
Lecture Notes in Computer Science 3382
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

James Odell Paolo Giorgini
Jörg P. Müller (Eds.)

Agent-Oriented
Software
Engineering V

5th International Workshop, AOSE 2004
New York, NY, USA, July 19, 2004
Revised Selected Papers

13

Volume Editors

James Odell
Agentis
3646 West Huron River Drive, Ann Arbor, MI 48103, USA
E-mail: email@jamesodell.com

Paolo Giorgini
University of Trento, Department of Information and Communication Technology
Via Somamrive, 14, 38050 Provo, Italy
E-mail: paolo.giorgini@dit.unitn.it

Jörg P. Müller
Siemens AG, Corporate Technology, Intelligent Autonomous Systems
Otto-Hahn-Ring 6, 81730 Munich, Germany
E-mail: joerg.p.mueller@siemens.com

Library of Congress Control Number: 2004117070

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

ISSN 0302-9743
ISBN 3-540-24286-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11375104 06/3142 5 4 3 2 1 0

Preface

The explosive growth of application areas such as electronic commerce, enter-
prise resource planning and mobile computing has profoundly and irreversibly
changed our views on software systems. Nowadays, software is to be based on
open architectures that continuously change and evolve to accommodate new
components and meet new requirements. Software must also operate on differ-
ent platforms, without recompilation, and with minimal assumptions about its
operating environment and its users. Furthermore, software must be robust and
autonomous, capable of serving a näive user with a minimum of overhead and
interference.

Agent concepts hold great promise for responding to the new realities of
software systems. They offer higher-level abstractions and mechanisms which
address issues such as knowledge representation and reasoning, communication,
coordination, cooperation among heterogeneous and autonomous parties, per-
ception, commitments, goals, beliefs, and intentions, all of which need conceptual
modelling. On the one hand, the concrete implementation of these concepts can
lead to advanced functionalities, e.g., in inference-based query answering, trans-
action control, adaptive workflows, brokering and integration of disparate infor-
mation sources, and automated communication processes. On the other hand,
their rich representational capabilities allow more faithful and flexible treatments
of complex organizational processes, leading to more effective requirements anal-
ysis and architectural/detailed design.

As its very successful predecessors, AOSE 2000, AOSE 2001, AOSE 2002, and
AOSE 2003 (Lecture Notes in Computer Science, Volumes 1957, 2222, 2585, and
2935), the AOSE 2004 workshop sought to examine the credentials of agent-based
approaches as a software engineering paradigm, and to gain an insight into what
agent-oriented software engineering will look like.

AOSE 2004 was hosted by the 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004) held in New York,
USA on July 2004. The workshop received 57 submissions, and 15 of them were
accepted for presentation (which is an acceptance rate of 26%). These papers
were reviewed by at least two members of an international program committee
composed of 29 researchers. The submissions followed a call for papers on all
aspects of agent-oriented software engineering and showed the range of results
achieved in several areas such as methodologies, modeling, architectures, and
tools.

The workshop program included an invited talk, a technical session in which
the accepted papers were presented and discussed, and a closing plenary session.
It congregated more than 50 attendees among researchers, students and prac-
titioners, who contributed to the discussion of research problems related to the
main topics in AOSE.

VI Preface

This volume contains revised and improved versions of the 15 papers pre-
sented at the workshop, organized in three sections: Modeling, Design, and Reuse
and Platforms. We believe that this thoroughly prepared volume is of particular
value to all readers interested in key topics and the most recent developments
in the very exciting field of agent-oriented software engineering.

We thank the authors, the participants, and the reviwers for making AOSE
2004 a high-quality scientific event.

November 2004 Paolo Giorgini
Jörg P. Müller

James Odell

Organization

Organizing Committee

Paolo Giorgini (Co-chair)
Department of Information and Communication Technology
University of Trento, Italy
Email: paolo.giorgini@dit.unitn.it

Jörg P. Müller (Co-chair)
Siemens AG, Germany
Email: joerg.p.mueller@siemens.de

James Odell (Co-chair)
James Odell Associates, Ann Arbor, MI, USA
Email: email@jamesodell.com

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Gerhard Weiss, Technische Universitaet Muenchen, Germany
Michael Wooldridge, University of Liverpool, UK

Program Committee

Bernard Bauer (Germany)
Federico Bergenti (Italy)
Paolo Ciancarini (Italy)
Scott DeLoach (USA)
Marie-Pierre Gervais (France)
Olivier Gutknecht (France)
Brian Henderson-Sellers (Australia)
Michael Huhns (USA)
Carlos Iglesias (Spain)
Nicholas Jennings (UK)
Catholijn Jonker (Netherlands)
David Kinny (Australia)
Manuel Kolp (Belgium)
Yannis Labrou (USA)
Juergen Lind (Germany)

Haralambos Mouratidis (UK)
Matthias Nickles (Germany)
Andrea Omicini (Italy)
Van Parunak (USA)
Juan Pavon (Spain)
Anna Perini (Italy)
Marco Pistore (Italy)
Onn Shehory (Israel)
Paola Turci (Italy)
Gerd Wagner (Germany)
Gerhard Weiss (Germany)
Mike Wooldridge (UK)
Eric Yu (Canada)
Franco Zambonelli (Italy)

Auxiliary Reviewers: Paolo Busetta, Giancarlo Guizzardi, Savas Konur, Viara
Popova, Michael Rovatsos, Alexei Sharpanskykh, Arnon Sturm, Angelo Susi,
Vera Werneck

Table of Contents

Modeling

Organizational and Social Concepts in Agent Oriented Software
Engineering

Xinjun Mao, Eric Yu . 1

Representing Agent Interaction Protocols with Agent UML
Marc-Philippe Huget, James Odell . 16

AML: Agent Modeling Language Toward Industry-Grade Agent-Based
Modeling

Radovan Červenka, Ivan Trenčanský, Monique Calisti,
Dominic Greenwood . 31

Formal Semantics for AUML Agent Interaction Protocols Diagrams
Lawrence Cabac, Daniel Moldt . 47

A Study of Some Multi-agent Meta-models
Carole Bernon, Massimo Cossentino, Marie-Pierre Gleizes,
Paola Turci, Franco Zambonelli . 62

A Metamodel for Agents, Roles, and Groups
James Odell, Marian Nodine, Renato Levy . 78

Design

Bringing the Gap Between Agent-Oriented Design and Implementation
Using MDA

Mercedes Amor, Lidia Fuentes, Antonio Vallecillo 93

A Design Process for Adaptive Behavior of Situated Agents
Elke Steegmans, Danny Weyns, Tom Holvoet, Yolande Berbers 109

Evaluation of Agent–Oriented Software Methodologies – Examination
of the Gap Between Modeling and Platform

Jan Sudeikat, Lars Braubach, Alexander Pokahr,
Winfried Lamersdorf . 126

A Formal Approach to Design and Reuse Agent and Multiagent Models
Vincent Hilaire, Olivier Simonin, Abder Koukam, Jacques Ferber 142

X Table of Contents

An Agent Construction Model for Ubiquitous Computing Devices
Ronald Ashri, Michael Luck . 158

Reuse and Platforms

A Framework for Patterns in Gaia: A Case-Study with Organisations
Jorge Gonzalez-Palacios, Michael Luck . 174

Enacting and Deacting Roles in Agent Programming
Mehdi Dastani, M. Birna van Riemsdijk, Joris Hulstijn,
Frank Dignum, John-Jules Ch. Meyer . 189

A Platform for Agent Behavior Design and Multi Agent Orchestration
G.B. Laleci, Y. Kabak, A. Dogac, I. Cingil, S. Kirbas, A. Yildiz,
S. Sinir, O. Ozdikis, O. Ozturk . 205

A Formal Reuse-Based Approach for Interactively Designing
Organizations

Catholijn Jonker, Jan Treur, Pınar Yolum . 221

Author Index . 239

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 1 – 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Organizational and Social Concepts in
Agent Oriented Software Engineering

Xinjun Mao1 and Eric Yu2

1 Department of Computer Science, National University of Defense Technology, China
xjmao21@21cn.com

2 Faculty of Information Studies, University of Toronto, Canada
eric.yu@utoronto.ca

Abstract. AOSE methodologies and models borrow abstractions and concepts
from organizational and social disciplines. Although they all view multi-agent
systems as organized society, the organizational abstractions, assumptions,
concepts, and models in them are actually used in different ways. It is therefore
desirable to have a systematic way of analyzing and comparing the
organizational and social concepts in AOSE. The contribution of this paper is
threefold. Firstly, we identify some premises behind the social conceptions
adopted in multi-agent systems. Secondly, we define levels of modeling
constructs and classify organizational and social concepts in the AOSE literature
into categories according to their organizational abstractions. Finally, we analyze
two representative AOSE methodologies and their models, explaining how they
use organizational and social concepts to analyze and specify multi-agent
system, reflecting various social premises at different levels.

1 Introduction

Multi-agent systems (MAS) are rapidly emerging as a powerful paradigm for
developing complex system. However, if we want the paradigm to be successfully
applied in the development of complex system, the models, technologies and even the
methodologies should be developed to support the developers to engineer such
systems in a robust, reliable, and repeatable fashion.

MAS research often draws on concepts from other disciplines such as psychology,
economic, cognitive science, linguistics, artificial intelligence, etc. For example, we
often analyze interaction protocols and communication actions among agents based on
the speech acts theory, which comes from philosophy and linguistics. The abstraction of
the intentional stance has been borrowed from cognitive science to reason about and
analyze the autonomous behaviors of agents. Recently, many methodologies and
models borrowing the abstractions and concepts from the organization and sociology
disciplines have been put forward for modeling, analyzing and designing MAS.
Although these methodologies all view multi-agent systems as organized society in a
broad sense, the organization abstractions, concepts, assumptions and models that they
adopt are actually varied. The proposed methodologies may vary in the stages of

1 This research was conducted while the first author was visiting the University of Toronto.

2 X. Mao and E. Yu

software engineering life cycle that they support, thus adopting different assumptions
about organizations, and different levels of abstraction in their models. In addition,
some of the organizational and social concepts, while using different terminology, may
have similar meaning and purpose. Conversely, a given term may have different
interpretations and definitions in various models and methodologies.

Many papers have provided comparisons and evaluations of the methodologies in
agent oriented software engineering (AOSE), such as [23, 24, 34, 26, 27, 28].
However, there are few efforts to compare them from the standpoint of organizational
and social abstractions, especially to analyze the organizational and social concepts in
AOSE literature. Since organizational and social abstractions are playing central roles
in the design of AOSE methodologies and the development of multi-agent systems, it
is important to have a map of the research on organizational and social concepts in
AOSE. The rest of this paper is structured as follows. Section 2 analyzes the
assumptions in social abstractions. Section 3 defines the modeling construct levels of
MAS, identify and classify the organizational and social concepts in AOSE literature
and explain in detail how they are used to specify and analyze the MAS. Section 4
analyzes a number of AOSE methodologies that are influential in AOSE. Finally,
conclusions and future work are discussed in section 5.

2 Simplifying Assumptions in Social Abstractions

In adopting concepts from the social and organizational sciences, AOSE
methodologies are not attempting to capture the full richness of human social
phenomena. The borrowed concepts are selected abstractions that are considered to be
useful for the purpose of conceiving and designing multi-agent software systems.
Thus, each methodology selects a set of concepts and modeling constructs appropriate
for its intended purposes, and possibly for a specialized application area or context. In
doing so, a methodology incorporates assumptions and premises about organizations
and societies, either implicitly or explicitly. Typically, these are simplifying
assumptions which reduce the complexity of social phenomena. Despite
simplifications and restrictions, through these social and organizational concepts,
AOSE methodologies offer higher level abstractions than conventional software
engineering paradigms. Thus agent orientation can be seen as the latest step in the
progression towards better modeling abstractions that are closer to the real world,
shortening the conceptual distance between the full richness of the application domain
and the models offered by the software methodology to describe the world.

In analyzing a variety of AOSE methodologies, we note that their premises may
vary with regard to at least the following characteristics.

• Open or Closed. A system is open if it has no definite boundary, thus allowing
new, possibly unknown agents to enter or leave from time to time in the life cycle of
the system. Therefore, the collection of entities (e.g., agents) in an open system may
change and cannot be completely defined at design time. For instance, the Internet is
such an open system. For closed systems, the population of system elements does not
vary at run time. Therefore, they can be defined at design time by the software
developers. Clearly, open systems present design challenges that are not found in
closed ones.

 Organizational and Social Concepts in Agent Oriented Software Engineering 3

• Dynamic or Static. A system is dynamic if the system elements, especially the
abilities of agents in the system and the services they provide and/or the inter-agent
relationships, can change at run-time. For example, the roles that an agent plays may
vary in different contexts and situations, and therefore the inter-agent relationships
(e.g., the interactions and/or dependencies) may also change. For a static system, all
of the system elements are invariable. Typically, dynamic systems are more
complicated and more difficult to develop than static ones.
• Cooperative or Self-Interested. The agents in some system may be cooperative
in certain social context. They share some common goals and interact with each other
in a cooperatively way to willingly provide resources and services. Conversely, the
self-interested agent does for itself, and may refuse to provide services or resources
for other agents. In addition, conflicts are more likely to occur between self-interested
agents, especially when scarce resources need to be shared.
• Hierarchic. Many systems are hierarchic, i.e., composed of interrelated sub-
systems, each of which is in turn hierarchic in structure, until the lowest level of
elementary sub-system is reached [9]. There can be various relationships among the
sub-systems. In contrast, the hierarchic systems evolve more quickly than non-
hierarchic ones of comparable size, which make them more difficult to deal with [9].
Hierarchic structures are used extensively in software engineering to reduce system
complexity. However, many social structures are not hierarchic.
• Global Constraint. In some systems, there are global constraints that are respected
by all agents in the system and thus govern the relationships and interactions among
them. For example, a social law constrains the behavior of agents in the organization.
The explicit identification of the global constraints is of particular importance in the
context of open system with self-interested agents. Such constraints can simplify
system analysis and design.

3 Analyzing Organizational and Social Concepts in AOSE

In this section, we identify several levels of modeling constructs that are used in
modeling MAS. We then classify the organizational and social concepts found in the
AOSE literature, explaining how they can be used to model MAS.

3.1 Modeling Construct Levels

For the purpose of analysis, we organize the modeling constructs into a number of levels.

• Single Agent. In this level, the autonomous behaviors of agents are specified and
analyzed in an abstract way. Generally, the functionalities and activities of agents are
the most important aspects that should be modeled. For example, what are the
functionalities of agents? what the resources and/or activities should they have in
order to accomplish their functionalities? etc. The models describing the single agent
are important constituents of the system requirement specification to guide the design
of software agents.
• Two Agents. Agents in MAS are not isolated from one to another. Two agents
may have various relationships between them like structural ones and behavioral
ones. For example, one agent depends on another agent to get the resources required

4 X. Mao and E. Yu

to accomplish its tasks, or should explicitly interacts with other agent by some
interaction protocol (e.g., contract net) to acquire the resources or the assigned tasks;
one agent may be the supervisor of another one and has the authority to assign the
tasks to it. The information about the relationships between agents should be
explicitly specified and analyzed in support of the requirement specification and
analysis and further guide the software architecture design.
• Two or More Agents Acting in a Coordinated Way. In some MASs, two or
more agents are organized together as a group and act in a coordinated way in order to
achieve some common purposes. Agents in one group are often cooperative and have
some common goals and joint behaviors. For such MASs, it is necessary in the
analysis and design phase to identify and define the groups in the system, specify
them in detail about the structural information (e.g., how agents in the group are
organized) and the behavioral information (e.g., what the common goals of agents in
the group) of them.
• All Agents. In this level, all agents in the system are treated as one organization,
which should be specified and analyzed. For example, what is the organization
structure of the system? Are there any global constraints in the organization that
govern all agents in it?

3.2 Modeling Concepts

Now we turn to analyzing what the social premises mean in different modeling
construct levels, what the organizational and social concepts are required to model
MAS in these levels, and how they are used to specify and analyze the systems with
various social premises. Although the organizational and social concepts are diverse
in AOSE literature, a clear taxonomy of these concepts can be made according to their
modeling purpose and the system construct level that they intend to deal with. In
each category, the organizational and social concepts can be further divided into a
number of groups. The concepts in each group often have similar semantics and
modeling purpose (see Table 1).

Table 1. A taxonomy of organizational and social concepts in AOSE literature

Construct Levels Organizational and Social Concepts
role, position, actor
responsibility, goal

permission, right, resource

Single agent

activities, plan, task
Two agents dependency, interaction

group, group structure Two or more agents acting in
a coordinated way common goal, joint intention(commitment)

organization
organization rule, social law, interaction rule

All agents

organization structure, organization pattern

 Organizational and Social Concepts in Agent Oriented Software Engineering 5

3.2.1 Concepts for Modeling Single Agent
The organizational and social concepts in this level are used to specify and model the
individuals (i.e., agent) in MAS and relatively in a low and micro abstraction level. In
general, the functionalities, activities and resources of agents should be specified and
analyzed independently of their concrete details.

In addition, according to the social premises described in section 2, agents in MAS
may be dynamic or static, cooperative or self-interested. Dynamic agents may have
different functionalities and activities in their life cycles. For self-interested agents,
their functionalities, activities and resources may conflict with each other. Therefore,
these social premises about agents also should be explicitly modeled and analyzed if
the target system has these social properties.

• Role, Position and Actor. A role is an abstract characterization of the behaviors of
agents within some specified context of organization. Generally, an agent can play
multiple roles and a role can be played by a number of agents in MAS. Other concepts
similar to role are position and actor used in i* and Tropos. Position is a collection of
roles that are occupied by one agent and actor is a generic concept to denote the
intentional entity that may be an agent or role or position.

These concepts are important to abstractly model the agents in MAS, and helpful to
manage the complexity of MAS without considering the concrete details of agents
(e.g., implementation architectures and technologies). They present an effective way
to naturally model the entities in the system. In general, the system’s roles that agents
play are specified in the role model like ones in Gaia, MaSE, etc. Therefore, the role
concept, we can find, has been integrated into almost all of the AOSE methodologies
based on the organizational and social abstractions.

The dynamic properties of agent can be viewed as that agent plays different roles in
different context and situation, which will facilitate to model the dynamic MAS.
However, we believe, the traditional role models like ones in MaSE, Gaia, etc., are
unable to model such dynamic information. Therefore, other system model based on
the role concept should be developed like one in [36] to show how agents
dynamically enter or leave roles in different social situations.
• Responsibility and Goal. These concepts are used to specify and analyze the
functionalities of a role. In Gaia, responsibilities are divided into two types; liveness
properties and safety properties. Liveness properties describe those states of affairs
that an agent must bring about given certain environment conditions. In contrast,
safety properties correspond to the invariants in multi-agent system that agent must
maintain. The goal of a role represents its strategic interests or intentions. In i* and
Tropos, two kinds of goals can be distinguished: HardGoal and SoftGoal. The latter
denotes the goal that has no clear-cut definition or criteria for decision whether it is
satisfied or not, and is typically used to specify the non-functional requirements.

Generally the functionalities of roles should be specified and analyzed in
requirement phase in order to understand the behaviors of roles and guide the
software design that implements the roles’ functionalities. In contrast to the tasks,
actions and plans of roles, the responsibilities or goals of roles are relatively high-
level and stable, even in open and dynamic system, and therefore easy to elicit and
specify. In addition, roles are typically goal-driven, therefore the goals or
responsibilities of roles are related with their tasks, plans and interactions. The

6 X. Mao and E. Yu

explicit identification and specification of the goals or responsibilities of roles will
facilitate to elicit and model the tasks or plans that roles have, the resources and
interactions that roles need, the rule it should obey in order to achieve its goals or
responsibilities. Moreover, they are also helpful to analyze the potential goals conflict
between the self-interested agents.
• Permission, Right and Resource. These concepts are used to specify and analyze
what the roles require in order to realize their functionalities. Permissions in Gaia are
the “rights” associated with a role. The permission of a role identifies the resources
that are available to that role in order to realize its responsibilities. In the information
system, the permission tends to be the information resources [8]. Other analogous
concepts are rights in [3] and resource representing a physical or an informational
unintentional entity in i*, Tropos, and SODA.

Usually the resources are needed when agents intend to achieve their goals or
responsibilities. In most cases, they are distributed in the environments that agents
situate and may be dynamic. The resources in the environment are often limited and
shared by a number of agents. To explicitly specify permission or resource of roles
and model the environment that agents situate is significant to analyze how agent
interacts with the environment, and the dependency between roles (e.g., some agents
need resources while others produce resources). It is of particular importance to
investigate the resource or “right” conflicts that may occur between the self-interested
agents in dynamic system with limited resources.
• Activity, Plan, Task. These concepts are used to specify and analyze the behaviors
that roles should have in order to accomplish their functionalities. The activity of a
role in Gaia is actually the “private” action that may be carried out by the agent
without interacting with other agents in order to realize its responsibilities. The plan
concept in Tropos (analogous to the concept task in i* framework) represents, in an
abstract level, a way of doing something. The execution of the plan can be a means
for satisfying a goal [16]. The tasks in SODA, however, can be classified as
individual ones and social ones and expressed in term of the responsibilities they
involve, of the competence they require, and of the resources they depend on.
Typical, social tasks are those that require a number of different competences and the
access to several different resources, whereas individual tasks are more likely to
require well-delimited competence and limited resources [29].

These concepts describe in more detail the behaviors of roles and are necessary in
the requirement analysis phase to show how to accomplish the roles’ goals or
responsibilities, and guide the software design that naturally encapsulate and
implement these behaviors. Therefore most of the methodologies in AOSE support to
model the role’s activity, plan, or task to some extent.

3.2.2 Concepts for Modeling Two Agents
The organizational and social concepts in this level are used to model the
relationships between individual agents. In general, the structural relationship and the
behavioral relationship between two agents should be modeled when developing
MAS. The relationships between agents may change for the dynamic system when the
roles that agents play vary. Therefore, such dynamic relationships between agents also
should be specified and analyzed if the target systems are dynamic.

 Organizational and Social Concepts in Agent Oriented Software Engineering 7

• Dependency and Interaction Protocol. One of the most important relationships
between agents may be the interactions, which describe the behavioral relationship
between agents, and are often specified by interaction protocol which defines the
ways that agents can interact with each other. Most of AOSE methodologies, we can
find, have developed various models to explicitly specify the interactions between
agents, e.g., the interaction model in Gaia, communication model in MaSE. The
dependencies between agents mainly describe the structural relationships between
agents. They, in the i* and Tropos, are used to indicate that one role depends, for
some reason, on the other in order to attain some goal, execute some plan, or deliver a
resource. The dependencies between roles can be classified as four kinds: HardGoal
dependency, SoftGoal dependency, task dependency, resource dependency.

Both the structural relationship and the behavior relationship between agents
should be modeled when developing MAS. They are also helpful to define the
acquaintance model to show what agents or components in MAS are related with each
other, which is important to analyze the system requirements and design the software
architecture. The explicit specification and analysis of the dependencies between
agents are also of particular importance to elicit and define the organization structure
and the organization pattern. For dynamic MAS, there are still few works and efforts
to model the dynamic relationships between gents. However, one possible way to deal
with it is to define multiple models, for example the dependency model and/or
interaction model, for agents with dynamic relationship in different organization
context and situation.

3.2.3 Concepts for Modeling Two or More Agents Acting in a Coordinated Way
The organizational and social concepts in this level are used to specify and model the
groups of MAS, in which agents act in a coordinated way. Group is an effective tool
for partitioning and decomposing the organization, and organizing the agents with
some common goals or purposes together, which is of particular importance for the
hierarchic MAS. As for the dynamic system, the groups of MAS can also change
from time to time. For example, the new group is created, agents dynamically leave
the on-going groups and enter into a new one, the common characteristics (e.g., goals)
of the agents in the group are formed. Therefore, in this level, the dynamic and
hierarchic properties of the groups should be explicitly modeled if the target system
has these social properties.

• Group and Group Structure. A group is a set of agents sharing some common
characteristics and used as a context for a pattern activities and for partitioning
organizations [35, 36, 37]. It is actually a special organization and similar to the
concepts of sub-organization in [6,9] to decompose the system. Therefore, the group
concept defines the atomic sets of agent aggregation. The group structure is the
abstract description of a group. It actually identifies and specifies the structural
information of groups such as all the roles and the relationships that can appear with a
group [35].
• Common Goal, Joint Intention, Commitment. The behavioral information of
group is another important part that should be specified and analyzed when
developing MAS with groups. The common characteristic of agents in group that will
govern the behaviors of them is often specified by such concept as common goal. In

8 X. Mao and E. Yu

addition, the concepts such as joint intention and joint commitment, are often used to
describe how agents in group behave in a coordinated way to accomplish their
common goals.

The group concept is useful to analyze, decompose and partition the hierarchic
organization with clear group boundary, which is helpful to control the system
complexity. The group structure can be used to instantiate various groups that can be
created dynamically in the organization. However, additional models should be
developed based on the concepts such as group and role in order to specify and
analyze the whole dynamic information in this level. For example, [36] develops a
model called an organization sequence diagram to specify and analyze how the
groups are created and abolished dynamically, how agents in the organization
dynamically enter or leave the groups in different organization context and situation.

3.2.4 Concepts for Modeling All Agents
The organizational and social concepts in this level are used to specify and model the
macro organization information in MAS, especially for representing and analyzing the
organization structure and the global constrains in the organization. The organization
composed of all agents in the system may be open, which means that new, maybe
unknown agents are allowed to enter into the organization. It is believed that such a
system is difficult to develop. In addition, some organization has the global
constraints such as social laws to govern the running of the agents (especially self-
interested ones) in the organization. Therefore, in this level, the open and global
constraint premises of the organization should be modeled if the target system has
these social premises.

• Organization. An organization is viewed as a collection of roles that stand in
certain relationships to one another and take part in systematic institutionalized
patterns of interactions with other roles [8]. However, Ferber pointed out such a
definition lacks a very important feature of organization, i.e., partitioning, a tool to
partition the system. Organizations are structured as aggregates of several partitions
which may overlap and each partition may itself be decomposed into sub-partitions
[36].
• Organization Rule, Social Rule and Interaction Rule. These concepts define the
global constraint information in the organization that will govern the running of the
whole organization or society of MAS. Organization rule defines the general and
global (supra-role) constraints requirements for the proper instantiation and execution
of MAS that the actual organization will have to respect and expresses the
information about how the organization is expected to work [4, 5, 6]. Generally, it
will restrict the behaviors of agents and the interactions among them in MAS, and
should have such properties as global, mutual consistent, satisfiable, stable and
persistent, etc. Some methodologies such as Gaia [6] and MaSE [11] have introduced
the concept as a fundamental element to model and analyze the MAS. Another
analogous concept is social law in [1, 2], which is actually for the artificial agent
societies and guarantees the successful coexistence of multiple programs and
programmers. The interaction rule in SODA, however, is a special kind of
organization rule which will governs the interactions among the social role and
resources so as to make the group accomplish its social task [29].

 Organizational and Social Concepts in Agent Oriented Software Engineering 9

• Organization Structure and Organization Pattern. Organization structure
defines the specific class of organization and control regime to which agents/roles
have to conform in order for the whole MAS to work efficiently and according to its
specified requirements. It is a design choice that expresses which kind of organization
best fits requirements [4, 5]. The structural organizational relationships are the most
important parts that should be specified when defining the organization structure,
such as control, peer, benevolence, dependency, and ownership, etc. The organization
pattern defines and expresses pre-defined and widely used organizational structures
that can be reused from system to system [6].

The concepts such as organization rule, social law, etc, are the natural abstraction to
the global constraints in the organization. The explicit identification and specification
of the organizational rules is of particular importance in the context of open systems.
With the arrival of new, previously unknown, and possible self-interested agents, the
overall organization must somehow enforce its internal coherency despite the dynamic
and untrustworthy environment. The identification of global organizational rules
allows the system designer to explicitly define: whether and when to allow newly
arrived agents to enter the organization , and once accepted, what their position in the
organization should be; which behaviors should be considered as an expression of self-
interest, and which among them should be prevented [6]. The organization rule is also
useful to develop the system with self-interested agents and limited resources in order
to govern the autonomous behaviors of agents and the interactions among them to
some extents and prevent systems from falling into chaos. Furthermore, the explicit
definition of the organization structure is also helpful to the open system as the
structure of the organization should persist when components or individual enter or
leave an organization, and characterize the organization in the abstract or organization
level. To reuse organization structure is an effective way to improve the software
quality and development efficiency. Therefore, the specification and analysis of the
organization structure and pattern are of particular importance not only for defining the
structural information of system in the requirement specification and analysis phase,
but also for promoting the software reuse.

4 Analyzing AOSE Methodologies and Models

Up to now, there are many methodologies and models based on the organizational and
social abstractions. A list of methodologies and their evaluations can be found in [23,
24, 34]. In this section, we only analyze two of them, which are influential in AOSE
literature.

4.1 Gaia

Gaia is a complete methodology based on the organization metaphor for the
development of MAS and views the process of analyzing and designing MAS as one
of constructing computational organizations. It is, to our knowledge, the first AOSE
methodology that explicitly takes into account organization as a first-class abstraction.
Gaia was originally proposed by Wooldridge et al [8]. An extended version was
proposed recently by Zambonelli et al [6]. As the two versions are different in
organization assumptions, abstractions, concepts and models, we will refer to the

10 X. Mao and E. Yu

original version as Gaia1, the later version as Gaia2, or simply Gaia when we do not
need to make a distinction.

Table 2. The modeling concepts and system models of Gaia

Construct Levels Organizational and
Social concepts

System Models

Single agent role, activity, permission,
responsibility

role model
environment model

Two agents interaction interaction model
Level of two or

more agents acting in
a coordinated way

sub-organization −

All agents

organization,
organization rule, structure

and pattern

organizational rule
model

organization structure
model

Gaia1 views MAS as an organization composed of a collection of roles standing in
certain relationships to one another and taking part in systematic patterns of
interaction with other roles. It explicitly assumes that the systems to be developed
should be static (i.e., the inter-agent relationships do not change at run-time) and
closed, the agents in the system also should be static (i.e., the abilities of agents and
the services they provide do not change at run-time), there is no true conflict in the
system and therefore the agents in the system are cooperative with each other.

In order to analyze and design such kind of systems, Gaia1 presents the role models
and interaction models in the analysis phase, and agent model, service model and
acquaintance model in the design phase. Each role in the role model is defined by
four attributes: responsibility, permission, activity and protocol, which respectively
define the functionalities, resources, private actions and interactions of roles. The
relationships among roles are simply defined as the interactions specified as the
interaction protocols defined in the interaction model. The role model and interaction
model specified in the analysis phase will guide the software architecture design
specified by the agent model, service model and acquaintance model.

Apparently, Gaia1 has rich expression to model MAS in the single agent level and
two agents level, but it is weak in the all agents level and level of two or more agents
acting in a coordinated way. According to organization assumptions, obviously Gaia1
is just appropriate to the close and static system, e.g., business process management,
etc. A complete criticism on the limitations of the Gaia1 methodology can be found
in [20].

Gaia2 is an extension to Gaia1. The purposes of Gaia2 are to introduce more
organization abstractions into methodology and provide clear guidelines for the
analysis and design of complex and open system. It assumes that the organization to
be developed has global constraints that are represented by organization rule and
hierarchic structure that can be divided into a number of sub-organizations. The

 Organizational and Social Concepts in Agent Oriented Software Engineering 11

system can be open or closed, dynamic or static. Agents in the system can be
cooperative or self-interested. The extensions are mainly based on three high-level
organization abstractions and concepts such as organization rule to represent the
global organization constraints that is beneficial to model the open system with self-
interested agents, organization structure and organizational pattern that are helpful to
specify and analyze the dynamic system and can be reused from system to system. It
also explicitly models the environment information and extends the development
process.

These extensions, while preserving the simplicity of Gaia2, enable it to be used in
the analysis and design of the open MASs with self-interested agents to some extent,
e.g., manufacturing pipeline, conference management, etc. Apparently, Gaia2
enriches the modeling capability in the all agents level by introducing new
organizational and social concepts and their related system models in order to deal
with the complex open MAS. However, it is still weak in the level of two or more
agents acting in a coordinated way. Table 2 lists the organizational and social
concepts and related system models in various construct levels of Gaia. Figure 1
shows the meta-model of Gaia.

Organization Pattern

Organization Structure

Permission Activity

1..n

0..n

describes

0..n

0..n 0..n 0..n

Safety propertyLive property

Organization

Protocol

has

has

has
Role

has has

Responsibility

constrains

Organization Rule

 Fig. 1. The meta-model of Gaia

4.2 ALAADIN

AALAADIN [35] is actually an abstraction and generic MAS model and particularly
focuses on the organization-centered MAS modeling in order to resolve the
drawbacks of classical agent-centered technologies.

AALAADIN assumes that systems to be developed are closed and have hierarchic
structure that can be decomposed as a number of interrelated groups, and agents in
the system are cooperative. The groups in the organization can be dynamically
created, and agent can dynamically enter or leave the group. In order to model such
systems, AALAADIN introduces organizational concepts such as group, role and
structure. In AALAADIN, an organization is composed of a number of overlapping

A

12 X. Mao and E. Yu

Table 3. The modeling concepts and system models of AALAADIN

Construct Levels Organizational and
Social concepts

System Models

Single agent role
Two agents interaction
Level of two or

more agents acting in
a coordinated way

group
group Structure

All agents organization,
organization structure

organization structure
model,

organization sequence

model

groups, each of them aggregates a number of agents that is an active entity playing
roles within the group. An agent can be a member of multiple groups at the same
time. AALAADIN place no constraints on the internal architecture of agents and
does not assume any formalism for individual agent. Group and group structure are
introduced to partition organization and specify the group information. The group
structure defines the roles and the interactions between the roles that can appear
within the group. The concept of organization structure is also introduced, which
defines the group structure in the organization and the correspondences between
them. A recent work in [36] extended the AALAADIN: the organization description
consists in two aspects: a structural aspect and a dynamic aspect. The structure
aspect of an organization is made of two parts: a partitioning structure and a role
structure. The dynamic aspect of an organization is related to the institutionalized
patterns of interactions that are defined within the roles, such as the creation of
groups, the entering and leaving of a group by an agent, or acquisition of a role in
relation, which can be specified by Organizational Sequence Diagram, an extension
of sequence diagram in UML. Although AALAADIN is just an abstract MAS model,
it is useful to support the analysis and specification of the system requirements and
further guide the design of MASs.

Organization

Interaction

describes

describes

1..n

*

1..n
Group

1..n

1..n

1..n

1..n 1..nplays

1..n* Agent

Group Structure

has has

performs

Organization Structure

Role

Fig. 2. The meta-model of AALAADIN

 Organizational and Social Concepts in Agent Oriented Software Engineering 13

Table 3 shows the organizational and social concepts and related system models in
AALAADIN. It is obvious that AALAADIN has rich expression to model MAS in
the two agents level, all agents level and especially level of two or more agents acting
in a coordinated way. But it is weak in the single agent level. This is because that
AALAADIN pays more attentions to modeling MAS in an organization-centered
way. Such an abstract MAS model is suitable for the closed system with cooperative
agents, and especially with the hierarchic structure, e.g., enterprise information
system, etc. Figure 2 shows the meta-model of AALAADIN.

5 Conclusions

Organization and social metaphors are important in AOSE because they provide us
with abstraction that are significant in software engineering to naturally model MAS
and effectively control system complexity. By raising the level of abstraction in
software engineering models, they can serve to facilitate understanding among
developers, users and stakeholders, and can help to reduce the conceptual distance
between the real world and the systems that we develop.

The research in this paper shows that different organizational and social concepts
have different modeling purposes and are used in different modeling construct levels
for various MAS with different social premises. Although some methodologies and
models claim that they support the development of open and complex system, the
existing methodologies are still weak in modeling the open, dynamic organization
with self-interested agents. We believe that more modeling mechanisms such as
concepts and models should be introduced and developed in order to specify and
analyze the self-interested agent and the open and dynamic properties of systems.
While different organizational and social concepts may be needed to serve a range of
purposes in different methodologies, it would be desirable to have some consolidation
and standardization of terminology and semantics as the field matures.

Acknowledgements. The first author gratefully acknowledges financial support from
Chinese government and Natural Science Foundation of China for his one-year
visiting in University of Toronto. The second author gratefully acknowledges
financial support from the Natural Sciences and Engineering Research Council of
Canada.

References

1. Y Shoham and M Tennenholtz, On the synthesis of the useful social laws for the artificial
agents societies, in Proc. AAAI-92: 276-281, AAAI press, 1992.

2. Y Shoham and M Tennenholtz, On Social Laws for Artificial Agent Societies: Off-Line
Design, Artificial Intelligence, Artificial Intelligence 73(1-2): 231-252, 1995.

3. E Alonso, Rights for Multi-agent Systems, UKMAS 2002, Springer, LNAI 2403, 59-72,
2002.

4. F. Zambonelli, N. Jennings, M. Wooldridge, Organizational Rules as an Abstraction for the
Analysis and Design of Multi-agent Systems, Journal of Knowledge and Software
Engineering, 11(3), 303-328, 2001.

14 X. Mao and E. Yu

5. F. Zambonelli, N R.Jennings, M Wooldridge, Organizational Abstractions for the Analysis
and Design of Multi-agent System, AOSE’2001, LNCS2222, 127-141, Springer, 2002.

6. F. Zambonelli, N. R. Jennings, and M. Wooldridge, Developing Multiagent Systems:
The Gaia Methodology, ACM Transactions on Software Engineering Methodology, 12(3):
317- 370, 2003.

7. F. Zambonelli, A.Omicini, and M. Wooldridge, Agent-Oriented Software Engineering for
Internet Applications, in Coordination of Internet Agents: Models, Technologies and
Applications, 326-346, Springer, 2000.

8. Wooldridge, N R.Jennings, and D.Kinny, The Gaia Methodology for Agent-Oriented
Analysis and Design, International Journal of Autonomous Agents and Multi-agent
System, 3(3):285-312, 2000.

9. N.R.Jennings, An agent-based approach for building complex software systems,
Communication of ACM, 44(4): 35-41, 2001.

10. N.R.Jennings, On Agent-based Software Engineering, Artificial Intelligence, 117(2): 277-
296, 2000.

11. S A. DeLoach, Modeling Organizational Rules in the Multiagent Systems Engineering
Methodology, Proc. of the 15th Canadian Conference on Artificial Intelligence Calgary,
Alberta, Canada. May 27-29, 2002.

12. S A. Deloach, M F.Wood, and C H.Sparkman, Multiagents Systems Engineering,
International Journal of Software Engineering and Knowledge Engineering, 11(3):231-258,
2001.

13. E. Yu, Agent-Oriented Modelling: Software Versus the World, Proc. Of Agent-Oriented
Software Engineering, Springer, LNCS 2222: 206-225, Springer-Verlag, 2001.

14. E. Yu, et.al., From Organization Models to System Requirements: A Cooperative Agents
Approach, in Cooperative Information Systems: Trends and Directions, 194-204, 1997.

15. E Yu, Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering, Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering, 226-
235, 1997.

16. F Giunchiglia, John Mylopoulos and A Perini, The Tropos Development Methodology:
Processes, Models and Diagrams, Proc. Of AAMAS: 35 - 36, 2002.

17. P Massonet, Yves Deville and C Neve, From AOSE Methodology to Agent
Implementation, Proc of AAMAS’02, 2002.

18. Massimo Cossentino, Different Perspective in Designing Multi-Agent Systems, Proc. of
AGES '02 workshop, Germany, 2002.

19. G Caire, et.al., Agent Oriented Analysis Using MESSAGE/UML, Proc. of Second
International Workshop on Agent-Oriented Software Engineering, 101-108, 2002.

20. Thomas Juan, Adrian Pearce and Leon Sterling, ROADMAP: Extending the Gaia
Methodology for Complex Open System, Proc. of AAMAS’02, 3-10, 2002.

21. Thomas Juan, Leon Sterling and Michael Winikoff, Assembling Agent Oriented
Engineering Methodologies from Feature, In Proc. of AOSE, 2002.

22. J Pavon and J Gomez-Sanz, Agent Oriented Software Engineering with INGENIAS, Proc
of CEEMAS 2003, LNAI 2691, 394-403, 2003.

23. Gerhard Weib, Agent Orientation in Software Engineering, The Knowledge Engineering
Review, 16(4): 349-373, 2001.

24. Ofer Arazy and Carson C.Woo, Analysis and design of agent-oriented information systems,
The knowledge engineering review, 17(3): 215-260, 2002.

25. M Kim, et.al., Agent-Oriented Software Modeling, Proc. of Sixth Asia Pacific Software
Engineering Conference, 318-325, 1999.

26. K H Dam and M Winikoff, Comparing Agent-Oriented Methodologies, in the proceedings
of the Fifth International Bi-Conference Workshop on Agent-Oriented Information System,
78-93, 2003.

 Organizational and Social Concepts in Agent Oriented Software Engineering 15

27. Luca Cernuzzi and Gustavo Rossi, On the Evaluation of Agent Oriented Modeling
Methods, Proceedings of the 3rd International Conference on Enterprise Information
Systems, 2001.

28. Amon Sturm and Onn Shehory, A Framework for Evaluating Agent-Oriented
Methodologies, Proc. Of AOIS, 94-109, 2003.

29. Andres Omicini, SODA; Societies and Infraestructures in the analysis and Design of agent-
based System. Proc. of AOSE, 2001.

30. Andrea Omicini, From Object to Agent Societies: Abstractions and Methodologies for the
Engineering of Open Distributed Systems, AI*IA/TABOO Joint Workshop, 2000.

31. H.V D Parunak and J J.Odell, Representing Social Structure in UML, AOSE 2001, LNCS
2222, 2002.

32. M. Dastani, V. Dignum, F. Dignum, Organizations and Normative Agents. In Proceedings
of the First Eurasian Conference on Advances in Information and Communication
Technology, 2002.

33. Christian Lemaître and Cora B. Excelente, Multi-Agent Organization Approach, 2nd
Iberoamerican Workshop on Distributed Artificial Intelligence and Multi-Agent Systems,
1998

34. Jan Sudeikat, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf, Evaluation of
Agent-Oriented Software Methodologies – Examination of the Gap Between the Modeling
and Platform, Proceedings of AOSE 2004, Springer Verlag, 2005.

35. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of Third International Conference on MultiAgent
Systems, IEEE Computer Society, 128-135, 1998.

36. J Ferber, Olivier Gutknecht, Fabien Michel: From Agents to Organizations: An
Organizational View of Multi-agent Systems. Proc of AOSE 2003, 214-230, 2003.

37. J Ferber, et.al., Organization Models and Behavioural Requirements Specification for
Multi-Agent Systems, Proc. of the ECAI 2000 Workshop on Modelling Artificial Societies
and Hybrid Organizations, 2000.

Representing Agent Interaction Protocols with
Agent UML

Marc-Philippe Huget1 and James Odell2

1 Leibniz-IMAG/MAGMA, 46, Avenue Félix Viallet,
F-38031 Grenoble Cedex, France
Marc-Philippe.Huget@imag.fr

2 Agentis Software, Inc.,
3646 W. Huron River Dr. Ann Arbor, MI 48103, USA

jamesodell.com

Abstract. Several modeling techniques exist to represent agent interac-
tion protocols mostly based on work done in distributed systems. These
modeling techniques do not take the agent features such as the autonomy
into account. Agent Interaction Protocol designers are now considering
specific modeling techniques that contain these features. In this paper,
we present the second version of the Agent UML interaction diagrams
dedicated to interaction protocols, and based on UML 2.0.

1 Introduction

Designing an agent interaction protocol is realized via several steps (mostly
based on the ones found in communication protocol engineering [3]). The main
step is certainly the formal description phase in which the informal descrip-
tion of the protocol is formalized into a formal description. This step is crucial
since it conditions the protocol design success: an incomplete formal descrip-
tion will lead to an implemented protocol that does not answer to user needs.
Currently, there exist several (formal and semi-formal) description techniques to
describe protocols mostly based on work performed in communication protocol
engineering (such as automata [1] or Petri nets [4]) or specifically designed to
agent interaction protocols (such as Agent UML or ANML [8]). Agent Interac-
tion Protocol designers create from scratch new formal description techniques
in order to cope with agent requirements such as autonomy. Agent UML was
designed with this requirement in mind. Actually, Odell and Bauer—the fathers
of Agent UML—designed a modeling language which is an extension of an ac-
knowledged modeling language, UML [7]. As Odell et al. explain it in [6], it is
worthwhile to define a modeling language that is a refinement of a well-known
modeling language since in this case, learning this one will be simplified. More-
over, UML is widespread in industry, thus it will help software engineers moving
from software systems to multiagent systems. Finally, several strong industrial
tools already exist for UML. All these concerns give birth to Agent UML in
1999.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 16–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Representing Agent Interaction Protocols with Agent UML 17

Recently, UML knew a major improvement via the UML 2.0 specification
[7] and past UML 1.x sequence diagrams were greatly modified. Thus, it seems
reasonable to update Agent UML in order to now consider the UML 2.0 interac-
tion diagrams as background of Agent UML. In this paper, we present the new
specification of Agent UML Interaction diagrams based on UML 2.0 Interaction
diagrams.

The remaining of this paper is structured as follows. Section 2 describes the
UML 2.0 Interaction diagram specification. For sake of simplicity and brevity, we
omit some parts in the description. This is due to the relationships of elements
in the Interaction diagram with elements outside this diagram. For instance,
an Interaction is a specialization of InteractionFragment and Behavior, an In-
teractionFragment is a specialization of NamedElement and so on. As much as
possible, we try to let the section readable by readers that are not expert in UML
2.0. The Agent UML Interaction diagrams are defined as a profile. It means that
an Agent UML Interaction diagram is defined from UML Interaction diagrams
to which some elements are modified, and some new elements are added. We do
not present here in details how this profile is created due to space restriction.
This is the subject of another paper. Section 3 depicts the Agent UML Interac-
tion diagram profile. Section 4 describes an example of Agent UML Interaction
diagram. Finally, Section 5 concludes the paper and discusses future directions
of this work.

2 UML 2.0 Interaction Diagrams

The inter-process communication is captured by the set of Interaction diagrams
in UML 2.0 [7]. Actually, the Interaction diagrams represent a family of diagrams:

Sequence Diagrams. A diagram that depicts an interaction by focusing on
the sequence of messages that are exchanged, along with their correspond-
ing event occurrences on the lifelines. Unlike a communication diagram, a
sequence diagram includes time sequences but does not include object re-
lationships. A sequence diagram can exist in a generic form (describes all
possible scenarios), and in an instance form (describes one actual scenario).
Sequence diagrams are the most common form to represent protocols.

Interaction Overview Diagrams. A diagram that depicts interactions
through a variant of activity diagrams in a way that promotes overview
of the control flow. It focuses on the overview of the flow of control where
each node can be an interaction diagram.

Communication Diagram. A diagram that focuses on object relationships
where the message passing is central. The sequencing of messages is given
through a sequence numbering scheme. Sequence diagrams and communica-
tion diagrams express similar information but show it in different ways.

Timing Diagram. An interaction diagram that shows the change in state or
condition of a lifeline over linear time. The most common usage is to show
the change in state of an object over time in response to accepted events or
stimuli.

18 M.-P. Huget and J. Odell

In this paper, we focus on the sequence diagrams since it is the main one. We
briefly consider the other diagrams in Section 5 and particularly, their possible
use for agent interaction protocols. The remaining of this section describes the
different classes in the UML 2.0 Interaction diagram specification. For sake of
simplicity, we direct the explanations to be more readable. As a consequence,
some classes are omitted or explanations are reduced. For a detailed description
of the specification, readers can consult [7].

Even if it is not written in the UML 2.0 Interaction diagram specification,
sequence diagrams are timely ordered from the top of the diagram to the bottom.
It means that, except if we are using Continuations1, it is possible to easily
order message sequences by reading the diagram from top to bottom. The X
axis represents the different participants in the communication. Three notions
are integrated within UML 2.0 Interaction diagrams: traces, event occurrences
and fragments. If we do a parallel with protocols, a trace is a legal sequence
of messages. An event occurrence is any event that can intervene during the
communication such as message sending or receiving. A fragment is a piece of
an interaction. It means a fragment is the lifelines involved in the fragment and
the set of traces (eventually modified by some operators defined below).

2.1 Interaction

A sequence diagram in UML 2.0 is organized around a frame called Interaction.
This frame is defined as a unit of behavior and contains, among others, the pro-
tocol name (prefixed by the keyword sd for sequence diagram), the set of objects
that are in relation and the sequences of messages between these objects. This
Interaction is not a closed unit since it can send (receive) messages from (to)
other sequence diagrams via Gates. An Interaction is depicted by a solid-outline
rectangle with a pentagon in the upper left corner of the rectangle as shown on
Figure 1. The content of the pentagon is the keyword sd followed by the protocol
name and eventually parameters. The notation within the frame comes in sev-
eral forms Sequence diagrams, Interaction Overview diagrams, Communication
diagrams or Timing diagrams.

2.2 Lifeline

A Lifeline in UML 2.0 represents an individual participant in the interaction. A
Lifeline describes as well the presence of the participant in the interaction.
A participant entering later in the interaction has a Lifeline lower than oth-
ers. A participant ending prematurely the interaction has a Lifeline finishing
before the others. The Lifeline notation is a symbol consisting of a rectangle
forming its head followed by a vertical line that represents the lifeline of the par-
ticipant as shown on Figure 1. Information identifying the lifeline is displayed
inside the rectangle in the following format: name : class name where name is
the instance of the class called class name. On Figure 1, : xx is a class name and
w is a class instance.

1 Classes from UML 2.0 or from Agent UML have their first letter capitalized.

Representing Agent Interaction Protocols with Agent UML 19

Fig. 1. The UML 2.0 Interaction Notation

2.3 Message

A Message defines a particular communication between Lifelines of an interac-
tion. A Message is defined between a sender and a receiver. There are several
kinds of Message in UML 2.0:
– a message is complete if there is a sending event occurrence and a receiving

event occurrence.
– a message is lost if it is known that there is a sending event occurrence

but there is no receiving event occurrence. This is particularly the case in
unreliable communication.

– a message is found if a receiving event occurrence is known but there is
no (known) sending event occurrence. This is the case where the sender
is outside the scope of the description. It could be an activity that this
communication does not take into account.
The Message notation is a directed line from the sender lifeline to the receiver

lifeline. The form of the line or the arrow head reflects the properties of the
message:
– an asynchronous message has an open arrow head.
– a synchronous message typically represents method calls and is shown with

a filled arrow head. The reply message from a method has a dashed line.
– an object creation message has a dashed line with an open arrow head.
– a lost message is described as a small black circle at the arrow end of the

message.
– a found message is described as a small black circle at the beginning of the

message.

2.4 Constraint

A constraint in UML 2.0 is called a StateInvariant. It describes a constraint
on the state of a Lifeline. If the constraint is evaluated to false, next event

20 M.-P. Huget and J. Odell

Fig. 2. The UML 2.0 Message Notation

occurrences are considered as invalid and are not executed. The StateInvariant
notation is shown as a text in curly brackets on the lifeline on which the con-
straint is applied. A second kind of constraints exists in the specification: the
InteractionConstraint. This constraint is used in conjunction with Combined-
Fragments. The notation is a text within square brackets.

2.5 CombinedFragment

The CombinedFragment class in UML 2.0 represents a concise manner to rep-
resent several traces. The semantics of the CombinedFragment depends of the
InteractionOperator used. There are several InteractionOperators:

Alternative. This InteractionOperator describes that several traces in the in-
teraction are possible but at most one will be executed. The selection is based
on guards. At most one guard is satisfied. The associated trace is executed.
A default trace else can be added if no other trace can be executed.

Option. This InteractionOperator contains a single trace. Two situations are
possible: if the guard associated to the trace is satisfied, then the trace is
executed else nothing happens. This InteractionOperator is a particular case
of the InteractionOperator Alternative.

Break. The InteractionOperator Break represents a breaking scenario that stops
the current trace execution and executes the trace present in the Combined-
Fragment. The broken current execution will not be resumed.

Parallel. The InteractionOperator Parallel describes that several traces can be
executed concurrently. The set of traces can be interleaved in any order.

Weak Sequencing. This InteractionOperator represents a weak sequencing
between the different event occurrences in the CombinedFragment. It im-
plies that it is possible to order the Message on a same Lifeline but it is not
possible to make any assumption for Message ordering of other Lifelines in
the same CombinedFragment.

Strict Sequencing. This InteractionOperator refines the InteractionOperator
Weak Sequencing by requiring that all Messages in the CombinedFragment
are timely ordered.

Negative. This InteractionOperator describes the set of traces that are invalid.

Representing Agent Interaction Protocols with Agent UML 21

Critical Region. The InteractionOperator Critical Region describes a region
on which it is not possible to interleave the set of traces within the Critical
region with other messages outside the Critical Region. It corresponds to the
critical section in distributed systems.

Ignore/Consider. The InteractionOperator Ignore describes the set of traces
that can occur during the communication but has to be considered as in-
significant and has to be treated like that. The InteractionOperator Consider
is the converse of the InteractionOperator Ignore. It represents the set of
messages that has to be considered.

Assertion. The InteractionOperator Assertion describes the only set of traces
that is valid. This InteractionOperator is often combined with the Interac-
tionOperators Ignore and Consider.

Loop. The InteractionOperator Loop depicts that the CombinedFragment rep-
resents a loop. The guard associated with the iteration is either a range with
a lower and an upper bounds, or a boolean expression. The loop is executed
as long as the guard is satisfied.
The CombinedFragment notation is a solid-outline rectangle with a pentagon

in which the InteractionOperator is written. InteractionOperators are written as
follows: alt for alternatives, opt for options, break for break, par for parallel, seq
for weak sequencing, strict for strict sequencing, neg for negative, critical for
critical region, ignore for ignore, consider for consider, assertion for assertion
and loop for loop.

Some InteractionOperators have a special notation: (ignore — consider)
{<message name> {, message}∗} and loop [<min int>, <max int>].

A CombinedFragment example can be found on Figure 11.

2.6 Continuation

A Continuation is a syntactic way to represent continuations of different branches
of an Alternative CombinedFragment. Continuations is intuitively similar to la-
bels representing intermediate points in a flow of control. The notation is a
rounded-rectangle with a name within. The name corresponds to the label.

2.7 InteractionOccurrence

An InteractionOccurrence corresponds to a call to another interaction diagram.
The current interaction diagram is resumed when the called interaction diagram
ends. The notation of an InteractionOccurrence is a solid-outline rectangle with
a pentagon. The keyword ref is written within the pentagon. The name of the
called interaction diagram is written within the rectangle.

2.8 Gate

A Gate is a connection point to relate a Message outside the Interaction with a
Message inside the Interaction. Gates are points on the frame corresponding to
the end of Messages, the one outgoing the Interaction and the one incoming the
Interaction.

22 M.-P. Huget and J. Odell

Fig. 3. The UML 2.0 InteractionOccurrence Notation

2.9 Termination

The Stop denotes the end of participation of a lifeline in the communication.
The Stop is depicted by a cross in the form of an X at the bottom of a Lifeline.
An example can be found on Figure 11.

3 Agent UML Interaction Protocol Profile

UML is an extensible language through stereotypes and tagged values. We have
defined the Agent UML Interaction diagram specification as a UML profile. We
define in this section the modification we have done on the UML Interaction dia-
gram specification to give birth to Agent UML Interaction diagram specification.
This description is high level and does not present in details which attributes
and methods are added and removed in each class of the UML 2.O Interaction
diagram package. This description profile will be the subject of another paper.

3.1 Interaction

There are two kinds of protocols in multiagent systems: protocol templates and
instantiated protocols. Template protocols represent reusable patterns for useful
protocol instances. The protocol as a whole is treated as an entity in its own right,
which can be customized for other problem domains. A protocol template is not
a directly usable protocol because it has unbound parameters. Its parameters
must be bound to actual values to create a bound form that is an instantiated
protocol. Protocol templates refer to abstract classes in object-oriented theory.

A protocol template is depicted by an Interaction where the pentagon con-
tains the keyword <<template>> between the keyword sd and the protocol
name. An instantiated protocol has parameters that are depicted as a Note
linked to the Interaction via a dashed line. The first element in the Note is the
keyword <<parameters>>. Frequent parameters are the ontology, the content

Representing Agent Interaction Protocols with Agent UML 23

language and the agent communication language as shown on Figure 4. These
three parameters are introduced by the keywords ontology, CL and ACL. As a
consequence, parameters in UML 2.0 Interaction are removed and replace by
these ones. Parameters can be written without referring to an unbound param-
eter as long as there is no confusion.

Fig. 4. The Agent UML Interaction Notation

3.2 Lifeline

Lifelines are the elements that were the most modified in the Agent UML Inter-
action diagram specification. First, Lifelines in Agent UML can represent a set
of agents and not a unique agent as sketched in UML 2.0. Agent UML proposes
to add roles in order to reduce the size of interaction diagrams and group agents
that have the same behavior in this interaction. Actually, an agent can be de-
scribed with its role or with its role and its group. There are five possible ways
to represent the content of the head of the lifeline:
1. an agent identity denotes an agent instance, for instance Smith,
2. an agent identity with a role denotes an agent instance playing a specific

role, for instance Smith:Employee,
3. an agent identity with a role and a group denotes an agent instance playing

a specific role in a particular group, for instance Smith:Employee/ACME,
4. a role denotes a role regardless of the agents playing this role and,
5. a role and a group denotes a role in a group regardless of the agents playing

this role.
A role is prefixed by a colon. A group is prefixed by a slash. A cardinality

can be added to represent the number of agents playing a specific role. The
cardinality can be an exact number, a range or a logic formula or a condition.
Figure 5 summarizes the different notation.

The second important modification is the ability to write the role dynamics.
An agent is able to add a new role or to change from one role to another one. We
add two new stereotypes for this role dynamics: <<add role>> and <<change
role>>. Changing or adding a role consists in drawing a directed line with an

24 M.-P. Huget and J. Odell

Fig. 5. The Agent UML Lifeline Notation

Fig. 6. The Agent UML Role Dynamics Notation

open arrow head from the current agent instance with the roles it plays to the new
situation. The stereotype is written on the directed line as shown on Figure 6.

Representing Agent Interaction Protocols with Agent UML 25

3.3 Message

We add new stereotypes in Agent UML Message in order to take account of
roles, communication on the same lifeline and message delay.

Agent UML interaction diagrams can address a specific agent instance or a
set of agents denoting by their role. As a consequence, it is required to write on
message if it addresses a specific agent when the Lifeline only refers a role. The
notation is to write the name of the agent instance on the Message close to the
receiver Lifeline. A second point is issued from the use of roles. It is possible that
a portion of the agent instances playing this role is concerned by this Message.
A cardinality is adorned on the message to denote the number of agents that
will receive this Message.

Since Agent UML considers roles, it is possible that a Message is sent from
one agent instance in this role to another agents in this same role. It is important
to address the case whether the sender wants to receive the Message as well. We
add one new stereotype to cope the situation where the sender does not want
to receive the Message in an asynchronous communication. It is not possible to
have the sender in the list of receivers if the communication is synchronous since
in this case, the sender will be deadlocked.

Figure 7 summarizes the Agent UML Message notation. The notation a cor-
responds to an asynchronous message sending. The notation b corresponds to
a synchronous message. The notation c gives the cardinality for both sender
and receiver. The notation d depicts the cardinality for the receiver in terms of a
range. The notation e denotes the cardinality for the receiver in terms of a condi-
tion. The notation f denotes that this Message is sent to a specific agent instance
when the Lifeline only refers to a role. The notation g corresponds to sending
asynchronously the Message to the same Lifeline, the sender will receive a copy
of the Message. The notation h depicts sending asynchronously the Message to
the same Lifeline and the sender will not receive a copy of the Message. The
notation i denotes to sending synchronously the Message to the same Lifeline,
the sender will not receive a copy of the Message.

Finally, a Message can be delayed due to network congestion. It is then re-
quired to add that a specific message sent before another one can arrive after
it. A new stereotype is added to denote this message switching. The delayed
Message is represented as a multi-directed line and its point on the receiver
Lifeline is after the Message sent after it. The Message that arrives before the
Message sent before it is represented with a bridge on the directed line to avoid
line crossing as shown on Figure 8.

3.4 Constraint

Two kinds of constraints are considered in Agent UML interaction diagrams:
constraints and timing constraints. Timing constraints are conformed to the
one defined in UML 2.0. Constraints are refined into two categories: blocking
constraints and non-blocking constraints. Non-blocking constraints correspond
to the constraints defined in UML 2.0. If the constraints are satisfied then the
InteractionFragment is executed. In the case of blocking constraints, agents are

26 M.-P. Huget and J. Odell

Fig. 7. The Agent UML Message Notation

Fig. 8. The Agent UML Delayed Message Notation

blocked as long as the constraints are not satisfied. If a blocking constraint is ap-
plied to a Lifeline where a role is declared without agent instances, all the agent
instances playing this role are blocked as long as the constraints are not satis-
fied. The stereotype <<blocking>> is added to represent blocking constraints
as shown on Figure 9.

3.5 Protocol Template

The purpose of protocol templates is to create reusable patterns for useful pro-
tocol instances. The protocol as a whole is treated as an entity in its own right,

Representing Agent Interaction Protocols with Agent UML 27

Fig. 9. The Agent UML Blocking Constraint Notation

which can be customized for other problem domains. A parameterized proto-
col is not a directly usable protocol because it has unbound parameters. Un-
bound parameters are distinguised from bound parameters by the stereotype
<<unbound>>. Unbound parameters will be bound in instantiated protocols
via the note linked to the interaction diagram as shown on Figure 4.

3.6 Action

Sending and receiving messages imply performing actions within agents. For
instance, if we refer to FIPA ACL, sending a inform message implies verifying
that the sender believes the content of the message; and receiving the inform
message entails that the receiver believes the message content. An action is
depicted as a round-cornered rectangle linked to the message that triggers it
by an association. The action is written within the round-cornered rectangle.
The action is written as a text independent of any programming language. The
executable language from Mellor and Balcer is a possible language to represent
actions in Agent UML [5].

4 Agent UML Sequence Diagram Example

We take the example of the FIPA Request When protocol to exemplify some
classes, we described in Section 3. The FIPA Request When protocol allows an
agent to request that the receiver performs some action at the time a given pre-
condition becomes true. The Agent UML representation of this protocol is given
on Figure 11. The protocol is composed of two roles: Initiator and Participant

28 M.-P. Huget and J. Odell

Fig. 10. The Agent UML Action Notation

Fig. 11. The FIPA Request When Protocol

denoted by the two Lifelines. Since there are Lifelines with roles regardless of
the agent instances, each Lifeline can represent several agents. However, a piece
of information may be added on the first Lifeline that there is one and only one
Initiator.

All the Messages are asynchronous. The first one is sent from the Initiator role
to the Participant role. After this sending, the receiver role can answer either with
a refuse Message or with an agree Message denoted by the CombinedFragment
with the InteractionOperator Alternative. We do not add an else clause since the
two conditions are opposite. The conditions are written as InteractionConstraint
within square brackets. Here, the conditions are written as text but it is also
possible to use some logic formulae. In case, the Participant refuses to answer
to the request of the Initiator, it replies by the refuse Message. Just after, the
Interaction stops since there has a Stop. If the Participant accepts, it replies by

Representing Agent Interaction Protocols with Agent UML 29

the accept Message and the Interaction continues. We add a blocking constraint.
As long as the precondition holds, the Interaction is blocked and the agent
instances as well. When the preconditions are no longer satisfied, the Participant
has three different answers, either a failure Message if it fails performing the
action, an inform-done Message to inform that the action is performed or an
inform-result Message to give the result of the action. Since there is no more
Messages in the Interaction, the Interaction stops.

