xt))2dt

]
< +∞,

and if

E

[∫ T

0

∫

R0

(Bz f (t,Xt)a1(t,Xt))2ν(dz)dt

]
< +∞, (2)

then the stochastic process
{

f (t,Xt)− f (0,X0)−
∫ t

0
A f (s,Xs)ds : t ∈ [0,T ]

}

is a square-integrable martingale with respect to the filtration. We can then derive
one of important building blocks of our approach, the so-called Dynkin formula:

E [ f (T,XT )]− f (0,X0) = E

[∫ T

0
A f (s,Xs)ds

]
. (3)

Hence, as soon as one finds an f ∈ C1,2([0,T ]×X ;R) such that
{

A f (t,x) ≤ 0, (t,x) ∈ [0,T ]×X ,
f (t,x) ≥ V (x), x ∈ X ,

(4)

it follows
E [V (XT )] ≤ E [ f (T,XT )] ≤ f (0,X0). (5)

Clearly, f (0,X0) serves as an upper bound of E[V (XT )]. To minimize the upper
bound f (0,X0), we now turn to the optimization problem

min f (0,X0)
s.t. f (t,x) ≥ V (x), x ∈ X ,

A f (t,x) ≤ 0, (t,x) ∈ [0,T ]×X ,
f ∈ C1,2([0,T ]×X ;R).
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3.2 Main Result

This optimization problem is very difficult to deal with since the class definitions of
the functions f and V are too broad. To ease the above optimization problem, we
restrict the class of the function f to be a polynomial both in t and x, that is, in the
form

f (t,x) = ∑
{0≤k1≤K1,0≤k2≤K2}

ck1,k2 tk1xk2 , (6)

for some natural numbers K1 and K2 and for a sequence {ck1,k2}k1≤K1,k2≤K2 of con-
stants. For convenience in notation, we henceforth denote by Cp the class of polyno-
mial functions in the form (6). We also need to set V to be a piecewise polynomial.
Moreover, we assume that both a0 and a1 are polynomials. We are then instead to
solve the following optimization problem

min f (0,X0)
s.t. f (t,x) ≥ V (x), x ∈ X ,

A f (t,x) ≤ 0, (t,x) ∈ [0,T ]×X ,
f ∈ Cp.

(7)

For the purpose of comparison, suppose that there is no jump in (1), that is, b ≡ 0
as in [13]. This assumption clearly makes A f a polynomial, and consequently (7) is
a polynomial optimization problem. This is the main reason that the pure diffusion
case is easier to deal with in this framework. In general, polynomial optimization
problems are still NP hard. However, if the degrees of f are fixed, sums of squares
relaxation enables us to solve the problem efficiently. For details, we refer to Parrilo
[11]. On the other hand, this technique is not directly applicable to the model with
general stochastic jumps. This is because A f is not necessarily a polynomial due
to the additional integral term.

To circumvent this difficulty, we decompose the function b as follows:

Assumption 1. Functions a0 and a1 are polynomials, and b is decomposed as

b(t,x,z) = b1(t,x)b2(z),

where b1 is a polynomial and where b2 : R0 	→ R such that
∫

R0

|b2(z)|k ν(dz) < +∞, k = 2, . . . ,K2. ��

Theorem 1. Under Assumption 1, for any f ∈ Cp, A f is a polynomial in t and x.
Moreover, the coefficients of A f are affine with respect to those of f .

Proof. A simple algebra yields

A f (t,x) = ∂1 f (t,x)+ ∂2 f (t,x)a0(t,x)+
1
2

∂ 2
2 f (t,x)a1(t,x)2

+ ∑
{0≤k1≤K1,2≤k2≤K2}

ck1,k2tk1

k2−2

∑
k=0

k2Ckxkb1(t,x)k2−kMk2−k
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where
Ml :=

∫

R0

b2(z)lν(dz), l = 2, . . . ,K2.

This completes the proof. ��
Clearly, the optimization (7) is now a polynomial programming problem. To be
more precise, this problem is numerically tractable for any piecewise polynomial
V . Finally, to obtain a lower bound for E[V (XT )], we are to find a g ∈ Cp via the
polynomial programming

max g(0,X0)
s.t. g(t,x) ≤ V (x), x ∈ X ,

A g(t,x) ≥ 0, (t,x) ∈ [0,T ]×X ,
g ∈ Cp.

(8)

Notice that our optimization approach does not require the sample paths simula-
tion at all for the computation of the expectation E[V (XT )]. It is a great advantage
of our approach that all we need is the Lévy measure in closed form, not the ex-
act knowledge of the increments or of a shot noise representation for sample paths
simulation for the weak approximation with the sample paths discretization.

3.3 Simultaneous Approximation for Homogeneous Process

In this section, we show that the optimal solution obtained through our approach
provides some additional information, that are of direct practical use.

Firstly, note that the initial value X0 does not appear in the constraints (4) in
the previous section. Therefore, if f satisfies (4), f (0, x̃) automatically gives upper
bounds for Ex̃ [V (XT )], where the notation Ex denotes the expectation taken under
which the initial state of the stochastic differential equation (1) is given determinis-
tically by X0 = x.

The next theorem indicates that functions satisfying (4) can also serve as bounds
at arbitrary intermediate time points.

Theorem 2. Assume that (1) is time-homogeneous, i.e., a1, a2, and b are indepen-
dent of t. Suppose that f ∈ C1,2 satisfies (4). Then, for every T̄ ∈ [0,T ]

E[V (XT̄ )] ≤ f (T − T̄ ,X0). (9)

Proof. Define
f ◦(t,x) := f (t +(T − T̄ ),x).

Due to the time homogeneity, we have

A f ◦(t,x) = A f (t +(T − T̄ ),x) ≤ 0, (t,x) ∈ [0, T̄ ]×X .

We also have
f ◦(T̄ ,x) = f (T,x) ≤ V (x), in X .
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By combining these inequalities and Dynkin formula, we obtain

E[V (XT̄ )] ≤ E[ f ◦(T̄ ,XT̄ )]

= f ◦(0,X0)+E

[∫ T̄

0
A f ◦(s,Xs)ds

]

≤ f (T − T̄ ,X0).

This completes the proof. ��
We here make a brief comment on the choice of the cost function in the optimization
problem. When we attempt to find as tight bounds for (1) as possible, we should
solve (7) and (8). However, we need to approximate E[V (XT̄ )] for some different
time points T̄ ∈ [0,T ] and also different initial value X0, it is useful to suitably
change the cost function. Fortunately, for suitable measure φ on [0,T ]×R, we can
similarly optimize

∫
f (t,s)φ(dt,ds),

∫
g(t,s)φ(dt,ds),

since these are linear combination of the decision variables (the coefficients of f
and g).

4 Numerical Examples

In this section we give some approximation examples. In the numerical examples
presented hereafter, we utilize MATLAB SOSTOOLS combined with SeDuMi [12,
16], using a computer with a Pentium 4 3.2GHz processor and 2 GB memory.

4.1 Ornstein-Uhlenbeck-Type Process with Gamma Stationary
Distribution

Let ν be a Lévy measure on R+ such that
∫
R+

zν(dz) < +∞. Set a0(t,x) = −λ x +∫
R+

zν(dz) for some λ > 0, a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, and X0 is indepen-
dent of μ . Then, the stochastic differential equation (1) reduces to

dXt = −λ Xtdt +
∫

R+
zμ(dz,dt),

which is called an Ornstein-Uhlenbeck-type process. (See, for example, Sato [15]
for its details.) Its solution is given by

Xt = e−λ tX0 +
∫ t

0

∫

R+
e−λ (t−s)zμ(dz,ds).



270 K. Kashima and R. Kawai

For simplicity, we further fix X0 = 0, λ = 1 and ν(dz) = bae−bzdz, where a > 0 and
b > 0. Then, we can prove that the stationary distribution of {Xt : t ≥ 0} is gamma
with density p(x) = ba/Γ (a)xa−1e−bx, x ∈ R+.

Here, we investigate the distribution transition via the moment estima-
tions of E[Xt ] = (1 − e−t)a/b, E[X2

t ] = (1 − e−2t)a/b2 + (1 − e−t)2a2/b2, and
limt↑+∞ E[Xk

t ] = Γ (a + k)/(bkΓ (a)), for k ∈ N. Note that X = R+ and that∫
R+

zkν(dz) = ak!/bk for k ∈ N. For f ∈ Cp([0,T ]×R+;R), we have

A f (t,x) = ∑
{1≤k1≤K1,0≤k2≤K2}

ck1,k2k1tk1−1xk2

+
(
−x +

a
b

)
∑

{0≤k1≤K1,1≤k2≤K2}
ck1,k2tk1 k2xk2−1

+ ∑
{0≤k1≤K1,2≤k2≤K2}

ck1,k2 tk1

k2−2

∑
k=0

k2Ckxk a(k2 − k)!
bk2−k .

The condition (2) holds for each K1 and K2, since

∫ t

0

∫

R+
e−λ (t−s)zμ(dz,ds) ≤

∫ T

0

∫

R+
zμ(dz,ds), a.s.,

where the right hand side is an infinitely divisible random variable, whose Lévy
measure has an exponential decay at infinity.

We present numerical results in Table 1. We set K1 = p for the estimation of the
p-th moment. It is known that the computational burden for solving the polynomial
optimization via sum of squares decomposition significantly increases as the degree
of the polynomial becomes larger. In view of this, we choose large K2 = 10. Even
in this case, however, computation time is at most 2 seconds. For comparison with
Monte Carlo methods, we also provide 99%-confidence interval with 1000000 iid
samples. As can be observed, even with the extraordinarily large number of samples,

Table 1 Moment transition with X0 = 0 and (a,b) = (0.1,1.5). The numbers in parentheses
indicate theoretical value. The intervals are 99%-confidence interval with 1000000 indepen-
dent samples.

t = 1 t = 2 t = 3 t ↑ +∞

E [Xt ]
0.042141 – 0.042141 0.057644 – 0.057644 0.063347 – 0.063348

(0.042141) (0.057644) (0.063348) (0.06667)
[0.0417327, 0.0427467] [0.0569853, 0.0580576] [0.0628788, 0.0639666]

E
[
X2

t

] 0.040205 – 0.040205 0.046952 – 0.046955 0.048331 – 0.048347
(0.040205) (0.046953) (0.048347) (0.04889)

[0.0396179, 0.0414835] [0.0457206, 0.0476003] [0.0476659, 0.0496044]

E
[
X3

t
] 0.061217 – 0.061268 0.066812 – 0.066886 0.068009 – 0.068051

(n/a) (n/a) (n/a) (0.06844)
[0.0591606, 0.0649658] [0.0633623, 0.0688394] [0.0660050, 0.0719257]
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Fig. 1 Lower and upper
bounds for E[X3

t ] at interme-
diate time points t ∈ [0,3].
The detailed values are
0.060992 – 0.061467 (t = 1)
and 0.066461 – 0.067219
(t = 2).

   t

the 99%-confidence intervals are far from being comparable with our results. Note
that any large sample size can never be in competition with our results since the
upper and lower bounds obtained through our method form nothing but the 100%-
confidence interval.

Recall that the current model is time-homogeneous. Hence, according to Theo-
rem 2, the obtained bounding functions also give upper and lower bounds for inter-
mediate time points without solving other optimization problem. For example, as a
byproduct of the computation of the bounds for E[X3

3 ], we can provide a parametric
bounds for E[X3

t ] for every t ∈ [0,3]; see Fig. 1. In this case, the accuracy is close
to the pointwise optimization result in Table 1. Actually, the gap is smaller than the
case of Monte Carlo methods in Table 1.

5 Conclusion

In this paper, we have developed a new approach to the weak approximation of
Lévy-driven stochastic differential equations via an optimization problem yielding
upper and lower bounds on the target expectation. The advantage of our approach
is that all we need is the Lévy measure in closed form. We need neither the exact
knowledge of the increments nor a shot noise representation for sample path simu-
lation for the weak approximation with the sample path discretization. We have also
investigated how we can obtain accurate approximation at transient times.

The most important remaining work is the improvement of the approximation
accuracy. It is a good direction to pursue to use exponentially tempered polynomi-
als [5]. Other currently ongoing work is application to calibration in finance.
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Compound Control: Capturing Multivariable
Nature of Biological Control

Hidenori Kimura, Shingo Shimoda, and Reiko J. Tanaka

Abstract. Multivariable extension of design theory was a historic milestone that in-
novated the basic framework of control theory fundamentally. Analogous situation
is now coming into the stage of biological control research. This paper addresses the
present state-of-arts of this issue, introducing the multivariable nature of biological
control, the formulation of the problem under specific assumptions and preliminary
results obtained. The paper suggests the possible paradigm change in future biolog-
ical control research.

1 Introduction

Emergence of state space theory in early 1960’s was really a revolution in the history
of control engineering. State space framework renovated the fundamental frame-
work of control theory and elucidated the deep and rich structures of control sys-
tems. It not only enlarged our scope of control systems, but also gave new lights on
the fundamental notions of control such as feedback, feedforward, servo, stability,
identification and so on.

Kalman who initiated the state space theory said that his underlying motivation to
propose state space theory was to establish the rigorous and scientific foundation of
control theory, just like Shannon’s communication theory [1]. Indeed, his objective
has been achieved with great success in this respect. State-space method gave math-
ematically rigorous and practically versatile framework for control systems design.
It should be noted that state-space framework also gave powerful tool for dealing
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with multi-input multi-output (MIMO) plants. Towards the end of 1950’s, press-
ing needs arose to control plants with multiple inputs that were coupled together to
generate multiple outputs. At that time, the design methods were only available for
single-input single-output (SISO) plants, and the only way to deal with such plants
was to decouple the input-output relations and design the controller for each decou-
pled loop. This way of decoupling was not satisfactory in many reasons because
it actually reduced the problem to finding inverse systems. The method generated
usually excessively complicated controllers and even unstable ones.

In terms of traditional transfer function approach, the extension of design meth-
ods for SISO plants to MIMO plants is just the matter of extending the results on
transfer functions to transfer function matrices. This extension, however, is far from
trivial. For instance, while the notions of gain and phase have clear meaning in terms
of transfer functions, their meanings are not clear at all in transfer function matri-
ces. It was desired to create some new theoretical framework to deal with multivari-
able control. State-space method was just the appropriate one to fulfill this need. It
can deal with MIMO plants very naturally and the relationship between state-space
framework and classical transfer function approach has been fully exploited.

Thus, it is the common retrospect that the extension of SISO control to MIMO
control was not at all trivial and required a great paradigm shift in control engineer-
ing which renovated the fundamental framework in almost all aspects of control
theory. In some sense, the real design theory of control systems started when multi-
variable plants became a feasible target of theory. This paper states that an analogous
paradigm shift from SISO to MIMO is now taking place in biological control.

Control mechanisms play crucial roles in all species, all functions and all levels
of organs in the living organism. Therefore, control in living organisms has been an
important research issue in biology. An exposition of the biology/control interplay
is found in a review paper from the start of modern biology at the beginning of 20th
century [2]. As in the case of design theory for engineering systems, the analysis of
biological control systems has been based on the framework of SISO systems. Now,
it faces with multivariable situations in many respects. The nature of multivariable
features in biological control, however, is significantly different from multivariable
control of engineering systems. In engineering control, multivariable nature was
brought in by the MIMO plants, whereas in biological control, it was brought in
by MIMO controllers. In biological control, the controller must be multivariable
from the nature of environment that has enormous number of factors. This is one
of intrinsic differences between engineering control and biological control. Also,
the multivariable nature of controllers is significantly different from engineering
systems. It is essentially combinatorial in biological control, while it is essentially
interaction in engineering. Biological control in face of huge number of possible
environmental changes must use this feature in its daily operation. Our long-term
challenge to find some universal principles of biological control has produced the
notion of compound control that utilizes the compound nature of environmental
change [3]. The detail will be exposed in the text.

In Section 2, the intrinsic nature of multivariable aspects in biological control is
explained. Section 3 gives examples of compound control.
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2 Compound Control

In neuroscience, human motions have been divided into the two categories, volun-
tary and involuntary. The border distinguishing these categories is not clear because
the notion of consciousness or awareness is unclear and ambiguous, and still very
controversial. Sherrington, one of the founder of neurosciences, identified the in-
voluntary movement with reflex, which is a simple body response to exogeneous
disturbance. He thought that all the human motions were just combinations of sim-
ple basic reflexes which were built in human neural systems innately. Although his
idea was abandoned after discoveries of sophisticated voluntary motions, we were
very much influenced by his view of human body in establishing the notion of com-
pound control. Now, in the recent progress of neuroscience, reflex itself is found to
be a very complex process of integration of various controls with rich structure, and
it is closely related to cognitive capability of brain though it is done unconsciously.
Reflex is a body movement done unconsciously, but it is an intelligent process that
encompasses body motion, power consumption and physical interactions to envi-
ronment. Reflex is really a symbolic issue of the embodiment of intelligence and
the compound control at an individual level addresses this issue from the control
point of view.

If humans encounter some unknown environmental situations in his/her life, it is
required to react to the situations by creating a new pattern of behaviors that may
suit the situations. This ability of adaptation is actually the essence of intelligence
without which humans cannot survive. In short, the intelligence is an ability to over-
come unknowns to adapt to new environment.

If all the possible environmental situations we may come across can be listed up
before actions or decisions, we can prepare appropriate behavioral response to each
situation in advance. In such cases, unknowns are out of sight and no intelligence
is needed. Of course it is not the case. The number of all possible environmental
situations is so enormous that we cannot prepare for all the situations. The so-called
frame problem is still a big issue both in artificial intelligence, and in robotics. How
do we manage to create appropriate behavioral patterns in new environmental sit-
uations that we have not experienced in the past? The compound control takes a
special stance on this issue.

It is true that we encounter unknown environmental situations in daily life, but the
unknowns do not come randomly. They come along under some specific context of
current behaviors and tasks. Therefore, majority of unknowns is related to knowns
or some unknown combinations of knowns. Sometimes, we can predict what sort
of unknown we will have in the next stage of behaviors. Our decision or selections
on the next movements are somehow determined by the context we are aware of,
or by the knowledge how the current unknown situations are composed of known
situations. It is most important, and therefore most difficult, to explicitly formulate
the above procedure of reducing unknowns to predictable combinations of knowns.
We call this process tacit learning [4].

To sum up, our approach to biological control is based on the following assump-
tions:
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1. Majority of unknowns is the combination of some basic knowns to which our
responses have been well established.

2. The basic knowns are composed not only spacially but also temporally, to execute
a new task.

3. To understand how the basic knowns are combined to create unknowns directly
leads to generate appropriate behavioral responses. This process of understand-
ing is actually termed to be learning.

The notion of compound control is based essentially on the above assumptions.

3 Examples of Compound Control

To justify our approach, we demonstrate three examples of compound control. The
first one is concerned with the genetic control at the cell level. We show the most
basic combinatorial logic of compound control against environmental changes. The
second one shows that the temporal combination of basic environmental changes is
the key issue in carrying out tasks of individuals. The result demonstrated that the
compound control approach led to a remarkably smooth biped walking by robot.
The third one considers the postural reflex as a typical example of compound control
which we are now trying to formulate from compound control viewpoint.

3.1 Intracellular Genetic Control

Combinational characteristics is the most basic feature of compound control which
are found in intracellular genetic control in a clear way. A classical example of
combinational compound control is the lac operon which was extensively studied
by Monod in early 1960’s [5]. Lac operon is a collection of genes of bacteria that
codes enzymes to metaborize lactose, which expresses when lactose is taken by the
cell to be catabolized to supply energy. However, if glucose is simultaneously taken,
then it does not express because glucose is more effective than lactose as the energy
resource. This is an example of catabolite repressions in metabolic networks.

In this case, the environment of lac operon has two factors, namely, lactose and
glucose concentrations. The response of the lac operon to the environmental change
can be roughly represented by a logical function, if we use the binary represen-
tation of the concentrations of lactose and glucose by logic variables x and y, re-
spectively. Assume that x = true(or 1) implies “high” lactose concentration, while
x = f alse(or 0) implies “low” lactose consentration. The same assignment applies
to y. The response r of lac operon is represented by

r = x ∧ y, (1)

where overbar denotes the logical negation. Logical representation of genetic switch
systems like (1) is found to be useful recently. Our purpose here is to classify logical
functions in order to clarify the intrinsic nature of logical expressions [6].
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Consider a logical function of two variables

r = f (x,y).

Even if the environmental cue x is replaced by its negation x, the intrinsic nature
of the compound mechanism is not alfered, because it is the matter of replacing in-
hibition by potentiation. Therefore, the function f (x,y) and f (x,y) are considered
to bear similar compound structure and belong in the same class. The same reason-
ing applies to the function f (x,y). Also, the interchange between x and y do not
affect the compound nature of interactions. So, we regard f (x,y) and f (y,x) in the
same class.

The above rules yield a binary relations. For a given two logical functions f and
g, we say that f ∼ g iff g(x,y) is one of f (x,y), f (x,y), f (x,y) and f (y,x). It is trivial
to see that this binary relation satisfies

f ∼ f (reflexivity)

f ∼ g implies g ∼ f (symmetry)

f ∼ g, g ∼ h implies f ∼ h (transitivity)

Therefore, the classification based on the above binary relation yields equivalence
classes. Any logical function belongs to one and only one class in this classification.
Except trivial functions, there are 14 logical functions with two variables. It can be
shown that they are divided into four classes under the above binary relation [6].
Representative functions of the four classes are given as follows

fp(x,y) = x

fi(x,y) = x ∨ y

fd(x,y) = x ∧ y

ft (x,y) = (x ∧ y)∧ (x ∧ y)

These four functions represent parallel, induction, dismissal and tirgger classes,
respectively. Specifically, the term parallel implies that two environmental factors
are not compound. They are independent each other. Other names came from the
biological functions they perform in genetic regulations. Figure 1 indicates these
classes in terms of the truth table. It is easy to see that identifying f (x,y) with f (x,y)
means that the class is invariant with respect to the permutation of the columns
of the truth table, while identification of f (x,y) with f (x,y) means the invariance
with respect to permutation of rows. The identification of f (x,y) with f (y,x) is the
invariance with respect to both column and row permutations.

To represent more rigorously the above reasoning, let σ1 and σ2 represent the
permutations of columns and rows of the truth table of the logical function, respec-
tively. We consider the commutative group Σ composed of four operations

Σ = {e,σ1,σ2,σ1σ2},
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where e denotes the identity operation. Note that σ2
i = e, i = 1,2. Now, our equiva-

lence class is induced by the above group, i.e., functions f1 and f2 are said to be in
the same class if and only if f1 = σ f2 for some σ ∈ Σ .

The lac operon belongs to the class of dismissal which implies that the expres-
sion of the lactose enzyme must be dismissed by the existence of rich glucose. In [6],
examples of genetic regulations corresponding to induction and trigger are demon-
strated.

Extension of the above results to general n variable logical functions is a difficult
problem. We have got the result for n = 3. There are 254 non-trivial logical functions
with 3 variables. The number of equivalence classes in this case is 12 [6].

Fig. 1 Equivalence Classes
of Logical Functions. +
implies that output is true, –
implies it is false
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3.2 Biped Locomotion

Now we jump up from intracellular regulation to movements of individuals. Human
being is the only animal that walks biped in daily life. To mimic biped locomotion
in robots has attracted many researchers in the area of robotics, brain sciences and
control. There have been considerable amount of work concerning biped robot using
variety of approaches [7], [8]. Theoretical studies have also been done from many
points of view (e.g. [9], [10]). It is of great interest specially from control theory for
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many reasons. First, it is a combination of postures (statics) and their transitions (dy-
namics). Second, it needs a delicate integration of locomotion and balance. Third, it
embodies both innate ability and acquired skill.

We now regard the control issue of biped walking from a point of view of com-
pound control. Biped locomotion is actually composed of several postures and tran-
sitions from one posture to another. Since we view biped walking as consecutive
repetitions of shifts from one posture to another, it is of supremum importance
to specify desired postures to be attained. In this case, the configurations of body
muscle-skelton system is considered to be the environment. The desired postures
for biped locomotion are picked up among enormous number of possible body con-
figurations. The control is just to carry out the transitions from one posture to the
next. The selected postures constitute fundamental set of environmental changes and
their combination are carried out in an appropriate time frame. This is the view of
biped locomotion based on compound control.

In order to justify our view, we have constructed a biped robot and designed a
neural controller to control it. The robot we have constructed is shown in Fig. 2. It
has 14 DOF with height 0.5m and weight approximately 3.5kg. Each joint is con-
trolled by independent drivers. The locomotion is carried out by control commands
to shift from the present posture to the next one. We picked up eight postures (four
postures to each leg) described in Fig. 3, where ρi denotes the i-th joint.

Fig. 2 Overview of 12DOF
Biped Robot

To specify each posture as a snapshot, we only use a few joints as is shown in Fig. 3
which were regulated by neural controllers [4]. No specific command were given
to the rest of the joints. Instead, they were asked to choose their own command
signals by themselves by a self-reference controller [11] which was prepared for
our robot based on neural computations. We did not use any model for control, nor
trajectory design for guaranteeing stability. We just implement output regulators and
self-reference regulators to each joint and switched from output regulation to self-
reference regulation and vise versa, depending upon what sort of posture transitions
were required at each time. It is worth noting that at each trial, the states of the
integrators were memorized and used in the next trial when the robot came to the
same posture. This procedure seems to act as a sort of learning.
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Fig. 3 ρi denotes the angle
of the i-th joint. Constraint
Conditions for Bipedal
Walking: Σi = {Constraint
Conditions (specified angle
in Task i)}

Σ1 = { ρ6 , ρ13 }
(Balance on right leg)

(Left leg up)

(Left leg down)

(Waiting after left leg step)

(Balance on left leg)

(Right leg up)

(Right leg down)

(Waiting after right leg step)
Σ2 = {

Σ3 = { ρ11, ρ12}

Σ4 = {no angle is specified}

Σ5 = { ρ6 , ρ13}

Σ6 = { 

Σ8 = {ρ11, ρ12}

ρ4, ρ5}

Σ7 = { ρ4, ρ5}

no angle is specified}

We summarize our design principles:

1. Snapshot postures are assigned.
2. Each time when the robot configuration reaches a snapshot, the transition to the

next snapshot is ordered through the controllers.
3. Those joints which are involved in the specification of the next snapshot are given

desired commands, and all the rest of the joints are set free.
4. If the robot falled down, it was raised up manually by human being, but the

controllers were still working during this salvation.
5. No model nor trajectory was given.

