
Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1476

Jacques Calmet Jan Plaza (Eds.)

Artificial Intelligence
and Symbolic Computation

International Conference AISC'98
Plattsburgh, New York, USA
September 16-18, 1998
Proceedings

Springer

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
JOrg Siekmann, University of Saarland, SaarbriJcken, Germany

Volume Editors

Jacques Calmet
Universitat Karlsruhe, Fakult~it Informatik
Am Fasanengarten 5, Postfach 6980, D-76128 Karlsruhe, Germany
E-mail: calmet @ira.uka.de

Jan Plaza
Plattsburgh State University of New York
10l Broad Street, Plattsburgh, NY 12901, USA
E-mail: plazaj a @ splava.cc.plattsburgh.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Artificial intelligence and symbolic computation : proceedings /
International Conference AISC '98, Plattsburgh, New York, USA,
September 16 - 18, 1998. Jacques Calmet ; Jan Plaza (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998

(Lecture notes in computer science ; Vol. 1476 : Lecture notes in
artificial intelligence)
ISBN 3-540-64960-3

CR Subject Classification (1991): 1.2.1-4, 1.1, G.1-2, F.4.1

ISBN 3-540-64960-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera ready by author
SPIN 10638716 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Foreword

This volume contains invited papers and contributed papers accepted for the
Fourth International Conference on Artificial Intelligence and Symbolic Compu-
tation (AISC'98) held in USA at the Plattsburgh State University of New York
on September 16-18, 1998. The conference belongs to a series that started in
Karlsruhe, Germany in 1992 and continued at King's College, Cambridge, UK
(1994) and in Steyr, Austria (1996). The proceedings of these earlier meetings
appeared in the LNCS series as Volumes 737, 958, and 1138. The first three
conferences were called AISMC, where M stands for "mathematical"; the orga-
nizers of the current meeting decided to drop the adjective "mathematical" and
to emphasize that the conference is concerned with all aspects of symbolic com-
putation in AI: mathematical foundations, implementations, and applications,
including applications in industry and academia.

In the opening paper in the proceedings of AISMC-1, the founders of the se-
ries, J. Calmet and J. Campbell, gave a brief history of the relationship between
artificial intelligence and computer algebra. They also described the scope and
goals of the conferences. The goal was to emphasize the interaction of methods
and problem solving approaches from AI and symbolic mathematical computa-
tion. This year, the conference name has been modified not to exclude mathemat-
ics but to illustrate a broadening of the scope. Mathematics with its universally
accepted language and methodology remains an ideal environment for construct-
ing precise models of symbolic computation in AI. The scope was in fact already
extended in Steyr where the relationship between symbolic mathematical com-
puting and engineering was emphasized. A motivation for extending the scope
comes also from the fact that in recent years research on coupling computing and
deduction systems has flourished. One of the goals of this series of conferences is
to become a forum for such research. This is already exemplified by some of the
papers appearing in this volume. Another goal is to move the center of gravity
from computer algebra and to set it in artificial intelligence. This is also why the
current proceedings are appearing in the LNAI series rather than LNCS.

As in previous conferences, the number of accepted papers has been kept
small. This allows for longer than usual presentations by the authors with enough
time for discussion, and makes it possible to avoid parallel sessions. Such ar-
rangements provide better conditions for exchange of ideas. Since the scope of
the conference is interdisciplinary, this is a mandatory condition to make the
meetings successful and lively.

The site for the next conference is already decided. It will be Madrid, Spain,
in the year 2000.

We gratefully acknowledge the sponsorship of AISC'98 by the Plattsburgh
State University of York. We owe thanks to the members of the Program Com-
mittee and Steering Committee for refereeing contributed papers. Other organi-
zations and individuals who contributed to the conference cannot be listed here

VI Foreword

at the time when these proceedings go to print. We are grateful to them all.
Special thanks go to Christoph Zenger who devoted a lot of time to preparing
the manuscript for this volume.

June 1998 Jacques Calmet and Jan Plaza

S t e e r i n g C o m m i t t e e

Jacques Calmet (Karlsruhe, Germany)
John Campbell (London, Great Britain)
Jochen Pfalzgraf (Salzburg, Austria)
Jan Plaza (Plattsburgh, USA), Conference Chairman

P r o g r a m C o m m i t t e e

Francois Arlabosse (Framatome, France)
Bruno Buchberger (Linz, Austria)
Gregory Butler (Montreal, Canada)
Luigia Carlucci Aiello (Rome, Italy)
James Cunningham (London, Great Britain)
John Debenham (Sydney, Australia)
Ruediger Dillmann (Karlsruhe, Germany)
Fausto Giunchiglia (Trento, Italy)
Stan Klasa (Montreal, Canada)
Alfonso Miola (Rome, Italy)
Lin Padgham (Melbourne, Australia)
Zbigniew W. Ras (Charlotte, USA)
Klaus U. Schulz (Munich, Germany)
Joerg H. Siekmann (Saarbruecken, Germany)
Andrzej Skowron (Warsaw, Poland)
Stanly Steinberg (Albuquerque, USA)
Karel Stokkermans (Salzburg, Austria)
Carolyn Talcott (Stanford, USA)
Peder Thusgaard Ruhoff (Odense, Denmark)
Dongming Wang (Grenoble, France)

C ontent s

Invited Talks

An Inductive Logic Programming Query Language for Database Mining
(Extended Abstract) .
Luc De Raedt

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement . . . 14
Melvin Fitting

Representing and Reasoning with Context . 29
Richmond H. Thomason

Regular Talks

From Integrated Reasoning Specialists to "Plug-and-Play" Reasoning
Components . 42
Alessandro Armando, Silvio Ranise

Reasoning About Coding Theory: The Benefits We Get from Computer
Algebra . 55
Clemens Ballarin, Lawrence C. Paulson

Automatic Generation of Epsilon-Delta Proofs of Continuity 67
Michael Beeson

Finite Model Search for Equational Theories (FMSET) 84
Belaid Benhamou, Laurent Heocque

Specification and Integration of Theorem Provers and Computer Algebra
Systems . 94
P.G.Bertoli, J.Calmet, F. Giunchiglia, K.Homann

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 107
Carlos Castro

X Contents

An Evolutionary Algorithm for Welding Task Sequence Ordering 120
Martin Damsbo, Peder Thusgaard Ruhoff

Intuitionistic Proof Transformations and Their Application to Constructive
Program Synthesis . 132
Uwe Egli, Stephan Schmitt

Combining Algebraic Computing and Term-Rewriting for Geometry Theorem
Proving . 145
St~phane F~vre, Dongming Wang

Cooperation Between Top-Down and Bottom-Up Theorem Provers by Subgoal
Clause Transfer . 157
Dirk Fuchs

Polymorphic Call-by-Value Calculus Based on Classical Proofs
(Extended Abstract) . 170
Ken-etsu Fujita

Inference and Verification in Medical Appropriateness Criteria Using GrSbner
Bases . 183
L.M. Laita, E. Roanes-Lozano, V. Maojo

The Unification Problem for One Relation Thue Systems 195
Christopher Lynch

Basic Completion with E-cycle Simplification . 209
Christopher Lynch, Christelle Scharff

SoleX: A Domain-Independent Scheme for Constraint Solver Extension . 222
Eric Monfroy, Christophe Ringeissen

Optimising Propositional Modal Satisfiability for Description Logic
Subsumption . 234
Ian Horrocks, Peter F. Patel-Schneider

Contents XI

Instantiation of Existentially Quantified Variables in Induction Specification
Proofs . 247
Brigitte Pientka, Christoph Kreitz

Knowledge Discovery Objects and Queries in Distributed Knowledge
Systems . 259
Zbigniew W. Ra~, Jiyun Zheng

ALLTYPES: An ALgebraic Language and TYPE System 270
Fritz Schwarz

Real Parametrization of Algebraic Curves . 284
J. Rafael Sendra, Franz Winkler

Non-clausal Reasoning with Propositional Definite Theories 296
Zbigniew Stachniak

A u t h o r Index . 309

An Inductive Logic Programming Query

Language for Database Mining

(Extended Abstract)

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
Tel: ++ 32 16 32 76 43 Fax : ++ 32 16 32 79 96

Luc.DeRaedt@cs.kuleuven.ac.be

Abstract. First, a short introduction to inductive logic programming
and machine learning is presented and then an inductive database min-
ing query language RDM (Relational Database Mining language). RDM
integrates concepts from inductive logic programming, constraint logic
programming, deductive databases and meta-programming into a flex-
ible environment for relational knowledge discovery in databases. The
approach is motivated by the view of data mining as a querying pro-
cess (see Imielinkski and Mannila, CACM 96). Because the primitives
of the presented query language can easily be combined with the Prolog
programming language, complex systems and behaviour can be speci-
fied declaratively. Integrating a database mining querying language with
principles of inductive logic programming has the added benefit that it
becomes feasible to search for regularities involving multiple relations
in a database. The proposal for an inductive logic programming query
language puts inductive logic programming into a new perspective.

Keywords : database mining query language, inductive logic program-
ming, relational learning, inductive query language, data mining.

1 Introduction

The first part of the paper provides a short introduction to the field of inductive
logic programming. Inductive logic programming [20,7] is the study of machine
learning and data mining using the first order representations offered by com-
putational logic. Classical approaches to machine learning and data mining use
the so-called attribute-value learning representations, which essentially corre-
spond to propositional logics. The use of computational logic is beneficial for
a variety of reasons. Firstly, inductive logic programming can rely on the the-
ory of logic programming concerning semantics, inference rules, and execution
mechanisms. Secondly, using a richer representation language permits to tackle
applications, which cannot be handled by classical techniques (see e.g. [4,12]) for
surveys. Thirdly, the use of computational logic permits to employ background
knowledge in the induction process.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 1–13, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

2 Luc De Raedt

The second part of the paper introduces a novel framework for inductive logic
programming and data mining in the form of an inductive database mining query
language. This framework is inspired on [13] who view knowledge discovery as a
querying process to a database mining system. Querying for knowledge discovery
requires an extended query language (w.r.t. database languages) that supports
the manipulation, mining and discovery of rules, as well as data. The integration
of such rule querying facilities provides new challenges for database technology.

(Inductive) logic programming is particularly well-suited as a basis for such a
language. First, a general query language for data mining should not be restricted
to handling single relations in a database; rather it should support the handling
of multiple relations in a database [11]. Inductive logic programming supports
this very naturally. Second, techniques such as meta-programming and query
optimization have been studied extensively within the field of logic programming,
constraint logic programming and deductive databases. Meta-programming is
required to support the manipulation of data and rules, and query optimization is
important for efficiency purposes. Third, using logic programs as queries it is easy
to provide a semantics for the query language. Fourth, the development of this
language relates inductive logic programming to constraint logic programming
as the key questions that arise are similar to those addressed in constraint logic
programming: semantics, constraint handling, development of solvers, properties
of solvers, etc. Finally, though the field of inductive logic programming [15,20,7]
is sometimes regarded as too inefficient for practical purposes, it provides an
excellent conceptual framework for reasoning about data mining. In sum, the
embedding of the query language within logic programming results in a very
expressive tool for knowledge discovery and in a new view on inductive logic
programming and data mining.

This paper is organised as follows: Section 2 contains an intuitive introduction
to inductive logic programming and data mining, Section 3 presents the RDM
query language, Section 4 shows RDM at work, Section 5 shows how RDM can
be implemented, and finally Section 6 concludes.

2 Machine Learning and Data Mining: The ILP View

Current data mining approaches are often distinguished on the basis of their
predictive or descriptive nature. In predictive data mining one is given a set of
examples or observations that are classified into a finite number of classes. Typ-
ically, there are two (or more) classes, one that is called positive, and the other
that is negative. The aim then is to induce a hypothesis that correctly classifies
all the given (and unseen) examples. Consider Figure 1a where one is given two
types of example (+ and -). H is a correct hypothesis as it correctly discriminates
the positives from the negatives. The purpose of predictive data mining is thus
to generate hypotheses that can be used for classification. Common predictive
data mining techniques include decision tree induction (e.g. C4.5 [21]) and rule
induction (e.g. CN2 [6,5] or AQ [17]).

An Inductive Logic Programming Query Language for Database Mining 3

(a) (b)

+
+ +

+ +
+ +

+
+ +

+ +
+ +

- -

-
-

H
H

Fig. 1. Predictive versus descriptive induction

In descriptive data mining one is given a set of unclassified examples and
the aim is to find regularities within these examples. Furthermore, it is the
aim to characterize as much as possible the given examples. Therefore as many
properties or regularities as possible are derived. Together they form a kind of
most specific hypothesis that covers (explains) all the examples. E.g. in Figure
1b, the hypothesis H characterizes all the given examples. The most popular
descriptive data mining technique is that of discovering association rules [1,2,26].

Let us illustrate these differences on a simple example from basket analysis
in supermarkets. Using an attribute value learning technique the most straight-
forward representation is given in the following table:

Trans Customer Beer Sausage ... Mustard Party

t190 c9 48 48 ... 2 yes
t110 c88 12 0 ... 1 no
t389 c133 0 6 ... 1 no
t444 c9 48 96 ... 3 yes

Fig. 2. A table for basket-analysis

There is one tuple for each visit to the supermarket. E.g. the first tuple
states that transaction t190 concerns customer c9 who bought 48 units of beer
and sausage and 2 units of mustard. Furthermore, his intention was to have a
party with this.

Predictive machine learning in this context could be concerned with predict-
ing whether a given transaction has as intention to organise a party or not.
E.g. one rule could state that if the quantity of beer purchased is larger than
36 then party=yes; otherwise, party=no. Descriptive data mining on the other
hand would be considered with regularity finding. It could e.g. find regularities
such as if mustard and beer is purchased, then with probability 80 per cent beer
will also be purchased. Or, if customer c9 purchases, then he will organise a
party, ...

Another major difference between various machine learning and data mining
techniques concerns the representations employed. In the above illustration of

4 Luc De Raedt

attribute-value learning, an example was a single tuple from a single relation in a
database. In contrast, in inductive logic programming, examples can be encoded
in multiple tuples of multiple relations. Using inductive logic programming, it
would be possible to reason about several transactions of the same customer,
or about relations among customers, etc. One might for instance have another
table relative(C1, C2) that expresses that C1 and C2 belong to the same family.
Rules that could be induced in such a context are e.g. that if a customer buys
Q1 units of product X at time T and there are advertisements for product X
after T, then on the next visit the same customer will buy more than Q1 units
of product X.

Typically, the relational representations employed within inductive logic pro-
gramming are needed when tackling structural problems (e.g. in molecular biol-
ogy), or when reasoning about time or space, or sequences, ...

Finally, using inductive logic programming it is also easy to incorporate back-
ground knowledge in the induction process. In the above example this could take
the form of taxonomies for the different products. In this way, wine and beer
could be grouped under alcohol, knowledge about advertising could be added,
etc.

At this point the reader may not (yet?) be convinced of the need for relational
representations. I’d like to challenge those readers to represent the Bongard
problem in Figure 2 within the attribute value representation, that is each scene
(example) should be represented by single tuple in a single relation. using a
single tuple in a single relation. Though the Bongard problem is a toy problem
its representations are very similar to those needed to represent the structure of
e.g. molecules (cf. [25]).

3 RDM: A Relational Database Mining Query Language

In this section, a novel database mining query language is proposed. We do
assume some familiarity with Prolog [3] and with machine learning [18].

The key notion in RDM is that of a pattern. A pattern (Query,Key) is a
tuple where Query is a Prolog query, and Key is a list of variables that appears
in the Query. Data mining with RDM is then the search for patterns that satisfy
certain requirements. Three primitives are foreseen to specify requirements in
RDM. The first concerns the frequency of patterns, which is defined as follows :

frequency(Query,Key,Frequency) :-
findall(Key,Query,Set),length(Set,Frequency).

Thus the frequency of a pattern (Query,Key) is the number of instantiations of
the Key for which the Query holds. E.g. the pattern
(purchase(T,C,B,...,yes),[T,C]) has frequency 2 in the above table.

The second primitive concerns the syntactic form of the Query. The primi-
tive � specifies the relation of the Query to specified queries.This corresponds
to encoding the ’is more general than’1 relation. E.g.
1 Ideally, this should be implemented through the use of Plotkin’s θ-subsumption.

An Inductive Logic Programming Query Language for Database Mining 5

Fig. 3. Bongard problems

Query1 � Query2 :- subset(Query1,Query2).

subset((S,RS),Super) :- occurs(S,Super,NSuper), subset(RS,NSuper).
subset(true,Super).

occurs(Q,(Q,R),R).
occurs(Q,(T,R),NR) :- occurs(Q,R,NR).

This Prolog program specifies that Query1 is less (or equally) general than
Query2 if the literals in Query1 all appear in Query2. The Prolog representation
employed for queries assumes that all queries end with the literal ’true’ and also
that the non-true literals are sorted. E.g. running (human(X),male(X),true) �
(female(X),human(X),male(X),true) would succeed. In addition to � RDM
also employs ≺. Related to this primitive is the notion of a refinement operator
rho which can be defined as follows :

rho(Query1,Query2) :- Query1 ≺ Query2,
not (Query3 ≺ Query2, Query1 ≺ Query3).

rho is useful to compute the immediate generalizations or specializations of a
query. This operation is often used by machine learning algorithms.

The third primitive employs the notion of an example. An example in RDM
corresponds to a substitution, that is a set of values that instantiate the Key of a

6 Luc De Raedt

pattern. Using the third primitive it is possible to specify that a pattern should
cover a specific example:

covers(Query,Key,Example) :- \+ \+ (Key = Example, Query).

If the database would consist of the following facts: human(luc),human(lieve),
male(luc),female(lieve)then the pattern ((human(X),male(X),true),[X])
would cover the example [luc].

Finally, RDM has a number of extensions of the above primitives in order
to provide more flexibility. One extension allows to work with lists of examples.
E.g. in the above toy-database one might want to work with a list of examples
such as e.g.[[luc], [lieve]]. Using such lists of examples it is possible to refine
the above primitives. More specifically, RDM provides the following variants of
the above predicates :

– covers-all(Query,Key,ExampleList) (resp. covers-none(Query, Key,
ExampleList) succeeds if all examples in ExampleList are covered (resp.
are not covered) by the pattern (Query,Key),

– frequency(Query,Key,ExampleList,Freq) which succeeds if Freq is the
number of examples on ExampleList that are covered by the pattern (Query,
Key).

The second extension concerns the definition of asssociation rules in the typ-
ical manner [2].

associationrule((Conclusion ← Condition), Key, Acc, Freq) :-
Condition ≺ Conclusion, frequency(Condition,Key,Freq1),
frequency(Conclusion,Key,Freq), Acc is (Freq1 + 0.0)/ Freq.

Acc expresses the accuracy of the rule, i.e. the conditional probability that
Conclusion will succeed given that Condition succeeded, and Freq expresses
the number of times that both Condition and Conclusion part succeed. This
type of rule is very popular in descriptive data mining.

The third extension allows to employ negation in various forms, e.g. to specify
that a query is not more specific than a given other query e.g. not Query �
(human(X),female(X),true).

Observe also that it is easy to enhance RDM by providing further predicate
definitions, such as e.g.

– sample(ExampleList,SampleList,Probability) generates a sample of the
examples (drawn according to Probability).

This and other extensions are however quite straightforward, and merely provide
further syntactic sugar. Therefore we will not discuss such extensions any further
here.

The above predicate definitions provide the semantics of the RDM language.
A database mining query is now simply a Prolog query employing the above

An Inductive Logic Programming Query Language for Database Mining 7

introduced primitives. So, RDM is embedded within Prolog. It should be men-
tioned that not all database mining queries are safe, but that it is possible to spec-
ify safe queries using mode declarations (as typically done in Prolog manuals).
For safe execution, it is e.g. required that for all patterns (Query,Key) searched
for the data mining query in Prolog must include Query � (lit1, ..., litn, true) be-
fore any further reference to Query is made. This is necessary in order to specify
the range of queries searched for. Also, without bounding Query in this manner,
many of the predicates defined above would not operate correctly. We will not
go into further (implementation) details of the semantics at this point. We also
wish to stress that the semantical definition is - of course - inefficient. The only
purpose of the definitions above is to specify an operational semantics of data
mining queries and not to provide an optimal execution mechanism. However,
in section 4, we will show how data mining queries can be executed efficiently
using techniques from the versionspace [19] and APRIORI algorithms [2].

4 Data Mining with RDM

We now basically have all primitives needed to generate database mining queries.
In this section, we demonstrate the expressive power of RDM by example.

First, the query language can naturally be used to discover a wide range of
frequent patterns. E.g. inducing frequent item-sets goes as follows :

?- Query � (Item-1(X), ..., Item-n(X),true), frequency(Query,X,F),
F > 100 .

This corresponds to the simplest form of frequent pattern that is currently em-
ployed in e.g. marketing applications. The database then merely contains facts
which state for all transactions X which items have been bought. The above
query then finds frequent combinations of items that are bought together.

Similarly, it is possible to discover first order queries such as those typically
employed within inductive logic programming. E.g. in marketing

?- (trans(T1,Cust,Time1),trans(T2,Cust,Time2),before(Time1,Time2),
true) � Query, Query � (trans(T1,Cust,Time1),trans(T2,Cust,Time2),
before(Time1,Time2), (Item-1(T1,Q1),Item-1(T2,Q2),Q2> Q1), ...,
(Item-n(T1,Q1),Item-n(T2,Q2),Q2> Q1),true),frequency(Query,[T1,T2],
F), F > 100.

This database mining query would generate all patterns involving two (ordered)
transactions of the same customer where the quantities of bought items in the
last transaction is larger. E.g.

(trans(T1,Cust,Time1),trans(T2,Cust,Time2), before(Time1,Time2),
(beer(T1,Q1), beer(T2,Q2), T2 > T1), true)

would tell something about the frequency of increased sales in beer.

8 Luc De Raedt

Another first order example of database mining query in a biochemical do-
main:

?-(atom(M,A), true) � Query1, Query1 � (atom(M,A), property-1(A),
..., property-n(A),true), frequency(Query1,M,F1), F1 > 20,
(bond(M,A,B), atom(B), true) � Next, Next � (bond(M,A,B), atom(B),
property-1(B),..., property-n(B),true),concatenate(Query1, Next,
Query2), frequency(Query2, M, F2), F2 > 15 .

This database mining query will generate two patterns the first of which in-
volves a single atom (and its properties) and the second pattern which is an
extension of the first pattern involving two atoms linked with a certain type
of bond. The results of this query could be used to generate association rules
where the first pattern serves as the condition part and the second one as the
conclusion part.

Further details of the use of such first order patterns and the relation to exist-
ing frameworks for frequent pattern discovery are provided in a recent paper by
Dehaspe and Toivonen [10]. They show that nearly any type of frequent pattern
considered in the data mining literature can be expressed in the presented first
order framework. Hence, it is easy to simulate these in RDM.

A second type of query is to generate association rules. E.g.

?- Query2 � (Item-1(X), ... , Item-n(X),true),
associationrule((Query1 ← Query2),X,Freq,Acc),
Freq > 100, Acc > 0.5.

would generate all association rules (over item-sets) with minimum accuracy
of 50 per cent and frequency of 100. This type of query is similar to the queries
one can express within Imielinski and Virmani ’s M-SQL [14]. Using this same
type of queries it is possible to emulate the essence of Dehaspe and De Raedt’s
WARMR [9] and De Raedt and Dehaspe’s Claudien [8].

The third type of queries is aimed at predictive data mining instead of de-
scriptive datamining. It therefore employs both positive and negative examples.
E.g.

?- Query � (Item-1(X), ... , Item-n(X),true),
frequency(Query,X,’Positives’,P),frequency(Query,X,’Negatives’,N),
N < 10, Acc is P / (P+N), Acc > 0.9.

This query would generate condition parts of rules that are at least 90 per
cent correct, and that cover at most 10 negative examples. Once such rules are
found, they can (partly) define a predicate with the Key as argument(s). This is
akin to what many classification systems search for. Also, rather than involving
a minimum frequency, this type of rule querying imposes a maximum frequency
(on the negative examples).

An Inductive Logic Programming Query Language for Database Mining 9

Fourthly, sometimes predictive data mining approaches employ seed exam-
ples. These seed examples are used to constrain the rules searched for. E.g. when
positive examples are used as seeds, the induced rule should cover the positive.
This can easily be expressed with covers. In typical database mining situations,
these different constructs will be combined in order to find relevant (sets of)
patterns.

Of course, the most expressive way of using the query language is to embed
the primitives in simple Prolog programs. Using this facility it is easy to emulate
inductive logic programming systems (such as e.g. Quinlan’s FOIL [22]) in a one
page meta-program. This requires the operator rho to be used.

5 Answering Database Mining Queries

Obviously, plainly using the primitives as they have been defined in Prolog will
be desastrous from the efficiency point of view. This is because patterns would
simply be enumerated using the � primitive, and tested afterwards. The question
then is : how can we efficiently produce answers to the queries formulated above?

Let us here concentrate on simple database mining queries. Simple queries
search for a single pattern only.

The key insight that leads to efficient algorithms for answering database
mining queries is that 1) the space of patterns L is partially ordered by the
� relation, and 2) that all primitives provided in RDM behave monotonically
with regard to �. Therefore each constraint on a pattern allows to prune the
search. Indeed consider the constraint that Query � q, which states that the
Query searched for should be more general than a specific query q. Given e.g. a
candidate query c that is not more general than q, all specializations of c can be
pruned as well (as they also won’t be a generalization of q). Similar properties
hold for the other primitives supported by RDM.

Furthermore, a set of constraints defines a versionspace of acceptable pat-
terns. This versionspace is completely determined by its S and G sets (as defined
by [19]).

S = {s ∈ L | s is maximally specific in L and consistent with all constraints}
G = {g ∈ L | g is maximally specific in L and consistent with all constraints}

These sets determine the boundaries of consistent queries. All solutions c then
have the property that there is an element s ∈ S and an element g ∈ G such that
g � c � s. We have the following kind of constraints or information elements :

– Query � q (resp. q � Query) which states that the target Query is more
general (resp. more specific than a given query q; similar elements can be
defined wrt. ≺).

– frequency(Query, Key, Data, Freq), F req > t (resp. ≥) : which specifies a
constraint on the frequency of the pattern (on the specified Data)

10 Luc De Raedt

– covers(Query, Key, Example) which expresses that the Query should cover
the Example

– also, each of the above primitives can be negated

Information elements of the first type (i.e. concerning �) are directly handled
by Mellish’s description identification algorithm [16,23], which extends Mitchell’s
versionspace algorithm [19]. Fact is that the statements of the form Query � q
(resp. not Query � q) can be interpreted as Query covers the ‘positive example’
q (resp. ‘negative example’). In this view the query q is regarded an example (in
a different example space than that of RDM). Mellish’s description identifica-
tion algorithm extends Mitchell’s well-known versionspace algorithm by handling
statements of the form q � Query and its negation. These additional information
elements are dual in the original ones, and so is its algorithmic treatment. Now
it is easy to process the elements concerning � with the versionspace algorithm.
First define the greatest lower bound glb, the least upper bound lub, the max-
imally general specialisations mgs, and the maximally specific generalizations
msg (max and min find the maximal respectively minimal elements w.r.t. �):

glb(a, b) = max {d ∈ L | a � d and b � d}
lub(a, b) = min {d ∈ L | d � a and d � b}
mgs(a, b) = max {d ∈ L | a � d and not(d � b)}
msg(a, b) = min {d ∈ L | d � a and not(b � d)}

Then the algorithm in Figure 4 can be used to compute S and G, which
completely determine the set of solutions.

When analysing the above algorithm, the glb, lub, mgs and msg operators can
be straightforwardly and efficiently implemented. However, the key implementa-
tion issue is how to compute the S set for the case of frequency(Q, K, D, F), F >
f . Similar questions arise for F < f and the use of covers. In the data mining
literature, a lot of attention has been devoted to this, resulting in algorithms
such as APRIORI [2].

We can find the S set for this case in two different manners, that correspond
to traversing the space in two dual methods. When working general to specific,
one can use an algorithm similar to APRIORI.

The algorithm for computing answers to simple queries should be upgraded
towards complex queries. Complex queries are answered by handling the literals
in the query from left to right (as in Prolog) and mixing that with the version-
space model. This is however the subject of further work.

6 Conclusions

A declarative relational database mining query language has been proposed as
well as a procedure to efficiently answer simple queries.

It was argued that the proposed framework for query language puts induc-
tive logic programming into a new perspective and also that it raises several

An Inductive Logic Programming Query Language for Database Mining 11

questions of interest to the field of computational logic and data mining. In the
author’s view, the current proposal and the resulting line of research puts in-
ductive logic programming on the same methodological basis as constraint logic
programming. It also provides one possible foundation for database mining with
query languages.

S := {>}; G := {⊥};
for all constraints i do

case i of q � Query :
S := {s ∈ S | q � s}
G := max {m | ∃g ∈ G : m ∈ glb(q, g)and ∃s ∈ S : m � s}

case i of Query � q :
G := {g ∈ G | g � q}
S := min {m | ∃s ∈ S : m ∈ lub(q, s)and ∃g ∈ G : g � m}

case i of not Query � q :
S := {s ∈ S | not(s � q)}
G := max {m | ∃g ∈ G : m ∈ mgs(g, q) and ∃s ∈ S : m � s}

case i of not q � Query :
G := {g ∈ G | not(q � g)}
S := min {m | ∃s ∈ S : m ∈ msg(s, q) and ∃g ∈ G : g � m}

case i of covers(Query, e) :
G := {g ∈ G | covers(g, e)}
S := min {s′ | covers(s′, e) and ∃s ∈ S : s′ � s and ∃g ∈ G : g � s′}

case i of not covers(Query, e) :
S := {s ∈ S | not covers(s, e)}
G := max {g′ | not covers(g′, e) and ∃g ∈ G : g � g′ and ∃s ∈ S : g′ � s}

case i of frequency(Query,Key, D, F), F > f :
G := {g ∈ G | frequency(g,Key, D, F), F > f}
S := min {s′ | frequency(s′, Key,D, F), F > f

and ∃s ∈ S : s′ � s and ∃g ∈ G : g � s′}
case i of frequency(Query,Key, D, F), F < f :

S := {s ∈ S | frequency(s,Key, D, F), F < f}
G := max {g′ | frequency(g′, Key,D, F), F < f

and ∃g ∈ G : g � g′ and ∃s ∈ S : g′ � s}

Fig. 4. Computing S and G

For what concerns related work, our query language is motivated and inspired
by Imielinski and Mannila’s view put forward in the recent issue of Communi-
cations of the ACM. The presented query language seems also a generalization
of the M-SQL queries by [14], the MetaQueries by [24] and our own Claudien
system [8]. It differs from M-SQL in that it supports the manipulation of clauses
(instead of association rules), and from the other two approaches in that it al-
lows to manipulate rules explicitly using a variety of logical and statistical quality
criteria.

12 Luc De Raedt

Acknowledgements

The author is supported by the Fund for Scientific Research, Flanders, and by
the ESPRIT IV project no 20237 on Inductive Logic Programming II. He is
grateful to Maurice Bruynooghe and Luc Dehaspe for interesting discussions on
this, to Hendrik Blockeel for comments on this paper, to the ML team for their
interest and figures and especially to Imielinski and Mannila for inspiring this
work through their CACM paper.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 International Conference on
Management of Data (SIGMOD 93), pages 207–216, May 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. The MIT Press, 1996.

3. I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 1990.
2nd Edition.

4. I. Bratko and S. Muggleton. Applications of inductive logic programming. Com-
munications of the ACM, 38(11):65–70, 1995.

5. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.
In Yves Kodratoff, editor, Proceedings of the 5th European Working Session on
Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 151–163.
Springer-Verlag, 1991.

6. P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261–284,
1989.

7. L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 1996.

8. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146,
1997.

9. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In
Proceedings of the 7th International Workshop on Inductive Logic Programming,
volume 1297 of Lecture Notes in Artificial Intelligence, pages 125–132. Springer-
Verlag, 1997.

10. L. Dehaspe and H. Toivonen. Frequent query discovery: a unifying ILP
approach to association rule mining. Technical Report CW-258, Depart-
ment of Computer Science, Katholieke Universiteit Leuven, March 1998.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/CW1998.html.

11. S. Džeroski. Inductive logic programming and knowledge discovery in databases. In
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 118–152. The MIT Press, 1996.

12. S. Džeroski and I. Bratko. Applications of inductive logic programming. In
L. De Raedt, editor, Advances in inductive logic programming, volume 32 of Fron-
tiers in Artificial Intelligence and Applications, pages 65–81. IOS Press, 1996.

13. T. Imielinski and H. Mannila. A database perspectivce on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

An Inductive Logic Programming Query Language for Database Mining 13

14. T. Imielinski, A. Virmani, and A. Abdulghani. A discovery board application
programming interface and query language for database mining. In Proceedings of
KDD 96. AAAI Press, 1996.

15. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

16. C. Mellish. The description identification problem. Artificial Intelligence, 52:151
– 167, 1991.

17. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michal-
ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial
intelligence approach, volume 1. Morgan Kaufmann, 1983.

18. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
19. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.
20. S. Muggleton and L. De Raedt. Inductive logic programming : Theory and meth-

ods. Journal of Logic Programming, 19,20:629–679, 1994.
21. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series

in machine learning. Morgan Kaufmann, 1993.
22. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–

266, 1990.
23. G. Sablon, L. De Raedt, and M. Bruynooghe. Iterative versionspaces. Artificial

Intelligence, 69:393–409, 1994.
24. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data mining. In

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 375–398. The MIT Press, 1996.

25. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for
mutagenicity: A study in first-order and feature-based induction. Artificial Intel-
ligence, 85, 1996.

26. H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hätönen, and H. Mannila. Pruning
and grouping discovered association rules. In Y. Kodratoff, G. Nakhaeizadeh,
and G. Taylor, editors, Proceedings of the MLnet Familiarization Workshop on
Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47–52,
Heraklion, Crete, Greece, 1995.

An Inductive Logic Programming Query
Language for Database Mining

(Extended Abstract)

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

email: Luc.DeRaedt@cs.kuleuven.ac.be
Tel: ++ 32 16 32 76 43 Fax : + + 32 16 32 79 96

Abstract . First, a short introduction to inductive logic programming
and machine learning is presented and then an inductive database min-
ing query language RDM (Relational Database Mining language). RDM
integrates concepts from inductive logic programming, constraint logic
programming, deductive databases and meta-programming into a flex-
ible environment for relational knowledge discovery in databases. The
approach is motivated by the view of data mining as a querying pro-
cess (see Imielinkski and Mannila, CACM 96). Because the primitives
of the presented query language can easily be combined with the ?rolog
programming language, complex systems and behaviour can be speci-
fied declaratively. Integrating a database mining querying language with
principles of inductive logic programming has the added benefit that it
becomes feasible to search for regularities involving multiple relations
in a database. The proposal for an inductive logic programming query
language puts inductive logic programming into a new perspective.
Keywords : database mining query language, inductive logic program-
ming, relational learning, inductive query language, data mining.

1 I n t r o d u c t i o n

The first part of the paper provides a short introduction to the field of inductive
logic programming. Inductive logic programming 20, 7 is the study of machine
learning and data mining using the first order representations offered by compu-
tational logic. Classical approaches to machine learning and data mining use the
so-called attribute-value learning representations, which essentially correspond
to propositional logics. The use of computational logic is beneficial for a variety
of reasons. Firstly, inductive logic programming can rely on the theory of logic
programming concerning semantics, inference rules, and execution mechanisms.
Secondly, using a richer representation language permits to tackle applications,
which cannot be handled by classical techniques (see e.g. 4, 12) for surveys.
Thirdly, the use of computational logic permits to employ background knowl-
edge in the induction process.

The second part of the paper introduces a novel framework for inductive logic
programming and data mining in the form of an inductive database mining query

Jacques Calmet and Jan Plaza (Eds.): AISC'9S, LNAI 1476, pp. 1-13, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

2 Luc De Raedt

language. This framework is inspired on 13 who view knowledge discovery as a
querying process to a database mining system. Querying for knowledge discovery
requires an extended query language (w.r.t. database languages) that supports
the manipulation, mining and discovery of rules, as well as data. The integration
of such rule querying facilities provides new challenges for database technology.

(Inductive) logic programming is particularly well-suited as a basis for such a
language. First, a general query language for data mining should not be restricted
to handling single relations in a database; rather it should support the handling
of multiple relations in a database 11. Inductive logic programming supports
this very naturally. Second, techniques such as meta-programming and query
optimization have been studied extensively within the field of logic programming,
constraint logic programming and deductive databases. Meta-programming is
required to support the manipulation of data and rules, and query optimization is
important for efficiency purposes. Third, using logic programs as queries it is easy
to provide a semantics for the query language. Fourth, the development of this
language relates inductive logic programming to constraint logic programming
as the key questions that arise are similar to those addressed in constraint logic
programming: semantics, constraint handling, development of solvers, properties
of solvers, etc. Finally, though the field of inductive logic programming 15, 20, 7
is sometimes regarded as too inefficient for practical purposes, it provides an
excellent conceptual framework for reasoning about data mining. In sum, the
embedding of the query language within logic programming results in a very
expressive tool for knowledge discovery and in a new view on inductive logic
programming and data mining.

This paper is organised as follows: Section 2 contains an intuitive introduction
to inductive logic programming and data mining, Section 3 presents the RDM
query language, Section 4 shows RDM at work, Section 5 shows how RDM can
be implemented, and finally Section 6 concludes.

2 M a c h i n e l e a r n i n g a n d d a t a m i n i n g : t h e I L P v i e w

Current data mining approaches are often distinguished on the basis of their
predictive or descriptive nature. In predictive data mining one is given a set of
examples or observations that are classified into a finite number of classes. Typ-
ically, there are two (or more) classes, one that is called positive, and the other
that is negative. The aim then is to induce a hypothesis that correctly classifies
all the given (and unseen) examples. Consider Figure la where one is given two
types of example (§ and -). H is a correct hypothesis as it correctly discriminates
the positives from the negatives. The purpose of predictive data mining is thus
to generate hypotheses that can be used for classification. Common predictive
data mining techniques include decision tree induction (e.g. C4.5 21) and rule
induction (e.g. CN2 6, 5 or AQ 17).

In descriptive data mining one is given a set of unclassified examples and
the aim is to find regularities within these examples. Fhrthermore, it is the
aim to characterize as much as possible the given examples. Therefore as many

An Inductive Logic Programming Query Language for Database Mining 3

(a) (b)

Fig. 1. Predictive versus descriptive induction

properties or regularities as possible are derived. Together they form a kind of
most specific hypothesis that covers (explains) all the examples. E.g. in Figure
lb, the hypothesis H characterizes all the given examples. The most popular
descriptive data mining technique is that of discovering association rules 1, 2,
26.

Let us illustrate these differences on a simple example from basket analysis
in supermarkets. Using an at tr ibute value learning technique the most straight-
forward representation is given in the following table:

T r a n s C u s t o m e r B e e r Sausage ...Mustard Party
t190 c9 48 48 ... 2 yes
t l l0 c88 12 0 ... 1 no
t389 c133 0 6 ... 1 no
t444 c9 48 96 ... 3 yes

Fig. 2. A table for basket-analysis

There is one tuple for each visit to the supermarket. E.g. the first tuple
states that transaction t190 concerns customer c9 who bought 48 units of beer
and sausage and 2 units of mustard. Furthermore, his intention was to have a
party with this.

Predictive machine learning in this context could be concerned with predict-
ing whether a given transaction has as intention to organise a party or not.
E.g. one rule could state that if the quantity of beer purchased is larger than
36 then party=yes; otherwise, par ty=no. Descriptive data mining on the other
hand would be considered with regularity finding. It could e.g. find regularities
such as if mustard and beer is purchased, then with probability 80 per cent beer
will also be purchased. Or, if customer c9 purchases, then he will organise a
party, ...

Another major difference between various machine learning and data mining
techniques concerns the representations employed. In the above illustration of
attribute-value learning, an example was a single tuple from a single relation in a
database. In contrast, in inductive logic programming, examples can be encoded

4 Luc De Raedt

in multiple tuples of multiple relations. Using inductive logic programming, it
would be possible to reason about several transactions of the same customer,
or about relations among customers, etc. One might for instance have another
table relative(C1, C2) that expresses that C1 and C2 belong to the same family.
Rules that could be induced in such a context are e.g. that if a customer buys
Q1 units of product X at time T and there are advertisements for product X
after T, then on the next visit the same customer will buy more than Q1 units
of product X.

Typically, the relational representations employed within inductive logic pro-
gramming are needed when tackling structural problems (e.g. in molecular biol-
ogy), or when reasoning about time or space, or sequences, ...

Finally, using inductive logic programming it is also easy to incorporate back-
ground knowledge in the induction process. In the above example this could take
the form of taxonomies for the different products. In this way, wine and beer
could be grouped under alcohol, knowledge about advertising could be added,
etc.

At this point the reader may not (yet?) be convinced of the need for relational
representations. I'd like to challenge those readers to represent the Bongard
problem in Figure 2 within the attribute value representation, that is each scene
(example) should be represented by single tuple in a single relation, using a
single tuple in a single relation. Though the Bongard problem is a toy problem
its representations are very similar to those needed to represent the structure of
e.g. molecules (cf. [25]).

Fig. 3. Bongard problems

An Inductive Logic Programming Query Language for Database Mining 5

3 R D M : a r e l a t i o n a l d a t a b a s e m i n i n g q u e r y l a n g u a g e

In this section, a novel database mining query language is proposed. We do
assume some familiarity with Prolog 3 and with machine learning 18.

The key notion in RDM is that of a pattern. A pattern (Query,Key) is a
tuple where Query is a Prolog query, and Key is a list of variables that appears
in the Query. Data mining with RDM is then the search for patterns that satisfy
certain requirements. Three primitives are foreseen to specify requirements in
RDM. The first concerns the frequency of patterns, which is defined as follows :

frequency(Query,Key,Frequency) :-
findall(Key,Query,Set),length(Set,Frequency).

Thus the frequency of a pattern (Query,Key) is the number of instantiations of
the Key for which the Query holds. E.g. the pattern
(purchase (T, C, B yes) , IT, C) has frequency 2 in the above table.

The second primitive concerns the syntactic form of the Query. The primi-
tive -< specifies the relation of the Query to specified queries.This corresponds
to encoding the 'is more general than '1 relation. E.g.

Queryl ~ Query2 :- subset(Queryl ,Query2) .

subset((S,RS),Super) :- occurs(S,Super,NSuper), subset(RS,NSuper).
subse t (t r ue ,Supe r) .

occurs(Q,(Q,R),R).
occurs(Q,(T,R),NR) :- occurs(Q,R,NR).

This Prolog program specifies that Queryl is less (or equally) general than
Query2 if the literals in Query1 all appear in Query2. The Prolog representation
employed for queries assumes that all queries end with the literal 'true' and also
that the non-true literals are sorted. E.g. running (human (X) ,male (X), t rue) _
(female (X), human (X),male (X), t rue) would succeed. In addition to __. RDM
also employs -<. Related to this primitive is the notion of a refinement operator
rho which can be defined as follows :

rho(Queryl,Query2) :- Queryl ~ Query2,
not (Query3 ~ Query2, Queryl ~ QueryS).

rho is useful to compute the immediate generalizations or specializations of a
query. This operation is often used by machine learning algorithms.

The third primitive employs the notion of an example. An example in RDM
corresponds to a substitution, that is a set of values that instantiate the Key of a
pattern. Using the third primitive it is possible to specify that a pattern should
cover a specific example:

1 Ideally, this should be implemented through the use of Plotkin's 8-subsumption.

6 Luc De Raedt

covers(Query,Key,Example) :- \+ \+ (Key = Example, Query).

If the database would consist of the following facts : human (luc), human (lieve),
male (luc), female (lieve) then the pattern ((human(X) ,male(X) ,true), X)
would cover the example luc.

Finally, RDM has a number of extensions of the above primitives in order
to provide more flexibility. One extension allows to work with lists of examples.
E.g. in the above toy-database one might want to work with a list of examples
such as e.g.luc, lieve. Using such lists of examples it is possible to refine
the above primitives. More specifically, RDM provides the following variants of
the above predicates :

- covers-all(Query,Key,ExampleList) (resp. covers-none (Query, Key,
ExampleList) succeeds if all examples in ExampleList are covered (resp.
are not covered) by the pattern (Query ,Key),

- frequency(Query,Key,ExampleList ,Freq) which succeeds if Freq is the
number of examples on ExampleList that are covered by the pattern (Query,
Key).

The second extension concerns the definition of asssociation rules in the typ-
ical manner 2.

associationrule((Conclusion +-- Condition), Key, Acc, Freq) "-
Condition ~ Conclusion, frequency(Condition,Key,Freql),
frequency(Conclusion,Key,Freq), Acc is (Freql + 0.0)/ Freq.

Acc expresses the accuracy of the rule, i.e. the conditional probability that
Conclusion will succeed given that Condit ion succeeded, and Freq expresses
the number of times that both Condit ion and Conclusion part succeed. This
type of rule is very popular in descriptive data mining.

The third extension allows to employ negation in various forms, e.g. to specify
that a query is not more specific than a given other query e.g. not Query _
(human (X), female (X), true).

Observe also that it is easy to enhance RDM by providing further predicate
definitions, such as e.g.

- sample (ExampleList, SampleList, Probability) generates a sample of the
examples (drawn according to Probability).

This and other extensions are however quite straightforward, and merely provide
further syntactic sugar. Therefore we will not discuss such extensions any further
here.

The above predicate definitions provide the semantics of the RDM language.
A database mining query is now simply a Prolog query employing the above
introduced primitives. So, RDM is embedded within Prolog. It should be men-
tioned that not all database mining queries are safe, but that it is possible to spec-
ify safe queries using mode declarations (as typically done in Prolog manuals).
For safe execution, it is e.g. required that for all patterns (Query, Key) searched

An Inductive Logic Programming Query Language for Database Mining 7

for the data mining query in Prolog must include Query < (lit1, ..., lira, true)
before any further reference to Query is made. This is necessary in order to
specify the range of queries searched for. Also, without bounding Query in this
manner, many of the predicates defined above would not operate correctly. We
will not go into further (implementation) details of the semantics at this point.
We also wish to stress that the semantical definition is - of course - inefficient.
The only purpose of the definitions above is to specify an operational seman-
tics of data mining queries and not to provide an optimal execution mechanism.
However, in section 4, we will show how data mining queries can be executed
efficiently using techniques from the versionspace 19 and APRIORI algorithms
2.

4 D a t a m i n i n g w i t h R D M

We now basically have all primitives needed to generate database mining queries.
In this section, we demonstrate the expressive power of RDM by example.

First, the query language can naturally be used to discover a wide range of
frequent patterns. E.g. inducing frequent item-sets goes as follows :

7- Query ~ (Item-l(X) Item-n(X),true), frequency(Query,X,F),
F > i00 .

This corresponds to the simplest form of frequent pattern that is currently em-
ployed in e.g. marketing applications. The database then merely contains facts
which state for all transactions X which items have been bought. The above
query then finds frequent combinations of items that are bought together.

Similarly, it is possible to discover first order queries such as those typically
employed within inductive logic programming. E.g. in marketing

?- (trans(Tl,Cust,Timel),trans(T2,Cust,Time2), before(Timel,Time2),
true) ~ Query, Query ~ (trans(TI,Cust,Timel),trans(T2,Cust,Time2),
before(Timel,Time2), (Item-l(T1,Q1),Item-l(T2,Q2),Q2 > Q1) ,
(Item-n(TI,Ql),Item-n(T2,Q2),Q2 > Ql),true), frequency(Query,TI,T2,F),
F > I00.

This database mining query would generate all patterns involving two (ordered)
transactions of the same customer where the quantities of bought items in the
last transaction is larger. E.g.

(trans(TI,Cust,Timel),trans(T2,Cust,Time2), before(Timel,Time2),
(beer(TI,Q1), beer(T2,Q2), T2 > T1), true)

would tell something about the frequency of increased sales in beer.
Another first order example of database mining query in a biochemical do-

main:

8 Luc De Raedt

?-(atom(M,A), t rue) ~ Queryl, Query1 ~ (atom(M,A), p rope r ty - l (A) ,
. . . . p r o p e r t y - n (A) , t r u e) , frequency(Queryl ,M,F1), F1 > 20,
(bond(M,A,B), atom(B), true) ~ Next, Next ~ (bond(M,A,B), atom(B),
property-l(B) property-n(B),true), concatenate(Query1, Next,
Query2), frequency(Query2, M, F2), F2 > 15 .

This database mining query will generate two patterns the first of which in-
volves a single atom (and its properties) and the second pattern which is an
extension of the first pattern involving two atoms linked with a certain type
of bond. The results of this query could be used to generate association rules
where the first pattern serves as the condition part and the second one as the
conclusion part.

Further details of the use of such first order patterns and the relation to exist-
ing frameworks for frequent pattern discovery are provided in a recent paper by
Dehaspe and Toivonen 10. They show that nearly any type of frequent pattern
considered in the data mining literature can be expressed in the presented first
order framework. Hence, it is easy to simulate these in RDM.

A second type of query is to generate association rules. E.g.

?- Query2 ~ (Item-l(X), ... , Item-n(X),true),
assoc• +- Query2),X,Freq,Acc),
Freq > 100, Acc > 0.5.

would generate all association rules (over item-sets) with minimum accuracy
of 50 per cent and frequency of 100. This type of query is similar to the queries
one can express within Imielinski and Virmani's M-SQL 14. Using this same
type of queries it is possible to emulate the essence of Dehaspe and De Raedt's
WARMR 9 and De Raedt and Dehaspe's Claudien 8.

The third type of queries is aimed at predictive data mining instead of de-
scriptive datamining. It therefore employs both positive and negative examples.
E.g.

?- Query _~ (Item-l(X) Item-n(X),true),
frequency (Query, X, ' Pos it ives ', P), frequency (Query, X, ' Negatives ', N),
N < 10, Acc is P / (P+N), Acc > 0.9.

This query would generate condition parts of rules that are at least 90 per
cent correct, and that cover at most 10 negative examples. Once such rules are
found, they can (partly) define a predicate with the Key as argument(s). This is
akin to what many classification systems search for. Also, rather than involving
a minimum frequency, this type of rule querying imposes a maximum frequency
(on the negative examples).

Fourthly, sometimes predictive data mining approaches employ seed exam-
ples. These seed examples are used to constrain the rules searched for. E.g. when

An Inductive Logic Programming Query Language for Database Mining 9

positive examples are used as seeds, the induced rule should cover the positive.
This can easily be expressed with covers. In typical database mining situations,
these different constructs will be combined in order to find relevant (sets of)
patterns.

Of course, the most expressive way of using the query language is to embed
the primitives in simple Prolog programs. Using this facility it is easy to emulate
inductive logic programming systems (such as e.g. Quinlan's FOIL 22) in a one
page meta-program. This requires the operator rho to be used.

5 A n s w e r i n g d a t a b a s e m i n i n g q u e r i e s

Obviously, plainly using the primitives as they have been defined in Prolog will
be desastrous from the efficiency point of view. This is because patterns would
simply be enumerated using the _ primitive, and tested afterwards. The question
then is : how can we efficiently produce answers to the queries formulated above?

Let us here concentrate on simple database mining queries. Simple queries
search for a single pattern only.

The key insight that leads to efficient algorithms for answering database
mining queries is that 1) the space of patterns s is partially ordered by the
-~ relation, and 2) that all primitives provided in RDM behave monotonically
with regard to ~_. Therefore each constraint on a pattern allows to prune the
search. Indeed consider the constraint that Query ~ q, which states that the
Query searched for should be more general than a specific query q. Given e.g. a
candidate query c that is not more general than q, all specializations of c can be
pruned as well (as they also won't be a generalization of q). Similar properties
hold for the other primitives supported by RDM.

Furthermore, a set of constraints defines a versionspace of acceptable pat-
terns. This versionspace is completely determined by its S and G sets (as defined
by 19).

S = {s E s I s is maximally specific in s and consistent with all constraints}
G = {g E L: g is maximally specific in s and consistent with all constraints}

These sets determine the boundaries of consistent queries. All solutions c then
have the property that there is an element s E S and an element g E G such that
g -4 c -~ s. We have the following kind of constraints or information elements :

- Query ~ q (resp. q ~ Query) which states that the target Query is more
general (resp. more specific than a given query q; similar elements can be
defined wrt. -~).

- frequency(Query, Key, Data, Freq), Freq > t (resp. >) : which specifies a
constraint on the frequency of the pattern (on the specified Data)

- covers(Query, Key, Example) which expresses that the Query should cover
the Example

- also, each of the above primitives can be negated

10 Luc De Raedt

Information elements of the first type (i.e. concerning _) are directly handled
by Mellish's description identification algorithm 16, 23, which extends Mitchel-
l's versionspace algorithm 19. Fact is that the statements of the form Query ~_ q
(resp. not Query "~ q) can be interpreted as Query covers the 'positive example'
q (resp. 'negative example'). In this view the query q is regarded an example (in
a different example space than that of RDM). Mellish's description identifica-
tion algorithm extends Mitchell's well-known versionspace algorithm by handling
statements of the form q -~ Query and its negation. These additional information
elements are dual in the original ones, and so is its algorithmic treatment. Now
it is easy to process the elements concerning _ with the versionspace algorithm.
First define the greatest lower bound glb, the least upper bound lub, the max-
imally general specialisations mgs, and the maximally specific generalizations
msg (max and min find the maximal respectively minimal elements w.r.t. _):

glb(a,b) = max (d E ~ i a ~ d and b -~ d}
lub(a,b) = min (d E f~ l d ~ a and d -~ b}
mgs(a,b) = max (d E f~ I a ~ d andnot(d ~ b))
msg(a,b) = min (d E L d ~ a and not(b ~ d)}

Then the algorithm in Figure 4 can be used to compute S and G, which
completely determine the set of solutions.

When analysing the above algorithm, the glb, lub, rags and msg operators can
be straightforwardly and efficiently implemented. However, the key implementa-
tion issue is how to compute the S set for the case of frequency(Q, K, D, F), F >
f . Similar questions arise for F < and the use of covers. In the data mining
literature, a lot of attention has been devoted to this, resulting in algorithms
such as APRIORI 2.

We can find the S set for this case in two different manners, that correspond
to traversing the space in two dual methods. When working general to specific,
one can use an algorithm similar to APRIORI.

The algorithm for computing answers to simple queries should be upgraded
towards complex queries. Complex queries are answered by handling the literals
in the query from left to right (as in Prolog) and mixing that with the version-
space model. This is however the subject of further work.

6 C o n c l u s i o n s

A declarative relational database mining query language has been proposed as
well as a procedure to efficiently answer simple queries.

It was argued that the proposed framework for query language puts induc-
tive logic programming into a new perspective and also that it raises several
questions of interest to the field of computational logic and data mining. In the
author's view, the current proposal and the resulting line of research puts in-
ductive logic programming on the same methodological basis as constraint logic

An Inductive Logic Programming Query Language for Database Mining 11

S := { T } ; G := { 1 } ;
for all constraints i do

case of q -< Query :
S := { s e S q - 4 s }
G := max {m Bg 6 G : m 6 glb(q,g)and 3s 6 S : m-< s}

case of Query -4 q :
G := { g 6 G g ~ _ q}
S := min {m 3s 6 S: m 6 lub(q,s)and 3g 6 G: g -4 m}

case of not Query -4 q :
S := {s �9 S I not(s -4 q)}
G := max {m Bg �9 G : m �9 rngs(g,q) and 3s �9 S : m -4 s}

case of not q -4 Query :
G := {g �9 G I not(q-4 g)}
S := rain {m 3s �9 S : m �9 msg(s ,q) and 3g �9 G : g -4 m}

case of covers(Query, e) :
C := {g �9 G t cover4g, e)}
S :-- min {s' I covers(#,e) and as �9 S : s' -4 s and 9g �9 G :g -4 s'}

case of not covers(Query, e) :
S := {s �9 S lnot covers(s, e)}
c : = m a x {g' I not covers(g', e) and 9g �9 G : g -4 9' and 9s �9 S : g' -4 s}

ease of f requency(Query, Key, D , F) , F > f :
C := {g �9 C I frequency(g, Key, D, f) , F > f }
S := rain {s' I frequency(s ' , Key, D, F), F >

and 3s �9 S : s ~ -4 s and 3g �9 G : g -4 s'}
case i of requency(Query, Key, D, F), F < f :

S := {s �9 S I requency(s, Key, D, F), F < .f}
G := max {g ' l requency(g ' , Key, D, F), F < I

and 3g �9 G : g -4 g~ and 9s �9 S : g~ -4 s}

Fig. 4. Computing S and G

programming. I t also provides one possible foundation for da tabase mining with
query languages.

For what concerns related work, our query language is mot ivated and inspired
by Imielinski and Mannila 's view put forward in the recent issue of Communi-
cations of the ACM. The presented query language seems also a generalization
of the M-SQL queries by 14, the MetaQueries by 24 and our own Claudien
system 8. I t differs from M-SQL in tha t it supports the manipulat ion of clauses
(instead of association rules), and from the other two approaches in tha t it al-
lows to manipulate rules explicitly using a variety of logical and statistical quality
criteria.

12 Luc De Raedt

Acknowledgements

The author is supported by the Fund for Scientific Research, Flanders, and by
the E S P R I T IV project no 20237 on Inductive Logic P rogramming II. He is
grateful to Manrice Bruynooghe and Luc Dehaspe for interesting discussions on
this, to Hendrik Blockeel for comments on this paper, to the ML team for their
interest and figures and especially to Imielinski and Mannila for inspiring this
work through their CACM paper.

References

1. R. AgrawaJ, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 International Conference on
Management of Data (SIGMOD 93), pages 207-216, May 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307-328. The MIT Press, 1996.

3. I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 1990.
2nd Edition.

4. I. Bratko and S. Muggleton. Applications of inductive logic programming. Com-
munications of the ACM, 38(11):65-70, 1995.

5. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.
In Yves Kodratoff, editor, Proceedings of the 5th European Working Session on
Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 151-163.
Springer-Verlag, 1991.

6. P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261-284,
1989.

7. L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32 of Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 1996.

8. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-146,
1997.

9. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In
Proceedings of the 7th International Workshop on Inductive Logic Programming,
volume 1297 of Lecture Notes in Artificial Intelligence, pages 125-132. Springer-
Verlag, 1997.

10. L. Dehaspe and H. Toivonen. Frequent query discovery: a unifying ILP
approach to association rule mining. Technical Report CW-258, Depart-
ment of Computer Science, Katholieke Universiteit Leuven, March 1998.
http ://www. cs. kuleuven, ac. be/publicaties/rapporten/CW1998, html.

11. S. D~eroski. Inductive logic programming and knowledge discovery in databases.
In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages 118-152. The MIT Press,
1996.

12. S. D~eroski and I. Bratko. Applications of inductive logic programming. In
L. De Raedt, editor, Advances in inductive logic programming, volume 32 of Fron-
tiers in Artificial Intelligence and Applications, pages 65-81. IOS Press, 1996.

An Inductive Logic Programming Query Language for Database Mining 13

13. T. Imielinski and H. Mannila. A database perspectivce on knowledge discovery.
Communications of the ACM, 39(11):58-64, 1996.

14. T. Imielinski, A. Virmani, and A. Abdulghani. A discovery board application pro-
gramming interface and query language for database mining. In Proceedings of
KDD 96. AAAI Press, 1996.

15. N. Lavra~ and S. D~eroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

16. C. Mellish. The description identification problem. Artificial Intelligence, 52:151
- 167, 1991.

17. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michal-
ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial
intelligence approach, volume 1. Morgan Kaufmann, 1983.

18. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
19. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
20. S. Muggleton and L. De Racdt. Inductive logic programming : Theory and meth-

ods. Journal of Logic Programming, 19,20:629-679, 1994.
21. J. Ross Quinlan. C~.5: Programs for Machine Learning. Morgan Kaufmann series

in machine learning. Morgan Kaufmann, 1993.
22. J.R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239-266, 1990.
23. G. Sablon, L. De Raedt, and M. Bruynooghe. Iterative versionspaces. Artificial

Intelligence, 69:393-409, 1994.
24. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data mining. In

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 375-398. The MIT Press, 1996.

25. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for
mutagenicity: A study in first-order and feature-based induction. Artificial Intel-
ligence, 85, 1996.

26. H. Toivonen, M. Klemettinen, P. Ronkainen, K. H~t6nen, and H. Mannila. Prun-
ing and grouping discovered association rules. In Y. Kodratoff, G. Nakhaeizadeh,
and G. Taylor, editors, Proceedings of the MLnet Familiarization Workshop on
Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47-52,
Heraklion, Crete, Greece, 1995.

Bertrand Russell, Herbrand's Theorem, and the
Assignment Statement

Melvin Fitt ing

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

f itting~alpha, lehman, cuny. edu
http://math240, lehman, cuny. edu/f • ing

Abstrac t . While propositional modal logic is a standard tool, first-order
modal logic is not. Indeed, it is not generally understood that conven-
tional first-order syntax is insufficiently expressible. In this paper we
sketch a natural syntax and semantics for first-order modal logic, and
show how it easily copes with well-known problems. And we provide for-
mal tableau proof rules to go with the semantics, rules that are, at least
in principle, automatable.

1 I n t r o d u c t i o n

Propositional modal logic has become a fairly standard item in certain areas
of artificial intelligence and computer science. Computational states are often
thought of as possible worlds, while knowledge is frequently modeled using Hin-
tikka's idea that a multiplicity of possible worlds reflects our ignorance about
the actual one. But first-order modal logic is less familiar. It is often seen as
a labyrinth full of twists and problems (see 5, for instance). Indeed, s tandard
first-order syntax is actually of inadequate expressive power for modal logic. This
is behind many of the well-known "paradoxes" of modal logic. But, a solution
to the expressiveness problems of first-order modal logic exists, though it is still
not as well-known as it deserves to be. It was explicitly introduced to modal
logic in 8,9, though as we will see, the underlying ideas are much earlier.

It is always interesting to find that problems in disparate areas have a com-
mon solution. In our case the areas we wish to look at include: the theory of
definite descriptions of Bertrand Russell; certain classical philosophical prob-
lems; inadequate expressibility of logics of knowledge; and the t reatment of the
assignment statement in dynamic logic. The source of difficulty in all these cases
is the same: classical symbolic logic is taken as the standard. In classical logic as-
sumptions are made that preclude certain kinds of problems-- they cannot arise.
Since these problems do not arise in classical logic, machinery for a solution is
missing as well. Since the problems are significant, and the solution is trivial,
the issues should be better known.

The material in this paper is a drastically abbreviated version of a book-
length presentation forthcoming soon 2. While our book is primarily aimed at
philosophers, it contains much discussion of formal semantics and tableau-based
proof procedures. Automation of these proof procedures still awaits.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 14-28, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 15

2 F r e g e ' s P u z z l e

The philosopher Frege introduced a famous distinction between sense (sinn)
and denotation (bedeutung), 3. In part, this was to deal with problems like
the following. The morning star is the evening star. Let us symbolize this by
m -- e, a s tatement of identity. When the ancients came to know the t ru th of
this statement it was a discovery of astronomy. But why could it not have been
established by pure logic as follows. Certainly the ancients knew objects were self-
identical; in particular, K(m = m) - -we are using K as a knowledge modality.
Since m = e in fact, using substitutivity of equals for equals, occurrences of
m can be replaced by occurrences of e. Doing so with the second occurrence
in K(m = m) gives us K(m = e). Yet this does not appear to be how the
Babylonians did it.

On the basis of this and other examples, Frege came to insist that terms such
as "morning star" have both a denotation (in this case, a particular astronomical
object) and a sense (roughly, how the object is designated). Identity of denotation
is expressed by m = e, but in a non truth-functional context, such as K(m = e),
sense is what matters. This distinction has given rise to a vast literature, but it
is enough here to point out that in mathematical logic, all contexts are truth-
functional, and the problem fades into the background.

3 Russell~ on Denot ing

Bertrand Russell, in a famous paper 7, gave a theory of definite descriptions--
he showed how to t reat expressions like "the positive square root of 3" in a formal
language. This was to be of special significance later in Principia Mathematica
since it allowed classes to be introduced via definite descriptions. Like Frege,
Russell too had a guiding example. In his case it was how to assign a t ru th value
to "the King of France is bald," given that France has no King.

His solution involved a distinction between grammatical form and logical
form. In this case the grammatical form is B(f) (where B is the bald predicate
and f is the King of France). But this cannot be the logical structure since f does
not designate. According to Russell's theory the expression should be expanded
to the following, where F is a predicate specifying what it means to be King of
France: (3x){F(x)A (Yy)(F(y) D y ---- x)A B(x)}. Something Kings France, only
one thing does so, and that thing is bald. Clearly, then, the sentence is false.

Then what about the sentence, "the King of France is not bald." Russell noted
an ambiguity here. Should this be taken to assert the King of France has the non-
baldness property, or should it be taken to be the negation of the assertion that
the King of France has the baldness property? Using the Russell translation, do
we negate the predicate B(x), or do we negate the entire sentence? These are not
equivalent formally, and the original English sentences do not seem equivalent
informally.

To deal with this, Russell at first introduced a narrow scope//broad scope
distinction, which I won't discuss further. It turned out to be inadequate, and
eventually he was led to introduce an explicit scoping mechanism, one that is

16 Melvin Fitting

used systematically in Principia Mathematica. Russell's notat ion is somewhat
fierce, and I won't reproduce it here. But the underlying idea is critical, and
it's a wonder it came with such difficulty. It amounts to this. When definite
descriptions are translated away, an existential quantifier is introduced. Tha t
quantifier has a formal scope, given by the usual quantifier rules. Then it must
be that definite descriptions also have scopes within sentences. Generally that
scope is implicit in natural language constructs, but machinery can be introduced
to make it explicit. In short, terms of a formal language can have scopes, just as
quantified variables do.

Today Russell's t reatment of definite descriptions is well-known, at least
among those to whom it is well-known. But the explicit introduction of a scoping
mechanism is pushed into the background and generally ignored. In fact, it is a
central point.

4 M o d a l I s s u e s

Modal logic is a standard formal tool today in many areas of computer sci-
ence and artificial intelligence. Propositional issues are well-known, while first-
order ones may be less familiar. It is in the modal setting that the problems
with scoping become particularly clear, using the familiar machinery of Kripke
possible-world semantics.

Suppose we have a first-order modal frame (G,T~,7)), consisting of a col-
lection G of possible worlds, an accessibility relation Tt between worlds, and a
domain function 7) assigning non-empty domains for quantification to possible
worlds. No special assumptions are needed for the points I am about to make.
7~ can be an equivalence relation, or transitive only, or have no particular prop-
erties. Likewise 7:) can be the constant function, entirely arbitrary, or something
inbetween.

Now, consider the behavior of the formula 0P(c) , where c is a constant
symbol and P is a predicate symbol. We want to allow c to be non-rigid, perhaps
designating different things at different worlds. For instance, if "the King of
France" were to be represented by a constant symbol in a temporal model, it
would designate different people at different times. Of course sometimes it would
not designate at all--ignore this point for now. Formally, let us say we have an
interpretation 2- that assigns to constant symbols such as c, and to each possible
world F E ~ some object I (c , F) - - t h e "meaning" of c at F. We also assume
2" assigns to each relation symbol and each possible world some actual relation.
We thus have a model 2~4 -=- (G, R, 7:),2"), based on the original frame. Finally
let us symbolize by .~4, F iF X the notion that the closed formula X is t rue at
world F of the model ~r Now, just what should

All, F r~- OP(c) (1)

mean? I assume you are generally familiar with the behavior of modal operators
in possible-world settings.

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 17

First Possibility The formula OP(c) asserts that, whatever c means, it has the
" 0 P " property. A reasonable way of formalizing this in models is to allow
the occurrence of free variables, together with a valuation function to assign
values to them. Thus we broaden the machinery a bit, and write A/l, F tf-v X
to mean: X (which may contain free variables) is true at world F of model
A/I, with respect to valuation v which assigns values to the free variables of
X. With this extra machinery, (1) could be taken to mean Ad, F IF-v OP(x)
where v(x) = ~(c, F). That is, whatever c designates at F is something for
which OP(x) is true (at F).
Since OP(x) is a formula whose main connective is 0, according to the usual
behavior of modal models, there is some accessible world A C ~, that is
FT~A, such that .s A IF-v P(x) and this is the case provided v(x) is in the
relation 2-(P, A), the "meaning" of P at A. Tracing back, for (1) to be true,
we should have 2-(c, F) �9 2-(P, A).

S e c o n d P o s s i b i l i t y The formula OP(c) has 0 as its main connective, so (1)
says there is a possible world $2 �9 G with FT~$2 such that A/I, $2 IF- P(c) and,
most reasonably, this should be so if I (c , $2) is in the relation 2-(P, $2). Thus
(1) means ~(c, $2) �9 Z(P, $2).

We got two ways of reading (1). The world A of the First Possibility and
the world $2 of the Second Possibility need not be the same, but for simplicity
suppose they are, A : $2. Then we still have the following alternate readings for
(1):

1. /7(c, F) �9 Z(P, $2)
2. 2-(c, n) �9 Z(P, n)

and these are not equivalent. They are not equivalent because we allowed c to
be non-rigid, so :Z-(c, F) and 2-(c, $2) can be different.

Once the problem is seen, the solution is obvious. We need Russell's scoping
mechanism, and just such a device was introduced into modal logic in 8,9. What
it amounts to is separating the notion of formula and predicate. Using notation
based on the Lambda-calculus, we abstract from a formula ~(x) a predicate
(Ax.~(x)}. A formal treatment of this is given in the next section, but for now
we observe that it separates OP(c) into the following two distinct formulas:

1. (Ax.OP(x))(c)
2. O(Ix.P(x))(c)

5 F o r m a l S e m a n t i c s

Based on the sketchy ideas above, we set out a formal modal semantics. And
because of space limitations, we go directly to the most general version--in 2
the t reatment is much more leisurely. We have already said what a modal frame
was above, but the present notion of model is considerably broadened.

First, in a modal frame (G, T~, 7)), recall that we place no restrictions on the
domain function 7)-- i t assigns to each world some non-empty set, the domain

18 Melvin Fitting

of that world. Members of the domain of a world should be thought of as the
things "actually" existing at that world. If something exists at a world A, at a
different world F we can think of that thing as a "possible existent." Also, by
the domain of the frame we mean U r ~ : D (F) . Thus the members of the domain
of the frame are the things that are actually or possibly existent at every world.

A modal model is a structure (6, 7~, :D,2.) where (6, T~, :D) is a modal frame
and 2- is an interpretation such that:

1. For each relation symbol P and each F C 6, 2.(P, F) is a relation on the
domain of the frame.

2. For some, not necessarily all, constant symbols c and F E 6, 2-(c, F) is a
member of the domain of the frame.

This can be extended to include function symbols, though because of space
limitations in this paper, we do not do so.

Think of 2-(P, F) as the "meaning" of the relation symbol P at the world P.
Note the important point that it may include things that do not exist at F. It
is true to say, "Pegasus is a mythological beast," and we interpret this to mean
that "Pegasus" designates something in a world other than this one (a make-
believe world, if you will), the thing designated does not exist in this world, but
in this world the property of being mythological correctly applies to it.

Think of 2-(c, F) as what c designates at the world F. As with relation sym-
bols, what is designated need not exist. Thus "the first president of the United
States" designates George Washington, who in a temporal sense once existed
but no longer does. Note the added complication that for constant symbols 2- is
allowed to be partial. This gives us the start of a mechanism to deal with "the
present King of France."

Before we say which formulas are true at which worlds, we should indicate
just what things we take as formulas.

1. As atomic formulas we take expressions of the form R (x l , . . . , xn) where R
is an n-place relation symbol and xl, . . . , xn are variables. (Recall, formulas
are not properties, but rather, properties are abstracted from formulas.)

2. Complex formulas are built up from simpler ones using A, V, -7, D, --, :, 0,
V, and 3 in the usual way, with the usual conventions about free variables.

3. If t is a term (which here means a variable or a constant symbol), ~ is a
formula, and x is a variable, (Ax.~)(t) is a formula. Its free variables are
those of ~, except for occurrences of x, together with the free variables of t.

Think of (Ax.~)(t) as asserting of the object t designates that it has the
property ()~x.~), the property abstracted from the formula ~.

Let A/t -- (6, T~, :D,2. / be a model. A valuation in A/t is a mapping v assigning
to each variable x some member v(x) in the domain of the frame underlying the
model. Note that valuations are not world dependent.

We say a term t designates at F if t is a variable, or if t is a constant symbol
and Z(t, F) is defined. If t designates at F we use the following notation:

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 19

(v �9 2:)(t, F) = ~ v(x) if t is the variable x
 27(c, F) if t is the constant symbol c

Finally we must define f14, F iFv ~: formula ~ is true at world F of model
Ad with respect to valuation v. Here is the t ruth definition, much of which is
straightforward.

1. For an atomic formula R(x l , . . . , xn), .M, F IFv R (x l , . . . , X n) just in case
<v(xl),. . . , v(xn)> e z(R, c).

2. A/I, F IFv X A Y if and only if 3,t, F IFv X and 2M, F IFv Y (and similarly
for the other Boolean connectives).

3. M , F IFv � 9 if and only if M , A IFv X for every A E ~ such that FT-r
(and similarly for (}).

4. All, F IFv (Vx)~ if and only if A4, F IFv, ~ for every valuation v I that is like
v except that v' is some arbitrary member of ~D(F) (and similarly for ~).

5. If t does not designate at F, A4, F I)zv {~x.~)(t).
6. If t designates at F, AA,/" IFv (Ax.~}(t) if and only if Ad, F IFv, ~ where v I

is like v except that v~(x) is what t designates at F.

Item 4 makes explicit the idea that quantifiers quantify over what actually
exists--over the domain of the particular possible world only. Such quantifiers
are called "actualist" by philosophers. They are not the only version available,
but a choice among quantifiers is not the issue just now. Item 5 is the formal
counterpart of the informal notion that no assertion about what is designated by
a term that fails to designate can be correct. Note that the issue is designation
by the term, not existence of the object designated. And item 6 expresses the
idea that properties are properties of objects, and so we must know what object
a term designates before knowing if a property applies.

One last item before turning to examples. We will always assume our models
are normal: there is a relation symbol =, written in infix position, and Z(=, F)
is the equality relation on the domain of the model, for every world F.

6 A F e w E x a m p l e s

We discuss several examples to show the richness these simple ideas provides us.
We give more examples once tableau proof machinery has been introduced.

Example 1. We begin with Frege's morning star/evening star problem. Suppose
we consider an epistemic model in which the various possible worlds are those
compatible with the knowledge possessed by the early Babylonians, with the
actual situation among them, of course. The constant symbols m and e are
intended to designate the morning and the evening stars respectively. (They
designate the same object in the actual world, but need not do so in every
possible world.) Also, let us read as "the ancients knew that." How can we
have m ---- e without, by substitutivity of equality, also having (m -- e)?

There is a certain amount of deception in the paragraph above. Neither
m = e nor (m -- e) is a formula in our formal system. (Recall, constants

20 Melvin Fitting

cannot appear in atomic formulas, rather they enter via predicate abstraction.)
The incorrect m = e should be replaced with <)~x.<Ay.x = y>(e))(m), which we
abbreviate as ()~x, y .x = y) (m, e). More significantly, for 3(m = e) we have a
choice of replacements: 3<)~x, y.x = y>(m, e), or <.~x, y .O(x -- y))(m, e), or even
(.~x.O(,~y.x = y}(e))(m). These do not behave the same. And, as a mat ter of
fact, the formula

y . x = y . O (x = y) > (m , e) (2)

is valid (true at all worlds of all models) while

<Ax, y .x = y>(m, e) ~ 3()~x, y .x -- y}(m, e) (3)

is not. (We leave the demonstration to you.) A little thought shows that in
formula (2), <.~x, y.3(x = y)>(m, e) asserts that the ancients knew, of the objects
denoted by m and e (in the actual world) that they were identical. This, in fact,
is so, since they certainly knew that an object is self-identical. But in formula
(3), 3<.~x,y.x = y} (m,e) asserts the ancients knew that m and e designated
the same object, and at one time they did not know this. The use of predicate
abstraction serves to disambiguate (m = e) D 3(m = e) into a valid version and
an invalid version, corresponding roughly to Frege's use of reference and sense.

Example 2. The introduction of modal operators is not essential to see the effects
of predicate abstraction. Consider the formula

(4)

If we evaluate the t ru th of this at a possible world at which c designates, the
equivalence is valid. But if we are at a world at which c does not designate,
the left side of (4) is false, since no abstract correctly applies to a term that
fails to designate. But for the same reason, <)~x.~>(c) is false, so its negation,
the right side of (4), is true. Thus if e fails to designate, (4) is false. This epito-
mizes precisely the distinction Russell made between the King of France having
the non-baldness property, and the King of France failing to have the baldness
property.

Note that if c does designate, (4) is true. And, whether c designates or not,
(~x.~A r _---- (()~x.~)(c)A ()~x.r (c)) is true at each possible world. In classical
logic, it is assumed that terms designate, so the consequence of (4) and this is
to make the effects of predicate abstraction invisible. Only when Russell tried to
t reat definite descriptions, that may lack designation, or when Frege considered
non-truth functional contexts, did such effects turned up.

Example 3. A term t may or may not designate at a particular possible world F.
If it does, <)~x.x = x} (t) is true there, since whatever t designates is self-identical.
But also, if t does not designate at a world, <Ax.x =- x>(t) is false there, since

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 21

predicate abstracts are false when applied to non-designating terms. Therefore,
let us define a "designation" abstract:

D abbreviates (Ax.x=x) .

This allows us to move a semantic notion into syntax--as we have seen, D(t) is
true at a world if and only if t designates at that world.

Using our designation abstract, let us return to Example 2. We saw that
formula (4) is true if c designates. Consequently we have the validity of the
following.

D(c) ~ ()~x.-~)(c) = -~(Ax.~)(c) (5)

Remarkably enough, the equivalence holds the other way around as well.
Tha t is, the following is valid.

D(c) ~ (Ax.-~)(c) ~ ~(Ax.~)(c) (6)

Example 4. In exactly the same way that the semantic notion of designation
could be expressed syntactically, we can express existence as well. We introduce
the following abbreviation.

E abbreviates ()~x.(~y)(y = x)).

It is easy to show that t designates something that exists at world F if and only
if E(t) is true a t / ' .

We do not have the validity of: (Vx)~ ~ ()~x.~)(t). But if we assume that t
not only designates, but designates something that exists, things become better.
The following is valid: E(t) ~ (Vx)~ ~ (~x.~}(t).

In classical logic one cannot even talk about things that do not exist, and
the E(t) antecedent above is unnecessary.

Example 5. Suppose p is a constant symbol intended to designate the President
of the United States. Assume we have a temporal model in which possible worlds
represent instants of time, and DX means X is and will remain true, that is,
X is true in the present and all future states. Dually, 0 X means X is or will
become true. For simplicity, let us assume there will always be a President of the
United States, so p designates at all times. Now, consider the following formula.

{ x.O i y.x = y/(p))(p) (7)

To say this is true at the current world asserts, of the current President of the
United States, that at some future time he will not be identical to the individual
who is then the President of the United States. That is, (7) asserts: "someday the
President of the United States will not be the President of the United States."
This is not a valid formula, but it is satisfiable.

22 Melvin Fitting

7 H e r b r a n d ' s T h e o r e m

In classical logic, Herbrand's theorem provides a reduction of the first-order
provability problem to the propositional level, plus an open-ended search. It is
often considered to be the theoretical basis of automated theorem proving for
classical logic. Unfortunately, Herbrand's theorem does not extend readily to
non-classical logics. Fortunately, the use of predicate abstraction allows us to
prove a reasonable version for first-order modal logics. Since the full s tatement
of the resulting theorem is somewhat complex, I only raise a few of the issues,
and refer to 1 for a fuller treatment.

Classically, the first step of formula processing in the Herbrand method in-
volves the introduction of Skolem functions. To cite the simplest case, the formula
(3x)P(x) is replaced with P(c), where c is a new constant symbol. It is not the
case that the two formulas are equivalent, but they are equi-satisfiable if either
is, both are.

One would like to Skolemize modally as well, but consider the following
formula: 3(Bx)P(x). If this is true at a possible world F of some modal model,
then (~x)P(x) is true at each world accessible from F. Say A and ~ are two
such accessible worlds. Then at A, some member of the domain associated with
A satisfies P (x) - - l e t the new constant symbol c designate such an object at
A. The situation is similar with ~2, so let c designate some member of the
domain associated with ~ that satisfies P(x) there. In general, c will designate
different things at A and ~2, and so will be non-rigid. Thus the Skolemization
of O(3x)P(x) seems to be OP(c), where c is a new non-rigid constant symbol.
But, as we have seen, once non-rigid constant symbols are admitted, conventional
syntax becomes ambiguous. Indeed, it would appear that 3P(c) should also be
the Skolemization of (3x)2P(x), and this seems quite unreasonable, since the
two quantified formulas having a common Skolemization behave quite differently.

Of course, the solution involves using predicate abstraction. The proper
Skolemization for (3x)P(x) is O(~x.P(x))(c), while (3x)OP(x) has a Skolem-
ization of (Ax.OP(x)}(c), which is behaviorally distinct.

Similar results apply to more complex formulas, but function symbols must
be involved, and we do not a t tempt to give a full presentation here. Suffice it to
say that the full force of Herbrand's theorem can be brought to bear, even in a
modal setting.

8 D y n a m i c L o g i c

One of the interesting applications of multi-modal logic is dynamic logic, a logic of
programs, 6. In addition to the usual machinery of modal logic, a class of actions
is introduced, with the class of actions closed under various operations, such as
sequencing, repetition, and so on. For each action a there is a corresponding
modal operator, generally written a. The formula aX is informally read: after
action a is completed, X will be true. (Since non-determinism is allowed, there
may be several ways of completing a.) There is a corresponding semantics in

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 23

which possible worlds are possible states of a computation. Likewise there is a
proof theory, at least for the propositional case. A typical principle of dynamic
logic is a; flX =- ~flX, where the semicolon corresponds to sequencing of
actions.

Dynamic logic provides an elegant t reatment of compound actions, but what
about atomic ones? Consider the assignment statement c := c + 1--what is its
dynamic characterization? We are all familiar with the before/after behavior of
assignment statements, where the right-hand side uses the current value of c,
while the left-hand side reflects the new value it acquires. To explain c := c + 1
in English, we would say something like: "after execution, the value of c is one
more than its value before execution."

To formalize this, it is enough to recognize that c is non-rigid--i t designates
different things at different computational states. Then, assuming arithmetic
behaves in the expected way, the essential feature of the assignment statement
in question is captured by the following, in which we use as shorthand for
c := c + 1.

= x + 1 / (c)) (r (8)

What this expresses is: it is true of the current value of c that , after c := c + 1
is executed, the value of c will be that plus 1.

If we assume, about arithmetic, only that incrementing a number gives us a
result unequal to the number, then it is easily shown to be a logical consequence
of (8) that

= x) / (c) / (c) (9)

This should be compared with (7). Indeed, both simply amount to assertions
that p in the one case and c in the other are non-rigid.

Issues of designation and existence are relevant in dynamic logic as well.
Saying c designates at a computational state amounts to saying it has been ini-
tialized, in the standard programming sense. Saying c exists at a computational
state says something about c's availability--we are in the scope of c. Formal
notions here are somewhat unclear, but it would be interesting to work them
out fully. Finally, saying that c is ~*igid is simply saying that c is const, as in C
or C ++, or final as in Java.

Full first-order dynamic logic is not axiomatizable. What we propose is that
the addition of terms, equality, and predicate abstraction to propositional dy-
namic logic, without adding quantifiers, might serve as a satisfactory strength-
ening of propositional dynamic logic. It is a subject worth investigating.

9 T a b l e a u P r o o f M e t h o d s

Formal proof rules based on prefixed tableaus are quite natural for the constructs
discussed above. Here I give rules for varying domain S5--versions for other
s tandard modal logics are presented in 2, but that for $5 is simplest to present.

24 Melvin Fitting

Because of space limitations, ra ther than giving examples as we go along, I ' l l
reserve them all until the following section.

For $5, by a prefix we simply mean a positive in teger- - th ink of it as in-
formally designating a possible world. (For other modal logics besides $5 the
s tructure of prefixes is more complex.) A prefixed formula is an expression of
the form n X , where n is a prefix and X is a fo rmula- - th ink of it as saying X
holds in world n. A signed prefixed formula is an expression of the form T n X
or F n X - - t h e first asserts n X and the second denies it.

A tableau proof of a formula X (without free variables) is a closed tableau
for F 1 X. A tableau for a signed prefixed formula is a tree, with that signed
prefixed formula at the root, and constructed using the various branch extension
rules to be given below. A branch of a tableau is closed if it contains an explicit
contradiction: both T k Z and F k Z, for some k and Z. If every branch is closed,
the tableau itself is closed.

Intuitively, when we begin a tableau with F 1 X we are supposing there is
some possible world, designated by 1, at which X fails to hold. A closed tableau
represents an impossible situation. So the intuitive understanding of a tableau
proof is tha t X cannot fail to hold at any w o r l d - - X must be valid. Proper
soundness and completeness proofs can be based on this intuition but there
is not space here to present them. Now it remains to give the various branch
extension ru les - - the rules for "growing" a tableau. The propositional connective
rules are easily described, and we begin with them.

If T n X A Y occurs on a tableau branch, X A Y intuitively is true at world n,
hence both X and Y must also be true there. Consequently the tableau branch
can be extended twice, with the first node labeled T n X and the second T n Y.
If F n X A Y occurs on a branch, X A Y is false at n, so either X or Y must be
false at n. This gives rise to two cases, and so the branch "splits." Tha t is, the
last node is given two children, the left labeled F n X and the right F n Y.

Rules for other binary connectives are similar, while those for negation are
simpler. In summary form, here they are.

Negation:

T n ~ X F n ~ X
F n X T n X

Binary:

T n X A Y F n X V Y
F n X A Y T n X V Y

T n X F n X
T n Y F n X I F n Y T n X I T n Y F n Y

F n X D Y
T n X D Y

T n X
F n X I T n Y F n Y

Modal rules are quantifier-like in nature. Here the prefixes play a significant
role.

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 25

Necessity: In these, k is any prefix.

T n 3 X F n O X
T k X F k X

P o s s i b i l i t y : In these, k is a prefix that is new to the branch.

T n O X F n 3 X
T k X F k X

For quantifiers we need some additional machinery. For each prefix n we
introduce an infinite a lphabet of parameters associated with n - - typ ica l ly we
write Pn, qn, etc., for parameters associated with n. Think of the parameters
associated with n as (designating) the things that exist at world n. From now
on we allow parameters to appear in proofs (though not in the formulas being
proved). They follow the syntax rules of free variables, though they are never
quantified. Now, here are the quantifier rules.

U n i v e r s a l : In these, Pn is any parameter associated with n.

T n (Vx)~(x) F n (3x)~(x)

T n ~(Pn) F n ~(Pn)

E x i s t e n t i a l : In these, Pn is a parameter associated with n tha t is new to the
branch.

T n (3x)~(x) F n (Vx)~(x)

T n ~(Pn) F n ~(Pn)

The rules so far are fairly standard. To deal with non-rigid constant symbols
(and this can be extended to include function symbols too), we again need to
extend the machinery. If c is a constant symbol and n is a prefix, we allow Cn to
occur in a proof (though again, not in the formula being proved). Think of Cn
intuitively as the object tha t c designates at world n. We have allowed part ial
designation, that is, a constant symbol may not designate at every world. All
this is incorporated rather easily into our rules for predicate abstracts, which we
give in a moment .

First, however, a little more notation. For each te rm t we define t@n, which
we can think of as what t designates at n. (This gets more complicated when
function symbols are present.) For a prefix n:

1. For a parameter p~, let pi@n = pi.
2. For a subscripted constant symbol ci, let ci@n = ci.
3. For an unsubscripted constant symbol c, let c@n = Cn.

Now, here are the abstract ion rules.

Positive Abstraction:

T n (~x.~(x))(t)
T n ~(t@n)

26 Melvin Fitting

N e g a t i v e A b s t r a c t i o n : If t@n already occurs on the branch,

F n (Ax.~(x)}(t)
F n ~(t@n)

Finally we have the rules for equality, and these are quite straightforward.
Let us say a t e rm is grounded on a branch if it is a paramete r or a subscripted
constant symbol, and it already occurs on the branch.

R e f l e x i v i t y : If t is grounded on the branch, T n t = t can be added to the end,
for any prefix n. Briefly,

T n t = t

S u b s t i t u t i v i t y : If t and u are grounded on the branch, and T k t = u occurs
on the branch, any occurrences of t can be replaced with occurrences of u.
Again briefly,

T k t = u T k t = u
T n ~(t) F n ~a(t)
T n ~(u) F n ~a(u)

This completes the full set of tableau rules.

10 More Examples

We give several simple examples of tableau proofs. More can be found in 2.

Example 6. In Section 6 we gave formula (6) as an interesting example of a valid
formula involving designation. We now give a tableau proof of par t of this,

D(c) D -~(Ax.P(x)}(c) D (Ax.-~P(x)>(c)

Line numbers are for explanation purposes only. Since no modal operators are
present, only world 1 is involved throughout.

F 1D(c) D ~(Ax.P(x))(c) D (Ax.~P(x))(c) 1.
T 1 D(c) 2.
F 1--.(Ax.P(x)}(c) D <Ax.~P(x)>(c) 3.
T 1-~(Ax.P(x)>(c) 4.
F 1 (Ax.~P(x)>(c) 5.
F 1 (Ax.P(x)}(c) 6.
T 1 < x.x = x > (c) 2'.
T lCl = cl 7.
F 1-~P(Cl) 8.
F 1P(c l) 9.
T 1P(c l) 10.

In this, 2 and 3 are from 1, and 4 and 5 are from 3 by an implication rule; 6 is
from 4 by a negation rule; 2' is line 2 unabbreviated; 7 is from 2' by a positive
abstract ion rule; then 8 is from 5 and 9 is from 6 by negative abstraction; and
10 is from 8 by negation. The single branch is closed because of 9 and 10.

Bertrand Russell, Herbrand's Theorem, and the Assignment Statement 27

Example 7. We give a tableau proof of a formula discussed in Example 4 of
Section 6. Again this does not involve modal operators.

F 1 E(c) D (Vx)P(x) D ()~x.P(x))(c)
T 1 E(c) 2.
F 1 (Vx)P(x) D ()~x.P(x)}(c) 3.
T l (V x) P (x) 4.
F l ()~x.P(x))(c) 5.
T 1 (Ax.(3y)(y = x))(c) 2'.
T 1 (3 y) (y = 6.

T l p l = cl 7.
T 1P(p l) 8.
T l P(Cl) 9.
F 1P(c l) 10.

.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule;
21 is 2 unabbreviated; 6 is from 21 by positive abstraction; 7 is from 6 by an
existential rule (Pl is a new parameter at this point); 8 is from 4 by a universal
rule (note tha t a parameter is involved, as the rule requires); 9 is from 7 and 8
by substitutivity of equality; 10 is from 5 by negative abstraction (note that cl
already occurs on the tableau branch). Closure is by 9 and 10.

Example 8. Our final example is an interesting modal example. It is a proof of

(Ax.(Ay.x = y}(c))(c) D ()~x.P(x)}(c) D D()~x.P(x))(c)

In 2 we make a case that the antecedent of this expresses rigidity of c. The
consequent asserts that a de re usage of c implies the corresponding de dicto
version. There is no space here to discuss just what this is all about. Just take
it as providing an illustrative tableau proof.

F 1 ()~x.D(,~y.x = y}(c))(c) D (Ax.EP(x))(c) D ~()~x.P(x))(c)
T 1 = y>(c)>(c) 2.
F 1 (Ax.DP(x)>(c) D D(Ax.P(x)>(c) 3.
T l (Ax.EP(x))(c) 4.
F 1 3()~x.P(x))(c) 5.
T 1DP(c l) 6.
F 2 7.
T 2 P (c l) 8.
T 1D(y.cl = 9.
T 2 (Ay.cx = y)(c) 10.
T 2 c 1 = c 2 11.
F 2P(c2) 12.
T 2 P (c 2) 13.

.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule; 6 is from
4 by positive abstraction; 7 is from 5 by a possibility rule (the prefix 2 is new to

28 Melvin Fitting

the branch at this point); 8 is from 6 by a necessity rule; 9 is from 2 by positive
abstraction; 10 is from 9 by a necessity rule; 11 is from 10 by positive abstraction;
12 is from 7 by negative abstraction (c2 occurs on the branch already); and 13
is from 8 and 11 by substitutivity of equality.

We leave it to you to provide a proof of

(Ax.O(,ky.x = y)(c))(c) D 3(Ax.P(x))(c) D ()~x.i3P(x))(c)

11 Conc lus ions

The work above should begin to make it clear that first-order modal logic, with
its syntax and semantics properly enhanced, is a very expressive formalism. It
relates well to natural language constructs and to those of computer science.
And it has a simple proof procedure which is automatable (though this has not
been done). Keep it in mind.

R e f e r e n c e s

1. M. C. Fitting. A modal Herbrand theorem. Fundamenta Informaticae, 28:101-122,
1996.

2. M. C. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998. Forth-
coming.

3. G. Frege. Uber Sinn und Bedeutung. Zeitschrift fur Philosophie und philosophische
Kritik, 100:25-50, 1892. "On Sense and Reference" translated in 4.

4. G. Frege. Translations from the Philosophical Writings of Gottlob Frege. Basil
Blackwell, Oxford, 1952. P. Geach and M. Black editors.

5. J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 2, pages 249-307. D. Reidel, 1984.

6. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2, pages 497-604. D. Reidel, 1984.

7. B. Russell. On denoting. Mind, 14:479-493, 1905. Reprinted in Robert C. Marsh,
ed., Logic and Knowledge: Essays 1901-1950, by Bertrand Russell, Allen ~z Unwin,
London, 1956.

8. R. Stalnaker and R. Thomason. Abstraction in first-order modal logic. Theoria,
34:203-207, 1968.

9. R. Thomason and R. Stalnaker. Modality and reference. Nous, 2:359-372, 1968.

Representing and Reasoning with Context

Richmond H. Thomason

Abs t rac t . This paper surveys the recent work in logical AI on context
and discusses foundational problems in providing a logic of context. As
a general logic of context, I recommend an extension of Richard Mon-
tague's Intensional Logic that includes a primitive type for contexts.

1 I n t r o d u c t i o n

Naturally evolved forms of human communication use linguistic expressions that
are rather highly contextualized. For instance, the identity of the speaker, the
table and the computer that are mentioned in the following sentence depend
on the context of utterance. The time and location of the utterance, as well as
the imagined orientation to the table, are left implicit, and also depend on the
context.

(1.1) 'I put the computer behind the table yesterday'.

These forms of contextualization are relatively familiar, and people are able
to deal with them automatically and, if necessary, prepared to reason about
them explicitly. Other forms of contextualization, especially those that affect
the meanings of words (see for instance, Cru95,PB97) can be more difficult to
isolate and think about.

I doubt that the level of contextualization humans find convenient and appro-
priate is the only possible way of packaging information, but for some reason we
seem to be stuck with it. We are made in such a way that we need contextualized
language; but this contextualization can be an obstacle to understanding. There
are psychological experiments indicating that highly verbose, decontextualized
language is unusual; and it is reasonable to suppose that this sort of language
is relatively difficult to comprehend. WH90, for instance, is concerned with
task-oriented instructions. Decontextualized verbalizations of plans leave out
steps that the hearer can be assumed to know about; here, the context consists
of routines for instantiating abstract plans. 1 Other studies show that highly
contextualized discourse can be relatively unintelligible to someone who is not
familiar with the context. 2

The challenge of contextualization arises not only in natural communica-
tion between humans, but in computerized transactions: in software, databases,
knowledge bases, and AI systems. The reasons for contextualization in these
cases are similar. In particular, (i) these systems are human products, and a

l See You97.
2 See CS89.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 29-41, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

30 Richmond H. Thomason

modular design makes them more intelligible and maintainable for the human
designers; and (ii) information and procedures are in general limited to the ap-
plications that a designer envisions. But a modular design will contextualize the
modules: for instance, the modularization of I~TEX into style and document files
means that a I~TEX formatted document will only work in combination with with
right supplementary files. The limits referred to in (ii) mean that software per-
formance can't be predicted, and good performance can't be expected, outside
of the limits envisaged by the designer.

In cases of human communication, it can be useful in anticipating and di-
agnosing misinterpretations to reason explicitly about context dependence; for
instance, if we find a message on the answering machine saying

(1.2) 'This is Fred; I'll call back at 2:00'

we may recall that Fred lives in a different time zone and wonder whether he
meant 2:00 his time or 2:00 our time. Similarly, it might be useful for software
systems to be able to perform this sort of reasoning. It is this idea that led John
McCarthy, in a number of influential papers, 3 to pursue the formalization of
context. In motivating this program, McCarthy proposes the goal of creating
automated reasoning that is able to transcend its context of application. Mc-
Carthy's suggestions have inspired a literature in logical AI that is by now fairly
extensive. 4

The sort of transcendence that would be most useful--an intelligent system
with the ability to recognize its contextual limitations and transcend t h e m - -
has to be thought of as a very long-range goal. But there are less ambitious
goals that can make use of a formal logic of context, and the formalizations
that have been emerged over the last ten years have led to useful applications in
knowledge representation and in the integration of knowledge sources. For the
former sort of application, see Guh91, where explicit reference to context is used
to modularize the creation of a large-scale knowledge base. For the latter sort of
application, see BF95. There has been a good deal of interest in applications of
these ideas in natural language processing, with at least one conference devoted
to the topic, 5 and perhaps we can hope to see these ideas put to use, but I am
not aware of a natural language processing system that was made possible by
these ideas.

In this paper, I will discuss the logical foundations of the theory of context.
The recent work on context in formal AI presents foundational issues that will
seem familiar to logicians, since they were addressed in classical work on the
semantic paradoxes and on modal logic. But some elements of this work are
n e w .

3 McC86,McC93,MB95
4 At http://www.pitt.edu/~thomason/bibs/context.html, there is a bibliography to

this literature.
5 For the proceedings of this conference, see BI97.

Representing and Reasoning with Context 31

2 T h e I s t P r e d i c a t e

The nature and logical treatment of "propositional arguments" of predicates has
been thoroughly debated in the logical literature on modal logic and proposi-
tional attitudes; see, for instance, Chu51,Qui53,Qui56. Similar questions arise
in the logic of context.

In its simplest form, the language of a theory of context is an extension of
first-order logic containing constructions of the form

(2.1) ist(c,p).

The ist predicate is used to explicitly state the dependencies between contexts
and assertions. The following example, from BF95, illustrates its use in stating
dependencies between data bases:

(2.2) ist(U A-db, (Vd) Thursday(d)
passenger-record(921, d, McCarthy) A
ftight-record(921,SF,7:00,LA,8:21))

The formula is taken from a hypothetical example involving a translation be-
tween entries in John McCarthy's diary and the United Airlines data base. It says
that the United Airlines database contains an entry to the effect that McCarthy
is booked every Thursday on Flight 921 from San Francisco to Los Angeles.

The logical type of the first argument of (2.1) (the contextual argument)
is unproblematic; the constant c simply refers to a context. Part of an explicit
theory of contexts will have to involve a reification of contexts, and it is perfectly
reasonable to treat contexts as individuals and to allow individual constants of
first-order logic to refer to them.

We can't treat the second argument (the propositional argument) in this way,
however, since formulas do not appear as arguments of predicates in first-order
logic. In very simple applications, an expression of the form (2.1) could be taken
to be an abbreviation of the first-order formula

(2.3) istp(C),

where for each formula p that we are interested in tracking we introduce a special
first-order predicate istp.

This technique, however, is very awkward even in very simple cases. More-
over, it will not allow us to state generalizations that involve quantifiers binding
variable positions in F--and these generalizations are needed in developing a
theory of the interrelationships between contexts. For instance, BF95 contains
the following "lifting rule" relating statements in McCarthy's diary to United
Airlines data base entries:

(2.4) VxVdist(diary(x), Thursday(d)) ~-~
ist (U A-db, Thursday(d)).

32 Richmond H. Thomason

This axiom calibrates the calendars of individual diaries with the United Airlines
calendar by ensuring that a date is a Thursday in anyone's diary if and only if
it is a Thursday in the United Airlines data base. We could accommodate the
quantifier indexed to 'x' in (2.4) in a first-order reduction of ist, but not the
quantifer indexed to 'd'. This variable occurs in the sentential argument to ist,
and would have nothing to bind if Thursday(d), the formula containing this
variable, were absorbed into the predicate.