5 Conclusion

Describing agent interaction protocols is an important task in multiagent system
design since a faulty protocol can affect the way agents behave and cooperate.
There exist several different formal description techniques available to agent
interaction protocol designers: automata, Petri nets and logic to name a few.
Some description techniques fit more or less the agent desiderata and particularly
the decision autonomy. To tackle this point, agent interaction protocol designers
considered new description techniques and among others, the Agent UML [6].
The Agent UML idea presents several interesting ideas:

1. It is rooted on the well-known and acknowledged modeling language UML
2. Thanks to UML, it eases the gap between industrial concerns and research

concerns. It is easier to learn it than a complex or a logic formal description
technique

3. Several industrial tools are available for UML
4. It covers the agent needs in terms of interaction

Even if this picture is quite idyllic, the first version of the Agent UML was of
limited scope and does not take account of several operators such as the Inter-
actionOperator break or loop. Moreover, the timing constraints were written as
a note reducing its use when automatically implementing this protocol. Thanks
to a growning effort from the community and particularly via the FIPA Model-
ing technical committee, the Agent UML takes a second birth. The new Agent
UML is now rooted on the UML 2.0 Interaction diagram specification, which
offers more possibilities for agent interaction protocols.

As stated in the introduction, the interaction diagram family contains four
different diagrams. We only address here the sequence diagram but there are
as well the interaction overview diagram, the communication diagram and the
timing diagram. Even if we do not speak about them, they can be of inter-
est for agent interaction protocols. The interaction overview diagram can be
used to interleave agent interactions and control flow, and particularly the re-
lationships between different protocols. The communication diagram can help
designers during validation to test if agents correctly receive the message and
the message ordering. Finally, timing diagrams can be used to check agent design
and agent interaction protocol. It is then possible to verify that an agent takes
a specific state when sending or receiving a message.

30 M.-P. Huget and J. Odell

Several directions are already written in the agenda of Agent UML:
1. A comparative study between existing formal description techniques and

Agent UML has to be performed in order to check what is missing and what
is the expressive power of Agent UML. We particularly think about Petri
nets and the study done on the previous version of Agent UML [4],

2. UML presents a main issue, this is a semi-formal language since there is no
formal semantics of the Interaction diagrams. As a consequence, ambiguities
and misunderstandings are possible. Moreover, such semantics is required
when designers want to realize tools and implementation of Agent UML
Interaction diagrams. In order to tackle this point, we envisage to describe
the Agent UML sequence diagrams via communicating extended finite state
machines. Petri nets are also used for describing the semantics of the Agent
UML Interaction diagram specification [2],

3. Agent UML is a new modeling language and, as a consequence, there is
actually no tools for the diagram design, validation or implementation. One
idea is to reuse a tool that considers UML 2.0 as soon as one will be available,

4. Agent UML Interaction diagrams are actually only applied to the FIPA
Interaction protocol library. We envisage to search for other protocols in
order to check if this specification is consistent and answers user needs.

Acknowledgements

Authors would like to thank people who contribute directly or indirectly to this
specification via the FIPA Modeling technical committee or via mails.

References

1. M. Barbuceanu and M. S. Fox. COOL : A language for describing coordination
in multiagent system. In First International Conference on Multi-Agent Systems
(ICMAS-95), pages 17–24, San Francisco, USA, June 1995. AAAI Press.

2. L. Cabac and D. Moldt. Formal Semantics for Agent UML Agent Interaction Pro-
tocols Diagrams. In this volume.

3. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
4. H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design for

complex interactions in multi-agent systems. In Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2002), Bologna, Italy, July 2002.

5. S. J. Mellor and M. Balcer. Executable UML. Addison-Wesley, 2002.
6. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,

Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Artificial Intelligence, Austin,
Texas, july, 30 2000. ICue Publishing.

7. O. M. G. (OMG). Unified Modeling Language: Superstructure version 2.0, 03-04-01
edition, 2003.

8. S. Paurobally. Rational Agents and the Processes and States of Negotiation. PhD
thesis, Imperial College, University of London, 2003.

AML: Agent Modeling Language
Toward Industry-Grade Agent-Based Modeling

Radovan Červenka, Ivan Trenčanský, Monique Calisti, and Dominic Greenwood

Whitestein Technologies, Panenská 28, 811 03 Bratislava, Slovakia
Tel +421 (2) 5443-5502, Fax +421 (2) 5443-5512

{rce, itr, mca, dgr}@whitestein.com
http://www.whitestein.com

Abstract. The Agent Modeling Language (AML) is a semi-formal vi-
sual modeling language, specified as an extension to UML 2.0. It is a
consistent set of modeling constructs designed to capture the aspects
of multi-agent systems. The ultimate objective for AML is to provide a
means for software engineers to incorporate aspects of multi-agent system
engineering into their analysis and design processes. This paper presents
an introductory overview of AML, discussing the motivations driving the
development of the language, the scope and approach taken, the specific
language structure and optional extensibility. The core AML modeling
constructs are explained and demonstrated by example where possible.
Extensions to OCL and CASE tool support are also discussed.

1 Introduction

The Agent Modeling Language (AML) is a semi-formal1 visual modeling lan-
guage for specifying, modeling and documenting systems that incorporate con-
cepts drawn from Multi-Agent Systems (MAS) theory.

The primary application context of AML is to systems explicitly designed
using software multi-agent system concepts. AML can however also be applied to
other domains such as business systems, social systems, robotics, etc. In general,
AML can be used whenever it is suitable or useful to build models that (1)
consist of a number of autonomous, concurrent and/or asynchronous (possibly
proactive) entities, (2) comprise entities that are able to observe and/or interact
with their environment, (3) make use of complex interactions and aggregated
services, (4) employ social structures, and (5) capture mental characteristics of
systems and/or their parts.

Why Another Modeling Language? The most significant motivation driving the
development of AML stems from the extant need for a ready-to-use, complete

1 The term “semi-formal” implies that the language offers the means to specify systems
using a combination of natural language, graphical notation, and formal language
specification. It is not based on a strict formal (e.g. mathematical) theory.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 31–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 R. Červenka et al.

and highly expressive modeling language suitable for the development of com-
mercial software solutions based on multi-agent technologies. To qualify this
more precisely, AML was intended to be a language that:

– is built on proven technical foundations,
– integrates best practices from agent-oriented software engineering (AOSE)

and object-oriented software engineering (OOSE) domains,
– is well specified and documented,
– is internally consistent from the conceptual, semantic and syntactic perspec-

tives,
– is versatile and easy to extend,
– is independent of any particular theory, software development process or

implementation environment, and
– is supported by Computer-Aided Software Engineering (CASE) tools.

Given these requirements, AML is designed to address and satisfy the most
significant deficiencies with current state-of-the-art and practice in the area of
MAS oriented modeling languages, which are often:

– insufficiently documented and/or specified, or
– using proprietary and/or non-intuitive modeling constructs, or
– aimed at modeling only a limited set of MAS aspects, or
– applicable only to a specific theory, application domain, MAS architecture,

or technology, or
– mutually incompatible, or
– insufficiently supported by CASE tools.

Paper Layout. The purpose of this paper is to present an overview of AML.
However, due to limitations in paper length it is not possible to provide a com-
prehensive description of AML including its abstract syntax, semantics, notation,
and UML profiles. Therefore we have chosen to discuss the principles that guided
the specification of AML, our specific approach and a brief overview of the vari-
ous AML modeling constructs. Using concrete examples, we also illustrate some
of the more essential AML concepts. The paper is structured as follows:

Section 2 presents our approach in terms of language definition and spec-
ification, scope of the language, foundations, and structure and extensibility.
Sections 3, 4, 5, and 6 then present the overview of AML organized according
to the packages defined in the AML metamodel: Architecture, Behavior, Mental
Aspects, and Contexts. Section 7 describes an extension of the OCL Standard
Library required for modeling modal, deontic, and temporal logic, and cognitive
primitives. Section 8 provides an overview of the CASE tool support for AML
and Section 9 draws conclusions and recommendations for further work.

2 The AML Approach

Toward achieving the stated goals and overcoming the deficiencies associated
with many existing approaches, AML has been designed as a language, which:

AML: Agent Modeling Language 33

– incorporates and unifies the most significant concepts from the broadest set
of existing multi-agent theories and abstract models (e.g. DAI [1], BDI [2],
SMART [3]), modeling and specification languages (e.g. AUML [4, 5, 6], GRL
[7], TAO [8], OPM/MAS [9], AOR [10], UML [11], OCL [12], OWL [13],
UML-based ontology modeling [14], OWL-S [15]), methodologies (e.g. MES-
SAGE [16], Gaia [17], TROPOS [18], PASSI [19], Prometheus [20], MAS
CommonKADS [21], MaSE [22]), agent platforms (e.g. Jade, FIPA-OS, Jack,
Cougaar) and multi-agent driven applications,

– extends the above with new modeling concepts to account for aspects of multi-
agent systems thus far covered insufficiently, inappropriately or not at all,

– assembles them into a consistent framework specified by the AML meta-
model (covering abstract syntax and semantics of the language) and notation
(covering the concrete syntax), and

– is specified as a conservative extension of UML2 to the maximum possible
extent.

2.1 Scope

AML is designed to support business modeling, requirements specification, analy-
sis, and design of software systems that use software agent concepts and principles.

The current version of AML offers:
– Support for the human mental process of requirements specification and anal-

ysis of complex problems/systems, particularly (1) mental aspects, which can
be used for modeling intentionality in use case models, goal-based require-
ments, problem decomposition, etc. (Sect. 5), and (2) contexts, which can
be used for situation-based modeling (Sect. 6).

– Support for the abstraction of architectural and behavioral concepts associ-
ated with multi-agent systems, i.e. ontologies (Sect. 3.1), MAS entities (Sect.
3.2), social aspects (Sect. 3.3), behavior abstraction and decomposition (Sect.
4.1), communicative interactions (Sect. 4.2), services (Sect. 4.3), observations
and effecting interactions (Sect. 4.4), mental aspects used for modeling mental
attitudes of entities (Sect. 5), MAS deployment and agent mobility (Sect. 3.4).

2.2 Outside the Scope of AML

AML does not cover most of operational semantics, which might be dependent on
a specific execution model given by an applied theory or deployment environment
(e.g. agent platforms, reasoning engines, other technologies used).

2.3 UML 2.0 as a Base

AML is based on the Unified Modeling Language (UML) 2.0 Superstructure [11],
augmenting it with several new modeling concepts appropriate for capturing the
typical features of multi-agent systems.

The main advantages of this approach are:

2 A conservative extension of UML is a strict extension of UML which retains the
standard UML semantics in unaltered form[23].

34 R. Červenka et al.

– Reuse of well-defined, well-founded, and commonly used concepts of UML.
– Use of existing mechanisms for specifying and extending UML-based lan-

guages (metamodel extensions and UML profiles).
– Ease of incorporation into existing UML-based CASE tools.

2.4 Structure of AML

AML is defined at two distinct levels – AML Metamodel and Notation and AML
Profiles. Fig. 1 depicts these two levels, their derivation from UML 2.0 and
optional extensions based on UML 1.* and 2.0.

UML 2.0 Superstructure

UML 2.0 Profile of AMLUML 1.* Profile of AML

UML 1.* Profiles

Extending AML

UML 2.0 Profiles

Extending AML

AML Metamodel AML
NotationAML KernelUML Extension for AML

UML Language

AML Metamodel
and Notation

AML Profiles

A
M
L

AML Profile Extensions

Fig. 1. Levels of AML definition

With reference to Fig. 1, the UML Language level contains the UML 2.0 Su-
perstructure defining the abstract syntax, semantics and notation of UML. AML
uses this level as the foundation upon which to define MAS-specific modeling
constructs.

The AML Metamodel and Notation level defines the AML abstract syntax,
semantics and notation, structured into two packages: AML Kernel and UML
Extension for AML.

The AML Kernel package is the core of AML where the AML specific model-
ing elements are defined. It is logically structured into several packages, each of
which covers a specific aspect of MAS. The most significant of these packages are
described in sections 3, 4, 5, and 6. The AML Kernel is a conservative extension
of UML 2.0.

The UML Extension for AML package adds meta-properties and structural
constraints to the standard UML elements. It is a non-conservative extension
of UML, and thus is an optional part of the language. However, the extensions
contained within are simple and can be easily implemented in most existing
UML-based CASE tools.

At the level of AML Profiles, two UML profiles built upon the AML Meta-
model and Notation are provided: UML 1.* Profile for AML (based on UML
1.*) and UML 2.0 Profile for AML (based on UML 2.0). These profiles, inter

AML: Agent Modeling Language 35

alia, enable implementation of AML within UML 1.* and UML 2.0 based CASE
tools, respectively.

Based on AML Profiles, users are free to define their own language extensions
to customize AML for specific modeling techniques, implementation environ-
ments, technologies, development processes, etc. The extensions can be defined
as standard UML 1.* or 2.0 profiles. They are commonly referred to as AML
Profile Extensions.

2.5 Extensibility of AML

AML is designed to encompass a broad set of relevant theories and modeling
approaches, it being essentially impossible to cover all inclusively. In those cases
where AML is insufficient, several mechanisms can be used to extend or cus-
tomize AML as required.

Each of the following extension methods (and combinations thereof) can be
used:

– Metamodel extension. This offers first-class extensibility (as defined by MOF
[24]) of the AML metamodel and notation.

– AML profile extension. This offers the possibility to adapt AML Profiles us-
ing constructs specific to a given domain, platform, or development method,
without the need to modify the underlying AML metamodel.

– Concrete model extension. This offers the means to employ alternative MAS
modeling approaches as complementary specifications to the AML model.

3 Architecture

This section provides an overview of the AML constructs used to model archi-
tectural aspects of multi-agent systems.

3.1 Ontology

AML supports ontology modeling in terms of ontology classes and instances,
their relationships, constraints, ontology utilities, and ontology packages.

Ontology package is a specialized UML package used to specify a single on-
tology. By utilizing the features inherited from UML package (package nesting,
element import, package merge, etc.), ontologies can be logically structured.

Ontology class is a specialized UML class used to represent an ontology con-
cept. Attributes and operations of the ontology class represent its slots. Ontol-
ogy functions, actions, and predicates belonging to a concept modeled by the
ontology class are modeled by its operations. Ontology class can use all types
of relationships allowed for UML class (association, generalization, dependency,
etc.) with their standard UML semantics.

Ontology utility is a specialized UML Class used to cluster global ontology
constants, variables, functions, actions, and predicates, which are modeled as
its features. These features can be used by (referred to) other elements within

36 R. Červenka et al.

the owning ontology. One ontology package can contain several ontology utilities
allowing logical clustering of the features.

The diagram in Fig. 2 depicts a simplified version of a SoccerMatch ontology.
Rectangles with the special icon (“C” placed in a rounded square) represent
ontology classes that model concepts from the domain. Their relationships are
modeled by standard UML relationships with standard semantics.

SoccerMatch C

SoccerTeam C

SoccerMatch

SoccerRules C

Ball CReferee C

O

Goal CCenterCircle C

Pitch C

Doctor CCoach C

Forward CMidfielder CDefender CKeeper C

Follows

OnWithPlayed by Refered by

*
** * *

13

1..21..311..16

2

1 1 1

1

1

2

1

1

1

Player C

Fig. 2. Example of an ontology

3.2 Fundamental Entity Types

In general, entities represent objects that can exist in the system independently
of other objects. AML defines three modeling constructs used to model types
of MAS entities, namely: Agents, environments, and resources. Entities can also
be modeled at the instance level by UML instance specifications categorized
according to the corresponding types:

Agent type is a specialized UML class used to model the type of an agent,
i.e. self contained entities that are capable of interactions, observations and au-
tonomous behavior within their environment.

Resource type is a specialized UML class used to model the type of a resource
within the system3. A resource is a physical or informational entity with which
the main concern is availability (in terms of its quantity, access rights, conditions
of usage/consumption, etc.).

Environment type is a specialized UML class used to model the type of a
system’s inner environment4, i.e. the logical or physical surroundings of entities
which provide conditions under which the entities exist and function. As envi-
ronments are usually complex entities, different environment types are usually
used to model different aspects of the environment.

3 A resource positioned outside a system is modeled as a UML actor.
4 Inner environment is that part of an entity’s environment that is contained within

the boundaries of the system.

AML: Agent Modeling Language 37

In AML, all the aforementioned entity types are collectively called behavioral
entities. They can own capabilities, be decomposed into behavior fragments (see
Sect. 4.1), provide and use services (see Sect. 4.3), and own perceptors and effec-
tors (see Sect. 4.4). Additionally, agent and environment types are autonomous
entities that can be characterized in terms of their mental attitudes (see Sect. 5).
All entities can make use of modeling mechanisms inherited from UML class,
i.e. they can own features, participate in varied relationship types, be internally
structured into parts, own behaviors, etc.

Fig. 3 shows a definition of an abstract class 3DObject that represents spatial
objects, characterized by shape and position, existing inside a containing space.
An abstract environment type 3DSpace represents a three dimensional space.
This is a special 3DObject and as such can contain other spatial objects. 3DSpace
provides a service Motion to the objects contained within (for details about
services see Sect. 4.3).

Three concrete 3DObjects are defined: an agent type Person, a resource
type Ball and a class Goal. 3DSpace is furthermore specialized into a concrete
environment type Pitch representing a soccer pitch containing two goals and a
ball.

GoalBallPerson

3DObject

shape

3DObject

3DPlacement

position

space

object

*

*
3DSpace

3DSpace

goal:Goal[2] ball:Ball

Pitch

Motion

Fig. 3. Example of entities, their relationships, service provision and usage

3.3 Social Aspects

AML defines several elements for modeling the social aspects of MAS, including
structural characteristics of socialized entities and certain aspects of their social
behavior.

Organization unit type is a specialized environment type used to model the
type of an organization unit. From an external perspective, organization units
represent coherent autonomous entities, the properties and behavior of which are
both (1) emergent properties and behavior of all their constituents, their mutual
relationships, observations and interactions, and (2) the features and behavior of
organization units themselves. From an internal perspective, organization units

38 R. Červenka et al.

are types of environment that specify the social arrangements of entities in terms
of structures, interactions, roles, constraints, norms, etc.

Social Relationships are modeled by social properties and social associations.
The current version of AML supports the modeling of superordinate-subordinate
and peer-to-peer relationships, but this set can be extended as required (e.g. to
model producer-consumer, competitive, or cooperative relationships).

Entity role type is a specialized UML class used to represent a coherent set of
features, behaviors, participation in interactions, and services offered or required
by behavioral entities participating in a particular context. Each entity role type,
being an abstraction of a set of capabilities, should be realized by a specific im-
plementation possessed by a behavioral entity that can play that entity role type.

An instance of the entity role type is called an entity role5. It represents the
execution of behaviors, usage of features and/or participation in interactions as
defined by the particular entity role type. A given entity role exists only while a
behavioral entity instance plays it.

To allow explicit manipulation of entity roles in UML activities and state
machines, AML defines a set of actions for entity role creation and disposal, and
related triggers.

The possibility of playing an entity role by a behavioral entity is modeled
by role property and play association. Mechanisms are also offered for modeling
dynamic changes of roles, reasoning about played roles, expressing multiplicities
and constraints on played entity roles and navigation through the structural
features and capabilities of entity roles types from their playing entities (used
for example in model navigation expressions).

Fig. 4 part (a) contains a diagram which express that an agent of type Person
can play entity roles of type Player, Doctor, Coach, and Referee. The possi-
bility of playing entity roles of a particular type is modeled by play associations.
Fig. 4 part (b) depicts an organization structure containing the entities partic-
ipating in a soccer match. An environment type Pitch contains one referee
(of the Referee entity role type) and two teams (of the SoccerTeam organi-
zation unit type). SoccerTeam itself consists of one to three coaches, one or
two doctors, and seven to eleven players. The players are subordinate to the
coaches (by the lead connector), and to referees (by the refer connector),
but peers to doctors (by the treat connector).

3.4 MAS Deployment and Mobility

To model deployment of an MAS to a physical environment, AML extends the
UML deployment model with agent platform as a specialized execution environ-
ment, and specialized types of artifacts representing deployed entities. Particu-
larly, agent artifact, environment artifact, and resource artifact.

Modeling of structural and behavioral aspects of agent mobility is also pro-
vided. The structural aspects allow the specification of which agent artifacts are

5 AML uses the term “entity role” to differentiate agent-related roles from the roles
defined by the UML 2.0, i.e. roles used for collaborations, parts, and associations.

AML: Agent Modeling Language 39

Pitch

team:SoccerTeam[2]

coach:Coach[1..3] doctor:Doctor[1..2]

referee:Referee[3]

player:Player[11..16]

Coach Doctor Referee

active:Boolean

Player

0..1coachplayer doctor referee0..1 0..10..1

lead treat

refer

(a)

(b)

name:String

Person

Fig. 4. Example of social structure modeling

mobile, on what deployment targets they can appear, their relationships to de-
ployment targets, and what actions (move or clone) can make them appear on
a particular deployment target. The behavioral aspects allow the specification
of the move and clone actions and the corresponding triggers used in activities
and state machines to incorporate mobility into behavior specifications.

4 Behavior

This section contains an overview of the AML constructs used to model behav-
ioral aspects of multi-agent systems.

4.1 Behavior Abstraction and Decomposition

AML extends the capacity of UML to abstract and decompose behavior by the
addition of two modeling elements: capability and behavior fragment.

Capability is used to model an abstract specification of a behavior that allows
reasoning about and operations on that specification. Technically, a capability
represents a unification of the common specification properties of UML’s be-
havioral features and behaviors expressed in terms of inputs outputs, pre- and
post-conditions.

Behavior fragment is a specialized class used to model a coherent re-usable
fragment of behavior. It enables the decomposition of a complex behavior into
simpler and (possibly) concurrently executable fragments. A behavior fragment
can be shared by several entities and the behavior of an entity can, possibly
recursively, be decomposed into several behavior fragments.

40 R. Červenka et al.

Fig. 5 part (a) shows the decomposition of the Player entity role type’s
behavior into a structure of behavior fragments. In part (b) two fragments,
Mobility and BallHandling are described in terms of their owned capabilities
(turn, walk, catch, etc.).

Player(a)

(b)

Ball

lo:Localization

mo:Mobilitypr:PlayerReasoning

bh:BallHandling

eye:Eye[2]

leg:Leg[2]

<<effects>>

<<perceives>>

<<perceives>>

<<perceives>>

Pitch

BallHandling

catch(ball)
receive(ball, from)
lead(ball)
pass(ball, to)
shoot(ball,position)

Mobility

turn(angle)
walk(to)
run(to)
stop()

Fig. 5. Example of behavior fragments, observations and effecting interactions

4.2 Communicative Interactions

AML provides generic extensions to UML interactions in order to model in-
teractions between groups of objects (using multi-message and multi-lifeline),
dynamic change of an object’s attributes induced by interactions (using role
change), modeling of messages and signals not explicitly associated with an in-
vocation of corresponding methods and receptions (using agentified message and
agentified signal).

In addition to these generic concepts, AML also models communicative act
based interactions commonly used in multi-agent systems, particularly: com-
municative acts (specialized agentified messages), communicative interactions
(specialized UML interactions used to model communicative act based interac-
tions), and interaction protocols (parametrized communicative interactions used
to model patterns of interactions).

A simplified interaction between entities taking part in a player substitution
is depicted in Fig. 6. Once the main coach decides which players are to be
substituted (p1 to be substituted and p2 the substitute), he first notifies player
p2 to get ready and then asks the main referee for permission to make the
substitution. The main referee in turn replies by an answer. If the answer is
“yes”, the substitution process waits until the game is interrupted. If so, the
coach instructs player p1 to exit and p2 to enter. Player p1 then leaves the pitch

AML: Agent Modeling Language 41

sd PlayerSubstitution

Substitution of Players

opt

par

coach[main]
:Coach

referee[main]
:Referee

requestSubstitution(p1, p2)

reply(answer)

exit()

<<join>> [is p1]

enter()

[is p1]

[is p2]

Select
p1 and p2

player[active]
:Player[7..11]

player[not active]
:Player[11..15]

<<join>> [is p2]

prepareForSubstitution() [is p2]

[answer == yes]

{game interrupted}

Fig. 6. Example of a communicative interaction

and joins the group of inactive players and p2 joins the pitch and thereby the
group of active players.

4.3 Services

Services are encapsulated blocks of functionality that entities can offer to perform
upon request. They are modeled in AML in terms of service specifications, service
provisionings and service usages.

Service specification is a modeling element for specifying the functionality and
accessibility of a service. Technically it specifies a set of specialized interaction
protocols (called service protocols) each of which determines two sets of template
parameters that must be bound by the service’s providers and clients.

Service provision is a specialized dependency used to model provision of a
service by particular entities, together with the binding of template parameters
that are declared to be bound by service providers.

Service usage is a specialized dependency used to model usage of a service
by particular entities, together with the binding of template parameters that are
declared to be bound by service clients.

Fig. 7 shows a specification of the Motion service defined as a collection of
three service protocols. The CanMove service protocol is based on the standard
FIPA protocol FIPA-Query-Protocol [25] and binds the proposition parame-
ter (the content of a query-if message) to the capability canMove(what, to)
of a service provider. The participant parameter of the FIPA-Query-Protocol

42 R. Červenka et al.

Motion

sd CanMove:FIPA-Query-Protocol <proposition->canMove(what, to)>

participant

initiator

sd Move:FIPA-Request-Protocol <action_spec->move(what, to)>

participant

initiator

sd Turn:FIPA-Request-Protocol <action_spec->turn(what, angle)>

participant

initiator

Fig. 7. Example of service specification

is mapped to a service provider and the initiator parameter to a service client.
The CanMove service protocol is used by the service client to ask if an object
referred by the what parameter can be moved to the position referred by the
to parameter. The remaining service protocols Move and Turn are based on the
FIPA-Request-Protocol [25] and are used to change the position or direction
of a spatial object.

Binding of the Motion service specification to the provider 3DSpace and the
client 3DObject is depicted in Fig. 3.

4.4 Observations and Effecting Interactions

AML defines several constructs for modeling observations (i.e. the ability of
entities to observe features of other entities) and effecting interactions (i.e. the
ability of entities to manipulate, or modify the state of, other entities).

Observations are modeled as the ability of an entity to perceive the state of
(or to receive a signal from) an observed entity by means of perceptors. Perceptor
types are used to specify (by means of perceiving acts) the observations an owner
of a perceptor of that type can make.

The specification of which entities can observe others, is modeled by a per-
ceives dependency. For modeling behavioral aspects of observations, AML pro-
vides a specialized percept action.

Different aspects of effecting interactions are modeled analogously, by means
of effectors, effector types, effecting acts, effects dependencies, and effect actions.

An example is depicted in Fig. 5 (a) which shows an entity role type Player
with two eyes - perceptors called eye of type Eye, and two legs - effectors called
leg of type Leg. Eyes are used to see other players, the pitch and the ball, and to
provide localization information to the internal parts of a player. Legs are used
to change the player’s position within the pitch (modeled by changing of internal
state implying that no effects dependency need be placed in the diagram), and
to manipulate the ball.

AML: Agent Modeling Language 43

5 Mental Aspects

This section provides an overview of the AML constructs used to model beliefs,
goals, plans, and mental relationships. These can be used for:
1. Enriching use case modeling through the expression of intentionality, goal-

based requirements modeling, problem decomposition, etc.
2. Modeling mental attitudes of autonomous entities, which represent their in-

formational, motivational and deliberative states.
Belief is a specialized UML class used to model information which autonomous

entities have about themselves or their environment with a certain degree of sub-
jective confidence.

Goal is a specialized UML class used to model goals, i.e. conditions of states of
affairs, the achievement or maintenance of which is controlled by an autonomous
entity or to which a modeling element may contribute.

Plan is a specialized UML activity used to model either predefined plans or
fragments of behavior from which plans can be composed.

Mental relationships are specialized UML relationships used to model differ-
ent types of relationships between mental states, e.g. means-ends, (de)composition,
dependency, correlation, commitment, contribution, etc.

6 Contexts

AML offers the means to logically structure models according to situations that
can occur during a system’s lifetime and to model elements involved in handling
those situations. For this reason AML provides a modeling element called context,
which is a specialized UML package used to contain a part of the model relevant
for a particular situation. The situation is specified either as a constraint or an
explicitly modeled state associated with the context.

Fig. 6 shows the interaction PlayerSubstitution placed within a context
Substitution of Players. This context could also contain an activity dia-
gram modeling the substitution algorithm, specification of necessary structural
features, relationships, and capabilities of affected entity roles, etc.

7 Extension of OCL

AML defines a set of operators used to extend the OCL Standard Library
[12] to include expressions belonging to modal logic (operators possible and
necessary), deontic logic (operators obliged and permitted), temporal logic
(operators until, past, future, next, etc.), and cognitive primitives (operators
believe, know, desire, intend, feasible, etc.), see [1].

8 CASE Tools Support

A necessary condition of successful dissemination of a modeling language into
the software engineering community is the provision of tools supporting that

44 R. Červenka et al.

language. Therefore we provide an implementation of AML in two CASE tools:
Rational Rose 2003 (modeling CASE tool supporting UML 1.4) and Enterprise
Architect 4.0 (modeling CASE tool supporting UML 2.0). The AML imple-
mentation consists of support for UML 1.* and 2.0 profiles for AML, a set of
modeling utilities (specialized element specification dialogs, model consistency
checker, etc.), and forward-engineering tools for the agent platform TAP16.

9 Conclusions and Further Work

AML represents a consistent framework for modeling applications that embody
and/or exhibit characteristics of multi-agent systems. It integrates best modeling
practices and concepts from existing agent oriented modeling and specification
languages into a unique framework built on foundations of UML 2.0 and OCL
2.0. AML is also specified in accordance with OMG modeling frameworks (MDA,
MOF, and UML), see Sect. 2.3. The structure of the language specification
(see Sect. 2.4) together with the MDA/MOF/UML “metamodeling technology”
(UML profiles, first-class metamodel extension, etc., see Sect. 2.5) gives AML
the advantage of natural extensibility and customization. In addition, AML is
supported by CASE tools (see Sect. 8).

We feel confident that AML is sufficiently detailed, comprehensive and tan-
gible to be a useful tool for software architects building systems based on, or
exhibiting characteristics of, multi-agent technology. In this respect we anticipate
that AML may form a significant contribution to the effort of bringing about
widespread adoption of intelligent agents across varied commercial marketplaces.

Current status: AML is ready for use today. The AML Specification version 1.0 is
available for public review and its suitability for large-scale software development
projects is being validated in real customer software projects. Further evaluation
and feedback is needed to identify the perceived and actual value of the work
and establish contexts for future work.

Further work: In the immediate future we anticipate revising the AML speci-
fication according to feedback from the public review and ongoing commercial
projects. Beyond this we intend to extend the scope of AML to incorporate addi-
tional aspects of MAS (e.g. security), and extend CASE tools support for other
agent platforms (e.g. JADE).

References

1. Weiss, G.: Multiagent Systems - A Modern Approach to Distributed Artificial
Intelligence. 3rd edn. The MIT Press (2001)

2. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: KR’91: Principles of Knowledge Represen-
tation and Reasoning. Morgan Kaufmann, San Mateo, California (1991) 473–484

6 TAP1 is the commercial agent platform of Whitestein Technologies AG.

AML: Agent Modeling Language 45

3. d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer-Verlag (2001)
4. Bauer, B., Muller, J., Odell, J.: Agent UML: A formalism for specifying multia-

gent interaction. In Ciancarini, P., Wooldridge, M., eds.: Agent-Oriented Software
Engineering. Springer-Verlag (2001) 91–103

5. Odell, J., Parunak, H., Bauer, B.: Extending UML for agents. In Wagner, G.,
Lesperance, Y., Yu, E., eds.: Proceedings of the Agent-Oriented Information Sys-
tems Workshop at the 17th National conference on Artificial Intelligence, Austin,
Texas, ICue Publishing (2000) 3–17

6. Odell, J., Parunak, H., Fleischer, M., Brueckner, S.: Modeling agents and their
environment. In: Proceedings of AOSE 2002, Bologna, Italy, Springer (2002) 16–31

7. Liu, L., Yu, E.: From requirements to architectural design using goals and sce-
narios. In: Software Requirements to Architectures Workshop (STRAW 2001),
Toronto, Canada (2001)

8. Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C., Alencar, P.: Taming
agents and objects in software engineering. In Garcia, A., Lucena, C., Castro,
J., Omicini, A., Zambonelli, F., eds.: Software Engineering for Large-Scale Multi-
Agent Systems: Research Issues and Practical Applications. Volume LNCS 2603.
Springer-Verlag (2003) 1–25

9. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent
systems. In: 2nd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2003), Melbourne, Australia (2003)

10. Wagner, G.: The agent-object-relationship meta-model: Towards a unified concep-
tual view of state and behavior. Information Systems 28 (2003)

11. OMG: Unified modeling language: Superstructure version 2.0. ptc/03-08-02 (2003)
12. OMG: UML 2.0 OCL specification. ptc/03-10-14 (2003)
13. Smith, M., McGuinness, D., Volz, R., Welty, C.: Web ontology language (OWL),

guide version 1.0, W3C working draft. URL: http://www.w3.org/TR/2002/WD-
owl-guide-20021104 (2002)

14. Cranefield, S., Haustein, S., Purvis, M.: UML-based ontology modelling for soft-
ware agents. In: Proceedings of the Workshop on Ontologies in Agent, 2001. (2001)

15. Martin, D.e.: OWL-S 1.0 release. URL: http://www.daml.org/services/ (2003)
16. Evans, R., Kearny, P., Stark, J., Caire, G., Garijo, F., Sanz, G., Leal, F., Chainho,

P., Massonet, P.: MESSAGE: Methodology for engineering systems of software
agents. Technical Report P907, EURESCOM (2001)

17. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
Gaia methodology. ACM Trans on Software Engineering and Methodology 12
(2003) 317–370

18. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 2 (2004) 203–236

19. Cossentino, M., Sabatucci, L., Chella, A.: A possible approach to the development
of robotic multi-agent systems. In: IEEE/WIC Conference on Intelligent Agent
Technology (IAT’03), Halifax, Canada (2003)

20. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the First Intemational Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy (2002)

21. Iglesias, C., Garijo, M., Gonzalez, J., Velasco, J.: Analysis and design of multiagent
systems using MAS-CommonKADS. In Singh, M., Rao, A., Wooldridge, M., eds.:
Intelligent Agents IV (LNAI Vol. 1365). Volume 1365. Springer-Verlag (1998)
313–326

46 R. Červenka et al.

22. DeLoach, S.: Multiagent systems engineering: A methodology and language for
designing agent systems. In: Agent-Oriented Information Systems ’99 (AOIS’99),
Seattle, WA (1999)

23. Turski, W., Maibaum, T.: The Specification of Computer Programs. Addison-
Wesley (1987)

24. OMG: Meta object facility (MOF) specification. Version 1.4, formal/2002-04-03
(2002)

25. The Foundation for Intelligent Physical Agents: FIPA specifications repository.
URL: http://www.fipa.org/repository/index.html (2004)

26. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277–296

27. Jennings, N., Wooldridge, M.: Software agents. IEEE Review 42 (1996) 17–21
28. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: The state of

the art. In: Handbook of Software Engineering and Knowledge Engineering. World
Scientific Publishing Co. (2001)

Formal Semantics for
AUML Agent Interaction Protocol Diagrams

Lawrence Cabac and Daniel Moldt

Department of Computer Science, TGI, University of Hamburg
{cabac, moldt}@informatik.uni-hamburg.de

Abstract. In this paper we introduce an approach for defining seman-
tics for AUML agent interaction protocol diagrams using Petri net code
structures. This approach is based on the usage of net components which
provide basic tasks and the structure for Petri nets. Agent interaction
protocol diagrams are used to model agent conversations on an abstract
level. By mapping elements of the diagrams to net components we are
able to translate the diagrams into Petri nets, i.e to generate code struc-
tures from the drawings. We provide tool support for this approach by
combining a tool for net components with a tool for drawing agent in-
teraction protocol diagrams. This combined tool is available as a plug-in
for Renew (Reference Net Workshop).

Keywords: agents, agent interaction protocols, AUML, Capa, high-
level Petri nets, Mulan, net components, operational semantics, refer-
ence nets, Renew.

1 Introduction

Computer aided software engineering (CASE) tools are programs that support
the development of large software systems. They provide tools for modeling and
constructing applications. Furthermore, they provide the possibility to generate
code from models, to facilitate the development and to strip the development
process of unnecessary recurrent and error-prone manual tasks. Successful tools
for various programming languages exist and are in extensive use.

Especially for the usage of the Agent Unified Modeling Language (AUML)
within CASE tools, a well defined semantics is required. However, the seman-
tics of agent interaction protocols (AIP) is usually defined by the semantics of
sequence diagrams and descriptions in natural languages. These semantics are
usually ambiguous and vague. To address the challenge of defining a formal se-
mantics for agent interaction protocols, we use high-level Petri nets. Since Petri
nets do not only offer a well defined formal, but also operational semantics,
we can by this means, not only provide formal semantics, but also operational
semantics to agent interaction protocol diagrams.

While modeling with Petri nets is common, the idea of programming with
Petri nets has not been widely accepted yet. But especially when it comes to
concurrent and distributed processes, e.g. multi-agent systems, the advantages

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 47–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 L. Cabac and D. Moldt

of Petri nets are obvious. For this reason, we build concurrent and distributed
software systems as multi-agent systems on the basis of reference nets [11] – a
high-level Petri net formalism, which is enriched with Java as inscription lan-
guage. The framework’s reference architecture for the multi-agent system is Mu-
lan1/Capa2. It is implemented in reference nets and can be executed efficiently
in Renew3.

The process of implementing application software in Mulan requires the
construction of Mulan protocols which define the behavior of the agents. A Mulan
protocol is a reference net that describes the communication and the internal
behavior of an agent. Since the construction of a large system requires building
many Mulan protocols, which frequently require similar parts of functionality,
the need for software engineering methods and techniques becomes evident. This
includes standardizations, conventions and tool support.

We have established two methods to handle the complexity of Mulan proto-
cols and support their construction. First, we use net components [2] to construct
the Mulan protocols and to achieve a unified and structured form of the proto-
cols. Second, we model the agents’ interactions on an abstract level using agent
interaction protocol diagrams [4]. Agent interaction protocol diagrams are de-
fined by the FIPA (Foundation for Intelligent Physical Agents [6]) in AUML [7].
The advantage of modeling in AUML is its intuitive graphical representation of
the architecture and processes.

By offering tool support for the construction and modeling of Mulan proto-
cols, we have succeeded in speeding up their development. Also, the form and
the structure of Mulan protocols have become unified and easily readable. An-
other advantage is that the agents’ communications are documented in the agent
interaction protocol diagrams. Therefore, the overview of the system has been
simplified and enhanced.

In this paper we want to describe one further step towards an integrated
development environment for Mulan applications. By combining the two de-
scribed approaches we are able to generate code (here: Petri net) structures
from the agent interaction protocol diagrams.

The following pages briefly introduce the Mulan net components and the
modeling of agent conversations with agent interaction protocol diagrams. Fi-
nally, a prototype tool for code generation will be presented together with a
simple example.

2 AUML and Petri Nets

This section describes how agent interaction protocol diagrams semantics can
be defined with the help of Petri nets. Examples for some expressions of the
diagrams are given to show the general notion.

1 Multi-Agent Nets, [9]
2 Concurrent Agent Platform Architecture, [5]
3 Reference Net Workshop, [12], [11], [13]

Formal Semantics for AUML Agent Interaction Protocol Diagrams 49

Different versions or flavors of AUML have been presented and discussed.
See [16], [15] and [10] for the old version (version 1) and their extensions. These
are also used by the FIPA to describe the Interaction Protocols [7]. The new
version (version 2) is still under development (see [8], [14]). However, we are
not concerned with the different flavors of the AUML agent interaction protocol
diagrams. Since the meaning behind these flavors is basically the same, which
makes the graphical representation interchangeable, it is superfluous to discuss
this matter here. The shown examples are given in agent interaction protocol
diagrams of the old version (version 1). If semantics is defined for one of the
flavors, it can easily be translated to the other flavors.

2.1 AUML Flavors

Each of the different flavors of AUML agent interaction protocol diagrams have
advantages and disadvantages. We favor the old version of the AUML agent
interaction protocol diagrams for several reasons. First, we think that the old
representation of agent interactions is more intuitive and clearer in appearance
than the new style that is oriented towards the UML 2.0 standard. Second,
through dropping the threads, the new version of AUML (version 2) does not
reflect concurrency in a sufficient way. Third, we have been working with the old
version successfully over the last two years in several teaching projects with over
one hundred students. The modeling technique - although new to the students
- was well accepted and successfully used in the development of multi-agent
applications.

agree
answer

refuse

agree

answer

a) Old version of AUML
(long form)

b) Old version of AUML
(short form)

agree

refuse refuse

answer1

d) Old version of AUML
concurrency (short form)

alternative

c) New version of AUML
using boxes instead of threads

answers

answer2

Fig. 1. Flavors of AUML, representing the alternative of sending one of two possible
(a,b,c) / concurrently sent (d) messages

Figure 1 shows the representation of the alternative to send one message out
of two possible messages as an example for the different flavors of AUML agent
interaction protocol diagrams.4 This example shows another advantage of the
old long (or explicit) version (Figure 1 a) of agent interaction protocol diagrams.
With the usage of message join figures we are able to represent the fact that only
one message is actually received by the receiver of the message. Instead, in the

4 Only parts of the diagrams are shown in the image.

50 L. Cabac and D. Moldt

short version (b) and also in the new version (c) of AUML there is no structural
difference in the representation of receiving one message (of for example two
possible messages) and the representation of two concurrently sent / received
messages (d), although the syntax itself is unambiguous.

2.2 Semantics for AUML

By using Petri nets, which offer a well defined operational semantics, it is possible
to describe the operational semantics of agent interaction protocol diagrams. To
demonstrate how this is done, the example of Figure 1 (see also Figure 2 a) is used
and modeled as Petri net in an abstract (or simplified) fashion. Figure 2 shows
the representation of two alternatively sent messages modeled with a Petri net5

(b). In addition, Petri nets also offer the possibility of coarsening (respectively
refining) nets. The coarsened Petri net is shown in (c) which can be interpreted
in the coarsened agent interaction protocol diagrams as shown in (d). This way of
modeling offers the possibility to use abstractions that can clarify the models. It
also offers the possibility to exchange one agent’s behavior with another possible
behavior without the need to alter the behavior of the communicating agent.
For instance, the sending agent can always reply with an agree and the receiving
agent’s behavior would not have to be altered.

refuse

answer refuse

answer

answer

answer

b) Petri net
representation of a

agree

a) Old version of AUML
(long form) d) Coarsened AUML diagramc) Coarsened Petri net for b

agree
agree

or
refuse

Fig. 2. Semantics for the alternative message provided by Petri net and coarsened
descriptions

By translating AUML agent interaction protocol diagrams into Petri nets
we manage to define the operational semantics of the agent interaction protocol
diagrams, i.e. the semantics of the diagrams is defined through the semantics of
Petri nets. However, the translation is not done on the abstract level as shown
in Figure 2. For a translation into a form of Petri nets that is also executable we
need to use more elaborate and concrete methods. These methods are a frame-
work architecture for the execution of the resulting protocols and a mapping
from agent interaction protocol diagram expressions onto (unified) expressions
of Petri net code that can be executed in the framework’s architecture. The

5 For the exact semantics including inscriptions and pattern variations see [3].

Formal Semantics for AUML Agent Interaction Protocol Diagrams 51

first is given through Mulan/Capa ([9], [5]), which offers a Petri net-based in-
frastructure as a reference model for a FIPA-compliant multi-agent system. In
addition, the multi-agent applications built on Mulan/Capa are also executable
within the framework. The second is achieved through mapping the agent inter-
action protocol diagram expressions onto net components. Net components [4]
and the way they can be used to compose Mulan protocols are presented in the
next section.

3 Net Structures

In this section we introduce net components, show how they provide a struc-
ture for Mulan protocols, describe the way we model agent communication
with AUML diagrams and present how agent interaction protocol diagrams are
mapped to Petri net structures using the net components for Mulan protocols.
While agent interaction protocol diagrams describe the conversations of agents,
Mulan protocols define the behavior of the Mulan agents and net components
are descriptions of basic tasks in the Mulan protocols.

3.1 Net Components

A net component is a subnet. It consists of net elements and additional elements
such as default inscriptions or comments. It fulfills one basic task that is so
general that the net component can be applied to a broad variety of nets.

A net component is defined by its net elements, but it also has a fixed geomet-
rical structure and orientation. This structure contributes to the net structure
of the net in which the net component is used. In addition, the geometrical
form makes the net component easily identifiable to the developer. A set of
net components for the Mulan protocols exists that facilitates the construction
(modeling) of these Petri nets. Figure 3 shows a selection of the most frequently
used Mulan net components. The readability of Mulan protocols that are built

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2 p2

p2

:out(p2)

OUT

> >

false

true

cond

cond =

>

IF

>

>

PSPLIT

>

>

>

action o =
 it.next();

it cond =
it.hasNext();

falsecond

it it

Object

o

action cond = it.hasNext();
action it = v.iterator();

Object

Iterator

true cond

it

> >

v

^

action os = v.toArray();

os

Object

ForAll

o o

os

oo

osos

Object

o

> >

v

^

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

NC out NC cond NC psplit NC forallNC iteratorNC in

Fig. 3. A selection of the Mulan net components responsible for message passing,
splits and loops

52 L. Cabac and D. Moldt

with net components increases significantly. Furthermore, the structure of the
net is unified since it depends on the structure of the net components.

3.2 Structured Petri Nets

Petri nets are graphs, i.e. they have a graphical representation. A graphical
representation is useful for the understanding of the behavior of a model. A
graphic/diagrammatic representation can be more comprehensive than a textual
one. However, a diagram can also be very confusing if it does not provide a clear
structure or if substructures of similar behavior are displayed in many different
ways. One of the greatest advantages of a diagrammatic representation is the
fact that reappearing structures can be perceived by the human cognitive system
without effort.

The usage of net components enables developers to recognize reappearing net
structures in Mulan protocols effortlessly. Furthermore, a conventionalized style
of the developed Petri nets is achieved.

3.3 Modeling Agent Interaction

Modeling agent interaction can be done by using several means. The FIPA [6]
uses the AUML agent interaction protocol diagrams [7] for modeling interac-
tions between agents. These diagrams are an extension of the Unified Modeling
Language (UML) sequence diagrams [1] but they are more powerful in their
expressiveness. They can fold several sequences into one diagram by adding ad-
ditional elements (AND, XOR and OR) to the usual sequence diagram. Thus,
they are able to describe a set of scenarios. Figure 4 shows the FIPA Request
Protocol and a compliant Producer-Consumer example.

There are several advantages in the method of modeling agent interactions
with agent interaction protocol diagrams. Three of them are:

– The models are easily readable by all participants, because of the similarity
to UML.

– Abstract modeling increases the overview over the system.
– A means of communication, specification and documentation is established.

3.4 Mapping Agent Interaction Protocol Diagrams to Mulan
Protocols

The combination of the two tools – the tool for applying net components and
the tool for drawing diagrams – is done as follows. By using agent interaction
protocol diagrams for modeling agent communication the structure of the Mulan
protocols can be derived directly from the diagram. This is done by mapping
the relating elements in the agent interaction protocol diagrams to the net com-
ponents. In detail this means (compare with Figures 3 and 6 to 11):

– A message arc is the abstract representation of the basic messaging net
components (NC out and NC in).

– A split figure is the abstract representation of the conditional (NC cond) or
a parallel split (NC psplit).

Formal Semantics for AUML Agent Interaction Protocol Diagrams 53

ConsumerProducer
Initiator Participant

FIPA-Request-Protocol Producer-Consumer Example

refuse agree

request("consume")

refuse

agree

failure

inform-done

refuse
[refused]

request

agree
[agreed and

notification necessary]

failure

inform-result : inform

[agreed]

inform-done : inform

following the FIPA-Request-Protocol

Fig. 4. Agent interaction protocol diagrams of the FIPA Request Protocol and a com-
pliant Producer-Consumer example

– A life line between a role descriptor and an activation marks the start of a
protocol (NC start)

Several other net components (loops, subcalls) and also possibilities to han-
dle instances of protocols (indicated by the shadow activation figure in Figure 4
in the Producer thread) are not yet represented in our tool for agent interac-
tion protocol diagrams, since the elements to represent that kind of function-
ality do not exist in the abstract model. It seems that for some of these basic
tasks/features the notation of the agent interaction protocol diagrams has to be
extended. However, the possibility to model that kind of functionality exists in
Petri net protocols and are applied using net components. For that functionality
agent interaction protocol representation offers no equivalent.

– Loops are not well represented yet. Proposals exist for their representation,
but so far there has been no way to determine whether a sequential or a
concurrent process is desired.

– Sub-calls: It is possible to nest agent interaction protocol diagrams, but
semantics is ambiguous.

These and some other challenges are for instance addressed in the develop-
ment of the AUML version 2.0 [8].

In general, the main problem is the vague semantics of the agent interac-
tion protocol diagrams. Although the lack of specification of detail within a
model that results from abstraction can be of advantage while modeling, the
semantics of notation should be clear and well defined. The process of modeling
can be accelerated by postponing the description of details to the implemen-
tation or by relying on implicit knowledge that defines the missing semantics.

54 L. Cabac and D. Moldt

In contrast, if there is the need to define a specific mapping, clear semantics is
desired/necessary. This can be described as implementing through model refine-
ment (“Implementing by Modeling”), i.e. the model’s details are progressively
worked out.

4 From Model to Net

This section describes the tool support for mapping agent interaction protocol
diagrams to Mulan protocol structures. The tool generates Petri net structures
that can be compared to program source code skeletons. To achieve a func-
tional Mulan protocol, the inscriptions have to be adjusted and - if needed - the
classes for the messages have to be implemented. Furthermore, the net has to
be adjusted (refactored) if an element has to be used that is not yet provided,
e.g. loops.

4.1 Code Generation

In the last developer version of Renew6, a tool – a Renew plug-in– for applying
net components to nets and a tool to draw agent interaction protocol diagrams
were included. Therefore, developers of Mulan protocols were able to draw di-
agrams to model the behavior of agents with that version of the diagram tool.
Diagrams were used as means of specification, documentation and communi-
cation among the developers of Mulan applications. The basic communication
protocols were established and defined using these diagrams. So agent interaction
protocol diagrams only defined the way of communication between the agents,
but not the internal behavior.

Usually, but not necessarily, different developers implement the Mulan pro-
tocols for each agent defining the external and the internal behavior of an agent.
As long as the different developers constructed the Mulan protocol according to
the given agent interaction protocol diagrams, the agents could communicate in
a correct way.

Figure 5 displays the Renew GUI including the control elements of the
diagram plug-in. The last palette contains buttons for the drawing of role figures,
activations, messages, life lines, split and join figures, note figures, frames and
inscriptions.

The process of constructing a Mulan protocol requires the manual task of
mapping the diagram structures to each Mulan protocol. This was done by con-
necting net components with each other using the net component tool. Many
elements in the agent interaction protocol diagrams could be mapped onto net
components in a straight forward fashion as described in section 3.4.

It seems obvious that this task can be performed automatically by the intro-
duced tool. Since agent interaction protocol diagrams describe the interactions
and the splitting of activities, we decided to implement a prototype that is
capable of generating Petri net skeletons from the diagrams that reflect these

6 See also Renew 2.0, [13].

Formal Semantics for AUML Agent Interaction Protocol Diagrams 55

Fig. 5. The GUI of Renew with the tool support for drawing diagrams

structures. To be able to execute the generated code, it has to be refactored
and adjusted with additional functionality. This is a common approach for code
generation: The parts that can be derived from the model are generated and the
rest is added manually.

4.2 Geometrical Arrangement of Mulan Protocols

In addition to textual code generation, the construction of Petri nets also has
to deal with the layout of the generated nets. The structure of nets is crucial to
readability. If the code is used as it is generated, there is no need to design the
layout of the code. But if the code has to be adjusted, the programmer has to
understand the code. Thus, the layout of the nets is an important issue.

Net components provide a structure for Petri nets. This is not only true for
the manually made nets but also for generated code. For each net component only
some additional information is needed that provides the knowledge of how it can
be connected to other net components and how this is reflected in the layout. The
net structure results from the smaller structure of the net components similar
to the structure of a snowflake, which results from the structures of molecules of
water. So net components provide the structure by imposing their own structure
onto the net structure. However, the generated Petri net code structures have
always the same form due to the automated generation.

Figure 7 shows the source of the model augmented with the geometrical
representation of the corresponding net components and Figures 8 and 10 show
the two parts of the model that match the two Mulan protocols, rotated by
ninety degrees. The resulting skeletons are shown in Figures 9 and 11.

All augmented models are just presented here to illustrate the matching of
diagram elements to net components. They are not necessary for the generation
of the Mulan protocols. The generated Mulan protocol skeletons are shown (Fig-
ures 9 and 11) as they have been generated, without any modification of nets or
inscriptions.

4.3 Example: Producer-Consumer

Generating code skeletons from the Producer-Consumer example agent interac-
tion protocol diagram is possible and results in two Mulan protocol skeletons.
Figure 6 shows the diagram from which the code is generated.

56 L. Cabac and D. Moldt

Role3 ConsumerProducer

Fig. 6. Source for generation of the Producer-Consumer example

ConsumerProducer

Fig. 7. The source from Figure 6, with the geometrical representation of the corre-
sponding net components

The results of this simple example are satisfying. The Mulan protocols do not
need to be refactored because the conversation deals only with communication
and decisions. However, in order to convert these skeletons into executable Mulan

Formal Semantics for AUML Agent Interaction Protocol Diagrams 57

Fig. 8. The Producer part of the source from Figure 6, with the geometrical repre-
sentation of the corresponding net components. Rotated by ninety degrees to fit the
orientation of the resulting Mulan protocol

wb[] Wissen

:access(wb)

>

:start()

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2
p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2

false

true

cond

cond =

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;

NetInstance wb;
AclMessage p, p2,nachricht,ack ;
AgentIdentifier aId;
Insel insel;
Transaktion e;

boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int y;
Iterator it;

Fig. 9. Generated Producer Mulan protocol skeleton

protocols, we still have to work on them. The relevant data has to be extracted
from the messages and from the agents’ knowledge bases. Furthermore, we have
to define the decisions and the outgoing messages.

It seems that for more complex communication protocols, dealing with in-
ternal behavior, loops or sub-calls, this simple approach is not powerful enough.
But since most of the used net components deal with message passing, splits,
starting and stopping, this approach will already generate more than ninety per-
cent of the Petri net code structure. Only the parts that deal with broadcasting

58 L. Cabac and D. Moldt

Fig. 10. The Consumer part of the source from Figure 6, with the geometrical repre-
sentation of the corresponding net components. Rotated by ninety degrees to fit the
orientation of the resulting Mulan protocol

wb[] Wissen

:access(wb)

>

:start()

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;

NetInstance wb;
AclMessage p, p2,nachricht,ack ;
AgentIdentifier aId;
Insel insel;
Transaktion e;

boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int y;
Iterator it;

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2

false

true

cond

cond =

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

false

true

cond

cond =

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator.createActionRequest(
 aId,
 "content")

Fig. 11. Generated Consumer Mulan protocol skeleton

or multi-casting messages, or the parts that deal with internal behavior have to
be adjusted manually.

Formal Semantics for AUML Agent Interaction Protocol Diagrams 59

5 Conclusion

Software engineering methods have been developed to enhance the construction
of large software systems and are used and applied successfully. These methods
can also be applied for software development based on high-level Petri nets.
With more extensive use of these conventional techniques the process of Petri
net-based software developing can be improved. The advantages of Petri nets lie
in their inherent concurrency; UML is a powerful modeling language that is well
accepted and widely spread. Both – UML and Petri nets – can contribute to the
construction of large distributed and / or concurrent systems. Combining their
advantages results in a powerful method to develop applications.

A crucial point is the semantics of the used AUML agent interaction protocol
diagrams. It has to be well defined in developing / designing as well as for the
generation of code (structures). We showed that the defining of agent interac-
tion protocol diagram semantics can be achieved by mapping the diagrams onto
Petri nets. For this a net component-based approach was used, which enables us
to generate Petri net code structures from the diagrams. The net components
provide the functionality of syntactic / semantic unities as well as the structure
of the resulting Mulan protocols. However, the definition of semantics is realized
in the tool and not explicitly given here.

In addition, by using net components, the Mulan protocols are structured and
their structure is unified. This increases the readability of Mulan protocols and
the software development is accelerated. The integration of UML-based modeling
into the developing process has contributed to the clearness of the system and its
overall structure. Apart from the development process, the focus of development
was also altered by using AUML. The center of focus shifted from the agents’
processes to the communication between the agents.

The introduction of UML-based modeling into the developing process and the
unification of net structures turned out to be a successful approach. Nevertheless,
the integration of conventional methods as UML and development of software
with Petri nets can be driven further. In this paper we presented one step towards
an integrated development environment for the construction of Mulan-based
application software. By merging the two approaches – net components and
agent interaction protocol diagrams – we are able to generate skeletons of Mulan
protocols from interaction diagrams.

For the development of large applications on the basis of the Petri net-based
multi-agent system Mulan /Capa, tool support is needed on different levels
of abstraction. This includes the construction of Mulan protocols, the modeling
of agent interaction and the debugging of the system during development. The
first two points are covered by the tool support for net components and agent
interaction protocol diagrams. Additionally, we can now also ease the developing
process by generating code in the form of Petri net structures from diagrams.

Even further integration of methods and techniques can be considered in the
future. For a representation of all Mulan net components in the agent inter-
action protocol diagrams the notation for these diagrams has to be augmented
by corresponding elements. Another useful approach is to integrate a round-trip

60 L. Cabac and D. Moldt

engineering functionality into the diagram tool so that changes that are made
in the Mulan protocols are reflected in the diagrams.

References

1. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, Massachusetts, 1996.

2. Lawrence Cabac. Entwicklung von geometrisch unterscheidbaren Komponenten zur
Vereinheitlichung von Mulan-Protokollen. Studienarbeit, University of Hamburg,
Department of Computer Science, 2002.

3. Lawrence Cabac. Modeling Agent Interaction with AUML Diagrams and Petri
Nets. diploma thesis, University of Hamburg, Department of Computer Science,
Vogt-Kölln Str. 30, 22527 Hamburg, Germany, 2003.

4. Lawrence Cabac, Daniel Moldt, and Heiko Rölke. A proposal for structuring Petri
net-based agent interaction protocols. In 24th International Conference on Appli-
cation and Theory of Petri Nets, Eindhoven, Netherlands, June 2003, volume 2679
of ”Lecture Notes in Computer Science”, pages 102–120. Springer-Verlag, June
2003.

5. Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Concurrent architecture for
a multi-agent platform. In Fausto Giunchiglia, James Odell, and Gerhard Weiß,
editors, Agent-Oriented Software Engineering III. Third International Workshop,
AOSE 2002, Bologna, Italy, July 2002. Revised Papers and Invited Contributions,
volume 1420 of ”Lecture Notes in Computer Science”, pages 59–72. Springer-Ver-
lag, 2003.

6. Foundation for Intelligent Physical Agents. http://www.fipa.org.
7. FIPA. FIPA Interaction Protocol Library Specification, August 2001.

http://www.fipa.org/specs/fipa00025/XC00025E.pdf.
8. Marc-Philippe Huget and James Odell. Representing agent interaction protocols

with agent UML. In James Odell, Paolo Ciorgini, and Jörg P. Müller, editors,
Proceedings of the Workshop on Agent-Oriented Software Engineering at the Con-
ference on Autonomous Agents & Multi Agent Systems (AAMAS’04), New York,
2004. (also in this collection).

9. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modeling the structure and be-
haviour of Petri net agents. In Proceedings of the 22nd Conference on Application
and Theory of Petri Nets, volume 2075 of ”Lecture Notes in Computer Science”,
pages 224–241. Springer-Verlag, 2001.

10. Jean-Luc Koning, Marc-Philippe Huget, Jun Wei, and Xu Wang. Extended mod-
eling languages for interaction protocol design. 2222:68–76, 2002.

11. Olaf Kummer. Referenznetze. Dissertation, University of Hamburg, Department
of Computer Science, Logos-Verlag, Berlin, 2002.

12. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - The Refer-
ence Net Workshop. In Tool Demonstrations - 22nd International Conference on
Application and Theory of Petri Nets, 2001. See also http://www.renew.de.

13. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael
Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In J. Cortadella and W. Reisig, editors,
25th International Conference on Application and Theory of Petri Nets 2004, vol-
ume 3099 of ”Lecture Notes in Computer Science”, pages 484–493. Springer-Verlag,
2004.

Formal Semantics for AUML Agent Interaction Protocol Diagrams 61

14. James Odell and Marc-Philippe Huget. FIPA Modeling: Interaction Diagrams.
Working draft, Foundation for Intelligent Physical Agents, July 2003.
http://www.auml.org/auml/documents/ID-03-07-02.pdf.

15. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for
agents. In Gerd Wagner, Yves Lesperance, and Eric Yu, editors, Proc. of the
Agent-Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence, pages 3–17, 2000.
http://www.jamesodell.com/ExtendingUML.pdf.

16. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Represent-
ing agent interaction protocols in UML. In Paolo Ciancarini and Michael
Wooldridge, editors, Agent-Oriented Software Engineering, volume 1957 of
”Lecture Notes in Computer Science”, pages 121–140. Springer-Verlag, 2001.
http://www.auml.org/auml/supplements/Odell-AOSE2000.pdf.

A Study of Some Multi-agent Meta-models

Carole Bernon1, Massimo Cossentino2, Marie-Pierre Gleizes1, Paola Turci3,
and Franco Zambonelli4

1 IRIT - University Paul Sabatier - Toulouse, Cedex 4 (France)
{bernon, gleizes}@irit.fr

2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) -
Consiglio Nazionale delle Ricerche (CNR)- Palermo, Italy

cossentino@pa.icar.cnr.it
3 Dipartimento di Ingegneria dell’Informazione -
Universitá degli Studi di Parma - Parma, Italy

turci@ce.unipr.it
4 Dipartimento di Scienze e Metodi dell’Ingegneria -

Universitá di Modena e Reggio Emilia - Reggio Emilia, Italy
franco.zambonelli@unimo.it

Abstract. Several agent-oriented methodologies have been proposed
over the last few years. Unlike the object-oriented domain and unfor-
tunately for designers, most of the time, each methodology has its own
purposes and few standardization works have been done yet, limiting
the impact of agent design on the industrial world. By studying three
existing methodologies - ADELFE, Gaia and PASSI - and the concepts
related to them, this paper tries to find a means to unify their meta-
models. Comparing a certain number of features at the agent or system
level (such as the agent structure, its society or organization, its interac-
tions capacities or how agents may be implemented) has enabled us to
draw up a first version of a unified meta-model proposed as a first step
toward interoperability between agent-oriented methodologies.

1 Introduction

Over the years several methodologies and approaches have been proposed for the
development of multi-agent systems. Nevertheless many users have still trouble
finding a method and notation that would satisfy their needs completely. What
seems to be widely accepted is that a unique specific methodology cannot be
general enough to be useful to everyone without some level of personalization.
As a matter of fact the need for systematic principles to develop situation-specific
methods, perceived almost from the beginning by the object-oriented community,
has led to the emergence of the proved successful in developing object-oriented
information systems [1]. Its importance in the object-oriented context should be
evaluated considering not only the direct influence (not so many companies and
individuals work in this specific way) but mainly the indirect consequence. The
most important and diffused development processes (e.g., the Rational Unified

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 62–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Study of Some Multi-agent Meta-models 63

Process [2]) are in fact not rigid, instead they are a kind of framework within
which the single designer can choose his/her own path.

We believe that the agent-oriented community should follow a similar path,
trying to adapt the method engineering for using it in agent-oriented design. It
is in this ambit that the FIPA Methodology TC1 is situated. Its aim, and our
aim as members of the committee, is to propose quite an open approach that
allows the composition of a very large repository of human experiences (design
process is first of all a human process) that could be expressed in terms of a
standard notation.

Right from the beginning however it was clear that adopting the method engi-
neering approach in the AOSE context is not a plain task. In the object-oriented
context the construction of method fragments, the assembling of the methodol-
ogy with them and the execution of the design rely on a common denominator,
the universally accepted concept of object and related meta-model of the object-
oriented system. The situation concerning the agent-oriented approach is quite
different since there is not a commonly accepted definition of the concept of
agent and related meta-model of the multi-agent system - a structural represen-
tation of the elements (agent, role, behavior, ontology, etc.) that will compose
the actual system with their composing relationships. Since a meta-model is a
means of unifying concepts, the lack of a unique MAS meta-model consequently
leads to each methodology having its own concepts and system structure.