Fig. 4 shows a process of learning through the time profile of leg angle and the
trajectory of center of mass. It should be noted that the robot chose its own pace
and gait through learning that fit his/her body structure. The pace will change if the
robot carries a tip load.

It is surprising to notice that our robot is also very efficient. Fig. 5 shows that
after learning our robot walked very efficiently under the efficiency index

I =
(Consumed Energy)

(Mass) · (Walking Distance)

compared with existing humanoid robots. We do not know where this efficiency
comes from.

3.3 Postural Reflex

The third example we would like to bring forward is postural reflex, which is a class
of reflex necessary for maintaining body balance against gravity. If we are forced to
walk through a narrow path, we unconsciously lift our hands horizontally to keep
balance in order to increase the body inertia around the center of mass. This is a
typical example of postural reflex which is built in our nervous system innately.
Postural reflex is also closely related to biped walking we have discussed in the
previous subsection. Its importance in our daily life is unquestionable. The recent
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Fig. 4 Experimental Results

Fig. 5 Energy Efficiency

progress of neurosciences has disclosed that it is a process of complex integration
of sensors, brain and musculo-skeleton systems.

We have been interested in neural mechanisms of balance maintenance (e.g.[12])
and now we are extending our scope to that of postural reflex from the viewpoint
of compound control. According to our notion of compound control, postural reflex
is assumed to be composed of several basic disturbance/response pairs and specific
reflex is generated through a combination of these basic pairs. Disturbance in the re-
flex may not be purely exogeneous. It may be created via our voluntary movements
which is endogenous and predictable. For instance, when we bend the upper body
forward, our hip is automatically pulled backward in order to keep the location of
the center of mass invariant. This is also a postural reflex.

Although we do not have any detailed picture of the compound control mecha-
nism of postural reflex, and we do not have identified yet the list of basic
disturbance/response pairs for postural reflex similar to what we had for biped



282 H. Kimura, S. Shimoda, and R.J. Tanaka

locomotion, there are some novel approaches to justify our view. Alexandrov and
his colleagues proposed the notion of eigenmovements for the regulation of human
standing [13, 14]. It is based on the linearized model of robot dynamics with 3
Degree-of-Freedom links. They computed 3 eigenmovements which correspond to
classical hip, knee and ankle strategies that were extensively used in rehabilitation
engineering. They thought that the recovering stability from the effect of disturbance
is achieved by combining the basic disturbance/response pairs. More specifically,
the reflex is called up as a time profile of combination of these basic pairs based
on the analysis of how the basic patterns of disturbance are combined to yield the
current disturbance.

4 Discussions and Conclusions

Living organisms spend their daily life interacting to changing environments that
has huge varieties of possible inputs and disturbances to them. Thinking of this ob-
vious fact, and taking into account the fact that each behavioral component needs
to be controlled, it is natural to think that biological control bears essentially mul-
tivariable features. More precisely, some control mechanisms to integrate several
environmental factors are necessary to produce efficient control actions. Therefore,
it is important to exploit multivariable features of biological control and formulate
them in terms of control. Some essences of multivariable features have been reported
in this paper.

In genetic regulation, combinatorial aspects of environmental changes were em-
phasized and possible logical patterns of compound control were clarified. In intra-
cellular control research, main paradigm currently assumes that single environmen-
tal factor produces single response. To confirm the dominance of this picture, we
only see the metabolic map of the cell in which almost all parts of the diagram are
occupied by single-input single-output processes. We are sure that the situation will
be changed drastically in future and theoretical, as well as experimental, paradigm
will be shifted from SISO to MIMO.

We have also presented control of biped locomotion as an example of time-
ordered compound control. It was unexpectedly successful in the sense that the
balance which was not at all considered in control design emerged spontaneously
with extremely good energy performance. Unfortunately, we have not yet succeeded
to explain the reason why our approach based on compound control, or successive
connections of snapshot postures, was able to keep balance (stability). Some theo-
retical study disclosed the implication of control strategy from design points of view
[11]. There, it was pointed out that the novelty of control scheme is boiled down to
variable gain feedback and adaptation of integrators. The precise analysis, however,
was far from complete. For detail, see [11].

We have also discussed about posture reflex which is now getting renewed inter-
est from the viewpoint of compound control.
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Although our position of exposing the results on compound control is still at a
preliminary stage, we are very much confident that compound control has captured
the essential multivariable features of biological control.

We acknowledge Drs. Iwao Maeda and Takashi Yamamoto at Toyota Motor Co.
for their support and encouragement.
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Law of Large Numbers, Heavy-Tailed
Distributions, and the Recent Financial Crisis

Mathukumalli Vidyasagar

1 Introduction

In this paper we examine some possible inter-relationships between, on the one
hand, the law of large numbers as it applies to cumulative sums of independent
and identically distributed random variables where the distribution of each random
variable is heavy-tailed, and on the other hand, the recent financial crisis. For the
purposes of the present article, a distribution function ΦX(·) of a random variable
X is said to be ‘heavy-tailed’ if X has a finite first moment (i.e. an expected value)
but not a finite second moment. It is of course possible to construct distribution
functions where even the first moment fails to exist. But this case is of no interest to
us, because in such a situation it would not make sense to talk about ‘law of large
numbers’.

The basic conclusion of the discussion below can be stated very simply: Suppose
we know ΦX (x) only for x belonging to some compact subset of the real numbers
(think of a finite interval [a,b]), which we can label as the ‘observable universe’.
Then it is clearly not possible to deduce whether the associated random variable
X does, or does not, have finite moments of various orders. The finiteness of the
moments of various orders depends on the behavior of ΦX(x) as |x| → ∞, that is,
when x lies outside the observable universe. In such a case, one should impose
whatever assumptions one wishes to on ΦX with a view to making one’s life easier,
provided that the consequences of imposing these assumptions are not visible over
the observable universe.

One of the more dramatic properties of cumulative sums of heavy-tailed random
variables is that the ‘tail probability estimates’ of such sums are qualitatively differ-
ent from those of random variables with finite second moments. Specifically, sup-
pose {Yi}i≥1 is an i.i.d. process. Let us define the cumulative sum Cl = ∑l

i=1 Yi, and
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examine the behavior of the tail probability r(l,ε) := Pr{Cl ≥ lε}. Clearly r(l,ε)
is also the probability of the cumulative average exceeding the threshold ε . If Y1

has a finite second moment, then one can invoke the central limit theorem and show
that the tail probability r(l,ε) approaches the tail probability of the Gaussian dis-
tribution. This means that, if Y1 has finite second moment, then the rare event of Cl

significantly exceeding its expected value lE(Y1) occurs only via each of the indi-
vidual variables Y1, . . . ,Yl significantly exceeding its expected value. In contrast, if
Y1 does not have finite second moment but has only finite first moment, then under
mild conditions the tail probability r(l,ε) decays at a linear rate, not an exponential
rate. See [8] for a good survey of such results, especially Equation (10). As a result,
in this case it is just as likely that Cl has a rare event by just one of the individual
random variables Yi having a humongous excursion beyond its expected value. This
statement is made precise in Theorem 5 below. In the language of large deviation
theory, the ‘scale’ at which the tail probability of the cumulative sum Cl decays is
drastically different in the two cases (exponential when Y1 has finite second mo-
ment, and linear otherwise). This property of heavy-tailed random variables was
put on a sound mathematical foundation only during the 1980s and 1990s; see for
example [12].

On the basis of empirical studies of financial asset prices during the past fifty
years or so, it has been observed that ‘10σ ’ events and ‘15σ ’ events have been
observed far more frequently than the Gaussian distribution would predict, and often
in quick succession. For instance:

• The standard deviation of the S&P average is about 1.2%, based on very long-
term studies. Therefore the 21% decline in the Dow Jones average in October
1987 was a 20σ event. The 8% selloff in 1989 was a 7σ event.

• Such movements are not limited only to stocks. On 24 February 2003, the price
of natural gas changed by 42% in one day, representing a 12σ event.

In reality the Gaussian distribution would tell us that such events should take place
at most once within the known age of the universe.

Another important point is that, over a long period of time, most of the cumulative
change in prices takes place over just a few days. For instance:

• The share price of Akamai from November 2001 until now increased by a factor
of 12.10, for a return of 1110%. However, out of this huge return, just three days
account for 694%, while the remaining hundreds of days account for 416%.

• One may be tempted to suppose that an aggregated quantity like the S&P average
will smooth out the variations in individual stock prices, and therefore may not
exhibit such behavior. However, the reality is that this phenomenon persists even
at the aggregate level. Between 1955 and 2004, the S&P average moved up by a
factor of 180. However, if we remove the ten largest movements (most of which
were negative), then the return would be a factor of 350.

Thus the empirical evidence suggests that the tail probability of the cumulated
sum may possibly exhibit decay over a linear time scale and not an exponential time
scale. In other words, the qualitative differences between the behavior of heavy-
tailed random variables and those with finite second moment are most definitely
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‘visible within the observable universe’. Therefore, in order to explain these ob-
served strange behavioral patterns of asset prices, it may be unavoidable to assume
that one-period returns on asset prices are heavy-tailed random variables. In other
words, the issue is not so much that 10σ or 20σ events occur more frequently than
a Gaussian distribution would predict; rather, the issue may be that there is no σ
to begin with! The consequences of such an assumption for mathematical finance
are quite significant: A major reworking of the theory is needed. The directions that
such a theory would need to take are discussed here.

2 Modelling Asset Prices

In this section we give an extremely brief overview of current theories of asset price
models. There is more than one way to reach the various conclusions below; more-
over, due to length limitations, we do not always state the hypotheses and conclu-
sions with absolute precision, and prefer to indicate the general ideas. In the process,
we will definitely violate Einstein’s maxim that “Things should be made as simple
as possible, but not simpler.”

During the past 150 years or so, several deep thinkers have come up with vari-
ous models of asset price movements as a function of time. Initially (that is to say,
until about 50 years ago), the models were empirical, that is, they attempted to ex-
plain actually observed price movements. During the past 50 years or so, the trend
has been somewhat reversed, and modern finance theory is more ‘axiomatic’ than
‘empirical’.

Let us consider an asset whose price is uncertain, usually referred to as a ‘stock’,
denoted by {St}. Rather than model St itself, it is more natural to model the return
on the asset, that is, the ratio {St/S0}. Let us denote this process by {λt}. One of the
fundamental assumptions of modern finance theory is that of an ‘efficient market’.
This assumption means that every player in the marketplace has access to exactly
the same information. As a result, if everyone in the marketplace were to believe
that the share price of IBM will move to $ 100 tomorrow, then in fact it will move
to $ 100 today itself. Thus today’s price has already factored in all that is known
and predictable about the future price movements of the asset. By a slight stretch,
it follows that the change in the asset price that takes place between today and to-
morrow cannot be predicted on the basis of all that is known today. Thus, viewed
as a stochastic process, {λt} has independent increments. Moreover, if we take out
seasonal factors (which are presumably known ahead of time and thus computable),
the returns process {λt} is also stationary. Now a stationary process with indepen-
dent increments is called a Lévy process. At some risk of imprecision, we can think
of a Lévy process as a combination of a countable number of Poisson (jump) pro-
cesses and a Wiener process. If we add the assumption that the rate process {λt} has
continuous sample paths, then no jumps are possible and the rate process must be a
Wiener process with drift. This is the rationale behind the standard assumption that
asset prices follow a geometric Brownian motion (GBM) model, i.e., that
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St = S0 exp

[(
μ − 1

2
σ2

)
t + σWt

]
, t ∈ [0,T ],

where {Wt} is Brownian motion or a Wiener process, the mean μ is called the “drift”
of the geometric Brownian motion, and the variance σ is called the “volatility.”

In Chapter 1 of the highly readable book by Davis and Etheridge [5], it is men-
tioned that as far back as 1853, Jules Regnault postulated that, in the absence of
any new information, the price of an asset will either go up or go down by a fixed
amount, and with equal probability. Moreover, he also observed that the spread in
prices is proportional to the square root of the time interval. ‘Modern’ readers will
have no difficulty recognizing that what Regnault was describing is a random walk,
where the variance of the movement is proportional to time. Moreover, as time is
quantized over ever-smaller intervals, the random walk approaches Brownian mo-
tion. Consequently the asset prices follow a GBM model.

The above justification for the GBM model is very ‘frugal’ in the sense that it is
based on a minimal set of assumptions. There is only one thing wrong with it: Ac-
tual asset price movements do not follow the GBM model. See for example Figures
2.6 and 2.7 of [2]. To address this situation while still retaining the tractability of the
problem, several authors have proposed various alternatives to the GBM model, such
as NIG (Normal Inverse Gaussian), Variance Gamma (VG), CGMY (Car-Geman-
Madan-Yor), etc. The book by Benth [2] has a discussion of NIG processes, while
the compendium [7] contains several papers that discuss VG and CGMY processes.
However, for what can only be called purely ‘ideological’ reasons, all of these au-
thors cling tenaciously to the assumption that the return process must have finite
variance. The use of models wherein the return process has infinite second moment
is simply dismissed out of hand. Other authors advocate the use of distribution func-
tions with kurtosis different from that of the Gaussian. Recall that the kurtosis κ of
a distribution ΦY is defined as the ratio E[Y 4]/(E[Y 2])2. For simplicity we are as-
suming that E[Y ] = 0 and the correction to the formula for the case of a non-zero
mean is obvious. The Gaussian distribution has a kurtosis κ = 3. However, the very
use of the concept of kurtosis implies that one-period asset returns must have finite
variance, which in turn implies that the central limit theorem holds, which in turn is
inconsistent with empirically observed data. So kurtosis is not a panacea either.

3 Stable Distributions

An entirely different approach to modelling the asset return process can be achieved
using the notion of stable distributions. Suppose {Yi}i≥1 is a stationary i.i.d. stochas-
tic process, and let us define the cumulative sum and average processes as follows:

Cl :=
l

∑
i=1

Yi,Al :=
Cl

l
=

1
l

l

∑
i=1

Yi.

The widely (mis-)quoted central limit theorem states the following: Suppose each Yi

has finite mean μ and finite variance σ . Then the random variable (Al − μ)/(σ l1/2)
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converges in distribution to a normal (Gaussian) random variable N(0,1). See for
example [4, pp. 167–168] for a precise statement and proof. As an aside, it is inter-
esting to note that, while the central limit theorem was already known in the early
19th century for the case when {Yi} is a Bernoulli process (two possible outcomes),
the more general result was proved only in 1901 by A. M. Lyapunov [9], who is
somewhat better known in the controls community for his fundamental work on
stability theory.

The central limit theorem as stated above applies only when each Yi has both
finite mean as well as finite variance. What happens if Yi has finite mean but not
finite variance? Suppose the one-period return process {Yi} is stationary and has
a distribution function ΦY . What if anything does the distribution function of the
cumulative average process {Al} look like as l → ∞? The behavior of the distribution
of Al was worked out in the 1920s by Paul Lévy in a series of papers, and led to the
theory of ‘stable’ distributions. As these are quite germane to the present discussion,
we take a brief detour to describe this theory. Chapter 9 of [4] gives a comprehensive
treatment of this theory, so our discussion is rather cursory.

Let us make the problem formulation more general and ask: What are the possible
limits (in distribution) laws of the random variable

Sl :=
1
al

l

∑
i=1

Yi − bl, (1)

where al → ∞,bl/l → 0 as l → ∞? If E(Y 2
1 ) < ∞, then the only possible nonzero

limit occurs when al ∼ l1/2 and the limit is a Gaussian random variable. So the
interesting situation is when E(Y 2

1 ) = ∞. This leads naturally to the notion of a
stable distribution. A distribution ΦX of a random variable X is said to be stable if
the following statement is true: Suppose Y,Z are independent and identical copies
of X . Then for each pair of real numbers a,b, there exist two other real numbers c,d
such that aY + bZ is distributionally equal to cX + d.1 The distribution ΦX is said
to be strictly stable if d = 0, or in other words, aY + bZ is distributionally equal to
cX . Finally, the distribution ΦX is said to be p-strictly stable if c = (ap +bp)1/p. It
is easy to verify that every Gaussian distribution is stable, whereas every zero mean
Gaussian distribution is 2-strictly stable.

Now we quote, without proof, some of the useful properties of stable distribu-
tions.

Theorem 1. ([4, Prop. 9.25]) A distribution Φ can be the limit in distribution of an
average of the form (1) if and only Φ is a stable distribution.

This theorem means that, irrespective of what the one-period asset return process
looks like, the cumulative average return process must have a stable distribution.

Given a random variable X with the distribution function Φ , recall that its char-
acteristic function is denoted by Φ̂ and is defined by

1 This means that aY +bZ and cX +d have the same distribution.
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Φ̂(u) := E[exp(iuX)] =
∫ ∞

−∞
eiuxΦ(dx),

where i denotes
√−1. With this definition, it is possible to give an explicit charac-

terization of all possible stable distributions.

Theorem 2. ([4, Theorem 9.27]) Suppose Φ is a stable distribution. Then either
Φ is Gaussian, or else there exist a number α ∈ (0,2) called the ‘exponent’ of the
stable distribution, and constants m1,m2 ≥ 0 and β such that

logΦ̂(u) = iuβ + m1

∫ ∞

0

(
eiux − 1 − iux

1 + x2

)
dx

x1+α

+ m2

∫ 0

−∞

(
eiux − 1 − iux

1 + x2

)
dx

|x|1+α . (2)

An alternate description of stable distributions is given next.

Theorem 3. ([4, Theorem 9.32]) A function f (u) is the characteristic function of a
stable distribution with exponent α ∈ (0,1)∪ (1,2) if and only if f (u) = exp(ψ(u))
where ψ(u) is of the form

ψ(u) = iuc − d|u|α
(

1 + iθ
u
|u| tan

απ
2

)
, (3)

where c is real, d is real and positive, and θ is real with |θ | ≤ 1.

A distribution Φ is said to be in the domain of attraction of a stable distribu-
tion with exponent α < 2 if there is a sequence of constants {al},{bl} such that
(1/al)∑l

i=1 Yi −bl → X in distribution, where X has a stable distribution with expo-
nent α , and the Yi are independent and identical copies of a random variable with
distribution Φ . The next result states what kinds of distributions are in the domain
of a stable distribution with exponent α .

Theorem 4. ([4, Theorem 9.34]) The distribution Φ is in the domain of attraction
of a stable distribution with exponent α < 2 if and only if there exist two nonnegative
constants M−,M+, not both zero, such that

lim
y→∞

Φ(−y)
1 − Φ(y)

=
M−
M+

, (4)

and for every ξ > 0,

lim
y→∞

1 − Φ(ξ y)
1 − Φ(y)

=
1

ξ α if M+ > 0, lim
y→∞

Φ(−ξ y)
Φ(−y)

=
1

ξ α if M− > 0. (5)

The significance of Theorem 4 is the following: Suppose we have observed that
the cumulative average return process is a stable distribution with exponent α < 2.
Then the distribution of the one-period return process (which need not be stable
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of course) must satisfy the conditions in (4) and (5). Conversely, suppose that one-
period returns satisfy (4) and (5) with some exponent α . Then the cumulative return
process must have a stable distribution with the same exponent.

Note that a distribution that satisfies the two properties in (5) is referred to as
being ‘Paretan’ after the Italian economist Vilfredo Pareto.

Next, let us study the behavior of the tail probabilities of sums (or averages) of
heavy-tailed random variables. As before, suppose {Yi}i≥1 is an i.i.d. process, and
define Cl to be the l-th cumulative sum, and Al to be the l-th cumulative average.
For simplicity assume that all Yi are nonnegative-valued random variables with finite
mean μ . Now let us consider two distinct quantities:

γl(ε) := Pr{Cl ≥ lε} = Pr{Al ≥ ε},δl(ε) := Pr{max{Y1, . . . ,Yl} ≥ l(ε − μ)}.

Thus γl(ε) is the probability that the probability that the cumulative sum Cl exceeds
the threshold lε , or equivalently, the probability that the cumulative average Al ex-
ceeds the threshold ε , whereas δl(ε) is the probability that any one of the l random
variables Y1, . . . ,Yl exceeds l times the threshold ε − μ . For this situation, we have
the following statement:

Theorem 5. ([12], [8, Eq. (10)]) Suppose each Yi is nonnegative valued, and define
α := inf{p : E[Y p

1 ] < ∞}. Suppose α ∈ (1,2), and suppose Φ(y) ≥ f (y)/yα for some
‘slowly varying’ function f (·).2 Then γl(ε) ∼ δl(ε) for every ε .

Theorem 5 states that there is a fundamental difference between the way the tail
probabilities of Al behave when each Yi has finite second moment, and when it does
not. Suppose each Yi has finite second moment. Then γl(ε) looks like the Gaussian
tail. As a result, the ‘rare event’ of the cumulative sum Cl exceeding the threshold
lε occurs much more likely via each individual Yi assuming a somewhat larger than
normal value. This rare event is thus an accumulation of several ‘mini-rare events’.
In contrast, if Yi has a stable distribution with exponent α < 2, then γl(ε) ∼ δl(ε)
for every ε . This means that the rare event of the cumulative sum Cl exceeding the
threshold lε is just as likely to occur because one or two of the individual variables
Yi assume truly humongous values larger than l(ε − μ) (remember that l approaches
infinity!) as because every individual variable Yi slightly exceeds the threshold ε .

As mentioned in the introduction, it has already been observed empirically that
real asset prices demonstrate precisely this kind of behavior: A significant part of the
cumulative change in asset prices over a very long period actually takes place over
just a few days. In a very early paper [10], Mandelbrot observed that cotton prices
over a century show this kind of behavior, and used this observation as an argument
in favor of modeling asset returns by Paretan distributions. However, the fact that
this kind of behavior is symptomatic of any heavy-tailed asset returns seems to have
been fully established only by the 1990s.

2 A function f : R → R is said to be slowly varying if limy→∞ f (ry)/ f (y) = 1 for every
r > 1.
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4 Implications to Option Pricing, Hedging Strategies Etc.

In this section, we discuss the implications of modelling asset returns by heavy-
tailed distributions on option pricing, and hedging. Recall that a ‘call’ option is an
instrument that gives the buyer the right, but not the obligation, to buy the asset at
a prespecified price known as the ‘strike’ price, which is denoted by K. Similarly,
a ‘put’ option gives the buyer the right, but not the obligation, to sell an asset at
the strike price. There is also a time of expiry of the option, denoted by T . In a
European option, the buyer can exercise his claim only at time T , whereas in an
American option, the buyer can exercise his option at any time up to time T . To
simplify the discussion, we restrict ourselves here to European options.

The idea of using a combination of options and the underlying stock to limit one’s
risk was well-known long before the seminal work of Black-Scholes [3] and Mer-
ton [11], The Ph.D. thesis work of Bachelier [1] on computing the ‘right’ price for an
option predates Einstein’s work on Brownian motion by a full five years. Strategies
such as buying an asset and simultaneously buying a put option, or simultaneously
selling a put and buying a call option (or vice versa), have been widely practiced for
a few centuries at least. One of the important contributions of Black-Scholes was the
idea of ‘dynamic hedging’, whereby the seller of an option can continuously adjust
his portfolio between the stock and the bond. In order to have a tractable problem,
they had to make some simplifying assumptions and create an idealized situation.
The ‘unrealism’ of their model does not in any way detract from the significance of
their contribution.

To simplify the discussion, suppose there is only one asset whose future price
movements are uncertain (which is commonly referred to as the ‘stock’), and
another asset whose future price movement is purely deterministic (which is com-
monly referred to as the ‘bond’). If we discount future prices of the stock by dividing
by the price of the bond at that time instant, one effectively gets the stock price mea-
sured in constant (or risk-free) currency. Let St denote the price of the stock at time
t, and let the value of the bond equal 1 at all times. Let K denote the strike price
of the option, and T the maturity (or expiry) time. Thus, at time T , the (European)
option has the value {ST − K,0}+, where (·)+ denotes the positive part. Thus if the
final price ST exceeds the strike price, then the seller of the option has to incur an
expenditure of ST −K to procure the stock at the prevailing price, and then give it to
the buyer of the option – unless he already possesses some quantity of the stock. If
ST ≤ K, then the option is not exercised, and the seller of the option does not incur
any expenditure. Now the option-pricing question is merely this: What is the price
that the seller of the option should charge at time t = 0 for the option?

Since the seller of the option has the ‘option’ of investing some of the proceeds
into the underlying stock, and continually changing his investment portfolio, let
us introduce another term, which may be called the ‘trading strategy’. Thus the
strategy is (loosely speaking) allocating the available money to buy at shares and bt

bonds at time t. Clearly the trading strategy has to nonanticipatory; thus at must be
measurable with respect to the σ -algebra generated by {Sτ}0≤τ≤t . Also, the strategy
must be ‘self-financing.’ This notion can be explained easily in the discrete-time
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context, and then generalized to continuous-time. Suppose both the stock price St

and the portfolio (at ,bt) are changed only at discrete instants of time. At time t = ti,
the portfolio (at ,bt) has a value of atiSti +bti . At time t = ti+1, the value of the stock
changes to Sti+1 , and the value of the portfolio changes to atiSti+1 + bti . (Recall that
the value of the bond is constant with time.) Thus the self-financing requirement can
be stated as

ati+1Sti+1 + bti+1 = atiSti+1 + bti .