The applications envisaged for a logic of context, then, call for a logical
form in which the propositional argument is referential; but what sort of thing
does it refer to? The logical literature on the foundations of modal logic and
propositional att i tudes offers two main alternatives:

(2.5) The argument is a syntactic object, a formula.
(2.6) The argument is an abstract object, a proposition or something

like a proposition.

3 The Quotat ional Approach and the Semantic
Paradoxes

There are two main problems with the quotational approach of (2.5): first, if
it is formulated naively it leads to paradox, and second, despite the apparent
naturalness of this approach, I believe that it doesn't do justice to the nature of
the ist relation.

It is natural to use a first-order theory of syntax to formulate the quotational
theory. 6 Expressions are treated as first-order individuals, the language has con-
stants referring to the syntactic primitives of its own language and is able to
express the concatenation function over expressions. In such a language we get
a name nr for each formula r of/2.

In a theory of this kind, it is possible to display simple, plausible axioms for
ist that are inconsistent. The instances of the following schemes constitute such
a list.

A S l : ist(co, nr for every formula r that is an axiom of FOL.
AS2: list(co, nr ^ ist(co, nr162 ~ ist(co, nr for every formula r and

r
AS3: is t (co,nr --~ r for every formula r

The third axiom scheme is plausible if we imagine that we are axiomatizing
the assertions that hold in the context co. It may be objected that it is unnec-
essary in any natural application of the theory to allow a context to reflect on
itself. But more complex forms of the paradox can be constructed using cycles
in which contexts reflect on each other, and cases such as this can come up in

6 It is also possible to achieve the effects of syntactic reflection--the ability to reason
about the syntactic expressions of ones own language--indirectly. GSdel's arithme-
tization of syntax is an indirect way of achieving this.

Representing and Reasoning with Context 33

very simple applications---e.g., where we are considering two contexts, each of
them capable of modeling the other.

This inconsistency result is due to Richard Montague: see Mon63. It uses
a general form of the syntactic reflection techniques developed by G5del and
appeals to the formalization of the so-called "knower's paradox," which involves
the following sentence:

KP " I don' t know this,

where the word 'this' refers to KP.
It is possible to develop a quotational theory of ist that avoids these para-

doxes by using a solution to the semantic paradoxes such as that of Kri75. But
there is a price to be paid here in terms of the underlying logic. (For instance,
a nonclassical logic is needed for the Boolean connectives.) There is room for
debate as to how high this price is, but I do not find it worth paying in this case,
since I don' t find a quotational theory of ist to be very compelling or useful. For
instance, the first-person pronoun is one of the most thoroughly investigated
context-dependent linguistic forms. At a first approximation, its contextual se-
mantics is very simple; the first-person pronoun refers in the context of an utter-
ance to the agent of that utterance. But the item that is interpreted in this way
is not a simple quoted expression. In English, the first person pronoun has two
quotational realizations, T and 'me'. This variation in the expression's syntactic
form is entirely irrelevant to the meaning.

It seems necessary to infer some abstract level of representation here, at
which there is a single element that receives the appropriate interpretation. Of
course, you could treat this element as an expression in some sort of abstract
language. But, since abstract levels of representation are needed anyway, I prefer
to invoke a level that corresponds directly to a context-dependent meaning, and
to t reat the propositional argument of ist as referring to this. As long as these
abstract representations are not themselves expressions, the semantic paradoxes
are not a problem.

This approach to ist is very similar to the standard treatments of proposi-
tional arguments in modal logic.

4 T h e P r o p o s i t i o n a l A p p r o a c h : I s t a s a M o d a l i t y

On the simplest forms of the propositional approach of (2.6), ist is an indexed
modal operator that does not differ to any great extent from the operators used
to model reasoning about knowledge; see FHMV95 for details. The models for
these modal logics use possible worlds. The propositional argument of ist receives
a set of possible worlds as its semantic interpretation.

This idea provides a useful perspective on many of the existing formalisms
for and applications of context. And, of course, since modal operators have been
thoroughly investigated in the logical literature, this perspective allows us to
bring a great deal of logical work to bear on contexts.

34 Richmond H. Thomason

Just one way of illustrating this point is the following: it is natural to think
of contexts as the epistemic perspectives of various agents. When knowledge
is drawn from different databases, for instance, or from different modules of
a large knowledge base, it is tempting to speak of what the various modules
"know". If we take this metaphor seriously, we can apply modeling techniques
from distributed systems (which in turn originate in epsitemic logic, a branch
of modal logic) to these cases. As Fagin et al. FHMV95 shows in considerable
detail, these modeling techniques are very fruitful.

Suppose that Alice, Bob, Carol and Dan are talking. Alice's husband is named
'Bob'; Carol and Bob know this, Dan doesn't. If Alice says 'Bob and I are going
out to dinner tonight', Carol and Bob are likely to think that Alice and her
husband are going out. Dan will probably think that Alice and the man standing
next to him are going out. The inferences that different hearers will make from
the same utterances depend crucially on the hearer's knowledge; this point is
well made in many of Herbert H. Clark's experimental studies; see, for instance,
CS89. This sort of case provides yet another reason for using epistemic logic to
model context.

Modal operators exhibit formal characteristics of the sort that are wanted
in a general theory of context. For instance, modal operators can provide a way
of adjusting a single agent's reasoning to contextual changes in the accessible
information. The classical modalities like are not the best examples of this.
But consider a modal operator of the form A1,.. . , An, where A1,... ,AnB
means that B follows from whatever assumptions apply in the outer context,
together with the explicitly mentioned auxiliary hypotheses A1,..., An. This
is not a great departure from standard modal logic, and is very close to the
mechanisms that are used for formalizing context.

These commonalities between modal logic and the theory of context have
been exploited in several of the recent theoretical approaches to context. Exam-
ples include

BBM95,NL95,AP97,GN97.
It should perhaps be added that McCarthy himself is opposed to the use of

modal logic, in this and other applications; see, for instance, McC97. I believe
that this is mainly a matter of taste, and I know of no compelling reason to
avoid the use of modal logics in applications such as these.

5 Modal Type Theories

It has proved to be very useful as a methodological and conceptual technique
to use types in applications to programming languages and to natural language
semantics. The types provide a useful way of organizing information, and of
providing a syntactic "sanity check" on formulas. In natural language semantics,
for instance, types were an important part of Richard Montague's approach, 7 and
provided useful and informative constraints on the mapping of natural language

7 See Mon74.

Representing and Reasoning with Context 35

syntactic structures to logical formulas. For arguments in favor of typing in
programming languages, see, for instance, Sch94.

Types are historically important as a way of avoiding the impredicative para-
doxes, but I do not stress this reason for using them because these paradoxes
can be avoided by other means. I do not deny that in natural language, as well
as programming languages, it can be very useful to relax typing constraints or to
dispense with them entirely; for a useful discussion of the issues, with references
to the literature, see Kam95. But I do believe that a typed logic is the natural
starting point, and that we can work comfortably for a long time within the
confines of a type theory.

Together, these considerations provide good motivation for using Intensional
Logic s as a framework for reasoning about context. A further benefit of this
approach is that there will be connections to the large literature in natural
language semantics that makes use of Intensional Logic. 9

Intensional Logic is a version of higher-order logic that contains identity and
typed lambda abstraction as syntactic primitives. The basic types are the type
t of t ru th values, the type e of individuals, and the type w of possible worlds.
Complex types produced by the following rule: if a and T are types then so is
(a, 7), the type of functions from objects of type a to objects of type T. 1~ With
these few resources, a full set of classical connectives can be defined, as well as
the familiar modal operators and quantifiers over all types.

Ordinary modal logic does not t reat modalities as objects, and makes avail-
able only a very limited variety of modatities. In Intensional Logic, modalities
can be regarded as sets of propositions, where propositions are sets of possible
worlds. Intensional Logic does not distinguish between a set and its character-
istic function; so the type of a modali ty is ((w, t), t>. It is reasonable to require
modalities to be closed under necessary consequence. So the official definition o
a modali ty in Intensional Logic would be this:

(5.1) VX((w,t),t >MOdality(x) +-~
^ x(z)

In Intensional Logic, modalities are first-class objects: they are values of variables
of type ((w, t), t). And the apparatus of Intensional Logic permits very general
resources for defining various modalities.

This approach captures some of the important constructs of the AI formal-
izations of context. In particular, ist is a relation between an object of type
((w,t},t) (a context) and one of type (w,t) (a proposition or set of possible
worlds), so it will have type

(5.2) <<(w,t>,t>, <(w,t>,t>>.

s See Mon74 and Gal75.
9 See PH96.

10 Montague formulated the types in a slightly different way, but Gallin showed that
this formulation is equivalent to the simpler one I sketch here.

36 Richmond H. Thomason

And we can define it as follows.

(5.3) ist =)~c((w,t),t))~P(w,t)c(p).

This definition makes i s t (c ,p) equivalent to c(p). Here the second argument to
ist does not refer to a formula; it refers to a set of possible worlds.

The fact tha t higher-order logic is not axiomitizable may induce doubts about
its computational usefulness. But the unaxiomatizability of higher-order logic
has not prevented it from being used successfully as a framework for understand-
ing a domain. Using a logic of this sort in this way means that implementations
may fail to perfectly reflect the logical framework. But often enough, this is true
even when the framework is axiomatizable or even decidable. And we can always
hope to find tractable special cases.

6 B e y o n d M o d a l i t y : T h e N e e d f o r a T h e o r y o f C h a r a c t e r

A purely modal approach to the theory of context is inadequate in one major
respect. The logic of modality is a way of accounting for how variations in the
facts can affect the semantic behavior of expressions with a fixed meaning. A
sentence like:

(6.1) 'The number of planets might be greater than 9'

can be represented as true because there is a possible world in which there are
more than 9 planets. But a sentence like

(6.2) '8 might be greater than 9'

can't , and shouldn't, be represented as true by presenting a possible world in
which '8 is greater than 9' means that 8 is less than 9. There is no such possible
world, even though it is possible that 'less' might mean what 'greater ' in fact
means.

In using possible worlds semantics to interpret an expression ~, we work not
with ~, but with a fixed, disambiguated meaning of ~. It is relative to such a
meaning that we associate a semantic interpretation to ~. (If ~ is a sentence, the
interpretation will be a set of possible worlds, i.e. it will have type (w, t). Other
sorts of expressions will have interpretations of appropriate type.)

However, many of the desired applications of the theory of context inVolve
cases in which the meaning of an ambiguous expression is resolved in different
ways, cases in which the meanings are allowed to vary as well as the facts. An
important application of context in the CYC project, for instance, involves cases
in which expressions receive different interpretations in different "microtheories" ;
see Guh91 for examples. In applications of context to knowledge integration, it
is of course important that different data bases have different views of the same
facts; but it is equally important that they use expressions in different ways.
MB95 works out the details of a case in which 'price' takes on different meanings

Representing and Reasoning with Context 37

in different data bases, and these differences have to be reconciled in order to
formalize transactions between these data bases. And some applications of the
theory of context are directly concerned with the phenomenon of ambiguity; see
Buv96.

In order to accommodate applications such as these, we need to generalize
the framework of modal type theory.

7 C o n t e x t i a l I n t e n s i o n a l L o g i c

Kap78 provides a good starting point for developing a generalization of Inten-
sional Logic that is able to deal with contexts. Kaplan treats contexts as indices
that fix the meanings of context-dependent terms, and concentrates on a lan-
guage in which there are only three such terms: 'I', 'here', and 'now'. In this
case, a context can be identified with a triple consisting of a person, a place, and
a time. The truth-value of a context-dependent sentence, e.g. the truth-value of

(7.1) 'I was born in 1732',

will depend on both a context and a possible world, and the interpretation will
proceed in two stages. First, a context assigns an intensional value to (7.1); this
value will be a set of possible worlds. In case the context assigns 'I' the value
George Washington, then (7.1) will be the set of possible worlds in which George
Washington was born in 1732. Kaplan introduces some useful terminology for
discussing this two-stage interpretation. The set of possible worlds is the content
of an interpreted sentence. In general, we can expect contents to be functions
from possible worlds to appropriate values; in the case of a sentence, the function
will take a possible world to a t ru th value. We can now look at the context-
dependent meaning of an expression, or its character, as a function from contexts
to contents. The character of (7.1), for instance, will be a function taking each
context into the set of possible worlds in which the speaker of that context
was born in 1732. In these applications, contexts are to be regarded as fact-
independent abstractions that serve merely to fix the content of expressions.
When an utterance is made, it is of course a fact about the world who the
speaker is; but in order to separate the role of context and possible world in
fixing a t ru th value, we need to treat the speaker of the context independently
from these facts.

To formalize these ideas in the type-theoretic framework, we add to the three
basic types of Intensional Logic a fourth basic type: the type i of c-indices. The
c-indices affect contextual variations of meaning by determining the characters
of expressions.

For instance, suppose that we wish to formalize the contextual variation of
the term ACCOUNT across two corporate data bases; in one data base, ACCOUNT
refers to active customer accounts, in the other, it refers to active and inactive
customer accounts. We create two c-indices il and i2. Let /1 be the intension

38 Richmond H. Thomason

that we want the predicate to receive in il a n d / 2 be the intension in i2; these
intensions will have type (w, (e, t)/.11

The type-theoretic apparatus provides a type of functions from c-indices to
intensions of type (w, (e, t)); this will be the type of characters of one-place pred-
icates, such as ACCOUNT. We represent the behavior of the predicate ACCOUNT
by choosing such a function F, where F(i l) -- 11 and F(il) = / 2 . The interpre-
tation of the language then assigns the character F to the predicate ACCOUNT.
The following paragraphs generalize this idea.

Suppose that the content type of a lexical item ~ is (w, ~'/. (The content type
of ACCOUNT, for instance, will be (e, t/.) Then the character type of ~ will be
(i, (w, ~-/). An interpretation of the language will assign an appropriate character
(i.e., something of type (i, (w, T))) to each lexical item with content type (w, ~-).
This is my proposal about how to deal with the content-changing aspect of
contexts.

To capture the insight of the modal approach to context, that contexts also
affect the local axioms, or the information that is accessible, we assume that an
interpretation also selects a function Info from contexts to modalities. That is,
Info has type (i, ((w, t/, t)/. In the current formalization, with a basic type for
contexts, the type of ist will simply be (i, ((i, (w, t)), tl}; ist inputs a context and
a propositional character, and outputs a truth-value. We want ist(e, p) to tell us
whether the proposition assigned to p in c follows from the information available
in c. The general and revised definition of ist, then, is as follows.

(7.2) ist = AciAp(i,(w,t))Info(c)(p(c))

8 C o n c l u s i o n s

This paper has been primarily concerned with the motivation and formulation
of a type-theoretic approach to context that generalizes the uses of intensional
type theories in natural language semantics, and that is capable of dealing with
all (or almost all) of the applications that have been envisaged for the theory of
context in the recent AI literature.

The presentation here is in some ways a sketch. The underlying logic itself
is a very straightforward generalization of logics that have been thoroughly in-
vestigated (see, for instance, Ga175), and the logical work that needs to be
done here is a matter of showing how to use the apparatus to develop appropri-
ate formalizations of some reasonably complex examples. I plan to include such
formalizations in future versions of this work.

There are several dimensions in which the logical framework that I have
presented needs to be generalized in order to obtain adequate coverage:

(8.1) The logic needs to be made partial, to account for expressions
which simply lack a value in some contexts.

11 This type corresponds to a function that takes a possible world into a set of individ-
uals.

Representing and Reasoning with Context 39

(8.2) The logic needs dynamic operators of the sort described in Mc-
Carthy's papers; e.g., an operator which chooses a context and enters
it.

(8.3) To account for default lifting rules, we need a nonmonotonic logic
of context.

Since we have a general sense of what is involved in making a total logic
partial, in making a static logic dynamic, and in making a monotonic logic
nonmonotonic, I have adopted the strategy of first formulating an appropriate
base logic to which these extensions can be made. Briefly, for (8.1) there are
a number of approaches partial logics; see Mus96 for an extended study of
how to modify Intensional Logic using one of these approaches. For (8.2), I
favor an approach along the lines of GS91; essentially this involves relativizing
satisfaction not to just one context, but to a pair of contexts, an input context
and an output context. For (8.3), it is relatively straightforward to add a theory
of circumscription to Intensional Logic, and to the extension that I have proposed
here. (Circumscription is usually formulated in second-order extensional logic,
but the generalization to intensional logic of arbi trary order is straightforward.)

None of these logical developments is entirely trivial, and in fact there is
material here for many years of work. I hope to report on developments in these
directions in future work.

References

AP97

BBM95

BF95

BI97

Buv96

Chu511

Gianni Amati and Fiora Pirri. Contexts as relative definitions: A formal-
ization via fixed points. In Sasa Buva~ and Lucia Iwarlska, editors, Working
Papers of the A A A I Fall Symposium on Context in Knowledge Represen-
tation and Natural Language, pages 7-14, Menlo Park, California, 1997.
American Association for Artificial Intelligence, American Association for
Artificial Intelligence.
Saga Buva~, Vanja Buva~, and Ian Mason. Metamathematics of con-
texts. Fundamenta Mathematicae, 23(3), 1995. Available from http://www-
formal.st anford.edu/buvac.
Saga Buva~ and Richard Fikes. A declarative formalization of knowledge
translation. In Proceedings of the ACM CIKM: the Fourth International
Conference in Information and Knowledge Management, 1995. Available
from http://www-formal.stanford.edu/buvac.
Sasa Buva~ and Lucia Iwmiska, editors. Working Papers of the AAAI Fall
Symposium on Context in Knowledge Representation and Natural Language.
American Association for Artificial Intelligence, Menlo Park, California,
1997.
Saga Buva~. Resolving lexical ambiguity using a formal theory of context.
In Kees van Deemter and Stanley Peters, editors, Semantic Ambiguity and
Underspecification, pages 100-124. Cambridge University Press, Cambridge,
England, 1996.
Alonzo Church. The need for abstract entities in semantic analysis. Pro-
ceedings of the American Academy of Arts and Sciences, 80:100-112, 1951.

40 Richmond H. Thomason

Cru95

CS89

FHMV95

Gal75

GN97

GS91

Guh91

Kam95

Kap78

Kri75

MB95

McC86

McC93

McC97

Mon63

Mon74

Mus96

NL95

D.A. Cruse. Polysemy and related phenomena from a cognitive linguistic
viewpoint. In Patrick Saint-Dizier and Evelyne Viegas, editors, Computa-
tional Lexical Semantics, pages 33-49. Cambridge University Press, Cam-
bridge, England, 1995.
Herbert H. Clark and Michael Schober. Understanding by addressees and
overhearers. Cognitive Psychology, 24:259-294, 1989.
Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. The MIT Press, Cambridge, Massachusetts,
1995.
Daniel Gallin. Intensional and Higher-Order Logic. North-Holland Publish-
ing Company, Amsterdam, 1975.
Dov Gabbay and Roll T. Nossum. Structured contexts with fibred seman-
tics. In Sasa Buva~ and Lucia Iwafiska, editors, Working Papers of the A A A I
Fall Symposium on Context in Knowledge Representation and Natural Lan-
guage, pages 48-57, Menlo Park, California, 1997. American Association for
Artificial Intelligence, American Association for Artificial Intelligence.
Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguis-
tics and Philosophy, 14:39-100, 1991.
Ramanathan V. Guha. Contexts: a formalization and some applications.
Technical Report STAN-CS-91-1399, Stanford Computer Science Depart-
ment, Stanford, California, 1991.
Fairouz Kamareddine. Are types needed for natural language? In L~sz16
P61os and Michael Masuch, editors, Applied Logic: How, What, and Why?
Logical Approaches to Natural Language, pages 79-120. Kluwer Academic
Publishers, Dordrecht, 1995.
David Kaplan. On the logic of demonstratives. Journal of Philosophical
Logic, 8:81-98, 1978.
Saul Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690-
715, 1975.
John McCarthy and Sa~a Buva~. Formalizing context (expanded notes).
Available from http://www-formal.stanford.edu/buvac., 1995.
John McCarthy. Notes on formalizing contexts. In Tom Kehler and Stan
Rosenschein, editors, Proceedings of the Fifth National Conference on Ar-
tificial Intelligence, pages 555-560, Los Altos, California, 1986. American
Association for Artificial Intelligence, Morgan Kaufmann.
John McCarthy. Notes on formalizing context. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, pages 81-
98, Los Altos, California, 1993. Morgan Kauflnann.
John McCarthy. Modality si! Modal logic, no! Studia Logica, 59(1):29-32,
1997.
Richard Montague. Syntactical treatments of modality, with corollaries on
reflection principles and finite axiomatizability. Acta Philosophica Fennica,
16:153-167, 1963.
Richard Montague. Formal Philosophy: Selected Papers of Richard Mon-
tague. Yale University Press, New Haven, CT, 1974.
Reinhard Muskens. Meaning and Partiality. Cambridge University Press,
Cambridge, England, 1996.
P. Pandurang Nayak and Alan Levy. A semantic theory of abstractions.
In Chris Mellish, editor, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 196-203, San Francisco, 1995.
Morgan Kaufmann.

Representing and Reasoning with Context 41

PB97

PH96

Qui53

Qui56

Sch94

WH90

You97

James Pustejovsky and Brian Boguraev, editors. Lexical Semantics: The
Problem of Polysemy. Oxford University Press, Oxford, 1997.
Barbara H. Partee and Herman L.W. Hendriks. Montague grammar. In
Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and
Language, pages 5-91. Elsevier Science Publishers, Amsterdam, 1996.
Willard V. Quine. Three grades of modal involvement. In Proceedings of the
Xlth International Congress of Philosophy, Volume 14, pages 65-81, 1953.
Willard V. Quine. Quantifiers and propositional attitudes. The Journal of
Philosophy, 53:177-187, 1956.
David A. Schmidt. The Structure of Typed Programming Languages. The
MIT Press, Cambridge, Massachusetts, 1994.
D. Wright and P. Hull. How people give verbal instructions. Journal of
Applied Cognitive Psychology, 4:153-174, 1990.
R. Michael Young. Generating Concise Descriptions of Complex Activities.
Ph.d. dissertation, Intelligent Systems Program, University of Pittsburgh,
Pittsburgh, Pennsylvania, 1997.

From Integrated Reasoning Specialists to
"Plug-and-Play" Reasoning Components *

Alessandro Armando and Silvio Ranise

DIST - Universit~ di Genova
Via all'Opera Pia 13 - 16145 Genova - Italy

a r m a n d o , silvio~mrg, dist. unige, it

Abstrac t . There is an increasing evidence that a new generation of
reasoning systems will be obtained via the integration of different rea-
soning paradigms. In the verification arena, several proposals have been
advanced on the integration of theorem proving with model checking.
At the same time, the advantages of integrating symbolic computation
with deductive capabilities has been recognized and several proposals to
this end have been put forward. We propose a methodology for turn-
ing reasoning specialists integrated in state-of-the-art reasoning systems
into reusable and implementation independent reasoning components to
be used in a "plug-and-play" fashion. To test our ideas we have used
the Boyer and Moore's linear arithmetic procedure as a case study. We
report experimental results which confirm the viability of the approach.

K e y w o r d s : integration of decision procedures, integration of deduction
and symbolic computation, automated theorem proving.

1 I n t r o d u c t i o n

There is an increasing evidence that a new generation of reasoning systems will
be obtained via the integration of different reasoning paradigms. In the verifica-
tion arena, several proposals have been advanced on the integration of theorem
proving with model checking. At the same time, the advantages of integrating
symbolic computation with deductive capabilities have been recognized and sev-
eral proposals to this end have been put forward.

As pointed out in 3, the approaches to integrating reasoning systems can
be classified in homogeneous integration and heterogeneous integration. Homoge-
neous integration amounts to embedding new reasoning paradigms i~to existing
reasoning systems. Examples of such an approach are the integration of deductive

* We wish to thank Fausto Giunchiglia for very helpful discussions. We are also grateful
to Alan Bundy and Alessandro Coglio for comments on an early draft of this paper.
The authors are supported in part by Conferenza dei Rettori delle Universit5 Italiane
(CRUI) in collaboration with Deutscher Akademischer Austaunschdienst (DAAD)
under the Vigoni Programme.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 42-54, 1998.
Q Springer-Verlag Berlin Heidelberg 1998

From Integrated Reasoning Specialists 43

capabilities into computer algebra systems as discussed, e.g., in 6,7, or the inte-
gration of model checking capabilities into deductive systems as advanced, e.g.,
in 12,11. Heterogeneous integration aims at building hybrid reasoning systems
by combining the reasoning services provided by existing tools. For example,
9 illustrates the combination of interactive proof-development systems with
computer algebra systems; 3 describes a generic interface to computer algebra
systems for the Isabelle prover.

Both approaches to integration have advantages and difficulties. Homoge-
neous integration requires the effort of implementing a reasoning technique from
scratch, but it allows for a higher degree of flexibility as the new reasoning tech-
nique can be tailored to the needs of the host system. However--as experienced
by Boyer and Moore 5J--turning a reasoning technique into an integrated rea-
soning specialist can be a challenge. Moreover both the efficiency and the range of
functionalities provided by state-of-the-art implementations are very difficult to
achieve and maintain. Etherogeneous integration--aiming at using services pro-
vided by existing tools--is apparently easier to achieve. However, even if state-of-
the-art reasoning systems are built out of a set of carefully engineered reasoning
specialists (e.g. simplifiers, constraint solvers, decision procedures, model check-
ers), they are in most cases conceived and built as stand-alone systems to be
used by human users. As a consequence direct access to the services provided by
reasoning specialists is rarely made available. This is particularly unfortunate
as existing reasoning systems represent a real cornucopia of powerful reasoning
specialists.

Our interest is in turning reasoning specialists integrated in state-of-the-art
reasoning systems into reusable and implementation independent reasoning com-
ponents thereby lessening the difficulties in attaining heterogeneous integration.
To this end we propose a two-step methodology which amounts to (i) modeling
(part of) an existing reasoning system as a set of reasoning specialists glued to-
gether by means of an integration schema, and (ii) lifting the selected reasoning
specialists and the integration schema identified in the first step into a set of
reasoning components and an interaction schema, respectively. Similarly to 8
by reasoning components we mean open architectures capable of exchanging a
carefully selected set of logical services 13. By interaction schema we mean a
communication protocol governing the interplay among the reasoning compo-
nents. To test our ideas we have used the Boyer and Moore's linear procedure
as a case study. We have chosen this case study because of its significance (the
Boyer and Moore's approach to integrating decision procedures is notoriously
complex, and a better understanding of how it works is by itself of considerable
interest) and because it constitutes one of the most challenging case studies we
could think of.

Structure of the paper. Sections 2 and 3 illustrate the two steps of our methodol-
ogy. The methodology is discussed by showing its application to our case study.
Section 4 presents and discusses the experimental results. Some final remarks
are drawn in Section 5.

44 Alessandro Armando and Silvio Ranise

Simplify

Rewrite

Push-terms

Linearize

Augment

~" Extract-eqs"

Fig. 1. The reasoning specialists and the integration scheme

2 T h e R e a s o n i n g S p e c i a l i s t s a n d t h e I n t e g r a t i o n S c h e m a

The first step of our methodology amounts to opening up a given reasoning
system, to identifying the relevant reasoning specialists, the data-flow and the
shared data structures between them, and finally to identifying an integration
schema. In our case study this required the careful analysis of both the 40 page-
long report 5 and the actual implementation code.

As a result, we came up with the rational reconstruction of the Boyer and
Moore's integration schema abstractly depicted in Figure 1. Square boxes and
black arrows represent the most significant reasoning specialists and their func-
tional dependences respectively. Round boxes denote shared data structured,
namely the data base of polynomials (DB) and the data base of the linear rules
(LRs). Gray thick edges represent the access to the shared data structures.

The reasoning specialists. Simplify takes a clause as input and returns a set
of supposedly simpler clauses as output. (A clause is an implicitly disjoint set of
literals.) Simplify works by successively rewriting each literal of the input clause
while assuming the complements of the remaining literals.

Rewrite exhaustively applies a set of conditional rewrite rules of the form:

n Ai=l hi --~ (lhs = rhs)

to the input term. A conditional rewrite rule causes Rewrite to replace all the
instances of lhs by the corresponding instance of rhs provided each of the in-
stantiated hi can be proved by a recursive call to Rewrite.

The linear arithmetic procedure incrementally maintains an implicitly con-
joint set of 'normalized polynomial inequalities' (from here on 'polynomials')
in the data base of polynomials (DB). A polynomial has the following form:

From Integrated Reasoning Specialists 45

n a0 + ~ i=1 ai * ti _< 0, where ai and ti (i = 1 , . . . , n) are integer constants and
terms of the Boyer and Moore's logic respectively. For instance, if MAX and MIN
are two user-defined function symbols, then 1 * gIN(A) + - 1 * MAX(A) _< 0 is a
polynomial. The key idea of the procedure is to eliminate one multiplicand at
a time from the set of polynomials by cross-multiplying coefficients and adding
polynomials so as to cancel out the selected multiplicand in all possible ways.
This activity - which we call a macro Fourier step - is carried out by Push-polys.
If the resulting data base contains an impossible polynomial (that is a polyno-
mial whose constant is greater than 0 and whose coefficients are all greater than
or equal to 0, such as 2 < 0), then the linear arithmetics procedure concludes
tha t the set of inequalities represented by the data base is unsatisfiable. The
logic decided by the procedure is the quantifier-free linear arithmetics over the
rationals where <, +, - , and * denote the 'less-than or equal' relation, addition,
subtraction, and multiplication by an integer constant, respectively.

The axiomatization of Peano theory in the Boyer and Moore's logic and the
choice of the rational based decision procedure for linear inequalities made nec-
essary the introduction of a linearization routine (Linearize) to map the validity
problem over the naturals into a satisfiability problem over the rationals. (For
our purposes it suffices to know that the language of NQTHM logic contains
the equality symbol (=), the Peano 'less-than' and 'less-than or equal' relations
(-~ and ~, resp.), the numerals 0, 1, 2, . . . , and the Peano addition (O) and
subtraction (O) functions.) The linearization of an inequality is a set of poly-
nomials each one equipped with a set of 'linearization hypotheses' stored in the
hyps field. 1 Given a set of literals as input, Push-terms first invokes Linearize
to translate (the negation of) the input literals into a set of polynomials which
are then added to DB by Push-polys. If adding the polynomials to DB yields
an impossible polynomial, then Push-terms concludes that the literal given as
input is true.

The heuristic component stores previously proven lemmas into a data base
of linear rules (LRs). A linear rule can have one of the following two forms:

Ain=l hi -~ (lhs -~ rhs) Ain=l hi --* (lhs ~_ rhs)

The Augment routine looks for heuristically chosen instances of the linear rules
which might contribute to the derivation of an impossible polynomial in DB.
Notice that Augment may invoke Rewrite while at tempting to relieve the hy-
potheses of linear rules, i.e. hi , . . �9 hn. To see why new polynomials are needed,
consider the data base DB0 = { I * L + - I * M I N (A) < 0 , 1 + - 1 . K <
0 , - 1 * L + 1 * K + 1 * MAX(A) _< 0},2 where MIN (MAX) is the user-defined function
returning the minimum (maximum, resp.) element of a list of numbers. After two
macro Fourier steps, we get DB1 = DB0 t2 {1 �9 K + - 1 �9 MIN(A) + 1 �9 MAX(A) _<
0, 1 + --1 �9 MIN(A) + 1 * MAX(A) < 0}. At this stage, no further macro Fourier

1 For the lack of space we omit the explanation of the meaning and role of the lin-
earization hypotheses. See 5 for the details.

2 DBo is the polynomial data base obtained by clausifying and linearizing the formula,
(L _ MIN(A) A 0 -~ K) --* (L -~ ICCX(A) �9 K).

46 Alessandro Armando and Silvio Ranise

step can be performed according to our heuristic criterion. This is because the
unsatisfiability of DB0 is not a consequence of linear arithmetic reasoning only.
However, if MIN(X) -~ MAX(X) is an available lemma, then it can be instan-
t iated to MIN(A) __ MAX(A). By adding the corresponding linearization, i.e.
1 * MIN(A) + - 1 * MAX(A) < 0, to DB1, a macro Fourier step yields the im-
possible polynomial 1 < 0.

Finally, Extract-eqs detects and returns equalities entailed by DB. For ex-
ample, if the data base contains the polynomials 1 * X + - 1 * Y < 0 and
- 1 �9 X + 1 * Y < 0, then it can be easily seen that X -- Y is entailed by
the data base.

The integrat ion schema. A more detailed account of the Boyer and Moore's
integration schema (w.r.t. Figure 1) is given in Figure 2.

As the work needed to build the polynomial data bases for adjacent literals
in a clause is very similar (linearize the negation of the inequalities contained
in the clause but the one being rewritten, perform all possible cross-multiply
and adds, and augment), Simplify sets up a single data base for the clause. If
such a data base contains an impossible polynomial the input clause is trivially
true and Simplify returns this fact. If an impossible polynomial has not been
derived, then Extract-eqs is invoked and the equalities extracted from DB are
added to the clause. Rewrite is then asked to rewrite each literal in turn. But
when rewriting lit we must pay attention not to use the polynomials (and their
derivatives) encoding the falsity of lit; otherwise we could rewrite lit to false. To
overcome the difficulty, the data structure representing a polynomial is enriched
with a field (called fits field) containing the literals from which it derives; the
cross-multiply and add routine is then instructed to ignore those polynomials
having any literal previously rewritten to false in the lits field as well as the
literal being rewritten. To this end, Simplify keeps track of the literals rewritten
to false.

When Rewrite is asked to establish a linear inequality, lit, it applies a first
set of rewrites to lit (collectively called Rewrite1 in Figure 2). If this rewriting
leaves lit untouched then the linear arithmetic procedure is invoked by pushing
the negation of lit onto the data base. If the resulting data base DB p contains an
impossible polynomial, then Rewrite is entitled to rewrite lit to true; otherwise
a second set of rewrites is applied to lit (called Rewrite2 in Figure 2). Each time
a polynomial is pushed into DB and a contradiction is not found, then the linear
arithmetic procedure asks Augment for additional linear facts. As Augment may
invoke Rewrite when relieving the hypotheses of a linear rule, the rewriting and
the augmentation procedures are mutually recursive. It is worth noticing that
each literal in the clause is rewritten in the context of the initially set up data
base DB, i.e. the temporary data bases created while rewriting the previous
literal are discarded before the rewriting of the next literal begins.

From Integrated Reasoning Specialists 47

F u n c t i o n Simplify(cl)
Begin
DB ~- Push-terms(cl, DB);
if DB contains an impossible polynomial t h e n r e t u r n true;
cl ~- d U Extract-eqs(DB);
cl ~ ~- cl;
while d' ~ {} do

Begin
lit *-- first(c/I); c/~ ~- rest(c/~);
lit' ~-- Rewrite(lit, DB);
Replace lit with lit' in cl;

E n d
r e t u r n c/;

E n d

F u n c t i o n Rewrite(lit, DB)
Begin
lit' ~- Rewritel(lit); / * First phase o rewriting */
if lit I ~ lit t h e n r e t u r n litl ;
DB' ~- Push-terms({lit}, DB); //* Invoking the LA specialist *//
if DB ~ contains an impossible polynomial t h e n r e t u r n true;
lit' ~-- Rewrite2(lit); / * Second phase of rewriting */
r e t u r n lit;

E n d

F u n c t i o n Push-terms(terms, DB)
Begin
polys +-- {};
fo reach t e rm in t erms do polys ~-- polys U Linearize(-~term);
r e t u r n Push-polys(polys, DB);

E n d

F u n c t i o n Push-polys(polys, DB)
Begin
fo reach poly in polys do
Begin

DB ~-- Cross-multiply-and-add(poly, DB);
if DB contains an impossible polynomial t h e n r e t u r n DB;

E n d
DB ~- Push-polys(Augment(DB, LRs), DB);
r e t u r n DB;

E n d

F u n c t i o n Augment(DB, LRs)
Begin
polys ~- {};
fo reach new multiplicand m in DB do

fo reach linear rule 'hyps --* It' in LRs do
if m occurs in Ir a n d Rewrite(hyps, DB) = true

t h e n polys ~-- polys U Linearize(lr);
r e t u r n polys;

E n d

F i g . 2. The integrat ion schema

48 Alessandro Armando and Silvio Ranise

S I M P

Simplify

Rewrite

S I M P L I F I E R

Push-tern~

Linearize

Augn~ent

INTERFACE

S: Evtract-eqs
L R: mated-terms

' ,i?:? S: Augmen

I-- R: polys

LA

_ I
-I

Extract-eqs
I

l Push-polys

Fig. 3. The reasoning components and the interaction schema

3 The Reasoning Components and Interaction Schema

We now describe the application of the second step of our methodology. In our
case study this amounted to scrutinizing the data-flows between the reasoning
specialists introduced in Section 2. Data-flows which are too intensive (both
in the rate and in the amount of information exchanged) must be avoided as
they would compromise the efficiency of the combined system. Fhrthermore, as
we do not allow the sharing of data structures between distinguished reasoning
components, the information needed by components which have no longer direct
access to a previously shared data structure must be explicitly passed. Also, if
the behavior of a reasoning component depend on its internal state, then suitable
primitives for managing the state must be identified.

By applying the above analysis to our case s tudy we ended up with the
interaction scheme of Figure 3. LA and SIMP are the labels for the linear arith-
metic reasoning component and the simplifier respectively. The edges crossing
the boundary between the two components have been labeled with service re-
quests (S:msg) and service replies (R:msg).

The reasoning components. When Simplify wants the equalities entailed by
DB, it asks the service request S:Extract-eqs to the LA and gets back a reply
of the form R:mated-terms. Push-terms can ask either for Push-polys(polys,flits)
(where polys is a list of polynomials and flits is the list of the literals previously
rewritten to false), or for Protect which amounts to asking LA to save the current
content of DB for later use. (LA is also equipped with an internal functionality,
Restore, which allows for the backtracking to a previously saved copy of DB.)
A reply R:Sat means that no contradiction has been found in DB, whereas
a reply R:Unsat(imp-poly) means that the impossible polynomial imp-poly has
been derived. Augmentation is invoked by means of S:Augment(key-mults) where

From Integrated Reasoning SpeciMists 49

la2s?Augment

s2la!Reset, Push-polys

f

I \ I s21a.tProtect, \

s2la!Quit-LA

la2s?Sat Unsat

s2la!Push-polys

la2s?Augment

Fig. 4. State transition diagram for SIMP

key-mults are (heuristically chosen) multiplicands occurring in DB. key-mults
encode all the information of DB needed by Augment which therefore no longer
needs to directly access DB. R:polys are the polynomials sent back by Augment.

The interaction schema. Figure 3 provides only an abstract account of the
interaction schema between LA and SIMP as it simply specifies the correspon-
dence between the logical services required and those provided by the reasoning
components. This level of abstraction is unsatisfactory for many purposes as
it leaves unspecified necessary constraints of the sequencing of events. (For in-
stance, a Restore must follow a Protect, but this in not specified by Figure 3).
Therefore we complete the description of the interaction scheme by describing
a suitable communication protocol. This amounts to specifying the vocabulary
and the format of the messages exchanged, as well as the procedure rules of the
protocol 10.

The procedure rules are formalized by the state transition diagrams in Fig-
ure 4 and Figure 5, both the vocabulary and the format of the messages can
be easily inferred from the labels used in the diagrams and the following de-
scription. The labels associated to the edges denote the actions performed when
the corresponding transitions take place, s21a and la2s are channels over which
the messages are exchanged. If ch is a channel, and exp is an expression, then
chlexp denotes the action of sending exp to eh, that is, it appends exp to the
tail of ch; eh?exp denotes the action of retrieving a message from the head of
ch provided that it matches with exp. If multiple expressions are transferred
per message, they are specified in a comma-separated list: ch!expl,... , expn and
ch?expl,..., expn. An edge labeled with ch!expllexp2 stands for two alternative
edges labeled with chlexpl and ch!exp2. Statements are separated by semicolons:
if sl and s2 are statements, then Sl; s2 is a statement whose execution amounts
to the execution of Sl followed by the execution of s2.

50 Alessandro Armando and Silvio Ranise

la2sl~ted-t~ s21a?Ext~t-~s
s 2 1 a ? R ~ e t . P f ~ h ~ s21a~QuJt-LA

sgla ~Prot~t,P~h-poly$

Fig. 5. State transition diagram for LA

We now informally describe how the protocol specified by the state transition
diagrams of Figures 4 and 5 reproduce the functionality of Simplify given in
Figure 2. The protocol starts with SIMP issuing a message of the form Reset
followed by a Push-polys(polys) to LA. 3 Upon receipt of such messages LA resets
DB and then pushes polys onto DB. If no contradiction is detected and some
new multiplicands have been introduced into DB, then LA asks SIMP for new
polynomials by means of a message of the form Augment(key-mults). Notice
that an arbitrarily long iteration of Push-polys and Augment may occur. (This
is also the case in Simplify due to the mutually recursive calls of the functions
Push-terms, via Push-polys, and Augment.) As soon as an impossible polynomial
imp-poly is derived in DB, a message of the form Unsat(imp-poly) is sent by LA
back to SIMP. If the result of pushing new polynomials does not introduces new
multiplicands in DB, then the (supposed) satisfiability of DB is notified to SIMP.

At this point, SIMP asks for and gets backs a (possibly empty) set of equalities
entailed by DB. The rest of the execution corresponds to the service calls and
replies produced during rewriting and everything proceeds similarly to the set
up phase. The only difference is that SIMP explicitly asks LA to save the original
content of DB (Protect) which is later automatically restored by LA (Restore).
Finally, SIMP issues a message of the form Quit-LA in order to s tar t simplifying
a new clause. Indeed, upon recepit of such a message LA sets DB to the empty
data base.

4 E x p e r i m e n t a l R e s u l t s

We have extracted the linear arithmetic procedure from the 1992 version of
NQTHM, turned it into an independent reasoning component (LA) and made
it interact with the rest of the prover (NQTHM) via the protocol presented in

3 For simplicity, in Figures 4 and 5 we have omitted the arguments of the service
requests.

From Integrated Reasoning Specialists 51

NOTHM+LA
N a m e calls into time

EXPT 19 45 0.7
ZEXPTZ 19 45 0.8
LEX 53 53 2.8
ALMOST-EOUAL1 19 47 0.9
PLUS-0 19 34 0.6
PLUS-NON-NUMBERP 35 38 1.4
PLUS-ADD1 21 48 1.2
COMMUTATIVITY2-0F-PLUS 3 34 0.1
C0MMUTATIVITY-0F-PLUS 3 28 0.1
ASSOCIATIVITY-0F-PLUS 3 34 0.2
TIMES-0 25 36 0.7
TIMES-NON-NUMBERP 25 31 0.7
DISTRIBUTIVITY 25 71 2.8
TIMES-ADD1 89 119 16.8
COMMUTATIVITY2-0F-TIMES 25 64 2.7
COMMUTATIVITY-0F-TIMES 49 84 7.1
ASSOCIATIVITY-0F-TIMES 9 53 0.8
EQUAL-TIMES-0 71 55 6.0
EOUAL-LESSP 9 15 0.i

NQTHM(LA)
time
0.0
0.0
0.3
0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.1
0.1
0.2
0.1
0.3
0.1
0.3
0.0

Legenda. Timings are averaged over five runs on a workstation SUN
SPARC10 with 32 MB of RAM. Both NOTHM and LA were compiled
using GNU Common Lisp 1.0.

T a b l e 1. Experimental results

Section 3. The two reasoning components have been implemented as two distinct
processes interacting via a socket interface. In the sequel we use NOTHM(LA) and
NQTHM+LA to refer to the implementations of the original and of the combined
system respectively.

Clearly NOTHM+LA outperforms NQTHM (LA) in terms of flexibility and reusabil-
ity. In fact, it is straightforward to replace LA with a new version of the reasoning
component (perhaps implemented in a different implementat ion language), say
LA', and obtain an upgraded reasoning system, say NQTHM+LA'. It is also rela-
tively easy to plug LA into a different reasoning system. Of course there is a price
to pay for the flexibility offered by the combined system. Indeed a performance
degradation is to be expected as a consequence of the fact tha t function calls
have been replaced with calls to an external process.

We have carried out an experimental comparison between NQTHM(LA) and
NOTHM+LA to test the practical feasibility of our approach. To this end we have
selected a set of definitions and lemmas from the Boyer and Moore 's corpus
available with the 1992 distribution package of NQTHM. In particular, we focused
on the proof of facts contained in the file f o r t r a n , e v e n t s as they represent the
kind of proofs which mot ivated the integration of the linear ari thmetic procedure
in NQTHM 5.

Table 1 lists the results of our experiments. The first three columns pro-
vide da ta relative to NQTHM+LA: the number of messages exchanged by the two
processes (calls), the ratio between the total amount of information (in bytes)
and the number of messages exchanged (info), and the timings (expressed in

52 Alessandro Armando and Silvio Ranise

seconds: 0.0 indicates that the computation time is less than 0.05 seconds). The
rightmost column contains the timings of NQTHM(LA).

Our experiments show that (with the only exception of TIMES-ADD1) the cur-
rent version of NQTHM+LA is ten times slower than NQTHM. In our view this perfor-
mance degradation is already a fair price to pay for the flexibility and reusability
of the reasoning component. However a careful analysis of the experimental data
reveals that there is room for significant improvements.

The data show that the performance of NQTHM+LA is influenced by two fac-
tors: the number of messages exchanged (calls) and the amount of information
exchanged per message (info). However the latter seems to have a more signif-
icant impact. Evidence to this fact is obtained by comparing the values of the
calls and info fields of TII~ES-&DD1 and EQUAL-TIMES-0. While the nmnber of mes-
sages exchanged is close, the amount of information per message is significantly
larger for TIMES-ADD1 and therefore is the (main) culprit for the bad behavior of
NQTHM+LA. This consideration is confirmed by comparing DISTRIBUTIVITY with
TIMES-NON-NUMBERP, and C0MNUTATIVITY-0F-TIMES with LEX.

An analysis of the content of the messages exchanged by NQTHM and LA dur-
ing the proof of TIMES-ADD1 reveals that the reason of their size is due to the
content of the hyps and fits fields of the polynomials exchanged (see Section 2).
Because of the use LA makes of such fields, it is possible for NQTHH to map distinct
data structures (contained in such fields) into distinct identifiers and send the
latter instead of the lengthy printed representation of the data structures (as
the current implementation does). This allows for a much more compact repre-
sentation of the hyps and fits fields. We expect this to dramatically improve the
performance of info-intensive proofs.

In the light of the previous analysis, it is reasonable to expect that a new
version of the protocol incorporating the optimization hinted above will provide
us with a considerably faster combined reasoning system. Furthermore, we envis-
age that standard optimization techniques borrowed from the field of distributed
computing (e.g. pipelining) can yield a combined reasoning system outperform-
ing its original implementation when run on a multi-processor architecture.

5 Conclusions and Future Work

In this paper we have proposed a methodology for lifting tightly integrated rea-
soning specialists into "plug-and-play" reasoning components. This allows for the
reuse of the sophisticated reasoning functionalities currently embedded in exist-
ing state-of-the-art reasoning systems. We believe this is a first but significant
step toward the ultimate objective of building reasoning systems (or enhancing
existing ones) by combining reasoning components in a "plug-and-play" fashion
as envisaged in 8.

The viability of-the approach is shown by applying the methodology to a
challenge case study: the lifting of the Boyer and Moore's linear arithmetic deci-
sion procedure into a stand-alone reasoning component. Experiments conducted
on a prototype implementation indicate that the resulting loss of performance

From Integrated Reasoning Specialists 53

is a fair price to pay for the gained flexibility and reusability. Optimizations ca-
pable of making the prototype system to compete with (or even to outperform)
the original implementation are discussed.

The work described in this paper is part of a wider project, called Open
Mechanized Reasoning Systems (OMRS) 2,8,14, aiming at the definition of a
specification framework for describing logical services 13. 4 extends the OMRS
framework to deal with the more general notion of mathematical services.

As a final remark it is worth pointing out that our work shares many of the
design goals of the OpenMath project 1. However we regard our contributions as
complementary to OpenMath's. In particular, while OpenMath mainly focuses on
the mathematical information exchanged by reasoning systems and its standard-
ization, following 8 we aim at a broader characterization taking into account
also of the control and of the interaction components of the reasoning systems.

References

1. J. Abbott, A. Dfaz, and R. S. Sutor. A report on OpenMath. A protocol for the
exchange of mathematical information. SIGSAM Bulletin (A CM Special Interest
Group on Symbolic and Algebraic Manipulation), 30(1):21-24, March 1996.

2. A. Armando, P. Bertoli, A. Coglio, F. Giunchiglia, J. Meseguer, S. Ranise, and
C. Talcott. Open Mechanized Reasoning Systems: a Preliminary Report. In Work-
shop on Integration of Deduction Systems (CADE-15), 1998.

3. C. Ballarin, K. Homann, and J. Calmet. Theorems and Algorithms: An Inter-
face between Isabelle and Maple. In International Symposium on Symbolic and
Algebraic Computation. ACM Press, 1995.

4. P.G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and Com-
bination of Theorem Provers and Computer Algebra Systems. In 4th International
Conference Artificial Intelligence And Symbolic Computation, Plattsburgh, NY,
USA, 1998.

5. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theo-
rem Provers: A Case Study of Linear Arithmetic. Mach. Intel., (11):83-124, 1988.

6. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A Survey of the Theorema Project. In International Symposium on Symbolic and
Algebraic Computation, Hawaii, USA, 1997.

7. E. Clarke and X. Zhao. Analytica - a Theorem Prover for Mathematica. Tech.
Rep. CS-92-117, Carnegie Mellon University, 1992.

8. F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an
Architecture for Open Mechanized Reasoning Systems. Tech. Rep. 9409-15, IRST,
1994.
J. Harrison and L. Th@ry. A Sceptic's Approach to Combining HOL and Maple.
To appear in the J. of Automated Reasoning, 1997.
G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1990.
O. Mfiller and T. Nipkow. Combining Model Checking and Deduction for I/O-
automata. In Tools and Algorithms for the Construction and Analysis of Systems,
1995.
S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, Types, and
Model Checking. In Tools and Algorithms for the ConstT~action and Analysis of
Systems, Enschede, The Netherlands, 1997.

9.

10.

11.

12.

54 Alessandro Armando and Silvio Ranise

13. I. Sutherland and R. Platek. A Plea for Logical Infrastructure. In TTCP XTP-1
Workshop on Effective Use of Automated Reasoning Technology in System Devel-
opment, 1992.

14. The OMRS Taskforce. The Open Mechanized Reasoning Systems Project WWW
Page. http: llw~w, mrg. dist. unige, itlomrsl.

Reasoning About Coding Theory: The Benefits
We Get from Computer Algebra

Clemens Ballarin and Lawrence C. Paulson

Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, UK
{Clemens. Ballar• Larry. Paulson}~cl. cam. ac. uk

http://www, cl. cam. ac. u_k/users/{cmb33, icp}

A b s t r a c t . The use of computer algebra is usually considered beneficial
for mechanised reasoning in mathematical domains. We present a case
study, in the application domain of coding theory, that supports this
claim: the mechanised proofs depend on non-trivial algorithms from com-
puter algebra and increase the reasoning power of the theorem prover.
The unsoundness of computer algebra systems is a major problem in in-
terfacing them to theorem provers. Our approach to obtaining a sound
overall system is not blanket distrust but based on the distinction be-
tween algorithms we call sound and ad hoc respectively. This distinction
is blurred in most computer algebra systems. Our experimental interface
therefore uses a computer algebra library. It is based on theorem tem-
plates, which provide formal specifications for the algorithms.
Keywords . Computer algebra, mechanised reasoning, combining sys-
tems, soundness of computer algebra systems, specialisation problem,
coding theory.
AISC topics. Integration of logical reasoning and computer algebra,
automated theorem provers.

1 Motivat ion

Is the use of computer algebra technology beneficial for mechanised reasoning in
and about mathematical domains? Usually it is assumed that it is. Many works in
this area have, however, either only little reasoning content, or the contribution
of symbolic computation is only the simplification of expressions. Exceptions
are Analytica Clarke and Zhao, 1993 and work by Harrison, 1996. Both these
approaches do not scale up. The former trusts the computer algebra system too
much, the latter, too little. Computer algebra systems are not logically sound
reasoning systems, but collections of algorithms.

Apart from the verification of numerical hardware and software, linking mech-
anised reasoning and computer algebra gives insight into the design of logically
more expressive frameworks for computer algebra, has applications in educa-
tional software and is a step towards the development of mathematical assistants.
Among the applications, geometry theorem proving is a prospective candidate.
For a survey on this, see Geddes et al., 1992, section 10.6.

This work presents a case study that requires hard techniques from both
sides. The proofs we mechanise require algorithms from computer algebra in

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 55-66, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

56 Clemens Ballarin and Lawrence C. Paulson

order to be solved effectively. They also rely on the formalisation of natural
numbers, sets and lists, which are available in Isabelle, and make heavy use of
advanced proof procedures.

The outline of this article is as follows. In section 2 we briefly describe the
context of interactive theorem proving and the prover Isabelle. We then present
an analysis of the soundness problems in computer algebra and based on this
describe the design of an interface. The rest of the paper is devoted to our case
study. Section 3 introduces the mathematical background along the lines of its
mechanisation in Isabelle. Section 4 is a brief introduction to coding theory and
section 5 presents the mechanised proofs. Section 6 reviews important details of
the implementation and in section 7 we draw conclusions.

2 Interface B e t w e e n Isabelle and Sumit

The interface we present is between the prover Isabelle and the computer algebra
library Sumit. See Paulson, 1994 and Bronstein, 1996 respectively.

2.1 I s a b e l l e

Isabelle is a natural deduction-style theorem prover. Proofs are carried out inter-
actively by the user by applying tactics to the proof state and so replacing sub-
goals by simpler ones until all the subgoals are proved. Isabelle provides tactics
that perform single inference steps and also highly automated proof procedures,
like the simplifier and a tactic that implements a tableau prover.

Isabelle, like other LCF-style theorem provers, allows the user to program
arbitrary tactics, which can implement specialised proof procedures. The design
of Isabelle ensures that unsoundness cannot be introduced to the system through
these procedures. This is achieved by using an abstract datatype t im for theo-
rems. Theorems can only be generated by operations provided by the datatype.
These operations implement the primitive inference rules of the logic.

Isabelle also provides an oracle mechanism to interface trusted external pro-
vers. An oracle can create a theorem, i.e. an object of type thin, without proving
it through the inference rules. This, of course, weakens the rigour of the LCF-
approach, but theorems proved later on can record on which external theorems
they depend.

We use Isabelle's object logic HOL, which implements Church's theory of
simple types, also known as higher order logic. This is a typed version of the
h-calculus. The logic has the usual connectives (A, V, ~,.. .) and quantifiers
(V, 3). Currying is used for function application. We write f a b instead of f (a, b).
Equality = on the type boo1 is used to express if-and-only-if. For definitions we
use ---, and ~ expresses entailment in a deduction rule. Some definitions require
Hilbert's c-operator, which is actually a quantifier: e x . P x denotes the unique
value for which the predicate P holds. The notation for formulae in this paper
is close to their representation in Isabelle. We have omitted all type information
from formulae to improve their legibility. If type information is necessary, we
give it informally in the context.

Reasoning About Coding Theory 57

2.2 Soundness in Computer Algebra

Computer algebra systems have been designed as tools that perform complicated
algebraic computations. Their soundness or, as some authors might prefer to
say, unsoundness has become a focus, see Harrison, 1996, Homann, 1997 for
examples. A systematic presentation of more examples is Stoutemyer, 1991. We
have identified the following reasons for unsoundness in the design of computer
algebra systems:

- They present a misleadingly uniform interface to collections of algorithms.
An object, which is used with a particular meaning in one algorithm, can be
used with a different meaning in another algorithm. Particularly problematic
are symbols, which are used as formal indeterminates in polynomials and as
variables in expressions. Interfacing to a computer algebra system through
its user interface is therefore problematic.

- They have only limited capabilities for handling side conditions or case splits,
if they exist at all. An example is f x n dx. Computer algebra systems return
Xn~-i
n+l �9 Substituting n = - 1 yields an undefined term, while the solution of

the integral is ln x. This problem is known as specialisation problem, but
hardly ever referred to in the literature, see Corless and Jeffrey, 1997.

- Many of the algorithms that are implemented in computer algebra systems
rest on mathematical theory and their correctness is well established: proofs
for their correctness have been published. Examples for these are factorisa-
tion algorithms for polynomials, Gaussian elimination and Risch's method
for integration in finite terms. The design of other algorithms is less rigorous.

2 1 Simplification rules like (x) 2 = x are cause for some of the reported sound-
ness problems. Corless and Jeffrey, 1996 argue that a satisfactory treat-
ment of these requires extending the underlying mathematical model. In this
case Riemann surfaces are appropriate. We call the former sort of algorithms
sound and the latter ad hoc. See Calmet and Campbell, 1997, section 2 for
a historic perspective on this distinction.

Of course, computer algebra systems also contain implementation errors. De-
pending on how rigorous one wants to be, one can reject any result of a com-
puter algebra system without formal verification in the prover. Considering the
amount of work required to re-implement these algorithms in a theorem prover,
and the poor efficiency one could expect, we decide to live with possible bugs
but look for ways of avoiding the systematic errors.

2.3 D e s i g n o f t h e I n t e r f a c e

The interface obviously needs to translate objects between Isabelle's and the
computer algebra system's representation. The translation cannot be performed
uniformly, but needs to take into account which algorithm the objects are passed
to or returned from. As we can only use a selection of algorithms of the system
safely, we need to interface to these directly rather than to the system as a whole.

58 Clemens Ballarin and Lawrence C. Paulson

Unfortunately, it turns out to be difficult to tell sound algorithms from ad
hoc ones in large, multipurpose computer algebra systems. Without lengthy code
inspections one cannot be sure that a piece of otherwise sound code depends on
a module that is ad hoc. We have therefore chosen the rather small computer
algebra library Sumit, which is written in the strongly typed language Aldor,
originally designed for the computer algebra system Axiom. References to the
li terature for the algorithms this library implements are available. From these,
formal specifications can be extracted.

The implementation of a prototype interface between Isabelle and Sumit is
straightforward. We provide stubs that translate between Isabelle's A-terms and
Sumit's algebraic objects. More than one stub is provided for Sumit types that
are used for several mathematical domains. This is, for example, the case for
Sumit's type I n t e g e r , which is used to represent both natural numbers and
integers. Arguments and results of the computation are then composed to a A-
term representing a theorem. This is done using what we call a theorem template:
at this experimental stage, simply a piece of code. The generated theorem is an
instance of the algorithm's formal specification. The algebraic algorithms, stubs
and theorem templates are wrapped to a server dealing with Isabelle's requests.
The server we obtain this way is only a skeleton: stubs and theorem templates
are added incrementally for algorithms that are to be used.

3 P o l y n o m i a l A l g e b r a

The algebraic approach to cyclic codes is based upon the theory of polynomial
rings. We sketch this theory briefly and also show to what extent it has been
formalised within Isabelle/HOL. The type system of this logic supports simple
types extended by axiomatic type classes, which we use to represent abstract
algebraic structures. Subtyping has to be made explicit using suitable embedding
functions.

3.1 The Hierarchy of Ring Structures

One obtains various kinds of rings by imposing conditions on the ring's mul-
tiplicative monoid. Integral domains, or domains for short, do not contain any
zero divisors other than zero: formally, a ~ 0 and b r 0 implies a . b ~ 0.

An element a is said to divide b, if there is an element d such that a �9 d = b.
We write a b. Two elements are associated a ~ b, if both a b and b a. An
element tha t divides 1 is called a unit. Associated elements differ by a unit factor
only. An element is called irreducible if it is nonzero, not a unit and all its proper
factors are units. Formally, irred a -- a ~ 0 A a { 1 A (Yd. d a ~ d 1 V a d).
An element is called prime if it is nonzero, not a unit and, whenever it divides a
product, it already divides one of the factors. This is, formally, pr imep - p
0 A p ~ 1 A (Va b. p I a . b ~ P I a V p I b). The factorisation of an element x into
irreducible elements is defined by the following predicate:

Factorisation x F u - (x = foldr �9 F u) A (Va E F. irred a) A u I 1 (1)

Reasoning About Coding Theory 59

F is the list of irreducible factors and u is a unit element. The list operator foldr
combines all the elements of a list, here by means of the multiplication operat ion
".". The product of the elements of F and of u is x.

An integral domain R is called factorial if the factorisation of the elements
into irreducible factors is unique up to the order of the factors and associated
elements. This is equivalent to R satisfying a divisor chain condition and every
irreducible element of R being prime. The divisor chain condition is not needed
in our proofs. We therefore formalise factorial domains only using the second
condition, which is also called the pr imeness condition. Fields are commutat ive
rings where every non-zero element has a multiplicative inverse.

3.2 Polynomials

Polynomials are a generic construction over rings. For every ring R there is a ring
of polynomials RX. The symbol X is called the indeterminate of the polynomial

ring. Further to the ring operations there is the embedding const : Ra ~ aX ~ "

We derive the representat ion theorem degp < n ==* Y~r~_oPiXi = p, where the
pi denote the coefficients of p.

Polynomials must not be confused with polynomial functions. 1 Their relation
is described in terms of the evaluation homomorphism. Given another ring S

~ - - ~ d e g p r h - . a n. and a homomorphism r : R ~ S we define EVAL r a p ~ z-,i=0 ~pi
EVAL Ca : RX ~ S is a homomorphism as well and evaluates a polynomial in
S substi tut ing a C S for the indeterminate and mapping the coefficients of p to
S b y r

3.3 Fields and Minimal Polynomial

The field F2 -- {0, 1} is fundamental in an algebraic t rea tment of binary codes.
Codewords are represented as polynomials in F2 X. Note tha t associated ele-
ments are equal in these domains.

Let h be an irreducible polynomial of degree n. The residue ring obtained
from F2 X by "computing modulo h" is a field with 2 n elements. For our purpose
we do not carry out this quotient construction of a field extension explicitly, as
we only need it to define the notion of minimal polynomial. Let G be an extension
field of F and a E G. The nonzero polynomial m E FX of smallest degree, such
tha t m evaluated at a is zero, is the minimal polynomial. Our definition of the
minimal polynomial is as follows:

minimal g S -= g E S A g ~ 0 A (Vv E S. v ~ 0 ~ deg g < deg v) (2)

min_poly h a = eg. minimal g {p. EVAL const a p rem h -- 0} (3)

Note tha t here a E F2 X and hence the embedding const is needed to lift the
coefficients of p to F2 IX. The computat ion is carried out modulo h by means of
the remainder function rein associated with polynomial division.

1 Polynomial functions are a subtype of R -* R and not isomorphic to RX when R
is finite: for F2 we have IF2XI = c~, but IF2 --* F21 -- 4.

60 Clemens Ballarin and Lawrence C. Paulson

4 C o d i n g T h e o r y

This discipline studies the transmission of information over communicat ion chan-
nels. In practice, information gets distorted because of noise. Coding theory
therefore seeks to design codes that allow for high information rates and the
correction of errors introduced in the channel. At the same time, fast encoding
and decoding algorithms are required to permit high transmission speeds.

The following presentation of coding theory follows Hoffman et al., 1991.
The codes we are interested in for the purpose of this case s tudy belong to a
class of binary codes with words of fixed length, so called block codes, n-error-
detecting codes have the capabili ty to detect n errors in the transmission of a
word; n-error-correcting codes can even correct n errors. The distance between
two codewords is the number of differing bit-positions between them. The dis-
tance of a code is the minimum distance between any two words of tha t code.

D e f i n i t i o n 1 A code is linear i f the exclusive or o f two codewords is also a

codeword. I t is cyclic i f f o r every codeword a o . . . an its cyclic shif t a n a o . . , an-1
is also a codeword.

Codes tha t are linear and cyclic can be studied using algebraic methods. Linear
codes are 72-vector spaces. A code with 2 k codewords has dimension k and there
is a basis of codewords tha t span the code. It is convenient to identify codewords
with polynomials:

ao �9 �9 "an-1 (~ ao �9 a l X ~ . . . -{- an-1 z n - 1

The cyclic shift of a codeword a is then X . a r e m (X n - 1), where rem is the
remainder function associated with polynomial division.

There is a nonzero codeword of least degree in every linear cyclic code. This
is called the generator polynomial. I t is unique and its cyclic shifts form a basis
for the code. I t is important , because a linear cyclic code is fully determined
by its length and its generator polynomial. The generator polynomial has the
following algebraic characterisation:

Theorem 2 (G e n e r a t o r p o l y n o m i a l) There exists a cyclic l inear code o f
length n such that the polynomial g is the generator polynomial o f that code

i f and only i f g divides X n - 1.

4.1 Hamming Codes

Hamming codes are linear codes of distance 3 and are 1-error-correcting. They
are perfect codes: they a t ta in a theoretical bound limiting the number of code-
words of a code of given length and distance. For every r > 2 there are cyclic
Hamming codes of length 2 r - 1.

An irreducible polynomial of degree n tha t does not divide X m - 1 for m E
{n + 1 , . . . , 2 n - 2} is called primit ive. 2 This allows us to s tate the following
structural theorem on cyclic Hamming codes:

2 Note that the term primitive polynomial is used with a different meaning in other
areas of algebra.

Reasoning About Coding Theory 61

T h e o r e m 3 (H a m m i n g code) There exists a cyclic H a m m i n g code o f length
2 r - 1 with generator polynomial g, i f and only i f g is pr imi t i ve and deg g = r.

4.2 B C H Cod es

Bose-Chaudhuri-Hocquengham (BCH) codes can be constructed according to
a required error-correcting capability. We only consider 2-error-correcting BCH
codes. These are of length 2 r - 1 for r _ 4 and have distance 5.

An element a of a field F is pr imi t i ve if a i = 1 is equivalent to i = IFI - 1
or i = 0. Let G be an extension field of F2 with 2 r elements and b E G a
primitive element. The generator polynomial of the BCH code of length 2 r - 1 is
mb �9 mb a , where ma denotes the minimal polynomial of a in the field extension.
If we describe the field extension in terms of a primitive polynomial h, then
X corresponds to a primitive element. Note that, because h is irreducible, it is
minimal polynomial of X. Therefore we can define BCH codes a follows:

Def in i t ion 4 Let h E F2 IX be a pr imi t i ve polynomial o f degree r. The code o f
length 2 r - 1 generated by h �9 min_poly h X 3 is called a BCH code.

5 Formalising Coding Theory

We formalise properties of codes with the following predicates. Codewords are
polynomials over F2 and codes are sets of them. The statement code n C means
C is a code of length n. The definitions of linear and cyclic are straightforward
while generator n g C states that g is generator polynomial of the code C of
length n.

code n C - Vx E C. deg x < n
linear C - Vx E C. Vy E C. x + y E C
cyclic n C -- Vx E C. X . x rem(X ~ - 1) E C
generator n g C - code n C A linear C A cyclic n C A minimal g C

5.1 T h e H a m m i n g Code P r o o f s

We now describe our first application of the interface between Isabelle and Sumit.
We use it to prove which Hamming codes of a certain length exist. Restricting the
proof to a certain length allows us to make use of computational results obtained
by the computer algebra system. The predicate Hamming describes which codes
are Hamming codes of a certain length. Theorems 2 and 3 are required and
formalised as follows:

0 < n ~ (3C. generator n g C) = g I x n - - 1 (4)

(3C. generator(2 r - 1) g C A Hamming r C) = (deg g = r A primitive g) (5)

These equations are asserted as axioms and are the starting point of the proof
that follows. Note that (5) axiomatises the predicate Hamming. The generators

62 Clemens Ballarin and Lawrence C. Panlson

of Hamming codes are the primitive polynomials of degree 2 r - 1. The primitive
polynomials of degree 4 are X 4 § X 3 § 1 and X 4 § X + 1. Thus for codes of
length 15 we prove

(3C. generator 15 g C A Hamming r C) = (g C {X 4 § X 3 § 1, X 4 + X + 1}).

We now give a sketch of this proof, which is formally carried out in Isabelle. The
proof idea for the direction from left to right is tha t we obtain all irreducible
factors of a polynomial by computing its factorisation. The generator g is irre-
ducible by (5) and a divisor of X 15 - 1 by (4). The factorisation of X 15 - 1 is
computed using Berlekamp's algorithm:

Factor isat ion(X 15 - 1) X 4 + X 3 + 1 , X + 1 , X 2 + X + 1,

X4 + X3 + X2 + X + I , X a + X + I 1

Since associates are equal in F2 IX every irreducible divisor of X 15 - 1 is in this
list. This follows from the lemma

irred c A Factor isat ionx F u A c I x ~ 3d. c ~ d A d E F, (6)

whose proof requires an induction over the list F. I t follows in particular tha t
the generator polynomials are in the list above. But some polynomials in tim
list cannot be generators: X § 1 and X 2 § X + 1 do not have degree 4 and
X 4 + X 3 + X 2 + X + 1 divides X 5 - 1 and is therefore not primitive. The only
possible generators are thus X 4 § X 3 + 1 and X 4 § X § 1.

I t remains to show tha t these are indeed generator polynomials of Hamming
codes. This is the direction from right to left. According to (5) we need to show
tha t X 4 + X 3 + 1 and X 4 + X + 1 are primitive and have degree 4. The proof is
the same for both polynomials. Let p be one of these. The irreducibility of p is
proved by computing the factorisation, which is Factor isat ionp ~v 1, and follows
from the definition of Factorisation, equation (1).

The divisibility condition of primitiveness is shown by verifying p "~ X m - 1
for m = 5 , . . . ,14.

5.2 T h e B C H C o d e P r o o f s

The predicate BCH is, in line with definition 4, defined as follows:

BCH r C - (3h. primitive h A deg h -- r A
(7)

generator(2 r - 1) (h . min_poly h X 3) C)

We prove tha t a certain polynomial is generator of a BCH code of length 15:

generator 15 (X s § X T § X 6 § X 4 + 1) C ~ BCH 4 C

Here is the outline of the proof: X s § X 7 § X 6 § X 4 + 1 is the product of the
primitive polynomial X 4 § X + 1 and the minimal polynomial X 4 § 3 § X2 § X §

Reasoning About Coding Theory 63

1. According to the definition (7) we need to show that the former polynomial
is primitive. This has been described in the second part of the Hamming proof.
Secondly, we need to show that the latter is a minimal polynomial:

min_poly(X 4 + X + 1) X 3 -- X 4 + X 3 + X 2 § + 1

In order to prove this statement, we need to show that X a § X 3 § X 2 § X § 1
is a solution of

EVAL const Z 3 p rem(X 4 § X + 1) -- 0 (8)

of minimal degree, and that it is the only minimal solution.

- Minimal solution: Simplification establishes that X 4 § X 3 § X 2 § X § 1 is
a solution of the equation. That there are no solutions of smaller degree can
be shown as follows:
Assume degp < 3, so p =Po § § 2 § X3 for Po , . . . ,P3 E F2. We
substitute this representation of p in (8) and obtain, after simplification,

Po + P l X ~ + P2(X 2 + X 3) + p 3 (X + X 3) = O.

Comparing coefficients leads to a linear equation system, which we can solve
using the Gaussian algorithm. The only solution is Po P3 = 0, so
p -- 0. This is a contradiction to the definition of minimal.

- Uniqueness: We need to show that X 4 § X 3 § X 2 § X + 1 is the only
polynomial of smallest degree satisfying (7). We study the solutions of (8)
of degree of <_ 4 by setting p = Po § �9 § P 4X a and obtain another equation
system

Po § p l X 3 § p2(X 2 § X 3) § p 3 (X § X 3) § p4(1 + X + X 2 + X a) - 0.

Its set of solutions, again computed by the Gaussian algorithm, is (0, X a §
X 3 § X 2 + X § 1). The definition of minimality excludes p -- 0. Therefore
there are indeed no other solutions of minimal degree.

6 R e v i e w o f t h e D e v e l o p m e n t

We have mechanised the mathematics outlined in section 3 and the proofs de-
scribed in section 5 in our combination of Isabelle and Sumit. The mathematical
background presented in section 3 has been formalised by asserting definitions
for the entities and deriving the required theorems mechanically. This is advis-
able to maintain consistency. We have not done the same for coding theory. Here
we have only asserted the results, namely theorems 2 and 3 and then mechanised
the proofs described in section 5. This part is therefore considerably shorter than
the development of the mathematical background.

The following table gives an overview on the effort. The figures are, however,
misleading in such that developing proof scripts is much harder than ordinary
programming.

64 Clemens Ballarin and Lawrence C. Paulson

Isabelle Sumit
Interface 23.7 Interface 43.3
Formalisation of algebra 61.8 Stubs and
Coding theory proofs 14 .6 theorem templates 20.4

Size of the development (code sizes in 1000 bytes)

The interface of Sumit is considerably larger, because datatypes for A-terms
and the server functionality are provided as well. The entry "Coding theory
proofs" includes the implementation of proof procedures for irreducibility and
primitiveness of polynomials, which automatically examine the proof state and
retrieve the required theorems from Sumit.

6.1 Contributions of the Prover

We prove theorems about polynomial algebra, which do not have computational
content, in Isabelle. We also establish the relation between coding theory and
the specifications of the algebraic algorithms. In our informal presentation these
translations may appear simple, but some of them are in fact rather difficult.

For the Hamming code proofs take lemma (6), for example, which is proved
by list induction. The induction step, after unfolding definitions, is a quantifier
expression, which is solved almost automatically by Isabelle's tableau prover.
However, it requires search to a depth of six, which means that six "difficult"
rules have to be applied, and produces a proof with 221 inferences. A depth of six
is unusually deep in interactive proof. The complete proof of (6) is 372 inferences
long but only requires 8 invocations of tactics, which resemble the manual proof
steps.

In the proofs about BCH codes, reasoning about minimality needs the full
power of first order logic. Note that the definition of minimality (2) contains
a quantifier and phrases like "x is the only element, such that P" are really
statements that involve quantifiers.

6.2 Contributions of Computer Algebra

Sumit computes normal forms for expressions that do not contain variables; here
in the domains N, F2, F2 IX. This includes the decision of equality, inequalities
and divisibility over these expressions. Their theorem templates are of the form
a Q b = B, where | is the corresponding connective and B becomes either True
or False.

Polynomials are decomposed into square-free factors and then factorised over
F2 IX using Berlekamp's algorithm. We pass a polynomial p to this procedure
and obtain a list of irreducible factors Ix1,... , Xk and a unit element u. These
are then assembled to the theorem

Factorisationx Xl,... , xk u.

Linear equation systems over F2 are solved by Gaussian elimination. The
matrix (a01 "" lan) is passed to the algorithm, where ai is the ith column vector.

Reasoning About Coding Theory 65

The algorithm returns a list of vectors Iv1,... , Vk that span the solution space.
The theorem template generates the theorem

n

(~-~.xiai = 0) = (t l ' ' ' t k . x = tlVl + . . . + kVk)
i=0

n

or (E x i a ~ = O) = (x = 0), if k = O.
i=0

The ti are variables in F2 and the xi are elements of the vector x. Note that we
use polynomials to denote vectors in Isabelle, as indicated in the proof.

Mechanising the proofs in a system that integrates the computer algebra com-
ponent without trusting it would require to additionally prove the theorems gen-
erated by these templates formally. This holds in particular for Harrison, 1996,
chapter 6 and Kerber et al., 1996, who try to reconstruct the proofs using the
result of the computation and possibly further information, which resembles a
certificate for the computation.

In the case of our proofs, the irreducibility of the factors, which constitute
a factorisation, is hard to establish and also the direction from left to right in
the theorems generated by Gaussian elimination. 3 This direction states that the
solution is complete, and it is the direction needed in the proofs.

7 C o n c l u s i o n

Our approach is pragmatic: we trust the computer algebra component in our
system rather than reconstruct proofs for the results of computations within the
prover's logic. The approach relies on implementations of algorithms that are
trustworthy. This can be achieved by restricting the use of computer algebra to
algorithms, for which proofs of their correctness have been published. This is
sufficient to avoid systematic soundness problems of computer algebra systems.
Errors in the implementation of these algorithms still jeopardise the integrity
of the prover, but bugs of this sort should not be more frequent in computer
algebra systems than in other software (including provers themselves).

Computational results are turned into theorems using theorem templates
that can produce arbitrary theorems. This is more flexible than the approach
suggested by one of us Ballarin et al., 1995, which only allowed conditional
rewrite rules, because the logical meaning of the result can be exploited more
easily.

Our case study shows that theorems that are rather difficult to verify occur
naturally in proofs. It presents a challenge to the approach that does not trust
the computer algebra component. But it also makes a contribution: it clarifies
which theorems need to be certified.

3 Over some domains theorems of this kind can be proved by decision procedures for
linear arithmetic. Here, because IF21 -- 2, this could be done by checking all the 2 "+1
cases.

66 Clemens Ballarin and Lawrence C. Panlson

Our approach avoids Analytica's soundness problems. This means, of course,
tha t we cannot make use of algorithms that are ad hoc. In an interactive envi-
ronment it does not mat ter too much that these are not complete. They need,
however, to be made sound. Expressive formalisms that are able to deal with side
conditions and case splits are used in mechanised reasoning. Expertise gained
here could prove useful in the redesign of these algorithms as well.

A c k n o w l e d g e m e n t s . This work has been funded in part by the Studien-
stiftung des deutschen Volkes and by EPSRC grant GR/K57381 "Mechanizing
Temporal Reasoning".

References

Ballarin et al., 1995 Clemens Ballarin, Karsten Homann, and Jacques Calmet. The-
orems and algorithms: An interface between Isabelle and Maple. In A. H. M. Levelt,
editor, ISSAC '95: International symposium on symbolic and algebraic computation
- - July 1995, Montrdal, Canada, pages 150-157. ACM Press, 1995.

Bronstein, 1996 Manuel Bronstein. Sumit - - a strongly-typed embeddable computer
algebra library. In Calmet and Limongelli 1996, pages 22-33.

Calmet and Campbell, 1997 J. Calmet and J. A. Campbell. A perspective on sym-
bolic mathematical computing and artificial intelligence. Annals of Mathematics and
Artificial Intelligence, 19(3-4):261-277, 1997.

Calmet and Limongelli, 1996 Jacques Calmet and Carla Limongelli, editors. Design
and Implementation of Symbolic Computation Systems: International Symposium,
DISCO '96, Karlsruhe, Germany, September 18-20, 1996: proceedings, number 1128
in Lecture Notes in Computer Science. Springer-Verlag, 1996.

Clarke and Zhao, 1993 Edmund Clarke and Xudong Zhao. Analytica: A theorem
prover for Mathematica. The Mathematica Journal, 3(1):56-71, 1993.

Corless and Jeffrey, 1996 Robert M. Corless and David J. Jeffrey. The unwinding
number. ACM SIGSAM Bulletin, 30(2):28-35, 1996.

Corless and Jeffrey, 1997 R. M. Corless and D. J. Jeffrey. The Turing factorization
of a rectangular matrix. ACM SIGSAM Bulletin, 31(3):20-28, 1997.

Geddes et al., 1992 Keith O. Geddes, Stephen R. Czapor, and George Labahan. Al-
gorithms for Computer Algebra. Kluwer Academic Publishers, 1992.

Harrison, 1996 John Robert Harrison. Theorem proving with the real numbers. Tech-
nical Report 408, University of Cambridge, Computer Laboratory, November 1996.

Hoffman et al., 1991 D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps,
C. A. Rodger, and J. R. Wall. Coding Theory: The Essentials. Number 150 in
Monographs and textbooks in pure and applied mathematics. Marcel Dekker, Inc.,
New York, 1991.

Homann, 1997 Karsten Homann. Symbolisches LSsen mathematischer Probleme
durch Kooperation algorithmischer und logischer Systeme. Number 152 in Disserta-
tionen zur Kiinstlichen Intelligenz. infix, St. Augustin, 1997.

Kerber et al., 1996 Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating
computer algebra with proof planning. In Calmet and Limongelli 1996, pages 204-
215.

Paulson, 1994 Lawrence C. Paulson. Isabelle: a generic theorem prover. Number 828
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

Stoutemyer, 1991 David R. Stoutemyer. Crimes and misdemeanors in the computer
algebra trade. Notices of the American Mathematical Society, 38(7):778-785, 1991.

Automatic Generation of Epsilon-Delta Proofs
of Continuity

Michael Beeson

Department of Mathematics and Computer Science
San Jose State University

San Jose, California 95192, USA
beeson~mathcs, sj su. edu

Abs t rac t . As part of a project on automatic generation of proofs in-
volving both logic and computation, we have automated the production
of some proofs involving epsilon-delta arguments. These proofs involve
two or three quantifiers on the logical side, and on the computational
side, they involve algebra, trigonometry, and some calculus. At the bor-
der of logic and computation, they involve several types of arguments
involving inequalities, including transitivity chaining and several types
of bounding arguments, in which bounds are sought that do not de-
pend on certain variables. Control mechanisms have been developed for
intermixing logical deduction steps with computational steps and with
inequality reasoning. Problems discussed here as examples involve the
continuity and uniform continuity of various specific functions. 1

1 C o n t e x t o f t h i s R e s e a r c h

Mathemat ics consists of logic and computat ion, interwoven in tapestries of proofs.
"Logic" is represented by the manipulat ion of phrases (or symbols) such as for
all x, there exists an x, implies, etc. "Computat ion" refers to chains of formulas
progressing towards an "answer", such as one makes when evaluating an integral
or solving an equation. Typically computat ional steps move "forwards" (from the
known facts further facts are derived) and logical steps move "backwards" (from
the goal towards the hypothesis, as in it would suffice to prove. The mixture of
logic and computa t ion gives mathemat ics a rich structure tha t has not yet been
captured, either in the formal systems of logic, or in computer programs. The
research reported on here is par t of a larger research program to do just that:
capture and computerize mathematics .

At present, there exist computer programs that can do mathemat ica l compu-
tations, such as Mathematica, Maple, and Maesyma. These programs, however,
do not keep track of the logical conditions needed to make computat ions legal,
and can easily be made to produce incorrect results. 2

1 This research partially supported by NSF Grant Number CCR-9528913.
Just to give one example: Start with the equation a ----- 0. Divide both sides by a. In
all the three systems mentioned, you can get 1 -- 0 since the system thinks a/a = 1
and O/a = 0. Many other examples have been given in the literature 1,15.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476~ pp. 67-83, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

68 Michael Beeson

On the other hand, there are theorem-proving programs such as Otter 13
(and others too numerous to mention) which perform logical reasoning. These
programs are quite limited in their computational abilities, although some of
them can perform rewrites using a specified set of equations. The input consists
of a file containing axioms, and a goal, usually expressed in clausal form. The pro-
gram contains no mathematical knowledge except that supplied in the axioms;
it only "knows" the laws of logic. Proof-search, such as these programs perform,
is not what is meant here by "computation"; although of course in some sense
the execution of any algorithm is computation, what we call computation here
is more like what an ordinary mathematician means by the word, a sequence of
more or less purposeful-appearing steps, with little or no trial-and-error involved.

This paper will present a framework for integrating logic and computation,
and report on experiments with the implementation of that framework. The
implementation is contained in two computer programs, Mathpert and Weier-
strass. The former has been reported on elsewhere in detail 1,2,3: it contains
implementations of over two thousand mathematical operations, together with
logical apparatus to keep track of assumptions that may be required or gen-
erated by those operations. Mathpert (as in "Math Exper t") uses these opera-
tions to provide a computerized environment for learning algebra, trigonometry,
and calculus. It is the second program, Weierstrass, which is used in the re-
search reported here. Weierstrass began life as a C-language implementation of
a "backwards Gentzen" theorem prover, whose Prolog progenitor was described
in 4. To this backbone has been added a set of control structures, or if you like,
implementations of special inference rules, to allow the proper meshing of log-
ical and computational steps. These control structures operate at the top level
of Weierstrass, but the computational steps themselves can use, in principle,
anything that has been implemented in Mathpert, which is all of high-school al-
gebra, trigonometry, and one-variable calculus including limits, differentiation,
and integration, as well as a good many techniques for rewriting inequalities,
and a few advanced algorithms, such as the Coste-Roy algorithm 10, based on
Sturm's theorem, for determining whether polynomials have roots in given inter-
vals. The implementations of these operations in Mathpert are logically correct,
so tha t they can be used in Weierstrass without the risk of inconsistency that
would accompany the similar use of Mathematica, Maple, or Macsyma. 3

The plan of the paper is to describe the control structures used in Weierstrass,
and then to illustrate their use by giving several examples of proofs produced
by Weierstrass.

No program has ever before produced an epsilon-delta proof of the continuity
of any specific non-linear function. For example, Bledsoe and his student Hines
have used the prover STRIVE 6 to prove that the sum of continuous func-
tions is continuous, and that linear functions are continuous, but it lacks the

3 Weierstrass is not an interactive program for producing a proof step-by-step. The
user supplies axioms and a goal, and Weierstrass finds a proof if it can. However,
the techniques discussed in this paper could easily be used to build an interactive
program.

Automatic Generation of Epsilon-Delta Proofs of Continuity 69

computational ability to carry out the proofs given here. Analytica 9 is linked
to the computational facilities of Mathematica, but essentially deals only with
quantifier-free proofs. The Boyer-Moore prover 7 has proved some impressive
theorems of nmnber theory, including the law of quadratic reciprocity, but like
Analytica, works best with free-variable proofs, and cannot find epsilon-delta
proofs. Other directly relevant work includes 11, 16, 8. A lengthier discus-
sion of these and other projects is precluded by the length limit on papers in
this volume.

2 N a t u r e o f t h e P r o o f s P r o d u c e d b y W e i e r s t r a s s

To avoid confusion, some discussion of nature and purpose of computer-generated
proofs is necessary. Weierstrass produces (internally) a proof-object, which can
be displayed or saved in more than one form. The intention is, to produce a proof
tha t can be read and checked for correctness by a human mathematician; the
standard to be met is "peer review", just as for journal publication. By contrast:
the purpose of Weierstrass is not to produce formal proofs in a specified formal
system.

Nevertheless, the program does produce a formal proof object. This object
can be regarded as a proof in a formal system, but some of the steps in the proof
involve more computation than is normal in formal systems. In traditional logi-
cal systems, checking that an inference step is correct according to the system is
a simple syntactic comparison to the rule used at that inference. In Weierstrass,
an inference step might involve the use of a mathematical algorithm, even for
example a complicated algorithm based on Sturm sequences, so that the correct-
ness of the step might not be obvious by inspection. If the algorithms used have
been correctly implemented, then the proofs are formally correct. 4 But certainly
we do not have proofs (formal or informal) of the correctness of the specific pro-
grams implementing more than two thousand mathematical operations available
in Weierstrass, so we must rely on human verifications that the actual output
of Weierstrass is an acceptable proof.

There is a different and more interesting reason why the proofs produced
by Weierstrass should be judged by the "peer review" standard. Namely, the
algorithms it uses represent theorems of all different "levels". For instance, one
might protest tha t the "right way" to prove continuity theorems such as are con-
sidered here, is to prove general theorems about the continuity of compositions
of functions, etc., and quote them. Indeed, that is the way Mathpert proceeds
internally, e.g. when it has to verify the continuity of an integrand in evaluating a
definite integral. But when trying to prove the continuity of x 3, we don' t want a
one-line proof based on the continuity of polynomials. To state the point another

4 This is really no different than in a purely logical theorem prover: one does not
demand that one should prove the correctness of the theorem-prover before accepting
its output as a proof. Otherwise, one would be involved either in an infinite regress
or a reflexive situation where a prover would prove its own correctness. And would
we believe it then?

70 Michael Beeson

way: People interested in foundations of mathematics t ry to order the concepts
and theorems of mathematics so that each one depends only on earlier results,
with everything resting on a few self-evident axioms. The body of mathematics
available to Weierstrass has not been so ordered; rather, there is simply a "web"
of known facts and algorithms, any of which can be used as required. We see one
example of this in the third example presented in this paper: Weierstrass doesn't
mind using the mean value theorem to prove the continuity of f (x) = v ~, even
though the result seems "simpler" than the tool.

Some of the descendants of this program may become the "mathematician's
assistant" of the future, a tool to which a practicing mathematician may turn
when a stubborn inequality needs to be proved. The standard of "peer review" is
the appropriate one for this type of program. Other descendants of this program
may be used in a project to construct a database of formalized mathematics, sim-
ilar to the Mizar project of today. In that case the questions of formal correctness
proofs for the computational steps, and of ordering the results and deriving them
from axioms, will eventually arise, but this will be a difficult enterprise.

3 T h e L o g i c a l B a c k b o n e o f W e i e r s t r a s s

The core of the logical apparatus in Weierstrass is a "backwards Gentzen prover".
I shall now explain what is meant by that phrase. A Gentzen sequent, or just
sequent, is an expression of the form A1 , . . . , An ~ B, where the Ai and B are
logical formulae (in some language).5 The right side of the sequent symbol ~ is
called the succedent and the left side is the antecedent. The semantic interpre-
tat ion of a sequent is that the conjunction of the Ai implies B. We allow t r u e
and false as atomic propositions. The sequent calculus is a set of inference rules
for deducing one sequent from another. One standard reference for these rules is
Kleene's book 12. In that reference, an empty list can appear in the succedent;
we use false for this purpose, so that a formula always stands in the succedent.

When the sequent calculus is implemented in Weierstrass, most of the an-
tecedent is kept in a list of assumptions, which could in principle be quite long.
If axioms of induction are used, for example, new instances of the axioms can
be generated as required; axioms belong in the antecedent, since the sequent
calculus is for producing purely logical proofs. The only parts of the antecedent
that will be "passed" as function parameters are assumptions that are made
temporari ly during the argument. For example, to prove an implication A -* B,
we "assume" A and then t ry to derive B. This is the implementation of the
Gentzen rule

F , A ~ B
F = ~ A - - . B

5 These are sometimes called intuitionistic sequents, by contrast with classical sequents
which allow B I , . . . , B,~ on the right. Weierstrass uses intuitionistic logic, but that
is for efficiency and convenience only, and is not essential. Indeed some of the com-
putational steps may not be intuitionistically valid.

Automatic Generation of Epsilon-Delta Proofs of Continuity 71

In addition to the ordinary variables of logic, we also make use of "metavari-
ables", whose values are expressions (terms or sometimes formulae), rather than
numbers or other mathematical objects which are the values of ordinary (object)
variables. Weierstrass introduces metavariables when it uses the Gentzen rules

F ~ At/x At/x, 1" ~ B
~ 3xA VxA, F ~ B

For example, to prove 35Vx, y (I x - y I < 5 - f (x) - f(y) < e), Weierstrasswill
change 5 to a metavariable, and t ry to prove Vx, y(x-yl < 5 - I f (x) - f (Y) l < ~).
Eventually, 5 will be given a value (if the proof is successful), and when that
value is put in for the metavariable 5, the result will be a (part of a) proof tree
which is legal according to the Gentzen rules. In the meantime, that is before
the final unifications take place, what is being constructed is something slightly
more general than a Gentzen proof tree; it is a Gentzen proof tree in which
metavariables are allowed, and the metavariables may have values, and the values
may be expressions involving other metavariables. (That is, the metavariables
can be "partially instantiated".) A formal definition of an extended derivation,
and some related theorems, can be found in 4.

In general, Weierstrass starts by loading an axiom file, which contains (zero
or more) axioms and a goal. The goal is placed in the succudent, and the axioms
in the assumption list, which implements the antecedent. Weierstrass then at-
tempts to construct an extended derivation of this sequent. Unification is used
in order to instantiate metavariables introduced as described above. Unification
is also used to control the selection of the next rule to be applied. Some of the
logical rules are broken into subcases, and the order in which they are tried is
important. These matters are discussed in 4. For the present work, it suffices
to note that the logical apparatus, functioning on its own, is a decent theorem-
prover. While it makes no a t tempt to compete with Otter, the logic required
for ordinary mathematics is comparatively simple, and in no example has the
logical apparatus required revision beyond what was described in 4 seven years
ago.

The implementation of a metavariable X includes a data structure designed
to keep track of a list of variables that are "forbidden" to X; this means that
X cannot have a value that contains variable forbidden to X. We make this
part of the definition (and implementation) of unification; see 5 for theoretical
reasons. This method provides an efficient way to keep track of the conditions
on variables that accompany the quantifier rules that introduce metavariables.
Instead of giving a metavariable a forbidden value, and carrying out another long
subproof, only to discard the result because the conditions on the quantifier rule
are violated, the unification will fail instead. I credit Natara jan Shankar for first
telling me something similar to this. The idea has been fruitful beyond this
improvement in efficiency, since we can use it in connection with computational
steps where we want to bound a certain quantity in terms of some bound that
does not depend on certain variables; this will be discussed below.

72 Michael Beeson

4 Computat iona l M e t h o d s in a Quantif ier-Free Prover

The theorem prover, or logical apparatus, in Mathpert is responsible for main-
taining the correctness of computations; it must block incorrect steps and ensure
that the assumptions do support the steps that are taken. The program Weier-
strass began by combining the methods of 4 for handling first-order logic, with
the methods of Mathpert for handling computations in a quantifier-free setting.
More precisely, the logical apparatus in Mathpert deals with sequents composed
of formulae which involve no implication or negation, but only disjunctions and
conjunctions of equalities and inequalities. When we say "quantifier-free" below,
this is what we mean. We describe those methods, as implemented in Weier-
strass, in this section.

4.1 Logical and Mathematical Simplification

Computat ional methods can be applied either to a mathematical expression
(term), or to a logical expression (proposition). Tha t is, we can t reat rewriting
propositions according to the laws of Boolean algebra on the same footing as
rewriting algebraic expressions according to the laws of eighth-grade algebra.
We apply the term "simplification" to describe the application of both algebraic
and logical operations.

4.2 Operations More General than Rewrite R u l e s

The term operation is here used to mean an algorithm that transforms an ex-
pression of a certain form into another expression, which is equal (algebraically
or logically) to the input, possibly under certain "side conditions". For example,
v f ~ = x represents an operation that transforms an expression of the form v/-A -~,
where A is any expression, into A; but it has the side condition 0 <_ A. Opera-
tions may be rewrite rules, but they may well be more general than rewrite rules.
For example, the operation named collect powers can be used to rewrite x2x 3
as x 5, which is not a rewrite rule since arithmetic on the exponents is involved.
The same operation can be used to collect powers separated by other terms, as
in x2yx 3, and to collect any number of powers, as in x2yx3x 4. But, like rewrite
rules, operations can be applied to any subterm.

4.3 Operations and Side Conditions

Weierstrass keeps the assumption list (the antecedent) in simplified form, so it
is not necessary to look for operations to apply to the antecedent. 6

6 When an operation is applied to the succedent, any occurrences of the same formula
that was changed in the succedent are also changed in the antecedent, after which
some simplifications in the antecedent may be performed to keep the antecedent in
simplified form.

Automatic Generation of Epsilon-Delta Proofs of Continuity 73

When the succedent is quantifier-free, Weierstrass will t ry to simplify it, t ry-
ing a large number of logical and algebraic operations. These operations, for
example, may simplify Boolean combinations of inequalities, or simplify certain
inequalities to t r u e or false. Purely algebraic simplification will also be per-
formed, but not, for example, factoring or common denominators; except tha t
greatest common divisors may be cancelled out of fractions.

This last example brings up the interesting question of the relationship be-
tween the antecedent (assumptions) and the simplifications performed in the
succudent. Consider, for example, the proposition

X 4 - - 1
- - > 0
x 2 - 1

If we cancel x 2 - 1 from numerator and denominator, we arrive at the proposi-
tion x 2 + 1 > 0, which will simplify to t r u e . But, at some point we must assume
x 2 - 1 r 0; otherwise the result is incorrect. The points to consider here are two:
(1) the original expression is not defined for all values of x, and (2) the domain
changes as a result of the application of an operation, which on the common do-
main preserves equivalence. The problem of "partial terms" (terms which can be
undefined) is thus closely related to the problem of "side conditions" of symbolic
operations.

4.4 P a r t i a l T e r m s , D o m a i n s , a n d S ide C o n d i t i o n s

There are two natural ways to make the assumption x 2 - 1 r 0 in the above
example: either at the outset, or when the cancellation is performed. P lan A
would be to analyze the domain of the goal when the problem is set up, and put
the domain conditions into the antecedent. According to plan A, the condition
x 2 - 1 would have been assumed at the outset, and hence could have been
inferred when required as the side condition for cancelling the common factor
of numerator and denominator. P lan B would be to allow potential ly undefined
terms in the partially constructed proof, and only assume x 2 - 1 ~ 0 when it is
required as a side condition for an operation. P lan B was mentioned in earlier
publications such as 4, but in the practical implementat ion of Mathpert, Plan
A was found to be more efficient; after all, we certainly need to assume tha t
the goal is defined to prove anything sensible at all. Therefore, P lan A has been
adopted in Weierstrass as well.

However, P lan B is not thereby consigned to the dustbin of history. There
remain situations in which a symbolic operat ion may have a side condition tha t
is not necessarily implied by the domain. 7 In such situations, P lan B will still
be used. An example would be the application of the operat ion v / ~ = x, whose

7 We use the word domain to mean a proposition giving the conditions under which
a term is defined; thus the domain of v/x is 0 < x. If propositions are thought of as
Boolean-valued functions, and sets are also thought of as Boolean-valued functions,
as Church suggested, then this coincides with the usual usage that the domain of
v ~ is {xlO < x}.

74 Michael Beeson

side condition 0 <_ x is not implied by the domain, s In the proof tree formalism
of logic, Plan B would entail copying the new assumption to the antecedents
all the way down the tree from the place where the operation is applied to the
conclusion. In the implementation, however, most of the antecedent is kept in
the assumption list, rather than duplicated at every line of the proof tree, and
so adding the new assumption once suffices.

4.5 Infer, Refute, Assume

When an operation has a side condition, there are two choices: either the opera-
tion can t ry to infer the side condition, and fail if the inference fails, or it can t ry
to check the side condition, which means that it will t ry to infer it, and if that
fails, it will t ry to refute it, and if that fails it will simply assume it. Thus, if we
t ry to simplify an expression of the form ~ to A, the side condition 0 ~ A will
be checked. If, for example, A is 3, the condition 0 _< 3 will be successfully in-
ferred, so the simplification takes place without an assumption. If, on the other
hand, A is - 3 , then the condition will be refuted, and the simplification will
not take place. If, however, A is an expression such that 0 < A can neither be
inferred nor refuted, then it will be assumed.

Consider the example mentioned in the introduction, of dividing both sides
of a - 0 by a. The side condition for dividing both sides of an equation by a is
that a r 0. Can we infer this? No. Can we refute it? Not officially, since a = 0
is in the succedent, rather than the antecedent. Then, we will assume it, and
obtain the logically correct but useless proof

a # 0 ~ l = 0

a # 0 ~ a = 0

To prevent this sort of thing, refute is also allowed to use the antecedent as
a temporary assumption. Tha t way, if the side condition is inconsistent with the
goal, we will avoid making a contradictory assumption. When this is done, the
a t tempt to divide a = 0 by a will result in an error message to the effect that
you can' t divide by zero. This can be seen working in Mathpert.

Note that the choice whether infer or check is used is specified in the oper-
ation itself. Tha t is, there will be two different operations represented loosely
by the equation ~ = x. One of them will infer the side condition (or fail)
and the other will check the side condition. In practice, it seems to work best
to avoid using check in the elementary simplification that are automatically ap-
plied in Weierstrass; after all, if we fail to prove the desired theorem because we
failed to list all the assumptions, we can run Weierstrass again after adding the
omit ted assumption in the axiom file. But, the method is used to good advan-
tage in Mathpert, and may prove of value in future applications of systems like
Weierstrass.

To make this scheme work, infer and refute must be guaranteed to terminate,
and hence must be incomplete; that is, sometimes a true side condition will not be

s In practice, few such operations are applied automatically in Weierstrass, but an
interactive prover based on these principles would certainly use Plan B extensively.

Automatic Generation of Epsilon-Delta Proofs of Continuity 75

inferred, or a false one not refuted. We may wind up making a false assumption.
For example, if p(x) is an expression which is really identically zero, but can't be
simplified to zero by the means of simplification used by infer, then we might be
led to make the assumption p(x) ~ O, e.g. to divide both sides of an equation by
p(x). This could lead to logically correct but senseless results. This is, however,
unavoidable, as the problem of determining whether mathematical expressions
p(x) are identically zero is recursively unsolvable 14.

A related situation arises in solving equations. For example, consider the
equation x 2 - x = 0. If we divide both sides by x, we make the assumption x ~ 0
and find the solution x = 1. This is logically correct, but we didn't achieve the
goal of finding all solutions of the original equation. This may not be a logical
error, but it is a mathematical error, and hence has been blocked in Mathpert,
but in an interactive system based on Weierstrass, it would not necessarily be
blocked.