Analyzing the process of designing a system (object or agent-oriented) we
have come to the conclusion that it consists in instantiating the system meta-
model that the designers have in their mind in order to fulfill the specific problem
requirements. In the agent world this means that the meta-model is the critical
element when applying the method engineering paradigm, because of the variety
of the methodology MAS meta-models. Indeed the first step of the composition
process should consist in a selection of the elements that compose the meta-
model of the MAS the designers will build. The MAS meta-model so derived
will be useful in the method fragment selection phase at least in order to avoid
the selection of methods referring to different elements. But without a unique
MAS meta-model, the various concepts and system structures characterizing the
different methodologies could make very laborious or even impossible to carry
out the method fragment composition.

Bearing in mind the above described composition process centered on the
MAS meta-model, the main scope of this work is two-fold: (i) to analyze the
MAS meta-models of three existing design methodologies - ADELFE, Gaia and
PASSI - in order to support what has been asserted above; (ii) to design a
unifying MAS meta-model, obtained by merging the most interesting aspects of
each meta-model, with the aim of making a significant step toward the definition
of a unique omni-comprehensive MAS meta-model.

We would like to emphasize that despite the fact that the choice of the three
methodologies was a logic consequence of the people involved in writing the

1 http://www.fipa.org/activities/methodology.html

64 C. Bernon et al.

paper, we think that all in all the heterogeneousness of the three methodologies
allows us to draw interesting remarks.

2 ADELFE Meta-model

ADELFE2 is a methodology devoted to software engineering of adaptive multi-
agent systems [3], [4]. Adaptive software is used in situations in which the
environment is unpredictable or the system is open. To solve these problems
ADELFE guarantees that the software is developed according to the AMAS
(Adaptive Multi-Agent System) theory [5].

According to this theory, building a system which is functionally adequate
(which realizes the right desired global function) is achieved by designing agents
with a cooperation-driven social attitude. Agents composing an AMAS ignore
the global function of the system, only pursue a local goal and try to always keep
cooperative relations with one another. They are called “cooperative agents”.

The MAS meta-model adopted for ADELFE (cf. Figure 1) is fundamentally
explained by this specialization of ADELFE and by the features a cooperative
agent possesses. Its life cycle is a classical one; it consists in having perceptions,
taking decisions and then doing actions (perceive-decide-act).

Besides local cooperation rules are enabling it to detect and solve Non Coop-
erative Situations (NCS). These NCS are cooperation failures (e.g., cooperation
protocol not obeyed, unpredictable situations) that are, from its point of view,
inconsistent with its cooperative social attitude. Different kinds of such failures
can be detected according to the context of the concerned application, such as In-
comprehension (an agent does not understand a perceived signal), Ambiguity (it
has several contradictory interpretations for a perceived signal), Incompetence
(it cannot satisfy the request of another one), Unproductiveness (it receives an
already known piece of information or some information that leads to no reason-
ing for it), Concurrency (several agents want to access an exclusive resource),
Conflict (several agents want to realize the same activity) or Uselessness (an
agent may make an action that is not beneficial, according to its beliefs, to other
agents). When detecting a NCS, an agent does all it is able to do to solve it
to stay cooperative for others. For example, faced up with an incomprehension
situation, it does not ignore the message but will transmit it to agents that seem
(from its point of view) relevant to deal with it.

An agent possesses world representations that are beliefs concerning other
agents, the physical environment or the agent itself. These representations are
used by the agent to determine its behavior. If an agent has representations that
may evolve (e.g., a semantic network), these representations can be expressed
using a multi-agent system. A representation can be shared by different agents.

2 ADELFE is a French acronym meaning “toolkit to develop software with emergent
functionalities”. It was a French RNTL-funded project (2000-2003) which partners
were: ARTAL Technologies and TNI-Valiosys from industry, and IRIT and L3I from
academia. See http://www.irit.fr/ADELFE

A Study of Some Multi-agent Meta-models 65

Fig. 1. The Multi-Agent System Meta-Model Adopted in ADELFE

An agent is able to communicate with other agents or its environment. This
communication can be done in a direct manner (by exchanging messages) or an
indirect one (through the environment). Tools that enable an agent to commu-
nicate are interaction languages. When an agent uses a direct communication
through messages exchanges, AIPs may also be used to express the communica-
tion pattern between agents.

An agent can interact with its environment (physical or social) by means of
perceptions and actions. For an agent, an action is a way to act on its environ-
ment during its action phase and a perception enables it to receive information
from this environment.

Aptitudes show the ability of an agent to reason both about knowledge and
beliefs it owns. For instance, an aptitude of a software agent can be expressed
by an inference engine on a base of rules or any other processing on perceptions
and world representations. Aptitudes can also be expressed using data, e.g. an
integer value which represents the exploration depth of a planning tree.

An agent owns some skills that are specific knowledge that enable it to realize
its own partial function. For instance, a skill may be a simple datum which is
useful to act on the world (e.g., an integer distance which represents the minimal
distance a robot has to respect to avoid obstacles) or may be more complex when
expressing a reasoning that the agent makes during its decision phase (e.g., a
reasoning to avoid obstacles). If they are complex and able to evolve, skills may
also be implemented by MAS.

66 C. Bernon et al.

An agent may possess some characteristics which are its intrinsic or physical
properties. It may be, for instance, the size of an agent or the number of legs of
a robot-like or ant-like agent. A characteristic may also be something the agent
can perform to modify or update one of its properties; for example, if the agent
is an ant, enabling it to modify its number of legs.

3 Gaia Meta-model

Thefirst version of theGaiamethodologywas designed to handle small-scale, closed
agent-based systems [6]. Consequently, it modeled agents, roles, interactions, but
missed in modeling explicitly the social aspects of a multi-agent system. The of-
ficial extension of Gaia extends Gaia based on the key consideration that an or-
ganization is more than simply a collection of roles and agents [7]. Therefore the
main difference is that it has been designed in order to explicitly model and repre-
sent the social aspects of open agent systems, with particular attention to the so-
cial goals, social tasks or organizational rules. This is quite evident from the MAS
meta-model (see Figure 2): the methodology is focused on the organizational struc-
ture of the system and all other concepts - agents, roles, services interactions - turn
around the concept of organization and are modeled in order to better specify the
relationship between the different entities in the context of a specific organization.

Having a deeper look at the MAS meta-model for the extended version of Gaia
we notice that the basic building blocks of the former version of Gaia - namely
agents, roles, activities, services, and protocols - are still present. In particular: an
agent is an entity that plays one or more roles; a role is a specific behavior to be
played by an agent, defined in terms of permission, responsibilities, and activities,
and of its interactions with other roles; an agent plays a role by actualizing the
behavior in terms of services to be activated and de-activated in dependence of
specific pre- and post-conditions.

The extended version of Gaia starts from the above basic concepts and en-
riches them by putting them in the context of a specific environment and of a
specific organization.

We emphasize Gaia does not deal with the requirements capture phase, and
considers the requirements statement simply as an input for the methodology.
However, the environment in which a multi-agent system is immersed is elected
to a primary analysis and design abstraction in order to promote a clear under-
standing of the overall system. The environment abstraction explicitly specifies
all the entities and resources a multi-agent system may interact with, restricting
the interactions by means of the permitted actions. Thus, to some extent, the
explicit representation of the environmental resources that can be manipulated
by agents can be considered as a reference to the problem domain.

The explicit representation of an agent organization and the central role of
organizational concepts come into play with the abstractions of organizational
rules and organizational structures.

Organizational rules have the scope of specifying some constraints that the
organization has to observe. They may be global, affecting the behavior of the

A Study of Some Multi-agent Meta-models 67

Fig. 2. The Multi-Agent System Meta-Model Adopted in Gaia

society as a whole, or concerning only specific roles or protocols. Organization
structure on the other hand aims at making the overall architecture of the sys-
tem, that is the position of each role in the organization and its relationship with
other roles, explicit.

Organizational rules and organizational structures are strictly related, in
that organizational rules may help designers in the identification of the orga-
nizational structures that more naturally suit these rules. Therefore, in the ex-
tended version of Gaia, the organizational structure is not implicitly defined via
the role model, instead the identification of the roles is explicitly derived from
an analysis of the chosen organizational structure. As a consequence the role
model and the related interaction model will be completely defined in the design
phase when an accurate identification of the organizational structure will take
place.

68 C. Bernon et al.

4 PASSI Meta-model

System meta-models traditionally refer to two different domains: the problem
domain (where the requirements are captured) and the solution domain (where
the implemented system will be deployed). In conceiving the PASSI [8] MAS
meta-model (see Figure 3) we found that this duality does not properly reflect
the needs of an agent approach and therefore in our meta-model we introduce
the agency domain. It represents the transition from problem-related concepts
to the corresponding agent solution (that is not at an implementation level but
it is still a logical abstraction). In this (agent) domain we will design all the
agent-related elements like roles, communications, and the same agents, in order
to define the solution to the requirements drawn in the problem domain. Since
we decided to implement our solution with a FIPA-based infrastructure, we do
not have any agent-oriented language that can be used to code the system but
we map our choices to an object-oriented implementation level. In PASSI we
do not think this is a limit because this presents several advantages, in fact the
agent paradigm is used where it is more profitable: providing an abstraction
level that could enable a simpler solution where classical software engineering
concepts like decoupling, information hiding and responsibility division among
components are naturally pursued. Moreover, final code-level implementation is
devoted to affordable object-oriented languages that can be managed by several
already skilled programmers and can be easily tested referring to a broad existing
experience and a huge literature.

In the PASSI MAS meta-model (Figure 3), the Problem Domain deals with
the user’s problem in terms of scenarios, requirements, ontology and resources;
scenarios describe a sequence of interactions among actors and the system. Re-
quirements are represented with conventional use case diagrams. There is a
strong point behind these choices: a lot of highly skilled designers are already
present in different companies and can be more easily converted to the use of
an agent-oriented approach if they are already confident with some of the key
concepts used within it. Analysis related issues (like requirements and scenarios)
being situated in the highest abstraction phase are strategic in enabling this skill
reuse and allow a smooth entering in the new paradigm.

Ontological description of the domain is composed of concepts (categories
of the domain), actions (performed in the domain and effecting the status of
concepts) and predicates (asserting something about a portion of the domain).
This represents the domain in a way that is substantially richer than the classic
structural representations produced in the object-oriented analysis phase. As
an instance, we can consider ontologies devoted to reasoning on strategies or
problem solving methods whose essence is very difficultly captured in object-
oriented structures [9].

Resources are the last element of the problem domain. They can be ac-
cessed/shared/manipulated by agents. A resource could be a repository of data
(like a relational database), an image/video or also a good to be sold/bought.
We prefer to expressly model them since goals of most systems are related to
using and capitalizing available resources.

A Study of Some Multi-agent Meta-models 69

Fig. 3. The Multi-Agent System Meta-Model Adopted in PASSI

The Agency Domain contains the elements of the agent-based solution. None
of these elements is directly implemented; they are converted to the correspon-
dent object-oriented entity that constitutes the real code-level implementation.
The concept of agent is the real center of this part of the model; each agent in
PASSI is responsible for realizing some functionalities descending from one or
more requirements. The direct link between a requirement and the responsible
agent is one of the strategic decisions taken when conceiving PASSI. Sometimes
an agent has also access to available resources. This could happen because it
accesses the corresponding information (for example stored in a DB) or it can
perceive it using its sensors (like in the case of embodied robotic agents sensing
the environment). Each agent during its life plays some roles; that are portions
of the agent social behavior characterized by some specificity such as a goal, or
providing a functionality/service.

From this definition easily descends that roles could use communications in
order to realize their relationships or portions of behavior (called tasks) to ac-
tuate the role proclivity. In PASSI, the term task is used with the significance
of atomic part of the overall agent behavior and, therefore, an agent can ac-
complishing its duties by differently composing the set of its own tasks. Tasks
cannot be shared among agents, but their possibilities could be offered by the
agent to the society as services (often a service is obtained composing more than
one task); obviously according to agent autonomy, each single agent has the pos-
sibility of accepting or refusing to provide a service if this does not match its
personal attitudes and will.

70 C. Bernon et al.

A communication is composed of one or more messages expressed in an encod-
ing language (e.g. ACL [10]) that is totally transparent to agents. The message
content could be expressed in several different content languages (SL, KIF, RDF,
. . .); we chose to adopt RDF [11][12] and the PASSI supporting tool (PTK) of-
fers a concrete aid in generating the RDF code from the designed ontology. Each
communication explicitly refers to a piece of ontology (in the sense that infor-
mation exchanged are concepts, predicates or actions defined in the ontology)
and its flow of messages is ruled by an interaction protocol (AIP) that defines
which communicative acts (the predefined semantic of the message content [13])
may be used in a conversation and in what order the related messages have to
be sent to give the proper meaning to the communication.

The Implementation Domain describes the structure of the code solution in
the chosen FIPA-compliant implementation platforms (like FIPA-OS or JADE)
and it is essentially composed of three elements: (i) the FIPA-Platform Agent
that represents the implementation class for the agent entity represented in
the Agency domain; (ii) the FIPA-Platform Task that is the implementation
structure available for the agent’s Task and, finally, (iii) the Service element
that describes a set of functionalities offered by the agent under a specific name
that is registered in the platform service directory and therefore can be required
by other agents to reach their goals. This description is also useful to ensure the
system openness and the reusability of its components.

5 Comparison and Discussion

The three meta-models presented in the previous sections are very different and
are a well representative example of the debate in the agent community about
these strategic issues. In order to catch the essence of each of them we should
consider the specific approach followed by the respective authors and the system
structure pursued by them.

The ADELFE meta-model (Figure 1) clearly represents the aim of solving the
problem with an adaptive MAS and therefore a great effort is done in order to
study, through “cooperation rules”, all the situations that could enable or inhibit
the cooperation among agents. The cognitive and behavioral representations of
the agent are performed in terms of its aptitudes, skills, characteristics, and
representations (social or physical); agents interact via direct communications
or the environment.

The Gaia meta-model (Figure 2) is mostly devoted to represent a MAS sys-
tem as a social organization. For this reason, roles more than agents are the
central subject of the model, as the basic building block of agents. While a Gaia
role is characterized by an activity structure and by internal responsibilities, an
organization is characterized by a structure - i.e., a set of roles interacting with
each other according to specific protocols - and by “organizational responsibili-
ties” or “organizational rules” - i.e., the constraints that the actual evolution of
an organization mush adhere to. Little or no attention is paid to cognitive and
representational issues.

A Study of Some Multi-agent Meta-models 71

The PASSI meta-model (Figure 3) aims at conciliating classical software en-
gineering concepts like problem and solution domain with the potentiality of the
agent-based approach while pursuing the goal of a traceability of the solution
from requirements to the related code implementation. Authors clearly points
to a FIPA-based implementation of their systems and therefore communications
and implementation issues are typical of those specifications and most common
related platforms (FIPA-OS, JADE). The convergence between agents and tra-
ditional issues of software engineering is obtained by introducing a new abstrac-
tion layer (agency domain) that complements the well-known problem-solution
domain dichotomy.

Generally speaking, it is interesting to note that none of the discussed ap-
proaches explicitly refers to one of specific ’classical’ agent architectures (like
BDI or purely reactive agents) but these are seen as some kind of low level ar-
chitectures that can be adopted during the MAS implementation. Only PASSI
partially limits this range by referring to FIPA-compliant systems but this does
not seem to be a real constraint since such systems have been used to implement
all of the cited architectures.

In the following we will compare these meta-models by looking at some of
their specific aspects; specifically we will consider:

– Agent structure: this means how each of the meta-models represents the
agent and its most common elements (namely roles).

– Agent interactions: agents of different meta-models are supposed to interact
using communications or the environment. Communications are sometimes
specified by attributes like interaction protocols, content language and so on.

– Agent society and organizational structure: the goal of some of these meta-
models is to model a specific society or an organizational infrastructure con-
strained by rules that enforce agents to some collective or individual behav-
ior.

– Agent implementation: the code-level structure of the agent system.

Each of the cited categories will now be diffusely discussed and this study
will be used to compose a new unifying meta-model that will try later to take
the best of the different approaches.

5.1 Agent Structure

Looking at agent structure and specifically at agent and role definitions in the
different meta-models, we can find that the ADELFE meta-model is quite dif-
ferent from the others because it tries to constrain the agent behavior with a
cooperative attitude. In fact the ADELFE meta-model is not centered on the role
notion because designers have to focus on the ability an agent possesses to detect
and solve cooperation failures by observing cooperation rules. If a designer gives
roles to agents, by describing a task or protocols, he/she will establish a fixed
organization for these agents. However, a fixed organization in an AMAS is not
welcomed because this organization must evolve to enable the system adaptation
(cf. section 5.3).

72 C. Bernon et al.

The PASSI agent is the composition of some roles but each role is defined as
the manifestation of the agent activity in some scenarios, it is associated with one
or more communications and provides some services composing the capabilities
offered by the agent’s tasks (elementary agent behaviors). This structure can be
regarded as the expected consequence of PASSI authors commitment in following
the agent specifications provided by FIPA.

The Gaia agent is defined as a composition of roles. The specification of roles
requires identifying the activities for which the role is responsible, including those
activities that may require interactions with other agents, as well as the internal
responsibilities of an agent. Once the abstract concept of role is translated into
an actual agent, activities and responsibilities are translated into a set of services
and a set of pragmatic activation and de-activation rules.

Goal and plan are other elements that should be considered in discussing
the agent structure. None of the considered methodologies decidedly deal with
them that are, conversely, central in other approaches (for instance goals are at
the base of requirements analysis in the Tropos [14] methodology). In ADELFE,
the notion of goal is only used to determine skills, but is not defined in a formal
context. In the same way, plans are not modeled because usually, in complex and
open applications, designers do not know plans. A plan will be built at runtime
by the global system. However, if designers do know a plan, they can manage it by
defining appropriate aptitudes. In Gaia, the concept of “goal” is implicit in roles,
because a role in an organization (and thus the agent in charge of playing such
a role) is by definition identified to achieve some specific application sub-goals.
Plans play no explicit role in Gaia, although one can somehow consider that
the activities of a role may include some sort of planning activities. In PASSI,
goals are considered as non functional requirements and they are attached to
agents according to their duties. As an example we can consider response or
computational time constraints for agents operating in real-time contexts like
robotics. They are usually described in the requirements analysis documentation
in form of text. As regards agents’ plans, they are not seen as a structural element
of the PASSI meta-model, and they are usually modeled in a near algorithmic
form (activity diagrams used as flow charts) during the Task Specification phase.

5.2 Agent Interaction Capabilities

In almost all the agent-based approaches, agents can interact with other agents
or with the physical environment. About that, ADELFE, Gaia and PASSI are
quite similar because in all of them agents are supposed to interact with others
using communications ruled by some kind of interaction protocol (AIP) that
could also ensure some level of interoperability among agents designed with
different methodologies if they are all FIPA-compliant.

The most complete approach comes from ADELFE in which an agent can
interact with other agents through direct communications but also in an indi-
rect manner using the environment. An agent can perceive its environment and
operate on it with its actions. Furthermore, ontologies have not to be modeled
in ADELFE because if agents have to adapt themselves to their environment

A Study of Some Multi-agent Meta-models 73

they are also able to adapt to the other agents. This adaptation can lead agents
to learn to understand each other. For instance, if an agent does not understand
a request made by another one, the former has to detect a NCS and solve it.
May be it will be able to learn what the other wanted to say or it will find an-
other manner to help it (e.g., by relaxing the request to another judged relevant
agent).

In PASSI, agent perceptions (obtained by sensing the environment of by com-
municating with other agents) are not directly represented but they are shown
in form of the knowledge that the agent acquires from them. Communications
are designed as the composition of several messages according to the interaction
rules defined by an AIP (Agent Interaction Protocol). Each message is purposeful
since it expresses the precise intention specified by its communicative act (speech
act theory [13]). In PASSI, communicating is a privilege of a role and therefore it
significantly concurs in defining the PASSI concept of role as a communicational
role.

In Gaia, communications are related to both AIP and mediated interactions
via the environment. With regard to AIP, Gaia does not enter in details about
ontologies and specific types of ACL messaging schemes: while Gaia developers’
consider these as necessary concepts, they consider them as not very influential
in the analysis and design processes. With regard to communications mediated
by the environment, these are considered as a sort of side effect - due to the
fact that different agents may influence and perceive overlapping portions of an
environment. However, such an issue has never been analyzed in depth in Gaia.

5.3 Agent Society and Organizational Structure

Societies modeled in ADELFE are open. The society exists only by the repre-
sentation an agent possesses about other agents and these representations may
change at runtime. As a consequence the organization between agents is not
predefined and fixed when the system starts and even less at the design stage.
This organization emerges from the evolving interactions between agents and
makes the system adapt. ADELFE agents have to obey cooperation rules at the
(local) micro-level, to possibly change their relationships with others in order to
ensure that the collective behavior is coherent at the macro-level. A large part
of the ADELFE MAS meta-model is then devoted to model all the factors of
that social attitude but not the society that the agents could form.

Gaia agent is particularly devoted to the creation of societal organizations,
and recognizes organizations as a primary abstractions to be exploited in MAS
analysis and design. For these reasons, Gaia considers a MAS organization more
than a collection of agents somewhat interacting. Rather, Gaia considers an
organization as an entity having a well-defined structure (the organizational
“architecture”) characterizing the position of each agent (better, of the agents
playing specific roles) in it, as well as a set of “organizational rules”. Organi-
zational rules make explicit the fact that an organization as a whole cannot be
simply assumed to work well because of the well-defined behavior of its individ-
ual components. Rather, supra-role and supra-agent specifications are required,

74 C. Bernon et al.

expressing constraints on the inter-related activities of agents. Shifting to a soci-
etal metaphor, one can consider organizational rules as the social laws that have
to drive all interactions in the organization and the evolution of the organization
itself.

The PASSI model represents society aspects by defining services that can
be provided/accessed by agents (specifically by some of their roles) and their
participation in scenarios where they are supposed to interact via the already
discussed communications. An agent is also supposed to have the availability of
some resources that are explicitly modeled in order to identify its relevance for
the remaining part of the society.

5.4 Agent Implementation

Even if the graphical modelling tool used within the ADELFE methodology
(OpenTool) generates code skeletons, the problem of the system implementation
is not treated yet and no platform is imposed.

Gaia totally abstracts from implementation tools. The key point is that - in
the Gaia developers’ intentions - the Gaia design specifications should be abstract
enough that they could be used as guidelines to implement agents independently
of the specific technology adopted.

In PASSI, a direct map exists among the most important elements of the
model and their implementation; this is largely supported by a dedicated design
tool (PTK, PASSI ToolKit) and the pattern reuse approach that is widely ap-
plied in the PASSI methodology. Each agent is coded using the base agent class
of the selected implementation (FIPA-compliant) platform and it contains the
tasks that are used by roles. A role has not a direct code level implementation
since it is seen as an agent society domain element with only a virtual (not tan-
gible) presence in the code. The service is described in a form that is suitable to
be introduced in the deployment platform service directory in order to enable
agents’ collaborations.

6 Toward a Unifying Meta-model

After having analyzed the different MAS meta-models of ADELFE, Gaia and
PASSI, we think that each of them has some very interesting features, but these
are mainly located in different contexts (as discussed in section 5). This consid-
eration brought us to design a new MAS meta-model that, including the most
interesting aspects of each of the studied ones, could result in some kind of
improvement to the state-of-the-art in this topic.

This model is presented in Figure 4 and we can see that it is quite a huge
model. The fundamental choice that justifies it, is that we aim to create soci-
eties without (ADELFE) or with predefined organisations, in accordance with
the growing interest for open systems in which an organization cannot always
be given during the design phase. To achieve this result we enriched the generic
agent with all the properties an agent may have, being cooperative or not. Fur-

A Study of Some Multi-agent Meta-models 75

Fig. 4. A Unifying MAS Meta-Model - The new MAS meta-model is composed by
merging the most significant contributions of ADELFE, Gaia and PASSI

thermore, this generic agent is composed of Gaia-like roles complemented by
some PASSI features (tasks and a FIPA-compliant communication structure).
This generic agent has two choices: belonging to an organisation or following
cooperation rules (due to some lack of space in the figure above, inherited NCS
such as incomprehension, uselessness have not been explicitly mentioned, see
Figure 1). Agent are implemented (at code level) in the PASSI way. The pro-
posed meta-model is also characterized by the possibility of identifying in it the
three domains (problem, agency, solution) discussed in the PASSI approach.

From the experience of merging our three models we learnt that their com-
position adds some significant improvements to the new structure since they
complement each other in several aspects, for example the ADELFE representa-
tion that the agent has of its environment, the Gaia environment and the PASSI
ontology, naturally relates by representing the fact that an agent has a represen-
tation (possibly affected by errors or uncertainty) of the environment expressed
in terms of an ontological model of it.

After identifying this extensive MAS meta-model the following natural step
would be to define a methodology for designing systems according to it. Although
we will move in this direction, we fear that probably such a great model could
need a design methodology that is composed of too many activities to be really
profitable. It is presumable that while several different methodologies could cover
different parts of this model (e.g., some will produce cooperative agents while

76 C. Bernon et al.

some others non cooperative ones), the presented model could be regarded as
a unifying framework for the systems produced with different approaches thus
enabling their interaction and providing a substantial step in the direction of a
unique omni-comprehensive MAS meta-model.

7 Conclusion

A great number of agent-oriented methodologies exist nowadays; some are deal-
ing with specific kinds of agents or multi-agent systems, like, for instance, the
three ones that are depicted in this paper. ADELFE is devoted to cooperative
agents and adaptive MAS, while Gaia aims more at creating social organisations
and PASSI, the more general one, considers the whole life-cycle from the prob-
lem domain to the agent-based solution and the final level code implementation
but limits the scope to FIPA-compliant systems. These differences are reflected
by the meta-models elaborated by respecting authors to express the concepts
used in the design activities and the resulting systems related to these three
methodologies.

In this paper, these meta-models have been compared in order to begin a
unification work that would be beneficial to the agent-oriented engineering do-
main. It has then appeared that all of the three models share common concepts
such as the agent and interaction protocols ones while other elements are present
only in some of them: this is the case of ADELFE and Gaia that share the com-
munication and environment notions, and Gaia and PASSI that have notions
like roles and services in common. Some concepts are only appearing in one of
the three meta-models, for instance, responsibilities in Gaia, ontology in PASSI
or representations (of others) in ADELFE. Putting these different meta-models
together has enabled enriching them mutually as well as unifying the different
used concepts. This preliminary unification has led methodologies authors to
revise their respective meta-models to make choices and concessions to present
the merged meta-model in Figure 4. Furthermore, we are sure that this unifi-
cation would be useful to build tools in the OMG’s MDA [15] spirit in order
to automatically transform a meta-model into a model depending on a target
platform.

This unification problem leads us to some interesting questioning that could
represent (our) future works:

– Is it possible to identify a meta-model from which all the meta-models used
in the multi-agent community could be derived? For instance, this latter
could be defined from an extension of this unification work as well as FIPA
Modelling TC standardisation activities.

– What description level has to be reached in the meta-model? For instance,
skills and aptitudes in ADELFE are certainly used to implement the role
notion of Gaia or PASSI.

– How may a designer choose meta-model elements he is interested in? What
kind of tools can we provide him to ease his choices?

A Study of Some Multi-agent Meta-models 77

References

1. Saeki, M.: Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering (1994)

2. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
(2000)

3. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineer-
ing for Agent Systems. Kluwer (2004)

4. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Tools for self-organizing applica-
tions engineering. In: First International Workshop on Engineering Self-Organising
Applications (ESOA), Melbourne, Australia (2003)

5. Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The amas theory for complex
problem solving based on self-organizing cooperative agents. In: Proc. of the 1st
International Workshop on Theory And Practice of Open Computational Systems
(TAPOCS03@WETICE 2003), Linz, Austria (2003)

6. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–315

7. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
gaia methodology. ACM Transactions on Software Engineering and Methodology
12 (2003) 417–470

8. Cossentino, M., Sabatucci, L.: Agent System Implementation. In: Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press (2004)

9. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and
why do we need them? IEEE Intelligent Systems (1999)

10. FIPA: Acl message structure specification. (Available online at
http://www.fipa.org/specs/fipa00061/SC00061G.html)

11. FIPA: Rdf content language specification. (Available online at
http://www.fipa.org/specs/ fipa00011/XC00011B.html)

12. W3C: Resource description framework (rdf) model and syntax specification.
w3c recommendation. Available online at http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/. (1999)

13. Searle, J.R.: Speech Acts. Cambridge University Press (1969)
14. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information

systems engineering: The tropos project. Information Systems (2002)
15. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-

ture : Practice and Promise. Addison-Wesley (2003)

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 78 – 92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Metamodel for Agents, Roles, and Groups

James Odell1, Marian Nodine2, and Renato Levy3

1Agentis Software, Inc., 3646 West Huron River Drive,
Ann Arbor, MI 48103-9489, USA
email@jamesodell.com

http://www.jamesodell.com
2 Telcordia Technologies, Inc., 106 East 6th Street, Suite 415,

Austin, TX 78733, USA
nodine@research.telcordia.com

3 Intelligent Automation Inc., 7519 Standish Place, Suite 200
Maryland, MD 20855, USA
rlevy@i-a-i.com

Abstract. Societies need patterned behavior to exist. Large-scale agent societies
may contain a diversity of agents, each with differing abilities and
functionalities. When such an agent system is given a task, it must dynamically
muster together a group of agents that collectively have the capability to
accomplish the task. To do this, the agent society needs to be able to understand
its agents and their potential interactions.

This paper contains a proposed superstructure specification that defines the
user-level constructs required to model agents, their roles and their groups.
These modeling constructs provide the basic foundational elements required in
multi-agent systems to foster dynamic group formation and operation. As agent
systems scale beyond the point where an individual organization can track and
control their behavior, the use of these concepts within the society will facilitate
dynamic, controlled, task-oriented group formation. This in turn will enhance
the predictability, reliability and stability of the agent system as a whole, as well
as facilitating the analysis of both group and system behavior.

1 Introduction

“We simply have hardly any real experience building truly heterogeneous,
realistically coordinated multi-agent systems that work together, and … almost no
basis for systematic reflection and analysis of that experience.” [Gasser, 2001].

Societies need to employ patterned behavior to exist. The behavior of each individual
is determined to a great extent by the requirements of these patterns [Katz, 1978].
However, the current practice of Multi-Agent System (MAS) design tends to be
limited to individual agents and small face-to-face groups of agents that operate as
closed systems. We have little principled understanding for:

• organizing sophisticated, interactive, heterogeneous agent-based systems.
• grouping the agents in such systems into very large-scale aggregates that exhibit

predictable, stable, and reliable behavior.

 A Metamodel for Agents, Roles, and Groups 79

• achieving economies of scale and scope within a large MAS.
• building and operating such systems in situ.

From a scientific standpoint, the foundations for constructing large multi-agent
systems have a long history. Although researchers have been explicitly thinking about
MAS/DAI (Multi-Agent System/Distributed Artificial Intelligence) organizations and
attempting to link organization theory with MAS/DAI models for decades, the idea of
organization, per se, has been only a peripheral theme. MAS/DAI researchers have
focused on specific coordination techniques, rather than the central issues involved in
MAS organization. Yet, without considering organizational issues for MAS, MAS
designers will not be able to leverage benefits that can be gained from such social
constructs and patterns, such as emergence and scalability. Therefore, any discussion
of agent classification metamodels must also address organizational elements. At a
minimum, this includes agent classifiers, roles and groups—and the structural and
behavioral patterns defined by such constructs.

This paper contains a proposed superstructure specification1 for modeling agents,
agent roles, and agent groups. This architecture addresses simple homogeneous agent
systems as well as those that require complex and heterogeneous social interaction.
Furthermore, this specification is based on—and extends—the Unified Modeling
Language (UML) superstructure [OMG, 2003]. It also contains a few suggested
notations for some of these structures. Developing a notation to express these
structures more fully is an on-going effort in several standards organizations including
the Foundation for Intelligent Physical Agents (FIPA) and the Object Management
Group’s (OMG’s) Agent SIG.

2 The Essential Class Model

Figure 1 illustrates the essential class model being proposed in this document. UML
defines class diagram as follows: “A diagram that shows a collection of declarative
(static) model elements such as classes, types, and their contents and relationships”
[Booch, 1999]. Due to the relative complexity of agent design and the many
differences that exist between an agent and an object [Odell, 2002], the agent class
structure must extend UML class specifications to accomplish this. The complete
notation for the extensions described in this paper may be found in [FIPA, 2004].

Starting from the left of Fig. 1, the Agent Classifier is a classifier specifically for
classes of agents. An Agent Classifier defines the various ways in which agents will
be classified and is subclassed in two ways: Agent Physical Classifier and Agent Role
Classifier. Agent Physical Classifier defines the primitive, or basic, classes that
define the core requirements of an agent. In general, an agent is implemented using
some specific physical platform, such as JADE [Bellifemine, 2001] or Cybele
[Cybele, 2000][Aronson, 2003]. The physical agent platform itself engenders certain
properties and capabilities on its agents, regardless of any other agents that they are
collaborating with. These properties remain throughout the lifetime of the agent.
Agent Role Classifier classifies agents by the various kinds of roles agents may

1 A modeling superstructure specifies user-level constructs for modeling. In general, a

modeling infrastructure provides the foundational constructs for the modeling language.

80 J. Odell, M. Nodine, and R. Levy

“play”. These in turn relate to the agent’s capabilities as well as the activities in which
it may become involved. The set of roles that an agent is playing may vary over time.
Section 3 provides a more detailed explanation of the agent classifiers.

In the middle of Fig. 1 are the Agent instances. The class called Agent defines the
set of all agents that populate a system. Each instance of an Agent is associated with
one or more Agent Classifiers that define its necessary features. Agents are discussed
further in Section 3.

To the right in Fig. 1 are the Groups, or sets of agents that have been collected
together for some reason. Within a group, its member agents interact according to the
roles that they play. Thus, each instance of a Group is defined by a set of roles and, by
transitivity, its collection of agents. Groups are partitioned into Agentified Groups
and Non-Agentified Groups according to whether or not they are addressable as an
agent and can act as an agent in their own right. Groups are discussed further in
Section 4.

Lastly we consider the associations between Agents and their Agent Role
Classifiers and Agent Physical Classifiers (Section 5). The association of an Agent to
an Agent Physical Classifier gives the agent its primitive, core capabilities and
requirements. Every Agent must be associated with one Agent Physical Classifier.
The association between an Agent and the Agent Role Classifiers determine what
sorts of activities that the Agent is participating in. An Agent may have no associated
Agent Role Classifiers; however, such an agent is not involved in any Group.

Key to understanding this figure is a crisp notion of the distinction between a UML
Classifier and a UML Class. The two UML notions Classifier and Class are different
elements in UML. A UML Classifier is:

• a Namespace whose members can include features.
• a Type, thereby making it possible to define generalization relationships to other

Agent Classifiers.
• a RedefinableElement, meaning that it can be redefined more specifically or

differently in the context of another classifier that specializes (directly or
indirectly) the context classifier.

Agent

Agentified
Group

0..*1..*
Agent

 Classifier

 Classifier
(from Kernel)

/classified
instance/classifier

 Instance
Specification
(from Kernel)

assigned
group

Agent Role
Assignment

*

*

Agent
Physical Classifier

Agent Role
Classifier0..*0..*

permitted
roles

supporting
physical class

0..*

/assigned
group

Non-Agentified
Group

Group
1..*

*

1

1

1

*

1..*

0..1

*

group
roles

/group
member

context

classifying role

classified
instance

Fig. 1. Proposed abstract syntax

 A Metamodel for Agents, Roles, and Groups 81

UML Classifiers do not have attributes, interfaces, inheritance, or any of the basic
features that are associated with an object-oriented class. In contrast, the UML class
called Class has these features. Class is a specialization of Classifier and possesses
those additional features that are required for objects. (For more information on the
differences between Classifier and Class, see [OMG, 2003]). This is important
because agent classification will be based on an extension of Classifier, not Class.
The reason for this is that we do not wish to develop a superstructure that is based on
object orientation. To do so would mean that agents would necessarily support
object-oriented-based messaging and polymorphism. Instead, by extending Classifier,
we can add in those features that object-oriented classes possess that are useful for
agents (e.g., attributes), while omitting features that are problematic for agents.

3 Agents and Agent Classifiers

Agent Classifier is a UML Classifier that specifically provides a way to classify Agent
instances by a set of features that they have in common. Its associated instances are
the Agents that it classifies. Classification is important because it enables the
definition of a set of entities that share one or more capabilities and/or features in
common. For example,
Agent Classifiers named
“Buyer” or “Seller”
could be defined to
represent the collection of
agents that possess
capabilities for buying
and selling resources.
Further-more, Agent
Classifiers facilitate the
definition of those
features that entities of a
particular classification
can have. For example, the “Buyer” Agent Classifier could define properties relating
to what a Buyer can buy, and what its spending limit is.

Figure 2 shows Agent Classifier and its two specializations: Agent Physical
Classifier and Agent Role Classifier. The default notation for an Agent Classifier is a
solid-outline rectangle containing the classifier’s name. Abstract Agent Classifiers are
shown in italics.

3.1 Agent Role Classifier

The Agent Role Classifier is an Agent Classifier that classifies according to the kinds
of roles the agent is capable of playing at a given time. Within a MAS, roles define
normative repertoires of behavior and other features, contextualized according to the
group in which the role is being played. Agents can be associated with more than one
Agent Role Classifier at the same point in time (multiple classification) and can
change roles over time (dynamic classification).

supporting
physical classAgent Physical

Classifier

1

Agent
Classifier

Agent Role
Classifier0..*0..*

permitted
roles

Fig. 2. Abstract syntax for Agent Classifier, Agent Physical
Classifier and Agent Role Classifier

82 J. Odell, M. Nodine, and R. Levy

The notion of role is fundamentally a thespian concept, and attention to how it
functions in the theater can reinforce our intuitions and provide useful metaphors for
application to multi-agent systems.

All the world’s a stage,
And all the men and women merely players:
They all have their exits and entrances;
And one man in his time plays many parts.

–W. Shakespeare, As You Like It, Act II, Scene 7.

The similarities between the Shakespeare’s characterization and our present-day
usage of role in role theory [Biddle, 1966] and organization psychology [Katz, 1978]
are noteworthy. The role perspective [Odell, 2003] consists of those factors presumed
to be influential in governing human behavior. It assumes that performance results
from social proscriptions and individual behavior and that the individual variations in
performance are expressed within the framework created by these factors. An
individual’s behavior is shaped by the demands and roles of others, the individual’s
own understanding of appropriate behavior, and the individual’s competence in the
performance.

Roles provide both the building blocks for agent social systems and the requirements
by which agents interact. Each agent is linked to other agents by the roles it plays by
virtue of the application’s functional requirements—which are based on the
expectations that the application has of the agent. Also, all Agent Role Classifiers must
be associated with one or more groups, because the role is qualified by and given
meaning by the group context. For example, the role of President for the United States is
different that the role of President for IBM. The group context, therefore, provide a
namespace for terms such as “President”
so that unique role features can be
specified for each context.

Agent Role Classifiers form a
generalization hierarchy. Figure 3
illustrates a small hierarchy of Agent
Role Classifiers, where the Broker and
Matchmaker roles are sub-classifiers of
the Facilitator role. In the UML
extension for agents, Agent Role
Classifiers are indicated using the
stereotype «agent role»; non-agent
classes which represent object classes
will not have a stereotype designation. Please note that using a generalization
relationship between classifiers does not necessarily imply inheritance. Generalization
specifies inclusion which implies that whatever can be said of a classifier can also be
said of its sub-classifiers. Generalization, therefore, can be implemented using various
techniques—inheritance is only one. For agent-based systems, current wisdom
suggests that using inheritance is not considered to be a good practice.

3.2 Agent Physical Classifier

The purpose of an Agent Physical Classifier is to define those sets of core, or
primitive, features that all agents possess—independent of any role they may play.

<<agent role>>
Facilitator

<<agent role>>
Matchmaker

<<agent role>>
Broker

Fig. 3. Example of a generalization hier-
archy of Agent Role Classifiers

 A Metamodel for Agents, Roles, and Groups 83

Every agent must be classified according to some Agent Physical Classifier. Also, an
agent always will remain in the same basic Agent Physical Classifier that created it
and bestowed its basic features.

An Agent Physical Classifier describes the set of basic (i.e., primitive, core)
features that all agents possess. Certain features are basic to all agents, such as the
possession of a unique name (from the namespace in the UML Classifier). Others are
dependent on the implementation of the agent, such as how an agent sends and
receives messages, maintains its attributes (i.e., its state, or beliefs), interacts with its
particular environment or software package, and so on. In this way, Agent Physical
Classifier could also be called “Agent Primitive Classifier” or “Agent Core Classifier”
because its purpose is to define those classes that describe the set of basic features that
all agents of a particular kind possess.

Figure 4 depicts several instances of Agent Physical Classifier (Cybele Agent
Classifier, JADE Agent Classifier, and FIPA Agent Classifier) in a hierarchy. Any
agents associated with the
Cybele Agent classifier would
possess all the features required
and provided by the Cybele
software environment (for
example, the ability to possess
state variables and to receive and
send communications, create and
refer to clocks and timers of
various kinds).

As stated earlier, agents can
be associated with more than
one role at the same point in
time and can change roles over time. However, an agent is quite likely considered to
remain in the same basic Agent Physical Classifier that created it and bestowed its
basic features. Therefore, the Agent Physical Classifier provides the required features
for all agents, whereas, roles supplement these basic features by providing additional
sets of features on an “as needed” basis.

3.3 Agents

For agent-based design, the primary fundamental modeling constructs, or elements,
are Agent Classifier and Agent (Fig. 5). These elements are considered fundamental
because they enable agent-based systems to define both the instances of agent for a
system and the enabling classifications for those agents. The instances of Agent
specify the autonomous, interactive entities known as an “agent” in a modeled agent-
based system. That is, they are important because those are the actual functioning
entities thought of as agents within a system; the classifications are necessary as they
provide the underlying features for each and every agent. In other words, each
instance of Agent Classifier specifies those features that its associated Agents may
possess (such as state and provided services).

<<agent physical classification>>
FIPA

<<agent physical classification>>
Cybele Agent

<<agent physical classification >>
JADE Agent

Fig. 4. Example of a generalization hierarchy of
Agent Role Classifiers

84 J. Odell, M. Nodine, and R. Levy

Agent is a concrete class and its description may include:

• Classification of the
agent by one or
more Agent
Classifiers of which
the agent is a
classified instance
(multiple
classification).

• Specification of
features of the
agent,
independently of those specified by associated Agent Classifiers.

• Specification of how to compute, derive or construct the agent (optional).

An Agent instance specification describes the agent. These details can be
incomplete. The purpose of an Agent instance specification is to show what is of
interest about an agent in the modeled system. The agent conforms to the
specification of each Agent Classifier that classifies it, and has features with values
indicated by each slot of the Agent instance specification.

Figure 6 illustrates two linked Agent instances. Agent instances represent the agent at
a specific point in time (a snapshot). Each Agent is depicted using the same notation as
its classifier, but in
place of the
classifier name
appears an under-
lined concatenation
of the instance name
(if any), a colon (‘:’)
and an optional comma-separated list containing the classifier name or names. Slots
may be shown textually as a feature name followed by an equal sign (‘=’) and a value
specification. Other properties of the feature, such as its type, also may be shown.
Agents may be linked by the roles they play. In this situation, Agent4 is a Broker, and is
brokering something for Seller Agent2.

3.4 Associations Between Agent Physical Classifiers and Agent Role Classifiers

The association between an Agent Physical Classifier and an Agent Role Classifier
specifies those Agent Role Classifiers that are permitted for any given Agent Physical
Classifier. Figure 7 depicts instances of Agent Physical Classifier (“JADE”.
“Cybele”) and Agent Role Classifier (“Manager”, “Buyer”, “Trust Manager”). For
any of the roles of “Buyer”, “Broker” and “Trust Manager” can be taken on by
Agents with the Agent Physical Classifier “Cybele”. Similarly, either of the roles
“Manager” or “Broker” can be taken on by Agents with the Agent Physical Classifier
“JADE”.

Agent
0..* 1..*

Agent
Classifier

/classified
instance /classifier

 Instance
Specification
(from Kernel)

Fig. 5. Association of Agents with Agent Classifiers

<<agent>>
Agent4:Broker

AuthorizationLimit:Money=$10,000

<<agent>>
Agent2:Seller

Fig. 6. Agents with slots and associations

 A Metamodel for Agents, Roles, and Groups 85

The associations between Agent Physical Classifiers and Agent Role Classes

restrict the roles that specific agents may take on, independent of the capabilities of
the individual Agents themselves. In the following section, we discuss Agents and
their associations with Agent Classifiers, based on both these restrictions and the
capabilities of the individual Agents.

3.5 Association of Agents with Agent Classifiers

The association of an Agent with its Agent Classifiers establishes the features and
behavior for each agent. Each Agent Classifier classifies of agent instances according
to a common set of physical or role-based features that they have in common. Figure
8 depicts instances of Agent Physical Classifier (“Cybele” and “JADE”), instances of
Agent Role Classifier “Buyer”, “Seller”, “Broker”, “Trust Manager”) as well as a set
of instances of Agent (“Agent1”, “Agent2”, “Agent3”, and “Agent4”). The links
indicate classification; e.g., Agent1 is a classified instance of both the “JADE” Agent
Physical Classifier and the “Seller” Agent Role Classifier.

Note that a given agent can be classified with more than one role at the same point
in time (e.g., Agent2). Also, Agents can change roles over time, as the needs of the
applications change.

4 Group, Agentified Group, and Non-agentified Group

A group is a set of agents that are related via their roles, where these links must form
a connected graph within the group. Another way to look at this is that a group is a

Agent Role
Classifier

Agent Physical
Classifier

Buyer

Cybele Agent
Classifier

Broker

supporting physical agent classifiers permitted agent roles

Manager
JADE Agent

Classifier

•••

•••

0..*0..*

permitted
roles

supporting
physical class

Trust
Manager

Fig. 7. Example associations between Agent Physical Classifiers and Agent Role
Classifiers

86 J. Odell, M. Nodine, and R. Levy

composite structure consisting of interrelated roles, where each of the group’s roles
has any number of agent instances. This definition implies not only that a group is a
function of the roles contained within it, but also that roles have no meaning without
their group referent. Hence, our ability to understand roles is limited by our ability to
understand the groups of which they are a part.

A group can be formed to take advantage of the synergies of its members, resulting

in an entity that enables products and processes that are not possible from any single

Agent Role
Classifier

Broker

Buyer

Manager

•••

Agent Physical
Classifier

Cybele
Agent

Classifier

JADE
Agent

Classifier

•••

Agent

Agent4

Agent3

Agent1

•••

Trust
Manager

Agent2

Agent
Classifier

*

1..*

classified
instance

classifier

Fig. 8. Examples of Agent Classifier and Agent instances and classification links

Agent

Agentified
Group

 Instance
Specification
(from Kernel)

*

Agent Role
Classifier 0..*

/assigned
group

Non-Agentified
Group

Group
1..*

*

1

1

group
roles

/group
member

context

Fig. 9. Abstract Syntax for Groups, their Agents, and their Roles

 A Metamodel for Agents, Roles, and Groups 87

individual. As with roles, groups may be deliberately established (i.e., by a system
designer) or they may be emergent. In human organization terms, a deliberately
established group could be a department or other workgroup that has been defined by
some organizational authority. In contrast, an emergent group might be a social group
that forms when several individuals decide to go out for a beer after work. Over time,
they define themselves as a group (“My Friday Afternoon Drinking Buddies”).

Groups are commonly formed to regulate, foster, or support the interaction of those
agents within the group; so the group provides a place for a limited number of agents
to interact among themselves via roles. In this way, intra-group associations
encourage resource sharing, promote internal coordination. establish common
supervision, and provide a degree of safety in numbers.

4.1 Metamodel for Group
Figure 9 presents the abstract syntax for Groups, their Roles and their Agents. The
Group class extends the UML Instance Specification. However, each Group could be
defined as a composite structure. In UML, structured classifiers can be thought of
structured collection of classifiers. Groups could then become structured collections
of Agent Role Classifiers. Group is an abstract class.

Conceptually, a group consists of a set of Agents playing roles. The roles that the
Agents may play within the group are represented by one or more Agent Role
Classifiers that are associated with the Group. The set of Agents within the Group,
according to the model, can be derived from the Group via the Agent Role Classifiers
(which will be discussed in Section 5).

4.2 Relationships Between Groups and the Roles That Agents Play in Them

Figure 10 illustrates the necessary association between groups and the roles that are
played in groups (by Agents). Roles are only meaningful in a context; therefore, all
roles must be assigned to a group. For example, the “Broker” role is used by the

Agent Role
ClassifierGroup

XYZ
Buyer

XYZ Corp

Broker

group agent roles

Manager

ABC Ltd

•••

•••

1..*1..*

group
roles

assigned
group

ABC
Buyer

Simple
Inc.

Fig. 10. Example of Associations between Groups and Agent Role Classifiers

88 J. Odell, M. Nodine, and R. Levy

“ABC Ltd.” and “XYZ Corp” groups. Notice also that both groups have a “Buyer’
role. However, since the buyer role for “ABC Ltd.” has different features than for
“XYZ Corp.”, two different roles are defined, “ABC Buyer” and “XYZ Buyer”.

4.3 Agentified and Non-agentified Groups

A group can take on the qualities of being an agent in its own right, with its own
interactive capability. Such groups can be thought of as sets of agents that interact
with other agents or sets of agents. Inter-group associations are important and
appropriate, because they encourage a basis for input and output standardization.
This in turn facilitates interaction between groups, promotes patterns of interaction
between groups, and establishes standard interaction points for each group.

An Agentified Group possesses all the features that any agent might possess. For
example, it can send and receive messages directly and take on roles. Such a group is
an agent in its own right, and therefore is a subclass not only of Group but also of
Agent. In contrast, Non-Agentified Groups are still first-class entities; however, these
entities do not possess agent properties. Thus, they are as objects, rather than agents.

Figure 11 represents the Group “ABC Ltd” as a composite structure with three
associated roles, “Manager”,
“Broker” and “ABC Buyer”. The
“Manager” interacts directly with
the “ABC Buyer” and the
“Broker”. In this situation, it is
possible to interact with the agent
“ABC Ltd.” without knowing
directly about any specific
“Manager”, “Broker” or “ABC
Buyer” within the department;
thus, this group is Agentified.
The stereotype “<<agent>>”
indicates that the group is
Agentified.

Groups can also be formed simply to establish a set of agents for purposes such as
intra-group synergies or conceptual organization. A Non-Agentified Group is a Group
that is not a subclass of Agent.
Figure 12 shows a Non-
Agentified version of “ABC
Customer Sales Dept”. It has the
same associated Roles; however,
it does not have the
“<<agent>>” stereotype. In
order to interact with this
Department, you must interact
directly with one of its members
-- a “Manager”, an “ABC
Buyer” or a “Broker”.

 <<agent>>
ABC Ltd.

<<agent role>>
Manager

<<agent role>>
ABC Buyer

<<agent role>>
Broker

Fig. 11. Example of the ABC Ltd. Agentified Group
and its associated Roles

 ABC Ltd.

<<agent role>>
Manager

<<agent role>>
ABC Buyer

<<agent role>>
Broker

Fig. 12. Example of the Non-Agentified ABC Ltd

 A Metamodel for Agents, Roles, and Groups 89

5 Agent Role Assignment

Section 3 describes the association between Agents and their Agent Role Classifiers.
However, the assignment of Agents to Roles is dynamic. This assignment is modeled
by the Agent Role Assignment. Figure 13 shows the Agent Role Assignment and its
associations. This section describes how Agent Role Assignment supports the
dynamic association of Roles to Agents.

5.1 Agent Role Assignment as a Ternary Association

A direct association between Agent and Agent Role Classifier would represent that
Agents play particular Roles, or Roles are played by specific Agents. However, this
distinction is not sharp enough, because an Agent could play a given Role in one
Group and not another. In Fig. 14, Agent2 plays the role of Broker in GroupB, but
not in GroupC; furthermore, Agent3 is a Broker in GroupC, but not in GroupB. This
situation illustrates that a role assignment between an agent and its role must be
qualified by a group context. For example, the Broker role is used by GroupB and
GroupC. The Broker for GroupB is Agent2, and the Broker for GroupC is Agent3.

Agent Role Assignments, then, are three-way, or ternary, associations. An Agent
Role Assignment is a Class whose associated instances associate Roles and Groups
and Agents. Each instance of the ternary Agent Role Assignment, associates a role,
group, and an agent.

Contextualizing roles to groups has the additional advantage that it allows for a
greater diversity of situations. For example, GroupB has two associated roles, Seller
and Broker, played by Agent1 and Agent2, respectively. Agent1 is also a Buyer for
Group A. This is allowed, even though Agent1 is now both a Buyer and a Seller,
because Agent1 is a Buyer in one Group and a Seller in the other; thus, there is no
conflict of interest.

Agent

Agent Role
Assignment

0..*

*

Agent Role
Classifier 0..*

/assigned
group Group 1..*

*

1

1

1..*

0..1

0..*

group roles

classified
instance

assigned
group

classifying
role

context

Fig. 13. Abstract syntax for Agent Role Assignment

90 J. Odell, M. Nodine, and R. Levy

5.2 Positions

While each Agent Role Assignment must have a Role and Group, it might not have an
associated agent. Agent role assignments without agents can be called positions. For
example in Fig. 14, there is an assignment that links the “Broker” role with
“GroupD”, but no Agent is assigned. This means that a slot, or position, has been
assigned for some yet-to-be-defined agent to be empowered to play a “Broker” role in
“GroupD”. In other words, no agent has been assigned to “fill” the position. This
approach is useful when “requisitioning” role assignments that must be filled at some
point in the future to accomplish some task.

The set of all Agent Role Assignments that have agent assignments can be
expressed as an association in its own right. These links are considered as part of the
derivation of the association between Agent and Agent Classifier, as expressed in
Figs. 1 and 5.

6 Conclusions

Agent-based systems are increasing both in size and diversity. This growth is pushing
agent-based systems beyond a size that is manageable by individual organizations.
Thus, there is a growing need for agents to be able to organize themselves according
to their assigned tasks. Since these tasks may be complex, and beyond the abilities or
knowledge of individual agents, this capacity to self-organize must be based on a

GroupC

classified
instance

classifying
role

Agent Agent Role
Classifier

Agent3

Agent2

Agent1

Broker

0..1 0..*

Buyer

Seller

Agent Role
Assignment

Agent3-as-Broker

Agent2-as-Broker

Agent1-as-Seller

Agent1-as-Buyer

Agent Role tuples
(i.e. agent-is-assigned-to-play links)

Group 1 0..*

GroupB

GroupA

Group/Agent Role
Assignment tuples

(i.e., agent-is-assigned-to-
play-role-within-group)

context

GroupD

Group/Role tuples with no
Agent assigned

(i.e., group-needs-role)

Fig. 14. Example of Agent Role Assignments

•••

•••

•••

 A Metamodel for Agents, Roles, and Groups 91

solid metamodel. This metamodel needs to take into account individual agents, how
they can interact, and how they can and do fit into groups.

This paper presents general metamodeling constructs for large-scale multi-agent
systems. These concepts are anchored in the modeling and classification of agents
according to both the capabilities that they have from their physical implementation
(Agent Physical Classifiers) and from their current activities (Agent Role Classifiers).
Agent activities are done in the context of groups. Furthermore, within the group their
behavior conforms to specific patterns, and these patterns of behavior are enacted by
the agents via the roles that they play in the group. For example, a group involved in a
purchase may include an agent taking on the role of “Buyer”, an agent taking on the
role of “Trust Manager”, and an agent taking on the role of “Seller”. Within this
group, the role of “Buyer” specifies the capabilities and governs the operations that
are allowed for the agent that is playing it.

Using this metamodel within an agent system as a basis for understanding,
regularizing and controlling agent behavior has many advantages. While the agent
itself may be both large and diverse, the scoping of tasks within groups increases the
predictability, stability, and reliability of the entire agent system. It also facilitates the
monitoring and analysis of operations within the multi-agent system. This in turn
means that the multi-agent system itself can scale to a greater size while still retaining
properties of stability and controllability.

Acknowledgement

We would like to acknowledge the FIPA Modeling Technical Committee members
for their contribution to this work. Also, this work was funded in part by NASA
contract # NAS2-02093.

References

[Bellifemine, 2001] Bellifemine, Fabio, Agnstino Poggi, and Giovanni Rimassa, “JADE: A
FIPA2000 Compliant Agent Development Environment,” Proceedings of the International
Conference on Autonomous Agent, Montreal, Canada, ACM, 2001.
[Biddle, 1966] Biddle, Bruce J., and Edwin J. Thomas, Role Theory: Concepts and Research,
John Wiley and Sons, New York, 1966.
[Booch, 1999] Booch, Grady, James Rumbaugh, Ivar Jocobson, The Unified Modeling
Language User Guide, Addison-Wesley, Reading, MA, 1999.
[Cybele, 2000] OpenCybele User’s Manual, Intelligent Automation, Inc,
http:www.opencybele.org/docs/Users.pdf, 2000.
[FIPA, 2004] Odell, James, Renato Levy and Marian Nodine, FIPA Modeling TC: Agent Class
Superstructure Model, http://www.auml.org/auml/documents/CD2-04-21.doc, 2004.
[Gasser, 2001] Gasser, Les, “Perspectives on Organizations in Multi-Agent Systems,” Multi-
Agent Systems and Applications, Michael Luck et al. eds., Springer-Verlag, Berlin, pp. 1-16,
2001.
[Aronson, 2003] Aronson, J., Manikonda V., Peng W., Levy R. and Roth K.. An HLA
Compliant Agent-based Fast-Time Simulation Architecture for Analysis of Civil Aviation
Concepts. Spring SISO Simulation Interoperability Workshop, Orlando, Florida, April 2003.

92 J. Odell, M. Nodine, and R. Levy

[Karageorgos, 2003] Karageorgos, A., Using Role Modeling and Synthesis to Reduce
Complexity in Agent-Based System Design, in Dept. of Computation, doctorate thesis,
University of Manchester Institute of Science and Technology, Manchester, 2003.
[Katz, 1978] Katz, Daniel, and Robert L. Kahn, The Social Psychology of Organizations, (2nd
ed.), John Wiley and Sons, New York, 1978.
[Mintzberg, 1993] Mintzberg, Henry, Structure in Fives: Designing Effective Organizations,
Prentice Hall, Englewood Cliffs, NJ, 1993.
[Moreno, 1960] Moreno, J.L. ed., The Sociometry Reader, The Free Press, Glencoe, IL, 1960.
[Odell, 2002] Odell, James, “Objects and Agents Compared,” Journal of Object Technology,
Vol 1, Number 1, May, 2002.
[Odell, 2003] Odell, J., H.V.D. Parunak, and M. Fleischer, The Role of Roles in Designing
Effective Agent Organizations, in Software Engineering for Large-Scale Multi-Agent Systems,
A.F. Garcia et al., Eds., Springer-Verlag: Berlin. pp. 27-38, 2003.
[OED, 1992] Oxford English Dictionary, (2nd ed.), Oxford University Press, Oxford, 1992.
[OMG, 2003] OMG, UML 2.0 Superstructure Specification, OMG document ptc/03-08-02,
September 2, 2003.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 93 – 108, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Bridging the Gap Between Agent-Oriented Design and
Implementation Using MDA*

Mercedes Amor, Lidia Fuentes, and Antonio Vallecillo

Dpto. Lenguajes y Ciencias de la Computación,
Universidad de Málaga. Campus de Teatinos,

s/n, 29071 Málaga, Spain
{pinilla, lff, av}@lcc.uma.es

Abstract. Current agent-oriented methodologies focus mainly on multi-agent
systems analysis and design, but without providing straightforward connections
to the implementation of such systems on any of the existing agent platforms
(e.g. FIPA-OS, Jade, or Zeus), or just forcing the use of specific agent
platforms. In this paper we show how the Model Driven Architecture (MDA)
can be effectively used to derive agent implementations from agent-oriented
designs, independently from both the methodology used and the concrete agent
platform selected. Furthermore, this transformation process can be defined in an
scalable way, and partly automated thanks to the use of a platform-neutral agent
model, called Malaca.

1 Introduction

Software agents are becoming a widely used alternative for building open and
distributed applications, developed as Multi-Agent Systems (MAS). This recognition
has led to consider agent technology as a promising paradigm for software
development [1]. As a result, several agent-oriented methodologies for developing
MAS have been recently proposed [2], with the aim to provide tools, practical
methods, and techniques for developing MAS.

The variety of methodologies may become a problem for the software developer
when it comes to select the best-suited methodology for a given application domain.
Selection criteria may include aspects such as the effort required to learn and to use,
completeness, documentation, and suitability. Recent works (e.g., [3, 4, 5, 6]) provide
comparison studies between the different agent-oriented methodologies, showing the
weaknesses and strengths of each one, with the aim to help the software engineer
select the most suitable methodology in each case. The results clearly show that there
is not a single unified and unique general-purpose methodology. FIPA [7] and OMG
[8] have also created some technical committees focused on the identification of a
general methodology for the analysis and design of agent-oriented systems,
embracing current agent-oriented methodologies such as GAIA [9], MaSE [10],
Tropos [11, 12] or MESSAGE [13]. The idea is to identify the best development

*This research was funded in part by the Spanish MCYT under grant TIC: 2002-04309-C02-02.

94 M. Amor, L. Fuentes, and A. Vallecillo

process for specific MAS. This work is being complemented with the definition of an
agent-based unified modelling language (FIPA AUML work plan [14]).

One of the main problems of these methodologies is that they cover the analysis
and design phases of MAS development, but do not address the implementation
phase, i.e., they do not completely resolve how to achieve the model derivation from
the system design to a concrete implementation [9, 10, 13]. Thus, the software
engineer is forced to either somehow select one of the existing agent platforms for
implementing the agent-oriented design, or to use a concrete agent platform because it
is the only one supported by the design methodology —which demands specialized
skills from the developer. In the former case, the problem is that the criteria usually
considered for choosing an agent platform are mainly based on the developer
expertise, the programming language, available tools, or its recognition in the agent
community. However, these criteria do not take into account the methodology used to
design the MAS, for instance.

Besides, this transformation process —which is not a trivial task, and could be, in
some cases, quite complex to achieve— has to be defined in an ad hoc manner in each
case, for each methodology and for each agent platform. Thus, every single developer
has to define and implement the mappings and transformations from the design
produced by the selected agent-oriented methodology, to the API’s provided by the
particular agent platform, without any guidance or help.

Our goal in this paper is to study how such gap can be bridged, thus covering the
complete life cycle of MAS. Furthermore, we also analyze how much of this process
can be automated, independently from the original methodology used to analyze and
design the MAS, and from the agent platform selected to implement the system.

In order to achieve such goal we will use the concepts provided by OMG’s Model
Driven Architecture (MDA). MDA is a modelling initiative that tries to cover the
complete life cycle of software systems, allowing the definition of machine-readable
application and data models, which permit long-term flexibility of implementation,
integration, maintenance, testability and simulation [15]. MDA defines platform-
independent models (PIM), platform-specific models (PSM), and transformations
between them.

In this paper we will show how our problem can be naturally expressed in terms of
the MDA, and then how the MDA mechanisms can be used for defining (and partially
automating) the mappings. By applying the MDA ideas, the design model obtained as
the result of applying an agent-oriented methodology can be considered as a PIM, the
target agent platform for the MAS as the PSM, and the mappings between the two can
be given by the transformations defined for the particular agent platform selected. The
target models needs to be expressed in terms of their corresponding UML profiles, as
indicated by the MDA.