In the continuous-time case, the above relation gets replaced by a stochastic integral.
Once a trading strategy has been chosen, the final value of the portfolio will be

XT = aT ST +bT . Naturally, XT is a random number. The quantity VT = XT −{ST −
K,0}+ is called the ‘hedging error’. It is fairly obvious that the expected value of the
hedging error E(VT ) has to equal zero. However, the great achievement of Black-
Scholes was to show that through dynamic hedging, it is also possible to make the
variance of VT equal to zero, thus in principle eliminating all risk. It is necessary to
specify the probability measure under which the variance equals zero. In the Black-
Scholes formalism, one replaces the ‘real-world’ measure P̃ by another equivalent
measure Q̃ under which the stock price process {St} becomes a martingale. Actually
the variance of VT is zero under Q̃, which means that Q̃-almost surely VT = 0. But
since Q̃ is equivalent to P̃, this means that the hedging error is almost surely equal
to zero under the real-world measure P̃ as well. Of course, this conclusion holds
under very idealized conditions, such as the asset prices following a GBM model, no
transaction costs, assets being available for sale in unlimited quantities and infinitely
divisible (no quantization), etc. Nevertheless, there is no doubt that the theory has
influenced an entire generation of traders and investors.

If the asset prices do not follow a GBM model, then in general it is not possible
to ensure that VT will turn into a deterministic constant, namely zero. One approach
that has been studied in the literature is that of minimum variance hedging. Ideally
one would like to minimize E[V 2

T , P̃], but this problem has proved to be intractable.
So instead one tries to minimize E[V 2

T ,Q̃] where Q̃] is a martingale measure equiv-
alent to P̃. Since in general there can be infinitely many equivalent martingale mea-
sures, the various hedging strategies are not strictly comparable, thus leading to a
most unsatisfactory situation. We do not pursue that topic here for want of space.

Instead, we will raise an entirely different question, namely: What happens if the
stock returns process {λt} is a heavy-tailed process, so that XT may not have finite
variance? While we do not have any answers, in the remainder of this section we
take a stab at formulating some interesting questions.

Choice of Trading Strategies to Achieve Finite Variance for the Hedging Error:
The fact that the returns process {λt} and the final stock price ST are heavy-tailed
does not necessarily imply that the hedging error VT is heavy-tailed (though that
would seem plausible). Is it possible to prove rigorously that no trading strategy
exists that would ensure that VT has finite variance, or equivalently, that VT does not
have finite second moment under any trading strategy?
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Choice of Criterion to Choose a ‘Good’ or Even ‘the Best’ Trading Strategy:
If indeed VT has infinite variance, then approaches such as minimum variance hedg-
ing have no meaning. Instead one would have to adopt something like the much-
maligned VAR (Value at Risk) criterion. One should fix an acceptable level of risk,
call it δ , and define the value at risk v(δ ) as

v(δ ) := inf{v : 1 − ΦVT (v) ≤ δ}.

If ΦVT is continuous and monotonic, the above expression can be simplified to:
v(δ ) = (1 − ΦVT )−1(δ ). Then one can choose the trading strategy so as to mini-
mize v(δ ). An alternative is to compute the ‘expected amount at risk’, which is the
expectation of VT conditioned on VT exceeding v(δ ). While these concepts may be
appealing, the major drawback is that there is absolutely no hope of getting anything
remotely similar to ‘closed form formulas’, which are one of the most appealing fea-
tures of Black-Scholes theory.

And finally, we leave the reader with the following question: Do averaged asset
returns really exhibit heavy-tails and self-similarity? All of the empirical evidence
cited in the Introduction really pertains only to one-period returns. Thus this em-
pirical evidence could, in principle, be explained by one-period returns exhibiting
heavy kurtosis. The one-period returns process can be anything under the sun, and it
is only the cumulated average returns process that needs to exhibit a stable distribu-
tion. Thus, in order to make the case persuasive, one would need to marshal enough
empirical evidence to show that the averaged returns process exhibits the behavior
described in Theorem 5.

Acknowledgements. The author thanks Sanjay Bhat and Vijaysekhar Chellaboina for their
careful reading of and comments on this manuscript.
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Supérieure 3(17), 2186 (1900)

2. Benth, F.E.: Option Theory with Stochastic Analysis. Springer, Berlin (2004)
3. Black, F., Scholes, M.: The theory of options and corporate liabilities. Journal of Political

Economy 81, 637–654 (1973)
4. Breiman, L.: Probability. SIAM Publications, Philadelphia (1992)
5. Davis, M.H.A., Etheridge, A.: Louis Bachelier’s Theory of $peculation: The Origins of

Modern Finance. Princeton University Press, Princeton (2006)
6. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Springer, Berlin

(1998)
7. Fu, M.C., et al. (eds.): Advances in Mathematical Finance. Birkhäuser, Boston (2007)
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Markov Models for Coherent Signals:
Extrapolation in the Frequency Domain�

Roger W. Brockett

1 Introduction

In this paper we describe a Markov model for a class of stochastic processes whose
properties relate to a wide variety of situations in which time-frequency analysis is
relevant. These include the production of sound and, in particular, music, frequency
modulated digital communication systems, stimulated emission in atomic physics
and other aspects of coherent light. More specifically, it provides a new point of view
on some ideas explored over the years by Yutaka Yamamoto [1, 2, 3] and others [4]
relating to the regeneration of sound from compressed versions obtained by band
limiting and sampling. We frame this particular question as one of extrapolation in
the frequency domain and argue that analytically tractable signal models can play
a significant role in facilitating the reconstruction process. We also touch briefly on
the data needed for parameter selection and model validation.

Optimal causal extrapolation for stationary time series was treated already in the
earliest days of time series analysis. It is obviously of great interest in fields as di-
verse as weather prediction, finance and fire control. Extrapolation in the frequency
domain is a more recent idea, largely motivated by technologies related to data com-
pression and psychoacoustics but also related to the generation and description of
coherent light [5] and other problems in quantum electrodydamics, including quan-
tum computing. In fact, the famous A−B coefficients in Einstein’s model for black-
body radiation can be seen as elements of a special case. The purpose of this paper
is to describe a class of models which allow one to formulate and resolve questions
about statistically justifiable extrapolation in the frequency domain. Our analysis
centers around three questions:

Roger W. Brockett
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1. model selection
2. data collection for model verification
3. extrapolation algorithms

As is well known, the characterization of a wide sense stationary process in terms
of its power spectrum does not carry information about the short term fluctuations in
energies, or the relative phases, of the signals present in the spectral decomposition.
This may seen as a consequence of the fact that in assuming that the process is
wide sense stationary such information is necessarily averaged out. Thus the data
required to support realistic frequency domain extrapolation is simply not present
in the second order statistics of a stationary process. Even so, the assumption of
wide sense stationarity is natural and in some applications a virtual necessity for
technological reasons. What we will show here is that there are reasonably tractable
models for signals, which shape the higher order statistics in relevant ways; these
are wide sense stationary processes which capture short time correlations between
the various contributions to the power spectrum.

Our models are based on stochastic differential equations of the Itô type involving
a finite state part x and a type of random sawtooth wave τ . If Ni j are Poisson counters
and if ei denotes the standard basis vectors in R

n then one way to describe the
systems studied here is via

dx = ∑(e j − ei)eT
i xdNi j ; x ∈ {e1,e2, ...,en}

dτ = dt − τ ∑eT
i xdNi j

y(t) = eHτ Bx − m ; y(t) ∈ R
m

The rates of the Poisson counters Ni j determine the transition rates from x j to xi. If
the eigenvalues of H are purely imaginary then the components of y will be sums
of sinusoids that are restarted at random times. Depending on further details to be
introduced later, various phase relationships can be modeled. This class of models
does not seem to have been studied before and our results on computing the statis-
tical properties of the solutions seem to be new and to have a number of interesting
applications.

Questions centering on the realization of a stationary autocorrelation function
via finite state Markov processes have studied for many years and it is known that
a given autocorrelation function can be approximated with arbitrary accuracy by a
linear function of a time invariant finite state Markov process [6]. Less explored, is
the idea of realizing a stationary statistics with time varying systems. This possibility
exists for both realizations based on Wiener processes as in

dx = Axdt + Bdw ; y = c(t)x

and for those based on finite state Markov processes. In the situation for which
c(t) = c0eHt we have

lim
t→∞

E y(t)y(t + τ) = c0eHtΣeAτ eHT (t+τ)cT
0
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where
AΣ + ΣAT = −BBT

In this case stationarity requires that there be enough shared structure between H,A
and B so as to make

c0eHtΣeAτ eHT (t+τ)cT
0 = c0ΣeAτ eHT τ cT

0

We turn now to the main subject of this paper, the use of finite state models
in connection with fixed forms of continuous signals. Consider the (x,τ,y) system
introduced above. Even though y is a function of a Markov process whose state
space is the product of a finite set and the half-line [0,∞), we find it convenient to
suppress the reference to τ and recast the situation in terms of an evolution equation
for (x,y) .

dx = ∑(e j − ei)eT
i xdNi j ; x ∈ {e1,e2, ...,en}

dy = Hy − yB

(

∑
i

eT
i xdNi j

)

+ B∑
i

∑
j

eie
T
j xdNi j

The details about how this model works and how to make calculations with it will
emerge in the next few sections but the following example is suggestive.

Example 1. Consider a four dimensional vector x ∈ {e1,e2}×{e3,e4} and a model

d

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦=

4

∑
i=1

⎡

⎢
⎢
⎣

−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦dNi

with
y(t) = sinωt(x1 − x2)+ cosωt(x3 − x4)

Clearly the expected value of y in steady state is zero. The expression for the auto-
correlation function of y simplifies using cost cos(t + σ)+ sin t sin(t + σ) = cosσ
to

lim
t→∞

y(t)y(t + σ) = cosωσe−|σ |

This example shows that time varying models can be wide sense stationary. How-
ever, it does not incorporate any correlation between activity at different frequencies.
Later we will describe simple systems which do have this property.

2 An Example

Because the model we will be working with has a number of unusual aspects, it
seems appropriate to illustrate some of its properties in a relatively simple setting.
For this reason we begin with a detailed examination of a specific example.
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Example 2. Let N12 and N21 be a standard Poisson counters of rates λ12 and λ21,
respectively. Let x satisfy the Itô equation

d

[
x1

x2

]
=
[−1

1

]
x1dN12 +

[
1

−1

]
x2dN21

We assume that x(0) ∈ {e1,e2} = E and note that from the structure of the equation
x evolves in this set. Let τ satisfy the Itô equation

dτ = dt − τ(x1dN12 + x2dN21) ; τ(0) = 0

The sample paths of τ are sawtooth-like, evolving with a slope of one but being
reset to zero each time x changes it value. Given the counting rates λ12 and λ21,
it is not difficult to see that in steady state the expected values of x1 and x2 are
λ21/(λ12 + λ21) and λ12/(λ12 + λ21), respectively. From this we see that in steady
state the expected number of transitions for x per unit time is 2λ12λ21/(λ12 + λ21)
and that the expected value of τ is the reciprocal of this number; larger values of the
counting rates means the τ is reset more often and consequently will have a smaller
average value. To complete the definitions, we let y be given by

y(t) = eH1τ(t)x(t)− m

with m a constant and

H =
[

0 1
−1 0

]

Thus y is a two component vector whose sample paths consist of segments of sine
waves with a fixed amplitude and a fixed relative phase, offset by m. In general we
will choose m to make the average value of y zero but in some of the more interesting
cases this is achieved with m = 0.

We turn now to the statistical properties of these variables with the goal of showing
that as time evolves their second order statistical properties approach those of a
wide sense stationary process with a rational power spectrum but that the higher
order statistics s carry phase information, giving the signals “coherence”. Taking
expectations of both sides of the equation for x we see that

d
dt

E x =
[−λ12 λ21

λ12 −λ21

]
E

[
x1

x2

]
= AE x

so that E x approaches the steady state value given above. To compute the statistical
properties of y we observe that y satisfies the the Itô equation

dy = Hydt − y(x1dN12 + x2dN21)+
[

0
1

]
x1dN12 +

[
1
0

]
x2dN21

and that by working with y we can eliminate the direct involvement of τ . Moreover,
the tensor product of x and y satisfies
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d(yx1) = Hyx1dt − yx1dN12 + e1x2dN21

d(yx2) = Hyx2dt − yx2dN21 + e2x1dN12

To bring out the linear structure of the evolution we set up the system

d

⎡

⎣
x

yx1

yx2

⎤

⎦=

⎡

⎣
e2eT

1 dN12 + e1eT
2 dN21 0 0

e1eT
2 dN21 Hdt − IdN12 0

e2eT
1 dN12 0 Hdt − IdN21

⎤

⎦

⎡

⎣
x

yx1

yx2

⎤

⎦

Taking expectations, and recalling the previously given definition of A we get the
lower triangular system

d
dt

E

⎡

⎣
x

yx1

yx2

⎤

⎦=

⎡

⎣
A 0 0

e1eT
2 λ21 H − Iλ12 0

e2eT
1 λ12 0 H − Iλ21

⎤

⎦E

⎡

⎣
x

yx1

yx2

⎤

⎦

Of course E y can be obtained as E y = E yx1E x1 +E yx2E x2. From this expression
we see that the exponentials describing the rates of decay present in the expression
for transient terms in the expectation of y consist of pairwise sums of the eigenvalues
of finite state transition matrix A and the matrices H − λi jI. Thus A and H − λi jI
both play a role in shaping the power spectrum but if H is large and A is small,
the eigenvalues of H will dominate. Applying the ordinary version of the chain rule
together with the previously given results for various expectations one can arrive at
a differential equation for the expected value of y if that is needed.

From the previous equation we see that the steady state averages satisfy

[
H − Iλ12 0

0 H − Iλ21

][
E yx1

E yx2

]
=

[
e2

λ21
λ12+λ21

e1
λ12

λ12+λ21

]

so that in steady state the expression E y = E yx1E x1 +E yx2E x2 becomes

E y = (H − Iλ12)−1e1

(
λ21

λ12 + λ21

)2

+(H − Iλ21)−1e2

(
λ12

λ12 + λ21

)2

Note that if λ12 = λ21 = λ this simplifies to

E y =
1
2
(H − Iλ )−1(e1 + e2)

Equally important for our purposes are the second order statistics of y. Just as
we needed to work with yxi to get the mean for y, we need to work with yyT xi to
compute the second order statistics of y. This requires that we set up equations for
the expected value of

M =

⎡

⎣
x

yx1

yx2

⎤

⎦

[
xT yT x1 yT x2

]
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A number of simplifications occur here because x2
i = xi and xix j = 0 if i �= j. The

only nontrivial calculations are

dyyT x2
i = HyyT xidt + xiyyT HT dt −

n

∑
j=1

yyT xidNi j +
n

∑
j=1

eie
T
j x2dNji

Thus we have

d

⎡

⎣
x

yyT x1

yyT x2

⎤

⎦=

⎡

⎣
e2eT

1 xdN12 + e1eT
2 xdN21

(HyyT x1 + yyT x1HT )dt − yyT x1dN12 + e1eT
1 dN21

(HyyT x2 + yyT x2HT )dt − yyT x2dN21 + e2eT
2 dN12

⎤

⎦

Taking expectations gives a set of three equations for the variances.

d
dt

E

⎡

⎣
x

yyT x1

yyT x2

⎤

⎦=

⎡

⎣
e2eT

1 E xλ12 + e1eT
2 E xλ21

E (HyyT x1 + yyT x1HT )−E yyT x1λ12 + e1eT
1 λ21

E (HyyT x2 + yyT x2HT )−E yyT x2λ21 + e2eT
2 λ12

⎤

⎦

The steady state value of the autocorrelation function can be obtained from the
steady state variance and the differential equation for the means in accordance with
the usual differential equation for the covariance

d
dσ

E z(t)zT (+σ) = E z(t)zT (t + σ)FT

where Fz is the right-hand side of the equation for the evolution of the mean.
Aspects of this model that we wish to emphasize include:

1. The model admits a wide sense stationary steady state. whose correlation func-
tion and power spectrum can be directly related to the parameters of the model.

2. The wave forms are segments of sinusoids or damped sinusoids, with fixed am-
plitude and phase relationships, reset at random points in time. These give a co-
herence to the signals not present in the standard Gauss-Markov models.

3. All moments can be computed as solutions to linear differential equations, allow-
ing the analysis of high order correlations.

3 The General Model

The example of the previous section will now be generalized in two significant
ways. However, even with this added generality it will still be possible to make the
same calculations relating the model parameters to the statistical properties of the
solutions.

First of all we replace the two state model for x used in the example above with
a model involving an arbitrary (finite) number of states. The sample path equation
takes the form
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dx = ∑(e j − ei)eT
i xdNi j ; x ∈ {e1,e2, ...,en}

The choices for the rates of the counters provide the same flexibility as the usual
choices for the transition probabilities in a finite Markov chain. The model for y
allows for an arbitrary (finite) set of sinusoids or damped sinusoids. It could be
written as

y(t) = CeHτ Bx(t) ; y(t) ∈ R
p

but we prefer to eliminate τ and describe y in differential form

dy = CHydt −CyB

(

∑
i

eT
i xdNi j

)

+CB∑
i

∑
j

eie
T
j xdNi j

where H is an arbitrary m-by-m matrix, and B and C are rectangular matrices of the
appropriate sizes. The flexibility provided by these extensions can be used in the
following ways:

1. If H has several rationally related imaginary eigenvalues then randomly gener-
ated multi-frequency segments with fixed or random phase relationships can be
modeled. This is useful for frequency domain extrapolation. In particular in this
situation the relative sizes of the entries in the columns of B determine the relative
strength of the various harmonics present in y.

2. The amplitude of a harmonic present at one frequency can be correlated to the
amplitude of a harmonic present at a second frequency. This is never the case for
Gauss-Markov processes generated by dx = Axdt + Bdw ; y = cx

3. One can shape the probability distribution of the phase difference between two
components of y.

4. Higher order statistics can be computed using the higher order moment equations
as in [7].

We will illustrate these points with a series of examples.

Example 3. Let the x process be as above with the λi j all equal to λ . Let H and B be
given by

H =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 0
0 0 0 3
0 0 −3 0

⎤

⎥
⎥
⎦ ; B =

⎡

⎢
⎢
⎣

2 1
0 0
1 0
0 0

⎤

⎥
⎥
⎦

and let c = eT
1 + eT

3 . Thus when x switches from e1 to e2, y switches from y =
2cos(t −tk)+cos3(t −tk) to y = cost(t −tk). If λ << 1 so that x will typically spend
many periods in a state before switching, the expected power in y is concentrated
near ω = 1 and ω = 3. Without doing a detailed calculations, we can see that a
moving average approximation to the power near ω = 1 such as

p(1) =
1

T 2 E

(∫ T

−T
e−.5|t−σ |cos(t − σ)y(t − σ)dσ

)2
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is more strongly correlated to a similar moving average for the power near ω = 3

p(3) =
1

T 2 E

(∫ T

−T
e−.5|t−σ |cos(3t − 3σ)y(t − σ)dσ

)2

than would be the case for a Gauss-Markov model with the same power spectrum.

For carrying out calculations of the type done in example one it is better to post-
pone the consideration of the effect of C until the very end, working instead with a
differential equation for the quantity eHτ Bx.

Finally, If F has eigenvalues lying on the imaginary axis the system can be
viewed as modeling a frequency selection process. As such, it would provide a basis
for extrapolation in frequency domain.

4 Data

Given a stochastic process y we can let it excite a non stationary dynamical sys-
tem with the view of extracting information about the harmonic content of y. For
example the solution of the equations

d
dt

[
z1

z2

]
=
[−1 0

0 −1

][
z1

z2

]
+
[

sin t
cost

]
y(t) = −z+ f y

will be such that z2
1 + z2

2 is a measure of the power y has in the vicinity of ω = 1.
One way to make this precise is to assume that y is generated by a Gauss-Markov
process

dx = Axdt + Bdw ; y = cx

and to calculate the variance of z as a function of the power spectrum of y. In terms
of the notation [

Σ11 Σ12

Σ21 Σ22

]
= E

[
xxT xzT

zxT zzT

]

we have

Σ̇ =
[

A 0
f c −I

]
Σ + Σ

[
AT cT f T

0 −I

]
+E

[
BBT 0

0 0

]

and so in steady state Σ11 is a constant. The differential equations for the remaining
quantities are

Σ̇12 = (A − I)Σ12 + Σ11cT f T

Σ̇22 = −2Σ22 + f cΣ12 + Σ21cT f T

The equation for Σ12 shows clearly that if A − I has a an eigenvalue near i then f
will couple strongly with this mode and f cΣ12 + Σ12cT f T will, in turn, generate a
large response in z. Not only does the size of ||z|| reflect the power near ω = 1 but
the values of z1,z2 and z1z2 track phase information as time evolves.
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Elaborating on this idea, if we replace the z system by a bank of such filters
having f ’s with different frequencies, then one can collect not only information
on the power at a large number of frequencies ω1,ω2,ω3, ...ωk, but also, through
the formation of fourth order averages such as E (z2

1 + z2
2)(z

2
3 + z2

4), it is possible
to evaluate the correlation between the power at different frequencies. These data
provided a basis for extrapolation in the frequency domain.

In view of the orthogonality properties of sinusoids it is to be expected that the
value of integrals such as

η =
∫ ∞

−∞
e−|t| cost cos(3t + φ)dt

will be small even if cost and cos3t are strongly represented in the signal. On the
other hand, and integral such as

η =
∫ ∞

−∞
e−|t|z2

1z2
3dt

will reflect the extent to which two different sin functions are present simultane-
ously, although it is insensitive to their signs. Thus we see that these particular fourth
order statistics can form the basis for frequency extrapolation.
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Digital Signal Processing and the YY Filter

Bruce Francis

Abstract. One of Professor Yamamoto’s important research contributions has been
in audio signal processing. His YY filter is a digital-to-analog converter for the
playback of an audio file. This tutorial paper begins by reviewing some topics in
audio signal processing, including the YY filter. This is followed by a walk-through
of some concepts and results in digital signal processing using the framework of
linear operators on Hilbert space, a subject pioneered by Professor Yamamoto.

1 Introduction

This paper is intended as a tribute to Professor Yamamoto’s contributions to digital
signal processing, in particular the YY filter for audio playback [10]. It is a tutorial
on multirate digital signal processing, audio signal processing in general, and the
YY filter specifically. Professor Yamamoto pioneered the use of operator theory in
signal processing and this paper follows in his very elegant framework.

2 Digital Storage of Audio Signals

An iPod is a beautiful piece of engineering. It is elegant in physical design, intuitive
to use, and amazingly small. In addition, under the hood is a wealth of signals and
systems theory. This section is a tutorial on how audio signals are stored on media
(CDs, DVDs, flash memories). Popular references are [5, 6].

The human ear is not a perfect filter, but it can hear a pure tone below about
20 kHz and above about 20 Hz. By the sampling theorem, an audio signal should
therefore be sampled at greater than 40 kHz. For practical reasons, the standard of
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Vref

Vout

b2

b3

b2

b1

b3b3 b3

Fig. 1 A 3-bit DAC.

44.1 kHz was adopted. So to digitally store an audio signal one would initially think
of merely sampling at 44.1 kHz and then quantizing each sample with sufficiently
many bits, say 18 or 20. This wouldn’t work, for two main, interesting reasons.

First, music signals have lots of high frequency harmonics. So to avoid aliasing
from the sampling process the audio signal must be lowpass filtered. But it’s difficult
and expensive to build an analog filter with a sharp cutoff at 40 kHz and no phase
distortion up to that frequency. So audio signals are oversampled by a large integer
factor, say 64 (but it could be up to 512), and filtered by an anti–aliasing filter that
has negligible distortion up to 40 kHz and gradually tapers off until 64 × 40 kHz.
After sampling, the signal is lowpass filtered in the discrete-time domain and then
downsampled to 44.1 kHz ; filters with sharp cutoff are cheaper and easier to build
in the digital domain.

The second reason relates to the problem of building reliable systems out of faulty
components. It’s not possible to build a simple quantizer of 18 bits. The easiest way
to see this is with the reverse direction of a digital-to-analog converter (DAC), as in
Figure 1. The filter ladder converts a 3-bit word b1b2b3, where bi = 0 or 1, to the
analog voltage Vout:

Vout = Vre f (b12−1 + b22−2 + b32−3).

Consider an N-bit DAC like this one and suppose the resistors are not perfect but
have some manufacturing tolerance so that their values in ohms are R(1±δ ), where
δ is, say, 10−3, that is, 0.1%. Suppose we want to convert the N-bit binary number
10 · · ·0 to analog without any error. In the resistor ladder, we need to generate half
the voltage Vre f by selecting the right half of the resistors. There are 2N resistors,
and the voltage divider rule gives that our goal is

sum of right-half resistances
sum of all resistances

=
1
2
.

We will make the smallest error possible of 1 bit when the ratio on the left equals
2−1 + 2−N instead of 2−1, that is, it corresponds to 100 · · ·01 instead of 100 · · ·0.
Suppose the right half resistors are high at R(1 + δ ) ohms and the left half are low
at R(1 − δ ) ohms. Then the equation becomes
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1
2 2NR(1 + δ )

1
2 2NR(1 + δ )+ 1

2 2NR(1 − δ )
=

1
2

+
1

2N .

Since δ = 10−3, this simplifies to 103 = 2N−1. Thus N = 1 + 3log2(10) = 11. To
recap, the converter may make a 1-bit error if N = 11 and the resistors have an
accuracy of 0.1%. Thus the number of obtainable bits without error is only N = 10.
But we need 18 or 20 to avoid perception by the ear.

Figure 2 shows the basic idea behind audio digital storage. The analog input is
xc(t). The input lowpass filter has negligible distortion up to 44.1 kHz and reaches
close to zero gain at frequency 64 × 44.1 kHz. The feedback loop with an integra-
tor is a Σ − Δ system: Σ signifies integration (summation) and Δ signifies negative
feedback (difference). The block Q is a 1-bit quantizer, i.e., the output equals +1 if
the input is non-negative and equals −1 if the input is negative. The other compo-
nents are S, the continuous-time sampler, a zero-order hold (ZOH), a discrete-time
lowpass filter, with cutoff frequency π/64, and a downsampler by the factor 64,
whose nth output equals its 64nth input. To see how this system works, first note
that, because of the analog LPF, Figure 2 is equivalent to Figure 3, which in turn
is equivalent to Figure 4. This last system has a discrete integrator in a feedback
loop. The integrator has infinite DC gain, without the requirement of accurate cir-
cuit component R and C values. How can we get good analog-to-digital conversion

−
1

RCs
Q

xc(t)
LPF ZOH

fs = 44.1 kHz

64 × fs

1 bit

↓ 64LPF

S

Fig. 2 A Σ −Δ oversampled analog-to-digital converter; one channel.