4.6 Us ing the Assumptions in a C o m p u t a t i o n

Suppose we t ry to simplify 0 < x, while 0 < x is in the assumption list. Then
it is efficient to allow 0 < x to simplify to t r u e . For example, if 0 < x occurs
inside a disjunction in the succedent, the whole succedent may simplify to t r u e ,
completing (that branch of) a proof. Similarly, a side condition involving x r 0
should be reduced to 0 < x if 0 < x is in the assumption list.

4 .7 Computat ion With in the Scope o f a B o u n d V a r i a b l e

Even though Weierstrass applies simplification only to quantifier-free formulae,
sometimes it is still necessary to compute inside the scope of a bound variable,
since variables can be bound by definite integrals or indexed sums. For example,
we want to conclude that ~-k=l -~ 5xk is everywhere defined, even though the
condition for x k to be defined (for an integer k) requires k > 0 V x r 0. But
k > 0 holds because the lower limit of the sum is positive. In the case of definite
integrals and indexed sums, this is handled by making temporary assumptions
out of the limits of the sum or integral, while the focus of computation is in
the scope of the sum or integral. Limit terms are handled similarly, but the
assumptions to made involve infinitesimals and the use of non-standard analysis;
this much more complicated algorithm is discussed in detail in 3. Computat ion
within the scope of bound variables will not be discussed further in this paper.

4.8 What Formal System Has Been Implemented?

It is an interesting question to formulate precisely a language and rules of infer-
ence that could be said to be implemented by Weierstrass. One such language
has been specified in 3; it essentially allows variables for integers and real num-
bers, equality and inequality, and symbols for all the elementary functions used
in calculus. A complete and precise grammar for such a language can be found

76 Michael Beeson

in 3. This language also allows the formation of integrals, derivatives, indexed
sums, and limit terms; definite integrals, indexed sums, and limit terms can
bind variables. Weierstrass also allows the formation of A-terms which are not
specified in 3.

We turn now to rules of inference. A single additional rule schema describes
the simplest way to add computation to a quantifier-free prover:

F ~ B B , F ~ Aa
F ~ A

where A~r denotes the result of applying some mathematical or logical op-
eration to A, or to a subterm of A, replacing the subterm by the result of the
operation. In the rule, B is the side condition of the operation, if any; if the
operation has no side condition, the premise F =~ B does not occur. In principle
an operation could also have more than one side condition, in which case there
might be more than two premises.

The control strategy for applying this rule is this: whenever A contains no
quantifiers or implications or negations, t ry this rule, with a certain selection
of operations in a certain pre-specified order. But, the second premise F ~ B
representing the side condition is not passed recursively to the main theorem-
prover, but must be derived by very limited means. This is to prevent long delays
or even infinite regresses at tempting to verify the side conditions of mathematical
operations; in other words, a practical rather than a theoretical consideration.

This rule of inference does not, however, adequately describe the technique
of using the antecedent in simplification as described above. One way to do so,
although it is admittedly not very elegant, is to generalize the rule to this:

C, F ~ (C -~ A)a C, F ~ B

C , F ~ A

Here C is one assumption, and cr is an operation that can work on an impli-
cation (usually of inequalities). For example, a might simplify a < c ~ a < c to
t r u e . In both Mathpert and Weierstrass, we never use more than one assumption
at once in the simplification process.

The above rules still don' t adequately describe Weierstrass or even Mathpert,
because they do not account for keeping the assumption list in simplified form.
To describe this we need to add the rule

F a ~ A
E ~ A

where Fa represents the result of simplifying the assumption list F. Since
simplification generally can use formulas in the assumption list, Weierstrass has
to be careful when simplifying assumptions, or each assumption would simplify
to t r ue ! Each assumption is temporarily removed from the assumption list,
then simplified (possibly using the other assumptions), and the result replaces
the original assumption. This process is continued until nothing changes. The
result of these simplifications is Fa.

Automatic Generation of Epsilon-Delta Proofs of Continuity 77

5 C o m b i n i n g C o m p u t a t i o n w i t h F i r s t - O r d e r Logic

In previous sections, we have considered the backwards-Gentzen framework for
a theorem-prover, and the means of adding computation (simplification) to the
quantifier-free fragment of such a prover. We now take up the additional features
which were added to Weierstrass to allow it to handle epsilon-delta proofs.

The first point is that we must, under certain circumstances, allow Weier-
strass to factor, or even use trig factor identities. This is a question of control,
and not of something new in principle: since factoring preserves mathematical
equality, it can be t reated exactly like the other computation rules discussed
above. It is just a question of factoring when it is useful, and not factoring when
it is not useful. To achieve this, we simply put it at the bot tom of the list of
things to try; that is, below all the things that have been discussed above. It
will thus not be tried unless without it, the proof would fail. Tha t will dispose
of the problem of factoring when it is not useful.

The other new features can be represented as additional inference rules, which
are, like the Gentzen rules, to be applied "backwards" with the aid of unification.
We shall describe several of these rules. Like all the rules in sequent calculus,
the premises and conclusion of these rules are sequents; but in all cases, the
antecedent is unchanged from premise to conclusion, so when writing the rules
below, we shall omit F ~ in both premises and conclusion.

5.1 Finding Upper and Lower Bounds

Every mathematician knows that many a proof boils down to finding a suitable
bound for some expression that does not depend on certain variables. We have
implemented a pair of algorithms called UpperBound and LowerBound. Upper-
Bound takes as input a term t to be bounded, and a list of variables on which
the bound may not depend. Otherwise put, it tries to find a legal value for a
metavariable M such that Itl <_ M could be derived, with the specified list of
variables forbidden to M. For example, UpperBound knows that I sinxl _< 1. A
bet ter example: if UpperBound is asked to bound x by a bound not depending
on x, and the current assumptions include a < x and x < b, then it will return
the bound Ix _< max(a, bl). VpperBound is probably as good as a very good
calculus student at what it does. LowerBound is similar, but it tries to find M
such that M _< t. The two algorithms are defined by mutual recursion.

UpperBound is added directly to Weierstrass as a rule of inference with no
premises. That is, when we have a goal of the form a < M, where M is a
metavariable and a is some expression, we can directly terminate that proof
branch, instantiating M to the expression produced by UpperBound, supplying
as the second argument to UpperBound the list of variables forbidden to M.

5.2 Factor Bounding

The second new inference rule to be added is called FactorBounding. It says that
if you want to prove/3~/ is small, one way to do it is to prove that ~ is small

78 Michael Beeson

and give a bound for ft. The following rule is state for simplicity using only two
factors, but the rule is implemented for a product of any number of factors:

F, Is < 5 :ez ~, <_ i 1", 1(~1 < 5 =~ Ifl < e / (i + 1)

When this rule is implemented, we take M to be a fresh metavariable, and for-
bid to M all the variables that are forbidden to 5. In the present implementation
of Weierstrass, the rule is used only when 5 is a metavariable. The implementa-
tion also provides an algorithm for deciding which of several factors to bound:
it first identifies the quantity in the antecedent that must be less then 5, and
then looks for a factor which has a nonzero finite limit as that quanti ty tends to
zero. Limit calculations are performed by symbolic code from Mathpert. These
limit calculations do not enter the actual proof; they are only used to select the
factor to t ry to bound.

At this point, you might want to turn to Example 1 in the next section, to
see how UpperBound and FactorBounding are used to prove the continuity of
f (x) = x a.

5.3 I n e q u a l i t y C h a i n i n g

A notorious difficulty in inequality proving is the necessity of using transitivity
chains, and the difficulty of finding the right chain of inequalities in an exponen-
tially large search space. However, many useful chains are of length two, based on
some standard "known" inequality. For example, if we want to prove I sin x I < e,
it will suffice to prove Ixl < e in view of the known inequality sinx I < Ix.
Weierstrass implements this idea in an algorithm UsefuIBounds. Described as in
inference rule, this just looks like transitivity:

a < f l f l<e

When implemented, ~ _< fl is one of a list of specific known inequalities that
have been supplied to Weierstrass. For example, a special case of the rule would
be

 sinx < ix Ix I <

I sinxl < e

This rule of inference is needed by Weierstrass to prove the uniform continuity
of sin x. See the discussion of this example in the next section.

UpperBound is also capable of controlling some transitivity chaining through
the inequalities present in the antecedent. For example, if it is trying to solve
x < M, where x and y are forbidden to M, and the antecedent contains x < y
and y < b, the bound x < b will be found, and M will get the value b.

5.4 M e a n Value T h e o r e m

Weierstrass can use the mean value theorem to prove an inequality. This is an
interesting rule of inference, because it reduces a quantifier-free goal to a subgoal

Automatic Generation of Epsilon-Delta Proofs of Continuity 79

involving quantifiers. The purely logical rules of Weierstrass use the cut-free rules
of sequent calculus, which always reduce goals to logically simpler subgoals. Here
is the rule of inference MVT:

Vz(x ~ z <_ y -~ f ' (x) ~ M) Ix - yl <- e l M

If(x) - f(Y)l < c

There is another rule under the same name, in which the conclusion and
the second premise have strict inequality�9 When implemented, M is a freshly-
created metavariable, and x and y are added to the list of variables forbidden
to M. Note that this would not be the case if the rule were stated with an
existential quantifier over M in the premise (combining the two premises into
a conjunction)�9 It is by controlling the list of variable forbidden to M that
Weierstrass is induced to look for a bound independent of x and y. Now, in
general such a bound cannot exist unless the range of x and y is restricted by
further inequalities, so some inequality chaining will generally be needed to find
the bound M. As an example of such a proof, we consider in the next section, a
proof of the uniform continuity of v/x on closed intervals a, b with a > 0.

6 E x a m p l e s o f P r o o f s T h a t W e i e r s t r a s s C a n F i n d

In this section we describe the key points of certain illustrative example proofs.
The strict length limit does not permit the inclusion of the actual output of
Weierstrass.

6.1 U n i f o r m C o n t i n u i t y o f f (x) = x 3 o n C l o s e d I n t e r v a l s

�9 This example illustrates the use of UpperBound and FactorBounding. When
Weierstrass is asked to prove the uniform continuity of f (x) = x 3 on closed
intervals a, b, it soon arrives at the problem of finding a value for the metavari-
able 5 such that , assuming Ix - Yl < 5, we could derive Ix 3 - y31 < e. Factoring,
this reduces to I x - y l l x 2 + x y + y 2 1 < c. At this point, the above rule will be used
(in reverse, with c~ = Ix - Yl), creating the two new goals Ix 2 + x y + y21 < M
and Ix - Yl < c / (M + 1). The first one will be solved by using UpperBound,
instantiating the metavariable M to 3 max(lal, bl) and the second will be solved
by the axiom rule F, A ~ A, where A is the assumption I x - y l < 5, instantiating
the metavariable 5 to e / (M + 1). 9

6 . 2 U n i f o r m C o n t i n u i t y o f s i n x a n d c o s x

These two theorems are proved by Weierstrass in a way similar to the above
example. However, there are two new twists to the argument. First, Weierstrass
needs to use the trig factoring operations, not just polynomial factoring, in order

9 Weierstrass will be able to handle the case of f (x) = x n similarly, where n is an
integer variable, as soon as UpperBound is extended to handle indexed sums, since
an indexed sum arises when x n - yn is factored.

80 Michael Beeson

to write s i n x - siny as 2 s i n (1 / 2 (x - y))cos((1/2)(x + y). Then in order to
instantiate 5, it must use UsefuIBounds to apply the known inequality I sinul <
lul, since FactorBounding will produce the subgoal sin(1/2(x - y)) < e / (M + 1),
which does not unify directly with Ix - Yl < 5. Even after I sinul <__ lul is used,
the 2 in the denominator still requires another step, which however Weierstrass
takes without difficulty, since an inequality can be simplified by multiplying both
sides by 2. This is an example of computation applied to a proposition rather
than a mathematical term.

6.3 Continuity of f (x) ~- x /x

More precisely, the example is the uniform continuity of v ~ on closed intervals
a, b with 0 < a. To handle the continuity of x/~ by factoring, we would have to
get Weierstrass to write

- y l

It would certainly be possible to do this, but it would be ad hoc, as the kind of
computat ion rule that would do this would cause trouble elsewhere, so it would
have to be added as a logical inference rule for this special sort of inequality.
Rather than add an ad hoc rule, we chose to use this example as an illustration
of the use of the Mean Value Theorem. Weierstrass will compute the derivative
of V~ and bound it. Specifically, the inference rule M V T described above will
introduce a new metavariable M and create the subgoals, Ix - Yl < e/M and
Vz(x < z < y --~ 1(1/2)z-21 < M. Note that the derivative is evaluated. The
variables x,y, and z are forbidden to M. When UpperBound tries to bound z -2,
it calls LowerBound to bound z, and successfully finds the transit ivity chain
a < x < z, arriving at the bound a < z.

References

1. Beeson, M.: Logic and computation in Mathpert: an expert system for learning
mathematics, in: Kaltofen, E., and Watt, S. M. (eds.), Computers and Mathematics,
pp. 202-214, Springer-Verlag (1989).

2. Beeson, M.: Design Principles of Mathpert: Software to support education in alge-
bra and calculus, in: Kajler, N. (ed.) Human Interfaces to Symbolic Computation,
Springer-Verlag, Berlin/Heidelberg/New York (1996).

3. Beeson, M.: Using nonstandard analysis to ensure the correctness of symbolic com-
putations, International Journal of Foundations of Computer Science 6(3) (1995)
299-338.

4. Beeson, M.: Some applications of Gentzen's proof theory in automated deduction,
in: Shroeder-Heister, P., Extensions of Logic Programming, Springer Lecture Notes
in Computer Science 475, pp. 101-156, Springer-Verlag (1991).

5. Beeson, M.: Unification in lambda-calculus, to appear in Automated Deduction:
CADE-15 - Proc. of the 15th International Conference on Automated Deduction,
Springer-Verlag, Berlin/Heidelberg (1998).

Automatic Generation of Epsilon-Delta Proofs of Continuity 81

6. Bledsoe, W. W.: Some automatic proofs in analysis, pp. 89-118 in: W. Bledsoe and
D. Loveland (eds.) Automoated Theorem Proving: After 25 Years, volume 29 in the
Contemporary Mathematics series, AMS, Providence, R. I. (1984).

7. Boyer, R., and Moore, J.: A Computational Logic, Academic Press (1979).
8. Buchberger, B.: History and basic features of the critical-pair completeion proce-

dure, J. Symbolic Computation 3:3-88 (1987).
9. Clarke, E., and Zhao, X.: Analytica: A Theorem Prover in Mathematica, in: Kapur,

D. (ed.), Automated Deduction: CADE-11 - Proc. of the 11th International Con-
ference on Automated Deduction, pp. 761-765, Springer-Verlag, Berlin/Heidelberg
(1992).

10. Coste, M., and Roy, M. F.: Thorn's lemma, the coding of real algebraic numbers,
and the computation of the topology of semi-algebraic sets, in: Arnon, D. S., and
Buchberger, B., Algorithms in Real Algebraic Geometry, Academic Press, London
(1988).

11. Harrison, J., and Thery, L.: Extending the HOL theorem prover with a computer
algebra system to reason about the reals, in Higher Order Logic Theorem Proving
and its Applications: 6th International Workshop, HUG '93, pp. 174-184, Lecture
Notes in Computer Science 780, Springer-Verlag (1993).

12. Kleene, S. C., Introduction to Metamathematics, van Nostrand, Princeton, N. J.
(1952).

13. McCune, W.: Otter 2.0, in: Stickel, M. E. (ed.), 10th International Conference on
Automated Deduction pp. 663-664, Springer-Verlag, Berlin/Heidelberg (1990).

14. Richardson, D., Some unsolvable problems involving elementary functions of a real
variable, J. Symbolic Logic 33 511-520 (1968).

15. Stoutemeyer, R.: Crimes and misdemeanors in the computer algebra trade, Notices
of the A.M.S 38(7) 779-785, September 1991.

16. Wu Wen-Tsum: Basic principles of mechanical theorem-proving in elementary ge-
ometries, J. Automated Reasoning 2 221-252, 1986.

A Appendix: Output of Weiers t rass on the Examples

Weierstrass produces an internal proof object, which can be viewed in either
"trace view" or "proof tree view". These views both use two-dimensional display
of formulas on the screen. When you choose F i l e I Save As, you save a text
representation of the proof, either as trace or as proof tree. Formulas are written
in a parseable form, similar to TEX, but without backslashes, and enclosed in
dollar signs. In the future, I intend to use these files with WebTEXto post proofs
to the Web. For purposes of these appendices, I have simply included these
files verbatim (inserting only some line breaks) to avoid any errors introduced
by transcribing them into TEX , and to demonstrate exactly what the program
produces. I have used trace view, since the files are more readable than with proof
tree view. Even so, these files do not convey the process of proof construction
well, since the metavariables are replaced by their final values; for example,
we don't see how and when 5 is found, but instead it appears to be "pulled
out of a hat" near the beginning of the proof. It is interesting that this very
phenomenon is often a problem in the presentation of proofs produced by human
mathematicians!

82 Michael Beeson

A.1 Con t inu i ty of f(x) = X 3

Assuming $epsilon > 05
Trying Sexists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,

abs(x-y) < delta->abs(x^3-y^3) < epsilon))$
Trying Sall(x,y,a <= x,x <= b,a <= y,y <= b,

abs(x-y) < X->abs(x^3-y^3) < epsilon)$
Assuming Sa <= x,x <= b,a <= y,y <= b,abs(x-y) < X$
Trying $abs(x^3-y^3) < epsilon$
Factoring, it would suffice to prove:

Sabs(x-y) abs(x^2+x y+y^2) < epsilon$
We have the following bound:

$abs(x^2+x y+y^2) <= 3(max(abs(a),abs(b)))^2$
So it would suffice to prove:

$abs(x-y) < epsilon/(3(max(abs(a),abs(b)))'2+l)$

Aha! we have
$abs(x-y) < epsilon/(3(max(abs(a),abs(b)))^2+l)$

success
Discharging

success
success
Discharging

A.2 Con t inu i ty of f(x) = s i n x

Trying $epsilon > O->exists(delta,all(x,y,abs(x-y) < delta->
abs(sin(x)-sin(y)) < epsilon))$

Assuming $epsilon > 05
Trying $exists(delta,all(x,y,abs(x-y) <

delta->abs(sin(x)-sin(y)) < epsilon))$
Trying $all(x,y,abs(x-y) < i/2 epsilon->

abs(sin(x)-sin(y)) < epsilon)$
Assuming $abs(x-y) < I/2 epsilon$
Trying $abs(sin(x)-sin(y)) < epsilon$
Using trigonometry, it would suffice to prove:

$2abs(sin(x-y)/2) abs(cos(x+y)/2) < epsilon$
Dividing both sides, it would suffice to prove:

$abs(sin(x-y)/2) abs(cos(x+y)/2) < I/2 epsilon$
We have the following bound:

$abs(cos(x+y)/2) <= i$
So it would suffice to prove:

$abs(sin(x-y)/2) < epsilon/4$
In view of the known inequality Isin xl < Ixl we have:

$abs(sin(x-y)/2) <= abs((x-y)/2)$
it would therefore suffice to prove:

$abs((x-y)/2) < epsilon/4$

Automatic Generation of Epsilon-Delta Proofs of Continuity 83

Simplifying, it would suffice to prove:
$2abs(x-y) < epsilon$

Dividing both sides, it would suffice to prove:
Sabs(x-y) < 1/2 epsilon$

Aha! we have Sabs(x-y) < I/2 epsilon$
success
Discharging

success
success
Discharging

success

A.3 C o n t i n u i t y of f (x) = v ~

Assuming $a > 0,epsilon > 05
Trying Sexists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,

abe(x-y) < delta->abs(sqrt(x)-sqrt(y)) < epsilon))$
Trying Sall(x,y,a <= x,x <= b,a <= y,y <= b,abs(x-y) <

epsilon/(I/2 a'(-i/2))->abs(sqrt(x)-sqrt(y)) < epsilon)$
Assuming Sa <= x,x <= b,a <= y,y <= b,

abe(x-y) < epsilon/(i/2 a~(-i/2))$
Trying $abs(sqrt(x)-sqrt(y)) < epsilon$
Simplifying, it would suffice to prove:

Sabs(x^(i/2)-y^(i/2)) < epsilon$
By the mean value theorem applied to Sfz = z^(I/2)$
it would suffice to prove:

Sall(z,x <= z,z <= y->abe(I/2 z-(-I/2))
<= 1/2 a^(-I/2)),abs(x-y) < epsilon/(i/2 a^(-I/2))$

Trying Sall(z,x <= z,z <= y->abe(i/2 z^(-I/2))
<= 112 a ^ (- 1 / 2)) $

Trying $x <= z , z <= y->abs(1/2 z ^ (- 1 / 2)) <= 1/2 a^ (-1 /2)$
Assuming $x <= z , z <= y$
Trying $abs(i/2 z^(-1/2)) <= 1/2 a'(-1/2)$
We have the bound: Sabs(i/2 z^(-i/2)) <= I/2 a^(-i/2)$
success
Discharging

success
S u c c e s s

Trying $abs(x-y) < epsilon/(1/2 a^(-I/2))$
Aha! we have Sabs(x-y) < epsilon/(i/2 &^(-I/2))$
success

success
Discharging

Success

success
Discharging

Finite Model Search for Equational Theories
(FMSET)

Belaid Benhamou and Laurent Henocque

Laboratoire d'Informatique de Marseille
Centre de Math4matiques et d'Informatique

39, rue Joliot Curie - 13453 Marseille cedex 13, France
phone number : 91.11.36.22

Benhamou@gypt is. univ-mrs, fr
henocque@esil, univ-mrs, fr

Abst rac t . Finite model and counter model generation is a potential
alternative in automated theorem proving. In this paper, we introduce
a system called FMSET which generates finite structures representing
models of equational theories. FMSET performs a satisfiability test over
a set of special first order clauses called "simple clauses". Several ex-
periments over a variety of problems have been pursued. FMSET uses
symmetries to prune the search space from isomorphic branches with
very competitive performances in the domain.

Topics: Computer Algebra Systems and Automated Theorem Provers.
K e y w o r d s : Finite model, equational theories, symmetry.

1 I n t r o d u c t i o n

Model generation is well known as a difficult problem in mathematical logic,
undecidable in the general case. In this paper, we study finite model generation
for equational theories.

Equational theories provide a great number of difficult problems. Zhang in
5 defines a set of problems which form the challenge of finite model search
systems. Several open problems were solved with different approaches: FALCON
6, FINDER 3, MGTP-G 1, LDPP, SATO 4, and MACE 2. FALCON is
the most recent and most efficient method for equational theories and serves as
a basis of comparison.

An equational theory is a set of axioms: first order logic formulas involving
equality (ex: Vx, Vy, Vz: h(f (x , y)) = f (z , x)). Finding a finite model for such a
theory amounts to finding an interpretation of functional symbols over a finite
domain Dn which satisfies all the axioms. The existence of a model proves the
consistency of the theory. The existence of a counter model may prove refutation
of a conjecture. This is why model generation is a possible approach to automated
theorem proving.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476~ pp. 84-93~ 1998.
Springer-Verlag Berlin Heidelberg 1998

Finite Model Search for Equational Theories (FMSET) 85

In this paper, we present a new finite model generator, the system FMSET
(Finite Model Search for Equational Theories). FMSET translates the set of
axioms in an equational theory to an equivalent set of "simple" first order clauses.
Model generation operates by variable domain enumeration, in the spirit of the
Davis and Pu tnam procedure. This enumeration is performed directly over the
simple clauses obtained in the first phase. It has the double advantage of: 1)
generating only the propositional clauses involved in the proof, 2) achieving
efficient unit clause propagation as in the propositional case.

Symmetry detection is used to eliminate isomorphic branches in the search
tree, thus improving FMSET's performance. A heuristic for choosing literals
similar to the one used in Zhang6 helps keeping symmetries as long as possible
during the search. The paper is organised as follows:

Section 2 defines equational theories. Section 3 describes the translation of
equational theories to simple first order clauses. The enumeration procedure,
the mechanism of propagations and the symmetry elimination procedure are
introduced in section 4. Experimental results are listed in section 5 and section
6 concludes the work.

2 E q u a t i o n a l T h e o r i e s

An equational theory is a set of axioms such as tl -- t2, and t l ~ t2, where tl
and t2 are terms. Each term is recursively built upon functional symbols and
universally quantified variables.

A model of an equational theory is a structure consisting in a non empty
set of individuals and functions that satisfy the axioms. We only consider finite
models, characterized by their number n of individuals. The domain Dn of a
model of size n is Dn = {0, 1, . . . , n - 1}.

Example 1. Let T1 be the equational theory based on the following axioms:

- A I : Vx , h(x, x) = x
- A2: Vx, Vy, h(h(x, y), x) = y

T1 has a model of size 4 :

h(0, 0) = 0, h(0, 1) = 2, h(0, 2) = 3, h(0, 3) = 1
h(1, 0) = 3, h(1, 1) = 1, h(1, 2) = 0, h(1, 3) -- 2
h(2, 0) = 1, h(2, 1) = 3, h(2, 2) = 2, h(2, 3) -- 0
h(3, 0) = 2, h(3, 1) = 0, h(3, 2) = 1, h(3, 3) = 3

3 T r a n s l a t i o n o f a n E q u a t i o n a l T h e o r y t o a S e t o f S i m p l e
F i r s t O r d e r C l a u s e s

In the sequel, except when necessary, the word equation designates equations as
well as disequations.

86 Belaid Benhamou and Laurent Henocque

D e f i n i t i o n 1. - The number of functional symbol occurrences in an equation
defines its degree.

- An equation of degree 1 is a simple equation (which is a literal).
- A simple first order clause is a disjunction of simple equations.

The translation of equational theories to simple first order clauses is based
on the systematic replacement of axioms by simple equations, by means of
auxiliary variables. The principle is the following: when applied to the axiom
A2 : (h(h(x, y), x) = y) from the theory T1 in example 1, it produces the clause
h(x, y) ~ vl V h(vl, x) = y. The innermost term h(x, y) is replaced by an auxil-
iary variable Vl so as to turn the axiom into a disjunction of simple equations.
The result can be read "for all x ,y , vl if h(x,y) = Vl then h(v l ,x) = y". Ap-
plied to an axiom of initial degree 3: f (h(x , g(y)), x) = y, we obtain the clause
g(y) r vl V h(x, Vl) r v2 V f(v2, x) = y, which can be read "for all x, y, vl, v2 if
g(y) = vl and if h(x, vl) = v2 then f (v2 ,x) = y".

The translation of an equational theory is performed in two steps :

- Normalisation : consists in changing the original axioms into clauses where
literals have the form t = x, x being a variable and t a term.

- Simplification : consists in transforming the clauses resulting from the nor-
malisation into simple clauses.

If var(t) denotes the variable which replaces the term t, then the translation
algorithm uses the following set of rules:

1. the equation x = t l becomes t l = x (variable x is moved to the right)
2. the equation x ~ tl becomes t l ~ x (variable x is moved to the right)
3. the equation t l = t2 becomes ((tl ~ var(t l)Vt2 = var(t l))A ((t2 r var(t2)V

tl -~ var(t2)) (a conjunct of two clauses)
4. the equation t l r t2 becomes ((t l r var(t l)Vt2 • var(t l))A((t2 r var(t2)V

t l r var(t2)) (a conjunct of two clauses)
5. the equation f (t l , t2) = z becomes (tl r var(tl)) V (t2 r var(t2)) V

(f (var(Q), var(t2)) = z)
6. the equation f (t l , t2) ~ z becomes (tl r var(tl)) V (t2 ~ vat(t2)) V

(f (var(t l) , var(t2)) r z)

Normalisation is the result of a single application of one of the rules 1 to 4
and simplification results from the repeated application of rules 5 and 6 to the
equations until fixed point is reached.

In the rules 3 to 6, var(t) is the variable which replaces the term t. If t itself
is a variable then var(t) is nothing but t.

This algorithm terminates because rules 1 to 4 are applied at most once, and
rules 5 and 6 strictly reduce the degree of their argument.

Remark 1. This algorithm produces simple Horn clauses, containing at most one
positive literal (tl r x is the negation of t l = x).

Finite Model Search for Equational Theories (FMSET) 87

4 The Enumerat ion Procedure

We have tried two enumeration techniques inspired from the Davis and Pu tnam
procedure.

4.1 Working with Proposit ional Clauses

Given a domain Dn, it is straightforward to translate a set of simple clauses C
into a set of propositional clauses. It simply requires to generate the terminal in-
stances c..., e j x i , ... for all c C g, and for every possible substitution < ei /x i >
where ei belongs to Dn and x~ is a variable that occurs in c. For a domain of size
n, and a clause having k variables, the number of propositional clauses produced
is n k in the worst case.

For instance, given a domain of size 2, the clause (h(x, y) ~ vl Vh(vl, x) = y)
representing the axiom A2 in the theory T1 (example 1 before) is expressed by
the following set of propositional clauses:

1: -~h(0, 0) = 0 V h(0,0) = 0, 2:
3: -~h(0, 1) = 0 V h(0, 0) = 1, 4:
5: -~h(1,0) = 0 V h(0, 1) = 0, 6:
7: -~h(1, 1) = 0 V h(0, 1) = 1, 8:

-~h(0, 0) -- 1 V h(1, 0) = 0
-~h(0, 1) = 1 V h(1, 0) -- 1
--h(1, 0) = 1 V h(1, 1) = 0
~h(1, 1) = 1 V h(1, 1) = 1

to which the set of clauses describing the mutual exclusion of function values
must be added. For instance, take h(0, 0), and a domain of size 3 or more :

h(0, 0) = 0 V h(0, 0) = 1 V h(0, 0) = 2 V ...
-~h(0, 0) = 0 V -~h(0, 0) = 1
--h(0, 0) = 0 V ~h(0, 0) = 2
-~h(0, 0) = 1 V -~h(0, 0) = 2

This simple example shows that such a set of clauses allows for monoliteral
propagation even in the presence of negative facts. For instance, if h(1, 1) ~ 0 is
true, clause 6 propagates -~h(1,0) = 1. Such propagations are not performed by
the algorithm described in 6, which only reacts to the introduction of positive
facts and thus loses in search efficiency.

The number of clauses grows quickly as the domain sizes grow, then us-
ing a classical model search procedure (like Davis and Putnam) for such sets
of propositional clauses must be intractable, except when the domain sizes are
small. Actually, even simple theories generate a huge number of clauses.

For instance, the theory T2 described in figure 1 expresses a non commuta-
tive group. For a domain of size 6, the translation of the axioms in figure 1 to
propositional clauses requires 252 literals and nearly 100000 clauses. Memory
consumption, and the time needed to simply generate the clauses renders this
approach irrealistic. This is why we prefer to use directly the first order clauses.

88 Belald Benhamou and Laurent Henocque

~(x, o) =
h(o, x) =

h(x, g(x)) = 0
h(g(~), x) = 0

h(h(x, y), z) = h(x, h(y, z))
h(1, 2) ~ h(2, 1)

Fig. 1. Non commutative group

4.2 W o r k i n g w i t h t h e S imp le F i r s t O r d e r C l a u s e s

The clauses produced by the translation algorithm of section 3 contain at most
one positive literal (Horn simple first order clauses). As soon as a positive literal
propagates (for instance f(0) = 0), implied negative facts are numerous (here:
f (0) ~ 1, f (0) ~ 2, ... f (0) ~ n - 1). Many propositional clauses are removed
immediately (because they are true), and would have been created needlessly
with the first approach. It is thus realistic to envision the dynamic creation of
the only useful propositional clauses.

Our enumeration procedure F M S E T is described by the recursive function
of figure 2.

funct ion FMSET(F : a set of clauses):boolean;
begin

for each non assigned literal b on the stack pmod
begin

Assign(b);
if the empty clause appeared then return(false);
if all the clauses in F are satisfied then return(true);

end
choose next literal a
push a on the stack pmod
if FMSET(F) return(true)
push ~a on the stack pmod
return(FMSEW(F))

end

Fig. 2. The enumeration procedure

We use an intermediate representation between first order and propositional
clauses, producing exactly the same propagations as the latter, at a lower cost.
Propagations occur when a clause is shortened so that its length becomes equal
to one. To obtain these propagations without using propositional clauses, it is
enough to keep the simple clauses which generate the clauses shortened by the
current interpretation.

Finite Model Search for Equational Theories (FMSET) 89

For instance : let cl be the clause f (z) ~ y V h(x) ~ y V g(y) = x. When
the literal f(0) -- 1 becomes true, we generate the substitution a = {< 1/y >
, < O/z >} with which we produce the clause c2 : h(x) r 1 V g(1) = x. Later on,
when g(1) = 3 becomes false, we build c3 : h(3) ~ 1 of length one. This forces
the propagation of h(3) ~ 1.

More interesting, the simple clause c4 : f (y) ~ z V h(x) = y, when the literal
f (0) = 0 becomes true, produces the monoliteral clause c5 : h(x) = 0 which
forces the literals h(0) -- 0, h(1) = 0, h(2) -- O...h(n - 1) -- 0 to be true.

The simple clauses generated as a result of literal propagation are called
pseudo clauses in FMSET. They are well described by a substitution of part of
the set of variables of the original clause by values in the domain. Formally:

D e f i n i t i o n 2. Let c c C be a simple clause, Vc the set of variables occuring in
c, Y a subset of Vc, and a a substitution {< ei/x~ > ei E D,x~ c V}. The
application of ~ to the variables of c produces the pseudo-clause ca.

Initially, every simple clause c maps to the pseudo-clause c 0 where 0 is the
empty substitution.

D e f i n i t i o n 3. Two substitutions al and a2 are incompatible iff there exists
< a / x >c al and < b/x >c a2 such that a ?~ b.

Procedu re Assign(a E literals)
begin

for each pseudo clause ca
for each simple equation s C c~

if unifiable(s,a) then
begin

let ~ be the substitution due to unification of a and s
if a and (~ are compatible then
begin

build the pseudo clause ~ = (c~ - S)~u~
if d is of length 1 then

push on stack all monoliterals due to
else if not a tautology(E) then

add d
end

end
end

Fig . 3. Propagation procedure

The function F M S E T described in figure 2 uses the propagation procedure
assign described in figure 3.

90 Belaid Benhamou and Lanrent Henocque

4.3 R e m o v i n g S y m m e t r i e s

Many symmetr ies exist in equational theories. They slow down the algorithms
because of unwanted exploration of isomorphic branches within the search space.

As it was done in 6, some symmetries can be removed at low cost because
they are due to trivial symmetries in the set of domain individuals. Especially,
at the beginning of the search, all individuals in the domain are interchangeable.

D e f i n i t i o n 4. A set of simple first order clauses C is symmetrical with respect to
a subset Dsym of the domain Dn iff it remains unchanged under any permutation
of the individuals in Dsym.

In particular, if Dn is the set of integers {0, 1 , . . . , m, m + 1 , . . . , n - 1} and
{0, 1 , . . . , m} is the subset of Dn used by the literals in the current partial model
pmod tha t were set by a choice point, then the proper ty of symmetr ies is char-
acterised by the following theorem :

T h e o r e m 1. The set of simple clauses Cpmod generated by the partial model
pmod from C is symmetrical with respect to D sym = { m + 1 , . . . , n - 1}

Proof. There are only two possibilities of occurrence of an individual bigger than
m in pmod:
- because of the assignment of a positive literal of the form t -- k, with k < m.
In tha t case, for all k2 > m, the literal t ~ k2 is also in pmod. Hence this
propagat ion keeps the symmet ry of pmod wrt. Dsym -- {m + 1 , . . . , n - 1}.
- because of the propagat ion of a simple clause of length one. Such a clause
being universally quantified, the propagat ion naturelly maintains the symmet ry
of pmod wrt. Dsym = {m + 1 , . . . , n - 1}. Thus, in both cases, the system Cpmod
is itself symmetr ical wrt. Dsym.

This theorem is exploited in FMSET by a cut in the search and a heuristic
for literal selection. We use a number m equal to the max imum integer used in
literals chosen for assignment in pmod.

The cut operates as follows: when we choose a literal t = k for assign-
ment, we compute mt=k the greatest integer occurring in t = k, we set m =
max(m, mr=k), and we add to pmod the set of t ~ l, for all 1 E m + 2, n - 1.
Of course, we t ry to minimize the resulting value of m by a heuristic.

In a similar way as in 6, this heuristic consists in choosing for assignment
a literal t = k such tha t the value mt=k is lower or equal to m. When this is
impossible, the heuristic selects a literal which minimises the value of mt=k.

5 Experimentation

5.1 D e s c r i p t i o n o f t h e P r o b l e m s

The problems tha t we have experimented are described in 6. AG is an abelian
group. NG is a non commutat ive group (see figure 1). RU is a ring with unit.

Finite Model Search for Equational Theories (FMSET) 91

GRP is a non commutative group satisfying the additional axiom (xy) 4 = xay a.
RNA is a ring, plus a counter example of associativity, the existence of models
proves the independence of associativity. RNB is a non boolean ring plus the
axiom x 7 = x.

These six problems are not open problems, but provide a good comparison
basis for FMSET and FALCON. Zhang in 6 shows that FALCON outperforms
both MACE and FINDER on these problems.

5.2 R e s u l t s

FMSET is developped in C § our computation times in seconds are obtained
on a Pentium 133. All of MACE, FINDER and FALCON are writen in C, the
corresponding CPU times are the ones given in 6 which are obtained on a
Sparc 2, (to + t l) for both MACE and FINDER and (t2) for FALCON. to is a
preprocessing time, t l and t2 are search times. FALCON's preprocessing time is
negligible as is FMSET's . To the best of our knowledge, a Sparc 2 is about three
times slower than a Pentium 133.

The CPU time listed for problems AG, NG and RU corresponds to the search
for all models. The CPU time listed for GRP, RNA and RNB is only the search
time for model existence.

The branch count provides a bet ter comparison basis for the two systems. In
FALCON (column bl in table 1), the detection of a bad value through assign-
ment propagation is not counted as a branch. In FMSET (column b2 in table 1)
all branches are counted.

Our approach is very different, and can be generalized to arbi t rary first or-
der logic theories. It is noteworthy that our execution times compare well to
FALCON's times, and outperform the ones of MACE and FINDER, which fail
to conclude on several of these problems. Our branch counts are also close to
those from FALCON. In the results table 1, the column "clauses" displays the
total count of simple clauses and mutual exclusion clauses used to express the
corresponding problems. The time spent generating these clauses is negligible,
never above 0.1 second. Note that '*' indicates that the program runs out of
memory, and ' § indicates that the execution time of the program exceeds one
hour. A '? ' means that the information is not available.

6 C o n c l u s i o n

We have implemented a system for searching finite models for equational theo-
ries. It is based on the direct use of first order clauses within a standard propo-
sitional logic model enumerator. This hybrid approach produces more propaga-
tions, without the cost of either the propositional clauses, or the full first order
logic. In a sense, the algorithm combines model enumeration and unification
based resolution.

In tha t framework, symmetries can be efficiently detected and improve FM-
SET's efficiency. Our results compete with the best known system FALCON.

92 Belaid Benhamou and Laurent Henocque

Problems MACE FINDEI~ FALCON FMSET
time time time b l literals clauses time b2

Abelian groups
AG.4 0.37 0.07 0.05 4 80 28 0.13 2
AG.5 1.44 0.39 0.22 7 150 38 0.27 9
AG.6 6.50 8.95 0.68 13 252 50 1.03 22
AG.7 28.78 253,20 1.97 20 392 64 2.23 40
AG.8 493.24 § 4.73 33 576 80 7.5 63
AG.9 810 98 12.8 101
Non commutative groups
NG.4 0.37 0.07 0.05 4 80 28 0.08 6
NG.5 1.36 0.70 0.17 6 150 38 0.15 14
NG.6 5.13 12.95 0.48 7 252 50 0.56 24
NG.7 13.30 530.63 1.30 11 392 64 0.63 29
NG.8 198.28 § 3.37 20 576 80 1.5 41
NG.9 * § 7.70 31 810 98 3.1 75
Unit rings
RU.4 3.95 0.46 0.25 7 144 49 0.6 2
RU.5 19.64 6.00 1.27 9 275 68 1.4 8
RU.6 83.54 2078.23 3.50 15 468 91 7.5 29
RU.7 * § 9.43 22 735 118 18.8 44
Non commutative groups
satisfying (xy) 4 = x4y 4
GRP.4 40.22 0.7 0.08 ? 112
GRP.5 309.16 1.82 0.27 ? 200
GRP.6 * 499.78 0.65 ? 324
GRP.7 + 1.53 ? 490

43 0.58 6
55 1.78 14
69 9.76 26
85 15.9 29

ring not associative
RNA.5 25.60 + 24.72 ? 275 70 5.43 28
RNA.6 * 107.72 ? 468 93 52.4 172
RNA.7 562 ? 735 120 426 605
RNA.8 350 ? 1088 151 11.3 9
non boolean ring
RNB.4 3.81 3.32 0.2 ? 144 51 0.46 3
RNB.5 18.33 0.24 0.68 ? 273 70 0.22 4
RNB.6 67.83 2.11 1.67 ? 468 93 0.45 4
RNB.7 * 3.58 3.37 ? 735 120 3.7 12
RNB.8 * + 4.22 ? 1088 151 10.9 3
RNB.9 1539 186 23.5 34

T a b l e 1. Resul ts ob ta ined by F A L C O N a nd F M S E T

Finite Model Search for Equational Theories (FMSET) 93

We plan to generalize this approach to other categories of problems for which
the t ranslat ion to propositional logic is not t ractable and extend it 's input to
any first order logic formula. More symmetries can be detected in a set of sim-
ple clauses. The fact that this algorithm propagates more than other techniques
makes it a potentially good third par ty algorithm in the field of constraint pro-
gramming, in combination with other solvers.

References

1. J. Slaney M. Fujita and F. Bennett. Automatic generation of some results in finite
algebra. In proceedings of the 13th Internationnal Joint Conference on Artificial
Intelligence, Chambery, France, pages 52-57, 1993.

2. W. McCune. A Davis Putnam program and its application to finite fist order model
search : quasi-group existence problems. Technical Report ANL/MCS-TM-1994,
Argonne National Laboratory, 1994.

3. J. Slaney. Finder: Finite domain enumerator, version 3.0 notes and guide. Technical
report, Austrian National University, 1993.

4. H. Zhang and M. Stickel. Implementing the Davis and Putnam algorithm by tries.
Technical report, University of IOWA, 1994.

5. J. Zhang. Problems on the generation of finite models, in proceedings of CADE-12,
Nancy, France, pages 753-757, 1994.

6. J. Zhang. Constructing finite algebras with FALCON. Journal of automated rea-
soning, 17, pages 1-22, 1996.

Specification and Integration of Theorem
Provers and Computer Algebra Systems

P.G. Bertoli 1, J. Calmet 2, F. Giunchiglia 3, and K. Homann 4

1 b e r t o l i ~ i t c . i t - ITC-IRST - Trento (Italy)
2 calmet~ira.uka, de - University of Karlsruhe (Germany)

3 faus to@itc . i t - ITC-IRST - Trento and DISA - University of Trento (Italy)
4 karsten.homann�9 siemens, de - Siemens Corporation - Munich (Germany)

\

Abst rac t . Computer algebra systems (CASs) and automated theorem
provers (ATPs) exhibit complementary abilities. CASs focus on effi-
ciently solving domain-specific problems. ATPs are designed to allow for
the formalization and solution of wide classes of problems within some
logical framework. Integrating CASs and ATPs allows for the solution
of problems of a higher complexity than those confronted by each class
alone. However, most experiments conducted so far followed an ad-hoc
approach, resulting in tailored solutions to specific problems. A struc-
tured and principled approach is necessary to allow for the sound inte-
gration of systems in a modular way. The Open Mechanized Reasoning
Systems (OMRS) framework was introduced for the specification and im-
plementation of mechanized reasoning systems, e.g. ATPs. The approach
was recasted to the domain of computer algebra systems. In this paper,
we introduce a generalization of OMRS, named OMSCS (Open Mech-
anized Symbolic Computation Systems). We show how OMSCS can be
used to soundly express CASs, ATPs, and their integration, by formal-
izing a combination between the Isabelle prover and the Maple algebra
system. We show how the integrated system solves a problem which could
not be tackled by each single system alone.

Topics: Integration of Logical Reasoning and Computer Algebra, Com-
puter Algebra Systems and Automated Theorem Provers.

Keywords : Computer Algebra Systems, Theorem Provers, Integration,
Formal Frameworks.

1 I n t r o d u c t i o n

Automated theorem provers (ATPs) are used in the formal verification and val-
idation of systems, protocols, and mathematical statements. These systems are
complex software packages, designed in a stand-alone way, and each implement-
ing a certain fixed logic which must be adopted to formalize and solve problems.
Computer Algebra Systems (CASs) have become a standard support tool for
performing complex computations, or for representing functions. Similarly to

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 94-106, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Specification and Integration of Theorem Provers 95

ATPs, these tools have been designed in a stand-alone way, and implement cus-
tomary syntaxes; the user may only perceive them as black boxes, and is forced
to trust them "blindly".

ATPs and CASs exploit complementary abilities. ATPs implement heuristic
search procedures; their underlying logics are designed to express wide varieties
of problems. CASs can be perceived as extensive libraries of very complex and
efficient procedures, tailored to the solution of specific problems within specific
domains. Thus, by coupling the efficiency of CASs and the generality of ATPs, it
should be possible to obtain systems which are able to solve problems of a higher
complexity than those that have been confronted with by stand-alone CASs and
ATPs. Several approaches can be followed to combine these two paradigms,
e.g. integrating external algorithms into proof structures as oracles or untrusted
steps, or extending CASs by reasoning components. These approaches have led to
design and implement several integrations between ATPs and CASs. 4 reports
an experiment of integration between the Isabelle prover and the Maple algebra
system; 7 describes the implementation of an ATP within the Mathematica
environment; 9 defines an extension of the HOL prover to reason about real
numbers.

However, all the previous attempts are ad-hoc solutions, tailored to solving
specific problems. On the opposite, it is desirable to be able to make ATPs and
CASs cooperate in a more principled and generic way. This cooperation can
only be achieved by formally defining provers and algebra systems as symbolic
mathematical sea'vices. By symbolic mathematical service we mean a software
able to engage in useful and semantically meaningful two-way interactions with
the environment. A symbolic mathematical service should be structurally or-
ganized as an open architecture able to provide services like, e.g., proving that
a formula is a theorem, or computing a definite symbolic integral, and to be
able, if and when necessary, to rely on similar services provided by other tools.
In 8, the Open Mechanized Reasoning System (OMRS) architecture was in-
troduced as a mean to specify and implement reasoning systems (e.g., theorem
provers) as logical services. In 5, this approach has been recasted to symbolic
computer algebra systems. In this paper, we show a generalization of this ar-
chitecture, OMSCS (Open Mechanized Symbolic Computation Systems), which
can be used to specify both ATPs and CASs, and to formally represent their
integration. Section 2 summarizes the ideas which are at the base of the OMSCS
architecture, and provides the formal descriptions of its components. Section 3
describes the specification of an integration between the Isabelle prover and the
Maple algebra system. We highlight the synergic effects of the integration by
showing how the resulting system solves a problem none of the starting systems
could tackle alone. Section 4 is devoted to conclusions and future work.

2 T h e O M S C S F r a m e w o r k

In the OMRS framework, reasoning systems are presented as logical services.
The specification of a service must be performed at various levels. At the lower

96 P.G. Bertoli et al.

level, it is necessary to formally define the objects involved in the service, and
the basic operations upon them. E.g., for a theorem prover, one must define
the kind of assertions it manipulates, and the basic inference rules that can be
applied upon them. On top of this "object level", a control level provides a
means to define the implementation of the computational capabilities defined
at the object level, and to combine them. The control level must include some
sort of "programming language" which is used to describe a strategy in the
applications of modules implementing basic operations, therefore to actually
define the behaviour of the complex system implementing the service. Finally,
the way the service is perceived by the environment, e.g. the naming of services
and the protocols implementing them, is defined within a further level, called
the interaction level. This leads to the following OMRS architectural structure:

Reasoning Theory = Sequents + Rules
Reasoning System = Reasoning Theory + Control

Logical Service = Reasoning System § Interaction

Analogously, as shown in 5, CASs can be presented as algorithmic services,
based upon a definition of computation system and computation theory:

Computation Theory --- Objects + Algorithms
Computation System = Computation Theory § Control
Algorithmic Service = Computation System § Interaction

In order to allow for a unified description of both classes of systems, we syn-
thesize these definitions into that of Symbolic Mathematical Service. It is based
upon definitions of symbolic entities and operations which include the previous
definitions of sequents and objects, and of rules and algorithms respectively.

Symbolic Computation Theory = Symbolic Entities + Operations
Symbolic Computation System = Symbolic Computation Theory + Control

Symbolic Mathematical Service = Symbolic Computation System + Interaction

We call this architecture Open Mechanized Symbolic Computation Systems
(OMSCS). The following two subsections deal with the formal description of
the object and control layers. The interaction layer is the object of ongoing
research. In this document, we will consider one single service, namely, asking
the system to apply some computation strategy over some mathematical entity.
This amounts to the possibility of asking an ATP for a proof of a conjecture,
or a CAS for a computation over some algebraic structure. A naive functional
perception of this service will be sufficient to our purposes.

2.1 The Objec t Level

Actual systems implement a variety of computation paradigms, based on a wide
spectrum of classes of entities. The object level of the OMSCS framework is de-
signed to allow for the representation of this variety of objects and behaviours.
The notion of domain is extended by defining a system of symbolic entities as a

Specification and Integration of Theorem Provers 97

mean to represent the entities manipulated by a symbolic computat ion system,
and the basic relationships governing them. A system of entities includes a set
of symbolic objects, a system of symbolic instantiations and a system of sym-
bolic constraints. Objects, constraints and instantiations are taken as primitive
sorts. Objects and constraints may be schematic, to allow for the representat ion
of schematic computat ions via the instantiation system. The constraint system
allows for the representat ion of provisional computations. Thus a system of sym-
bolic entities is a triple as follows:

Esys = < 0 , Csys, Isys>

O is the set of symbolic objects. Csys is a constraint sys tem <C, ~>, where C is a
set of constraints, and ~ c_ (P~ (C) • C) is a consequence relation on constraints.
Isys is an instantiation system <I, _ _ >, where I is the set of instantiation maps
(or instantiations), and _ _ is the operat ion for application of instantiations to
objects and to constraints, that is _ _ : O • I -+ O and _ _ : C • I --* C.
In order to qualify as a system of symbolic entities, Esys, and more specifically
~ , I , and _ _ must meet certain requirements, which can be lifted from 8.

The basic operations which can be performed over a system of symbolic
entities are defined in a set-theoretic way, as relations between single entities and
tuples of entities, instantiations and constraints. These relations are required to
be closed w.r.t, instantiation. Namely, let Esys = <0, Csys, Isys> be a symbolic
computat ion system, where Csys = <C, ~>, Isys = <I ,_ _ >. Then the set of
operations OpEsys over Esys is defined as follows:

O p E s y s =
{Op c • O • I E Op : W E I : E Op}

In order to conveniently identify operations, we use maps from identifiers
(belonging to a set Id) to operations. Thus we define the set of operations sets
as follows:

OpsetEsys, Id = Id ~ OpEsys

Based on the definition of a system of entities and of a set of operations, the
computat ion capabilities of a system are described by means of a symbolic com-
putation theory, a triple cont~aining a system of entities Esys, a set of identifiers
Id, and a set of operations Op E OpsetEsys, Id:

SCth = <Esys, Id, Op >

A symbolic computat ion theory entails a generalized notion of computat ion
which is represented within symbolic mathematical structures. Intuitively, sym-
bolic mathemat ica l structures are defined as nested directed graphs containing
two kinds of nodes, representing symbolic objects and links between them. A link
between an object o and a set of objects ~ represents the fact tha t ~ has been
computed from o, or vice versa (depending on the orientation of the arcs); the
link node provides a justification, which may consist in a basic operation, or in

98 P.G. Bertoli et al.

another symbolic mathematical structure. We point to 8 for a complete formal
description of (nested) structures, instantiated to the class of reasoning systems.
Standard derivations and proofs, and functional computations are represented
by specific subclasses of mathematical structures. This allows for the decoupling
the specification of derivability or computability from the control strategies for
executing computations, and gives greater flexibility for algorithm design and
for definition of high-level control abstractions.

The following two examples demonstrate the features of the OMSCS object
level, by formalizing sections of two state-of-the-art systems. In particular, we
describe (some of) the reasoning capabilities of the Isabelle prover, and (some
of) the computational capabilities of the Maple computer algebra system.

Example 2.1 (Isabelle at the object level). Isabelle is a tactical theorem
prover. Its basic deductive capabilities are implemented by means of modules
called primitive tactics. Primitive tactics receive and produce assertions, im-
plementing base inference steps. Some primitive tactics may manipulate some
additional information, which they use to compute their output. Primitive tactics
are combined by means of a tactical language. Isabelle uses a meta-theoretical
resolution tactic to refine a subgoal by unifying it with an instance of a ground
rule contained within the current theory. Other relevant primitive tactics of Is-
abelle include an "axiomaticity" tactic, which removes a goal whose value is the
logical constant True, and an "assumption" tactic, which removes a goal which
matches some assumption via a unifier. Several predefined ground theories can
be exploited in Isabelle. For instance, the theory of natural numbers includes
Peano's axioms and an induction rule whose first-order axiomatization can be
presented as follows:

(induct) P (a) A (a < _ n) A V x : (x E N A (x > _ a) A P (x)) ~P(x+l)) P(n)

The theory can be enriched, e,g by a classical first-order axiomatization of (some
of) the properties of the less-than relation, such as transitivity, reflexivity, and
distributivity w.r.t, the sum and product operations.

We consider this theoretical setting of Isabelle to start our OMSCS for-
malization by describing its object level by means of a symbolic entity system
E s y s i = (0 i , Csysi , Isysi>. The symbolic objects we consider are first-order
sequents which represent goals under a set of assumptions :

Oz = { T H ~- I g}

where T H is a sequence of first-order formulas, and g is a single first-order
formula. The I subscript to the sequent symbol identifies this specific sort of
object. The constraints we consider are equalities between first-order terms:

Csys i = <tl = t2, ~>

where tl and t2 are first-order terms, and ~ is defined to obey monotonicity,
axiomaticity and cut. The simple system of instantiation we consider is based
upon maps between schematic objects and first-order terms, designed as pairs

Specification and Integration of Theorem Provers 99

<Sc, t> where Sc is a schematic object and t is a first-order term. The instanti-
ation application mechanism for these pairs is defined as a substitution of t for
Sc:

_> : ~ / i = { < S c , t>}
I s y s i <Ii, i (0 <Sc, t> : 01s~_t

The deductive capabilities of the prover within the previous theory setting are
represented by OMSCS operation generators. Since the underlying system of en-
tities describes the ground assertions manipulated by Isabelle, the operations will
describe the manipulation of such entities. Thus, they will describe the induction
rule and the less-than formalization presented above, and the axiomaticity and
assumption rule presented by the prover as primitive tactics. No formalization
of Isabelle's meta-resolution will appear. What follows is an informal representa-
tion of the generators, which resembles the classical presentation of logical rules
found in, e.g., 11. Within such description, g(f) indicates a goal g contain-
ing a subformula f . In the context of a rule, g(f ') will be an abbreviation for

g(f)lf*--f'"
T H ~i g(a)

Induct
TH~-xa<_n

Ax T H b x True

Assume r162 ~ i g r

Reflexivity
T H F-I g(True)
T H l-z g(x <_ x)

T H F-x Vx E N : ((x > a) A g(x)) --~ g(x + 1)
T H F-I g(n)

T H t-i g(x < y) T H t-i g(y < z) Trans
T H t-i g(x < z)

T H ~-~ g(x' <_ x") T H F-z g(y' < y")
Sum

T H t-,r g(x' + y' <_ x" + y")

T H f-, g(x' < x") T H I-i g(y' <_ y")
Prod T H I-I g(x' * y' <_ x" * y")

The Induct, R e f l e x i v i t y , Trans, Sum and Prod operations map the Is-
abelle rules presented when describing the system. The Ax and Assume oper-
ations represent Isabelle's axiomaticity and assumption primitive tactics. The
schemas like those above should be thought of as presenting the generators
for the operations considered, linking them to operation identifiers. For in-
stance, the first schema links the Induct identifier to the following generator:

{<TH I-r g(a) ,TH t-i a <_ n, T H ~x Vx 6 N :
((x > a)Ag(x)) --~ g(x + l), T U Fx g(n),0>}

The symbolic computation theory S C t h i = <Esys r, Id i , Op i) represents Is-
abelle at the object level, where Idi D (Induct, Ax, Assume, R e f l ex i v i t y , Trans,
Sum, Prod), and Op I maps IdI to the generators according to the presentation
above.

Example 2.2 (Maple at the ob j ec t level). Maple is a powerful, complex
CAS, featuring a number of complex algorithms for solving equations, computing
integrals and derivatives, performing operations on matrixes, and so on. However,
at a high level of abstraction, Maple can be perceived simply as a term rewrite

100 P.G. Bertoli et al.

system (where the terms to take into account are those of the Maple mathemat-
ical language). Thus, every calculation performed by the system can be repre-
sented by means of a conditional rewrite rule of the form P1,-.., Pn ~ t - t ' ,
where P~ are preconditions to the equivalence between terms t and t'. The pre-
conditions include type declarations of the form x E l), where x is a Maple
variable, and 1) is a Maple domain identifier, and equalities between terms.

In particular, among the plethora of capabilities featured by the system,
we focus on those that allow Maple to normalize natural powers of binomials or
polynomii powers of monomials to their "flat" polynomial form, and to evaluate
disequalities between natural values. It is possible to represent these capabilities
in a black-box form, making use of two functions, N o r m a l i z e P o l y and EvaIBoo l ,
specifying their semantics in terms of input/output behaviour.

We describe the entities manipulated by Maple at the OMSCS object level
via a symbolic entity system ESySM ---- <OM, C s y s M , I s y s M > . The objects we
consider represent equivalences between first-order terms under a set of declara-
tions, which we may view as sequents:

OM -~ { T H ~-M t ~- t'}

where t and t ~ are Maple terms, and T H contains a set of Maple type declara-
tions. The constraints we consider are equalities between Maple terms:

CsysM ---- < t l = t2, ~ >

where tl and t2 are Maple terms, and ~ is defined to obey the monotonicity,
axiomaticity and cut properties. The system of instantiation is based upon maps
between schematic objects and Maple terms, represented as pairs <Sc, t> where
Sc is a schematic object and t is a Maple term. The instantiation application
mechanism is defined as a substitution of t for Sc:

{I~ = {<Sc, t>}
ISySM = <IM, _ _ > : O<Sc, t> = 01Sc*--t

We represent the computation capabilities of Maple using OMSCS operation
generators, which we present using the informal notation used in the previous
example.

MapleEval T H ~-M t -- t ' t ' = N o r m a l i z e P o l y (t)

MapleEvalLess T H ~-M (X ~___ y) -- E v a l B o o l (x , y) {x : Bool ,y : Bool} C T H

The symbolic computation theory S C t h M = <ESySM, IdM, Op M>represents
Maple at the object level, where Id M D {MapleEval, MapleEvalLess}, and Op M
maps IdM to the generators according to the presentation above.

The combination of systems at the object level is performed by gluing sym-
bolic computation theories. Gluing two symbolic computation theories S C t h l =

Specification and Integration of Theorem Provers 101

<Esysl, Idl , Opl > and Seth2 = <Esys2, Id2, Op2> via bridge operations Opb
results in a new symbolic computation theory SCthg = <Esysa, Ida, Opa> with
the following features:

- the new system of entities Esys 9 is the disjoint union of the starting systems
ESySl and Esys2. Intuitively, the disjoint union of systems of entities results
from their set union, where matching objects belonging to different systems
are unified; the formal definition is presented in 8.

- the new identifiers and operations are simply the union of the identifiers and
operations presented by SCthl and SCth2 with Idb and Opb respectively.
Note that the bridge operations, which specify the way computations in the
two systems can be combined, must be defined over OpsetEsysg, Idb.

2.2 The Cont ro l Level

The control level of a mathematical service must specify the way the system
implements the computing capabilities specified at the object level, and the
strategies adopted to combine them to achieve complex behaviours.

OMSCS adopts the tactic-based approach to pursue the first aim. The ba-
sic computation abilities of a system are represented using primitive tactics. A
primitive tactic provides a particular implementation of an operation defined
within a symbolic computation theory. Intuitively, a primitive tactic is defined
to be a correct implementation of an operation op if every tuple describing its
input/output behaviour corresponds to some tuple contained within the def-
inition of op. A formal definition is given in 6. Primitive tactics implement
OMSCS operations directionally. Tactics may fail, representing the partiality of
operation applications. It must be possible to control primitive tactics so that
they realize specific instances of operations. This is achieved by exploiting two
mechanisms, control arguments and control annotations. Control arguments are
additional objects manipulated by the tactics (in addition to symbolic entities) in
order to generate values for the output entities. Control annotations are meant
as a colouring of the symbolic entities manipulated by tactics, and consisting
of additional information, which can be removed via an "annotation removal
mapping". Control arguments and control annotations capture the two forms
of control (explicit, or environment-driven and implicit, or system-driven) pre-
sented by systems. All the features above are taken into account by redefining
the notions provided at the object level accordingly. Thus a system of annotated
symbolic entities is a 5-tuple as follows:

Esysa = <Oa, Oc, F, CsYSa, Isysa>

Oc is the set of control objects, F is the set of failures, which contains at least a
no-failure element 0k and a generic failure element Fai l ; Oa, Csys a ~ <Ca, ~>,
ISySa = <Ia,_ _ > are the annotated counterparts of the object level defini-
tions. Every annotated element of the components of Esy8 a is mapped to an
element of the corresponding component of a system of entities Esys via an
annotation removal mapping # which must preserve the behaviour of the in-
stantiation maps and of the consequence relation between constraints. That is,

102 P.G. Bertoli et al.

if cl, c2 are constraints, and e a generic entity, then #(~(e)) = e(#(e)) and
~ ,~(~) ~(~) .

The definition of primitive tactics at the control level must extend the ob-
ject level operation definition, taking into account the additional presence of
control arguments, and directionality. Therefore, every entity manipulated by a
tactic will be marked as an input or output argument. We indicate with OaIo,
Otto, Caro, Ialo the sets of pairs <oa, IO>, <oe,IO>, <oa, IO>, <ia, IO> re-
spectively, where I 0 E {Input, Output}, oe E Oe, Oa E On, ia E In. The ~7
mapping retrieves the unannotated, orientation-free content of these pairs, e.g.
~(<Oc, IO>) = #(Oc). Thus, primitive tactics will be defined as follows:

TacEsysa = {PTac C_ (O~i 0 x O*io x OaIo x CaIo* x F)
3 0 p ~ #(Esys~) :

V<OaIO ,OclO , OalO, CalO , f> E PTac :
3pl E Perm(lo-~-51),p2 E Perm(Ic--h-~I) :

(f = Ok) ~ <~l(pl(o-'dT~)),rl(oazo),rl(pz(c-'d~))> E Op}

Similarly to operations, primitive tactics are linked to identifiers within sets
of tactics:

TacsetEsysa, Id = Id Y-~ WacEsysa

Thus the control level of a system is described by a symbolic control theory,
whose definition lifts from that of computation theory at the object level:

SCNth = <Esysa, Id, Tac>

where Tac E TacsetEsys a, Id. The definition of tactic above allows for the
representation of various computational paradigms, e.g. standard backward and
forward reasoning.

The application of primitive tactics onto object nodes of mathematical struc-
tures can be represented as a series of applications of primitive actions onto such
structure; see 8 for details. The combination of primitive tactics is realized by
defining a control language. The definition of such a language can be performed
by specifying, for each construct, the relation between the OMSCS definition of
the compound tactic w.r.t, those of the originating tactics. The language must be
proven to be correctness-preserving: provided that primitive tactics correctly im-
plement computation capabilities, compound tactics must correctly implement
compound computations.

Example 2.3 (Isabelle at the control level). Let us consider the object
level formalization of the Isabelle prover, provided by Example 2.1. In order to
describe the system at the level of control, we first define the system of annotated
symbolic entities. In Isabelle, no implicit notion of control exists; thus, entities are
not annotated. Explicit control arguments appear instead; the control arguments
0ic are either natural numbers, used to identify uniquely the factorization of dis-
equality terms within the Sum or Prod rules, or first-order formulas, used to des-
ignate a matching candidate in the assumptions of an assertion. The annotated

Specification and Integration of Theorem Provers 103

system is simply an extension of Esysi: EsysIa = <OI, 0Ic, F, Isysi, CsysI>,
where F = (0k, Fail}. In this case, control arguments do not modify the design
of instantiations and constraints. Rather than formally presenting the backward
primitive tactics corresponding to the operations described in Example 2.1, we
consider their former informal presentation and re-interpret it accordingly. In
particular, the tactics we consider are intended as bottom-to-top orientation of
the corresponding operations, where the output objects are returned in a left-to-
right order. Whenever input arguments do not match the symbolic schema given
in the presentation, tactics are supposed to return Fa i l . Tactics may receive con-
trol arguments. Namely, InductTac(a, n) is controlled w.r.t, the bound and the
term of the induction; AssumeTac(r is controlled w.r.t, the term to match with
the goal; ReflWac(x) and TransTac(y) receive the term involved in reflexivity
and transitivity respectively; $umTac(x', x") and ProdWac(x', x") require control
arguments to uniquely identify a decomposition of the input disequalities. The
control theory SCNthI which defines Isabelle parallels the computation theory
SCthI, based upon the annotated entity system and the tactics described above.
Notice that, since Isabelle is a tactical prover based on meta-resolution, and the
primitive tactics above implement ground rules, in general, a many-to-one cor-
respondence exists between these tactics and the original Isabelle tactics.

In order to combine primitive backward tactics, it is possible to adopt (a
conservative extension of) the language used in LCF and in Isabelle. The formal
definition of the variant of the LCF tactical language we adopt is given in 6.
The language is extended in order to allow tactics to handle control arguments;
thus, tactical expressions receive an atomic symbolic mathematical structure (a
single object node) and a list of control arguments. As a result, either a failure
or an updated symbolic mathematical structure is returned.

Example 2.4 (Maple at the control level). The representation of Maple's
behaviour at the control level is straightforward, since Maple does not make use
of control annotations, nor of control arguments. Thus the system of annotated
symbolic entities is a trivial extension of EsysM. The presentation of the prim-
itive tactics MapleEvalTac and MapleEvalLessTac is inherited from Example
2.2. The tactics are intended as bottom-to-top orientations of the operations, re-
turning their results according to the left-to-right ordering in the presentation.
The control theory SCNthM which defines Maple parallels the computation the-
ory SCthM, based upon the annotated entity system and the tactics described
above.

The combination of systems at the control level is based on gluing the anno-
tated symbolic computation theories, and on combining the definitions of tactical
languages. The first aim is achieved by lifting the definition of gluing from the
object level. The definition of a formal framework for the uniform presentation
of tactical languages and compound tactical expressions is the subject of ongoing
work. In this document, we rely on a common definition of tacticals languages
between the components of the integration.

104 P.G. Bertoli et al.

3 An Example: Integrating Isabelle and Maple

In this section, we show how the framework can be used to integrate in a clear and
sound manner a computer algebra system and a theorem prover. We consider the
OMSCS formalizations provided in the previous examples as a starting point to
design a specific combination of Isabelle and Maple, and study how the resulting
system can be used to solve a problem none of the two single systems could
tackle alone. In 4, the two systems are combined in an ad-hoc way, by enriching
Isabelle's simplifier with an additional external invocation rule referring to the
Maple system. In this way, Isabelle is configured to act as a master to Maple,
which is simply considered as an evaluation engine.

Starting from our previous OMSCS formalizations, we are able to formal-
ize such an {ntegration of Isabelle and Maple at the object level by gluing the
symbolic computation theories SCthi and SCthM describing each system. To
represent the way terms contained within an Isabelle assertion are simplified by
using Maple as a rewriter, the gluing must include a bridge rule. Its informal
presentation follows:

Simplify THM ~M t ~-- t' THI ~-~ g(t') THM C THI
THI ~-I g(t)

At the control level, the gluing between the annotated theories involves a
corresponding backward primitive bridge tactic SimplifyTac (t), which receives
as a control argument the term submitted to simplification. Its presentation
coincides with that of the originating operation. The tactical language adopted
in the Isabelle example is used to combine this tactic with Isabelle's and Maple's.
This allows for expressing the behaviour of the integrated system via a unique
compound tactic, perceiving the integrated system as a unique entity.

As an example of the abilities which derive from combining the two systems,
we consider a problem first described in 10. Namely, we intend to prove that,
for every natural greater or equal than 5, it holds that n 5 < 5n; that is:

n 6 N;5 < n ~ n 5 < 5 n (1)

Albeit a simple conjecture, this theorem cannot be solved by Maple alone, and
cannot be solved by Isabelle in an efficient way. Maple does not posses any
deductive capability to perform such a proof. Isabelle does not possess any basic
capability to expand powers of binomials, and evaluate disequalities. Formalizing
these abilities is possible, but would lead to a very lengthy proof search.

The proof of (1) develops along the following lines:

1. Isabelle's induction rule is applied upon the main goal; this leads to three
subgoals, two of which define the base step, and the third defining the in-
duction step;

2. The subgoals defining the base step are simply solved by applying basic rules;

3. The subgoal defining the induction step contains a disequality between poly-
nomials in non-normal form; they are normalized by expanding it through

Specification and Integration of Theorem Provers 105

Maple calls. In concrete, this is performed by simplification via the evalua-
tion rules.

4. Finally, by a repeated use of the laws which governate disequalities between
products and sums, the induction step is proved. In this phase, additional
Maple calls are used to verify disequalities between ground values, e.g. 2 _< 5.

The compound OMSCS tactic that originates the proof in our formalization
closely resembles the series of Isabelle's tactics invocations used in 10 to achieve
the result. Its execution results in a (flat) symbolic mathematical structure which
represents the proof of the conjecture. The following picture provides a simplified
presentation of the structure.

1 : T H t-t n 5 < 5 n
2 : T H ~-~ 55 < 55
3 : T H t - r n < 5

l~$T

C

4 : T H F-z V x : x E N A 5 < x A x 5 < 5 ~ ~ (x + 1) 5 < 5 (~+l)
~5 : x E N ~M (X ~- 1) 5 ~ X 5 + 5X 4 -~- 10X 3 + 10X 2 + 5X + 1
~ 6 : T H t - t V x : x E N A 5 < x A x 5 < 5 x

X 5 ~- 5X 4 ~- 10X 3 -~ 10X 2 + 5X + 1 < 5 (x+l)
: x E N ~-M 5(x+l) -~ 5 * 5 x

T H ~-r Vx : x E N A 5 < x A x 5 < 5 x
x 5 + 5x 4 -~ 10X 3 + 10X 2 + 5x + 1 < 5 * 5 x

Circles represent object nodes, whose labels are reported in the table; rectangles
represent link nodes, and contain their labels. The complex series of steps cor-
responding to the final phase of the proof are folded within the triangular REST
node. Link nodes labelled with SIgPLIFY identify the points where the systems
cooperate to the solution of the problem; namely, where Maple is invoked to ex-
pand some polynomial power. Note that the REST folded node hides away several
additional Maple calls, meant to perform evaluations of disequalitites.

106 P.G. Bertoli et al.

4 C o n c l u s i o n s

This paper described a framework for the uniform specification of symbolic com-
puta t ion engines and mechanized reasoning systems. The framework can be ex-
ploited to specify the integration between computer algebra systems and theorem
provers, providing a clear formal description of the way they combine. As a re-
sult, the cooperation process between the tools is clearly represented within a
symbolic mathemat ica l structure.

Several research directions are open. First of all, the concrete implementat ion
of the OMSCS specification and integration described in the example is in order.
I ts feasibility is hinted at by 3, which describes a practical example of the use
of the framework. Regarding the interaction level of the framework, a s tandard,
extendible set of services must be determined; their formal semantics must be
defined, and given a concrete syntax. The work in 2 represents a first step in this
direction. The studies undertaken by many research groups, e.g. the OpenMath
group 12 and the PosSo /XDR group 1, must be considered as a start ing point
to the formalization of this architectural component.

R e f e r e n c e s

1. ABBOTT, J. PossoXDR specifications. Internal Posso technical report, 1994.
2. ARMANDO, A., AND RANISE, S. From Integrated Reasoning Specialists to "Plug-

and-Play" Reasoning Components. In Proceedings of AISC'98, Springer Verlag.
3. BERTOLI, P. Using OMRS for real: a case study with ACL2. PhD thesis, Computer

Science Dept., University Rome 3, Rome, 1997. Forthcoming.
4. C. BALLARIN, K. HOMANN, J. C. Theorems and Algorithms: An interface be-

tween Isabelle and Maple. In International Symposium on Symbolic and Agebraic
Computation, ISSAC '95 (1995), H. M. Levelt, Ed., ACM Press, pp. 150-157.

5. CALMET, J., AND HOMANN, K. Structures for symbolic mathematical reasoning
and computation. In Proceedings of DISCO '96 - Design and Implementation of
Symbolic Computation Systems (1996), J. Calmet and C. Limongelli, Eds.

6. COGLIO, A. Definizione di un formalismo per la specifica delle strategie di inferenza
dei sistemi di ragionamento meccanizzato e sua applicazione ad un sistema allo
stato dell'arte. Master's thesis, University of Genoa, Italy, 1996.

7. E. CLARKE, X. Z. Analytica - a theorem prover in mathematica. In Proc. of the
lOth Conference on Automated Deduction (1992), Springer-Verlag, pp. 761-765.

8. GIUNCHIGLIA, F., PECCHIARI, P., AND TALCOTT, C. Reasoning Theories: Towards
an Architecture for Open Mechanized Reasoning Systems. Tech. Rep. 9409-15,
IRST, Trento, Italy, 1994. Short version in Proc. of the First International Work-
shop on Frontiers of Combining Systems (FroCoS'96), Munich, Germany, 1996.

9. J. HARRISON, L. T. Extending the HOL prover with a Computer Algebra Sys-
tem to reason about the Reals. In Higher Order Logic Theorem proving and its
Applications, J. J. Joyce and J. H. Seger, Eds. Springer-Verlag, 1993, pp. 174-184.

10. HOMANN, K.. Symbolisches Loesen mathematischer Probleme durch Kooperation
algorithmischer und logischer Systeme. PhD thesis, Univ. of Karlsruhe, 1996.

11. PRAWITZ, D. Natural Deduction: A Proof-theoretical Study. , 1965.
12. VORKOETTER, S. OpenMath specifications: March 1994, March 1994.

COLETTE, Prototyping CSP Solvers Using a
Rule-Based Language

Carlos Castro

LORIA, 615, rue du Jardin Botanique, BP 101, 54602 Villers-l~s-Nancy Cedex, France
e-mail: Carlos. Castro@loria. fr

Abst rac t . We are interested in modelling constraint solving as a de-
duction process. In previous works we have described how a constraint
solver can be viewed as a strategy that specifies the order of application
of a set of rules, to transform a set of constraints into a solved form. In
this framework, the computation process is associated to a constructive
proof of a formula. On one hand, the use of transformation rules allows to
prove termination in a very easy way. On the other, the use of strategies
allows to describe constraint handling in a very abstract way, prototype
new heuristics almost by modifying only the choice of rules, and com-
bine constraint solver in the same theoretical framework. In this paper,
we introduce COLETTE, an implementation of these ideas using ELAN,
a rule-based language. We exemplify step by step how a flexible strategy
language allows to prototype existing algorithms for solving CSPs. The
theoretical and practical results show that this approach could be useful
for better understand constraint solving.
Keywords : Constraint Satisfaction Problems, Rewriting Logic.

1 I n t r o d u c t i o n

The problem of finding values in the domain of variables such that a set of
constraints is satisfied is called a Constraint Satisfaction Problem (CSP) 12.
Polynomial algorithms have been developed to eliminate values that the variables
can take while preserving the set of solutions 11. The incorporation of these
algorithms into an exhaustive search process is the main reason for the success
of CSP techniques. The need of distinction between basic transformations and
their control has been well-recognised. Now, the challenge is to have an abstract
way to control the basic transformations, which is easily modifiable by the user,
and to be able to integrate several solvers.

Several languages and libraries are now available to deal with CSPs and they
have been successfully applied for solving real-life problems. ILOG Solver 1
allows to deal with constraints through the use of a library of C functions. In
the domain of Logic Programming, constraints were introduced giving origin to
the Constraint Logic Programming paradigm: during execution of a traditional
logic program, constraints are accumulated and solved externally by a solver
that can be seen as a black-box 9. Constraint Handling Rules were proposed,
and included in the ECLiPSe system, to allow the users to define their own

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 107-119, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

108 Carlos Castro

propagation rules 8. In this paper, we introduce COLETTE I, a computational
system 10, implemented in ELAN 4, for dealing with CSPs. The main orig-
inality of COLETTE with respect to the existing systems is the explicit use of
strategies to guide the search process in a flexible way. Indeed, at our best knowl-
edge, COLETTE is the first a t tempt to implement constraint solvers using a fully
rewrite-based approach.

From a theoretical point of view, our original goal was to model constraint
solving as an inference process, where a CSP is transformed into another, equiv-
alent one, but more simple. In this way we model constraint solving as a de-
duction process where the computation process is associated to a constructive
proof of a formula, the query, from a set of axioms 2. In previous works, we
have described constraint solving as an inference process 6,7. We have verified
how naturally a constraint solver can be viewed as a s trategy that specifies the
order of application of a set of rules, to transform a set of constraints into a
solved form. From a practical point of view, our main motivation is to provide
an environment for prototyping heuristics using the expressive power of strate-
gies. Rewriting Logic and rule-based languages seem to be of greatest interest
for implementing these techniques. This is the reason why we are interested in
implementing CSP techniques within a language like ELAN . We have imple-
mented local consistency (Arc-Consistency) and exhaustive search algorithms
(Backtracking, Forward-Checking, ...) for solving constraints over Iategers and
Finite Domains.

At the beginning, we were just interested in a clean rule-based formalization
of constraint solving without taking care about efficiency considerations. Using
the interpreter of the first version of ELAN we were able to solve simple sets
of constraints, for example, crypto arithmetic puzzles, like S E N D + M O R E -=
M O N E Y , using some thousands of rewrite steps in some seconds. However, we
have been surprised that using the ELAN compiler, included in the latest version
of the language, we have been able to solve random instances of hard combi-
natorial problems, like Job-Shop, that are traditionally used as benchmarks by
the CSP community. These results are mainly due to the efficient compilation of
leftmost-innermost normalization and non-determinism carried out by the ELAN
compiler 15. Techniques like many-to-one syntactic matching and reuse of parts
of terms allow to apply up to ten millions of rewrite rules per second. Based on
a typing of the strategies, smart inferences allow to eliminate choice points im-
proving in this way memory management and, as a consequence, performance in
terms of time. Considering the theoretical and practical results, we are convinced
that this approach can be of greatest interest to bet ter understand constraint
solving.

This paper is organized as follows: in section 2, we briefly present CSPs.
In section 3, we present a set of transformation rules tha t express the basic
transformation carried out by existing algorithms used for solving CSPs. Section
4 describes in detail the system COLETTE: we first present the language used
for implementing the system, we show the rewrite rules implementing the set
of transformation rules, we then describe step by step how we can combine

i http://www.loria.fr/~castro/COLETTE/index.html.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 109

these rules in order to built several constraint solvers, next we present the use
of parametr ized strategies to built solvers in a very flexible way, and finally
we exemplify how we can integrate several solvers working together to solve a
global problem. In section 5, we present some s tandard benchmarks solved using
COLETTE. Finally, in section 6, we conclude the paper.

2 CSP

An elementary constraint c ? is an atomic formula built on a denumerable set of
variables and a first-order signature 2. Elementary constraints can be combined
with usual first-order connectives. A CSP is any set C = (c~ A . . . A c~). We
consider CSPs in which the carrier D of the s tructure is a finite set. A solution
of C is a mapping c~ such that c~(C) is true (T). C is satisfiable if it has at least
one solution. We use the constants F or U n s a t i s f i a b l e to denote an unsatisfiable
CSP. To process C we introduce two kinds of constraints: a relation x C ? Dx,
for a variable x and a non-empty set Dx C_ D, is called a membership constraint;
a relation x =? v, for a variable x and a value v E D, is called an equality
constraint.

When solving CSPs we can be interested in finding one solution, all solutions,
or the best solution wrt some given criteria. Solving techniques can be described
as an interleaving process between local consistency verification and domain
splitting. Local consistency verification consists in the elimination of values tha t
the variables can take while preserving the set of solutions. The effect of these
eliminations is propagated through the set of constraints until a fixed point is
reached: no more values can be eliminated from the domain of the variables. If we
cannot derive directly a solution from the set of constraints so obtained, domain
splitting is carried out: we choose a variable and split its domain creating in this
way two independent subproblems. Then local consistency is verified for each
subproblem and this process is repeated until a solution is reached. By iterating
this process we obtain a search tree where nodes correspond to subproblems and
branches to splitting decisions.

3 Transformation Rules for Solving CSPs

In order to simplify their processing, we only deal with CSPs in Conjunctive
Normal Form (CNF.) Tha t is, a CSP is any set C = (c~ A . . . A c~) such that

5 ' *

ci is a disjunction of elementary constraints. A basic form for a CSP P is any
conjunction of formulae of the form:

,, A (c)A A V (c:,)
iEI j E J mEM k6K l~l, . . ,nk

2 For clarity, constraints are syntactically distinguished from formulae by a question
mark exponent on their predicate symbols.

110 Carlos Castro

equivalent to P , where c~ and c~l are elementary constraints, and such tha t for
each variable appearing in the e lementary constraints there must be associated
a membership constraint or an equality constraint, the sets of variables of the
membership constraints and equality constraints are disjoint, and the set asso-
ciated to each variable in the membership constraints is not empty. Variables
which are only involved in equality constraints are called solved variables and
the others non-solved variables. A solved form for a CSP P is a conjunction of
formulae in basic form equivalent to P and such tha t all assignments satisfy all
constraints.

In the rest of the paper we suppose tha t at the beginning of the constraint
solving process we s tar t with a CSP where a membership constraint has been
created for each variable occuring in the set of constraints (the sets Dx, are set
up to D) and no equality constraint is present 3

Given tha t we accept elementary constraints to be combined with all first-
order connectives we need to t ransform the input set of constraints. This kind of
preprocessing can be natural ly specified as a normalization step: the following
set of rewrite rules is applied eagerly on the input problem:

cl <-> c2 => (c1 -> c2) ~ (c2 -> c l)
cl -> c2 => NOT(cl) V c2

NOT(NOT(c)) => c

NOT(cl k c2) => NOT(cl) V NOT(c2)
NOT(cl V c2) => NOT(cl) & NOT(c2)

c V (cl & c2) => (c V cl) ~ (c V c2)

In 7, we propose the set of t ransformat ion rules presented in figure 1 tha t
express the basic operations carried out by the algorithms developed for solving
CSP.

ArcConsistency xi C ? D~ Ac~ A ~ xi e ? RD(xi E ? Dx~,c~) A c~ A C
if RD(x~ E ? D~,,c~) ~ D~,

Falsity x e ? 0 A C ~ F
Instantiat ion x E?D~ A C =~ x =7 v A C if D~ = (v)
El iminat ion x =7 v A C =~ x =? v A C(x ~-* v} if x �9 Yar(C)
SplitDomain x ET D~ A C :~ x E? D'~ A C or x �9 D"~A C

if D'~ U D"~ = D~ a n d D'~ 0 D"~ = 0 and D'~ r 0 and
D~ 5 0

Fig . 1. Transformation Rules for solving CSP

Formally, R D (x i E ? D~,, c~) stands for the set D ~ = {vi E D~, (Svl c
9 D~, , . . . ,v , -1 ~ D~_~,v~+~ ~ D~§ c D ~) : em(v~,. . . ,v~,. . . ,v,~))

and C { x ~ v) denotes the conjunction of constraints obtained from C by re-
placing all occurrenc es of the variable x by the value v. In 7, we prove termina-
tion, correction and completeness of this set of rules. For a satisfiable problem,

3 By equality constraints we mean the constraints of the form x~ =? v~ presented in
this section. This does not mean that elementary constraints involving an equality
predicate cannot occur in the set of constraints.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 111

the application of these rules gives each solution in a particular solved form: we
only have an equality constraint associated to each variable, and all membership
constraints and the sets of elementary and disjunctive constraints have been
eliminated.

In the next section, we present the implementation of these rules using a
rule-based programming language and we show how we can combine them in
order to built a constraint solver.

4 COLETTE

In this section, we describe the system COLETTE. We first present the language
used for implementing the system, we show the rewrite rules implementing the
set of transformation rules presented in section 3, and we then describe step by
step how we can combine these rules in order to built several constraint solvers.
Next, we motivate how useful it can be to handle parametrized strategies in
order to built solvers in a very flexible way, and finally we exemplify how we can
integrate several solvers working together to solve a global problem.

4.1 A Rule-Based Programming Language

ELAN is an environment for prototyping computational systems 10. A compu-
tational system is given by a signature providing the syntax, a set of conditional
rewrite rules describing the deduction mechanism, and a strategy to guide the
application of rewrite rules. Formally, this is the combination of a rewrite theory
in rewriting logic 13, together with a notion of strategy to efficiently compute
with given rewrite rules. Computation is exactly the application of rewrite rules
on a term. The strategies describe the intended set of computations, or equiva-
lently in rewriting logic, a subset of proofs terms. We now explain briefly ELAN
syntax and semantics. We describe informally only the features of the language
that we need to define our system. A full description of ELAN can be found in 4.

ELAN rules a reof the form: ~ : 1 ~ r i f c o n d w h e r e y := (s)t, where ~ is the
rule label, 1 and r the respective left and right-hand sides, cond the condition and
y is replaced in l and r by the terms computed through the application of strategy
s onto the term t. The constant rule id represents identity. For applying rules,
ELAN provides several elementary strategy operators. The operator ';' expresses
the concatenation of strategies. For instance, the strategy iterator dk(gl, �9 �9 gn),
standing for don't know choose, returns all possible results of the application of
gi, and f i r s t (g1 , . . . , ~n) takes the first, in textual order, successful branch. The
strategy iterator repea t*(s) , iterates a strategy s until it fails and returns the
terms resulting of the last unfailing call of the strategy.'

4.2 D a t a Structure

The object representing a CSP and rewritten by the computation process is
defined as a 5-tuple CSPlmc,lec,EC,DC,store, where lmc is a list containing the
membership constraints, l ec is a list containing the equality constraints, EC is a

112 Carlos Castro

list containing the set of elementary constraints to solve, DC is a list containing
the set of disjunctive constraints to solve and s t o r e is a list containing the
e lementary constraints already verified.

4.3 R e w r i t e R u l e s

The rule A r c C o n s i s t e n c y verifies local consistency based on the algorithm AC-
3 11: the constraints in EC are verified and stored in s t o r e . Once a variable 's
domain is modified we extract all constraints in s t o r e where the variable is
involved in and add them to EC. The operator ReviseDxWRTc carries out the
verification of the set of values associated to each variable involved in the con-
straint c. For integer domains we have implemented the predicates <, <, >,
>, =, and 5 . We also implemented predicates like alldiff, known as global con-
straints and widely used for improving constraint propagat ion and memory use.
In fact, to extend our language we just have to define the propagat ion method
for the new predicates, and, as we will see further, their evaluation as a ground
formula.

ArcConsistency // This is the name of the rule. When applying
CSPImc,lec,c.EC,DC,store // this rule, a term of the form CSP is
=> // replaced by the right-hand side of the rule.
CSP append(Imcl, Imc2), lec, append (EC1, EC), DC, newstore
where Imcl,lmc2,1v := OReviseDxWRTc(imc,lec,c)
where ECl,remainingstore := OGetConstraintsOnVar(Iv,store,nil,nil)
choose try if AriZyOfConstraint(c) == 1

where newstore := ()remainingstore
try if ArityOfConstraint(c) >= 2

where newstore := ()c.remainingstore
end

After application of rule A r c C o n s i s t e n c y we could get two particular cases:
a variable 's domain is empty or is reduced to a singleton. The rule F a l s i t y
detects an empty domain and in that case rewrites the problem to Unsatisfiable.
The rule I n s t a n t i a t i o n detects a singleton variable's domain, and in tha t case
the membership constraint is deleted and a new equality constraint is added
instantiat ing the variable to its only possible value.

Falsity Instant iat ion
CSP Ix in? empty, imc, lec, EC,DC, store CSP Ix in? D. imc, lec, EC,DC, store
=> -->

Unsatisfiable CSP imc, x = v. lec, EC, DC, store
if GetCard(D) == 1
where v: = () GetFirstValueOfDomain(D)

Once a variable has been instantiated by creating an equality constraint we can
propagate its effect: the rule E l i m i n a t i o n replaces an instantiated variable by its
value through the sets of constraints EC and Dr The rule E l i m i n a t i o n reduces
the ari ty of constraints where the variable is involved in: unary constraints will
become ground formulae whose t ru th value has to be verified, binary constraints

COLs163 Prototyping CSP Solvers Using a Rule-Based Language 113

will become unary constraints which will be more easily tested, and so on. When
evaluating ground formulae we use two logical rules: CA T ~ C and CAF ~ F. If
one of the ground formulae is evaluated to F the rule E l i m i n a t i o n will return F,
that is the CSP has not solution. Otherwise, when ground formulae are evaluated
to T they are eliminated and the simplified set C is returned.

Elimination

CSP imc, x = v. lec, EC,DC, store
=>

P

if

where

choose

end

occurs x in EC or occurs x in DC

11,12 := OGetRemainingConstraintsInEC(x = v,EC,nil,nil)

try if ii == false.nil

where P := OUnsatisfiable

try if 11 != false.nil
where 13,14,15:=OGetRemainingConstraintsInDC(x = v,

DC,nil,nil,nil)
choose try if 13 == false.nil

where P := ()Unsatisfiable

try if 13 != false.nil

where lu := Oappend(11,13)

where lb := Oappend(12,14)

where P:=()CSPlmc,ShiftConstraint(lec,x = v),

append(lu,lb),15,store

end

Instantiat eFirstValue0fDomain

CSP x in? D. imc, Iec,EC,DC, store
=>

CSP imc, x = v. lec, EC, DC, store

if D ! = empty

where v := OGetFirstValueOfDomain(D)

EliminateFirstValue0fDomain

CSPx in? D.imc,lec,EC,DC,store
=>

CSPx in? RD.Imc,lec,EC,DC,store

if GetCard(D) > 1

RD:= ODeleteFirstValue0fDomain(D)

To deal with the non-determinism of the rule S p l i t D o m a i n we decompose
it in the rules InstantiateFirstValueOfDomain and EliminateFirstValueOf
Domain. The rule InstantiateFirstValueOfDomain creates an equality con-
straint whose value is the first one in the variable's domain and delete the
membership constraint. The rule EliminateFirstValueOfDomain reduces the
variable's domain by deleting the first value. Of course, this is a particular in-
stance of domain splitting. We have also implemented rules for enumerating
values from last to first and for splitting where each new domain has at least
two values.

To deal with the non-determinism of the rule C h o i c e P o i n t we use an asso-
ciative-commutative operator Y and the rule P o s t D i s j u n c t . This rule extracts
a disjunct corresponding to an elementary constraint and add it to the list of

114 Carlos Castro

elementary constraints EC. When applying this rule with the don't know choose
operator we get all elementary constraints involved in the disjunctive constraint.

PostDisjunct
CSPimc,lec,EC,cl V c2.DC,store
=>

CSP Imc, lec, cl. EC,DC, store
if Constraint IsElement ary (c i)

4.4 Strategies

The simplest heuristics for solving CSPs is the force brute algorithm Generate
and Test. The strategy GenerateTest implements this exhaustive search. The
heuristics Backtracking aims to detect failures earlier: it carries out constraint
checking immediately after each variable instantiation. By modifying a little the
order of application of the rules in GenerateTest we obtain the new strategy
Backtracking.

 GenerateTest => // This is the name of the
repeat*(clk (InstantiateFirstValueOfDomain,// strategy. Each application

EliminateFirstValueOfDomain));// of dk returns two new

repeat*(E1imination) // problems, each one is an
// input for the next iteration.

 Backtracking =>
repeat* (dk (InstantiateFirstValueOfDomain; first one (Elimination , id),

EliminateFirstValueOfDomain))

The strategies GenerateTest and Backtracking make a priori choices too early.
A well known general principle when dealing with combinatorial search problems
is to carry out deterministic computations as much as possible before branch-
ing. This is the key idea behind local consistency verification. With this idea in
mind we design the strategy LocalConsistencyForEC that verifies local consis-
tency for a set of elementary constraints. After reaching a fixed point applying
the strategy LocalConsistencyForEC we have to carry out an enumeration in
order to traverse the search space. When after each variable instantiation we
verify again local consistency for all elementary constraints we are implement-
ing the heuristics Full Lookahead. With a simple modification to the strategy
Backtracking, a new strategy FullLookAheadForEC can be easily designed.

The strategy FullLookAheadForEC only deals with elementary constraints.
We can modify the strategy LocalConsistencyForEC to take into account dis-
junctive constraints. We can use the widely used Choice Point approach: we
choose a disjunctive constraint, we extracts a disjunct, and we post it creating
in this way a new subproblem for each disjunct. The strategy LocalConsis tency
ForEC&DC implements this idea, and again, it is designed by a simple modification
to an already existing strategy. The implementation of the rule Pos tDis junct

COLETTs Prototyping CSP Solvers Using a Rule-Based Language 115

 LocalConsistencyForEC =>

repeat* (ArcConsistency ; first one (Instantiation ;

first one (Elimination , id) ,

Falsity ,
id))

 FullLookAheadForEC =>

LocalConsistsncyForEC ; repeat* (dk (InstantiateFirstValue0fDomain ;

first one (Elimination , id) ;

LocalConsistencyForEC ,
EliminateFirstValue0fDomain))

and its use in this strategy shows the elegance of being able to use associative-
commutative operators. Indeed, calling P o s t D i s j u n c t with the don't know oper-
ator will create just one choice point improving in this way memory management
and, as a consequence, performance in terms of time. Now we can easily design a
strategy implementing the heuristics Full Lookahead considering also disjunctive
constraints, the results is the strategy FullLookAheadForEC~DC.

 LocalConsistencyForEC&DC =>
LocalConsistencyForEC; repeat*(dk

 FullLookAheadForEC&DC =>

LocalConsistencyForEC&DC ; repeat*

(PostDisjunct); LocalConsistencyForEC)

(d . k (InstantiateFirstValue0fDomain ;

first one (Elimination , i d) ;

LocalConsistencyForEC ,
EliminateFirstValus0fDomain))

4.5 Strategies with Parameters

The art of constraint solving consists in interleaving local consistency verification
and domain splitting in a way that a small part of the search tree is explored
before reaching a solution. A criteria for guiding the search can be easily incor-
porated in the strategy FullLookAheadForEC~DC: before splitting a domain we
choose the variable that has the minimum set of remaining values.

FullLookAheadForEC&DC =>
LocalConsistsncyForECkDC ; repeat* (GetVarWithMinimumDomain ;

dk (InstantiateValus ;
first (Elimination , id) ;
LocalConsistencyForEC ,
EliminateValue))

Obviously, the criteria presented here, Minimum Domain, an instance of a
general principle known as First Fail Principle, is not the only one that we can

116 Carlos Castro

imagine. Minimal Width Ordering and Maximum Cardinality Ordering 18, are
examples of other principles used to choose the splitting variable. This shows the
importance of being able to tune strategies in a very flexible way 3. The follow-
ing strategy applied with the parameter GetVarWithMinimumDomain is equiva-
lent to the previous one:

stratop
global FullLookAhead(@): (<csp -> csp>) <csp -> csp>;

end
strategies for csp

RuleChoiceVax: <csp -> csp>;
 FullLookAhead(RuleChoiceVar) =>
LocalConsistencyForEC ; repeat* (RuleChoiceVar ;

dk (InstantiateValue ;
first (Elimination , id) ;
LocalConsistencyForEC ,
EliminateValue))

4.6 I n t e r f a c e w i t h O t h e r So lve r s

As pointed out in 17, sometimes one would like to use solvers already de-
signed and implemented for solving specific constraints. As a very simple ex-
ample we could consider the following case: suppose that a CSP can be decom-
posed in several subproblems with disjoint sets of variables. In that case, we
could deal with each subproblem independently using, for example, the strategy
FullLookAheadForEC~DC that we have already presented. Once each subproblem
has been solved we could built a global solution as the union of the solutions of
each subproblem. Next, we briefly present how we can built such a solver using
a rule based approach.

A 5-tuple CSPP,luCSP,lsCSP,laPID,liPID is the object rewritten by the
main solver, where P is the input CSP, luCSP is a list containing all unsolved
CSPs, lsCSP is a list containing all solved CSPs, laPID is a list containing the
identification of active processes (running solvers) and l iP ID is a list containing
the idle process. The main solver is defined by the following strategy:

 ParallelResolution =>
DecomposeCSP ;
CreateSolvers ;
repeat* (SendToSolver) ;
repeat* (GetFirstOutputOfSolver) ;
repeat* (ComposeCSP) ;
repeat* (CloseProcess)

The rule DecomposeCSP creates luCSP, a list of variable-disjoint unsolved
subproblems obtained from the original CSP P. The rule C r e a t e S o l v e r s cre-
ates n idle processes, each one containing a solver as specified by the strat-
egy FullLookAheadForECaDC, where n is the size of the list luCSP. The rule
SendToSolver takes an unsolved problem from the list luCSP and an idle solver
from the list l iP I D creating an active solver in the list laPID. The rule G e t F i r s t

COLs163 Prototyping CSP Solvers Using a Rule-Based Language 117

OutputOfSolver reads a solution from the list of active solvers laPID and put
it in the list of solved CSPs lsCSP. The rules ComposeCSP and C l o s e P r o c e s s
built a solution to the original problem and close all process, respectively.

CreateSolvers
CSPIIP,luCsp,lsCsp,laPid,liPid
=>

CSPIIP,luCsp,lsCsp,laPid,append(liPid,newliPid)
where n := ()size(luCsp)
where newliPid := OCreateProcess(n)

SendToSolver
CSPIIP,csp.luCsp,lsCsp,laPid,pid.liPid

=>

CSPII P,luCsp,lsCsp,pid.laPid,liPid
CSPllP,luCsp,csp.lsCsp,laPid,pid.liPid
where cspl := ()write(pid,csp)

GetFirstOutputOfSolver
CSPIIP,luCsp,lsCsp,

pid.laPid,liPid
=>

where csp := ()read(pid)

5 E x a m p l e s

The popularity of constraint solving techniques is mainly due to their succesful
application for dealing with real-life problems, like industrial scheduling. In this
section, we just concentrate on some classical benchmarks widely used by the
CSP community. Given that our goal is to introduce a general framework to deal
with CSPs, the analysis of different models for representing the problems and
tuning of heuristics for solving specific problems are beyond the scope of this
paper. It is well known that models considering redundant and global constraints
(like alldifJ), can improve constraint propagation, however all the examples pre-
sented here were solved with a very naive strategy: Full Lookahead, choosing the
enumeration variable based on the Minimum Domain criteria, and enumerating
the values from first to last. In figure 2, columns I to VI contain, for each prob-
lem, the number of variables, the number of constraints, the time (in seconds)
to get the first solution, the number of rewrite steps for the first solution, the
time to get all the solutions (and also the total number of solutions), and the
number of steps for all solutions, respectively.

With respect to the performances presented in 19, where specific elaborated
models and heuristics are used to solve these problems, we require between 60
and 70 times its computation times. Taking into account that we use very naive
models and search strategies, we think that these performances are indeed very
good..We have also solved random instances of job-shop problems: using very
simple models and optimization strategies we are able to solve up to 6 x 6
problems. We can obtain in few seconds the first solution of 10 x 10 problems,
however, optimization is not possible in a reasonable time. For this kind of
problems the need for more ellaborated models and smart search strategies is
really important. Considering the average performance of about 500,000 rewrite
steps per second, and the stability of the computation process (this average is

118 Carlos Castro

Problem I II III IV
CROSS+ROADS=DANGER 14 50 0.10 27,092
DONALD+GERALD= 15 59 0.20 90,250

ROBERT
LIONNE+TIGRE=TIGRON 13 41 0.09 45,687
SEND+MORE=MONEY 12 39 0.08 36,934
8 queens 81 84 1.00 480,226
9 queens 9 108 1.06 223,275
10 queens 10 135 3.10 100,557
11 queens 11 165 6.21 1,261,591
12 queens 12 198 5.22 865,741

V
0.28 (1)
0.20 (1)

0.14 (1)
0.09 (1)

12.00 (92)
59.o0 (352)

317.84 (724)
1,525.77 (2680)

9,713.19 (14200)

vl r 169,649
92,408

82,1511
40,478

7,607,120
34,279,650

154,172,782
746,934,337

3,913,842,503

Fig . 2. Some classical benchmarks

the same for problems requiring from some seconds up to some hours) we think
tha t we could go towards more complex problems.