However, when we initially tried to use this approach, we saw that it could work
for some individual cases, but that it did not scale well for the ever-increasing number
of agent-oriented methodologies and agent platforms: somebody had to define and
automate the mappings between every agent-oriented methodology and every agent
platform. This is not affordable at all. However, we then discovered that the use of a
platform-neutral agent architecture could greatly simplify this task, since the numbers
of mappings was significantly reduced. Thus, we propose the use of the agent model
[16, 17] Malaca.). One of the most outstanding features of this agent architecture is

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 95

that it is possible to execute a Malaca agent on top of any FIPA-compliant agent
platforms, i.e., it was designed to be independent from the underlying agent platform.
Therefore we define mappings from agent-oriented methodologies to Malaca, and
from Malaca to the different agent platforms. Consequently, with just one
transformation between an agent-oriented methodology and the Malaca agent model,
the resulting MAS could run in any agent platform. The developer could then deploy
the MAS in any agent platform, depending on the availability, price, tools provided,
etc.

Moreover, as we will show later, the mappings and transformations from agent-
oriented methodologies such as Tropos to Malaca are very simple, and most of them
can be easily automated due to the use of UML and AUML, a big step towards
bridging the gap between agent-oriented design and MAS implementation. A
significant feature of this architecture is that any Malaca agent can be “programmed”
simply by editing XML documents. Since most of the UML diagrams can be
expressed easily in XML, the transformations between agent-oriented methodologies
and Malaca are direct. This architecture reduces the development time, cost and
effort, and simplifies the implementation of multi-agent systems.

In order to validate our proposal, mappings from one of the most representative
agent-oriented methodologies to Malaca have been defined, namely from Tropos.
They will be used throughout the paper for illustrating our approach.

The structure of this paper is as follows. Section 2 provides a brief overview of
Tropos methodology. Section 3 introduces the Malaca agent architecture, and its
underlying agent model. Section 4 describes our main contribution, by showing how
to use the MDA approach for mapping MAS designs into the Malaca model, which
can be then run into any agent platform. Section 5 outlines some of the problems and
limitations of our approach, as well as further research work that could help address
such limitations. Finally, Section 6 draws some conclusions.

2 Agent-Oriented Methodology Overview

Agent-Oriented methodologies provide a set of mechanisms and models for
developing agent-based systems. Most agent-oriented methodologies follow the
approach of extending existing software engineering methodologies to include
abstractions related to agents. Agent methodologies capture concepts like
conversations, goals, believes, plans or autonomous behaviour. Most of them take
advantage of software engineering approaches to design MAS, and benefit from UML
and/or AUML diagrams to represent these agent abstractions.

There are many methodologies with different strengths and weakness and different
specialized features to support different applications domains. Clearly there is not a
widely used or general-purpose methodology, but we took into account some issues
like the modelling diagrams used, the kind of application domain it is appropriated
for, and above all, the level of detail provided at the design phase and the available
documentation. Some methodologies were not considered in this first approach
because of their lack of public documentation or the level of detail achieve at the
design phase. After examining current research in this area, and despite there were
other good candidates, such as Mase [10], we only use Tropos [11,12] for illustrating
our proposal.

96 M. Amor, L. Fuentes, and A. Vallecillo

2.1 Tropos

Tropos [11] is an agent-oriented methodology created by a group of authors from
various universities in Canada, Italy, Belgium and Brazil. Tropos is founded on the
concepts of actor and goal and strongly focus on early requirements. The development
process in Tropos consists in five phases: Early Requirements, Late Requirements,
Architectural Design, Detailed Design and Implementation.

The first phase identifies actors and goals represented by two different models. The
actor diagram depicts involved roles and their relationships, called dependencies.
These dependencies show how actors depend on each other to accomplish their goals,
to execute their plans, and to supply their resources. The goal diagram shows a
analysis of goals and plans regarding a specific actor in charge of achieving them.
This analysis is based upon reasoning techniques such as AND/OR decomposition,
means-end and contribution analysis. These models will be extended in the second
phase, which models the system within its environment.

The third phase is divided in three steps. In the first one, new actors, which are
derived from the chosen architectural style, are included and described by an extended
actor diagram. These actors fulfil non-functional requirements or support sub-goals
identified in the previous phase. The second and third steps identify the capabilities,
and group them to form agent types, respectively. The last step defines a set of agent
types and assigns each of them a set of capabilities. This assignment, which is not
unique and depends on the designer, is captured in a table.

The Detailed Design phase deals with the detailed specification of the agents’
goals, belief and capabilities. Also communication among agents is specified in detail.
This phase is usually strictly related to implementation choices since it is proposed
within specific development platforms, and depends on the features of the adopted
agent programming language. This step takes as input the specification resulting from
the architectural design and generates a set of UML activity diagrams for representing
capabilities and plans, and AUML sequence diagrams for characterizing agent
interaction protocols. AUML is an extension of UML to accommodate the distinctive
requirements of agent, which results from the cooperation established by FIPA and
the OMG. This is achieved by introducing new classes of diagrams into UML such as
interaction protocol diagrams and agent class diagrams.

Finally, the implementation phase follows the detailed design specification given
in the previous phase. Tropos chooses a BDI platform for the implementation of
agents, namely JACK Intelligent Agent [18], an agent-oriented development
environment built on top of Java. The main language constructs provided by this
platform (agents, capabilities, database relations, events and plans) have a direct
correspondence with the notions used in the Tropos design phase. In addition, Tropos
provides guidelines and heuristics for mapping Tropos concepts into BDI concepts,
and BDI concepts into JACK constructs. However, Tropos does not impose the use of
JACK, and the developer can implement the design in any other agent platform.

3 The Malaca Agent Model

Most existing agent architectures focus on the type of agent (BDI, reactive), but do
not provide direct support for handling and reusing properties and functionality

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 97

separately. This approach results in agent design and implementations being quite
complex, brittle, and difficult to understand, maintain, and reuse in practice.

The Malaca agent architecture is based on the definition and reuse of software
components, let they be either in-house or commercial-off-the-shelf (COTS)
components. In addition, by applying the separation of concerns principle promoted
by aspect-oriented software development [19], we separate into different and
decoupled entities the distribution of messages through FIPA-compliant platforms,
the codification of exchanged messages in FIPA ACL formats, and also the agents
functionality from their coordination. By “componentizing” agents in such way, they
can be reused and replaced independently to build specific agent architectures
independently from the underlying agent platform(s) used. This also enables dynamic
composition of agent at runtime, allowing the dynamic reconfiguration and adaptation
of the agents’ behaviour to support new interaction protocols and functionality, to
access to different agent platforms, or to use different ACL formats. Besides, when
treated as components, Malaca agents are simply configured using XML documents
that contain the agents’ descriptions.

Fig. 1 shows the meta-model of the Malaca agent model (a part of its UML
profile), where all these entities are explicitly represented. This diagram also
represents the basic structure of the XML agent description that is used to create an
agent since there is a direct correspondence between the UML model shown there and
the XML representation of the agent: meta-model classes and association represent
the XML elements, and class attributes represent XML element attributes.

In order to produce agents able to be executed in any FIPA-compliant agent
platform, we have separated everything related with the use of Message Transport
Service (MTS), bundling it into a “distribution aspect”. This distribution aspect will
be later bound to the particular adaptors (plug-ins) of the corresponding agent
platforms on which the agent instance will be run. Then, the actual distribution of
messages using a particular message transport service offered by a FIPA-compliant
agent platform is performed by an independent entity, the adaptor. Such adaptor
defines a common interface, which will be realized by each concrete adaptor instance
of the target agent platform(s), which will deal with the specific services of such
platform(s). Since agent platform dependencies are encapsulated as an external plug-
ins, our agents can be adapted to engage in any FIPA-compliant agent platform, and
even be used in more than one agent platform simultaneously (for additional details
see [17]).

As stated before, the encoding format of messages exchanged by the agent within
an interaction is also bundled in a separated entity. Thus, the codification of ACL
messages in a concrete FIPA format is merged neither with the agent platform access,
nor with the behavior of the agent. In our agent architecture, parsers deal with
different ACL representations. Each parser has to realize a common interface to code
and decode output and input messages. In the model, for each different ACL format
supported, we provide an ACLParser plug-in that parses ACL messages formatted
according to the value of the format attribute. Once again, the agent could support
more that one ACL format at the same time.

98 M. Amor, L. Fuentes, and A. Vallecillo

Fig. 1. UML class diagram with a Malaca agent description

The behaviour of a Malaca agent is given by its functionality and by the way it
interacts with other agents (i.e., its coordination aspect). In our model, agent
functionality is provided by reusable software components, which offer the set of core
services, and also the application-dependent functionality. Components that are
initially plugged into the agent architecture are packaged into the functionality
element of the agent description. Each component is described in a
ComponentDescription class, which provides information about its provided interface
and its implementation. The component interface describes the set of offered services
in an XML document in the format specified by the notation element (by default,
OWL-S [20]). The deploymentInfo attribute points to a XML document with the
description, using the notation format (by default, the CCM softpackage format
[21]), of the component implementation. This information includes the kind of

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 99

implementation (e.g. Java, CORBA, Web service), how to locate and deploy the
component, etc.

Coordination is also modelled by using an independent entity called connector,
which decouples the agent functionality from its interactions. Every time a new
conversation starts, a new connector is created to control it. For this task, the
connector uses a description of the interaction protocol followed. The set of roles of
interaction protocols supported is given by the coordination element. Each role
description is part of an interaction protocol is described by a XML document using
the notation format (by default, the ProtocolDescription XML schema [16]).

The UML class diagram in Fig. 1 also depicts the structure of a protocol
description. Agent interaction protocols are described by the set of message
description, interchanged during the interaction and by a set of finite state machines
for representing the behavior of each participant role. The description of a message, in
a MessageDescription element, should include the performative and should contain at
least some description of the message content. The value of any other message field
can also be specified. A separate finite state machine within the RoleDescription
class, identified by an attribute roleName, describes each side of a conversation (at
least the initiator and the responder). Each finite state machine is represented by a set
of state transition rules enclosed by the FiniteStateMachine class and each rule is
defined in a StateTransitionRule class.

The transition from a state to another carries out the execution of the agent
functionality (defined in the StateTransitionRule by the attribute executeTransition).
The TransitionDescription class encloses the set of agent actions that are invoked
during protocol execution. Instead of a simple sequence of invocations to the agent
internal functionality, it is possible to use more complex control structures to
coordinate the execution of the agent functionality. OWL-S provides the basis for the
definition of agent functionality as services. As part of the DARPA Agent Markup
Language [22] program and within the OWL-based framework, OWL-S is an
ontology for describing Web services that gives a detailed description of a service’s
operation, and provides details on how to interoperate. The control structures defined
in the Process Model of OWL-S are used to encompass a set of agent actions in a
transition description.

Finally, the agent description also contains the initial content of the agent
Knowledge Base, expressed in terms of beliefs, goals, and conditions; the
acquaintance database, defined as a set of the identifiers of the agents with which the
agent will interact; and an active context of the agent upon start up. Within an
ActiveContext class, it is possible to specify the initial behaviour the agent will
execute (expressed in OWL-S by a sequence of actions, a set of protocols executed in
parallel, etc.).

The Malaca UML Profile, which is derived from its metamodel, defines
stereotypes for each metamodel element and also defines constraints, associated to
stereotypes, which impose restrictions on the corresponding metamodel elements.
Constraints can be used, for instance, to state that the attribute transitionID has a
unique value for all the elements in the transitions collection of a FiniteStateMachine.
The abovementioned restriction can be expressed by the following OCL [23]
constraint:

100 M. Amor, L. Fuentes, and A. Vallecillo

Context MalacaAgentMetamodel::FiniteStateMachine
Inv: self.transitions -> isUnique(transitionID)

The Malaca agent model is implemented in Java, and currently provides adaptors
for Jade [24], Zeus [25], and FIPA-OS [26] agent platforms. It also supports String
and XML ACL encodings. One of the benefits of this model is that the only artifacts
that should be provided by the developer to define a MAS in Malaca are the XML
documents with the agent descriptions, the components provided interfaces, and the
protocol descriptions. We shall see in the next section how these artifacts can be even
automatically generated from the MAS designs produced by Tropos. This will allow a
direct connection between the MAS design and its implementation in any of the agent
platforms.

4 Applying MDA to MAS Design to Produce Implementations

The problem of transforming the design diagrams produced by a given agent-oriented
methodology to a set of implementation classes of an agent platform API, such as the
ones provided by FIPA-OS, Zeus, or Jade, can be addressed by expressing such
designs and agent platforms as models, and then expressing the transformations
between them in terms of mappings between models. The OMG Model Driven
Architecture (MDA) provides the right kind of mechanisms for expressing such kind
of models, the entities of each one, and for defining transformation between them.

MDA is an approach to system development based on the use of models, which are
descriptions of a system and its environment for some certain purpose. A model is
often presented as a combination of drawings and text (the text may be in a modelling
language or in natural language). Regarding a set of models, MDA sets down how
those models are prepared, and the relationships between them. In MDA, a platform is
a set of subsystems and technologies that provides a set of functionality through
interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality provided by
the platform is implemented. MDA distinguishes between platform-independent
models (PIM) and platform-specific models (PSM).

The general MDA model transformation is depicted by the MDA pattern, shown in
Fig. 2(a). The PIM and some other information are combined by the transformation to
produce a PSM. MDA defines many ways in which such transformations can be done.
A MDA mapping provides specifications for transformation of a PIM into a PSM for
a particular platform. A model type mapping specifies a mapping from any model
built using types. Another approach to mapping models is to identify model elements
in the PIM, which should be transformed in a particular way, given the choice of a
specific platform for the PSM. However, most mappings will consist in some
combination of type and instance mappings. A mapping may also include templates to
specify particular kinds of transformations. In order to apply these concepts to agent
technologies, we need to define agent-oriented PIMs and PSMs, and mappings
between them. Here, the design model of a MAS produced by an agent-oriented
methodology will constitute the PIM, that needs to be marked using the UML profile,
or the metamodel expressed in UML, MOF or any other language, of the target agent
platform to produce a PSM.

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 101

PIM

PSM

Transfor-
mation

Tropos MAS
Design Model

Malaca MAS
(Jade, FIPA-OS, ...)

Malaca Agent
Model Profile

Transfor-
mation

 (a) (b)

Fig. 2. (a) The MDA pattern for model transformation, and (b) The MDA model transformation
from Tropos design model to the Malaca MAS specification using the Malaca Agent Model
UML Profile

To illustrate this approach, in this paper we will apply MDA to transform Tropos
design model to the Malaca agent model. An important benefit of our agent model is
that it does not depend on the target agent platform on which it will be executed, and
therefore there is no need to develop different implementations for each FIPA-
compliant agent platform. This fact greatly simplifies the process of providing an
implementation for each different agent platform. Fig. 2(b) graphically shows the
process that will be described in detail in the next sections. The transformations are
illustrated using UML, AUML diagrams produced by Tropos, the agent-oriented
methodology used here. The MDA transformation process shown here is based on
marking the Tropos design model. The developer performs this step manually. After
that, the marked model is transformed into a Malaca model applying some
transformation rules. This process can be automated.

4.1 Applying MDA: From Tropos to Malaca

Now we will show through an example how the set of models resulting from applying
Tropos can be transformed in a set of Malaca agents using the MDA mechanisms.

To illustrate the transformation for the Tropos design model, we will use the
diagrams supplied in [11], which provides a case study. Unfortunately, available
literature of Tropos does not provide a complete example, and also the process that
explains each phase varies from paper to paper.

Marking Tropos Detailed Design Model. As stated before, in Tropos, the design
phase deals with the detailed specification of the agents, capabilities and
communications. More precisely, the design phase in Tropos produces:

− Agent assignments, expressed as a table resulting from the architectural design
phase, that defines the agent types and the capabilities assigned to each agent. An
agent can have assigned capabilities that are associated to different actors.

− Agent Interaction Diagrams. AUML sequence diagrams are used to model basic
interactions between agents. In [12], interactions are described by introducing
additional interactions, together with constraints on the exchanged messages.

102 M. Amor, L. Fuentes, and A. Vallecillo

− Capability Diagrams. One UML activity diagram models each capability. External
events, such as input messages, define the starting state of a capability diagram;
activity nodes model plans, transition arcs model events, and beliefs are modelled
as objects. UML activity diagrams can further specify each plan node of a
capability at the lowest level. In this case, the activity nodes correspond to simple
or complex actions.

Now we will show how the Tropos detailed design given in [11], can be
transformed into a Malaca Model. In order to define this transformation we will
“mark” the Tropos design model using the classes defined in the Malaca metamodel
showed in Fig. 1. A mark represents a concept stereotyped in the Malaca profile and
is applied to an element of the Tropos design model to indicate how it should be
transformed. Thus, we will mark Tropos design elements (agents, interactions,
messages, capabilities, plans and so on), with the corresponding Malaca entities that
will implement them (AgentDescription, ProtocolDescription, TransitionDescription,
OWL-S processes, etc). Agent types are marked as AgentDescription. Each capability
is marked as a TransitionDescription, and each interaction (represented in UML
sequence diagram) is marked as a ProtocolDescription.

<<ProtocolDescription>>
UMLInteractionDiagram

<<ProtocolDescription>>
protocolID = RequestForInfo

Fig. 3. Marked Agent Interaction Diagram in Tropos (extracted from [10])

The elements of each UML diagram can also be marked. Fig. 3 shows the marked
agent interaction diagram given in [11]. Every agent (object) in the agent interaction
diagram (UML interaction diagram) is marked as a RoleDescription, and every

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 103

communicative act between agents is marked as a MessageDescription, but also as an
Input (an element of a StateTransitionRule). Also, we specify the value of the tagged
value (that corresponds to an attribute of the metamodel class) associated to the
stereotype element including notes that show the corresponding stereotype, the name
of the tagged value, and the value assigned to it.

Fig. 4 displays the marked diagram of the capability Present Query results. The
external event is marked as a MessageDescription and every plan —activity node— is
marked as an Atomic or a Composite OWL-S process. If the plan node is not further
specified in another UML activity diagram it is marked as an Atomic process (see
Present Empty Result and Present Query Results node s). Otherwise, it is marked as a
Composite process, as occurs with the Evaluate Query Result plan, since it is further
specified in another UML activity diagram. Plan diagrams are also marked.

<<TransitionDescription, Sequence>>
UMLActivityDiagram

<<If-Then-Else>>

<<TransitionDescription>>
ID = PresentQueryResultToTheUser

Fig. 4. Marked Capability Diagram (extracted from [10])

Tropos to Malaca Mappings and Transformations. After applying the marks
defined in the Malaca profile, we obtain a set of marked UML and AUML diagrams.
The transformation process applies mapping rules for the same mark depending on
the marked element. The result of the application of such mapping rules is, in this
case, a set of XML documents that specify the PSM of the system for the Malaca
platform.

In order to illustrate the mapping rules, we will describe here, as example, some
rules that have been applied to a few elements marked in the diagram of Fig. 4.

104 M. Amor, L. Fuentes, and A. Vallecillo

• When a mark <<TransitionDescription>> is applied to a UML activity diagram
the transformation produces an XML instance of the complex type
TransitionDescription (defined in a XML schema). The value of the XML
attribute is taken from the value assigned to the tagged value ID in the note (in
the example is PresentQueryResultToTheUser).

• When a mark <<Sequence>> is applied to a UML activity diagram the
transformation produces the definition of a CompositeProcess XML description
attached to the TransitionDescription element produced by the application of the
previous rule. The components of the Sequence are derived from the application
of the following transformation rules.

• When a mark <<AtomicProcess>> is applied to an action state element within a
UML activity diagram the transformation produces the XML description of an
AtomicProcess, which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<CompositeProcess>> is applied to an action state element within
a UML activity diagram the transformation produces the XML description of an
CompositeProcess, which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<If-Then-Else>> is applied to a junction element within a UML
activity diagram the transformation produces the XML description of an If-Then-
Else control construct which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<IfCondition>> is applied to a transition element within a UML
activity diagram that depart from a junction marked as <<If-Then-Else>>, the
transformation produces the XML description of a condition ,which is included
as a ifCondition element of the If-Then-Else element produced by the application
of the previous rule.

• When a mark <<thenProcess>> or <<elseProcess>> is applied to a action state
element, marked also as a <<AtomicProcess>>, within a UML activity, the
transformation produces the XML description of an atomic process, which is
included as a then (or else) element of the If-Then-Else element produced by the
application of a previous rule.

The application of these transformation rules to the diagram of Fig. 4 produces the
XML description of a transition identified as PresentQueryResults as depicted in Fig.
5.

Also, we can apply the constraints expressed in OCL to ensure that the identifier of
the transition is unique within the collection of transitions identifiers.

This is only a very brief example of how MDA can be applied to transform
elements of the Tropos design model into a Malaca agent description, using marks
and transformation rules. Again, once we count with a Malaca description of the
MAS, it can be implemented in any FIPA-compliant agent platform. Then, we can
obtain a straightforward implementation from that design by applying MDA
mappings and transformations again.

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 105

 -<TransitionDescription ID="PresentQueryResultsToTheUser">
 -<CompositeProcess>
 -<composedOf>
 -<Sequence>
 -<components>
 +<CompositeProcess ID="EvaluateQueryResult">
 -<If-Then-Else>
 -<ifCondition>
 <IsTrue resource="emptyResultSet" />
 </ifCondition>
 -<then>
 <AtomicProcess ID="presentEmptyResults" />
 </then>
 -<else>
 -<AtomicProcess ID="presentQueryResults"/>
 </else>
 </If-Then-Else>
 </components>
 </Sequence>
 </composedOf>
 </CompositeProcess>
</TransitionDescription>

Fig. 5. Present Query Result XML description (complete)

MAS metamodel are becoming relevant in the context of MDA. Using
metamodels, the transformation can be automated from the beginning to the end.
Regarding the example followed here, the Tropos metamodel, provided in [11], could
be used to define general transformations from elements of the source metamodel into
elements of the target metamodel. The developer has not to mark manually the Tropos
design model elements before to transform them. Instead, transformations are
automatically applied to instances of the elements of the metamodel. However, for
this purpose, the Tropos metamodel has to provide a more detailed and accurate
description of the Tropos design model elements and concepts (their relationships,
attributes, constraints, etc) in order to derive and automate the transformation process
as much as possible.

5 Limitations and Further Extensions to Our Work

One of the problems found when trying to implement multi-agent systems directly
from their high-level designs and descriptions appear when the designer describes
what needs to be done, but gives no indication on how (for instance, using heuristics,
guidelines and examples rather than algorithms). In such cases, the transformations
cannot be automated, since such algorithms have to be provided. In general, the level
of detail provided in the design phase determines the accuracy of the implementation,
and therefore its potential automated implementation. Thus, an important aspect in
selecting a methodology is the level of detail provided.

Second, the diagrams and texts used in the design phase have to be interpreted and
mapped during the transformation process. Since one of our goals is to automate such
mappings, it is very important for diagrams and texts used in agent-oriented
methodologies to follow standard notations (such as UML), allowing its automatic
processing. Besides, AUML diagrams should also allow for some kind of automated

106 M. Amor, L. Fuentes, and A. Vallecillo

support, currently inexistent —although the advent of UML 2.0 and its new
extensions mechanisms can alleviate this if AUML gets aligned with UML 2.0.

Finally, MDA seems a very attractive and powerful approach for automated
development. However, it also has many unresolved issues, and still lacks tool
support. The availability of MAS metamodels [27, 28], the use of UML 2.0, the
advent of QVT [29] and the emergence of new modelling tools that support the MDA
principles can also help MDA get more mature and consolidate its ideas.

MAS´s GAM Model

Transfor-
mation

MAS´s MaSE
design model

UML profile for
GAM Metamodel

Transfor-
mation

MAS´s Tropos
design model

Malaca Agent
Model Profile

Transfor-
mation

MAS´s Malaca
Model

(Jade, FIPA-OS,...)

Fig. 6. Derivation of MAS implementations using a middle GAM model

Apart from these shortcomings, there are further extensions to our work. First, we
plan to develop some tools for automating the transformations described in this paper.
Apart from providing a proof-of-concept to our work, we think they can be of great
value to any MAS developer that follows MaSE or Tropos

methodologies. They will also assist uncover some more issues of our proposal,
helping us make it more robust.

A second line of work is related to the interesting idea by FIPA and the OMG to
define a common agent model to most agent-oriented methodologies. Here we have
seen the benefits of using a neutral model (Malaca) for MAS implementation
purposes, which provides the common mechanisms provided by FIPA-compliant
agent platforms. In this way, any design model of the MAS produced using an agent-
oriented methodology can be implemented by mapping it (using the MDA
mechanisms) into its corresponding Malaca model. But this means that a different
transformation is needed for every methodology into the Malaca model. Instead, a
better solution is to identify and standardize the commons elements of the existing
agent-oriented methodologies at the design phase, as pursued by FIPA and the OMG.
The common elements could form a generic agent model (GAM) on which
specialized features of every agent-oriented methodology might be based. Thus, we
could introduce an intermediate model that semantically can cope with the concepts

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 107

managed at design time by agent-oriented methodologies. With this, MAS design
models could be naturally mapped to a new design model conforming the element
defined in the GAM. From there, we will count with a general and common model for
MAS designing purposes, a common model for implementation purposes, and the
only thing that needs to be done is to define (just) one MDA transformation from the
GAM to Malaca, as shown in Fig. 6.

6 Conclusions

In this paper we have presented how MDA can be effectively applied to agent
technologies, providing a partially automated support for the derivation of MAS
implementations right from their designs, independently from the methodology used
to realize the design, and the target agent platform selected.

Our main contributions have been the definition of a common and neutral agent
model that implements all the concepts required by FIPA-compliant agent platforms,
and the use of the MDA mechanisms for defining the transformations between the
design models produced by existing agent-oriented methodologies and the Malaca
model. From there, the MAS implementation is quite straightforward. We have
presented our experience in deriving and applying these transformations to a well-
known methodology, Tropos.

References

1. M. Wooldridge, P. Ciancarini, “Agent-Oriented Software Engineering: The State of the
Art”, in First Int. Workshop on Agent-Oriented Software Engineering, LNAI 1957, 2000.
pp. 1-28.

2. C.A. Iglesias, M. Garijo, J.C. Gonzalez, “A Survey of Agent-Oriented Methodologies”, in
Intelligent Agents V – Proceedings of the Fifth International Workshop ATAL 98¸
Springer-Verlag, 1998.

3. S. A. O´Malley, S.A. DeLoach, “Determining When to Use an Agent-Oriented Software
Engineering Paradigm”, in Second International Workshop On Agent-Oriented Software
Engineering, 2001.

4. Sturn, O. Shehory, “A Framework for Evaluating Agent-Oriented Methodologies”, in
International Workshop On Agent-Oriented Information Systems, 2003.

5. K.H. Dam, M. Winikoff, “Comparing Agent-Oriented Methodologies”, in International
Workshop On Agent-Oriented Information Systems, 2003.

6. J. Sudeikat et al. “Evaluation of Agent-Oriented Software Methodologies – Examination of
the Gap Between Modeling and Platform”, in Proceedings of AOSE 2004.

7. FIPA, “FIPA Methodology Technical Committee”, Foundation for Intelligent Physical
Agents http://www.fipa.org/activities/methodology.

8. OMG, “OMG Agent Working Group”, in Object Management Group
http://www.objs.com/agent/

9. F. Zambonelli, M. Wooldridge, and N. R. Jennings, “Developing Multiagent Systems: The
Gaia methodology”, in ACM Transactions on Software Engineering and Methodology,
Vol.12 , Issue 3, pp. 317 – 370, 2003

108 M. Amor, L. Fuentes, and A. Vallecillo

10. S. A. DeLoach, M. F. Wood, C. H. Sparkman, “Multiagent System Engineering”, in
International Journal of Software Engineering and Knowledge Engineering, vol. 11, n. 3,
pp. 231-258. July 2001.

11. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. “Tropos: An
Agent-Oriented Software Development Methodology”, in International Journal of
Autonomous Agents and Multi-Agent Systems, Vol. 8, Issue 3, pp. 203 - 236, May 2004.

12. J. Castro, M. Kolp, J. Mylopoulos, “Towards Requirements-Driven Information Systems
Engineering: The Tropos Project”, in Information Systems, vol. 27, Issue 6, 2002. pp. 365-
389.

13. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable 1.
Initial Methodology. July 2000. EURESCOM Project P907-GI.

14. B. Bauer, J. P. Muller, J. Odell, “Agent UML: A Formalism for Specifying Multiagent
Software Systems”, in International Journal of Software Engineering and Knowledge
Engineering, vol.11, n.3, 2001. pp 207—230.

15. OMG, “Model Driven Architecture. A technical Perspective”, Object Management Group,
OMG Document ab/2001-01-01, 2001. Available from www.omr.org.

16. M. Amor, L.Fuentes, J.M. Troya, “Training Compositional Agents in Negotiation
Protocols”, next publication in Integrated Computer-Aided Engineering International
Journal, 2004.

17. M. Amor, L.Fuentes, J.M. Troya, “A Component-Based Approach for Interoperability
Across FIPA-Compliant Platforms”, in Cooperative Information Agents VII, LNAI 2782,
2003. pp. 266—288.

18. The Agent Oriented Software Group, “Jack Development Environment”,
http://www.agent-software.com

19. Aspect-Oriented Software Development, in http://www.aosd.net
20. The DAML Services Coalition, “OWL-S: Semantic Mark-up for Web Services” available

at http://www.daml.org/services/
21. OMG, “CORBA Components. Packaging and Deployment”, in Object Management

Group, OMG Document formal/02-06-74, June 2002.Available from www.omg.org.
22. The DARPA Agent Markup Language Homepage, http://www.daml.org/
23. Object Management Group. Object Constraint Language Specification, OMG document

ad/02-05-09, 2002. Available from www.omg.org.
24. F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, “Jade Programmer’s Guide”, 2003,

available at http://sharon.cselt.it/projects/jade/
25. J. Collis, D. Ndumu, C. van Buskirk “The Zeus Technical Manual”, Intelligent Systems

Research Group, BT Labs. July 2000.
26. Emorphia, “FIPA-OS Developers Guide”, Nortel Networks' Agent Technology Group,

2002, available at http://sourceforge.net/projects/fipa-os/
27. C. Bernon, M. Cossentino, and M.P. Gleizes, “A Study of some Multi-Agent Meta-

Models”, in Proceedings of AOSE 2004.
28. J. Odell, M. Nodine, and R. Levy,” A Metamodel for Agents, Roles, and Groups”, in

Proceedings of AOSE 2004.
29. OMG, “MOF 2.0 Query/View/Transformation RFP”, in Object Management Group, OMG

Document ad/03-08-03. 2003. Available from www.omg.org.

A Design Process for
Adaptive Behavior of Situated Agents

Elke Steegmans, Danny Weyns, Tom Holvoet, and Yolande Berbers

AgentWise, DistriNet, Department of Computer Science, K.U.Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
{Elke.Steegmans, Danny.Weyns, Tom.Holvoet,

Yolande.Berbers}@cs.kuleuven.ac.be

Abstract. Engineering non-trivial open multi-agent systems is a chal-
lenging task. Our research focusses on situated multi-agent systems,
i.e. systems in which agents are explicitly placed in an environment which
agents can perceive and in which they can act. Situated agents do not use
long-term planning to decide what action sequence should be executed,
but select actions based on the locally perceived state of the world and
limited internal state. To cope with change and dynamism of the sys-
tem, situated agents must be able to adapt their behavior. A well-known
family of agent architectures for adaptive behavior are free-flow archi-
tectures. However, building a free-flow architecture based on an analysis
of the problem domain is a quasi-impossible job for non-trivial agents.
To tackle the complexity of designing adaptive agent behavior based on
a free-flow architecture, suitable abstractions are needed to describe and
structure the agent behavior. The abstraction of a role is obviously essen-
tial in this respect. A modeling language is needed as well to model the
behavior of the agents. We propose a statechart modeling language to
support the design of roles for situated agents. In this paper we describe
a design process for adaptive behavior of situated agents as part of a
multi-agent oriented methodology. The design process integrates the ab-
straction of a role with a free-flow architecture. Starting from the results
of analysis of the problem domain, the designer incrementally refines the
model of the agent behavior. The resulting class diagram serves as a ba-
sis for implementation. We illustrate the subsequent design steps with a
case study on controlling a collection of automated guided vehicles.

1 Introduction

Dealing with the increasing complexity of developing, integrating and managing
open distributed applications is a continuous challenge for software engineers.
In the last fifteen years, multi-agent systems have been put forward as a key
paradigm to tackle the complexity of open distributed applications. In our re-
search we focus on situated multi-agent systems1(situated MASs) as a generic
approach to develop self-managing open distributed applications.

1 Alternative descriptions are behavior-based agents [5], adaptive autonomous agents
[14] or hysteretic agents [10][9].

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 109–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 E. Steegmans et al.

In situated multi-agent systems, agents and the environment constitute com-
plementary parts of a multi-agent world that can mutually affect each other.
Situatedness places an agent in a context in which it is able to perceive its
environment and in which it can (inter)act. Situated agents do not use long-
term planning to decide what action sequence should be executed, but select
actions based on the locally perceived state of the world and limited internal
state. Contrary to knowledge-based agents, situated agents do not emphasize
internal modeling of the environment. Instead, they favor to employ the en-
vironment itself as a source of information. The environment can serve as a
robust self-revising common memory for agents. This can unburden the indi-
vidual agents from continuously keeping track of their knowledge about the
system. Intelligence in a situated MAS originates from the interactions of the
agents in their environment rather than from the capabilities of the individ-
ual agents. Agents interacting form an organization in which they all play and
execute their own role(s). Situated MASs have been applied with success in nu-
merous practical applications over a broad range of domains, e.g. manufacturing
scheduling [20], network support [3] or peer-to-peer systems [2]. The benefits of
situated MAS are well known, the most striking being flexibility, robustness and
efficiency.

To cope with change and dynamism of the system, situated agents must
be able to adapt their behavior according to the changing circumstances. A
well-known family of agent architectures for adaptive behavior are free-flow ar-
chitectures [21][23][6]. Free-flow architectures allow adaptive behavior, yet from
our experiences we learned that it is unrealistic to assume that -starting from
the analysis of the problem domain- software engineers build a complex free-flow
architecture for complex applications, where agents can perform many actions.
For such applications, the architecture quickly becomes unmanageable, it is no
longer possible to have an overall view of the architecture. To tackle the com-
plexity of designing adaptive agent behavior based on a free-flow architecture
suitable abstractions are needed to describe and structure the agent behavior.
The abstraction of a role is obviously essential in this respect, as roles provide
the building blocks for social organization of a MAS. A modeling language is
needed as well to model the behavior of the agents. We propose a statechart
modeling language to support the design of roles for situated agents.

In this paper we describe a design process for adaptive behavior of situated
agents as part of a multi-agent oriented methodology. The design process inte-
grates the abstraction of a role with a free-flow architecture. We illustrate the
subsequent design steps with a case study on controlling a collection of auto-
mated guided vehicles.

This paper is structured as follows. In section 2 we introduce free-flow archi-
tectures and outline the design process for adaptive agent behavior. Section 3,
the core of the paper, explains in detail the different steps of the design process
for roles proposed in this paper. We illustrate our design process with an exam-
ple application. Finally, in section 4 we conclude the paper and give some future
work.

A Design Process for Adaptive Behavior of Situated Agents 111

2 Free-Flow Architectures and Designing Adaptive
Behavior

In this section we start with a brief introduction of free-flow architectures and
illustrate the complexity of developing a free-flow architecture for non-trivial
agents. Then we outline the design process for adaptive agent behavior we pro-
pose in this paper.

2.1 Free-Flow Architecture for Adaptive Agent Behavior

Open multi-agent systems are characterized by dynamism and change: new
agents may join the system, others may leave, the environment may change,
e.g. its topology or its characteristics such as throughput and visibility. To cope
with such dynamism the agents must be able to adapt their behavior according
to the changing circumstances. A well-known family of agent architectures for
adaptive behavior are free-flow architectures.

Free-flow architectures are first proposed by Rosenblatt and Payton in [21]. In
his Ph.D thesis, T. Tyrrell [23] demonstrated that hierarchical free-flow architec-
tures are superior to flat decision structures, especially in complex and dynamic
environments. The results of Tyrrell’s work have been very influential, for a re-
cent discussion see [6]. An example of a free-flow architecture is depicted in Fig. 1.

��������

��������� �	�
����

��� � �	�
��

�
��

�
������

���
�� ����

�� ���������� �� �������

������������ ���������

������� ������������� � ��� �

���
������ ������� ����

������� �������

�������

��

�

�
��

�����
� ������� �����

�������
������

��� �

��� �����������

��� ������

��

� ������

��� ��

� ������

������ ����

��

���
�� ����

��� ��� ������
��� ��

� ������

�

�� ��

!"#

�

Fig. 1. An example of a free-flow architecture

The hierarchy is composed of nodes which receive information from internal
and external stimuli in the form of activity. The nodes feed their activity down
through the hierarchy until the activity arrives at the action nodes (i.e. the leaf
nodes of the tree) where a winner-takes-it-all process decides which action is
selected. The main advantages of free-flow architectures are:

112 E. Steegmans et al.

– Stimuli can be added to the relevant nodes avoiding the ’sensory bottleneck’
problem. In a hierarchical decision structure, to make correct initial deci-
sions, the top level has to process most of the sensory information relevant
to the lower layers.

– Decisions are made only at the level of the action nodes; as such all infor-
mation available to the agent is taken into account to select actions.

– Since all information is processed in parallel the agent can take different
preferences into consideration simultaneously. E.g. consider an agent that
moves to a spotted object but is faced with a neighboring threat. If the
agent is only able to take into account one preference at a time it will move
straight to the spotted object or move away from the threat. With a free-
flow decision tree the agent avoids the threat while it keeps moving towards
the desired object, i.e. the agent likely moves around the threat towards the
spotted object.

Fig. 1 depicts a free-flow tree for action selection of a simple robot. This
robot lives in a grid world where it has to collect objects and bring them to
a destination. The robot is supplied with a battery that provides energy to
work. The robot has to maintain its battery, i.e. when the energy level of the
battery falls below a critical value the robot has to recharge the battery at a
charge station. The left part of the depicted tree represents the functionality
for the robot to search, collect and deliver objects. On the right, functional-
ity to maintain the battery is depicted. The System node feeds its activity to
the Work node and the Maintain node. The Work node combines the received
activity with the activity from the energy level stimulus. The ’+’ symbol in-
dicates that the received activity is summed up. The negative activity of the
energy level stimulus indicates that little energy remains for the robot. As such
the resulting activity in the Work node is almost zero. The Maintain node
on the other hand combines the activity of the System node with the posi-
tive activity of the energy need stimulus, resulting in a strong positive activity.
This activity is fed to the ToStation and the Charging nodes. The ToStation
node combines the received activity with the activity level of the not at sta-
tion stimulus (the ‘*’ symbol indicates they are multiplied). In a similar way
the Charging node combines the received activity with the activity level of the
at station stimulus. This latter is a binary stimulus, i.e. when the robot is at
the charge station its value is positive, otherwise it is negative. The ToStation
node feeds its positive activity towards the action nodes it is connected to. Each
moving direction receives an amount of activity proportional to the value of the
gradient stimulus for that particular direction. gradient is a multi-directional
stimulus, i.e. a compound stimulus with a value of the stimulus for each di-
rection. The values of the gradient stimulus are based on the sensed value of
the gradient field that is transmitted by the charge station. In a similar way,
the Charging node and the child nodes of the Work node (Explore, Collect and
Deliver) feed their activity to the action nodes they are connected to. Action
nodes that receive activity from different nodes combine that activity according
to a specific function. The action nodes for moving actions use a function fm

A Design Process for Adaptive Behavior of Situated Agents 113

to calculate the final activity level. A possible definition of this function is the
following:

AmoveD = max [(ANode + AstimulusD) ∗ AfreeD]

Herein is AmoveD the activity collected by a move action, D denotes one of
the four possible directions, i.e. D ∈ {N, E, S, W}. ANode denotes the activity
received from a node. The move actions are connected to four nodes: Node ∈
{Explore,Collect,Deliver, ToStation}. With each node a particular stimulus
is associated. stimulus ∈ {random direction, see object, see destination,
gradient} are multi-directional stimuli with a corresponding value for each mov-
ing direction. Finally, free is a multi-directional binary stimulus that indicates
whether the way to a particular direction is free (or not free) for the robot to
move to.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently the
East and West directions are blocked (see the free stimulus), leaving the robot
two possibilities to move towards the charge station: via North or via South. In
the depicted situation, the robot will move northwards according to the values
of a guiding gradient field.

2.2 Designing Adaptive Behavior

For the simple robot example discussed in the previous section, the free-flow
tree is already fairly complex. For a non-trivial agent however, the overall view
of the tree quickly becomes very cluttered. When a change is made in one part
of such a tree it becomes unclear how this affects the other parts. Although
free-flow trees are at best developed with a focus on a particular functionality
of the agent, the architecture itself does not support any structuring. From our
experiences we learned that it is unrealistic to assume that software engineers
build a complex free-flow architecture for complex applications, where agents
can perform many actions. For such applications, the architecture quickly be-
comes unmanageable, it is no longer possible to have an overall view of the
architecture.

To tackle the complexity of designing adaptive agent behavior based on a free-
flow architecture suitable abstractions are needed to describe and structure the
behavior of the agent. The software engineer as a designer needs a comfortable
modeling language that guides him or her in the process of designing the behavior
of non-trivial agents.

Several agent-oriented methodologies acknowledge the abstraction of a role
as a core abstraction for designing multi-agent systems, examples are Gaia [26],
MESSAGE [8] or SODA [19], see also [18]. In these methodologies the design
process is described independent of a particular multi-agent architecture, for a
recent discussion see Chapter 4 of [13]. When it comes to building a concrete
multi-agent application however, the gap between the high level design models
and the chosen multi-agent architecture that is used to implement the multi-

114 E. Steegmans et al.

agent system has to be filled, see also [1]. In this paper we aim to bridge this gap
enabling designers to build concrete multi-agent systems applications. In partic-
ular, we propose a design process that enables a designer to incrementally refine
the model of the agent behavior from a high level role model toward a concrete
agent architecture for adaptive behavior, in casu a free-flow architecture.

In previous work, we already proposed statecharts as a formalism to describe
roles, see [11]. In that work the focus was on reusing roles in different applications
and the statecharts notation was extended with new concepts, such as pre-action
and post-action. Although a statechart specification of agent behavior is simple
to design and to understand, it is typically a static, rigid model in that it leaves
little room for adaptive and explorative behavior. In this paper we revise the
statechart modeling language, i.e. we refrain from considering a statechart de-
scription of agent behavior as a kind of sequence chart, but use statecharts to
describe role composition and to structure related actions in roles only.

To design adaptive behavior for agents, the designer needs to go through
a number of subsequent design steps as depicted in Fig. 2. In the first step,
the adaptive behavior is designed in a high level model making use of the role
abstraction and the proposed role statechart modeling language. The diagrams
of this high level model serve as a basis for structuring the free-flow tree in
the next design step, resulting in a skeleton of the free-flow architecture. As the
name indicates, it is a skeleton of the free-flow tree and thus it still needs to be
refined by the designer. The refined free-flow architecture serves on its turn as
a basis for the class diagram model in the last step of the design process. In the
next section we elaborate in detail on each of the steps of the design process and
illustrate them with a concrete example. Note that in practice the design process
is typically not a one way pass through the indicated design steps. The designer
may iterate a number of times over the different steps of the design process.

��������

��	�
�
�������

��� �
�
�
���
�

��

�����
������
����

����� �������

�
����� ��������

�
������
 ���

�
����

Fig. 2. Design process for adaptive behavior of situated agents

A Design Process for Adaptive Behavior of Situated Agents 115

3 A Design Process for Roles

In this section we discuss the design process for adaptive agent behavior. We
start with a brief introduction of the example application. Then we zoom in and
discuss the subsequent steps of the design process in detail.

3.1 Example Application

In a current research project with an industrial partner we investigate how the
paradigm of situated multi-agent systems can be applied to the control of logistic
machines. Traditional systems use one central controller that instructs the ma-
chines to perform jobs based on a preceding calculated plan. Increasing demands
with respect to adaptability and scalability faces the centralized approach with a
number of limitations. By looking at machines as agents of a situated multi-agent
system, we aim to convert the centralized control system into a self-managing
distributed system, improving adaptability and scalability.

For the case in this paper we limit the discussion to the Automated Guided
Vehicle (AGV) transport system. The AGV transport system is typically one
part, yet a crucial part, of an integral logistic warehouse system. AGVs are un-
manned vehicles that transport goods from one place to another. AGVs can
supply basic/raw materials to a production department, serve as a link between
different production lines or store goods between different processes and connect
to the dispatch area. In a centrally controlled approach, the functionality of the
individual AGVs is rather limited. Each AGV is provided with basic infrastruc-
ture to ensure safety. Besides, a typical AGV is able to perform pick and drop
functions autonomously. The distribution of jobs, the routing through the in-
frastructure, collision avoidance at junctions etc. are all handled by the central
control system.

In the research project we apply a decentralized approach to tackle the prob-
lem of controlling the AGVs. In this paper we look at a number of basic roles
for an AGV to deal with jobs autonomously. We take into account functionality
for the AGV to find a job, to handle a job, to park when no more work has to
be done and finally to ensure that the battery is charged in time.

3.2 High Level Model: Role Model

Before we elaborate on the design of the role model we first clarify what we mean
by the role abstraction. We regard a role as an agent’s functionality in the context
of an organization. Roles provide the building blocks for social organization of the
MAS. Agents are linked to other agents by the roles they play in the organization.
The links can be explicit, e.g. a set of agents that pass objects along a chain;
or implicitly, e.g. in an ant colony a dynamic balance exists between ants that
supply the colony with food and ants that maintain the nest.

In the first step of the design process, the high level role model of the agents
is designed. High level modeling is supported by two diagrams and one schema.
The role diagram structures the agent roles and their interdependencies. We dis-
tinguish two kinds of interdependencies: roles can be related in a hierarchy and

116 E. Steegmans et al.

������ ������	
������

���	���

��	��� ����

�������

��	���	���

���	������

����

Fig. 3. The role diagram of the AGV

roles can be related through situated commitments. The role hierarchy expresses
the behavior of the agent at different levels of abstraction. A situated commit-
ment expresses an agent’s preference of one role in relation to one or more other
roles. The action diagrams structure the related actions within the roles. Finally
a commitment schema defines the activation and deactivation conditions for a
situated commitment.

Role Diagram. The roles and their interdependencies that describe the behav-
ior of an agent are described in a role diagram. Fig. 3 depicts the role diagram
of an AGV. A role diagram consists of a hierarchy of roles of which some are
related through situated commitments.

A role is represented by a white oval and the name of the role is written in
the oval. A role can consist of a number of sub-roles, and sub-roles of sub-sub-
roles etc. As such the role diagram is typically composed of a hierarchy of roles.
Roles at the bottom of the hierarchy are denoted as basic roles. The first role
of the AGV is the Active role consisting of two sub-roles, Search, i.e. a basic
role, and Work. The Work role is further split up in two sub-roles, Collect and
Deliver. This latter too are two basic roles. In the Search role the AGV searches
for a new job. Once the AGV finds a job it will Collect the good associated with
the job and subsequently Deliver the good at the requested destination. Besides
the Active role, the AGV has the Maintain role and the Park role. The AGV
executes the Park role when it has no more work to do. In this role the AGV
simply moves to the nearest parking place. The Maintain role ensures that the
AGV keeps its battery loaded. When the energy level crosses a critical value, the
AGV finishes its current job and moves towards the nearest charging station. To
find its way to the charging station an AGV uses an internal gradient map. At
regular time intervals all charging stations broadcast their current status. AGVs
use these messages to keep their gradient maps up to date.

A Design Process for Adaptive Behavior of Situated Agents 117

��
������� ���	
��

���	
��

�����

��	
�

��
�������

���	
� �����
�

�� ��	
�

��������

���	
� �����
�

��	
��

�

��������

������

	������

���
�� �������

Fig. 4. The action diagram of the Maintain role

A situated commitment is represented by a rounded rectangle and the name
of the situated commitment is written in the rectangle. A situated commitment
defines a relationship between one role (the goal role) and a non-empty set of
other roles (the source roles) of the agent. When a situated commitment is acti-
vated the behavior of the agent tends to prefer the goal role of the commitment
over the source role(s). Favoring the goal role results in more consistent behavior
of the agent towards the commitment. An agent can commit to itself, e.g. when
it has to fulfill a vital task. However, in a collaboration agents commit relatively
to one another, typically via communication. We elaborate on situated commit-
ments below, references that explain the concept in detail are [25][24][22]. In
Fig. 3, the Maintaining commitment ensures that the AGV maintains its energy
level. Since energy is vital for the AGV to function, all roles (except the Maintain
role of course) are connected as source roles to the Maintaining commitment.
The Activation commitment is activated when the AGV starts to work. This
commitment ensures that the AGV remains active once it decides to start work-
ing. The Working commitment is activated once the AGV accepts a job. This
commitment ensures that the AGV acts consistently with the job in progress.

Action Diagram. Action diagrams are defined for the basic roles. An action
diagram describes the structure of the related actions for a basic role. In Fig. 4
the action diagram of the Maintain role of the AGV is depicted.

A state is represented by a white circle in the diagram. In Fig.4 three states
can be distinguished: ToStation, Charging and Charged. Besides these states
there are two special states: the initial state and the final state. The initial
state, represented by a black circle, indicates the typical start state of the action
sequence of the modelled role. The final state, depicted by a circle with an
F written in it, indicates the typical end state of the action sequence of the
modelled role.

A transition connects two states with each other. A transition expresses a
change of state due to the execution of an action. An action, which is added
to a transition, models the functionality that must be performed by an agent
to achieve a new desired state from an old state. An action is represented by
a white rectangule in which the name of the action is written and which is

118 E. Steegmans et al.

attached to a transition. To fulfill the Maintain role, the AGV has to perform
four different actions: follow gradient to find the charge station, and connect,
charge and disconnect to charge its battery (see Fig. 4). The execution of an
action may be constrained by a precondition. Only when the precondition is
satisfied the attached action can be executed. A precondition is represented by
a gray rectangle in which the precondition is written and which is attached to
an action. In Fig. 4 the gray rectangle with not at station denotes that the AGV
keeps following the gradient until it reaches the charge station. At that time the
precondition at station becomes true and that enables the AGV to connect to
the charge station. As long as energy level < to charge is true, the AGV keeps
charging. Finally when condition energy level = charged becomes true, the AGV
disconnects and that finishes the Maintain role.

Commitment Schema. For each situated commitment a commitment schema
is defined that describes the source roles and the goal role of the commitment as
well as its activation and deactivation conditions. Activation and deactivation
conditions are boolean expressions based on internal state of the agent or per-
ceived information, or information received from messages. Activating situated
commitments through communication enable situated agents to setup explicit
collaborations in which each participant plays a specific role. In this paper we do
not elaborate on this latter scenario, for a detailed discussion we refer to [24][22].
Fig. 5 depicts the commitment schema for the situated commitment Maintaining.

�������� ��		��	�
�� ���
���
�

������ ������ ������� ����

���� ����� ���
���

���������
 ��
�����
� �
��� ����� � �� �����

�����������
 ��
�����
� �
��� ����� � ������

Fig. 5. The commitment schema for the situated commitment Maintaining

This commitment schema expresses that when the energy level of the AGV
falls below the threshold to charge, the situated commitment Maintaining
is activated. This will urge the AGV to prefer to execute the Maintain role
over the Active and Park roles. Once the battery is recharged the condition
energy level = charged becomes true and this deactivates the Maintaining
commitment.

3.3 Free-Flow Architecture

The role and action diagrams, together with the commitment schema serve as
a basis to design the free-flow architecture in the second design step. First the

A Design Process for Adaptive Behavior of Situated Agents 119

Working

Active

Deliver
Collect

Work

Search Park

Activation

Maintaining

Maintain

Fig. 6. Skeleton structure of the free-flow tree according to the role diagram of Fig. 3

high level models are used to build a skeleton of the free-flow architecture which
then can further be refined.

Skeleton of Free-Flow Tree. The free-flow tree describes the behavior of the
agent in detail. The high level diagrams for roles and situated commitments
described in the previous section serve as a basis for structuring the free-flow
tree. The role structure as described in the role diagram (see Fig. 3) is reflected
in the skeleton structure of the tree. Fig. 6 depicts the skeleton structure for the
AGV example.

Roles match to trees in the free-flow tree, sub-roles to sub-trees etc. Situ-
ated commitments on the other hand correspond to connectors that connect the
source roles of the situated commitment with the goal role. When a situated
commitment is activated, extra activity is injected in the goal role relative to
the activity levels of the source roles. Details are discussed shortly.

The action diagrams and commitment schemas enable the developer to refine
the skeleton tree. Fig. 7 depicts the refined sub-tree for the Maintain role and the
Maintaining commitment. States in the action diagram correspond to activity
nodes in the tree. Preconditions correspond to binary stimuli connected to the
corresponding nodes. Examples are the stimuli at station or connected (compare
Fig. 4 and Fig. 7). Each action in the action diagram of the basic role corresponds
with an action node in the tree. A number of other analog stimuli in the tree
represent data in the action diagram that determines the action selection. An
example is the stimulus gradient that guides the AGV to move towards the
station.

The activation and de-activation conditions of the situated commitments,
described in the commitment schema correspond to the conditions associated
with the corresponding connectors in the free-flow activity tree. Fig. 7 illustrates
this for the Maintaining commitment.

Refining the Free-Flow Tree. Next the developer can refine the free-flow
tree, integrating all details needed for action selection. Fig. 8 depicts the refined
subtree of the Maintain role and the situated commitment Maintaining.

120 E. Steegmans et al.

��������

��������� �	�
����

���� �
������ �	�
��

�
������

���
�� ����

�� �������
��� �� �������

������������ ���������

������� ����������

������

��
�

�����������

���
�� ��� � �	�
���

���
�� ��� � �� �	�
��

Fig. 7. Detailed skeleton of Maintain role and Maintaining commitment

������

���	

�������

�������
��������

����������

����� ������

����

��������

������ ����

�� ������

������ ����� � �������

������ ����� � � ������

������ �����

������ �����

�� �� ������

����������� ��������

������ �������������
���	

����
�����

����
����

���������� �������� �����

�������� ��������

�������

��

�

�

�� ��

Fig. 8. Maintain role and Maintaining commitment after refinement

A Design Process for Adaptive Behavior of Situated Agents 121

The abstract action node follow gradient in Fig. 7 is refined towards the
different moving actions of the AGV. The stimulus gradient is split up in a
multi-directional stimulus. Each segment represents the tendency (based on the
value of the gradient field) of the AGV to move in a particular direction. Besides,
a couple of extra stimuli represent data that influences the action selection. An
example is the multi-directional stimulus free that denotes in which direction
the AGV is able to drive.

Stimuli needed to verify the activation and deactivation condition are con-
nected to the situated commitment. The Maintaining commitment is activated
when the value of the energy level crosses the threshold value to charge. The
commitment then calculates the extra activity to inject in the Maintain role.
For the Maintaining commitment this extra activity is calculated as the sum
(’+’ symbol) of the activity level of the Active and Park role, i.e. the activity
levels of the top nodes of these roles. As soon as the battery level reaches the
threshold value charged the Maintaining commitment is deactivated and it no
longer injects extra activity in the Maintain role.

3.4 Class Diagram: Free-Flow Framework

In the last design step, the refined free-flow tree is mapped onto a class dia-
gram. For this class diagram we distinguish two parts, a framework and the
application specific part for each hot spot that instantiates the framework.

Framework. We have designed a framework [16] for the free-flow architecture
and implemented it in .NET. In Fig. 9 only a part of the framework is depicted,
i.e. the classes and associations drawn above the dotted line2 belong to the frame-
work. The framework consists of a set of related classes that model the concepts
of the free-flow architecture as described in the previous section. The concept
of a situated commitment with its activation and deactivation conditions is
modeled by the SituatedCommitment class which subclasses the FunctionNode
class and which has an activationCondition and a deactivationCondition
association with the SituatedCommitmentFunction class. In the free-flow archi-
tecture two kinds of stimuli are distinguished, a binary stimulus and an analog
stimulus. This is modeled in the framework by the class hierarchy Stimulus,
BinaryStimulus and AnalogStimulus. The concept of a link in the free-flow
architecture represents a path along which activity can flow. A link is modeled
as the Link class in the framework. Link has two associations, a sourceNode
association with the class GenericNode and a goalNode association with the
FunctionNode class.

Instantiating the Framework. For a concrete free-flow tree, the generic frame-
work has to be instantiated, i.e. the the application specific part for each hot spot
has to be instantiated in the framework. The part of the class diagram under

2 For clarity, details such as the method names of the classes are not depicted. For all
the details of the framework see [4].

122 E. Steegmans et al.

Fig. 9. The Maintain role and Maintaining commitment in the framework (partial)

the dotted line in Fig. 9 depicts a partial instantiation of the framework for
the Maintain role and the Maintaining commitment. The situated commit-
ment Maintaining is translated to the Maintaining class which subclasses the
SituatedCommitment class of the framework. The activationCondition asso-

A Design Process for Adaptive Behavior of Situated Agents 123

ciation of the Maitaining commitment is modeled as the EnergyLevelToCharge
class while the deactivationCondition association is modeled as the
EnergyLevelCharged class (both are a subclass of
SituatedCommitmentFunction). The link between the binary stimulus energy
need and the Maintain activity node is translated to the EnergyLevelMaintain
class which subclasses the Link class of the framework. The
EnergyLevelMaintain class has a goalNode association with the Maintain class
(a subclass of the ActivityNode class) and a sourceNode association with the
EnergyLevelStimulus class (a subclass of the AnalogStimulus class). A number
of other examples are depicted in the figure, but are not further explained here.

4 Conclusion and Future Work

Designing non-trivial open multi-agent systems is a challenging task. In this
paper we focussed on designing adaptive behavior of situated agents.

Most existing agent-oriented methodologies describe the design process inde-
pendent of a particular agent architecture, however when it comes to building
a concrete multi-agent application, the gap between the high level design mod-
els and the chosen multi-agent architecture has to be filled. In this paper we
proposed a design process for adaptive agent behavior as part of a multi-agent
oriented methodology. The design process bridges the gap between high level
role modeling and a free-flow architecture for adaptive agent behavior.

Starting from the results of analysis of the problem domain, the designer
incrementally refines the model of the agent behavior. At the highest level, roles
and their interdependencies are caught into a high level model. This model is
used as a basis for designing a skeleton of the free-flow architecture. Next the
skeleton is refined such that it contains all details needed for action selection.
Finally, the free-flow tree is mapped onto a class diagram that serves as a basis for
the implementation of the agent’s behavior. Throughout the paper we illustrated
the role design process for a case study on controlling a collection of automated
guided vehicles.

The phased design process proposed in this paper is in line with the paradigm
of Model Driven Architecture [17]. In the successive design steps, the agent be-
havior is specified at subsequent lower levels of abstraction, each level introducing
more detail. The highest level model is independent of the architecture chosen
at the medium level. Likewise, the free-flow architecture is independent of the
chosen framework at the lowest design level. In future work we intend to elabo-
rate on this vision and extend the design process towards other abstractions [15]
that need to be engineered in situated MASs such as agent communication and
interaction (see also [12] and [7]), and the design of the environment of the MAS.

Acknowledgements

This research is supported by the K.U.Leuven research council (AgCo2) and the
Flemish Institute for Advancement of Research in Industry (EMC2). We also

124 E. Steegmans et al.

would like to express our appreciation to Nelis Boucké for his contribution to
the work presented in this paper.

References

1. M. Amor, L. Fuentes and A. Vallecillo. Bridging the Gap Between Agent-Oriented
Design and Implementation. In Proceedings of the 5th International Workshop on
Agent-Oriented Software Engineering (AOSE 2004), pp.1-16.

2. O. Babaoglu, H. Meling and H. Montresoret. Anthill: A Framework for the De-
velopment of Agent-Based Peer-to-Peer Systems. International Conference on Dis-
tributed Computing Systems, Vienna, Austria 2002.

3. E. Bonabeau, F. Hnaux, S. Gurin, D. Snyers, P. Kuntz and G. Theraulaz. Routing
in Telecommunications Networks with Ant-Like Agents. IATA, 1998, pp.60-71.

4. N. Boucké. Situated Multi-Agent Approach for Distributing Control in Automatic
Guided Vehicle Systems. Master Thesis, 2004.

5. R. A. Brooks. Intelligence without representation. Artificial Intelligence Journal,
1991, Vol. 47, pp.139-159.

6. J. J. Bryson. Intelligence by Design, Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD Dissertation: MIT, 2001.

7. L. Cabac and D. Moldt. Formal Semantics for AUML Agent Interaction Protocol
Diagrams. In Proceedings of the 5th International Workshop on Agent-Oriented
Software Engineering (AOSE 2004), pp.97-112.

8. G. Caire and others. Agent Oriented Analysis Using MESSAGE/UML. Agent-
Oriented Software-Engineering II, Vol. 2222 of LNCS, New York: Springer, 2001,
pp.119-135.

9. J. Ferber. An Introduction to Distributed Artificial Intelligence. Addison-Wesley,
1999.

10. M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmanns, 1997.

11. T. Holvoet and E. Steegmans. Application-Specific Reuse of Agent Roles. Soft-
ware Engineering for Large-Scale Multi-Agent Systems, 2003, Vol. 2603 of LNCS,
Springer Verlag, pp.148-164.

12. M. Ph. Huget and J. Odell. Representing Agent Interaction Protocols with Agent
UML. In Proceedings of the 5th International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE 2004), pp.65-80.

13. M. Luck, R. Ashri and M. D’Inverno. Agent-Based Software Development. Artech
House, 2004.

14. P. Maes. Modeling Adaptive Autonomous Agents. Artificial Life Journal, Vol. 1(1-
2), 1994, pp.135-162.

15. X. Mao and E. Yu. Organizational and Social Concepts in Agent Oriented Software
Engineering. In Proceedings of the 5th International Workshop on Agent-Oriented
Software Engineering (AOSE 2004), pp.49-64.

16. M. E. Markiewicz and C. J. P. Lucena. Object Oriented Framework Devel-
opment. ACM Crossroads Xrds7-4, 2001. See www.acm.org/crossroads/xrds7-
4/frameworks.html

17. Model Driven Architecture (MDA): http://www.omg.org/mda/
18. J. Odell, M. Nodine and R. Levy. A Metamodel for Agents, Roles, and Groups.

In Proceedings of the 5th International Workshop on Agent-Oriented Software
Engineering (AOSE 2004), pp.131-146.

A Design Process for Adaptive Behavior of Situated Agents 125

19. A. Omicini. SODA: Societies and Infrastructures in the Analysis and Design of
Agent-Based Systems. Agent-Oriented Software Engineering, Vol. 1957 of LNCS,
New York: Springer, 2001, pp.185-193.

20. V. Parunak. The AARIA Agent Architecture: From Manufacturing Requirements
to Agent-Based System Design. Integrated Computer-Aided Engineering, Vol. 8(1),
2001, pp.45-58.

21. K. Rosenblatt and D. Payton. A fine grained alternative to the subsumbtion archi-
tecture for mobile robot control. International Joint Conference on Neural Networks,
IEEE, 1989.

22. E. Steegmans, D. Weyns, T. Holvoet and Y. Berbers. Commitment-Driven
Collaboration in Situated Multi-Agent Systems: A Case Study. Technical CW
Report.

23. T. Tyrrell. Computational Mechanisms for Action Selection. Ph.D thesis, Univer-
sity of Edinburgh, 1993.

24. D. Weyns, E. Steegmans and T. Holvoet. Protocol Based Communication for Situ-
ated Multi-Agent Systems. In Proceedings of the Third International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2004), ed. N. Jennings,
C. Sierra, L. Sonenberg and M. Tambe, pp.118-126, New York, 2004.

25. D. Weyns, E. Steegmans and T. Holvoet. Towards Commitments for Situated
Agents. Role-Based Collaboration at IEEE SMC 2004, International Conference
on Systems, Man and Cybernetics, The Hague, The Netherlands, 2004.