−
1

RCs
Q

xc(t)
LPF

ZOH

fs = 44.1 kHz

64 × fs

1 bit

↓ 64LPF

S

S

ZOH

64 × fs

Fig. 3 Equivalent since the input is oversampled.
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−
1

RCs
Q

xc(t)
LPF

64 × fs 1 bit

↓ 64LPFS

S

ZOH

64 × fs

x[n]

y[n]
v[n]

Fig. 4 Equivalent by block diagram manipulation.

with a quantizer with only 1 bit? Because the average of v[n] over a long window
equals the average of x[n] over the same window. To see this, let’s say the window
is from n = 0 to n = N. We have

y[n + 1] = y[n]+ k(x[n]− v[n]), k = T/RC.

This yields

y[N] = y[0]+ k
N−1

∑
n=0

(x[n]− v[n])

which in turn leads to

y[N]− y[0]
N

= k
{

avg0≤k≤N−1x[n]− avg0≤k≤N−1v[n]
}

.

Under the assumption that the loop is stable, so that y[n] is bounded, the left-hand
side is small for N large, and therefore

avg0≤k≤N−1x[n] ≈ avg0≤k≤N−1v[n].

But, being highly oversampled, x[n] is nearly constant over the window. Conse-
quently, the final output in Figure 4 is a very close approximation to xc(t) sampled
at 44.1 kHz. This signal, after digital encoding, is the stored signal.

3 Digital Playback of Audio Signals

The playback of an audio signal is much simpler in principle: decode, zero-order
hold, and lowpass filter. Figure 5 shows the architecture for playback via the YY
filter. The input to the diagram is the signal stored at 44.1 kHz. The commercial
playback system by SANYO is proprietary, but the basic idea is to upsample (typi-
cally L = 8), then filter, as in the diagram.

The filter G is designed by formulating the error system in Figure 6 and comput-
ing G to minimize the L2-induced norm of the error system.
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The YY filter G has to be implemented somehow. There are many ways to do
it. In the next section we look at one way, its choice being related primarily to
esthetics—it’s quite cute.

4 Digital Filters in an Operator Framework

Signal processing is largely a linear systems subject and therefore the appropri-
ate framework is linear operator theory. Many of the systems have signals running
at different data rates, for example, sample-rate changers, oversampled analog-to-
digital converters, and filter banks for subband coding. Consequently the systems
are time varying. Standard references are [4, 8], although they don’t use the lan-
guage of operators. This section introduces the framework of operator theory for
signal processing, and looks at some example structures and basic questions.

Definitions and Notation

A discrete-time signal will be denoted, for example, by x[n], where n is an integer.
Thus n ∈ Z and x[n] ∈ R, or x is a mapping from Z to R. Signal space will be the
Hilbert space �2 of square-summable sequences. Then a digital filter is a bounded
linear operator on �2, denoted for example by H.

The unit delay, mapping x[n] to x[n−1], is denoted by U , and H is time invariant
(or Toeplitz) iff H commutes with U . A causal finite impulse response (FIR) filter
is a polynomial in U . For example,

1
3
(I +U +U2)

is the filter that averages the most recent three input values. For a positive integer
L, the downsampler DL maps x[n] to x[Ln]. We drop the subscript L to avoid clutter.

Fig. 5 Playback of an audio
signal. The YY filter is G.

↑ L ZOHG LPF

e−sτ

−
S ↑ L ZOHLPF G LPF

Fig. 6 The YY filter is designed by optimizing the error system.
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Adjoint operators will be denoted by H∗; for example U∗ is forward advance and
D∗ is the upsampler, whose action (for integer L) is

x[n] �→
{

x[n/L], if L divides n
0, if not.

Some digital filters are multi-input and/or multi-output, in which case they act on
the vector-valued space �m

2 for some positive integer m. A memoryless LTI operator
is a pure gain: y[n] = ax[n]. A memoryless MIMO LTI operator on �m

2 is a pure gain
matrix: y[n] = Ax[n], A ∈ R

m×m.

Block Signal Processing

Let D denote downsample by 2 and define

B =
[

D
DU∗

]
.

Thus B : �2 −→ �2
2 and its action is

x[n] �→
[

x[2n]
x[2n + 1]

]
.

Clearly B is the blocking operator that takes a 1-D signal and partitions it into
blocks of length 2. The operator B is unitary: B∗B = I. Written out, this equation is

D∗D+UD∗DU∗ = I. (1)

The simplest structure using block processing is shown in Figure 7. The input x
is broken up into blocks or segments of length 2, then passed through the MIMO
system G, and the two outputs are combined to produce y. This structure was studied
by Vaidyanathan and Mitra [9], who asked the question, when is this system linear
time-invariant (LTI), or alias free in their terminology? To illustrate the elegance
and power of the operator notation, let’s answer that question very simply.

The system from x to y is B∗GB. It is LTI iff it commutes with U :

U(B∗GB) = (B∗GB)U.

This equation is equivalent to

(BUB∗)G = G(BUB∗),

i.e., G commutes with BUB∗. But

BUB∗ =
[

D
DU∗

]
U
[

D∗ UD∗ ]=
[

0 U
I 0

]
.
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However

G =
[

G11 G12

G21 G22

]
and

[
0 U
I 0

]

commute iff G has the form

G =
[

G1 UG2

G2 G1

]
,

where G1,G2 are LTI. Such a matrix is called pseudocirculant in [9].

Block Filtering

Most digital filters in applications are FIR. The YY filter, for example, is designed
using state-space methods, and then approximated by an FIR filter for implementa-
tion, the order being roughly 100 to 150, depending on the oversampling ratio.

So let us turn to the problem of implementing a causal FIR filter H. The direct
way to implement H is by convolution of the impulse response function h[n] with the
input x[n] to produce the output y[n]. The simplest block processing implementation
of H would have G a memoryless MIMO system: The blocks are processed one
after another. The identity

H = B∗(BHB∗)B

suggests we might try G = BHB∗. However it turns out that BHB∗ is memoryless iff
H is itself memoryless. Hence this naive approach doesn’t work. As we shall see,
appending zeros to the input blocks is the way forward.

Fig. 7 A naive attempt at
block filtering.

U∗

D

D

D∗

D∗x y

G U

Consider the very simple first-order case H = U , that is, the transfer function is
z−1. The order of the filter is 2, because, as a polynomial in U , H has degree 1 and
hence two coefficients. From (1) we have

U = U(D∗D+UD∗DU∗) =

⎡

⎣
D

DU∗
DU∗2

⎤

⎦

∗⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

⎡

⎣
D

DU∗
0

⎤

⎦ .

Likewise, the general order 2 filter factorizes as

h[0]I + h[1]U =

⎡

⎣
D

DU∗
DU∗2

⎤

⎦

∗⎡

⎣
h[0] 0 h[1]
h[1] h[0] 0

0 h[1] h[0]

⎤

⎦

⎡

⎣
D

DU∗
0

⎤

⎦ .
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The form is H = B∗
eGBz. Let’s look at these three factors. Moving from right to left

we have first the blocking operator appended with a zero block:

Bz =

⎡

⎣
D

DU∗
0

⎤

⎦ : �2 −→ �3
2.

In the middle is G : �3
2 −→ �3

2 that acts like this:

w = Gv, w[n] = Cv[n], C =

⎡

⎣
h[0] 0 h[1]
h[1] h[0] 0

0 h[1] h[0]

⎤

⎦ , w,v ∈ �3
2.

This is a memoryless operator of multiplying by a circulant matrix. Finally, we have
the adjoint of the extended blocking operator:

Be =

⎡

⎣
D

DU∗
DU∗2

⎤

⎦ .

The block diagram corresponding to this factorization is Figure 8. All arrows repre-
sent signals in �2 and all boxes stand for operators.

Fig. 8 Implementation of
order-2 FIR operator by
a memoryless circulant
operator.

0
U

U∗ U

D

D

D∗

D∗

D∗x y

G

Figure 9 is an equivalent block diagram using more conventional notation.
Of course, the implementation in Figure 8 is more complicated than the original

h[0]I +h[1]U , so to see the point of this factorization we turn now to the general case.
For a general positive integer N, D denotes downsample by N and B denotes

the blocking operator �2 −→ �N
2 . Append by N − 1 zeros to get Bz : �2 −→ �2N−1

2 ,
and extend by N − 1 terms DU∗N ,DU∗(N+1), . . . to get Be : �2 −→ �2N−1

2 . Finally, P
denotes the canonical (2N − 1)× (2N − 1) permutation matrix

P =
[

0 1
I 0

]
.

Every (2N − 1)× (2N − 1) circulant matrix is a polynomial in P.
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Fig. 9 Conventional block
diagram.

y[n]

z−1

↑ 2

↑ 2

↑ 2

z−1

x[n]

z

↓ 2

↓ 2

0

C

Theorem 1. Let H be a polynomial in U of order N:

H = h[0]I + · · ·+ h[N − 1]UN−1.

Then H = B∗
eGBz, where G : �2N−1

2 −→ �2N−1
2 is the memoryless operator of multi-

plication by the circulant matrix

C = h[0]I + h[1]P+ · · ·+ h[N − 1]PN−1.

Block Filtering and FFT

It is a beautiful fact, fundamental in signal processing, that every circulant matrix
is diagonalized by the Fourier matrix [2]. Let C be as in the theorem. Let Δ be
the (2N − 1)× (2N − 1) diagonal matrix, the diagonal elements being the discrete
Fourier transform (DFT) of (h[0], . . . ,h[N − 1],0 . . . ,0). These are the eigenvalues
of C. And let F be the (2N −1)× (2N −1) Fourier matrix: If the rows and columns
are numbered from 0 to 2N − 2, element (m,n) of F is

e− j2πmn/(2N−1).

Then FCF−1 = Δ . Therefore the FIR filter can be implemented by the structure
in Figure 10, shown for input blocks of length two only and where the δ ’s are the
diagonal elements of Δ .

Of course, multiplying by F can be performed quickly using the fast Fourier
transform algorithm (FFT).

Experiments have been done to study the speedup of the implementation in Fig-
ure 10 over that in Figure 9. The graph in Figure 11 taken from [7] is typical.

Aside on Orthogonal Frequency-Division Multiplexing

In the preceding a Toeplitz operator was factored into a product where one of the
factors is circulant. Here we perform a dual construction.

Orthogonal frequency-division multiplexing (OFDM) is used in wireless data
communication, such as the IEEE standard 802.11a. OFDM is an instance of
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Fig. 10 Block filtering
using FFT.
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Fig. 11 Block filtering
using FFT.

multicarrier modulation. It would take too long to do OFDM in detail, so the goal
here is just to describe the underlying idea.

F−1 Pf H R F
s x y p q r

Fig. 12 OFDM.

To keep things simple, we’ll do the finite matrix case. The OFDM structure to
transmit a binary signal s[n] of length N is illustrated in Figure 12. In this diagram,
s[n] and r[n] are each length-N signals—the signal sent and the signal received.
The signals x[n],q[n] are length N too, while y[n], p[n] are padded. The matrix H
is a causal Toeplitz matrix representing an LTI channel. The matrices Pf and R are
chosen to make RHPf circulant. For example, if

H =

⎡

⎢
⎢
⎣

h[0] 0 0 0
h[1] h[0] 0 0

0 h[1] h[0] 0
0 0 h[1] h[0]

⎤

⎥
⎥
⎦ , (2)

then



Digital Signal Processing and the YY Filter 319

Pf =

⎡

⎢
⎢
⎣

0 0 1
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦ , R =

⎡

⎣
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦ .

Thus Pf cleverly adds a prefix; y is defined by

y =

⎡

⎢
⎢
⎣

y[0]
y[1]
y[2]
y[3]

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

x[2]
x[0]
x[1]
x[2]

⎤

⎥
⎥
⎦ .

And R removes the prefix from p to produce q. The matrix C = RHPf is

⎡

⎣
h[0] 0 h[1]
h[1] h[0] 0

0 h[1] h[0]

⎤

⎦ .

We conclude that the matrix from s to r is diagonal: r = Δs. No intersymbol inter-
ference!

5 Summary of Main Points

Digital audio processing, both storage and playback, involves several interesting
techniques, some control theoretic, to overcome practical constraints: Oversampling
is used because it is easier to design and build a sharp cutoff filter in discrete time;
integral feedback is used because it tolerates component imperfections. As a conse-
quence of oversampling, a 1-bit quantizer suffices.

The YY filter is designed by H∞ optimization of an error system. Other digital
signal processing problems have been tackled this way, for example, [3, 1].

The formalism of linear operators on Hilbert space is very applicable. Factoring
a Toeplitz operator into a block circulant matrix is the key construction for fast
implementation via FFT. A related result is the basis for OFDM.
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Sparse Blind Source Separation via �1-Norm
Optimization

Tryphon T. Georgiou and Allen Tannenbaum

Abstract. The title of the paper refers to an extension of the classical blind source
separation where the mixing of unknown sources is assumed in the form of convo-
lution with impulse response of unknown linear dynamics. A further key assump-
tion of our approach is that source signals are considered to be sparse with respect
to a known dictionary, and thereby, an �1-optimization is a natural formalism for
solving the un-mixing problem. We demonstrate the effectiveness of the framework
numerically.

1 Introduction

One of the most powerful tools in signal analysis which has been developed in re-
cent years is a collection of techniques that allows sparse representations of signals.
Fundamental theoretical contributions from a number of researchers [3, 4, 5, 6, 7, 8,
9, 29] has sparked this rapidly developing field which is driven by a wide spectrum
of applications from robust statistics, data compression, compressed sensing, image
processing, estimation, and high resolution signal analysis. The present work builds
on the well-paved paradigm of sparse representations by focusing on a problem of
system/source identification known as blind source separation.

Blind source separation (BSS) refers to the problem of separating sources from
linear mixtures of these with unknown coefficients. For the special case where
sources represent speech signals, the separation of voices corresponding to indi-
vidual speakers is often referred to as the “cocktail party problem”. Early work was
based on the assumption that such signals are often statistically independent, and
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explored properties of second and higher order statistics. Typically, the required “un-
mixing matrix” was sought as a solution to a suitable optimization problem which
either maximizes the distance from “Gaussianity” of the individual components or
their statistical independence (e.g., see [10, 15, 16, 18, 26]). Thus, in the early work
the mixing is always assumed algebraic as no dynamics of the intervening medium
is taken into account.

In light of advances in the aforementioned sparse representation theory, the idea
of using prior information about the sources in the form of membership in a dic-
tionary became an attractive alternative to the postulate of statistical independence
and was proposed already by Zibulevsky and Pearlmutter [32] in 2001, and more re-
cently by Li et al. [22] and others, using various combinations of well-studied tools
(K-means, Bayesian formalism, etc.) in combination with �1-optimization. The pur-
pose of our work is to deal in a similar manner with the mechanism of mixing and
identify system dynamics based on suitable prior information encoded in a appro-
priate dictionary as well.

Thus, our approach is rather direct as it assumes that the observed signals are
outputs of an unknown dynamical system driven by unknown inputs, albeit both
inputs as well as the impulse responses of the underlying dynamics being sparse
mixtures from known dictionaries. Thus, a salient feature of our formulation is that
the “mixing” of signals has a structure inherited by linear dynamics and, the “mix-
ing matrix” has entries that are Toeplitz matrices by themselves. In general, this
is an underdetermined nonlinear problem with many possible solutions. Therefore,
it is both natural and meaningful to seek, beside sparse representations of signals,
small complexity of the intervening dynamics. The latter can again be expressed as
sparsity of the impulse response with respect to its own dictionary.

We now summarize the remainder of this note. In Section 2, we describe the
basic concepts underlying sparse representations and �1-optimization theory. Sec-
tion 3 gives the mathematical formulation of the problem under consideration and
some numerical methods for its solution. In Section 4, we describe the �1 approach
to solving the convolutive blind source separation problem. Finally, in Section 5,
we study an illustrative example to elucidate the �1 methodology for blind source
separation.

2 Sparse Representations and �1-Optimization

In order to motivate our methodology, we will give here some of the relevant back-
ground on sparse representations using the �1 norm. Full details may be found in
[2, 3, 4, 5, 6, 7, 8, 9, 29], and the references therein.

Consider an underdetermined problem

Hx = y (1a)

where the vector x represents the model, H is a linear ill-posed operator and the
vector y contains data obtained from measurement. One possible way to regularize
the problem is by using a Tikhonov-like regularization scheme [19]. However, it is
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often natural to assume that the model x is a linear combination of a small number
of possible vectors that are collected into a n×N matrix B, where typically N >> n
(referred to as an “over-complete” basis or dictionary), and thus

x = Bv.

Therefore, the model-complexity is quantified by the number of nonzero entries of
v called the sparsity ‖v‖0 of v. Seeking a solution with minimal number of nonzero
entries can also be thought of as a form of regularization. Despite what the notation
may suggest, ‖v‖0 is not a norm. In fact, the problem of minimizing ‖v‖0 subject
to (1a) is combinatorial in nature and practically infeasible. However, it has been
recognized for some time and, in recent years has formed the basis of the powerful
theory of compressed sensing, that the �1-norm ‖·‖�1 can be thought of as a (convex)
relaxation of ‖ · ‖0 and that minimizing ‖ · ‖�1 in practice as well as in theory, for
many interesting cases, leads with overwhelming probability to sparse solutions.

In practice, a more natural problem includes measurement noise ε and that equal-
ity in (1a) is not exact, that is

Hx + ε = y. (1b)

Accordingly, it has been suggested that such problems can be effectively treated by
one of the following formulations [17, 25]:

(i) v = argmin{‖v‖1 | ‖HBv − y‖r ≤ τ}, known as Basis Pursuit Denoising,
(ii) v = argmin{‖HBv−y‖r | ‖v‖1 ≤ σ}, known as Least Absolute Shrinkage and

Selection Operator (LASSO), and
(iii) v = argmin{μ‖v‖1 +‖HBv − y‖r

r}, known as Relaxed Basis Pursuit,

with r typically taken as either 1 or 2. The parameters τ,σ ,μ need to be chosen so
that the solution does not over-fit the data. In practice, the optimal choice for σ ,τ
and μ may not be obvious, especially when the noise level is not well known in
advance. The interesting feature of these solutions is that they yield a sparse v, that
is they produce a v with very few non-zero entries and this has been explained and
justified in a series of papers, see e.g., [6, 9, 25] and the references therein.

On the numerical side of things, although such problems where already addressed
in the 70’s, recent work has shown dramatic improvements. Currently, there are three
approaches that seem most efficient:

(a)Methods based on shrinkage. Such methods (softly) threshold the solution at
each iteration [12]. This may be considered to be an expectation maximization
(EM) type algorithm that is very effective especially for image deconvolution
problems.

(b)Interior point methods. This is a class of algorithms based on work of Karmarkar
[20] for linear programming. The technique uses a self-concordant barrier func-
tion in order encode the convex set; see [1] and the references therein.

(c)Methods based on reformulation and projection. In these methods one sets v =
p − q where p,q ≥ 0 (elementwise) and solves the corresponding optimization
problem by a projection method [11]. We will give details about this method
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below since this we have found to be most effective for the type of problems
considered in this note.

In the compressed sensing literature the matrix H and the dictionary B are typ-
ically known. However, formulating blind source separation in a similar setting,
one needs to estimate H as well as recover x [22, 32]. The well-posedness of such
a problem, draws on additional sets of natural assumptions. As we explain below,
we are interested in the convolutive blind source problem where it is natural to
assume linear time invariance, and therefore a Toeplitz, block-Toeplitz (for multi-
source/multi-sensor problems, e.g., see [13]), or circulant structure for H.

3 Numerical Aspects

Below we will see that the problem we are considering amounts to the following:
Let Mi be positive semi-definite matrices and ξ ∈ Rn. Then we want to find the
minimum under the constraint that all components of ξ be non-negative of

∑ |ξ T Miξ − yi|+∑ξ j. (2)

This is a special case of the following problem: Compute for f : R
n → R contin-

uously differentiable

min{ f (ξ ) : ξ ∈ Ω}, Ω = {ξ : ai ≤ 〈ui,ξ 〉 ≤ bi, i = 1, . . . ,N},

that is minimize f on a linearly constrained set. In [23], it is shown that a version
of Newton’s method, truncated Newton’s will give fast convergence to the global
minimum. We should note that conjugate gradients are perhaps the most used ones
in the Newton approach. A typical optimization procedure has two layers of itera-
tions: at each outer iteration an inner conjugate gradient procedure finds the Newton
direction. But in many practical situations such conjugate gradient methods suffer
from lengthy iterations in certain situations. Thus the author of [23], propose a ”trust
region” version of the standard Newton optimization approach. We briefly describe
this idea here.

Briefly, there are two basic optimization strategies. In the line search method, one
chooses a direction and searches along this direction from the current choice ξ (k) for
the next choice ξ (k+1) with a lower value. The distance to move along the direction
u(k) is found by solving a one-dimensional problem of the form minλ>0 f (ξ (k) +
λ u(k)). In line search, one just tries to approximate this minimum and works well
for smaller problems.

The second technique is known as trust region, the information known about f
is employed to construct a model function f̂k whose behavior near ξ (k) is similar
to that of f . Since f̂k may not be very useful (i.e., a reasonable approximation) of
f far from ξ (k), we only look for a minimizer of f̂k in some “trust region” around
ξ (k). This type approach employed by [23] for the type of �1 optimization problem
considered in this paper has been found to be very effective.
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poles corresponding to dictionary elements

Fig. 1 Pole locations marked by a × inside the unit circle

4 BSS via �1-Minimization

We now explain our approach to identify two signals xk and hk, k = 0,1, . . . ,n − 1,
from knowing only their convolution

yk = hk � xk :=
n−1

∑
�=0

h�xk−�, for k = 0,1, . . . ,n − 1, (3)

by assuming a prior in the form of membership of both xk and hk in suitable dictio-
naries. For the purposes of the present work we assume that the signals are scalar,
with xk representing the input to an unknown dynamical system with impulse re-
sponse hk. We further assume that the state of this unknown system starts at a zero
initial condition. Either assumption can be relaxed by suitable reformulation of the
problem along the lines of [13].

Clearly, the problem of finding xk and yk from (3) is both underdetermined and
non-convex. The requirement that the two signals are sparsely represented with re-
spect to dictionaries Bx and Bh can be “encouraged” by requiring that the �1 norm
of respective selection vectors vx and vh is penalized accordingly. Thus, we propose
the following optimization problem for this purpose:

(vx,vh) := argmin{‖vx‖1 +‖vh‖1 +‖y − Hx‖r | x = Bxvx,h = Bhvh, and h0 = 1}
(4)

where r ∈ {1,2}, x := (x0, x1, . . . ,xn−1)
T , and y,h are defined similarly, Bx and Bh

are known n × Nx and n × Nx matrices (i.e., suitably defined dictionaries), and
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H =

⎡

⎢
⎢⎢
⎣

h(0) 0 . . . 0
h(1) h(0) . . . 0

...
...

...
h(n − 1) h(n − 2) . . . h(0)

⎤

⎥
⎥⎥
⎦

.

The optimization in (4) can be cast in the form of (2) for r = 1 by expressing each
selection vector v as a difference v = v+ −v− of vectors with positive entries v+, v−.
Then the part of the cost in ‖y−Hx‖1 can be expressed as a sum of absolute values
of quadratic expressions in ξ := (vx+, vx−, vh+ , vh−)T as indicated in (2).

Invariably, the performance of such mathematical tools, where the solution of
an optimization problem provides a possible explanation of the data, depends on
the choice and relative importance place on various terms. For instance, an added
weight that accentuates the contribution of the entries of vx has as effect to im-
prove the sparsity of the relevant signal, i.e., in this case x with respect to Bx. A
multi-variable version of this problem, where xk may represent many sources, and
similarly for hk, and thus it is vectorial, can be also cast in the same framework
(see [13]). Further, additional terms in the functional can be used to “encourage”
independence between the various sources in the spirit of Independent Component
Analysis, or to “encourage” or “discourage” the various sources from sharing the
same elements from the respective dictionaries (cf. [13]). This circle of possibil-
ities will be explored further in future work. The main statement of the present
note is that the tools of the �1/compressed sensing theory can be directly applied
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to the blind source deconvolution problem and that with relatively straightforward
optimization one can obtain reasonably consistent results. This will be highlighted
in the following example.
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5 Example

In our example we have taken both directories Bx and Bh to be identical, containing
first and second-order responses of systems with poles distributed as shown in Fig-
ure 1. A randomly selected pair of sparse vectors v̂x, v̂h with one and three atoms,
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respectively, are shown in Figures 2 and 4 (in the lower subplots, respectively). The
same figures, in the upper subplots, display the selection vectors vx,vh that minimize
the functional in (4). In general, these can only be guaranteed to correspond to a lo-
cal minimum. The estimated pairs of input/impulse-response are shown in Figures
3, 5, respectively. Figure 6 shows the matching between the original output y (data)
and the one corresponding to the minimizing choice for the functional in (4).

Due to space restrictions we have only presented one example. It is apparent that,
because the problem of blind source separation is inherently ill-posed, alternative
numerical solutions are possible. This is also the case for our particular regulariza-
tion of the problem, as it is hard to ensure a global minimum of (4). Indeed, as can
be seen from the example, modes of input and impulse response may “affect/nudge”
each other, and at times (as we have observed in other examples) may be swapped
to produce a nearby local minimum. This is natural since the perceived effect at the
output may often be the same in such situations. Also, the scaling of x and h is in-
herently uncertain since a multiplicative factor can be traded without affecting their
convolution, hence the normalization h0 = 1 in (4). In all instances, the estimated
input/impulse-response pair reproduces quite accurately the given data y and the two
are relatively sparse with respect to the corresponding dictionaries, as expected.
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YY Filter — A Paradigm of Digital Signal
Processing

Masaaki Nagahara

Abstract. YY filter, named after the founder Prof. Yutaka Yamamoto, is a digi-
tal filter designed by sampled-data control theory, which can optimize the analog
performance of the signal processing system with AD/DA converters. This article
discusses problems in conventional signal processing and introduces advantages of
the YY filter.