6 C o n c l u s i o n s

We have presented C0kETTH, a computat ional system for solving CSPs. In this
framework, a constraint solver is viewed as a s t ra tegy tha t specifies the order
of application of a set of rewrite rules in order to reach a set of constraints in
a solved form. Transformation rules are a natural way to express operations on
constraints, and ELAN indeed allows one to control the application of the rules
using a flexible s t ra tegy language. Standard algorithms based on Chronological
Backtracking can be natural ly implemented, and one can realize how easy is to
pro to type new heuristics using the powerful of strategies. However, it is difficult
to implement heuristics like Intelligent Backtracking 5 and Conflict-Directed
Baekjumping 16: the basic s t ra tegy operator, don't know choose, does not allow
to jump in the search tree. We have also shown how, in the same framework, we
can built constraint solvers tha t collaborate in order to solve a global problem.
Using the terminology of the constraint solving community, this is an a t t empt
to propose a general framework for collaboration of solvers 14, however, much
more work has to be done in tha t direction.

R e f e r e n c e s

1. ILOG Solver ~.0, User's Manual, May 1997.
2. K. R. Apt. A Proof Theoretic View of Constraint Programming. Fundamenta

Informaticae, 1998. To appear.
3. P. Borovansk:~, C. Kirchner, and H. Kirchner. Rewriting as a Unified Specification

Tool for Logic and Control: The ELAN Language. In Proceedings of The Interna-
tional Workshop on Theory and Practice of Algebraic Specifications, ASF-t-SDF'97,
Workshops in Computing, Amsterdam, September 1997. Springer-Verlag.

4. P. Borovansk~, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN
Version 3.00 User Manual. CRIN & INRIA Lorraine, Nancy, France, first edition,
January 1998.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 119

5. M. Bruynooghe. Solving Combinatorial Search Problems by Intelligent Backtrack-
ing. Information Processing Letters, 12(1):36-39, 1981.

6. C. Castro. Solving Binary CSP Using Computational Systems. In J. Meseguer,
editor, Proceedings of The First International Workshop on Rewriting Logic and its
Applications, RWLW'96, volume 4, pages 245-264, Asilomar, Pacific Grove, CA,
USA, September 1996. Electronic Notes in Theoretical Computer Science.

7. C. Castro. Building Constraint Satisfaction Problem Solvers Using Rewrite Rules
and Strategies. Pttndamenta Informaticae, 1998. To appear.

8. T. Friihwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-
gramming: Basic and Trends. Selected Papers of the 22nd Spring School in The-
oretical Computer Sciences, volume 910 of Lecture Notes in Computer Science,
pages 90-107. Springer-Verlag, Chhtillon-sur-Seine, France, May 1994.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19(20):503-581, 1994.

10. C. Kirchner, H. Kirchner, and M. Vittek. Designing Constraint Logic Programming
Languages using Computational Systems. In P. V. Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The Newport Papers,
pages 131-158. The MIT press, 1995.

11. A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

12. A. K. Mackworth. Constraint Satisfaction. In S. C. Shapiro, editor, Encyclopedia
of Artificial Intelligence, volume 1. Addison-Wesley Publishing Company, 1992.
Second Edition.

13. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73-155, 1992.

14. E. Monfroy. Collaboration de solveurs pour la programmation logique ~t contraintes.
PhD thesis, Universit~ Henri Poincar~ - Nancy 1, November 1996. Also available
in english.

15. P.-E. Moreau and H. Kirchner. Compilation Techniques for Associative-
Commutative Normalisation. In Proceedings of The International Workshop
on Theory and Practice of Algebraic Specifications, ASF§ Amsterdam,
September 1997. Technical report CRIN 97-R-129.

16. P. Prosser. Domain filtering can degrade intelligent backtracking search. In Pro-
ceedings of The 13th International Joint Conference on Artificial Intelligence, IJ-
CAI'93, Chambdry, France, pages 262-267, August 29 - September 3 1993.

17. G. Smolka. Problem Solving with Constraints and Programming. ACM Computing
Surveys, 28(4es), December 1996. Electronic Section.

18. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
19. J. Zhou. Calcul de plus petits produits cartdsiens d'intervalles: application au

probl~me d'ordonnancement d'atelier. PhD thesis, Universit~ de la Mediterran~e,
Aix-Marseille II, March 1997.

An Evolutionary Algorithm for Welding Task
Sequence Ordering

Mart in Damsbo I and Peder Thusgaard Ruhoff 2

1 AMROSE A/S, Forskerparken 10, DK-5230 Odense M, Denmark
emailmez@amrose, spo. dk

2 The Maersk Mc-Kinney Moller Institute for Production Technology,
Odense University, Campusvej 55, DK-5230 Odense M, Denmark

ptr~mip, ou. dk

Abs t r ac t . In this paper, we present some of the results of an ongoing
research project, which aims at investigating the use of the evolutionary
computation paradigm for real world problem solving in an industrial
environment. One of the problems targeted in the investigation is that
of job sequence optimization for welding robots operating in a shipyard.
This is an NP-hard combinatorial optimization problem with constraints.
To solve the problem, we propose a hybrid genetic algorithm incorpo-
rating domain-specific knowledge. We demonstrate how the method is
successful in solving the job sequencing problem. The effectiveness and
usefulness of the algorithm is further exemplified by the fact, that it has
been implemented in the RoboCopp application program, which is cur-
rently used as the task sequence scheduler in a commercially available
robot programming environment.

1 Introduction

The welding of large structures using welding robots is a complicated problem.
An example of such a large s tructure is the ship section from Odense Steel
Shipyard I shown in Fig. 1. The pr imary reason for these complications is, tha t
propagat ion of expanses in the s tructure can lead to unacceptable inaccuracies
in the final product. In order to avoid these problems, one must be very careful
in executing the individual welding jobs and ensure tha t they are only executed
in accordance with what we call welding expert knowledge. Basically, this means
tha t the welding jobs must be done in a sequence, which adhere to a set of con-
straints, where the constraints are derived from the welding expert knowledge.
To find such a sequence is not a difficult task. However, the problem of finding
a sequence, which minimize the t ime needed to complete the welding operations
is an altogether different matter . I t is not difficult to realize tha t finding this
sequence is similar to solving a constrained sequential ordering problem; an NP-
hard combinatorial optimization problem. Finding such a minimal sequence is
clearly impor tant in optimizing the overall performance of the construction yard.

1 Odense Steel Shipyard is mainly producing huge containerships and supertankers. It
is recognized throughout the world as one of the most modern and efficient shipyards.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476~ pp. 120-131, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

An Evolutionary Algorithm for Welding Task Sequence Ordering 121

Fig. 1. Overview of a typical shipsection to be welded using welding robots.

Several methods have been developed to solve this type of combinatorial
problems, e.g. simulated annealing, tabu search and genetic algorithms. For an
overview of these and other methods in combinatorial optimization consult the
book by Reeves [13]. Of course, there is no guarantee that these methods are
able to determine the optimal soultion. Nevertheless, we expect the methods to
be able to find good solutions at a reasonable computational cost.

The purpose of the present contribution is not to compare the various meth-
ods. Instead we will show how one can improve a standard genetic algorithm
by incorporating problem-specific information and use it in an industrial ap-
plication. The application of genetic algorithms to problems in industry is also
discussed by Stidsen [16].

The remainder of the paper is organized as follows. First, we present the evo-
lutionary computation paradigm. Then, in Sect. 3, we give a detailed description
of the welding task sequence ordering problem. In Sect. 4, we outline the evolu-
tionary algorithm. Sect. 5 is devoted to applications of the developed algorithm.
In Sect. 6 we show how one can easily modify the algorithm to give a task room

122 Martin Damsbo and Peder Thusgaard Ruhoff

division. Finally, we make some concluding remarks and give some directions for
future work.

2 The Evolutionary Computation Paradigm

One has only to observe the progress and diversity of nature to fully appreciate
the incredible force of evolution. It is not just a careful pruning of weaker indi-
viduals in populations and 'survival of the fittest'. Co-evolving species, biological
arms races, host versus parasite wars, symbiotic relationships and emerging co-
operative and altruistic behavior are but a few of the facets that make up our
natural world. All interacting in extremely complex ways to create, sustain and
diversify the entire biosphere on earth. Natural evolution and selection oper-
ates on many levels, from genetic effects to full phenotype interaction, involv-
ing emerging properties on innumerable levels of abstraction. On a macroscopic
scale it is the most important force of nature; molding life and the environment
through time.

Motivated by the apparent success and progression of the evolutionary para-
digm in nature, a number of computational methods using the concepts of evolu-
tion have emerged over time. They are collectively known as evolutionary algo-
rtihms and include genetic algorithms, evolutionary programming, evolutionary
strategies. The term evolutionary computation describes any computer-based
problem solving system, which uses computational models of the mechanisms of
the evolutionary process, as key elements in their design and implementation.
These mechanisms include maintaining a pool of candidate solution structures,
which evolve according to genetic operators and selection. Evolutionary compu-
tation methods operate on populations of several solution representations simul-
taneously. Through generations of evolving solutions, individual representations
are modified (mutated), and subjected to fitness evaluation and selection pres-
sure. Most of these methods also employ recombination of existing candidates,
to encourage development and combination of partial solutions. Evolutionary
computation methods rely on these mutation and recombination operators to
gradually produce more and more optimal solutions, when subjected to the de-
sired fitness selection criteria.

John Holland was one of the first to experiment with evolutionary algorithms
during the 1960s, and he established the genetic algorithm theory formally in
1975 10. This included the renowned schema theorem, which stated, that par-
tial solution building blocks (schemas) would propagate according to how well
they performed in a genetic algorithm framework. Until recently virtually all
subsequent theoretical work on genetic algorithms has been based on this notion
of schemas. Some new approaches to establishing a theoretical foundation for
evolutionary algortihms have emerged, with the statistical mechanics view by
Priigel-Bennett and Shapiro 14 as one of the most promising.

The initial motivation was to create an artificial model to study adaptation
phenomena occurring in nature, but genetic algortihms were soon put to use as
general optimization algorithms. The original design has since been developed

An Evolutionary Algorithm for Welding Task Sequence Ordering 123

and extended by many researchers. Good introductions to the field are Goldberg
9 and Mitchell 12.

Evolutionary programming in a sense takes genetic algorithms a step fur-
ther, by not operating directly on solution representations. This approach was
introduced by Fogel et al. 7, and has since been applied to a broad range of
problems. Evolutionary programming methods distinguish between the genotype
and phenotype of a particular solution, and evaluate genotypes only indirectly,
by rating the phenotypes. Genetic algorithms on the other hand modify and
evaluate the solution representations directly. The direct encoding approach has
so far proven the most successful, but evolutionary programming methods are
credited with the potential to do at least equally well, denoting a concept that
is closer to natural design.

In recent years the boundaries between evolutionary algorithm categories
have broken down to some extent. In fact, the way evolutionary algorithms have
evolved and developed into specialized sub-disciplines, in many ways resemble
the very natural concepts, that the algorithms seek to mimic. Hybridization of
known algorithms to achieve superior performance has fueled this development.
As already mentioned, the work presented here focuses mainly on the use of a
hybrid genetic algorithm.

For a comprehensive introduction to the ongoing research within the field of
genetic algorithms, one can consult the conference proceedings 15,18,19,3,2,8,6.

3 T h e W e l d i n g T a s k S e q u e n c e O r d e r i n g P r o b l e m

The basic representation of a welding project is a CAD 3D-object model and
accompanying tasks with interelated dependencies. These data are processed
and transformed into the resulting robot control programs, through the use of
several specialized application modules. Each takes the output from previous
modules and creates the input for subsequent processing in a batch execution as
illustrated in the data processing flow diagram of Fig. 2.

A welding task consists of a number of jobs which are described by their
spatial extension. The jobs must all be executed in sequence and in accordance
with a set of specified dependency conditions.

There are two different types of jobs in the welding tasks considered here

1. Regular welding jobs - defined as lines in space with two fixed end points.
2. Sense jobs - defined as a point in space, and used to dynamically measure and

correct any inconsistencies between the real world and the internal model of
the environment used during the execution of the welding robot program.

The primary objective is to minimize the path between welding jobs in a
route, where all jobs are executed. Minimum path means minimum time to
complete the welding operations. The actual welding length is not included in
the path as it remains constant regardless of different job sequences.

The optimization problem is further complicated by the fact that various
types of dependencies or constraints are imposed on the welding task. They
come in three varieties

124 Martin Damsbo and Peder Thusgaard Ruhoff

Welding
expert

knowledge

Auxiliary
welding
job data

3D Welding task data

constraints) (distance)
"~..~tification ~ ~ calculationJ

Constraints

,~Sequence

integrator

g
I Robot control program

Distance table

Fig. 2. Schematic overview of the robot programming process. RoboCopp is
the welding task scheduler application program developed on the basis of the
evolutionary algorithm outlined in Sect. 4.

1. O r d e r - some welding jobs must be performed before others to prevent ex-
panses from being displaced. Likewise, some sense jobs must precede certain
weld jobs to ensure a sufficient accuracy of the welding process.

2. D i r e c t i o n a l - some jobs (primarily vertical welding seams) need to be welded
in a certain direction to ensure the quality of the welding process.

3. A d j o i n i n g - some welding jobs must be executed in immediate succession of
each other. Again, this constraint is necessary in order to avoid gaps and
inaccuracies in the finished product.

The above mentioned dependencies are h a r d constrains. Thus, a solution
which do not adhere to them is unsuable and is termed illegal.

4 A Hybrid Genetic Algorithm for Task Sequence
Ordering

In the follwoing we give a detailed account of the hybrid genetic algorithm which
form the basis for the RoboCopp application program shown in Fig. 2.

An Evolutionary Algorithm for Welding Task Sequence Ordering 125

4.1 D a t a R e p r e s e n t a t i o n

The distance tables and constraints (see, Fig. 2) are the only input the genetic
algorithm uses to realize the problem space. It makes no further assumptions
regarding model or type of problem, except for the heuristics introduced.

The genotype consists of an ordered list of job identifiers (task no.) repre-
senting the sequence in which jobs should be executed. Information about the
direction of each weld job is also included. The representation is shown in Fig. 3.
Every genotype started out as a random permutation of job numbers, i.e. each
job number appeared only once in the list.

Taskno . #12 #i #41 #67 #9 #6 #33

Direct ion ~ ~ ~ ~ ~ ~

Fig. 3. Representation of candidate solution.

4.2 Crossover and Heuris t ics

The crossover operation is applied to new specimens stochastically. The operator
intends to combine characteristics from both parents in an effort to produce even
better solutions from previous partially good solutions. The conventional binary
encoded crossover operator does not work well for the type of constrained combi-
natorial optimization problems considered here. Several alternative approaches
have been proposed. One of the most promising is the genetic edge recombina-
tion method introduced by Whitley e t a l . 17. In the algorithm presented here
an enhanced version of their method is developed. The crossover algorithm reads

1. Create an edge recombination matrix with information about job connections
and directions in the parents.

2. Choose the first job: Either the first job of parent 1, the first job of parent 2
or randomly chosen in a manner depending upon directional and adjoining
constraints (see, discussion of heuristics below).

3. Remove the selected job from the edge recombination matrix.
4. If both parents have the same job connected to the previously selected job,

then pick this as the next job in the sequence.
5. Otherwise select the job connected to the previously selected job which has

the least further edge connections. Ties are broken randomly. If there are no
jobs left connected to the newly selected, then pick one at random from the
remaining jobs.

6. If the whole sequence has been constructed then stop else go to 3.

126 Martin Damsbo and Peder Thusgaard Ruhoff

The following heuristics are used to enhance the quality of solutions

1. Jobs with adjoining dependencies are treated as one job cluster, i.e. if an
adjoining constrained job is selected, then the rest of the adjoining jobs
will be selected to follow. This will always be the optimum choice, as no
constraints are broken and the path length between them is zero.

2. Jobs with a directional constraint are always inserted in that direction. If
unconstrained, they are inserted according to their parents.

3. If adjoining jobs are directionallly constrained, they are inserted in the only
legal way.

The outlined crossover algorithm ensures that created specimens contain infor-
mation about the sequential structure of their parents, propagating favorable
sub-paths to the next generations.

4.3 M u t a t i o n

Following the crossover operation the specimens in the population can be mu-
tated. The algorithm distinguish between two different forms of mutation. A
minor mutat ion which modify the arrangement of two jobs in the sequence and
a major mutat ion which can involve any number of jobs. Following is a more
detailed description of the mutat ion operators and their relative frequencies

1. Minor mutat ion

- 50%: two single random jos are exchanged.
- 25%: two single adjacent jobs are interchanged.
- 25%: reversal of execution direction for a single job.

2. Major mutat ion

- 80%: a selected sub-path is inserted elsewhere in the sequence.
- 20%: a selected sup-path is reversed.

The mutational operators were designed to maximize the number of possible
favorable sequence modifications, that is creating shorter paths and obeying
constraints. The values of the relative frequencies are determined experimentally.

4 . 4 F i t n e s s C r i t e r i a a n d S e l e c t i o n

The evolving candidate solutions are allowed to break the three types of depen-
dency constraints introduced in Sect. 3. Of course, any legal solution found in
the end must not contain any dependency errors. To achieve this we penalize
dependency errors through a penalty term in the objectve function. Illegal can-
didate solutions are then expected to die out. Including the penalty term, the
fitness or objective function is

F (s) = - (L(s) + N e (s) L m a x) ,

An Evolutionary Algorithm for Welding Task Sequence Ordering 127

where s is a given sequence, L(s) is the path length of s, Ne(s) is the number of
dependency errors in s and Lmax is a penalty length. Ne(s)Lma~ is the penalty
term.

Another approach to avoid the above problem is to construct crossover and
mutation operators that only produce solutions without dependency errors. How-
ever, not only are they much harder to implement, they also impose restrictions
in the state space search.

To find the appropriate parents for the next generation, individuals are
ranked according to fitness. The expected number of offspring is calculated
by assinging each specimen an expected fertility value. This value is a linear
function of the rank. Selection is implemented primarily by stochastic universal
sampling 1. It should be pointed out that 90 % of the entire new generation
of parents were selected using this method. The remaining 10 % were chosen by
generic roulette wheel selection. This resembles Boltzmann selection and gives
every specimen an appropiate chance of reproducing itself. It was introduced to
further diversify the population.

5 A n E x a m p l e

The ship section shown in Fig. 1 is a typical example of a welding project. It con-
sists of 288 weld jobs and 140 sense jobs, giving a total of 428 jobs constrained by
849 dependencies. Of these, the 550 is order dependencies, 168 specified adjoining
weld jobs, and 131 restricted the direction in which a job should be welded. For
a problem this size, initially randomly created solutions had an average of 510
unsatisfied dependencies and a path length of 1430 for the population average,
and 430 errors and a path length of 1390 for the best specimen.

In Fig. 4 and Fig. 5 we see the typical development scenario for a genetic
algorithm population. Note that Fig. 5 is a magnification of the lower part of
Fig. 4, showing more clearly the details of the path length and dependency
error graphs. Curves for population average and best specimen converge almost
indentically, with the population average displaced some percentages above the
best specimen. Solutions with no dependency errors (best specimen) are found
relatively fast, but the average population specimens retain a certain amount of
unfulfilled dependencies. The best total fitness graph converges as a displacement
of the population average fitness, until it coincides with the best path length
curve, when legal solutions are found.

It should be stressed that the parameter settings used in the hybrid genetic
algorithm was determined through massive test runs on the departments SGI
Onyx with 24 MIPS R4400 processors. In fact, the accumulated computing power
expended in test and research, amounted to more than 5 years of CPU time on
a single MIPS R4400 processor. However, we will not in this paper go into a
detailed treatment of the parameter optimization. A detailed account of this
process can be found in Damsbo 4.

128 Martin Damsbo and Peder Thusgaard Ruhoff

Fig. 4. Typical development of a genetic algorithm population in terms of path
length, dependency errors and total fitness.

6 T a s k R o o m D i v i s i o n

The sequential ordering of welding jobs, is just one phase in the development of
robot control programs. One of the other tasks that participates in this process
(see, Fig. 2) is a division of jobs into separate working rooms. Jobs in the same
room were supposed to be appropiately related, i.e. rooms reflected the most
feasible grouping of the welding sequence in terms of execution flexibility. Fur-
thermore, no dependencies could exist between jobs inhabiting different rooms,
making them constraint independent clusters of jobs as well. With rooms di-
vided this way, operators could easily reschedule and rearrange job sections, if
the the original welding sequence ran into problems during execution. The task
of grouping jobs were originally carried out using heuristics, which considered
the location and orientation of jobs.

The room division ensuing from the heuristics approach is not always satis-
factory, making alternative implementations interesting. A straightforward ex-
tension to the evolutionary algortihm allows one to incorporate the room division

An Evolutionary Algorithm for Welding Task Sequence Ordering 129

Fig. 5. Typical development of a genetic algorithm population in terms of path
length, dependency errors for average and best specimen.

task in the sequence ordering optimization. Analogous to the penality term, a
room reward is introduced in the fitness evaluation. Rather than reducing fit-
ness due to unfulfilled constraints, it adds a certain fitness bonus proportionally
to the number of rooms in the solutions. Rooms are identified as constraint
independent clusters of jobs in each objective function evaluation.

One incentive to the above addition is to determine whether a fitness reward
has the same effect as a punishment. The two optimization objectives skew the
distance based fitness landscape in different ways, and they are associated with
different characteristics in solutions. Clearly, there is no guarantee that the two
can operate effectively in parallel and extract their respective solution traits,
without disturbing each other. This is a recurring problem in multi-objective
optimization, involving the extent to which two or more objectives can be inde-
pendently achieved. In this particular case, dependency errors must be weeded

130 Martin Damsbo and Peder Thusgaard Ruhoff

out before the room division can begin. This is due to the fact, that the definition
of rooms assume error-free candidate solutions.

Usiong the above approach, the algortihm can produce well-functioning room
divisions. However, for large problems some manual editing may be needed after-
wards. Nevertheless, it is considered an effective tool in the robot programming
process.

7 C o n c l u s i o n

Evolutionary algorithms appears fit to apply to combinatorial optimization prob-
lems. They are relatively easy to implement, fine-tune and deploy. It is also pos-
sible to utilize the same algorithm core dynamics for different applications of
genetic algorithm optimization. Only solution representation, objective function
and recombination and mutation operators need to be customized for each prob-
lem type. Furthermore, problem specific information can be incorporated into
the optimization process, to take advantage of the characteristics of the problem
space and enhance algorithm performance.

The successful results of the hybrid evolutionary algorithm presented in this
paper seems to support the general notions above. The genetic algorithm con-
sistently finds feasible, error-free solutions with competitively short sequence
paths. Moreover, the task room division described in Sect. 6 clearly demon-
strates the flexibilty of the algorithm. Of course, this flexibilty is very important
in real world industrial applications where sudden changes in the production
environment may lead to changes in the problem-specific assumptions. The ef-
fectiveness and usefulness of the outlined approach which has been implemented
in the RoboCopp application program is further exemplified by the fact that it is
currently used as the task sequence scheduler in a commercially available robot
programming environment.

Encouraged by the immediate success of the evolutionary approach, we have
also developed a distributed parallel version of the algorithm displaying supe-
rior performance in accordance with 5,11. Details about the parallel version
can be found in Damsbo 4. In the future, we will try to further enhance the
performance of the algorithm by incorporating new strategies for exchange of
information between sub-populations.

R e f e r e n c e s

1. Baker, J. E.: Reducing Bias and Inefficiency in the Selection Algorithm. In Grefen-
stette, J. J. (Ed.): Proceedings of the 2nd International Conference on Genetic
Algorithms. 14-21, Erlbaum, 1987.

2. Belew, R. K., Booker, L. B., (Eds.): Proceedings of the Fourth International Con-
ference on Genetic Algorithms. Morgan Kaufmann, 1991.

3. Belew, R. K., Vose, M. D., (Eds.): Foundations of Genetic Algorithms 4. Morgan
Kaufman, 1997.

4. Damsbo, M.: Evolutionary Algorithms in Constrained Sequence" Optimization.
M.Sc. thesis, Odense University, 1998.

An Evolutionary Algorithm for Welding Task Sequence Ordering 131

5. Davidor, Y., Yamada, T., Nakano, R.: The ECOlogical Framework II: Improv-
ing GA Performance at Virtually Zero Cost. In Forrest, S., (Ed.): Proceedings of
the Fifth International Conference on Genetic Algorithms. 171-176, Morgan Kauf-
mann, 1993.

6. Eshelman, L. J., (Ed.): Proceedings of the Sixth International Conference on Ge-
netic Algorithms. Morgan Kaufmann, 1995.

7. Fogel, L. J., Owens, A. J., Walsh, M. J.: Artificial Intelligence through Simulated
Evolution. Wiley, 1966.

8. Forrest, S., (Ed.): Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgan Kaufmann, 1993.

9. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

10. Holland, J. H.: Adaption in Natural and Artificial Systems. Second edition. MIT
Press, 1992.

11. Lin S., Goodman, E. D., Punch, W. F.: Investigating Parallel Genetic Algorithms
on Job Shop Scheduling Problems. In Angeline, P. J., Reynolds, R. G., McDon-
nell, J. R., Eberhardt, R., (Eds.): Evolutionary Programming VI. 6th International
Conference, EP97. 383-393, Springer, 1997.

12. Mitchell, M.: An Introduction to Genetic Algo~'ithms. MIT Press, 1996.
13. Reeves, C. R. (Ed.): Modern Heuristic Techniques for Combinatorial Problems.

McGraw-Hill, 1995.
14. Prfigel-Bennett, A., Shapiro, J. L.: An Analysis of Genetic Algorithms Using Sta-

tistical Mechanics. Physical Review Letters, 72, 1305-1309, 1994.
15. Rawlins, G. J. E., (Ed.): Foundations of Genetic Algorithms. Morgan Kaufmann,

1991.
16. Stidsen, T.: Genetic Algorithms for Industrial Planning. Presented at Emerging

Technologies Workshop, University College London, 1997. Electronically available
at http://www, daimi, aau. dk/'evalia/

17. Whitley, D., Starkweather, T., Shaner, D.: The Travelling Salesman and Sequence
Scheduling: Quality Solutions using Genetic Edge Recombination. In Davis, L.,
(Ed.): Handbook of Genetic Algorithms. 350-372, Van Nostrand Reinhold, 1991.

18. Whitley, L. D., (Ed.): Foundations of Genetic Algorithms 2. Morgan Kaufmann,
1993.

19. Whitley, L. D., Vose, M. D., (Eds.): Foundations of Genetic Algorithms 3. Morgan
Kaufmann, 1993.

Intuitionistic Proof Transformations and Their
Application to Constructive Program Synthesis

Uwe Egly I and Stephan Schmitt 2.

1 Abt. Wissensbasierte Systeme 184/3
TU Wien, Treitlstr. 3, A-1040 Wien

uwe@kr, tuwien, ac. at

2 Department of Computer Science
Cornell University, Ithaca, NY

steph@cs, cornell, edu

Abs t r ac t . We present a translation of intuitionistic sequent proofs from
a multi-succedent calculus s into a single-succedent calculus s
The former gives a basis for automated proof search whereas the latter
is better suited for proof presentation and program construction from
proofs in a system for constructive program synthesis. Well-known trans-
lations from the literature have a severe drawback; they use cuts in order
to establish the transformation with the undesired consequence that the
resulting program term is not intuitive. We establish a transformation
based on permutation of inferences and discuss the relevant properties
with respect to proof complexity and program terms.

1 I n t r o d u c t i o n

Constructive program synthesis relies on the parallel process of program con-
struction and program verification. Using constructive program_development
systems, for example the NuPRL-sys tem 3, this process can be divided into
two steps (see top of Fig. 1). Assume tha t we have a logical specification of a
p rogram within a constructive logic, i.e., Intuitionistic Type Theory (ITT) 9.
In the first step, this specification "formula" will be proven valid using an in-
teractive proof editor based on a sequent calculus for ITT. More precisely, one
finds a constructive proof for the existence of a function f which maps input
elements to output elements of the specified program. In the second step, f
will be extracted from the computat ional content of the proof according to the
"proofs-as-programs" paradigm 1. Hence, f forms a correctly verified program
term with respect to the given specification.

Since the interactive nature of the proof process stands in contrast to an
efficient development of programs, every effort has been made in order to support
au tomated proof search in fragments of ITT. This approach turns NuPRL into
a coherent p rogram synthesis system which integrates a variety of interactively

* The research report is supported by the German Academic Exchange Service DAAD
with a fellowship to the second author.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 132-144, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Intuitionistic Proof Transformations 133

controlled and automated techniques from theorem proving and algorithm design
at different levels of abstraction 2.

In this paper we focus on the automated construction of the purely logical
parts of a NuPRL-proof, i.e., subproofs formalized in first-order intuitionistic
logic ,7. The first-order fragment in NuPRL's calculus corresponds to Gentzen's
sequent calculus/:Jcut 6 (including the cut rule). The integration of an auto-
mated theorem prover for J into NuPRL is depicted at the bottom of Fig. 1:
given a subgoal in J , a separation process constructs a J-formula which serves
as input for an intuitionistic matrix prover 1. The resulting matrix proof A d J has
to be integrated into the actual context of the NuPRL-system in order to provide
global program extraction from the whole proof. Thus, the A4J-proof has to be
transformed back into an / : J -p roof which can be integrated as a proof plan for
solving the original J-goal.

Since the matrix characterization for J 15 is based on a multiple-succedent
sequent calculus/:Jmc, proof reconstruction has to be done in two steps (T1
and T2 in Fig. 1). For realization of the presented concept, efficient proof search
procedures 10 as well as reconstruction procedures for efficient generation of
/:Jmc-proofs from machine-generated proofs have been developed 12. The con-
struction of/:Jcut-proofs from/:Jmc-proofs (step T2) is presented for example
in 11. This transformation T2 is based on a simulation of the multiple succe-
dent in an/:Jmc-proof by a disjunction and using the cut rule (see also 8,4).
For this reason, the extracted program term from the resulting/:Jcut-proof to a
large extent differs from the original specification since the cut rule is applied in
each proof step when a multiple succedent is involved. An important impact on
the program term results: each operation in the succedent has to be prepared
by a selection function which identifies the subformula to be reduced. This was,
of course, not intended when specifying the original problem.

In this paper we focus on an alternative transformation step T2 which em-
phasizes its relation to the original goal, i.e., constructive program synthesis.
We present a permutation-based transformation from/:Jmc-proofs to/ :J-proofs
(without using the cut rule) and investigate the complexity of these proofs. On
the one hand, we show that there exists no transformation which yields in every
case an / : J -p roof with polynomial length (with respect to the s On
the other hand, the resulting/:J-proofs preserve the intended (sub)specification
of the program to be synthesized since introduction of additional connectives
and inference rules will be avoided. We emphasize that an exponential increase
of proof length by our transformation occurs rather seldom, but every program
term benefits from our construction. The key aspect of our approach is given
by a construction of a normal form for/:Jmc-proofs. This will be achieved by
applying permutation schemata locally within a given/:Jmc-proof which will be
pre-structured using so-called layers. From this we obtain a proof transforma-
tion procedure which is based on a hierarchical system of permutation steps and
hence, can easily be implemented into the environment of the NuPRL-system.

1 Its use has historical reasons. There are only a few theorem provers for J (e.g., in
13), but there is nearly no work on comparing implementations.

134 Uwe Egly and Stephan Schmitt

interactive
 og,oa, p oofe itor
~peciflcatior~ ~ I I

~ ~
/ / separation

N u P R L System
constructiveL__~ extraction ~__~
proof I l l mechanism

program

matrix prover ~ .~.::~
for ;7 I
proof , .oo I reconstruction I_ I '1'1
into ~E.:7.~ c

Fig. 1. Application to Constructive Program Synthesis.

2 P r e l i m i n a r i e s

Throughout this paper we use a first-order language consisting of variables,
constants, function symbols, predicate symbols, logical connectives, quantifiers
and punctuation symbols. Terms and formulae are defined according to the usual
formation rules.

A sequent S is an ordered tuple of the form F K A, where F, A are finite
sets of first-order formulae. F is the antecedent of S, and A is the succedent of
S. The semantical meaning of a sequent A i , . . . , An F- B 1 , . . . , Bm is the same as
the semantical meaning of the formula (An_i Ai) --* (vm=i Bi). We write A, A
(A, F) instead of {A} U A ({A} U F). Furthermore, we denote/1 = @ (F = @) in
sequents by F ~- (~- A) with the intended meaning F F- A_ (T K A). The empty
sequent '~-' is interpreted by T ~- 2.

As proof system we use the (cut-free) sequent calculi f-.Jmc a n d / : J shown in
Fig. 2. In order to reduce the number of cases in our proofs, we consider negation
as defined; e.g., -~A is A -* 2, and use an additional _k-axiom. Sometimes, we will
use the above calculi with an explicit negation rule (and without t h e / - a x i o m)
in order to improve readability. These calculi are denoted by L:Jmc and Z:J ~,
respectively. We will also consider L:J extended by the cut rule; this calculus is
denoted by s

There exist two "directions" in which an inference rule can be read. The first
one, the "synthetic direction" is from the rule's premise(s) to its conclusion. In
this case, we say that the principal formula (i.e., the formula which is new in
the conclusion) is introduced by the inference. The second one, the "analytic
direction", is from the rule's conclusion to its premise(s). In this case, we say
that the principal formula is reduced to its immediate subformula(e). These
subformulae are called the active formulae of the inference.

The main difference between LJmc and s is given by the fact that f-.Jmc-
sequents may contain several succedent formulae whereas in / : J at most one
succedent formula is allowed; sequents of the latter kind are called intuitionistic.

An inference rule R of/~Jmc is called generative if R e { ~ l , Vr, 3r}; it is
called critical if R c { ~ r , Vr}. For a generative rule R, at least one premise

Intuitionistic Proof Transformations 135

a x .
F , A I-- A , ` 4

~_ax.
F , • F A , ` 4

FF- A , B , ` 4
V r

F I - A v B , ` 4

F k A , ` 4 F F B , ` 4

F k A A B , ` 4
A r

s : E:.q'~_,r : Z:J" :

F , A b- F , A F

F , A ~- A F I- ~ A , ` 4 F I-- ~ A

- - •
F , • F , - A F ` 4

F & A
v r l

F b A v B

F F B
v r 2

F F A V B

F , ~ A I'- A
, l - - - l

F , ~ A ~- C

s / f~Jc~t:

F ~ A F ~ - B F I - A F , A ~ - C
Ar c u t

F I - A A B F ~ - C

F, A P B F , A ~ - B --~r --+7"
F ~- A- -* B , ` 4 F F A - - * B

F k Ax\a F k Ax\a
Vr a* Vr a*

F I- V x . A , ` 4 F J- V x . A

F ~- A x \ t , S x . A , ` 4 F F- Ax \ t
3 r t - - 3 r t

F ~- 2 x . A , ` 4 F t- 3 x . A

F , A ~ - ` 4 F , B ~ - A F , A ~ - C F , B ~ - C
v l

F, A v B ~ - ` 4 F, A v B F - C
v l

F , A , B ~- .4 F , A , B F- C
Al Al

F, A A B ~- .4 F, A A B I- C

F , A -* B F A , ` 4 F, B F- `4 F , A --* B F- A F , B ~- C
-.-*l

F , A - - * B I - A F , A - . * B ~ - C

F, Vx. A , Ax \ t b A F, Vx. A , Ax\ t ~- C
V 1 t Vl t

F, V x . A ~- A F, V x . A F C

F, Ax \a F A F, Ax\a ~- C
Sl a*

F, 3 x . A F `4 F, 3 x . A ~- C
3 l a*

* a must satisfy the eigenvariable condition for Vr and 31.

Fig. 2. The calculi ~Jmc, s and their extensions.

contains more succedent formulae than the conclusion of R does. An application
of an inference r depends on an application of an inference r t iff r ~ reduces
a superformula of the formula reduced by r in an analytic sequent proof. An
application of an inference r is called dependent generative (d-generative), iff
r is generative or r = Ar and r depends on a generative rule. The generative
branches of a d-generative rule r are the branches above the premises of r except
for r =--~ l, where only the branches above the left premise are generative.

3 C o m p l e x i t y o f P r o o f T r a n s f o r m a t i o n s

Our goal is to construct a n / : J - p r o o f of a sequent S for the NuPRL-system
from an/:Jmc-proof of S which itself is a reconstruction of a proof in some ma-

136 Uwe Egly and Stephan Schmitt

tr ix calculus. The question which we consider in this section is whether such a
construction (named T2 in Fig. 1) yields a n / : i f - p r o o f whose length is "approxi-
mately" the length of the cor responding/ : i f me-proof. More precisely, we consider
minimal (or shor t e s t) / : i f -p roof s and/ : f l in t -proofs for some classes of formulae
and compare their length. As the length of a proof, we use the number of its
axioms. "Approximately" means tha t the length of the / : i f -p roof is bounded
by a polynomial function in the length of the/ : i fmc-proof . We give a negative
answer to the question s ta ted above by providing a class of formulae for which
there are short / : f l in t -proofs but any/:if-proof is long (i.e., its length cannot be
bounded by a polynomial in the length of the former proof).

The following definition of a polynomial simulation is adapted from 5 and
restricted to the case tha t the connectives in both calculi are identical. A calculus
/~ can polynomiaUy simulate (:P-simulate) a calculus/92 if there is a polynomial
p such tha t the following holds. For every proof of a formula (or sequent) F in
/92 of length n, there is a proof of F in P1, whose length is not greater than p(n).

We restrict our at tent ion to cut- free/ : i a n d / : J m c ; if both calculi are ex-
tended by the cut rule then they :P-simulate each other 8,4,11. The next l emma
can be proved easily.

L e m m a 1. /:Jmc "P-simulates/:i.

We will show in the remainder of this section tha t the reverse simulation
is not polynomial. We present a class of formulae for which a n y / : J - p r o o f is
exponential. For arbi t rary n e IN we consider the formulae

n - 1

F(n) -= Vw.(Anw) A A o, ANi ~ Vz.Aoz
i=O

where Oi -- Vx.((Bi VAix) VBi) and Ni -- -,(Bi AVy.Ai+ly). In order to simplify
the discussion, we use the ca lcu l i / : i f~ a n d / : i f me with negation rules instead of
/ : i f a n d / : i f me where -~A is an abbreviat ion for A --~ l . The result can be lifted
to the lat ter calculi by adding axioms of the form l ax .

L e m m a 2. / : f f does not 7~-simulate ~:if me.

Proof (sketch). By counterexample F(n). We show:

(i) There exists an s with 3n + 1 axioms.

(ii) Each s requires 2 ~+2 - 3 axioms.

(i) By induction on n. (ii) First we prove that the eigenvariable condition forces a
unique direction for deriving the axioms in a cut-free s namely, from A0 up
to A~. Let G, H be subformulae of F(n). We define a reduction ordering G ~-* H which
means that G has to be reduced before H. Each s for F(n) has to respect the
reduction ordering Oj ~-~ Nj H O~+1 ~-* Nj+I for 0 < j < n - 2. This can be shown by
induction on j , separately for O~ ~-~ Nj and Nj ~-* O~+1. Then, by induction on n, we
prove (ii). (q.e.d.)

The above result can be understood as follows. An/ : i fmc-proof of F(n) consists
of n subproofs each of them uses atoms with index i. Subproof i needs 3 axioms,

Intuitionistic Proof Transformations 137

i -- 0 , . . . , n - 1, whereas subproof n needs only one axiom. This results in
n - - 1 (Y~=0 3) + 1 ----- 3n + 1 axioms. In contrast, in a n / : J ' - p r o o f , each subproof i

n-1 2 n 3(2 n 1) 2 n - is duplicated 2 i times. Thus, we have (Yi=0 3 �9 2 ~) + = - + -
2 n + 2 - - 3 axioms. From a complexity theoretical viewpoint, the result can easily
be generalized to the c a l c u l i / : J and f~Jmc since avoiding the -~-rules yields a
polynomial (with respect to the length of t h e / : J - p r o o f) increase of proof length.

4 P e r m u t a t i o n - B a s e d T r a n s f o r m a t i o n s

Let us s tar t with an overview of our procedure which constructs an s
from an/ :Jmc-proof . Given an / : Jmc-p roof ol mc of a sequent S (essentially from
our matr ix prover for J) , we first s tructure amc into layers. A layer of a mc is
a maximal subtree L of og mc such that (i) the leaf nodes of L are either axioms
or intuitionistic sequents, and (ii) no intuitionistic sequents occur below the
leaves. The excluded root SL of a layer L is the topmost intuitionistic sequent
not contained in L. a mc can be considered to consist of a couple of layers where
the boundaries between layers are intuitionistic sequents and distinct layers do
not overlap. Applications of critical inferences c form boundaries between layers
because the premise of c is an intuitionistic sequent. The basic idea is to Stepwise
transform each layer L into a n / : J - p r o o f with endsequent SL using (essentially)
the leaf sequents of L as "given axioms". The stepwise transformation is based on
two key observations, namely (i) that each relevant application of a d-generative
inference rule can be permuted above all "highest" Vl-inferences in L, and (ii)
that an/~Jmc-proof /3 mc of F ~- A can be transformed easily into an s
/3 of F ~- D (for some D e A) if/3 me does not contain any Vl-inference. After the
application of all permutations of (i), the resul t ing/ :Jmc-proof is in a specific
normal form.

4.1 P e r m u t a t i o n Schemata

We start our detailed description with an explanation of permutable inferences
(rules) and necessary permutat ion schemata.

Rule R ~ is permutable over rule R (towards the axioms), if, for all applications
r of R, r p of R ~, r immediately above r p such that

1. the principal formula F of r is not active in r~; hence, the two principal
formulae do not overlap.

2. r is the set of all premises of r, S the conclusion of r, r ~ takes premises from
U {S} (B possibly empty) and yields the conclusion S ~,

there is a proof of S ~ from r ~ in which an application of R f occur immediately
above an application of R, or one of the two applications disappear. If F is an
a-formula, then the set B f is obtained by replacing some sequent s e B by a
sequent s ~ such that s ~ is the premise of the inference which introduces F. If F is
a/3-formula, then Bt is obtained by replacing some sequent s e B by two sequents
sl , s2 such that sl, s2 are the premises of the inference which introduces F.

138 Uwe Egly and Stephan Schmitt

For a discussion of non-permutabili t ies of inference rules in Gentzen 's calcu-
l u s / : J see 7,14. Before we prove the local permuta t ion l emma f o r / : J m c , we first
introduce some notational conventions. Let S := A1, .., An ~- Bi, .., B m be a se-
quent. We consider S as a set of signed formulae (Ai) a, .., (An) a, (Bi) s, .., (Bin) s
where a is chosen for antecedent formulae and s is chosen for succedent formulae.
For sequents, we write S, T, U, . . . , possibly subscripted. If S = F ~- A and
T -- F ' t- A ' , then S T denotes F F ' ~- A A ' . Arbi t rary signs are denoted by p, q.

L e m m a 3. In / : Jmc-proo f s , rule R ' is always permutable over R (towards the
axioms) except in the following cases:

RIVl lVI , 3r --~ l I-* r, Vr--* r, Vr
R ' Vr 31 ~ r, Vr Vl ~ l

The first two non-permutabili t ies concerning quantifiers are identical for
/ : J and / :Jmc. The last non-permutabili t ies occur only if ~ r or Vr occurs
in the right premise of the ~ /-inference. The non-permutabil i t ies except the
first two categories do not affect the t ransformation of a layer into a n / : J - p r o o f
because a critical rule forms a boundary (the premise of a critical rule is intu-
itionistic). Impor tan t for our approach is the permutabi l i ty of any generative
rule and of the Ar-rule over any non-generative rule (except critical rules) and
over the --~ /-rule. Permuting the Ar-rule is impor tant if a generative formula
contains a conjunction as a subformula which eventually appears as the principal
formula of an Ar-inference; this inference depends on the generative inference
and has to be permuted over all highest Vl in the layer before the generative
rule can be permuted. After these explanations, we prove Lemma 3.

Proof. The following sequents justify the non-permutabilities (R, R t) from Lemma 3.

(VI, Vr) VxAx k- Vx (Ax V B) II (Vl, 31) VxAx , 3x (Ax ~ 2) ~-
(3r, B/) 3x (Ax A B) ~- 3 x A x II (-* l, -~ r) A -~ (A --* 2) t- A ~ B
(--~ l, Vr) C , C - - - ~ B K V x A x , B ii r, vl) A V B K C - - * B , A
(Vr, VI) A V V x B x K VyB(y) , A I (4 r, --~ l) A V E, A --~ B ~- C ~ B, E
(Vr, ---* l) A V E, A --~ V x B x K VxBx , E

Due to the critical rules, some permutations need not to be considered (for instance,
the case when R and R' are critical). Moreover, we only consider /:Jmc-deductions
without locally superfluous applications of inference rules. For instance, consider the
sequent A --~ B, F t- C --~ D, A. If the (critical) inference --* r with principal formula
C --~ D occurs immediately above the --~/-inference with principal formula A --~ B (in
the left branch), then the latter inference is locally superfluous and can be deleted.
One-premise rule over one-premise rule. If R is a critical rule and R' e {Vr, 3r} then
the second rule is superfluous. CP, Cq are sequences of signed formulae which contain
the principal formula and additional formulae introduced by the critical rule.

S T U S T U
~ R - - R ' (r ~ (~p)qSv

- - R t R
(r162 (r162 qv

One-premise rule over two-premise rule. If R' is a critical rule then R # Ar. Moreover,
the indicated non-permutabilities forbid the case when R =--~ l and R' is critical.

Intuitionistic Proof Transformations 139

S1TU S2TU S1TU S2TU
R - - R' - - R'

(F)PTU ==:V- (r (~)qs2u
R' R (F)V(r (F)P(r

Two-premise rule over one-premise rule. If R is critical then R' r { 4 l, Ar}. Moreover,
the indicated non-permutabilities forbid the case when R is critical and R' = V1.
Observe that (F) p (occurring in the end sequent of a) is replaced by S resulting in
ST2U. No problem can arise in the modified deduction since (F) p is replaced by S
and S consists of the immediate subformulae of (F) p. If (F) p is of the form (VxA) ~
then S ~-- {(F)% (A{x\ t})~}; eigenvariable conflicts with the new free variables in t
can be avoided by renaming eigenvariables in a ' . Moreover, since (F) a e S, appropriate
"instances" can be generated in a ' if necessary. A similar argument applies to the case
if (F) p -~- (3xA) ~ and S -- {(F)% (A{x\ t})~}. The "right permutation" case is similar.

STI U R a ST1 U ST2 U
(F)PT1U (F)VT2U R' ~ (G)qSU R'

(F)V(G)qU (F)p(G)q U R

Two-premise rule over two-premise rule. Observe that (F) p is introduced by V1, --* l,
or Ar, and that replacing (F)PT2U by S1T2U and S2T2U results in two deductions
which are simpler than the deduction of (F)PT2U (some branches of an inference with
principal formula F in polarity p become obsolete; we will call the deletion of these
branches branch modification). The "right permutation" case is similar.

S1T1U S~T1U S1T1U S1T2UR S2T1U S~T~UR,
(F)PT1U R (F) P T 2 U ~ (G)qS1 U (G)qS2U "

"R ' -R (F)P (G)qU (F)P (G)qU (q.e.d.)
The following example il lustrates the "two-premise over two-premise" case.

Example 1. Consider the following s with two ~ 1-inferences.

a f~
A - * B , C - - * D ~ F i - C , A , A A - - ~ B , D , F ~ ' A , A ---*l "Y

A --~ B , C --* D , F ~- A, A B , C --~ D, F F- A

A - * B,C---* D ,F~- A

This proof is transformed into the following one (all inferences are ~/-inferences).

A - - ~ B , C - + D , F ~ - C , A , A B , C - - ~ D T F I - C , A A - * B , D , F I - A , A D , B , F I - A

A -* B , C --* D , F ~- C , A A --* B , D , F I- A

A---* B , C - ~ D,F~- A

This yields the following instantiations: S1 :---= (C --+ D) a, (C) 8, T1 = (A --~ B) a, (A) 8,
$2 := (D) a, T2 := (B) a, U :-~ (F) a, (A) 8, (F) p := (C --~ D) a, and (C) q := (A --~ B) a.

4.2 C o n s t r u c t i n g / : J - P r o o f s v i a N o r m a l F o r m P r o o f s in s

In this subsection, we describe a t ransformat ion of F-Jmc-proofs i n t o / : J - p r o o f s .
T h e following l emma provides a t ransformat ion for s without V/-
inferences.

140 Uwe Egly and Stephan Schmitt

L e m m a 4. L e t a me be an s o f S := 1" F- A , w i t h o u t an appl icat ion o f

Vl and A is n o n - e m p t y 2. T h e n there exis ts an s a o f F F- D f o r s o m e

D E A . Moreover , the length o f a is p o l y n o m i a l in the length o f a me.

Proof . By induction on the depth of a "~.
Base. a mc consists of an axiom F, A t- A, A or/7, _k ~- A. Then F, A F- A or F, _l_ ~- A

are the corresponding axioms in s
Step. (IH) Assume that the lemma holds for all s of depth < n. We

consider an s ol mc of depth n and proceed by case analysis with respect to
the last inference in a m~. In the different cases, the s f~ (or f~l and ~ in the
binary case) are given by IH.

cases Vl, 31, AI, Vr,--+ r can be transformed directly into s

case --~ I. Consider the left deduction below. IH provides an s of
B---~ C, FF- D.

B---*C, F b B , , 4 C, F b A (~ B--*C, F t - B C, F t - A
B --* C, F F- A B --~ C, F t- A

NOW, we have the following two subcases: (i) D E A. Then the indicated
occurrence of B is not relevant in ~nc and we can replace a me by an s
proof of B --+ C, F F- A of depth n - 1. IH provides an s a in this
case. (ii) D ~ ,5. By IH, we obtain s and/~2 of B --* C, F b B and
C, F F- A, respectively. A final application of -+ l results in a.

case 3r. IH provides an s of F F- D. There are the following two sub-

f~-~ cases: (i) D = B { x \ t } . Extending f~ by an 3r-
F f- B{x \ t} , BxB, ,4 inference yields a. (ii) Otherwise, take f~ as a.

F I- 3xB, ,4

case At . IH provides two s j~l and ~2 of F F- D and F F- E, respec-

~7,~ f~c tively. (i) D = B and E ---- C or D = C and
p ~ B, ,4 P ~ C, ,4 E ---- B. Then an additional At-inference yields a.

F I- B A C, ,4 (ii) D 6 A. Set a -- t31. (iii) E E A. Set a = t32.

case Vr. IH provides an s of F F- D.
f~m~ (i) D = A or D ---- B. Then an additional Vr 1 or

F ~- A, B, ,4 Vr 2 yields a. (ii) Otherwise, set a = ft.
F i- A V B,,4 (q.e.d.)

Let us r e tu rn to the general case, i.e., a t r ans fo rma t ion of s w i th

Vl-inferences. L e m m a 3 provides a "micro-step" for this t r ans format ion . The
l e m m a is called the local p e r m u t a t i o n l e m m a for s because only two adja-
cent inferences wi th non-over lapping pr incipal formulae can be permuted . The
following l emma provides a "macro-step" relying on the micro-s teps and requir-

ing the concept of an admissible branch.
Let a me be an f J m c - p r o o f of a sequent S, L be a layer in a me. A branch

b in L is called admiss ible if it conta ins inferences r, o such tha t the following

condi t ions are satisfied.
2 A can be considered to contain at least _l_.

Intuitionistic Proof Transformations 141

1. r is a topmos t Vl-inference in L.
2. o is the topmos t d-generat ive rule below r such t h a t (i) b is a generat ive

b ranch of o, and (ii) each --* /- inference between r a nd o does no t con ta in
any Yl-inferences in its generat ive branches.

L e m m a 5. Let c~ mc be an s o f a sequent S, L be a layer in oL mc.
Moreover, let b be an admissible branch in L containing r and o. Let r ~ be the
lowmost Yl- inference between r and o on b. Then ol mc can be transformed into
an LJmc-proo f ~mc of S such that o occurs above r I.

Proof (sketch). We proceed by induction on the number d of inferences between o and
r t. It is important that b is a branch in L, i.e., no critical rules occur on b. Moreover,
no eigenvariable problems can occur when we permute 3r towards the axioms.

Base d = O. The inferences r' and o are adjacent, r ~ is above o, and o is a d-
generative rule. Since o can be (locally) permuted above Yl, we obtain }~mc by Lemma 3.

Step. We assume that the lemma holds for all generative branches between r' and
o (containing r, r', o as described above) and d < n. Consider a generative branch b
with d -- n and let p, o the two inferences corresponding to the last two elements of
b where p is above o. First, we show that the principal formulae of p and o cannot
overlap. We first consider the subbranch bl ending at p. Observe that p is neither a
critical rule (because these rules do not occur on b) nor the d-generative rule satisfying
the admissibility conditions for b (because o is the topmost occurrence of such a rule).
p is either --* l without Vl-inferences in its generative branches, another left rule or a
non-dependent Ar. Moreover, o affects only the succedent of its (left) premise. In all
of these cases, no overlap can occur between principal formulae of p and o for which
reason permutation cannot fail.

Second, we have to guarantee termination. For this, consider the case where o ----
p = -~ l and reconsider Example 1 for the proof pattern. Observe that c~ does not
contain any Vl-inferences since b has to be admissible. Apply Lemma 4 to a in order
to obtain the (single) relevant succedent formula F. If F ---- A then delete p. If F e A
then delete p and o. If F -- C then permute o over p. Since F --- C, the --~/-inference

o below c~ and the subdeduction ~ have to be deleted. Hence, p remains Yl-free on its
generative branches which yields termination of the transformation. A similar analysis
can be performed for o ---- Ar and p =- -~ l occurring in the left or right premise of
o. For all other cases, permuting o with its predecessor p also reduces the number of
inferences between r' and o. (q.e.d.)

The following l emma provides the cons t ruc t ion of normal ized s

L e m m a 6. Let RI ,L be the set of all topmost Vl-inferences in the layer L which
occur above the inference I . Let ~mc, L, o be given as in L e m m a 5 such that all

generative branches o f o containing an r c Ro,L are admissible. Then ol mc can be
transformed into ~mc 8uch that, for all r ~ Ro,L, o occurs above r.

Let nr be the n u m b e r of V/-inferences be tween o and r, and let n = m a x { n r

r e Ro,L}. The proof is based on nested induct ion: (1) on n (outer induct ion) ;
(2) on the max ima l n u m b e r of not pe rmu ted Ar-inferences and ~ / - i n f e r e n c e s
wi th Vl-free generat ive branches be tween o and a lowmost Vl-inference r t above
o (inner induc t ion) .

142 Uwe Egly and Stephan Schmitt

A normal form for a n / : J m c - p r o o f ol mc is defined by a normal form for each
layer L of a me. The excluded root of a layer L is the topmost intuitionistic
sequent SL not contained in L. Let N = {$1 , . . . , Sn} be the leaves of L where
each Si is either of the form Fi ~- C'i or an axiom. The layer normal form of L is
a subdeduction ML which consists of several layers and is s t ructured as follows:
(1) SL remains the endsequent of ML.
(2) ML has the leaves N ' = {S ~ , . . . , S~m}, m > n, such tha t for each S~ there
exists a S i e N with either Sj = Si, or Sj and Si differ only in eigenvariables
renaming and /or branch modification according to the proof of Lemma 3.
(3) Let R ' be the set of topmost Vl-inferences in ML. Each premise of r' c R ~ is
either a leaf S~ c N ~, or it is an excluded root of a layer l f rom ML. I itself is
either a single layer (possibly l e N/), or it has a subset of N t as leaves.
(4) Each sequent between SL and the premises of all r ~ e R ~ is intuitionistic and
forms a single layer in ML.

The normal form a ~ c of an E~mc-proof a me is defined by all its layer normal
forms. The normal form can be constructed by repeated application of Lemma 6
which locally transforms each layer L of a mc into a layer normal form ML.

T h e o r e m 1. (normal form) Each s a me can be transformed into a
normal form proof a'~ c via permutation of inferences.

By definition of the layer normal form, no Vl-inferences occur within the
topmost layers of ML. In order to construct an s a from a normalized
s a ~ c we have to eliminate redundant formulae and inferences in the
topmost (non-single) layers of each subdeduction ML. Such a construction is
accomplished by a procedure extracted from the constructive proof of Lemma 4.

Example 2. Consider the formula F -- (Vx.Ax V Bx) A (3y.Ay ---* 3z.~Az) --~ 3x .Bx
with its s o/mc shown in Fig. 3. 3 We have two layers where permutations
take place, namely (i) L1 in subgoal 1, between the premise of the 3/-inference as its
excluded root and the axioms, and (ii) L2 containing the left branch of the --*/-inference
with the premise of A1 as its excluded root. First, we permute in L1 the --l-inference
(i.e., an --~/-inference) above the (only) Vl-inference. Second, in L2, we permute the
--~/-inference above the Vl-inference in its generative (i.e., left) branch.

The resulting normal form a ~ c is depicted in Fig. 4. The layer normal form ML1
of L1 is given within subgoal 1' above the excluded root of L1 (the antecedent formula
X will be ignored). ML2 is given by the deduction above the excluded root of L2,
containing eigenvariable renaming b for a, and the duplication of subgoal 1, which
results in subgoal 1' and subgoal 1" due to the permutation schemata of Lemma 3.
Renaming requires a second instance of Vx.Ax V Bx and 3x.Bx, whereas X = Aa and
X = Ba reflects branch modification in these two subgoals.

In order to obtain an •J-proof a of ~- F, we have to delete inferences according
to the proof of Lemma 4. In subgoal 2, the --*/-inference can be deleted since the
additional succedent formula 3y.Ay in its left premise does not contribute to the axiom
Ba F- 3y.Ay, Ba. Hence, subgoal 1" can be deleted as well. For a similar reason, the
--l-inference in the right branch of the remaining subgoal 1' is deleted. Putting together
the results yields an L J-proof a of ~- F.

3 If possible, we omit explicit contractions in VI, --* l, --l, and 3r.

Intuitionistic Proof Transformations 143

A a F Aa, 3 x . B x B a H 3 y . A y , B a
A a I-- S y . A y , 3 x . B x 3 r a B a F 3 y . A y , 3 x . B x 3 r a

A a v B a I- 3 y . A y , 3 x . B X Vl
Vl a

V x . A x V B x I- 3 y . A y , 3 x . B x subg. 1

V x . A x V B x , 3 y . A y --~ 3z . '~Az F 3 x . B x
Al

(V x . A x V B x) A (3 y . A y ~ 3 z . - , A z) t- 3 x . B x
----~r

t- (V x . A x V B x) A (S y . A y ---* 3 z ~ A z) ---* S x . B x

I subgoal 1: I
B a ~- Aa , B a

A a H Aa, S x . B x B a l'- Aa , 3 x . B x 3 r a
Y l

A a V B a F Aa~ 3 x . B x
V1 a

V x . A x V B x ~- Aa~ 3 x . B x

V x . A x V B x , -~Aa F 3 x . B x
31 a

V x . A x V B x , 2 z . ~ A z I'- 3 x . B x

Fig. 3. An s proof of F F from Example 2.

A a H Aa~ S x . B x
3 r a

A a l- 3 y . A y , 3 x . B x subg. 1'

Aa , 3 y . A y ---+ 3 z . ~ A z F 3 x . B x ---*l subg. 2 X , Ab I- Ab, S x . B x

A a V B a , 3 y . A y - - - * 3 z . ~ A z H 3 x . B x Y l X , A b , ~ A b I - S x . B x ,l
Vl a

V x . A x V B x , 3 y . A y ~ 3z . -~Az I- S x . B x
At

(V x . A x V B x) A (3 y . A y -+ S z . ~ A z) F 3 x . B x

t- (V x . A x V B x) A (3 y . A y --* 3 z - , A z) --* 3 x . B x

 subgoal l ' X = Aa : II subgoal l " X = B a : I

X , B b F Ab, B b
S r b

X , B b F Ab, 3 x . B x

X , Bb, ~ A b F ~ x . B x
Vl

X , A b V Bb , ~ A b F" 3 x . B x
Vl b

X~ V x . A x V B x , ~ A b F S x . B x
---*r 31 b

X , V x . A x V B x , 3 z . ~ A z P 3 x . B x

I subgoal B a I-- 3 y . A y , B a 2: 3 r) (~
B a F 3 y . A y , 3 x . B x subgoal 1"

B a , 3 y . A y --* 3 z . ~ A z ~- 3 x . B x

Fig. 4. The normal form a~c from Example 2.

5 Conclusion and Future Work

We have presented a permutation-based proof transformation from Z~Jmc-proofs
into/:J-proofs. It relies on a layer-oriented construction of normal form proofs in
s Furthermore, we have shown that, in general, no polynomial simulation
exists between s and s (both without cut). Our approach will be inte-
grated into NuPRL as an improved transformation step T2 (see Fig. 1) since,
in contrast to existing approaches, it preserves the original logical specifica-
tions when extracting the program terms from the resulting/:J-proofs. Again,
we stress that, in practice, there are only few examples where an exponential
increase of proof length occurs but every program term benefits from our con-
struction. In future work, we have to combine a controlled introduction of cut
with our permutation approach in order to obtain s which preserve
the intended specifications and provide an at most polynomial increase of proof
length for all formulae. We will investigate the computational correspondence
between structuring s with the cut rule and procedural programming
concepts.

References
1. J. L. BATES AND R. L. CONSTABLE. Proofs as programs. ACM Transactions on

Programming Languages and Systems, 7(1):113-136, January 1985.
2. W. BIBEL, D. KORN, C. KREITZ, F. KURUCZ, J. OTTEN, S. SCHMITT, AND

G. STOLPMANN. A Multi-Level Approach to Program Synthesis. In 7 *h LoPSTr
Workshop, LNCS, 1998.

3. R. L. CONSTABLE, S. F. ALLEN, AND H. M. BROMLEY. Implementing M a t h e m a t -

i c s with the NuPRL proof development system. Prentice Hall, 1986.

144 Uwe Egly and Stephan Schmitt

4. H. B. CURRY. Foundations of Mathematical Logic. Dover, Dover edition, 1977.
5. E. EDER. Relative Complexities of First Order Calculi. Vieweg, 1992.
6. G. GENTZEN. Untersuchungen fiber das logische Schlieflen. Mathematische

Zeitschrift, 39:176-210, 405-431, 1935.
7. S. C. KLEENE. Permutability of Inferences in Gentzen's Calculi LK and LJ. Mem-

oirs of the AMS, 10:1-26, 1952.
8. S. MAEHARA. Eine Darstellung der intuitionistischen Logik in der klassischen.

Nagoya Mathematical Journal, 7:45-64, 1954.
9. P. MARTIN-LOF. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory

Lecture Notes. Bibliopolis, Napoli, 1984.
10. J. OTTEN AND C. KREITZ. A Uniform Proof Procedure for Classical and Non-

classical Logics. In 20 th German Annual Conference on AI, LNAI 1137, pp. 307-
319, 1996.

11. S. SCHMITT AND C. KREITZ. On transforming intuitionistic matrix proofs into
standard-sequent proofs. In 4th TABLEAUX Workshop, LNAI 918, pp. 106-121,
1995.

12. S. SCHMITT AND C. KREITZ. Converting non-classical matrix proofs into sequent-
style systems. In CADE-13, LNAI 1104, pp. 418-432, 1996.

13. T. TAMMET A Resolution Theorem Prover for Intuitionistic Logic. In CADE-13,
LNAI 1104, pp. 2-16, 1996.

14. A. S. TROELSTRA AND H. SCHWICHTENBERG. Basic Proof Theory. Cambridge
Univ. Press, 1996.

15. L. WALLEN. Automated deduction in nonclassical logics. MIT Press, 1990.

Combining Algebraic Computing and
Term-Rewriting for Geometry Theorem

Proving*

St~phane F~vre and Dongming Wang

Laboratoire LEIBNIZ - Institut IMAG
46, avenue F~lix Viallet, 38031 Grenoble Cedex, France

Abstract. This note reports some of our investigations on combining
algebraic computing and term-rewriting techniques for automated geom-
etry theorem proving. A general approach is proposed that requires both
Clifford algebraic reduction and term-rewriting. Preliminary experiments
for some concrete cases have been carried out by combining routines im-
plemented in Maple V and Objective Carol. The experiments together
with several examples illustrate the suitability and performance of our
approach.

1 M o t i v a t i o n

This work is motivated by our investigations on automated geometry theorem
proving (GTP) using Clifford algebra and rewrite rules I4,12. Recent research
by Li 7,8 and us has demonstrated the power and capability of Clifford algebra
in expressing geometric problems for the purpose of automated reasoning. Using
the proposed methods, one needs to deal with Clifford algebraic expressions
(or Clifford expressions for short), for which computer algebra (CA) systems
such as Maple and Mathematica have shown to be appropriate. Since Clifford
expressions usually involve operators (e.g., outer and inner products) other than
sum and product as in the polynomial case, an expression that is identically
equal to 0 does not simply evaluate to 0. We found that effective evaluation of
such expressions may be achieved by developing a term-rewriting system (TRS)
with suitably chosen rules.

Implementing a geometry theorem prover based on our approach thus re-
quires tools for both symbolic algebraic computation and term-rewriting. The
former are available typically in CA systems, while the latter have been devel-
oped largely in the community of rewriting techniques. There is no satisfactory
common environment in which the two kinds of tools are integrated with desired
performance. Although some CA systems like Mathematica provide rewriting
functionality in their programming languages, the power of rewriting techniques
is not fully implemented therein; whereas the existing TRS and tools do not con-
tain functions for advanced algebraic computation. Given the nature and design

* This work is supported partially by CEC under Reactive LTR Project 21914 (CU-
MULI) and a project of LIAMA.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 145-156, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

146 St@phane F~vre and Dongming Wang

of such systems, it is clearly inefficient to implement algorithms for algebraic
computation in a TRS, and vice versa. Take for example Maple, in which alge-
braic computations such as simplification and factorization that we need work
pretty well. For experimental purpose, we wrote a set of rewriting routines in
Maple to evaluate Clifford expressions to 0. It turns out that the performance
of these routines is rather poor. The reason seems quite simple: Maple is not
suitable for implementing term-rewriting techniques.

For these and other technical reasons, we chose to implement functions for
Clifford algebraic computation in Maple and those for term-rewriting in Objec-
tive Caml; these functions are combined by building an interface between the
two systems. Implementation issues and other considerations will be described
in Sect. 3 of this paper. In the following section, we shall explain a general
approach that combines Clifford algebraic computation and term-rewriting for
GTP. The suitability and performance of this approach will be illustrated by
some examples and our preliminary experiments in Sect. 4.

2 A Combinational Approach

In this section we sketch a general approach for GTP, based on a combination
of calculation with Clifford expressions and evaluation of such expressions to 0
by term-rewriting.

2.1 Clifford A lgeb ra

We shall work with a ground field K of characteristic ~ 2, an n-dimensional
vector space)2, and a Clifford algebra g associated to some fixed quadratic form
over ~ The reader is referred to 5,8,12 for some basics of Clifford algebra. The
elements of g, sometimes called Clifford numbers, are multivectors. Among Clif-
ford numbers, various operators may be introduced. Typical operators include
geometric sum, geometric product, inner product, outer product, cross product,
meet, and dual operator. They will be referred to as Clifford operators.

For example, let a and b be any two vectors in)2. The geometric sum of a
and b, a + b, is also a vector of)2; the inner product a �9 b of a and b is an
element of ~; the outer product a A b of a and b is a bivector in g. All these
Clifford operators have clear geometric meanings, see 5 for details. They obey
certain basic calculational laws and are related to each other. For instance,

a A b = a b - a . b ,

where ab denotes the geometric product of a, b E)2. Some of the laws/relations
are selected and grouped as rewrite rules in 12. The rich variety of operators to-
gether with such rules makes Clifford algebra a powerful language for expressing
geometric notions and relations.

Combining Algebraic Computing and Term-Rewriting 147

2.2 Formulation of Geometr ic Theorems

Now, let us take a concrete geometry of fixed dimension. Examples of such ge-
ometries are plane Euclidean geometry, solid geometry, non-Euclidean geometry,
and differential geometry. By a geometric entity we restrict it to be a point, or
a geometric scalar such as the length of a segment or the area of a triangle.
Consider those theorems in the geometry, each of which may be formulated
constructively as follows.

Starting with finitely many given free geometric entities #1,- . . , #e, construct
new geometric entities one by one. Some of the constructed entities may be
completely free, while the others are constrained by the geometric hypotheses.
Let the former be denoted #e+l , . . . ,#d (d > e) and the latter X1,..-,Xr. For
convenience, we shall call the free geometric entities #1 , . . . , #d parameters, ab-
breviated to tt, and the constrained geometric entities X1,. �9 Xr dependents.

Take a proper Clifford algebra so that the geometric relations for the con-
structed dependents Xi can be given algebraically in the following form

hl(jtt, X1) : 0,

h~(tt, X1, X2) = 0, (H)

hr (tt, X1, X2,. . . , Xr) = 0,

where each hi is composed by means of Clifford operators. Then, (H) consti-
tutes the hypothesis of the geometric theorem under discussion. The reader may
consult 4,7,8,12 for how to represent geometric relations using Clifford algebra.

Or more generally, one may consider any geometric theorem whose hypothesis
can be first Clifford-algebraized and then transformed into the form (H). One
such triangularization procedure as proposed by Li and Cheng 7,9 is an analogy
to Ritt-Wu's well-ordering principle 13 for polynomials.

It is a special and simple case when each dependent Xi can be solved in terms
of tt and XI,- . . , Xi-1 using Clifford operators; namely,

X.i = fi(~t, Xl, ... ,Xi-1), 1 < i < r. (H*)

Suppose that the conclusion of the theorem to be proved is given as another
Clifford expression

g = = 0 (c)

Proving the theorem amounts to verifying whether (C) follows from (H),
possibly under some subsidiary conditions.

2.3 Reduct ion and Rewri t ing

In order to show that (H) implies (C), one proceeds to reduce the conclusion-
expression g by the hypothesis-expressions hr , . . . , hi successively. During the
reduction, some conditions of the form di ~ 0 may have to be imposed; such
conditions are usually taken as the non-degeneracy conditions for the theorem

148 St~phane F~vre and Dongming Wang

to be true. After the reduction is completed, a Clifford expression r will be
obtained.

In the special case when (H) is replaced by (H*), the reduction is performed
by simply substituting the expressions fi of the dependents into the conclusion-
expression g; the obtained r involves/z only, i.e., r -- r(/z). This has been detailed
in 4,12.

Next, we want to verify whether r is identically equal to 0, i.e., whether r -- 0
is an identity. Recall that r may comprise several Clifford operators. It does not
automatically evaluate to 0 even if it is identically 0. How to evaluate r or a
factor of r to 0 is a crucial issue that was not addressed in the work of Li and
his collaborators. An easy way that was taken by Li is to use Wu's coordinate-
based method when r cannot be simplified to 0. Note that the main advantage
of using Clifford algebra for GTP is to work with points and invariants, so we
apparently wish to avoid introducing coordinates if possible. This is one of the
major motivations for us to advocate using term-rewriting techniques explained
below.

The Clifford operators involved in the expression r are related by a set of
computational laws. It is under these laws that r -- 0 may become an identity.
The laws can be writ ten as equational relations and thus can be represented
as rewrite rules. So now the problem is how to rewrite r to 0 using the rules.
For this, one can develop a TRS on the basis of various efficient techniques that
have been proposed. In 4 we have presented one such rewriting system for the
special case in which r -- r(/~) and only geometric sum, inner /outer /geometr ic
products, and plane dual operator are involved.

2.4 Combinat ion

What we have suggested above is a general approach for GTP that requires
the manipulation and computation with Clifford expressions and the proof of
identities by term-rewriting. It is known that algebraic computat ion and term-
rewriting are two related yet somewhat separate areas of research. The existing
CA systems do not have rich rewrite functionality, nor provide ideal features for
easy and efficient implementation of up-to-date rewrite techniques.

On the other hand, the well-developed rewrite libraries and tools do not sup-
port effective algebraic computation. In our case, some rather advanced algebraic
computations such as simplification and factorization are needed. It is certainly
expensive and unrealistic to develop routines for such computations in a rewrit-
ing environment. As a consequence, we propose to combine routines and tools
developed in CA and rewriting systems. Advantages and general methodologies
of combining algebraic computing and theorem proving have been discussed, for
instance, in 2,3,6. Following some of the suggested strategies, we have been
experimenting with our combinational approach for some restricted cases, in
particular, proving theorems in plane Euclidean geometry.

Combining Algebraic Computing and Term-Rewriting 149

3 Implementation in Maple and Caml

To experiment with the combinational approach suggested in the preceding sec-
tion, we have started an implementation in Maple V and Objective Caml for a
large enough class of theorems in plane Euclidean geometry, whose hypotheses
can be expressed in the form (H*). A technical account of our method for prov-
ing this class of theorems is given in 4,12. This section provides details about
implementation issues and combination strategies. The objective of this work is
twofold: on one hand, we want to develop a new and high-performance geome-
try theorem prover based on coordinate-free methods, in particular, those using
Clifford algebra; the current program will be part of this prover. On the other
hand, we are interested in recent research on combining algebraic computing and
theorem proving (see 2,6). Our investigation may be considered as a practical
exercise on this subject for the case of geometry.

3.1 W h y Maple and Caml

In order to achieve a fine combination of term-rewriting and algebraic comput-
ing, we need polynomial formulas coded into the rewriting steps. Most popular
rewriting packages do not supply any evaluation mechanism for such formulas
and thus are not capable of handling our problem appropriately. So it is neces-
sary to develop a new sample package for such a very special kind of rewriting.
We decided to do it in Objective Caml, a functional polymorphic language di-
alect of ML. Note that ML is widely used in the automated theorem proving
community and recognized for being well-suited to develop prototypes. Its type
inference mechanism is well-adapted to programming, and polymorphism allows
to program once an algorithm used in several contexts. Our representation of
Clifford expressions uses terms both for scalar expressions and purely geometric
expressions. Although being of different types, the two kinds of terms are mostly
treated by the same polymorphic functions; only few of them had to be adapted.
Moreover functionality provides a good solution for combining strategies. Last,
the interpreter provides a good interactive system.

On the other hand, it is very time consuming and difficult to program efficient
algebraic computation procedures (in a rewriting environment) as mentioned be-
fore. It is desirable to take one of the existing CA systems in which powerful al-
gebraic computation routines have already been well implemented. Despite that
Mathematica and other CA systems are good candidates, our long-time experi-
ence influenced our choice of Maple. The main features we need are substitution,
simplification, factorization, collection and sorting, which exist in Maple as well
as many other CA systems. Previous experiments with Maple have showed us
the importance of designing sophisticated strategies and efficient rewriting pro-
cedures. However, the Maple language tends to make large programs very tricky
and makes difficult the modification and test of new strategies - - it is not ad-
equate for programming rewriting techniques. The above considerations give us
the major motivations for pursuing a combination of Carol and Maple.

150 St@phane F~vre and Dongming Wang

3.2 Rewriting

In 4 we have presented a technique allowing to perform algebraic computations
while rewriting a term into another by replacing a variable with a constant stand-
ing for the result of these computations. This idea is presented as an operational
semantic of normalized rewriting 10.

In our implementation, we make a distinction between constant symbols of
the signature of the term algebra and constants, also called atoms, representing
algebraic objects (here, polynomials). Normalized rewriting is presented by its
authors as an a t tempt to unifying the Knuth-Bendix completion, Buchberger
critical-pair and many other similar algorithms. In some previous work, for ex-
ample 2, external computations are modeled by mappings from variables or
constants to external objects. Actually the notion of extended term rewriting
system is more general than what is presented here as we do not consider rules
with variables in their left-hand side matching external objects. In our scheme
they only match ground terms whose constants denote algebraic laws or ele-
ments in an algebraic domain. Moreover, as suggested in 4, these objects are
normalized before a rule is applied. This normalization concretely consists in
sending an algebraic expression to a CA system and then reading the result.
The simple interface may be done either by using Unix pipes as we did or by
using the Maple's facilities for calling kernel functions. The normalization strat-
egy is called immediate computation in 2. Following the notations in 10, this
could be defined as follows. If s ~s denotes the S-normal form of the term s, the
rewrite relation by a rule r at position p is defined by: s --*Pr/s t i f f there is a term
u such that s --~P u and t = u ~s. The two previous approaches to including
external computations in rewriting are different, while ours may be situated in
their intersection. Also, it seems that none of the former has been validated by
combining a CA system with a TRS.

3.3 Design

The architecture of our prototype is simple and allows one to use the user inter-
face of GEOTHER 11, a geometry theorem prover developed by the second au-
thor using several methods (Wu's characteristic sets 13, Buchberger's GrSbner
bases 1, etc.).

Rewriting System j~

High-level functions of GEOTHER are used to send the Clifford expressions
to be reduced to the rewriting module. The latter then uses the CA capabilities
to simplify some expressions involving polynomials for instance. When the ex-
pression is reduced, a function is called with the result as argument. Thus both
the CA system and the TRS cooperate.

Combining Algebraic Computing and Term-Rewriting 151

3.4 T e r m R e p r e s e n t a t i o n

Clifford expressions are represented by terms based on the signature

E = { + , - , * , / , 1, 0, **, A, ., v},

where every symbol is binary except the unary " - " , the ternary v, and the
constants "1, 0". Multivectors are either stated and thus represented by a new
constant or built up from others. The term v(g, f , e) stands for the geometric
product of f and g, where f is any expression in the basic field (e.g., a frac-
tion), e is a Clifford expression and g is the grade of the expression e when
e is not equal to 0. If e equals 0, g does not mean anything. For instance,
v(2, + (- (t) , 1)), A(x, y)) represents (1 -- t) x A y, where t is a scalar parameter
and x, y are multivectors. As the multivector is assumed to be of grade 2, x and
y here should necessarily represent vectors (see 4 for an overview of the rules
for computing a grade). In the previous expression, the two first arguments are
what we call atoms. Atoms are considered as constant symbols by the rewrite
system, except that they actually are subtrees and assumed to be in canonical
form. This form is computed by the CA system. An atom can only be matched by
another atom structurally identical. Rules have four parts: a conditional part,
the left-hand side, the right-hand side and a definition part. The last defines
what computation should be done for atoms. For instance, the following rule,
written in infix form, is part of the system:

a > b : v(gi , f l , v(g2, f2, a) A v(g3, f3, b)) --~ v(gi , f4, v(g3, 1, b) A v(g2, 1, a))

{ f4 = (-1)(g2+g3) / l f2 f3 }.

In general, the fourth part of a rule defines a substitution to apply after
computation of the terms to substitute. Any variable occurring in this part
denotes an atom. Thus variables are replaced by atoms.

The key point in designing a strategy for reducing Clifford expressions is to
avoid a dramatic combinatorial explosion. This is due to the definition of inner
and outer products of two vectors:

x y + y x x y - y x
x . y - - 2 , x A y = 2

which are bilinear. That is why any derived term is further reduced by another
simplification system. The whole strategy is defined by composition of several
elementary strategies (see 4 for more details).

Strategy <

(Matching ~ - ~ Atoms ~ ~ I Computer Algebra ~
V" ~i System '

i .b.tiotion I

152 St@phane F~vre and Dongming Wang

This kind of implementation is made very easy by the use of a special-purpose
rewriting system named EZTerm we have developed. Moreover, pattern-matching
and substitution are performed by linear time complexity algorithms. The use of
a CA system not only makes easy the computation of algebraic expressions but
also helps in normalizing expressions. For instance, to improve efficiency of our
system for disproving conjectures, summands are efficiently grouped by grade
and sorted by Maple. Then the system attempts to reduce each homogeneous
expression to zero starting from the (supposedly) highest grade expression to the
lowest (see the above figure). This reduces the size of each treated expression
and improves the performance. Thus combining systems can also contribute to
use new strategies.

4 E x a m p l e s a n d P e r f o r m a n c e

As shown in the table below, a number of non-trivial geometric theorems may
be proved effectively by combining algebraic computing and term-rewriting. The
following three examples serve to illustrate the suitability of this combinational
approach.

Ex ample 1. Let ABC1, BCA1 and CAB1 be three equilateral triangles drawn
all inward or all outward on the three sides of an arbitrary AABC. It is proved as
Example 3 (b) in 4 that the circumcircles of AABC1,/kBCA1, ACAB1 are con-
current. Now denote the centroids of/kABC1, ABCA1, ACAB1 by Co, A0, B0
respectively. Then the circtuncircles of AABCo, ABCAo, ACABo are also con-
current.

A (
Let the vertex C be located at the origin, i.e., C -- 0. Then the points

A0, B0, Co may be represented in terms of A and B as follows

B v/3 ~ A ~__~_3A~ A + B
A o = ~ - + - - 6 - B , B o = ~ - T 6 , C o - - - ~ - - • ~ _ B ~) ,

6

Combining Algebraic Computing and Term-Rewriting 153

where ~ is the dual operator (see 12 for example). Denote the circumcenters of
ABCAo, ACABo, AABCo by OA, 08 , OC respectively. We have

B . B A'~ - Ao �9 Ao B ~ '
OA

2 B . A~

A . A B~ - Bo �9 Bo A ~ '
OB

2 A . B~

O c = (A" A - B" B) C ~ + (B" B - C ~ 1 7 6 + (C ~ 1 7 6 A" A) B ~
2 (A . C ~ - B . C ~ - A . B ~)

Let M be the reflection of C with respect to OAOB; then

M = 2 (OB �9 OB -- OA" OB) OA + (OA" OA -- OA �9 OB) O s

(oB - OA). (o~ - oA)

We want to prove that

g = (M + B - 20A) A (Oc - OA) = O,

i.e., M is the reflection of B with respect to OAOc. For this purpose, substitute
the expressions of M, Oc, O s , . . . into g. This is a typical problem of algebraic
computation with functions and radicals. For instance, after the substitution
done in Maple V the numerator of g is of the form

cl v ~ + co,

where the coefficients Cl and Co of x/3 are two Clifford polynomials consisting of
17 and 16 terms, respectively. The collection of cl and Co is also typical in CA
systems. Obviously, g -= 0 under the conditions

B . A , # O ,

A . B ~ ~O,

A . C ~ - B . C ~ - A . B ~ ~O,
(OB -- OA) " (OB -- OA) ~ 0

~0 not col(A0, B, C)

~0 not col(B0, A, C)

not col(C0, A, B)

OAOB is non-isotropic

iff both cl ~- 0 and co = 0 (here "not col(A, B, C, . . .)" means that A, B, C, . . .
are not collinear). To show the latter we need rewrite Co and Cl to 0 by applying
the rules relating the Clifford operators.

Application of our rewriting package EZTerm in Objective Carol to both co
and cl yields 0, so the theorem is proved to be true under the above-mentioned
non-degeneracy conditions.

It is not so simple to prove this theorem using Wu's and other coordinate-
based methods.

Example 2. Let A B C be an arbitrary triangle with orthocenter H and cir-
cumcenter O. Denote the circumcenters of A B C H and A A C H by A1 and B1
respectively. Then the three lines AA1, BB1 and OH are concurrent.

154 St4phane F~vre and Dongming Wang

Using the constructions listed in
4,12, the hypothesis of this the-
orem may be given as follows

H = ort_ctr(A, B, C),

O = cir_ctr(A, B, C),

A1 = cir_ctr(B, C, H),

B1 = cir_ctr(A, C, H).

To simplify calculation, one may
take C as the origin: C = 0. Let

I = int(A, A1 ,B , B1).

The explicit expressions of O,
A1, B1 and I can be written out

O\
\ C

according to the formulas in 4,12. The conclusion of the theorem to be proved
is

g = (I - O) A (H - O) = 0 . % col(I,O,H)

Substituting the Clifford expressions of I, B1, etc. into g, we get a fraction of
Clifford polynomials in A and B. The numerator consists of 42 terms and can
be proved to be identically 0 by our TRS, wherefore the theorem is true under
some non-degeneracy conditions.

Example 3. Using our combinational approach to prove the butterfly theorem,
we need to rewrite a large Clifford expression r (consisting of 588 terms) to 0.
Application of EZTerm without using Maple takes 58.9 seconds. When r is sent
to and factored by Maple, we get six factors, one of which is easily rewritten
to 0. So the theorem may be proved in about 44 seconds of total CPU time as
shown in the table.

Factorization is one of the most difficult tasks in computer algebra, for which
modern research has been conducted for several decades. The above example ex-
hibits an obvious advantage of combination, as implementing another (efficient)
factorizer in Caml is neither easy nor reasonable.

We provide below a table of experimental results for 15 significant well-known
theorems proved automatically; some of them cannot be easily proved by using
other methods like Wu's 13. These experiments were made on a Sparcserver
400 with 128MB of memory using Maple V R3 and Objective Caml vl.6. Maple,
Comm and Carol in the heading entries of the table indicate the computing times
in Maple, for communication, and in Caml, given in CPU seconds. The size of
the expressions (to be rewritten to 0) measured by the Maple function length
is shown in the Size column. As usual, times give only an indication and may
slightly vary from one session to another. It should be noticed that these times
also depend on the initial statements of the theorems. Some of them are stated
using high-level predicates further translated into Clifford expressions, while the
others are stated directly using Clifford expressions.

Combining Algebraic Computing and Term-Rewriting 155

Theorem
Orthocenter
Centroid
Euler line
Desargues
Pappus
Gauss line
Ex 3 (a) 4
Ex 3 (b) 4
Ex 3 (c) 4
Ex 3 (d) 4
Example 1
Example 2
Pivot
Simson
Butterfly

Maple
1.4
0.74
2.09
0.92
3.5
2.12
2.09
6.08
0.51
0.34
2.6
0.03
1.02
2.24

12.85

Comm Carol S i z e
0.01 0.01 74
0.01 1.18 297
0.02 0.34 429
0.02 1.26 457
0.04 0.01 1665
0.O2 O.75 489
0.43 1.79 797
1.27 30.5 1741
0.22 0.51 154
0.02 0.57 112
1.01 9.17 1892
0.01 0.01 529
0.34 49.24 274
0.51 15.63 3591
8.17 22.7 36828

This table shows that the time needed for communication between Maple
and E7Term is negligible compared with that for computation. As opposed to
the approach described in 4 (where expressions were extracted from the initial
statements by hand), Maple is used here more intensively. For instance, every
summation is now simplified by Maple. Moreover, we try to factor large expres-
sions to find a null factor. Last, a better strategy (compared with 4) used for
computing the statements allows to reduce the problem size. It is interesting
to note that for larger theorems the rewriting side becomes less efficient with
respect to algebraic computing.

Comparing the proofs and timings produced by our approach with those by
others is beyond our current intention and interest. The comparison and how to
do it fairly and significantly still remain for further investigations.

5 C o n c l u s i o n a n d R e m a r k s

This paper studies the combinational aspects of algebraic computing and term-
rewriting, and respectively two strongly interfaced systems, Maple V and Ob-
jective Caml. A significant extension has been implemented that makes possible
to work on base fields other than Q (the field of rationals). This also allows to
deduce necessary and sufficient algebraic conditions from a reduced Clifford ex-
pression involving scalar parameters. Preliminary experiments have shown that
combination in our case is a realistic and promising approach, by which difficult
geometric theorems can be proved efficiently in a coordinate-free environment.

Although this work is incremental with respect to 4,12, the approach pro-
posed here is more general, the TRS is extended and refined, the combinational
strategies have not been described before, and the implementation of modules
combining Caml and Maple is new. Our implementation is still in progress. For
the Maple part, the Clifford operators like inner/outer products and the dual

156 St~phane F~vre and Dongming Wang

operator are defined as Maple procedures. When used in computation, they often
have some uneven behavior. We continue observing such behavior and believe
that a lot of improvements can be obtained by optimizing the Maple code. We
also t ry to mechanize the analysis of produced Clifford expressions to get a min-
imal set of conditions (for the theorem to be true) and the interpretation of such
conditions in a high-level language involving the usual predicates (collinearity,
parallelism and so on). For the rewriting part, we still s tudy the properties of
the equational system to improve the application of rules. For the combined sys-
tem, we are introducing new strategies to limit the size of computed expressions:
some experiments by hand seem to show that lots of improvements are possi-
ble. Studying new communication strategies is the most promising possibility
for proving still more complicated theorems. We also plan to extend the appli-
cation domain of our implementation for proving theorems in other geometries
including solid geometry and differential geometry in the near future.

R e f e r e n c e s

1. Buchberger, B.: Gr6bner bases: An algorithmic method in polynomial ideal the-
ory. In: Multidimensional systems theory (N. K. Bose, ed.), D. Reidel, Dordrecht
Boston, pp. 184-232 (1985).

2. B/indgen, R.: Combining computer algebra and rule based reasoning. In: Proc.
AISMC-2 (Cambridge, UK, August 3-5, 1994), LNCS 958, pp. 209-223 (1995).

3. F~vre, S.: Integration of reasoning and algebraic calculus in geometry. In: Auto-
mated deduction in geometry (D. Wang et al., eds.), LNAI 1360, pp. 218-234
(1998).

4. F~vre, S., Wang, D.: Proving geometric theorems using Clifford algebra and rewrite
rules. In: Proc. CADE-15 (Lindau, Germany, July 5-10, 1998), LNAI (to appear).

5. Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dor-
drecht Boston (1984).

6. Homann, K., Calmet, J.: Combining theorem proving and symbolic mathematical
computing. In: Proc. AISMC-2 (Cambridge, UK, August 3-5, 1994), LNCS 958,
pp. 18-29 (1995).

7. Li, H.: New explorations on mechanical theorem proving of geometries. Ph.D thesis,
Beijing University, China (1994).

8. Li, H.: Vectorial equations-solving for mechanical geometry theorem proving. J.
Automat. Reason. (to appear).

9. Li, H., Cheng, M.-t.: Proving theorems in elementary geometry with Clifford alge-
braic method. Chinese Math. Progress 26:357-371 (1997).

10. March6, C.: Normalized rewriting: An alternative to rewriting modulo a set of
equations. J. Symb. Comput. 3:253-288 (1996).

11. Wang, D.: GEOTHER: A geometry theorem prover. In: Proc. CADE-13 (New
Brunswick, USA, July 30 - August 3, 1996), LNAI 1104, pp. 166-170 (1996).

12. Wang, D.: Clifford algebraic calculus for geometric reasoning with application to
computer vision. In: Automated deduction in geometry (D. Wang et al., eds.),
LNAI 1360, pp. 115-140 (1998).

13. Wu, W.-t.: Mechanical theorem proving in geometries: Basic principles. Springer,
Wien New York (1994).

Cooperation Between Top-Down and Bottom-Up
Theorem Provers by Subgoal Clause Transfer

Dirk Fuchs

FB Informatik
Universit~t Kaiserslautern

67663 Kaiserslautern, Germany
dfuchs @ inf ormat ik. uni-kl, de

A b s t r a c t . Top-down and bottom-up theorem proving approaches have
each specific advantages and disadvantages. Bottom-up provers profit
from strong redundancy control and suffer from the lack of goal-orienta-
tion, whereas top-down provers are goal-oriented but have weak calculi
when their proof lengths are considered. In order to integrate both ap-
proaches our method is to achieve cooperation between a top-down and
a bottom-up prover: the top-down prover generates subgoal clauses, then
they are processed by a bottom-up prover. We discuss theoretic aspects
of this methodology and we introduce techniques for a relevancy-based
filtering of generated subgoal clauses. Experiments with a model elimina-
tion and a superposition prover reveal the high potential of our approach.

1 I n t r o d u c t i o n

Automated deduction is - -a t its lowest level--a search problem that spans huge
search spaces. In the past, many different calculi have hence been developed
in order to cope with problems from the area of automated theorem proving.
Essentially, for first-order theorem proving two main different paradigms for
calculi are in use: Top-down calculi like model elimination (ME, see Lov68)
a t tempt to recursively break down and transform a goal into subgoals that can
finally be proven immediately with the axioms or with assumptions made during
the proof. Bottom-up calculi like superposition (see BG94) go the other way by
producing consequences from the initial clauses until the empty clause is derived.

When comparing results of various provers it is obvious that provers based
on different paradigms often have quite a different behavior. There are prob-
lems where bot tom-up theorem provers perform considerably well, but top-down
provers perform poorly, and vice versa. The main reason for this is that many
bot tom-up provers suffer from the lack of goal-orientation of their search, but
profit from their strong redundancy control mechanisms. In contrast, top-down
provers profit from their goal-orientation and suffer from insufficient redundancy
control thus entailing long proofs for many problems. Therefore, a topic that has
come into focus of research is the integration of both approaches. In particular,
cooperation between theorem provers based on top-down and bot tom-up princi-
ples (see, e.g., Sut92, Sch94, Fuc98b) appears to be a promising way because by

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 157-169~ 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

158 Dirk Fuchs

exchanging information each approach can profit from the other. Note that it is
also possible to modify calculi or provers which work according to one paradigm
so as to introduce aspects of the other paradigm into it. This, however, requires a
lot of implementational effort to modify the provers, whereas our approach does
not require changes of the provers but only changes of their input (see section
3). As a consequence, we can employ arbitrary state-of-the-art provers.

Information well-suited for top-down provers are lemmas deduced by bottom-
up provers. These lemmas are added to the input of a top-down prover and can
help to shorten the proof length by immediately solving subgoals. Since the
arising problem to filter relevant lemmas has already been discussed (see, e.g.,
AS92, AL97, Fuc98b) we are not going to deal with this aspect here.

Instead, we want to consider top-down/bottom-up integration by transferring
information from a top-down prover to a bottom-up prover. By transferring
top-down generated subgoal clauses we are able to introduce a goal-oriented
component into a bottom-up prover which enables it to solve proof problems
considerably faster (see section 5). However, since similar to the use of lemmas
an unbounded transfer of subgoal clauses is not sensible, techniques for filtering
relevant subgoal clauses must be developed. Note that the method proposed
here is a possible solution to the problem of extracting information suitable for
cooperation from top-down theorem provers. This problem remained unsolved in
DF98 where a general framework for cooperation of different kinds of theorem
provers was introduced.

In order to examine our kind of top-down/bottom-up integration we start
by giving a brief overview about superposition and model elimination theorem
proving in section 2. After that, in section 3 we introduce subgoal clauses and
discuss effects of the integration of ME subgoal clauses into the search state
of a superposition-based prover. In section 4, we point out two variants of a
relevancy-based filtering of subgoal clauses. An experimental study conducted
with the theorem provers SETHEO MIL+97 and SPASS WGR96 reveals the
potential of our techniques. Finally, a discussion and an outlook at possible
future work conclude the paper.

2 Automated Theorem Proving with Superposition and
Model Elimination

The general problem in first-order theorem proving is to show the inconsistency
of a given set g of clauses. Clauses are sets of literals. As already discussed,
theorem provers utilize either top-down or bottom-up calculi to accomplish this
task. In the following, we want to introduce the calculi that we employ for our
theoretic and experimental study.

Typically, a bottom-up calculus contains several inference rules which can be
applied to a set of clauses that constitute the search state. The superposition
calculus (e.g., BG94) contains the inference rules superposition, equality reso-
lution, and equality factoring. It is to be emphasized that we employ the version

Cooperation Between Top-Down and Bottom-Up Theorem Provers 159

of the superposit ion calculus introduced in BG94. Specifically this entails tha t
factoring is only applied to positive literals.

Usually, a bo t tom-up theorem prover maintains a set .~'P of so-called potential
or passive clauses from which it selects and removes one clause C at a time. This
clause is put into the set ~-A of activated clauses. Activated clauses are, unlike
potential clauses, allowed to produce new clauses via the application of some
inference rules. The inferred new clauses are put into 5 ~P. Initially, ~A = 0 and
9 vP --- C. The indeterministic selection or activation step is realized by heuristic
means. To this end, a heuristic T/ associates a natural number w c c l N with
each C E ~ P , and the C E ,~P with the smallest weight w e is selected.

A typic top-down calculus is model elimination, a restricted version of the
connection tableau calculus (CTC) LMG94. This calculus works on connected
tableaux for the initial clause set d. A tableau for a set of clauses C is a tree whose
non-root nodes are marked with literals and where it holds: if the immediate
successor nodes n l , . . �9 nm of a node n are marked with literals l l , . . . , Im, then
the clause ll V . . . V lm (tableau clause) is an instance of a clause from C. A
tableau is called connected if it holds: if a non-leaf node n is marked with literal
l then there is an immediate successor leaf-node n ~ marked with literal 1 ~ such
tha t l = N l'. (Note that ,~ 1 = -~l, if I is positive, ~ l = , if l = -1.)

The connection tableau calculus contains inference rules for transforming
tableaux into others. The rules are start, extension, and reduction. The s tar t
rule can only be applied to the trivial tableau consisting of the unmarked root.
I t selects a clause from C and attaches its literals to the unmarked root. The
step to select a clause from C and to a t tach its literals to an open leaf node
(the branch leading to this node does not contain complementary literals) is also
called expansion. Note tha t the s tar t rule can be restricted to so-called start
relevant clauses without causing incompleteness. Start relevancy of a clause is
defined as follows. If C is an unsatisfiable set of clauses we call S E C s tar t rel-
evant if there is a satisfiable subset C ~ c C such that C ~ U {S} is unsatisfiable.
Since the set of negative clauses contains at least one s tar t relevant clause, in
the following we also consider a restricted calculus which employs only negative
clauses for the s tar t expansion (CTCneg). Tableau reduction closes a branch by
unifying the literal which is the mark of an open leaf node (also called subgoal)
with the complement of a literal on the same branch and applying the substi-
tut ion to the whole tableau. Extension is performed by expanding a subgoal s
and immediately performing a reduction step involving s and one of the newly
introduced subgoals. We write T F T ' if the tableau T ' can be derived from T by
the application of one inference rule. A search tree :yc defined by a set of clauses
C is given by a tree, whose root is labeled with the trivial tableau. Every inner
node in T c labeled with tableau S has as immediate successors the maximal set
of nodes {Vl , . . . , Vn}, where vi is labeled with Si and S F Si, 1 < i < n.

A theorem prover based on the connection tableau calculus tries to solve
a proof problem C by deriving from the trivial tableau a closed tableau, i.e. a
tableau with no open branch. A common way to perform derivations is to employ
iterative deepening procedures (Kor85): in this approach iteratively larger finite

160 Dirk Fuchs

segments of T c are explored in a depth-first manner. These segments are defined
by a so-called bound (which poses structural restrictions on the tableaux which
are allowed in the current segment) and a fixed natural number, a so-called
resource. I terat ive deepening is performed by start ing with a basic resource value
n C iN and iteratively increasing n until a closed tableau is found in the current
segment. A prominent example for a bound is the inference bound (see Sti88)
which limits the number of inferences needed to infer a certain tableau. Note
tha t the connection tableau calculus has no specific rules for handling equality.
Hence, the common equality axioms must be added to the initial clause set when
equality is involved in a problem.

3 S u b g o a l C l a u s e s f o r T o p - D o w n / B o t t o m - U p I n t e g r a t i o n

3.1 T r a n s f e r r i n g T o p - D o w n G e n e r a t e d C l a u s e s t o a B o t t o m - U p
P r o v e r

Because of the fact tha t connection tableau-based provers have a search state
which contains deductions (tableaux) instead of clauses, it is at first sight not
obvious how to extract valid clauses from such a search state which are well-
suited for a superposit ion-based prover. A common method in order to extract
valid clauses is to employ lemma mechanisms of ME provers: Assume tha t a
literal s is a label of the root node of a closed subtableau T s. Let 11, . . . , In be
the literals that are used in reduction steps and tha t are outside of T s. Then,
the clause ~ sV ~ 11 V . . . V ~ In may be derived as a new lemma (since it is
a logical consequence of the tableau clauses in T~). Then, such a lemma could
be transferred to a bo t tom-up prover. As appealing as this idea sounds, it has
some grave restrictions: Usually, such lemmas are due to instantiations needed
to close other branches before- -not as general as they could be. Hence, they
often cannot be used in inferences, especially not in contracting inferences (sub-
sumption, rewriting) which are very impor tant for bo t tom-up provers. Moreover,
since these clauses are generated during the proof run in a rather unsystematic
way they do not really introduce much goal-orientation and hence do not make
use of the advantages of the search scheme typic for ME.