26. M. Wooldridge, N. Jennings and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems, Vol.
3(3), 2000, pp.285-312.

Evaluation of Agent–Oriented Software
Methodologies – Examination of the Gap

Between Modeling and Platform

Jan Sudeikat1, Lars Braubach2, Alexander Pokahr2, and Winfried Lamersdorf2

1 University of Applied Sciences Hamburg,
Berliner Tor 3, 20099 Hamburg, Germany

Jan.Sudeikat@hamburg.de
2 Distributed Systems and Information Systems,

Computer Science Department, University of Hamburg,
Vogt–Kölln–Str. 30, 22527 Hamburg, Germany

Tel. +49-40-42883-2091
{braubach, pokahr, lamersd}@informatik.uni-hamburg.de

Abstract. More and more effort is made to provide methodologies for
the development of agent–based systems. Awareness has grown that these
are necessary to develop high quality agent systems. In recent years a
number of proposals have been given. Based on our experiences we ar-
gue that a complete evaluation of methodologies cannot be done without
considering target platforms, because the differences between available
implementations are too fundamental to be ignored. In order to conduct
a suitable comparison we present a flexible evaluation framework that
takes platform specific criteria into account. Part of this framework is a
procedure to derive relevant criteria from the evaluated platforms and
methodologies. In combination with a set of platform dependent and
independent criteria our framework allows evaluation of the appropri-
ateness of methodologies with respect to platforms. As a consequence,
also the suitability of methodologies for an individual platform, or vice
versa of several platforms for an individual methodology can be exam-
ined. To show the usefulness of our proposal, we evaluate the suitability
of different methodologies for an example platform.

1 Introduction

Besides the necessity of reliable agent platforms, the need for the methodical
development of applications has been noticed (as described in [20], [21]) and is
addressed by a number of proposed methodologies for building agent–based soft-
ware applications (surveyed in [40], [18]). According to [34] a methodology aids
development through (1) guidance by a life cycle process, (2) a set of predefined
techniques (guidelines, heuristics, etc.) and (3) allows modeling by providing a
suitable notation. What these three elements comprise is different in the specific
proposals. This makes it difficult for organizations to decide which one to use.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 126–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evaluation of Agent–Oriented Software Methodologies 127

The selection of the right methodology is crucial for the success of a large
software project, because developers will need guidance how to use this new
paradigm. According to [23], suitable methodologies are a key factor in intro-
ducing agent–orientation as an engineering approach to the industry. Since a
number of methodologies have been proposed, there exists a need for structured
means to select appropriate ones with respect to a concrete setting. Organiza-
tions will need guidance to select one to adopt for their own development.

To address these needs, different comparison frameworks have been proposed.
These use feature–based evaluations of numerous criteria to identify superior
ones. However, none of the proposed approaches takes the target agent platform
into consideration. Platforms imply different concepts of agency in different pe-
culiarities. Since the support for agent oriented concepts differs between concrete
implementations, our proposal stresses that there are both platform dependent
and independent criteria to evaluate. In the following pages we identify a set of
aspects to take into account and show how to derive platform dependent criteria
from target platforms.

To guide evaluation regarding these criteria, we present a flexible framework
to examine the match between platform and methodology. It allows to examine
the appropriateness of methodologies for a preselected platform or vice versa
the appropriateness of different platforms for an individual methodology. This
flexibility is advantageous, because software producing organizations are seldom
free to choose tools and methodologies as they like. Often there will be certain
restrictions, e.g. industry projects may have to focus on a single platform because
a client demands its usage, or universities may favor a special methodology and
need to find a suitable software environment.

The usage of our approach is clarified by an example evaluation of the ap-
propriateness of prominent methodologies for a concrete platform, implement-
ing the BDI architecture [31]. Following our framework we derive a number of
platform dependent criteria from this implementation, and, together with plat-
form independent criteria we examine the match between pairs of platform and
methodology.

The next section gives a brief overview of proposed methodologies, and ex-
amines the comparisons of agent–oriented methodologies that have already been
conducted. Section three presents our framework. First we describe the modus
operandi of our approach and present thereafter the set of criteria to examine.
The fourth section shows an example evaluation of a set of methodologies for a
concrete platform. Finally, we conclude and give prospects for further work.

2 Background

In [16] a number of different methodologies have been arranged in a genealogy.
Figure 1 gives an overview of current proposals in a similar way. It illustrates the
main influences on the individual methodologies. We found Object–Orientation
(OO), Knowledge Engineering (KE) and Requirements Engineering (RE) as an-
cestors, which have been extended by agent programming abstractions (denoted

128 J. Sudeikat et al.

Fig. 1. Genealogy of proposed methodologies

by ovals). P denotes a coarse category of sources. Associated methodologies
were inspired by experiences with specific agent platforms or architectures. In-
termediate forms (dotted rectangles) have been extended to truly agent–oriented
methodologies (rectangles). A complete list of references to these methodologies
is omitted here for the sake of brevity, it can be found in [38].

A small amount of work has been conducted to compare agent–oriented
methodologies. These approaches found two sources of features to examine. First,
they adopt general software–engineering criteria, which have been found relevant
to the evaluations of methodologies according to various paradigms. Secondly,
they identified specific criteria that are needed to support agent–oriented con-
cepts in development. All of them gather a set of criteria, which is supposed to
be independent from the field of application or platform. They point out what
is needed for a comprehensive methodology, together with individual drawbacks
and advantages.

O’Malley and DeLoach [25] collected a set of criteria to guide organizations
in making the decision, whether an AOSE methodology should be adopted,
or if an object–oriented methodology is appropriate for a particular project.
They distinguish between Management Issues and Project Requirements. The
criteria have been validated by a survey [25]. Management issues examine the
consequences, an adoption of a methodology causes for the (software produc-
ing) organization. Aspects like cost and suitability for the organization are

Evaluation of Agent–Oriented Software Methodologies 129

examined. Project requirements concentrate on the technical issues. The au-
thors found a set of aspects that need to be modeled (such as interactions,
distribution, etc.). These criteria are rated and a weighted mean value is cal-
culated. Kitchenham [22] describes the vagueness and shortcomings of these
approaches.

Cernuzzi and Rossi [8] proposed a qualitative analysis followed by a quanti-
tative rating. They constructed a so called Attributes Tree, which organizes the
found criteria in weighted branches. After rating the leafs the value of the root
can be calculated and compared to other methodologies.

The authors identified three kinds of criteria. Internal Attributes character-
ize the internal structures of the agents, Interaction Attributes describe how the
interactions inside the system can be modeled. Finally, the Other Process Re-
quirements judge the design and development–process, proposed by the method-
ologies.

The above described proposals compared the methodologies by a screening
of the criteria, which should be compared as unbiased as possible. Dam and
Winikoff [10] evaluated methodologies by surveying inventors of the selected
methodologies and developers, who modeled a case study. They divided their
found criteria into Concepts & Properties, Modeling & Notation, Processes and
Pragmatics.

The concepts and processes are suitable for a feature–based analysis. They
examine the extent to which specific concepts are supported and the coverage
of different stages in development. Besides requirements, architectural/detailed
design, implementation and testing, these also include deployment and mainte-
nance. The other two categories examine the notation and the general manage-
ment and technical characteristics of the methodologies. Judging the appropri-
ateness of a notation and the mentioned characteristics is a challenging task.
Dam and Winikoff successfully addressed it by a survey approach.

Shehory and Sturm [35] developed a catalog of criteria for feature–based anal-
ysis of AOSE methodologies. They distinguished between Software–Engineering
Criteria and Agent–Based Characteristics. Their performed analysis identified
areas of improvement, to meet the needs of developers.

In [37] they recently adopted the classification from [10] and combined the
criteria from this work with their own. They give a sound overview of what
a mature methodology should offer in the field of agent–oriented software
engineering. Their set of criteria is appropriate to show the drawbacks of
currently proposed methodologies and therefore gives suggestions for further
development.

3 A Platform Dependent Comparison Framework

All of the approaches characterized in section 2 focus on the identification of
a superior methodology among a group of candidates. These are influenced by
previous work, examining methodologies of various paradigms. The spread of
e.g. object oriented methodologies was possible, because there was a sound un-

130 J. Sudeikat et al.

Fig. 2. Modus Operandi for the Evaluation Framework

derstanding of the object–oriented paradigm in itself. For agent systems we lack
this sound foundation to build methodologies upon (also described in [2]). There
is ongoing research on how to bridge the gap between agent oriented design and
it’s actual implementation, as demonstrated at the session From Design to Im-
plementation of the AOSE–2004 Workshop ([1], [36] and [24]). Even if we look
at a particular architecture - like BDI - we still see a lot of differences between
the available implementations and theories. These denote conceptual differences
in the expressiveness for the properties of individual agents. We conclude that,
in opposition to other software engineering paradigms, which may be language
independent, the use of agent–oriented methodologies is to a certain extent de-
pendent from the used platform. Different implementations of agent architectures
need different levels of expressiveness. The suitability of a methodology is highly
influenced by the support for this expressiveness.

Having noted this, we present a framework to evaluate the appropriateness of
methodologies in relation to platforms. Figure 2 gives a visual description of our
approach. Two kinds of criteria are evaluated. Platform independent criteria can
be examined in a feature analysis, for platform dependent ones the properties
of the implemented concepts need to be compared to properties supported in
the methodology. The match between them is examined to show their appro-
priateness. As Figure 2 depicts, not all features of a methodology will match
properties of all platforms. For our purposes it is important to identify the dif-
ferences. The shared absence of properties is regarded as a match, since it also
identifies appropriateness.

This approach allows an important adjustment to evaluation for different
purposes. As stated earlier, software producing organizations are seldom free to
choose tools and methodologies unbiasedly. Industry projects may have to focus
on a single platform because their client demands a dedicated platform, univer-
sities may favor a special methodology and thus, need to find a suitable software
environment. Premises of this kind are regarded by our approach. There are
three possible relations for evaluation. Evaluations of one methodology to many

Evaluation of Agent–Oriented Software Methodologies 131

Table 1. Overview of the evaluated criteria1

1st Phase: screening 2nd Phase: examination
Concepts Process Notation Pragmatics

Internal Architecture* Coverage of Workflows Usability Tool Support
Social Architecture* Management Expressiveness Connectivity*

Communication* Complexity Refinement Documentation
Autonomy Properties of Process Dependency of Models Usage in Projects

Pro–activity Traceability
Distribution* Clear definition

Modularity

platforms (1:n), several methodologies for one specific platform (n:1; see the later
given example) and a n:m scenario where n methodologies are rated to m plat-
forms (see Figure 2). All of these can be conducted in the same modus operandi.
Evaluations of the latter relations force the conductor to deliberate about match
vs. quality of the methodology. A good matching methodology may not comprise
all the platform independent criteria. Desirable is a methodology that matches
a given platform and supports as many of the independent criteria as possible.

3.1 Criteria

Before an examination following our approach can take place the relevant criteria
need to be identified. The selection is based on the above described directions
of comparison, but we have found a set of aspects that every evaluation has
to take into account. For our framework we adopted the classification of these
criteria from [10]. Therefore, the criteria are separated into four groups. Con-
cepts, Notation, Process and Pragmatics. Table 1 lists our selection of criteria.1

The concepts are mostly platform dependent, because even for a concrete agent
architecture (e.g. BDI), there is no sound foundation for the properties of the sin-
gle concepts. For example, the representation and expressiveness of goals varies
greatly among different implementations. The notation and process are indepen-
dent from the platform. These aspects describe the usage of a methodology. Also
the pragmatics concentrate on an examination of the support for a methodology.
The following sections will give a further explanation of the listed criteria.

The Agent–Oriented Concepts. These Criteria have to be supported by
suitable methodologies.

Internal Architecture*. The concepts which describe the internals of an agent
vary greatly between the proposed architectures. For example, BDI architec-
tures [15] describe agents with notions of mental attitudes, other approaches
use different internal representations (e.g. Subsumption-architecture [5], Soar
[39]).

1 Platform dependent criteria are marked with an asterisk.

132 J. Sudeikat et al.

Social Architecture*. These concepts describe, which social models are used
to organize the multi agent systems. Prominent models are the notions of
groups(e.g. AALAADIN [12]) or teams [17], others allow agents to offer ser-
vices, e.g. via a yellow pages directory [13].

Communication*. Different Communication models have been proposed.
Prominent models are message based (e.g. speech acts using ontologies [14]
or event based message exchange), others use memory based (e.g. black-
board [9]) architectures.

Autonomy. The abilities of an agent to solve problems in an autonomous way,
is illustrated by the modeling of functionalities or tasks an agent can execute
on its own authority. In addition, it is helpful to express the mechanisms used
to make decisions about which actions to take.

Pro–activity. It is needed to express the proactive abilities of a agent.
Distribution*. It is desirable to be able to express the allocation of agents to

places in the environment.

The Notation. The notation defines abstract views on the most important
aspects of the developed system. It comprises symbols, syntax and semantic.
The Usability is supported by a clearly defined and intuitively comprehensible
notation that is easy to draw. To support the requirements analysis, the analysis
and design of the system to build, an expressive notation supports several
views on the system to develop. It allows to express the functional, structural
and dynamic properties, where the structure includes the data and the flow of
data inside the system.

Furthermore, these models should support some technical criteria to allow
convenient usage. During development, the refinement and modularity of the
single models should be supported. Models should depend on each other and
single artifacts should be traceable. It is indispensable that syntax and semantic
are clearly defined.

The Process. To evaluate the proposed development processes we compare
them to the ”Unified Process” (UP) [19]. In [37] it is already proposed to evalu-
ate the coverage of the 5 basic workflows from the UP. The selection of the UP
is arbitrary. It is suitable as a well known reference to ease comparison. Many
more complete methodologies have been developed (e.g. the Rational Unified
Process [32]), but an illustration of the coverage of these 5 basic activities is
suitable, due to the immaturity of current proposals. The individual workflows
are: Requirements (gathering and documentation of necessities), Analysis (fur-
ther examination of the problem domain), Design (defining how the software
will be implemented), Implementation (conversion of design into executables)
and Testing (development of test–cases, their execution and debugging). Fur-
thermore, we consider the support for the management of an agent–oriented
software project. Currently this support mainly consists of heuristics and guide-
lines. The complexity of the process measures the necessary effort to learn and
to use it. Favorable is one where the tasks of the single development steps and

Evaluation of Agent–Oriented Software Methodologies 133

the sequence of them is easy to understand and to comprehend. Finally, proper-
ties of process note special properties, e.g. whether it is an iterative approach
or not, top–down or bottom–up, etc.

The Pragmatics. The pragmatics are dominated by the impressions of the
available (CASE–)tool support. Evaluating these tools is a difficult task itself.
Their usability is influenced by many aspects, in our evaluation we tried to give
consideration to ergonomic aspects. Tools should be easy to use and support
the whole development cycle. The currently available tools allow drawing the
notations and checks for consistency. The connectivity describes the platform
dependent aspects of the tool support. When tool support is available it is desir-
able to have a connection between the design artifacts and the target platform
to use it seamlessly in development. In the most convenient case there will be
the possibility to directly generate code for target platforms. Another impor-
tant aspect is the available documentation which has a great impact on the
usability and understanding of a methodology. Also the documentation of the
tools is important here. Reported experiences with the usage in projects is an
important factor for judging the maturity of a methodology.

3.2 Evaluation Process

The actual evaluation takes place in two steps. First, the abstract concepts set
need to be concretized with respect to methodologies and target platform(s).
Second, they can be examined together with our proposed platform independent
criteria.

In opposition to the properties of notations and pragmatics, the support of
concepts and the properties of a proposed process can be examined by a simple
screening of the single methodologies. Evaluating the notations and pragmatics
is a challenging task itself. It has to take objective criteria as well as ergonomic
aspects into consideration. Also the usability of CASE–Tools (an important part
of the pragmatics) is influenced by them. The work of Wood et al. [41] gives hints
how to examine a notation, and Kitchenham [22] is also taking the examination
of tools into account. But differences are subtle and subjective to the conductor
screening specific candidates. For our example, we made a case study to evaluate
these. Other possibilities are formal experiments or surveys according to the
available resources and purposes.

4 Example Evaluation

To give an example for an evaluation following our framework, we will evaluate
how the methodologies MaSE [11], Tropos [4] and Prometheus [27] (see Figure 1)
match up the Jadex [29], [3] agent platform. Jadex, developed at the Distributed
Systems and Information Systems group at the Computer Science Department
of the University of Hamburg, is an add–on to the popular JADE2 agent plat-

2 http://sharon.cselt.it/projects/jade/

134 J. Sudeikat et al.

form. It extends JADE with sophisticated BDI mechanisms and is under busy
development.

The Multiagent Systems Engineering Methodology (MaSE) proposes a com-
plete life cycle methodology for multi agent systems. It guides the developer from
the specification of the system to the final implementation. Agents are described
as finite state machines.

Tropos has been influenced by the i* framework from Yu [43] for analysis
of the early requirements of a software system. It leads the developers to an
understanding of an agent–oriented system as an organization of actors. These
seek to achieve goals by means of plans and have dependencies on other actors.

Prometheus has been influenced by the JACK3 agent platform. Static struc-
tures of multi agent systems are clearly illustrated. This methodology allows
very detailed modeling by descriptors, which hold design specific properties.

These preselected methodologies are well documented, most mature, support
BDI–concepts and CASE–tools are available (in [10] the same selection has been
found).

We are here evaluating the suitability for only one platform. Note that this
forms an 3:1 relation (three methodologies are rated to one platform). According
to the modus operandi we first derive the relevant platform dependent criteria
from the target platform. Thereafter, the concepts and process are rated by a
screening, and finally, the notations and tools are evaluated using a case study.
The presented considerations are based on our own evaluation of a suitable
methodology for this BDI platform, which has been conducted in the context of
a diploma thesis [38].

4.1 Selection of Criteria

Considering only one platform makes it fairly easy to identify the internal, so-
cial architectures and the communication concepts. Finding the relevant criteria
means to examine the platforms and methodologies in order to find aspects of
the platforms, which need to be supported by methodologies and vice versa. For
our example evaluation we found:

– Internal Architecture:
Goals, Plans, Beliefs (BDI–Architecture). Since Jadex is focused on

the use of BDI–concepts, these have to be supported by the methodology.
It is needed to be able to describe how goals (by which plans) can be
achieved and which beliefs these plans have to access. Properly described
elements allow appropriate modeling of properties to implement using
Jadex.

Capabilities. This is a concept to unitize BDI systems into functional mod-
ules, as described in [6].

Events. These express the reactiveness of agents. It should be possible to
model changes in the environment of single agents by events. Jadex also

3 http://www.agent-software.com

Evaluation of Agent–Oriented Software Methodologies 135

supports internal events to express changes inside an agent. The kind of
event should be exactly describable, to allow inferring the filters Jadex
uses to distinguish events.

– Social Architecture:
Roles. Some methodologies use Roles as a concept to structure a multi

agent system and to identify single agent classes. Therefore, we need to
examine how Jadex supports their implementation.

– Communication:
Protocols. These characterize the communication between the agents and

are supported by the underlying JADE platform.
Messages. In Jadex, the exchanged messages follow the FIPA model of

agent communication [14].

4.2 Examining the Concepts and Process

Table 2 summarizes our results for the concepts and processes. All three method-
ologies develop a system coming from the identified goals. As opposed to MaSE,
Tropos and Prometheus use the BDI–notions throughout the whole develop-
ment cycle. In all methodologies, the modeled goal concepts differ from the ones
used in Jadex. In Prometheus and MaSE agents are associated to system goals.
Tropos is more suitable, because both system and individual goals in addition
to the contribution/decomposition of plans are described. Modeled plans in all
methodologies lack Jadex specific properties. Only Prometheus describes the in-
dividual beliefs of agents in detail, but the structures of the beliefbases differ,
causing a slight mismatch. Tropos and Prometheus support the concept of capa-
bilities. Only in Prometheus, events are stated explicitly. It is also distinguished
between percepts (recognized changes in the environment) and the resulting rel-
evant events (incidents) for the system. Jadex is not aware of this distinction.
The other methodologies describe events implicitly in their UML–based models
for design.

Roles are supported by MaSE and Tropos. Roles are used as means to identify
the different types of agents the system will be composed of. Roles are not explic-
itly supported by Jadex, they can be implemented using services. Since neither
Prometheus nor Jadex support this specific concept, they match closely. Proto-
cols between agents are described in Tropos and Prometheus by the sequence of
transmitted messages. Instead MaSE describes the exchange of messages in re-
lation to the processing inside the agents. However, these representations are of
the same suitability for Jadex. In MaSE and Tropos, the content of a message is
not explicitly described. Only Prometheus defines special descriptors to describe
properties of messages. These are not compliant to FIPA ACL messages and are
therefore slightly mismatching the messages used in Jadex.

The autonomy is described in Tropos through associations between agents,
their goals and the available plans. In addition, the dependencies between the
agents are described. MaSE describes the autonomy by tasks, which an agent
is capable to execute on its own responsibility. Prometheus supports a similar
concept, functionalities are at the agent’s disposal to achieve goals. Therefore,

136 J. Sudeikat et al.

Table 2. Evaluation results: Concepts and Process

MaSE Tropos Prometheus
Concepts:
Internal Architecture Goals* +|�=|+ +|≈|+ +|�=|+

Plans* +|≈|+ +|≈|+ +|≈|+
Beliefs* +|≈|+ +|≈|+ +|≈|+
Capabilities* –|�=|+ +|≈|+ +|=|+
Events* +|≈|+ +|≈|+ +|≈|+

Social Architecture Roles* +|�=|– +|�=|– –|=|–
Communication Protocols* +|�=|– +|�=|– +|�=|–

Messages* +|≈|+ +|≈|+ +|≈|+
Autonomy ++ ++ ++
Pro–activity + ++ ++
Distribution* +|=|+ –|�=|+ –|�=|+

Process:
Coverage of Workflows 3/5 4/5 4/5
Management n.a. n.a. n.a.
Complexity ++ ++ ++
Properties of Process for all iterative and top-down

Support – –: poor –: not well n.a.: not available
+: well ++: very well

Match Left hand side: methodology supports property: + / -
Middle: match between the properties

no match: �= coarse match: ≈ good match: =
Right hand side: platform supports property: + / -

autonomy is clearly expressed by all methodologies. The expressiveness of pro–
activity is closely related to the BDI concepts. Tropos and Prometheus are taking
advantage of their comprehensive support for BDI notions. The distribution
and mobility of agents is only displayed by MaSE, matching Jadex. The other
methodologies just model the acquaintance and communicational relationships
between agents.

In [4] the development phases of Tropos are shown in relation to other
methodologies by comparing the coverage of different development phases.
Figure 3 displays the coverage of the different workflows from the UP in a similar
way. To guide grading, other prominent approaches are included (Gaia [42] and
MESSAGE/UML [7] along with the AUML–Notation4). MaSE supports the de-
velopment from requirements analysis to implementation. In Tropos, the analysis
of the requirements is more comprehensive. The so called early requirements of
the system are modeled according to the i* framework by Yu [43]. Prometheus
is also taking testing into account [30]. Guidance in management of an agent
oriented software project is fairly small. For the most part, merely heuristics

4 http://www.auml.org

Evaluation of Agent–Oriented Software Methodologies 137

Fig. 3. Coverage of the different workflows from the UP (according to [4])

are given. In the examined methodologies, the proposed progression in develop-
ment is clearly described and easy to comprehend. They all propose an iterative
approach and develop top–down, from the analysis of the requirements to the
identification and description of the single agents.

4.3 Examining the Notation and Tools – Modeling a Case Study

Beginners are guided in the usage of Jadex with a tutorial [3]. In small examples
the implementation of agent–oriented concepts is presented. We modeled the last
and most complex of these examples that combines the core concepts to a small
and therefore easy to comprehend multi agent system. Aim of this system is to
translate sentences by forwarding requests for the translation of single words to
a dedicated agent, which has access to a dictionary. This translation service is
registered at a Directory Facilitator (see [3] for details).

The made experiences in the usage lead to an impression on the expressiveness
of notations and usability of the methodology in itself (including the tools).

Another promising approach to gain more experiences is modeling a Chal-
lenge Exemplar as proposed in [44], which leads to a sounder understanding of
the strengths and weaknesses of the different methodologies.

MaSE. Usage of this methodology showed its focus on modeling the communi-
cations. Also the flow of control inside a plan is very obviously displayed. The
pragmatics are dominated by the CASE–Tool agentTool 2.0,5 which is freely
available and comfortable to use. We used it merely as a drawing tool, because
connectivity is only given for agent platforms which differ fundamentally from
Jadex. Methodology and tool are well documented in conference proceedings.
According to [10], this methodology has been most widely used in university
projects, no industrial use is known.

Tropos. Examining the early requirements has not been suitable for our small
case study. These are more concentrated on the situation in which the system

5 http://www.cis.ksu.edu/ sdeloach/ai/agentool.htm

138 J. Sudeikat et al.

to develop is needed. Process and models lead the developers to understand
the agent based application as an organization of dependent individuals. This
is especially valuable for inexperienced users to get used to this new paradigm.
While lacking a specialized CASE-Tool, conventional support for UML is suitable
during design. For the earlier phases of development, specialized tools support-
ing the notation from i* can be used.6 There is no known connectivity to agent
platforms from these tools. Documentation is nearly exclusively available as con-
ference submissions, but [4] gives a comprehensive description. Tropos has been
used in a few projects (according to [10]).

Prometheus. On the design level Prometheus describes implementation re-
lated details using descriptors. Central elements are the System and Agent
Overview Diagrams. They give an intuitive overview of the system and the
agents. This unusual and exceptional non–UML based notation is supported
by the Jack Development Environment, an integrated development environment
for the commercial JACK agent platform. Code is directly generated, which
means best connectivity for this platform. In addition, the Prometheus Design
Tool7 (PDT) is freely available. It is a drawing and documentation tool (no
connectivity), which is easy to use and very helpful for the use of the notation.
The diagrams give a general impression, but the associated descriptors hold the
relevant information. Being able to navigate these descriptors by the visual rep-
resentations is most valuable and allows to get a quick impression on the single
elements. Besides conference contributions, there are also useful tutorial notes
available [26]. Like in MaSE, this methodology has been used in a number of
university projects [10].

Result of Evaluation. All three evaluated methodologies are basically capa-
ble to support the development of applications using Jadex. A big disadvantage
of MaSE is that it does not use BDI concepts throughout the whole develop-
ment cycle. Prometheus is unique in its detailed description of the individual
components forming the agent system and the freely available CASE–Tool. In
addition, the used criteria are matching to the greatest extent, the process is
nearly as extensive as in Tropos and the modeling language is slightly more
comprehensive.

Therefore, it is concluded to propose the use of Prometheus for development
with Jadex. This leads to considerations how to include Prometheus in devel-
opment efforts. Since Jadex is a fairly new development, there is currently no
connectivity between Prometheus and Jadex. Therefore, we evaluated the possi-
ble exchange of detailed design information between the above mentioned PDT
and the Jadex platform. Agents in Jadex are defined by so called Agent Defini-
tion Files (ADF). These are XML descriptions of their properties, and a set of
Java classes (referenced in the ADF) to implement the desired behavior. In [38] a
prototype has been developed to transform PDT project files into a set of ADFs

6 Overview of available tools at: http://www.troposproject.org/
7 http://www.cs.rmit.edu.au/agents/pdt/

Evaluation of Agent–Oriented Software Methodologies 139

and vice versa. The match is not comprehensive enough to allow automatic trans-
formation, the developers need to add a number of implementation dependent
details to get fully functional ADFs. Since the match between methodology and
platform has been examined, areas of further improvement which allow transfer
of detailed design information between modeling and platform (connectivity) are
indicated by the evaluation itself. The discovered mismatches identify, which im-
provements of agent oriented concepts are needed (in methodology or platform)
to cover a common expressiveness. As a partial result of the described evalu-
ation, we adopted the Prometheus methodology for a larger research project,
which proposes an agent oriented approach to the problem domain of hospital
logistics [28].

5 Conclusions

In this paper we presented a flexible framework for evaluation of agent–oriented
methodologies that takes platform specific criteria into account. This frame-
work is based on the observation that available agent platforms imply differ-
ent concepts of agency in different peculiarities. Therefore, the match between
methodologies and platforms is examined. A methodology is well suited for a
platform if the properties of a methodology match the properties of the plat-
form used for development. The framework stresses that there are both plat-
form dependent and independent criteria to evaluate. The dependent ones need
to be derived from the proposed list of abstract concepts with respect to the
candidates before they can be examined. Evaluation has to take the nature of
criteria into account. Some are suitable for a simple feature–analysis, others
are more subtle and subjective, their assessment is therefore a difficult task in
itself. Case studies, formal experiments and surveys are appropriate for their
consideration.

Considering the above described match makes it possible to evaluate different
scenarios. It is possible to compare one methodology to many platforms (1:n),
several methodologies for one specific platform (n:1) and n:m scenarios where n
methodologies are rated to m platforms. This flexibility fits the needs of most
software producing organizations. To interpret the evaluation results correctly,
it is needed to deliberate about the match vs. quality of proposals. A well suited
methodology is not only perfectly matching a target platform, but also support-
ing a wide range of platform independent criteria.

The usage of our framework was illustrated by an example evaluation of a
group of well known methodologies for their suitability to support development
using the Jadex platform. This example usage also illustrated how to derive
platform dependent criteria from the proposed abstract concepts set.

Future improvements to the presented framework may result from an ex-
amination whether it is useful to consider application dependent criteria. For
software producing organizations, the problem domain according to a concrete
project may have impact on the selection of platforms and methodologies.

140 J. Sudeikat et al.

References

1. Amor M., Fuentes L. and Vallecillo A. ”Bridging the gap Between Agent–Oriented
Design and Implementation Using MDA”, In Proc. of AOSE 2004 Workshop, 2004.

2. Bernon C., Cossentino M. and Gleizes M. P. ”A Study of some Multi–Agent Meta–
Models”, In Proc. of AOSE 2004 Workshop, 2004.

3. Braubach L. und Pokahr A. Jadex Tutorial - Release 0.9, 2003.
4. Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., Perini A. Troops: An

agent-oriented software development methodology, Technical Report DIT-02-0015,
University of Trento, 2002.

5. Brooks R. ”Elephants Don’t play chess”. Robotics and Autonomous Systems, 6:3-
15, 1990.

6. Busetta P., Howden N., Rönnquist R. und Hodgson A. ”Structuring BDI Agents
in Functional Clusters”. in N. R. Jennings and Y. Lesperance, Intelligent Agents
VI. Springer Verlag, Berlin, 1999.

7. Caire G., Leal F., Chainho P., Evans R., Garijo F., Gomez J., Pavon J., Kearney
P., Stark J. and Massonet P. ”Agent oriented analysis using message/uml”. In
Agent-Oriented Software Engineering (AOSE), 2001.

8. Cernuzzi L. und Rossi G. ”On the evaluation of agent oriented modeling methods”,
In Proc. of Agent Oriented Methodology Workshop, Seattle, 2002.

9. Corkill D. D. ”Blackboard Systems”, AI Expert, 6(9):40-47, September, 1991.
10. Dam K. H. and Winikoff M. ”Comparing Agent-Oriented Methodologies”, In Proc.

of the Fifth Int. Bi-Conference Workshop on Agent-Oriented Information Systems
(at AAMAS03), 2003.

11. DeLoach S. A. ”Analysis and design using MaSE and agentTool”. In Proc. of the
12th MAICS, 2001.

12. Ferber J. und Gutknecht O. ”A Meta-Model for the Analysis and Design of Organi-
zations in Multi- Agent Systems”, In Proc. of the Third Int. Conf. on Multi-Agent
Systems (ICMAS98) Paris, France, 1998.

13. Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specifica-
tion, SC00001L, 2002. http://www.fipa.org/specs/fipa00001/

14. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specifi-
cation, SC00061G, 2002. http://www.fipa.org/specs/fipa00061/

15. Georgeff M. and Lansky A. ”Reactive Reasoning and Planing: An Experiments
With a Mobile Robot”, in Proc. of the 1987 National Conference on Artificial
Intelligence (AAAI 87), 1987.

16. Henderson–Sellers B. and Gorton I. ”Agent-based Software Development Method-
ologies”, White Paper, Summary of Workshop at the OOPSLA 2002, 2003.

17. Hodgson A., Rönnquist R., Busetta P. Specification of Coordinated Agent Behavior
(The SimpleTeam Approach), Technical Report 99-05, Agent Oriented Software
Pty. Ltd., 1999.

18. Iglesias C.A., Garijo M. und González J.C. ”A Survey of Agent-Oriented Method-
ologies”. In Intelligent Agents V – Proc. of the Fifth Int. Workshop on Agent
Theories, Architectures, and Languages (ATAL-98), 1999.

19. Jacobson I., Booch G., Rumbaugh J. The Unified Software Development Process.
Object Technology Series. Addison Wesley, 1999.

20. Jennings N.R. ”On Agent–Based Software Engineering”, Artificial Intelligence,
117(2), 2000:277.

21. Jennings N.R. und Wooldridge M. Agent-Oriented Software Engineering, Hand-
book of Agent Technology AAAI/MIT Press, 2000.

Evaluation of Agent–Oriented Software Methodologies 141

22. Kitchenham B. DESMET: A method for evaluating Software Engineering methods
and tools, Technical Report TR96-09, ISSN:1353-7776, 1996.

23. Luck M., McBurney P. und Preist C. Agent Technology: Enabling Next Generation
Computing: A roadmap for agent–based computing. AgentLink report, ISBN 0854
327886, 2003. http://www.agentlink.org/roadmap/index.html

24. Mao X., Yu E. ”Oranisational and Social Conceps in Agent Oriented Software
Engineering”, In Proc. of AOSE 2004 Workshop, 2004.

25. O’Malley S. A. and DeLoach S. A. ”Determining When to Use an Agent-Oriented
Software Engineering Paradigm”, In Proc. of the AOSE-2001, 2001.

26. Padgham L. ”Design of Multi Agent Systems”, Tutorial at Net.ObjectDays, Octo-
ber 7-10, 2002, Erfurt, Germany, 2002.

27. Padgham L. und Winikoff M. ”Prometheus: A Pragmatic Methodology for Engi-
neering Intelligent Agents”, in Proc. of the workshop on Agent-oriented method-
ologies at OOPSLA 2002.

28. Paulussen T. O., Zöller A., Heinzl A., Pokahr A., Braubach L., Lamersdorf W.:
”Dynamic Patient Scheduling in Hospitals” in: Agent Technology in Business Ap-
plications (ATeBA-04), 2004.

29. Pokahr A., Braubach L. and Lamersdorf W. Jadex: Implementing a BDI-
Infrastructure for JADE Agents, EXP – in search of innovation, 3(3):76-85, 2003.

30. Poutakidis D., Padgham L., Winikoff M.: ”Debugging multi-agent systems using
design artifacts: The case of interaction protocols”. In Proc. of the First Int. Joint
Conf. on Autonomous Agents and Multi Agent Systems (AAMAS’02), 2002.

31. Rao A. und Georgeff M. ”BDI-agents: from theory to practice”. In Proc. of the
First Intl. Conf. on Multiagent Systems, 1995.

32. Rational Software White Paper. Rational Unified Process: Best Practices for Soft-
ware Development Teams, 2001.

33. Rumbaugh J., Jacobson I. und Booch G. The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

34. Rumbaugh J., Blaha M., Premerlani W., Eddy F. und Lorensen W. Object–
Oriented Modeling and Design, Prentice–Hall, 1991.

35. Shehory O. and Sturm A. ”Evaluation of modeling techniques for agent-based
systems”. In Proc. of the 5th Int. Conf. on Autonomous Agents, ACM Press, 2001.

36. Steegmans E., Weyns D., Holvoet T. and Berbers Y. ”Designing Roles for Situated
Agents”, In Proc. of AOSE 2004 Workshop, 2004.

37. Sturm A. and Shehory O. ”A Framework for Evaluating Agent-Oriented Method-
ologies”, Workshop on Agent-Oriented Information System (AOIS), 2003.

38. Sudeikat J. ”Betrachtung und Auswahl der Methoden zur Entwicklung von Agen-
tensystemen”, diploma thesis, in German, HAW Hamburg, 2004.

39. Tambe M. ”Agent Architectures for Flexible, Practical Teamwork”. In Proc. of the
Nat. Conf. on Artificial Intelligence, AAAI, 1997.

40. Tveit A. ”A survey of Agent-Oriented Software Engineering”. In: NTNU Computer
Science Graduate Student Conference, 2001.

41. Wood B., Pethia R., Gold L.R. and Firth R. A guide to the assessment of software
development methods, Technical Report 88-TR-8, 1988.

42. Wooldridge M. J., Jennings N. R. und Kinny D. ”The Gaia methodology for
agent-oriented analysis and design”. Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312 , 2000.

43. Yu, E. ”Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering”. Proc. of 3rd IEEE Int. Symp. on Requirements Engineering, 1997.

44. Yu E. and Cysneiros L. M. ”Agent-Oriented Methodologies - Towards A Challenge
Exemplar”. CEUR Workshop Proceedings, 2002.

A Formal Approach to Design and Reuse Agent
and Multiagent Models

Vincent Hilaire1, Olivier Simonin1, Abder Koukam1, and Jacques Ferber2

1 Université de Technologie de Belfort Montbéliard., 90010 Belfort Cedex, France
vincent.hilaire@utbm.fr

(33) 384 583 009
2 LIRMM Université Montpellier II - CNRS, 161 rue Ada

34392 Montpellier Cedex 5 - France

Abstract. While there are many useful models of agents and multi-agent
systems, they are typically defined in an informal way and applied in an
ad-hoc fashion. Consequently, multi-agent system designers have been un-
able to fully exploit these models commonalities and specialise or reuse
them for specific problems. In order to fully exploit these models and facil-
itate their reuse we propose a formal approach based upon organisational
concepts. The formal notation is the result of the composition of Object-Z
and statecharts. The semantics of this multi-formalisms is defined by tran-
sition systems. This operational semantics enables validation and verifica-
tion of specifications. We present this approach through the specification
of the satisfaction-altruism model which has been used to design situated
multi-agent systems. We put the emphasis on the specification of a mobile
robot architecture based on the refinement of this model. The availability
of such generic models is a fundamental basis for reuse. We also show how
to analyse the specification by validation and verification.

1 Introduction

While there are many useful models of agents and multi-agent systems, they
are typically defined in an informal way and applied in an ad-hoc fashion. Con-
sequently, multi-agent system designers have been unable to fully exploit these
models commonalities and specialise or reuse them for specific problems. We be-
lieve, and the experience bear this out, that formal specification can be used to
describe model concepts which can be refined to fulfil a particular system needs.

A whole range of methodological efforts relating to MAS have been under-
taken, and can be divided into those that are based upon semi-formal models
[2, 4, 22] on the one hand, and those that are based on formal models [17, 11, 24].
A drawback of semi-formal methods is that they do not allow validation or veri-
fication of MAS. Among formal models many impose specific agent architecture
like the BDI one and are not well fitted to enable reuse of concepts. The aim
of this paper is to present a formal approach for the specification of MAS mod-
els and their reuse. This formal approach allows validation and verification and
is presented through a case study. First a formal specification of a multi-agent
model is given then it is refined for a specific application.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 142–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Approach to Design and Reuse Agent and Multiagent Models 143

The specification approach is based on a formal notation OZS [7] and an
organisational framework [12]. The organisational framework gives methodolog-
ical rules in order to specify a system in terms of an organisational meta-model
named RIO which stands for Role, Interaction and Organisation [13]. This point
of view is the basis of several other specification approaches such as [24, 6, 23].
The OZS notation is the result of the composition of Object-Z [5] and state-
charts [9]. This multi-formalisms notation allows the modelling of systems with
both reactive and functional aspects. Indeed, the basic construct of this nota-
tion is an Object-Z class which encapsulates a statechart. The Object-Z class
specify attributes and operations in a set-theoretic fashion and the statechart
specifies how the class react to external and internal events. This notation allows
the prototyping and the verification of produced specifications. The prototyping
and verification processes enable the production of correct specifications which
can be refined downto executable code as shown in the figure 1. Each concept
of the RIO meta-model is specified by an OZS class which may encapsulates a
statechart in order to specify behaviours.

Fig. 1. Specification refinement process

We present this approach through the formal specification of a multi-agent
architecture: the satisfaction-altruism model [20, 21]. This model is based on a
behaviour-based architecture as [1] and introduces a cooperation mechanism.
This one is defined as reactions to the perception of simple signals broadcasted
by agents. We illustrate the refinement of the resulting formal model in order
to specify a mobile robot application. However, the specification approach isn’t
limited to behaviour-based architecture. Indeed, in [8] we have specified a men-
talistic based architecture.

The paper is organised as follows : section 2 introduces the OZS notation.
Section 3 abstracts the satisfaction-altruism model. Section 4 presents the for-
mal specification of the satisfaction-altruism model with the OZS notation and
section 5 the mobile robots extension. Section 6 illustrates prototyping and ver-
ification on this case study. Eventually, section 7 concludes.

144 V. Hilaire et al.

2 OZS Notation

Many specification formalisms can be used to specify entire system but few, if
any, are particularly suited to model all aspects of such systems. For large or
complex systems, like MAS, the specification may use more than one formalism
or extend one formalism.

Our choice is to use Object-Z to specify the transformational aspects and
statecharts to specify the reactive aspects. Object-Z extends Z [17] with object-
oriented specification support. The basic construct is the class which encapsu-
lates state schema and operation schemas which may affect its variables.

Statecharts extend finite state automata with constructs for specifying par-
allelism, nested states and broadcast communication for events. Both language
have constructs which enable refinement of specification. Moreover, statecharts
have an operational semantic which allows the execution of a specification.

We introduce a multi-formalisms notation that consists in integrating stat-
echarts in Object-Z classes. The class describes the attributes and operations
of the objects. This description is based upon set theory and first order predi-
cates logic. The statechart describes the possible states of the object and events
which may change these states. A statechart included in an Object-Z class can
use attributes and operations of the class. The sharing mechanism used is based
on name identity. Moreover, we introduce basic types [Event ,Action,Attribute].
Event is the set of events which trigger transitions in statecharts. Action is the
set of statecharts actions and Object-Z classes operations. Attribute is the set of
objects attributes.

The LoadLock class illustrates the integration of the two formalisms. It spec-
ifies a LoadLock composed of two doors which states evolve concurrently. Paral-
lelism between the two doors is expressed by the dashed line between DOOR1 and
DOOR2. The first door reacts to activate1 and deactivate1 events. When someone
enter the LoadLock he first activate the first door enter the LoadLock and deacti-
vate the first door. The transition triggered by deactivate1 event execute the inLL
operation which sets the someoneInLL boolean to true. Someone which is between
the first and the second door can activate the second door so as to open it.

LoadLock

someoneInLL : B

INIT
¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′

outLL
∆someoneInLL

¬ someoneInLL′

A Formal Approach to Design and Reuse Agent and Multiagent Models 145

behavior

The notation for attribute modification consists of the modified attributes
which belongs to the ∆-list. In any operation sub-schema, attributes before their
modification are noted by their names and attributes after the operation are
suffixed by ’.

The result of the composition of Object-Z and statecharts seems particularly
suited in order to specify MAS. Indeed, each formalism has constructs which
enable complex structure specification. Moreover, aspects such as reactivity and
concurrency can be easily dealt with.

3 Overview of Satisfaction-Altruism Model

The satisfaction-altruism model has been developed to integrate intentional co-
operative behaviours into the collective solving problem approach. Assume the
system is composed of simple self-organised entities (reactive agents) working for
a common goal. Intentional cooperation is integrated thanks to three concepts.

The first concept is personal satisfaction. It is a value computed continuously
by each agent (noted P), representing the evolution of the current task. At each
step of the decision cycle, the agent computes a variation v of the value P ,
which can be a positive value if it progresses or a negative value if it regresses or
stagnates (see details in [20]). The cycle action-perception-update of P is shown
in figure 2 for one agent.

The second concept is dynamical influences. They are simple attractive or
repulsive signals locally emitted by the agents towards their neighbours (rep-
resented by Signal arrows in figure 2). An influence is released when an agent
perceives conflicts or possibilities to cooperate with its neighbours (represented
by the constraints evaluation box in figure 2). The influences are coded by values
defined in the same interval as P, with positive values for attraction and negative
ones for repulsion.

The last concept is altruistic behavior. Each agent computes in its action-
selection module a comparative test between the values of the perceived influ-
ences and its personal satisfaction (P). If the intensity of an external influence is

146 V. Hilaire et al.

Fig. 2. Satisfaction Altruism principle

greater than P then the agent stops its current task and executes a predetermined
altruistic behavior. It is a response to the strongest influence: a displacement to
go towards the emitter or to move away. Note that agents executing an altruistic
behavior can propagate the signal they perceive. It is useful to solve conflicts
involving several close agents [21].

This model constitutes an extension of the Artificial Potential Field (APF)
approach in the sense that agents emit dynamical signals which are perceived
by others as environmental influences. These dynamical influences can be then
combined to other classical perceptions, for instance the repulsions from the close
obstacles. This combination is represented by the sum operation in figure 2.

Different distributed problems have been efficiently solved by this model.
On the one hand with simulation tools: foraging tasks [20], navigation con-
flicts solving [21], cooperation for box-pushing and box-cutting in heterogeneous
multi-robot systems [3]. On the other hand with real autonomous mobile robots:
navigation conflicts solving [16].

4 Satisfaction-Altruism Kernel Specification

The satisfaction-altruism model is now detailed through its formal specifica-
tion, using the previously introduced approach. The analysis of the satisfaction-
altruism model using RIO is out of the scope of this paper. We only present the
classes we obtained.

The class DiscreteSensor specifies a discrete sensor device. The first line of the
class introduces the Intensity abbreviation by the == symbol. Intensity denotes
[−Pmax ,Pmax] interval where Pmax is a real constant. The next unnamed sub-
schema specifies the state space of the class. Such a device takes as input a
discrete number of signals which are represented by the stimulus sequence. Each
different sensor, indexed by a number i in N, gives a different signal, stimulus(i).
One can select the greater signal received by the getMax operation. An operation
is enclosed in named sub-schema and is divided in two parts. The first part,
above a short line is a declaration part and the second part below the short

A Formal Approach to Design and Reuse Agent and Multiagent Models 147

line is a predicate part. To include output (resp input) parameters the name
of the variable should end with an exclamation (resp question) mark. In the
getMax operation there is an output variable s. The predicate part specifies the
s domain. It belongs to the stimulus sequence range. It also states that s is the
greater stimulus perceived in terms of greater absolute value of signal intensity.

DiscreteSensor
Intensity == [−Pmax ,Pmax]

stimulus : seqSignal

getMax
s! : Intensity

s ∈ ran stimulus
�s ′ ∈ ran stimulus • |s ′| ≥ |s|

With the SAAgent class we introduce an agent based upon the satisfaction-
altruism kernel. Its attributes, operations and behaviour are defined according
to the satisfaction-altruism model. The class SAAgent inherits from Agent de-
fined in the RIO framework [12] and specifies the Satisfaction/Altruism behavior
model. The altruismTest boolean decides if the agent must be in individual state
or altruism state. It is defined as a λ-expression which evaluates the condition
included in the predicate part.

The agent attributes are first an action it currently undergo : current . Then
the agent is described by weights attached to the actions it can do weight . These
different weights can be modified by the agents evolution and their initial values
are defined by initialWeight .

The progressionReward function maps each action to a 3-uplet giving the
bonus or penaltypenalty values for agents satisfaction when it is respectively in
progression, in regression or locked.

The statechart included in the behavior sub-schema specifies the behavior of
SAAgent . It consists of two exclusive-or states. These states specify the individ-
ual and altruistic behaviours. By default an agent is in individual state and if
the altruism test becomes true then it is in altruistic state. Each superstate is
divided in two parts. First an action part which is the reaction to events and
second a communication part which emits a I valued signals.

The operations of the class are P which computes the personal satisfaction
of the agent according to the Satisfaction Altruism model and Iext which selects
the perceived signal with the maximum intensity. Eventually, actionSelection
decides for the individual state which action is to be achieved. This operation
modifies the state space of the class. Specifically it modifies the current and
weight variables. These variables are listed in the ∆-list of the operation. The
mechanism of action selection isn’t described further here since we restrict ac-
tions to movements in the sequel.

148 V. Hilaire et al.

SAAgent
Agent

altruismTest : B

altruismTest ⇔ |Iext()| ≥ P() ∧ |Iext()| ≥ |I |
BMValue == [−∆s, ∆s] × [−∆s, ∆s] × [−∆s, ∆s]

current : Action
initialWeight ,weight : Action → [0, 1]
progressionReward : Action → BMValue
s : DiscreteSensor
satisfaction, I : [−Pmax ,Pmax]

current ⊆ actions
dom initialWeight = dom weight ⊆ actions
∀ v ∈ ran progressionReward • v =
(n,m, f) ∧ ∆s ≤ f ≤ n ≤ 0 ≤ m ≤ ∆s

P
satisfaction! : [−Pmax ,Pmax]

progression(current) ⇒ satisfaction ′ = satisfaction + v .m
regression(current) ⇒ satisfaction ′ = satisfaction + v .n
locked(current) ⇒ satisfaction ′ = satisfaction + v .f

Iext
ext ! : R

ext ! = s.getMax ()

actionSelection
∆(current ,weight)

behavior

A Formal Approach to Design and Reuse Agent and Multiagent Models 149

5 Mobile Robots Extension

5.1 Principle of Robots Behavior

In the previous section we have presented the kernel of the satisfaction-altruism
model. To apply it on concrete problems it is necessary to refine the agent
perceptions and to clarify the satisfaction computation. Here we aim to de-
fine a mobile robot architecture using the model to allow agents cooperation
for navigation. In order to treat navigational conflicts the satisfaction-altruism
kernel is refined by adding the key concepts of : displacement, perception and
satisfaction.

When an agent tries to move towards a direction its displacement is de-
fined by a vector (V). This vector represents the current task of the agent.
When the agent gets the altruist state this vector becomes equal to the pre-
determined reaction to signals. In any case the vector V integrates obstacles
avoidance.

An agent blocked by the fault of others emit a repulsive signal when its
satisfaction becomes negative (the value emitted is then equals to P). When an
agent perceives such a signal and the intensity of the signal is higher than its
personal satisfaction the agent tries to move away from the transmitting agent.
It is the altruistic reaction.

Each agent is equipped with sensors allowing the detection of walls and
robots, towards different directions (into [0◦,360◦]). When the agent can progress
towards its goal the variation of satisfaction v is positive (equal to m > 0). When
it moves away v is a negative value (equals to n ≤ 0). If the agent is locked (paral-
ysed) the variation of P is equal to f , with f < n ≤ 0. The value f is computed
in function of the elements surrounding the agent. Each element has a negative
weight: value θ for robots, θ’ for walls as θ’ < θ < 0 because walls are stronger
constraints than mobile robots. v is then computed as the sum of these weights
over all the directions. In other words, the more an agent is surrounded by walls
the faster its satisfaction will decrease. As a consequence, there is an induced
emergent phenomenon that moves agents from the more constrained regions to
the less constrained ones, cf [21].

5.2 Classes for the Mobile Robot Extension

The DiscreteSituatedSensor class inherits from DiscreteSensor . It specifies a
sensor which devices are located at given angles. The signal type introduced
in the beginning of the class is defined as a free type by the ::= symbol
and we enumerate the possible value for this type. The different possible val-
ues are: ∅ (which means no signal), obstacle or agent (another robot). For
each specific sensor one can know the signal type with getSignalType oper-
ation and the number of sensors activated with the getActivatedSensor
operation.

150 V. Hilaire et al.

DiscreteSituatedSensor
DiscreteSensor
SignalType ::= ∅ | obstacle | agent

angularDistance : [0, 360]
numberOfSensors : N

dom stimulus ⊆ [1,numberOfSensors]
angularDistance = 360/numberOfSensors

getSignalType
n? : N
t ! : SignalType

getActivatedSensor
n! : N

n! ≤ numberOfSensors

Eventually the MobileRobot class specifies a robot which behavior is based on
the satisfaction altruism model. This class inherits from SAAgent. In this class
we precise many things. The propagation condition of the agent is true whenever
the external signal (Iext) is less than zero (i.e. repulsive signal) and when there
is a robot in its way. One agent perceives a hinderer when there is one agent
just in front of him. An agent progresses if and only if its move is non zero. An
agent is locked whenever its moving vector is zero and it can’t be in regression.
In order to simulate random we use a non described operation random which
outputs a random number in the set {−30,−15, 0, 15, 30}.

MobileRobot
SAAgent

propagationCondition : B

propagationCondition ⇔ (Iext ≤ 0)
∧ (s.getSignalType(s.getActivatedSensor() + 180) = agent)

perceiveHinderer ! : B

perceiveHinderer ! ⇔ s.getSignalType(0) = agent

progression : B

progression ⇔ −→V !goal
=−→0
locked : B

locked ⇔ −→V !goal = −→0
regression : B

¬ regression

A Formal Approach to Design and Reuse Agent and Multiagent Models 151

calculateVf ! : R

calculateVf ! = Σn=s.numberOfSensors
n=0 valObs(n)

valObs! : R
n? : N

s.getSignalType(n?) = obstacle ⇒ valObs(n)! = −0.75
s.getSignalType(n?) = agent ⇒ valObs(n)! = −0.25
s.getSignalType(n?) = ∅ ⇒ valObs(n)! = 0.5

dom progressionReward= {altruismReaction,
individualReaction}

ran progressionReward = (2, 0, calculateVf)
s ∈ DiscreteSituatedSensor

calculateSlide−−→Vsli =
∑

i∈{s.getSignalType(i)=obstacle}((i × angularDistance) + 90

altruismReaction−→V !goal : Vector
−→V slide = calculateSlide()−−−→Vgoal = −−−−−−→Valtruism + −−−→Vslide−−−−−−→Valtruism = k × s.getMax ().(s.getActivatedSensor()

×s.angularDistance)

individualReaction−→V ! : Vector

s.getSignalType(0) = obstacle ⇒ −−−→Vgoal = 0
s.getSignalType(0)
=obstacle ⇒ −−−→Vgoal = random−−−→Vslide = calculateSlide()−→V ! = −−−→Vgoal + −−−→Vslide

getDirection−→V ! : Vector

instate(Indivual) ⇒ −→V ! = individualReaction()
instate(Altruism) ⇒ −→V ! = altruismReaction()

The mobile robots environment is specified by the coordinate of the mobile
robots and the position of obstacles. It refines the Environment class of the RIO
framework.

152 V. Hilaire et al.

RobotsEnvironment
Environment
Coordinate == R × R

situation : MobileRobot → Coordinate
obstacles : P Coordinate

∀ a ∈ agents • situation(a)
∈obstacles
∀ a, b ∈ agents • a
=b ⇒ situation(a)
=situation(b)

�(∀ a ∈ agents •
(x , y) = situation(a)
∧ ©©©(situation(a) = (x , y) + a.getDirection()))

6 Specification Analysis

6.1 Prototyping

The prototyping is performed by using STATEMATE [10] ; an environment
which allows the prototyping and the simulation of the statechart specifications.
The specification analysis is based upon execution of the statecharts and can
be done using two techniques. The first technique is simulation and the second
is animation. In our case simulation would consist in assigning probabilities to
events or actions occurrences. With this technique one can evaluate quantitative
parameters of the specified system. As an example, in the satisfaction-altruism
model, probabilities can be assigned to agent in order to simulate exploration of
various environments.

Animation technique consists of testing the specification with predefined in-
teraction scenarios. It enables one to test if the system behavior is consistent
with requirements.

In order to evaluate our specification of the architecture we simulated the
behavior of two robots evolving in a particular environment. We defined a closed
narrow corridor where it is impossible for two agents to inter-cross, as showed
in figure 3a. The goal of each agent is to find an exit by exploring the whole
corridor. With such an environment exploration conflicts are unavoidable and
lead to the emission of repulsive signals and altruistic reactions. In particular,
when the agents meet around the centre they both try to push back the other,
this causes a quick fall of their satisfactions. The more unsatisfied agent repulses
the other to an extremity of the corridor. As the ends are closed the agents
will be blocked again. The first agent to arrive at one end of the corridor will
be surrounded by three walls. Thus it will be more constrained than the other
agent and its satisfaction will decrease faster. The model ensures that it will then
repulse the other agent and thus both will continuously explore the environment.
If an exit for the corridor is artificially created the robots will take it.

The figures 3b and 3c shows an example of such a test. The x axis represents
time and y axis represents discretized positions in the corridor for the 3b figure

A Formal Approach to Design and Reuse Agent and Multiagent Models 153

Fig. 3. Corridor environment and curves

and level of satisfaction for each robot for the 3c figure. One can see that levels
of satisfaction and trajectories are correlated. Indeed, each time the two robots
are locked the satisfaction levels decrease. They decrease faster when a robot is
locked against a wall. As soon as the altruism test becomes true the concerned
robot plays the altruist role and changes its direction (it is the case around times
109, 155 and 235). If a robot isn’t locked and can explore the corridor following
its initial direction its satisfaction level increases.

This animation shows an example of the execution of the specification for
a specific environment (the corridor) and a specific number of agents. These

154 V. Hilaire et al.

Fig. 4. Hedographs of 2 real robots

parameters can be easily modified in order to check the specification against
pertinent test cases. It is important to note that the validation of the specification
by simulation gives similar results as the real world experiments [16], see figure 4.
This figure, called hedograph from the Greek hedos which means satisfaction,
shows the satisfaction levels of two real robots.

The simulation is performed by executing the behaviour part of the obtained
specifications without developing a specific simulator. The simulation tool offers
an interactive simulation mode and a program controlled mode. In the latter
a program written in a high level language replaces the user. One feature of
this programming language is the breakpoint construct. Breakpoint stop the
specification execution when a condition is verified. Possible uses of breakpoints
are, for example, configuration tests with predefined interaction scenarios and
output of statistics.

6.2 Verification

OZS semantics [7] is based upon transition systems as defined in [19]. It means
that for each OZS specification there is an associated transition system. This
transition system represents the set of possible computations the specification
can produce.

With such transition systems and software tools like STeP [18] one can ver-
ify specification properties. With STeP specification properties are expressed in
Linear-time Temporal Logic formulas and the verification may be done by using
two techniques.

The first technique is model-checking which enables the verification of the
satisfiability of a property. The STeP model-checker proves or refutes validity
of LTL formulas relatively to a transition system. To establish the satisfiability
of history invariant H one must actually establish that ¬ H is not valid. This
technique is the simplest to use but is limited by the specification state space.

A Formal Approach to Design and Reuse Agent and Multiagent Models 155

The second technique is semi-automatic proof. It is based on deductive
method. The deductive methods of STEP verify temporal properties of systems
by means of verification rules, e.g. induction and verification diagrams. Veri-
fication rules are used to reduce temporal properties of systems to first-order
verification conditions. Verification diagrams provide a visual language for guid-
ing, organising and displaying proofs. Verification diagrams allows the user to
construct proofs hierarchically, starting from a high-level, intuitive proof sketch
and proceeding incrementally, as necessary, through layers of greater detail. The
specifier can help the proover if it can not proove a property by introducing
axioms.

For our case study one has to refine the RobotsEnvironment class to specify
the corridor example and try to verify with the STeP model-checker the satis-
fiability of the following informal property ”When a robot is locked by another
robot it’s eventually be freed”. This property is specified by the following LTL
formula :

(∃ a ∈ agents •
∀ i ∈ a.s.numberOfSensors •
a.s.getSignalType(i) = agent
∨ a.s.getSignalType(i) = obstacle) ⇒

�(∃ j ∈ a.s.numberOfSensors •
a.s.getSignalType(i) = ∅)

It means that if there exists one agent that perceives an obstacle or other
agents from all its sensors (the agent is locked), eventually this agent will be freed
ans thus at least one perception will be void. To be verified by a model checker
the corresponding transition system should include only finite and bounded sets.
All part of the specification that describe continuous or infinite types must be
discretized and bounded.

7 Conclusion

In this paper we have presented an approach which allows specification, vali-
dation and verification of MAS. Moreover, we have specified a particular MAS
model, the satisfaction-altruism one. This reactive-based model is useful for co-
operation between situated agents (or robots). We have shown validation and
verification examples for the satisfaction-altruism specification. This formali-
sation shows that our approach can be applied to behavior-based architectures,
that were not formally analysed at the beginning. We have thus applied a reverse-
engineering approach to specify formally this model. The result is composed of
OZS [7] classes which specify each component of the satisfaction-altruism model.
The first level of the specification specifies the kernel of the satisfaction-altruism
model. The second level refines the first and specifies an extension applied to
mobile robots. The advantages of our approach are first that the satisfaction-
altruism model is presented in formal and non ambiguous terms and second that
the specification decomposes the model in formal concepts which can be reused

156 V. Hilaire et al.

in specific applications. The validation phase enables specifications test with pre-
defined interaction scenarios such as the corridor application. The verification
phase allows the proof of logical properties. The reusability of such a specifica-
tion is enhanced by the results of the validation and the verification. Indeed,
all the roles and agents, validated and verified, constitute reliable components
which can be used in other applications.

At this time, our approach can be improved. In particular we plan to ease
the specification process by associating a methodology. A methodology must be
associated to ease the specification process. A CASE tool could be helpful to
support the specification. We plan to explore the verification of properties for
such specifications by using semi-automatic proofs. We also plan the specification
of others multi-agent models following the process described in this paper. This
will constitute a library of reusable generic agent and multi-agent models a sort
of design patterns for agents.

References

1. R. Arkin. Behavior Based Robotics. The MIT Press. 1998
2. Bergenti, F. and A. Poggi: 2000, ‘Exploiting UML in the Design of Multi-Agent

Systems’. In: A. Omicini, R. Tolksdorf, and F. Zambonelli (eds.): Engineering
Societies in the Agents’ World.

3. J. Chapelle, O. Simonin, and J. Ferber. How situated agents can learn to cooper-
ate by monitoring their neighbors’ satisfaction. In 15th European Conference on
Artificial Intelligence, pages 68–72, Lyon, France, 2002.

4. DeLoach, S.: 1999, ‘Multiagent Systems Engineering: a Methodology and Language
for Designing Agent Systems’. In: Agent Oriented Information Systems ’99.

5. R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language.
Technical report, Software Verification Research Center, Departement of Computer
Science, University of Queensland, AUSTRALIA, 1991.

6. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of orga-
nizations in multi-agent systems. In Y. Demazeau, E. Durfee, and N. Jennings,
editors, ICMAS’98, july 1998.

7. P. Gruer, V. Hilaire, and A. Koukam. Heterogeneous formal specification based
on object-z and state charts: semantics and verification. Journal of Systems and
Software, 70(1), 2004.

8. P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz. A formal framework for
multi-agent systems analysis and design. Expert Systems with Applications, 23.
2002.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

10. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. B. Trakhtenbrot. Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering, 16(4):403–414, Apr. 1990.

11. Herlea, D. E., C. M. Jonker, J. Treur, and N. J. E. Wijngaards: 1999, ‘Specification
of Behavioural Requirements within Compositional Multi-agent System Design’.
Lecture Notes in Computer Science 1647, 8–27.

A Formal Approach to Design and Reuse Agent and Multiagent Models 157

12. V. Hilaire, A. Koukam, and P. Gruer. A mechanism for dynamic role playing. In
Agent Technologies, Infrastructures, Tools and Applications for E-Services, number
2592 in Lecture Notes in Artificial Intelligence. Springer Verlag, 2002.

13. V. Hilaire, A. Koukam, P. Gruer, and J.-P. Müller. Formal specification and pro-
totyping of multi-agent systems. In A. Omicini, R. Tolksdorf, and F. Zambonelli,
editors, Engineering Societies in the Agents’ World, number 1972 in Lecture Notes
in Artificial Intelligence. Springer Verlag, 2000.

14. V. Hilaire, A. Koukam, O. Simonin, and P. Gruer. Formal specification of role
dynamics in agent organizations: Applications to the satisfaction-altruism model.
Autonomous Agents and Multi-Agent Systems, 2003. submitted.

15. Michael Luck and Mark d’Inverno. A formal framework for agency and autonomy.
In Victor Lesser and Les Gasser, editors, Proceedings of the First International
Conference on Multi-Agent Systems, pages 254–260. AAAI Press, 1995.