Keywords: YY filter, sampled-data control, digital signal processing.

1 Introduction

YY filter is named after Prof. Yutaka Yamamoto, who is the founder of the modern
sampled-data control theory. Before introducing the filter, I would like to write about
him.

Prof. Yutaka Yamamoto has published a textbook on mathematics [21] in 1998. In
that year, I was an undergraduate student in Kobe University, and I started studying
control theory. I bought the book at that time, and found it very attractive. Affected
by his book, I desired to be supervised by Prof. Yutaka Yamamoto in Kyoto Univer-
sity. I then luckily entered the university, and I began to study as a graduate student.
I have studied sampled-data control and its application to digital signal processing.
This study has started by Khargonekar and Yamamoto [6], which Prof. Yamamoto
has been energetically addressing. Under his supervision, I finished my doctoral
thesis titled “Multirate Digital Signal Processing via Sampled-Data H∞ Optimiza-
tion,” [8] in 2003. This study has been of capital interest to me. I now begin the
introduction of this study, YY filters.

In signal processing, signal reconstruction is a fundamental problem. For this
problem, Shannon sampling theorem [14, 15] is widely used. This theorem is based

Masaaki Nagahara
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on the assumption that the analog signal to be reconstructed is fully band-limited
up to the Nyquist frequency. This assumption is however not realistic, since no real
analog signals are fully band-limited. To such problems, sampled-data control the-
ory has been applied in [6]. This is the first article of YY filter, which solves the
delayed signal reconstruction problem. Based on this study, many researches have
been made: multirate signal reconstruction [24], wavelet expansion [4] audio signal
compression [1], fractional delay filters [10], image processing [3], adaptive filtering
[11], probability density estimation [9], and repetitive control [12].

In this article, I omit discussion on these applications as space is limited, and
I will concentrate on problems in Shannon’s theorem (or its generalization) and
advantages of the YY filter over the conventional theorem.

2 Problems in Sampling Theorem

2.1 Shannon Sampling Theorem

Let x be a continuous-time signal in L2, the Lebesgue spaces consisting of the square
integrable real functions on R =(−∞,∞). The problem here is to recover the original
signal x from its sampled data {x(nh)}n∈Z, where h > 0 is the sampling period. This
problem is however ill-posed unless there is an a priori condition on the original
signal x. The sampling theorem, usually attributed to Shannon, answers this question
under the hypothesis of band-limited signals [14, 15]. That is, it is assumed that the
support of the Fourier transform x̂(jω) of x is limited to the frequency range lower
than the Nyquist frequency π/h:

Theorem 1 (Whittaker-Shannon). Suppose that x ∈ L2 is fully band-limited, i.e.,

x ∈ BL2 :=
{

x ∈ L2 : x̂(jω) = 0, |ω | ≥ π/h
}

. (1)

Then the following formula uniquely determines x:

x(t) =
∞

∑
n=−∞

x(nh)φ(t − nh), t ∈ R, (2)

where φ(t) := sinc(t/h) := sin(πt/h)/(πt/h).

The reconstruction procedure is shown in Fig. 1. In this figure, the signal w ∈ L2 is
convoluted (or filtered) by φ , i.e.,

x(t) =
∫ ∞

−∞
φ(t − τ)w(τ)dτ = (φ ∗ w)(t).

Then the signal x is in BL2 (i.e., band-limited) since φ̂ (jω) = 1 if ω ∈ (−π,π) and
φ̂ (jω) = 0 if ω /∈ (−π,π). The signal x is sampled by the ideal sampler S with the
sampling period h:

(S x)[n] := x(nh), n ∈ Z.
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S Hφ
w(t) x(t) c y(t)

φ

Fig. 1 Shannon sampling theorem; the signal w ∈ L2 is band-limited by φ and sampled by the
ideal sampler S . Then an analog signal y is produced by the hold device Hφ to reconstruct x.

Sφ1 Hφ2

x(t) c1 y(t)
K

c2

Fig. 2 Generalized sampling theorem; the signal x ∈ V (φ2) is sampled by the generalized
sampler Sφ1 to become the discrete-time signal c1. Then c1 is filtered by K to become c2.
Finally, an analog signal y is produced by the hold device Hφ to reconstruct x.

Then the discrete-time signal c = S x becomes an analog signal y by the hold device
Hφ :

(Hφ c)(t) :=
∞

∑
n=−∞

c[n]φ(t − nh).

By the sampling theorem, the reconstructed signal y is exactly equal to x (not w).
Shannon sampling theorem is a beautiful result and is the fundamental theory

for the conventional digital signal processing. However we can find the following
questions in real applications:

• The band-limiting assumption (1) does not hold for real signals such as audio,
image, or video signals.

• The reconstruction formula (2) is hard to implement on a real device, since the
sinc function has infinite support, in particular it is not causal.

2.2 Generalized Sampling Theorem

The sampling theory mentioned above has been extended to more general case [15,
17], that is, the function φ is not necessarily a sinc function, and the sampler is a
generalized sampler Sφ1 defined by

(Sφ1x)[n] :=
∫ ∞

−∞
φ1(nh − τ)x(τ)dτ = 〈x,φ1(·− nh)〉, n ∈ Z.

In this definition, we have Sφ1x = S (φ1 ∗ x), and hence the function φ1 is consid-
ered as the impulse response of the acquisition device. Fig. 2 shows a generalized
situation. In this figure, the analog input x is sampled by the generalized sampler
Sφ1 . Then the sampled signal c1 is filtered by a digital filter K, and then an analog
signal y is obtained by the hold device Hφ2 . In this setting, a generalized sampling
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theorem is proposed by [17]. The idea is the notion of consistency: the output y in
Fig. 2 can be perfectly reconstructed by the same system, that is, for all n ∈ Z,

〈x,φ1(·− nh)〉 = 〈y,φ1(·− nh)〉.

This implies that the reconstruction system works as a projector. To achieve con-
sistency, the optimal filter K which is linear and time-invariant (LTI) is constructed
by the oblique projection of x onto V (φ2) perpendicular to V (φ1), where V (φ1) and
V (φ2) are closed subspaces in L2, which is defined by

V (φi) :=

{

x =
∞

∑
n=−∞

c[n]φi(t − nh),c ∈ �2

}

, i = 1,2.

By the oblique projection, the following generalized sampling theorem is obtained
[17].

Theorem 2 (Unser and Aldroubi). Suppose that x ∈ V (φ2) and the filter

A12(z) =
∞

∑
n=−∞

〈φ1(·− nh),φ2〉z−n

is invertible1. Then the following formula uniquely determines x:

x(t) =
∞

∑
n=−∞

(c1 ∗ k)[n]φ2(t − nh), t ∈ R

where c1 := Sφ1x and k is the impulse response of K(z) = A12(z)−1.

The assumption x ∈ V (φ2) can be interpreted as a generalized band-limiting condi-
tion. Then we again have a problem of non-band-limited inputs, that is, x /∈ V (φ2).
In this case, the reconstructed signal y can have a large error [13]. Moreover, it is
possible that the optimal filter will be unstable. This problem is discussed precisely
in the next subsection.

2.3 Causality and Stability

In real-time systems, causality is a necessary condition for signal processing. For
the sake of simplicity, we assume2 that φ1(t) = φ2(t) = 0 if t < 0. Then the causality
of the reconstruction system in Fig. 2 depends on the causality of the filter K. If the
impulse response {k[n]} of the filter K satisfies k[n] = 0, n < 0, then the reconstruc-
tion system is causal. However, in many cases, the filter K may be non-causal, for
example, in the case of polynomial splines [18] and exponential splines [16, 19].
This is because the filter K(z) has poles outside of the unit circle in C [13, 18].

1 This means that A12(z) has no zeros on the unit circle in C.
2 If the assumption does not hold, the reconstruction system can be non-causal.
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In particular, it is shown [13] that high order exponential splines can produce fil-
ters with poles outside the unit circle provided that the sampling time is sufficiently
small. Therefore, if the non-causal filter is realized as a causal one, the poles outside
the unit circle lead to an unstable filter.

2.4 Summary

The problems in (generalized) sampling theorem discussed above are the follow-
ings.

Problems in (generalized) sampling theorem

1. If the input signal x is not (generalized) band limited, the reconstructed
signal can show a large error. In other words, the reconstruction is not
robust against uncertainty of input signals.

2. The reconstruction system can be non causal.
3. The causal realization of the reconstruction filter K can be unstable.

3 Sampled-Data H∞ Optimal Signal Reconstruction — YY
Filter

As we see in the previous section, (generalized) sampling theorem has three prob-
lems: robustness, causality and stability. In this section, we introduce a new signal
processing, sampled-data signal processing, or YY filter, which is based on sampled-
data control theory.

3.1 Problem Formulation

The main reason to adopt sampled-data control theory is that we can design a digital
filter which optimizes the intersample behavior. In other words, we can minimize
the reconstruction error for non-band-limited signals. Moreover, we adopt the H∞

performance index for this optimization. By H∞ optimization, we can gain the ro-
bustness against the input uncertainty.

In the sampling theorem, the optimal reconstruction is a projector on a subspace
in L2, in which for every input the error is minimized in L2 sense. This means that
the error depends on the input and there can be an input for which the error can be
arbitrary large. On the other hand, H∞ optimization is an optimization for the worst
case, by which we can guarantee an error level for any inputs. This leads to the
robustness against the input uncertainty.

It is obvious that there is no optimal filter K which minimizes the error for all
signals in L2, or the optimal filter can be K = 0. To reconstruct or interpolate the
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S H
x(t) c1 y(t)

H1(s) K
c2

H2(s)

Fig. 3 Signal Reconstruction; the signal x ∈ L2 is filtered by an analog filter H1(s) and sam-
pled by the ideal sampler S . Then an analog signal y is produced by the zero-order hold H
and an analog filter H2(s).

w(t)
x(t)

y(t)
−

x(t −L)

e(t)
e−Ls

F

H1 S K H H2

Fig. 4 Error system E (K)

intersample data, we should assume some a priori information for the inputs. There-
fore, we assume that the inputs are in the following subspace in L2,

FL2 := {Fw : w ∈ L2(R+)}
where F is an analog filter which is stable and strictly causal, and L2(R+) is the
Lebesgue spaces consisting of the square integrable real functions on R+ = [0,∞).
The filter F is an analog model of the input signals. The space L2(R+) is a subspace
of L2, by which we can take account of causality and stability of the reconstruction
system. Our signal subspace FL2 is in a sense larger than BL2 or V (φ2) because
every signal in BL2 or V (φ2) can be expanded by {sinc(t −nT)} or {φ2(t −nT)}, on
the other hand, FL2 needs {φ(2−m(t − nT))} for some φ (wavelet expansion [20]).
In other words, a signal in FL2 can contain arbitrary high frequency components,
the decay rate of which is governed by the filter F .

To optimize for the worst case, we consider the following performance index:

J(K) = sup
x∈FL2

x�=0

∥
∥(e−Ls − H2H KS H1

)
x
∥
∥

L2(R+)

‖x‖L2(R+)
. (3)

This is equivalent to the H∞ norm of the sampled-data error system

E (K) := (e−Ls − H2H KS H1)F. (4)

The block diagram of this error system is shown in Fig. 4.

3.2 Computation of YY Filter

The optimal filter Kopt which minimizes J(K) in (3) can be obtained by numerical
computation. To compute the optimal filter Kopt, we discretize the sampled-data
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E (K)HNL−1
N SN LN

w e edwd

Fig. 5 Fast discretization of the sampled-data system E (K): LN is the blocking operator, SN
and HN are respectively the fast sampler and the fast hold with sampling period h/N.

error system E (K) in (4) by approximation [5, 23] or H∞ discretization [7]. We here
discuss the approximation technique for minimizing J(K) in (3). We first introduce
fast sampling and fast hold. Let SN and HN are respectively the ideal sampler and
the zero-order hold with period h/N, where N is a positive integer (N ≥ 2). Then
the system SNE (K)HN becomes a discrete-time multi-rate system with sampling
periods h and h/N. Then we introduce the blocking operator LN , or the discrete-time
lifting operator [2, 8]:

LN : {v[0],v[1],v[2], . . .} 	→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

v[0]
v[1]

...
v[N − 1]

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

v[N]
v[N + 1]

...
v[2N − 1]

⎤

⎥
⎥
⎥
⎦

, . . .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

This operator converts a 1-dimensional signal v into an N-dimensional signal and the
sampling rate becomes N times slower. This operation makes it possible to equiv-
alently convert multirate systems into single-rate ones, and hence the analysis and
design become easier. By using this operator, the system EN(K) defined by

EN(K) := LNSNE (K)HNL−1
N (5)

becomes a discrete-time LTI system. Moreover, we can say that for any integer
N ≥ 2 and any stable K, there exist discrete-time LTI systems G1,N , G2,N and G3,N

such that [8]
EN(K) = G1,N + G2,NKG3,N ,

and the LTI system EN(K) is approximation of E (K) in the sense that [23]

lim
N→∞

‖EN(K)‖∞ → J(K) = ‖E (K)‖∞.

The optimization of minimizing EN(K) is easily done by using discrete-time H∞

optimization technique. We can therefore obtain a stable and causal filter K which
approximates the optimal filter Kopt.

3.3 Robustness

Next let us consider robustness against uncertainty of the analog signal model F(s).
In practice, F(s) cannot be identified exactly. We therefore partially circumvent this
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F(jω)

FΔ (jω)

ω

Fig. 6 Nominal filter F(s) (solid) and perturbed FΔ (s) (dash)

defect by discussing the robustness of the filter against uncertainty of F(s). Let us
assume the unstructured uncertainty of the following type:

FΔ (s) := F(s)(1 + Δ(s)), E Δ (K) :=
(
e−Ls − H2H KS H1

)
FΔ ,

Δ ∈ Δ := {Δ : ‖1 + Δ‖∞ ≤ γ} .

Then we have the following proposition:

Proposition 1. For any stable K and Δ ∈ Δ , we have ‖E Δ (K)‖∞ ≤ γ‖E (K)‖∞.

By this proposition, the nominal performance ‖E (K)‖∞ is guaranteed against the
perturbation Δ ∈ Δ if γ ≤ 1. In some cases, it is possible that γ = 1, in which case
the performance is bounded as illustrated in Fig. 6. This means that if we take F(s)
that covers all possible gain characteristics of the input analog signals, it gives a
bound for the error norm. This at least partially justifies the choice of the first-order
weighting F(s) in the previous section.

3.4 FIR YY Filter by LMI

The error system (4) or (5 is affine in the filter K to be designed. By this fact, we can
design the optimal FIR (finite impulse response) filter of the form

K(z) =
N

∑
n=0

anz−n.

By this, the error system (5) is affine in the design parameter a0,a1, . . . ,aN . It fol-
lows that the optimization of minimizing ‖EN(K)‖∞ can be described by an LMI
(linear matrix inequality) by the bounded real lemma or Kalman-Yakubovic-Popov
lemma [22]. The optimization with an LMI can be solved easily by computer
softwares.
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3.5 Summary

The advantages of the YY filter discussed in this section are the followings.

Advantages of YY filter

1. the optimal filter is always causal and stable.
2. the design takes the inter-sample behavior into account.
3. the system is robust against the uncertainty of input signals.
4. the optimal FIR filter is also obtainable via an LMI.

4 Conclusions

In this article, problems in Shannon’s theorem have been pointed out and the advan-
tages of YY filter over the conventional signal processing have been introduced. In
fact, YY filters are implemented in commercial MD players, silicon-audio devices,
and mobile phones. One of future works is design of adaptive YY filters.
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How to Sample Linear Mechanical Systems

Mattia Bruschetta, Giorgio Picci, and Alessandro Saccon

Abstract. Variational integrators is a a new discretization technique of the equations
of motion of a mechanical system introduced by Veselov and further developed by
J. Marsden an co-workers, which is now widely used by numerical analysts working
in various applied fields. This discretization technique, unlike the usual discretiza-
tion procedures familiar in control, e.g. zero-order-hold, can lead to simple and
well-conditioned transformation formulas for the recovery of the continuous time
parameters from the discretized model. We discuss variational integrators for linear
second order mechanical systems and show that physically meaningful properties of
the continuous-time model, like passivity, are preserved. Variational integrator dis-
cretization is also shown to provide well-conditioned models for the identification
of continuous-time second-orders systems starting from measured data.

1 Introduction and Problem Statement

We are interested in linear second order models of mechanical systems of the fol-
lowing form:

Mq̈ + Dq̇+ Kq = f (1)

where M and K, both symmetric positive definite matrices in R
n×n, have the in-

terpretation of generalized mass (or inertia) and generalized stiffness coefficient
matrices respectively, while D ∈ R

n×n,D = D�,D ≥ 0 is a linear (viscous) damp-
ing coefficient. The generalized forces f acting on the system are in general not
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independent and can be expressed as a linear function of a vector of independently
assignable generalized input forces u of dimension k ≤ n; namely

f = Lu

where the matrix L, which will be assumed to be known, describes the physical
locations at which the input forces u act on the system. Without loss of generality it
may be assumed that L is of full column rank; i.e.

rankL = k . (2)

For simplicity we shall assume that the whole generalized configuration vector q
is a measurable quantity. This assumption is equivalent to assuming that a “full set
of sensors” is available; i.e. that all n degrees of freedom are measured via a linear
sensor equation of the form y = Cq where C is square invertible. System (1) can also
be represented in state space form; defining x := [q, q̇]�, one gets

ẋ =
[

0 I
−M−1K −M−1D

]
x +

[
0

M−1L

]
u (3)

which should be coupled with the output equation q = [ I 0 ]x. The special (Hamil-
tonian) structure of this realization leads to the inverse second-order polynomial
transfer function of the model (1). Throughout the paper we shall assume that the
system (1) with input u is controllable. See [10] for a direct test of controllabil-
ity/observability of second order models of the type considered in this paper. Note
that under these assumptions the system is automatically controllable and observ-
able and hence minimal. This is a necessary condition for parameter identifiability

Now, system identification deals almost exclusively with discrete-time data and
discrete time models. Nevertheless in several areas of engineering, and especially in
mechanical or structural engineering, the estimation of physical parameters which
pertain to the underlying (physical) continuous time model of the type (1) is very
often required. A typical example is the estimation of the proper modes of vibration
of a mechanical structure. The proper modes are the eigenvalues of a linear vector
second order continuous time system; i.e. are solutions of an algebraic equation of
the form :

det
(
Ms2 + Ds+ K

)
= 0

and it is a fact that accurate information on these proper values and on the associated
proper vectors may be hard to get from an estimated discretized system, no matter
how accurate the estimates may be. The reasons for this difficulty may be described
as follows.

Let the discrete time index k relate to a sampling period of length h and assume
we fit, by some identification algorithm, measured sampled input-output data by a
discrete-time state space model of the form

x(k + 1) = Fx(k)+ G f (k) , q(k) = Hx(k)+ Ju(k) . (4)
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If h is short enough so that the input function can be well approximated by a piece-
wise constant function, we can naturally imagine (4) to be related to an underly-
ing continuous state space model (not necessarily the particular realization (3)) by
the standard zero-order-hold (ZOH) sampler. We may then attempt to recover the
original parameters, say the matrices A and B of a 2n dimensional continuous time
model, from estimates of the parameters (F,G) of the discrete time model (4), by
inverting the relations F = expAh, G =

∫ h
0 expAsdsB. This is what is implemented

in the d2c routine in MATLAB. In certain circumstances this may however turn
into a very ill-conditioned problem. In particular the recovery of matrix A from the
estimated F involves the computation of the logarithm of F which may be a com-
plex matrix or, for a large sampling period, be undefined as requiring the inversion
of the exponential map in a region of the complex plane where it is not invertible. A
common belief is that the problem should be solvable by choosing a suitably high
sampling frequency, but actually it easy to see that, even in the trivial example of
a scalar F subject to a perturbation δF , the relative error incurred when computing

A + δA :=
1
h

log(F + δF) is

δA
A

=
1

logF
δF
F

a similar formula holding in the matrix case, see [5]. Since for h → 0 F → I, the
condition number of computing A = 1

h logF tends to infinity when h → 0. This
means that when the sampling frequency is very high, the effect of unavoidable
random errors on the estimates of F (and G) could be dramatically amplified in
computing A by the logarithmic transformation. See [5] and the references therein.
In any case, even with a clever use of anti-aliasing filters, oversampling is well-
known to bring in noise in the estimates and deteriorate the identification process.
Note in addition that standard discretization recipes like ZOH do not in general
preserve physical properties of the underlying continuous system such as passivity,
which may then be impossible to be recaptured when transforming the discrete to a
continuous model. In particular the equivalence to second order representations of
the type (1), which is indeed a characteristic of linear models of mechanical systems
(Newton law) will in general be lost. In fact, a continuous state-space realization
obtained by the d2c routine from a discrete model (4) identified say by standard
subspace identification methods will never possess the Hamiltonian structure which
is necessary for the input-output relation of the system to have the second-order form
(1) and hence to allow for the recovery of the physical parameters M, D, K. That
this is not of purely academic interest is witnessed by the interest on this problem
in the recent mechanical engineering literature, see e.g. [4], [12] and the references
therein.

Unfortunately the literature on continuous time identification, see e.g. [7, 15]
does not seem to be of help. Continuous time black-box identification seems to be
still in its infancy. Most algorithms turn eventually out to relay on the MATLAB
d2c routine which computes the logarithm and, for the reasons given above, should
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be avoided. To our knowledge, serious concrete applications of any of continuous
time identification methods to real world problems seem to be missing. There seem
to be substantial progress still to be made in this area.

Ideally one should be able to discretize the system (1) or (3) in such a way that
F and G depend in a simple explicit way on the original physical parameters (A, B)
so as to make the discrete to continuous conversion simple and well-conditioned.
A naive attempt in this direction is Euler discretization by which F = I + Ah and
G = Bh. This however either requires very small h or leads to too rough a discrete-
time approximation to be of practical use in most cases.

It seems that in order to solve this problem one should find a discretization proce-
dure leading to discrete models in which the properties and the physical meaning of
the continuous system are maintained in the structure and in the matrices parametriz-
ing the model. Ideally, a discretized model should correspond to a (generalized)
discrete-time Newton law and the model parameters be interpretable accordingly,
and possibly being simply related to the parameters of the original continuous time
model.

How this program can actually be carried through is discussed in the conference
paper [2] where some preliminary applications of this discretization to identification
are discussed. The scope of this paper is to explore the Hamiltonian structure of the
discretized model and its relevance in discussing preservation of passivity.

2 The Variational Integrators Approach to Discretization

A novel twist to the discretization problem has been provided by the theory of vari-
ational integrators, see [18], and the recent work of J. Marsden and co-workers, see
[13]. These techniques seem to be fairly well known to numerical analysts working
with mechanical models but not so familiar to the system and control community.
The key idea is that the discrete equations of motion should not be derived by at-
tempting a direct discretization of the equations (1) or (3) but rather derived by
paraphrasing what happens in continuous time; i.e. by making stationary a discrete
action integral defined in terms of a suitable discrete Lagrangian function. The (dis-
crete) equations of motion should then follow just like the Euler-Lagrange equations
in continuous time. In short, the variational integrators paradigm is to build from
scratch a theory of Lagrangian Discrete Mechanics.

In the standard (continuous-time) approach to Lagrangian mechanics we are
given a Lagrangian function L(q(t), q̇(t)) and external forces fL(q(t), q̇(t), t) and the
equations of motion follow from so-called Lagrange-d’Alembert principle (equiva-
lent in the conservative case to zeroing the variation of the action functional while
holding the endpoints of the curve q(t) fixed). This leads to (see e.g. [13, p. 421])
the well-known forced Euler Lagrange equations:

∂L
∂q

(q, q̇)− d
dt

(
∂L
∂ q̇

(q, q̇)
)

+ fL(t) = 0 . (5)
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For a quadratic Lagrangian,

L(q(t), q̇(t)) =
1
2

q̇�Mq̇ − 1
2

q�Kq (6)

and an external force composed by a dissipation force fD = −Dq̇ and the actual
(generalized) external force f (t):

fL(t) := −Dq̇(t)+ f (t) , (7)

one obtains a linear second order vector differential equation of the form (1).
In order to mimic this procedure in discrete time one may first consider a curve

segment between two configuration points q0 = q(0) and q1 = q(h) in the configura-
tion space Q ⊂ R

n, placed h units of time apart. The discrete Lagrangian increment
Ld(q0,q1,h) must contribute to the action integral along the above curve segment.
One defines the exact (forced) discrete Lagrangian and the exact discrete forces on
that curve segment as:

LE
d (q0,q1,h) =

∫ h

0
L(q(t), q̇(t))dt (8)

f E+
d (q0,q1,h) =

∫ h

0
fL(q(t), q̇(t), t) · ∂q(t)

∂q1
dt (9)

f E−
d (q0,q1,h) =

∫ h

0
fL(q(t), q̇(t), t) · ∂q(t)

∂q0
dt (10)

where q : [0,h] → Q is the solution of the forced Euler-Lagrange equation (5) with
endpoint conditions q(0) = q0 and q(h) = q1. See [13, p. 427] for details. If it were
possible to compute the integral (8) explicitly, we would have a discrete model that
describes exactly the continuous dynamic at the discrete time instants t = kh. In
general this computation is not possible and we need to use an approximation both
for the discrete Lagrangian and for the discretized external forces. These approxi-
mations we denote Ld(q0,q1), f +

d (q0,q1,k), f −
d (q0,q1,k) without superscripts. It is

remarkable that although many approximations are possible, the “stationary action”
principle leads in any case to Discrete Euler Lagrange Equations of a standard form

D2Ld(qk−1,qk)+ D1Ld(qk,qk+1)+ f +
d (qk−1,qk,k)+ f −

d (qk,qk+1,k + 1) = 0 (11)

where Di stands for the partial derivative operator applied to the i-th argument of the
function on which it is acting. The specific form of the approximations depend on
the specific discretization rule used for approximating the integrals. A simple way
to approximate the Lagrangian, is to use the so-called “midpoint rule”:

q � q0 + q1

2
, q̇ � q1 − q0

h
(12)

which for the quadratic Lagrangian (6) leads to:
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Ld(qk,qk+1) = h[(
qk+1 − qk

h
)�

M
2

(
qk+1 − qk

h
)− (

qk+1 + qk

2
)�

K
2

(
qk+1 + qk

2
)] .
(13)

As for the external forces (7), the midpoint rule discretization of the general exact
expressions (9), (10), yields

f +
d (qk−1,qk,k) = −D

qk − qk−1

2
+

h
4
[ f (h(k−1))+ f (hk))]

f −
d (qk,qk+1,k+1) = −D

qk+1 − qk

2
+

h
4
[ f (hk)+ f (h(k+1))] .