The concept of subgoal clauses, however, allows for the generation of clauses
derived by inferences involving a proof goal: A subgoal clause ST regarding a
tableau T is the clause ST -- ll V . . . V Im, where the literals li are the subgoals
o f the tableau T. The subgoal clause set SB,n,c w.r.t, a bound B, a resource n,
and a clause set C, is defined by SB,n,c = ((.JST) \ C, T is a tableau which is a
label of a node in the initial segment of the search tree for C tha t is defined by
bound B and resource n. Note tha t subgoal clauses are valid clauses, i.e. logical
consequences of the initial clause set. In order to make our method more goal-
directed it is wise to only consider subgoal clauses which are derived from "real"
proof goals, i.e. which are derived from star t relevant clauses. E.g., it might be
sensible to restrict the set of subgoal clauses to descendants of the set of negative
clauses, i.e. to only consider such subgoal clauses where the s tar t expansion was
performed with a negative clause. We call the set of these subgoal clauses ,~B,n,c

~ ' ~ e q "

Cooperation Between Top-Down and Bottom-Up Theorem Provers 161

Example 1. Let C = (-~g,-~pl V . . . V -~Pn V g, ~ql V ... V ~qm V g}. Then,
~Pl V ... V -~Pn is the subgoal clause ST belonging to the tableau obtained
when extending the goal -~g with the clause -~Pl V . . . V ~Pn V g. If we em-
ploy B --- inference bound (In f) and resource k = 2, then S B,k,c = ,qB,k,C = - neg

{-~Pl V . . . v -~Pn,-,ql V . . . V -~qm}.

A subgoal clause ST represents a transformation of an original goal clause
(which is the start clause of the tableau T) into a new subgoal clause realized by
the deduction which led to the tableau T. The set S Inf,k,c is the set of all possible
goal transformations into subgoal clauses within k inferences if we consider all
input clauses to be goal clauses, the set ,qznf,k,c is the set of all possible goal ~ n e g
transformations into subgoal clauses within k inferences if we only consider the
negative clauses to be goal clauses.

Now, in order to couple a ME and a superposition prover, we generate
with the inference bound and a fixed resource k > 1 either the set S Inf,k,c
or the set .~Inf,k,C depending on the fact whether C T C or CTCneg is used. A ~ n e g

superposition-based prover obtains then C U $I,~f,k,C (C IJ ,qInf,k,C~ v n e g / as input.

3.2 R e d u c t i o n o f P r o o f L e n g t h a n d S e a r c h T h r o u g h S u b g o a l
C l a u s e s

The introduced method gives rise to the question whether a proof length re-
duction is possible, i.e. whether there are shorter superposition proofs of the

II ,~Inf,k,C than of the inconsistency of C. Note inconsistency of C U S I n f ' k ' c o r v v ~ n e g

tha t we measure the length of a proof by counting the number of inference steps
needed in it. This question is mainly of theoretical interest. It is more impor-
tant whether a bot tom-up prover can really profit from a possible proof length
reduction in form of a proof search reduction, i.e. a reduction of the number of
inferences the prover needs in order to find a proof. Specifically, it is interesting
to find out in which cases the proof search reduction is high.

First, we assume that no equality is involved in the problem, i.e. superposition
corresponds to (ordered) resolution.

T h e o r e m 1.

1. Let C be a set of ground clauses not containing equality, let ~ C, and let
k > 1 be a natural number. Let P1 and P2 be minimal (w.r.t. the number
of inference steps IPll and IP21) resolution refutation proofs for C and C U
S Inf,k,c, respectively. Then, it holds: IPll > IP~I.
But there is a set of ground clauses C not containing equality (• r C) where
no minimal resolution refutation proof of the inconsistency of C U ,qlnf,2,c - n e g
has a shorter length than a minimal proof of the inconsistency of C.

2. For each k > 1 there is a set of (non-ground) clauses Ck not containing
equality (~ Ck), such that no minimal resolution refutation proof for Ck U

,~Inf,k,Ck is shorter than a minimal resolution refutation S I n f ' k ' c k o r C k U v n e g

proof for Ck.

162 Dirk Fuchs

Proof:

1. Due to lack of space we only prove the first part. (The proof of the second
part can be found in Fuc98a.) Note that no factorization steps are needed
in the case of ground clauses (recall that clauses are sets of literals). Then,
the claim is trivial since the result of the first resolution step of each minimal
proof is an element of S Inf'k'c.

2. Let k > 1. Let Ck be defined by Ck = {~p(xl) V . . . V-~p(xk),p(yl) V . . . V
P(Yk)}. Let > = 0 be the ordering used for superposition. Then, a minimal
resolution refutation proof for Ck requires k - 1 factorization steps (resulting
in the clause p(yl)) and k resolution steps. Furthermore, in S I n f ' k ' c k a r e only
clauses which contain at least one positive and one negative literal. Thus,
none of these clauses can lead to a refutation proof for Ck U S Inf'k'Ck in less
than 2k - 1 inferences. Since .qInf,k,Ck is a subset of S Inf'k'ck w e obtain the v n e g
same result in this case.

Hence, a reduction of the proof length is at least for ground clauses possible.
However, the (heuristic) proof search of a superposition-based prover need not
always profit from the proof length reduction obtained. E.g., it is possible that
all clauses of a minimal refutation proof for C have smaller heuristic weights than
the clauses from S Inf'k'C {,~Inf,k,C~ and will hence be activated before them: ~ v n e g /

Example 2. Let >-- 0 be the ordering used for superposition. Let the clause set
C be given by C -- {~a V ~b V c, ~g V b, a, g, -~c}. The heuristic 7-/ corresponds
to the FIFO heuristic. Further, resolvents of the two most recently activated
clauses are preferred by 7-(. Then, following clauses are activated by the prover
(in this order): -~a V-,b V c, -,g V b, -~a V ~g V c, a, -~g V c, g, c, ~c, D. Furthermore, if
the subgoal clauses of S I n f ' k ' C { , ~ I n f , k , C xvneg / are inserted behind the original axioms
the prover will find the same refutation proof as before and the proof search can
hence not profit from a possible proof length reduction.

However, since the example (especially the chosen heuristic) is somewhat con-
trived it can be expected that for many problems clauses from S Inf'k'C {,~Inf,k,C x v n e g /
will be activated and can contribute to a reduction of the search effort.

In the case that equality is involved in the problem, a proof length reduction
is not guaranteed even for ground clauses.

T h e o r e m 2. For each resource k > 1 there is a set of ground unit equations
Ck (2 ~ Ck) where the minimal superposition refutation proofs for Ck U S Inf'k'ck
(Ck II .q~nf,k,Ck) are not shorter than minimal proofs for Ck. v ~ n e g

Proof." Let > = 0 be the ordering used for superposition. Consider the set of unit
equations Ck ---- {a ---- b, f k - l (a) ~ fk- l (b)} . We assume that >---- 0 is used as an
ordering for superposition. Then, a minimal superposition refutation proof for
Ck requires two inferences, a superposition step into f k - l (a) r f k - l (b) resulting
in the inequation f k - l (a) ~ f k - l (a) , and then an equality resolution step. In
the set S Inf'k'ck are either non-unit clauses whose refutation requires at least 2

Cooperation Between Top-Down and Bottom-Up Theorem Provers 163

inferences or the units L / = {fi(a) ~ f i (b) , f f (a) -= i f (b) : 0 < i < k - 1,0 <
j < k - 1 }. Since also the refutation of Ck U/4 requires a superposition and an
equality resolution step a proof length reduction is impossible. Since .r is vr~eg

a subset of S In$'k'Ck w e obtain the same result in this case.
Despite this negative result, it is sometimes possible to shorten the proof

search if the search space is restructured in a favorable way.
All in all, we obtain that in general the reduction of the heuristic search for

a proof cannot be guaranteed although sometimes proof lengths--at least for
ground clauses and if no equality is involved in the problems--are shortened.
Nevertheless, in practice it might often be the case that a restructuring of the
search caused by using subgoal clauses allows for finding proofs faster. The inte-
gration of subgoal clauses into the search state of a superposition-based prover
promises a strong gain of efficiency in the following cases:

Firstly, it is important that some of the subgoal clauses can be proven quite
easily, especially more easily than the original goal(s). In order to estimate this,
it is necessary to judge whether they can probably be solved with the help of
clauses of the initial clause set. E.g., measuring similarity between a goal and
other clauses with the techniques developed in DF94 may be well-suited.

Secondly, a solution of a newly introduced subgoal clause should not always
entail a solution of an original goal within few steps of the prover. If this were
the case then the integration of new subgoal clauses would not promise much
gain. Criteria in order to estimate this are: on the one hand, the transformation
of an original goal clause into a subgoal clause by a ME prover should have
been performed by using many inferences, i.e. k should be quite high. Then, it
is possible that a solution of a new subgoal clause does not entail a solution of
an original goal within few steps because the probability is rather high that a
bottom-up prover cannot---due to its heuristic search--quickly reconstruct the
inferences needed to infer the original goal. On the other hand, if there is a
subgoal clause ST and some of the tableau clauses of the tableau T have a high
heuristic weight regarding the heuristic of the superposition-based prover, a high
gain of efficiency may occur if the prover can prove ST. This is because inferences
needed to infer the original goal may not be performed by the prover.

4 R e l e v a n c y - B a s e d S e l e c t i o n o f S u b g o a l C l a u s e s

Already when using small resources k the set S Inf 'k 'C (,~ Inf'k'C'l ~vneg can become
quite large. Thus, it is not sensible to integrate all subgoal clauses from S In f ' k ' c

(.qrnf, k,r into the search state of a superposition-based prover: Integrating too vneg
many clauses usually does not entail a favorable rearrangement of the search be-
cause the heuristic "gets lost" in the huge number of clauses which can be derived
from many subgoal clauses. Hence, it is reasonable to develop techniques for fil-
tering subgoal clauses that entail a large gain of efficiency for a superposition
prover if they can be proven. I.e. we are interested in filtering relevant subgoal
clauses. Therefore, our approach is as follows: At first, we generate a set of sub-
goal clause candidates and then we select some subgoal clauses from this set. The

164 Dirk Fuchs

Fig. 1. Inference-based generation of a set of subgoal clause candidates

chosen subgoal clauses are added to the search state of the bottom-up prover.
We shall first introduce two techniques for generating a set of subgoal clause
candidates. After that, we shall deal with selecting relevant subgoal clauses.

In order to generate a set of interesting subgoal clauses it is important that
we employ a large resource for generating subgoal clauses. As we have already
discussed, subgoal clauses that are generated with a small number of inferences
do not promise much gain because a bottom-up prover may easily reconstruct the
inferences needed to infer them. Thus, if the prover is able to prove the subgoal
clause it can also prove the original goal clause with few inferences and we do
not gain much efficiency. However, it is not possible to generate all subgoal
clauses S Inf'k'C (,~Inf,k,C~ for a sufficiently large resource k as subgoal clause x v n e g]
candidates because their large number entails too high costs for the generation
and additional selection. Hence, we are only able to choose as subgoal clause
candidates a subset of Sx~/,a,c (.qlnf,k,C~ k sufficiently large (see section 5). k v n e g / ,

Our first variant, an inference-based method, starts by generating subgoal
clauses from S I n f ' k ' C { , ~ I n f , k , C ~ for a rather large resource k and stops when Nsg ~ n e g /
subgoal clause candidates are generated. The advantage of this method is that it
is very easy and can efficiently be implemented: Tableaux are enumerated with
a fixed strategy for selecting subgoals for inferences (usually left-most/depth-
first) and for each tableau its subgoal clause is stored. The main disadvantage
of this method is that due to the fixed strategy and the limit of the number
of subgoal clauses, we only obtain subgoal clauses which are inferred from goal
clauses by expanding certain of their subgoals with a high mlmber of inferences,
other subgoals only with a small number of inferences. (See also Figure 1: Ovals
are tableaux in a finite segment of the search tree T, the lines represent the
t- relation. Grey ovals represent enumerated tableaux, i.e. their subgoal clauses
are stored, white ovals represent tableaux which are not enumerated within Nsg
inferences.) Thus, the method is somewhat unintelligent because no information
about the quality of the transformation of an original goal clause into a subgoal
clause is used. Certain transformations are favored only due to the uninformed
subgoal selection strategy.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 165

Fig. 2. Adaptive generation of a set of subgoal clause candidates

Our second variant, an adaptive method, tries to overcome the disadvantages
of the first in the following way: Instead of allowing for more inferences when
generating subgoal clauses due to an uninformed subgoal selection strategy, we
want to allow for more inferences at certain interesting positions of the search
tree T c for a given set of clauses C.

In detail, our approach is as follows: At first, we generate all subgoal clauses
sXnf,kl,C (,qlny,kl,C~ with a resource kl which is smaller compared to the first \ ~ n e g]
variant. Then, a fixed number Nref of subgoal clauses is chosen which promise
the highest gain of efficiency regarding the criteria from section 3. More exactly,
we choose subgoal clauses which are maximal w.r.t, function ~:

r = Oll* I(ST) + O~2" max{we : C is a tableau clause in T}
+ ~3" max{sire(ST, C) : C e C, ICI = 1}

The higher the number of inferences I(ST) is which are needed to infer ST
the higher r should be. Hence, a l should be positive. Also a rating c~2 > 0
is sensible. If there are tableau clauses C in T which have a high heuristic weight
zvc regarding the heuristic 7-/of the superposition-based prover we can perhaps
gain a lot of efficiency. The function sim measures whether literals from ST could
probably be solved with unit clauses from C. We utilized the function occnest
[DF94] for accomplishing this task.

Now, let M y~f C 8 Inf,kl,c {,qlnf,kl,C~ be the set of chosen subgoal clauses. -- ~--neg /
Then, we generate again with a resource k2 subgoal clauses but employ as start
clauses for the tableau (subgoal clause) enumeration the clauses from M Nr~1.
We call the set of subgoal clauses generated with this method S Inf'k2'c'MNr~I .

(Consider also Figure 2: The dotted line shows which subgoal clauses are gen-
erated with resource kl. Then some of them are selected (black ovals) and used
as starting points for the generation of new subgoal clauses (grey ovals) with
resource k2.) The resource k2 should again be not too high in order to allow for
a fast enumeration of the subgoal clauses. The set of subgoal clause candidates
is then given by S I n f ' k l ' c [...j s l n y , k 2 , C , M N " ~ . f (, q I n y , k l , C I..J 8 I n f , k 2 , c ' M N r ' e ' f) Thus,

v neg
subgoal clause candidates are all subgoal clauses derived with a certain number
of inferences which m a y - - a t least for ground clauses and if no equality is in-
volved in the problem--guarantee a reduction of the proof length. Further, we

166 Dirk Fuchs

have some subgoal clause candidates derived with a higher number of inferences,
at most kl + k2. These subgoal clauses promise a high gain of efficiency because
they are derived from subgoal clauses selected with function ~.

For selecting subgoal clauses from the set of subgoal clause candidates we
employed function ~, defined by ~(ST) ~-- ~ /) (S T) - - O(ST) and selected clauses
with the highest weight. 0 simply counts a weighted sum of the number of vari-
ables in ST and two times the number of function or predicate symbols in ST.
Hence, "general" subgoal clauses are preferred because they can more often be
used in inferences of a bottom-up prover.

5 E x p e r i m e n t a l R e s u l t s

In order to evaluate our concept of integrating top-down/bottom-up provers by
cooperation, we coupled two renowned provers: the ME prover SETHEO (which
employs CTCneg) and the superposition prover SPASS. Each prover runs on an
own processor and obtains the initial clause set C as input. When tackling simple
problems it is unnecessary to let the provers cooperate. Therefore, each prover
tries to solve the problem independently with a timeout of 4 seconds. If no prover
could solve the problem, the top-down prover generates subgoal clauses with one
of the two variants. Note that in our context this does not require changes in
the top-down prover but can be performed with built-ins of the PROLOG-style
input language of SETHEO. Then, these subgoal clauses are filtered, transferred
to the bottom-up prover, and integrated into its search state. Finally, the provers
proceed to tackle the problem in parallel.

Hence, we can efficiently solve simple problems. Moreover, cooperation can
be performed for harder problems after the first timeout. Note that during this
cooperation phase it is also possible to add some clauses that the bottom-up
prover has generated to the axiomatization of the ME prover. Thus, we can
achieve cooperation by exchanging lemmas and subgoal clauses without one
concept disturbing the other.

We experimented in the light of problems from the welt-known problem li-
brary T P T P SSY94. In order to obtain a reliable collection of data, we used
two domains of T P T P as our test set, the domains CAT (category theory) and
LDA (LD-algebras). The CAT domain consists of 58 problems, the LDA domain
of 22. From these domains we extracted 22 and 15 non-trivial problems, respec-
tively, i.e. problems none of the provers can solve within 4 seconds. Note that
the problems in both domains contain equality. The subgoal clause candidates
were generated in the following way: For variant 1 we employed the resource
k = 10 which performed best in the experiments. The use of higher resources
did not entail better results. We limited the set of subgoal clauses by Nsg -- 500.
For variant 2 we employed as resources kl = k2 = 9. These resources allowed
for the efficient generation of all subgoal clauses within the initial segments of
the search tree. Usually at most 500 subgoal clauses were generated, i.e. about
the same number as when employing variant 1. As start clauses for an adaptive
refinement we selected Nre.f -- 5 clauses.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 167

T a b l e 1. Integration of top-down/bot tom-up approaches by cooperative provers

problem SPASS SETH. inf. adapt, problem
LDAO04-1 CATO01-1

LDAO05-1 CATO01-3

LDA005-2 279s - 265s 8s CAT001-4

LDA006-1 CAT002-2

LDA006-2 276s - 304s 10s CAT003-1

LDA007-1 16s 366s 19s 21s CAT004-3

LDA007-2 - 50s 7s 7s CAT008-1

LDA008-1 CAT009-1

LDA008-2 CAT009-3

LDA009-1 ~CAT009-4

LDA009-2 - - - 24s CAT010-1

LDA010-1 - - - 9s CAT011-3

LDA010-2 - - - 26s CAT014-3

LDA011-1 54s - 58s 9s CAT018-3

LDA011-2 21s - 35s 7s CAT019-4,

S P A S S

134s

33s

91s

53s

17s

18s

SETH. inf.

32s 6si
l ls 5s

23s -
126s 6s

- 10s

- 47s
- l ls
- 1 2 s

- l l s

adapt.

6s
5s

9s
6s

10s
29s
50s
9s

12s
l ls
74s

Finally, 100 clauses were selected from the set of candidates and transmit-
ted to SPASS. Table 1 presents results of our experiments (we omitted some
problems which could not be solved by any of the alternatives from table 1).

Column I of each part of the table displays the name of the problem. Columns
2 and 3 present the runtimes of SPASS and SETHEO (on a SPARCstation 20)
when working alone. SPASS was used with its s tandard setting. SETHEO em-
ployed the weighted-depth bound (MIL+97) which performed best in the con-
sidered domains. Columns 4 and 5 display the runtimes of SPASS when it
obtains subgoal clauses from SETHEO which are generated regarding variants
1 and 2, respectively. Note that the runtimes include the 4 seconds before the
cooperation, the selection of subgoal clauses, and the transmission to SPASS.
The entry ' means that the problem could not be solved within 1000 seconds.

The results reveal the high potential of our approach to significantly improve
on single provers. However, when considering the results of variant 1, they also
show that a naive and uninformed generation of subgoal clauses usually does not
entail much gain. In the LDA domain, we can solve 9 of 15 hard problems by us-
ing variant 2 for subgoal generation, whereas SPASS can only solve 5, SETHEO
only 2. A simple competitive prover which employs SPASS and SETHEO in par-
allel would also only be able to solve 6 problems. Hence, cooperation is really
important in order to increase the success rate. We can also in almost all cases
significantly decrease the runtimes. E.g. problems LDA005-2 and LDA006-2 which
require a runtime of more than 4 minutes when using SPASS can be proven in
a few seconds. In the CAT domain the results are similar. By employing sub-
goal clauses generated regarding variant 2 we can solve 11 of 22 hard problems.
SPASS and SETHEO are only able to solve 6 and 4, respectively.

168 Dirk Fuchs

6 Discuss ion and Future Work

Integration of top-down and bottom-up provers by employing cooperation is
very promising in the field of automated deduction. Due to certain strengths
and weaknesses of provers following different paradigms, techniques that try
to combine the strengths by cooperation can allow for an improvement of the
deductive system. Our approach of combining top-down and bottom-up provers
by processing top-down generated subgoal clauses in a bottom-up prover achieves
this combination by introducing goal-orientation into a bottom-up prover thus
combining strong redundancy control mechanisms and goal-directed search.

So far, related approaches mainly aimed at supporting a top-down prover
by a bottom-up based lemma component. Results presented, e.g., in Sch94 or
Fuc98b, reveal that also these approaches are well-suited. However, in some
domains, especially if equality is involved, superposition-based provers clearly
outperform ME provers. Thus, in such domains it may be more sensible to
develop techniques in order to support the more powerful bottom-up prover
than the weaker top-down prover. Transmitting information from a top-down
to a bottom-up prover was so far--to our knowledge only discussed in Sut92.
However, there bottom-up lemmas generated by a ME prover were transferred
to resolution-based provers and the results were not satisfactory.

Future work should deal with an extension of the empiric investigation. It
would be interesting to detect in which kinds of domains (Horn/non-Horn, equal-
ity/no equality) the approach is especially well-suited. Moreover, it might be in-
teresting to develop more complex methods for generating subgoal clause candi-
dates. The results from section 5 suggest that an even more intelligent generation
and selection of subgoal clauses leads to further improvements.

References

AL97

AS92

BG94

DF94

DF98

Fuc98a

O.L. Astrachan and D.W. Loveland. The use of Lemmas in the Model
Elimination Procedure. Journal of Automated Reasoning, 19(1):117-141,
1997.
O.L. Astrachan and M.E. Stickel. Caching and Lemmaizing in Model Elim-
ination Theorem Provers. In Proceedings of CADE-11, pages 224-238,
Saratoga Springs, USA, 1992. Springer LNAI 607.
L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217-247, 1994.
J. Denzinger and M. Fuchs. Goal oriented equational theorem proving. In
Proc. 18th KI-9~, pages 343-354, Sa~rbr/icken, 1994. LNAI 861.
J. Denzinger and D. ~hlchs. Enhancing conventional search systems with
multi-agent techniques: a case study. In Proc. Int. Conf. on Multi Agent
Systems (ICMAS) 98, Paris, France, 1998.
D. Fuchs. Cooperation between Top-Down and Bottom-Up Theorem
Provers by Subgoal Clause Transfer. Technical Report SR-98-01, University
of Kaiserslautern, Kaiserslantern, 1998.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 169

Fuc98b

Kor85

LMG94

Lov68

MIL+97

Sch94

SSY94

Sti88

Sut92

WGR96

M. Fuchs. Similarity-Based Lemma Generation for Model Elimination. In
Proc. CADE-15, Lindau, Germany, 1998.
Richard E. Korf. Depth-First Iterative-Deepening: An Optimal Admissi-
ble Tree Search. AI, 27:97 - 109, 1985. Elsevier Publishers B.V. (North-
Holland).
R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into
Connection Tableau Calculi. Journal of Automated Reasoning, (13):297-
337, 1994.
D.W. Loveland. Mechanical Theorem-Proving by Model Elimination. Jour-
nal of the ACM, 15(2), 1968.
M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. spe-
cial issue of the Journal of Automated Reasoning, 1997.
J. Schumann. Delta - a bottom-up preprocessor for top-down theorem
provers, system abstract. In Proceedings of CADE-12. Springer, 1994.
G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library.
In CADE-12, pages 252-266, Nancy, 1994. LNAI 814.
M.E. Stickel. A prolog technology theorem prover: Implementation by an
extended prolog compiler. Journal of Automated Reasoning, 4:353-380,
1988.
G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS'92
Workshop W3, 1992.
C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI 1104.

P o l y m o r p h i c Cal l -by-Value Calculus
Classical Proofs

(Extended Abstract)

Base d on

Ken-etsu Fujita

Kyushu Institute of Technology, Iizuka, 820-8502, Japan
fuj iken@dumbo, ai. kyutech, ac. j p

Abst rac t . We introduce a polymorphic call-by-value calculus, A~xc,
based on 2nd order classical logic. The call-by-value computation rules
are defined based on proof reductions, in which classical proof reductions
are regarded as a logical permutative reduction in the sense of Prawitz
and a dual permutative reduction. It is shown that the CPS-translation
from the core)~evxc to the intuitionistic fragment, i.e., the Damas-Milner
type system is sound. We discuss that the use of the dual permutative re-
duction is, in general, uncorrected in polymorphic calculi. We also show
the Church-Rosser property of A~c, and the soundness and completeness
of the type inference algorithm)/1;. From the subject reduction property,
it is obtained that a program whose type is inferred by)4; never leads
to a type-error under the rewriting semantics. Finally, we give a brief
comparison with ML plus ca l lcc and some of the existing call-by-value
styles.

1 Introduction

Information can be represented as symbols, and symbolic computation is im-
portant in artificial intelligence such as problem solving, reasoning, knowledge
representation, natural language processing, learning, expert systems and so on
26. For symbolic computation, it is essential to provide an underlying system or
language which describes symbols and algorithm. On the other hand, based on
the Curry-Howard-De Bruijn isomorphism 14, types are assigned to formulae
and terms to proof trees, and proof reductions can be regarded as computational
rules or symbolic rewriting rules. This principle is widely applied to automated
theorem proving, constructive programming, analogical reasoning, etc. The com-
putational meaning of proofs has been investigated by many researchers, not
only in intuitionistic logic but also in classical logic and modal logic 15. In the
area of classical logic, Griffin 11, Murthy 17, Parigot 21, Berardi&Barbanera
4, Rehof&S0rensen 24, de Groote 6, Ong 19, and so on, are some of the
noteworthy investigators. As far as we know, however, polymorphic call-by-value
calculus is less studied from the viewpoint of classical logic. As an application
of the isomorphism to construct a symbolic computation system with a control
operator, we investigate the fragment of second order classical logic, in the sense

Jacques Calmet and Jan P l a z a (Eds.): AISC'98, LNAI 1476, pp. 170-182, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Polymorphic Call-by-Value Calculus Based on Classical Proofs 171

of the Damas-Milner type discipline 5, based on the call-by-value strategy. The
isomorphism can give a neat guide to define symbolic computat ion rules, espe-
cially in the case of polymorphic call-by-value systems.

V First, we introduce a simple system)~exc of polymorphic call-by-value lan-
V guage based on classical logic, and the CPS-translation from the core)~exc to the

intuitionistic fragment, i.e., the Damas-Milner type system. The soundness of the
translation is established under a strict notion of values but an extended form.
The call-by-value computation rules are defined based on proof reductions, in
which classical proof reductions are regarded as a logical permutat ive reduction
in the sense of Prawitz 23 and a dual permutative reduction. Here, continua-
tions can be naturally treated by the logical permutative reductions. Second, we
discuss that from the viewpoint of proof reductions, one of the important clas-
sical proof reductions, called dual permutative reduction, in general, becomes
uncorrected not only in full polymorphic calculi but also in the Damas-Milner
style. Our observation reveals some conditions under which the dual permutative
reduction can be accepted. Third, it is shown that)~Vxc has the Church-Rosser
property. We also show the soundness and completeness of the type inference
algorithm W. From the subject reduction property, we found that a program
whose type is inferred by /Y never leads to a type-error under the rewriting
semantics. Finally, we give a brief comparison with ML 16,12 and some of the
existing call-by-value styles.

2 P o l y m o r p h i c C a l l - b y - V a l u e L a n g u a g e B a s e d o n

C l a s s i c a l L o g i c

v In this section we give the definition of the core language)~exc. The types T and
the type schemes a are defined as usual. The terms are defined by two kinds of
variables; x is used as usual, like in A-calculus. On the other hand, y is called an
exceptional variable or a continuation variable, where y is used only for negation
types --7 defined as T ~ • The binary relation ~- < V a l . . . an.~-' (n > 0) is
defined such that the type T is obtained from the type T' by substituting the type
7i for ai (1 < i < n), i.e., T = T'al := T1, ' ' ' ,an : = "fin. A type assumption is a
finite set of declarations with the form x : (r or y : -~T, all with distinct subjects.
The inference rule (_l_I) below is introduced, since we do not consider a term
of the form My for some M. Based on the continuation semantics discussed
in the next section, the variable y is used for representing a continuation, and
the continuation can be regarded as the context in which a term is evaluated.
Since the variable y is waiting for the rest of the computation, it is natural to
consider an ~/-expansion form M(Ax.yx) instead of My. Here, a negation type
~T plays a role of the type of continuation that expects a term of type T, which
is reflected in the definition of values below. In contrast to a system with the
double negation elimination, to establish a classical system we have to introduce
both (_l_E) below and the classical rule (exc), which is a variant of the law of
the excluded middle.

172 Ken-etsu Fujita

v .
~ e x c "

Types Type Schemes
I -h I o : := ' , - I V a . o

Terms
M ::-- x M M Ax.M l e t x = M in M r a i s e (M) yM {y}M
Type Assignment

I " ~ X : T i f T < F (x)

F t- M1 : 7"1 ~ I-2 F ~- M2 : T1 (___~ E)
/~ ~- MIM2 : 7"2

F F- M1 : T1 1-",x:VoI.T1 ~ M2 : T2 (let)*
f F l e t x = M1 in 3/2 : 72

Type Assumptions
r ::= () x : a , r Y:-~, r

F F - M : • (_hE) F F - M : T (• i f F (y) - - ~ T
F F- r a i s e (M) : T F f- yM"

(let)* denotes the side condition such that the sequence of type variables a , say
al .. �9 an, does not appear free in F.

The notion of values is defined below as an extended form; the class of val-
ues is closed under both value-substitution and term-replacement, as defined
later. The notion of values will be discussed based on the CPS-translation. The
definition of the reduction rules is given based on the call-by-value strategy.
In particular, the classical reduction (5-1) below can be explained as a logical
permutative reduction in the sense of Prawitz 23 and Andou 1. Here, in the
reduction of ({y}M)N ~ {y}(My ~ N)g, since both the type of M and the
type of each subterm M ' with the form yM' in M can be considered as mem-
bers of the segments ending with the type of {y}M, the application of (--* E)
is shifted up to the occurrence M and each occurrence M' , and then M N and
My ~ N (each yM' is replaced with y(M'N)) are obtained. This reduction
is also called a structural reduction in Parigot 21. On the other hand, since a
term of the form {y}M is not regarded as a value, (Ax.M1)({y}M2) will not be a
/3-contractum, but will be a contractum of (5-2) below, which can be considered
as a dual permutat ive reduction. FV(M) stands for the set of free variables in
M.
Values V ::= x Ax.M yM
Term reductions
(1) (Ax.M)V ~> Mix := V;
(2-1) (r a i s e M1)M2 ~> r a i s e M1; (2-2) V (r a i s e M) ~ r a i s e M;
(3-1) l e t x = V in M :> Mx := V;
(4-1) {y}M ~, M if y r FV(M); (4-2) {y}raise(yM) ~ {y}M;
(5-1) ({y}M1)M2 ~ {y}(MIy ~ M2)M2; (5-2) V({y}M) ~ {y}V(MV
v),
where the term-replacement My ~ N is used such that an operand of {y}M,
i.e., the right context (continuation) of {y}M, is replaced on an argument posi-
tion of y in M. each y The term My ~ N is defined as a te rm obtained from
M by replacing each subterm of the form yM' in M with y(MIN). Similarly,

F,x:v1F- M : T2 (4 I)
F F- Ax.M : "T1---+ T2

1", y:~T ~- M : ~- (exc)
F ~ {y}M :T

Polymorphic Call-by-Value Calculus Based on Classical Proofs 173

the dual operation M N =~ y is used such that each subterm of the form y M ~
in M is replaced with y(NMI) .

We identify { y } { y l } M with {y}Myl :-- y for technical simplicity. The bi-
nary relation ~,* is defined by the reflexive transitive closure of ~, and the con-
gruence relation is denoted by --. We sometimes use the term {y :-~7-}M with
the type T of M.

V From the definition, Aex c is a simple fragment of the second order A-calculus
A2 (Girard's F) together with the excluded middle. Moreover, for the finite-type
fragment of Aevxc (i.e., with neither a nor (let)), there exists a term M such that
F F- M : Tiff T as a formula is provable from T' in classical propositional logic.

3 CPS-Translation of A~c-Terms

We provide the CPS-translation from classical logic Aevxc to the intuitionistic
fragment (the Damas-Milner style) ML, which logically induces Kuroda's trans-
lation. The system of ML is defined as usual. The reduction rules are defined
from (1) and (3-1) without restricting to values. The one step reduction relation
and the reflexive transitive closure are denoted by ~/~ and ~ , respectively. The
congruence relation is denoted by --Z.
ML:

F ~- x : P (x)

F-MI:T1- -+T2 FF-M2:~-I (---~E) I"x:T1}-M:7"2 (--~I)
F F- MIM2 : 7"2 F ~ A x . M : T1 -> 72

F}- M : Va.a (Inst) F F- M : a (Gen)*
V ~- M : aa := T / ; ~ Mi-V~.~

F F- MI : a F , x : ~ F- M2 : r
F } - l e t x = M 1 i n M 2 : r (Let)

(Gen)* denotes the side condition such that the type variable a does not appear
free in F.

As mentioned in Harper&Lillibridge 13, there are difficulties in defining
translation rules for polymorphic let-expressions. With respect to Aevxc___2, the_let-
expression, l e t x = M in N, cannot be interpreted as (Ax .N) M = Ak .M(Ax .Nk)
in the full polymorphic lambda calculus A2 (System F of Girard), since the
denotation is not well-typed under our negative translation of Kuroda, which
also relates to the use of the dual permutative reduction in polymorphic calculi
discussed in the next section. To define the translation, we start with separating
the A-variables x into two categories, depending on a finite or polymorphic use;
x is used monomorphically, and x* is used polymorphically. The syntax of the

v terms in Aex c is rewritten as follows:
M ::= x x* M M Ax.M l e t x * = M in M r a i s e (M) y M { y } M

In an explicit type system, the polymorphic variable x* is used in the form X*T ~
by the instantiation rule, where x* :Va.T for some T. This means that even in an
implicit type system, the expression x* cannot be regarded as a value in a strict

174 Ken-etsu Fujita

sense (a trivial computat ion may be needed). We also consider a strict class of
values, excluding a single occurrence x*: V ::= x I Ax.M I y M
The call-by-value reduction rules are applied for the strict class V in this section.
To establish the CPS-translation, the distinction between V and x* is used only
in this section. For programs containing no free variables x*, the discrimination
would not be important .

The translation, with an auxiliary function ~ for values V, comes from
Plotkin 22 and de Groote 6. I t is proved tha t the t ranslat ion is sound with
respect to conversions.

v ML) = Ak.kx; ~ =)~k.x*k; D e f i n i t i o n 1 (C P S - t r a n s l a t i o n f r o m Aex c t o
Ax.M = Ak.k(Ax.M); y M = Ak.k(My);
M N = Ak.M(Am.N(An.mnk)); l e t x* = M in N = Ak . (l e t x* = M in (Nk));
r a i s e (M) = Ak.M(Ax.x); {y}M = Ay.My.
#(x) = x; #(Ax.M) = ikx.M; #(yM) = My.

According to the continuation semantics of Meyer&Wand 18, our definition of
the CPS-translat ion is given as follows, where the type _1_ plays the role of the
answer type: If we have a variable x, then the value x is sent to the continuation
k. In the case of a A-abstraction, a certain function tha t will take two arguments
is sent to the continuation k. If we have a t e rm with a continuation variable
y, then a certain function with the argument y is sent to the continuation k,
where the variable y will be substi tuted by a continuation. Here, it would be
natural tha t a value is regarded as the te rm that is mapped by ~ to some te rm
consumed by the continuation k, since the continuation is the context in which
a t e rm is evaluated and then to which the value is sent. Our notion of values as
an extended form is derived based on this observation.

m m

L e m m a 1 i) For any term M where k ~ FV(M) , Ak.Mk ~>~ M.
ii) For any value V, V -= Ak.k~(V).
iii) For any term M and value V, Mix := V = Mx := q~(Y).
iv) For any terms M and N, Mx* := N ~ Mx* := N.

The above lemma can be proved by straightforward induction. Based on the
CPS-translat ion, the term-replacements My ~ N and MN ~ y can be
interpreted as the following substitutions for continuation variables, respectively.

m

L e m m a 2 i) For any term M and N, My ~ N c> *~ My := Am.N(An.mny).

ii) For any term M and value V, MV ~ y ~*~ -My :--- An.~(Y)ny.

Proof. By induction on the structure of M. Only the case of y M is shown:
(yM)Y ~ y =)~k.k(()~k'.V(Am.MV ~ y(An.mnk')))y)
~ Ak.k((Ak'.k'~(V))(Am.MV ~ y(An.mny)))
~*~ Ak.k(MY ~ y(An.~(Y)ny)) ~*~ ikk.k(My :=)m.~(Y)ny(~n.~(Y)ny))
= ~k.k(-My)y :-- An.~(V)ny -- yMy :=)~n.~(Y)ny.

Polymorphic Call-by-Value Calculus Based on Classical Proofs 175

L e m m a 3 I f M ~ N , then M =~ N.

Proof. By induction on the derivation of M ~ N. We show some of the cases:
(3-1) l e t x * = V in M ~ Mx* := Y:
l e t x * - - V i n M = Ak . (l e t x * - - V in (Mk))
~)~k.-Mx* := Vk ~,~)~k.Mx* := V k ~ Mx* := V.
(5-2) V ({ y } M) c>{y}(V(MV ~ y)):
Y ({ y } M) =)~k.V(Am.()~y__.My)()m.mnk))
~,~ Ak.()~k' .k '~(Y))(Am.My :=)~n.mnk()~n.mnk))
~*~ Ak.-My :=)~n.~(V)nk(An.O(Y)nk) = Ay.My :=)~n.~(Y)ny(An.~(Y)ny)

=~ Ay .MV ~ y(An.~(V)ny) =~ Ay. (Am.MV ~ yl(An.mny))~P(V)

=~ ~y.()~k.Y(~m.MV ~ y()~n.mnk)))y = { y } V (M V ~ y).
Now, under the strict notion of values, we have confirmed the soundness

of the t ranslat ion in the sense that equivalent)~evxc-terms are t ranslated into
equivalent ML-terms.

P r o p o s i t i o n 1 (S o u n d n e s s o f t h e C P S - T r a n s l a t i o n) I f we have M = N
in A~xc, then M =~ N in ML.

The translat ion logically establishes the double-negation translat ion of Kuroda.

D e f i n i t i o n 2 (K u r o d a ' s T r a n s l a t i o n) T q : T where T is atomic;

= " 4 =
(x :a, F)q ---- x: aq, Fq; (y :-,T, F)q = y : ~rq, Fq.

v P r o p o s i t i o n 2 I f we have 1" F- M : T in Aexc, then P q ~ M : ~-~T q in ML.

Proof. By induction on the derivation. We show some of the cases.
Case 1-1. x : T is derived from x : T :
)~k.kx : '~mT q is derived from x : T q in ML.
Case 1-2. x* : T~ := T1 is derived from x* : Vc~.~- :
Ak.xk : -~-~Tqa := 7 q is derived from x* : V~.-~-~Tq in ML. One also has tha t
(TOL : = T1) q = Tqog : = T q for any types T and T 1.

Case 2. F ~- l e t x* =M1 i a M2 : T2 from F t- M1 : ~-1 and F, x* :Va.Wl ~- M2 : w2:
By the induction hypotheses, we have Fq F- M1 : - ~ T q where a is not free in
types in Fq, and Fq, x*: V S . ~ T q F- M2 : ~-~T q. One also has Fq, k: ~T q, X*:
Va.-~-~T q ~- M2k : _l_, and Fq, k:-~r q ~- MI : Va.-~-~T q. Hence, Fq ~)~k.(let x * =
M1 in M2k) : -~-~T q is derived in ML.
From the consistency of ML, it is also derived tha t Aevxc is consistent in the sense
tha t there is no closed te rm M such tha t t- M : _l_.

Note tha t all of the above results are also available for the system with (3-1')
l e t x = N in M ~ Mx := N, without restricting to values. The reason is
explained based on the observation in the next section. The polymorphic use of
the t e rm { y } M cannot t reat the left context correctly, i.e., the dual permutat ive
reduction, in general, becomes an uncorrected proof reduction. Here, we do not
forbid the polymorphic use of {y}M, since the polymorphic t e rm can t reat the

176 Ken-etsu Fujita

right context correctly by the permutative reduction. The reduction rule (3-
1') supports this computation, and the CPS-translation would work for the 'by
name' semantics for let-expressions in 12. This is one of the reasons why the
CPS-translation logically establishes the negative translation of Kuroda without
restricting let-bound expressions, M1 in (let)* to a value, as compared with
that of 13. Next, we introduce new reduction rules that transform the local
definition part to a value form, since the system is working with (3-1) under the
call-by-value strategy.

4 D u a l P e r m u t a t i v e R e d u c t i o n a n d P o l y m o r p h i s m

In the core language, one problem is that there is no reduction rule for the fol-
lowing polymorphic program:

l e t x={y}(~x.N) in M where N is in normal.
As a naive extension of the reduction rule (5-2): V({y}Y) ~ {y}YNY ~ y to
the polymorphic case, one may take the rule such that

(a) l e t x = { y } g in M E> {y}(~x.M)g/kx.M ~ y.
Here, the reduced term cannot be well-typed in the Damas-Milner type dis-
cipline. However, the main defect is not the weakness of the underlying type
system, but the reduction itself cannot be a correct proof reduction. This situ-
ation was discovered by Harper&Lillibridge 13. Now we observe this from the
viewpoint of proof reductions, which reveals some conditions that justify the
reduction. Take the following rule in a/~-reduced form of the above (a):

(b) l e t x = { y } N in M ~ {y}Mx :---- Ny(Mx := N')/yN', where
the term gy(Mx :-- Y')/yN' is a term obtained from N, replacing each
subterm of the form yN' in N with y(Mx :--- N').

Assume that we have the following proof figure in the Damas-Milner type
system:

I I 1

Y:-~n N ' : n
yN': • x: Vc~.~ x: Vc~.n

//2 x: n~ := ~3 x: n~ := ~4
N:T1 //3

{y}N : 71 M : T2
(let)*

l e t x = {y}N in M : T2

First, compute the type of Ny(Mx :-- N')/yN', and then one obtains the
following type assignment:

/ /1~ := r3 o ~ / /1~ := n o s
N : 71 c~ :---- T3 o S g : T1 c~ :---- n o S

/ / 3 S
y:~r2S Mx := N' : r2S

y(Mx :-- N ') : •
/ /2~ := ~3 o S

Yy(Mx := g')/yN': Tla := T3 o S ,

Polymorphic Call-by-Value Calculus Based on Classical Proofs 177

if ~-3 and T4 are unifiable under some substitution S, considering the case such
that the assumption whose type contains a free variable a in I/1 is discharged by
(--+ I) in/-/2. Second, compute the type of {y}Mx := Ny(Mx := N')/yN',
and then finally the following assignment is obtained:

y: ~ 2 S y: ~ 2 S

Ny(Mx := Y ') /yY ' : rlc~ :-- r3oS Yy(Mx := g ') / yg ' : rl~ := T4oS
//aS

Mx := Ny(Mx := N')/yg' : T2S
{y}Mx := gy(Mx := N')/yg' : T2S

Following the above observation, we obtain that (b) represents a correct proof
reduction only if all types of x in M can be unified�9 Here, the merit of polymor-
phism is lost�9 Moreover, the type of the reduced term becomes a substitution
instance of T 2 . It can also be observed that, in the above proof figure, i f / / 2
contains no (4 I) that discharges the type containing free c~, then there is no
need to unify each type of x in M, and (b) becomes correct�9 For instance, in the
case of l e t x = {y}~x'.raise(y(~v.x')) in M, one may have to unify each type
of x in M, if one uses (b). On the other hand, (b) is a correct reduction for the
case of l e t x = {y}~v.raise(y(~x'.x')) in M.

In general, even with 12+(exc), in which one can obtain a sound type, the
reduction rule (5-2) is still uncorrected in the sense that the reduced term does
not present a correct proof. Following the similar observation (to be skipped
here), there exists a case where the side condition of polymorphic generalization
is not satisfied�9 The observation means that the polymorphic term of the form
{y}M cannot manage the left context correctly�9 This also shows that one cannot
adopt the dual structural reduction in Parigot 's l#-calculus (2nd order classical
logic) 21�9 Otherwise, we can obtain a self application for any value. For instance,
the following example is derived from that of Harper&Lillibridge 13:

with type ((~ ~ c~) ~ ~ --+ c~
is reduced to Ag.Ax.g(xx) by the use of (5-2), where, in the reduction process
with the type, the side condition of polymorphic generalization is not satisfied.
This observation is not in conflict with that of Harper&Lillibridge.

Our solution is to take the reduction rule {y}()~x.M) t>)~x.{y}My ~ x. The
two terms are extensionally equivalent in the sense that for any V, ({y}()~x.M))V
= ()~x.{y}My ~ x)V, where both are reduced to {y}My ~ Vx := V.
However, in general, adding the reduction rule breaks down the Church-Rosser
property. Hence, we use the reduction rule in the local definition of (let):

(3-2) l e t x={y}(~x' .M1) in M2 t> l e t x=~x' .{y}Mly ~ x' in M2.
For example,
H n =_ l e t f - -{y}Ax. ra i se (y (Av .x)) in (Av.Ax.x)(f l) (f true) with type boo1
is now reduced to t rue �9 On the other hand,

(Af.(~v.~x.x)(f l)(f2))({y}~x.raise(y(~v.x))) with type i n t

178 Ken-etsu Fujita

is reduced to 1. Relating to the CSP-translation, if one naively interpreted H L
as (A f . (Av .Ax . x) (f l) (f t rue)) ({ y }Ax . ra i s e (y (Av . x))) ,
then Ak.kl was derived simulating (5-2) by/3-reductions. In our turn, H L =~
Ak.ktrue is obtained following the CPS-translation.

One may also consider a more general rule, such that
l e t x:{y : -7 (T1 ~ T2)}N in M t> l e t x : X x ' . { y : ~ v 2 } g x ' y ~ x' in M.

However, the reduction rule also breaks down the confluence property under the
call-by-value strategy.

Following the above observation, we add the reduction rule (3-2), and simi-
larly (3-3) l e t x=ra i se r l_ . r2 (M1) in M2 ~> l e t x=Av . ra i se r2 (M1) in M2

where v is fresh.
The idea is that the reduction rules transform the local definition part to a value
form, and we treat only the right context with respect to {y} (Ax .M) for some
M in the polymorphic declaration.

With respect to all of the reductions, including (3-2) and (3-3), we can prove
that leVxc has the Church-Rosser property by the well-known method of parallel
reductions 2,22 and the Lemma of Hindley-Rosen, see 2.

P r o p o s i t i o n 3 (C h u r c h - R o s s e r T h e o r e m) I f we have M ~ * M1 and M~ * M2,
then M1 ~* N and M2 ~* N for some N.

5 T y p e I n f e r e n c e A l g o r i t h m

From a practical point of view, we give the type inference algorithm)W to Aevxc
extended with constants, a recursion operator, and so on.
Types Type Schemes Type Assumptions

::= b I I IW. r : : = (> I x : o , r I c:
~, F y : -~T, F
Terms
M ::= c I x I M M I Ax .M I i f M t hen M e l s e M I f i x x . M I l e t x = M in M

I r a i s e (M) l y M { y } M
Type Assignment Aevzc plus

F F c : 7 i f T < F (c)

F b M : b o o l F b M I : T F b M 2 : T F , X : T b M : T
F b i f M then M1 e l s e M2 : v (if) F b f i x x . M : T (fiX)

Reduction rules: (1) ~ (5) together with
(6-1) i f t r u e thenM1 e l s e M2 ~> M1; (6-2) i f f a l s e t h e n M1 e l s e M2 t> M2;
(7-1) f i x x . M ~ Mx := f i x x.M.

P r o p o s i t i o n 4 (S ub j ec t R e d u c t i o n) I f we have F b M : T and M ~ N, then
FbN:T.

Proof. By induction on the derivation of M ~ N .

Polymorphic Call-by-Value Calculus Based on Classical Proofs 179

We use the Rob inson ' s unificat ion a lgor i thm g / t h a t compu te s the mos t general
unif icat ion L/(T1, T2) = S for any types T1 and ~'2. For any subs t i tu t ions $1 and
$2, the compos i t ion $1 o $2 is defined as usual.

Following Milner 16 and D a m a s ~ M i l n e r 5, we give the type inference al-
go r i t hm t h a t compu te s the principal t ype under the given t ype ass ignment .

/Y(P; M) = (S, T), where
1) I f M is x or c and F (M) = V a l . . . an.T ! (0 < n), t hen S = Id (ident i ty
subs t i tu t ion) and T = V'al := /31," " ' , an := fin where/3i is a new type var iable
(0 < i < n).
2), 3), 4), 5), 6) T h e case M of Ax.M1, MIM2, i f M0 t h e n M1 e l s e M2,
f i x x.M1, or l e t x = M 1 i n M2 is defined as usual.
7) I f M is yM1, then:
let -~T1 = F(y) , ($1,7"2) = /~(/ ' ; M1), and U = b/(T1,72);
t hen S = $1 o U and ~- = _1_.
8) If M is r a i s e (M 1) , then:
let (S1,T1) = W (F ; M1), and U = b/(~'l, •
t hen S = $1 o U and T = a where a is fresh.
9) I f M is {y}M1, then:
let ($1, T1) = W(F, y : -~a; M1) where a is fresh, and U = L/(T1, aS1);
t hen S = $1 o U and T = T1.

P r o p o s i t i o n 5 (S o u n d n e s s a n d C o m p l e t e n e s s) i) For any P and M,
if 142(1, M) = (S, "r), then we have F S ~ M : V.
ii) For any F and M, if we have F S ~ M : T for some S and % then W(F, M) =
(S1,T1), and F S = FS1 o $2 and 7 = T1S 2 for some $2.

Proof. B y induct ion on the s t ruc tu re of M .
F r o m the soundness and comple teness of d;, it is confirmed t h a t /P computes the
pr incipal t ype under the given type ass ignment . I t is also ob ta ined t ha t f rom the
sub jec t reduc t ion p r o p e r t y and the soundness of W, if a t ype of M is inferred by
l/V, then the p r o g r a m M never gives a t ype error under the rewri t ing semantics .

We give a s imple example due to Friedman&Felleisen, page 57 in 7. Given
a : a and l : a l i s t , compu te a sublist of l, which is the tail pa r t of l f rom the
last occur rence a. Le t remberuptolast be

Aa.Al'.{y} (fix f.Al. if /=nil then nil else if car(l) - - - -a
t h e n r a i s e (y (f (c d r (1)))) e l s e cons (c a r (l)) (f (c d r (l)))) l '

wi th type a ~ a l i s t ~ a l i s t .
T h e n we have l e t f - - - - - r embe rup to l a s t i n f 1 1, 2, 1, 3, 1, 4, 5 >* 4, 5.
One can also define r e m b e r u p t o l a s t a l ---- ~O(aux a l), where
aux a l ' is

Aexit. (fix f.Al. if /=nil then nil else if car(l)=a
then exit(f(cdr(1))) else cons (car(1)) (f(cdr(l))))l', and

P is a p roof of Pe i rce ' s law ((a --*/3) -~ a) ~ a , i.e., AXl.{y}xl(Ax2.raise(yx2)) .
Along this line, toge ther wi th the proof 9 r = Axlg f . {y}g(x l (Ax2 . ra i se (y (fx2))))
with t ype ((a --*/3) --+ 7) --~ (7 --+ 5) ~ (a ~ 5) --~ 5, one can wri te a p r o g r a m
wi th a case analysis: r e m b e r u p t o l a s t ' a 1 g f = 9t-(aux a l) g f .

180 Ken-etsu Fujita

When I contains a, r e m b e r u p t o l a s t ' a l g f = f (r e m b e r u p t o l a s t a /);
otherwise r e m b e r u p t o l a s t ' a l g f ---= g (r e m b e r u p t o l a s t a l).

6 Comparison with Related Work and Concluding
Remarks

We briefly compare Aevxc with ML 16 together with c a l l c c 12. In ML, the
class of type variables is partitioned into two subclasses, i.e., the applicative
and the imperative type variables, where the imperative type variable is intro-
duced for polymorphic references in Tofte 25. The type of c a l l c c is declared
with imperative type variables to guarantee the soundness of the type inference.
Based on the classification, the typing rule for let-expression is given such that
if the let-bound expression is not a value, then generalization is allowed only for
applicative type variables; otherwise (i.e., the let-bound expression is a value),
generalization is possible with no restriction. On the other hand, we have no
distinction of the type variables, and a single typing rule for (let) is used. There
is a simple translation from the ML-programs to the A~xc-terms, such that the
two subclasses of type variables in ML are degenerated into a single class.

callcc(M) = {y}M(Ax.yx); throw M g = raise(M IN),
and T cont= ~r I.

Then the typing relation is preserved under the translation in the following sense:

Proposition 6 If F ~ M: T in ML, then F F- M : IT in AVxc .

However, there are some distinctions; according to Harper et al. 12, the program
let f =callcc(Ak.Ax.throw k (Ax'.x)) in (Ax'.Ax.x)(fl)(ftrue)

is not typable in ML, since cal lcc(Ak.Ax. throw k (Ax'.x)) with imperative type
variables is not a value, and in the case of non-value expressions, polymorphism
is allowed only for expressions with applicative type variables. On the other
hand, under the translation , we have

l e t f - - {y}Ax.raise(y(Ax'.x)) i n (Ax'.Ax.x)(fl)(ftrue) with type bool ,
and it is reduced to t rue .

With respect to the implemented system (Standard ML of New Jersey, Ver-
sion 110, December 9, 1997 CM&=CMB),

(l e t f =Ax.callcc(Ak.throw k x) in Ax.x(I1)(I(Ax.x))) (Ax'.Ax.x) 0
with type i n t is evaluated to 0. However, the type checking of the subterm

l e t I=Ax.callcc(Ak.throw k x) in Ax.x(fl)(f(Ax.x))
gives this warning: type vars not generalized because of value restriction are
instantiated to dummy types, i.e., the result alone could not be used polymor-
phically. On the other hand, under the translation, we have

l e t f = Ax.{y}raise(yx) in Ax.x(f l) (f (Ax.x))
with type (i n t --* (c~ --~ c~) --~ ~) --~ ~, and it is evaluated to Ax.xl(Ax.x).

rule,
The construction of)~eVxc is, in part, under the influence of the work by Parigot

21 and de Groote 6; The call-by-name version of our system is isomorphic to

Polymorphic Call-by-Value Calculus Based on Classical Proofs 181

Parigot 's)~#-calculus with respect to finite types, in the sense that equivalent
)~#-terms are translated into equivalent AeVxc-terms and vice versa.

Ph.de Groote 6 introduced a call-by-value language based on the simply
typed lambda calculus for formalizing an exception-handling mechanism. At
first appearance, our finite type fragment is a small subsystem of his; however,
under some translations, they are logically equivalent with respect to finite types.
Moreover, our system can be regarded as a meaningful simplification of his, see
Fujita 10. For comparison with the call-by-value style, ~c of Felleisen 8,9, see
also 10.

Ong•Stewart 20 extensively studied a call-by-value programming language
based on a call-by-value variant of Parigot 's A#-calculus. There are some distinc-
tions between Ong&Stewart and our finite type fragment; their reduction rules
have type annotations like the Church-style, and, using the annotation, more
reduction rules are defined than ours, which can give a stronger normal form. In
addition, our notion of values is an extended one, which would be justified by
observation based on the CPS-translation.

R e f e r e n c e s

1. Y.Andou: A Normalization-Procedure for the First Order Classical Natural De-
duction with Full Logical Symbols, Tsukuba Journal of Mathematics, Vol.19, No.l,
pp.153-162, 1995.

2. H.P.Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition),
North-Holland, 1984.

3. H.P.Barendregt: Lambda Calculi with Types, Handbook of Logic in Computer
Science Vol.II, Oxford University Press, pp.l-189, 1992.

4. F.Barbanera, S.Berardi: Extracting Constructive Context from Classical Logic via
Control-like Reductions, LNCS 664, pp.45-59, 1993.

5. L.Damas, R.Milner: Principal type-schemes for functional programs, Proc. 9th
Annual ACM Symposium on POPL, pp.207-212, 1982.

6. P.de Groote: A Simple Calculus of Exception Handling, LNCS 902, pp.201-215,
1995.

7. M.Felleisen, D.P.Friedman: The Seasoned Schemer, The MIT Press, 1996.
8. M.Felleisen, D.P.Friedman, E.Kohlbecker, B.Duba: Reasoning with Continuations,

Proe. Annual IEEE Symposium on LICS, pp.131-141, 1986.
9. M.Felleisen, R.Hieb: The Revised Report on the Syntactic Theories of Sequential

Control and State, Theor.Comput.Sci. 103, pp.131-141, 1992.
10. K.Fujita: Calculus of Classical Proofs I, LNCS 1345, pp.321-335, 1997.
11. T.G.Griffin: A Formulae-as-Types Notion of Control, Proc. 17th Annual ACM

Symposium on POPL, pp.47-58, 1990.
12. R.Harper, B.F.Duba, D.MacQueen: Typing First-Class Continuations in ML,

J.Functional Programming, 3 (4) pp.465-484, 1993.
13. R.Harper, M.Lillibridge: Polymorphic type assignment and CPS conversion, LISP

and Symbolic Computation 6, pp.361-380, 1993.
14. W.Howard: The Formulae-as-Types Notion of Constructions, Academic Press,

pp.479-490, 1980.
15. S.Kobayashi: Monads as modality, Theor.Comput.Sci. 175, pp.29-74, 1997.

182 Ken-etsu Fujita

16. R.Milner: A Theory of Type Polymorphism in Programming, J. Comput. Syst. Sci. 17,
pp.348-375, 1978.

17. C.R.Murthy: An Evaluation Semantics for Classical Proofs, Proc. 6th Annual IEEE
Symposium on LICS, pp.96-107, 1991.

18. A.Meyer, M.Wand: Continuation Semantics in Typed Lambda-Calculi, LNCS 193,
pp.219-224, 1985.

19. C.-H.L.Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical,
and Denotational Characterizations, Linear Logic '96 Tokyo Meeting, 1996.

20. C.-H.L.Ong, C.A.Stewart: A Curry-Howard Foundation for Functional Compu-
tation with Control, Proc. 24th Annual ACM Symposium of POPL, Languages,
1997.

21. M.Parigot:)~#-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction, LNCS 624, pp.190-201, 1992.

22. G.Plotkin: Call-by-Name, Call-by-Value and the A-Calculus, Theor. Comput.Sci. 1,
pp. 125-159, 1975.

23. D.Prawitz: Ideas and Results in Proof Theory, Proc. 2nd Scandinavian Logic
Symposium, edited by N.E.Fenstad, North-Holland, pp.235-307, 1971.

24. N.J.Rehof, M.H.Scrensen: The),~-Calculus, LNCS 789, pp.516-542, 1994.
25. M.Tofte: Type Inference for Polymorphic References, Information and Computa-

tion 89, pp.l-34, 1990.
26. P.H.Winston, B.K.P.Horn: LISP (3rd, Ed), Addison Wesley, 1989.

Bertrand Russell, Herbrand’s Theorem, and the

Assignment Statement

Melvin Fitting

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

fitting@alpha.lehman.cuny.edu

http://math240.lehman.cuny.edu/fitting

Abstract. While propositional modal logic is a standard tool, first-order
modal logic is not. Indeed, it is not generally understood that conven-
tional first-order syntax is insufficiently expressible. In this paper we
sketch a natural syntax and semantics for first-order modal logic, and
show how it easily copes with well-known problems. And we provide for-
mal tableau proof rules to go with the semantics, rules that are, at least
in principle, automatable.

1 Introduction

Propositional modal logic has become a fairly standard item in certain areas
of artificial intelligence and computer science. Computational states are often
thought of as possible worlds, while knowledge is frequently modeled using Hin-
tikka’s idea that a multiplicity of possible worlds reflects our ignorance about
the actual one. But first-order modal logic is less familiar. It is often seen as
a labyrinth full of twists and problems (see [5], for instance). Indeed, standard
first-order syntax is actually of inadequate expressive power for modal logic. This
is behind many of the well-known “paradoxes” of modal logic. But, a solution
to the expressiveness problems of first-order modal logic exists, though it is still
not as well-known as it deserves to be. It was explicitly introduced to modal
logic in [8,9], though as we will see, the underlying ideas are much earlier.

It is always interesting to find that problems in disparate areas have a com-
mon solution. In our case the areas we wish to look at include: the theory of
definite descriptions of Bertrand Russell; certain classical philosophical prob-
lems; inadequate expressibility of logics of knowledge; and the treatment of the
assignment statement in dynamic logic. The source of difficulty in all these cases
is the same: classical symbolic logic is taken as the standard. In classical logic as-
sumptions are made that preclude certain kinds of problems—they cannot arise.
Since these problems do not arise in classical logic, machinery for a solution is
missing as well. Since the problems are significant, and the solution is trivial,
the issues should be better known.

The material in this paper is a drastically abbreviated version of a book-
length presentation forthcoming soon [2]. While our book is primarily aimed at
philosophers, it contains much discussion of formal semantics and tableau-based
proof procedures. Automation of these proof procedures still awaits.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 14–28, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 15

2 Frege’s Puzzle

The philosopher Frege introduced a famous distinction between sense (sinn)
and denotation (bedeutung), [3]. In part, this was to deal with problems like
the following. The morning star is the evening star. Let us symbolize this by
m = e, a statement of identity. When the ancients came to know the truth of
this statement it was a discovery of astronomy. But why could it not have been
established by pure logic as follows. Certainly the ancients knew objects were self-
identical; in particular, K(m = m)—we are using K as a knowledge modality.
Since m = e in fact, using substitutivity of equals for equals, occurrences of
m can be replaced by occurrences of e. Doing so with the second occurrence
in K(m = m) gives us K(m = e). Yet this does not appear to be how the
Babylonians did it.

On the basis of this and other examples, Frege came to insist that terms such
as “morning star” have both a denotation (in this case, a particular astronomical
object) and a sense (roughly, how the object is designated). Identity of denotation
is expressed by m = e, but in a non truth-functional context, such as K(m = e),
sense is what matters. This distinction has given rise to a vast literature, but it
is enough here to point out that in mathematical logic, all contexts are truth-
functional, and the problem fades into the background.

3 Russell, on Denoting

Bertrand Russell, in a famous paper [7], gave a theory of definite descriptions—
he showed how to treat expressions like “the positive square root of 3” in a formal
language. This was to be of special significance later in Principia Mathematica
since it allowed classes to be introduced via definite descriptions. Like Frege,
Russell too had a guiding example. In his case it was how to assign a truth value
to “the King of France is bald,” given that France has no King.

His solution involved a distinction between grammatical form and logical
form. In this case the grammatical form is B(f) (where B is the bald predicate
and f is the King of France). But this cannot be the logical structure since f does
not designate. According to Russell’s theory the expression should be expanded
to the following, where F is a predicate specifying what it means to be King of
France: (∃x){F (x)∧ (∀y)(F (y) ⊃ y = x)∧B(x)}. Something Kings France, only
one thing does so, and that thing is bald. Clearly, then, the sentence is false.

Then what about the sentence, “the King of France is not bald.” Russell noted
an ambiguity here. Should this be taken to assert the King of France has the non-
baldness property, or should it be taken to be the negation of the assertion that
the King of France has the baldness property? Using the Russell translation, do
we negate the predicate B(x), or do we negate the entire sentence? These are not
equivalent formally, and the original English sentences do not seem equivalent
informally.

To deal with this, Russell at first introduced a narrow scope/broad scope
distinction, which I won’t discuss further. It turned out to be inadequate, and
eventually he was led to introduce an explicit scoping mechanism, one that is

16 Melvin Fitting

used systematically in Principia Mathematica. Russell’s notation is somewhat
fierce, and I won’t reproduce it here. But the underlying idea is critical, and
it’s a wonder it came with such difficulty. It amounts to this. When definite
descriptions are translated away, an existential quantifier is introduced. That
quantifier has a formal scope, given by the usual quantifier rules. Then it must
be that definite descriptions also have scopes within sentences. Generally that
scope is implicit in natural language constructs, but machinery can be introduced
to make it explicit. In short, terms of a formal language can have scopes, just as
quantified variables do.

Today Russell’s treatment of definite descriptions is well-known, at least
among those to whom it is well-known. But the explicit introduction of a scoping
mechanism is pushed into the background and generally ignored. In fact, it is a
central point.

4 Modal Issues

Modal logic is a standard formal tool today in many areas of computer sci-
ence and artificial intelligence. Propositional issues are well-known, while first-
order ones may be less familiar. It is in the modal setting that the problems
with scoping become particularly clear, using the familiar machinery of Kripke
possible-world semantics.

Suppose we have a first-order modal frame 〈G,R,D〉, consisting of a col-
lection G of possible worlds, an accessibility relation R between worlds, and a
domain function D assigning non-empty domains for quantification to possible
worlds. No special assumptions are needed for the points I am about to make.
R can be an equivalence relation, or transitive only, or have no particular prop-
erties. Likewise D can be the constant function, entirely arbitrary, or something
inbetween.

Now, consider the behavior of the formula �P (c), where c is a constant
symbol and P is a predicate symbol. We want to allow c to be non-rigid, perhaps
designating different things at different worlds. For instance, if “the King of
France” were to be represented by a constant symbol in a temporal model, it
would designate different people at different times. Of course sometimes it would
not designate at all—ignore this point for now. Formally, let us say we have an
interpretation I that assigns to constant symbols such as c, and to each possible
world Γ ∈ G some object I(c, Γ)—the “meaning” of c at Γ . We also assume
I assigns to each relation symbol and each possible world some actual relation.
We thus have a model M = 〈G,R,D, I〉, based on the original frame. Finally
let us symbolize by M, Γ X the notion that the closed formula X is true at
world Γ of the model M. Now, just what should

M, Γ �P (c) (1)

mean? I assume you are generally familiar with the behavior of modal operators
in possible-world settings.

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 17

First Possibility The formula �P (c) asserts that, whatever c means, it has the
“�P” property. A reasonable way of formalizing this in models is to allow
the occurrence of free variables, together with a valuation function to assign
values to them. Thus we broaden the machinery a bit, and writeM, Γ v X
to mean: X (which may contain free variables) is true at world Γ of model
M, with respect to valuation v which assigns values to the free variables of
X . With this extra machinery, (1) could be taken to meanM, Γ v �P (x)
where v(x) = I(c, Γ). That is, whatever c designates at Γ is something for
which �P (x) is true (at Γ).
Since �P (x) is a formula whose main connective is �, according to the usual
behavior of modal models, there is some accessible world ∆ ∈ G, that is
ΓR∆, such that M, ∆ v P (x) and this is the case provided v(x) is in the
relation I(P,∆), the “meaning” of P at ∆. Tracing back, for (1) to be true,
we should have I(c, Γ) ∈ I(P,∆).

Second Possibility The formula �P (c) has � as its main connective, so (1)
says there is a possible world Ω ∈ G with ΓRΩ such thatM, Ω P (c) and,
most reasonably, this should be so if I(c,Ω) is in the relation I(P,Ω). Thus
(1) means I(c,Ω) ∈ I(P,Ω).

We got two ways of reading (1). The world ∆ of the First Possibility and
the world Ω of the Second Possibility need not be the same, but for simplicity
suppose they are, ∆ = Ω. Then we still have the following alternate readings for
(1):

1. I(c, Γ) ∈ I(P,Ω)
2. I(c,Ω) ∈ I(P,Ω)

and these are not equivalent. They are not equivalent because we allowed c to
be non-rigid, so I(c, Γ) and I(c,Ω) can be different.

Once the problem is seen, the solution is obvious. We need Russell’s scoping
mechanism, and just such a device was introduced into modal logic in [8,9]. What
it amounts to is separating the notion of formula and predicate. Using notation
based on the Lambda-calculus, we abstract from a formula ϕ(x) a predicate
〈λx.ϕ(x)〉. A formal treatment of this is given in the next section, but for now
we observe that it separates �P (c) into the following two distinct formulas:

1. 〈λx.�P (x)〉(c)
2. �〈λx.P (x)〉(c)

5 Formal Semantics

Based on the sketchy ideas above, we set out a formal modal semantics. And
because of space limitations, we go directly to the most general version—in [2]
the treatment is much more leisurely. We have already said what a modal frame
was above, but the present notion of model is considerably broadened.

First, in a modal frame 〈G,R,D〉, recall that we place no restrictions on the
domain function D—it assigns to each world some non-empty set, the domain

18 Melvin Fitting

of that world. Members of the domain of a world should be thought of as the
things “actually” existing at that world. If something exists at a world ∆, at a
different world Γ we can think of that thing as a “possible existent.” Also, by
the domain of the frame we mean ∪Γ∈GD(Γ). Thus the members of the domain
of the frame are the things that are actually or possibly existent at every world.

A modal model is a structure 〈G,R,D, I〉 where 〈G,R,D〉 is a modal frame
and I is an interpretation such that:

1. For each relation symbol P and each Γ ∈ G, I(P, Γ) is a relation on the
domain of the frame.

2. For some, not necessarily all, constant symbols c and Γ ∈ G, I(c, Γ) is a
member of the domain of the frame.

This can be extended to include function symbols, though because of space
limitations in this paper, we do not do so.

Think of I(P, Γ) as the “meaning” of the relation symbol P at the world Γ .
Note the important point that it may include things that do not exist at Γ . It
is true to say, “Pegasus is a mythological beast,” and we interpret this to mean
that “Pegasus” designates something in a world other than this one (a make-
believe world, if you will), the thing designated does not exist in this world, but
in this world the property of being mythological correctly applies to it.

Think of I(c, Γ) as what c designates at the world Γ . As with relation sym-
bols, what is designated need not exist. Thus “the first president of the United
States” designates George Washington, who in a temporal sense once existed
but no longer does. Note the added complication that for constant symbols I is
allowed to be partial. This gives us the start of a mechanism to deal with “the
present King of France.”

Before we say which formulas are true at which worlds, we should indicate
just what things we take as formulas.

1. As atomic formulas we take expressions of the form R(x1, . . . , xn) where R
is an n-place relation symbol and x1, . . . , xn are variables. (Recall, formulas
are not properties, but rather, properties are abstracted from formulas.)

2. Complex formulas are built up from simpler ones using ∧, ∨, ¬, ⊃, ≡, �, �,
∀, and ∃ in the usual way, with the usual conventions about free variables.

3. If t is a term (which here means a variable or a constant symbol), ϕ is a
formula, and x is a variable, 〈λx.ϕ〉(t) is a formula. Its free variables are
those of ϕ, except for occurrences of x, together with the free variables of t.

Think of 〈λx.ϕ〉(t) as asserting of the object t designates that it has the
property 〈λx.ϕ〉, the property abstracted from the formula ϕ.

LetM = 〈G,R,D, I〉 be a model. A valuation inM is a mapping v assigning
to each variable x some member v(x) in the domain of the frame underlying the
model. Note that valuations are not world dependent.

We say a term t designates at Γ if t is a variable, or if t is a constant symbol
and I(t, Γ) is defined. If t designates at Γ we use the following notation:

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 19

(v ∗ I)(t, Γ) =
{
v(x) if t is the variable x
I(c, Γ) if t is the constant symbol c

Finally we must define M, Γ v ϕ: formula ϕ is true at world Γ of model
M with respect to valuation v. Here is the truth definition, much of which is
straightforward.

1. For an atomic formula R(x1, . . . , xn), M, Γ v R(x1, . . . , xn) just in case
〈v(x1), . . . , v(xn)〉 ∈ I(R,Γ).

2. M, Γ v X ∧ Y if and only if M, Γ v X and M, Γ v Y (and similarly
for the other Boolean connectives).

3. M, Γ v �X if and only if M, ∆ v X for every ∆ ∈ G such that ΓR∆
(and similarly for �).

4. M, Γ v (∀x)ϕ if and only if M, Γ v′ ϕ for every valuation v′ that is like
v except that v′ is some arbitrary member of D(Γ) (and similarly for ∃).

5. If t does not designate at Γ ,M, Γ 6v 〈λx.ϕ〉(t).
6. If t designates at Γ , M, Γ v 〈λx.ϕ〉(t) if and only if M, Γ v′ ϕ where v′

is like v except that v′(x) is what t designates at Γ .

Item 4 makes explicit the idea that quantifiers quantify over what actually
exists—over the domain of the particular possible world only. Such quantifiers
are called “actualist” by philosophers. They are not the only version available,
but a choice among quantifiers is not the issue just now. Item 5 is the formal
counterpart of the informal notion that no assertion about what is designated by
a term that fails to designate can be correct. Note that the issue is designation
by the term, not existence of the object designated. And item 6 expresses the
idea that properties are properties of objects, and so we must know what object
a term designates before knowing if a property applies.

One last item before turning to examples. We will always assume our models
are normal : there is a relation symbol =, written in infix position, and I(=, Γ)
is the equality relation on the domain of the model, for every world Γ .

6 A Few Examples

We discuss several examples to show the richness these simple ideas provides us.
We give more examples once tableau proof machinery has been introduced.

Example 1. We begin with Frege’s morning star/evening star problem. Suppose
we consider an epistemic model in which the various possible worlds are those
compatible with the knowledge possessed by the early Babylonians, with the
actual situation among them, of course. The constant symbols m and e are
intended to designate the morning and the evening stars respectively. (They
designate the same object in the actual world, but need not do so in every
possible world.) Also, let us read � as “the ancients knew that.” How can we
have m = e without, by substitutivity of equality, also having �(m = e)?

There is a certain amount of deception in the paragraph above. Neither
m = e nor �(m = e) is a formula in our formal system. (Recall, constants

20 Melvin Fitting

cannot appear in atomic formulas, rather they enter via predicate abstraction.)
The incorrect m = e should be replaced with 〈λx.〈λy.x = y〉(e)〉(m), which we
abbreviate as 〈λx, y.x = y〉(m, e). More significantly, for �(m = e) we have a
choice of replacements: �〈λx, y.x = y〉(m, e), or 〈λx, y.�(x = y)〉(m, e), or even
〈λx.�〈λy.x = y〉(e)〉(m). These do not behave the same. And, as a matter of
fact, the formula

〈λx, y.x = y〉(m, e) ⊃ 〈λx, y.�(x = y)〉(m, e) (2)

is valid (true at all worlds of all models) while

〈λx, y.x = y〉(m, e) ⊃ �〈λx, y.x = y〉(m, e) (3)

is not. (We leave the demonstration to you.) A little thought shows that in
formula (2), 〈λx, y.�(x = y)〉(m, e) asserts that the ancients knew, of the objects
denoted by m and e (in the actual world) that they were identical. This, in fact,
is so, since they certainly knew that an object is self-identical. But in formula
(3), �〈λx, y.x = y〉(m, e) asserts the ancients knew that m and e designated
the same object, and at one time they did not know this. The use of predicate
abstraction serves to disambiguate (m = e) ⊃ �(m = e) into a valid version and
an invalid version, corresponding roughly to Frege’s use of reference and sense.

Example 2. The introduction of modal operators is not essential to see the effects
of predicate abstraction. Consider the formula

〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c) (4)

If we evaluate the truth of this at a possible world at which c designates, the
equivalence is valid. But if we are at a world at which c does not designate,
the left side of (4) is false, since no abstract correctly applies to a term that
fails to designate. But for the same reason, 〈λx.ϕ〉(c) is false, so its negation,
the right side of (4), is true. Thus if c fails to designate, (4) is false. This epito-
mizes precisely the distinction Russell made between the King of France having
the non-baldness property, and the King of France failing to have the baldness
property.

Note that if c does designate, (4) is true. And, whether c designates or not,
〈λx.ϕ∧ψ〉(c) ≡ (〈λx.ϕ〉(c)∧〈λx.ψ〉(c)) is true at each possible world. In classical
logic, it is assumed that terms designate, so the consequence of (4) and this is
to make the effects of predicate abstraction invisible. Only when Russell tried to
treat definite descriptions, that may lack designation, or when Frege considered
non-truth functional contexts, did such effects turned up.

Example 3. A term t may or may not designate at a particular possible world Γ .
If it does, 〈λx.x = x〉(t) is true there, since whatever t designates is self-identical.
But also, if t does not designate at a world, 〈λx.x = x〉(t) is false there, since

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 21

predicate abstracts are false when applied to non-designating terms. Therefore,
let us define a “designation” abstract:

D abbreviates 〈λx.x = x〉.

This allows us to move a semantic notion into syntax—as we have seen, D(t) is
true at a world if and only if t designates at that world.

Using our designation abstract, let us return to Example 2. We saw that
formula (4) is true if c designates. Consequently we have the validity of the
following.

D(c) ⊃ [〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c)] (5)

Remarkably enough, the equivalence holds the other way around as well.
That is, the following is valid.

D(c) ≡ [〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c)] (6)

Example 4. In exactly the same way that the semantic notion of designation
could be expressed syntactically, we can express existence as well. We introduce
the following abbreviation.

E abbreviates 〈λx.(∃y)(y = x)〉.

It is easy to show that t designates something that exists at world Γ if and only
if E(t) is true at Γ .

We do not have the validity of: (∀x)ϕ ⊃ 〈λx.ϕ〉(t). But if we assume that t
not only designates, but designates something that exists, things become better.
The following is valid: E(t) ⊃ [(∀x)ϕ ⊃ 〈λx.ϕ〉(t)].

In classical logic one cannot even talk about things that do not exist, and
the E(t) antecedent above is unnecessary.

Example 5. Suppose p is a constant symbol intended to designate the President
of the United States. Assume we have a temporal model in which possible worlds
represent instants of time, and �X means X is and will remain true, that is,
X is true in the present and all future states. Dually, �X means X is or will
become true. For simplicity, let us assume there will always be a President of the
United States, so p designates at all times. Now, consider the following formula.

〈λx.�¬〈λy.x = y〉(p)〉(p) (7)

To say this is true at the current world asserts, of the current President of the
United States, that at some future time he will not be identical to the individual
who is then the President of the United States. That is, (7) asserts: “someday the
President of the United States will not be the President of the United States.”
This is not a valid formula, but it is satisfiable.

22 Melvin Fitting

7 Herbrand’s Theorem

In classical logic, Herbrand’s theorem provides a reduction of the first-order
provability problem to the propositional level, plus an open-ended search. It is
often considered to be the theoretical basis of automated theorem proving for
classical logic. Unfortunately, Herbrand’s theorem does not extend readily to
non-classical logics. Fortunately, the use of predicate abstraction allows us to
prove a reasonable version for first-order modal logics. Since the full statement
of the resulting theorem is somewhat complex, I only raise a few of the issues,
and refer to [1] for a fuller treatment.

Classically, the first step of formula processing in the Herbrand method in-
volves the introduction of Skolem functions. To cite the simplest case, the formula
(∃x)P (x) is replaced with P (c), where c is a new constant symbol. It is not the
case that the two formulas are equivalent, but they are equi-satisfiable—if either
is, both are.

One would like to Skolemize modally as well, but consider the following
formula: �(∃x)P (x). If this is true at a possible world Γ of some modal model,
then (∃x)P (x) is true at each world accessible from Γ . Say ∆ and Ω are two
such accessible worlds. Then at ∆, some member of the domain associated with
∆ satisfies P (x)—let the new constant symbol c designate such an object at
∆. The situation is similar with Ω, so let c designate some member of the
domain associated with Ω that satisfies P (x) there. In general, c will designate
different things at ∆ and Ω, and so will be non-rigid. Thus the Skolemization
of �(∃x)P (x) seems to be �P (c), where c is a new non-rigid constant symbol.
But, as we have seen, once non-rigid constant symbols are admitted, conventional
syntax becomes ambiguous. Indeed, it would appear that �P (c) should also be
the Skolemization of (∃x)�P (x), and this seems quite unreasonable, since the
two quantified formulas having a common Skolemization behave quite differently.

Of course, the solution involves using predicate abstraction. The proper
Skolemization for �(∃x)P (x) is �〈λx.P (x)〉(c), while (∃x)�P (x) has a Skolem-
ization of 〈λx.�P (x)〉(c), which is behaviorally distinct.

Similar results apply to more complex formulas, but function symbols must
be involved, and we do not attempt to give a full presentation here. Suffice it to
say that the full force of Herbrand’s theorem can be brought to bear, even in a
modal setting.

8 Dynamic Logic

One of the interesting applications of multi-modal logic is dynamic logic, a logic of
programs, [6]. In addition to the usual machinery of modal logic, a class of actions
is introduced, with the class of actions closed under various operations, such as
sequencing, repetition, and so on. For each action α there is a corresponding
modal operator, generally written [α]. The formula [α]X is informally read: after
action α is completed, X will be true. (Since non-determinism is allowed, there
may be several ways of completing α.) There is a corresponding semantics in

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 23

which possible worlds are possible states of a computation. Likewise there is a
proof theory, at least for the propositional case. A typical principle of dynamic
logic is [α;β]X ≡ [α][β]X , where the semicolon corresponds to sequencing of
actions.

Dynamic logic provides an elegant treatment of compound actions, but what
about atomic ones? Consider the assignment statement c := c + 1—what is its
dynamic characterization? We are all familiar with the before/after behavior of
assignment statements, where the right-hand side uses the current value of c,
while the left-hand side reflects the new value it acquires. To explain c := c+ 1
in English, we would say something like: “after execution, the value of c is one
more than its value before execution.”

To formalize this, it is enough to recognize that c is non-rigid—it designates
different things at different computational states. Then, assuming arithmetic
behaves in the expected way, the essential feature of the assignment statement
in question is captured by the following, in which we use � as shorthand for
[c := c+ 1].

〈λx.�〈λy.y = x+ 1〉(c)〉(c) (8)

What this expresses is: it is true of the current value of c that, after c := c+ 1
is executed, the value of c will be that plus 1.

If we assume, about arithmetic, only that incrementing a number gives us a
result unequal to the number, then it is easily shown to be a logical consequence
of (8) that

〈λx.�¬〈λy.(y = x)〉(c)〉(c) (9)

This should be compared with (7). Indeed, both simply amount to assertions
that p in the one case and c in the other are non-rigid.

Issues of designation and existence are relevant in dynamic logic as well.
Saying c designates at a computational state amounts to saying it has been ini-
tialized, in the standard programming sense. Saying c exists at a computational
state says something about c’s availability—we are in the scope of c. Formal
notions here are somewhat unclear, but it would be interesting to work them
out fully. Finally, saying that c is rigid is simply saying that c is const, as in C
or C++, or final as in Java.

Full first-order dynamic logic is not axiomatizable. What we propose is that
the addition of terms, equality, and predicate abstraction to propositional dy-
namic logic, without adding quantifiers, might serve as a satisfactory strength-
ening of propositional dynamic logic. It is a subject worth investigating.

9 Tableau Proof Methods

Formal proof rules based on prefixed tableaus are quite natural for the constructs
discussed above. Here I give rules for varying domain S5—versions for other
standard modal logics are presented in [2], but that for S5 is simplest to present.

24 Melvin Fitting

Because of space limitations, rather than giving examples as we go along, I’ll
reserve them all until the following section.

For S5, by a prefix we simply mean a positive integer—think of it as in-
formally designating a possible world. (For other modal logics besides S5 the
structure of prefixes is more complex.) A prefixed formula is an expression of
the form nX , where n is a prefix and X is a formula—think of it as saying X
holds in world n. A signed prefixed formula is an expression of the form T nX
or F nX—the first asserts nX and the second denies it.

A tableau proof of a formula X (without free variables) is a closed tableau
for F 1X . A tableau for a signed prefixed formula is a tree, with that signed
prefixed formula at the root, and constructed using the various branch extension
rules to be given below. A branch of a tableau is closed if it contains an explicit
contradiction: both T k Z and F k Z, for some k and Z. If every branch is closed,
the tableau itself is closed.

Intuitively, when we begin a tableau with F 1X we are supposing there is
some possible world, designated by 1, at which X fails to hold. A closed tableau
represents an impossible situation. So the intuitive understanding of a tableau
proof is that X cannot fail to hold at any world—X must be valid. Proper
soundness and completeness proofs can be based on this intuition but there
is not space here to present them. Now it remains to give the various branch
extension rules—the rules for “growing” a tableau. The propositional connective
rules are easily described, and we begin with them.

If T nX∧Y occurs on a tableau branch, X∧Y intuitively is true at world n,
hence both X and Y must also be true there. Consequently the tableau branch
can be extended twice, with the first node labeled T nX and the second T nY .
If F nX ∧ Y occurs on a branch, X ∧ Y is false at n, so either X or Y must be
false at n. This gives rise to two cases, and so the branch “splits.” That is, the
last node is given two children, the left labeled F nX and the right F nY .

Rules for other binary connectives are similar, while those for negation are
simpler. In summary form, here they are.

Negation:

T n¬X
F nX

F n¬X
T nX

Binary:

T nX ∧ Y
T nX
T nY

F nX ∧ Y
F nX | F nY

T nX ∨ Y
T nX | T nY

F nX ∨ Y
F nX
F nY

T nX ⊃ Y
F nX | T nY

F nX ⊃ Y
T nX
F nY

Modal rules are quantifier-like in nature. Here the prefixes play a significant
role.

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 25

Necessity: In these, k is any prefix.

T n�X
T kX

F n�X
F kX

Possibility: In these, k is a prefix that is new to the branch.

T n�X
T kX

F n�X
F kX

For quantifiers we need some additional machinery. For each prefix n we
introduce an infinite alphabet of parameters associated with n—typically we
write pn, qn, etc., for parameters associated with n. Think of the parameters
associated with n as (designating) the things that exist at world n. From now
on we allow parameters to appear in proofs (though not in the formulas being
proved). They follow the syntax rules of free variables, though they are never
quantified. Now, here are the quantifier rules.

Universal: In these, pn is any parameter associated with n.

T n (∀x)ϕ(x)
T nϕ(pn)

F n (∃x)ϕ(x)
F nϕ(pn)

Existential: In these, pn is a parameter associated with n that is new to the
branch.

T n (∃x)ϕ(x)
T nϕ(pn)

F n (∀x)ϕ(x)
F nϕ(pn)

The rules so far are fairly standard. To deal with non-rigid constant symbols
(and this can be extended to include function symbols too), we again need to
extend the machinery. If c is a constant symbol and n is a prefix, we allow cn to
occur in a proof (though again, not in the formula being proved). Think of cn
intuitively as the object that c designates at world n. We have allowed partial
designation, that is, a constant symbol may not designate at every world. All
this is incorporated rather easily into our rules for predicate abstracts, which we
give in a moment.

First, however, a little more notation. For each term t we define t@n, which
we can think of as what t designates at n. (This gets more complicated when
function symbols are present.) For a prefix n:

1. For a parameter pi, let pi@n = pi.
2. For a subscripted constant symbol ci, let ci@n = ci.
3. For an unsubscripted constant symbol c, let c@n = cn.

Now, here are the abstraction rules.

Positive Abstraction:

T n 〈λx.ϕ(x)〉(t)
T nϕ(t@n)

26 Melvin Fitting

Negative Abstraction: If t@n already occurs on the branch,

F n 〈λx.ϕ(x)〉(t)
F nϕ(t@n)

Finally we have the rules for equality, and these are quite straightforward.
Let us say a term is grounded on a branch if it is a parameter or a subscripted
constant symbol, and it already occurs on the branch.

Reflexivity: If t is grounded on the branch, T n t = t can be added to the end,
for any prefix n. Briefly,

T n t = t

Substitutivity: If t and u are grounded on the branch, and T k t = u occurs
on the branch, any occurrences of t can be replaced with occurrences of u.
Again briefly,

T k t = u
T nϕ(t)
T nϕ(u)

T k t = u
F nϕ(t)
F nϕ(u)

This completes the full set of tableau rules.

10 More Examples

We give several simple examples of tableau proofs. More can be found in [2].

Example 6. In Section 6 we gave formula (6) as an interesting example of a valid
formula involving designation. We now give a tableau proof of part of this,

D(c) ⊃ [¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c)]
Line numbers are for explanation purposes only. Since no modal operators are
present, only world 1 is involved throughout.

F 1D(c) ⊃ [¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c)] 1.
T 1D(c) 2.
F 1¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c) 3.
T 1¬〈λx.P (x)〉(c) 4.
F 1 〈λx.¬P (x)〉(c) 5.
F 1 〈λx.P (x)〉(c) 6.
T 1 〈λx.x = x〉(c) 2′.
T 1 c1 = c1 7.
F 1¬P (c1) 8.
F 1P (c1) 9.
T 1P (c1) 10.

In this, 2 and 3 are from 1, and 4 and 5 are from 3 by an implication rule; 6 is
from 4 by a negation rule; 2′ is line 2 unabbreviated; 7 is from 2′ by a positive
abstraction rule; then 8 is from 5 and 9 is from 6 by negative abstraction; and
10 is from 8 by negation. The single branch is closed because of 9 and 10.

Bertrand Russell, Herbrand’s Theorem, and the Assignment Statement 27

Example 7. We give a tableau proof of a formula discussed in Example 4 of
Section 6. Again this does not involve modal operators.

F 1E(c) ⊃ [(∀x)P (x) ⊃ 〈λx.P (x)〉(c)] 1.
T 1E(c) 2.
F 1 (∀x)P (x) ⊃ 〈λx.P (x)〉(c) 3.
T 1 (∀x)P (x) 4.
F 1 〈λx.P (x)〉(c) 5.
T 1 〈λx.(∃y)(y = x)〉(c) 2′.
T 1 (∃y)(y = c1) 6.
T 1 p1 = c1 7.
T 1P (p1) 8.
T 1P (c1) 9.
F 1P (c1) 10.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule;
2′ is 2 unabbreviated; 6 is from 2′ by positive abstraction; 7 is from 6 by an
existential rule (p1 is a new parameter at this point); 8 is from 4 by a universal
rule (note that a parameter is involved, as the rule requires); 9 is from 7 and 8
by substitutivity of equality; 10 is from 5 by negative abstraction (note that c1
already occurs on the tableau branch). Closure is by 9 and 10.

Example 8. Our final example is an interesting modal example. It is a proof of

〈λx.�〈λy.x = y〉(c)〉(c) ⊃ [〈λx.�P (x)〉(c) ⊃ �〈λx.P (x)〉(c)]
In [2] we make a case that the antecedent of this expresses rigidity of c. The
consequent asserts that a de re usage of c implies the corresponding de dicto
version. There is no space here to discuss just what this is all about. Just take
it as providing an illustrative tableau proof.

F 1 〈λx.�〈λy.x = y〉(c)〉(c) ⊃ [〈λx.�P (x)〉(c) ⊃ �〈λx.P (x)〉(c)] 1.
T 1 〈λx.�〈λy.x = y〉(c)〉(c) 2.
F 1 〈λx.�P (x)〉(c) ⊃ �〈λx.P (x)〉(c) 3.
T 1 〈λx.�P (x)〉(c) 4.
F 1�〈λx.P (x)〉(c) 5.
T 1�P (c1) 6.
F 2 〈λx.P (x)〉(c) 7.
T 2P (c1) 8.
T 1�〈λy.c1 = y〉(c) 9.
T 2 〈λy.c1 = y〉(c) 10.
T 2 c1 = c2 11.
F 2P (c2) 12.
T 2P (c2) 13.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule; 6 is from
4 by positive abstraction; 7 is from 5 by a possibility rule (the prefix 2 is new to

28 Melvin Fitting

the branch at this point); 8 is from 6 by a necessity rule; 9 is from 2 by positive
abstraction; 10 is from 9 by a necessity rule; 11 is from 10 by positive abstraction;
12 is from 7 by negative abstraction (c2 occurs on the branch already); and 13
is from 8 and 11 by substitutivity of equality.

We leave it to you to provide a proof of

〈λx.�〈λy.x = y〉(c)〉(c) ⊃ [�〈λx.P (x)〉(c) ⊃ 〈λx.�P (x)〉(c)]

11 Conclusions

The work above should begin to make it clear that first-order modal logic, with
its syntax and semantics properly enhanced, is a very expressive formalism. It
relates well to natural language constructs and to those of computer science.
And it has a simple proof procedure which is automatable (though this has not
been done). Keep it in mind.

References

1. M. C. Fitting. A modal Herbrand theorem. Fundamenta Informaticae, 28:101–122,
1996.

2. M. C. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998. Forth-
coming.

3. G. Frege. Uber Sinn und Bedeutung. Zeitschrift fur Philosophie und philosophische
Kritik, 100:25–50, 1892. “On Sense and Reference” translated in [4].

4. G. Frege. Translations from the Philosophical Writings of Gottlob Frege. Basil
Blackwell, Oxford, 1952. P. Geach and M. Black editors.

5. J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 2, pages 249–307. D. Reidel, 1984.

6. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2, pages 497–604. D. Reidel, 1984.

7. B. Russell. On denoting. Mind, 14:479–493, 1905. Reprinted in Robert C. Marsh,
ed., Logic and Knowledge: Essays 1901-1950, by Bertrand Russell, Allen & Unwin,
London, 1956.

8. R. Stalnaker and R. Thomason. Abstraction in first-order modal logic. Theoria,
34:203–207, 1968.

9. R. Thomason and R. Stalnaker. Modality and reference. Nous, 2:359–372, 1968.

Inference and Verif ication in Medica l
A p p r o p r i a t e n e s s Criteria U s i ng Gr6bner Bases *

L. M. Laita 1, E. Roanes-Lozano 2, and V. Maojo I

i Universidad Polit4cnica de Madrid, Dept. I.A. (Fac. Informhtica)
Campus de Montegancedo, Boadilla del Monte, 28660-Madrid, Spain

laitaCf i. upm. es ; vmaoj o@infomed, dia. f i. upm. es

Universidad Complutense de Madrid, Dept. Algebra
Edificio "La Almudena", Paseo Juan XXIII s/n, 28040-Madrid, Spain

eroanes~eucmos, sim. ucm. es

Abst rac t . In this article techniques borrowed from Computer Algebra
(Gr6bner Bases) are applied to deal with Medical Appropriateness Crite-
ria including uncertainty. The knowledge was provided in the format of a
table. A previous translation of the table into the format of a "Rule Based
System" (denoted RBS) based on a three-valued logic is required before-
hand to apply these techniques. Once the RBS has been obtained, we
apply a Computer Algebra based inference engine, both to detect anoma-
lies and to infer new knowledge. A specific set of criteria for coronary
artery surgery (originally presented in the form of a table) is analyzed
in detail.

Keywords . Verification. Inference Engines. RBSs in Medicine. GrSbner Bases.

Topics: Integration of Logical Reasoning and Computer Algebra.
Symbolic Computation for Expert Systems and Machine Learning.

1 I n t r o d u c t i o n

"Appropriateness criteria" are ratings of the appropriateness for a given diag-
nostic or therapeutic procedure. Whereas other policies such as clinical practice
guidelines are designed to assist practitioners in patient decision making, those
criteria are developed primarily to evaluate retrospectively the appropriateness of
clinical decisions (7, 4). Nevertheless, these Medical Appropriateness Criteria
are usually tested for consistency by using ad hoc techniques, and no mechanical
procedures for extracting new information are usually provided.

In this article we present a method of verification and knowledge extraction
that , using Computer Algebra and Logic, deals with appropriateness criteria
translated into RBSs.

A considerable amount of work has been done in the field of dealing with
medical information from logic (for instance 15), and under the form of RBSs

* Partially supported by projects FIS 95/1952 and DGES PB96-0098-C04 (Spain).

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 183-194, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

184 L.M. Laita, E. Roanes-Lozano, and V. Maojo

(for instance, but not only, 3). The difference with the method described in
this paper is that it uses an algebraic theory that can cope with medical infor-
mation (or other) tha t can be expressed as an RBS based on a multivalued and
modal logic. This kind of logic is very convenient both to represent incomplete
knowledge and to be treated with a Computer Algebra based inference engine.
A short comment about the efficiency of th i s article's approach is included at
the end of the Appendix.

2 Table Descr ip t ion and Trans la t ion in to I F - T H E N
S ta t emen t s

A set of medical da ta regarding coronary diseases 12 (asymptomatic; effort-
test positive or negative; one, two, three blood vessel disease; anterior proximal
descendent affected or not; LVEF values) was presented to a panel of ten experts,
and they were asked about the appropriateness of taking action accordingly
(Revascularization, PTCA, CABG) 1. Data and actions were resumed in a table
under the following format.

LVEF Revasc. Appropriate PTCA, CABG Approp.
L > 5 0 1 : 1 2 3 4 5 6 7 8 ~ *Y +A 2 : 1 2 3 4 5 6 7 8 ~ * ~ - + A �9
5 0 _ > L > 3 0 5 : 1 2 3 4 5 6 7 8 , 1 ~ 6 : 1 2 3 4 5 6 7 8 1 , 9 ~-A
3 0 > L > 2 0 9 : 1 2 3 4 5 6 7 8 1 ,9 + A 1 0 : 1 2 3 4 5 6 7 1 8 1 , S _ + A

Fig . 1. Asymptomatic . A: Effort test: positive.
i: Left Common trunk disease. Surgical risk low/moderate.

LVEF Revasc.
L > 5 0 3 : 1 2 3 4
5 0 > L > 3 0 7 : 1 2 3 4
3 0 > L > 2 0 1 1 : 1 2 3 4

Appropriate PTCA, CABG Approp.
56 7 84*~+A 4 : 1 2 3 4 5 1 6 7181 , 7 _ + A
56 7 83 *v +A 8 : 1 2 3 4 5 61 71 8 2 ,6 _ _{_ A
5 6 7 1 8 2 . 7 + A 1 2 : 1 2 3 4 5 62 7 82 , 6 _ + A

Fig . 2. Asymptomatic . A: Effort test: positive.
1: Left Common trunk disease. Surgical risk high.

LVEF
50 _ L > 30
L > 5 0

Revasc. Appropriate PTCA, CABG Approp.
20: 1 2 334 ~ 5 . 7 8 ~ 9 3 + + D

39:12 2 31 41 ,3 6 7 3 8 9 ?D 40: 1~* 21 33 4 51 6 7 8 9 ? -- A i

F ig . 3. Asymptomatic . A: Effort test: positive.
1: Three blood vessel disease. Surgical risk high.

1 LVEF means "Left Ventricle Ejection Fraction", CABG means "Coronary Artery
Bypass Grafting", and PTCA means "Percutaneous Transluminal Coronary Angio-
plasty".

Inference and Verification in Medical Appropriateness Criteria 185

The table assigns a number (1, 2, etc), to each row of digits, symbols +, - ,
�9 , and letters A, D, I.

The superscripts, for instance (1) in 1 (appropriateness of Revasculariza-
tion): 1 2 3 4 5 6 7 81 .9 § express the number of experts that have assigned
that value (8 in a scale from 1 to 9) to the appropriateness of the action. The
symbol "*" stands for the median. The symbol + means "appropriateness of
the treatment (Revascularization or PTCA or CABG)". The symbol " - " that
appears in other rows of the table means "inappropriateness" and the symbol
"?" means "undecided appropriateness".

The letter A (after the symbol § or - or ?), means that there is "Agree-
ment" among the panelists about the appropriateness (+), inappropriateness
(-) or undecided appropriateness (?) of Revascularization, PTCA or CABG. A
letter D means that there is "Disagreement" and a letter I means "Undecided
Agreement". There exists disagreement (D) if of the ten panelists, the opinion
of three of them ranks between 1 and 3, and the opinion of another three ranks
between 7 and 9 (i.e. big standard deviation). There is agreement (A) when the
opinion of no more than two of them is outside the interval of 1, 3, 4, 6, 7, 9
containing the median. Otherwise there exists undecided agreement (I).

Observe that we have transcribed here just 17 of the more than 400 rows in
the table (these rows are the ones needed in the examples given in this paper).
The rest of the table is similar with the following changes.

Instead of the heading "A: Effort test positive", two other sections of the
table begin respectively with: "B: Effort test negative", and "C: Effort test not
performed or not determined". In each of sections A,B,C, the heading "1: Left
common trunk disease", can also be: "2: Three blood vessel disease", "3: Two
blood vessel disease with proximal anterior descendent affected", "4: Two blood
vessel disease with proximal anterior descendent not affected", "5: One blood
vessel disease with proximal anterior descendent affected", or "6: One blood
vessel disease with proximal anterior descendent not affected". Under each of
these 6 headings there are 12 items of information.

3 T r a n s l a t i o n o f a S e t o f C r i t e r i a i n t o a n R B S

3.1 I n t r o d u c t o r y Note

An RBS rule is usually represented by an implication between a conjunction of
propositional variables X i and a disjunction (or a conjunction) of propositional
variables, as

oX1 A o X 2 A ... A o X n -~ . (o X n + 1 V V o X s) .

Under our three-valued logic, the symbol "o" can be replaced by symbol L,
O, -~, a combination of them (for instance O-~X), or no symbol at all. L X means
"it is necessary that X holds". X means "X holds". OX means "it is possible
that X holds". ~X means "not-X'.