16. P. Lucidarme, O. Simonin, and A. Ligeois. Implementation and evaluation of a
satisfaction/altruism based architecture for multi-robot systems. In International
Conference of Robotics and Automation (ICRA’2002), pages 1007–1012, Washing-
ton, USA, 2002.

17. Luck, M. and M. d’Inverno: 1995, ‘A Formal Framework for Agency and Auton-
omy’. In: V. Lesser and L. Gasser (eds.): Proceedings of the First International
Conference on Multi-Agent Systems. pp. 254–260.

18. Z. Manna, N. Bjoerner, A. Browne, and E. Chang. STeP: The Stanford Temporal
Prover. Lecture Notes in Computer Science, 915:793–??, 1995.

19. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

20. O. Simonin and J. Ferber. Modeling self satisfaction and altruism to handle action
selection and reactive cooperation. 6th International Conference On the Simulation
Of Adaptive Behavior (SAB 2000 volume 2), pages 314–323, 2000.

21. O. Simonin, A. Liegois, and P. Rongier. An architecture for reactive cooperation
of mobile distributed robots. In DARS 4 Distributed Autonomous Robotic Systems
4, pages 35–44, Knoxville, TN, 2000. Springer.

22. J. Odell, M. Nodine, and R. Levy. A metamodel for agents, roles and groups. In
J. Odell, P. Giorgini, and J. P. Müller, editors, The Fifth International Workshop
on Agent-Oriented Software Systems, volume in this book. Springer-Verlag, 2004.

23. E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. Designing roles for situated
agents. In J. Odell, P. Giorgini, and J. P. Müller, editors, The Fifth International
Workshop on Agent-Oriented Software Systems, volume in this book. Springer-
Verlag, 2004.

24. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented
analysis and design. In Proceedings of the Third International Conference on Au-
tonomous Agents (Agents’99), pages 69–76, Seattle, WA, USA, 1999. ACM Press.

An Agent Construction Model for Ubiquitous
Computing Devices

Ronald Ashri and Michael Luck

Dept of Electronics and Computer Science, Southampton University,
Highfield, Southampton, SO17 1BJ, UK

ra,mml@ecs.soton.ac.uk

Abstract. One of the main challenges for the successful application of agent-
based systems in mobile and embedded devices is enabling application developers
to reconcile the needs of the user to the capabilities and limitations of agents in the
context of environments with changing and often limited resources. In this paper
we present an attempt to move towards a solution through a framework for defining
and reasoning about agents in a manner that is modular and reconfigurable at run-
time. Departing from the theoretical basis afforded by the SMART framework, we
extend it to enable the definition of fully re-configurable component-based agent
architectures. The guiding principle of this approach is an architecturally-neutral
model that supports a separation between the description, behaviour and structure
of an agent.

1 Introduction

The spread and rise in influence of embedded and mobile devices with limited compu-
tational power, which have found favour in many aspects of everyday life, from mobile
phones to personal digital assistants (PDAs), provides a counterpoint to the tradition
of desktop computing. In line with this profile, there is also an increasing demand for
integrating the various different kinds of such devices in order to provide an environ-
ment where access to information and services is available in a seamless manner, while
transcending physical location and computing platform.

Agent-based systems have a key role role to play in the effort to provide and support
such integration, since agents embody several of the required characteristics for effective
and robust operation in ubiquitous environments [4, 12]. A central area of concern for
supporting agents operating in such heterogeneous environments, which place differing
and varying demands and limitations on them, is the development of agent architectures
tailored to meet both the needs of the device at hand and environment within which
they are operating. We identify below three specific challenges for the development of
architectures in such environments.

– The heterogeneity of operating environments and devices makes it practically im-
possible to adopt a single optimal design for an agent architecture. For example, a
purely BDI-based approach for agents on all types of devices may simply be overly
complex for a number of limited devices that do not need to deal with complicated
tasks, and as such would not benefit from planning capabilities or a sophisticated

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 158–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Agent Construction Model for Ubiquitous Computing Devices 159

representation of beliefs. Instead, we should enable developers to create solutions
that are tailored to specific devices and application domains, without constraining
them to specific architectural approaches.

– The necessity to have multiple types of agent architectures, while providing the
required level of flexibility, also introduces new challenges since it increases the
overall complexity of the system design. A multiplicity of architectures also makes
it more challenging to choose the best for a specific situation.

– Finally, an agent architecture should be able to deal with the unpredictable na-
ture of computing devices and the environments they operate in. For example,
devices may stop operating due to power failure but it is important that agents
are able to keep some information about their state to retrieve when the device is
restarted.

In this paper, we address these issues by presenting a model for agent construction
that is conceptually grounded and architecturally neutral. It is conceptually grounded by
the understanding of agent systems provided through smart [10], and it is architecturally
neutral because a number of different agent architectures can be expressed through the
constructs smart offers. Through this agent construction model we advance the current
state of the art for agent-oriented software engineering in three ways. Firstly, we provide
an agent construction model that addresses the specific needs of agent construction
on mobile devices. Secondly, through the implementation of the model we identify
some specific techniques that can be used for adapting to changes in device capabilities
and operating environments. Finally, as a result of this work we identify some more
generalised features that can inform the construction of agents in other settings beyond
ubiquitous computing.

We begin by introducing a set of desiderata that our agent construction model should
fulfil, and then outline some of the key design decisions that guide its development as
well as clarify its position within the context of application development. Subsequently,
the agent construction model itself is presented followed by a discussion of its imple-
mentation for devices supporting the Java 2 Micro Edition. Finally, we conclude and
compare our approach to others.

2 Design Principles

2.1 Desiderata for an Agent Construction Model

In order to address the range of concerns raised above and provide some statement of
requirements for the agent construction model, we identify four desiderata. Although the
set is not exhaustive, we consider it to be the minimum necessary set of requirements.

Abstract Agent Model. An agent construction model that addresses the issues raised
above must be based on some understanding of how we can model agents in a manner
that is independent of agent architectures. This allows the comparison of alternative
architectures at this more abstract level, ultimately providing application developers
with more informed choices before they proceed to provide specific implementations

160 R. Ashri and M. Luck

for the domain in question. In our case, the smart framework provides such an
abstract agent model (as discussed in Section 2.2).1

Architecturally Neutral. The construction model should not lead to the construction
of only a limited range of agent types, but should allow the widest possible range
of architectures to be defined using the same basic concepts. In order to achieve
this, there are two possible avenues to explore. One option is to define a generic
agent architecture and describe other architectures in terms of this generic architec-
ture, something that Bryson et al. suggest [6]. Apart from the inherent difficulty in
constructing any general, all inclusive model, the drawback of this approach is that
there may be features of other architectures that cannot directly be translated to the
generic one. The second option is to provide an architecturally-neutral model, so
as to avoid this translation problem. Here, the challenge is to provide a model that
is specific enough so that it actually offers something to the construction of agents,
but general enough to support the development of a wide range of architectures.
Through an appropriate architecturally-neutral model we can consider a range of
architectures based on a common set of agent-related abstractions and without losing
expressive capability.

Modularity. The model should allow for modular construction of agents. This is nec-
essary both in order to meet general software engineering concerns and to delineate
clearly the different aspects of an architecture. As discussed in Section 2.3, our
approach calls for a separation between describing agents in terms of their charac-
teristics, their structure and their behaviour. Such a fine-grained approach can lead
to a better understanding of the overall functioning of the agent as well as how it
can be altered, since the different aspects of the architecture are clearly identified
and the relationships between them made explicit.

Run-time Reconfiguration. The reality of current computing environments is that
changes are often required as the system is running. With large systems that can
contain dynamic, complex dependencies between various parts, it is crucial to be
able to reconfigure agents at run-time. Reconfiguration may mean providing more
functionality to an agent or changing the way it behaves in order to better meet
application requirements.

2.2 smart

The agent construction model is based on smart [10] (Structured, Modular Agent Re-
lationships and Types), which provides the foundational agent concepts that allow us
to reason about different types of agents, and the relationships between them, from
through a single perspective. We chose smart because it provides appropriate agent
concepts without restricting us to a specific agent architecture. Furthermore, smart
has already been successfully used to describe several existing agent architectures and
systems (e.g. [8, 9]).

We avoid here a more complete presentation of smart and focus on just those con-
cepts that are used for the agent construction model. In essence, smart provides a

1 The need for well-defined agent models is also advocated in [15] in this collection of papers
and, indeed, use the same formalism as smart to do so.

An Agent Construction Model for Ubiquitous Computing Devices 161

compositional approach to the description of agents that is based on two primitive con-
cepts, attributes and actions. Attributes refer to describable features of the environment,
while actions can change the environment by adding or removing attributes. Now, an
agent is described by a set of attributes and a set of capabilities, where capabilities are
actions an agent can perform. More importantly, an agent has goals, where goals are
sets of attributes that represent desirable states of the environment for the agent. On top
of this basic concept of an agent, smart adds the concept of an autonomous agent as
an agent that generates its own goals through motivations, which drive the generation of
goals. Motivations can be preferences, desires, etc., of an autonomous agent that cause
it to produce goals and execute actions in an attempt to achieve those goals.

This approach to agent description fits well with our requirement for architecture
neutrality but does not sufficiently address our requirements for modularity and run-time
reconfiguration. In Section 2.3 we discuss how the descriptive capabilities of smart are
enhanced to cope with these requirements.

2.3 Description, Structure and Behaviour

While smart is suitable for describing agents, it lacks the necessary features for con-
structing agents. For the purposes of smart, this was not a problem since it was intended
to provide a theoretical framework that would allow the description of a number of dif-
ferent agent systems. However, for us it is crucial to be able to provide tools that facilitate
the construction of agent architectures. Nevertheless, we do not want to replace the de-
scriptive capabilities of smart, since they offer some useful features as discussed above.
Rather, we complement them with additional aspects, which are identified below.

smart allows systems to be specified from an observer’s perspective. Agents are
described in terms of their attributes, goals or actions, not in terms of how they are built
or how they behave. In other words, the focus is on the what and not the why or how. We
call this a descriptive specification, since this essentially describes a situation without
analysing its causes nor the underlying structures that sustain that situation. However,
these are just the issues we need to address within a construction model. Thus, along
with the descriptive specification, we need to have the ability to specify systems based
on their structure – the individual building blocks that make up agents – as well as their
behaviour. We call these other views the structural specification and the behavioural
specification, respectively.

The structural specification enables the identification of the relevant building blocks
or components of an agent architecture. Different sets of building blocks and different
ways of connecting them can enable the instantiation of different agent types. By contrast,
the behavioural specification of an agent addresses the process through which the agent
arrives at such decisions as what actions to perform. These specifications, along with the
descriptive specification, provide a more complete picture of the system from different
perspectives. It is interesting to note that it is possible to begin from any one of these
views and derive the remaining two, but the correspondence is not one to one. Several
behavioural and structural specifications could satisfy a single descriptive specification,
and vice-versa.

For example, let us consider an agent operating on a user’s mobile device, whose
purpose is to determine what physical devices (e.g. projector, fax machine, laser printer)

162 R. Ashri and M. Luck

Descriptive Specification Behavioural Specification Structural Specification

Attributes: Step 1: Active Devices Discover
Agent Owner = Ronald Ashri Discover available devices
Allowed to Use Devices = True Step 2: Active Information Services Discovery

Discover available info services
Capabilites: Step 3: Devices Evaluation Component
Search for devices Evaluate suitability against goals
Search for infromation services Step 4: Information Services Evaluation Component

Notify user about device
Goals: Step 5: Information Services Query Component
Find laser printer Get results from info service if
Get directions to closest restaurant one discovered User Notification Component

Fig. 1. Distinguishing between description, structure and behaviour

and information services (e.g. local weather information, maps of the building) are
available for use in a conference room and, based on the current goals of its user,
identify the devices that are relevant to the user or query the information services for
the required information. A descriptive specification of such an agent may state that the
agent belongs to a user, has certain rights with regards to accessing devices and services
in the conference room, the goals of printing an overview of the user’s presentation and
finding out where the closest restaurant is, and so forth. A behavioural specification
may state that this agent begins operation by collecting information about available
devices and services, then filters for those that are best suited to the user’s goals, and
decides whether to inform the user about them or interact directly with them.A structural
specification may state that the agent has different components, each able to handle
specific functionalities such as searching for Bluetooth-enabled devices, communicating
with information services or directory agents, and so forth. The different aspects are
illustrated in Figure 1. This separation between the different views allows us to change
some aspects without necessarily impacting on the others. For example, the behaviour
could be altered so that the agent reports on the first device that fits the required profile,
rather than attempting to find the best one. The structural specification could also be
based on a tightly integrated control loop rather than a component-based approach.

The agent construction model reflects these levels by allowing direct access to these
different aspects of agents, based on a clear decoupling at the architectural level.

2.4 Component-Based Construction

In order to support the division of an architecture’s different aspects as described above,
and to satisfy the requirement for modularity and re-configurability, we take a compo-
nent-based view of agent architectures.

Component-based software engineering is a relatively new trend in software engi-
neering [7, 11]. Separate developments within the fields of object-oriented computing,
re-usable software code, formal methods, and modeling languages have all steered to-
wards a component-based approach [18]. Components are understood as units of com-
position that can be deployed independently, while a third-party coordinates their inter-
actions [20]. Interaction with a component takes place through a well-defined interface,
which allows the implementation of the component to vary independently of other as-
pects of the system.

An Agent Construction Model for Ubiquitous Computing Devices 163

SMART
actSMART

Architectures

Domain Support
Applications

increasing
abstraction

Fig. 2. From smart+ to applications

There are three main benefits to architecture design following a component-based
approach, in line with our aims. Firstly, describing an agent architecture through the com-
position of components promotes a clearer identification of the different functionalities
and allows for their re-use in alternative contexts. Secondly, different types of compo-
nents can be composed in a variety of ways to achieve the best results for the architecture
at hand. Finally, by connecting the abstract agent model of smart to component-based
software engineering, we bring it much closer to practical development concerns within
a paradigm that is not foreign to developers.

2.5 From smart+ to Applications

In this section, we clarify the relationships between the agent construction model which,
from now on, we will refer to as actsmart, the abstract agent model smart, and the
application level. These clarifications serve to indicate how the work presented here can
be used within the context of the agent development process.

The relationships are illustrated in Figure 2. At the most abstract level lies smart.
Then, actsmart represents an extension of smart to deal with the construction of agents.
Architectures for agents, which can range from application-independent architectures,
such as BDI, to application-specific architectures, can thus be designed using the frame-
work provided by actsmart, and based on the concepts provided by smart. We should
note that application-independent architectures are not always required and may not al-
ways be advisable. For example, an agent dedicated to dealing with requests for quotes on
fast-changing financial information, where performance optimisation is crucial, would
benefit from an application-specific architecture tailored to that situation. Conversely,
agents expected to deal with a variety of changing tasks and complex interactions with
other agents, such as sophisticated negotiations, might benefit from a more generic and
sophisticated deliberative architecture. One of the benefits of our approach is that while
it distinguishes between the different cases, it can still consider them within the same
conceptual and practical framework.

The next level is domain-specific support, which involves appropriate middleware
to support agent discovery and interactions between agents in the specific distributed
environments in which the applications operate, as well as other components that could
supplement agent capabilities. Finally, specific applications can be built, making use of
all the layers below.

3 Components

The first step towards developing our agent construction model, as discussed above, is to
introduce and define components as the basic buildings blocks for an agent. These can be

164 R. Ashri and M. Luck

ActiveDevices
Discovery (Sensor)

InformationServices
Discovery
 (Sensor)

UserGoals
 (InfoStore)

DeviceEvaluation
 (Controller)

InformationService
Evaluation

 (Controller)

UserNotification
 (Actuator)

UserInput
 (Sensor)

ServiceQuery
 (Actuator)

InfoServiceReplies
 (Sensor)

Fig. 3. Example Agent Architecture

considered as the structural representations of one or more related agent functionalities,
which are considered at two different levels. At an abstract level, the functionality is
described in generic terms, which we will present shortly. At the implementation level,
the abstract functionality is instantiated through the actual computational mechanisms
that support it. The reason for distinguishing between these different levels is so that
we can use generic component types to specify an agent architecture at a high level of
abstraction without making direct reference to the detailed behaviour of each component.
This allows us to move between the different levels while retaining a good understanding
of the overall architecture, and identifying which specific components best suit each of
the generic functionalities.

Generic Component Types. From here on, we set out the terms that can be used to
describe components at an abstract level. We begin by dividing components into four
generic types, each one representing a class of functionality for the agent.

We use the example architecture illustrated in Figure 3 to explain each generic com-
ponent type. The diagram presents an architecture for an agent, based on the example
discussed in Section 2.3.2 The domain specific functionality of components is as fol-
lows. Information about available devices and information services is collected by the
ActiveDevicesDiscovery and InformationServicesDiscovery components. The user pro-
vides information through the UserInput component, which defines the goals of the
user. These goals are stored in the UserGoals component. Based on these goals, the De-
viceEvaluation and the InformationServiceEvaluation components choose which of the
devices and services are relevant to the user. Information services are queried through the
ServiceQuery component and replies are received by the InfoServiceReplies component.
Finally, the user is notified about relevant devices and replies from information services
through the UserNotification component.

The generic functionality of the components can be divided into information col-
lection (sensors), information storage (infostores), decision-making (controllers) and
finally those directly able to effect change in the environment (actuators). These four

2 Note that while this architecture is sufficient for illustrating the agent construction model and
how it can benefit agent design we do not claim that it is a complete design for such an agent.

An Agent Construction Model for Ubiquitous Computing Devices 165

generic types of components, described in more detail below, can be used to describe a
wide range of agent architectures and fit particularly well with the context of ubiquitous
devices, where there is clear distinction between the external environment of the device
and the agent itself.

– Controllers are the main decision-making components in an agent. They analyse
information, reach decisions as to what action an agent should perform, and delegate
those actions to other components.

– Sensors are able to sense environmental attributes, such as signals from the user or
messages received from other agents. They provide the means through which the
agent gains information from the environment.

– Actuators cause changes in environmental attributes by performing actions.
– Infostores are components whose main task is that of storing information. Such

information could be anything from the beliefs of an agent about the world, to
plans, to simply a history of the actions an agent has performed or a representation
of its current relationships.

Component Statements. The internal operation and structuring of components, irre-
spective of their type, is divided into a functionally-specific part and a generic part. In
this subsection, we describe the generic operation that is common to all components. In
addition, we describe the types of information that components can exchange and how
that information is processed by a component.

Each component accepts a predefined set of inputs and produces a predefined set of
outputs. A component generates an output either as a direct response to an input from
another component, a signal from the environment or an internal event. For example,
a sensor component attached to a thermometer may produce an output every five min-
utes (based on an internal clock), or when the temperature exceeds a certain level (an
external signal), or when requested from another component (as a response to the other
component).

In actsmart, inputs and outputs share a common structure; they are statements, which
have a type and a body. The body carries the main information (e.g., an update from a
sensor), while the type indicates how the information in the main body should be treated.
We make use of three types of statements, described below.

– Inform-type statements are used when one component simply passes information
to another component. In order for one component to inform another of something,
it must be able to produce the inform-type statement as an output and the other
must be able to accept it as an input.

– Request-type statements are used when one component requires a reply from an-
other component. In this case, the receiving component processes the request and
produces an inform statement that is sent to the requesting component. The mech-
anisms through which statements are transmitted from one component to another
are introduced in Section 4.

– Execute-type statements are used to instruct a component to execute a specific
action. Typically, controller components send such statements to actuators so that
changes can be effected in the environment.

166 R. Ashri and M. Luck

while active and not executing do
listen for statements

if statements received then
store statements

if call to execute then
retrieve stored statements

while stored statements not empty do
if INFORM then

update relevant attributes
if REQUEST then

retrieve relevant attributes
create INFORM statement
push statement to outbound stack

if EXECUTE then
push statement to execution stack

pop statements from execution stack and perform actions

send statements to other components

Fig. 4. Component Lifecycle

The information within a statement’s body is, in its most general form, described
through attributes, as per the definitions given in Section 2.2. Attributes can be di-
vided along the lines of architecture-specific attributes and domain-specific attributes.
Architecture-specific attributes are attributes that are only relevant within the internal
scope of an agent architecture. For example, a BDI-based architecture could define at-
tributes such as plans, beliefs, intentions and so forth.3 Architecture-specific attributes
can be considered as defining the internal environment of an agent. Domain-specific
attributes define features that are relevant to the environment within which the agent is
operating. So, in the example above, these attributes may include features such as device
name, location, and so forth. Generic agent architectures, such as BDI-based ones, typi-
cally make use of both types of attributes, including domain specific attributes within the
architecture-specific attributes. Thus a plan may prescribe an action to contact a service,
as identified by its service name. The components of an AgentSpeak(L) architecture,
for example, could then manipulate plans and beliefs, and have some generic way of
manipulating the domain-specific attributes. However, a developer may also choose to
develop an agent that has no architecture-specific attributes, creating components that
can directly manipulate domain-specific attributes.

Component Operation. An outline of the component operation is shown in Figure 4.
Components begin their operation in an inactive state, but once activated (by the shell
that is described in Section 4, perform any relevant initialisation procedures and wait
for receipt of statements or for the command to execute by the shell. When a statement
is received, it is stored within the component until the component enters its component
execution phase. At this point, all statements received by a component are processed.
The processing of statements may result in the component performing a set of actions
or firing statements itself. This process stops when the component is de-activated.

The reason that components store statements instead of dealing with them imme-
diately is that components can be made to react immediately after each statement is

3 This approach was followed by d’Inverno and Luck when formalising AgentSpeak(L) [9].

An Agent Construction Model for Ubiquitous Computing Devices 167

Fig. 5. Agent shell

received through external control, as we discuss in the next section. In other words, the
behaviour of a component within the context of the entire architecture (i.e., when it acts
or sends messages) depends on an external controller.

At any given time, the state of a component, in terms of the information to be ma-
nipulated, is given by the set of statements that have not yet been processed, the set of
statements in the execution stack, the set of statements in the outbound stack, and any
attributes that the component manipulates. Depending on the specific implementation
of a component, it may be possible to interrogate components for their individual states.
We discuss this issue further in Section 5.

With components, we are able to differentiate between the different tasks an agent
architecture needs to perform, from a structural perspective. In contrast, the composition
of components and the control of the flow of information between them provides the
behavioural specification. In the next section we see how this is managed.

4 Shell

As discussed in Section 2.4, the basic principle of a component-based approach is that
components should be independent of each other and the coordination between them
should be handled by a third-party. The design of the components presented above
achieves independence by defining the interface of the components so that interaction
is reduced to the exchange of statements, with no consideration as to where a statement
arrives from. The third-party coordination is achieved by placing components within
a shell, which acts as the third party that manages the sequence in which components
execute and the flow of information between components. This management takes place
by defining links between components and the execution sequence of components. The
basic aspects of a shell are illustrated in Figure 5. We use different representations for
the different types of components in order to aid the illustration of agent architectures.
Sensors are dashed rectangles, infostores are rounded corner rectangles, actuators are
continuous line rectangles, and controllers are accented rounded corner rectangles. Com-
ponents are placed within a shell, links are created between components to allow the
flow of statements, and an execution sequence is defined. In addition, the shell can be
used to maintain descriptions of agents in terms of attributes, capabilities and goals. We
consider each of these aspects in more detail below.

Links. Information flows through links that the shell establishes between components.
Each link contains paths from a statement-producing component to a statement-recei-

168 R. Ashri and M. Luck

ving component. Each component that produces statements has a link associated to it that
defines the components that should receive those statements. Links also ensure that, in the
case of a request statement, the reply is sent to the component that produced the request.
Thus, links manage paths, which are one-to-one relationships between components.
They are usually unidirectional, except in the case of a request statement, for which
an inform may be returned in the opposite direction.

The shell then uses the information within links to coordinate the flow of statements
between components. Ultimately, coordination depends on the choices that a developer
makes, since it requires knowledge of each component and how they can be composed.

By decoupling the handling of statements between components from the compo-
nents themselves, we gain considerable flexibility. We can manage the composition of
components and the flow of information without the components themselves needing to
be aware of each other. It is the architecture developer’s task to ensure that the appro-
priate links are in place. At the same time, we have flexibility in altering links, and it
becomes easier to introduce new components. Furthermore, basic transformations can
be performed on a statement from one component to the other to ensure compatibility
if the output of one component does not exactly match the required input for another.
For example, if a sensor component provides information from a thermometer based on
the Celsius scale, while a controller that uses that information makes use of the Fahren-
heit scale, the link can be programmed to perform the necessary transformation. These
features satisfy our requirement for facilitating the reconfiguration of architectures.

Execution Sequence. Apart from the management of the flow of information, we also
need to consider the execution of components for a complete view of agent behaviour.
This is defined via an execution sequence that is managed by the shell. Execution of a
component includes the processing of statements received, the dispatch of statements
and the performance of any other actions that are required. The execution sequence
is an essential part of most agent architectures and, by placing the responsibility of
managing the sequence within the shell, we can easily reconfigure it at any point during
the operation of the agent. For many architectures this may be purely sequential, but
there are cases in which concurrent execution of components is desired (e.g., the DECAF
architecture is based on a fully concurrent execution of all components [13]). In general,
the issue of supporting complex execution sequence constructs, such as conditional
paths and loops, is considered to be an issue that goes beyond the scope of this research,
and there is a wealth of existing research that can be accessed to address this need.
For example, recent developments within the field of Semantic Web Services provide a
process model language for describing the operation of a web service [1]. Nonetheless,
through our proposed mechanisms, we facilitate the necessary separation of concerns to
enable the integration of such work within the scope of agent architecture development.
In Section 5, where we present an implementation of actsmart, we only implement a
sequential execution sequence, which is sufficient for our current purposes.

Agent Description. The description of the agent as a whole is maintained by the shell,
which can store attributes that describe the agent owner, its location, user preferences,
etc. The level of detail covered by this description is mostly an application-specific
issue, and this information can either be provided directly to the shell by the developer,

An Agent Construction Model for Ubiquitous Computing Devices 169

or collected from the various components. The shell could query a component that is able
to provide information about current location, for example, and add that to the profile
of the whole agent. Likewise, it may keep a record of the current goal an agent is trying
to satisfy, or the plan it is pursuing. The capabilities collecting and providing attributes
describing the agent within the shell may be particularly useful in a situation in which
a developer wants to export a view of the agent for debugging purposes, or when some
information needs to be advertised, such as the agent’s capabilities.

Agent Design. With the main aspects of the agent construction model in place, we now
briefly describe the agent design process. Agent design begins with an empty shell. We
could envisage implementations of shells being provided by environment owners, which
would ensure compatibility with their environment, while allowing the agent developer
relative freedom as to the structure and behaviour of the agent within the confines of the
shell. Then, based on the purpose of the agent, the necessary components for sensing,
acting, decision-making (controllers) and information storage can be identified. If such
components already exist, the main task of the developer is to decide on the desired
behaviour, in terms of execution sequence and flow of information, and whether any of
the outputs of components need to be transformed in order to be aligned with the input
needs of other components.

The components are then loaded into the shell, and links, as well as an execution
sequence, can be defined. With the execution sequence in place, the operational cycle
of the agent can begin. Agent operation can be suspended or stopped by stopping the
execution sequence. This operational cycle can be modified by altering the execution
sequence, and modifying links between components.

5 Implemenation of actsmart

In order to evaluate the viability of the agent construction model, we have developed an
implementation of the ideas described above in Java. The resulting toolkit consists of
a core set of applications programming interfaces (APIs) that represent the basic code
required for defining a shell, components and links between components. This core has
been programmed solely using classes supported within the Mobile Information Device
Profile (MIDP) of the Java 2 Micro Edition [14]. As such, the core ideas can be used by
wide range of devices, from workstations to limited capability mobile phones.

There are two extensions to the core, one for more powerful devices such as desk-
top and laptop computers and one for mobile devices, respectively. The extension for
powerful devices provides enhancements to the core, such as a graphical user interface
for building entities and run-time loading of components, that are not possible for lim-
ited capability devices. Furthermore, in order to speed up the development process, we
can define the required components, attributes, links and execution sequence within an
XML file and use that to create an agent in the desktop environment. The extension for
mobile devices provides functionality that is specific to mobile devices such as perma-
nent record stores and user interfaces for mobile devices. In both cases, we can manage
the information flow between components at run-time as well as change the execution
sequence within the limits of the types of execution sequence that we currently support.

170 R. Ashri and M. Luck

The user interfaces provided with actsmart, for both the mobile and desktop devices,
allow direct access to all the relevant information on the state and operation of an agent,
as well as the capability to manipulate each agent as a whole or as individual components.
As such, they can serve as the basis for effective debugging tool for agents as well as a
means to manipulate and change agent configurations during run-time.

5.1 Implementing an Architecture

In order to illustrate some of the benefits of this approach for mobile devices we have
implemented the architecture and scenario described in Section 3 for a MIDP 2.0 com-
pliant device using the J2ME Wireless Toolkit, which provides an environment that can
simulate various mobile devices and the operation of MIDP applications within them.
The discovery of available services and devices is simulated, with the mobile device
using the APIs provided by MIDP 2.0 (Generic Connection Framework) for network
communication and communicating via TCP/IP with independent processes that pro-
vide the relevant information. We avoid here detailed descriptions of the exact statements
exchanged between components, due to a lack of space, and focus on some of the specific
implementation issues for mobile devices.

Adapting to Changes in the Environment. Pervasive environments present a con-
stantly changing set of devices and services to interact with as well as modes of inter-
actions. For example, a device may be able to communicate with other devices through
a variety of low-level protocols such as 802.11b wireless, Bluetooth or even SMS mes-
sages as well as higher level agent language communication protocols. By isolating the
functionality required for these different types to dedicated sensor components we can
dynamically choose which to use at runtime based on device capabilities. For example,
upon initialisation, a shell can determine if a device supports Bluetooth communication
and accordingly activate and link the Bluetooth-enabled sensor component. Similarly,
a device can determine that a certain protocol, although supported by the device, is not
supported by anything else in the environment, and by consequence unlink and deactivate
the component, thus minimising the load the agent places on the device.

Suspending Operation. A useful feature of actsmart is the easy access it provides to
the state of individual components and the agent as a whole. This allows us to suspend the
operation of an agent either through a user command or when the device is interrupted
(e.g. by a phone call). The MIDP application management model supports the persistent
storage of the relevant information on a device, thus enabling operation to resume from
where it left off. This feature can also be used to periodically save data in order to be
able to recover operation if the device unexpectedly switches off.

Modifying the Architecture

Finally, through the mechanisms provided by Java mobile device technologies and, in
particular, over-the-air provisioning of MIDP [14], applications we can take advantage
of the flexibility afforded by actsmart to replace existing architectures with modified
versions that can support more functionality. For example, in Figure 6 the basic architec-
ture is extended to support interaction with other user devices that can provide profiles

An Agent Construction Model for Ubiquitous Computing Devices 171

UbiAgent - with user device interactions

DeviceEvaluation
ActiveDevices

Discovery

UserGoals

UserNotification

UserInput

InfoServices
Discovery

InfoServices
Replies

InformationService
Evaluation

InfoService
Queries

UserDevice
Messages

UserProfiles
Input ProfileEvaluation

ProfileStore
UserDevice

Queries

Fig. 6. Extended Ubiquitous Agent Design

of their owners. The bold components are the additional or modified components over
the existing architecture. They allow the user to input another goal, which is handled by
the new components to store, evaluate and send profiles to other devices.

5.2 Discussion

The implementation of the architecture in actsmart has provided useful experience as to
the suitability of the model for agent construction in a ubiquitous computing environment
setting. Although the implementation of interactions with other sources are based on a
simulation of the environment, theAPIs used are those directly supported by the majority
of high-end mobile phone devices.

The fine-grained control over every aspect of the agent aids in testing and debugging,
since components can be tested individually and they can be tested in conjunction with
other components without requiring an instantiation of the entire architecture. Moreover,
the state of each component, and the agent as a whole, is clearly defined, and changes
to individual components and to the overall architecture are easy to achieve.

6 Conclusions

A component-based approach to agent design is, of course, not unique. The majority
of current agent toolkits (e.g. [21, 16, 3, 19]) support some sort of component-based ap-
proach. However, they do not explicitly support the definition of a range of architectures.
A notable exception is JADE [3], which provides limited support for agent architectures
and does not constrain the developer to a specific one. However, at the same time, it does
not aid the developer by providing a conceptually grounded construction model, such as
actsmart. We note that the generic nature of JADE could allow for the use of actsmart
in conjuction with it, enabling developers to take advantage of both a dedicated agent
construction model, and the extensive infrastructural support provided by JADE.

Methodologies for agent development have also introduced similar notions. The
most relevant example is the DESIRE design method [5], where compositional design

172 R. Ashri and M. Luck

is an integral part of the methodological approach proposed. Components are seen as
encapsulating processes and composition of components is, therefore, a composition of
processes. Our approach is complementary to DESIRE since it can be seen as restrict-
ing many of the concepts already supported within DESIRE. It is a more lightweight
construction that is more specific in defining the types of individual components and
the ways that they can communicate. As a result, it deals well with the issues related
to ubiquitous computing devices and makes implementation more straightforward since
actsmart maps directly to implementation. We are able to describe very simple archi-
tectures, such as just a reactive agent4, to more complex architectures5 , while retaining
a clear separation between an abstract specification level and practical implementation.

The approach offers several real contributions to the state-of-the-art, as follows: it
addresses development concerns directly by providing clear links between conceptual
models and implementation; it builds on existing theoretical work while adopting the
most valuable practical developments; and it tackles some of the implementation con-
cerns of mobile devices, supported by a sound foundational approach that is easily
realisable in practice.

References

1. A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. M. Drew McDermott,
S. Narayanan, M. Paolucci, T. R. Payne, and K. Sycara. DAML-S: Web Service Description
for the Semantic Web. In I. F. Cruz, S. Decker, J. Euzenat, and D. L. McGuinness, editors,
The First Semantic Web Working Symposium, pages 411–430. Stanford University, California,
2001.

2. R.Ashri, I. Rahwan, and M. Luck. Architectures for NegotiatingAgents. InV. Marik, J. Muller,
and M. Pechoucek, editors, Mutli-Agent Systems and Applications III, volume 2691 of LNAI,
pages 136–146. Springer, 2003.

3. F. Bellifemine, A. Poggi, and G. Rimassa. Developing Multi-agent Systems with JADE. In
C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents VII. Agent Theories Architec-
tures and Languages, volume 1986 of LNCS, pages 89–103. Springer, 2001.

4. F. Bergenti and A. Poggi. Ubiquitous Information Agents. International Journal of Cooper-
ative Information Systems, 11(3–4):231–244, 2002.

5. F. T. Brazier, C. Jonker, and J. Treur. Principles of Component-Based Design of Intelligent
Agents. Data and Knowledge Engineering, 41:1–28, 2002.

6. J. Bryson and L. A. Stein. Architectures and Idioms: Making Progress in Agent Design. In
C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents VII. Agent Theories Architec-
tures and Languages, volume 1986, pages 73–88. Springer, 2001.

7. J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying COmponent-
Based Software. Addison-Wesley, 2000.

8. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification of dMARS.
In M. P. Singh, A. S. Rao, and M. Wooldridge, editors, Intelligent Agenrs IV: Proceedings of
the Fourth International Workshop on Agent Theories, Architectures and Languages, volume
1365 of LNCS, pages 155–176. Springer, 1996.

4 In our case a reactive architecture would consist of just sensors linked directly to actuators.
5 We have used the same approach to describe complex negotiating agent architectures [2].

An Agent Construction Model for Ubiquitous Computing Devices 173

9. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computational Model.
Journal of Logic and Computation, 8(3):233–260, 1998.

10. M. d’Inverno and M. Luck. Understanding Agent Systems. Springer, 2nd edition, 2004.
11. D. D’Souza and A. Wills. Objects Components and Frameowrks with UML. Addison-Wesley,

1998.
12. T. Finin, A. Joshi, L. kagal, O. V. Patsimor, S. Avancha, V. Korolev, H. Chen, F. Perich, and

R. S. Cost. Intelligent Agents for Mobile and Embedded Devices. International Journal of
Cooperative Information Systems, 11(3–4):205–230, 2002.

13. J. Graham and K. Decker. Towards a Distributed Environment-Centered Agent Framework.
In N. Jennings andY. Lesperance, editors, Intelligent Agents VI Agent Theories, Architectures,
and Languages, volume 1757 of LNCS. Springer, 1999.

14. J. . E. Group. Mobile Information Device Profile for the Java 2 Micro Edition - Version 2.0.
Technical report, Java Community Press, 2002.

15. V. Hilaire, O. Simonin, A. Koukam, and J. Ferber. A Formal Approach to Design and Reuse
Agent and Multiagent Models. In P. Giorgini, J. P. Muller, and J. Odell, editors, Agent-Oriented
Software Engineering V. Springer, 2004.

16. H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A Tool-Kit for Building Distributed
Multi-Agent Systems. Applied Artifical Intelligence, 13(1):129–186, 1999.

17. J. Spivey. The Z Notation. Prentice Hall, 2nd edition, 1992.
18. I. Srnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan. Specification, Implementation and De-

ployment of Components. Communications of the ACM, 45(10):35–40, 2002.
19. V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Heterogeneous

Agent Systems. MIT Press, 2000.
20. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley,

1998.
21. T. Wagner and B. Horling. The Struggle for Reuse and Domain Independence: Research with

TAEMS, TDTC and JAF. In T. Wagner and O. Rana, editors, Infrastructure for Agents, MAS
and scalable MAS, Workshop in Autonomous Agents 2001, pages 17–23, 2001.

A Framework for Patterns in Gaia: A Case-Study with
Organisations

Jorge Gonzalez-Palacios and Michael Luck

School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK

{jlgp02r, mml}@ecs.soton.ac.uk

Abstract. The agent-oriented approach has been successfully applied to the solu-
tion of complex problems in dynamic open environments. However, to extend its
use to mainstream computing and industrial environments, appropriate software
tools are needed. Arguably, software methodologies form the most important type
of these software tools. Although several agent-oriented methodologies have been
proposed to date, none of them is mature enough to be used in industrial environ-
ments. In particular, they typically don’t include catalogues of patterns that are
necessary for addressing issues of reuse and speed of development. Two possible
approaches to overcome such weaknesses in current agent-oriented methodolo-
gies are: to propose new methodologies, or to enhance existing ones. In this paper,
the latter approach is taken, offering an enhancement of the Gaia methodology to
include a catalogue, specifically concerned with a set of organisational patterns.
Each of these patterns contains the description of a structure that can be used to
model the organisation of agents in specific applications. The use of these patterns
helps to reduce development time and promotes reusability of design models.

1 Introduction

The agent-oriented paradigm views a software system as composed of autonomous,
pro-active entities that interact using a high level of discourse to achieve overall goals.
Research and experimental work in the agent community have shown that this approach
is suitable for modelling complex dynamic problems. However, to encourage its use in
mainstream computing, some means of engineering agent-based applications is needed.
Software methodologies provide one way to engineer such applications in an efficient,
repeatable, robust and controllable fashion.

As is indicated in the previous paragraph, interaction plays a relevant role in any
multi-agent system. For that reason, the particular focus of our work is on the use
of organisations, which are important because they provide suitable abstractions to
describe, analyse and design the interactions between agents operating in a multi-agent
system; thus, organisations may serve as a first-class abstraction to model applications.
In the organisational approach, each agent plays one or more roles that interact according
to predefined protocols. However, an organisation is more than just a set of interactive
roles, so that when modelling an organisation, some means of capturing its essential
properties is needed (organisational abstractions).

Although many agent-oriented methodologies have been proposed, none is mature
enough to be used in industrial and commercial environments [17]. To overcome this, new

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 174–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Framework for Patterns in Gaia: A Case-Study with Organisations 175

methodologies are being proposed, but there are two disadvantages. First, increasing the
number of available methodologies may cause undesirable effects, such as difficulty in
reaching standards, and confusion in selecting a methodology for a specific problem [19].
These effects are particularly undesirable in industrial environments; for instance, adopt-
ing a technology in which standards have not been reached is a highly risky decision.
Second, there is a tendency to bypass the reuse of work contained in current methodolo-
gies. Although they are not mature enough, recent evaluations ([4, 19]) show that some
contain valuable contributions. Thus, we focus our research on enhancing current work
rather than creating yet another methodology.

Among all the current methodologies, those that encourage the use of organisational
abstractions are of special interest, since some evidence suggests that they are potentially
suitable for building open systems in complex dynamic environments [22, 15]. One of
the first methodologies to incorporate organisational abstractions was that presented
in [23] (hereafter called Gaia Extended with Organisational Abstractions, or simply
GaiaExOA), which is an evolving extension of the Gaia methodology [20]. In particular,
GaiaExOA offers the following valuable features.

– It is easy to understand even by non-specialists, since the process is straightforward
and the modelling language simple.

– It is also architecture-independent so that no commitment is made to a specific agent
architecture, allowing different architectures to be used in the development process.

– Equally important, GaiaExOA is very well known, being one of the most cited (and
consequently used) methodologies, and is suitable for extensions and enhancements.
This is already indicated by the various different extensions that have been built
around Gaia itself [21, 11].

However, GaiaExOA also requires further work. For example, it lacks a catalogue of
patterns to support the development of applications and, in particular, it lacks organisa-
tional patterns, the importance of which is highlighted in [23], but no such set exists. In
this paper, we fill this gap by presenting a framework in which organisational patterns
may be developed. We also present an example of such a pattern (but lack of space
prohibits other cases). Since the advantages of using patterns are multiple (they reduce
development time, promote reusability, act as communication facilitators, and serve as
reference and documentation), a valuable enhancement has been achieved.

The rest of the document is organised as follows: Section 2 presents a review of
the GaiaExOA methodology with the aim of providing the reader with the context in
which the patterns will be used. In Section 3 the exact purpose and scope of the patterns
is established. The way patterns are described is important for a fast and appropriate
selection; thus in Section 4 we justify the layout used. Due to space limitations, we
present only one pattern, and this is done in Section 5. Section 6 contains a review of
related work. Finally, Section 7 presents our conclusions.

2 Methodological Context

With the aim of providing the reader with the context in which the patterns will be used, a
summary of the GaiaExOA methodology is presented in this section (for a more detailed
description see [23] and [20]).

176 J. Gonzalez-Palacios and M. Luck

Table 1. Roles in GaiaExOA

name
description
protocols
activities
responsibilities

liveness properties
safety properties

permissions

2.1 Organisations in GaiaExOA

As suggested earlier, GaiaExOA is based on the organisational metaphor, which implies
that a multi-agent system is seen as a set of agents playing roles and interacting to
achieve individual or societal goals. In turn, these interactions give rise to the composition
of organisations. In this section, we first describe how the components of roles and
interactions are characterised in GaiaExOA, and then outline the mechanism used to
describe what constitutes an organisation.

First, we consider the various components. Roles are characterised by a set of fea-
tures defining their nature and activity as shown in Table 1. The name identifies the role
and reflects its main intent; the description provides a brief textual description of the
role; the protocols describe the interactions with other roles; the activities detail those
computations that the role performs without interacting with other roles; the responsibil-
ities express the functionality of the role (divided into two parts: liveness properties and
safety properties, which relate to states of affairs that a role must bring about, and the
conditions whose compliance the role must ensure, respectively); and the permissions
identify both the resources that the role needs in order to fulfil its responsibilities, and
its rights of access to use them. The characterisation of a role is depicted graphically by
means of a role schema, an example of which is shown in Figure 4.

Interactions are characterised by means of protocol definitions, which comprise the
following features: a purpose that provides a brief textual description of the interaction;
a list of initiators that enumerates the roles that start the interaction (usually a single
element); a list of responders that enumerates the roles involved in the interaction, apart
from the initiators; a list of inputs and outputs that provides the information required
or produced during the interaction; and a brief textual description that outlines the
processing performed by the initiators during the interaction. This characterisation is
represented graphically using a diagram like that shown in Figure 1.

Organisations are characterised using two concepts: organisational rules and or-
ganisational structures. The former are constraints imposed on the components of the
organisation; that is, roles and protocols. In other words, organisational rules express
relationships and constraints between roles, between protocols and between protocols
and roles. For example, in an electronic commerce application, an organisational rule
might state that an agent cannot play the roles of seller and buyer in the same transac-
tion. To specify organisational rules, first-order temporal logic is used in GaiaExOA [23],

A Framework for Patterns in Gaia: A Case-Study with Organisations 177

Purpose

Initiators Responders

Processing desc Inputs

Outputs

Fig. 1. Protocols in GaiaExOA

Roles

Communication
paths

Fig. 2. Topology representation

together with the temporal connectives. The following formula makes use of this logic
to express the rule cited above.

¬♦ [plays(a, seller) ∧ plays(a, buyer)]

Organisational structures encompass two aspects: topology and control regime. The
topology of an organisation is formed of all the communication paths between the mem-
ber roles, and it is commonly depicted using a diagram in which roles are represented by
nodes, and communication paths are represented by arcs between nodes (see Figure 2).
The control regime refers to the power relationship between the member roles. Common
control regimes are peer-to-peer (when no role is subordinated to another) and master-
slave (when the existence of one role is justified only in terms of supporting another role).

2.2 Phases of Development

Although GaiaExOA is one of the best known and most used methodologies, it is limited
in terms of its applicability to the full cycle of development, primarily addressing the

178 J. Gonzalez-Palacios and M. Luck

Table 2. Services in GaiaExOA

name name of the service
inputs information needed
outputs information produced
pre-conditions constraints
post-conditions effects

analysis and upper-design phases, leaving the rest (e.g. detailed design and implemen-
tation) largely unconsidered. A brief description of each of its phases follows.

The analysis phase deals with collecting the features needed to model the system,
and consists of the following three steps. First, the overall goals of the organisation and
its expected global behaviour are identified. Second, based on this information, the basic
skills the organisation must accomplish and the interactions needed to achieve them are
recognised. Then, a preliminary set of roles is derived from the basic skills. The set of
the corresponding role schemata is called the preliminary roles model. In addition, the
interactions are used to define a preliminary set of protocols. The corresponding set of
protocol definitions is called the preliminary interactions model. During this step it is
important to keep the roles and interactions independent of any specific organisational
structure. Finally, the organisational rules of the system are collected.

The design phase deals with building a specification of the system and consists of
five steps. To begin with, the organisational structure of the system is determined. This
structure might not resemble the physical structure in which the system is immersed,
since additional considerations must be taken into account, like efficiency. Secondly, the
roles and interactions models are completed. This activity includes the incorporation of
new roles and interactions that may have resulted from the application of the previous
step, and it is suggested that structure-dependent aspects be separated from those in-
dependent of the structure. Thirdly, organisational patterns are exploited with the aim
of designing the organisational structure and the final interactions model (see Section 3
for details). Next, a decision is made about which roles will be played by which agents
at runtime. This decision must consider factors such like coupling, coherence and effi-
ciency. Finally, a list with the services (or coherent blocks of activity in which an agent
is engaged) of all the roles in the system is produced. A service is a coherent block of
activity in which an agent is engaged. Services are derived from the functionality of the
roles played by the agents, and their description is shown in Table 2.

3 Organisational Patterns: Purpose

The use of the patterns is highlighted in Section 2.2 of the design phase of the method-
ology. It is observed that before selecting a pattern, the developer has already completed
the roles and interactions models and has also identified the organisational rules and de-
fined the organisational structure (topology and control regime). The developer chooses
the pattern that best matches the structure that he or she has defined. Since the organ-
isational structure has already been decided, we believe that the organisational pattern

A Framework for Patterns in Gaia: A Case-Study with Organisations 179

must provide at least the following additional value to the developer, all of them oriented
towards facilitating the development process.

– A more formal description.
For example, the developer may sketch the structure using an informal diagram,
while the pattern must describe the structure in a more formal way. A more formal
description is helpful to reduce ambiguity.

– Description of each role in the structure.
Each pattern must include the schemata of the participating roles, including the
characteristics related to the structure, so that the developer can focus his or her
attention on application-specific features.

– Suggestions about their use.
These suggestions would provide general advice on matters related to implementa-
tion. An appropriate level of detail is needed here for avoiding technology depen-
dence.

– Description of the situations in which the pattern’s use is appropriate.
This should include a list of known situations in which the pattern or a closely related
one has been used.

– A detailed description of the structure.
This would be more detailed than a developer normally would achieve at this stage
of the design, such as a list of organisational rules corresponding to the management
of the organisation. Another example is the inclusion of extensions or variations of
the pattern in which greater efficiency is achieved but perhaps the structure is less
intuitive. This would let the developer focus on domain specific details rather than
general design matters.

After selecting the right pattern, the developer must be ready to complete the final
roles and interactions models. GaiaExOA goes as far as this in modelling the system,
but a complete methodology should continue towards implementation.

It should be noted that the main question when selecting one of these patterns is what
organisational structure best models the characteristics of the system-to-be. As pointed
out in [23], such a structure must not only appropriately describe the characteristics of the
system but must also take into account issues like efficiency and flexibility. According
to Fox [6], when designing a distributed system, one must consider two issues: task
decomposition and selection of a control regime. In GaiaExOA, a preliminary task
decomposition is achieved during the analysis phase, but the decision of the definitive
topology is postponed until design. For that reason the selected pattern must provide the
topology and the control regime for the organisation.

A first attempt to create a set of patterns may be to take all possible combinations
of known topologies and control regimes. This, of course, would lead to an unman-
ageable number of patterns. Another approach is to consider only those combinations
that are potentially useful, either based on experience, or by analogy to other areas in
which organisational structures have been applied. We assume that a small number of
organisational structures would suit a broad range of applications.

180 J. Gonzalez-Palacios and M. Luck

4 The Description of the Patterns

The importance of a comprehensive structured description for the patterns is twofold.
First, it must facilitate the selection of the most appropriate pattern for a specific appli-
cation. Second, it must be meaningful and helpful when patterns are used as part of a
methodology. Some layouts have previously been proposed to describe software patterns
(e.g., [8]), and in particular agent patterns (e.g., [5, 14]). In [5] the following sections
are suggested as mandatory in any layout: name, context, problem, forces and solution.
Apart from these, rationale and known uses are also included, specifically for the de-
scription of patterns for agent coordination. The layout employed in [14] to describe a
catalogue of agent patterns is also divided into two parts: one common to all patterns,
and one specific to each of the categories presented in it. The common part includes:
name, alias, problem, forces, entities, dynamics, dependencies, example, implementa-
tion, known uses, consequences, and see also (a description of the meaning of these
components is presented below).

It should be noted, however, that there is no common agreement about what consti-
tutes a good pattern description. For instance, there are different opinions about whether
a unique description is appropriate to encompass a variety of patterns. On the one hand,
doing this could result in a superficial description. On the other hand, different descrip-
tions make it difficult to compare patterns when selecting one for a specific application.
In the agent-oriented approach, it is even less clear what a good pattern description is,
mainly because of the immaturity and diversity of agent-oriented methodologies. Rather
than engage in that debate, we adopt a very pragmatic approach and opt for a simple
description that complies with the Context-Problem-Solution notion (CPS)[2]. Accord-
ing to CPS, the essence of a pattern relies on the relationship between the problem, the
situations in which it commonly occurs, and its solution. Thus, every pattern description
must include these three elements.

The layout proposed in this document is divided into two parts. It includes a general
part, similar to those found in other pattern descriptions; and a particular part, which
is specific to organisational patterns. Since the purpose of the latter part is to describe
an organisation, we consider the following sections to be necessary: roles, structure,
dynamics and rules. The sections of the pattern layout, together with a brief explanation,
are presented next.

– Name: short descriptive name for the pattern.
– Alias: other names for the pattern.
– Context: a description of the situation in which the pattern applies. Note that the

context is a general description and thus is not sufficient to determine if the pattern
is applicable. To this end, the context is complemented with the forces (see below).

– Problem: the problem solved by the pattern.
– Forces: description of factors that influence the decision as to when to apply the

pattern in a context. Forces push or pull the problem towards different solutions or
indicate possible trade-offs [5]. We have identified the following forces in organi-
sational patterns.

• Coordination efficiency: organisation structure strongly influences efficiency
of coordination in terms of information shared and number of messages inter-
changed.

A Framework for Patterns in Gaia: A Case-Study with Organisations 181

• Coupling: the degree of interdependence between the roles. Although coupling
is inherent in all the structures, it varies in degree.A structure with high coupling
imposes strong constraints on joining the system.

• Subordination relationships: some structures impose specific control regimes
on their roles, which may not be appropriate for some applications.

• Topology complexity: simple topologies exhibit low coordination overhead but
require powerful roles in terms of resources and task processing.

– Solution: a description of the solution.
– Restrictions: scope of the pattern.
– Consequences: side-effects of the use of the pattern.
– Implementation: short advice on how to implement the pattern.
– Based on: the references that served as a basis for the pattern.
– Roles: the participating roles and their characteristics. When appropriate, the roles

in the pattern are described using role schemata. Since these patterns are intended for
the development of open systems, a certain characterisation of roles is needed. For
example, in a hierarchy, the manager role is more critical than those of subordinates
in terms of integrity of the organisation. Thus, a simple characterisation would be:
highly critical and less critical. Regarding their complexity, roles may be qualified
as basic or potentially decomposable.

– Structure: the topology and the control regime between roles. As stated above,
an organisational structure is defined by the topology and control regime of the
organisation.Although the structure of an organisation is easily understood by means
of a diagram, a formalism is needed to express it for purposes of manipulation,
validation and comparison, particularly if tools are developed to support the design
process (although this is out of the scope of this paper). In [23] the importance of
such a formalism is recognised but the choice of it is left for future work. Here,
we propose a simple formalism inspired by the ontology in [7], based on first-order
predicate logic, and using the following predicates:

• hasInteraction(r, s): There exists an interaction protocol that involves role r
and role s.

• subordinated(r, s): The role r is subordinated to the role s.

– Dynamics: the way the roles interact to solve the problem. The interactions between
the roles are described using protocol definitions (see Section 2).

– Rules: Constraints to be respected in the organisation independent of the application
domain. There are two types: those that spread over all the protocols and roles,
and those that express relations between roles, protocols, or between roles and
protocols. The formalism used to express the rules is the one proposed in [23] (see
Subsection 2.1), together with the following predicates:

• plays(a, r): agent a performs role r.
• initiates(r, p): role r begins protocol p.
• participates(r, p): role r participates in the execution of protocol p.

182 J. Gonzalez-Palacios and M. Luck

Pipe1 Filter1 Pipe2 Pipe3 Pipe4Filter2 Filter3

Fig. 3. Pipeline topology

5 The Pipeline Pattern

After the trivial case in which a structure contains only one role, the group is the simplest
type of organisation. One characteristic of this type of structure is that the control regime
is peer-to-peer; that is, no role is subordinated to another. According to the complexity of
the topology, two patterns can be easily devised: pipeline and network. The former has a
simple linear topology while the latter has a topology in which every role is connected to
every other role. Below, the pipeline organisational pattern is described (see Figure 3).

– Name: Pipeline.
– Alias: Flat.
– Context: according to the GaiaExOA process, before selecting a pattern the de-

veloper has already completed the roles and the interactions models, and has also
compiled the organisational rules and defined the organisational structure (topology
and control regime). After selecting the appropriate pattern, the developer must be
ready to complete the final roles and interactions models.

– Problem: to find the organisational structure that best describes the system under
development. In GaiaExOA, the processes of the organisation are provided by the
roles model, so what is missing is to define the topology and the control regime of
the organisation. On the other hand, some characteristics of the problem have been
identified. First, the overall goals are achieved by a strong collaboration among the
participating roles. Second, such a collaboration can be seen as a processing line in
which each role performs a transformation on a given information and delivers it to
the next member of the line.

– Forces:
• Coordination efficiency: low.
• Coupling: low.
• Subordination relationships: none.
• Topology complexity: very simple.

– Solution: this structure has been extensively used in mainstream software engi-
neering to design applications in which the overall processing can be decomposed
into independent sequential tasks. The tasks are performed by filters, which are the
processing components. Each filter is connected to the next by means of a pipe,
which transfers data from the filter to its successor. Usually, the data are uniform
and the tasks apply some sort of transformation on them, such as addition, modifi-
cation or reduction of information. Although several descriptions exist for this style
[2, 16, 10], the pattern presented here is suitable for the agent paradigm and has been
adapted to be useful within the methodological context of GaiaExOA. In particular,

A Framework for Patterns in Gaia: A Case-Study with Organisations 183

the components have been modelled as roles and agents, and their interactions as
organisations.

– Restrictions: first, the overall task must be decomposable into independent sequential
tasks. Second, the flow of information is restricted to be linear, sequential and only in
one direction (no loops or feedback). Third, the processing speed is determined by the
slowest filter, although the use of buffers in pipelines can alleviate this restriction to
some extent. Finally, to avoid bandwidth and storage problems, the data transferred
from stage to stage must be small.

– Consequences: the mechanism of coordination provided is rather simple and is not
suitable for operations such as error management. This structure is flexible, since
filters can be replaced or bypassed and new filters can be added easily.

– Implementation: the overall task of the system has to be decomposed into inde-
pendent sequential tasks, with each assigned to one filter. The pipelines may be
immersed in the communication layer.

– Roles: filters are obvious candidates to become roles. In addition, we decided to
model pipes also as roles since this highlights their existence within the structure.
(The decision of joining a filter and a pipe in a single agent can be postponed to the
detailed design phase. Alternatively, pipes could have been modelled as resources,
but GaiaExOA does not provide an explicit environment model.) However, it should
be noted that filters are active entities while pipes are passive ones. Filters are allowed
to be organisations themselves, but pipes are assumed to be primitive entities. For

Role Schema:

Description:

Protocols and
Activities:

Permissions:

Responsibilities:

Filteri

Performs the process
corresponding to stage i on the
input data

ProcessDatai, GetInput,
SupplyOutput

Liveness:

Safety:

Filteri =
(GetInput.ProcessDatai.SupplyOutput)w

changes supplied Data

•true

Fig. 4. The Filter role

184 J. Gonzalez-Palacios and M. Luck

Role Schema:

Description:

Protocols and
Activities:

Permissions:

Responsibilities:

Pipei

Transfers data (from Filteri-1) to
Filteri.using a buffer

Fetch, Store, CheckOverflow,
GetInput, SupplyOutput

Liveness:

Safety:

Pipei = (Transfer) w

Transfer=(GetInput.Fetch) ¦

(SupplyOutput.Store)

reads supplied Data

•BufferOverflow = false

Fig. 5. The Pipe role

simplicity of the pattern, we decided not to include the roles of data source (the
component which supplies data to the first pipe) and the data sink (the component
to which the data to the last pipe is supplied). Figures 4 and 5 show templates of
role schemata for the filter and pipe roles respectively.

– Structure: let us denote with N the number of filters in the structure and with Filteri

and Pipej the filters and pipes (1 ≤ i ≤ N and 1 ≤ j ≤ N + 1) respectively (note
that the number of pipes is N + 1). Figure 3 depicts a pipeline for the case N = 3.
The structure is described by the following constraints:
Each role has interaction only with its neighbours:

∀i : hasInteraction(Filteri, p) ⇒
(p = Pipei ∨ p = Pipei+1)

∀i : hasInteraction(Pipei, f) ⇒
(f = Filteri−1 ∨ f = Filteri)

There are no subordinate relations between the roles:

∀s, t : ¬subordinated(s, t)

A Framework for Patterns in Gaia: A Case-Study with Organisations 185

– Dynamics: as shown in Figures 4 and 5, the protocols involved in the coordination
of the organisation are GetInput and SupplyOutput. Their descriptions are shown
in Figure 6 a) and b) respectively. The typical operation of the structure at stage i
is the following. First, the filter requests the pipe to its left for the next data using
the GetInput protocol (the filter confirms the correct reception of the data). Next,
the filter processes the data. Then, the filter requests the pipe to its right to store the
processed data using the SupplyOutput protocol.

GetInput

Filteri Pipei

The filter obtains the
next data to process

none

Data

SupplyOutput

Filteri Pipei

The filter supplies the
processed data

Data

ack

a)

b)

Fig. 6. Pipeline Protocols

– Organisational rules:
All the roles are played by at least one agent:

∀i : ∃a | plays(a, F ilteri)

∀j : ∃a | plays(a, P ipej)

All the roles are played by at most one agent:

∀i : plays(a, F ilteri) ∧
plays(b, F ilteri) ⇒ (a = b)

∀j : plays(a, P ipej) ∧
plays(b, P ipej) ⇒ (a = b)

186 J. Gonzalez-Palacios and M. Luck

6 Related Work

The patterns presented here are intended to be used during the methodological process
outlined by Zambonelli et al. [23], in which the importance of a set of organisational
patterns is stated but no such set is presented.

Patterns are extensively used to facilitate the development of software systems; in the
agent-oriented approach they have been employed to design multiple aspects of an appli-
cation. Some examples of agent-based methodologies that include the use of patterns in
their processes are Tropos, Kendall’s methodology and PASSI, considered below. Kolp
et al. present a set of patterns in [13] as part of the Tropos methodology, which uses
patterns (called styles) to describe the general architecture of a system under construc-
tion. Although there are similarities with our work, we include organisational rules and
classify structures based on topology and control regime (or task decomposition).

Kendall [12] also includes a catalogue of patterns as a part of a technique to analyse
and design agent-based systems. The patterns in that catalogue are more general than
those presented here, since they include not only interactions but also the roles them-
selves (it should be noted that the concept of role there comes from role theory and
is not identical to the concept used here). Since there is no reference to organisational
abstractions, however, that work cannot be directly used in the GaiaExOA methodology,
but perhaps the structure of those patterns may be used as a base to populate the set of
patterns proposed here.

Cossentino et al. present in [3] the design of a particular type of agent pattern im-
mersed in the PASSI methodology. They define a pattern as consisting of a model and an
implementation. The model includes two parts: structure and behaviour. Structural pat-
terns are classified into: action patterns, which represent the functionality of the system;
behaviour patterns, which can be viewed as a collection of actions; component patterns,
which encompass the structure of an agent and its tasks; and service patterns, which
describe the collaboration between two or more agents. Implementations are available
for two agent platforms, namely, JADE and FIPA-OS. As can be noted from this brief
description, the concept of organisation is not explicitly addressed in their work.

Other patterns in the agent literature do not use a specific methodology. For instance,
Aridor and Lange [1] present a catalogue that covers different aspects of an applica-
tion: travelling, task and interaction but these are appropriate only for mobile-agent
systems, and are object-based rather than role-based. Lind [14] proposed a structure of
a pattern catalogue in which the work presented here may fit in their Society section,
but it is not always clear how to apply the general-purpose patterns within a specific
methodology. This is also true for [5], in which Deugo et al. present a set of coordination
patterns that are not embedded in a methodology process, so usage is not clear. In fact,
there is no separation of coordination patterns, task delegation patterns and matching
patterns. A similar set of patterns is presented by Hayden et al. [9] but this focuses on
defining how a goal assigned to a particular agent is fulfilled by interacting with other
agents.

Finally, Silva and Delgado [18] present an agent pattern that provides distribution,
security and persistence transparency. This does not suit our purposes because it focuses
on access to a single agent rather than considering a society of them.

A Framework for Patterns in Gaia: A Case-Study with Organisations 187

7 Conclusions

Although several agent-oriented methodologies have been proposed recently, none of
them is mature enough to develop commercial and industrial applications. One step
towards achieving mature methodologies is to enhance current methodologies with the
inclusion of software engineering best practices, and one such best practice is the use of
patterns in key parts of the design process. In this paper, we have presented a framework
in which organisational patterns may be developed to model the organisational structure
of software applications. Also included is an example of such a pattern (but lack of space
prohibits other cases). No framework or set of patterns like these have been proposed
before.

We argue that the development presented here is useful for the following reasons.
First, it completes Gaia, which is one of the most used methodologies, and the exploita-
tion of organisational patterns is an integral part of its process. Second, it increases the
accessibility of the methodology, since the inclusion of patterns makes the methodology
easier to use, especially by non-expert users. Third, it helps to reduce development time
since developers may reuse the models to avoid building their applications from scratch.
Finally, it provides a basis on which further patterns can be developed and improvements
can be discussed.