By putting together the above with

D1Ld(qk,qk+1) = −M
qk+1 − qk

h
− h

2
K

qk+1 + qk

2
,

D2Ld(qk−1,qk) = M
qk − qk−1

h
− h

2
K

qk + qk−1

2
,

and rearranging the time index, we find the forced discrete Euler Lagrange equa-
tions which are the discrete-time counterpart to system (1):
(

M
h

+
hK
4

+
D
2

)
q(k)−

(
2M
h

− hK
2

)
q(k−1)+

(
M
h

+
hK
4

− D
2

)
q(k−2)= fd(k)

(14)
where for typographical homogeneity the qk’s have been rewritten q(k) and

fd(k) :=
h
4

[ f (hk)+ 2 f (h(k−1))+ f (h(k−2)) ] , (15)

is an equivalent discrete force. Introducing the discrete mass, damping and stiffness
matrices,

Md :=
M
h

+
hK
4

+
D
2

, Dd := −
[

2M
h

− hK
2

]
Kd :=

M
h

+
hK
4

− D
2

, (16)

equation (14) can be rewritten in a convenient second-order form as

Mdq(k)+ Ddq(k − 1)+ Kdq(k − 2) = fd(k) , (17)

where

fd(k) = L
h
4

[u(hk)+ 2u(h(k−1))+ u(h(k−2)) ] := Lud(k) , (18)

the matrix L being the same as in the continuous-time model and u(k) denotes the
sampled value of the input force at t = kh. Note that the computation of the discrete
forcing function { fd(k)} (or ud(k)) requires adjacent samples at times k, k − 1 and
k − 2 of the sampled external force f (or u).
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Finally, by inverting the relations (16) we see that the original continuous time
parameters (M,D,K) can be easily recovered from the parameters of the discretized
model (14) by means of the linear relations

M :=
h
4
[Md + Kd − Dd] , D := Md − Kd , K :=

1
h
[Md + Kd + Dd] . (19)

This is precisely what we wanted to achieve.
Naturally, it must be kept in mind that the solution of (14) provides an approx-

imation of the exact flow t 	→ q(t) sampled at t = kh. The approximation error for
the midpoint rule is of the order of O(h2) see [13, p. 402]. More sophisticated ap-
proximation schemes than (12) can provide approximations of arbitrarily high order,
see [8].

One is tempted to interpret (14) as a discrete analog of Newton’s law. In this
spirit, one wonders if for the discrete (approximate) system the classical conserva-
tion laws of mechanics may still hold. In particular one may wonder if there is an
associated discrete Hamiltonian function playing a similar role to the classical no-
tion of total energy in continuous-time mechanics. A similar question rephrased in
a system theoretic setting is if the variational discretization preserves passivity i.e.
if the discretized mechanical system (14) obeys a discrete dissipation inequality of
the same kind satisfied by the continuous system (3). In the next sections we shall
show that for the particular “ midpoint rule” discretization considered above this is
indeed the case.

3 The Midpoint Rule and the Cayley Transform

It is a remarkable fact that that discretization by the midpoint rule (12) applied to
a general linear time-invariant system is equivalent to the Cayley (or Tustin) trans-
formation. In particular this will hold for the the midpoint rule variational integrator
described above. Relations with the Cayley transform seem to have been noticed
before; e.g. see [1], but in a rather different context.

Let us apply the midpoint rule approximation to a general state space model

ẋ = Ax + Bu

y = Cx + Du
(20)

on the interval [0,h], getting

x(h)−x(0) � h
2

[Ax(h)+Bu(h)+Ax(0)+ Bu(0)]=hA
x(h)+ x(0)

2
+hB

u(h)+ u(0)
2

,

which leads to the discrete linear equation:
(

I − h
2

A

)
x̄((k + 1)h) =

(
I +

h
2

A

)
x̄(kh)+

hB
2

(u((k + 1)h)+ u(kh)). (21)
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Note that the discrete state x̄(kh) is only an approximation of the sampled original
continuous state x(kh), even if the input function is piecewise-linear on each sam-
pling interval (in which case the integration of u by the trapezoidal rule would be
exact). Now, I − h

2 A is certainly invertible if h is small enough and we can solve the
equation for x̄((k + 1)h). Defining new discrete input and output sequences by the
“midpoint rule”

u 1
2
(kh) :=

u((k + 1)h)+ u(kh)
2

, y 1
2
(kh) :=

y((k + 1)h)+ y(kh)
2

(22)

we can write the discretized state space model in the form:
{

x̄((k + 1)h) = A 1
2
x̄(kh)+ B 1

2
u 1

2
(kh)

y 1
2
(kh) = C 1

2
x̄(kh)+ D 1

2
u 1

2
(kh) (23)

where

A 1
2

=
(

I − h
2

A

)−1 (
I +

h
2

A

)
, B 1

2
= h

(
I − h

2
A

)−1

B,

C 1
2

= C

(
I − h

2
A

)−1

, D 1
2

=
h
2

C

(
I − h

2
A

)−1

B + D. (24)

These formulas, modulo the introduction of the factor h/2, define precisely the well-
known Cayley transform of linear systems theory. Naturally the analog in terms of
transfer functions is the bilinear, so-called Tustin transform, well-known in sampled-
data control

s =
2
h

z− 1
z+ 1

. (25)

Now, it is almost immediate to check that by applying the Tustin transform to the
transfer function of the second order system (1) one in fact obtains the discrete
transfer function of the second order difference equation (17) with input exactly
given by the expression (18). In other words,

Theorem 1. Variational integration by the midpoint rule (12) applied to a linear
mechanical system produces the discretization defined by the Cayley transform. In
other words, (16) are the input-output counterparts of the Cayley transform (24)
applied to the natural state space realization (3).

4 Preservation of Passivity under Midpoint Sampling

There is a sizable literature on passivity of sampled (i.e. discretized) continuous lin-
ear systems, see [3, 14, 16]. Even if there is a clear axiomatic definition of passive
discrete linear (and nonlinear) systems, it is not immediately clear how to do sam-
pling in such a way as to preserve passivity. For example, it is well known that with
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the standard definition of sampled input-output functions, neither Euler method nor
the Zero-Order-Hold sampling in general preserve passivity, see [9].

We shall now assume that the linear system (20) is passive; i.e. dimy(t) =
dimu(t) and there exist a quadratic energy function V (x) = 1

2 x�Px such that

V (x(t))−V (x(0)) ≤
∫ t

0
y�(s)u(s)ds . (26)

It is a basic fact of linear systems theory [19] that dissipativity is equivalent to
the existence of symmetric positive semidefinite matrices P solutions of the linear
matrix inequality (LMI)

[
A�P+ PA PB −C�
C − B�P D+ D�

]
≤ 0 (27)

which is in turn equivalent to the fact that the transfer function of a passive system:
G(s) := C(sI − A)−1B + D should be positive-real, see [19] .

Lossless systems are an important special case. For these systems the inequality in
(26) is replaced by an equality sign. It can be shown that, under natural minimality
assumptions for the realization (A,B,C), in this case the LMI (27) has a unique
solution P = P� which is strictly positive definite. This function is a bona-fide total
energy of the system. Linear port-controlled Hamiltonian systems (see [17]) are a
special case: they are lossless systems with an Hamiltonian structure. It is shown
in [17] that the energy function of these systems is in fact the Hamiltonian function.

Passivity for discrete linear system is defined as for the continuous-time case. A
discrete linear system,

x(k + 1) = Ad x(k)+ Bd u(k)
y(k) = Cd x(k)+ Dd u(k)

(28)

is passive if there exist a quadratic energy function V (x) = 1
2 x�Px such that

V (x(k + 1))−V (x(k)) ≤ y(k)�u(k) .

It is shown that a linear discrete system in the form (28) is passive if and only if the
discrete linear matrix inequality (DLMI):

[
A�

d PAd − P A�
d PBd −C�

d
B�

d PAd −Cd B�
d PBd − (Dd + D�

d )

]
≤ 0 (29)

admits symmetric positive semidefinite solution matrices P. The discrete LMI con-
dition can be generalized to nonlinear systems as reported for example in [11].

The following fact was apparently first discovered by P. Faurre in 1973 and can
be found in an unpublished INRIA report [6].

Theorem 2 (P. Faurre). Consider a (minimal) linear system (20) and its discrete-
time counterpart obtained by the Cayley transform formulas (24). Then one system
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is passive if and only if the other is, and the energy functions are the same. Moreover
the set of solution of the DLMI is the same of the LMI for the continuous time model.

Note that this statement per se does not tell how the inputs and outputs of the con-
tinuous system should be “sampled” in order to preserve passivity nor what relation
the discrete state of the sampled system has with the continuous state. The mid-
point rule interpretation of the bilinear transformation given above answers these
questions.

In particular, the midpoint rule variational integrator is a passive discrete mechan-
ical system which is conservative (lossless) if and only if the original continuous-
time system was.

5 Conclusions and Related Work

A natural discretization procedure for the equations of motion of a linear mechanical
system has been described which leads to a much better conditioned recovery of
the continuous time mechanical parameters than the usual discretizations. Some
applications to identification of linear mechanical systems are reported in [2].
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A Note on LQ Decomposition in Stochastic
Subspace Identification

Tohru Katayama

In this paper, we consider the role of LQ decomposition in the realization-based
subspace identification method for discrete-time stochastic systems as a continua-
tion of our earlier work [6] in deterministic setting. Under the assumption that the
past horizon of the data matrix is infinite, we reveal a nice block lower triangular
structure of a certain L-factor related to the stochastic component in the LQ decom-
position. Adapting this theoretical result to finite input-output data, we derive an
approximate method of identifying all the system parameters, including the steady
state Kalman gain and the covariance of the innovation process, from L-factors of a
single LQ decomposition of the data matrix.

1 Introduction

The LQ decomposition, together with the singular value decomposition (SVD), has
extensively been used as a numerical tool in subspace system identification methods
[5, 12, 14]. We have employed the LQ decomposition for a preliminary orthogonal
decomposition of the output process into deterministic and stochastic components
in order to develop a stochastic realization theory in the presence of exogenous
input [9]. Also, we have examined the role of LQ decomposition in the subspace
identification for deterministic systems [6], in which a relation between the column
vectors of L-factors in the LQ decomposition and the past and future inputs-outputs
used in defining a Hankel operator [4] was clarified.

It is well known that in the PO-MOESP method [13, 14], the system matrices
are determined by using L-factors related to the deterministic component in the LQ
decomposition of the data matrix. For combined deterministic-stochastic systems
[11, 12], the steady state Kalman gain and the covariance matrix of innovation pro-
cess are derived, after the identification of deterministic component, by solving an
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algebraic Riccati equation that arises in stochastic realization theory [1, 3], so that
an L-factor related to the stochastic component has been discarded.

This fact implies that the L-factor related to the stochastic component in the
LQ decomposition still remains to be utilized in subspace identification algorithms
for combined deterministic-stochastic systems. Along this line, in Di Ruscio [2], a
method of computing the steady state Kalman gain directly from L-factors related to
the stochastic component has been derived in a different setting than standard sub-
space identification problems. It seems, however, that the derivation of algorithms
in [2] is obscure in the sense that no proofs are provided therein.

In this paper, under the assumption that the past horizon is infinite and the number
of input-output data goes to infinity, we analyze a certain L-factor in the LQ decom-
position by using a technique developed in the PO-MOESP method [13], thereby
showing that the L-factor has a special block lower triangular structure. Adapting
this theoretical result to finite input-output data, we derive a new procedure for iden-
tifying the steady state Kalman gain and the covariance of innovation process. We
therefore show that all the system parameters of a stochastic system with an innova-
tion form are computed from L-factors only in a single LQ decomposition of finite
data matrix. This result is not unexpected, in view of the fact that the LQ decompo-
sition transforms a given data matrix into a product of a lower triangular matrix and
an orthogonal matrix, where the former carries the information useful for system
identification (least-squares), while the latter provides orthogonal bases of the row
space of data matrix.

The rest of the paper is organized as follows. The problem is stated in Section
2. Section 3 reviews basic matrix state-input-output equations. By introducing the
LQ decomposition, a subspace method of computing the deterministic component
is briefly discussed in Section 4. In Section 5, we analyze a block lower triangular
structure of a certain L-factor related to the stochastic component in the LQ decom-
position under the assumption that the past horizon is infinite. For finite input-output
data, we then derive a method of estimating the steady state Kalman gain and the
covariance of innovation process. We conclude this paper in Section 6.

2 Problem Statement

Suppose that a stochastic system is given by the innovation form

x(t + 1) = Ax(t)+ Bu(t)+ Ke(t) (1)

y(t) = Cx(t)+ Du(t)+ e(t) (2)

where x ∈ R
n is the state vector, u ∈ R

m the exogenous input, y ∈ R
p the output

vector, e ∈ R
p the innovation vector, and A ∈ R

n×n, B ∈ R
n×m, K ∈ R

n×p, C ∈ R
p×n,

D ∈ R
p×m are constant matrices. In the following, we assume that (A, B) and (A,K)

are reachable and (C, A) is observable. Also, the innovation process e is a white
noise vector with mean zero and covariance matrix
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E{e(t)eT(s)} = Λδts, Λ > 0, Λ ∈ R
p×p (3)

and is uncorrelated with the past state, i.e. E{e(t)xT(s)} = 0, t ≥ s.
The problem in this paper is to examine the role of LQ decomposition in the

subspace identification of combined deterministic-stochastic systems based on finite
input-output data {y(t),u(t),t = 0,1, · · · ,T}. We assume throughout the paper that
there is no feedback from the output to the input [9] and that the input is persistently
exciting (PE) with sufficiently high order. We also assume in Section 5 that the past
horizon is infinite to analyze an L-factor related to the stochastic component.

In the following, we show that all the system parameters of a stochastic system
with an innovation form can be identified by a single LQ decomposition of the data
matrix without solving the algebraic Riccati equation; see also [10] for a related
issue of the LQ decomposition in Hilbert space.

3 Matrix State-Input-Output Equation

In this section, we derive the matrix state-input-output equation, on which most
subspace identification methods are based.

Let k > n. We define the stacked vectors as

yk(t) :=

⎡

⎢
⎢
⎢
⎣

y(t)
y(t + 1)

...
y(t + k − 1)

⎤

⎥
⎥
⎥
⎦

, uk(t) :=

⎡

⎢
⎢
⎢
⎣

u(t)
u(t + 1)

...
u(t + k − 1)

⎤

⎥
⎥
⎥
⎦

, ek(t) :=

⎡

⎢
⎢
⎢
⎣

e(t)
e(t + 1)

...
e(t + k − 1)

⎤

⎥
⎥
⎥
⎦

where yk(t), eek(t) ∈ R
kp, uuk(t) ∈ R

km. Then, we see that the stacked vectors satisfy
the well-known augmented equation

yk(t) = Okx(t)+Tkuuk(t)+Kkek(t) (4)

where Ok is the extended observability matrix given by

Ok =

⎡

⎢
⎢
⎢
⎣

C
CA

...
CAk−1

⎤

⎥
⎥
⎥
⎦

∈ R
kp×n,

and where Tk is the block lower triangular Toeplitz matrix defined by

Tk =

⎡

⎢⎢
⎢
⎣

D 0
CB D

...
. . .

. . .
CAk−2B · · · CB D

⎤

⎥⎥
⎥
⎦

∈ R
kp×km (5)
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and Kk is the block lower triangular Toeplitz matrix defined by

Kk =

⎡

⎢
⎢
⎢
⎣

Ip 0
CK Ip

...
. . .

. . .
CAk−2K · · · CK Ip

⎤

⎥
⎥
⎥
⎦

∈ R
kp×kp (6)

We also define block Hankel matrices

Y0|k−1 =

⎡

⎢
⎢
⎢
⎣

y(0) y(1) · · · y(N − 1)
y(1) y(2) · · · y(N)

...
...

. . .
...

y(k − 1) y(k) · · · y(k + N − 2)

⎤

⎥
⎥
⎥
⎦

∈ R
kp×N

U0|k−1 =

⎡

⎢
⎢
⎢
⎣

u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)

...
...

. . .
...

u(k − 1) u(k) · · · u(k + N − 2)

⎤

⎥
⎥
⎥
⎦

∈ R
km×N

and

E0|k−1 =

⎡

⎢
⎢
⎢
⎣

e(0) e(1) · · · e(N − 1)
e(1) e(2) · · · e(N)

...
...

. . .
...

e(k − 1) e(k) · · · e(k + N − 2)

⎤

⎥
⎥
⎥
⎦

∈ R
kp×N

Similarly, we define Uk|2k−1, Yk|2k−1, Ek|2k−1. It then follows from (4) that the matrix
state-input-output equations are given by

Y0|k−1 = OkX0 +TkU0|k−1 +KkE0|k−1 (7)

Yk|2k−1 = OkXk +TkUk|2k−1 +KkEk|2k−1 (8)

where

X0 = [x(0) x(1) · · · x(N − 1)] ∈ R
n×N

Xk = [x(k) x(k + 1) · · · x(k + N − 1)] ∈ R
n×N

are the initial state matrices for (7) and (8), respectively.

4 LQ Decomposition

The next step is to apply the LQ decomposition to data matrix in order to obtain
some structural information about the extended observability matrix Ok, the block
Toeplitz matrices Tk and Kk, from which system parameters are identified.
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To make precise the assumption that the input u is PE with sufficiently high order,
we assume here that U0|2k−1 has full row rank, i.e. rank(U0|2k−1) = 2km. Also, note
that the reachability of (A, [B K]) assures that Xk has full row rank.

Define the past input-output matrix W0|k−1 =
[

U0|k−1
Y0|k−1

]
∈ R

k(m+p)×N , which was

used as an instrument to remove noise effects from the matrix state-input-output
equation [15]. According to [13], the actual computation to remove the effect of
noises from (8) is performed by the LQ decomposition

⎡

⎣
Uk|2k−1
W0|k−1
Yk|2k−1

⎤

⎦=

⎡

⎣
R11 0 0
R21 R22 0
R31 R32 R33

⎤

⎦

⎡

⎣
QT

1

QT
2

QT
3

⎤

⎦ (9)

where R11 ∈ R
km×km, R22 ∈ R

k(m+p)×k(m+p), R33 ∈ R
kp×kp are block lower triangular

matrices, and Q1 ∈ R
N×km, Q2 ∈ R

N×k(m+p), Q3 ∈ R
N×kp are orthogonal matrices

with QT
i Q j = Iδi j, i, j = 1,2,3.

Post-multiplying (8) by Q1 and Q2 respectively yields

Yk|2k−1Q1 = OkXkQ1 +TkUk|2k−1Q1 +KkEk|2k−1Q1 (10)

Yk|2k−1Q2 = OkXkQ2 +TkUk|2k−1Q2 +KkEk|2k−1Q2 (11)

Also, from (9), we have

Yk|2k−1Q1 = R31, Uk|2k−1Q1 = R11 (12)

Yk|2k−1Q2 = R32, Uk|2k−1Q2 = 0 (13)

Thus substituting (12) and (13) into (10) and (11) respectively yields

R31 = OkXkQ1 +TkR11 +KkEk|2k−1Q1 (14)

R32 = OkXkQ2 +KkEk|2k−1Q2 (15)

It should be noted that the innovation process e is a white noise and that there is
no feedback from the output to the input. Thus we see that the innovation process is
uncorrelated with the past input-output W0|k−1 and the future input Uk|2k−1. Thus, it
follows that

lim
N→∞

1
N

Ek|2k−1[U
T
k|2k−1 W T

0|k−1] = 0

Moreover, we see from (9) that

[UT
k|2k−1 W T

0|k−1] = [Q1 Q2]
[

R11 0
R21 R22

]T

where R11 and R22 are nonsingular. Thus, we have [13]

lim
N→∞

1√
N

Ek|2k−1[Q1 Q2] = 0 (16)
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This implies that QT
1 and QT

2 are uncorrelated with the future noise Ek|2k−1.
Letting N → ∞ in (14) and (15), we get asymptotically

R31 = OkXkQ1 +TkR11, R32 = OkXkQ2 (17)

where the common factor 1/
√

N in the above relations is suppressed. A subspace
method of computing (A,B,C,D) of the deterministic component from the above
equations is well known in the MOESP method; see [13, 14].

5 Asymptotic Analysis of Structure of R33

Recall from (9) that

Yk|2k−1 = R31QT
1 + R32QT

2 + R33QT
3 (18)

As discussed in Section 4, the L-factors R31 and R32 contain complete information
about the deterministic component (A,B,C,D) asymptotically. Hence, it is clear
from (18) that the L-factor R33 carries information about the stochastic compo-
nent; but it seems that this fact was overlooked in the literature. The analysis be-
low is motivated by Di Ruscio [2], who has developed a method of computing the
steady state Kalman gain directly from L-factors in a different setting than a stan-
dard subspace identification method; however, the structure of L-factors is yet to be
clarified.

As shown in (16), the correlation between the noise Ek|2k−1 and orthogonal fac-
tors QT

1 and QT
2 has been evaluated to derive the basic equation (17) satisfied by the

deterministic component [13]; however, the correlation between Ek|2k−1 and Q3 has
not been considered therein, which is the main topic of this section.

For the asymptotic analysis of the structure of R33, we assume that y, u and e are
2nd-order stationary processes and that the past horizon is infinite. This implies that
the entire past input-output W−∞|k−1 is available [7], so that the LQ decomposition
should be understood in this context. In fact, though R31 and R33 have finite number
of columns, R32 (and Q2) in (9) has infinite number of columns.

It follows from (8) and (18) that

OkXk +TkUk|2k−1 − R31QT
1 − R32QT

2 = R33QT
3 −KkEk|2k−1 (19)

The first term OkXk in the left-hand side of (19) is the oblique projection of Yk|2k−1
onto W−∞|k−1 along Uk|2k−1 [7, 11]. This implies that the row vectors of OkXk lie in
the row space of W−∞|k−1, so that it is expressed in terms of QT

1 and QT
2 . Also, from

(9), Uk|2k−1 is expressed in terms of QT
1 . Thus, the left-hand side of (19) is expressed

as a linear combination of QT
1 and QT

2 . Hence, post-multiplying (19) by Q3 yields

R33 = KkEk|2k−1Q3 ∈ R
kp×kp (20)
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On the other hand, we see from (16) that Ek|2k−1 is orthogonal to QT
1 and QT

2

asymptotically, so that Ek|2k−1 is expressed in terms of QT
3 asymptotically. Thus, we

can write

Ek|2k−1 = HkQT
3 + hN, Hk ∈ R

kp×kp, hN ∈ R
kp×N

where the norm of Hk/
√

N is bounded, and that of hN/
√

N goes to 0 as N → ∞. This
implies that ∥∥

∥
∥

1√
N

(
Ek|2k−1 − HkQT

3

)
∥∥
∥
∥

2

≤ ‖hN‖2

N
→ 0

Now consider

1
N

Ek|2k−1ET
k|2k−1 =

1
N

(
HkHT

k + hNQ3HT
k + HkQT

3 hT
N + hNhT

N

)

Under the ergodicity assumption [8], we see from (3) that the left-hand side of the
above equation converges, i.e.

lim
N→∞

1
N

Ek|2k−1ET
k|2k−1 =

⎡

⎢
⎣

Λ
. . .

Λ

⎤

⎥
⎦= L (21)

Also, from the conditions for Hk and hN and the fact that ‖Q3‖ = 1, we have

lim
N→∞

∥
∥∥
∥

1
N

Ek|2k−1ET
k|2k−1 − 1

N
HkHT

k

∥
∥∥
∥= 0 (22)

so that from (21) and (22),

lim
N→∞

1
N

HkHT
k = L

Similarly, we can show that

lim
N→∞

1
N

Ek|2k−1Q3QT
3 ET

k|2k−1 = L (23)

Thus, from (20) and (23), we have

lim
N→∞

1
N

R33RT
33 = Kk

⎡

⎢
⎣

Λ
. . .

Λ

⎤

⎥
⎦K T

k

Since Λ > 0, it follows that for N → ∞, a Cholesky factor is given by

1√
N

R33 = Kk

⎡

⎢
⎣

F1
. . .

Fk

⎤

⎥
⎦ (24)
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By definition, both R33 and Kk are block lower triangular, so that we see that Fi,
i = 1, · · · ,k are also block lower triangular and satisfy

lim
N→∞

FiF
T
i = Λ , i = 1, · · · ,k (25)

Moreover, since R33 is unique up to post-multiplication by a signature matrix, so are
Fi, i = 1, · · · ,k. The main result of the paper is summarized as follows.

Proposition 1. Suppose that the past horizon is infinite. Then, for N → ∞, the L-
factor R33 has a block lower triangular structure of the form

1√
N

R33 =

⎡

⎢
⎢
⎢⎢
⎣

F1 0

CKF1 F2
. . .

...
...