186 L.M. Laita, E. Roanes-Lozano, and V. Maojo

The symbol " ." refers to the degree of certainty of the whole rule or the
certainty of the conclusions and is to be replaced by a combination of the symbols
~ , L , O .

3.2 T r a n s l a t i o n o f t h e I n f o r m a t i o n in t h e Table

We can assign a propositional variable Xi , to each datum and action.
Asymptomatic: no variable is assigned (all other symptoms suppose that this

case is assumed).
Surgical risk.-low/moderate:-~Z1, high: X1.
Effort test.- positive: X2, negative: -~X2, not done or not decisive: O~Z2

(this case is translated as "it is possible that the effort test is negative").
Left common trunk disease: X3. Three blood vessel disease: X4. Two

blood vessel disease: X5. One blood vessel disease: X6.
Anterior proximal descendent.- affected: X13, not affected: -~X13.
LVEF (L).- L > 50%: X7, 50% > L > 30%: X8, 30 % > L > 20%: X9.
Revascularization: X10, PTCA: Xl l , CABG: X12.
These variables are combined to form rules, under the following conventions

(which we have designed, in order to translate as accurately as possible the
information in the tables):

(i) Data is written with no symbol preceding it. The reason is that we can
suppose that it has been collected with a reasonable degree of certainty.

(ii) The symbols +, ?, and - , are respectively translated into L, (~, and L-~.
(iii) The symbol " ." (see subsection 3.1 above) will be replaced by L, O, or

O-~. They respectively mean that the experts agree, have undecided agreement,
or disagree, on the appropriateness of Revascularization, PTCA and CABG.

Item 1 in the table can be reinterpreted as: "IF a patient is asymptomatic
AND his/her surgical risk is low/moderate AND his/her effort test is positive
AND he/she has a left common trunk disease AND his/her LVEF is strictly
larger than 50% THEN the panel of experts have judged that Revascularization
is appropriate". Moreover, "there is agreement (A) about this judgment". It is
translated as:

RI: ~X1 A Z2 A Z3 A X7 -~ L(LXIO)
The following list is a translation of the 2 nd to 12 th rules of the part of

the table that refers to "effort test positive". The whole table can be trans-
lated similarly. The system automatically performs logical simplifications such
as LLX ~ LX.

a2: ~X1 A X2 A X3 A X7 ~ L(L-,Xll A LX12)
R3: X1 A X2 A X3 A X7 --+ L(LXIO)
R4: X1 A X2 A X3 A X7 --* L(L-~Xll A LX12)
Rh: -~X1 A Z2 A X3 A Z8 --* L(LXIO)
R6: -~X1 A X2 A X3 A X8 --* n(n~Zll A LX12)
RT: X1 A X2 A X3 A X8 --~ L(LXIO)
R8: Z1 A X2 A Z3 A Z8 --* n(n~Xll A LX12)
R9: -~X1 A Z2 A Z3 A X9 --* L(LXIO)

Inference and Verification in Medical Appropriateness Criteria 187

R10: -~X1 A X2 A X3 A X9 -+ L(L~Xll A LX12)
R l l : X1 A X2 A X3 A X9 --~ L(LXIO)
R12: X1 A X2 A X3 A X9 --+ L(L--X11 A LX12) .
An example of a rule in which there exists disagreement, that is, symbols <>-~

precede its conclusion, is (see the Explanatory Note below, that justifies why
writing the symbol "V" in the conclusion):

R20: X1 A X2 A X4 A X8 --+ <>-~(LXll V LX12).
Other rules that will be used in this example are:
R39: X1 A X2 A X5 A =X13 A X7 -+ <>~(<>X10) ,
which translates in the conclusion the disagreement on the undecided appro-

priateness of revascularization, and:
R40: X1 A X2 A X5 A -~X13 A X7 -~ L(~X11 A L=X12) ,
which translates the agreement in both the undefined appropriateness of

PTCA and the unappropriateness of CABG.

E x p l a n a t o r y no te : Let us justify why writing "A" in the conclusion of some
rules, but "V" in some other rules.

In principle, only A but no V symbols would appear in the consequent of
each rule. But, in addition to the information given in the table, it is neces-
sary to take into account information that does not appear explicitly in it, but
that belongs to medical practice. For instance, PTCA and CABG cannot be
performed simultaneously. This is translated into L-~(LX11 A LX12) (the ex-
pression LXl l A LX12 is an example of what in RBSs context is called an
"integrity constraint"). Then 5-1 (iX 11 A LX12) would lead to a logical con-
flict with rule 20 if rule 20 had an A in its consequent. So, there must be an
initial pre-process to obtain the definitive rules, and some A are substituted by
V (in the consequent of some rules) in order to avoid logical conflicts.

4 Knowledge Extraction and Consistency in the Set of
Criteria

For the sake of simplicity, we will consider only rules 1 to 12 and rules 20, 39
and 40, which are enough to clarify the concepts to be described.

(1) Potential facts and facts
It is known in RBSs literature that a potential fact in a set of rules is any

literal, which stands in the antecedent of some rule(s) of the set but not in any
consequent of any rule(s) in the set. A literal is a variable preceded or not by
the symbol -~ (if we are in bivalued logic) or by ~, O, L, or by some combination
of these symbols (in the three valued case).

Then, potential facts in our example are X1,-~X1, X2, X3, X4, X5,
x7, x8, x9, x13

In each case, those among the potential facts that are stated will be called
"facts".

188 L.M. Laita, E. Roanes-Lozano, and V. Maojo

(2) Integrity constraints
In our example, both PTCA and CABG cannot be carried out simultane-

ously. To take both actions simultaneously (Integrity Constraint: IC) is trans-
lated as LXll A LX12. Therefore, the formula (NIC) that strongly negates
it, L~(LXll A LX12), needs to be added as new information.

(3) Addition of information directly by the experts
As Revascularization can be carried out by PTCA or CABG (under the

integrity constraint in (2)), we add as information the formula Z10 ~-~ XllV
X12. The formula Z10 ~-* XllV Z12, will be hereafter referred to as
"ADDII" (additional information 1).

Addition of more information suggested by the anomalies found will be ex-
plained in (4).

(4) Anomalies
In our implementation, we will ask the computer the following questions.

(4-1) Is the set of rules 3, 4, 7, 8, 11, 12, 20, 39, 40 together with the facts
X1, Z2, X3 X4, X5, X7, Z8, X9, -~Z13 (plus ADDI1 and NIC)
consistent? The answer will be NO (see Appendix).

The same occurs with the set of rules 1, 2, 5, 6, 9, 10, 20, 39, 40, together with
the facts -~X1, X2, Z3, X4, Z5, X7, X8, X9, -~X13 (plus ADDI1
and NIC).

Note that we do not ask about consistency of all rules 1 to 12 with their
potential facts altogether because -~X1 and X1 can never be given as facts
simultaneously, as they give inconsistency immediately.

(4-2) Is the set of rules 3, 4, 7, 8, 11, 12 together with their respective potential
facts, NIC and ADDI1, consistent? (ADDI2 is not included because it contains
another different variable). The answer will be YES.

The same occurs with the set of rules 1, 2, 5, 6, 9, 10 together with their
respective potential facts, NIC and ADDI1.

(4-3) Is the set of rules 8, 20 together with their potential facts consistent? The
answer will be NO.

The contradiction between rules 8 and 20 is conditional on the case when
simultaneously a left common trunk disease (X3) and a three vessel disease
(X4) occur. But if X3 (left common trunk disease) holds, rule 8 says that
PTCA is absolutely disregarded (under agreement) and if X4 (three vessel
disease) holds, PTCA is considered appropriate (under disagreement).

We wonder if in a situation where X3 and X4 hold together it would
be better to assess that if a left common trunk disease implies (under agree-
ment) absolutely disregarding PTCA, then a three vessel disease should imply
(also under agreement) at least a possibility of disregarding PTCA. In symbols:
(X3 -~ L(L~Xll)) --~ (X4 --* n(~-~Xll)) .

Inference and Verification in Medical Appropriateness Criteria 189

This is the kind of information to be added, if the experts agree. The formula
above will be denoted "ADDI2" (additional information 2).

(4-4) Is the set of rules 39, 40 together with the potential facts in these two rules
and ADDI1 consistent? The answer will be again NO.

The existence of contradictions in the points (4-3) and (4-4) suggests changes
in the rules, and therefore a way to improve the information in the table. In the
case (4-3) we could leave rule 8 as it is and exchange rule 20 with:

RN20: X1 A X2 A X4 A X8 --~ . (O~Zl l V LX12) ,
where �9 could be L or O (according to the judgement of the experts). "RN"
means "new rule".

In the case (4-4) we could exchange rule 39 with:
RN39: X1 A X2 A X5 A ~X13 A X7 --~ <>(<>X10)

and leave rule 40 as it is.
It will have to be checked that no contradiction appears under these changes.

(4-5) Exchange in question (4-3) rule 20 with RN20 plus ADDI2, and check the
consistency of this new set. The answer will be YES.

(4-6) Exchange in question (4-4) rule 39 with RN39 and check the consistency
of this new set. The answer will be YES.

(5) Knowledge extraction
Theorem proving is an important field of research in A.I. A particular case

is the extraction of knowledge which is implicit in an RBS. The implementation
to be described in the Appendix allows asking the computer questions in the
form of propositional formulae that are written using the propositional variables
which appear in the RBS. Let us illustrate this with two examples-

i) Is <)(LXll V LX12) a consequence of rules 3, 4, 7, 8, 11, 12, their
potential facts and ADDII? The answer will be YES.

ii) Is ADDI2 a consequence of rules 8 and RN20 together with their potential
facts? The answer will be YES, which is a nice result because it certifies that
exchanging rule 20 with RN20 can be proposed to the panelists.

As a consequence of these and other suggestions, they have decided to make
substantial changes in the configuration of the tables. For instance the § is
not considered any longer. The knowledge included has also been revised.

5 T h e o r y D e s c r i p t i o n : T w o B a s i c I t e m s a n d t h e M a i n

R e s u l t

In this section we briefly summarize the RBSs theory of verification and of knowl-
edge extraction on which the treatment of this paper is based. The theoretical
model is developed in 14 and 11, and therefore only some important basic
items and an informal statement of the main result together with its application
to consistency checking are stated below.

190 L.M. Laita, E. Roanes-Lozano, and V. Maojo

This theory is related to term-rewriting and theorem proving (see for instance
8, 9, 13). The main theorem first appeared in 2, was improved in 6 and
is proved in a different way in 14 and 11. The method differs substantially
from other known verification methods (a state of the art in Knowledge Systems
verification is studied in 10).

5.1 Tau to log ica l C o n s e q u e n c e s a n d C o n t r a d i c t o r y D o m a i n s

A propositional formula A0 is a tautological consequence of the propositional for-
mulae A1, A2, ..., Am, denoted {A1, A2, ..., Am} ~ Ao iff for any truth-valuation
v such that if v(Ai) = v(A2) v(Am) = 2, then v(Ao) = 2 (0, 1, 2 are the
values respectively assigned to "false", "indeterminate" and "true" in our three
valued logic).

In this context, {A1, A2,...,Am} is called "a contradictory domain" iff {A1,
A2,...,Am} ~ A, where A is any formula of the language in which A1, A2, ..., Am
are expressed. The name contradictory domain comes from the fact that, if all
formulae follow from {A1, A2, ..., Am}, in particular contradictory formulae fol-
low.

5.2 T r a n s l a t i o n of Logica l F o r m u l a e in to P o l y n o m i a l s

The information contained in the RBS is translated into polynomials. From
here onwards the polynomial ring will be (~ / (3)z~)x l , . . . , Xn/I where the xi
are the polynomial variables that correspond to the propositional variables that
appear in the RBS and I is the ideal generated by the polynomials of the form

3 x i - xi. In the three-valued case (Lukasiewicz's Logic with modal connectives),
the polynomial translation of the connectives is (see 14 for details):

f~(q) = (2 - q) + I
f<> (q) -- 2q 2 + I

f i (q) = (q2 + 2q) + I
fv(q , r) = (q2r2 + q2r + qr 2 + 2qr + q + r) + I

f^(q, r) = (2q2r 2 + 2q2r + 2qr 2 + qr) + I
f_~(q, r) = (2q2r 2 + 2q2r + 2qr 2 + qr + 2q + 2) + I

f~(q,r) = (q2r2 + q2r + qr2 + 2qr + 2q + 2r + 2) + I

5.3 The Main Resu l t

T h e o r e m 1. * A formula Ao is a tautological consequence of { A1, A2, ..., Am}
({Ai, A2, ..., Am} ~ Ao) iff the polynomial translation of the negation of Ao
belongs to the ideal generated by the polynomial translation of the negations of
A1,A2, ...,Am:

f . (Ao) e < f . (A l) , ..., f~(Am) > +I .

In particular the A1, ...,Am can be rules, facts, infegrity constraints and addi-
tional information.

Inference and Verification in Medical Appropriateness Criteria 191

C o r o l l a r y 1. * If I belongs to the ideal above, the ideal is the whole ring. But
this is the same as to say that the set of the formulae in the RBS is a contradic-
tory domain. Therefore the condition of inconsistency is: the RBS is inconsistent
ij~

1 �9 < f-~ (Rules), f~ (Facts), f~ (NICs) , f . (ADDIs) > +I .

6 Conclusion

We have suggested the possibility of translating medical knowledge in terms of
RBSs based on a multivalued and modal logic. This approach is more dynamic
than the one using tables: it allows the addition of new knowledge (with no
changes in the inference devices), to improve knowledge, and even to extract
knowledge that is not explicit in the RBS. Despite the fact that dealing with
medical knowledge under an RBS interpretation is not new, we think this ap-
proach using a multivalued and modal logic and Computer Algebra is.

7 Acknowledgments

We would like to thank Dr. P. Ls (Institute of Health, Carlos III Hospital)
for providing the set of criteria used in this research (that is now in a process of
improvement and simplification) and for his most valuable comments.

We would also like to thank Ana Maria Diaz, for her contribution to the
article.

Appendix: CoCoA Implementation of Our Set of Criteria

The language CoCoA 2 (see 5) is very well suited for our purposes, as it is
specialized in computing "GrSbner Bases" (GB) and "Normal Forms" (NF) in
polynomial rings over finite fields (see 16, and 1).

In this subsection we describe step by step in CoCoA the example of section 4.

(1) Declare the ring of polynomials to be ~ / (3) x l , ..., x13:
A := Z / (3) x 1 . . 1 3 ;
USE A;

3 for i 1 to 13. (2) Declare the ideal generated by the polynomials x i - x~, ----
I : = I d e a l (x l J 3 - x l x 1 3 3 - x 1 3) ;
Explanation: CoCoA has not yet implemented quotient rings. Instead of check-
ing an ideal J in A/ I , the ideal J + I will be studied in A.

2 A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing Computations in
Commutative Algebra. Available via anonymous ftp from: cocoa@dima.unige.it

192 L.M. Laita, E. Roaaes-Lozano, and V. Maojo

(3) Translate connectives into po~nomia~ (see subsection 5.2)
NEG(M) := NF(2-M, I)
POS(M) := NF(2*M^2,I);
NEC(M) := NF(M^2+2*M, I);
ORI(M,N) := NF(2*M^2*N^2+M^2*N +M*N^2+2*M*N+M+N, I);
ANDI(M,N) := NF(2*M^2*N^2+2*M^2*N +2*M*N^2+M*N, I);
IFF(M,N) := NF(2*M'2N'2+ 2*M^2*N + 2*M,N^2+ M*N + 2*M + 2, I);
IMP(M,N) := NF(M^2*N^2 + M^2*N + M*N'2+ 2*M*N +2*M +2*N + 2, I);

(4) Declare the rules in prefix form. As an illustration, rule 20 is rewritten as:
R20 := IMP(ANDI(ANDI(ANDI(XI,X2),X4),X8),

OKl (NEC (X ii) ,NEC(X 12))) ;

(5) Declare the potential facts
F1 := NEG(X1); F2 := X1;
F3 := X2; F4 := X3;
F5 : = X4; F6 := X5;
F7 := X7'; F8 := X8;
F9 := X9; F10 := NEG(X13);

(6) Declare integrity constraints and other additional information (see 4(3)):
NIC : = NEC (NEG (AND1 (NEC (X I I), NEC (X 12)))) ;
For example, ADDI1, that is, X10 *-+ Xll V X12, is introduced as:
ADDI I := AND1 (IMP (X I0, 0RI (X 1 i, X 12)), IMP (0RI (X 1 I, X 12),

x l o)) ;
and ADDI2, that is, (X3 --* L(L-~Xll)) --~ (X4 --* L(<>-,Xll)), as:
ADDI2 : = IMP (IMP (X 3, NEC (NEC (NEG (X I i)))), IMP (X 4,

NEC (POS (NEG(X ii))))) ;

(7) Declare the ideal J generated by the negations of rules 3, 4, 7, 8, 11, 12, 20,
39, 40 and all potential facts (with the exception of F1), integrity constraints
and additional information:
J : = IDEAL (NEG (F2), NEG (F3) NEG (F9), NEG (FIO), NEG (R3), NEG (R4),

NEG (R7), NEG (R8), NEG (RI 1), NEG (R12), NEG (R20), NEG (R39), NEG (R40),
NEG(NIC), NEG (ADDII) ;

(8) Check the consistency of the set of rules, facts.., of (7):
GBasis (I+J) ;
As the answer is 1, there is inconsistency (as advanced in 4(4-1)).

(9) Let us suppress rules 20, 39, 40 and facts F5, F6, F10 from the generators of
J and let us denote H the new ideal. As
GBasis (I+H) ;
returns a set of polynomials, there is consistency (as advanced in 4(4-2)).

Inference and Verification in Medical Appropriateness Criteria 193

(10) Similarly, the set {R8, R20, F2, F3, F4, F5, F8} and also the set {R39,
R40, F2, F3, F4, F6, F7, F10, ADDI1} give inconsistency (as advanced in 4(4-3)
and (4-4)).

(11) The existence of inconsistency in (9) suggest (subsection 4(4-5) and (4-6)),
exchanging {RS, R20} and {R39, R40}, respectively with {R8, RN20, ADDI2}
and {RN39, R40}. Accordingly we define two new ideals S and T.
S : = Ideal (NEG(F2), NEG(F3), NEG(F4), NEG(F5), NEG(F8), NEG(FI3),

NEG (R8), NEG (RN20), NEG (ADDI2)) ;
T : = Ideal (NEG(F2), NEG(F3), NEG(F6), NEG(FT), NEG(RN39), NEG(R40),

NEG(ADDII)) ;
GBasis (I+T) ;
Now, in both cases, CoCoA returns a set of polynomials, which means consis-
tency, as advanced in 4(4-5) and (4-6).

(12) Knowledge extraction. Let us check, for instance, if the first formula in (5)
of section 4: O(LXll V LX12) , that is:
FORI := POS(0RI(NEC(XII),NEC(X12)));
is a consequence of the information given by the ideal H above:
NF(NEG(FORI), I+H) ;
The answer is 0, and therefore the formula FOR1 follows from the generators of
ideal H.

Another example from (5) of section 4: Is ADDI2 a consequence of rules 8
and RN20, together with all their potential facts?
U := IdeaI(NEG(F2),NEG(F3),NEG(F4),NEG(F5),NEG(F8),NEG(R8),

NEG (RN20)) ;
NF(NEG(ADDI2), I+U) ;
The answer is 0, and therefore ADDI2 follows from rules 8 and RN20.

(13) Detecting the formula that produces the inconsistency. Our implementation
also contains a program CONSIST, that can be applied to check where the incon-
sistency is. It adds one new formula each time (in the order in which they are
given) and points out the first element that produces inconsistency.

The whole process of processing all the examples in this section (translating
rules, facts, integrity constraints and additional information, checking for con-
sistency, answering if the given formulae are consequences of the corresponding
ideal, and the application of the program CONSIST) takes about fifteen seconds
in a standard 64 MB RAM Pentium-based PC.

References

1. V. Adams, P. Loustanau, An Introduction to Gr6bner Bases. Graduate Studies in
Mathematics 3, American Mathematical Society, Providence, RI, (1994).

194 L.M. Laita, E. Roanes-Lozano, and V. Maojo

2. J. A. Alonso and E. Briales, LSgicas Polivalentes y Bases de GrSbner. Procs. of the
V Congress on Natural Languages and Formal Languages, Ed. M. Vide, Barcelona,
(1989), 307-315.

3. B.G. Buchanan and E.H. Shortliffe, Rule Based Expert Systems: The MYCIN ex-
periments of the Stanford Heuristic Programming Project. Addison-Wesley, Read-
ing, MA. (1984).

4. S. Bernstein, J. Kahan, Personal communication. RAND Corporation (1993).
5. A. Capani and G. Niesi, CoCoA User's Manual (v. 3.0b). Dept. of Mathematics,

University of Genova (1996).
6. J. Chazarain, A. Riscos, J.A. Alonso, E. Briales, Multivalued Logic and Gr5bner

Bases with Applications to Modal Logic. Journal of Symbolic Computation, 11,
181-194 (1991).

7. M. Field, M., K. Lohr, (Eds). Guidelines for Clinical Practice. From Development
to Use. National Academy Press, Washington D.C. (1992).

8. J. Hsiang, Refutational Theorem Proving using Term-rewriting Systems, Artificial
Intelligence, 25 (1985), 255-300.

9. D. Kapur and P. Narendran, An Equational Approach to Theorem Proving in
First-Order Predicate Calculus. 84CRD296 General Electric Corporate Research
and Development Report, Schenectady, NY, March 1984, rev. Dec. 1984. Also in ,
Proceedings of IJCAI-85 (1985), 1446-1156.

10. L.M. Laita, L. de Ledesma, Knowledge-Based Systems Verification, Encyclopedia
of Computer Science and Technology, Eds. A Kent, J.G. Williams. Marcel Dekker,
New York (1997), 253-280.

11. L.M. Laita, E. Roanes-Lozano, J.A. Alonso, L. de Ledesma, Automated Multi-
Valued Logic reasoning in rule based Expert Systems. Preprint, AI Dept., Uni-
versidad Polit@cnica de Madrid, sent for tentative publication in Soft Computing
(1998).

12. P. L&zaro, K. Fitch, Criterios de uso apropiado para by-pass coronario. Unpub-
lished Report (1996).

13. G. C. Moisil, The Algebraic Theory of Switching Circuits. Pergamon Press, Oxford
(1969).

14. E Roanes-Lozano, L.M. Laita, E. Roanes-Macfas, A Polynomial Model for Multi-
valued Logics with a Touch of Algebraic Geometry and Computer Algebra. Special
Issue "Non-Standard Applications of CA", in Mathematics and Computers in Sim-
ulation, 45/1-2 (1998), 83-99.

15. J.K. Slaney, Formal Logic and its application in medicine. Pillips CI. Logic in
Medicine, British Medical journal (1988).

16. F. Winkler, Introduction to Computer Algebra. Lecture Notes WS 93/94, RISC-
Linz (1994).

The Unif icat ion Problem for One Relat ion Thue
Systems*

Christopher Lynch

Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA,
clynch@sun, mcs. clarkson, edu,

http://www, clarkson, edu/,,~clynch

Abs t rac t . We give an algorithm for the unification problem for a gen-
eralization of Thue Systems with one relation. The word problem is a
special case. We show that in many cases this is a decision procedure with
at most an exponential time bound. We conjecture that this is always a
decision procedure.

1 I n t r o d u c t i o n

In this paper we s tudy the unification problem and word problem for Thue
Systems. This basic problem appears under several different names. I t is also
known as the unification and word problem for semigroups, terms with monadic
function symbols, and ground terms with one associative operator.

In particular, ' we are interested in Thue Systems with only one equation,
but we have generalized our results to larger classes. The word problem for one
equation can be s ta ted simply: Given an equation s = t, and two words u0 and
u n , is there a sequence of words u o , . . . , u n such tha t each Ui+l is the result of
replacing an occurrence of s in ui by t, or replacing an occurrence of t in ui by
s?

Despite the very simple formulation of the problem, it is unknown whether
the problem is decidable. I t has been shown to be undecidable when there are
three equations instead of one 9, but the case for two equations is also unknown.
The word problem for groups with one defining equation has been known to be
decidable for 65 years 8. However, despite considerable work in the area 2,4
(see 6 for a survey), the decidability for one equation Thue systems is unknown.

In this paper, we address (but do not solve) the problem, and we also gen-
eralize the problem in some ways. One of our generalizations is to consider the
unification problem, which is a generalization of the word problem. The unifica-
t ion problem is as follows: Given an equation s = t and words u and v, are there
words x and y such tha t v y can be reached from u x with a sequence of replace-
ments of s by t and t by s. We also generalize from one equation Thue systems
to allow more than one equation but require a certain syntactic structure. Our

* This work was supported by NSF grant number CCR-9712388 and partially done
while visiting INRIA Lorraine and CRIN.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 195-208, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

196 Christopher Lynch

result is a procedure that decides the unification problem when it halts, and also
produces the most general unifier. We have not been able to prove that it halts
for all instances of our generalization of the one equation unification problem,
but we conjecture that it does.

Although we have not proved a decidability result, we believe our work is im-
portant. We have provided some theorems showing how to automatically detect
that the algorithm is a decision procedure for certain Thue systems. We even
give a complexity result, showing that the algorithm is at most exponential for a
large class of Thue systems We have implemented an algorithm for one equation
Thue systems, based on the one in this paper. On every example we have tried,
it always terminates quickly with the answer.

Our main interest in this problem is not just for one equation Thue systems.
Our goal is to extend these results to equations over terms. Popular methods
for deciding word and unification problems, like the Knuth-Bendix completion
method have many examples, even very simple ones, where they do not halt.
Our method attempts to avoid those problems. Although our presentation here
is only for monadic function symbols, the ideas extend to function symbols of
higher arity. The syntactic restrictions on the class used in this paper allow
for our algorithm to be deterministic. Relaxing those restrictions is possible if
we allow the algorithm to be non-deterministic. Our plan for the near future
is to investigate all these extensions. We expect the ideas in this paper will be
important for finding decision procedures for interesting classes of equational
theories. The main inspiration for our paper is our previous work on SOUR
graphs 7. This paper is actually a simplification of those ideas, although the
ideas have evolved quite a lot. We have achieved the two main purposes we
sought in the evolution of those ideas: First, they are vastly simplified to allow
much easier understanding and implementation. Second, we have shown the use
of the method to solve decision problems, which we did not realize before.

The next section of the paper gives some required background. The section
after that builds up the necessary machinery for our algorithm. We convert the
unification problem into a problem in rewrite systems. The following section
develops the rewrite system problem into an algorithm. Interestingly, in this sec-
tion we show that the unification (and word) problem is equivalent to a problem
in termination of rewrite systems. We show how to detect loops in rewrite sys-
tems, and conjecture that all nonterminating rewrite sequences are loops, which
forms the basis of our algorithm. Interesting this is the same conjecture made
for termination of one rule semi-Thue systems 10, another decision problem
whose solution is unknown. That gives us the impression that the same tech-
niques used for solving the termination problem will be useful for solving the
word (and unification) problem. In the conclusion, we relate our work with other
work.

The Unification Problem for One Relation Thue Systems

2 P r e l i m i n a r i e s

197

We are given a set A as alphabet. In th is paper , we use l e t t e r s a, b, c, d, e, f , g, h
as m e m b e r s of t he a l p h a b e t . A word is a sequence of m e m b e r s of the a lphabe t .
We use l e t t e r s r, s, t, u, v, w to represen t words. If w is a word then Iwl is the
n u m b e r of symbols in w. I f Iwl -- 0, t h e n we wr i te w as e and call i t the empty
word. If u and v a re words, t hen uv represen t s t he c o n c a t e n a t i o n of u and v.
T h e n u is a prefix of uv, and v is a suffix of uv. Also, v is a subword of uvw.
u ~ v is an equation if u ~ e and v ~ c. 1

A Thue System is a set of equat ions . We assume it is c losed under s y m m e t r y ?
Le t E be a Thue sys tem. If s ~ t C E t h e n we wr i te usv ~E utv. If E is obvious ,
we m a y wr i te usv ~ utv. We call th is an equational step at position p, where
p = lul. I f p -- 0, t hen this is cal led an equational step at the top. A proof of
u ~-~E v is of the form uo ~E Ul ~E "'" ~E Un where n _> 0, u ---- u0, v = Un,
a n d u i -1 ~ E ui for all i > 0. Given a Thue sys t em E and a pa i r of words u
and v, t he uniform word problem for Thue Systems is t he p r o b l e m of dec id ing
whe the r u ~-~E v. Th is is also cal led the word problem for semigroups, a l t h o u g h
in th is case the p r o b l e m is s t a t ed s eman t i ca l l y 3. T h e syn tac t i c vers ion of t he
word p r o b l e m for semigroups was shown equivalent to the seman t i c vers ion by
Birkhoff.

A n o t h e r way to examine the p rob l em is to view the m e m b e r s of A as m o n a d i c
func t ion symbols . In t h a t case, a set of var iables V is a d d e d to the language .
We refer to m e m b e r s of V wi th l e t t e r s x, y, z. Also, a se t of cons tan t s C is
added . A term is a var iable , or a cons tan t , or a func t ion symbo l app l i ed to a
t e r m (paren theses a re omi t t ed) . E q u a t i o n s are of t he fo rm s ~ t, where s and
t a re te rms . A substitution is a m a p p i n g f rom the set of var iab les to the set of
t e rms , which is the i d e n t i t y a lmos t everywhere . A s u b s t i t u t i o n is e x t e n d e d to
i ts h o m o m o r p h i c ex tens ion (i.e., (f t) a -- f (ta)) . A ground instance of a t e r m
(resp. equa t ion) t is a n y t h i n g of the fo rm tc~, where xc~ is g round for all x in
t. I f t is a t e r m or equa t ion , t hen Gr(t) is the set of all g r o u n d ins tances of t.
If E is a set of equa t ions , t hen v '-~E v if and only if eve ry g round ins tance of
u ~ v is in t he congruence closure of the set of all g r o u n d ins tances of equa t ions
in E . T h a t is the s eman t i c definit ion. Th is also could be defined syn t a c t i c a l l y
by say ing t h a t us ~E ut if s ~ t is an ins tance of an equa t ion of E . P roofs
a re defined as for Thue Sys tems , and the word p r o b l e m is s t a t e d in the s ame
way. Birkhoff showed t h a t the semant i c and syn tac t i c def in i t ion are equivalent .
In th is p a p e r the syn t ac t i c def ini t ion will be more useful.

Given t e r m s u and v a n d a set of equa t ions E , a is an E-unifier of u and v if
u(T ~-~E va. T h e uni f ica t ion p rob l em for monad i c func t ion symbo l s is to f ind all
E-un i f i e r s of u and v. A set of equa t ions E is sa id to be unitary if for every pa i r
of t e rms u and v, t he re is one E-un i f ie r a such t h a t for eve ry E-un i f ie r ~ t he re

1 See 1 for the case where u = e or v = c.
2 Therefore one relation Thue Systems are presented with two equations.
3 u ~ E v if and only if u ~ v is true in every model of E

198 Christopher Lynch

is a s u b s t i t u t i o n ~? such t h a t x a ~ "~-'E xO for every var iab le x in u or v. T h e n a

is a mos t general uni f ier of u and v.
I t is wel l -known t h a t the word p r o b l e m for Thue Sys t ems can be expressed

as a word p r o b l e m for monad i c func t ion symbols . G iven the word p r o b l e m for
T h u e Sys t ems u ~'~E v, where E = {s l ~ t l , . . . ,Sn ~- tn} , we t r a n s f o r m it in to
a word p r o b l e m for m o n a d i c func t ion symbols by asking if uc ~ E vc, such t h a t
E = { s i x ~ t l x , . . . , s n x ~ t n x } , where x is a var iab le a n d c is a cons tan t . 4

We need the no t ion of r ewr i t ing in t e rms of words. Let s a n d t be words
(poss ib ly emp ty) , t hen s ~ t is a rewri te rule. If R is a set of r ewr i t e rules, t hen
we wr i t e u s v --* u tv , a n d say u s v rewri tes to u t v if s ~ t C R. T h e reflexive
t r an s i t i ve c losure of ~ is wr i t t en as --~*. A word u is in R- normal f o r m if t he re
is no v such t h a t u rewr i tes to v. A set of rewr i te rules is conf luent if s -~* t and
s --** u impl ies t h a t t he re is a v such t h a t t --** v and u --~* v. A set of rewr i te
rules R is weakly t e rmina t ing if for every u the re is a v in n o r m a l form such
t h a t u --+* v. R is strongly t e rmina t ing if the re is no inf ini te r ewr i t e sequence.
A confluent and s t rong ly t e r m i n a t i n g set of rewr i te rules has the p r o p e r t y t h a t
eve ry rewr i t e sequence f rom u leads to the same v in n o r m a l form. We say t h a t
a set of r ewr i t e rules R is non-overlapping if t he re a re no rules s --+ t and u ~ v
such t h a t a n o n e m p t y pref ix of s is a suffix of u or s is a subword of u. If a set of
r ewr i t e rules R is non-over l app ing a n d weak ly t e r m i n a t i n g t hen R is confluent
a n d s t rong ly t e rmina t i ng .

3 T h e W o r d a n d U n i f i c a t i o n P r o b l e m

In this sec t ion we give a class of T h u e sys tems which is a gene ra l i za t ion of one
equa t ion Thue sys tems . T h e n we give the s t ruc tu re of a p roof of a uni f ica t ion
(or word) p r o b l e m in th is genera l ized class. Final ly , we show how th is p roof
s t r u c t u r e leads us to a p rob l em in r ewr i t e sys tems.

F i r s t we give the genera l ized class. A key idea is t he no t ion of syn tac t i cness
f rom 5.

D e f i n i t i o n 1. A proof uo ~. u l ~ . . . ~ un is syn tac t i c i f there is at mos t one
i such that u i -1 ~.~E ui is an equational step at the top. A Thue S y s t e m E is
syn t ac t i c i f whenever there is a proof o f u "~E V, then there is a syn tac t ic proof

o f u ~ E v.

T h e r e is ano the r r e s t r i c t ion we need on the class to al low for our final pro-
cedure to be de te rmin is t i c .

D e f i n i t i o n 2. A Thue S y s t e m Sl ~ t l , . . . , sn .'~ tn has a r e p e a t e d t o p equa t ion
i f there is an i ~ j and a, b E A and words u, v, u ~, v ~ such that si = au, ti = bv
and s j = au t, t j = bv ~. A Thue S y s t e m s l ~ t l , . . . , sn ~ tn has a r e p e a t e d top
s y m b o l i f there is an i and j (i r j) and a E A and words u, v such that si -- au
and s j = av, or i f there is an i and an a and an si and ti and words u and v
such that si = au and s j = av.

a We sometimes confuse the notat ion of words and terms. When the distinction is
important , we clarify it.

The Unification Problem for One Relation Thue Systems 199

Every word problem for Thue systems of one relation can be reduced to a
simpler word problem which is either known to be solvable or has a different top
symbol on the left and right side 3. Therefore, for one equation Thue systems,
it is only necessary to consider word problems where the one equation is of the
form as ,~ bt, where a and b are different symbols and s and t are words. Such
theories are syntactic 2. Such theories also have no repeating equation. Below,
we show tha t any theory with no repeating top symbol is syntactic and has no
repeat ing top equation.

T h e o r e m 1. Let E be a Thue sys tem that has no repeating top symbol. Then

E has no repeating top equation and E is syntactic

Proof. The fact tha t E has no repeating top equation follows by definition. We
prove tha t E is syntactic by contradiction. Consider the set of all shortest proofs
between any pair of terms. Consider the shortest proof uo ~ E U l ' ' ' ~ E Un of
tha t set with more than one equational step at the top. Then there is a step
from some u~ to Ui+l at the top using some equation au ~ bv, and later there is
another step from some uj to u j+l using bv ~ au. Since this is the shortest proof,
every proper subproof must be syntactic. But then there can be no intermediate
steps involving u and v, so the steps from us to ui+l and from uj to uj+l can
be removed from the proof resulting in a shorter proof of ul ~ E Un.

The results in this paper apply to syntactic Thue systems with no repeating
top equation. Next we look at the structure of proofs of the unification problem
in such theories. First we consider the case of unifying two terms with a different
top symbol.

L e m m a 1. Let E be a syntactic Thue System. Let aux and bvy be terms. I f a

is an E-un i f i er of aux and bvy then a is of the f o rm x ~ u%, y ~-* v'z and
there exists

- - an equation a sx ~ btx E E ,

- words r l , r2 such that u ~ = rlr2,
- words w l , w 2 such that v ~ = w lw2 ,

- and words # , t ~ such that ur l ~ E ss ~, t t ~ "~E VWl, and s~r2 "~E tlw2 �9

Proof. Let uo , ~ . . . ~-E Un be the proof of a u x a ~ E bvya. There must be
exact ly one equational step at the top. The proof can be divided up into four
parts . First a u x a must be changed to a new word with as as prefix. The second
par t is to change as to bt. The third par t is all the steps below bt, and the fourth
par t is to change bt into a word with bv as prefix. The second and third parts
can be exchanged, but wlog we assume they happen in the order given.

Suppose that ui ~ E Ui+l is the first equational step at the top. Then ui has
as as a prefix. This means tha t x a must have some r l as a prefix, such that there
is an s I where ur l ~ E s# . Therefore ui+l has bt# as a prefix. Tha t gives us the
first par t of the proof. The third par t is all the steps below bt so there must be
r2, t I, W2 such tha t 81r2 ~ E t lw2 �9 The fourth part changes t t ~ to something with
a v as a prefix, so there must be a Wl such that t t ~ ~ E vWl.

200 Christopher Lynch

To sum it all up, the proof looks like: aurlr2 "~E asstr2 ~ E btstr2 "~E

bttlw2 ~-~E bVwlw2"

Now we look at the proof structure when unifying two terms with the same
top symbol.

L e m m a 2. Let E be a syntactic set of monadic equations containing no equation

of the f o rm as = at. Then a is an E-un i f i er of u and v i f and only i f a is an

E-un i f i e r of au and av.

Proof. Suppose there is an equational step at the top of the proof of au ~ E by.

Since there is no equation of the form as ~ at, there must be two equational steps
at the top of the proof. But that cannot be, because E is syntactic. Therefore,
there is no equational step at the top of the proof.

Note that the condition of no equation of the form as ~ at is implied by
the condition of no repeated equation, since each Thue System is assumed to be
closed under symmetry.

Our next step is to convert each unification problem to a rewrite system over
an extended language, where the above two lemmas are applied as rewrite rules.
First we define a new alphabet ,4 -- {~ la E A}. Let B -- A t2 A. We define an
inverse function on words in B* such that

- I f a c A t h e n a - l = 5 , .
- If ~ E -4 then (~)-1 __ a.
- (bl . ." bn) -1 = bn -1 "'" b1-1 for n _> 0, and bi E B for all 1 < i < n.

Any word w E B* can be represented uniquely in the form UlV1-1 .. �9 unvn -1
where n _> 0, each u i , v i c A*, u~ = e only if i -- 1 and vi r e , and similarly
vi = e only if i -- n and ui ~ e. We say that w has n blocks.

Given a Thue System E = { a l s l ~ bi t1 , . . . , ansn ~ burn} over A, we define
a rewrite system R E over B containing

- 5~bi --* s~t~ -1 for all 1 < i < n, and
- ~a --~ e for all a E A. These are called cancellation rules.

Example 1. Given the Thue System {abaa ~ bbba, bbba ~ abaa}, the associated
rewrite system RE is

1. ~b --~ baa~tbb

2. ba --* bba~t5b

3. ~ta--* e

4. bb--* e

Given an E-unification problem G = ux ~ vy, we associate a word wc --
u - i v . Then we have the following theorem which translates a unification problem
into a rewrite problem.

The Unification Problem for One Relation Thue Systems 201

T h e o r e m 2. Let E be a syntactic Thue Sys tem with no repeating equation, and

G be a unification problem over A. Then G has a solution i f and only i f wG has
an R E - n o r m a l f o rm of the f o r m u~(v') -1 with u ~ and v t in A*.5 Furthermore

= Ix ~ ulz, y ~-* v'z is the mos t general unifier of G in E .

Proof. Given a word w of n blocks, where w --- U l V 1 - 1 . . . UnVn -1, we think of w
as representing the unification problem (x -- UlZl) A A2<_i~n(Vi_lZi_l = uiz i) A

(vnzn = y) for some z l , . . . , z n . Therefore, if G = u x ~ E vy, then wG = u - i v

represents the unification problem x = zl A uz l = vz2 A z2 = y, tha t is u x ~ E vy.

Since each word w represents a unification problem, the solution to the uni-
fication problem has a corresponding proof. We will give an induction argument
based on the lexicographic combination of the length of tha t corresponding proof
and the number of symbols in w.

Suppose we are given a word w = u - i v , representing the unification problem
UX ~-~E vy. If UX = a u l x and vy ---- a v l y for some Ul and Vl, then ux ~ E vy
has most general unifier a if and only if UlX ~ E v l y has most general unifier a.
Then the word w = u - i v = Ul-15av~ --+ u l - l v l , which is a smaller unification
problem.

Suppose tha t u x = a u l x and vy = bvly, and suppose there is an equation
as ~ bt E E . Then ~b ~ st -1. Furthermore, the unification problem u x ~ E vy

is satisfiable and has most general unifier ~ = x ~ utz, y ~ vlz if and only if
there are words r l , r2 such that u ~ = rlr2, words Wl ,W 2 such tha t v t = WIT2,

and words s~,t ~ such tha t Ulr l ~ E SS ~, t t ~ "~E VlWl, and 8~r2 ~ E t~W2. So
u l - l s --4 r18 t - l , t - l v l ~ ttW1-1, and s~- l t ~ --~ r2w2 -1, Then the word w -=
u - - l v -~- u l - l a b v l ~ U l - 1 8 t - l v l ----+ r l s ~ - l t ~ w 1 - 1 ---+ r l r 2 w 2 - 1 W 1 - 1 . This is in
normal form, and it represents the unification problem x = r l r2z l A w l w 2 z l ~- y,
which has a as most general unifier.

Suppose tha t u x = a u l x and vy = bvly, and there is no equation as ~ bt E E .

Then w = u - i v = u l - l h b v l has no redex at the subword ~b, and therefore has
no normal form with zero or one block.

This theorem also shows tha t any syntactic Thue system with no repeating
equation has a uni tary E-unification problem, because the rewriting is deter-
ministic and leads to at most one most general unifier.

The following corollary shows how the theorem applies to word problems.

C o r o l l a r y 1. Let E be a syntactic Thue Sys tem with no repeated equation, and

G be a word problem over A. Then G is true in E i f and only i f the normal f o rm

o f wG in R E is e.

Proof. The corollary follows from the theorem because the word problem is true
if and only if a = x ~ z, y ~ z is a most general unifier.

Example 2. For example, consider the Thue System {aa ~ ba, ba ~ aa}. Then
R E is

5 Notice that if A has two symbols, then every normal form is of this form.

202 Christopher Lynch

1. ~b -~ a~
2. ba --* aa
3. a a - ~ e
4. bb --~ c

Let G be the unification problem abb "-~E bb. Then w c = bb~bb. This gives
us the following rewrite sequence: WG = bb~tbb --~ bbaSb --* bbaa~ --* baSa5 --+
baa --~ aSd, which is in normal form. Tha t means tha t the most general unifier
of G in E is a = x H az, y H aaz. The word problem for G is not true,
because the normal form is not e. However, if we consider the word problem
G' = abba ~ bbaa, then wa, = 5 w c a a --** 5aSaaa --~* ~. Therefore, the word
problem G' is true in E.

Example 3. For another example, consider the Thue System E = {a ~-. bba, bba ..~

a}. Then RE is

1. 5b --* fib
2. ba --~ ba
3. ~ a - ~ ~
4. bb---~ e

Consider the unification problem G = ba "-~E a. Then w a = ~ba ~ ~ba ---*

O~ba = wG. So this rewrite sequence loops, and there are no other possible rewrite
sequences. Therefore aba has no normal form in R E which implies tha t the
unification problem ba "~E a (and also the word problem) has no solution in E.

4 D e c i d i n g t h e U n i f i c a t i o n P r o b l e m

In this section we first show why the condition of syntacticness and no repeating
equations leads to a deterministic procedure. Then we define an ordering to
show terminat ion of rewrite sequences. This ordering is used to define a decision
procedure for certain classes of problems. In some cases, we can even bound the
complexity by an exponential of the goal size. Finally, we give an algorithm tha t
we conjecture decides the unification problem in all cases.

First we show the interest of the class of problems we are considering.

T h e o r e m 3. I f E is a syntactic Thue Sys tem with no repeating top equation,

and G is a satisfiable unification problem in E, then R E is confluent and strongly

terminat ing on WG.

Proof. I t follows from the fact tha t R E is non-overlapping and is weakly termi-
nating on wG.

This gives us a deterministic procedure to decide the word problem. We
can assume tha t we always apply the rightmost rewrite step. Unfortunately, this
deterministic procedure may not always halt. So we need some ways to determine
non-terminat ion or rewrite sequences. One way to do this is to find loops. First,
let 's define a useful ordering to determine terminating rewrite sequences.

We define an ordering on words of three or fewer blocks.

The Unification Problem for One Relation Thue Systems 203

D e f i n i t i o n 3. Let w be an n block word of the form UlV1-1' '" UnVn -1, with
each ui, vi E A* and n <_ 3. Define It(w) to be the ordered pair (i, j) such that i f
n >_ 1 then i = IVll else i = O, and i f n = 3 t h e n j = In31 e l s e j = O. Ordered
pairs are compared lexicographically, i.e., (i , j) > (k.1) i f and only i f i > k, or
i -~ k and j > l. Note that this ordering is well-founded.

Now we define a set of words that we will later use to show that if we can
find the normal forms of these words, then we can find the normal form of any
given word, or determine that it does not have one.

D e f i n i t i o n 4. Let A be a set of words and R be a rewrite system on B = A U ill.
Let C be a set of words in (A)*, such that every non-empty prefix of C is in C.
A word ua is called an extended word of C if u E C and a E A. Let C t be the
set of all R-normal forms w of extended words of C. Then R is C-complete i f
for all w in C

1. w contains one at most one block, and
2. i f w contains one block (i.e., w = u:vl with Ul E A* and v: E (.4)*) then Vl

is in C i f v: ~ e.

Note that condition 2 is trivially true if a is the inverse of the last letter in
U.

D e f i n i t i o n 5. Let R be a rewrite system of the form (fflbl --* s : t 1 - 1 . . , c~nbn --~
Sntn-1}, with each ai, bi E A, and si, ti E A*. C is said to be a completion of R
i f R is C-complete and t i - : E C i f ti ~ e.

If we rewrite in a certain way, we can force one of these special words to
appear in a certain place in the word.

D e f i n i t i o n 6. Let C be a set of words. The word w is C-reducible i f and only
i f w has at most three blocks, and i f w has three blocks (i.e., is of the form
UlVl--lu2v2--1U3V3 -1) then v2 -1 E C.

We use the previous four definitions in the following crucial lemma. It shows
that any word of a particular form can be reduced to a smaller word of the same
form, or we can detect that it will not have an appropriate normal form.

L e m m a 3. Let E be a Thue System and C be a completion of RE. Let w be a
C-reducible word in B* of three or fewer blocks. Suppose that for all extended
words ua of C, it is decidable whether ua has an RE-normal form. I f w is not
in normal form, then we can find a smaller C-reducible w t with three or fewer
blocks such that w -~ w I or we can detect that w has no normal form with one
or fewer blocks.

Proof. If w has at most one block, then w is in normal form. Suppose w has two
blocks, then w -- u : v : - : u 2 v 2 - : with u:, Vl, u2, v2 E A*. Suppose v: =- av and
u2 = bu. Then w = UlV-:abuv2-: . If a = b then w -~ u : v - :uv2 -1 -= w I, which

204 Christopher Lynch

is smal le r t h a n w because #(w) = (v i i ,0) > (Ivl ,0) = p(wl). Also, w ' has fewer
t h a n th ree blocks, so i t is C- reduc ib le .

Suppose a ~ b and the re is a rule in RE of t he form 5b ~ st -1. T h e n
w --~ u l v - l s t - l u v 2 -1 = w', which is smal le r t h a n w because #(w) = (Ivll, O) >
(Ivh lul) = # (w ') . 6 w ' has t h ree or fewer blocks. Also, note t h a t t -1 C C by
def in i t ion of C -comple t e , therefore w I is C- reduc ib le .

If a ~ b and the re is no rule in RE of t he form ~tb --~ st -1, t h e n any n o r m a l
form of w m u s t have more t h a n one block.

Now suppose w has th ree blocks, t hen w = ulvl-1u2v2-lU3V3--1 with u l, Vl,
U2, V2, Uu, V3 E A*. Suppose v2=av and u3-~bu. T h e n W = U l V l - l u 2 v - l c t b u v 3 -1
If a = b t hen w ~ U l V l - l u 2 v - l u v 3 -1 = w I, which is smal le r t h a n w because

(w) ~- (vii , lu31) > (Ivil, lul) = p(wl), w I has a t mos t th ree blocks, v2 -1 e C
since w is C- reduc ib l e , therefore v -1 E C since C is closed unde r prefixes, so w I
is C- reduc ib le .

Suppose a ~ b. Then , v2 -1 E C, because w is C- reduc ib le . So we can dec ide
whe the r v2b has an RE-no rma l . form. If i t has no R E - n o r m a l fo rm then ne i the r
does w. Otherwise , we can ca lcu la te the n o r m a l form of v2b. By def in i t ion of
C -comple t e , the n o r m a l form v2b is of t he form ulv I-1, wi th v ~-1 E C. 7 T h e n
w ~ UlV 1 - 1 u 2 u / v I - l u v 3-1 = w', which is smal le r t h a n w because #(w) =
(Ivll , u31) > (Ivll , lul) = #(w'). w' has a t mos t th ree blocks. Also, w ' is C-
reducible , s ince v I-1 C C.

If a ~ b a n d the re is no rule in RE of the form ~b --~ st-1, t h e n any n o r m a l
form of w m u s t have more t h a n one block.

T h e fol lowing t h e o r e m is the m a i n resul t used to decide the word and unifi-
c a t i on p rob lem.

T h e o r e m 4. Let E be a Thue System and G a goal over A. Let C be a comple-
tion of RE.

1. Suppose that for all extended words ua of C it is decidable whether ua has an
RE-normal form. Then the word and unification problem for E is decidable.

2. I f C is finite, then the word and unification problem is decidable in time at
most exponential in the size of the goal.

Proof. We c o n s t r u c t RE and w e . Note t h a t wG has two blocks. Let w be a C-
reduc ib le word w i th th ree or fewer blocks. We pe r fo rm induc t ion on #(w) . T h e
i nduc t i on hypo thes i s is t h a t we can find the n o r m a l form of all smal le r words or
prove t h e y do no t have one wi th one or fewer blocks. By the p rev ious l emma,
we can e i ther r educe w to a smal le r C- reduc ib le w I wi th t h ree or fewer blocks,
or else de t ec t t h a t w has no n o r m a l form wi th one or fewer blocks. In the second

6 In all of these cases, we should consider the case where u -- e, but then #(w') < #(w)
because the second number in the ordered pair of #(w ~) is 0.
Here we do not consider the simpler cases where the normal form is e or only contains
members of A or A -1.

The Unification Problem for One Relation Thue Systems 205

case, we are done. In the first case, w has the same normal form as w ~, so we are
also done.

This takes care of the first part of the theorem. When C is finite, the above
argument still shows that the word problem is decidable, since decision problems
on finite sets are always decidable. But we must show that the decision procedure
runs in at most exponential time in the size of the goal. For that we must analyze
the procedure induced by the previous lemma. If #(w) = (i, j) , then there are at
most j rewrite steps before i gets smaller. But during that time, w can increase
by a product of k, where k is the maximum size of ul for a normal form ulv1-1
of ua with u ~ C. Therefore, to calculate the normal form of w, we potentially
multiply w by k, Iwl times, at most. So the word can become as big as kiWI at
most. And since each operation is linear in the size of the goal, the running time
as also bounded by an exponential.

We give some examples to illustrate.

Example 4. Let E = {aba ~ bab, bab ~ aba}. Then R E is

1. 5b --~ ba~5
2. ba ---* abSb
3. Cta---* e
4. bb---* e

Let C = {b, 5, bS, 5b}. The normal forms ofba, ~b, bSb and 5ba are respectively
abSb, b a ~ , abS, and b~b. Each of these normal forms contains only one block.
Since all nonempty prefixes of ~b and b~ are in C, then C is a completion of RE.

Example 5. Let E = {abb ~ baa, baa ~ abb}. Then R E is

1. 5b ~ bb5~
2. ba --* aabb
3. 5 a ~ e
4. bb----~ e

Let C --- {5, b, 55, bb}. The normal forms of 5b and ba are respectively bbS~
and aabb. Note that 5db ~ 5bbSa ~ bbdSb~ which contains 5~b as subword.
Therefore ~Sb has no normal form. Similarly, bba has no normal form. We only
need to consider the normal forms bbS~ and aabb. Since all the nonempty prefixes
of 55 and bb are in C, then C is a completion of RE.

Here is an example for which C is infinite.

Example 6. Let E = {bab ~ a, a ~ bab}. Then R E is

1. ba ---* ab
2. 5b---* l~5
3. 5a---+ e
4. bb----~ e

206 Christopher Lynch

Let C = {(b)n I n > 0}U{(b)n~ I n > 0}. Given n, the normal form of (b)na is
ab n, and the normal form of (b)n~b is (~)n+l~. These can be proved by induction
on n. The cases where n = 0 are trivial. If n > 0, we have (~)n~tb = b(~)n-l~tb --~
(~)n~. Also, (b)na = b(b)n-la --~ bab n-1 = ((b)n- ldb)- i --~ ((~)n~)-i : ab n.

Here we used the fact that u -1 -~ v -1 if u --* v.
Now we must address the question of how to determine if a word has a

nonterminating rewrite sequence. We say a word w loops if there exist words u
and v such that w ---~+ uwv. We conjecture that every nonterminating rewrite
sequence loops. This is the same as the conjecture for one rule semi-Thue systems
in 10.

Conjecture 1. Let E be a syntactic Thue System with no repeated equations,
and G be a unification problem. Then wc has a nonterminating rewrite sequence
in RE if and only if there are some words u, v, w such that w c ~ u v w and v
loops.

It is possible to detect loops, so a proof of the conjecture would imply that
the unification and word problem are decidable. We now give an algorithm for
deciding the unification problem, whose halting relies on the t ruth of the con-
jecture.

For the algorithm, we are given a Thue System E, and a goal G. We construct
RE and wc. The intention of the algorithm is to reduce the goal to its normal
form at the same time we are creating a subset of the extensions of C (the
completion of RE), and keeping track of the normal forms or lack of normal
forms of those extensions of C.

The algorithm involves w which is initially set to wG and any applicable
cancellation rules are applied, w is always a reduced version of wG with at most
three blocks. The algorithm also involves a stack T of ordered pairs. Each element
of T is an ordered pair (u, v) such that u is of the form u r - l a with u r E A* and
a E A, and v is a word of at most three blocks. The values of u will be words
that we are trying to find the normal form of, and v will be a reduced version of
u. There is a set of ordered pairs S involved in the algorithm. An element of S
is an ordered pair (u, v) where u is of the form u~- la with u ~ c A* and a E A,
and v is a word of one or fewer blocks which is the normal form of u. S and T
are both initially empty.

The algorithm proceeds as follows:
First check if T is empty. If T is empty and w is in normal form, then check

if w has one or fewer blocks. If it does, then return w. That is the normal form
of wG. If it does not, then return FALSE, because wc has no normal form of
one or fewer blocks, thus the unification problem is false.

Suppose T is empty and w is not in normal form, we examine the rightmost
redex position of w. Either w has two blocks and is of the form u l v 1 - l u 2 v 2 -1, or
w has three blocks and is of the form UlvI--lu2v2--1U3V3 -1. If w has two blocks,
set u ~ = V1-1 and set c to be the first letter of u2. If w has three blocks, set
u ~ = v2 -1 and set c to be the first letter of u3. If d is the last character in u r and
there is no c such that c/c E RE, then return FALSE. Search for an ordered pair

The Unification Problem for One Relation Thue Systems 207

(u'c, v) in S for some v. If it exists, then replace urc in w by v and perform any
cancellation rules tha t now apply. Note that w still has at most three blocks. If
no (u'c, v) exists in S, then push (u'c, u'c) onto T.

If T is not empty, let (u, v) be on top of the stack. Either v has two blocks
and is of the form UlVl--lu2v2 -1, or V has three blocks and is of the form
UlVl- lu2v2-1u3v3 -1. If v has two blocks, set u' -- v1-1 and set c to be the
first letter of u2. If v has three blocks, set u r = v2 -1 and set c to be the first
letter of u3. If d is the last character in u ~ and there is no c such tha t dc E RE,
then re turn FALSE. Search for an ordered pair (u~c, v 0 in S for some v ~. If it
exists then replace u~c in v by v' and perform applicable cancellations. Note tha t
v still has at most three blocks. If v is now in normal form, then if v has at most
one block, then we add (u, v) to S and remove (u, v) from T, else return FALSE.
If v contains u as a subword, or if v contains s as a subword with (s, t) in T for
some T, we return FALSE. If no (u'c, v') exists in S, then push (u'c, v) onto T.

Keep repeating this process until it halts.
Based on our implementation, this algorithm appears to be very efficient, and

we conjecture tha t it always halts. Note that the algorithm constructs extensions
of a completion of RE. Based on theorem 4, we can see that this algorithm
will halt in t ime at most exponential in the size of the goal if RE has a finite
completion.

There is another interesting generalization of the class of problems. We con-
sider Thue systems to only contain equations of the form ux ~ vx. Suppose
we allowed other monadic terms. For example ux ~ vy. If all our equations are
of this type, then lemma 1 is still true, with the removal of the condition tha t
81r2 ~ E tlw2. We could say a simliar thing for equations of the form ua ~ vb.
This would allow us to modify the definition of RE so that the right hand side of
the rewrite rules have a marker between the two halves, preventing interaction
between the two. This allows us to solve the unification problem in polynomial
t ime in te rms of the goal if E is a syntactic set of monadic terms, with no re-
peated equations, and no equations of the form ux ~ vx. Space prevents us from
giving the details of this argument. But it is interesting to note tha t the problem
becomes easier when the equations are not linear.

5 C o n c l u s i o n

We have given a method for trying to solve the unification (and word) problem for
one equation Thue systems and other monadic equational theories. Our method
works on a larger class of problems, which we have defined. We have shown
certain cases where we can prove tha t the method is a decision procedure. We
gave an algorithm, which has been implemented, and appears to be efficient. I t
halts and serves as a decision procedure for every input we have tried. This is
opposed to the Knuth-Bendix procedure which often runs forever. The closest
work to our approach is given in 4. This is based on an algorithm in 2 for
Thue systems with one equation. The algorithm does not always halt. In 4, a
rewrite system is given to help determine when the algorithm of 2 halts. They

208 Christopher Lynch

also needed to prove the terminat ion of the rewrite system. But their method
and rewrite system is quite different from ours. For example, our rewrite system
halts on different problems than theirs. They also gave an example of a rewrite
system with a word tha t did not terminate but had no loop (called a simple
loop in their paper). I t would be interesting to do a more detailed comparison of
our two methods. We think tha t methods used to decide terminat ion of one rule
semi-Thue systems might be helpful for us. Our ul t imate goal is to extend our
method to all unification problems over terms, and find a large class of problems
for which our approach halts. This approach in this paper was designed with
tha t intention.

References

1. S. Adian. Definining relations and algorithmic problems for groups and semigroups.
Trudy Matem. in-ta im. Steklova AN SSSR, 85, 1996 (Russian).

2. S. Adian. Transformations of words in a semigroup presented by a system of defining
relations. Algebra i logika, 15(6),611-621, 1976 (Russian).

3. S. Adian, and G. Oganesian. On the word and divisibility problems in semigroups
with a single defining relation. Izv. An. SSSR Ser. Matem., 42(2),219-225, 1978
(Russian).

4. J. Bouwsma. Semigroups Presented by a Single Relation. PhD dissertation at
Pennsylvania State University, 1993.

5. C. Kirchner. Computing unification algorithms. In Proceedings of the First Sympo-
sium on Logic in Computer Science, Boston, 200-216, 1990.

6. G. Lallement. The word problem for Thue rewriting systems. In Spring School in
Rewriting, ed. H. Comon and J. P. Jouannaud, Lecture Notes in Computer Science,
1994.

7. C. Lynch. Goal Directed Completion using SOUR Graphs. In Proceedings of the
Eighth International Conference on Rewriting Techniques and Applications (RTA),
Sitges, Spain, June 2-4, 1997.

8. W. Magnus. Das Identit~tsproblem fiir Gruppen mit einer definierenden Relation.
Math Ann., 106,295-307, 1932.

9. Y. Matisaevich. Simple examples of unsolvable associative calculi. Dokl. Akad.
Nauk. SSSR, 173,1264-1266, 1967.

10. R. McNaughton. Well-behaved derivations in one-rule Semi-Thue Systems. Tech.
Rep 95-15, Dept. of Computer Science, Rensselaer Polytechnic Unstitute, Troy, NY,
Nov. 1995.

11. W. Savitch. How to make arbitrary grammars look like context-free grammars.
SIAM Journal on Computing, 2(3),174-182, September 1973.

Basic Completion with E-cycle Simplification

Christopher Lynch 1. and Christelle Scharff 2

1 Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA- Christopher.Lyach@clyach.mcs. c larkson.edu -

h t tp : / /~rr clarkson, edu/~clynch
LORIA BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France -

Christelle.Scharff@loria.fr - http://ww~.loria.fr/~scharff

Abs t r ac t . We give a new simplification method, called E-cycle Sim-
plification, for Basic Completion inference systems. We prove the com-
pleteness of Basic Completion with E-cycle Simplification. We prove that
E-cycle Simplification is strictly stronger than the only previously known
complete simplification method for Basic Completion, Basic Simplifica-
tion, in the sense that every derivation involving Basic Simplification is
a derivation involving E-cycle Simplification, but not vice versa. E-cycle
Simplification is simple to perform, and does not use the reducibility-
relative-to condition. We believe this new method captures exactly what
is needed for completeness. ECC implements our method.

1 I n t r o d u c t i o n

In au tomated theorem proving, it is important to know if an inference system is
complete, because a complete inference system guarantees tha t a proof will be
found if one exists and if it halts without a proof, then the theorem is false. How-
ever, in practice, incomplete inference systems are often used because complete
ones are not efficient.

An example of this phenomenon is the case of Basic Completion BGLS95,
NR92. This is a restriction on Knuth-Bendix Completion KB70 such tha t the
most general unifier is saved as a constraint, instead of being applied to the
conclusion of an inference KKR90. The effect of this restriction is tha t much
of a t e rm is stored in a constraint, and therefore the variable positions appear
closer to the root than in the non-basic case, or else variable positions occur
where there are no variable positions in the nombasic case. In Knuth-Bendix
Completion, there is a restriction tha t inferences are not allowed at variable po-
sitions. This restriction then becomes much more powerful in Basic Completion.
In BGLS95,NR92, it was shown tha t Basic Completion is complete.

Simplification rules are crucial in any form of completion. However, in NR92
it was shown tha t the combination of Basic Completion and Standard Sim-
plification is not complete (see BGLS95 for more incompleteness examples).
In BGLS95, a new form of simplification, called Basic Simplification, is shown

* This work was supported by NSF grant number CCR-9712388 and partially done
during a visit in the PROTHEO group in Nancy.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 209-221, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

210 Christopher Lynch and Christelle Scharff

to be complete in combination with Basic Completion. Unfortunately, Basic Sim-
plification can only be performed under certain circumstances. So, to retain com-
pleteness, a theorem prover must either not simplify under these circumstances,
or else apply the constraint of the simplifying equation before simplifying. The
first solution is unsatisfactory because it does not allow as much simplification.
The second solution is unsatisfactory because it removes the advantages of Basic
Completion.

These results lead us to an analysis of simplification strategies for Basic Com-
pletion. The goal is to understand when simplification will destroy completeness
and when it will not. We provide an abstract setting to develop and prove the
completeness of a concrete simplification method for Basic Completion, called
E-cycle Simplification, which does not use the reducibility-relative-to condition
of Basic Simplification. We prove that E-cycle Simplification is complete and
strictly stronger than Basic Simplification, in the sense that every derivation
involving Basic Simplification is a derivation involving E-cycle Simplification,
but not vice versa (see section 5). Also, there are many examples where E-cycle
Simplification may be performed but Basic Simplification may not (see section
5 for an example) .

The idea behind E-cycle Simplification is simple. No equation may simplify
one of its ancestors 1. In the inference procedure we build a dependency (directed)
graph. The nodes of the dependency graph are labelled by the equations. When
we deduce a new equation, we add a node to the graph labelled by the new equa-
tion to show dependencies and ancestors. A Basic Critical Pair inference adds
an Inference edge to indicate that the conclusion depends on the premises if it
has an irreducible constraint. A Simplification adds Simplification edges. When
the rule deduces a constrained equation, Constraint edges are added from the
constrained equation to its original ancestors in E. These dependencies are only
needed if the constraint of the equation is reducible, to be able to create a re-
duced version of the constrained equation. Edges are associated with reducibility
constraints, which may conflict with each other. We define E-paths and E-cycles
in the dependency graph to be paths and cycles with no conflict in reducibility
constraints. E-cycles may only occur when an equation simplifies an ancestor.
Whenever a simplification would create an E-cycle in the dependency graph, we
disallow the simplification.

Our completeness proof is based on the model construction proof of BG94,
which is also used in the completeness proofs of Basic Completion in BGLS95,
NR92. Like those proofs, we build a model of irreducible equations, based on
an ordering of the equations. The difference is that we do not use the multiset
extension of the term ordering but a different ordering ~g directly based on the
dependency graph. If there is an edge from a node labelled with equation el to a
node labelled with equation e2, then el is larger than e2 in our ordering ~-g and
we write el ~-g e2. The ordering ~g is well-founded, because the dependency
graph does not have any E-cycles or infinite E-paths.

1 We define the notion of ancestor in the paper.

Basic Completion with E-cycle Simplification 211

The paper is organized as follows. Section 2 contains some definitions and
notions useful for the comprehension of the paper. Section 3 defines dependency
graphs, E-cycles, E-cycle Simplification and the construction of the dependency
graphs. In section 4, we show tha t Basic Completion with E-cycle Simplification
is complete. Then, in section 5, we show that E-cycle Simplification is strictly
more powerful than Basic Simplification.

The full version of this paper tha t includes complete details and full proofs
is available in LSc97.

2 P r e l i m i n a r i e s

We assume the reader is familiar with the notat ion of equational logic and rewrit-
ing. A survey of rewriting is available in DJ90. We only define impor tant notions
for the comprehension of the paper and new notions and definitions we introduce.

Let =? be a binary infix predicate. An equational constraint ~ is a conjunction
Sl ----? t l A . . . A 8n ~ ? tn o f syntactic equality si =? ti �9 T is the true equational
constraint and _l_ is the false constraint. The symbol ~ is a binary symbol, wri t ten
in infix notation, representing semantic equality. In this paper _ t will refer to
an ordering on terms (~-t in its strict version), which is a well-founded reduction
ordering total on ground terms. ~ is symmetr ic and, when we write the equality
s ~ t, we assume tha t s ~t t. We extend the ordering _~t to ground equations and
we call the new ordering _~e (~-e in its strict version). Let s .~ t and u ~ v be two
ground equations. We define the ordering ~e such tha t s ~ t ~-e u ~ v if either
s ~ t u or, s = u and t ~ t v 2. A pair s ~ t I ~ 2 composed of an equation s ~ t and
an equational constraint ~ is called a constrained equation. An equation sa ,~ ta
is a ground instance of a constrained equation t I ~ 2 if a is a ground substi tut ion
solution of ~. We denote by Gr(e I ~ 2) the set of ground instances of an equation
e~ ~ . This is extended to a set E by Gr(E) = U e e E Gr(e). We call ea l ~ ~22 a
retract form of a constrained equation e I ~2 if a = mgu(~), 6r 2 : mgu(~2) and
Vx c Dom(a),xa = xala2. For example, g(f(y)) ~ bly =7 a~ is a retract of
g(x) ~ b Ix =? f(a) 2.
Reducibility Constraints: We define a predicate symbol Red, which is applied to
a term.

A reducibility constraint is:
- T denoting the empty conjunction and the true reducibility constraint or
- • denoting the false reducibility constraint or
- of the form ~rl A . . . A ~ r ~ , where ~r, is of the form (Vj Red(tj)) or ~Red(t)

or T where t, t j E T (where 2r is the set of terms built on a particular signature).
The syntax of the Red predicate is extended in LSc97. First instances of

reducibility constraints can be found in Pet94 and in LS95.
A ground reducibility constraint is a reducibility constraint such tha t the

paramete r of the predicate Red is a ground term. Let ~r be a ground reducibility
constraint, and R be a ground rewrite system. Then ~r is satisfiable in R, if and
only if one of the following conditions is true:

2 Recall that s ~t t and u ~t v

212 Christopher Lynch and Christelle Scharff

- <pr = T .

" <pr = Red(t) and t is reducible in R.

- ~r -- ~<p'r and <p" is not satisfiable in R.

- <pr = <P" A <p~ and <p'r and <p'r' are satisfiable in R.

- <pr = <P" V ~ and <p" is satisfiable in R or <p~' is satisfiable in R.

A reducibil i ty const ra int <pr is satisfiable iff there exists a rewrite sys tem R
and a g round subst i tu t ion o. such tha t <pr ~ is satisfiable in R. Satisfiability is a
semant ic notion. In our inference procedure, we deal with syntact ic objects. For
tha t , we need the not ion of consistency.

D e f i n i t i o n 1. A reducibility constraint <pr is inconsistent if and only if, <pr = A_
or there exist ul t la l , . . . , Un than such that o.i are substitutions and (Vie{1,...,n}

Red(ti)) appears in <pr and -~Red(uitio.i) (i e { 1 , . . . , n}) appear in <pr.
A reducibility constraint is consistent if and only if it is not inconsistent.

Note t h a t it is simple to test if a reducibili ty const ra int is consistent using this
definition. There is a close relationship between consis tency and satisfiability.

T h e o r e m 2. Let <pr be a reducibility constraint. I f <pr is satisfiable, then <pr is
consistent.

Let <p be an equat ional constraint . We define RedCon(<p) as the reducibili ty
const ra in t V{Red(xo.) x c Dom(a) and o. = mgu(<p)} and, in part icular ,
RedCon(T) ---- •

Inference Systems: Our inference sys tem is based on Basic Complet ion.

The main inference rule of Basic Comple t ion is the Basic Critical Pair infer-
ence rule:

B a s i c C r i t i c a l P a i r

us' ..~ v~ <pl ~ s ~ t~ <p2 ~ if :
ut =7 s' A <p1 A <p2

- s ' is not a variable,
- there exists a subs t i tu t ion a such tha t o. 6 Sol((s =? s') A <P1

so. ~t ta and us'o. ~t vo..
A <p2),

Let F be a set of equations. This inference means tha t the set of equa-
t ions {us' ~ v~<pl~,s .~ tl<p2~} t3 F is t ransformed to {us' ..~ v~<pl~,s
tl<p2 v s =? s 'A <p1 A <p2 } u r 3

We now present Standard Simplification and Basic Simplification deletion
rules.

3 In rules, we assume the two premises have disjoint sets of variables. If the two equa-
tions share some variables, we first rename one premise so that they no longer share
any variables, before performing the rule. We denote by "into" equation, the equa-
tion us' ~ V ~ l , by "from" equation, the equation s ~ t ~ 2 1 and by conclusion
equation, the deduced equation.

Basic Completion with E-cycle Simplification

The Standard Simplification deletion rule is the following:

213

S t a n d a r d S i m p l i f i c a t i o n

us'~v~qol s ~ t l q o 2 if :
uta2# ~ v ~01 A q02#

- S' is not a variable,
- there exists a substi tut ion #, al = mgu(q01) and a2 = mgu(q02) such tha t

S 'a l = sa2#, s~2# ~-t ta2#, and Val >-t ta2# if u = # .

Let F be a set of equations. In this rule, the set of equations {u#
vq01 , s ~ t~02 } t J F is t ransformed to {s ~ tlq02 , uta2# ~ vq01 A ~02#} tA
F. 4

Basic Simplification is based on the notion of reduced-relative-to and is de-
scribed in BGLS95.

B a s i c S i m p l i f i c a t i o n

us' v I g i l s i f :
ut vl l A

- s ' is not a variable,
- there exists a match # and al = mgu(q01) such tha t s ' = s#

and (u ~ v)al ~-e (s ..~ t)a2p, and
- (s ~ t~q02)# is substi tut ion reduced relative to us' ~ vq01 .

There are two optional but useful rules. If the conditions for the application
of Basic Simplification are not true, it is possible to apply the Retraction rule
which consists of retracting the "from" equation of the inference to make the ap-
plication of Basic Simplification possible. Basic Blocking is a deletion rule based
on the reduced-relative-to condition tha t deletes an equation with a reducible
constraint.

We call BCPBS the Basic Completion inference sys tem consisting of Basic
Critical Pair and Basic Simplification plus Basic Blocking and Retraction. In this
paper we give a new Basic Completion inference system B C P E S which uses the
Basic Critical Pair rule and a restricted version of the S t a n d a r d S i m p l i f i c a t i o n
rule, tha t we call E-cycle Simplification. In the full version of the paper LSc97,
BCPES is extended by E-cycle Retraction and E-cycle Blocking rules.

3 E-cycle Simplification

In this section, we describe the framework used in the paper. We first describe
the dependency graph of a set of unconstrained equations E to complete and
then we give the definition of an E-cycle. We describe the way the dependency
graph is constructed using the rules of BCPES using Graph Transitions.

4 This formulation resolves the ambiguity of the first notation. The ambiguity can
be resolved by remembering that inference rules add equations, while simplification
deletion rules add and delete an equation.

214 Christopher Lynch and Christelle Scharff

3.1 The Dependency Graph and E-cycles

The dependency graph is a directed graph. The vertices of the dependency graph
are labelled by equations. We associate a set of vertices C_ancestor(v) to each
vertex. There are three kinds of edges in the dependency graph: C edges, I
edges and S edges. C stands for Constraint, I stands for Inference and S stands
for Simplification. Each edge has a reducibility constraint associated with it
determined by the type of the edge (C, I and S) and the constraints of equations
labelling the vertices at the extremities of the edge.

Let e d be an edge from a vertex vl labelled by an equation el~ ~1 ~ to a
vertex v2 labelled by an equation e2 ~ ~2 in the dependency graph. If ed is a C
edge, then the constraint associated with ed is RedCon(~l) . ed is denoted by
(vl, v2, C). If ed is an /edge , the constraint associated with ed is -~RedCon(~2).
ed is denoted by (vl, v2, I). If ed is an S edge, then the constraint associated with
ed is 7-. ed is denoted by (vl, v2, S).

An E-path is a path of C, I and S edges in the dependency graph such that the
conjunction of the reducibility constraints associated to the edges is consistent.
An E-cycle is an E-path which begins and ends at the same vertex and which
contains at least a C and an S edge. The problem of finding an E-path and so
an E-cycle in the dependency graph is NP-complete HM98.

3.2 Cons t ruc t ion of the Dependency Graph and E-cycle
Simplification

At the beginning of the Basic Completion process, the initial set E is represented
by the initial dependency graph Ginit that is defined as follows. Each equation of
the set of equations E to complete is a label of a vertex of the initial dependency
graph Ginit -= (Vinit, EDinit) and EDinit = O. C_ancestor(v) = {v} for all
v E Vmit. When an inference of BCPES is performed, the dependency graph is
updated. A new vertex labelled by the conclusion of the rule is added and edges
are added.

We now present the E-cycle Simplification rule and explain how Basic Critical
Pair inferences and E-cycle Simplification update the dependency graph using
Graph Transitions.

The B C P E S inference system is composed of the Basic Critical Pair Infer-
ence rule and of the following E-cycle Simplification deletion rule.

E-cycle Simplification

u s ' ~ v i ~ l l s ~ t l ~ 2 ~ if :

- us' ~ v~q91 ~ can be standard simplified by s ~ t ~ 2 and
- the addition of S edges from the "into" premise to the "from" premise and

from the "into" premise to the conclusion equation does not create an E-cycle!
in the dependency graph.

Definition 3. A Graph Transition is denoted by (Ei, Gi) --~ (E/+I, Gi+l), where
Ei and Ei+l are sets of equations such that Ei+l is obtained from Ei by per-

Basic Completion with E-cycle Simplification 215

forming a Basic Critical Pair Inference or a deletion rule 5 and Gi = (V/, EDi)
and Gi+l -- (V/+I,EDi+z) are dependency graphs such that Gi+I is obtained
from Gi by:

- A Basic Critical Pair Inference.
We have the following Graph Transition ({e0, el} U F, Gi) --* ({e0, el , e2} U
F, G~+z) where eo is the "into" equation, el is the "from" equation and e2
is the conclusion equation of the Basic Critical Pair inference.
Let eo be the label of vo and el be the label of Vl.
- Vi+l = V~ U {v2} such that label(v2) = e2
- EDi+I = EDi U E c U EI where:
I f e2 is an unconstrained equation then Ec = 0, otherwise E c =

Uv c_oncesto,(vo)(V , v, C) u Uv c_once8tor(,)(v2, v, C).
C_ancestor(v2) ~- C_ancestor(vo) U C_ancestor(vl) .
El = { (v0, v2, I) }

- A deletion rule.
We have the following Graph Transition ({eo, e z , . . . , e n } U l ' ,Gi) --+
({el, e2 , - . . , en} U/' , G/+I) where eo is removed because of e l , . . . , en.
Let ei be the label of vi for i E {0, . . - , n}.
- V / + 1 = V/

- EDi+I = EDi U Es where:
Es = Ui~{1,...,n}(V0, vi, S).

We now summarize the above definition. A C edge is created from a con-
strained equation to its initial ancestors, initial unconstrained equations of E.
An I edge is added from the vertex labelled by the "into" premise of an infer-
ence to the vertex labelled by the conclusion of the inference. This indicates
that the "into" premise depends on the conclusion. We can notice that E-paths
and also E-cycles do not contain an I edge followed by a C edge. This is due to
the reducibility constraints associated to I and C edges. An S edge is from the
simplified equation to the simplifier, and also from the simplified equation to
the conclusion of the simplification. This indicates that the simplified equation
depends on the other two. The dependency graph will not contain an E-cycle,
because only a S edge could create an E-cycle (see theorem 7) and E-cycle Sim-
plification forbids creation of E-cycles.

De f in i t i on 4. Given a sequence of equations Eo ,E1 , . . . , the limit Eoo is
Ui Nj>_i Ej . Given a sequence of graphs Go, G1, . . . where Gi = (Vi, ED~) for
all i, the limit Goo is (Voo, EDoo), where Voo = Jr Nj>i Vj, label(v) = Ji ~j>_i
label(vj) for all v E Voo, and EDoo = Ji ~j>i EDj .

Def in i t i on 5. A Graph Transition Derivation from E is a possibly infinite
derivation (Eo = E, Go = Ginit) --+ (El, G1) --+ "" ", where for all i, (Ei, Gi) --~
(Ei+l,Gi+l) is a Graph Transition. The Transition Limit is denoted by Too =
(Eoo,Goo).

A Simplification rule consists of a Critical Pair inference that adds an equation plus
a deletion rule.

216 Christopher Lynch and Christelle Scharff

The two following theorems are consequences of the way the dependency
graph is constructed. The first theorem proves, in particular, that an E-cycle
does not contain only C edges. The second theorem proves that it is only a
deletion rule, so the addition of an S edge that could create an E-cycle. It also
proves that an E-cycle contains at least an S edge.
T h e o r e m 6. An E- cycle does not contain only C edges.
T h e o r e m 7. Let (Eo = E, Go = Ginu) ~ (El, G1) ~ . . . -~ (En-1, Gn-1) -~
(E n , G n) " " be a Graph Transition Derivation. I f Gn-1 does not contain an E-
cycle and Gn contains an E-cycle, then En was obtained from En-1 by a deletion
rule.

To illustrate BCPES, we now develop the counter-example of Nieuwenhuis
and Rubio NR92, that proves that Basic Completion with Standard Simplifi-
cation is incomplete. We adopt the same execution plan.
Example 8. Let E = {a ~ b (1), f (g (x)) ~. g(x) (2), f (g(a)) ~ b (3)}. We assume
a lexicographic path ordering based on the precedence f N-prec g N-prec a N-prec b.

The dependency graph for the two inferences processed here is in figure 1.
The full development of this example can be found in the full version of the
paper LSc97. The saturated set, we obtain, is g ~ = {a ~ b (1), f (g (x))
g(x) (2), f(b) ~ b (5) , f (g(b)) ~ b (7),g(x) ~ bx =? b~ (8)}.

1. f (g (x)) ~ g(x) (2) f (g(a)) ~ b (3)
g(x) blx =7 a (4)

We add C edges from equation (4) to the initial equations (2) and (3). The
reducibility constraint associated to these edges is Red(a).
We add an I edge from equation (2) to equation (4). The reducibility con-
straint associated to this edge is -~Red(a).

2. f (g(a)) ~ b (3) g(x) ~ b~x =7 a (4)
/(b) b (5)

We add no C edge because equation (5) is an unconstrained equation. How-
ever, the set of initial equations equation (5) depends on is recorded. Equa-
tion (5) depends on the initial equations (2) and (3).
We add an I edge from equation (3) to equation (5). The reducibility con-
straint associated to this edge is T.
Equation (3) can be standard simplified by equation (4). However, there is
no E-cycle Simplification. Indeed, if we add S edges, an E-cycle is created.
The S edge from (3) to (4) (whose associated reducibility constraint is T)
and the C edge from (4) to (3) (whose associated reducibility constraint is
Red(a)) describe an E-cycle.
If we delete equation (3) as in Standard Simplification, then we cannot con-
struct a confluent system (equation g(b) ~ b has no rewrite proof), therefore
the inference system would not be complete. The presence of the E-cycle
prevents us from deleting equation (3). Thus we have used the dependency
graph to detect incompleteness. The reducibility-relative-to condition of Ba-
sic Simplification also detects this. However, that condition also prevents
some simplifications that would not cause loss of completeness, which E-
cycle Simplification allows.

Basic Completion with E-cycle Simplification 217

- - D . C e d g e s

. . . . ~ l e d g e s

_ _ I n t e r m e d i a r y edges
to s ee i n f e r e n c e s

f(g(x))=g(x) (2) f(g(a))=b (3)
: k 4 '.

x /
"Red(a~ Red(a~ x Red(~)r "'

�9 \ ".

g(x)=bx=?al (4)

f(b)=b (5)

a=b (1)

Fig. 1. Dependency graph of Basic Completion with E-cycle Simplification of E =
{a ,~ b, f(g(x)) ~ g(x), f(g(a)) ~ b} : the first two inferences.

4 B C P E S Is Complete

In this section, we give the completeness result of BCPES. In the completeness
proof, we need to construct a ground dependency graph which is an instance of
the dependency graph we created in the previous section. Our proof is based on
the model construction proof of BG94. The ground dependency graph is used
to built a model of irreducible equations and a well-founded ordering ~-g of the
equations.

4.1 T h e G r o u n d D e p e n d e n c y G r a p h s

In the ground dependency graph, the labels of vertices are ground equations.
Edges are added only if the reducibility constraints associated to them are sat-
isfiable in a particular set of ground equations.

We first define GGinit for a (non-ground) set of equations E to complete.
GG~nit is the initial ground dependency graph (Vinit, EDinit), where Vinit is the
set of vertices such that each e E Gr(E) labels one vertex of Vinit and EDina = O.
As in the non-ground case, we set C_ancestor(v) = {v} for every v E Vmit.
In a ground dependency graph, C edges are added from ground instances of
constrained equations to ground instances of unconstrained initial equations.
An I edge is added as previously from the "into" premise to the conclusion of
an inference. Furthermore, we add an I edge from the "into" premise to the
"from" premise of an inference. We also add I edges from the "into" equation
to the "from" and the conclusion equation of inferences at the ground level that
simulates "inferences" at a variable position not in the constraint at the non-
ground level 6. In a ground dependency graph, we no longer speak about E-cycle
but only about cycle.

At the non-ground level, no inference or simplification is performed at a variable
position. However, we refer to it as an inference. At the ground level, the inference
or the simplification must be performed. This remark applies to the rest of section 4.

218 Christopher Lynch and Christelle Scharff

The consequences of a rule on the ground dependency graph are formalized
using Ground Graph Transitions modulo an equational theory E' distinguishing
the applied rule at the ground level. E' is a set of ground equations with respect
to which the reducibility constraints are tested. In the completeness proof, this
set is instantiated by G r (E ~) . Ground Graph Transitions modulo an equational
theory are described in detail in LSc97. We need to lift from ground level to
non-ground level. It is why we speak about Ground Graph Transition Derivation
associated to (non-ground) Graph Transition Derivation.

4.2 Completeness Proofs

In this section, we first give completeness results concerning the Ground Graph
Transition Derivation and then completeness results concerning BCPES. But
first, we give some lemmas describing properties of ground dependency graphs.
These properties follow from the construction of ground dependency graphs.

The following theorem provides the result that a cycle in a ground depen-
dency graph contains at least a C and an S edge. The proof is done by contra-
diction.

Theor e m 9. Let (EGo -- Gr(E) ,GGo = GGinit) ~ (EG1,GG1) ~ . . .
(EGn, G G n) ' " be a Ground Graph Transition Derivation modulo E' . I f GGn
contains a cycle, then this cycle contains at least a C and an S edge.

The following lemma proves that if an I edge goes from a vertex vl to a
vertex v2 in G G ~ , then label(v1) is reducible in G r(E~) .

L e m m a 10. Let (EGo = Gr(E) , GGo) --~ (EG1, GG1) --+ . . . --+ (EGn, G G n) . . .
be a Ground Graph Transition Derivation modulo Gr(E ~) . I f there is an edge
from a vertex vl to a vertex v2 in G G ~ , then label(v1) is reducible in G r (E ~) .

The following lemma proves that a cycle in a ground dependency graph
does not contain an I edge from an "into" equation to a "from" equation of an
inference.

L e m m a 11. Let (EGo = Gr(E) ,GGo = GGinit) ~ (EG1,GG1) ~ . . . --,
(EGn, G G n) " " be a Ground Graph Transition Derivation modulo G r (E ~) . I f
GGi is a dependency graph containing a cycle C, then g does not contain an I
edge from an "into" equation to a "from" equation of an inference.

The following lemma proves that if there is a cycle or an infinite path at
the ground level then there is an E-cycle at the non-ground level. For the proof
of this lemma, we basically need to show that the extra edges we added to the
graph in the ground case do not create any cycles that do not already exist at
the non-ground level. In particular, lemma 11 and theorem 9 are used.

L e m m a 12. Let (Eo = E, Go = Ginit) --+ (El ,G1) --" "" --~ (E n , G n) " "
be a Graph Transition Derivation and (EGo = Gr(E) ,GGo = GGinit) --+
(EG1, GG1) --~ . . . - -~ (EGn, G G n) " " its associated Ground Graph Transition
Derivation modulo Gr(Eoo), then for all i,

- if GGi contains a cycle then Gi contains an E-cycle.
- if GGi contains an infinite path, then Gi contains an E-cycle.

Basic Completion with E-cycle Simplification 219

The first completeness theorem provides a completeness result for Ground
Graph Transition derivations. The proof of this theorem is based on the con-
struction of a model of G r (E ~) which is a convergent rewrite system. For doing
that the ordering ~-g is constructed directly from the ground dependency graph
G G ~ .

Definition 13. Let ~-g be the ordering such that e ~-g e I if and only if there are
two vertices v and v' in G G ~ such that label(v) = e, label(v') = e', and there
is a path in G G ~ from v to v ~.

The ordering may not be total, but it is defined on the equations we use
in the completeness proof. G G ~ contains no infinite path or cycle if we do
Basic Completion with E-cycle Simplification (see lemma 12) and so ~-g is well-
founded.

We define redundancy in terms of this ordering.

Definition 14. A ground equation e is g-redundant in a set of ground equations
E if there are equations e l , . . . , en E E such that e l , . . . , en ~ e and ei "~g e for
all i.

E-cycle simplification is an example of g-redundancy as expressed in the
following lemma.

L e m m a 15. Let E be a set of unconstrained equations. Let (Eo = E, Go =
Ginit) --~ (El,G1) --~ "'" ~ (En, G n) . . . be a Graph Transition and (EGo =
Gr(E) , GGo = GG~nit) -'* (EG1, GG1) --* " " --* (EGn, GGn) " " its associated
Ground Graph Transition Derivation modulo G r (E ~) where, G G ~ does not
contain a cycle and an infinite path. Let e be an equation that is E-cycle simplified
in some Ei. Then every ground instance e' ore is g-redundant in G r (E ~) .

T h e o r e m 16. Let E be a set of unconstrained equations. Let (EGo = Gr(E) ,
GGo = GGinit) --~ (EG1,GG1) --* . . . --* (E G n , G G n) " " be a Ground Graph
Transition Derivation modulo Gr(E ~) where, G G ~ does not contain a cycle or
an infinite path. Then this Ground Graph Transition Derivation is complete in
the sense that G r (E ~) is convergent.

The following main theorem proves the completeness of BCPES. The proof
is based on the correspondence between the procedural construction of the non-
ground dependency graph presented in section 3.2 and the abstract construction
of the ground dependency graph presented in section 4. Lemma 12 is mainly
used for the proof.

T h e o r e m 17. Basic Completion with E-cycle Simplification is complete.

5 Comparison with Basic Simplification

In this section, we compare E-cycle Simplification with Basic Simplification. We
prove that if we simplify because of a Basic Simplification then there is no E-cycle
in the dependency graph we construct and so there is an E-cycle Simplification.
So Basic Simplification is a subset of E-cycle Simplification. The proof of this
theorem is based on a series of lemmas that show what patterns of edges can be

220 Christopher Lynch and Christelle Scharff

added to the graph. So we show that the reducibility-relative-to condition never
allows an edge to be added that would create an E-cycle. Furthermore, we give
an example where we can simplify with E-cycle Simplification and where Basic
Simplification does not permit us to simplify.

L e m m a 18. Let (Eo = E, Go = Ginit) ~ (El, G1) ---+ "'" ---+ (En, G n) " " be a
Graph Transition Derivation such that Eo --~ E1 -~ . . . -o En is a derivation of
BCPBS. Then for all i, Gi contains no E-path consisting of an I edge followed
by S edges and then by a C edge.

L e m m a 19. Let (E0 = E, Go = Ginit) --~ (El, G1) ~ . ' . --+ (En, G n) " " be a
Graph Transition Derivation such that Eo ~ E1 ---+ . . . --~ En is a derivation of
BCPBS. Then if there is an i such that Gi contains an E-cycle, then this E-cycle
does not contain any I edge.

T h e o r e m 20. Let (Eo = E, Go = G~nu) --~ (El , G1) - -+ '" ~ (En, G n) " " be a
Graph Transition Derivation such that Eo --~ E1 --+ . . . --* En is a derivation of
BCPBS. Then there is no i such that Gi contains an E-cycle.

As a direct corollary, we get that if Eo, E l , . . . , En is a derivation of BCPBS,
then it is also a derivation of BCPES. Inversely, we provide an example that
shows that a derivation of BCPES is not a derivation of BCPBS.

Example 21. Let E --- {g(x) ~ f (x) (1),g(a) ~ b (2) ,h(f(a)) ~ b (3)}. We
assume a lexicographic path ordering based on the precedence h ~-prec g ~prec
f ~prec a Nprec b. Let us assume the following execution plan using BCPES.

1. g(x) ,~ f (x) (1) g(a) ~ b (2)
I(x) blx _7 ai (4)

We add C edges from equation (4) to initial equations (1) and (2). The
reducibility constraint associated to these edges is Red(a).
We add an I edge from equation (1) to equation (4). The reducibility con-
straint associated to this edge is -~Red(a).

h(f(a))~b(3)(b)f(x)~bX=?h "~ b (5) a l (4) 2.

The equation h(f (a)) ~ b (3) is E-cycle simplified by equation f (x) ~ b~ x =7
a ~ (4). Indeed, no E-cycle is created when we add S edges from equation (3)
to equations (4) and (5).
With Basic Simplification, the equation h(f (a)) ..~ b cannot be deleted be-
cause f (x) ~ b~x =? a is not reduced relative to h(f (a)) ~ b.

6 C o n c l u s i o n

We have presented a new method of Simplification in the Basic Completion
of a set of equations E, called E-cycle Simplification. Our approach is easy to
understand because it is based on a graph. Indeed, E-cycle Simplification is based
on the creation of a dependency graph during the completion process showing
the dependencies between equations. It permits us to control completeness of

Basic Completion with E-cycle Simplification 221

Completion such that , whenever E-cycle Simplification allows a simplification,
completeness is preserved. We compare our method with Basic Simplification
and prove that Basic Simplification is a strict subset of E-cycle Simplification.

Our method is shown complete using an abstract proof technique based on
model construction. We think that this abstract framework is promising in the
sense that this method of proof can lead us to an analysis of different simplifica-
tion strategies from the point of view of completeness in constrained completion
procedures. We conjecture that all complete Simplification methods for Basic
Completion can be fit into our framework. We plan to use this method for AC
Basic Completion and in particular, for simplification in AC Basic Completion.

We have implemented our method of Basic Completion with E-cycle Sim-
plification. The system is called ECC (E-cycle Completion). It is written in
E L A N KKV95, which is a language based on rewriting and adapted for pro-
totyping. The system is fully operational. Some implementation and experi-
mental details with the two different methods of simplification are available at
ht tp: / /www.loria , fr/~scharff.

R e f e r e n c e s

BG94 L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation, 4(3):217-247,
1994.

BGLS95 L. Bachmair and H. Ganzinger and C. Lynch and W. Snyder. Basic
Paramodulation. Information and Computation, 121(2):172-192, 1995.

DJ90 N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer
Science, volume B, chapter 6: Rewrite Systems, pages 244-320. Elsevier Science Pub-
lishers B. V. (North-Holland), 1990. Also as: Research report 478, LRI.

HM98 M. Hermann. Constrained Reachability is NP-complete.
http://www.loria.fr/ hermann/publications.html#not es.

KBT0 D.E. Knuth and P.B. Bendix. Simple word problems in universal alge-
bras. Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press,
Oxford, 1970.

KKR90 C. Kirchner and H. Kirchner and M. Rusinowitch. Deduction with
symbolic constraints. Revue d'Intelligence Artificielle, 4(3):9-52, 1990. Special issue
on Automatic Deduction.

KKV95 C. Kirchner and H. Kirchner and M. Vittek. ELAN V 1.17 User Manual
Inria Lorraine & Crin, Nancy (France), first edition, november 1995.

LS95 C. Lynch and W. Snyder. Redundancy criteria for constrained completion.
Theoritical Compluter Science, volume 142, pages 141-177, 1995.

LSc97 C. Lynch and C. Scharff. Basic Completion with E-cycle Simplification.
1997, http: / /www.loria.fr /~scharff.

NR92 R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-
Brfickner, editor, Proceedings of ESOP'92, volume 582 of Lecture Notes in Computer
Science, pages 371-389. Springer-Verlag, 1992.

Pet94 G.E. Peterson. Constrained Term-Rewriting Induction with Applications.
Methods of Logic in Computer Science, 1(4):379-412, 1994.

SoleX: A D o m a i n - I n d e p e n d e n t Scheme
for Constraint Solver Extens ion

Eric Monfroy I and Christophe Ringeissen 2

1 CWI
P.O. Box 94079, NL-1090 GB Amsterdam, the Netherlands

Eric. Monfroy�9 nl, http ://www. cwi.nl~eric
2 LORIA-INRIA

615 rue du Jardin Botanique, BP 101, F-54602 Villers-l~s-Nancy Cedex, France
Christophe. Ringeissen@loria. fr, http://www, loria, fr~ringeiss

Abs t rac t . In declarative programming languages based on the con-
straint programming paradigm, computations can be viewed as deduc-
tions and are enhanced with the use of constraint solvers. However, ad-
missible constraints are restricted to formulae handled by solvers and
thus, declarativity may be jeopardized. We present a domain-independent
scheme for extending constraint solvers with new function symbols. This
mechanism, called $oleX, consists of a collaboration of elementary solvers.
They add and deduce information related to constraints involving new
functions, complete the computation domain and purify constraints. Some
extensions of computation domains have already been studied to demon-
strate the broad scope of $oleX potential applications.

1 I n t r o d u c t i o n

In the last decade constraint programming (CP) 8 emerged as a new program-
ming paradigm. The basic notion of this framework is the separat ion between
(1) a programming language to specify requirements (the constraints) on objects
(the computation domain) and (2)a mechanism (the solver) for solving con-
straints. CP has to face the di lemma "declarativity vs. efficiency". Thus, the
solvers cannot always handle all the constraints the user manipula te in the pro-
gramming languages. A solver is said to be complete if it is able to solve any
constraint defined by the language. However, solvers of CP systems are not al-
ways complete: for example CLP(T~) 9 does not solve non-linear constraints,
i.e., they are suspended till they become linear. Although this kind of technique
is sufficient for some applications, it is not satisfactory in the general case.

Designing a solver tha t handles all the constraints the programming language
provides is a hard task. Possibly, there may be no solver for this computat ion
domain. Thus, we are concerned with a general framework and mechanisms for
extending/complet ing efficient solvers so they can handle new function symbols.
In 6 a decision procedure on T~ is extended to a decision procedure on 7~ § J ~ 1.

1 CLP(T~ + .~4) is obtained by extending the domain of CLP(T~) with some special
nonarithmetic function symbols.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 222-233, 1998.
~) Springer-Verlag Berlin Heidelberg 1998

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 223

In this paper, we extend the method of 6 with other syntactical manipulations
and semantic transformations as well. Moreover, our framework is independent
from the computat ion domain and the programming language.

The inverse robot kinematics problem 3 illustrates our motivations. We want
to determine, for a given robot, a position and an orientation of the end-effector,
the distances at the prismatic joints and the angles at the revolute joints (see Fig-
ure 1). The problem for a robot having two degrees of freedom can be described
by a system of equations (see Section 5) that also involves trigonometric func-
tions. However, neither trigonometric solvers nor trigonometric simplifications
automatically re turn the solution we expect, i.e., a symbolic expression describ-
ing the relation between parameters and variables. Thus, we would like to extend
a solver for non-linear polynomial constraints with the trigonometric functions
sine and cosine. Let us give a second example. One may have to consider unifi-
cation problems together with constraints on depths of ground terms, i.e., con-
straints such as depth(X) = 4-depth(g(Z)) A g(g(Z)) = g(g(g(b))) A g(Y) = gig(X))
We have here two disjoint sorts: terms (solved by unification) and integers. Since
no solver over the integers can handle the function depth, we want to extend a
Diophantine solver (or a finite domain like solver) with the depth function.

Nowadays, some methods may be investigated for extending solvers. Solver
combination methods 1,11,15,7 aim at designing a general solver (correspond-
ing to a new mixed domain which is a conservative extension of the original ones)
based on the cooperation of elementary solvers. Since we want to stay on the
same interpretation domain, such frameworks are not well suited. Independently
of these theoretical results, more practical issues have been explored for the coop-
eration of several solvers on a single domain 14,4,2, or on several domains 12.
However, such systems cannot directly handle extra function symbols.

The need of integrating deduction techniques into computer algebra is now
well-established 16, and standard computer algebra systems (such as Mathe-
matica 17) already provides some equation simplification tools. Although they
are powerful, no method/technique are available for designing a solver extension
or to insure its soundness. Similar comments can be done about CHRs 5 and
ELAN 10 2. Some works were also conducted in the area of constraint transfor-
mation 12, but these techniques act only as a pre-processing.

To overcome the problems of solver extension and to generalize/formalize
some of the previous works, we designed SoleX, a mechanism for extending 3
constraint solvers. SoleX enables one increasing the declarativity of CP systems
without jeopardizing completeness of solvers, nor designing new solvers from
scratch. The aim of SoleX is to enrich the solvers so they can treat new function
symbols called alien symbols. Their semantics can be of different kinds. First,
they can be syntactic sugar to replace the extensional definition of a function
(e.g., 3.x 2 + 2 . x + 1 may be named p(x)). Second, they can be standard functions
that are not handled by the solver. For example, usual solvers for arithmetic con-
straints cannot manipulate the functions sine and cosine. Thus, it is important

2 However, these systems are really well suited for implementing our framework.
3 This mechanism can also be viewed as a way to complete constraint solvers.