It should be noted that although some patterns are very simple in concept, like the
one presented in this document, their usefulness is twofold: they explicitly state the
structure a system must conform to; and they serve as a basis for designing complex
applications, since most real applications can be described by a composition of several
simpler structures. Though this is a first step, it is an important one if the move to
industrial-strength design and development is to be successful.

References

1. Y. Aridor and D. Lange. Agent design patterns: Elements of agent application design. In
Autonomous Agents (Agents’98). ACM Press, 1998.

2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture. Wiley, 1996.

3. M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing pattern reuse in the
design of multi-agent systems, 2002.

4. K. Hoa Dam and M. Winikoff. Comparing agent-oriented methodologies. In The Second
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS03),
2003.

5. D. Deugo, M. Weiss, and E. Kendall. Coordination of Internet Agents: Models, Technologies
and Applications, chapter Reusable Patterns for Agent Coordination. Springer, 2001.

6. M. Fox. An organizational view of distributed systems. IEEE Transactions on Systems, Man,
and Cybernetics, 11(1):70–80, 1981.

7. M. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. Simulating Organizations, chapter An
Organizational Ontology for Enterprise Modeling. AAAI Press/The MIT Press, 1998.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

9. S. Hayden, C. Carrick, and Q.Yang. Architectural design patterns for multiagent coordination.
In International Conference on Agent Systems ’99 (Agents’99), 1999.

188 J. Gonzalez-Palacios and M. Luck

10. G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.
11. T. Juan, A. Pearce, and L. Sterling. Roadmap: Extending the gaia methodology for complex

open systems. In AAMAS ’02. ACM, 2002.
12. E. Kendall. Role models: Patterns of agent system analysis and design. BT Technology

Journal, 17(4):46–57, 1999.
13. M. Kolp, J. Castro, and J. Mylopoulos. A social organization perspective on software archi-

tectures. In First Int. Workshop From Software Requirements to Architectures, 2001.
14. J. Lind. Patterns in agent-oriented software engineering. In Fausto Giunchiglia, James Odell,

and Gerhard Weiss, editors, Agent-Oriented Software Engineering III, volume 2585 of Lecture
Notes in Computer Science. Springer, 2003.

15. X. Mao and E.Yu. Organizational and social concepts in agent-oriented software engineering.
In this volume, 2004.

16. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

17. O. Shehory and A. Sturm. Evaluation of modelling techniques for agent-based systems. In
J.P. Muller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents, pages 624–631. ACM Press, 2001.

18. A. Silva and J. Delgado. The agent pattern for mobile agent systems. In 3rd European
Conference on Pattern Languages of Programming and Computing, EuroPLoP’98, 1998.

19. A. Sturm and O. Shehory. A framework for evaluating agent-oriented methodologies. In The
Second International Joint Conference on Autonomous Agents and Multiagent Systems, 2003.

20. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented analysis
and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

21. F. Zambonelli, N. Jennings,A. Omicini, and M. Wooldridge. Coordination of Internet Agents:
Models, Technologies and Applications, chapter Agent-Oriented Software Engineering for
Internet Applications. Springer, 2001.

22. F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational abstractions for the analy-
sis and design of multi-agent systems. In First International Workshop on Agent-Oriented
Software Engineering, pages 127–141, 2000.

23. F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational rules as an abstraction for the
analysis and design of multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering, 11(3):303–328, 2001.

Enacting and Deacting Roles in Agent
Programming

Mehdi Dastani, M. Birna van Riemsdijk, Joris Hulstijn,
Frank Dignum, and John-Jules Ch. Meyer

Institute of Information and Computing Sciences,
Utrecht University, P.O.Box 80.089, 3508 TB Utrecht,The Netherlands

Tel: +31 - 30 - 253 3599
{mehdi, birna, jorish, dignum, jj}@cs.uu.nl

Abstract. In the paper we study the dynamics of roles played by agents
in multiagent systems. We capture role dynamics in terms of four op-
erations performed by agents: ‘enactment’, ‘deactment’, ‘activate’, and
‘deactivate’. The use of these operations is motivated, in particular for
open systems. A formal semantics for these operations is provided. This
formalization is aimed at serving as a basis for implementation of role
dynamics in an agent programming language such as 3APL.

1 Introduction

Several methodologies for the development of multiagent systems have been pro-
posed to date [1, 8, 10, 14, 18]. Increasingly, these methodologies are based on or-
ganizational structures and normative concepts as cornerstones of the multiagent
systems. In these methodologies, the specification and the design of the organi-
zational structure involves two key concepts: agent roles and agent types. The
basic idea is as follows. The analysis of an application results in the specification
of an organizational structure, defined in terms of roles and their interactions.
Subsequently, at the design phase, sets of roles are translated into agent types
which constitute the system architecture. Finally, the designed system will be
implemented. We recognize that there is no consensus on the exact definition
of agent roles and agent types. In the next section we will discuss some of the
causes for the apparent difficulty to give a precise definition of roles that would
cover all its uses.

An important issue in developing multiagent systems and in particular open
multiagent systems, in which agents may enter and leave, is the need to account
for the dynamics of roles at all phases of the development methodology. The
role in which agents enter the system may determine the course of actions they
can undertake within the system and which other roles they may or may not
switch to. E.g. an agent playing a buyer role at an auction has different rights
than the seller or the auctioneer at the same auction. The dynamics of roles has
been recently studied [4, 13]. In [13], role dynamics is studied informally at the
specification level. The most important operations are classify and declassify,

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 189–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 M. Dastani et al.

which means that an agent starts and finishes to occupy a role, and activate
and suspend, which means that an agent starts executing actions belonging to
the role and suspends the execution of the actions. Our approach is based on
similar intuitions, and therefore uses very similar operations: enact and deact1,
and activate and deactivate. In our view, enacting a role means internalizing
the specification of the role, while activating a role means reasoning with the
(internalized) specification of the role.

Our approach to role dynamics differs from (or complements) the approach
proposed in [13] as we consider role dynamics also at the implementation level.
For the implementation level, we have to explain how roles are internalized,
which means that we need to assume a certain agent architecture. For this pur-
pose, we consider cognitive agents whose behaviors are determined by reasoning
(deliberating) with their mental attitudes. As we aim to describe role dynamics
at the implementation level, we have to define this dynamics formally. We do this
by providing the formal semantics of the operations concerning role dynamics.
Based on the formal semantics for these operations, we propose programming
constructs with which these can be implemented. Based on these observations
we want to address the following issues.

1. Which concepts play a crucial role in each of the development stages (anal-
ysis, design and implementation) of multiagent methodologies for defining
roles?

2. How can we in general specify concepts such as agent role, agent type, and
role dynamics?

3. In particular, how can we extend a dedicated agent-oriented programming
language with programming constructs to implement role dynamics?

To address these issues, we discuss in section 2 our views on the development of
multiagent systems, and on the use of agent roles, agent types and role dynamics
in specification and design. In section 3 we present a small example of an auction
house to illustrate the concepts. In section 4 we present an abstract view on agent
roles, agent types, and role dynamics, and relate it to an implementation in the
dedicated agent-oriented programming language 3APL [6, 12].

2 Roles and Agent Types in Multiagent Methodologies

Complex system applications are analyzed by multiagent development method-
ologies in terms of groups, roles, agents, and their relations [10, 1, 8, 14, 18]. Al-
though everyone has an intuitive idea about what constitutes a role, the way roles
are defined and used within multiagent systems differs widely. For example, roles
may be used to analyze access demands for information systems, as is done in
role-based access control models (RBAC) [15], or they may be used to model
aspects of stake holders in a virtual museum [2]. Different usage of a concept,

1 Although ‘deact’ is not an English word, we think it will convey the meaning we
have in mind.

Enacting and Deacting Roles in Agent Programming 191

means that different demands are made. However, in all approaches it seems
that roles are used to identify some task, behavior, responsibility or function
that should be performed within the multiagent system. Typically, roles have a
descriptive and prescriptive aspect. A role describes the expected behavior and
properties of an agent. For example, an agent in the buyer role is expected to
want to buy something. Based on such expectations, other agents can reason
about ways to interact with agents in the role. A role also prescribes the proce-
dures and rules in an organization. In an auction, for example, one should first
register as a buyer, before being allowed to bid.

We consider an agent role as a set of normative behavior rules, a set of
expected objectives and a specification of the information that is expected to be
available to agents playing that role. Moreover, we consider an agent type as a
set of agent roles with certain constraints and assume that an agent of a certain
type decides itself to enact or deact a role. We also assume that agents can have
multiple enacted roles simultaneously and that an agent can enact the same role
multiple times. In our approach only one role can be active at each moment in
time; all other enacted roles are deactive. This is because in our view a (cognitive)
agent has one single reasoning process, also called the agent’s deliberation, that
determines the behavior of the agent based on the enacted (internalized) roles.
One single reasoning process cannot be based on two or more enacted roles at
the same time. Which role should be reasoned with at each moment in time is
thought to be the agent’s decision.

In this paper we focus on the use of roles as a guideline for the specification,
design and implementation of multiagent systems. With respect to the specifica-
tion and design, we have a similar view as, for example, the Gaia methodology
[18]. The details on our view on multiagent methodology can be found in [5].
The main focus of our proposed methodology is based on the distinction between
closed and open multiagent systems. Our methodology aims at developing open
systems in which role dynamics is an important issue. The consideration of open
multiagent systems thus forms the main motivation of this work.

2.1 Open and Closed Systems

In a closed system, agents can be implemented to fulfill a fixed set of roles. In this
setup it makes sense to design agent types as a set of roles. Not much additional
structure is needed. If for example objectives from two roles could conflict, this
would be a reason to alter the design and change the agent types in such a way
that conflicts are avoided. So, the tasks each agent will perform are completely
determined by the roles it plays. Roles themselves have no existence outside the
agents in the implemented system anymore. By contrast, in an open system [7]
agents can enter and leave such that roles have existence outside the agents in
the implemented multiagent systems. In this setting, agents are not completely
defined by the roles they play. Part of their behavior is determined by their own
wishes and objectives, which are set and motivated from outside the multiagent
system. This has a number of consequences. Roles specify the permitted and
expected behavior of an agent for as long as it will be part of the system.

192 M. Dastani et al.

First, roles can be described differently in the two situations. In a closed
system, roles can be described in terms of fixed tasks, or fixed motivational atti-
tudes such as responsibilities. Although a system specification in terms of norms
and roles can still be useful as a development guideline, norms and roles are
not necessary at the implementation level. In an open system, the norms and
roles become unavoidable at the implementation level. For example, in situa-
tions where agents cannot be trusted, the role description must provide a kind
of API for the agent, to function within the multiagent system. In islander
[9] this idea is made concrete by implementing roles exactly as API’s through
which visiting agents have to interact with other agents in the system. In more
liberal systems, in which agent behavior is allowed to deviate from the expected,
one could define a role in terms of norms or potential goals, together with sanc-
tions. In this case it remains a decision of the agent how far it will comply to
the norm.

Second, for closed systems, role dynamics may still be a useful development
guideline to specify multiagent systems. Roles may for example be associated
with certain phases in a procedure. Role dynamics can then be used to specify
the progress through the procedure. But again, such notions are not necessary
for the implementation of such multiagent systems. For open systems, having a
proper implementation model of what it means to enact or deact a role, becomes
unavoidable. Not only the order in which roles are played, but also possible
conflicts and constraints need to be maintained.

Finally, in the social sciences, whether or not an agent is currently enact-
ing a role is regarded as a social fact [16]. While the decision to enact/deact
a role is the initiative of the agent itself, the success of performing the enact-
ment/deactment operation is determined by the whole community. E.g. an agent
entering an auction will be enlisted as a customer: the first action an agent has
to perform is the enactment of the customer role. Even more important is that
agents cannot decide to deact a role at any moment. For example, an agent
cannot deact the customer role and leave the auction, without paying for the
items it buys. So the success of a deactment action depends at least partly on
external factors. Enacting and deacting are joint actions, performed by system
and agent together. Although we believe that these social aspects are important,
for simplicity however, we do not consider it in this paper and assume that a
role change operation is always allowed. Instead, we will focus on the internal
aspects of an agent enacting or deacting a role.

3 Example: Multiagent Specification and Design

In this section we present an example to illustrate the dynamics of roles and
agent types in multi-agent systems. The way the example is handled is based
on ideas from Islander [9] and work on skeleton programming [17]. Consider a
software agent A who participates in an English auction.

1. Suppose A wants to buy a contemporary dinner table at the auction. To
acquire the money, she first needs to sell her antique dinner table.

Enacting and Deacting Roles in Agent Programming 193

2. A enters the registration phase (scene) of the auction house in the role of a
customer. A’s name, address and bank account number are registered.

3. A can now enter the auction phase (scene) and take up the role of the seller.
The antique dinner table is then registered and a reserve price is set.

4. A can also enter the auction phase (scene) and take up the buyer role. When
the auction lot on the contemporary dinner table starts, A carries out her
strategy of increasing her bid until she either acquires the contemporary
dinner table or reaches her personal maximum price.

5. After the auction phase, A can set down its seller and buyers roles, enters the
payment phase (scene), and take up its customer role to settle her business.
She gets a receipt for the money made by the antique table and pays for the
contemporary dinner table if it has succeeded to buy it.

To analyze cases such as these, it makes sense to distinguish various scenes.
A scene defines a social context that delimits the applicability of roles. As indi-
cated in Figure 1, the auctioning institution of our example can be analyzed as
consisting of three scenes: the registration scene, the auction scene, and the pay-
ment scene. In the registration scene, agents can enact the customer role in order
to register their names, address, bank account, and other relevant information.
In the auction scene, an agent can enact the seller role to register its item to be
sold and set a reservation price, the buyer role to bid and buy its desired item,
or the auctioneer role which controls the lots and bids. Note that the agents in
the auction scene can still enact their customer role, but only in the deactivated
mode. In the auction scenario, only one role (buyer, seller, or auctioneer) can
be activated at the same time. Finally, agents can put down their buyer and
seller roles and enter the payment scene by activating their customer role again
to settle their business.

Scenes are interconnected by transitions that indicate under what conditions
an agent is allowed to migrate to another scene [9, 17]. For example, in the
auction scene, agents should enact the buyer, the seller, or the auctioneer role
in order to enter the auction scenario. These transitions are meant to specify
which activities can take place in which order. An agent can enact different roles
simultaneously and this implies that an agent can be active in different scenes
simultaneously. For example, in the auctioning institution, an agent can enact
the customer role to enter the registration scenario (get the identity customer1).

auctioneer

auction

deact(customer)

deact(seller)

enact(customer)

seller

customer customer

PaymentRegistration
buyer

enact(buyer)

enact(seller)

deact(buyer)

Fig. 1. Transitions between scenes

194 M. Dastani et al.

After registration, it can enact the buyer role and enter the auction scenario (get
the identity buyer1). At this moment, the agent can activate the customer role
and enter the registration scenario once again.

A role can be specified in terms of the information that becomes available to
agents when they enact the role, the objectives or responsibilities that the enact-
ing agent should achieve or satisfy, and normative rules which can for example
be used to handle these objectives.

4 Formalizing Role Enactment and Role Activation

4.1 Preliminaries

In section 2, we have explained the notions of agent roles and agent types in
multiagent specification and design. In this section, we formalize these concepts
and describe the notions of enacting, deacting, activating, and deactivating of
roles by an agent. In the following, we assume a first order language L and a
set of basic actions A based on which we define the belief language LB , the goal
language LG, and the plan language LP .

– LB = β ::= Bφ | ¬β | β ∧ β′ for φ ∈ L.
– LG = κ ::= Gφ | ¬κ | κ ∧ κ′ for φ ∈ L.
– LP = π ::= α | β? | π; π′ | π + π′ | π‖π′ | π∗ for α ∈ A, β ∈ LB

Intuitively, Bφ should be read as “believes φ”, Gφ as “has objective φ”, β?
as “test if β”, π; π′ as “first do π then do π′”, π + π′ as “choose either π or
π′”, π‖π′ as “do π and π′ simultaneously”, and π∗ as “repeat doing π”. The
formal semantics of these languages are not presented in this paper since it is
not relevant for the purpose of this paper.

Moreover, we assume various types of rules which can be used for various
purposes. For example, as we will see in the context of role specifications, these
rules can be used to specify different types of norms and obligations, and in
the context of agent specifications, they can be used to specify the dynamics of
mental attitudes of agents such as modification or planning of objectives. For
the purpose of this paper, we assume three different types of rules as specified
below. The interpretation of these rules will be given when we define agent role
and agent specification. Moreover, we do not claim that these types of rules
are exhaustive, but believe that they make sense for the purpose of enacting
and deacting of roles by agents. The three types of rules are represented by the
following three sets PS (called plan selection rules), GR (called goal revision
rules), and PR (called plan revision rules):

– PS = {κ ∧ β ⇒ π | κ ∈ LG, β ∈ LB , π ∈ LP }
– GR = {κ ∧ β ⇒ κ′ | κ, κ′ ∈ LG, β ∈ LB}
– PR = {π ∧ β ⇒ π′ | π, π′ ∈ LP , β ∈ LB}

In the following, we assume that roles are abstract entities which can be
instantiated whenever they are enacted. Therefore, we use Rname to denote the

Enacting and Deacting Roles in Agent Programming 195

set of names for role instantiations including a special name e for the passive
role. We also use Rules to indicate the set of all triples of subsets of PS, GR,
and PR, i.e. Rules = 2PS × 2GR × 2PR.

4.2 Agent Roles and Agent Types

In this approach, we assume that a role determines the information that the
enacting agent should have, the objectives that it should achieve, and the norms
and obligations it has to fulfill [4]. For the buyer role, the information that the
enacting agent should have, includes, for example the code of the item at the
auction and the starting price if it has the information of the item, i.e.
B(item(name, attr)→code(name, CodeOf(attr))∧price(name, PriceOf(attr)))
where CodeOf and PriceOf are assumed to be functions that map item at-
tributes to the code and the starting price of the item, respectively.

In this paper, we consider agent’s objectives as the states that the agent
wants to achieve. For example, the buyer role may have the goal to buy an
item which can be represented as G(wantedItem(name)). Agent norms and
obligations can be considered as states that should be achieved (e.g. an item
should be paid if it is bought), but they can also be considered as actions that
should be performed (e.g. a buyer should register). Moreover, we consider that
the norms and obligations are context-dependent and therefore conditional in
nature [11]. Norms and obligations are thus represented as being conditionalized
on the states. For example, the norm to ask for the information about the item
that the enacting agent wants to buy can be represented by a PS rule such
as G(wantedItem(name)) ⇒ Ask(itemInf, name). Note that an answer to the
Ask action can cause a belief update such that B(item(name, attr)) becomes
derivable from the belief base. Note also that from this update and the informa-
tion above, the enacting agent may derive the code and the starting price of the
agent. Moreover, an obligation to pay for a bought item can be represented by
a GR rule as follows: B(bought(item)) ⇒ G(pay(item)).

Definition 1. (Role) A role is a tuple 〈σi, γi, ωi〉, typically denoted by r, where
σi ∈ LB specifies the information that an agent receives when enacting this role,
γi ∈ LG specifies the objectives to be achieved by the agent that enacts this role,
and ωi ∈ Rules be a triple consisting of rules representing conditional norms
and obligations.

We assume that the objectives γi in the above definitions are achievement
goals. Maintenance goals can be defined in terms of normative rules of the form
¬κ ∧ � ⇒ κ which means that goals κ should be adopted whenever κ is not the
case. A role can be incoherent in the sense that it may be specified in terms of
inconsistent beliefs and goals. Also, normative rules that are ascribed to a role
may suggest the adoption of inconsistent objectives. One may therefore introduce
coherence conditions to exclude these cases.

Definition 2. (Role coherency) Let ωi = (ωPS , ωGR, ωPR) ∈ Rules. A role
r = 〈σi, γi, ωi〉 is coherent, denoted as coherent(r), iff:

196 M. Dastani et al.

1. σi 	|= ⊥ : consistent beliefs
2. γi 	|= ⊥ : consistent objectives
3. σi 	|= γi if � 	|= γi : non-trivial objectives are not achieved
4. (

∧
(κ∧β⇒κ′)∈ωGR κ′) 	|= ⊥ : potential objectives are mutually consistent

5. ∀(κ∧β ⇒ κ′)∈ωGR : κ′∧γi 	|=⊥ : potential objectives are consistent with
role’s objectives

Note that clause 4 in this definition is very strong in that it requires that
all potential objectives should be mutually consistent. This requirement can be
dropped resulting in a less restricted notion of coherence.

Roles can be mutually inconsistent since they may have contradictory infor-
mation and objectives. Below, we define the notion of role consistency.

Definition 3. (Role consistency) Two roles r =〈σ1, γ1, ω1〉 and r′ =〈σ2, γ2, ω2〉
are consistent, denoted as consistent(r, r′), iff their ‘combined role’ is coherent,
i.e.

consistent(r, r′) ⇔ coherent(〈σ1 ∧ σ2, γ1 ∧ γ2, ω1 ⊕ ω2〉)
where (R1, . . . , Rn) ⊕ (R′

1, . . . , R
′
n) = (R1 ∪ R′

1, . . . , Rn ∪ R′
n).

Proposition 1. An agent role r is coherent iff it is consistent with itself, i.e.

coherent(r) ⇔ consistent(r, r)

An agent can enact different roles during its execution (one actively at a
time) and enacting a role influences its mental attitudes. As explained in section
2, the type of the agent determines the roles that the agent can enact. Therefore,
we require that the roles that an agent can enact should be mutually consistent
since these roles influence the agent’s mental attitudes.

Definition 4. (Agent Type) Let R be the set of agent roles. An agent type t
with respect to R is a consistent subset of agent roles, i.e. t ⊆ R such that
∀r, r′ ∈ t : consistent(r, r′).

Proposition 2. All agent roles from an agent type t ⊆ R are coherent, i.e.

∀r ∈ t : coherent(r)

4.3 Role Enacting and Role Deacting Agents

In this paper, we assume that role enacting agents have their own mental at-
titudes consisting of beliefs, goals, plans, and rules that may specify their con-
ditional mental attitudes as well as how to modify their mental attitudes. In
addition, a role enacting agent is assumed to enact a set of roles among which
only one of them is active at each moment in time; all other enacted roles are
inactive. The reason for assuming one active role at each moment of time is ex-
plained in section 2. Therefore, role enacting agents have distinct objectives and
rules associated to the active role it is enacting, and sets of distinct objectives

Enacting and Deacting Roles in Agent Programming 197

and rules adopted from enacted but inactive roles. The roles enacted by an agent
are instantiations of the roles specified in t. This can be compared to objects
which are instantiations of classes. It is therefore possible that one role from t
is enacted and instantiated several times. We call an agent with its own mental
attitudes, an active role instantiation, a set of inactive role instantiations, and a
type, a role enacting agent.

Definition 5. (role enacting agent: rea) Let γa ∈ LG, γr ∈ LG × Rname, and
γ ⊆ LG × Rname. Let Πa ⊆ LP × LG and Πr ∈ 2LP ×LG × Rname, Πs ⊆
2LP ×LG ×Rname. Let ωa ∈ Rules, ωr ∈ Rules×Rname, ω ⊆ Rules×Rname,
and e ∈ Rname be a special role instantiation name for passive role. Then, a
role enacting agent is a tuple 〈σ, Γ,Π,Ω, t〉, where:

– σ ∈ LB specifies rea’s beliefs
– Γ = (γa, γr, γ) specifies rea’s objectives
– Π = (Πa, Πr, Πs) specifies rea’s plans
– Ω = (ωa, ωr, ω) specifies rea’s rules
– t ⊆ R s.t. ∀r ∈ t : consistent(〈σ, γa, ωa〉, r) specifies rea’s type.

A passive-role enacting agent (p-rea) is defined as a rea where Γ = (γa, (�, e),
γ), Π = (Πa, (∅, e), Πs), and Ω = (ωa, ((∅, ∅, ∅), e), ω).

In the above definition, γa and ωa specify the agent’s own objective and
rules, respectively. Moreover, γr and ωr specify respectively the objective and
rules associated to the active role that the agent enacts, and γ and ω are sets of
objectives and sets of rules of the enacted roles which are not active, respectively.
Finally, Πa specifies agent’s own plans, Πr specifies the plans that are generated
by the active role, and Πs specifies the plans of enacted but inactive roles. Note
that an objective is associated with each plan to indicate the (initial) purpose of
that plan. Also, a role instantiation name is associated with the objectives in γr

and γ, to the plans in Πr and Πs, and with the sets of rules in ωr and ω. Finally,
note that the last clause ensures that agent roles are consistent with the mental
attitudes of the agent. As for roles, one can also define coherency for rea’s.

Definition 6. (coherent rea) Let r0, r1, . . . , rn ∈ Rname, γ0, γ1, . . . , γn ∈ LG,
and ω0, ω1, . . . , ωn ∈ Rules for n ≥ 0. The rea 〈σ, (γa, γr, γ), Π, (ωa, ωr, ω), t〉 is
coherent iff its belief is consistent and it consists of corresponding objective/rules
pairs from the enacted (active and inactive) roles each with a unique role instan-
tiation name, i.e. iff the following conditions hold:

1. σ 	|= ⊥
2. γr = (γ0, r0) & ωr = (ω0, r0)
3. γ = {(γ1, r1), . . . , (γn, rn)} & ω = {(ω1, r1), . . . , (ωn, rn)} &

ri 	=rj for 1 ≤ i 	=j ≤ n

Note that we use ri, rj as typical denotations for role instantiation names,
and r, r′ as typical denotations to role specifications. The first clause states that
the belief base of a rea should be consistent, the second states that objectives

198 M. Dastani et al.

and rules of the active role should be from one and the same role instantiation,
the third states that there should be a bijection between objectives and rules
of inactive roles, and the last clause states that the role instantiation names
used in a rea should be unique. Note that the notion of coherence can be made
stronger by demanding that the agent’s own objective does not conflict with the
objectives of the enacted (active and inactive) roles, i.e. by adding the following
condition: γa ∧ γi 	|= ⊥ for 0 ≤ i ≤ n. Note that a passive-role enacting agent
(p-rea) is a coherent rea.

In our view, enacting a role by an agent means that the agent adopts the role
(i.e. it adopts the information, objectives, and rules that are associated with the
role) and uses a name to refer to the instantiation of this role. Enacting a role can
be specified by a function that maps rea’s, roles, and role instantiation names to
rea’s. This function is defined on rea’s in general, rather than on coherent rea’s.
In proposition 3 below, we relate this function and the notion of coherent rea’s.

Definition 7. (Role enacting function) Let S be the set of rea’s, 〈σ, Γ,Π,Ω, t〉 ∈
S, R be the set of roles, 〈σi, γi, ωi〉 ∈ R, and ri ∈ Rname be a role instantiation
name. The role enacting function Fenact : S × R × Rname → S is defined as
follows:

Fenact(〈σ, Γ,Π,Ω, t〉 , 〈σi, γi, ωi〉 , ri) = 〈σ ∧ σi, Γ
′, Π, Ω′, t〉

where Γ = (γa, γr, γ) and Γ ′ = (γa, γr, γ ∪ {(γi, ri)}),
Ω = (ωa, ωr, ω) and Ω′ = (ωa, ωr, ω ∪ {(ωi, ri)}).

An agent may decide to deact a role which means that the agent stops enact-
ing the role. In our view, the agent that deacts a role will remove the objective
and plans adopted by enacting the role. Note that the plans can be generated
during the enactment of the role.

Definition 8. (Role deacting function) Let S be the set of rea’s, 〈σ, Γ,Π,Ω, t〉 ∈
S, and ri ∈ Rname be a role instantiation name. The role deacting function
Fdeact : S × Rname → S is defined as follows:

Fdeact(〈σ, Γ,Π,Ω, t〉 , ri) = 〈σ, Γ ′, Π ′, Ω′, t〉

where Γ = (γa, γr, γ ∪ {(γi, ri)}) and Γ ′ = (γa, γr, γ),
Π = (Πa, Πr, Πs ∪ {(X, ri)}) and Π ′ = (Πa, Πr, Πs),
Ω = (ωa, ωr, ω ∪ {(ωi, ri)}) and Ω′ = (ωa, ωr, ω).

In the following, we say that a role instantiation name ri does (or does not)
occur in a rea s = 〈σ, (γa, γr, γ), Π, (ωa, ωr, ω), t〉 if ri does (or does not) occur
in the pair γr and ωr and does (or does not) occur in the pairs contained in γ
and ω.

Proposition 3. Let s = 〈σ, Γ,Π,Ω, t〉 be a coherent rea, r ∈ t, and ri ∈
Rname. Then, the rea Fenact(s, r, ri) is coherent if ri does not occur in s, and
the rea Fdeact(s, ri) is coherent.

Enacting and Deacting Roles in Agent Programming 199

Note that the deacting function can only deact an inactive role. Note also that
for some s = 〈σ, Γ,Π,Ω, t〉, r ∈ t and ri ∈ Rname the following hold:

Fdeact(Fenact(s, r, ri), ri) 	=s and Fenact(Fdeact(s, ri), r, ri) 	=s

For example, consider s = 〈p, (γa, γr, γ), Π, (ωa, ωr, ω), t〉, 〈q, γi, ωi〉 be a role,
and ri ∈ Rname which does not occur in s. Then,
Fenact(s, 〈q, γi, ωi〉, ri) = 〈p∧q, (γa, γr, γ∪{(γi, ri)}), Π, (ωa, ωr, ω∪{(ωi, ri)}), t〉
and Fdeact(Fenact(s, 〈q, γi, ωi〉, ri), ri) = 〈p ∧ q, (γa, γr, γ), Π, (ωa, ωr, ω), t〉 	=s.

However, starting with a role enacting agent whose belief base entails the
belief base of a role, then enacting followed by deacting of the role by the same
agent gives the identity function.

Proposition 4. Let rea s′ be of the form Fdeact(Fenact(s, r, ri), ri) and rea s′′

be of the form Fenact(Fdeact(s, ri), r, ri), for the role r ∈ t and ri ∈ Rname.
Then,

Fdeact(Fenact(s′, r, ri), ri) = s′ and Fenact(Fdeact(s′′, ri), r, ri) = s′′

4.4 Activating and Deactivating Roles

In our view, enacting a role does not imply activating the role. However, since
enacting a role updates the belief base of the rea, the enacted role will indirectly
influence the behavior of the role enacting agent. In order to direct the role
enacting agent to achieve the role’s objectives, the enacted role should be acti-
vated. In fact, activating a role is selecting and processing it. For this reason, we
introduce two new functions for activating and deactivating agent roles. The role
activating function maps passive-role enacting agents to role enacting agents.
The objectives, plans, and rules of the enacted role become active entities and
will affect the behavior of the role enacting agent.

Definition 9. (Role activating function) Let S be the set of rea’s, Se be the
set of passive-role enacting agents, 〈σ, Γ,Π,Ω, t〉 ∈ Se, R be the set of roles,
〈σj , γj , ωj〉 ∈ R, and ri ∈ Rname. The role activating function Factivate : Se ×
R × Rname → S is defined as follows:

Factivate(〈σ, Γ,Π,Ω, t〉 , 〈σj , γj , ωj〉 , ri) = 〈σ ∧ σj , Γ
′, Π ′, Ω′, t〉

where
Γ = (γa, (�, e), γ ∪ {(γi, ri)}) and Γ ′ = (γa, (γi, ri), γ),
(Π = (Πa, (∅, e), Πs) and ∀X ⊆ LP × LG (X, ri) 	∈Πs and Π ′ = Π) or
(Π = (Πa, (∅, e), Πs ∪ {(X, ri)}) and Π ′ = (Πa, (X, ri), Πs)),
Ω = (ωa, ((∅, ∅, ∅), e), ω ∪ {(X, ri)}) and Ω′ = (ωa, (X, ri), ω).

Note that the second argument of the role activating function is a role spec-
ification while we only use the information component of the role specification,
i.e. σj . Alternatively, we can specify the role activating function without agent
specification as argument, but then we have to modify the rea specification to

200 M. Dastani et al.

represent the information associated to the inactive roles. The second condition
in the above definition is relevant when an enacted role is activated for the first
time. Note that the roles do not contain plans in their specifications and en-
acting them do not add any plan to a rea. The plans related to a role can be
generated only by activating the role. The third condition guarantees that the
plans of an already activated role, which have been stored by their deactivation
(see definition 10 for deactivation of roles), are activated again.

The role deactivating function, to the contrary, t maps role enacting agents to
passive-role enacting agents. In fact, the activated enacting role may consist of
objectives that are not achieved and plans that are not executed. These entities
are saved and can be activated once again.

Definition 10. (Role deactivating function) Let S be the set of rea’s, 〈σ, Γ,Π,Ω,
t〉 ∈ S, Se be the set of passive-role enacting agents, and ri ∈ Rname. The role
deactivating function Fdeactivate : S × Rname → Se is defined as follows:

Fdeactivate(〈σ, Γ,Π,Ω, t〉 , ri) = 〈σ, Γ ′, Π ′, Ω′, t〉
where
Γ = (γa, (γi, ri), γ) and Γ ′ = (γa, (�, e), γ ∪ {(γi, ri)}),
Π = (Πa, (X, ri), Πs) and Π ′ = (Πa, (∅, e), Πs ∪ {(X, ri)}),
Ω = (ωa, (X, ri), ω}) and Ω′ = (ωa, ((∅, ∅, ∅), e), ω ∪ {(X, ri)}).

Proposition 5. Let s = 〈σ, Γ,Π,Ω, t〉 be a passive-role enacting rea (p-rea),
r ∈ t, and ri ∈ Rname occurs in s. Then, the rea’s Factivate(s, r, ri) and
Fdeactivate(s, ri) are coherent.

A role enacting agent can be activated and deactivated. Note that there exists
a rea s = 〈σ, Γ,Π,Ω, t〉 and se = 〈σ′, Γ ′, Π ′, Ω′, t′〉 in which ri, r

′
i ∈ Rname

occurs, respectively, such that the following hold:

Factivate(Fdeactivate(s, ri), r, ri) 	=s for r ∈ t

Fdeactivate(Factivate(se, r′, r′
i), r

′
i) 	=se for r′ ∈ t′

In general, the behavior of the recursive applications of activating and deacti-
vating functions is characterized by the following proposition.

Proposition 6. Let the rea s be of the form Factivate(se, r, ri) where s =〈σ, Γ,Π,
Ω, t〉, r ∈ t, and ri ∈ Rname, then

Factivate(Fdeactivate(s, ri), r, ri) = s

The enacting agent can enact the role in various ways. For example, the agent
may prefer to achieve the objectives adopted from the role before aiming to
achieve its own objective, or otherwise it may prefer to achieve its own objective
first. The exact way to enact a role should be determined either beforehand or
during the execution of the agent.

Enacting and Deacting Roles in Agent Programming 201

5 Implementation of Roles

Like other programming languages, an agent programming language should pro-
vide data structures to specify the (initial) state, and a set of programming con-
structs to specify how the states should evolve. In the case of programming lan-
guages for cognitive agents the data structures consist of mental attitudes such
as beliefs, goals, and plans, and the specification of their dynamics is captured by
the modification rules. The programming constructs consist of a set of basic oper-
ations, which are defined on mental attitude and the rules, and a set of operators
to compose complex programming constructs in terms of basic operations. The
program that specifies the operations on these entities is usually called the delib-
eration program, deliberation cycle, or decision making mechanism of agents [3].

In general, there are two ways to implement the enactment and deactment
of roles by cognitive agents. The first approach is to introduce two special ac-
tions that can be invoked in the agent’s plan and which, when executed, re-
alize the enactment and deactment of roles. In this approach, the agent will
enact and deact a role according to its plans that are conditionalized for ex-
ample by its beliefs or goals. For example, an agent buyer may have the plan
if B(registered(me)) then enact(rbuyer, buyer1) which, when executed, up-
dates the buyer according to the instantiation of the role rbuyer (denoted by
buyer1) if he believes that he is already registered. Also, one may specify the
goals and rules, which specify a role in such a way that the agent will execute
the deact action when the objectives of the agent are achieved. For example,
in our auction example, the role rbuyer (instantiated and denoted by the role
name buyer1) may contain a rule B bought(item) ⇒ deact(buyer1). This rule
indicates that whenever the role enacting agent believes that it bought the item,
then he should deact the buyer role buyer1.

The second approach is to introduce two basic programming (deliberation)
operations which, when executed, result in enacting or deacting of agent roles.
These and other operations such as selecting goals and plans, executing plans,
or applying modifications rules constitute the agent’s deliberation program. For
example, a deliberation program can consist of selecting and enacting a role (in
this case based on goal G(buy(item))) before starting an iteration in which a
goal of the agent is selected and planned and the plan executed. In this iteration,
the rules may also be selected and applied to modify the goals and plans of the
agent. Let enact(rbuyer, buyer1) and deact(buyer1) be deliberation operations
for enacting and deacting the instantiation of the role buyer, respectively. Then,
the following illustrates a deliberation program in which the agent first selects
which role to enact, then enact the role, and finally deact it.

1- If G(buy(item)) then
2- BEGIN
3- enact(rbuyer, buyer1);activate(rbuyer, buyer1);
4- While goalbase 	=� do Select goal(G);Plan(G,P);Execute(P) od;
5- deactivate(buyer1);deact(buyer1)
6- END

202 M. Dastani et al.

In both approaches, the enactment and deactment of roles result in a modi-
fication of the role enacting agent as specified in definitions 7 and 8. According
to these definitions, enacting a role results in adoptions of beliefs, goals, and
rules, and deacting it results in removal of goals, plans, and rules. The choice for
one of these two approaches will be based on a pragmatic consideration and is
a methodological issue [5]. For example, one should consider if role modification
is a part of the agent’s mental attitudes or is it an issue of an agent decision
making process.

5.1 Semantics of Enact and Deact Operations

The semantics of programming languages can be specified in terms of updates
(or transitions) of states (agent specification) based on programming operations.
For example, we have provided in [6] the operational semantics of 3APL, which
is a programming language for cognitive agents. In this section, we assume an
arbitrary cognitive agent programming language for which operational semantics
is defined. We sketch how the semantics of this language can be modified as the
result of extending the language with enact and deact operations. In particular,
we explain which parts of the existing semantics should be modified, and how
the semantics of the enact and deact operations should be defined.

In section 4, we have defined an agent specification in such a way to allow
agents to have an explicit representation of the role they enact. In particular, we
have defined the agent’s goal base and rule bases as tuples to have a distinguished
representations of the objectives and rules of the agent itself and the objectives
and rules that specify the active and inactive roles. The fact that the goal base
and the rule base are tuples raises the question how to verify whether a goal is
derivable from the goal base and how to select a rule from the rule base. Given
〈γa, γr, γ〉 as the goal base of a role enacting agent and κ a goal, the first question
can be answered by verifying if the goal is derivable from the conjunction of the
goal bases, i.e. γa ∧γ′ |= κ. Given 〈ωa, ωr, ω〉 as the rule base of the role enacting
agent (with active role ri), a rule can be selected from the set ωa∪ω′. We assume
that rules will be selected from the set of rules based on orderings defined on
ωa and ω′, and based on a selection criterion. An example of selection criteria
is the attitude of the role enacting agent, e.g. social (first select from ω′ before
selecting from ωa), or selfish (first select from ωa before selecting from ω′).

In the following, we specify the update of agent states based on the enacting
and deacting operations. The provided updates can be used to define transitions
if the semantics of the programming language is an operational semantics. In
the following, we use the semantic function Sem(α, s) = s′ to indicate that the
state s′ is the result of updating the state s through operation α.

Definition 11. Let S be the set of role enacting agents, s = 〈σ, Γ,Π,Ω, t〉 ∈ S,
R be the set of roles, r ∈ R, ri ∈ Rname, and ω′ ∈ Rules. Let Fenact,Fdeact,
Factivate, and Fdeactivate as defined in definitions 7, 8, 9, and 10, respectively.
The semantics of the operations OP = { enact(r, ri), deact(ri), activate(
r, ri), deactivate(ri)}, is captured by the function Sem : OP ×S → S, defined
as follows:

Enacting and Deacting Roles in Agent Programming 203

Sem(enact(r, ri), s) = Fenact(s, r, ri) for r ∈ t
Sem(deact(ri), s) = Fdeact(s, ri) for Ω = (ωa, ωr, ω) & (ω′, ri) ∈ ω
Sem(activate(r, ri), s) = Factivate(s, r, ri) for Ω = (ωa, ωr, ω) & (ω′, ri) ∈ ω
Sem(deactivate(ri), s) = Fdeactivate(s, ri) for Γ = 〈γa, (γ′, ri), γ〉

and Ω = 〈ωa, (ω′, ri), ω〉
Based on this semantics for the proposed programming instructions and as-

suming that other programming instructions maintain the coherence of rea’s,
then we can formulate the following safety proposition.

Proposition 7. (safety) Let s be a coherent rea and P be an agent program
consisting of a set of programming instructions among which those related to
enacting and activating roles as suggested in definition 11. Let the following
conditions hold:

– each instruction deact(ri) is preceded by an instruction enact(r, ri) be-
tween which ri is used uniquely

– each instruction deactivate(ri) is preceded by only one instruction
activate(r, ri) between which ri is used uniquely, and no activate(r, ri)
is preceded by another activate(r′, rj)

– all other programming instructions maintain coherence of rea’s

Then, if the program P is executed on rea s, the resulted rea after the execution
of P is coherent.

6 Future Research and Concluding Remarks

In this paper we have argued for the importance of enactment/deactment of
roles by agents in multiagent programming, in particular when dealing with open
systems where the match between the agents in the system and the roles to be
played is not fixed but changing dynamically. Since we furthermore believe that
an agent can only be actively engaged in one role at a time, we have also proposed
an activate/deactivate mechanism for roles. We have provided a formal semantics
of the enactment and deactment as well as the activate and deactivate operations.
Since this formalization is conceptually based on the notion of cognitive agents
(and employs concepts used in the semantics of an agent language such as 3APL
in particular), we claim that the implementation of the proposed mechanism by
agent-oriented programming languages is straightforward.

References

1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:
An agent-oriented software development methodology. Journal of Autonomous
Agents and Multi-Agent Systems, to appear.

2. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the TROPOS project. Information Systems, 27:365–389,
2002.

204 M. Dastani et al.

3. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent de-
liberation. In Second International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’03). 2003.

4. M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent societies.
In Second International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’03). 2003.

5. M. Dastani, J. Hulstijn, F. Dignum, and J.-J. Meyer. Issues in multiagent system
development. In Proceedings of The Third Conference on Autonomous Agents and
Multi-agent Systems (AAMAS’04). New York, USA, 2004.

6. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A programming
language for cognitive agents: Goal directed 3APL. In M. Dastani, J. Dix, A. E.
Fallah-Seghrouchni, and D. Kinny, editors, Proceedings of the First Workshop on
Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMAS03). 2003.

7. P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and
R. Tolksdorf, editors, Engineering Societies in the Agent World II, LNAI 2203.
Springer Verlag, Berln, 2001.

8. V. Dignum. A Model for Organizational Interaction, based onAgents, founded in
Logic. PhD thesis, University of Utrecht, 2003.

9. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In First Interantional Joint Conference on Autonoumous Agents and Mul-
tiagent Systems (AAMAS’02), pages 1045 – 1052. ACM Press, 2002.

10. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An organi-
zational view of multi-agent systems. In P. Giorgini, J. P. Müller, and J. Odell, edi-
tors, Agent-Oriented Software Engineering IV, 4th International Workshop, AOSE
2003, Melbourne, Australia, July 15, 2003, Revised Papers, LNCS, pages 214–230.
Springer Verlag, 2003.

11. B. Hansson. An analysis of some deontic logics. Nous, 3:373–398, 1969.
12. K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer. Agent programming

in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.
13. J. Odell, H. V. D. Parunak, S. Brueckner, and J. Sauter. Temporal aspects of

dynamic role assignment. In P. Giorgini, J. P. Müller, and J. Odell, editors, Agent-
Oriented Software Engineering IV, 4th International Workshop, AOSE 2003, Mel-
bourne, Australia, July 15, 2003, Revised Papers, LNCS, pages 201–213. Springer
Verlag, 2003.

14. A. Omicini. SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In AOSE, pages 185–193, 2000.

15. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2), 1996.

16. J. Searle. The Construction of Social Reality. The Free Press, New York, 1995.
17. W. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol. Skeleton-based agent

development for electronic institutions. In First Interantional Joint Conference on
Autonoumous Agents and Multiagent Systems (AAMAS’02), pages 696–703. ACM
Press, 2002.

18. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

A Platform for Agent Behavior Design and
Multi Agent Orchestration�

G.B. Laleci, Y. Kabak, A. Dogac, I. Cingil, S. Kirbas, A. Yildiz, S. Sinir,
O. Ozdikis, and O. Ozturk

Software Research and Development Center & Dept. of Computer Eng.,
Middle East Technical University (METU)
06531 Ankara Türkiye +90 312 2105598

asuman@srdc.metu.edu.tr

Abstract. Agents show considerable promise as a new paradigm for
software development. However for wider adoption and deployment of
agent technology, powerful design and development tools are needed.
Such tools should empower software developers to cater agent solutions
more efficiently and at a lower cost for their customers with rapidly
changing requirements and differing application specifications.

In this paper, an agent orchestration platform that allows the devel-
opers to design a complete agent-based scenario through graphical user
interfaces is presented. The scenario produced by the platform is a rule
based system in contrast to the existing systems where agents are coded
through a programming language. In this way, the platform provides a
higher level of abstraction to agent development making it easier to adapt
to rapidly changing user requirements or differing software specifications.
The system is highly transportable and interoperable.

The platform helps to design a multi-agent system either from
scratch, or by adapting existing distributed systems to multi agent sys-
tems. It contains tools that handle the agent system design both at the
macro level, that is, defining the interaction between agents and at the
micro level which deals with internal design of agents.

Agent behaviour is modeled as a workflow of basic agent behaviour
building blocks (such as receiving a message, invoking an application,
making a decision or sending a message) by considering the data and
control dependencies among them, and a graphical user interface is pro-
vided to construct agent behaviours. The platform allows agent templates
to be constructed from previously defined behaviours. Finally through
a Scenario Design Tool, a multi-agent system is designed by specifying
associations among agents. The scenario is stored in a knowledge base by
using the Agent Behaviour Representation Language (ABRL) which is
developed for this purpose. Finally to be able to demonstrate the execu-
tion of the system on a concrete agent platform, we mapped the ABRL
rules to JESS and executed the system on JADE.

� This work is supported by the European Commission’s IST Programme, under the
contract IST-2000-31050 Agent Academy.

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 205–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 G.B. Laleci et al.

1 Introduction

In the recent years agent technology has found many interesting applications in
e-commerce, decision support systems and Internet applications. An increasing
number of computer systems are being viewed in terms of autonomous agents
[12]. They have proven particularly useful in business and production scenarios
where they have facilitated the buying and selling of goods and services in elec-
tronic marketplaces, handling workflows, helping with personalization by man-
aging user profiles or by tackling production planning. As the benefits of using
agent societies in such applications become clear so does the need for developing
high-level agent system building tools and frameworks.

Agent based approaches enable the development of increasingly powerful and
complex distributed systems, since they provide a natural way to define high level
of abstractions. The problems can be decomposed in terms of autonomous agents
that can engage in flexible, high level interactions [12, 19]. However the design
and development of multi-agent-systems are not straight forward and these is-
sues are among the main research areas in multi-agent systems [9]. There are
considerable amount of work on designing a multi-agent system at a macro level,
i.e., defining the interactions between the agents; however it is still cumbersome
to design and develop multi-agent systems at a micro-level which deals with
internal details of agents.

The aim of the work described in this paper is to abstract the application
development from the detailed agent coding, and thus enabling the user to con-
struct a multi-agent system by making use of her existing applications and by
providing her an extensive and powerful design platform.

The orchestration platform we have developed allows users to define agent
behaviour types, agent types (containing possibly more than one behaviour) and
multi-agent scenarios through graphical user interfaces avoiding the coding ef-
fort. The scenario produced by the platform is a rule based system in contrast to
the existing systems where agents are coded through a programming language.
Thus the platform provides a higher level abstraction to agent development. The
behaviours of the agents can easily be modified by changing the rules. The for-
malism developed within the scope of this work to represent the behaviours in a
rule based system can be used in any agent platform to execute the multi-agent
scenario, since there are rule based languages that can be used with most of
the programming languages (For example CLIPS [4] language can be embedded
within languages such as C, Java, FORTRAN and ADA). In this way, the sys-
tem becomes highly transportable and interoperable, empowering the software
developers to cater agent solutions more efficiently.

There are three main tools in the platform both for macro-level (societal)
and for micro-level (agent internals) design. The Behaviour Type Design Tool
helps to design agent behaviour templates which are then used by the Agent
Type Design Tool for building agent types, which in return are exploited by the
Scenario Design Tool to create application specific multi-agent scenarios.

The Behaviour Type Design Tool allows users to define the behaviours of an
agent as a workflow template of basic agent operations such as sending a message,

A Platform for Agent Behavior Design and Multi Agent Orchestration 207

receiving a message, performing an action, or making a decision. There are also
“if” and “while” blocks to control the flow of operations an agent performs. The
existing applications can be inserted in the behaviours as activity blocks, so
the platform provides an easy way for adapting existing distributed systems to
multi-agent systems.

The platform enables the user to define the ontologies of the messages between
the agents through an Ontology Design Tool.

Once the behaviour templates are designed through the Behaviour Type De-
sign Tool, the Agent Type Design Tool helps the user to design an agent type
by including the desired behaviour templates. Notice that these two graphical
tools help with the micro level design. To assist the user with the design of agent
societies, that is, for macro level design, Scenario Design Tool is used. This tool
helps to select the necessary agent types (or new agents can also be built at this
level with the Agent Type Design Tool) and to define the associations among
agents. The scenario specific agent information is also given at this time with
the proper interfaces provided, and then, the scenario is initialized. Once the
scenario is initialized, it is converted into Agent Behaviour Representation Lan-
guage (ABRL) developed for this purpose and the multi-agent system becomes
ready for operation.

There are four more tools in the platform called the Consistency Checker
Tool, the Ontology Design Tool, the Physical Asset Design Tool and the Mon-
itoring Tool. Consistency Checker Tool basically checks the consistency of the
design in terms of the sent and received messages, i.e., if an agent A is sending
a message to an agent B, then B should have the necessary mechanisms in place
to receive this message. The Ontology Design Tool helps to design the ontolo-
gies and the Physical Asset Design Tool assists the users in designing external
sources for the input variables of the behaviours. The Monitoring Tool provides
a graphical interface for tracing the running agents.

The platform has some additional functionalities, such as monitoring the
running agents, adding new behaviours to certain agent instances, killing some
of their behaviours, killing some of the agents, or changing the parameters of
the scenario.

To be able to demonstrate the execution of the system in a concrete agent
platform, we mapped the ABRL rules to JESS [13] and executed the system on
JADE [11]. The paper is organized as follows: Section 2 summarizes the related
work. Section 3 is devoted to the description of the Agent Orchestration Platform
developed. In Section 3.1, the Behaviour Type Design Tool is described and in
Section 3.2 the Agent Type Design Tool is presented. These two tools address
the micro level agent design. Section 3.3 explains the macro level multi-agent
system design, that is the Scenario Design Tool. Section 3.4 presents the Agent
Behaviour Representation Language and a brief example is provided in Section
3.5 to clarify the concepts. Section 3.6 describes the initialization of a multi-
agent scenario in the orchestration platform. Finally Section 4 concludes the
paper.

208 G.B. Laleci et al.

2 Related Work

Considering the increasing need for developing high-level agent system building
tools, there has been a considerable amount of research on agent oriented soft-
ware design, most of which are mainly based on Object Oriented analysis and
design methods. Several methodologies are defined to specify the macro-level
(agent society and organization structure) design of multi-agent systems [20].
These methodologies enable developers to go systematically from a statement of
requirements to a design that is sufficiently detailed to be implemented directly.

There are two well known methodologies that provide a top-down and iter-
ative approach towards modeling and developing agent-based systems, namely,
Gaia [19], and MaSE [7]. They basically define the roles in a scenario, the respon-
sibilities of these roles, and the interactions between them. These methodologies
have been used in some applications, such as ZEUS [22] which uses Gaia and
agent tool [7] which uses MaSE. However these methodologies and their applica-
tions mostly concentrate on the macro level agent design; their aim is not micro
design. For example in ZEUS, the user has to define the functionality of the
agents by writing Java codes with the given API.

In parallel with these methodologies, UML is started to be used extensively
for modelling agents. AML [5], is a semi-formal visual modelling language, spec-
ified as an extension to UML 2.0. It is used for specifying, modelling and doc-
umenting systems that incorporate concepts drawn from MAS theory. Similarly
inn [10], Agent UML Interaction diagrams for representing agent interaction
protocols based on UML 2.0 Interaction diagrams is being presented.

As indicated in [1, 18], there is still a gap between Agent-Oriented design
and implementation. In this paper we provide one more level of abstraction with
the platform developed; a user is able to define the whole functionality of the
behaviour via a GUI, and can make use of her existing applications through an
API without the need to modify them.

COLLAGEN (COLLaborative AGENt) [17] is a Java middleware developed
at MERL to make it easier to implement collaborative interface agents. Its aim
is to develop a system that mediates the interaction between a software interface
agent and a user. COLLAGEN provides a generic implementation of discourse
interpretation, plan recognition, and plan generation algorithms, all of which
take a given task model as data. Users can map the tasks with user interfaces,
for generating “collaborative interface agents”. Our approach’s main focus is not
developing interface agents, alternatively the platform presented in this paper
aims to model and develop the interactions between agents through a GUI for
creating Multi Agent System.

A similar tool to our platform is PASSI. PASSI [6](a Process for Agent So-
cieties Specification and Implementation) is a step-by-step requirement-to-code
methodology for designing and developing multi-agent societies integrating de-
sign models and concepts from both OO software engineering and artificial in-
telligence approaches using UML notation. It also provides graphical tools for
designing agent behavior and agent interactions. On top of PASSI, in our tool,
it is possible to integrate existing java applications into agent behavior. Ad-

A Platform for Agent Behavior Design and Multi Agent Orchestration 209

ditionally our platform can create agents with decision making capability by
integrating “inference engines” executing well known data mining techniques.

3 Agent Orchestration Platform

As shown in Figure 1, there are three interacting tools, namely, the Behaviour
Type Design Tool (BTDT), the Agent Type Design Tool (ATDT) and the Sce-
nario Design Tool (SDT) in the agent orchestration platform developed. In this
section, the details of these tools are presented.

3.1 Behaviour Type Design Tool (BTDT)

Behaviours of an agent specify its role in a scenario. We note that basic opera-
tions that an agent may perform include:

– An agent may receive input from the outside world. This could be data from
sensors or messages from other agents.

– After evaluating the messages and/or some application data, an agent may
take a decision, perhaps by invoking an inference engine.

– An agent may need to invoke existing applications. In doing this, the re-
ceived messages and/or some application specific data may be used as input
parameters to the invoked applications.

– An agent may decide to send messages to other agents.

An agent behaviour can be modeled as a workflow of these behaviour building
blocks since there are data and control flow dependencies among them. In this

Fig. 1. The Components of the Agent Orchestration Platform

210 G.B. Laleci et al.

Fig. 2. Behaviour Type Design Tool

way, it becomes possible to construct an agent behaviour as a workflow through
a GUI by using these basic behaviour blocks. Note that behaviour blocks other
than the ones specified above can also be defined.

A design tool needs the power to express the control statements like “if”
or “while” to organize the flow among blocks an agent needs to execute. Fur-
thermore an agent may be continuously executing its behaviours (called “Cyclic
Behavior” in JADE terminology), or once (“One-Shot Behavior”), and such con-
trol statements should also be provided by a design tool.

With these observations, we have developed the Behaviour Type Design Tool
(BTDT) as shown in Figure 2 as a workflow design tool where there is a node for
each possible generic action of an agent. The tool allows the users to select basic
behaviour building blocks, drag them onto the canvas and draw the transitions
among them. After a block is placed on the canvas, the user specifies the required
semantics of the block. For example, for a “send block”, the block name, the
performative such as “inform” or “request”, and the ontology of the message are
specified.

The tool allows the following functionality to be defined through these nodes:

Receive Block: Receive block models the task of receiving a message by an
agent. Note that the users may wish to filter the messages received by an agent
by specifying some constraints. For example, a user may wish to define the
ontology, the performative, or the sender of the message expected. The GUI
tool provides a construct that enables the user to define all kinds of filters on
messages. Since only the generic behaviour template is designed at this stage,

A Platform for Agent Behavior Design and Multi Agent Orchestration 211

the sender of the message is not specified here (This is specified through Scenario
Design Tool while designing a specific scenario). While specifying the ontology
of the message the user is provided with an Ontology Design Tool, and Protégé
[15] is used for this purpose. Here the user defines the ontology of the message,
then the ontology is saved as an Resource Description Framework (RDF) [16]
file. The platform parses the RDF files, constructs and compiles the ontology
classes to be used by the agents.

In order to provide data flow and sharing among the different building blocks
of an agent, a “Global Variable Pool” is defined, which holds the variables that
are produced and consumed as a result of the execution of the behaviour blocks.
“Global Variable Pool” may contain the following types of variables:

– The variables extracted from a message received: The output of a receive
block is a message in a specific ontology, and is stored in the “Global Variable
Pool”. In doing this, all the fields of the message are extracted and are stored
in a collection of variables by conforming to the class/subclass hierarchy of
the given ontology.

– The variables produced by an activity: The collection of variables that are
produced as a result of the execution of activity blocks.

– The variables produced as a result of executing a rule engine: The collection
of variables that are produced from an Inference Engine block.

Through global variable pool it becomes possible to handle agent interaction
as ‘conversation level’, i.e. evaluating message in the context of a sequence of
messages, since the results of the received messages can be further processed by
other blocks, and necessary action can be taken.

Activity block: To be able to construct a multi-agent-system for an existing
distributed system, the platform enables the user to invoke predefined applica-
tions, by involving them as activity blocks in the agent behaviour workflow. The
tool gives the ability to the user to specify a predefined application, choose one
of its methods and specify the input variables of that method. Variables from the
“Global Variable Pool” can be assigned to the input variables of the methods,
and/or the user can provide some external sources to be used to provide values
to the input variables. These external sources are termed as “Physical Assets”.
The platform provides a tool also to define and manipulate the physical assets
as shown in Figure 3. There are three kinds of physical assets:

– Simple variables: The user can assign a simple value to a variable. A simple
variable is composed of the name of the variable, its type and its value.

– URLs (Uniform Resource Locators): The user can state that the value that
is to be mapped to the variable should be extracted from an XML file. After
getting the URL of the XML file, the tool presents the user the nodes of the
XML file as a Document Object Model (DOM) hierarchy through the use
of an XML parser (Xerces parser [21] is used in the implementation). When
the user selects one of the nodes, an XPath expression is created by the tool
to access the related node by simply constructing the path to the root of the
XML file.

212 G.B. Laleci et al.

Fig. 3. Physical Asset Design Tool

– Databases: The value of the variable can also be extracted from a database
by providing the proper coordinates, that is, the database name, its URL,
and the necessary login id and password. The tool helps the user to visu-
alize the tables and their related rows. When the user selects the row she
wants to extract, the query to obtain that information from the database is
formulated.

Note that to realize this functionality, traditional database techniques are used
such as connecting to databases through their JDBC interfaces, querying the data
dictionary to obtain the table names and their fields, querying the database for the
content and displaying these results graphically. Although these technologies are
mainstream and does not constitute the innovative aspects of our work; facilitat-
ing the job of the designer in this way is valuable. As a future work, ontology files
in OWL (Web Ontology Language) will be presented to the user and it will be
possible to extract tuples as physical assets through OWL-QL queries.

With the Behaviour Type Design Tool, only the types of behaviours (i.e.,
templates) are designed, hence providing the names and types of the physical
assets are sufficient. These physical assets are assigned to actual specific values
through the Scenario Design Tool at the initialization phase. For example, with
BTDT, we may design a behaviour that consists of a receive block and an activity
block which will access a database. The specific type of agent that will send the
expected message to this receive node and the specific database to be accessed
are only known in the scenario design time and hence specified through Scenario
Design Tool.

A Platform for Agent Behavior Design and Multi Agent Orchestration 213

It is clear at this point that the tools of the platform share information. For
example the physical assets designed through Behaviour Type Design Tool are
later initialized through the Scenario Design Tool. We chose to store the shared
information, such as the physical assets, as XML files to facilitate information
sharing among the different tools of the platform.

Note that the output of an application may be used to set the global variables,
which may be the input to other applications.

Send Block: Defining send blocks is similar to defining receive blocks. The user
needs to define the performative of the message, the ontology of the message, and
the content language of themessage. To fill the content of the message, the ontology
of the message is presented to the user pictorially as a hierarchy, where the user
assigns each node a value, by either choosing a variable from the global variable
pool, or by defining new physical assets with the help ofPhysical Asset DesignTool.
The receiver of the message and the contents of the physical assets are defined in
the Scenario Design Tool, since these values are specific to a given scenario.

Inference Engine: An agent may want to execute an inference engine to decide
on what to do at certain point in the flow of its behaviour, i.e., it may have some
predefined rules, and according to the facts it gathers, it may execute these
set of rules against the newly obtained facts. These rules may be predefined,
or they can be dynamically obtained according to the changing aspects of its
environment.

After the user finishes the design of a new behaviour type, it is saved as an
XML file which includes the parameters of the blocks, and the order of execution
of these blocks. Again, XML is chosen as the intermediary format to facilitate
information sharing among different tools of the platform. This XML definition
is used in the Scenario Design Tool to visualize the flow of execution, where
the scenario specific values are provided such as the missing values for physical
assets, or the receiver and sender of the messages.

3.2 Agent Type Design Tool (ATDT)

After having defined the behaviours, the next step is to define the agent types.
Agent Type Design Tool helps user to give a name and assign behaviour types to
an agent type from the existing behaviour types that have been designed previ-
ously through the Behaviour Type Design Tool. These are saved again in an XML
file to be used in the Scenario Design Tool. New agent types can be constructed
either from scratch or by modifying the existing agent types. “Agent Types” are
aggregations and specializations of agent behaviors for specific applications and
can be thought as to role models in agent systems.

3.3 Scenario Design Tool (SDT)

After having designed the necessary behaviour types and agent templates, the
user is now ready to design her multi-agent scenario. Through a GUI, she first
adds the agents‘ types necessary in her scenario to the panel. She selects the
agents from the predefined agent types, or she can build a new agent type,

214 G.B. Laleci et al.

with the help of Agent Type Design Tool. Then she edits each of the agents
to make these agent types specialized to the scenario. From a graphical user
interface she visualizes the agents and their behaviour types, she can edit each of
these behaviours to instantiate specific behaviour instances to the agent, i.e., she
assigns the senders and receivers of the messages selecting from the agents defined
in that scenario. Finally, she configures the predefined physical assets to map
them to specific values for this scenario. Once the initialization of the scenario
is completed it is converted to the ABRL rules and stored in a knowledge base.

3.4 Agent Behaviour Representation Language (ABRL)

We represented the behaviours in the scenario through a rule based system
specifically designed for this purpose, called Agent Behaviour Representation
Language (ABRL), which is composed of rules, facts and functions. Represent-
ing the whole scenario in this way in a rule-based system makes it highly inter-
operable.

Note that in a rule based system, there is no way to specify an order of exe-
cution implicitly. A rule is like an “if-then” statement in a procedural language,
but it is not used in a procedural way. While “if-then” statements are executed
at a specific time and in a specific order, according to how they are written in the
source code, rules are executed whenever their “if” parts (their left-hand-sides)
are satisfied.

On the other hand, there could be “execution dependencies” among the be-
haviour blocks in an agent behaviour. Assume that an agent is expecting a
message from another agent, and after having received this message, the agent is
expected to invoke a predefined activity, say A, by using a field in this message
as an input parameter. Clearly there is an execution dependency over here; the
activity block can only be executed after the expected message is received. In
other words, we need to introduce a mechanism to enforce an execution sequence
among the rules.

Execution dependency issues has been addressed previously in the literature
within the context of workflow systems and a formalism has been developed
[14, 3] to specify inter-task dependencies as constraints on the occurrence and
temporal order of events.