. . . 0
CAk−2KF1 CAk−3KF2 · · · Fk

⎤

⎥
⎥
⎥⎥
⎦

∈ R
kp×kp (26)

Proof. A proof is immediate from (6) and (24). �

Adapting the above result to finite input-output data, we obtain a procedure of iden-
tifying K and Λ by using the finite horizon LQ decomposition of (9).

For simplicity, we write R̄33 = R33/
√

N. Then, the diagonal elements of (26) are
expressed as Fi = R̄33((i−1)p+1 : ip,(i−1)p+1 : ip), i = 1, · · · ,k. It then follows
from (26) that

Ok−1KF1 = R̄33(p + 1 : kp,1 : p)
Ok−2KF2 = R̄33(2p + 1 : kp, p + 1 : 2p)

... (27)

O1KFk−1 = R̄33((k − 1)p + 1 : kp,(k − 2)p + 1 : (k − 1)p)

Algorithm of Identifying (K,Λ)

Step 1: Rewrite the right-hand side members in (27) as

Ri = R̄33((i− 1)p + 1 : kp, (i− 1)p + 1 : ip)F−1
i , i = 1, · · · ,k

where Fi, i = 1, · · · ,k are nonsingular. Then (27) is reduced to
⎡

⎢
⎢
⎢
⎣

Ok−1
Ok−2

...
O1

⎤

⎥
⎥
⎥
⎦

K =

⎡

⎢
⎢
⎢
⎣

R1

R2
...

Rk−1

⎤

⎥
⎥
⎥
⎦

(28)

Step 2: Apply the least-squares method to (28) to obtain an estimate of the steady
state Kalman gain K.
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Step 3: It follows from (25) that an estimate of the covariance matrix Λ is
given by

Λ̂ =
1
k

k

∑
i=1

FiF
T
i

We see that the identification method of K in the above algorithm is quite similar
to that of (B,D) in the MOESP method; see [14] that exploits the block structure of
the Toeplitz matrix Tk of (5). It should be noted that the identified feedback matrix
A − KC may not necessarily be stable1.

We have thus established a realization-based subspace identification method
for combined deterministic-stochastic systems based on the LQ decomposition. It
should be noted that the present result can be used as a supplement to realization-
based subspace identification algorithms developed in [7, 9, 11, 13].

6 Conclusions

In this paper, we have clarified a special role of the LQ decomposition in subspace
identification methods for combined deterministic-stochastic systems. In particular,
under the assumption that the past horizon is infinite, we have shown that R33 has
a nice block lower triangular structure asymptotically. By adapting the theoretical
result to finite input-output data, we can easily derive a procedure for computing the
stochastic component. Thus, combining with the earlier result [6], the role of the LQ
decomposition in realization-based N4SID methods is completely clarified.

Epilogue

It was an early spring of 1975. I traveled the US from west to east, after spending
one year at System Science Department, UCLA. I still remember quite well, when I
visited Yutaka at University of Gainesville, where he was a PhD student of graduate
program under the guidance of Professor Kalman, whom I met for the first time in
his office. Yutaka also took me to the office of Professor Popov, with whom I took
a picture. To see alligators, we went out together with Tsuyoshi Matsuo, who was
studying dynamical system theory there. My visit to Gainesville three decades ago,
where I met many important people, was a quite memorable event during my stay
in the US. I am grateful to Yutaka for his hospitality at Gainesville.
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Modeling Systems Based on Noisy Frequency
and Time Domain Measurements

Sanda Lefteriu�, Antonio C. Ionita��, and Athanasios C. Antoulas

Abstract. The Loewner matrix framework can identify the underlying system from
given noise-free measurements either in the frequency, or in the time domain[1, 2].
This paper provides an analysis of the effects of noise on the performance of the
SVD implementation of the Loewner matrix framework for different noise levels
and proposes an improved approach which is able to identify an approximation of
the original system even for high levels of noise. Moreover, for frequency domain
measurements, our framework can handle systems with a large number of inputs
and outputs while requiring small computational time and storage.

1 Introduction

Modeling systems based on tabulated data obtained from direct measurements is
common to many engineering applications. Due to their limited capability, measure-
ment devices can output only a certain number of digits of the measured quantity,
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some of which may be wrong. On the other hand, noise should not affect a robust
algorithm used to build the model.

In the electronics community, macromodeling is frequently used to build inter-
connect models from data obtained via full-wave simulations or direct measure-
ments. For multi-port systems, currently available macromodeling techniques [3]
are expensive. Thus, in [1], we propose a new approach which is based on a system-
theoretic tool, the Loewner matrix pencil constructed in the context of tangential
interpolation. Several implementations are possible, but they all construct models
of low order and are especially designed for the case of a large number of termi-
nals. Moreover, they allow the identification of the underlying system, rather than
merely fitting the measurements. After a short review of system theoretic concepts
in Sect. 2, we briefly introduce the Loewner framework in Sect. 3 and its SVD im-
plementation in Sect. 4. In Sect. 5, we investigate its robustness through a controlled
experiment and notice that, as it is, it fails to identify the underlying system for high
noise values. This is due to the fact that noise affects the poles recovered by our algo-
rithm and some of the physical poles show up only after overmodeling, so choosing
an order which is too low will lead to high approximation errors. Thus, a model
of dimension higher than the order of the underlying system is needed to capture
all physical poles. To solve this, we take additional steps which involve computing
and sorting the norms of the residues, as well as those of the dominance quantities,
which determine the dominant poles, of these higher order models. Even for high
noise ratios, the poles recovered using one of these criteria are perturbations, in the
order of the noise level, of the physical poles. We validate these observations by an
example obtained from real measurements.

2 System Theory

An LTI system Σ with m-inputs, p-outputs and n-internal variables in descriptor-
form representation is given by a set of differential and algebraic equations:

Σ : Eẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t), (1)

where x(t) is an internal variable (the state, if E is invertible), u(t) is the in-
put, y(t) is the corresponding output, while E,A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n,
D ∈ R

p×m are constant with E possibly singular. The transfer function of Σ is
H(s) = C(sE− A)−1 B + D. The set [E,A,B,C,D] is called a realization of H(s).
The realization of a transfer function is not unique; those of the smallest possi-
ble order n are called minimal realizations. A realization is minimal if it is com-
pletely controllable and observable. A descriptor system with (A,E) regular is com-
pletely controllable [4] if rank [A− λ E,B] = n, ∀ finite λ ∈ C and rank [E,B] = n.
It is called completely observable if rank

[
AT − λ ET ,CT

]
= n, ∀ finite λ ∈ C and

rank
[
ET ,CT

]
= n, where (·)T denotes transpose. The matrix pencil (A,E) is regular

if the matrix A−λ E is nonsingular for some finite λ ∈ C. The poles are given by the
eigenvalues of the matrix pencil (A,E): poles of Σ = λ (A,E). Σ is stable if all its
finite poles are in the left-half plane: Σ stable ⇔ Re(λ (A,E)) < 0 for |λ (A,E)| < ∞.
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Problem Statement: Our technique can model any kind of frequency domain data,
but here we focus on scattering parameters. An LTI system Σ models a set with k
noisy samples of a device with p ports ( fi, S̃(i) = S(i) +N(i)), i = 1, · · · ,k, where fi ∈
R (the frequency where we measure), S(i), N(i) ∈ C

p×p (the true S-parameter and the
noise matrix, respectively), if the value of the associated transfer function evaluated
at j ·2π fi is close to the noisy measurement: H( j ·2π fi) ≈ S̃(i), i = 1, . . . ,k.

3 Tangential Interpolation

Tangential interpolation data consist of right interpolation data (λi,ri,wi) and left
interpolation data (μ j, � j,v j), where λi ∈ C, ri ∈ C

p×1, wi ∈ C
p×1 and μ j ∈ C,

� j ∈ C
1×p, v j ∈ C

1×p, for i = 1, . . . ,k and j = 1, . . . ,h, or, more compactly,

Λ = diag [λ1, · · · , λk] ∈ C
k×k, M = diag [μ1, · · · , μh] ∈ C

h×h, (2)

R = [r1, · · · , rk] ∈ C
m×k, LT = [�1, · · · , �h] ∈ C

h×p, (3)

W = [w1, · · · , wk] ∈ C
p×k, VT = [v1, · · · , vh] ∈ C

h×m. (4)

The quantities λi, μ j are points where the function is evaluated, ri, � j are referred
to as tangential directions on the right and on the left, while wi, v j are right and
left tangential data. Tangential values may be given as above, but most often matrix
data, i.e., the value of a transfer function matrix at several points, is provided. In this
case, tangential data can be obtained by following Sect. 4.1.

The rational interpolation problem for tangential data aims at finding a realization
[E,A,B,C,D], such that the associated transfer function satisfies the right and left
constraints H(λi)ri = wi, � jH(μ j) = v j. The key tools for studying this problem
are the Loewner matrix together with the shifted Loewner matrix associated with
the data; for the material in Sect. 3.1 and 3.2, we refer to [2] for details on proofs.

3.1 The Loewner and the Shifted Loewner Matrices

Given Z = {z1, · · · ,zP}, points in the complex plane, and {H(z1), · · · ,H(zP)}, the
evaluation of a rational matrix function H(s) at those points, we partition Z =
{λ1, . . . ,λk}∪{μ1, . . . ,μh}, k+h = P, and obtain tangential data (2)-(4) from matrix
data by selecting ri and � j. We build the Loewner and shifted Loewner matrices as:

L=

⎡

⎢
⎢
⎣

v1r1−�1w1
μ1−λ1

· · · v1rk−�1wk
μ1−λk

...
. . .

...
vhr1−�hw1

μh−λ1
· · · vhrk−�hwk

μh−λk

⎤

⎥
⎥
⎦ , σL =

⎡

⎢
⎢
⎣

μ1v1r1−λ1�1w1
μ1−λ1

· · · μ1v1rk−λk�1wk
μ1−λk

...
. . .

...
μhvhr1−λ1�hw1

μh−λ1
· · · μhvhrk−λk�hwk

μh−λk

⎤

⎥
⎥
⎦ . (5)

They satisfy the Sylvester equations LΛ − ML = LW − VR and σLΛ − MσL =
LWΛ − MVR and have a system theoretic interpretation in terms of the tangential
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controllability and observability matrices (see [2]). For a thorough discussion on
choosing the directions ri and � j to ensure system identification, see [5].

3.2 The Solution to the General Tangential Interpolation Problem
in the Loewner Framework

Next we review the conditions for the solution of the general tangential interpolation
problem by means of state-space matrices [E,A,B,C,D], as presented in [2].

Lemma 1. Assume that k = h and that det(xL − σL) �= 0, for all x ∈ {λi} ∪ {μ j}
(i.e., the matrix pencil (σL,L) is regular and μ j,λi /∈ λ (σL,L)). Then E = −L,
A = −σL, B = V, C = W and D = 0 is a minimal realization of an interpolant of
the data. Thus, the associated transfer function

H(s) = W(σL− sL)−1V (6)

satisfies the left (� jH(μ j) = v j) and right interpolation conditions (H(λi)ri = wi).

This holds if measurements are not noisy and the number of samples are not more
than needed. For strictly proper systems, the rank of the Loewner and shifted
Loewner matrices is the order of the system (McMillan degree).

3.3 The Loewner Matrix Pencil under Noisy Data

Noisy frequency domain data is contained in the V and W data matrices, while Λ ,
M, R and L are assumed not affected by noise. We denote the matrices V and W
containing noisy data by Ṽ and W̃. Thus, the Loewner matrix will be affected by
noise, but will still satisfy a Sylvester equation: L̃Λ − ML̃ = LW̃− ṼR, so

(
L̃−L

)

︸ ︷︷ ︸
ΔL

Λ − M
(
L̃−L

)

︸ ︷︷ ︸
ΔL

= L
(
W̃− W

)

︸ ︷︷ ︸
ΔW

−(Ṽ− V
)

︸ ︷︷ ︸
ΔV

R (7)

Similarly, for the shifted Loewner matrix, we have that (ΔσL)Λ − M (ΔσL) =
L(ΔW)Λ − M (ΔV)R, where ΔL and ΔσL are perturbations introduced by noise.
Thus, the poles of the system recovered from noisy data, which are the generalized
eigenvalues of the matrix pencil

(
˜σL, L̃

)
= (σL+ ΔσL,L+ ΔL), are perturbations

of the original values, which are the eigenvalues of (σL,L).

4 Implementation

This section reviews an implementation approach which was introduced in [1]. We
assume that data sets contain k samples of the multi-port S-parameters, S(i), at fre-
quency points jωi, for i = 1, . . . ,k.
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4.1 Generating Tangential Data from Matrix Data for
S-Parameters

To obtain a real system, we can choose the right interpolation data as the odd sam-
ples, together with their complex conjugates, and the left interpolation data, as the
even samples, with their complex conjugates:

(
jω2i−1,− jω2i−1;ri,ri;wi = S(2i−1)ri,wi = S(2i−1)ri

)
(8)

(
jω2i,− jω2i;�i, �i;vi = �iS(2i),vi = �iS(2i)

)
(9)

where ωi = 2π fi ∈ R, for i = 1, · · · , k
2 . The directions may be chosen as ri = em ∈

R
p×1, with m = p for i = p · c1 and m = 1, · · · , p − 1 for i = p · c1 + m, for some

c1 ∈ Z, where em is the m-th column of the identity matrix Ip, and similarly for
�i. Without loss of generality, we have assumed an even number of samples. The
Loewner and shifted Loewner matrices are built using (5). A change of basis is
performed to ensure real matrix entries: Λ̂ = Π̂ ∗ΛΠ̂ , M̂ = Π̂ ∗MΠ̂ , L̂ = Π̂ ∗L, V̂ =
Π̂ ∗V, R̂ = RΠ̂ , Ŵ = WΠ̂ L̂ = Π̂ ∗

LΠ̂ , ˆσL = Π̂ ∗σLΠ̂ , where

Π̂ = blkdiag [Π , . . . ,Π ] ∈ C
k×k, Π =

1√
2

[
1 − j
1 j

]
.

4.2 SVD Implementation Approach

The idea is to use all measurements to construct the Loewner matrix pencil as pre-
sented in Sect. 4.1. Lemma 1 ensures perfect recovery of the system when the
Loewner matrix pencil is regular and the measurements are noise-free. However,
when too many measurements are available, the pencil is singular, so one needs to
eliminate the singular part. Under the assumption that ∀x ∈ {λi}∪{μi}

rank(xL− σL) =: r, (10)

one can perform the singular value decomposition:

xL− σL = YSX∗, (11)

where rank(xL − σL) = rank(S) =: r, Y,X ∈ C
k×r, where r is the dimension of

the regular part of xL − σL. For strictly proper systems, r is precisely n, the
order of the underlying system, while for proper systems, r = n + rank(D). Us-
ing the singular vectors as projectors, the realization [2] is given as E = −Y∗

LX,
A = −Y∗σLX, B = Y∗V, C = WX with D = 0.

Nevertheless, real-world measurements are noisy, so the singular values and
eigenvalues of the Loewner pencil are corrupted by noise. Next, we analyze the
effects of noise on the performance of the SVD implementation approach.
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5 Numerical Example

In the controlled experiments conducted, we introduce random noise relative to the
entries in S(i): N(i) = S(i). ∗ 10−SNR/10(randn(p)+ j · randn(p)), where .∗ is the
entry-by-entry multiplication in MATLAB.

The accuracy was assessed using two error measures:

• the normalized H∞-norm of the error system:

H∞ error = max
i=1...k

σ1

(
H( jωi)− S̃(i)

)
/ max

i=1...k
σ1

(
S̃(i)
)

, (12)

• the normalized H2-norm of the error system:

H2 error =

√√√
√

k

∑
i=1

∥
∥H( jωi)− S̃(i)

∥
∥2

F /
k

∑
i=1

∥
∥S̃(i)

∥
∥2

F , (13)

For comparison, we compute the H∞ and H2-norm errors of the noise:

• the H∞-norm of the noise we introduced: H∞ norm = maxi=1...k σ1(N(i)),

• the H2-norm of the noise we introduced: H2 norm =
√

∑k
i=1

∥
∥N(i)

∥
∥2

F .

5.1 A-Priori Known System

We consider an explicitly given system of order 14 with p = 2 ports. It has a-priori
known matrices and we create k = 134 measurements of its transfer function on the
imaginary axis between 10−1 and 101 rad/sec, for different SNR values.

5.1.1 Noise-Free Case

When we artificially create measurements of the transfer function and do not intro-
duce any noise, we can immediately identify the order of the system from the drop
of the singular values of the Loewner and shifted Loewner matrices (Fig. 1(a)). Us-
ing the singular vectors associated to the non-zero singular values as projectors, the
original system is recovered (Table 1).

5.1.2 SNR= 80

For small amounts of noise added to our measurements, we still notice a decay in
the singular values of the Loewner matrix pencil (Fig. 1(b)) which suggests that the

Table 1 Results for noise-free measurements

H∞ error H2 error
6.9291e–14 1.6246e–14

Table 2 Results for SNR= 80

H∞ error H2 error
Model 1.8032e–7 1.5312e–7
Noise 5.5257e–8 2.7242e–7
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Fig. 1 Singular value drop of the Loewner matrix pencil

underlying system is of order 14. Note that the singular values which used to be zero
are now perturbed by noise. Table 2 shows the errors for the order 14 system built
using the procedure in Sect. 4.2 when compared to the errors due to the noise.

5.1.3 SNR= 20

When the added relative noise is large, the order of the underlying system can no
longer be identified from the singular value decay of the Loewner pencil (Fig. 1(c)).

Thus, it is instructive to look at so called stabilization diagrams [6]. They show
how the poles of the system evolve when incrementally increasing the order of the
model (in our case, the order is given by the number of singular values retained
after the SVD truncation). Fig. 2 shows the absolute value of the imaginary part
of the poles (on the abscissa) versus the different truncation orders for SVD (on
the ordinate). Pluses are stable poles, while stars are unstable poles. Moreover, we
have highlighted as circles the poles which are obtained when truncating to order 14
(which is the true order of the system) and the original poles (the last set of circles).

For SNR= 80, the diagram (Fig. 2(a)) shows that the poles of the order 14 model
approximate well the original ones. Once physical poles were identified, they are
present for all subsequent orders higher than the dimension of the underlying sys-
tem. For SNR= 20, the stabilization diagram in Fig. 2(b) is not as clear as before.
Truncation at order 14 has occurred too early, since not all physical poles are present
and it is necessary to go to order 30 and higher to obtain relatively good approxi-
mations of the original poles. This diagram suggests that it is necessary to construct
a high order model from our noisy data. However, such a high-dimensional model
would have unstable poles, as well as others which are non-physical, so a reduction
step is necessary to eliminate the spurious part of the model.

In the civil and mechanical engineering communities, stabilization diagrams are
built to reveal the physical poles as those which do not move too much in the com-
plex plane with increasing the order of the model, as they are immune to pertur-
bations. This is based on the intuition that noise in the data should not affect the
underlying system poles. Therefore, stable poles with almost constant imaginary
part for different model orders are good candidates for physical poles. However,
for SNR= 20, some stable poles with imaginary part not changing are not physical.
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Fig. 2 Stabilization diagrams

Thus, this criterion gives, apart from the physical poles, others which are which are
spurious and try to fit the noise. This suggests looking for another criterion to detect
the true poles of the underlying system.

Below, we investigate two alternatives. The first is to compute the 2-norm of the
residue matrices of the high-order model and retain the poles with the largest residue
norms. For descriptor systems, residues are computed as:

Resi = (Cxi)(y∗Exi)
−1 (y∗

i B) (14)

where xi and yi are the right and left eigenvectors associated to the eigenvalue λi of
the matrix pencil (A,E): Axi = λiExi, y∗

i A = λiy∗
i E. The second is to preserve the

most dominant poles, where dominance is measured by the quantities qi defined as:

qi = ||Resi||2/Re(λi) (15)

Both criteria are motivated by the pole-residue expansion of the transfer function:

H(s) =
n

∑
i=1

Resi

s− λi
(16)

A pole with large residue norm and/or large dominance quantity contributes more
to the response, while the rest do not influence it very much.

For SNR= 80, it is clear that the first 14 poles are the physical ones from the
residue norms, as well as the dominance quantities (Table 3). For SNR= 20, the first
14 poles sorted according to the residue norms are approximations of the original
ones, but if sorted according to the dominance criterion, this would not be the case
(non-physical poles 19, 20 are more dominant than recovered poles 13, 14). Tables
3 and 4 also include a column for the minimum distance between each recovered
pole and all original ones. All distances are in the range of the corresponding noise
level. For SNR= 80, the shortest distances are between those poles with the largest
residues (and most dominant) and the original poles. This is not true for SNR= 20,
as the non-physical poles 19, 20 are closer than the recovered poles 3, 4. Table 5
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Table 3 Results for SNR= 80

i original poles λi λ̃i min j

∣
∣
∣λ j − λ̃i

∣
∣
∣ ‖Resi‖2 qi

1–2 –7.6155e–1±4.6137e–1i –7.6155e–1±4.6137e–1i 3.0764e–8 1.6903e+0 2.2195e+0
3–4 –1.3389e+0±2.0269e+0i –1.3389e+0±2.0269e+0i 9.6743e–8 1.3825e+0 1.0326e+0
5–6 –1.5742e–1±5.5226e–1i –1.5742e–1±5.5226e–1i 3.9031e–9 2.6748e–1 1.6992e+0
7–8 –8.2952e–2±1.8726e+0i –8.2952e–2±1.8726e+0i 1.2044e–9 1.0346e–1 1.2472e+0

9–10 –2.1923e–2±6.9690e–1i –2.1923e–2±6.9690e–1i 3.8541e–10 3.8603e–2 1.7609e+0
11–12 –2.2294e–3±1.5371e+0i –2.2294e–3±1.5371e+0i 1.3721e–10 1.0555e–2 4.7342e+0
13–14 –9.9863e–3±8.0143e–1i –9.9863e–3±8.0143e–1i 2.7708e–10 8.7155e–3 8.7275e–1
15–16 1.5810e–4±6.1158e–1i 8.8127e–2 2.8435e–11 1.7985e–7
17–18 -4.5355e–5±9.0452e–1i 1.0357e–1 2.2892e–12 5.0474e–8
19–20 3.1624e–5±8.5534e–1i 5.4833e–2 8.5254e–13 2.6959e–8

Table 4 Results for SNR= 20

i original poles λi λ̃i min j

∣
∣
∣λ j − λ̃i

∣
∣
∣ ‖Resi‖2 qi

1–2 –7.6155e–1±4.6137e–1i –7.6614e–1±4.5309e–1i 9.4636e–3 1.7541e+0 2.2895e+0
3–4 –1.3389e+0±2.0269e+0i –1.3253e+0±1.9934e+0i 3.6186e–2 1.3865e+0 1.0461e+0
5–6 –1.5742e–1±5.5226e–1i –1.5794e–1±5.5379e–1i 1.6158e–3 2.6732e–1 1.6925e+0
7–8 –8.2952e–2±1.8726e+0i –8.1729e–2±1.8702e+0i 2.6866e–3 1.0240e–1 1.2530e+0

9–10 –2.1923e–2±6.9690e–1i –2.1764e–2±6.9738e–1i 5.0648e–4 3.7752e–2 1.7346e+0
11–12 –2.2294e–3±1.5371e+0i –2.3526e–3±1.5370e+0i 1.5424e–4 1.0786e–2 4.5848e+0
13–14 –9.9863e–3±8.0143e–1i –9.8073e–3±8.0154e–1i 2.1396e–4 8.4846e–3 8.6513e–1
15–16 –3.7258e–3±5.9846e–1i 1.0010e–1 6.4623e–4 1.7344e–1
17–18 3.9288e–3±7.6797e–1i 3.6232e–2 3.6728e–4 9.3486e–2
19–20 –1.3289e–4±7.9193e–1i 1.3682e–2 2.7105e–4 2.0397e+0

Table 5 Results for SNR= 20

Model H∞ error H2 error
Order 14 after SVD truncation 5.0048e–1 4.3900e–1
Order 56 after SVD truncation 8.0286e–2 3.3064e–2

Order 14 after largest residue selection 2.4592e–2 2.4465e–2
Noise 5.1320e–2 2.6980e–1

presents the errors after the SVD truncation of order 14, as well as after the 14 poles
with the largest residues were chosen from a model of order 56.

We looked at the pseudospectra of the original matrix and compared the location
of the poles given by our improved algorithm for SNR= 20 to the pseudospectra
bounds corresponding to perturbations in the range 10−1.6 −10−2 (Fig. 3, generated
using EigTool [7]). Pseudospectra can be defined as [8]

Λε(A) = {z ∈ C : z ∈ Λ(A+ P) for some P with ||P|| ≤ ε} (17)

The above definition is not for matrix pencils. Still, the poles recovered by selecting
those with the largest residues of a high order system are enclosed by the circle in
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Fig. 4 Results for different SNR values (the circles are the norms of the noise, while the
pluses are the norms of our models)

the complex plane which bounds the original poles, perturbed by adding matrices P
with norm up to 10−2 to the matrix E−1A.

We performed Monte Carlo analyses for 20 different random perturbations for
each SNR value. The H2 and H∞ error results are shown in Fig. 4. We notice that,
with a few exceptions, the H2-norm errors for our models are well below the values
of the noise, while the H∞-norm errors are close to those of the noise.

5.2 Example Involving Measurements

Measurements were performed using a vector network analyzer (VNA) and were
provided by CST AG in magnitude-angle format (with at most 9 significant digits for
the magnitude and at most 6 significant digits for the angle). This data set contains
k = 200 samples between 5MHz and 1GHz of a device with 26 ports.

The singular value drop of xL− σL (Fig. 5(a)), where x = 2π f1, does not reveal
the order of the underlying system. Thus, we proceed with building the stabilization
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Fig. 5 Plots for the data set obtained from a device with 26 ports

diagram (Fig. 5(b)). This shows that, by order 75, all poles are approximated, but
as the order is increased, the estimates start converging. Thus, the order 79 model
provides good approximations of the poles, so we apply the largest residues and
dominance criteria to trim the 75 physical poles from the rest. The first circles are
the poles at order 75, while the second set of circles are the 75 most dominant poles
of the order 79 system. Both criteria indicate that indeed, the underlying system is of
order 75 (Table 6). The first 26 poles, some of which are unstable, in fact correspond
to poles at infinity. Table 7 shows the error norms.