224 Eric Monfroy and Christophe Ringeissen

to be able to extend methods such as Gaussian elimination or GrSbner bases for
solving constraints with occurrences of these trigonometric functions. Unlike to
the previous cases, the last class of alien symbols corresponds to functions with
no defined meaning on the domain. For example, a function can be characterized
by experimental measures that can be expressed as constraints. The solved form
may define the extensional definition of the function or of a class of functions.

$oleX is the ordered application of four phases (collections of rules or compo-
nent solvers) to process alien function symbols and deduce related information.
The Reduction phase reduces the search space by adding semantic and syn-
tactical information carried by the functions. The Expansion phase completes
the constraints with always valid (w.r.t. the extended domain) constraints, i.e.,
characteristics of the functions (e.g., an absolute value is always greater than or
equal to zero). Then, the constraint store is purified by abstracting remaining
function symbols that cannot be processed by the solver. After application of
the built-in solver (Solving phase), the Contraction phase replaces abstraction
variables with their related alien terms (this is the "opposite" of abstraction)
and removes "redundancies" added by the expansion phase. Several applications
of SoleX may be necessary to reach a fixed point and to solve the constraints.

The paper is organized as follows. Section 2 formalizes our framework. Sec-
tion 3 describes the (rule-based) elementary solvers. We then examine (Section 4)
the problem of controlling solvers. Section 5 describes some applications of SoleX
over different domains. Finally, comparisons, conclusions and future works are
discussed in Section 6. A longer version of this paper 13 includes the transfor-
mation rules that formalize the solver extensions, and some proofs as well.

2 B a s i c C o n c e p t s

Let us first introduce some standard notations about terms and substitutions
of variables by terms. Given a first-order signature Z and a denumerable set 1)
of variables, T(E, V) denotes the set of ~'~-terms with variables in 1). Terms
(resp. variables) are denoted by t l , . . . , tn (resp. x l , . . . , X n) . A ground term is
a term without variables. The terms tf~, ts~ and tw ~-~ s denote respectively
the subterm of t at the position w, the term t with the subterm s at the position
w and the replacement in t of tl~ by s. The symbol of t occurring at the position
w (resp. the top symbol of t) are written t(w) (resp. t(e)). The term ts denotes
a term t with some subterm s. The term ts ~ u denotes the term where s
is replaced by u in all occurrences of s in t. ~(t) denotes the set of variables
occurring in the term t. A substitution {xl ~ t l , . . . , xn ~-* tn} is an assignment
from 1/ to T(E, 12). We use letters a, #, V, r to denote substitutions. The
application of a substitution a to a term t is written in postfix notation tcr.
We now define the objects handled by SoleX: solvers, and constraint systems.

Def ini t ion 1 (Cons t ra in t sys tem).
A constraint system is a ~-tuple (Z, D, 1), s where:

- ~ is a first-order signature given by a set of function symbols ~ , and a set
of predicate symbols 7 ~ ,

$oleX: A Domain-Independent Scheme for Constraint Solver Extension 225

- 7) is a S-structure (its domain is denoted by 7)1),
- ~ is an infinite denumerable set of variables,
- ~ is a set of constraints: it is a non-empty set of (~ , V)-atomic formulas

closed under conjunction and disjunction. The unsatisfiable constraint is de-
noted by 2_ and the truth constraint is denoted by T. An assignment is a
mapping a : l) --* 17)1. The set of all assignments is denoted by A S S ~ .
An assignment a extends uniquely to a homomorphism c~ : T (Z , 12) --* /).
The set of solutions of a constraint c E ~ is the set Sol~)(c) of assignments

e A S S ~ such that ~(c) holds. A constraint c is valid in 7) (denoted by
e) if Sol.(c) = ASS .

The enrichment of a constraint system CS consists of some additional func-
tions defined on the original domain. The interpretation of symbols defined in
C S is unchanged.

D e f i n i t i o n 2 (C o n s t r a i n t s y s t e m e n r i c h m e n t) .
Let C S + = (Z +, :D +, V +, s and C S = (~ , T), ~, s be two constraint systems.
Then, C S + is an enrichment of CS if:

- Jr x C jz + and 796 = 79~+
- I v I = 9+1 andYr E S , r~+ = rz) 4
- V = Y + , s 1 6 3

A set of constraints {Cl , . . . , cA} where ci E s for i = 1 , . . . , n (a constraint
store) is represented by a conjunction of constraints cl A.- . A Cn 5. This conjunc-
tion can be split into an impure component in s and a pure component in s
Hence, we represent a constraint in s by a pair (C, P) where C E s P E s
and (C, P) means the conjunction C A P. If C is in s then (C, P) is said pure.

D e f i n i t i o n 3 (Al iens , p u r e a n d i m p u r e c o n s t r a i n t s) . A pure constraint
(resp. term) is a constraint (resp. term) in s An Alien subterm in a term t is a
teT~'n with a top-symbol in ~ + \ E such that its super-terms (whenever they exist)
have top-symbols in ~ . The set of aliens in C denoted by Alien(C) is the set of
alien subterms of terms occurring as arguments of atomic constraints in C. A
constraint C is impure if Al ien(C) is non-empty.

Intuitively, a component solver is an algorithm which transforms a constraint
C into a new constraint C ~ "simpler" than C, but equivalent to C in the structure
l) C a solver preserves the solutions). Moreover, the repeated application of a
solver always reaches a fixed-point which is a constraint in solved form.

D e f i n i t i o n 4 (C o m p o n e n t So lve r) . A component solver (or solver in short)
for a constraint system (E, ~), V, s is a computable function S : s --* s s.t.:

1. VC E s Sol~)(S(C)) C Solz)(C) (correctness)
2. VC E s Solz)(C) c_ Solz)(S(C)) (completeness)
3. VC E s 3n E N, S~+~(C) = S~(C)

a rz) (resp. rv+) represents the interpretation of r on the Z-structure D (resp. :D+).
5 The c~'s are elements of L: + and not necessarily atomic constraints.

226 Eric Monfroy and Christophe Ringeissen

A constraint C is in solved form w.r.t. S if S(C) = C. We denote by S +, S n
for some n > O. Similarly S* denotes the repeated application of S till reaching
the solved form.

In the following, we are interested in the design of a rule-based solver for an
enrichment C S + of C S based on a solver S known for C S together with a given
set of domain-independent transformation rules (solver extensions).

Example 1. The following rule defines a solver for C S + if S is a solver for CS.
Solve (C, P)

(C, S(P))

We will develop a rule-based solver for C S + using the rule Solve. In addition
to Solve, some other solvers (solver extensions, see Section 3) are applied on C.

3 S o l v e r E x t e n s i o n s

The solver extensions have been grouped together w.r.t, the kind of action they
have on the constraint store. On one hand, semantic rules (Section 3.2) make
use of the properties of the domain or of the properties of the alien functions.
On the other hand syntactical rules (Section 3.1) are based on syntactical trans-
formations like Abstraction or its opposite Alien Replacement.

3.1 Syntactical Solver Extensions

The following transformation rules are sound in any constraint system enrich-
ment.

V a r i a b l e A b s t r a c t i o n The rule Abstraction transforms impure constraints into
pure ones by adding new variables to name aliens. These variables Xu replace
terms u not in C S and the related equations Xu = u are added to the constraint
store. The reader should note that equations Xu -- u are no more transformed
and remain in the constraint store. In the following, we use a bijective mapping
which associates to each non-variable term u a unique variable Xu. Hence, two
occurrences of the same term will be automatically replaced by the same variable.

Example 2. Consider the constraint C -- (sin2(x § y) § cos2(x § y)) = 1 -
sin3(2x)*(sin(x+y)§ Abstraction* transforms C into C' = (X 2 § 2 --
1 - Z 3 * (X + Y)) A ((X = sin(x + y)) A (Y = cos(x + y)) A (Z = sin(2x))).

A l i e n R e p l a c e m e n t In the previous paragraph, we have seen how to purify
the constraint store with Abstraction. Then, we can apply Solve (see Example 1).
This leads to a conjunction of impure solved forms (involving new variables called
abstraction variables) together with a simpler pure constraint. In order to be able
to apply semantic solver extensions (described later on), it is necessary to re-build
an impure constraint without abstraction variables. Hence, AlienRep consists in

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 227

replacing abstraction variables by their related alien subterms. Obviously, the
rule is the converse of Abstraction and so (AlienRep* oAbstraction*) is the identity
solver, where o represents the usual composition of functions.

I n t e r - R e d u c t i o n The idea of the transformation rule InterRed is to consider
equations occurring in the constraint store as (ground) rewrite rules and then
to use rewriting to simplify the store. For this purpose, we use a total ordering
-~ on T (~ +, ~+) such that non-ground terms are greater than ground terms
and non-ground (resp. ground) impure terms are greater than non-ground (resp.
ground) pure terms. For comparing non-ground (resp. ground) terms, we can
use a lpo-ordering on T (r + U 12 +) based on a precedence such that additional
function symbols in ~ + \ ~ are greater than function symbols in E and function
symbols in E + are greater than variables in V +. This ordering is total, closed
under contexts and satisfies the subterm property.

Example 3. Consider the constraint C = (y _< sin2x + sinz) A (sinz = 1) A
(sin2x = 0). InterRed transforms C into (y _< 0 + 1) A (sinz = 1) A (sin2x = 0)
provided that sin z ~- 1 and sin 2x ~- 0.

M o v i n g c o n s t r a i n t s As said before, a constraint store is represented by a
couple (C, P). When a constraint c in C becomes pure (e.g., after Abstraction),
it can be carried to P, the pure part of the store. This is realized with the
rule ToPure. In a similar way, constraints in P that become impure (e.g., after
AlienRep) are moved to C with the rule FromPure.

3.2 Semant ic Solver Extens ions

In this section, some meta-transformation rules (mainly based on rewriting)
are proposed. These transformations must be regarded as solvers and aim to
integrate properties relevant to functions and predicates in CS +. For instance,
a solver S on CS is usually able to normMize any term in C S (which is more
or less its internal representation) and it would be interesting to enhance this
normalization on terms in CS +.

N o r m a l i z a t i o n We assume that the solver S is equipped with a normalizing
mapping N F , that is an idempotent computable mapping N F : T (E , ~) --*
T(E, V) such that Vt E T (~ , ~), T) ~ t -~ NF(t) . Moreover, the computation
of N F (t) does not depend on the names of variables in V(t) but just depends
on the total ordering of variables occurring in t. This ordering is given by the
restriction of -~ to variables.

D e f i n i t i o n 5. The mapping NF+ : T(Z+,2 +) --* T (Z +, ?+) is defined by:

- N F + (f (t l , . . . , tin)) = f (N F + (t l) , . . . , NF+(tm)) if f �9 E + \ ~ .
- I f t is pure, then NF+(t) = g F (t)
- I f t is an impure term with a top symbol in ~ , then NF+(t) is recursively

obtained as follows:

228 Eric Monfroy and Christophe Ringeissen

1. Compute bi = N F + (a ~) for every alien ai C A l i en (t) .
2. Compute the t erm t ~ obtained by replacing in t aliens a l , . . , an by new

variables X l , . . . , xn such that Xk -~ x~ r bk -~ bl and Xk -= xl r bk -~ bl
f o r 1 <_ k , l < n.

3. N F + (t) is g F (t ~) { X k H bk}k=l,...,n.

The transformation rule Normalize consists in the replacement of any term t
by its normal form N F + (t) following an innermost strategy.

Example 4. Let us consider the function symbols § , , - , the predicate symbol
in Z (interpreted as usual over reals), the new function symbol f in E +, and

the normalizing mapping N F such that: N F (x - x) = O, N F (x + O) = x and
N F (1 * x) = x. Then N F + (f (1 * x) - f (x + 0)) = 0 and applying Normalize on
the constraint C = (f(1 * x) - f (x + O) <_ x - y) leads to 0 _< x - y. The built-in
solver can now treat this constraint and so we get the solution y < x.

More generally, rewriting is a very natural concept for replacing a term by
another one which is supposed to be simpler but equivalent in the constraint
system. Termination is required in order to get an extended solver. Intuitively,
the database of rewrite rules (T G R for terms and C G R for constraints) must
simplify the impure subpart of the constraint. We define in the following how to
apply such rules coming from a database of properties. Guarded rules are con-
sidered and applied only if the current constraint store entails the related guard
(or constraint). Matching of left-hand sides of rules is performed syntactically
but one should note tha t the equality in the built-in constraint system has been
incorporated thanks to the Normalize solver.

T e r m D e p e n d e n t G u a r d e d R e d u c t i o n The term rewrite system T G R is a
finite set of guarded rules (1 -* rllg) where g is a constraint in C S + and l, r are
terms such that :D + ~ g ~ l = r. An instance of the term l, say la, occurring
in the constraint store C can be replaced by ra when ga is entailed by C. This
transformation rule is called TermRed.

Example 5. Consider the guarded rules (Ixl --~ xl lx > 0) and (Ixl --~ - x l l x < 0).
The constraint C = (lY - 21 = x + Ixl § 1) A (y _> 3) A (x * y < 0) can be reduced
to y -- 3 A x < 0 thanks to TermRed and Solve (see Example 1).

Constra int D e p e n d e n t G u a r d e d R e d u c t i o n The constraint rewrite system
C G R consists of a finite set of guarded rules (L -~ RIIG) where G is a con-
straint in C S + and L, R are conjunctions of atomic constraints in C S + such
that :D + ~ G ~ (L r R). A rewrite relation is defined as previously, except
tha t matching is now performed modulo the associativity-commutativity of A
and V. The corresponding transformation rule is called ConsRed.

Example 6. Consider the guarded rule (v /~ = y --~ x -= y211x > 0). The con-
straint (x > 2) A ((x - - 1) * (y - 3) > 0) A (v ~ - - 2 ---- y - 4) can be reduced to
(x > 2) A ((x - - 1)* (y - 3) > 0) A (y- - 2) ---- (y - - 4) 2 since y - - 2 > 0. Finally we
get the solutions for y by calling the built-in solver.

$oleX: A Domain-Independent Scheme for Constraint Solver Extension 229

Formally, checking the implication (entailment) requires a validity checker
for the enriched constraint system. If such a decision algorithm is not provided,
then the semantic entailment can be approximated by a syntactic constraint
inclusion test.

Domain D e p e n d e n t C o m p l e t i o n / D e l e t i o n In order to Complete/Delete the
information encoded in the constraint store, we consider a database of valid facts,
i.e. a finite set D D R of valid conjunctions of constraints in C S +. This leads to
a pair of quite opposite transformation rules, namely DomComp and DomDel.
DornComp completes the constraint store C by an instance of a constraint C t E
D D R provided this instance is not yet entailed by C. Conversely DomDel deletes
an instance of C ~ E D D R occurring in the constraint store. For trigonometric
functions, examples of valid constraints in D D R are: -1 < sinx < 1, -1 _<
c o s x < 1, c o s 2 (x) + s in2(x) = 1.

Example 7. Consider the constraint C = (1-sin 2x -- y) and the valid constraint
(-1 < sinX < 1) E D D R . The constraint C is transformed into C A (-1 <
sin2x < 1) thanks to DomComp. We do not have to add the constraint (-1 <
s i n 2 x < 1) t o e ' - - (y * (y - 1) = 0) ACsince (y * (y - 1) = 0) A(1 -Y- - - -y)
already implies (-1 < V _ 1), where V stands for sin2x.

4 SoleX: T h e S o l v e r C o l l a b o r a t i o n

The solver for C S + is described as a set of transformation rules (presented in
Section 3) together with control. The basic operation we used for combining
solvers is the composition (of functions). The extended solving process $oleX is
(Contraction o Solve o Expansion o Reduction) where the four phases are as follows:

- Reduction phase (Reduction = (ConsRed+oTermRed+olnterRed+oNormalize+)):
the constraint store is transformed using semantic and syntactical solver ex-
tensions introduced in the two previous sections.

- Expansion phase (Expansion -- (ToPure* o Abstraction* o DomComp*)) : the
constraint store is completed by valid constraints which may be helpful in
the next phase and may be purified thanks to Abstraction.

- Solve phase (Solve): the built-in solver is applied on the pure part of the
constraint store.

- Contraction phase (Contraction = (DomDel* o AlienRep* o FromPure*)): the
impure equations introduced in the second phase are merged with the new
pure part of the constraint store. The remaining valid constraints added in
the same phase are removed.

It is important to notice that a transformation rule is not necessarily a solver
since its repeated application may not terminate. For the same termination prob-
lem, a composition of two solvers yields a new function which is not necessarily a
solver (Definition 4). For proving the termination of a composition of solvers, we
may need to embed all orderings related to elementary solvers into a Noetherian

230 Eric Monfroy and Christophe Ringeissen

i

v

/ /

C

COS((~I) * COS((~2) - - COS((~) * COS(0) * cos (~b) + sin(C) * sin(C) = 0
sin(51) * cos(5:) - sin(C) * cos(0) * cos(C) - cos(C) * sin(~b) = 0
sin(52) + sin(0) �9 cos(C) = 0
- cos(51) * sin(52) - cos(C) * cos(0) * sin(C) + sin(C) * cos(~b) = 0
- sin(51) * sin(52) + sin(C) �9 cos(0) * sin(~b) - cos(C) * cos(~b) = 0
cos(52) - sin(0) * sin(~b) = 0
sin(51) - cos(C) * sin(O) = 0
- c o s (5 1) - sin(C) �9 sin(O) = 0
cos(0) = 0
i2 * COS(61) * COS(52) - - px = 0

12 * s i n (S i) * c o s (5 2) - - Pv = 0

12 * sin(&) + 11 - pz = 0

F i g . 1. R o b o t - a r m wi th two degrees of f reedom

order ing <. As solver extensions are pa rame te r i zed by NF,-~, rewr i te rules in
T G R and CGR, or by valid cons t ra in t s in D D R , we have to give more precise
sufficient condi t ions in order to insure the t e rmina t ion of the SoleX process.

T h e o r e m 1. Let >_ be a quasi-ordering on s 1 6 3 such that > is Noetherian.
SoleX is a solver for C S + if the following conditions are satisfied:

1. TermRed and ConsRed are solvers,
2. For any E E {Normalize, InterRed, TermRed, ConsRed}, we have

E (C , P) = (C ~,P) and C ~ E s ~ C > C'

3. ExtSolve = Contraction o Solve o Expansion is a solver such that

ExtSolve(C, P) = (C ' , P ') ~ C > C '

T h e p roof is qui te obvious since SoleX is ExtSolve o Reduction and we assume
a complex i ty measu re t h a t does not increase by Reduction but s t r ic t ly decreases
by ExtSolve. $o leX becomes a solver in the par t icu lar case where D D R , T G R ,
C G R are empty , and N F is the ident i ty mapping . More generally, one can find
more detai ls a b o u t a possible order ing in 13, as well as some sufficient condit ions
to insure t h a t ExtSolve (respect ively TermRed, and ConsRed) is a solver.

5 Applications

I n v e r s e R o b o t K i n e m a t i c s We can now solve the p rob lem 3 briefly descr ibed
in Sect ion 1. Th is p rob lem for a robo t (see Figure 1) having two revolute joints
(degrees of f reedom) can be descr ibed by the sys t em of equat ions presented in
F igure 1 where ll, 12,px,pz are p a r a m e t e r s and Py, 51, 52, r 0, r are variables.
ll , 12 are the lengths of the robo t a rms, (px,Py,Pz) is the posi t ion of the end-
effector, r O, r are the Euler angles of the or ien ta t ion of the end-effector, and
51,52 are the ro t a t ion angles of the revolute joints. T h e expec ted solut ion is a

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 231

symbolic expression describing the dependence of the joint variables on the ge-
ometrical and position parameters. For this application, neither trigonometric
solvers nor trigonometric simplifications automatically return a symbolic solu-
tion expressing the relation between parameters and variables. Thus, we extend
a solver working on the domain of non-linear polynomial constraints (namely
Gr5bner bases which simplify polynomial equations and return relations be-
tween the variables) with trigonometric functions (sine and cosine). Hence, let
D D R be {sin2(X) + cos2(X) - 1 = 0}. The DomComp solver completes the
system by adding for each angle (51,52, r 0, r the property of sine and cosine
(sin2(X) + cos2(X) = 1). The Abstraction solver replaces every remaining sine
and cosine with new variables. Finally after Solve and AlienRep, SoleX reaches
a fixed-point which is the desired solution:

sin(C) + kx * cos(C) * sin(f1) * cos(fix) = 0
A sin(0) + k2 * cos(C) * sin(fl) ~- 0
A sin(C) + k3 * cos(C) * sin(f1) * cos(fl) = 0

A cos(C) + k4 * cos(C) * sin(f1) = 0
A cos(O) = 0
A cos 2 (r + k5 = 0

A Pu + k6 * sin(51) * co8(fl) = 0
A sin(52) + k7 -- 0
A sin2(51) + ks = 0
A COS(f2) n t- k9 * C O S (f l) = 0

A cos2(51) + klO = 0

where k l , . . . , kl0 are constants, depending on the parameters 11,12,px, Pz.

C o n s t r a i n t so lv ing ove r i n t e g e r s a n d t e r m s This example illustrates how to
extend a constraint solver working on conjunctions of two-sorted constraints: the
integers and the terms. Constraints over integers are equations and inequations
between linear polynomials with integer coefficients. Constraints over terms are
equations between terms. Formally, the signature is as follows:

{ < : Z • + , - : Z • O~I:Z
X'= f : ~ • g : ~ - ~ ; a :

(resp. Z) denotes ground terms (resp. integers) and the function symbols and
the predicate symbol < are interpreted as usual. We consider two new function
symbols depth : T ~ Z and m a x : Z x Z ~ Z, interpreted respectively as the
depth of a term and the maximum of two integers. Since we want to extend the
constraint solvers associated to integers and terms, we choose the sets of Term-
dependent (Constraint-dependent) Guarded Reduction and D D R as follows:

(1) dep th(f iX , Y)) --+ 1 + max(dep th (X) ,dep th (Y))
(2) depth(g(X)) --+ 1 + depth(X)

T G R = (3) depth(a) --+ 1
(a) (m a z (x , y) -~ yl lx < y)
(5) (ma~(~,y) -~ ~lly < ~)

C G R = {(1) d e p t h (X) = 1 --+ X = a, (2) d e p t h (X) < 1 --+ _k}, D D R = {1 <
d e p t h (X) } where a rule l --+ r is an abbreviation for (l --+ rll-I-). Consider the
repeated application of $oleX to

(I) z' - z = depth(g(Y)) - depth(Y)
(I I) m a x (z ' , z) - z u
(I I I) O < 1 - v + u
(IV) depth(g(X)) < v
(v) f(w, w') /(g(w'),/(x, x))

232 Eric Monfroy and Christophe Ringeissen

First, TermRed applies rule (2) of T G R on equation (I). After Normalize, (I)
becomes z' = z + 1. TermRed applies rule (4) of T G R on (II), and after Normalize
(II) becomes u -- 1. Then, after ToPure, Solve applies the solver for integers and
(III) is transformed into v < 2. TermRed can now apply rule (2) of T G R on (IV):
then application of Normalize, DomComp and ConsRed (rule (1)) leads to X = a.
Finally, after Normalize and ToPure, Solve (solver for terms, i.e., unification)
transforms (V) into W -- g(f(a, a)) A W' = f(a, a). The solved form is:
z ' = z + 1 Au = 1 Av _< 2 A X = a A W =g(f (a ,a)) A W ' = / (a , a)
Here, the complexity measure for proving the termination of SoleX is based on a
combination of elementary measures corresponding to the number of depth and
max occurrences and to the multiset of sizes of depth arguments.

6 C o n c l u s i o n

SoleX enables one extending solvers to handle alien function symbols, i.e., a
built-in solver (seen as a black-box) is completed with a glass-box mechanism.
The extension is composed of syntactical solvers that process the constraints
independently from the computation domain, and semantic solvers that enrich
constraints with information on the domain or on the function interpretation.

In 6, Heintze & al. propose an extension of the solver of CLP(T~) for con-
straints over T~ + A4. This extension is based on two methods: simplifications
that are similar to our notion of normal form extension, and substitutions that
can be seen as our rule InterRed. However, our framework for extension is more
complete since we also propose some other syntactic rules, as well as seman-
tic rules. Moreover, we can extend every kinds of domains whereas in 6 novel
constraint solvers, simplification algorithms or computation domains are always
related to T~. In an other hand, Heintze & al. not only extend the solver, but
also the programming language. Thus, their work also enables applications such
as debuggers or prototyping of novel CP systems.

A first implementation of $oleX has been realized into CoSAc 14: two solvers
of CoSAc (one based on GrSbner bases computation and the other one based on
Gaussian elimination) are extended with new function symbols (such as sin,
cos and x/- with their usual interpretation). Hence, significant problems like
the Inverse Robot Kinematics problem 3 (which is originally expressed with
trigonometric functions) and the Robot in a Corridor problem 14 (which uses
square roots of polynomials) are solved automatically.

In this paper, SoleX has been presented as a set of transformation rules plus a
built-in solver. Therefore, we could imagine to prototype this rule-based extended
solver with a rule-based programming language. In this context, ELAN 10 is a
very good candidate since it provides facilities to express strategies for applying
rules and to call external solvers. However, we believe that a more efficient im-
plementation should be based on a collaboration of several component solvers
running concurrently. This explains why a more complete implementation is cur-
rently under way with BALI 12 which provides a logical framework for manag-
ing constraints and a language for designing and executing solver collaborations.

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 233

BALI and SoleX have similarities tha t have to be studied to completely merge
the two concepts and realize a framework including both solver collaboration
and solver extension. Furthermore, extensions of solvers with new sorts and new
constraints will enable to design solvers on totally different domains. Thus, ex-
tending a solver on a "simple" domain could lead to realize solvers on complex
domains thanks to solver extension of SoleX and solver collaboration of BALI.

References

1. F. Baader and K. Schulz. On the combination of symbolic constraints, solution
domains, and constraint solvers. In Proc. of CP'95, volume 976 of LNCS, 1995.

2. F. Benhamou and L. Granvilliers. Combining local consistency, symbolic rewriting,
and interval methods. In J. Pfalzgraf, editor, Proc. AISMC-3, volume 1138 of
LNCS, Steyr, Austria, Sep. 1996. Springer-Verlag.

3. B. Buchberger. Applications of GrSbner Bases in Non-Linear Computational Ge-
ometry. In D. Kapur and J. Mundy, editors, Geometric Reasoning, pages 413-446.
MIT Press, 1989.

4. O. Caprotti. Extending risc-clp(cf) to handle symbolic functions. In A. Miola,
editor, Proc. of DISCO'93, volume 722 of LNCS. Springer-Verlag, Sep. 1993.

5. T. Frfihwirth. Constraint handling rules. In A. Podelski, editor, Constraint Pro-
gramming: Basics and Trends, volume 910 of LNCS. Springer-Verlag, 1995.

6. N. Heintze, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. Meta-Programming in
CLP(T~). JLP, pages 221-259, 1997.

7. K. Homann and J. Calmet. Combining Theorem Proving and Symbolic Mathemat-
ical Computing. In J.A. Campbell J. Calmet, editor, Proc. of AISMC-2, volume
814 of LNCS, pages 18-29. Springer-Verlag, 1995.

8. J. Jaffar and M. Maher. Constraint Logic Programming: a Survey. JLP, 19,20:503-
581, 1994.

9. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(T~) Language and
System. ACM Transactions on Programming Languages and Systems, 14(3):339-
395, 1992.

10. C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming
languages using computational systems. In P. Van Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The Newport Papers.,
pages 131-158. MIT press, 1995.

11. H. Kirchner and C. Ringeissen. Combining symbolic constraint solvers on algebraic
domains. JSC, 18(2):113-155, 1994.

12. E. Monfroy. Collaboration de solveurs pour la programmation logique ~ contraintes.
Phd thesis, Universit~ Henri Poincard - Nancy 1, Nov. 1996. Also available in
english.

13. E. Monfroy and C. Ringeissen. SoleX: a Domain-Independent Scheme for Con-
stralnt Solver Extension (Extended Version). Research report, INRIA, Jun. 1998.
Also available at url http://~n,-u. • f t .

14. E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Constraints
with Cooperative Solvers. In Proc. of ACM SAC'96, pages 63-72, Feb. 1996.

15. C. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.
A CM Transactions on Programming Languages and Systems, 1(2), 1979.

16. The Calculemus Project. Calculemus Workshop: Systems for Integrated Computa-
tion and Deduction, Edinburgh, Scotland, Sep. 1997.

17. S. Wolfram. The Mathematica Book, 3rd ed. Cambridge University Press, 1996.

Optimising Propositional Modal Satisfiability for
Description Logic Subsumption

Ian Horrocks I and Peter F. Patel-Schneider 2

1 University of Manchester, Manchester, UK (horrocks�9 .man. ac.uk)
2 Bell Labs Research, Murray Hill, N J, U.S.A. (pfps�9

Abstract. Effective optimisation techniques can make a dramatic dif-
ference in the performance of knowledge representation systems based
on expressive description logics. Because of the correspondence between
description logics and propositional modal logic many of these tech-
niques carry over into propositional modal logic satisfiability checking.
Currently-implemented representation systems that employ these tech-
niques, such as FaCT and DLP, make effective satisfiable checkers for
various propositional modal logics.

1 I n t r o d u c t i o n

Description logics are a logical formalism for the representation of knowledge
about individuals and descriptions of individuals. Description logics represent
and reason with descriptions similar to "all people whose friends are both doc-
tors and lawyers" or "all people whose children are doctors or lawyers or who
have a child who has a spouse". The computations performed by systems that
implement description logics are based around determining whether one descrip-
tion is more general than (subsumes) another. There have been various schemes
for computing this subsumption relationship, depending on the expressive power
of the description logic and the degree of completeness of the system. As descrip-
tion logic systems perform numerous subsumption checks in the course of their
operations, they need to have a highly-optimised subsumption checker.

Recent work 16 has shown that determining subsumption in expressive de-
scription logics is equivalent to determining satisfiability of formulae in propo-
sitional modal or dynamic logics. Thus one part of a system that implements a
description logic is equivalent to a satisfiability checker for a propositional modal
or dynamic logic. Several description logic systems have been built for such de-
scription logics, and thus include what is essentially a satisfiability checker, in-
cluding KRIS 2 and CRACK 5. These two systems have incorporated a number
of optimisations to achieve better performance of their subsumption checkers.

Description logic systems are also optimised in other ways. In particular,
their operations are optimised to avoid the potentially-costly subsumption checks
whenever possible. There are also other optimisations to subsumption possible
in description logic systems, having to do with the nature of the representation
of knowledge in a description logic, but these have little or nothing to do with
optimising propositional modal satisfiability.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 234-246, 1998.
(~ Springer-Verlag Berlin Heidelberg 1998

Optimising Propositional Modal Satisfiability 235

We have built two systems that explore the optimisations required to build an
expressive description logic system, namely FaCT 11, a full description logic sys-
tem, and DLP 14, an experimental system providing only a limited description
logic interface. FaCT is available at h t tp : / /www.cs .man.ac .uk/ -hor rocks ;
DLP is available at h t t p ://w~-w-db. r e s e a r c h . b e l l - l a b s , com/user/pfps.

We have incorporated a range of known, adapted and novel optimisation tech-
niques into the subsumption checkers for these two systems. The optimisation
techniques include: lexical normalisation, semantic branching search, boolean
constraint propagation, dependency directed backtracking, heuristic guided search
and caching.

These optimisations techniques make a drastic difference to the performance
of the overall system. As evidence, KRIS is not able to load a modified version of
the GALEN knowledge base because it gets stuck trying to determine one of the
thousands of subsumptions required to load the knowledge base. FaCT and DLP,
which have higher levels of optimisation, are able to easily load this knowledge
base, classifying over two thousand definitions in about two hundred seconds.

We have also performed experiments with both FaCT and DLP on several
test suites of propositional modal formulae. The optimisations built into the
two systems qualitatively change their behaviour on the test suites, indicating
that the optimisations have considerable utility simply taken as optimisations
for reasoning in propositional modal logics.

2 Background

FaCT and DLP are designed to build and maintain taxonomies of named con-
cepts. Given a collection of definitions of named concepts and statements about
these concepts, they determine the subsumption partial order for the named
concepts. To do this they have to determine subsumption relationships between
descriptions in a description logic.

The description logic that DLP implements is called .AF.CR+. FaCT imple-
ments a considerably more-expressive logic, but most of the satisfiability opti-
misations in FaCT are demonstrable in A/:CR+. AgCR+ is built up from atomic
concepts and two kinds of atomic roles, non-transitive roles and transitive roles.
Concepts in At:CR+ are formed using the grammar A ~- _1_ ~C C ~ D I
C U D 3R.C VR.C I 3T.C VT.C, 1 where A is an atomic concept, C and D
are concept expressions, R is a non-transitive role, and T is a transitive role.

The semantics of JIs is a standard extensional semantics, using an in-
terpretation 27 that is a pair (A z, .z) consisting of a domain and a mapping
from concepts to subsets of the domain and from roles to binary relations on the
domain (transitive relations for transitive roles, of course). The semantics for
concept expressions are given in Table 1. One concept then subsumes another if

1 Throughout the paper, we will be using the syntax of description logics. To translate
into the syntax of modal propositional logics, replace VR with KIn and 3R with On
and perform several other obvious replacements.

236 Ian Horrocks and Peter F. Patel-Schneider

Syntax
A
T
_L

CnD
CUD
3R.C
VR.C
3T.C
VT.C

Semantics
A-' C_ /i~
/ i z
r
/ i z _ C z
C z A D z
C z u D z
{d E .4z RZ(d) A C z ~ O}
{d 6 .4z RZ(d) C C z}
{d 6 ~ix TZ(d) N C z =fi 0}
{d 6/iz TZ(d) C_ C z}

Table 1. Semantics of AECR+ concept expressions

and only if the extension of the first concept includes the extension of the second
in all interpretations.

The semantics of As is a simple transformation of the possible world
semantics for propositional modal logics. In this transformation elements of the
domain correspond to possible worlds, atomic concepts correspond to proposi-
tional variables, and roles correspond to modalities. This transformation shows
that fragments of .As correspond to K(m) and K4(m). Transitive roles in
.,4s are used for K4(m) and non-transitive roles are used for K(m). ,4/~CR+
can also express formulae in KT(m) and S4(m) via the usual encoding that maps
V R . C into C q VR.C, etc.

Determining subsumption in ,4s is PSPACE-complete 15, as is the re-
lated problem of determining whether a concept in .Af.CR+ is satisfiable. How-
ever, it is possible to build practical description logic systems based on expressive
description logics 2,5,11 that have this sort of computationally intractable sub-
sumption. Systems that are based on description logics like .As generally
determine whether a subsumption holds by transforming the subsumption ques-
tion into a satisfiability question and then attempting to construct a model for
this concept, just as a tableaux satisfiability checker for a propositional logic
attempts to construct a model for a formula. During this process, various nodes
are created, where each node represents an individual (possible world), and tells
whether the individual belongs to various concepts (gives values to formulae at
this world). This set of concepts is said to form the label of the nodc we will
use L(x) to denote the label of a node x. The nodes are connected by modal
relationships in a tree fashion, starting at a root node. If a node is related to
another node via role R, the second node is called an R-successor of the first.

The basic algorithm starts out with a single node representing an individual
(possible world) that must be in the extension of the concept being tested for
satisfiability (must have a formula evaluate to true at it). This concept (formula)
is expanded to produce simpler concepts that must have the individual in their
extension (simpler formulae that evaluate at the world). Disjunctive concepts

Optimising Propositional Modal Satisfiability 237

(formulae) give rise to choice points in the algorithm (branches in the tableau).
Existential role concepts, 3R.C, (existential modal formulae) cause the creation
of new successor nodes representing other individuals (possible worlds).

Universal role concepts (universal modal formulae) augment the concepts
that these individual must belong to (formulae that are true at these possible
worlds). In order to guarantee termination, transitive roles (transitive modali-
ties) require filtration or blocking: a check to ensure that no other node has the
same set of concepts (formulae)--if so, the two nodes can be collapsed into a
cycle. If the algorithm constructs a collection of nodes where there are no com-
pound concepts (formulae) that have not been expanded and where there are no
obvious contradictions, called clashes, at any of the nodes, then the collection
of nodes corresponds to a model for the initial concept (formula). If the algo-
rithm fails to construct such a collection then the initial concept (formula) has
no model--it is said to be unsatisfiable.

The details of the algorithm, including precise termination conditions, are
fairly standard, and can be found in 15.

3 O p t i m i s a t i o n T e c h n i q u e s

The basic algorithm given above is too slow to form the basis of a useful de-
scription logic system. We have therefore investigated and employed a range of
known, adapted and novel optimisations that improve the performance of the
satisfiability testing algorithm, including lexical normalisation, semantic branch-
ing search, boolean constraint propagation, dependency directed backtracking,
heuristic guided search, and caching.

Theoretical descriptions of tableaux algorithms generally assume that the
concept expression to be tested is in negation normal form, with negations ap-
plying only to atomic concepts. This simplifies the (description of the) algorithm
but it means that a clash will only be detected when an atomic concept and its
negation occur in the same node label. For example, when testing the satisfi-
ability of the concept expression ~R.(C R D) ~ VR.~C, where C is an atomic
concept, a clash would be detected when the algorithm creates an R-successor y
because {C, -~C} c_ L(y). However, if C is a concept expression, then the clash
would not be detected immediately because -~C would have been transformed
into negation normal form. If C is a large or complex expression this could lead
to costly wasted expansion.

This problem is addressed by transforming concept expressions into a lex-
ically normalised form, and by identifying lexically equivalent expressions. All
concepts can then be treated equally, whether or not they are atomic, with a
clash being detected whenever a concept expression and its negation occur in the
same node label. 2 In lexically normalised form, concept expressions consist only
of (possibly negated) atomic concepts, conjunction concepts and universal role

2 Kam addresses the same problem, in a less complete manner, by lazily expanding
named concepts, and retaining their names in node labels 1.

238 Ian Horrocks and Peter F. Patel-Schneider

concepts: expressions of the form 3R.C are transformed into -~(VR.-~C) and ex-
pressions of the form (C1U,. . . , UCn) are transformed into ~(~C1 m, . . . , R-~Cn),
where the C1 , . . . , Cn are sorted and duplicates are eliminated. The normalisa-
tion process can also include simplifications such as VR.T ---+ -1-, (/ • . . .) ~ _L
and (C rl-~C R . . .) - -~ _L; in extreme cases the need for a tableau expansion can
be completely eliminated by simplifying expressions to T or _L. Efficiency can
be further enhanced by tagging each lexically distinct expression with a unique
code so that equivalent expressions can be identified simply by comparing tags. 3

Tableau expansion of concepts in this form is no more complex than if
they are in negation normal form: -~(VR.C) can be dealt with in the same
way as 3R.-~C and ~(C1F1,...,NCn) can be dealt with in the same way as
(-~ClU,. �9 �9 U~Cn). The expression 3R.(C R D) N VR.~C would be transformed
into ~(VR.~(C R D)) ~ VR.~C, and the -~(VR.-~(C ~ D)) term would lead di-
rectly to the creation of an R-successor whose label contained both C and -~C.
As the two occurrences of C will be lexically normalised and tagged as the same
concept, a clash will immediately be detected, regardless of the structure of C.

Standard tableaux algorithms are inherently inefficient because they use a
search technique based on syntactic branching. When expanding the label of
a node x, syntactic branching works by choosing an unexpanded disjunction in
L (x) and searching the different models obtained by adding each of the disjuncts.
As the alternative branches of the search tree are not disjoint, there is nothing
to prevent the recurrence of an unsatisfiable disjunct in different branches 9.
The resulting wasted expansion could be costly if discovering the unsatisfiability
requires the solution of a complex sub-problem. For example, tableau expansion
of a node x, where {(C U D1), (C U D2)} C_ L(x) and C is an unsatisfiable
concept expression, could lead to the search pattern shown below, where the
unsatisfiability of C must be demonstrated twice.

L(x) U {C} ==~ clash (x) U {D1}

J % L(x2) U {C} ~ clash L(x2) U {D2}

This problem is dealt with by using a semantic branching technique adapted
from the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used
to solve propositional satisfiability (SAT) problems 6,8. Instead of choosing an
unexpanded disjunction in L(x), a single disjunct D is chosen from one of the
unexpanded disjunctions in L (x). The two possible sub-trees obtained by adding
either D or -~D to L(x) are then searched. Because the two sub-trees are strictly
disjoint, there is no possibility of wasted search as in syntactic branching.

An additional advantage of using a DPLL based search technique is that a
great deal is known about the implementation and optimisation of this algorithm.

3 A similar technique is used in KSAT, but without the benefit of tagging 9.

Optimising Propositional Modal Satisfiability 239

{(C, U D,) {C. U D~}, 3R.(C n D), V R . - C } f f ~ Backjum~, / ~ ..'"' Pruning

u,., ,,,u , , I
. ~ ;, ,,'

.q ~utco~R ~ ~ !." ~ " ~

... @ @
claJh clash claah : clash

Fig. 1. Thrashing in backtracking search/Backjumping

In particular, both boolean constraint propagation and heuristic guided search
can be used to try to minimise the size of the search tree.

Boolean constraint propagation (BCP) is a technique used to maximise de-
terministic expansion, and thus pruning of the search tree via clash detection,
before performing non-deterministic expansion (branching) 8. Before semantic
branching is applied to the label of a node x, BCP deterministically expands
disjunctions in L(x) which present only one expansion possibility and detects a
clash when a disjunction in L(x) has no expansion possibilities. The number of
expansion possibilities presented by a disjunction (C1 U... U Cn) C L(x) is equal
to the number of disjuncts Ci such that ~Ci ~ L(x). In effect, BCP is using the
inference rule ~c, cuD to simplify the expression represented by L(x). D

For example, given a node x such that {(CU (D1 ND2)), (~D1 U-~D2), ~C} C_
L(x), BCP deterministically expands the disjunction (C U (D ~ D2)) because
-,C c L(x). The expansion of (D1 R D2) adds both D~ and D2 to L(x), allowing
BCP to identify (--D1 U --D2) as a clash without any branching having occurred.

Inherent unsatisfiability concealed in sub-problems can lead to large amounts
of unproductive backtracking search known as thrashing. The problem is ex-
acerbated when blocking is used to guarantee termination, because blocking
may require that sub-problems only be explored after all other forms of expan-
sion have been performed. For example, expanding a node x, where L(x) =
{(C1 U D) , . . . , (Cn U Dn), 3R.(C R D),VR.-~C}, would lead to the fruitless ex-
ploration of 2 n possible R-successors of x before the inherent unsatisfiability
is discovered. The search tree created by the tableau expansion algorithm is
illustrated in Fig. 1.

This problem is addressed by adapting a form of dependency directed back-
tracking called backjumping, which has been used in solving constraint satisfi-
ability problems 3 (a similar technique was also used in the HARP theorem
prover 13). Backjumping works by labeling concept expressions with a depen-
dency set indicating the branching points on which they depend. A concept
expression C E L(x) depends on a branching point when C was added to L(x)

240 Ian Horrocks and Peter F. Patel-Schneider

at the branching point or when C C L (x) depends an another concept expression
D c L(y), and D E L(y) depends on the branching point. A concept expression
C E L(x) depends on a concept expression D E L(y) when C was added to L(x)
by a deterministic expansion which used D e L(y), e.g., if A E L(x) was derived
from the expansion of (AMB) e L(x), then A e L(x) depends on (AMB) e L(x).

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. The algorithm can then jump back
over intervening branching points without exploring alternative branches.

For example, when expanding the node x from the previous example, the
search algorithm will perform a sequence of n branches, eventually leading to
the node Zn with {3R.(C M D),VR.~C} C L(xn). When 3R.(C M D) e L(Xn)
is expanded the algorithm will generate an R-successor Yl with L(yl) = {(C M
D), ~C}. The concept expression (C M D) will then be expanded and a clash
will be detected because {C,-,C} c L(yl). As neither C nor ~C in L(yl) will
have the branching points leading from x to Xn in their dependency sets, the
algorithm can either return unsatisfiable immediately (if both the dependency
sets were empty) or jump directly back to the most recent branching point on
which one of C or --C did depend. Figure 1 illustrates how the search tree below
x is pruned by backjumping, with the number of R-successors explored being
reduced by 2 n - 1.

Heuristic techniques can be used to guide the search in a way which tries to
minimise the size of the search tree. A method which is widely used in DPLL
SAT algorithms is to branch on the disjunct which has the Maximum number of
Occurrences in disjunctions of Minimum Size 8. By choosing a disjunct which
occurs frequently in small disjunctions, this heuristic tries to maximise the ef-
fect of BCP. For example, if the label of a node x contains the unexpanded
disjunctions {C U D1, . . . , C U Dn} C L(x), then branching on C leads to their
deterministic expansion in a single step: when C is added to L(x), all of the dis-
junctions are fully expanded and when ~C is added to L(x), BCP will expand
all of the disjunctions. Branching first on any of D I , . . . , On, on the other hand,
would only cause a single disjunction to be expanded.

Unfortunately this heuristic interacts adversely with the backjumping op-
timisation by overriding any "oldest first" order for choosing disjuncts: older
disjuncts are those which resulted from earlier branching points and will thus
lead to more effective pruning if a clash is discovered 11. Moreover, the heuris-
tic itself is of little value because it relies for its effectiveness on finding the
same disjuncts recurring in multiple unexpanded disjunctions: this is likely in
SAT problems, where the disjuncts are propositional variables, and where the
number of different variables is usually small compared to the number of dis-
junctive clauses (otherwise problems would, in general, be trivially satisfiable);
it is unlikely in concept satisfiability problems, where the disjuncts are concept
expressions, and where the number of different concept expressions is usually
large compared to the number of disjunctive clauses. As a result, the heuristic

Optimising Propositional Modal Satisfiability 241

will often discover that all disjuncts have similar or equal priorities, and the
guidance it provides is not particularly useful.

An alternative strategy is to employ a heuristic which tries to maximise the
effectiveness of backjumping by using dependency sets to guide the expansion.
Whenever a choice is presented, the heuristic chooses the concept whose de-
pendency set includes the earliest branching points. This technique can be used
both when selecting disjuncts and when ordering R-successors. The use of heuris-
tics is an area of continuing research, but preliminary results suggest that the
dependency heuristic is a promising technique.

During a satisfiability check there may be many successor nodes created.
These nodes tend to look considerably alike, particularly as the R-successors for
a node x each have the same concept expressions for the universal role concepts
in L(x). Considerable time can thus be spent re-performing the computations
on nodes that end up having the same label. As the satisfiability algorithm only
cares whether a node is satisfiable or not, this time is wasted.

If successors are only created when other possibilities at a node are exhausted,
then the entire set of concept expressions that come into a node label can be
generated at one time. The satisfiability status of the node is then completely
determined by this set of concept expressions. Then, if there exists another
node with the same set of initial formulae the two nodes will have the same
satisfiability status 7. Thus work need be done only on one of the two nodes,
potentially saving a considerable amount of processing, as not only is the work
at one of the nodes saved, but also the work at any of the successors of this node.

The downside of caching is that the dependency information required for
backjumping cannot be effectively calculated for the nodes that are not ex-
panded. This happens because the dependency set of any clash detected depend
on the dependency sets of the incoming concept expressions, which will differ
between the two nodes. Backjumping can still be performed, however, by com-
bining the dependency sets of all incoming concept expressions and using that
as the dependency set for the unsatisfiable node.

Another problem with caching is that it requires that nodes, or at least sets
of formulae, be retained until the end of a satisfiability test, changing the storage
requirements of the algorithm from polynomial to exponential in the worst case.

4 T e s t i n g

All the above optimisations are implemented in FaCT and DLP, and we have
tested their efficacy on several test suites. (FACT and DLP differ on their im-
plementation details, how well they implement some of the above optimisations,
and the exact heuristic optimisation they do.) All times reported are for runs on
machines with approximately the speed of a SPARC Ultra 1.

We would prefer to test on actual description logic knowledge bases, as that
is what FaCT and DLP are designed for. However, there are very few description
logic knowledge bases that use the more-powerful constructs provided by FaCT
and DLP. One test that we have been able to do is to take the GALEN knowledge

242 Ian Horrocks and Peter F. Patel-Schneider

K

K T

S4

FaCT D L P DLP*
p n p n p n

branch 6 4 18 12 10 11
d4 >20 8 >20 >20 8 6
dum >20 >20 >20 >20 10 12
grz >20 >20 >20 >20 >20 >20
fin >20 >20 >20 >20 >20 >20
path 7 6 >20 >20 7 11
ph 6 7 7 8 6 8
poly >20 >20 >20 >20 >20 >20
t4p >20 >20 >20 >20 6 4
45 >20 >20 >20 >20 9 >20
branch 6 4 18 12 16 11
dum 11 >20 >20 >20 9 >20
grz >20 >20 >20 >20 >20 >20
md 4 5 3 >20 3 >20
path 5 3 8 8 2 >20
ph 6 7 7 18 5 19
poly >20 7 >20 8 >20 2
t4p 4 2 >20 >20 1 1
45 >20 >20 >20 >20 >20 >20
branch 41 4 >20 12 16 12
grz 2 >20 >20 >20 0 >20
ipc 5 4 10 >20 3 10
md 8 4 3 >20 3 >20
path 2 1 6 >20 2 >20
ph 5 4 4 5 5 15
s5 >20 2 19 >20 1 >20
t4p 5 3 >20 >20 0 >20

Table 2. Results for Tableaux'98 Benchmarks

K S A T Kri s
p n p n

8 8 3 3
8 5 8 6

11 >20 15 >20
17 >20 13 >20

>20 3 6 9
4 8 3 11
5 5 4 5

13 12 11 >20
10 18 7 5
5 5 4 3
8 7 3 3
7 12 3 14
9 >20 0 5
2 4 3 4
2 5 1 13
4 5 3 3
1 2 2 2
1 1 1 7

base and construct versions of it that are acceptable to FACT, DLP and KRIS,
by, among other things, making all roles non-transitive and eliminating inclusion
axioms. To illustrate the importance of backjumping, caching, and the heuris-
tics, times are also given for DLP with these optimisations disabled--we will
refer to this system as DLP*. FaCT and DLP processed the knowledge base in
210 seconds, classifying over two thousand concept definitions requiring tens of
thousands of satisfiability tests. Both DLP* and KRIS were unable to complete
the processing of the knowledge base in four hours.

Our other testing has been against test suites for propositional modal log-
ics, using the propositional modal logic interface for FaCT and DLP. We have
tested against the test suite for the Tableaux'98 propositional modal logic com-
parison 10 and against a collection of random formulae initially generated by
Hustadt and Schmidt 12.

Optimising Propositional Modal Satisfiability 243

100

10

0.1

0.01

K- durn-p
Neither

/ Bacldumoing

/ BO ~-

5 10 15 20
p~oblern size

100

10

1
2
o

0,1

0.01
0

KT-t4p-n
i Neither

.y
5 10 15 20

preteen1 size

Fig. 2. Solution times for constructed satisfiability problems

The Tableaux'98 test suite consists of several classes of formulae (e.g. branch),
in both provable (p) and non-provable (n) forms, for each of K, KT, and $4.
For each type of formula, 21 examples of supposedly exponentially increasing
difficulty are provided, and the result of a test is the number of the largest
formula which the system was able to solve within 100 seconds of CPU time. The
results of these tests with FACT, DLP, DLP*, KSAT 4 and KRIS are summarised
in Table 2. In the table, >20 indicates that the hardest problem was solved in
less than 100 seconds. (Neither KSAT nor KRIS can reason with transitive roles,
so they cannot be used to perform S4 satisfiability tests.)

In these tests FaCT and DLP outperformed the other systems in this test,
with DLP being a clear winner, because of its more-complete caching. Even DLP*
performed better than other systems due to the optimizations retained in it.
DLP also outperformed the other systems that took part in the the Tableaux'98
comparison 4.

Further analysis of the difference between DLP and DLP*, not presented
here because of space limitations, shows that caching is more important than
backjumping in these tests, which is more important than the heuristics. In fact
the heuristics significantly degraded performance in some cases.

The optimisations in FaCT and DLP often resulted not simply in improved
absolute performance but in a different qualitative behaviour. This is illustrated
by Fig. 2 which shows the actual solution times for two types of formulae for
DLP with backjumping and caching turned off and on. In one of these examples
the qualitative improvement is due to caching (a common occurrence); in the
other it is due to backjumping (a less-common occurrence).

Our second propositional modal logic test suite uses a method for testing SAT
decision procedures that has been adapted for use with propositional modal K by
Giunchiglia and Sebastiani 9, and further refined by Hustadt and Schmidt 12.

4 The tests here used the original Lisp implementation of KSAT; a much faster C
implementation is now available.

244 Ian Horrocks and Peter F. Patel-Schneider

1000

100

10

1

0.1

0.01

PS12

t
FaCT

D L P -~
I DLP* --e

KSAT

I

/ .,.." .~

= _ _ _

5 10 15 20 25 30

1000

100

10

1

o., :i
0.01 ~ '

0

P S l 3

!

FaCT
DLP -*

DLP*--~'-"
KSAT

Kns - ~ -

i i i i i

5 10 15 20 25 30
L/N

Fig. 3. Median solution times for randomly generated satisfiability problems

The method uses a random generator to produce formulae, with the characteris-
tics of the formulae being controlled by a number of parameters. Each formula is
a conjunction of L K-clauses, where a K-clause is a disjunction of K elements,
each element being negated with a probability of 0.5. An element is either a
modal atom of the form VR.C, where C is itself a K-clause, or at the maxi-
mum modal depth D, a propositional variable chosen from the N propositional
variables which appear in the formula. Hustadt and Schmidt used two sets of
formulae, denoted P S 1 2 and P S 1 3 , choosing N -- 4 and N = 6 respectively,
with K = 3 and D --- 1 in both cases. The test sets are created by varying L
from N to 30N, giving formulae with a probability of satisfiability varying from
~1 to ~0 , and generating 100 formulae for each integer value of L/N.

The median time required to test the satisfiability of the P S 1 2 and P S 1 3
formulae, with a limit of 1,000s per formula, using FACT, DLP, DLP*, KSAT
and KRTS are shown in Fig. 3. It can be seen that in these tests the performance
differences between FACT, DLP and KSAT are much less marked than was the
case in the Tableaux'98 tests. This is because the purely propositional problems
at depth 1 can always be solved deterministically, and so performance is depen-
dent on the efficiency of propositional reasoning at depth 0. The optimisations
which allowed FaCT and DLP to outperform KSAT, notably caching, are of little
use with these formulae as there are no hard modal sub-problems.

Although the Tableaux'98 and random test suites show how our optimisations
perform on propositional modal logics, neither is very good for our purposes. In
particular, for the collection of random formulae most of the computational
difficulties have to do with the initial non-modal component. In realistic KBs
we expect to encounter problems where the hardness comes from the number of
successors that have to be considered and their interaction with the non-modal
component. The Tableaux'98 formulae have this form, but there are too few hard
collections there to validate our optimisations, and the regular structure of the
formulae tends to exaggerate the utility of the caching optimisation, particularly
for satisfiable (non-provable) formulae.

Optimising Propositional Modal Satisfiability 245

5 Summary

The collection of optimizations we have described are effective in improving
the speed of modal propositional logic reasoners, as shown by the results we
have given above. They can also dramatical ly improve the speed of subsumption
reasoning on description logic knowledge bases. To our knowledge some of these
improvements have not been investigated in the modal propositional reasoning
literature. The combination appears to be unique and, moreover, results in a
powerful reasoner for the propositional modal logics K , K T , and 84.

Unfortunately, the benefits of the various optimizations are not yet com-
pletely clear. Caching is best in some areas, backjumping in others. In order to
bet ter understand these effects, we continue to analyze and improve the opti-
misations we have incorporated into our provers. We also plan to create a test
suite tha t emphasizes the modal nature of our description logic. Further, we are
embarking on a project to create a description logic system for a description
logic tha t corresponds to a propositional dynamic logic. This project will give
us further opportunit ies to investigate optimisation of satisfiability reasoners.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR'92), pages 270-281. Morgan-Kaufmann Publishers,
San Francisco, CA, 1992. Also available as DFKI RR-93-03.

2. F. Baader and B. Hollunder. Kais: Knowledge representation and inference system.
SIGART Bulletin, 2(3):8-14, 1991.

3. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon, 1995.

4. P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics - -
introduction and summary. In H. de Swart, editor, Automated Reasoning with Ana-
lytic Tableaux and Related Methods: International Conference Tableaux'98, number
1397 in Lecture Notes in Artificial Intelligence, pages 25-26. Springer-Verlag, May
1998.

5. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson,
Andrew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage
for Efficiency: Proceedings of the First International KRUSE Symposium, pages
28-39, 1995.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the A CM, 5:394-397, 1962.

7. F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for .AEg.
In L. Padgham, E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Patel-
Schneider, editors, Collected Papers from the International Description Logics
Workshop (DL'96), number WS-96-05 in AAAI Technical Report, pages 107-110.
AAAI Press, Menlo Park, California, 1996.

246 Ian Horrocks and Peter F. Patel-Schneider

8. J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial Intelligence, 81:183-198, 1996.

9. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for As In
L. C. Aiello, J. Doyle, and S. Shapiro, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Fifth International Conference (KR'96),
pages 304-314. Morgan Kaufmann Publishers, San Francisco, CA, November 1996.

10. A. Heuerding and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. Technical report IAM-96-015, University of Bern, Switzer-
land, October 1996.

11. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

12. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal
logic. Technical Report MPI-I-97-2-003, Max-Planck-Institut Fiir Informatik, Im
Stadtwald, D 66123 Saarbr/icken, Germany, February 1997.

13. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of
Automated Reasoning, 4:69-100, 1988.

14. P. F. Patel-Schneider. System description: DLP. Bell Labs Research, Murray Hill,
N J, December 1997.

15. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. GSrz and S. H611dobler, editors, 20. Deutsche Jahrestagung fiir Kiinstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence, pages 333-345.
Springer Verlag, 1996.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 466-471, 1991.

Instant iat ion of Existent ia l ly Quantif ied
Variables in Induct ive Specif ication Proofs

Brigitte Pientka* and Christoph Kreitz

Department of Computer Science,Cornell University
Ithaca, NY 14853-7501, U.S.A.

{pientka, kreitz}~cs, cornell, edu

Abst rac t . We present an automatic approach for instantiating exis-
tentially quantified variables in inductive specifications proofs. Our ap-
proach uses first-order meta-variables in place of existentially quantified
variables and combines logical proof search with rippling techniques. We
avoid the non-termination problems which usually occur in the presence
of existentially quantified variables. Moreover, we are able to synthe-
size conditional substitutions for the meta-variables. We illustrate our
approach by discussing the specification of the integer square root.

1 Introduction

Constructive type theory 12 offers the unique advantage of total correctness of
synthesized programs. In this setting a specification is of the form

Vinput. 3output. spec(input, output)

where input is a vector of arguments, output is a result and spec is a proposition
describing the required relation between them. A program meeting this specifi-
cation can be extracted from its proof via the proofs-as-programs principle 3.
This style is widely advocated 13 and supported in a number of implementa-
tions such as NuPRL 8. The application of such systems however is limited by
its low degree of automation. In order to overcome this drawback, we suggest
incorporating techniques from inductive theorem proving.

The first difficult step within a proof is the choice of the appropriate in-
duction scheme. Different induction schemes result in algorithms which differ in
their complexity. In this paper we focus on the second crucial step during the in-
duction step, the instantiation of existentially quantified variables. The witness
for an existentially quantified variable corresponds to the recursive calls in the
program. Sometimes a case split is necessary before decomposing the existential
quantifier. The existentially quantified variables are then instantiated according
to the cases.

A standard technique to deal with existentially quantified variables is to use
meta-variables in place of the existential witness and allow the application of

* The research reported is supported by the Gottlieb Daimler and Karl Benz Founda-
tion with a fellowship to the first author.

Jacques Calmet and Jan Plaza (Eds.): AISC'987 LNAI 1476, pp. 247-258~ 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

248 Brigitte Pientka and Christoph Kreitz

logical rules that refine the goal. To complete the proof, a unification proce-
dure provides the instantiation of the meta-variables. In inductive specification
proofs, standard unification techniques are not sufficient; we need to rewrite the
expression from the induction conclusion towards the application of the corre-
sponding expression in the induction hypothesis. Both expressions have to be
equal after some rewriting steps. The crucial question is how can we find a chain
of rewriting steps, such that both expressions can be made equal by rewriting in
the presence of meta-variables.

In inductive theorem proving, an annotated rewriting technique, called rip-
pling 7,6, has been used successfully in order to control the rewriting process.
However, only little focus has been devoted to the automatic instantiation of
existentially quantified variables. In this paper we suggest combining the logic
provided by constructive type theory with inductive theorem proving techniques
such as rippling, in order to compute valid instantiations for the existentially
quantified variables. We use first-order meta-variables during proof search within
the sequent calculus. During rippling the meta-variables are treated in the same
way as potential "sink variables". We develop a reverse rippling match that
matches the induction conclusion with the induction hypothesis. If this match
is successful, it returns an instantiation for the meta-variables and a rippling
sequence, that rewrites the instantiated induction conclusion to the induction
hypothesis. With this approach we avoid non-termination problems that usually
occur in the presence of existentially quantified variables. Moreover, we check
the consistency of the remaining subgoals under the synthesized substitution.
During this consistency check, we are able to synthesize constraints that form
a case split during the proof. We demonstrate the strength of our approach by
discussing the proof of the integer square root specification.

In Section 2, we give a brief introduction to rippling and discuss the rippling
approaches for dealing with meta-variables. In Section 3 we describe the general
idea of our approach and in 4 we consider the proof of the integer square root. We
show step-by-step how we can derive conditional substitutions for the existen-
tially quantified variables. In Section 5 we present a more technical description
of our method using ML-notation. In Section 6 we describe the formalization
in NuPRL. In Section 7 an extension to our technique is presented. We discuss
related work concerning program synthesis in Section 8 and finally in Section 9
we outline future work and draw some conclusions.

2 A B r i e f I n t r o d u c t i o n t o R i p p l i n g

Rippling is an annotated rewriting technique that has been successfully ap-
plied in inductive theorem proving. Differences between the induction hypothesis
(given) and the induction conclusion (goa~ are marked by meta-level annota-
tions, called wave annotations. Expressions that appear both in the goal and in
the given are called skeleton. Expressions that appear in the goal, but not in
the given are called wave-fronts. The induction (or recursive) variable that is
surrounded by a wave-front is called wave-hole. Sinks are parts of the goal which

Instantiation of Existentially Quantified Variables 249

correspond to universally quantified variables in the given and are marked by
sinkJ. We call the annotated rewrite rules wave-~tles. To illustrate, consider
the following wave-rule which is derived from the recursive definitions of +.

In this wave-rule s(. . .) denotes the wave-front that is marked by a box. The
underlined parts U resp. U + V mark the wave-holes. Intuitively, the position
and orientation of the wave-fronts define the direction in which the wave-front
has to move within the term tree. An up-arrow T indicates that the wave-front
has to move from a position within the term tree towards the root of the term
tree (rippling-out). A down-arrow ~ moves the wave-front inwards or sideways
towards the sink in the term tree, i.e. the sink is filled with the wave-front
(rippling-in). If rippling succeeds in moving the annotations either to the root of
the term tree or to a sink, then rippling terminates successfully and the induction
hypothesis matches the induction conclusion. Rippling terminates unsuccessfully
if the rewriting process is blocked, i.e. no wave-rule is applicable anymore and
the induction hypothesis (given) does not match the induction conclusion (goal).

In Basin & Walsh 2, a calculus for rippling is presented and well-founded
measure, called wave measure is defined, under which rippling terminates if no
meta-variables occur in the goal. The wave measure associates weights to the
wave-fronts to measure the width and the size of the wave-front. The width of
a wavefront is defined by the number of nested function symbols between the
root of the wave-front and the wave-hole. The size of a wave-front is the number
of function symbols and constants in the wave-front. Rewriting is restricted
such that each application of a wave-rule is skeleton preserving and measure
decreasing according to the defined wave measure.

For instantiating existentially quantified variables via rippling, mainly two
approaches have been suggested in the literature. In Bundy et al. 6 special
existential wave-rules are suggested. Existential wave-rules can be derived from
non-existential wave-rules. For example, the existential wave-rule corresponding
to wave-rule (1) takes the following form:

Unfortunately, the search problem is exacerbated in the presence of existen-
tial quantifiers. Another disadvantage of this approach is that the process of
existential rippling does not explicitly record the relationship between the non-
existential wave-rule (1) and its existential analogue (2), more precisely the rela-
tion between U and UC This does not matter if we are just interested in provabil-
ity. In program synthesis, however, the identity of the existential witness plays
a vital role of defining the program to be synthesized.

Other approaches 1,10,16 use meta-annotations; the existentially quantified

variable x is replaced by IF (X) where capital letters indicate meta-variables.

Middle-out reasoning 9 is used in order to instantiate the function F and its

250 Brigitte Pientka and Christoph Kreitz

argument X. This problem requires a computationally expensive higher-order
unification. The presence of higher-order variables also leads to non-termination
of rippling, as the width and the size of the wave-front cannot be determined.

Our approach overcomes these drawbacks by combining rippling with first-
order theorem proving techniques and using an extended matching procedure
for finding the witness for the existentially quantified variables.

3 A u t o m a t i c I n s t a n t i a t i o n o f M e t a - v a r i a b l e s

Our research interest is to automate key steps such as the instantiation of the
existentially quantified variable in sequent proofs. By the proofs-as-programs
paradigm we are then able to extract a program from the proof of a specification.
In Figure 1 an overview of our approach is presented. In order to deal with

1. Ref inement of the s tep case formula by applying sequent rules and using
meta-variables in place of existential witness

2. On a tomic subgoals: Matching of the induction hypothesis with induction
conclusion is extended by reverse r ippling match in order to compute valid
substitutions for the meta-variables and a rippling sequence

3. Cons is tency check: test, if all subgoals are true under the found substitution

Fig. 1. Automatic instantiation of meta-variables - 3 steps

existentially quantified variables, we suggest first decomposing the existentially
quantified formula and use first-order meta-variables in place of the existentially
quantified variables. Secondly, an extended matching procedure tries to find
a rippling sequence and an instantiation for the meta-variables such that the
induction hypothesis term and the corresponding induction conclusion term are
equal. Rippling is used to manipulate the atomic subgoals. It rewrites part of the

rippling reverse rippling

induction conclusion to some formula Ci. Either Ci matches directly with the
R

corresponding induction hypothesis term I H or the rippling sequence Ci ,
R R

�9 . . , ~ C n ' I H is computed by backwards reasoning from the induction
hypothesis towards Ci. This process is called r e v e r s e r i p p l i n g .

For rippling and reverse rippling we use the r i p p l i n g - d i s t a n c e strategy 11,4.
Each wave-front is mapped to a selected (goal)-sink. The distance between a
wave-front and its assigned (goal) sink in the term tree is called d i s t a n c e m e a -

s u r e . Each application of a wave-rule must reduce this distance until the sink
is filled with the wave-front and the distance measure is zero. The main ad-
vantage of this approach is the uniform efficient t reatment of rippling. Hence,
we need not t reat the various rippling strategies differently, and it is redundant

Instantiation of Existentially Quantified Variables 251

to mark the wave-fronts with up-arrows T and down-arrows ~. For uniformly
integrating rippling-out the definition of sink has been generalized to arbitrary
term positions. By putting a sink around the whole term rippling-out can be
simulated by rippling-distance. This approach can be extended easily to incor-
porate meta-variables. During rippling, meta-variables are treated as potential
sink variables. By adopting rippling for meta-variables and using reverse rip-
pling, higher-order variables can be avoided and rippling terminates. For reverse
rippling we use the rippling-distance strategy backwards and synthesize a rip-

R R R pling sequence Ci ~ ~ . . . ~ ~ Cn ~ I H together with a substitution for the
meta-variables.

Finally, a consistency checker tests if the remaining subgoals can be proven
under the synthesized substitution. If necessary, conditions can be synthesized
which constrain the substitution. These conditional substi tut ions form a case
split in the proof.

Our approach combines rippling techniques with logical proof search. If it
succeeds, the rippling proof is translated back into sequent style.

4 P r o v i n g t h e S p e c i f i c a t i o n o f t h e I n t e g e r S q u a r e R o o t

In this section we illustrate the automatic instantiation of existentially quantified
variables by discussing the proof of the following integer square root specification:

Vx:N. 3y:N. y 2 < x A x < (y + l) 2 (3)

The top-down sequent proof starts by induction on x. We concentrate on the
step case of the induction:

x : N , By:N. y 2 _ < x A x < (y + l) 2 }- By:N. y 2 < s (x) As(x) < (y + l) 2

This sequent is proved by a procedure which searches for a rippling proof and an
instantiation for the existentially quantified variable y. It proceeds as described
in figure 1. In the first step, logical inference rules are used in order to decompose
the induction hypothesis and the conclusion. The existentially quantified variable
in the conclusion is replaced by a meta-variable Y. This gives us two subgoals,
(4) and (5):

x : N , y : N , y 2 < x , x < (y + l) 2 F- y 2 < ~ (- ~ (4)

and

x : N , y : N , y 2 < x , x < (y + l) 2 F- ~ < (Y + I) 2 (5)

During the second step, the goal is annotated in such a way, that its skeleton
matches the corresponding part in the induction hypothesis. Corresponding parts
are underlined in this example. Note, that the meta-variable Y matches the

252 Brigitte Pientka and Christoph Kreitz

variable y in the given. The following wave-rules are derived from the definitions
of functions used in the specification:

I U + W) < V _ + W I , R , u < v (61

+ v , R s(v + v) (7)

(~ - ~) 2 , R A 2 + 2 A + 1 (8)

Note, while in wave-rule (7) and (8)wave-fronts occur on both sides of the
wave-rule, in wave-rule (6) the wave-fronts are dropped on the right hand side
of the wave-rule. Wave-rules like (6) are usually used to complete proofs 1. As no
wave-rule is applicable, rippling leaves the subgoal unchanged.

The reverse rippling match reasons backwards from the induction hypoth-
esis towards the (rippled) conclusion and extracts a rippling sequence and an
instantiation for the meta-variable Y. In the induction hypothesis y is marked
as a sink variable. During the first reverse wave-rule application wave-fronts are
created by wave-rules of the same type as wave-rule (6). The inserted wave-front
is refined step-by-step. This wave-front has to move towards the sink variable
y by reverse rippling and results in the instantiation of the meta-variable Y.
We start with the second subgoal (5) and try to match ~ < (Y + 1) 2 (in-
duction conclusion I C - goal) and x < (y + 1) 2 (induction hypothesis I H -

given). The induction hypothesis I H represents the final formula in the rippling
sequence. In order to determine which formula preceded the induction hypoth-
esis, the wave-rule set is inspected. The given must match the right hand side
of a wave-rule. The left hand side of this rule constitutes the predecessor to I H ,
if further rippling towards the sink variable is possible. By wave-rule (6) it is
suggested that the formula before reaching the induction hypothesis x < (y + 1) 2

is ~ < (y + 1) 2 + W) . This formula can be rippled by wave-rule (8) and

W can be instantiated with 2(y + 1) + 1. The inserted wave-front moves closer to
the sink variable y. Rippling towards the sink variable y is straightforward and
the generated rippling sequence is presented in Figure 2. By wave-rule (7) the
wave-front s is moved to a position where it surrounds y; therefore our rippling
sequence terminates successfully. As no wave-rule is available to justify the final
step, we need to prove that the induction conclusion is implied by the last step 2.
Typically these implications can be proven by decision procedure using standard
arithmetic. In this case the proof is trivial. Therefore s(y) is a valid substitution
for Y.

This substitution and its corresponding rippling sequence (cp. Figure 2) con-
stitute a successful match if the remaining subgoals are true under the found
substitution (step 3 in Figure 1). We use a heuristic to check the subgoals and
synthesize case splits if necessary. In order to restrict search space, we require

1 We consider here proofs by strong fertilization, which aim for total match between
the induction conclusion term and induction hypothesis term.

2 The rippling rule C~ ~ C~+1 corresponds to the logical implication C~+1 =~ C,.

Instantiation of Existentially Quantified Variables 253

< (~ +1)2 ~ by decision

x_ + 2(y + 1) + l < s((LyJ + 1)) ~ ~ by wr (7)

~ b y wr (8)
~-~R x T 2 (y + l) + l < (L y J + 1) 2 + 2 (y + l) + l)

~ b y wr (6)
x < (LyJ + 1) 2

Fig. 2. Rippling sequence generated by extended matching

that the subgoals can be proven by standard arithmetic, rippling and equational
reasoning. If one of the remaining subgoals is not provable by these techniques,
we use this subgoal as a constraint of the substitutions. In order to be consistent,
we then prove all the remaining subgoals under the negated constraint. In this
example, (4) is the only remaining subgoal. We use the subgoal (s(y)) 2 < s(x)
as a constraint, and therefore try to prove both cases (4) and (5) for the case
-~(s(y)) 2 < s(x). We use unfolding of the successor and -~(... _< ...) function
s and normal matching, to derive a substitution. We start again by inspecting
subgoal (5). Matching between s(x) < (Y + 1) 2 and s(x) < (y + 1) 2 returns the
substitution y/Y. The subgoal (4) is trivially true under this substitution.

By combining logical proof search with rippling and extended matching, we
are able to generate automatically a proof for the step case and to synthesize a
set of conditional substitutions:(s(y)) 2 < s(x), s(y)/Y, ~((s(y)) 2 _< s(x)), y/Y.

5 A n A l g o r i t h m f o r E x t e n d e d M a t c h i n g

In this section we present a technical description of the steps performed during
the automatic instantiation of existentially quantified variables (see Figure 1).
We use ML-notation to describe the algorithm. To automate step 1 standard
theorem proving methods can be used. We concentrate on the extended matching
procedure (step 2 and 3) which is the core of the automatic instantiation of
existentially quantified variables.

Before calling the algorithm extended_matching, the wave-rule set wrs con-
tains potential wave-rules. The wave-rules are annotated dynamically during
the rippling and reverse rippling process. The function extended_matching re-
turns (conditional) substitutions and proofs, if

1. The list of subgoals, sgoal_list, contains at least one element sgoa. In this
case calling rippling_sequence (conclusion sgoal) (hypothesis sgoal) wrs finds
a rippling sequence rip_seq and a substitution subst (Figure 3); (conclusion
sgoal) gives us the rippled conclusion and (hypothesis sgoal) returns the cor-
responding hypothesis.

254 Brigitte Pientka and Christoph Kreitz

2. the remaining subgoals, sgoal_list\{sgoal}, are consistent with this substitu-
tion (check_subgoals sgoal_list sgoal subst).

The function rippling_sequence (Figure 3) computes a rippling sequence
R R R R

rip_conc, ~ . . . , ~ . . . C i , ~ . . . , ~ ind_hyp and a substitution for the meta-
variable. First the variable in the induction hypothesis tha t corresponds to the

let rippling_sequence conc ind_hyp wrs =
let ann_conc --- annotate conc ind_hyp in
let rip_conc ---- ripple ann_conc wrs in
let predecessors = poss_predecessors ind_hyp rip_conc wrs in
le t rec reverse_rippling_in path predecessors =

if predecessors = & filled_sink (hd path) & (hd path) --* rip_conc
t he n path
else select p E predecessors

let new_predecessors - poss_predecessors p wrs in
reverse_rippling_in p::path new_predecessors in

reverse_rippling_in predecessors

R
Fig . 3. Algorithm for synthesizing rippling sequence C n , ~ . . . I H

meta-variable in the induction conclusion is marked with a sink. The function
poss_predecessors computes possible predecessors Ci-1 for a given formula Ci in
the rippling sequence by inspecting the wave-rule set wrs. It simulates the back-
wards application of one rippling rule. The function reverse_rippling_in triggers
the reverse rippling process. It proceeds recursively by depth first search if there
are several predecessors to a formula. It reasons backwards from the induction
hypothesis ind_hyp towards the rippled conclusion rip_conc. In each recursion,
the next possible predecessors are computed. It is successful if the sink variable
is surrounded by a wave-front, i.e. the sink is filled and this formula Ci+l implies
Ci. Otherwise backtracking is initiated.

The function check_subgoals checks if the remaining subgoals are provable
under the substitution derived by rippling_sequence. If all the remaining subgoals
can be proven under the substitution, then the match is successful. If there are
subgoals that are not provable by a simple proof procedure simplify 3, then we
use one of the remaining unprovable subgoal as a constraint c and prove
1. each g E sgoal_list \{sgoal}. g is provable by simplify under the constraint c
2. each g E sgoal_list, g is provable by simplify and matching under constraint -~c.
With the presented algorithm we are able to instantiate existentially quantified
variables automatically and solve the step case of an inductive proof automati-
cally. Moreover, by a simple heuristic, which is integrated in check_subgoals we
are able to synthesize conditional substitutions. These conditions form a case
split in the proof. For a more detailed version we refer to 15.

3 simplify is a combination of NuPRL's tactics Unfold, Suplnf and Auto. It is a decision
procedure that uses standard arithmetic.

Instantiat ion of Existent ial ly Quantif ied Variables 255

6 I n t e g r a t i n g i n t o NuPRL

In this section we discuss the integration of our proof method into NuPRL, an
interactive, tactic based theorem prover. The described proof procedure is imple-
mented and embedded within the tactic TReverseRipple. If the proof procedure
finds a substitution for the meta-variables and all the subgoals can be solved,
this proof is translated back into sequent style. Due to the nature of reverse rip-
pling, the eigenvariablen condition is observed, and does not cause any problems
for the back translation.

The sequent-style proof in NuPRL for the integer square root specification
is presented in Figure 4. In this proof the user specified the induction scheme.

I~ V x : N . 3 y : N . y 2 ~ x A x<(y+ l) 2 I \
BY s I I R I IF s (x) < (s (y) + t) 2
 i BY Cut rx + 2 , (y + 1) + I < (y+ l) 2 + 2 , (y + l) + I
I . x: i'~ I I \
IF 3y:N. y2_<x A x<(y+l) 2 I IF X + 2*(y+i) + I < (y+1) 2 + 2*(y+l) + i

BY TNatInd 'x' i 2 BY Substitution THEN Le~ma wave-rule 2
i\ I\
I IF 3y:N. y2<O A O<(y+l) 2 6. x + 2*(y+l) + I < (y+l) 2 + 2*(y+l) + 1

1 BY exH to 1 BY Cut rx + 2,(y+l) + 1 < (s(y + 11) 9

II II\
I iF 0"0 _< 0 A 0 < (0+I)*(0+i) IF x + 2.(y+1) + 1 < (s(y + 11) 9

1 BY Auto i 2 BY Substitution THEN Lemma wave-rule 4

\ I\
2. 3y:N. y2__<x A x<(y+l) 2 I 7. x + 2*(y+l) + 1 < s((y + 1119

IF 3y:N. y2__<s(x) A s(x)<(y+1) 2 1 BY Cut rx + 2,(y+1) + i < (s(y)+l) 2
BY exL 2 THEN andL 3 I I \
I I I IF x + 2 * (y + l) + i < (s (y) + l) 2
2. y: N i 2 BY Substitution THEN Lemma wave-rule 3
3. Y 2 < x \

4. x <~y+l) 2 I 8. x + 2*(y+l) + i < (s(y)+l) 2

BY Decide r(y+l)2 _< s(x) THENW Auto i BY Unfold 's' 0 THEN SupInf THEN Auto

I \ I 5. -,((y+112 _< s(x))
I 5. (y+1) 2 ___< s (x) BY exR y
i BY exR Is(y)
I I II- y2 _< s(xl ^ s(x) < (y+i) 2
Ill- (s(y))2_<s(x) A s(x)<(s(y)+l) 2 BY andR
1 BY andR I \
I I \ I IF y2 ~ s(x)
I I IF (s(y))2_<s(x) I BY Unfold 's' 0 THEN Auto
1 2 BY Auto \

I \ IF s(x) < (y+i) 2
BY Auto

Fig. 4. Proof of the integer square root in NuPRL

First, the universal quantifier on the right hand side is decomposed by tactic allR.
The tactic TNat lnd 'x' then splits the conjecture into base and step case. Our
automation efforts concentrate on the step case of the induction. The step cases
of an induction proof are challenging for mainly two reasons: 1) It is harder than
in the base case to find the witness for the existentially quantified variable(s). 2)
Sometimes, a case split is required and the existentially quantified variable is in-
stantiated according to the different cases. These case splits are not immediately
obvious, and often require user insight.

256 Brigitte Pientka and Christoph Kreitz

The tactic TReverseRippling synthesizes a conditional substitution set for the
existentially quantified variable and translates this information into a sequent
proof. The proof displays the subtactics which were applied by TReverseRipple. A
case split is performed by tactic Decide based on the conditional substitution set
before instantiating the existential quantifier on the right hand side. The tactic
exL decomposes the existential quantifier on the left hand side. Applications of
tactic andL resp. andR eliminate the conjunction on the left resp. right hand
side. The generated rippling sequence is translated back into sequent proof by
cut, substitution and lemma applications as described in 11.

7 Extens ions to Reverse Rippl ing

Examples, that can be solved by our method include the specification of quotient
remainder, append, half, or last. These examples span the range of specifications
usually considered (see 5,10,16) and do not require any case splits. We also can
prove the specification for log2 which results in a similar proof to the integer
square root example. Moreover, we used the extended matching procedure to
instantiate universally quantified variables in the hypothesis list. With this ex-
tension we are also able to prove the specification of the integer square root and
log2 by using non-standard induction schemes allowing us to synthesize while
loops for these two specifications.

To illustrate the flexibility and strength of our technique, we prove the inte-
ger square root specification by a different induction scheme 4. In the step case
(induction proceeds over k) we yield the following conjecture:

k : N, Vx, y :N. x - y < p(k) Ay 2 < xA0 _< y--* 3n:N. y < n A n 2 <_ x A x < (n + 1) 2

t-Vx, y : N . x - y < k A y ~ < x A O < _ y - - ~ S n : N . y < _ n A n 2 < _ x A x < (n + l) 2

Rippling would annotate the term x - y < k to give Lx~ - yJ < ~ as

it operates on the induction conclusion. However, no rippling proof for the left
hand side of the sequent can be found. Our approach first decomposes the right
and left hand side and then uses extended matching to find a match between
x - y < k in the hypothesis list and X - Y < p(k) on the conclusion side. By
reverse rippling starting from x - y < k we try to generate a rippling sequence and
an instantiation for X and Y. The following additional wave-rules are derived
from monotonicity laws and the definition of - is provided:

V > 0 A U > 0 ~ < , U < V (9)

p(v- v) , ", v-W (lO)

By wave-rule (9) and wave-rule (10) the extended matching procedure generates
the following rippling sequence:

R > x - y < k

4 This induction scheme will result in a more efficient program, namely a while loop.
In each iteration y is incremented until (y + 1) 2 > x.

Instantiation of Existentially Quantified Variables 257

This example illustrates that the conventional rippling approach 7 to instantiate
universally quantified variables in the induction hypothesis by rippling-in is not
expressive enough. Moreover, it supports the strength of our approach. The
combination of logical proof search and rippling gives us the flexibility to deal
with complex logical formulas.

8 Related Work

One of the first approaches to automate the instantiation of existentially quan-
tified variables has been by Biundo 5. Existentially quantified variables are
replaced by Skolem functions which describe the program which is to be synthe-
sized. After induction the formula in the step case is put into clausal form. The
synthesis proceeds by clause-set translations (e.g. rewriting and case splitting)
which induce an AND/OR search space. The work of Kraan et al.10 builds
upon the idea to replace existentially quantified variables by skolem functions
in order to synthesize logical programs. In order to control better the search
space within the inductive step, rippling and middle-out reasoning 9 are used
to construct predicate definitions from specifications in classical logic. However,
both approaches do not guarantee that the synthesized program is correct, it
has to be verified after the synthesis. We believe that constructive type theory
provides a firmer mathematical foundation than is found in these systems.

In Smaill & Green 16, an approach for the synthesis of functional programs
within the framework of constructive type theory is suggested. This approach
builds on higher-order embeddings and higher-order rippling. Middle-out rea-
soning and higher order embeddings have the disadvantage of a big search space,
as rippling in the presence of higher-order function variables does not terminate.

The rippling approaches rely exclusively on this technique and encode logical
inference rules as wave-rules. The whole induction conclusion is rippled and
these systems aim for a match of the whole induction conclusion with the entire
induction hypothesis. The underlying logical calculus is not used to decompose
the step case during proof search. This causes major problems when we deal
with specifications of more complex formulas, as we illustrated in section 7.

9 Conclus ion and Future Work

We have presented an approach for the instantiation of existentially quantified
variables which provides a significant degree of automation to proofs in construc-
tive type theory. The key idea is to use first-order meta-variables in place of the
existential witness during proof search and rippling and instantiate this meta-
variable by an extended matching procedure. Because we reason backwards from
the induction hypothesis towards the rippled conclusion by reverse rippling, our
approach is highly goal directed and we are able to synthesize lemmata during
reverse rippling. By combining logical proof search methods with rippling tech-
niques, we gain flexibility and are able to synthesize case splits which cannot be
derived by other comparable systems.

258 Brigitte Pientka and Christoph Kreitz

We see our work in a more general framework of matching: two terms tl
and t2 match, if the meta-variables in tl can be instantiated in such a way that
rippling rewrites tl towards t2. This approach allows us to treat meta-variables
uniformly. We plan to extend and refine our method in this direction.

Moreover, we plan to explore the use of specially tailored logical proof search
methods such as connection method 14 or resolution 17 instead of direct proof
search in the sequent calculus. These proof methods are more goal directed. For
future research we aim to combine these techniques with a matching procedure
which uses rippling and reverse rippling techniques.

R e f e r e n c e s

1. A. Armando, A. Smaill, and I. Green. Automatic synthesis of recursive programs:
The proof-planning paradigm. In Proceedings of the 12th IEEE International Au-
tomated Software Engineering Conference, p 2-9. IEEE Computer Society, 1997.

2. D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of
Automated Reasoning, 16(2):147-180, 1996.

3. J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on
Programming Languages and Systems, 7(1):113-136, January 1985.

4. W. Bibel, D. Korn, C. Kreitz, F. Kurucz et al.. A multi-level approach to program
synthesis. In Logic Program Synthesis and Transformation,Springer, 1998.

5. S. Biundo. Automated synthesis of recursive algorithms as a theorem proving
tool. In Proceedings of the 8th ECAL 1988.

6. A. Bundy, A. Stevens, F. van Harmelen et al.. Rippling: A heuristic for guiding
inductive proofs. Artificial Intelligence, 62(2):185-253, August 1993.

7. A. Bundy, F. van Harmelen, A. Smaill et al.. Extensions to the rippling-out tactic
for guiding inductive proofs. In Proceedings of the lOth International CADE, p
132-146. LNAI, 1990.

8. R. L. Constable, S. F. Allen, H. M. Bromley, and et al. Implementing Meta-
Mathematics with the NuPRLProof Development System. Prentice-Hall, 1086.

9. Jane T. Hesketh. Using Middle-Out Reasoning to Guide Inductive Theorem Prov-
ing. PhD thesis, Dept. of Artificial Intelligence, University of Edinburgh, 1991.

10. I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning. In
Logic Program Synthesis and Transformation, p 1-14. Springer, 1993.

11. Ferenc Kurucz. Realisierung verschiedender Induktionsstrategien basierend auf
dem Rippling-Kalkiil. Master's thesis, Technical University Darmstadt, 1997.

12. Per Martin-L5f. Constructive mathematics and computer programming. In 6-th
International Congress for Logic, Methodology and Philosophy of Science, 1979, p
153-175. North-Holland, 1982.

13. B. NordstrSm, K. Petersson, and J. M. Smith. Programming in Martin-LSfs Type
Theory. An introduction. Clarendon Press, Oxford, 1990.

14. J. Otten and C. Kreitz. A Uniform Proof Procedure for Classical and Non-classical
Logics. KI-96: Advances in Artificial Intelligence, LNA11137, p 307-319. Springer.

15. B. Pientka. Automating the instantiation of existentially quantified variables, tech-
nical report, Dept. of Computer Science, Cornell University,1998.

16. A. Smaill and I .Green. Automating the synthesis of functional programs. Research
paper 777, Dept. of Artificial Intelligence, University of Edinburgh, 1995.

17. T. Tammet. A resolution theorem prover for intuitionistic logic. In Proceedings of
the 13th International CADE, LNAI 1104, p 2-16, 1996.

Knowledge Discovery Objects and Queries in
Distributed Knowledge Systems

Zbigniew W. Rag and Jiyun Zheng

University of North Carolina, Dept. of Comp. Science, Charlotte, N.C. 28223, USA
ras@uncc.edu or jzheng~uncc.edu

Abstract . The development of many knowledge discovery meth-
ods (see 14, 7, 16) provided us with good foundations to build
a kd-Query Answering System (kdQAS) for Distributed Knowl-
edge Systems (DKS) . By D K S we mean a number of autonomous
processing elements (called knowledge systems) that are intercon-
nected by a computer network and that cooperate in their assigned
tasks. A knowledge-system we see as a relational database coupled
with a discovery layer which is simplified in this paper to a set of
rules.
Queries handled by kdQAS are more general than SQL. Also, the
queried objects are far more complex than tuples in a relational
database. To distinguish them from objects and queries in DBMS,
we introduce kd-objects and kd-queries respectively. In general, by
kd - object we mean any set of tuples and rules. By kd - query
we mean a predicate which queries kd-object in D K S and returns
another kd-object for an answer. Our kd-objects may not exist a
priori, thus querying them at one site of D K S may require gen-
eration, at run time, of new kd-objects either at the same site or
at other sites of DKS. So, querying has to major roles: generation
Of new kd-objects and retrieval of the ones which were generated
before.
In relational databases, the result of a query is a relation that can be
queried further. This is typically referred to as a closure principle,
and it should be one of the most important design principles for
kdQAS. Our kd-queries satisfy such a closure principle.

K e y W ords : incomplete information system, cooperative query answering, rough
sets, multi-agent system, knowledge discovery.

1 I n t r o d u c t i o n

In many research fields, such as military, medical, manufacturing, and educa-
tional, similar databases are kept at many sites. Each database stores informa-
tion about local events and the information is expressed in attributes compat-
ible among databases. When similar databases are designed, their events are

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 259-269, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

260 Zbigniew W. Ra~ and Jiyun Zheng

described in terms of the same attributes with some minor or major exceptions.
Values of the same attribute may have different generality among databases. The
procedures used to collect the data do not have to be the same among databases
which means their operational semantics can be different. Also, some attributes
might be missing in one database but they occur in many others. Missing at-
tributes lead to problems. Medical doctor may query a database in his hospital
to find all patients having certain symptoms, only to realize that one component
of that description is a result of a medical test which is missing in the database
schema and the same the query cannot be answered. The same query would work
on many other databases but the doctor is interested in identifying the patients
in his hospital. In this paper we develop a theory for intelligent answering these
"locally unreachable" queries.

The task of integrating independently built databases is complicated not
only by the differences between the data contents but also by the differences in
structure and semantics of the information they contain. The problem is exac-
erbated when one needs to provide access to such a system for the end-users.
For more than 10 years research has been devoted to the question of informa-
tion retrieval from heterogonous distributed databases. This research has sought
to provide integrated access to such databases and has focused on distributed
databases, multidatabases, federated databases and their interoperability. The
main purpose of integrated access is to enable a number of heterogeneous dis-
tributed databases to be queried as if they were a single homogeneous database.
Common practice in integrating database systems involves manual integration
of each database schema into a global schema 1. This approach does not work
when the number of database systems is large. Navathe and Donahoo 9 pro-
pose to allow the database designers to develop a metadata description of their
database schema. The collection of metadata descriptions can be automatically
processed by a schema builder to create a partially integrated global schema.
The heterogeneity problem can be eliminated (see 8) by using an intermediate
model that controls the knowledge translation from a source database or knowl-
edgebase. The intermediate model they developed is based on the concept of
abstract knowledge representation. It has two components: a modeling behav-
ior which separates the knowledge from its implementation, and a performative
behavior which establishes context abstraction rules over the knowledge. In this
paper we propose to handle the heterogeneity problem among independently
built databases through the use of discovery layers.

First, we introduce the notion of a Distributed Information System (DIS)
which is the main vehicle for development of a Distributed Knowledge System
(DKS). Basically to transform DIS to DKS we need to add a discovery layer
to every site of DIS. Discovery layers are homogeneous and for simplicity reason
they are simplified in this paper to sets of rules. The content of discovery layers
may constantly change because by querying one site of DKS, its other sites can
be asked for help to answer the query. Rules in this paper are seen as operational
definitions providing a commonly sharable information among independently

Knowledge Discovery Objects and Queries 261

built information systems. So, the transfer of rules from one site of D K S to
another site does not cause much problems.

All distributed DBMSs support deduction of information. Our goal is to build
a knowledge discovery based Query Answering System (kdQAS) for each site
of D K S which satisfies the closure principle (the response for a query can be
queried further). The access to kdQAS is through WWW.

Predicate logic is the vehicle chosen to represent knowledge in D K S and
queries in kdQAS. Many other representations are, of course, possible. We have
chosen predicate logic because of the need to manipulate queries and rules syn-
tactically without changing their semantical meaning. This syntactical manipu-
lation of queries will be handled by kdQAS. By designing an axiomatic system
which is sound and complete we are certain that queries we manipulate will not
change their semantical meaning. Clearly, this property is very much needed.
Without it, we may be looking for an answer to queries which are semantically
different from the queries asked by the user. Such a situation has to be avoided.

2 Distributed Information Systems

In this section, we introduce the notion of a Distributed Information System
(DIS) which is the main vehicle for development of a Distributed Knowledge
System (DKS). Basically to transform D I S to D K S we need to add a discovery
layer to every site of DIS. A discovery layer is simplified in our paper to the set
of rules. Its content may constantly change because by querying D K S we may
discover rules at one site and store them at other sites of D K S .

In this paper, we consider two types of queries called local and global (locally
unreachable). Global queries are queries which can be resolved only through the
interaction of sites (exchanging knowledge between them) in D K S . Local queries
are resolved entirely by a single site of DKS.

So, let us start with basic definitions.

By an information system S we mean a sequence (X, A, V, h), where X is a
finite set of objects, A is a finite set of attributes, V is the set-theoretical union of
domains of attributes from A, and h is a classification function which describes
objects in terms of their at tr ibute values (see 12, 13). We assume that:

- V -- U{Va : a E A} is finite,
- Va ~ Vb = 0 for any a, b E A such that a ~ b,
- h : X x A) V U 2 y where h(x, a) EVa or h(x, a) -~- Va for any x E X and

a E A .

Attr ibute a is called incomplete in S if there is x E X such that h(x, a) -~ Va.
By In(X, a) we mean the set {x E X : h(x, a) =- Va}. We will be referring to
this set when we give the definition of kdQAS.

262 Zbigniew W. Rag and Jiyun Zheng

Let $1 = (X1, A1, V1, hi), $2 = (X2, A2, V2, h2) be information systems. We
say that $2 is a subsystem of $1 if X2 c_ X1, A2 C_ A1, V2 c_ V1 and h2 C_ hi.
By h2 C hi we mean that either h2(x,a) = h l (x ,a) or h2(x,a) �9 Va and
hi (x, a) = Va .

We use a table-representation of a classification function h which is naturally
identified with an information system S =- (X, A, V, h). For simplicity reason,
instead of a set Va we place the blank symbol which is interpreted here as all
values in Va are possible. For example, let S = (X, A, V, h) is an information
system where X -- {al, a6, as, a9, al0, a11, a12}, A = {C, D, E, F, G} and V =
{el, e2, e3, f l , f2, gl, g2, g3, Cl, c2, dl, d2}. Additionally, we assume here that VE =
{el,e2, e3}, VF = {fl , f2}, VG = {gl,g2,g3}, Vc ---- {Cl,C2}, and VD -~- {dl,d2}.
Then, the function h defined by Table 1 is identified with information system S.

X2 F C D E G
al f l cl d21 e2 gl
a6 f2 d2 e3 g2
a8 f l c2 gl
a9 f2 cl gl

al0 f2 c2 d2 e3 gl
a l l f l dl e3 g2
a12 f l cl dl e3 gl

T a b l e 1. Information System S

By a Distributed Information System 13 (DIS) we mean a pair D S =
({Si}iei, L) where:

- Si = (Xi, Ai, Vii, hi) is an information system for any i c I ,
- L is a symmetric, binary relation on the set I,
- I is a set of sites.

Systems Sil, Si2 (or sites i1,i2) are called neighbors in a distributed infor-
mation system D S if (il , i2) E L. The transitive closure of L in I is denoted by
L + .

A distributed information system D S -- ({Si}ieI, L) is consistent if:

- (Vi)(Vj)(Vx �9 Xi n X~)(Va �9 Ai n Aj)(x,a) �9 Do m(h i) N Dom(hj)
hi(x, a) = hi(x, a).

We assume here that any site of D I S can be queried either for objects or for
knowledge. Knowledge in this paper is simplified to a set of rules. Syntactically,
a query is built from values of attributes belonging to V = .J{Vi : i �9 I}. A
query is called local for a site i, if it is built from values in V~. Otherwise, it is
called global (locally unreachable) for i. Both, local and global queries will be

Knowledge Discovery Objects and Queries 263

handled by kd-Query Answering System (kdQAS). In order to resolve a global
query at site i, a transfer of newly discovered knowledge at other sites of D I S
to a site i will be needed. This knowledge is stored in discovery layer of site i.
If a queried information system S in D I S is incomplete, then a new query has
to be invoked and answered first. To be more precise, system S is queried first
for certain consistent rules to be discovered locally at S and at its remote sites.
Next, this newly discovered set of consistent rules is treated as a new local query
which, when applied to the system S, transforms S to a more complete system.
In the final step, this new system is queried by the original query. If this origi-
nal query is global and it is submitted to site i, a transfer of newly discovered
knowledge from other sites of D I S to a site i is needed.

In relational databases the result of a query is a relation which can be queried
further. Clearly, our kdQAS should have a similar property. To achieve this, we
will extend D I S to a Distributed Knowledge System (D K S) where each site
is defined as an information system coupled with a discovery layer simplified in
this paper to a set of rules. Before we proceed any further, let us give an example
of a kd-query.

For instance, SQL-type query

select * from Flights
where airline = "Delta"
and departure_time = "morn ing"
and departure_airport = "Charlotte"
and aircraft = "Boeing"

is global (locally unreachable) for a database
Flights(airline, departure_time, arrival_time, departure_airport, arrival_airport)
because of the at tr ibute aircraft. In order to resolve it, a transfer of newly dis-
covered definitions of aircraft = "Boeing" from other sites of D I S to a site i
is needed. So, this query can be called a knowledge discovery query (kd-query).

We begin with a definition of s(i)-terms and their standard interpretation Mi
in a distributed information system D S = ({Sj}jez, L), where Sy = (Xj, Aj, Vj,
hi) and Vj -- {.J{Vja : a e Aj}, for any j e I.

By a set of s(i)-terms we mean a least set Ti such that:

- O, 1 C Ti,
- (a, w) E T~ for any a C Ai and w E Via,
- ~ (a, w) E Ti for any a e Ai and w E Via,
- if t l , t2 e Ti, then (tl + t2), (tl * t2) E Ti.

264 Zbigniew W. Ra~ and Jiyun Zheng

We say that:

- s(i)-term t is atomic if t �9 {(a, w), ~ (a, w), 0, 1} where a �9 Bi c_ Ai and
w �9 V~a

- s(i)-term t is positive if it is of the form I-{(a, w) : a �9 Ai and w �9 Via}
- s(i)-term t is primit ive if it is of the form 1-I{tj : tj is atomic }
- s(i)-term is in disjunctive normal f o r m (DNF) if t = ~ { t j : j �9 J} where

each tj is primitive.

Standard interpretation Mi of s(i)-terms in a distributed information system
D S = ({Sj}jeI, L) is defined as follows:

- M ~ (0) = O, M ~ (1) = X i ,

- Mi((a ,w)) = {x �9 X i : w = hi(x ,a)} for any w �9 Vi,
- M i (~ (a,w)) = {x �9 Xi :~ (w �9 hi(x ,a))} for any w �9 V~,
- if t l , t2 are s(i)-terms, then

Mi(t l + t2) = M~(tl) U Mi(t2),
Mi(t l * t2) = Mi(t l) n Mi(t2).

3 Distributed Knowledge Systems

In this section we introduce the notion of/-rules, kd-objects and, kd-queries. We
define a Distributed Knowledge System (D K S) and introduce the notion of its
consistency. We also provide a basic architecture of D K S . Finally, we describe
the process of querying kd-objects at site i of D K S .