In the following we provide an intuitive explanation for the mechanism we
have developed for enforcing an execution order in an agent behaviour. The
formal treatment of the subject for workflow systems is given in [8].

We associate a “guard expression” with each behaviour block to manage
the control flow in an agent behaviour through the rule-based system. For the
example given above, the “start guard” of activity A is a condition expression
stating that the previous receive block has to be executed before this block can
start.

We represent the behaviour blocks in Agent Behaviour Representation Lan-
guage (ABRL) as follows:

A Platform for Agent Behavior Design and Multi Agent Orchestration 215

– Represent each block as a rule and a fact pair,
– Put the necessary guard expressions in the left-hand-side of the rules to

enforce the required execution order,
– Represent global variables and physical assets as facts to satisfy the infor-

mation passing constraints among blocks,
– Use some auxiliary functions to implement the required actions in a specific

agent platform, whenever the rules are fired.

In order to model the behaviour blocks and their execution order through a
rule-based system, we define fact templates for representing the semantics of the
blocks and the rules and the guard expressions to describe the execution order
as explained in the following.

The fact templates are given in the Figure 4. These facts include all the
necessary attributes to define each block. For example the “ReceiveBlock”
fact includes the name of the block, the sender of the message, its ontology
and performative. The facts are asserted while the behaviours are initialized
through ABRL.

To describe the set of actions that will be performed when a block is en-
countered, an ABRL rule is defined. The general template of a rule is given in
Figure 5. On the left-hand-side of a rule, there is a fact and a guard expression.
The fact informs the rule that “there is a block with the specified attributes
pending to be executed in the flow of the behaviour”, and the guard expression
informs the rule about “the preconditions of that block to be fulfilled so that
the block can be executed”.

output
sender

ontology

performative

Receive Block

name

receiver

ontology

performative

Send Block

falseName

trueName

IF Block

trueName

falseName

WHILE Block

name

blockName

value

Variable
name

Asset

name

className

functionName

Activity Block Inference Block

name

dsid
name

Fig. 4. The Fact Templates

RULE

output
guard
expressions

functions
auxiliary facts

input
guard
expressions

Fig. 5. The Rule Template

216 G.B. Laleci et al.

When a rule finds the related fact, and the asserted guard expression, the rule
is fired. When a rule is fired, the necessary actions are executed. To represent
these set of actions, one auxiliary function per block is defined. There are four
auxiliary functions one for each of the send, receive, inference engine, and action
blocks. When a block is successfully handled, the guard expression of the block
that follows is asserted. This in return fires the next rule in the sequence.

As explained in section 3.1 blocks have two kind of information sources:
global variables and physical assets. Global variables are used to pass information
among blocks and physical asset represent external information sources as shown
in Figure 4. These are the inputs and outputs of the blocks. The “blockName”
in Figure 4 of “Variable” specifies the block that outputs this global variable.
Since Physical Assets are stored as XML files, and their values are extracted by
parsing the XML files, there is no ”value” slot in their template.

3.5 An Example

In this section, we provide an example to clarify the concepts introduced. Con-
sider the example flow given in Figure 2. In this example, an agent behaviour
template is defined as follows: first, the agent is expected to receive a message.
Then it executes an “if” block, and depending on the “if condition”, it either
invokes an application within a “while” block or it activates an inference engine
to take a decision. When one of these branches terminates successfully, it sends
a message to another agent.

The behaviour design given in Figure 2 can be described through a “be-
haviour” tree as shown in Figure 6 to visualize the execution dependencies.

The nodes of this tree correspond to the blocks in the design tool and the top
level “Behaviour” node implies that the child blocks will be executed sequentially
(as default). By considering the execution dependencies in this tree (Figure 6) the
guard expressions and their associated conditions can automatically be obtained.

INFERENCE

BEHAVIOUR

RECEIVE IF

WHILE

SEND

ACTIVITY

3 5

4

0

2 61

Fig. 6. The Process Tree

A Platform for Agent Behavior Design and Multi Agent Orchestration 217

Table 1. Guards of the blocks of the example behaviour

Task Start Start Terminate Fail Terminate Fail
Number Guard Condition Guard Guard Cond. Cond.

0 TRUE 6 terminates 1, 2, 6 fails
1 O starts receive fact TRUE TRUE msg. msg. could

asserted received not be received
2 1 if fact asserted, 3 or 5 3 or 5

terminates cond. var. available terminates fails
3 2 evaluates while facts asserted, TRUE 4 fails while cond.

to TRUE iteration var. available 4 fails is false
4 While Condition activity fact asserted, TRUE TRUE activity terminates activity

is TRUE input var. available successfully fails
5 2 evaluates jess fact asserted, TRUE TRUE inference eng. inference

to TRUE input var. available terminates successfully eng. fails
6 2 send fact asserted, TRUE TRUE msg. msg. could

terminates msg. content ready sent not be sent

For example, which branch of the “if” block will be executed depends on the
“guard expression” to be inserted by the “if” block, and this information, that
is, the result of “if” condition is only available at run time. Table 1 gives an
informal description of the guard expressions and conditions generated for this
example. Note that if there are more than one block to be executed in parallel,
more than one rule will fire at the same time.

For each block a rule is designed using these guard expressions. For example,
for the “receive block” in Figure 2, the start guard is the start of the behaviour,
and its start condition is satisfied when the “receive fact” is asserted. The “re-
ceive fact” is prepared according to the templates given in Figure 4, and it
includes all the necessary attributes for defining the semantics of this block. By
using these information, the following rule is generated for the “receive block”:

(Rule receiveBlockRule
(receiveBlock (name ?n) (sender ?s) (ontology ?o)
(performative ?p))
(startGuard BehaviourStarted)
⇒
(receiveBlockFunction ?s ?o ?p)
(assert (startGuard (?n finished)))

)

On the left-hand-side of the rule, there are the “receive fact” and the “start-
Guard” of the “receive block”. When the behaviour design is completed, all the
facts of the blocks in the behaviour are asserted into the knowledge base, and
the “BehaviourStarted” guard is asserted to initialize the first block in the flow
of the behaviour. So the “receiveBlockRule” finds its left-hand-side conditions
satisfied and it fires. When it fires, the auxiliary function “receiveBlockFunction”
is called with the necessary parameters, that is, the sender, the ontology, and
the performative of the message expected. This function executes the specific
actions which, in this case, is to receive the expected message from the sender.
When the message is received, its content is asserted into the “Global Variable
Pool” using the template given in Figure 4. Finally, to indicate that the “receive

218 G.B. Laleci et al.

block” has successfully terminated, the “start guard” of the block that follows
(i.e. the “if block”) is asserted. Hence the “if block” fires and the execution con-
tinues in this way. When the last block (i.e. the “send block”) in the flow of the
behaviour successfully terminates, the guard that terminates the execution of
the behaviour is asserted. Note that if the behaviour is “cyclic”, the start guard
that initiates the behaviour is asserted once again.

3.6 Initialization

When configuration of all agents in a scenario are completed, it is necessary to
initialize them in a multi-agent scenario. At this point, a concrete agent platform
is needed and we have chosen the JADE platform to run the agents.

The platform has a default agent called as “Agent Factory” (AF) which ini-
tializes each agent in the scenario as a JADE agent with the following default
behaviours: The first behaviour is called “Behaviour Initialization Behaviour”,
which listens to “Agent Factory” for new Behaviour Messages. AF agent sends
new behaviour messages to the newly created agents to inform them about their
behaviours. With this message, the agent receives the content of its behaviours,
its ontologies, physical assets, and decision structures (used by the inference
engine). The agent first initializes its ontologies by parsing the received RDF
ontology file and it constructs JADE Ontology classes. It uses these ontology
classes while receiving and sending messages. Then it parses the Physical Asset
files and initializes its physical asset collection. The agent retracts the rules from
a specified database (if this is specified at the design phase); converts the rules
into JESS rules, and initializes its Decision Structures collections accordingly.
After all of the parameters necessary for its behaviour to execute (i.e. ontolo-
gies, physical assets, decision structures) are in place, the agent behaviour is
initialized. Then, a JESS engine is instantiated; the ABRL representation of the
behaviours are asserted to the engine, and the behaviour starts to execute which
completes the agent initialization.

The platform also provides a monitoring tool, where the user can monitor the
existing agents, their behaviours, ontologies, physical assets, and decision struc-
tures in a scenario. With the help of this tool, the user can also visualize the mes-
sages exchanged by the agents. Having a view of the scenario from this tool, the
usermaywant to add newbehaviours to an agent, kill one of its behaviours. TheAF
agent sends the messages to the agent, which in turn handles the necessary actions.
The user may also want to change the values of some physical assets; the platform
provides a tool for this functionality. Again the AF agent sends the necessary up-
date messages to the agent, this time, with the help of its second default behaviour,
“UpdateListeningBehaviour”, so that it updates its physical asset collection ac-
cordingly. This behaviour also handles the Decision Structure update messages.

4 Conclusions

For wider deployment and exploitation of agent technology, it is important
to provide software companies with powerful agent design tools to help them

A Platform for Agent Behavior Design and Multi Agent Orchestration 219

develop solutions for their customers effectively. There are agent development
frameworks that aim to ease this process by providing APIs, but the developer
still has to define the behaviour of the agents by writing code in a programming
language.

In this paper, we present an orchestration platform that allows the developers
to design a complete agent-based scenario through graphical user interfaces.
To address the micro level design of an agent community, agent behaviours
are modelled as workflow processes and designed accordingly. The multi-agent
scenario produced by the platform is stored as a rule based system which makes it
easy to accommodate the changing requirements of user scenarios. The formalism
developed within the scope of this work to represent the behaviours in a rule
based system can be used in any agent platform to execute the multi-agent
scenario, since there are rule based languages that can be used with most of the
programming languages.

Guard expressions are used to enforce an execution sequence in a rule-based
system. Traditional database and file processing techniques are integrated into
the system to facilitate the design for the developers. The platform also provides
macro level design capabilities such as defining the ontologies of the agents, their
roles in the system, and their interactions in a systematical way.

The aim of the tool is to design a multi-agent system either from scratch,
or by adapting existing distributed systems to multi agent systems. Given a
multi-agent scenario and existing applications, the orchestration tool helps to
create the necessary agents, handles all the interactions between the agents, and
outputs a multi-agent system that is ready to be executed on an agent platform.

Note that although any agent platform can execute the multi-agent scenario
presented as a rule based system, to be able to demonstrate the execution of the
system on a concrete agent platform, we mapped the ABRL rules to JESS and ex-
ecuted the system on JADE. The developed tool has been extensively tested and
evaluated through the pilot application scenarios of the Agent Academy Project.
One of these case studies is presented at [2]. One of the limitations of the current
version of the tool is that it is not possible to design agents interacting with the
user through a GUI. This limitation will be handled in the future versions. Fi-
nally the tool is available at “https://sourceforge.net/projects/agentacademy”.

References

1. M. Amor, L. Fuentes, A. Vallecillo, “Bridging the Gap Between Agent-Oriented
Design and Implementtaion”. in. Proc. of AOSE 2004, July, 2004, NewYork, USA.

2. I. N. Athanasiadis, P. A. Mitkas, G. B. Laleci, Y. Kabak, “Embedding data-driven
decision strategies on software agents: The case of a Multi-Agent System for Mon-
itoring Air-Quality Indexes”, in 10th International Conference on Concurrent En-
gineering (CE-2003),Workshop on intelligent agents and data mining:research and
applications, Maderia, Portugal (2003)

3. P.A. Attie, M.P. Singh, A. Sheth, and M. Rusinkiewicz, “Specifying and enforcing
intertask dependencies”, in Proc. of 19th Intl. Conf. on Very Large Data Bases,
September 1993.

220 G.B. Laleci et al.

4. C Language Integrated Production System (CLIPS), http://www.ghg.net/clips/
CLIPS.html

5. R. Cervenka, I. Trencansky, M. Calisti, D. Greenwood, “AML: Agent Modleing
Language Toward Industry-Grade Agent-Based Modeling”. in. Proc. of AOSE
2004, July, 2004, NewYork, USA.

6. M. Cossentino, C. Potts, “A CASE tool supported methodology for the design
of multi-agent systems”. Proc. of the 2002 International Conference on Software
Engineering Research and Practice (SERP’02). Las Vegas, NV, USA, June 2002

7. S. A, DeLoach, M. Wood (2000), “Developing Multiagent Systems with agentTool”,
in Proc. of Intelligent Agents: Agent Theories, Architectues, and Languages - 7th
International Workshop, ATAL-2000, Boston, MA, USA.

8. Dogac, A., Gokkoca, E., Arpinar, S., Koksal, P., Cingil, I., Arpinar, B., Tatbul, N.,
Karagoz, P., Halici, U., Altinel, M., “Design and Implementation of a Distributed
Workflow Management System: METUFlow”, In Workflow Management Systems
and Interoperability, Dogac, A., Kalinichenko, L., Ozsu, T., Sheth, A., (Edtrs.),
Springer-Verlag NATO ASI Series, 1998.

9. M. Esteva, D. de la Cruz, C. Sierra, “ISLANDER: an electronic institutions editor”,
in Proc. of AAMAS02, July, 2002, Bologna,Italy.

10. M. P. Huget, J. Odell, “Representing Agent Interaction Protocols with Agent
UML”. in. Proc. of AOSE 2004, July, 2004, NewYork, USA.

11. Java Agent Development Framework, http://sharon .cselt.it/projects/jade/
12. N.R. Jennings (2000), “On agent-based software engineering”, 117 (2) 277-296.

Artificial Intelligence
13. Jess, The Expert System Shell for the Java Platform, http://

herzberg.ca.sandia.gov/jess
14. J. Klein, “Advanced rule driven transaction management”, in Proc. of 36th IEEE

Computer Society Intl. Conf. CompCon Spring 1991, San Francisco, CA, March
1991.

15. The Protege Project, http://protege.stanford.edu /index.html
16. Resource Description Framework (RDF), http:// www.w3.org/RDF/
17. C. Rich and C. L. Sidner. COLLAGEN: A collaboration manager for software in-

terface agents. User Modeling and User-Adapted Interaction, 8(3-4):315350, 1998.
18. J. Sudeikat, L. Braubach, A. Pokahr, W. Lamesdorf, “Evaluation of Agent-Oriented

Software /Methodologies - Examination of the Gap Between Modeling and Plat-
form in. Proc. of AOSE 2004, July, 2004, NewYork, USA.

19. M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-
Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-Agent
Systems 3 (3), 2000.

20. M. Wooldridge, N. R. Jennings, and D. Kinny, “A Methodology for Agent-Oriented
Analysis and Design”, Proc. 3rd Int Conference on Autonomous Agents (Agents-
99), 1999.

21. Xerces Java Parse, http://xml.apache.org/xerces2-j /index.html
22. ZEUS, http://www.labs.bt.com/projects/agents/zeus

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 221 – 237, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Formal Reuse-Based Approach
for Interactively Designing Organizations

Catholijn Jonker, Jan Treur, and Pınar Yolum

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

{jonker, treur, pyolum}@few.vu.nl

Abstract. Multiagent organizations provide a powerful way for developing
multiagent systems. This paper presents a methodology for designing organiza-
tions based on formal specification of requirements for organizational behavior
and requirements refinement related to organizational structure. The approach
allows parts of an organization to be designed in parallel and later be put to-
gether to satisfy the broader requirements of the organization. Using this ap-
proach, organizational building blocks can be formally specified, appropriately
indexed and stored in an organization design library. The library structure is
supported by software tools and allows designers with varying levels of exper-
tise to benefit from it by accommodating queries at different abstraction levels
and by providing support for query reformulation.

1 Introduction

Organizations are an important metaphor for developing multiagent systems. Organi-
zations provide a template of rules for agents to follow to accomplish large-scale tasks
[3]. When designed modularly, organizations make it possible to divide a large-scale
task among small groups of practice and coherently put together the individual out-
puts of the groups to accomplish the large-scale tasks of interest. More specifically,
by appropriately carrying out individual tasks and communicating as needed, organi-
zations provide a way to solve broader tasks.

This paper deals with the problem of designing organizations. An example organi-
zation design process may start by formally specifying requirements for the overall
organization behavior. The requirements express the dynamic properties that should
hold if appropriate organizational building blocks, such as groups and roles and their
interactions, are combined in an appropriate manner. In addition, there could be re-
quirements on the structure of the desired organization that need to be fulfilled by the
organization design. Given these requirements on overall organization (and, perhaps,
some additional requirements), organizational structure and organizational behavior
are designed and formally specified so that the organizational requirements are
fulfilled. However, designing the individual groups from scratch is labor-intensive,
requiring expertise and domain knowledge.

We argue that once designed and formally specified, parts of an organization can
be reused by other organizations. We propose a methodology for designing organiza-
tions based on reusing formal specifications of existing organizational components.

222 C. Jonker, J. Treur, and P. Yolum

The methodology indexes organizational components based on abstract identifiers
that capture their functionality (what it does) and additional metadata that provide
information on the workings of the component (how it does). An organization de-
signer can interactively search a library of components to find a component that fits
her needs and possibly tailor it to her needs. Since the components are indexed with
identifiers in different contextual dimensions, a designer can find the same component
by formulating a query in a variety of ways. Further, the system is interactive in that it
can exploit the library structure to suggest variations on the query in order to help
designers reformulate their queries more precisely.

The rest of this paper is organized as follows. Section 2 gives a technical back-
ground on the AGR methodology, which is used as a basis for the developed approach
and the formal languages for specifying organizations and ontologies. Section 3 dis-
cusses our approach for designing organizations by refining requirements. Section 4
introduces the reuse methodology and discusses different indexing techniques for
groups. Section 5 presents a methodology for classifying organizations based on
multi-dimensional taxonomies. Section 6 discusses the relevant literature.

2 Technical Background

This section presents some of the technical preliminaries.

2.1 Agent/Group/Role Methodology

We start with the Agent/Group/Role (AGR) approach for modeling organizations [5].
This approach specifies a structure for an organization based on a definition of
groups, roles and their relationships. An organization as a whole is composed of a
number of groups. A group structure identifies the roles and the transfers between
roles needed for interactions: the possible communication lines.

A group is a unit of communications. Two roles can communicate to each other if
and only if they are in the same group. The inter-group role interactions (abbreviated
as group interactions) between roles of different groups specify the connectivity of
groups within an organization. Agents are allocated to roles; they realize the organiza-
tion. However, the aim of an organization model is to abstract from specific agent
allocations. Therefore instead of particular agents, roles are used as abstract entities,
defining properties agents should have when they are to function in a given role
within an organization.

Consider a negotiation group as a running example.

Example 1. A buyer and a seller need to agree on a price for an item. The seller pro-
poses a price. The buyer can either accept or propose a different price. The seller can
then accept or propose a new price. The process repeats itself until either the buyer or
the seller accepts a proposed price.

The AGR approach to organization modeling has been extended to incorporate
dynamic properties for the organization behavior [7].

Role Dynamic Properties: Role dynamic properties specify how the inout of a role
affects the output of that role. The input includes incoming communication from other
roles as well as observations about the external world. The output includes outgoing

 A Formal Reuse-Based Approach for Interactively Designing Organizations 223

communication as well as actions to be performed in the external world. The external
world is considered as the environment of the organization that interacts with the
organization by providing observational input to roles and which can be changed
by actions in the output of roles. In general, the inputs and output of role properties
capture public facts rather than private facts that are internal to an agent. Hence, a role
dynamic property is observable.
Transfer Dynamic Properties: A transfer property relates output of the source role
to input of the destination role. Typically, such a property expresses that a communi-
cated information is indeed transferred from source to destination, and, for example,
transfer is brought about within certain time duration. The parameters of the transfer
property denote the roles that use this transfer. Intuitively, these roles should be
uniquely identified.
Group Dynamic Properties: Group dynamic properties relate input or output of
roles within a group.

Example 2. A group property of the negotiation group explained before could be:

If at some point in time the Seller proposes a price,
then at some later time point the Buyer will receive an agreed, final price.

A special case of a group property is an intragroup role interaction property (RI)
relating the outputs of two roles within a group. A role interaction property in this
context always refers to roles in the same group.

Group Interaction Dynamic Properties: Group interaction properties specify how
input of a source role in one group affects output of a destination role in another
group. The same agent plays the two roles involved in a group interaction.
Organization Dynamic Properties: Organization dynamic properties relate to input
or output of roles within the organization. A typical (informal) example of such a
property is: ‘if within the organization, role A promises to deliver a product, then role
B will deliver this product’.

Table 1 provides an overview of these combinations. Group interaction properties
can be considered a specific type of organization property. Similarly, role interaction
and transfer properties can be considered a specific type of group properties. Note that
with respect to simulation, the above dynamics definition can contain elements that are
redundant: a smaller subset of dynamical properties can form an executable specifica-
tion of the dynamics of an AGR organization. For example, on the basis of the roles,
transfer properties, and group interactions, the organization can be simulated. The group
dynamic properties, including the role interaction properties, and the organization
properties should emerge in the execution, and testing for them can validate the model.

Table 1. Types of dynamic properties for an AGR organization model

Property type Notation Relating
Organization OP Input or Output of roles in O
 Group interaction GI Role r1 Input in G1 Role r2 Output in G2
Group GP Input or Output of roles in G
 Role interaction RI Role r1 Output in G Role r2 Output in G
 Transfer TP Role r1 Output in G Role r2 Input in G
Role RP Role r Input

[Role r Internal]
Role r Output

224 C. Jonker, J. Treur, and P. Yolum

2.2 A Formal Specification Language for Organization Structure

In this paper we use a subset of the formal language developed for specifying the
structure and behavior for AGR-models of organizations; cf. [7]. This language is
used to specify the properties explained in Section 2.1.

Table 2. Sorts of the language

Sort Description
ROLE Sort for a role within an organization.

AGENT Sort for an agent that can be allocated to a certain role.

GROUP Sort for a group within an organization.

GROUP_INTERACTION Sort for a connection between two roles in different groups

TRANSFER Sort for a connection between two roles within one group.

CONNECTION An element of TRANSFER or GROUP_INTERACTION

DYNPROP Sort for names of dynamic properties

DYNPROPEXP Sort for possible TTL expressions (see Section 2.4)

Table 2 gives an overview of the possible sorts to specify the elements of an or-

ganization. From a structural perspective, some of these sorts relate to the each other
through the predicates of Table 3. These predicates specify the groups in the organiza-
tions, the roles in the groups, the agents allocated to these roles, and the communica-
tion between two roles.

Table 3. Predicates for specifying the structure of an organization

Predicate Description

exists_role: ROLE A role exists within an organization.

exists_group: GROUP A group exists within the organization

role_belongs_to_group: ROLE * GROUP A role is part of a group.

intra_group_connection: ROLE * ROLE *
GROUP * TRANSFER

A role is connected to another role (directed) within a
certain group by means of a transfer connection. The
source and destination roles are allowed to be equivalent.

The predicate in Table 4 is used to define (a relevant part of the) behavior of the

organization through dynamic properties. These properties essentially specify the role,
group, and organization properties as well as the interaction properties between
groups. Modeling the behavior of an organization makes use of dynamic properties
expressed in terms of the Temporal Trace Language TTL. The different types of
properties are defined in Table 3.

Table 4. Predicates for specifying the behavior of an organization

has_expression: DYNPROP * DYNPROPEXP A specific dynamic property has an expression.

 A Formal Reuse-Based Approach for Interactively Designing Organizations 225

2.3 A Formal Language for Ontologies

In addition to the language described above we developed a language to formally
specify ontologies for the input and output states of roles. The language is based on
first-order many-sorted logic; e.g., [10].

Definition 1. A signature Σ is a four tuple <S, C, F, P> such that, S is a set of sorts, C
is a set of constants, which have sorts defined in S, F is a set of functions with possi-
bly varying arity and whose domain and range elements have sorts defined in S, and
R is a set of relations with possibly varying arity and whose domain elements have
sorts defined in S.

Table 1 provides the constructs of the language. Here, we describe them briefly.
The ontology can refer to many sorts. Let s1...sn denote sorts and o1...on denote on-
tologies. The sorts of the ontology are those for which the is_a_sort_in(s1, o1) predi-
cate holds. Let r1...rn denote relations and f1...fn denote functions. The relations in the
ontology are shown with is_a_relation(n, r1, o1), where n denotes the arity of relation
r1. Similarly, the functions in the ontology are shown with is_a_relation(n, f1, o1),
where n denotes the arity of function f1. For each relation in the ontology, dom_of(n,
s1, r1) specifies the domain sorts for each of the n parameters in the relation. Similarly,
for each function in the ontology, dom_of(n, f1, r1) gives the domain sort for all n pa-
rameters for the function. For the functions, we also define the predicate range_of(f1,
r1), which gives the range sort for the function. These predicates allow us to formally
specify an ontology in the form of signatures. Given such a signature, one can also
define well-formed formulae as follows.

Table 5. Basic elements of a language for signatures

PREDICATE DESCRIPTION

is_a_sort_in:SORT * ONTOLOGY SORT exists in ONTOLOGY

is_a_relation_in:INTEGER*RELATION*ONTOLOGY RELATION exists in ONTOLOGY with arity n

is_a_function_in:INTEGER*FUNCTION* ONTOL-
OGY

FUNCTION exists in ONTOLOGY with arity n

Dom_of: INTEGER*SORT * RELATION Domain of RELATION is in SORT

Dom_of: INTEGER*SORT * FUNCTION Domain of FUNCTION is in SORT

Range_of: SORT * FUNCTION Range of FUNCTION is in SORT

Definition 2. Let Σ = <S, C, F, P> be a signature and V a set of variables with sorts
defined in S. The set of well-formed formulae over Σ, WFF(Σ) are generated the as
usual.

2.4 A Formal Specification Language for Organization Behavior

To formally specify dynamic properties characterising organization behavior, an
expressive language is needed. In this paper for most of the properties both in-
formal or semi-formal and formal representations are given. The formal represen-
tations in the sort DYNPROPEXP (see Section 2.2) are based on the Temporal
Trace Language (TTL; cf. [7]), which is briefly defined as follows.

226 C. Jonker, J. Treur, and P. Yolum

A state ontology is a specification (in order-sorted logic) of a vocabulary, i.e., a
signature. A state for ontology Ont is an assignment of truth-values {true, false} to
the set At(Ont) of ground atoms expressed in terms of Ont. The set of all possible
states for state ontology Ont is denoted by STATES(Ont). The set of state properties
STATPROP(Ont) for state ontology Ont is the set of all propositions over ground
atoms from At(Ont). A fixed time frame T is assumed which is linearly ordered. A
trace or trajectory T over a state ontology Ont and time frame T is a mapping T

: T → STATES(Ont), i.e., a sequence of states T t (t ∈ T) in STATES(Ont). The set of
all traces over state ontology Ont is denoted by TRACES(Ont). Depending on the
application, the time frame T may be dense (e.g., the real numbers), or discrete
(e.g., the set of integers or natural numbers or a finite initial segment of the natu-
ral numbers), or any other form, as long as it has a linear ordering. The set of dy-
namic properties DYNPROPEXP(∑) is the set of temporal statements that can be
formulated with respect to traces based on the state ontology Ont in the following
manner: For an organization or part thereof, Ont is the union of all input, output
and internal state ontologies of the roles in the organization (part). Given a trace T
over state ontology Ont, the input state of a role at time point t is denoted by
state(T, t, input(r)); analogously, state(T, t, output(r)), and state(T, t, internal(r)) denote
the output state and internal state of the role.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(T, t, out-

put(r)) |= p denotes that state property p holds in trace T at time t in the output state of
the organization. Based on these statements, dynamic properties can be formulated in
a formal manner in a sorted first-order predicate logic with sorts T for time points,
Trace for traces and F for state formulae, using quantifiers over time and the usual
first-order logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃.

3 Designing Organizations by Requirements Refinement

Consider an organization design problem for which the requirements of the overall
behavior are given in the form of dynamic properties. In other words, the organiza-
tion designed for this problem should at least satisfy these given properties. One
approach for designing such an organization is a top-down approach. The design
process starts from these global organization properties. The properties are then re-
fined into a set of smaller properties that can be satisfied by parts of the organization.
Hence, the design problem is reduced to designing correct groups that can satisfy
some properties and establishing effective communications between these groups.
That is, dynamic properties for the groups and their interactions give the dynamics
properties for the organization.

Example 3. Consider an organization where a Buyer chooses an item and then the
Buyer and Seller agree on a price. This organization can be designed by first obtain-
ing (designing from scratch or reusing) two groups as follows. The first group will
communicate in a certain way that will allow the Buyer to choose an item. The second
group’s functions as described in Example 1. When these groups are linked correctly
(by a group interaction) then the overall requirements of the organization are satisfied.

 A Formal Reuse-Based Approach for Interactively Designing Organizations 227

An important aspect of this approach is its formality. The informal group property
of Example 2, where a Buyer and a Seller negotiate the price of a commodity, can be
formalized as follows. In this and the following examples, a communication ontology
is used. The communication_from_to predicate is used to describe the roles that
communicate, the type of the communicative act, and the content of the act. An alter-
native would be to to use the content of the communicative act by itself to denote the
states. Further, the communication ontology could be replaced by other ontologies,
for example with a service ontology.

Example 4. Let communication_from_to(Role1, Role2, inform, de-
sired_price_for(a)) denote that Role1 is informing Role2 that it is interested
in agreeing on a price for item a and communication_from_to(Role1, Role2,
inform, agreed_price_for(p, a)) denote that Role1 is informing Role2 that
it is agreeing to the price p for item a. Then the following TTL formulation of a
group property means that if the Buyer and the Seller roles inform each other on a
desire to agree on a price, then at a later time they will agree on a price.

∀t [state(γ, t, output(Buyer)) |= communication_from_to(Buyer, Seller, inform, desired_price_for(a))
&
state(γ, t, output(Seller)) |= communication_from_to(Seller, Buyer, inform, desired_price_for(a))
⇒
∃t' ≥t ∃p
state(γ, t', input(Buyer)) |= communication_from_to(Seller, Buyer, inform, agreed_price_for(p, a)) &
state(γ, t', input(Seller)) |= communication_from_to(Buyer, Seller, inform, agreed_price_for(p, a))]

The refinement scheme shows that to fulfill the overall dynamic properties, dy-
namic properties of certain groups and group interactions together imply the organiza-
tion behavior requirements. The process to determine the requirements for parts of the
organization and groups is called requirements refinement. It provides new, refined
requirements for the behavior of groups and group interaction. It is possible to arrive
at requirements of groups in one step, but it is also possible to first refine require-
ments for the behavior of the organization as a whole to the requirements on the
behavior of parts of the organization, before further refinement is made to obtain dy-
namic properties for groups. Notice that the groups are not given at forehand, but this
requirements refinement process just determines which types of groups (i.e., with
which properties) are chosen as part of the organization being designed. Similarly, the
required dynamic properties of groups can be refined to dynamic properties of certain
roles and transfers, such that the dynamics properties for the roles and the transfers
between the roles give the dynamic properties for the group of which they are part of.

This provides the roles to be used, requirements on the behavior of these roles and
transfer between them, which together imply the requirements on the behavior of the
group. Again it is possible to first refine requirements on the behavior of a group
to requirements of the behavior of parts of the group, before further refinement to
required role behavior is made.

An overview of the inter-level relationships between these dynamic properties at
different aggregation levels is depicted as an AND-tree in Figure 1. In summary, from
the design perspective, a top-down refinement approach can be followed. That is, the
requirements on overall organizational behavior can be first refined to requirements on
behavior of groups and group interaction, and then the requirements on behavior of
groups can be refined to requirements on roles and transfers. This design perspective
may suggest that designing organizations always has to be done from scratch. However,

228 C. Jonker, J. Treur, and P. Yolum

Fig. 1. Inter-level relations between dynamic properties

often parts of organizations can be used in other organizations. Thus, an organization
design process can benefit substantially if reusable parts of organization models are
maintained in a library and indexed in an adequate manner to retrieve relevant ones
during the design process. The methodology for organization design, based on an ex-
tension of the AGR model, supports reuse of organization parts and, in particular, of
groups. This will be addressed in subsequent sections.

4 Indexing Within the Library of Groups

The approach to reuse within the developed organization design methodology is in-
spired from the literature on reuse in software design [13]. The main steps of the ap-
proach that are related to the reuse of groups are the following:

1. Groups are characterized from an external perspective by abstract identifiers at
different levels of abstraction.

2. The complete group specification (from an internal perspective) is stored in the
library, and indexed with the identifiers obtained in 1.

3. An organization designer queries the library for a group based on certain informa-
tion expressed in terms of the characterizing identifiers.

4. The library returns all groups that match the query, based on a matching function.
5. The organization designer reviews the returned groups and incorporates one of

them possibly modifying it as necessary.

The manner in which (formal) specifications of the internal structure of groups are
stored in the library is shown in Section 2. It is assumed that these groups are indexed
by identifiers at different levels of abstractions according to multi-dimensional taxo-
nomic structures, one taxonomy for each dimension that can be considered in the
query. This section studies different methods of indexing groups. Section 5 shows
how these indexes can be combined into a multi-dimensional taxonomy to allow
flexible queries.

4.1 Indexing by Group Functionality, Output or Input

A first dimension to consider for indexing is group functionality. Such a functionality
can be considered as a relation between input state properties and output state
properties of a group. The simplest form of a relationship is that a certain input state

transfer properties role properties

group properties intergroup interaction properties

organization properties

 A Formal Reuse-Based Approach for Interactively Designing Organizations 229

property at a certain point in time leads to a certain output state property at some later
time point. However, especially for ongoing processes, the relationships between
input and output state properties can take the form of more complex temporal rela-
tionships, expressed by dynamic properties as discussed in Section 2. For simple
primary functionality descriptions, there may be other secondary functionality
descriptions involved, such as other constraints on how the group should carry out
this primary functionality. Often, there are restrictions on the group’s process that
have to be satisfied. One form of constraints requires that a certain condition is main-
tained throughout the group enactment. For example, in our running example, a
designer could additionally require that no role should announce a final price p for an
item a, without getting the permission of the second role. This is a constraint that
should be maintained at any time in the group. The temporal trace language TTL (see
Section 2) can be used to specify such dynamic properties as part of a functionality
description.

Example 5. Let the previously defined communications carry their meanings and let
communication_from_to(Role1, Role2, permit, announce_price) mean
that Role1 gives a permission to Role2 to announce the agreed price. The following
TTL formulation then expresses the following property. If both Buyer and Seller in-
form the other for a desire on agreed price, then at a later time they will communicate
each other the same agreed price. And if either the Buyer or the Seller announces the
price to a third-party C, then that will be done with the other party’s permission.

∀t [state(γ, t, output(Buyer)) |= communication_from_to(Buyer, Seller, inform, desired_price_for(a))
&
state(γ, t, output(Seller)) |= communication_from_to(Seller, Buyer, inform, desired_price_for(a))
⇒
∃t'≥t ∃p
state(γ, t', input(Buyer)) |= communication_from_to(Seller, Buyer, inform, agreed_price_for(p, a)) &
state(γ, t', input(Seller)) |= communication_from_to(Buyer, Seller, inform, agreed_price_for(p, a))]
&
∀t" ∀C state(γ, t'', input(Buyer)) |= communication_from_to(Buyer, C, inform, agreed_price_for(p, a))
⇒ ∃t'''≤ t"
state(γ, t''', input(Buyer)) |= communication_from_to(Seller, Buyer, permit, announce_price))
&
∀t" ∀C state(γ, t'', input(Seller)) |= communication_from_to(Seller, C, inform, agreed_price_for(p, a))
⇒ ∃t'''≤ t"
state(γ, t''', input(Seller)) |= communication_from_to(Buyer, Seller, permit, announce_ price))

Recall that the group properties as defined above from an internal viewpoint relate

input properties to the output properties of roles within a group. One (most specific)
way to identify a group is to use such a dynamic group property of a group as an iden-
tifier. The advantage of such a specific group property is that it captures a relevant
part of the functionality of the group succinctly. The main disadvantage of its usage as
an identifier, however, is that it contains too much internal information to sufficiently
abstract the group. A designer in need of a group would have to know the roles in this
group as well as the exact inputs and outputs of the roles to retrieve the group from
the library. For example, if a designer had used the group property above to search for
a group, then the designer would need to know that the group contains at least two
roles of Seller and Buyer and their inputs and outputs. Since many designers would
not know this much internal information about a group, searching a group through
such group properties mighty only be useful for designers with high expertise.

230 C. Jonker, J. Treur, and P. Yolum

Next, we study two opposite ways that the groups can be identified. On one ex-
treme, we have designers who know precisely how the group they are looking for
should behave from an external viewpoint, but do not know, and do not care for, the
internal details of the group. For these designers, a group identifier is created that cap-
tures the externally observable functionality of the group in detail, but abstracts from
the internal details of the group. More specifically, we start with the group property
(specified from an internal viewpoint) considered above to derive from it a more ab-
stract property (specified from an external viewpoint). Following the same example,
the instantiation of a group would have carried the organization from a state of where
participants declared interest to reach an agreed price to a state where they have
reached the agreed price. Intuitively, this functionality can be specified in an abstract
group identifier that captures the information on interest and agreed price in respec-
tive input and the output states of the group, but does not refer to any specific roles or
information transfer inside the group. As an example consider the output state of this
group; i.e., there is an agreed price. This output state (OS) or the input state (IS) can
be defined using certain signatures Σin and Σout, and state properties Win and
Wout, respectively. These signatures can be taken as copies or abstracted forms of the
internal signatures related to some of the roles (see also Example 10 below). For sim-
plicity we assume that the internal signatures for the roles are disjoint, so that there is
a one-to-one correspondence between signatures used at group input or output states
and some of the internal signatures. Given the group input and output signatures, the
abstract group identifier relates group input states and group output states, and
abstracts from specific role names.

Example 6. Recall the group property of Example 4 where the Buyer and Seller even-
tually agree on a price. The property here uses that of Example 4 as a basis but the
specification is now done from an external point of view. The specification does not
refer to the Buyer and Seller roles but to variable roles X and Y.

∀t [state(γ, t, input(G)) |= ∃ X, Y:ROLE communication_from_to(X, Y, inform, desired_price_for(a))
& communication_from_to(Y, X, inform, desired_price_for(a))
⇒ ∃t'≥t ∃p
state(γ, t', output(G)) |= ∃ X, Y:ROLE communication_from_to(X, Y, inform, agreed_price_for(p, a)) &
communication_from_to(Y, X, inform, agreed_price_for(p, a))]

A group input state carries information obtained from outside the group, whereas

a group output state carries information targeted for the outside of the group. In
Example 8, the information on the input to group G, expresses that some X initiates a
communication of a certain type to some Y. Similarly, the group output state carries
information that results from a communication of some X and Y. Note that the X and
Y in this dynamic property may be related to other roles (other than Buyer and Seller)
in other parts of the organization, for example Standkeeper and Visitor. When incor-
porating the negotiation group, by a group interaction these other roles will be
connected to the Buyer and Seller role. Not all descriptions of group functionality
have the simple form that one input state property Win after some time will lead to an
output state property Wout. It may very well be the case that a group is adaptive, in
the sense that, depending on the amount of work it does, its functioning is improving
over time. For such a group a dynamic property of the format ‘exercise improves
skill’ can be expressed in TTL:

 A Formal Reuse-Based Approach for Interactively Designing Organizations 231

Example 7. In the following TTL expression, state(γ1, t', input(G)) |=
has_work_level(v1) means that in trace γ1 at time t', at the input of the group, the
group has work level v1. The TTL expression then means that for every pair of traces
γ1 and γ2, if over a certain time interval a trace has a higher work level than a second
trace, then after this time interval the first trace will perform with a higher quality
level.

∀γ1, γ2, t
[∀t'≤t [state(γ1, t', input(G)) |= has_work_level(v1) & state(γ2, t', input(G)) |= has_work_level(v2) ⇒
v1 ≤ v2] &
state(γ1, t', output(G)) |= has_quality_level(w1) & state(γ2, t', output(G)) |= has_quality_level(w2)
⇒ w1 ≤ w2]

Notice that this property, expressible in TTL, is more complex both in the temporal
structure and in the fact that two possible traces are compared (which is not possible,
for example, in standard temporal logics).

An abstract group identifier has the advantage of identifying a group with a group
property (i.e., captures the functionality well) but also has the advantage of only
capturing the externalized functionality of the group without referencing any internal
roles or information flow.

On the other extreme, we have designers who have a vague idea of the group they
are looking for. The queries that these designers pose will be far from capturing the
input and output states or the functionality of the group they are searching for. For
these designers their search can be characterized at best by more abstract identifiers,
i.e., general keywords. These keywords can vary in terms of how specific they are.
Obviously, general keywords can be associated with many groups, while more
specialized keywords can prune down the possible set of candidate groups.

To accommodate both types of designers, a library structure is constructed that can
be searched with identifiers at different levels of abstraction, the lowest level being
specific group identifiers expressed as specifications of dynamic properties. The
group library index is structured as a set of taxonomies (trees) of identifiers with isa
relations between them. For more details of the generic approach behind this, see
Section 5.1. The first tree contains identifiers at different levels of abstraction that
describe functionality of the groups in the library. The root of the tree is the most
general keyword for functionality. With each branching of the tree, the identifiers are
specialized further. For example, in the middle of the tree an identifier such as
reach_price_agreement can be used. We view the abstract group identifier (i.e., the dy-
namic group property specified from an external viewpoint) as the most specialized
identifier for a group. Hence, the leaves of the tree correspond to individual abstract
group identifiers.

The second tree contains the output information for the group. This may be useful
for designers that have an idea of what output is to be used in the rest of the organiza-
tion, but have no specific knowledge about functionalities. Again, at the root of this
tree, the output state is described at the most general level. Going down the tree
specializes the output. The leaves of the tree are the specific state properties based on
output signatures that are also part of the abstract group identifier. The third tree is
similar to the second tree, except that the nodes of the tree describe the inputs rather
than the outputs.

232 C. Jonker, J. Treur, and P. Yolum

Example 8. An example of an output state property is then that there is a price over
which X and Y agree.
∃ X, Y:ROLE ∃p communication_from_to(X, Y, inform, agreed_price_for(p, a)) &
communication_from_to(Y, X, inform, agreed_price_for(p, a))]

At the input a similar property is that X and Y inform each other about a desire to
agree on a price.
∃ X, Y:ROLE communication_from_to(X, Y, inform, desired_price_for(a)) & communica-
tion_from_to(Y, X, inform, desired_price_for(a))

4.2 Indexing by Environment Assumptions

The previous section describes how a designer can formulate a query for a desired
group and find a set of groups that she could choose from. However, in many cases
the designer can have additional constraints on the group. This subsection and the
following ones classify important additional (meta)data about groups. This metadata
can be supplied to the designer with the group, allowing her to investigate the proper-
ties of interest in more depth.

The first type of additional information about a group is formed by assumptions on
the environment, which guarantee conditions under which the group can function
properly. The environment of a group within an organization is formed by the rest of
the organization and by the external world in which the organization is embedded.
Assumptions may guarantee, for example, the availability of resources in the external
world, or that upon certain requests generated as output by the group, other parts
of the organization will provide answers as input for the group. An example of an
environment assumption is the following:

Example 9. Whenever a certain X has a request to a certain Y on a particular item (q),
then outside the group a certain Y will somehow find this information and communi-
cate it to an X.

∀t [∃ X, Y:ROLE state(γ, t, output(G)) |= communication_from_to(X, Y, request, q) ⇒
∃t'≥t ∃a
∃ X, Y:ROLE state(γ, t', input(G)) |= communication_from_to(Y, X, inform, answer_for(a, q))]

In the previous example the information is received from outside group G. Then,
for this group to function correctly, it should be used in an environment where the
environment can satisfy the necessary information. This information could be gener-
ated by another group in the organization or from some other sources in the external
world.
 Environment assumptions can be addressed using a tree of different levels of ab-
straction similar to the cases shown in Section 4.1. From that perspective, the envi-
ronment assumption given in Example 11 constitutes a leaf of the tree. The leaves are
the most specific descriptions of environment assumptions in the tree. The higher
nodes of the tree would contain assumptions that are described in more general terms.
Again here, the higher nodes in the tree are assumed to be generalizations of the lower
nodes.

4.3 Indexing by Realization Constraints

The organization designer can also have constraints on how the organization will be
realized. Most of these realization constraints are related to the allocation of agents to

 A Formal Reuse-Based Approach for Interactively Designing Organizations 233

particular roles in the organization. That is, the designer can already have one or more
agents that are going to take part in the organization. Obviously, an agent can play a
role in the organization only if its properties are compatible with the properties of the
role that it is going to play [4]. Hence, a designer’s choice of a group can also depend
on the agents that are available.

This section discusses the criteria that need to be fulfilled to allocate agents to roles
for the AGR approach. These criteria are crucial for realizing the organization
dynamics successfully. One of the advantages of an organization model is that it ab-
stracts from the specific agents fulfilling the roles. This means that all dynamic prop-
erties of the organization remain the same, independent of the particular allocated
agents. However, the behaviors of these agents have to fulfill the dynamic properties
of the roles and their interactions. The organization model can be (re)used for an
arbitrary allocation of agents to roles for which:

• for each role, the allocated agent’s behavior satisfies the dynamic role properties,
• for each inter-group role interaction, one agent is allocated to both roles and its

behavior satisfies the inter-group role interaction properties, and the communica-
tion between agents satisfies the respective transfer properties.

Given these requirements, a designer who already has a number of agents with par-
ticular behaviors can search the library with these agent behaviors. An agent behavior
can be represented with a dynamic property, similar to the role properties, as shown in
Example 12. Again, an agent behavior dynamic property is the most specific identi-
fier and constitutes the leaves of a tree. On the other hand, a more general behavior
description will appear on higher nodes of the tree.

Example 10. Let communication_from_to(Role1, Role2, inform, de-
sired_price_for(a)) denote that Role1 is informing Role2 that it is interested
in agreeing on a price for item a and communication_from_to(Role1, Role2,
propose, price(p, a)) denote that Role1 is proposing to Role2 price p for item
a. Then the following TTL formulation of an agent property means that whenever the
agent A receives information of a desire for an agreed price from an agent B, then A
will propose a price for the same item to B.

∀t [state(γ, t, input(A)) |= communication_from_to(B, A, inform, desired_price_for(a))
⇒ ∃t'≥t ∃p state(γ, t', output(A)) |= communication_from_to(A, B , propose, price(p, a))

5 Querying the Library of Groups

Section 4 studies the different methods for indexing groups. This section develops a
multi-dimensional library structure that combines the different indexing schemes as
different dimensions. Using this multi-dimensional taxonomy, the designer can have
interactions with the system to reformulate her queries. Hence, the system is interactive.

5.1 A Multi-dimensional Taxonomic Approach

For the general approach it is just assumed that a number of taxonomies (the different
contextual dimensions incorporated; cf. [8]) are given, where the nodes of these trees

234 C. Jonker, J. Treur, and P. Yolum

are used as identifiers for indexing the groups. For simplicity they are assumed to
have the form of trees. Within these trees branches are defined by an isa-relation
 isa(n1, n2) (or, in infix notation: n1 isa n2)
meaning that node n2 is a direct specialization of node n1 within one of the trees.
Based on the indexing, each node n in one of the trees corresponds to a subset gr(n)
of groups from the library, namely those indexed by node n. It is assumed that the
different levels in the trees are abstraction levels: levels of specialization (going
down) or generalization (going up). This means that if a group is indexed by a node n,
then automatically it is considered that the nodes higher in the same tree apply to this
group. This assumption implies that more specialized nodes correspond to smaller
sets of groups:

 isa(n1, n2) ⇒ gr(n1) ⊆ gr(n2)

Moreover, a set S of nodes from possible different trees corresponds to the intersec-
tion of the sets of groups corresponding to the single nodes:

 gr(S) = ∩ n ∈ S gr(n)

This general setup suggests two strategies to minimize the set of groups retrieved
based on a query:

• within a tree, in the query try to use an identifier as low in the tree as possible
(lower nodes provide smaller sets)

• use not just one node in a query but a set of nodes, taken from as many trees as
possible (using more trees entails that the set of groups is made smaller since an
intersection is made)

As designers may not be expected to express their queries in terms of nodes that are
most appropriate, the system offers support to reformulate queries to more adequate
ones. This is discussed in the next subsection.

5.2 Query Reformulation

First assume that the group library is queried using one identifier n. When this is the
case, then the taxonomy of identifiers from which n is taken is used to aid the search.
If the keyword searched matches one of the leaves of the tree, then the set of groups
associated with the leaf node is returned to the designer. Otherwise - if the query is
matched to a node that is not a leaf - then the tree can be used to generate options for
the user to further articulate her query. That is, starting from the node that matched
the query, the designer can be asked to refine her query by proposing the branches of
the tree as options. The underlying idea here is that the designer may know more
about her needs than what she could initially formulate in a query. Hence, by posing
choices to the designer, her query can be rephrased more precisely. Repeating the
selection process will narrow the set of possible groups that will be returned for the
query. If this query reformulation leads to one of the leaf nodes, then again the
groups associated with that leaf are returned. If the user gets stuck in choosing be-
tween two branches before reaching a leaf node, then all the groups below the current
node are returned. When more identifiers are present, the same can be done for other
trees as well. This leads to a set of nodes S from the different trees for which each
member shows a node that is as specialized as possible within the tree for that node.

 A Formal Reuse-Based Approach for Interactively Designing Organizations 235

Next, the groups corresponding to S is returned to the designer, which is the intersec-
tion of the sets of groups for all members of S.
 In a case that a query leads to an empty set of groups, a reverse process of query
reformulation may be needed: instead of specializing the query, in interaction with the
designer it is generalized until the set of groups becomes non-empty. Finally, if an
adequate query is reached, it is up to the designer to manually inspect the returned
groups to choose an adequate group for her needs. Once the designer retrieves a group
from a library, she can use it as it is or modify it further. Once, the group structure and
the properties are finalized, the organization designer integrates the group into the
organization structure. For our methodology, this would mean constructing appropri-
ate group interaction properties between the new group and related existing groups.

Example 11. A designer’s query could involve the identifier payment (for the tree
describing the functionality dimension) as well as price (for the tree describing the
output dimension). Both of these queries are vague; many groups could be related to
payment as well as many groups could output some sort of price. By specializing both
identifiers, a more specific combination of identifiers is reached, yielding a smaller
set of groups.

5.3 Matching Query Terms and Indexing Terms

Given an abstract group identifier as a query, one needs to define a matching function
that will be used to compare the query to the entries in the library. One matching
function is exact matching which requires the terms of the query and the library entry
to be exactly the same. A more loose way of matching is done by allowing the terms
of the library entry to be logically stronger than that of the query. In other words, if an
identifier of a group entails the term used in the query, one might consider it matching
in a broader sense. Notice that such entailments can also be represented within the
tree: a stronger term that entails a given identifier node within a tree can be added in
this tree as a branch under this node. This addition can be left implicit if trees are not
explicitly represented at forehand but (relevant parts of it) are generated during the
process of using it.

Example 12. A query for a negotiation group is formulated where the output state is
that the buyer and seller have reached an agreed price. Consider a group entry (Nego-
tiate and Register) where in addition to reaching an agreed price, as an output it is also
provided that the buyer and seller also register the price with a third party. With exact
matching, the Negotiate-and-Register group will not be matched to the query. How-
ever, using entailment the group will be matched.

6 Discussion

Artikis et al. develop a framework that specifies a society by social constraints, social
roles, and social states [1]. Social constraints define valid actions, permitted or
prohibited actions, and the enforcement policies for these actions. A social role is
defined as a set of preconditions and a set of constraints. The preconditions specify
the requirements for an agent to play that role whereas the constraints specify what
the agent should do once it is appointed to that role. Similar to our realization

236 C. Jonker, J. Treur, and P. Yolum

constraints, a role assignment procedure is then used to assign agents to roles based
on the preconditions of the role and the capabilities of the agents as well as
assignment constraints. Artikis et al. do not discuss a methodology for reusing their
societies.

Padgham and Winikoff develop Prometheus, an agent-based software development
methodology [12]. This methodology is intended for non-experts and thus mostly
defined informally. The methodology consists of system specification, architectural
design, and detailed design phases. The system specification phase outlines the nec-
essary functionality of the software. The architectural design phase divides the over-
all functionality into smaller tasks that will be carried out by different agents. Finally,
the detailed design phase develops the individual agents that will carry out the tasks.
Prometheus does not capture any functionality templates that can later be reused. In
our approach, the abstraction of roles make it possible for different agents to play
defined roles based on the realization constraints. More importantly, the abstraction
of groups provides templates of functionality that can be stored in a library and be
reused by other multiagent organizations.

Bussmann et al. identify a set of criteria to classify multiagent interaction protocols
[2]. Once the appropriate fields of these criteria are correctly set, the protocols can be
classified and later be retrieved. Contrary to the criteria chosen in our approach,
Bussmann et al. primarily consider quantitative properties, such as the number of
agents involved, the number and size of the commitments between agents, and so on.
Further, they do no consider a taxonomy of semantic identifiers as we have done here.

Malone et al. develop a library of business processes to help designers to create
new organizations or restructure their existing organizations [9]. The library stores
processes in specialization hierarchies. A process entry includes the name and the
description of the process as well as links to more general and more special processes.
Similar to our approach, the process library is developed with human designers in
mind. However, in our approach we formalize the groups as well as the queries to
semi-automate the search. After some groups are retrieved from the library, then the
designer can investigate them further and tailor one to her needs. The content and the
size of Malone et al.'s process library is appealing for designing multiagent organiza-
tions. Our approach can benefit from starting with such a library and extending its
entries with the formalized identifiers.

The formal approach presented in this paper provides a solid basis for a software en-
vironment supporting the interactive organization design process. Parts of this software
environment are already available as separate components, in particular an editor to
formally specify organization properties, group properties and role properties, and soft-
ware to guide the query reformulation process, as initially developed in the ICEBERG
project; for a survey of this project see [8]. In current research projects on organization
modeling the software environment is being integrated and developed further.

References

1. Alexander Artikis, Jeremy Pitt, and Marek Sergot. Animated specifications of computa-
tional societies. In Proceedings of the 1st International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pp. 1053-1061, 2002.

 A Formal Reuse-Based Approach for Interactively Designing Organizations 237

2. Stefan Bussmann, Nicholas R. Jennings, and Michael Wooldridge. Re-use of Interaction
Protocols for Agent-based Control Applications. In: F. Giunchiglia et al. (eds.) Proceed-
ings of the Workshop on Agent-Oriented Software Engineering (AOSE), Lecture Notes in
Computer Science 2585, pp. 73-87, 2003.

3. Katleen M. Carley and Les Gasser. Computational Organization Theory in Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence. Chapter 7. Gerhard
Weiss, editor. MIT Press, 1999.

4. Mehdi Dastani, Virgina Dignum, and Frank Dignum. Role-Assignment in Open Agent
Societies. In: Proceedings of the International Conference on Agents and MultiAgent
Sysetms (AAMAS), pp.489-496, ACM Press, 2003.

5. Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of organi-
zations in multi-agent systems. In: Proceedings of the Third International Conference on
Multi-Agent Systems (ICMAS), IEEE Computer Society Press, pp. 128-135, 1998.

6. Catholijn M. Jonker and Jan Treur. Relating Structure and Dynamics in an Organisation
Model. In: J.S. Sichman, F. Bousquet, and P. Davidson (eds.), Multi-Agent-Based Simula-
tion II, Proc. of the Third International Workshop on Multi-Agent Based Simulation,
MABS'02. Lecture Notes in AI, vol. 2581, pp. 50-69, Springer Verlag, 2003.

7. Catholijn M. Jonker and Jan Treur. Compositional Verification of Multi-Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems, vol. 11, pp. 51-92, 2002.

8. Catholijn M. Jonker and A. M. Vollebregt. ICEBERG: Exploiting Context in Information
Brokering Agents. In: M. Klusch, L. Kerschberg (eds.), Cooperative Information Agents
IV, Proceedings of the Fourth International Workshop on Cooperative Information Agents
(CIA), Lecture Notes in Artificial Intelligence 1860, pp. 27-38, Springer Verlag, 2000.

9. Thomas W. Malone et al. Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes. In: Management Science, Vol. 45, No. 3, March 1999.

10. K. Meinke, J.V. Tucker (eds.), Many-Sorted Logic and Its Applications. Wiley & Sons,
1993.

11. Hafedh Mili, Ali Mili, Sherif Yacoub, and Edward Addy. Reuse-Based Software Engineer-
ing: Techniques, Organizations, and Controls. Jon Wiley & Sons, 2002.

12. Lin Padgham and Michael Winikoff. Prometheus: A Methodoloogy for Developing
Intelligent Agents. In: F. Giunchiglia et al. (eds.) Proceedings of the Workshop on Agent-
Oriented Software Engineering (AOSE), Lecture Notes in Computer Science 2585,
pp. 174-185, 2003.

13. Hans van Vliet. Software Engineering: Principles and Practice. John Wiley and Sons,
2000.

Author Index

Amor, Mercedes 93
Ashri, Ronald 158

Berbers, Yolande 109
Bernon, Carole 62
Braubach, Lars 126

Cabac, Lawrence 47
Calisti, Monique 31
Červenka, Radovan 31
Cingil, I. 205
Cossentino, Massimo 62

Dastani, Mehdi 189
Dignum, Frank 189
Dogac, A. 205

Ferber, Jacques 142
Fuentes, Lidia 93

Gleizes, Marie-Pierre 62
Gonzalez-Palacios, Jorge 174
Greenwood, Dominic 31

Hilaire, Vincent 142
Holvoet, Tom 109
Huget, Marc-Philippe 16
Hulstijn, Joris 189

Jonker, Catholijn 221

Kabak, Y. 205
Kirbas, S. 205
Koukam, Abder 142

Laleci, G.B. 205
Lamersdorf, Winfried 126
Levy , Renato 78
Luck, Michael 158, 174

Mao, Xinjun 1
Meyer, John-Jules Ch. 189
Moldt, Daniel 47

Nodine, Marian 78

Odell, James 16, 78
Ozdikis, O. 205
Ozturk , O. 205

Pokahr, Alexander 126

Simonin, Olivier 142
Sinir, S. 205
Steegmans, Elke 109
Sudeikat, Jan 126

Trenčanský, Ivan 31
Treur, Jan 221
Turci, Paola 62

Vallecillo, Antonio 93
van Riemsdijk, M. Birna 189

Weyns, Danny 109

Yildiz, A. 205
Yolum, Pınar 221
Yu, Eric 1

Zambonelli, Franco 62

	Front matter
	Chapter 1
	Introduction
	Simplifying Assumptions in Social Abstractions
	Analyzing Organizational and Social Concepts in AOSE
	Modeling Construct Levels
	Modeling Concepts

	Analyzing AOSE Methodologies and Models
	Gaia
	ALAADIN A

	Conclusions
	References

	Chapter 2
	Introduction
	UML 2.0 Interaction Diagrams
	Interaction
	Lifeline
	Message
	Constraint
	CombinedFragment
	Continuation
	InteractionOccurrence
	Gate
	Termination

	Agent UML Interaction Protocol Profile
	Interaction
	Lifeline
	Message
	Constraint
	Protocol Template
	Action

	Agent UML Sequence Diagram Example
	Conclusion

	Chapter 3
	Introduction
	The AML Approach
	Scope
	Outside the Scope of AML
	UML 2.0 as a Base
	Structure of AML
	Extensibility of AML

	Architecture
	Ontology
	Fundamental Entity Types
	Social Aspects
	MAS Deployment and Mobility

	Behavior
	Behavior Abstraction and Decomposition
	Communicative Interactions
	Services
	Observations and Effecting Interactions

	Mental Aspects
	Contexts
	Extension of OCL
	CASE Tools Support
	Conclusions and Further Work

	Chapter 4
	Introduction
	AUML and Petri Nets
	AUML Flavors
	Semantics for AUML

	Net Structures
	Net Components
	Structured Petri Nets
	Modeling Agent Interaction
	Mapping Agent Interaction Protocol Diagrams to Mulan Protocols

	From Model to Net
	Code Generation
	Geometrical Arrangement of Mulan Protocols
	Example: Producer-Consumer

	Conclusion

	Chapter 5
	Introduction
	ADELFE Meta-Model
	Gaia Meta-Model
	PASSI Meta-Model
	Comparison and Discussion
	Agent Structure
	Agent Interaction Capabilities
	Agent Society and Organizational Structure
	Agent Implementation

	Toward a Unifying Meta-Model
	Conclusion

	Chapter 6
	Introduction
	The Essential Class Model
	Agents and Agent Classifiers
	Agent Role Classifier
	Agent Physical Classifier
	Agents
	Associations Between Agent Physical Classifiers and Agent Role Classifiers
	Association of Agents with Agent Classifiers

	Group, Agentified Group, and Non-agentified Group
	Metamodel for Group
	Relationships Between Groups and the Roles That Agents Play in Them
	Agentified and Non-agentified Groups

	Agent Role Assignment
	Agent Role Assignment as a Ternary Association
	Positions

	Conclusions
	Acknowledgement
	References

	Chapter 7
	Introduction
	Agent-Oriented Methodology Overview
	Tropos

	The Malaca Agent Model
	Applying MDA to MAS Design to Produce Implementations
	Applying MDA: From Tropos to Malaca

	Limitations and Further Extensions to Our Work
	Conclusions
	References

	Chapter 8
	Introduction
	Free-Flow Architectures and Designing Adaptive Behavior
	Free-Flow Architecture for Adaptive Agent Behavior
	Designing Adaptive Behavior

	A Design Process for Roles
	Example Application
	High Level Model: Role Model
	Free-Flow Architecture
	Class Diagram: Free-Flow Framework

	Conclusion and Future Work

	Chapter 9
	Introduction
	Background
	A Platform Dependent Comparison Framework
	Criteria
	Evaluation Process

	Example Evaluation
	Selection of Criteria
	Examining the Concepts and Process
	Examining the Notation and Tools -- Modeling a Case Study

	Conclusions

	Chapter 10
	Introduction
	OZS Notation
	Overview of Satisfaction-Altruism Model
	Satisfaction-Altruism Kernel Specification
	Mobile Robots Extension
	Principle of Robots Behavior
	Classes for the Mobile Robot Extension

	Specification Analysis
	Prototyping
	Verification

	Conclusion

	Chapter 11
	Introduction
	Design Principles
	Desiderata for an Agent Construction Model
	\textsc{smart}
	Description, Structure and Behaviour
	Component-Based Construction
	From \textsc{smart}+ to Applications

	Components
	Shell
	Implemenation of acts\textsc{smart}
	Implementing an Architecture
	Discussion

	Conclusions

	Chapter 12
	Introduction
	Methodological Context
	Organisations in GaiaExOA
	Phases of Development

	Organisational Patterns: Purpose
	The Description of the Patterns
	The Pipeline Pattern
	Related Work
	Conclusions

	Chapter 13
	Introduction
	Roles and Agent Types in Multiagent Methodologies
	Open and Closed Systems

	Example: Multiagent Specification and Design
	Formalizing Role Enactment and Role Activation
	Preliminaries
	Agent Roles and Agent Types
	Role Enacting and Role Deacting Agents
	Activating and Deactivating Roles

	Implementation of Roles
	Semantics of Enact and Deact Operations

	Future Research and Concluding Remarks

	Chapter 14
	Introduction
	Related Work
	Agent Orchestration Platform
	Behaviour Type Design Tool (BTDT)
	Agent Type Design Tool (ATDT)
	Scenario Design Tool (SDT)
	Agent Behaviour Representation Language (ABRL)
	An Example
	Initialization

	Conclusions

	Chapter 15
	Introduction
	Technical Background
	Agent/Group/Role Methodology
	A Formal Specification Language for Organization Structure
	A Formal Language for Ontologies
	A Formal Specification Language for Organization Behavior

	Designing Organizations by Requirements Refinement
	Indexing Within the Library of Groups
	Indexing by Group Functionality, Output or Input
	Indexing by Environment Assumptions
	Indexing by Realization Constraints

	Querying the Library of Groups
	A Multi-dimensional Taxonomic Approach
	Query Reformulation
	Matching Query Terms and Indexing Terms

	Discussion
	References

	Back matter