Table 6 Dominance quantities

i λ̃i ‖Resi‖2 qi
1 1.8641e+13 1.0204e+14 5.4738e+0
2 5.5859e+12 1.0101e+14 1.8083e+1

3–4 3.8530e+12±1.7468e+12i 4.6061e+13 1.1954e+1
...

...
...

...
71 -1.9983e+8 2.7662e+8 1.3843e+0

72–73 –1.8893e±8 +2.9192e+9i 2.5603e+8 1.3551e+0
74–75 –1.6546e+8±7.8937e+8i 2.1840e+8 1.3200e+0
76–77 2.5402e+7±3.8980e+9i 1.3492e+6 5.3115e–2
78–79 –3.1911e+6±3.4011e+9i 9.6859e+5 3.0353e–1

Table 7 Error norm results

Model H∞ error H2 error
Order 75 1.9513e–2 1.9859e–3
Order 79 9.8777e–3 8.7537e–4

Dominant 75 7.2571e–3 8.5974e–4

6 System Identification from Noisy Time Domain Data

6.1 Noise-Free Case

In the time domain, we are interested in identifying a system given samples of its
impulse response, h(t) := CeAtB+Dδ (t). For simplicity, assume E = I and D = 0.

Suppose the time axis is uniformly spaced with time step Δ t and the impulse
response samples are {hi; i = 0, . . . ,2k}, with hi := h(iΔ t). Let the matrix M :=
eAΔ t , then hi = C

(
eAΔ t

)i
B = CMiB. Thus, the uniform sampling of the impulse

response of the continuous-time system [A,B,C,D] is equivalent with measuring
Markov parameters of the discrete-time system [M,B,C,D].
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Realization from Markov parameters [9][10] relies on the Hankel matrix H and
the shifted Hankel matrix σH , defined as

H :=

⎡

⎢
⎢
⎢
⎣

h1 h2 . . . hk

h2 h3 · · · hk+1
...

...
. . .

...
hk hk+1 . . . h2k−1

⎤

⎥
⎥
⎥
⎦
,σH :=

⎡

⎢
⎢
⎢
⎣

h2 h3 . . . hk+1

h3 h4 . . . hk+2
...

...
. . .

...
hk+1 hk+2 . . . h2k

⎤

⎥
⎥
⎥
⎦
. (18)

In [11], it was shown that these are a special case of Loewner matrices constructed
from derivatives of H(s−1) at s = 0, where H(s) is the system transfer function.

From the short SVD of the Hankel matrix, H = YSXT , with Y ∈ R
k×r, S ∈ R

r×r,
X ∈ R

r×k, and r := rankH , a minimal realization can be written down as EM =
YT H X,AM = YT σH X,BM = YT H (:,1),C = H (1, :)X and D = 0, leading to
M = E−1

M AM,B = E−1
M BM,C,D.

6.2 Noisy Measurements

Consider each impulse response measurement to be corrupted by noise {h̃i := hi +
ni; i = 0, . . . ,2k} and construct the noisy Hankel matrices H̃ and σH̃ . A large
order realization is given by Ẽ = H̃ ,Ã = σH̃ , B̃ = H̃ (:,1),C̃ = H̃ (1, :), with
poles λ̃i, i = 1, . . . ,k. From this realization we want to keep only the n poles that best
match the poles of the original system λi, i = 1, . . . ,n.

We proceed with a numerical experiment where we control the noise level. We
consider a system of order n = 14, compute the impulse response samples hi for
i = 1, . . . ,100, and then add noise ni with different SNR values.

6.2.1 SNR = 80

For a low noise level (Fig. 6(b)), there is a significant drop between the 14th to
15th singular values, indicating that the order of the original system is 14. Thus,
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Fig. 6 Singular value drop of the Hankel matrix
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Table 8 Results for SNR= 80

i λi λ̃i qi |Resi| min j

∣
∣
∣λ j − λ̃i

∣
∣
∣

1–2 –8.2952e–2 ±1.8726e+0i –8.2952e–2 ±1.8726e+0i 1.9187e+0 1.5916e–1 7.7569e–10
3–4 –2.1923e–2 ±6.9690e–1i –2.1923e–2 ±6.9690e–1i 1.6042e+0 3.5168e–2 6.1002e–9
5–6 –7.6155e–1 ±4.6137e–1i –7.6155e–1 ±4.6137e–1i 1.4909e+0 1.1354e+0 4.3122e–7
7–8 –1.5742e–1 ±5.5226e–1i –1.5742e–1 ±5.5226e–1i 1.3064e+0 2.0566e–1 1.4390e–8

9–10 –9.9863e–3 ±8.0143e–1i –9.9863e–3 ±8.0143e–1i 1.1260e+0 1.1245e–2 7.5328e–9
11–12 –2.2294e–3 ±1.5371e+0i –2.2294e–3 ±1.5371e+0i 8.3503e–1 1.8616e–3 1.7025e–9
13–14 –1.3389e+0 ±2.0269e+0i –1.3389e+0 ±2.0269e+0i 6.0088e–1 8.0454e–1 4.4483e–7
15–16 –1.2608e–1 ±1.8058e+0i 3.7960e–8 4.7858e–9 7.9480e–2
17–18 –2.8248e–1 ±3.2369e+0i 3.3928e–8 9.5842e–9 1.3789e+0
19–20 –8.5192e–1 ±5.5539e+0i 2.1474e–8 1.8294e–8 3.5604e+0

Table 9 Results for SNR= 20

i λi λ̃i qi |Resi| min j

∣
∣
∣λ j − λ̃i

∣
∣
∣

1–2 –9.9863e-3 ±8.0143e–1i –4.5898e–3 ±7.9554e–1i 2.2014e+0 1.0104e–2 7.9866e–3
3–4 –8.2952e-2 ±1.8726e+0i –8.2818e–2 ±1.8716e+0i 1.9343e+0 1.6019e–1 1.0257e–3
5–6 –1.5742e–1 ±5.5226e–1i –1.6886e–1 ±5.6579e–1i 1.6174e+0 2.7312e–1 1.7716e–2
7–8 –2.1923e–2 ±6.9690e–1i –2.2319e–2 ±6.8954e–1i 1.4795e+0 3.3021e–2 7.3651e–3

9–10 –7.6155e–1 ±4.6137e–1i –5.3492e–1 ±5.0979e–1i 1.3066e+0 6.9894e–1 2.3175e–1
11–12 –2.2294e–3 ±1.5371e+0i –2.5078e–3 ±1.5388e+0i 7.3604e–1 1.8459e–3 1.6648e–3
13–14 –1.3389e+0 ±2.0269e+0i -1.0990e+0 ±1.8497e+0i 5.9890e–1 6.5819e–1 2.9830e–1
15–16 –1.1619e–1 ±1.8235e+0i 5.6860e–2 6.6065e–3 5.9323e–2
17–18 –2.6236e–1 ±3.2348e+0i 2.9022e–2 7.6143e–3 1.3739e+0
19–20 –8.4679e–1 ±5.5539e+0i 2.1411e–2 1.8131e–2 3.5611e+0

the system can be easily recovered from the SVD. Also, note that the zero singular
values from the noise-free case are now in the order of the SNR.

Alternatively, one can recover the original system from an analysis of the domi-
nant poles. In Table 8, the poles of the approximant λ̃i are sorted according to their
dominance measure qi. Note that between q14 and q15 there is a large jump, roughly
in the order of 1/SNR. This is also present between |Res14| and |Res15|. Therefore,
both qi and the residues show that the order of the original system is n = 14. In the
last column of Table 8 we compute the distance from λ̃i to the closest λi and, indeed,
we notice that the 14 most dominant poles λ̃i are the best approximants to λi.

6.2.2 SNR = 20

As the noise level increases to SNR = 20, the decay of the singular values (Fig.
6(c)) does not reveal the order of the original system. Additionally, looking only
at the residues for this high level of noise does not reveal as much information as
before. Nevertheless, we can still say something about the approximate poles λ̃i.
From the last column of Table 9, as in the SNR = 80 case, we notice that the 14
most dominant poles λ̃i are also the ones closest to the original poles λi.
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7 Conclusion

Through a controlled experiment, we investigated the robustness of the SVD imple-
mentation in the Loewner matrix framework as it was initially proposed in [1, 2]
using frequency and time domain data. As it is, the procedure exhibits poor perfor-
mance for high noise levels, so we gained some insight into the pole evolution with
increasing model orders from the stabilization diagrams, which suggested an im-
provement. Sorting the poles of a system of high order (chosen such that the poles
have converged on the stabilization diagram) decreasingly according to the residue
norm or the dominance measure, leads to the first ones being approximations of the
physical poles. The distances between the recovered poles and the original ones are
in the order of the noise level introduced in the data and, moreover, the approximated
poles are within appropriate pseudospectra bounds corresponding to the noise level.
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Blind Identification of Polynomial Matrix
Fraction with Applications

Kenji Sugimoto

Abstract. Fractional representation by polynomial matrices is a tool for describing
linear dynamical systems, often providing a unique insight into the systems. It has
turned out that the coefficient matrices in this representation can be identified with-
out knowing the input data, under some statistic assumptions. This is an outcome by
combining system theory with a recent progress in signal processing; i.e., a method-
ology generically called independent component analysis.

This article summarizes this technique of blind system identification. Restricted
optimization for parameter estimation plays a key role. Also presented are some of
its applications in various fields such as input distortion compensation, disturbance
suppression, and time series prediction in financial engineering.

1 Introduction

The author of this article was the first undergraduate student supervised by Pro-
fessor Yutaka Yamamoto, just after he received the PhD in Florida. Since then, he
has guided the author to the world of linear system theory, particularly for MIMO
(Multi-Input Multi-Output) finite-dimensional systems. The master and doctor the-
ses were respectively about realization by polynomial matrices and about a poly-
nomial matrix approach to the inverse problem of LQ optimal control. Even now,
system representation theory continues to be a resource of various research topics
to the author, as will be seen below. This article is indebted to Professor Yamamoto
in this sense.

Given input/output data, MIMO system identification is now established by
means of state-space representation. Yet this article raises the issue of identifying
polynomial matrix fraction without knowledge of input data. This can be carried

Kenji Sugimoto
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-city,
Nara, 630-0192, Japan
e-mail: kenji@is.naist.jp

J.C. Willems et al. (Eds.): Persp. in Math. Sys. Theory, Ctrl., & Sign. Pro., LNCIS 398, pp. 379–388.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

kenji@is.naist.jp


380 K. Sugimoto

Mixer
(system to be 

identified)

)(1 tu

)(tum
M

)(1 ty
M

)(ˆ1 tu

)(ˆ tum
M

Unknown

Demixer
)(tym

Mixer
(system to be 

identified)

)(1 tu

)(tum
M

)(1 ty
M

)(ˆ1 tu

)(ˆ tum
M

Unknown

Demixer
)(tym

Fig. 1 Basic notion of blind signal deconvolution; y is observed and û is recovered.

out in terms of Blind Signal Deconvolution (BSD), which has recently attracted
much attention in signal processing. BSD is to recover (i.e., deconvolute) multiple
source signals from observation of their convolutive mixture and is applied to vari-
ous fields such as acoustics, biosignal processing; see, e.g., [1, 2] and the references
therein. The entire methodology is also referred to as Independent Component Anal-
ysis (ICA), since deconvolution is mainly achieved based on statistic independence
of the source signals.

Fig. 1 shows a basic configuration of BSD. The source signal u(t) := (u1, · · · ,um)′
passes through a MIMO dynamical system (called mixer) so that the components of
y(t) := (y1, · · · ,ym)′ are convolutive mixtures of those of u(t). A marked feature in
this problem is that both the input u(t) and the system (mixer) are unknown: only
its output y(t) is available for us. We have to adjust the demixer so as to obtain an
estimate û(t) := (û1, · · · , ûm)′ of u(t), according to its statistic assumptions.

In signal processing, their main concern is by nature signal recovery itself, while
in system theory we are more interested in the systems. When deconvolution is
achieved, the demixer plays a role of inverse system of the mixer, in a sense. It
is then natural to expect that the mixer is identified blindly by using the obtained
knowledge. Since existing BSD methods are not necessarily efficient for this pur-
pose, the author’s group has proposed another method based on polynomial matrix
fraction; first for the demixer with constant numerator matrix [3], then for a gen-
eral case [4]. This BSD-based system identification can be applied to a wide variety
of control issues such as input distortion compensation, disturbance suppression,
change detection, and time series prediction [5, 6, 7]. This article is a short sum-
mary of these works.

The remainder of this article is organized as follows: After giving a brief review
of BSD in Sect. 2, we describe the method for blind identification of polynomial
matrix fraction in Sect. 3. Then we introduce some of its applications in Sect. 4.
Sect. 5 concludes the article.

Transposition of vector v is denoted by v′. By I and O we denote respectively the
identify matrix and zero matrix of appropriate sizes.

2 Review of BSD

We start by describing the properties of our systems and signals, and then give a
brief review of conventional BSD methods.
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2.1 System Description

As a mixer in Fig. 1, consider the polynomial matrix (left) fraction of the discrete-
time transfer matrix G(z) = D(z)−1N(z), where

D(z) = I + D1z−1 + · · ·+ Dpz−p and N(z) = N0 + N1z−1 + · · ·+ Nqz−q. (1)

This is equivalent to the input/output relation on the time-domain:1

y(t)+
p

∑
i=1

Diy(t − i) = N0u(t)+
q

∑
j=1

Nju(t − j), t = 0,1, · · · ,T. (2)

We assume that Di and Nj are m × m constant matrices with m > 1 and N0 is in-
vertible. We also assume that both N(z) and D(z) are Hurwitz; i.e., detD(z) �= 0 and
detN(z) �= 0 whenever z is in the instability region. Namely we treat square, stable,
minimum phase, and biproper systems.

The class of the above systems is denoted as VARMA(p,q), standing for the
Vector AutoRegressive Moving Average model. Our objective is to estimate the
coefficients Di and Nj for given p and q.

Remark 1. The pair (D(z),N(z)) in Eq. (1) is not necessarily left coprime, hence
there remains a certain redundancy in the coefficients. This would be avoided if we
took the more compact form

D(z) =

⎛

⎜
⎝

d1(z)
...

dm(z)

⎞

⎟
⎠ , dk(z) = ek + dk

1z−1 + · · ·+ dk
pkz−pk , k = 1, · · · ,m, (3)

where ek is the k-th row vector of the identity matrix I, and p1, · · · , pm are the ob-
servability indices of a minimal realization of the system [4]. The form (3) coincides
with Eq. (1) iff p1 = · · · = pm = p. But it is difficult to know the indices in advance,
particularly when they are not equal, in addition to the notational complexity of
Eq. (3). We thus adopt Eq. (1) in this article, at the expense of coprimeness. This
does not lose any generality, but obtained parameters are not unique.

2.2 Signal Properties

We assume that the input signal u = (u1, · · · ,um)′ is a random vector having the
following properties, often called i.i.d (independent and identically distributed):

1. the components have zero mean: E [u] = 0, where E stands for expectation;
2. their distributions are identical throughout the interval [0,T ] and at most one is

Gaussian;

1 We consider the finite time-interval [0,T ] for T large enough.
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3. the components are spacially independent: f (u) =
m

∏
i=1

fi(ui), where f and fi (i =

1, · · · ,m) are respectively the joint and marginal probability density functions;
4. u(t) is also temporally independent.

We assume that y(t),t = 0, · · · ,T is available while u(t) is not.

2.3 Solution for Instantaneous Mixture

We first consider the special case where p = q = 0; i.e., the mixer is a constant matrix
A := N0 (called instantaneous mixture). Let us take as the demixer a constant matrix
W as well. Then, given input sequence in Eq. (2), the Kullback Leibler divergence
of û(t) = Wy(t) is a function of W :

J (û;W ) :=
∫

f (û) log
f (û)

∏m
i=1 fi(ûi)

dû.

By definition J (û;W ) = 0 iff û are spacially independent. In order to minimize this
cost, Amari et al. [8] have proposed a learning law based on what they call natural
gradient:

W ← W + αΔW, ΔW =
(
I −E [ψ(û)û′]

)
W (4)

where α > 0 is a small number and ψ is the vector of score functions

ψ(û) = (ψ1(û1), · · · ,ψm(ûm))′ , ψi(x) = −d log fi(x)
dx

for i = 1, · · · ,m. (5)

The score functions are usually unknown but it is sufficient to approximate them by
either x3 or tanhx.

It has been already shown that if J = 0 is attained after adaptation, then the
cascade satisfies

WA = PΛ (6)

for some permutation matrix P and some diagonal matrix Λ such that detΛ �= 0.
This means that û coincides with u up to scale and permuting indeterminacies on its
components. Signal recovery in this sense is thereby achieved [1, 2].

2.4 Convolutive Mixture

Now we are ready to consider the original mixer (1) with p > 0, which is far more
difficult than the instantaneous mixture in Sect. 2.3. A well-known method is to
provide a demixer as

H(z) = H0 + H1z−1 + · · ·+ H�z
−�, W = (H0, · · · , H�) (7)

See the left-hand side of Fig. 2, where triangulars represent one-step time delay
elements. Since the mixer is stably invertible, this achieves signal deconvolution
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Fig. 2 BSD methods: conventional and proposed

in satisfactory accuracy for � large enough (called FIR filter approximation). For
our purpose of blind identification, however, the demixer often becomes too high-
dimensional in this method. A frequency domain method is also well known for
signal recovery. We will give yet another method in the next section.

3 Proposed Method (VARMA-ICA)

Instead of Eq. (7), let us consider H(z) = Ñ(z)−1D̃(z), where

Ñ(z) = I + Ñ1z−1 + · · ·+ Ñqz−q and D̃(z) = D̃0 + D̃1z−1 + · · ·+ D̃pz−p, (8)

namely, a VARMA (q, p) model, and adjust their coefficients; see the right-hand
side of Fig. 2.2 The number of parameters is equal to that in the mixer in Eq. (1),
so that we can expect more efficient learning. In fact, the parameters converge with
much fewer samples than the conventional one in Sect. 2.4. This is advantageous
especially in control engineering since the frequency band we treat is often lower
(hence we can obtain sample data more slowly) than other applications such as
acoustics.

BSD in this configuration is achieved as follows. First, we rewrite the demixer
Eq. (8) as Û(t) = WY (t), where

Û(t) =

⎛

⎝
ũ(t)
ỹ(t)
û(t)

⎞

⎠ , Y (t) =

⎛

⎝
ũ(t)
ỹ(t)
y(t)

⎞

⎠ , ũ(t) =

⎛

⎜
⎝

û(t − q)
...

û(t − 1)

⎞

⎟
⎠ , ỹ(t) =

⎛

⎜
⎝

y(t − p)
...

y(t − 1)

⎞

⎟
⎠ ,

W =

⎛

⎝
I O O
O I O

−( Ñq · · · Ñ1
) (

D̃p · · · D̃1
)

D̃0

⎞

⎠ . (9)

2 This does not give a minimal state-space realization, because it has redundant delay
elements.
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Thus our problem is reduced to the instantaneous mixture case superficially. The
difference from Sect. 2.3 is that the entries in W are fixed except for the last block-
row, and that some of the components of the vector Û(t) can not be independent.
These violate the assumption in Sect. 2.

To solve this problem, we adopt the following constrained optimization:

W ← W + αΔW, ΔW = Π
(
I −E [ψ(Û)Û ′]

)
W (10)

where Π = block-diag(O, · · · ,O, I) and α > 0 is a small number.
As in Sect. 2.3, the solution has the indeterminacy shown by Eq. (6). To avoid

this, it has been proposed in [4] to add a further constraint on N0 = (n0
i j):

n0
ii = 1, |n0

i j| < 1 for i, j = 1, · · · ,m, i �= j. (11)

If the above learning law converges to the global optimum under this constraint,
then the obtained demixer H(z) gives the inverse system:

H(z)G(z) = I, N(z) = D̃−1
0 Ñ(z), and D(z) = D̃−1

0 D̃(z).

The parameter in (1) is thus obtained.
The effectiveness of the above method has been verified through numerical sim-

ulations; see [3, 4] for a detail.

Remark 2. The constraint (11) needs to be further investigated since it may restrict
systems we can identify. In most of the applications in Sect. 4, however, we do not
have to reduce the indeterminacy in this way. This is because there is no need to
distinguish the pair (N(z),u) from (N(z)PΛ ,(PΛ)−1u), for any permutation and
diagonal matrices P and Λ .

4 Applications

In this section we illustrate a couple of applications of blind identification. Sects. 4.1,
4.2, and 4.3 treat issues on control systems. Sect. 4.4 studies time-series prediction
with focus on financial engineering.

In Sects. 4.1 and 4.2 the method is applied in batch processing, as in the original
setting. After obtaining the parameter we can improve the control performance via
re-designing the system. On the other hand, in Sects. 4.3 and 4.4 we change our
viewpoint and try to apply the method in real-time, with a slight abuse.

4.1 Hammerstein Model Identification

In control systems, we sometimes encounter nonlinearity in the input channels such
as saturation or dead zone; see the left-hand side of Fig. 3. If such nonlinear func-
tions are static (i.e., memoryless), then we can identify both the linear part and the
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nolinear functions by applying the blind identification technique in Sect. 3. This is
called Hammerstein model identification.

If we obtain the distorting functions ϕi, then the compensation of the distortion
is straightforward by using their inverse functions:

vi(t) = ϕ−1
i (ūi(t)), i = 1, · · · ,m,

where ūi is what we want to apply as ui to the linear part [5].

4.2 Disturbance Model Identification

Control systems suffer from various disturbances whose mechanism is often
unknown. If their statistic property is identical, we can estimate such unknown
dynamics by observing command input c = (c1, · · · ,cr)′ and measured output y =
(y1, · · · ,ym)′; see the right-hand side of Fig. 3.

Note that u = (u1, · · · ,um)′ is not considered to be a real world signal but a virtual
input to drive the noise generator which generates a colored signal. In contrast to
the previous issues, the command input c is assumed to be available for us, hence
this scheme can be viewed as “semi-blind” identification.

After we identify both the plant and the noise generator, we can suppress the
noise effect on y by applying feedback from y to c, say by H∞ control methods: We
can select weighting functions based on the identified parameters [6].

4.3 Change Detection

Since the method in Sect. 3 converges with a relatively small number of samples,
we can apply it in a subinterval of the interval under consideration and renew the
parameter estimation while shifting the subinterval (called window) with respect to
time; see the left-hand side in Fig. 4.

One advantage of this window shifting is that we can trace the gradual change
of the system parameter. Along this line, the authors [6] have studied a kind of
fault detection technique of a mechanical system under vibration and verified its
effectiveness via an experiment with a flexible structure. In spite that the frequency
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Fig. 4 Semi real-time applications

band of this structure is rather low, it can detect the change within around 10 (ten)
seconds. The period is further shortened by combining this method with FastICA.

The semi real-time version of the proposed method in this sense is also adopted
in the following subsection.

4.4 Time Series Prediction

The last issue is application to finance. Let Si(t) be the stock price of brand Bi at
discrete time t, for i = 1, · · · ,m. Define the stock return vector by

y(t) = (y1(t), · · · ,ym(t))′ , yi(t) = log
Si(t)

Si(t − 1)
.

Suppose that y satisfies the assumption in Sect. 2 for some transfer matrix G(z) in
Eq. (1), with input u representing various external factors. This model seems to be
natural since stock prices are affected by the past values of their own as well as those
of other stocks. Indeed, the model includes some existing ones.

Now suppose that we have estimated the parameter of Eq. (1) by observing y(t)
for t = 0, · · · ,T . Then we can predict the one-step-ahead return vector as the condi-
tional expectation:

μ = E [y(T + 1)] = −
p

∑
i=1

Diy(T + 1 − i)+
q

∑
j=1

Njû(T + 1 − j). (12)

Here, we have used E [N0u(T +1)] = N0E [u(T +1)] = 0 and substituted u(t) by its
estimation û(t) for t = T + 1 − q, · · ·,T .

If we take a ratio vector λ = (λ1, · · · ,λm)′ such that ‖λ‖ = 1 and buy the combi-
nation of the stocks at this ratio (more precisely, “buy” Bi if λi > 0, and “sell” Bi if
λi < 0 for i = 1, · · · ,m), then the return is expected to be E [λ ′y(T + 1)] = λ ′μ .
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We might expect a profit if this is positive. However, it is not sufficient to select
λ such that λ ′μ is large, because there is always an investment risk in it. In this
context, the importance of variance (what they call volatility) is highly recognized
in financial engineering.

In our model, the variance is evaluated as λ ′Qλ where

Q = E
[
(y(T + 1)− μ)(y(T + 1)− μ)′

]
.

By Eqs. (2) and (12), we have

Q = N0VN′
0, V = E [u(T + 1)u(T + 1)′] = diag(v1, · · · ,vm), (13)

because the components of u are assumed to be independent. The diagonal entries
vi = E [ui(T + 1)2] are unavailable for us so that we substitute them with

vi =
1

T + 1

T

∑
t=0

ûi(t)2, i = 1, · · · ,m. (14)

By Eqs. (13) and (14), we thus obtain Q to calculate the variance λ ′Qλ .
In order to find the ratio λ such that the probability of loss λ ′y(T + 1) < 0 is as

small as possible, we maximize

γ =
λ ′μ

√
λ ′Qλ

(15)

with respect to λ ; see the right-hand side of Fig. 4.3 If γ is positive and large enough,
then the ratio λ is recommendable. Otherwise it is too risky.

The effectiveness of this method has been verified in [7], by numerical simulation
based on data of actual 8 brands. The method takes nontrivial computational time,
but is feasible enough for financial application.

5 Conclusion

As in many other statistic learning methods, parametrization and learning law are
two important issues in BSD. This article has focused on the parametrization issue
from a system-theoretic point of view, and discussed its application to control and
finance.
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