The definition of s(I)-terms is similar to the definition of s(i)-terms with
only one difference. Namely, the set Vi in the definition of s(i)-terms is replaced
by the set Y = .J{Vj : j �9 I}. The meaning of s(I)-terms, which forms the
foundations for kdQAS, is clarified after kd-objects and kd-queries are defined.
It depends on the site of D K S it is interpreted in.

By (k,i)-rule in D S = ({S j } j e I ,L) , k , i �9 I, we mean a triple (c, t ,s) such
that:

- e � 9 V k - V ~ ,

- t, s are s(k)-terms in DNF and they both belong to Tk fq Ti,
- Mk(t) C_ Mk(c) C_ Mk(t + s).

By (i,/)-rule in D S = ({Sj}jeI, L), i �9 I, we mean a triple (c, t, s) such that:

- c �9 V~a,
- t, s are s(i)-terms in DNF built from values of attributes belonging to Vi-Via,
- Mi(t) C_ Mi(c) C_ Mi(t + s).

For simplicity reason both (i, /)-rules and (k, /)-rules are called/-rules.

System D S = ({(S~, Di, kdQASi, Agenti)} iei , L), where (for any i �9 I):

- Di is a discovery layer simplified to a consistent set of/-rules,
- Si is an information system (a database),

Knowledge Discovery Objects and Queries 265

- kdQASi is a query answering system for a site i,
- Agenti is a set of knowledge discovery based client/server protocols.

is called a Distributed Knowledge System (DKS).

If there is i E I such that Si is incomplete, then D K S is called incomplete
Distributed Knowledge System. Figure 1 shows its basic architecture (WWW
interface is added).

/

Discovery / Discovery Discovery Discovery Layer Layer Layer Layer
mining I t I ~ I I l l I I ~ l I l

protocols protocols protocols

mining

7 - z i ~ I
kdOAS kdOAS kdO,a,S kdOAS

WWW interface WWW interface WWW interface WWW interface

Fig. 1. Distributed Knowledge System

By kd-object at site i of DS = (((Si, Di, kdQASi, Agenti)}iei, L), we mean
any subsystem of (Si, Di) or saying another words any subsystem of Si coupled
with a consistent set of/-rules.

By kd-query at site i, i E I, we mean either any s (I) - te rm or any consistent
set of (i, /)-rules.

Now, we describe the process of querying a kd-object at site i of DKS. In
this paper we consider four options for a kd-query q:

- q is a primitive s(i)-term,
- q is an s(i)- term in DNF,
- q is a primitive s(I)- term,
- q is an s (I) - te rm in DNF.

266 Zbigniew W. Rag and Jiyun Zheng

Let us assume that qi is a primitive s(i)-term. First, kdQASi identifies all
incomplete attributes among attributes used in q~. Let us say that ail, ai2,..., aik
is the list of all these attributes. In the second step, kdQASi finds all certain rules
at Si = (X~- In(X~, aij), Ai, Vi, hi) describing attribute aij in terms of attributes
from Ai - {a~j}. Let's denote these rules by Rij. This process is repeated for
every j E {1, 2, 3, ..., k}. In the third step, kdQASi applies the rules in Rij to find
the value of aij for a maximal number of objects from (In(X~, aij), Ai, Vi, hi).
These values are stored in a temporary matrix Mij, for every j E {1, 2, 3, ..., k}.
In the fourth step, all values stored in temporary matrices M~j are moved to
corresponding locations in a system Si = (Xi, Ai, Vi, hi) to replace some of its
null values. Let us denote the resulting information system by S~. At this point,
kdQAS~ goes back again to the first step and the process continues to iterate un-
til all newly generated temporary matrices are empty. Let us assume that after m
iterations, the process will stop and denote the resulting information system by
Sm. In the final step, kdQASi finds all objects in S m satisfying the description qi.

If q~ is an s(i)-term in DNF, then the strategy described for primitive s(i)-
terms is repeated for every disjunct of qi.

Assume now that q~ is a primitive s(I)-term which is global for Si. First,
kdQASi identifies all incomplete attributes in As among attributes used in qi.
Let us say that ail,ai2, ...,aik is the list of all these attributes. In the second
step, kdQAS~ finds all certain rules at Si = (Xi - In(Xi, aij), Ai, Yi, hi) describ-
ing attribute aij in terms of attributes from Ai - {aij}. Let's denote these rules
by Rij. This process is repeated for every j C {1, 2, 3, ..., k}. In the third step,
kdQASi applies the rules in P~j to find the value of aij for a maximal number
of objects from (In(X~, a~j), A~, V~, hi). These values are stored in a temporary
matrix M~j, for every j E {1,2,3, . . . ,k}. In the fourth step, all values stored
in temporary matrices Mij are moved to corresponding locations in a system
Si --- (X~, Ai, Vi, h~) to replace some of its null values. Let us denote the result-
ing information system by S~. At this point, kdQASi goes back again to the
first step and the process continues to iterate until all newly generated tempo-
rary matrices are empty. Let us assume that after m iterations, the process will
stop and denote the resulting information system by Sm. Now, kdQAS~ identi-
fies all attributes used in qi which do not belong to A~ (we call them concepts for
the site i). Agenti sends request to other sites of D K S to find rules describing
all these concepts in terms of attributes from A~. These newly discovered rules
are used to approximate query q~ by a new local query Pi for S~. Also, these rules
are stored in the discovery layer Di which can be used (for new global queries)
by kdQASi before any help from Agent~ is requested. In the final step, kdQASi
finds all objects in S m satisfying the description Pi.

If qi is an s(I)- term in DNF, then the strategy described for primitive s(I)-
terms is repeated for every disjunct of qi.

Knowledge Discovery Objects and Queries 267

4 I n t e r p r e t a t i o n o f P r i m i t i v e k d - Q u e r i e s

In this section we propose a class of / -based operational semantics for a kd-query
q, assuming that q is an s(I)-term. Next, for this class of operational semantics
we give a complete and sound set of axioms and rules.

Standard interpretation Mi, introduced in a previous section, shows how to
interpret / -quer ies in DIS . Now, we propose how to interpret non-local queries
(called global) bounded in this paper to the class of primit ive s(I)-terms. We
call them primitive kd-queries.

Parentheses will be used, if necessary, in the obvious way. As will turn out
later, the order of a sum or product is immaterial. So, we will abbreviate finite
sums and products as)-~'~{tj : j E J} and I-I{tj : j G J}, respectively. Inten-
tionally, s(I)- terms are names of certain features of parts being processed by
kdQAS, more complex than those expressed by constants.

Let Mi be a s tandard interpretation of s(i)-terms in D S = ({ S j } j E I , L).

Let Ci = U{Vk : k C I - {i}} - V~ is a set of concepts for Si. By/ -based oper-
ational semantics for s(I)- terms in D S = ({(Si, Di)}iex, L), Si = (Xi, Ai, 17/, hi)
and 11/= .J{Via : a E Ai}, we mean the interpretation Mi,K~ such that:

- Mi,K~(O) = 0, Mi,K,(1) = Xi
- for any w C Vi,

Mi,K, (w) = M~ (w),
Mi,K, ("~ W) = Xi -- Mi,K, (W)

- for any w E Ci,
Mi(w) = {x C Xi : (3t, s)((w, t, s) E Di A x E Mi(t))}
M i (~ w) = {x E Xi : (3t, s)((w, t, s) E Di A x q~ Mi(s))}

- for any s(I)- terms El, t2
i ~ , ~ , (t l + t2) = i ~ , K , (t l) U i~,K~(t2),
M~,~,:,(tl * t2) = M~,K,(tl) n i~ ,K, (t~) ,
M~,K~(~ (ti +t2)) = (~ /~ ,K , (t i)) n (~ i~,K,(t~)),
/ ~ ,K , (~ (t~ * t2)) = (~ i , ,K,(t~)) U (~ M~,K,(t2)),
M~,K,(~~ t) = U~,K,(t).

- for any s(I)- terms t l , t2
Mi,g~(tl -~ t2) ---- (if Mi,K,(tl) = Mi,K,(t2) then T else F)
where T stands for True and F for False

From the point of view of Si the interpretation Mi,K, represents a pessimistic
approach to query evaluation. It means that Mi,K, (t) is interpreted as a set of
objects in Xi which have the property t for sure. We are not retrieving here
objects which might have property t.

268 Zbigniew W. Rag and Jiyun Zheng

Let us adopt the following set A of Axiom Schemata:
A1. Substitutions of the axioms of distributive lattices for s(I)- terms and

the axioms of equality
A2. ~ w * w = 0 for any constant w
A3. ~ w + w = l f o r a n y w c V i
A4. for each w C Vi there is a subset Wl,W2, ...,wn of V~ such that

e,~W--__ Wl ~ W 2 ~ . . . ~-Wn
A5. Vl*V2 = 0

if Vl,V2 E Via for some a E Ai
A6. for any s (I) - te rm t,

0 = 1 , - , ~ 1 - - 0 , 1 + t - - l , 1 . t - - t , 0 . t = 0 , 0 + t - - t , ~ t - - t
A7. for any w r Vi

w = E { t : w,t,s e Di}
A8. for any w it Vi

~ w = E { t : ~ w, t, s c D ,}
AO. ~ (tl + t 2) = (~ t l) * (~ t2)
A10. ~ (tl * t2) ~- (~ t l) -~ (~ t2)
A l l . Substitutions of the propositional calculus axioms
The rules of inference for our formal system are the following:
R1. from (c~ ~ fl) and a we can deduce ~ for any formulas c~,
R2. from tl = t2 we can deduce t(tl) = t(t2),

where t(tl) is a s (I) - term containing tl as a subterm and t(t2) comes
from t(t l) by replacing some of the occurrences of t l with t2.

We write A ~- (tl ~ t2) if there exists a derivation from a set A of formulas
as premises to the formula (tl -- t2) as the conclusion.

We write A ~ (tl = t2) to denote the fact tha t A semantically implies
(tl = t2), that is, for any / - s tandard interpretation Mi,K~ of s(I)- terms in D K S
we have Mi,K~ (tl ---- t2) ---- T.

T h e o r e m 1. (Completeness). For any s(I) - terms tl, t2, if A ~ (tl = t2) then
A P (tl = t2).

The above completeness theorem gives us the set of axioms which is sound
and sufficient to transform any global s (I) - term to its equivalent DNF. So, the
set of kd-queries does not have to be bounded to primitive terms.

5 C o n c l u s i o n

This paper presents a methodology and theoretical foundations of a kd-Query
Answering System for D K S which is partially implemented at UNC-Charlotte
on a cluster of SPARC 20 workstations.

Knowledge Discovery Objects and Queries 269

R e f e r e n c e s

1. Batini, C., Lenzerini, M., Navathe, S., "A comparative analysis of methodologies
for database schema integration", in ACM Computing Surveys, Vol 18, No. 4, 1986,
325-364

2. Bosc, P., Pivert, O., "Some approaches for relational databases flexible querying",
in Journal of Intelligent Information Systems, Kluwer Academic Publishers, Vol.
1, 1992, 355-382

3. Chu, W.W., "Neighborhood and associative query answering", in Journal of In-
telligent Information Systems, Kluwer Academic Publishers, Vol. 1, 1992, 355-382

4. Chu, W.W., Chen, Q., Lee, R., "Cooperative query answering via type abstrac-
tion hierarchy", in Cooperating Knowledge-based Systems (ed. S.M. Deen), North
Holland, 1991, 271-292

5. Cuppers, F., Demolombe, R., "Cooperative answering: a methodology to provide
intelligent access to databases", in Proceedings 2nd International Conference on
Expert Database Systems, Virginia, USA, 1988

6. Gaasterland, T., Godfrey, P., Minker, J., "An overview of cooperative answering",
Journal of Intelligent Information Systems, Kluwer Academic Publishers, Vol. 1,
1992, 123-158

7. Grzymala-Busse, J., Managing uncertainty in expert systems, Kluwer Academic
Publishers, 1991

8. Maluf, D., Wiederhold, G., "Abstraction of representation for interoperation', in
Proceedings of Tenth International Symposium on Methodologies for Intelligent
Systems, LNCS/LNAI, Springer-Verlag, No. 1325, 1997, 441-455

9. Navathe, S., Donahoo, M., "Towards intelligent integration of heterogeneous infor-
mation sources", in Proceedings of the Sixth International Workshop on Database
Re-engineering and Interoperability, 1995

10. Pawlak, Z., "Rough Sets - theoretical aspects of reasoning about data", Kluwer
Academic Publishers, 1991

11. Pawlak, Z., "Rough sets and decision tables", in Proceedings of the Fifth Symposium
on Computation Theory, Springer Verlag, Lecture Notes in Computer Science, Vol.
208, 1985, 118-127

12. Ras, Z., "Resolving queries through cooperation in multi-agent systems", in Rough
Sets and Data Mining, (Eds. T.Y. Lin, N. Cercone), Kluwer Academic Publishers,
1997, pp. 239-258

13. Ras, Z., Joshi, S., "Query approximate answering system for an incomplete DKBS",
in Fundamenta Informaticae Journal, IOS Press, Vol. 30, No. 3/4, 1997, 313-324

14. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, "Advances in
Knowledge Discovery and Data Mining", AAAI Press/MIT Press, 1996

15. Ras, Z., "Collaboration control in distributed knowledge-based systems", in Infor-
mation Sciences Journal, Elsevier, Vol. 96, No. 3/4, 1997, pp. 193-205

16. Skowron, A., "Boolean reasoning for decision rules generation", in Methodologies
for Intelligent Systems, Proceedings of the 7th International Symposium on Method-
ologies for Intelligent Systems, (eds. J. Komorowski, Z. Ras), Lecture Notes in
Artificial Intelligence, Springer Verlag, No. 689, 1993, 295-305

ALLTYPES:
An ALgebraic Language and TYPE System

Fritz Schwarz

GMD, Institute SCAI, 53754 Sankt Augustin, Germany
fritz, schwarz@gmd, de,

http://www, gmd. de/SCAI/people/schwarz, html

Abst rac t . The software system ALLTYPES provides an environment
that is particularly designed for developing computer algebra software
in the realm of differential equations. Its most important features may
be described as follows: A set of about thirty parametrized algebraic
types is defined. Data objects represented by these types may be manip-
ulated by more than one hundred polymorphic functions. Reusability of
code is achieved by genericity and inheritance. The user may extend the
system by defining new types and polymorphic functions. A language
comprising seven basic language constructs is defined for implementing
mathematical algorithms. The easy manipulation of types is particularly
supported by ALLTYPES. To this end a special portion of the language
that is enclosed by a pair of absolute bars is dedicated to manipulating
typed objects, i. e. user-defined or automatic type coercions. Type in-
quiries are also included in the language. A small amount of parallelism
is supported in terms of two language constructs pand and por where
the letter p indicates a parallel version of the respective logical function.
Currently ALLTYPES is implemented in Reduce and Macsyma (to be
completed soon). Software implemented on top of ALLTYPES should
work independent of the underlying computer algebra language.

1 Organization of Computer Algebra Software

The origin of the software described in this article is the desire to provide an en-
vironment for implementing high quality computer algebra software for working
with differential equations. Areas of its application are for example the symme-
t ry analysis of ordinary and partial differential equations, finding closed form
solutions of ordinary differential equations and computations in D-modules, for
example Janet base algorithms.

Before entering into the details of ALLTYPES, the following question will
be dealt with: Why not work with one of the popular systems like for example
Axiom, Macsyma, Maple or Reduce directly? Apart from the first system, the
answer is obvious. In our terminology, Macsyma, Maple or Reduce are computer
algebra languages because they neither allow the structuring of large pieces of
software in terms of an algebraic type system, nor do they allow the reuse of
code by some kind of inheritance mechanism. ALLTYPES provides a collection of

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 270-283, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

ALLTYPES: An ALgebraic Language and TYPE System 271

types especially designed for working with differential equations and differential
algebra in general. This fine-structured type system requires special tools for
manipulating objects of these various types easily; they are made available by
ALLTYPES in terms of a specialized portion of the language. Furthermore this
language defines a small number of powerful control constructs that are especially
well suited for writing computer algebra code. Software developed on t op of
ALLTYPES has the following characteristic properties.

Due to the powerful language constructs, code may be written such that each
line may be executed individually, its action may be specified in mathemat-
ical terms, and the result may be checked against this specification;

Whenever a bug occurs, in almost all cases the type of this bug in a newly
implemented piece of software is such that its repair does not create new
bugs somewhere else.

These features make ALLTYPES into an environment that has turned out to
be better suited for implementing differential equations software than other Sys-
tems. Nevertheless the current implementation is considered only as a first ver-
sion of a more advanced system. These questions will be discussed further in the
summary at the end of this article.

Pr inciples f rom Software Engineer ing. This section contains a short review
of those concepts from software engineering that are relevant for the design of
computer algebra software. It turns out that many aspects that arise during
the design and the implementation of computer algebra software may be better
understood if they are considered in this more general context. References for
this part are the books by Booch 1, Coad and Yourdon 2 and Meyer 3. A
recent review by Taivalsaari 6 is also useful.

A little consideration leads to the conclusion that the ultimate reason for
most of the problems which occur during the development and the maintenance
of large pieces of computer algebra software is the fact that too many lines of
code have to be considered at a single time. As a consequence, the two most
important principles of software design follow rather naturally.

Decompose large pieces of software into smaller ones through modularity;
Limit the growth of software through reusability.

The principles according to which modularization is achieved is the most
important part of the design process. In a computer algebra context appropriate
modules are represented by algebraic types. Each type should represent a concept
from the underlying mathematical field. In order to achieve a high degree of
reusability, the flexibility of most of the types is increased by parametrization.

Another important mechanism for increasing reusability is inheritance. Its
basic idea is to allow new types to be based on already existing ones. As a
consequence, often the functionality of software can be extended by adding a
small amount of new code instead of modifying existing code, or unnecessarily
reimplementing features that are already there. This mechanism is established
by the Is_a relationship between two types. If A and B are types, the statement

272 Fritz Schwarz

Abstraction Level

Application Software

Logic Verification System

Algebraic Type System

Algebraic Language

Implementation Language

Description

Main Objective: Generation of results in application field
Operations: Provides user interface

Main Objective: Correctness of Implementation
Operations: Theorem Provers
Example: Theorema

Main Objective: Structure

Data ~r Operations: Parametrized algebraic types
Polymorphic functions

i Examples: Axiom, Magma

Main Objective: Efficiency
Data ~r Operations: Polynomials and rational functions

Arithmetic, gcd's, factorization

Examples: Macsyma, Maple, Mathematica, Reduce, Derive

Objective: Connection to hardware
Examples: C, LISP

Fig. 1. Hierarchical levels of computer algebra software

A Is_a B means that A has all the features of B and in addition those that are
defined particularly for the new type A. This is expressed by saying A inherits
from B or A is a descendant or successor of B, or B is an ancestor or predecessor
of A. In ALLTYPES any type may inherit from any number of predecessors,
i. e. multiple inheritance is supported. In this way the Is_a relation generates a
hierarchical structure between the various members of the type system.

In Figure 1 the organization of computer algebra software according to these
principles is shown. The various levels of abstraction necessary for closing the
huge gap between the mathematics on the top and the hardware at the bot-
tom are obvious. Their distinguishing feature is the functionality they provide.
The distinction between an algebraic language and an algebraic type system is
especially emphazised. The former provides above all efficiency, the latter struc-
ture. The logic verification system Theorema is currently under development by
Buchberger 7.

In principle ALLTYPES is an independent piece of software. It is connected
to the underlying computer algebra language by a well defined interface that
is described in a separate article by Scheller 11. In this document type names
are always written in capitals, for example POLY, PARF or LIEALG. Usually
they abbreviate the full name of a mathematical object like polynomial, partial
fraction or Lie algebra in these examples. Polymorphic functions are written in
italics and begin always with a capital letter, examples are Degree, Substitute or
CoeJficient Variables.

ALLTYPES: An ALgebraic Language and TYPE System 273

2 D e s i g n o f A L L T Y P E S

There are basically two different constituent parts of ALLTYPES. On the one
hand there is the type system comprising about 30 parametrized algebraic types
for modeling mathematical objects supplemented by about 100 polymorphic
functions for working with them. Their action is achieved by a multiple dis-
patching mechanism that selects the proper methods for the data objects at
hand, either at compile time or at run time. A good comparison of single dis-
patching vs. multiple dispatching may be found in the article by Taivalsaari 6,
section 3.9. Secondly there is a language provided that is especially designed for
implementing mathematical algorithms efficiently and safely. These components
are described in detail in this section. Theoretical questions on the design of an
algebraic type system are discussed in 12, see also 8.

Informally a type describes the features that are common among a collection
of mathematical objects. The user interface of any type is made up of its name,
its parameters and perhaps certain attributes that are collectively called the
category of the type, they may be considered as the type of a type or a second
order type. The totality of all types decomposes naturally into the following three
kinds.

> Basic types are data objects supported by the underlying language, they are
essentially various kinds of numbers, variables and collections of any kind of
objects represented as lists. They are introduced for efficiency reasons;

> Algebraic types are the main components of the type system, they serve to rep-
resent structured objects like e. g. univariate polynomials, partial fractions
or linear differential equations. Most of them have one or more parameters
and belong to one or more categories;

> Set types are applied for representing homogeneous collections of objects of the
same type like e. g. polynomial ideals, rational function fields or Lie algebras.
In the object-oriented terminology they correspond to container classes.

Basic Types. For efficiency reasons, the representation of numbers and variables
is essentially taken over from the underlying computer algebra language.
Number NUM. Subtypes Integer: IN, Rational Number: RN, Algebraic Number:
AN(k), Modular Number: MN(k) are the number types currently supported by
the system. The single argument of M N defines the modulus. The argument
of A N has the following meaning. Algebraic numbers are not considered as
individual elements but as members of an appropriate algebraic number field
that is determined by a primitive element. This number field determines the
type. The totality of algebraic number fields required in a problem is organized
globally, the individual fields are enumerated by the parameter k. Any change of
these number types is handled by user defined or automatic type coercions. In
general the system tries to avoid the introduction of unnecessary field extensions.
Variable: VAR and Derivative: DER. Next to the numbers, these are the most
elementary building blocks of all symbolic expressions. A derivative may have

274 Fritz Schwarz

a number of dependencies attached to it so that it behaves differently within a
type of category DIFFERENTIAL.

A l g e b r a i c T y p e s . They form the backbone of the type system of ALLTYPES.
Each individual type is characterized by its parameters and the categories which
are attached to it. The parameter values are either a type denoted by T Y P E ,
or a data object denoted by letters followed by a colon and its type. Examples
of this notat ion are v : VAR, {v l ,v2 . . . } : S E T V A R or n : IN . In some
cases a predicate name is also allowed. It is not always necessary that all type
parameters are specified. Beginning with the leftmost parameter, a sufficient
set has to be specified such that the required action may be executed with a
meaningful result. For example, if an object of type P O L Y is to be coerced
into a distributive polynomial, calling D P O L Y without any parameter yields a
D P O L Y w.r.t, to all variables or derivatives with coefficients of some number
type. If the first parameter is P O L Y and the second a set of variables {v l, v2, . . .} ,
the result is a distributive polynomial in these variables with polynomial co
efficients in the remainig ones that may be considered as parameters. A similar
systematics applies to the other types of the system. If the required coercion is
mathematically not meaningful an error will occur, for example if it is requested
that a genuine rational function of type R A T F be coerced to a D P O L Y over
all its variables.

There are four categories known to the system at the moment, they are
R I N G , F I E L D , D I F F E R E N T I A L and C O N T A I N E R . They are applied
for controling various operations like for example how to divide out the content
of a polynomial or how to apply derivatives.

Subsequently a selection of types is listed, supplemented by some remarks
on the meaning of the type parameters. The usage of these type notations for
manipulating the types of data objects will be explained in the next section.

Polynomial: P O L Y N U M , C A T E G O R Y RING. The main purpose of this
type is to act as a mediator between the representation of polynomials in the
underlying computer algebra language. Within the type system they often rep-
resent those parts of a more structured object for which at a certain point addi-
tional structure is not available or not relevant, for example the coefficients of a
univariate polynomial that depend on some additional parameters. The order-
ing of these objects is determined globally by the underlying computer algebra
language. The coefficient type of any P O L Y is some number type N U M . It is
carried along with the individual objects.

Rational Function: R A T F NUM, C A T E G O R Y F I E L D . The same remarks
apply as for the preceding type.

Univariate Polynomial: U P O L Y (T Y P E , v : VAR) , C A T E G O R Y RING. The
first parameter determines the coefficient type, the second parameter is a variable
name with respect to which the data object must have a polynomial dependency.

Partial Fraction: P A R F (T Y P E , v : VAR) , C A T E G O R Y F I E L D . The pa-
rameters have the same meaning as for UPOLY. Univariate partial fractions
may be considered as the natural extension of univariate polynomials.

ALLTYPES: An ALgebraic Language and TYPE System 275

Factored Polynomial: FPOLY(TYPE) . The single parameter determines the
type of the irreducible components of an object of this type.
Linear Form: L F O R M (T Y P E , {vl, v2, . . .} : SET VAR I fn : predicate, Order-
ing). The first parameter determines the coefficient type. Objects of this type
must be linear and homogeneous w.r.t, the variables on the list {Vl, v2, . . .} or
w.r.t, to those variables for which the predicate returns true. If the Ordering
parameter is provided, it is applied for establishing the respective term ordering,
if not, a system dependent default ordering is applied.
Differential Polynomial: DFPOLY(TYPE,{dl , d2,. . .} : SET DER,{v~, v2,...} :
SET VAR, Ordering), CATEGORY { D I F F E R E N T I A L , RING}.
Distributive Polynomial: DPOLY(TYPE, {Vl, v2, . . .} : SET VAR, Ordering),
CATEGORY RING. The first argument determines the coefficient type, ob-
jects of this type must be polynomial in the variables vl, v2,
Function Field: FFIELD(TYPE,{e l , e2 , . . . } : SET VAR), CATEGORY
FIELD. Objects of this type must be rational in the variables el, e2, . . , that
may be elementary or algebraic functions.
Linear Differential Form: LDF(TYPE, {dl, d2, . . .} : SET DER, {vl, v2, . . .} :
SET VAR, Ordering). Objetcs of this type must be linear and homogeneous in
the derivatives of a set of functions dl, d2, With respect to these derivatives
they are LFORM's with coefficient type determined by the first parameter.
Linear Differential Operator: LDO(TYPE, {v~, v2, . . .} : SET VAR). The first
argument determines the coefficient type, the first order partial derivatives are
taken w.r.t, to the variables {vl, v2,. . .}.
Linear Ordinary Differential Equation: LODE(TYPE, y : DER, x : VAR).
Objects of this type are linear and homogeneous in y and its derivatives w.r.t.
x with coefficient type determined by the first parameter.
Ordinary Differential Equation: ODE(TYPE, y : DER, x : VAR)). Objects of
this type must be polynomial in y and its derivatives w.r.t, x with coefficient
type determined by the first parameter.

ILFORMI I POLY I I RATF I ID AT I

I L ID POL D R T F I LFUNI

Fig . 2. The inheritance hierarchy of the algebraic type system is shown. The
full names of the types and its parameters are given in the text.

276 Fritz Schwarz

Polymorphic Functions and Methods. The operations that may be per-
formed on the various data objects are specified in mathematical terminology
for the polymorphic functions. They are applied by the user for writing the code
that realizes the desired algorithms. A polymorphic function cannot come into
action by itself, only after it is replaced by the appropriate method the code may
be executed. In general many methods corresponding to different types, possi-
bly with varying number of arguments, may be defined for a single polymorphic
function name. The proper method is determined by the types of the data ob-
jects to be operated upon. It is the responsibility of the user to assure that the
required method is available at execution time. A method may either be defined
in the code of the respective type, or it may be inherited from some other type.

There are several advantages of organizing software in this manner. On the
one hand, the degree of reusablitiy is increased by writing code in terms of poly-
morphic functions instead of the methods itself. Secondly introducing a new
type means going through the collection of polymorphic functions and imple-
menting those methods for the newly defined type that apply to it, and possibly
additional methods that are valid exclusively for this newly defined type and its
descendants. This is a unique and well-defined procedure including the guaran-
tee that all necessary changes have been performed without explicit changes of
already existing code. Finally for the user it is much more efficient to become
acquainted with a single set of polymorphic functions providing essentially the
same functionality for the complete type system, instead of repeating this effort
for the individual types. In other words, the learning curve increases faster.

The mechanism applied in ALLTYPES that gives rise to a polymorphic func-
tion call being replaced by the proper method will be explained now in more
detail. The methods corresponding to a polymorphic function are denoted by
extending the polymorphic function name by the type names, separated by un-
derscores; they are called type extensions. There may be as many type extensions
as there are parameters, however a single extension is also possible. Providing
fewer extensions than parameters is used as another mechanism for increasing
reusability. The significance of the various type extensions is not symmetric how-
ever. The first type extension of a method determines the type where it is defined.
For a type homogeneous polymorphic function the first extension of any of its
methods determines also the type of the returned result. As an example the type
homogeneous polymorphic function Mult ip ly may be called as Multiply(u, v)
by a user. Valid examples of method calls that may be generated from it are

Mul t ip l y_POLY_POLY(u : POLY, v : P O L Y) : P O L Y

Mul t i p l y_POLY_BASIC(u : POLY, v : B A S I C) : P O L Y

Mul t ip l y_LFORM(u : L F O R M , v : T Y P E) : L F O R M

The first two methods define the multiplication of an object of type P O L Y by
another P O L Y or an object of type B A S I C which may be some number or
a variable respectively. The last method defines the multiplication of an object
of type L F O R M by an object of any type that is consistent with the type
homogeneity of Multiply. Essentially this means that the coefficients of the first

ALLTYPES: An ALgebraic Language and TYPE System 277

argument u are multiplied by v. In accordance with the type homogeneity of the
polymorphic function Mult ip ly the type of the returned object is as indicated
after the closing bracket of the method calls. A method

M u l t i p l y _ L F O R M _ L F O R M (u : L F O R M , v : L F O R M)
is not allowed by type homogeneity because the result cannot be coerced to
an object of type L F O R M . If u and v for example both have the same type
L F O R M (P O L Y NUM,{a , b, c}~ an appropriate call for multiplying them would
be

M u l t i p l y (u l Q F O R M (P O L Y N U M , {a, b, c})l, v)

where QFORM abbreviates Quadratic Form. It generates the method call

M u l t i p l y _ Q F O R M _ L F O R M (u l Q F O R M (P O L Y N U M , {a, b, c})l, v)

is generated and the result of type Q F O R M (P O L Y N U M , {a, b, c}) is returned.
Type homogeneity entails also the different answer for the two polymorphic
function calls

Mul t ip ly (u : L F O R M , v : R A T F) : L F O R M
and

Mul t ip ly (u : R A T F , v : L F O R M) : R A T F
Another example showing the flexibility gained by this software organization is
the polymorphic function Coef f i c i en t . Some of its method calls are

Coe f f i c i e n t _ P O L Y _ P O L Y (u : POLY , v : P O L Y)

Coe f f i c i e n t _ P O L Y _ B A S I C (u : POLY , v : V A R)

Coe f f i c i e n t _ U P O L Y _ B A S I C (u : U P O L Y , n : I N)

Coe f f i c i e n t _ L F O R M _ B A S I C (u : L F O R M , v : V A R)

In the first call, the second argument v must be a monomial, its coefficient in u
is returned. In the second call, u must be linear in the variable v, otherwise a
runtime error occurs. In third call n must be a positive integer, the coefficient
of the n - th power of the univariate polynomial is returned. In the last call, v
must be a variable w.r.t, which u is linear and homogeneous.

There are more than 1000 methods defined in ALLTYPES. All the informa-
tion necessary for working with them may be obtained by applying a few online
utility functions provided for this purpose.

The Language Cons t ruc t s . The complete language is composed of two funda-
mentally different parts. On the one hand, there is the algebraic language which
is applied for manipulating algebraic objects according to the mathematical rules
that are valid for them, for example arithmetic, differentiation, integration and
many others. Secondly, there is the type manipulation part that is applied for
manipulating the types of the mathematical objects such that they satisfy the
constraints imposed by the type system. This latter part of the language is syn-
tactically separated from the former by the occurrence of a pair of I, i. e. any piece
of input code enclosed between two bars specifies a type manipulation. These two
parts of the language will be described now one after the other. The fundamen-
tal syntactic units are the FunctionConstructor and the I terat ionConstructor .

278 Fritz Schwarz

They are partially described by the following set of productions where keywords
are given in boldface letters.

FunctionConstructor = FunctionName(ExpressionlPredicate ,

I terator , I terator)

FunctionName = app l i e s l se l ec t l ex i s t s l s a t i s f i e s sepa ra t e

Iterator = Variable f rom ..fromSetlVariable

f r o m Integer .. Integer .. Integer

I terationC onstructor = iterate(true?Predicate,

Expression, Expression) literate (

Expression, Expression, t r u e ? Predicate)

OrderingConstructor = orders(BooleanExpression,

Variable and Variable f r o m Set, Set)
The remaining part of the syntax and the semantics will be explained informally.
An Expression is any piece of code that is syntactically and semantically accepted
by the interpreter or compiler and returns a result. In Axiom it is essentially an
expression, in a LISP system it is very similar to a form. The free variables
occurring in an Expression or a Predicate are evaluated in the environment
in which the FunctionConstructor is called. All local variables are attached to
certain sets by the subsequent Iterator.

The Variable in the first production alternative for the Iterator determines
a variable name which may occur in the Expression, it specifies an element of
the Set. Each occurrence of the keyword f r o m determines a level of nesting of
Set. If there is a single occurrence, the iteration occurs over elements of a set, if
there are two, elements of a set of sets are taken, and so forth. If there is more
than a single iterator, the iteration takes place over several sets, set of sets etc.
in parallel. Both the number of iterators and the depth of nestings of sets are
arbi trary up to the following constraints. The level of nestings in each iterator
must be the same, the same is true for the cardinality of sets at each level. The
second production for the Iterator allows it to iterate over intervals of integers,
the stepsize being determined by the optional middle Integer.

The app l i e s constructor causes the Expression to be evaluated for each
selection of variables as determined by the Iterator. It returns an object with
the same structure as it occurs in the latter with the result of the evaluations
taken at the respective positions. The objects may be sets, sets of sets etc.

In the s e l ec t and the ex i s t s constructors the Expression must be a pred-
icate. The returned object of the se lec t constructor has the same structure as
those occurring in the iterators, it contains those elements of the Set occurring
in the last Iterator for which the Expression evaluates to true. The ex i s t s
constructor returns only the first element occurring in this Set for which the
Expression is true. If the Expression begins with the keywords m a x i m a l or
m i n i m a l , the remaining part of it must evaluate to an integer. In this case
the se lec t constructor returns all elements from the Set occurring in the last
Iterator for which the Expression returns the maximal or minimal value re-

ALLTYPES: An ALgebraic Language and TYPE System 279

spectively. The same applies to the exists constructor except that only the first
element with this property is returned. A meaningful application will presume
the proper number of occurrences in either case.

The satisfies constructor is actually a predicate. It returns true if all evalu-
ations of its first argument which must be a predicate also evaluate to true.

The s e p a r a t e constructor generates new sets of objects from the Set which
occurs in the last Iterator. The newly created sets are formed such that the
value of the Expression is the same for all elements of its member sets.

The two versions of the IterationConstructor are the basic syntactic unit
for an unspecified number of repetitions of an action. In the first version, the
Predicate is evaluated before any other action is taken. If the result is true,
the Expression's are evaluated from left to right one after the other. This pro-
ceeding is repeated until the Predicate evaluates to something that is not true.
In this case the result of the last evaluation in the Expression is returned.
If the Predicate is not t rue at the first evaluation, the value of the complete
IterationConstructor is false. In the second version, a similar evaluation scheme
is applied except that the Predicate is evaluated at the end of each round. The
returned value of the constructor is always that of the last evaluation in the
Expression.

The BooleanExpression in the o r d e r s constructor contains the two arguments
Variable of the subsequent a n d clause. It causes the Set to be rearranged such
that the evaluation of the BooleanExpression with any pair of elements such that
the first member is located to the left of the second member evaluates to true. If
the last optional argument of type Set is provided, its elements are rearranged
in the same way as the first argument and this latter set is returned.

P a r a l l e l J o b s w i t h p a n d a n d po r . The language constructs p a n d and p o r
which abbreviates parallel and and parallel or respectively allow a limited amount
of parallelism in all situations where the hardware on which ALLTYPES is run-
ning provides at least two processors. In computer algebra applications it occurs
frequenly that there are various alternatives available at a certain point of an
algorithm for obtaining the desired result, it is not known however in advance
which alternative will produce the answer more efficiently. Due to the overhead
for generating a copy of a process and the communication between both of them,
they should be applied only for a coarse parallelization. Examples meeting this
criterion are Gr5bner- or Janet- base calculations w.r.t, different term orderings,
or heuristic solutions as opposed to decision procedures, e.g. for determining
the symmetries of an ordinary differential equation. If the code for these two
alternatives is denoted by Jr1 or ,42 respectively, the call

z : = A 1 p o r A 2
may be applied with the following semantics. At first an exact copy of the original
process is generated. Then the two processes are started executing version A1
or ~42 respectively. The process that terminates first cancels the other one and
returns the produced result as the value of z. The syntax for calling p a n d is
similar.

Z :---- ,,41 p a n d A2

280 Fritz Schwarz

After a copy of the first process is generated, the two processes execute the code
for .41 and .41 respectively. If either process terminates with a value nil, the
other process is cancelled and the value nil is assigned to z. If both processes
terminate with a value different from nil, the result .42 is assigned to z.

3 Working with ALLTYPES

Typically working with ALLTYPES means implementing a piece of software in
terms of the type system and the language described above. Before it may be
applied for generating results, it has to be compiled. This proceeding is explained
first.

Wr i t i ng and Compi l ing A L L T Y P E S Code. The compilation process com-
prises two passes. In the first pass, the compiler of the underlying computer
algebra language generates essentially the same kind of output as is generated
from code that does not use the features of ALLTYPES. Upon completion of
the first pass, all methods defined in the system are globally known. Whenever
possible, this information is applied in the second pass for attaching the proper
types to the polymorphic function calls of the user code, i. e. to replace them
by the methods. This is true in those cases where the types of the arguments of
a polymorphic function call are known at compile time. In the remaining cases
the dispatching takes place at runtime. There is a continuous transition between
those two alternatives, the only difference is the efficiency of the runtime system
provided all type declarations are correct. Some details of the underlying type
inference and inheritance mechanism will be discussed later on.

Methods are implemented as procedures of the underlying language. The
most distinctive feature of ALLTYPES code is the declaration of types and how
they are handled. This process is governed by the following rules.

> The user calls exclusively the polymorphic functions and not the methods for
achieving a certain action;

In all cases where the type of a variable is known at compile time it should
be declared in order for enabling the compiler to insert the proper methods.
This is true also for the parameters of the polymorphic function calls.

Defining New M e t h o d s . The details of this proceeding are explained infor-
mally for a polymorphic function f00 and a method fOO_TYPEI_TYPE2 cor-
responding to it. The general structure of such a definition may be seen from
the following example.

procedure f 00_TYPEI_TYPE2 (u, v) ;
begin TYPEI u; TYPE2 v; TYPE3 w,z;
BASIC x; SET UPOLY p; scalar y;
w:=f01(u,x) ;
w:=f02(u,y) ;
z:=f03(v,w) ;

ALLTYPES: An ALgebraic Language and TYPE System 281

r e t u r n a p p l i e s (L c o e f x , x f rom p) ;
end;

The body of any method consists of a B E G I N - E N D block, fO1, f02 and f03
are polymorphic function names. The declaration s c a l a r is applied for those
variables the type of which cannot be determined at compile time. Consequently
for a polymorphic function with any argument declared as s c a l a r the method
cannot be determined at compile time. If a homogeneous collection of objects of
the same type T is assigned to a variable, the proper declaration is SET T. In the
above example, during the second pass of the compiler the code

w : =fO 1 -TYPEil _BASIC (u, x) ;
w : =f02 (u, y) ;
z : =f 03_TYPEi=_TYPEi~ (v, w) ;
return applies(Lcoef_UPOLY x,x from p);

is generated. Whenever the compiler succeeded in substituting the proper method
for a polymorphic function call, the compiled code for the corresponding method
is inserted. In the above example this applies to the polymorphic functions f01
and f03 where the type extensions TYPEik have been attached to the respec-
tive polymorphic functions. Type TYPEik may or may not be identical to type
TYPEk depending on whether the respective method is obtained by inheritance
or not. If a method cannot be determined at compile time, a piece of code is in-
serted that performs this substitution at runtime as it is true for the polymorphic
function f02.

Creating New Types. The language construct DefineAlgebraicType is pro-
vided for extending the type system. Its syntax is formally defined by the fol-
lowing production rules.

D e f i n e A l g e b r a i c T y p e Type C A T E G O R Y CategoryREP(Field, Fiela~ �9)
D e f i n e A l g e b r a i c T y p e Type Is_a Parent

C A T E G O R Y Category with(Field, F ielc~ .)
Type ::= TypeNameITypeName(ParameterName, ParameterName *)
Parent ::= ParentNamel{ParentName, ParentNarne �9 }
Category ::= CategoryNamel{CategoryName, CategoryName . }
Field ::= FieldName := Expression.

The first version of DefineAlgebraicType is applied if a new type is defined
from scratch. Whenever it is based on types already existing in the system, the
second option with the inheritance operator Is_a is applied. Any type A may
inherit from one or more types B, C , . . . in the system. Valid type definitions are

DefineAlgebraicType A Is_a B or

De fineAlgebraicType A Is_a { B, C, D, . . .}
(1)

defining a single or multiple inheritance relation respectively. In detail, any in-
heritance relation implies the following features for the descendant.

282 Fritz Schwarz

All methods of the ancestors are inherited to the descendant. Details of
how repeated inheritance and multiple inheritance are handled are explained
below;
All categories of the ancestors are inherited to the descendant;
In the internal representation, the fields of the descendant are the union of
the fields of its anchestors.

Inheritance relations create a hierarchical structure between the individual
types of the system. For the current implementation of ALLTYPES these rela-
tions are shown in Figure 2. If new types are defined by the user, these hierarchies
have to be extended appropriately. The inheritance relation (1) may be repre-
sented by the following tree.

It indicates that type A has parents B, C, D and possibly more. Each of these
parent types may inherit from some other types, and so forth. If A is the type
of the single argument of a polymorphic function call f00, this tree is traversed
in a depth-first-search from right to left until a method for f00 is found. If upon
completion of this traversal no method has been found, an error occurs. This rule
resolves uniquely the ambiguities that may occur due to repeated inheritance.
If a polymorphic function call has n > 1 arguments with types A1, A2, . . . , An,
for each argument type the inheritance tree is constructed similar as for type A
above. The first n - 1 types are fixed to its root values and An is treated like
the single argument A above. If this search fails, a single step in the traversal
of the tree for An-1 is performed and the tree for An is traversed again. This
procedure is extended in an obvious way until a method has been found or until
all trees are traversed.

4 S u m m a r y a n d O u t l o o k

The system ALLTYPES described in this article is very well suited for imple-
menting sophisticated software for working with differential equations. Its orga-
nization by means of a fine structured type system of well adjusted types has
turned out to be a fundamental prerequisite for developing high quality software
efficiently. In particular the following features of ALLTYPES should prove to be
valid design principles for any advanced computer algebra software.

ALLTYPES: An ALgebraic Language and TYPE System 283

~, The separation of the computer algebra language level responsible for efficiency
and the computer algebra type system on top of it responsible for structure;

~, A small set of powerful language constructs bringing about a programming
style such that each single line of code may be specified in mathematical
terms, executed and the result may be tested against this specification;

~, The syntax and semantics of the type manipulation facilities implemented as
a specialized part of the language.

The implementation of ALLTYPES on top of Reduce will be supplemented
soon by an implementation on top of Macsyma 13. Upon completion, the soft-
ware for working with differential equations should run without change on both
software platforms. Similar implementations based on other systems like for ex-
ample MathEdge of Maple or MathLink of Mathematica are highly desirable
as well as a detailed description of the system 14.

The most important shortcomings of the current implementation are the lack
of type checking by the compiler and the lack of any facilities for encapsulation
like for example the definition of local functions in a module. The reason lies in
the fact that the underlying implementation language does not support it, all the
less does it support any of the more advanced object-oriented principles like e. g.
inheritance and dynamic type binding. These will be important considerations
for a future implementation in a modern computer language.

Acknowledgments . A critical reading of this article and numerous help-
ful comments by Bruno Buchberger and Tony Hearn, the continuous advice of
Winfried Neun of the ZIB Berlin on the internals of the Reduce system and the
careful implementation by Dietlind Scheller are gratefully acknowledged.

R e f e r e n c e s

1. Booch, G, Object Oriented Design, Benjamin/Cummings Publishing, 1991.
2. Coad, P., Yourdon, E., Object-Oriented Analysis and Object-Oriented Design,

both published by Yourdon Press, Englewood Cliffs, 1991.
3. Meyer, B., Object-oriented Software Construction, Prentice Hall, 1988.
4. Budd, T., Object-Oriented Programming, Addison-Wesley, 1991.
5. Cardelli, L., Wegner, P., On Understanding Types, Data Abstraction, and Poly-

morphism, Computing Surveys 17, 471-522 (1985).
6. Talvalsaari, A., On the Notion of Inheritance, ACM Computing Surveys 28, 438-

479 (1996).
7. Buchberger, B., Symbolic Computation: Computer Algebra and Logic, Proceed-

ings of the Frontiers in Combining System Conference, Munich, F. Bander and
K. U. Schulz, eds, Applied Logic Series, Kluwer Academic Publishers, 1996.

8. Fedoraro, J. F., The Design of a Language for Algebraic Computation Systems,
Thesis, Berkeley, 1983.

9. Hearn, A. C., Reduce User's Manual, part of Reduce.
10. Jenks, R. D., Sutor, B., Axiom, Springer, 1992.
11. Scheller, D., ALLTYPES: The Reduce Implementation, GMD Report, 1998.
12. Weber, A., Structuring the Type System of a Computer Algebra System, Disser-

tation, Universit/it Tiibingen, 1992.
13. Golden, J., private communication.
14. Schwarz, F., ALLTYPES: The User Manual, GMD Report, to appear.

R e a l P a r a m e t r i z a t i o n o f A l g e b r a i c C u r v e s *

J. Rafael Sendra I and Franz Winkler 2

Dpto de Matem~ticas, Universidad de Alcal~ de Henares, E-28871 Madrid, Spain
mtsendra@alcala, es

2 RISC-Linz, J. Kepler Universit~it Linz, A-4040 Linz, Austria
Franz. Winkler@risc. uni-linz, ac. at

Abstract. There are various algorithms known for deciding the para-
metrizability (rationality) of a plane algebraic curve, and if the curve is
rational, actually computing a parametrization. Optimality criteria such
as low degrees in the parametrization or low degree field extensions are
met by some parametrization algorithms. In this paper we investigate real
curves. Given a parametrizable plane curve over the complex numbers,
we decide whether it is in fact real. Furthermore, we discuss methods
for actually computing a real parametrization for a parametrizable real
c u r v e .

1 I n t r o d u c t i o n

In SW91, SW97 we have described a symbolic algori thm for computing a
rat ional parametr izat ion (x(t), y(t)) of a plane algebraic curve C of genus 0 (only
these curves have a rational parametrizat ion). This algori thm is implemented
in the system CASA MW96. Approaches to the parametr izat ion problem for
algebraic curves are also described in AB88 and vH97.

Def in i t ion: Let K be a field of characteristic 0, E the algebraic closure of l~
Let the irreducible affine curve C be defined as the set of solutions in the affine
plane A(E)2 of the polynomial equation

/(x, y) = 0

over K, i.e. f E Kx, y. Then x(t), y(t) in K:(t), the field of rat ional functions over
K:, consti tute a rational parametrization of C, if and only if, except for finitely
many exceptions, every evaluation (x(to), y(to)) at to E E is a point on C, and,
conversely, almost every point on C is the result of evaluating the parametr iza t ion
at some element of K:.

In this case C is called parametrizable or rational.
Equivalently, P(t) = (x(t), y(t)) is a rational parametr izat ion of C if P :

K) C is rational and not bo th x(t) and y(t) are constant. Furthermore, if P
is birational we say tha t P (t) is a proper parametrization.

* The first author was supported by DGICYT PB 95/0563 and UAH-Proj. E010/97.
The second author was supported by the Austrian Fonds zur FSrderung der wis-
senschaftlichen Forschung under Proj. HySaX, Pl l l60-TEC. Both authors were sup-
ported by the Austrian-Spanish exchange program Acci6n Integrada 30/97.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 284-295, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Real Parametrization of Algebraic Curves 285

The parametrizat ion problem for algebraic curves consists in first deciding
whether the given curve C has such a rational parametrization, and if so finding
one.

In our geometrical approach to parametrization we basically determine the
singularities of the curve C, decide the genus of C (C can be parametrized if
and only if genus(C) -- 0), find a couple of simple points on C in a low degree
(i.e. degree 1 or 2) algebraic extension K(~) of K, and from the singularities
and these simple points derive a parametrization of C. The parametrizat ion will
have coefficients in K(0'). So starting with a parametrizable curve defined by a
polynomial f (x , y) E Zx, y we will either get a parametrization with rational
coefficients or with coefficients in Q(0'), 7 algebraic over Q of degree 2. If the
curve C is a real curve, i.e. if C has infinity many real points, then for obvious
reasons we will not be satisfied with a parametrization with complex coefficients.

For practical applications, such as in computer aided geometric design, we
need to be able to parametrize real curves with real coefficients, if possible. In
this paper we demonstrate that if C is a real curve, then our algorithm actually
computes a parametrization of C with real coefficients. Alternatively, one could
take a possibly complex parametrization and, if possible, t ransform it to a real
one. This approach is developed in RS95 and RS97a.

2 Rea l C u r v e s

Let f (x , y) C Cx, y be a non-constant polynomial, f defines a plane affine curve
C over the complex numbers, i.e. C c &2(C), the affine plane over C. Whenever
useful or necessary, we will also consider the curve C in the projective plane, i.e.
P2(C). Points in the projective plane are written as (a : b: c).

D e f i n i t i o n : The curve C is a called a real curve, if and only if C has infinitely
many points in A 2 (R).

A real curve always has a defining polynomial over the reals. A proof of the
following Lemma is given in RS97a.

L e m m a 1: I f the curve C is real, then it can be defined by a real polynomial.

Not only can every real curve be defined over the reals, also the irreducibility
of the curve is independent from whether we view it in A ~ (R) or in A 2 (C). A
proof of the following Lemma is given in Wi96, Theorem 5.5.3.

L e m m a 2: Let C be a real curve. C is irreducible over ~ i f and only i f it is
irreducible over C.

The algorithm presented in SW91 implies tha t every parametrizable plane
curve over an algebraically closed field JC of characteristic zero can be parame-
trized over any subfield of/C that contains the coefficients of the irreducible poly-
nomial defining the curve, and the coordinates of one simple point of the curve.
Thus, as a consequence of Lemma 1, one deduces that every real parametrizable
plane curve can be parametrized over the reals (this result is also known as the

286 J. Rafael Sendra and Franz Winkler

algebraic version of the real Liiroth's theorem RS97b), and that a parametriz-
able plane curve is real if and only if it has at least one real simple point.

E x a m p l e 1: Let the curve dl (Wi96) be defined by

f l (x , y) = (x 2 + 4y + y2)2 _ 16(x 2 _}_ y2) = 0.

C1 is a real curve. In fact C1 is a parametrizable real curve, and a parametrization
over the reals is

-1024t 3 -2048t a + 128t 2
x(t) = 256t 4 + 32t2 + 1' y(t) = 256t 4 + 32t2 + 1"

On the other hand, the curve C2 (RS97a) defined by

f 2 (x , y) -- 2y 2 + x 2 + 2x2y 2 = 0

is not a real curve. The only point of C2 in the affine plane over the reals is the
double point (0, 0). The complex curve C2 is parametrizable, and a parametriza-
tion is

- t 2 - 2t + 1 it 2 + 2it - i
x (t) -- t2 _ 2 t _ l ' y(t) -- 2t ~ + 2

3 A R e a l P a r a m e t r i z a t i o n A l g o r i t h m

Let L be a computable subfield of C, and let the irreducible affine curve C be
defined by the polynomial f (x , y) c Lx, y. We may assume that f is a real
polynomial (indeed associated with a real polynomial), for otherwise by Lemma
1 one knows that d is not a real curve. Thus, we may suppose that L is a subfield
of I~. In the process of parametrization it is necessary to view C as a projective
curve in the projective plane P2(C). This projective curve, also denoted by C,
is defined by the homogeneous polynomial F (x , y, z) E Lx, y, z, where F is the
homogenization of f .

The property of parametrizability is independent of whether we view C in
the affine or the projective plane, and parametrizations can be easily converted
SW91.

Def in i t ion : Let the irreducible curve C of degree d be defined by the irreducible
polynomial f (x , y) E Lx, y of degree d. The singular point P E ~2(C) of multi-
plicity m on C is an ordinary singular point, if and only if there are m different
tangents to C at P.

If C has only ordinary singularities P 1 , . . . , P n of multiplicities r l , . . . , r n ,
respectively, then the genus of C is defined as

n

genus(C) = l (d - 1) (d - 2) - E r i (r i - 1).
i = l

Real Parametrization of Algebraic Curves 287

This definition, and also the method described in this paper, can be extended
to curves with non-ordinary singularities. For the sake of simplicity we do not
consider this situation here.

The linear system of adjoint curves of degree d' to C consists of all the curves
of degree d' having every point Pi, 1 < i < n, as a point of multiplicity at least
ri - 1.

Since the adjoint curves of any degree d' to a rational plane curve C have
defining polynomial over L, and can be computed in a finite number of ground
field operations SW91, the problem of parametrizing is reduced to the problem
of determining a simple point on the curve. We will do that by transforming
C birationally to a conic 7). The simple real points on C and on 7) correspond
uniquely to each other, except for finitely many exceptions. So there is a simple
real point on C if and only if there is a simple real point on 7). This question can
be decided. If the answer is yes, a real point on 7) can be computed, transformed
to a real point on C, and from this point we can derive a parametrizat ion of C
over ~.

In SW97 we prove the following generalization of a theorem by Hilbert and
Hurwitz HH90.

T h e o r e m 1: Let G be a rational plane curve of degree d defined by a polynomial
over L, Tla the linear system of adjoint curves to C of degree a c { d, d - 1, d - 2 } ,
and ~l a a linear subsystem of 7ta of dimension s with all its base points on C.
Then we have the following:

(i) I f ~ l , ~2,4~3 E 7~ are such that the common intersections of the three curves
~i and C are the set of base points of ~ , and such that

T = { y l :Y2:Y3=~51:~2 :~S3}

is a birational transformation, then the birationally equivalent curve to C,
obtained by T , is irreducible of degree s.

(ii) Those values of the parameters for which the rational transformation T is
not birational satisfy some algebraic conditions.

We will use Theorem 1 to transform the curve C to either a line or a conic.
For the transformed curves it will be easy to decide the existence of real points
and if so to determine a real point. So we need to select a linear subsystem of low
dimension in the system of adjoint curves, e.g. by fixing additional base points.
These additional base points will introduce algebraic coefficients into the system,
unless we can find rational ones or whole conjugate families of such points.

D e f in i t i on : Let F E Lxl ,x2,x3 be a homogeneous polynomial defining a
parametrizable projective curve C. Let pl,p2,p3, m E Lt. The set of projec-
tive points 9 ~ = {(pi(o 0 : p2(oz) : p3(o0) I m(c~) = 0} C ~2(C) is a family of s
conjugate simple points on C if and only if the following conditions are satisfied:
m is squarefree, deg(m) -- s, deg(pi) < deg(m) for i = 1, 2, 3, gcd(pl,p2,p3) = 1,

288 J. Rafael Sendra and Franz Winkler

5 r contains exactly s points of p2(C), F(pl(t),p2(t),p3(t)) = 0 mod re(t), and
there exists i E {1, 2, 3} such that o~ff7 (Pl (t), p2 (t), P3 (t)) mod m(t) ~ O.

If we choose all the points in a family of conjugate points as additional base
points in the system of adjoint curves, then the corresponding subsystem will
again have coefficients over the ground field L.

Def in i t ion : Let C be a plane curve defined by a polynomial over L, 7-/a linear
system of curves in which all the elements are of the same degree,/~ the defining
polynomial of a linear subsystem ~ of T/, and let S be the set of base points of
7-/that are not base points of 7-/. Then, we say that 7~ is a rational subsystem of
7-/if the following conditions are satified:

(1) /~ has coefficients in L.
(2) For almost every curve �9 E 7-/, and ~ E 7~ it holds that

dim(T/) - dim(E) -- ~ (multp(~, C) - multp(~5, C)),

PEg

where multp (C1, C2) denotes the multiplicity of intersection of the curves C1, C2
at the point P.

Essentially, this notion requires tha t when a point or a family of points on C
are used to generate a subsystem 7-I of 7-/(by introducing some points on C as
new base point on 7-/with specific multiplicities) the linear system of equations
containing the contraints is over L, and its rank equals the number of new known
intersection points between C and a generic representative of the subsystem. In
the next proposition some special cases of rational linear subsystem are analyzed.
The following Proposition 1 and Theorem 2 are proved in SW97.

P r o p o s i t i o n 1: Let C be a rational plane curve of degree d defined by a poly-
nomial over L, T/a the linear system of adjoint curves to C of degree a E
{ d , d - 1 , d - 2}, and 5 r -- {(pl(t) : p2(t) : p3(t))}n(t) a family o f k conjugate
points on C over L. Then we have the following:

(i) If ~ is a family of simple points, k <_ dim(T/a), and ~a is the subsystem of
T/a obtained by forcing every point in .~ to be a simple base point of T/a,
then ~a is rational, and dim(T/a) ---- dim(T/a) - h.

(ii) If ~ is a family of r-fold points, r . k <_ dim(T/a), and 7:la is the subsystem
of T/a obtained by ~rcing every point in ~ to be a base point of T/a of
multiplicity r, then T/a is rational, and dim(~a) = dim(T/a) - r k.

T h e o r e m 2: Let C be a rational plane curve of degree d defined by a polynomial
over L, and T/a the linear system of adjoint curves to C of degree a E { d, d -
1, d - 2}. Then every rational linear subsystem of T/= of dimension s with all
its base points on C provides curves that generate families of s conjugate simple
points over L by intersection with C.

As a consequence of Proposition 1 and Theorem 2 we get the following algo-
rithmically important facts.

Real Parametrization of Algebraic Curves 289

T h e o r e m 3: Let C be a rational plane curve of degree d, defined by a polynomial
:(x, y) e Lx, y.

(i) C has families of d - 2, 2d - 2, and 3d - 2 conjugate simple points over L.
(ii) C has families of 2 conjugate simple points over L.

(iii) I f d is odd, then C has a simple point over L.
(iv) I f d is even, then C has simple points over an algebraic extension of L of

degree 2.

Proof." (i) Let P1 , . . . ,Pn be the singular points on C, having multiplicities
r l , . . . , rn, respectively. Since we assume that all singularities are ordinary and
C is rational, we have

n

(d - 1) (d - 2) -- ~-~r~(ri - 1).
i----1

By application of Proposition 1 we see that the dimension of the system of
adjoint curves of degree d - 2, ~t'~d_2, to C is

(d--1)d2 1-- f i (r i ~ 1) r i - d - 2 "

i = l

Now we can apply Theorem 2 for s = d - 2 (i.e. choosing the whole system) and
we get that C has families of d - 2 conjugate simple points. Similarly, by using
systems of adjoint curves of degrees d - 1 and d, respectively, we get that C has
families of 2d - 2 and 3d - 2 conjugate simple points.
(ii) We first apply statement (i) to obtain two different families of (d - 2) simple
points. Let ?Q-1 be the system of adjoint curves of degree (d - 1). Applying
Proposition 1 one has that the linear subsystem ~d-1 obtained by forcing all
the points in these two families to be simple base points of 7-/4-1 is rational
of dimension 2. Thus, applying Theorem 2 to 7-/4-1 one obtains families of two
simple points.
(iii) Applying statement (ii) one can determine ~ different families of two
simple points on C. Let 7"~d-2 be the system of adjoint curves of degree (d - 2).
Applying Proposition 1 one has that the linear subsystem ~ d - - 2 obtained by
forcing all the points in these families to be simple base points of 7-/d-2 is rational
of dimension one. Thus, applying Theorem 2 one concludes that C has simple
points over L.
(iv) This is an inmediate consequence of statement (ii).

Summarizing we get the following algorithm for deciding the parametrizabil-
i ty over R and, in the positive case, computing such a parametrization.

Algorithm REAL-PARAM(f)

- - I n p u t : F(xl , x2, x3) C Lxl, x2, x3 is an irreducible homogeneous polyno-
mial of degree d, that defines a rational plane curve C.

290 J. Rafael Sendra and Franz Winkler

- O u t p u t : a real parametrization of g, or
" n o - r e a l - p a r a m e t r i z a t i o n " if no real parametrization exists.

(1) Compute the linear system H of adjoint curves to g of degree (d - 2).
(2) If d is odd, apply Theorem 3 (iii) to find (d - 3) simple points of F over L.
(3) If d is even, apply Theorem 3 (ii) to find ~ families of two simple points

of F over L.
(4) Determine the linear rational subsys tem/~ obtained by forcing the points

computed in steps ~2) and (3) to be simple base points on H.
(5) Take ~1, ~2, ~3 E H such that the common intersections of the three curves

~i and F are the set of base points o f /~ , and such that

T = {yl : y2 : Y3 ---- ~1 : ~2 : ~3}

is a birational transformation (Theorem 1).
(6) Determine the transformed curve T~ to C obtained by :Y. Note that applying

Theorem 1 one has that :D is either a conic or a line depending on whether
d is even or odd, respectively. :D can be easily determined by sending a few
points from g to :D and then interpolating.

(7) If d is odd, parametrize the l ine /) over L. Apply the inverse transformation
:y-1 to find a parametrization of g over L, and therefore over ~. (Or, alter-
natively, determine as many points o n /) over L as necessary, transfer them
back to g by 7 "-1, and use them for computing a parametrizat ion of g over
L)

(8) If d is even, decide whether the conic :D can be parametrized over ~. If so,
parametrize :D over ~. Apply the inverse transformation :Y-1 to find a real
parametrization of C over ~. (Or, alternatively, determine as many points
on :D over R as necessary, transfer them back to C by q- - i , and use them for
computing a parametrization of C over IE)
If not, report " n o - r e a l - p a r a m e t r i z a t i o n " .

In step (8) we have to decide whether an irreducible conic :D, defined by a
homogeneous polynomial G(yl, Y2, Y3) C Lyl, Y2, Y3, contains a real point P. If
so, then we can obviously parametrize :D by intersecting it by lines through P.

In fact we can decide whether :D contains a rational point. For details see
IR82 and HW98. If this is not the case, we can transform :D to an equivalent
conic :D I by a birational mapping over ~, such that the defining equation of :D'
has the form

yl = 0

(see, e.g., the Law of Inertia in Ga59). Then :D', and hence :D, has a real point
if and only if the defining equation of :D' is not equivalent to y2 + y2 + y2 __ 0.
In fact, if :D contains a real point, then we can compute one. Thus, the question
in step (8) can be completely decided.

An alternative approach is to decide the reality of g by computing the signa-
ture of the corresponding quadratic form, and once the reality is decided, to find
a family of two conjugate points on g (Theorem 3 (ii)) whose quadratic defining
polynomial has real roots.

Real Parametrization of Algebraic Curves 291

4 Real Reparametrization

If a complex rational parametization P(t) of an irreducible affine plane curve C
over C is given, or computed by any parametrization algorithm, the alternative
approach presented in RS97a may be considered. In this situation, the reality of
C is decided by computing a gcd of two real bivariate polynomonials, and if the
curve is real, a linear parameter change is determined to transform the original
parametrization into a real one.

The main idea of the algorithm presented in RS97a is to associate with
the original parametrization a plane curve that contains as points the complex
values (taking the real and imaginary parts) of the parameter that generates,
via the parametrization, the real points on the original curve. Then the reality
of the original curve is characterized by means of the reality of the associated
curve, that is proved to be either a line or a circle. More precisely, let P(t) be
the proper complex parametrization of C:

x (t) - ql(t) q2(t)
h(t) ' y (t) - h i t) ,

where ql, q2, h E Ct and gcd(ql, q2, h) = 1. Then, we apply the formal change
of variable t = t l + it2 to P(t) to obtain:

x(t l q-it2) = u l (t l , t 2) + iv l (t l , t2)
hi(t1, t2) 2 + h2(tl, t2) 2'

y(t l + it2) = u2(tl , t2) + iv2(tl , t2)

where hi ,h2 E Rtl,t2, Ul,Vl �9 l~tl,t2 and u2,v2 �9 ~tl,t2 are the real and
imaginary parts of h(tl +i t2), ql(tl + i t2).h(tl - i t2) and q2(tl + i t2) .h(t l - i t2),
respectively (h denotes here the conjugate of h). Then, it is proved in RS97a
that the plane curve C is real if and only if gcd(Vl,V2) is either a real line or a
real circle. Furthermore, if the plane curve C is real, and (ml(t), m2(t)) is a real
proper rational parametrization of gad(v1, v2), then P(ml (t) + i m2(t)) is a real
proper rationM parametrization of C.

Clearly, these two results provide an algorithm for deciding the reality of
curves, and in the affirmative case, computing the linear change of parame-
ter that reparametrizes the original complex proper parametrization into a real
proper parametrization.

5 Examples

Example 2" We consider the curve C1 of Example 1. C1 is defined by

f l (x , y) -- (x 2 + 4y + y2)2 _ 16(x 2 + y2) = 0.

Let us first apply the algorithm REAL-PARAM to C1 to see whether it is
parametrizable.

292 J. Rafaet Sendra and Franz Winkler

C1 has 3 double points in the projective plane, namely

(0 : 0 : 1) and (1 : + i : 0) .

So genus(C1) -- 0, which means that E 1 is rational and must have a parametriza-
tion over C (the picture actually suggests that it is a real curve, and therefore
must have a parametrization over ~).

The system 7-/of conics (curve of degree 2) passing through all three of these
double points is defined by

h(x, y, z, s, t) = x 2 + sxz + y2 + tyz ,

so it is a system of dimension 2. Let the birational transformation 7" be

7" = (~1: 4~2: ~3) = (h(x, y, z, O, 1): h(x, y, z, 1, 0): h(x, y, z, 1, 1)),

i.e.

~)1 = X 2 + y2 + yz , q52 : X 2 + XZ + y2, ~3 ---- x 2 + x z + y2 + yz .

We determine the birationally equivalent conic 7)1 to C1 by sending the 6 points
in the families

9vl = {(t : - t + 2 : 1) I 4t4 - 32t3 + 80t2 - 128t + 80},

~'2 = {(t : 1 - 2t : 1) I t 2 - 4 t + 1}

onto/)1 by 7". This gives us the conic defined by

15x 2 + 7y 2 + 6xy - 38x - 14y + 23.

:D1 has the real (in fact, rational) point (1, 8/7), which (by 7"-1) corresponds to
the point P = (0, -8~ on C1.

Now we restrict 7-/to the curves through P. This restricted linear system is
defined by (after renaming of the free parameter)

h*(x, y, z, t) -= x 2 + t x z + y2 + 8yz.

Computing the resultants of f l (x , y) and h*(x, y, 1, t), with respect to x and y,
respectively, and taking the primitive parts with respect to the parameter t, one
gets two polynomials R1 E Cy,t and R2 E Cx,t, such that the degrees of
R1 and R2, with respect to y and x, respectively, are one. Hence, solving the
system {R1 = 0,R2 = 0} in the variables {x, y}, one gets the following real
parametrization P (t) of C1:

-1024t 3 -2048t 4 + 128t 2
x(t) = 256t 4 + 32t2 + 1' y(t) = 256t 4 + 32t2 + 1"

Let us now apply the real reparametrization approach of section 4 to C1.
The idea is, therefore, to apply any basic parametrization algorithm to C1 with-
out taking care of the field extensions, and afterwards to analyze the possible

Real Parametrization of Algebraic Curves 293

r epa rame t r i z a t i on of the achieved pa r ame t r i z a t i on over the g_round field. Thus ,
the first s teps are the same. We consider the linear sys t em 7- /of adjoint curves
of degree 2, and t hen we force 7~ to pass th rough any s imple po in t on the curve.
We take, for instance, Q = ~__r 128. : --~-16~ : 1). T h e ob ta ined l inear s u b s y s t e m of

7~ has d imens ion 1 and is defined by the po lynomia l

h . (x , y , z , t) = x2 + txz + y2 + (34~ 4 - - ~5it, yz.

Now, proceeding as above, we get the following p a r a m e t r i z a t i o n Q(t) over C of
CI:

- 1 0 2 4 i + 128t - 144 i t 2 A- i t 4 - 2 2 t 3
x(t) = - 3 2

2304 - 3072 i t - 736 t 2 + 9 t 4 - 192 i t 3
1024 - 256 i t - 80 t 2 + t 4 + 16 i t 3

y(t) = - 4 0
2304 - 3072 i t - 736 t 2 + 9 t 4 - 192 i t 3"

Now, we execute the formal change of p a r a m e t e r t = t l + it2 in Q(t) , and we
c o m p u t e the gcd of the imag ina ry par ts , vl(t l , t2) and v2(t l , t2) , of the nor-
mal ized (i.e. wi th denomina to r s in •tl, t2) ra t iona l funct ions x(t l + i t2) and
y(tl + i t2), respect ively:

D(tl , t2) = gcd(vl , v2) = t 2 + t22 + 6t2 - 16.

In this s i tuat ion, since D(tl , t2) defines a real circle, it follows t h a t the original
curve C1 is real and, therefore, pa rame t r i z ing over the reals the curve defined by
D(t l , t2) one gets the linear change of p a r a m e t e r to t r ans fo rm Q(t) into a real
pa rame t r i za t ion . More precisely, one takes the real p a r a m e t r i z a t i o n of D(tl , t2):

- l O t - l O t
t l (t) - t 2 + l , t 2 (t) = t 2 + l .

There fo re , /~ (t) ,~z -10t -10t = ~ W 4 - ~ + i W ~ is a real pa r ame t r i z a t i on of C1. In fact, s
is the pa ramet r i za t ion :

- 3 2 t 4t 4 - 1
x(t) = 16t4 + 8t 2 + 1 ' y(t) = 816t4 + 8t 2 + 1"

D

E x a m p l e 3: We consider the curve C2 of E x a m p l e 1. C2 is defined by

f2(x ,y) = 2y 2 + x 2 + 2x2y 2 = 0.

Le t us app ly the a lgor i thm REAL-PARAM to C2 to see whe ther it can be pa ra -
metr ized. T h e singulari t i t ies of C2 in the projec t ive plane are

(1:0:0), (0:1:0), (0:0:1),

each of which is a double point . So genus(C2) = 0, which means t h a t C2 can be
p a r a m e t r i z e d over C.

294 J. Rafael Sendra and Franz Winkler

The system ~ of conics passing through all three of these double points is
defined by

h(x, y, z, s, t) = x z + t y z + sxy ,

so it is a system of dimension 2. Let the birational transformation : r be

9" = (~1: ~ 2 : ~3) = (h(x, y, z, 1, 0): h(x , y, z, O, 1): h(x , y, z, 1, 1)),

i.e.

q51= x z + xy, q~2 = x z + Yz, q~3 = x z + yz + xY.

We determine the birationally equivalent conic :/)2 to C2 by sending the 8 points
in the families

9vl = {(t : - 2 t + 1: 1) 8t 4 - 8t 3 + 11t 2 - 8t + 2},

Y ' 2 - - { (t : - t + 2 : l) l 2 t 4 - 8 t 3 4 - 1 1 t 2 - 8 t + 8 }

onto :D2 by T. This gives us the conic defined by

5z 2 - 6xz - 6yz + 3x 2 + 2xy + 3y 2.

D2 has no real point. So also C2 can have no real point, i.e. it is NOT parametriz-
able over 1~

But we can parametrize C2 over C by passing the system of adjoint curves
through the point

P = (-c~, c~) , where 2c~ 2 + 3 = 0,

getting

2 a t) x y . h*(x, y, z, t) = x z + t y z + -~(a -

Now, proceeding as in Example 2, we get the following parametrization P (t) of
C2 over C:

-o l t 2 - 2a -ozt 2 - 2a
x(t) - t2 _ 2 t _ 2, y(t) - t~ + 4 t _ 2

We leave the application of the reparametrization algorithm to the reader.

C o n c l u s i o n

So, as we have seen above, we can parametrize any parametrizable real curve
by a real parametrization P(t) -- (x(t) , y(t)) , i.e. x(t) , y(t) e JR(t). This is what
we usually need in applications, such as in computer aided geometric design.
The algorithms described in this paper allow us, for the first time, to decide the
possibility of a real parametrization and, if it exists, to actually compute one.

Real Parametrization of Algebraic Curves 295

References

lAB88 Abhyankar S.S, Bajaj C.L., (1988), Automatic parametrization of rational
curves and surfaces III: Algebraic plane curves. Computer Aided Geometric
Design 5, 309-321.

Ga59 Gantmacher F.R., (1959), The Theory of Matrices. Chelsea, New York.
HH90 Hilbert D., Hurwitz A. (1890), Uber die Diophantischen Gleichungen vom

Geschlecht Null. Acta math. 14, 217-224.
HW98 Hillgarter E., Winkler F. (1998), Points on algebraic curves and the para-

metrization problem. In: D. Wang (ed.), Automated Deduction in Geometry,
185-203, Lecture Notes in Artif. Intell. 1360, Springer Verlag Berlin Heidelberg.

vH97 van Hoeij M. (1997), Rational parametrizations of algebraic curves using a
canonical divisor. J. Symbolic Computation 23/2&3, 209-227.

IR82 Ireland K., Rosen R. (1982), A classical introduction to modern number theory.
Springer Verlag, Graduate Texts in Mathematics, New York.

MSW96 Mfiuk M., Sendra J.R., Winkler F. (1996), On the complexity of parametriz-
ing curves. Beitr~ge zur Algebra und Geometrie 37/2, 309-328.

MW96 Mfiuk M., Winkler F. (1996), CASA -- A System for Computer Aided Con-
structive Algebraic Geometry. In: J. Calmet and C. Limongelli (eds.), Proc.
Internat. Symp. on Design and Implementation of Symbolic Computation Sys-
terns (DISCO'96), 297-307, LNCS 1128, Springer Verlag Berlin Heidelberg New
York.

RS95 Recio T., Sendra J.R. (1995), Reparametrizacidn real de curvas reales para-
mdtricas. Proc. EACA'95, 159-168, Univ. de Cantabria, Santander, Spain.

RS97a Recio T., Sendra J.R. (1997), Real parametrizations of real curves. J. Symbolic
Computation 23/28z3, 241-254.

RS97b Recio T., Sendra J.R. (1997), A really elementary proof of real Liiroth's theo-
rem. Revista Matem~tica de la Universidad Complutense de Madrid 10, 283-
291.

SW91 Sendra J.R., Winkler F. (1991), Symbolic parametrization of curves. J. Sym-
bolic Computation 12/6, 607-631.

SW97 Sendra J.R., Winkler F. (1997), Parametrization of algebraic curves over op-
timal field extensions. J. Symbolic Computation 23/2&:3, 191-207.

Wa50 Walker R.J. (1950), Algebraic curves. Princeton Unversity Press.
Wi96 Winkler F. (1996), Polynomial algorithms in computer algebra. Springer-Verlag

Wien New York.

Non-clausal Reasoning with Propositional
Definite Theories

Zbigniew Stachniak*

York University, Toronto, Canada
zbigniew@cs, yorku, ca

Abst rac t . In this paper we propose a non-clausal representational for-
malism (of definite formulas) that retains the syntactic flavor and al-
gorithmic advantages of Horn clauses. The notion of a definite formula
is generic in the sense that it is available to any logical calculus. We
argue that efficient automated reasoning techniques which utilize defi-
nite formula representation of knowledge (such as SLD-resolution) can
be developed for classical and a variety of non-classical logics.

1 I n t r o d u c t i o n

Among the most effective methods by which the efficiency of automated reason-
ing in classical logic can be achieved is the restriction of the reasoning process
to formulas in a specific syntactic form, most notably to clauses, and the use
of inference rules and proof techniques that are tailored to the selected normal
form. Resolution (Robinson, 7) and Clausal Boolean Constrain Propagation
(McAllester, 5) for clauses, and SLD-resolution for Horn clauses (cf. 2) can
serve as examples.

The construction of efficient clause-based automated reasoning methods for
non-classical logics presents two major obstacles. First, the syntactic analogue
of a clause that would provide a syntactic base for an efficient reasoning could
be difficult to find. The notion of a clause in classical logic relies on the standard
interpretat ion of logical connectives. In a non-standard logic classical connec-
tives can be either absent, supplemented with other connectives (modal, tem-
poral, etc), or interpreted in a non-standard way. Second, some applications
require that the logical equivalence, rather than satisfiability, is to be preserved
through the transformation of formulas of an object language into clauses. Even
for classical logic such a transformation can result in an exponentially larger
theory. For these reasons non-clausal proof techniques have been developed for
AI applications that do not (or cannot) relay on clause manipulation (e.g, some
truth-maintenance systems or general purpose knowledge representation sys-
tems). Some of the recent examples include Restricted Fact Propagat ion (Roy-
Chowdhury and Dalai, 8), linear resolution for theories in negation normal form
1, resolution proof systems for Resolution Logics (Stachniak, 10).

* Research supported by a grant from the Natural Sciences and Engineering Research
Council of Canada.

Jacques Calmet and Jan Plaza (Eds.): AISC'98, LNAI 1476, pp. 296-307, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

Non-clausal Reasoning with Propositional Definite Theories 297

In this paper we propose a representational formalism (of definite formulas)
tha t is intrinsically non-clausal, but at the same time it retains the syntactic
flavor and algorithmic advantages of Horn clauses. It does not relay on a rigid
structure of a normal form but, instead, it captures the logical features of liter-
als in a clause. The proposed non-clausal analogue of a Horn clause has decided
advantages. Due to its free-form nature, "we avoid the proliferation of sentences
and the disintegration of intuition that accompany the translation to clausal
form", 4. Another is that it allows a universal Horn close-like representation of
knowledge across the class of logical systems. For classical logic, definite formula
and Horn clause fragments are of equal expressive power. However, represent-
ing knowledge using definite formulas rather than Horn clauses may result in
an exponentially smaller theory. And finally, efficient automated reasoning tech-
niques that utilize definite formula representation of knowledge can be developed
for classical and a variety of non-classical logics. In this paper we adopt SLD-
resolution to definite formula fragments of logical systems for which non-clausal
resolution proof systems are available.

The rest of the paper is divided into three parts. In the first part, Section 2, we
use the example of classical logic for a brief and informal introduction to definite
formulas. In Section 3 we discuss ways of defining definite formulas in the con-
text of non-classical logics. Our extension relies on the notion of polarity which
we discuss in the first place. We then briefly review the non-clausal resolution
framework for non-classical logics and define its SLD refinement. The last part,
Section 4, comprises the mathematical results on non-clausal SLD-resolution.
We give a list of conditions sufficient for the completeness of SLD-resolution.
We use classical propositional logic and Lukasiewicz three-valued propositional
logic to illustrate concepts and theoretical results reported in this paper. Only
propositional logics are discussed; the extension of the proposed representational
framework to first-order logic is the subject of a forthcoming paper.

2 F r o m P o l a r i t y t o D e f i n i t e F o r m u l a s

The basic idea behind the notion of a definite formula of classical logic is quite
simple: atoms in a Horn clause (literals) satisfy two polarity constraints:

(pl) every atom has a polarity value ' + ' (positive, e.g. p is '+ ' in p ~ q r),
' - ' (negative, e.g. atoms q and r are both ' - ' in p ~ q r), or
'0' (no polarity, e.g. p in p *-- p q);

(p2) at most one of the atoms is non-negative (i.e., it is either % ' or '0').

Since polarity values of atoms can be computed for an arbitrary formula (cf. 4
and 6, see also Example B in Section 3.1) these two constraints determine a
special class of formulas whose atoms have the same polarity features as literals
in a Horn clause. And this is exactly the class of formulas we are interested in.
As an example, consider

(~ = (Pl A -~ql) V (-~P2 A -~q2) V . . . V (-~Pn A ~qn).

298 Zbigniew Stachniak

If we accept the position that polarity values of variables of a reflect the mono-
tonic behavior of the Boolean function f~(Pl, . . . ,Pn,ql , . . . , qn) defined by a,
then we can assign '+ ' to pl to indicate that fa is nondecreasing in PI, and ' - '
to all the other variables of a, to reflect the fact that fa is nonincreasing in any
of these variable arguments. In short, the polarity status of the variables in a is
the same as in the Horn clause oL H = Pl V -~ql V ~P2 V ~q2 V . . . V ~Pn V ~qn. In-
deed, Boolean function defined by aH is nondecreasing in Pl and nonincreasing
in all the other variable arguments. Let us stress however, that a and aH are not
equivalent in classical logic. Moreover, the transformation of a into conjunctive
normal form using the distributivity law yields 2 n Horn clauses.

To sum things up, by adopting a certain notion of polarity that effectively
labels atoms in formulas as positive, negative, or of no polarity, we can select
a class of definite formulas (in short, d-formulas), i.e., formulas of an object
language whose atoms satisfy (pl) and (p2). The formulaic analogues of the
familiar notions such as 'goal clause', 'axiom clause', or 'rule clause', can be eas-
ily reconstructed (e.g., a 'goal formula' is a d-formula with only negative atoms).

Having the notion of a d-formula introduced (still informally at this point),
we can now ask the question if efficient automated reasoning methods for Horn
clauses can be adopted for efficient reasoning with d-formulas. To answer this
question we select a well-known method - SLD-resolution. Any other method
could have been chosen (e.g., Clausal Boolean Constraint Propagation, cf. 5).

SLD-resolution procedure (which we identify in this paper with the input
refinement of resolution with a goal as the top clause) restricts deductions to
sequences

Go, Co , . . . , Gs-1, Cs-1, Gs,

of Horn clauses, where: Go is a goal clause (the top goal) and Co , . . . , Cs-1 are
non-goal clauses which, together with G0, represent a given reasoning task. Every
Gi+l, i < s, is a goal clause obtained by resolving Gi with Ci. The well-known
fact for ground Horn clauses states that if X = {Co , . . . , Cs-1} consists of non-
goal clauses, then X U {Go} is inconsistent iffthere is SLD-refutation of this set
(i.e., SLD-deduction of the empty clause) with Go as the top goal. First-order
logic analogue of this fact is the basis of SLD-refutation procedure employed in
logic programming systems for definite clauses (cf. 2).

In order to obtain a similar result for d-formulas of classical logic, we must
replace the clausal form of the resolution principle by its non-clausal analogue
(cf. 4, 6, 10):

Res : a(p), fl(p)
v

where F is a contradictory formula (say p A -~p) while T is -~F. If we view F and
T as constants (i.e., if we ignore the fact that they contain variables), then the
resolvent a(p/F)VG(p/T) of a goal formula G(p) with a d-formula a(p) in which
p is non-negative, is also a goal formula. This allows an almost direct adaptation

Non-clausal Reasoning with Propositional Definite Theories 299

of the SLD-resolution procedure to d-formulas. We informally describe this in the
following example (for the detailed discussion of SLD-resolution for d-formulas
we have to wait until Section 3.2).

EXAMPLE A: Let the set X consist of the following four formulas of classical
propositional logic:

(a) r, p, (pAq)-~-~r, p ~ q .

Every formula of X is a d-formula under the standard notion of polarity (which
we recall in Example B of the next section). The variables of (p A q) -~ ~r
have negative polarities which, for simplicity, we record by superscripting them
by ' - ' (the superscript '+ ' will be used to indicate the positive occurrence of a
variable). Hence, (p- Aq-) -~ -~r- is a goal d-formula. The remaining formulas of
X can be rewritten as: r+,p +, and p- -~ q+. To refute X we use the non-clausal
resolution rule to deduce F in the following way:

Go: (p- A q-) -* -~r- top goal
Co : r + formula of X

Resolving Co with Go upon r gives us F V ((p- A q-) --~ -~T) which can be
simplified to

GI: FV((p-Aq-)----~F)
by replacing --T with syntactically 'simpler' but equivalent F. We continue the
refutation by selecting

C1 : p- ~ q+ formula of X
G2 : (p- ~ F) V F V ((p- A T) --* F) resolvent of C1 and G1 upon q
C2 : p+ formula of X

By resolving C2 and G2 upon p we get F V (T --* F) V F V ((T A T) --~ F) which
can be simplified to

G3: F

by applying Boolean-like reduction rules (e.g., substituting T --+ F by F, or
F V F by F). This successfully terminates the deductive process. The structure
of this refutation resembles clausal SLD-refutation; we always resolve the current
goal with a formula of X. The simplified forms of goals are obtained by applying
Boolean-like reduction rules. ::

3 R e a s o n i n g w i t h d - F o r m u l a s

Among interesting features of d-formulas there is almost universal applicability
of this representational framework to a variety of non-classical logics; all that is
needed is a suitable generalization of the notion of polarity and, for resolution-
based reasoning with such formulas, an extension of the resolution principle
beyond classical logic. We derive both by adopting or reusing ideas from various
sources, primarily from (4, 6, 10). We begin with the formal definition of a
definite formula.

300 Zbigniew Stachniak

3.1 d - F o r m u l a s Def ined

Let P = (L, F-) be an arbitrary propositional logic, where L denotes the language
and ~- the inference operation of P (we identify L with the set of all well-formed
formulas of P). Our task is to select a set :DL C L of definite formulas according
to the criterion spelled out in the preceding section:

DEFINITION: a C ~)L (iS a d-formula) iff atoms of a satisfy (pl) and (p2).

This criterion is well-defined only when a suitable method of assigning polar-
ity values '+ ' , ' - ' , and '0' to variables in formulas of L is selected. Clearly, not
every assignment of polarity values to variables would be useful. Indeed, our
intention is to model the notion of a d-formula after the role of positive and
negative literals in a Horn clause of classical logic: polarity values of these lit~
erals indicate whether or not the Boolean function defined by a given clause
is nonincreasing or nondecreasing in its arguments (under the assumption that
the truth-value F is smaller than T). Although this interpretation of polarity
values is semantic and our definition of a logic P does not explicitly involve any
semantic concepts (P is just a pair (L, t-l) , we can still formulate an analogous
but syntactic interpretation of polarity values. The clue is to view formulas of L
as reference points, or truth-values, that are ordered using some binary preorder
relation -~ on L. We read 'a -~/3' as 't3 is logically at least as large as a ' and
require only that a -~/~ implies a ~- ~. Although -~ can be chosen in a number
of ways, the relation that is most frequently used in the literature is, in fact, the
inference operation t- itself, i.e., we let a -~/~ iff a ~-/~. This relation is implicitly
used in 6; it is the 'if-then' relation in 4 and the <_Rs polarity relation in 10.
Other choices for the relation 'logically larger than' can be found in the works
just quoted.

Having chosen a 'logically larger than' relation 4, we can require that a
polarity assignment algorithm should label variables of formulas of L with '+ ' ,
' - ' , or '0' in such a way that:

(p3) if a variable p is labeled '+ ' in a formula a and if fl ~ 7, then

Informally speaking, (p3) says that a polarity assignment algorithm may label
a variable p with % ' in a, only when a is nondecreasing in p with respect to -~.
Similarly,

(p4) if a variable p is labeled ' - ' in a formula a and if t3 -~ 7, then

In conclusion, for every logic P a class of d-formulas can be defined by selecting
a polarity assignment algorithm that satisfies (p3) and (p4) with respect to a
preselected 'logically larger than' relation. Clearly, in practical applications we
would like the assignment of polarity values to be a computationally feasible
process. In the examples that follow we discuss two such algorithms that define
classes of d-formulas for classical logic and the three-valued logic of Lukasiewicz.

Non-clausal Reasoning with Propositional Definite Theories 301

EXAMPLE B: We describe the class of d-formulas for classical logic determined
by polarity assignment algorithm whose variant is called the relational polarity
in 4 and the operator polarity in 10. Let L be the language of classical logic
with the connectives -~, V, A, and ---~. Let c~(p) E L be a formula containing a
variable p. To assign a polarity value to p in a, we first compute the polarity
value of every occurrence of p in this formula. This is done by induction on the
complexity of c~.

- If a(p) is the variable p, then the only occurrence of p (in itself) is positive.
- Having the polarity values of occurrences of p in a formula/3 assigned, we

proceed as follows. Select an occurrence of p in/~. This occurrence retains
its polarity value in: 7 V/3,/~ V % 7 A/~,/~ A 7, and in 7 --* t3; it changes to
the opposite polarity value in: -~/~ and/~ --~ 7.

Finally, we declare p positive (negative) in ~ if every occurrence of p in (~ is
positive (negative). If p is neither positive nor negative, then the polarity value
'0' is assigned to it. The reader is asked to verify that this polarity assignment
method satisfies (p3) and (p4) with respect to F-.

If we run this algorithm on the formulas of the set X of Example A, then
the polarity values generated for the variables occurring in these formulas will
be as indicated in Example A.

Under this polarity assignment algorithm, Horn clause and d-formula frag-
ments of classical logic have the same expressive power: every Horn clause is a
d-formula and, conversely, every d-formula can be transformed into an equiv-
alent set of Horn clauses. However, representing knowledge using d-formulas
rather than Horn clauses may result in an exponentially smaller theory. Indeed,
the transformation of the formula ~ discussed at the beginning of Section 2 into
conjunctive normal form using the distributivity law yields 2 '~ Horn clauses.

We finally note that the membership in ~:)L c a n be decided in polynomial
time. Z

EXAMPLE C: We now turn to the three-valued logic L3 of Lukasiewicz. We
have selected this particular logic since it is a well-known non-classical calculus
(see 3 for its definition) and since a non-clausal resolution proof system for L3
is available (cf. 10, Appendix B).

Although L3 and classical logic have the same language, the polarity assign-
ment algorithm described in Example B cannot be fully applied to formulas of
L3 and t- without violating (p3) and (p4). While assigning '+ ' to p in, say, p V q
(q being a variable) would not violate (p3), making p negative in, e.g, -~p would
certainly be wrong. Indeed, if we let ~ be q V ~q and fl be --(~ ~ -~c~), then
in L3, oL }-- /~ but not ~/~ t- -~ , violating (p4). Even if we restrict the class of
d-formulas to only those formulas whose variables satisfy (p3) and (p4) with
respect to ~-, the resulting class will not be a very impressive collection.

In principle, switching to another polarity assignment algorithm and/or a
different 'logically larger than' relation the selection of d-formulas could be more
favorable. This is indeed the case for L3; under vo-polarity assignment algorithm

302 Zbigniew Stachniak

(for its definition see 10) the class of d-formulas is the same as for classical logic
defined in Example B (cf. 10, Section 5.8). i--1

Automated reasoning literature contains a number of polarity assignment algo-
rithms for classical and non-classical logics, and we refer the interested reader to
4, 9, 10. As we have indicated in Example C, different polarity assignment
algorithms typically define different classes of d-formulas, and it is most likely
the trade-of between the efficiency of labeling and the expressiveness of the re-
sulting class of d-formulas that will guide the selection of a polarity assignment
algorithm for practical applications.

3.2 Non-c lausa l R e s o l u t i o n

Having the notion of a definite formula at our disposal, we can now move to
the next task - efficient resolution-based proof procedures that manipulate d-
formulas. As indicated in Section 2, our target is the generalization of SLD-
resolution. In this section we provide the necessary definitions; in Section 4 we
investigate the scope of applicability of SLD-resolution.

Non-clausal form of the resolution principle comes up in a natural way. The
resolution rule Res of classical logic (see Section 2) is a case analysis on the
t ru th of the common atom p: if a(p) and t3(p) are simultaneously satisfiable, then
a(p /F) or ~3(p/T) is satisfiable, and hence, so is the resolvent a(p /F) V t3(p/T).
Under the truth-functional semantics (such as logical matrix semantics, cf. 3)
a non-classical logic may require more than two truth-values (and some of these
truth-values might not be definable in the object language). Hence, in general,
the analysis of satisfiability may consist of more than two cases. In 10 the
generalized non-clausal resolution rule is defined by the expression

Res: a0(p),..., as(p)
ao(p/vo) v . . . v a (p/vn)'

where a0 (p) , . . . , an (p) are arbitrary formulas of the object language with a
common variable p and v0 , . . . , Vn are preselected formulas called verifiers. The
idea behind this generalization of the resolution rule is straightforward: verifiers
v0, . . . , vn play a similar role to that of the formulas F and T in the classical
case; they realize the case analysis of simultaneous satisfiability of no , . . . , an.
(We assume here that the disjunction connective is available; this assumption is
not necessary but it simplifies things mildly.)

During the refutation process new information is generated by applying the
resolution rule. Additional rules, called the reduction rules, are also used to keep
the deduced facts in a syntactically simple form (see 6 and the transformation
rules in 4 and 10). The reduction rules are instructions of the form

replace a subformula f (W l , . . . , Wk) with a simpler w

(in symbols, f (w l , . . . , w k) =~ w), where f is a k-cry connective of a logic in
question and w, w l , . . . , Wk are verifiers. In Example A we have already seen
such rules in action: ~T ~ F has been used to obtain formula G1 while the

Non-clausal Reasoning with Propositional Definite Theories 303

rules (T ~ F) ~ F, (T A T) ~ T, and (F V F) ~ F have been used to deduce
G3.

To be able to determine at what point a refutation process should be termi-
nated we select a special subset 9 r of the set of verifiers. These are the terminal
verifiers; the deduction of any of these verifiers from a set X of formulas success-
fully terminates the deductive process and we declare X refutable. In Example
A, we had implicitly assumed that 9 r = {F}; with the deduction of F (formula
G3) we had successfully terminated the refutation of X. The resolution rule, the
reduction rules, and the set of terminal verifiers constitute a deductive proof
system called a resolution proof system.

3.3 S L D - R e s o l u t i o n

Let L be a propositional language, let ~)L be a given class of d-formulas, and let
Rs be a resolution proof system on L whose rule is n + 1-argument.

DEFINITION: Let X U {Go} c_ ~)L be finite, where Go is a goal. SLD-deduction
from X with Go as the top goal is a sequence

GO, C0,...,es-1, 6s-1, Ca.

Every Ci is a set of< n formulas of X . Every Gi+I,i < s, is a goal obtained by
first, resolving Gi with the formulas of Ci and then by simplifying the resolvent
using the reduction r~ules of Rs. This deduction is called a refutation, if Gs is a
terminal verifier of Rs.

In the definition of a SLD-deduction every goal Gi+l is obtained by resolving
the goal formula Gi with the formulas of Ci We should not, however, interpret
this to mean that exactly one copy of Gi and exactly one copy of each formula of
Ci is used for the resolution. Indeed, Gi may occupy several argument positions
of an instance of the resolution rule and so may the formulas of Ci.

EXAMPLE D: Let us return to the three-valued logics L3 of Lukasiewicz. In 10,
Appendix B, one can find the description of the non-clausal resolution proof
system, called Rs3, for this logic. It can be briefly described in the following
way.

Rs3 is defined in terms of six verifiers vo, . . . , v5. While all these verifiers are
required by the reduction rules, only three of them (v3, v4, vs) are needed by the
resolution rule

~(P), ~(P), ~(P)
,~(plv3) v/~(p/v4) v 7(p/vs)"

The terminal verifiers are: v0, vl, v3, va. Some of the reduction rules are listed in
the following refutation of the set X defined in Example A:

Go : (p- A q-) ~ -~r- top goal
Co : {r +} subset of X

304 Zbigniew Stachniak

Resolving r, r and Go upon r gives us v3 v v4 V ((p- A q -) --* -~Vb) which reduces
to the goal

G1 : v4 V ((p- A q -) --* vo)

using the rules (v3 V v4) ~ v4 and ~v5 ~ vo. We continue the refutation with

C1: {p- --* q+} subset of X
(p- v3) v (p- v4) v v4 v ((p- A

resolvent o f p ~ q,p ~ q, and G1 upon q
C2: {p+} subset of X

Resolving p, p, and G2 upon p gives us va V va V (v5 -~ v3) V (v5 ~ v4) V v4 v
((v5 A Vb) ~ Vo). Using the reduction rules of Rs3 (such as (v3 V va) ~ v4,
(v5 -~ v3) ~ v3, and (v5 --* va) ~ v4) we simplify this resolvent to

G3 : v4

which is a terminal verifier of Rs3.

There are logics 7) for which no resolution proof system Rs (as described in
Section 3.2) can be constructed so that the notions of inconsistency in 7) and
refutability in Rs coincide (this problem is throughly investigated in 10). Hence,
SLD-resolution method could be unavailable to some logics even when a rich
class of d-formulas can be found. In such cases, other reasoning methods for
d-formulas should be sought.

4 T e c h n i c a l R e s u l t s

Having the principles of SLD-resolution spelled out, it is now time to answer a
question of a technical nature: for which resolution proof systems the notions of
a refutable set of d-formulas and of SLD-refutable set of d-formulas coincide?

To answer this question let us select a propositional language L and let ~L
L be the set of d-formulas determined by some 'logically larger than' relation -~
and some polarity assignment algorithm. Moreover, let Rs be a resolution proof
system on L. Henceforth, L, DL, 4, and Rs are fixed. So far in our discussion we
have not required that the choice of ~)L and of the relation ~ is to be linked in
any way to the properties of Rs. This has to change if we want SLD-resolution
to be complete for d-theories (i.e., if we want every refutable set of d-formulas
to be SLD-refutable). Below we state four conditions that imply completeness
of SLD-resolution (cf. Theorem 1 below).

(sl) If v and w are verifiers such that v -~ w and w is a terminal verifier of Rs,
then so is v.

(sl) states tha t terminal verifiers should not be logically larger than non-terminal
verifiers. In classical logic, (sl) prohibits T -< F while F ~ T may or may not
hold. To force F ~ T to be true, we add:

Non-clausal Reasoning with Propositional Definite Theories 305

(s2) If v and w are two different verifiers tha t appear in the resolution rule of
Rs, then either v -~ w or w -~ v.

Next, we want proper ' refutat ional ' behavior of disjunction, i.e., if the disjunction
v V w of two verifiers is refutable, then both v and w should be refutable:

(s3) If v and w are verifiers of Rs, then v V w can be reduced to a terminal
verifier iff both v and w are terminal verifiers.

The role of the reduction rules is not to generate new information during the
deductive process but only to rewrite resolvents into a simpler form. Therefore,
this process should preserve -<:

(s4) If a* is obtained from a by an application of a reduction rule and if t3" is
obtained f rom/3 in the same way, then a -~/3 implies c~* -~/3*.

THEOREM 1 : Let S (J {G} be a finite minimal refutable set of d-formulas, where
G is a goal. I f Rs satisfies (sl)-(s4), then S U {G} has SLD-refutation with G
as the top goal.

The non-clausal resolution proof system for classical logic discussed informally in
Section 2, and the resolution system Rs3 for the three-valued logic of Lukasiewicz
satisfy (s l) - (s4) with respect to the class of d-formulas defined in Examples B
and C. By Theorem 1, SLD-resolution is available to these systems.

The rest of this section is devoted to the proof of Theorem 1. This is accomplished
using the semantic tree argument.

Let v 0 , . . . , vn be the verifiers used in the resolution rule of Rs. To make
the presentat ion reasonably simple, we shall t rea t the verifiers of Rs as logical
constants, i.e., we shall be ignoring the fact tha t they may contain variables.
Let X be a finite set of formulas of L and let P l , . . . , Pk be all the variables tha t
occur in formulas of X. A semantic tree of X is a finite tree Tx tha t represents
all possible assignments of verifiers v 0 , . . . , vn to the variables p l , . . . , p k . The
root node of Tx (on level 0) represents the empty assignment. The pa th from
the root of Tx to a node N at level l determines a partial assignment hg which
assigns verifiers to the first l variables p l , . . . , Pt and which is undefined for the
remaining variables. A non-leaf node N has n + 1 children; the i - th child extends
the assignment h u by assigning the verifier vi to Pt+l.

A node N of Tx is a failure node if and only if there is a c X which can be
reduced to a terminal verifier when all its variables are replaced by verifiers as
indicated by the assignment hN; in such a case, we shall say tha t N falsifies a.
We do not expand failure nodes further, hence they are leaves in Tx. A node N
is an inference node if it is a non-failure node whose every child is a failure node.
A semantic tree Tx of X is said to be closed provided tha t every leaf of Tx is a
failure node.

Given a closed semantic tree Tx of X, we label all the nodes of Tx in the
following way. The label of a leaf N is any formula of X tha t is falsified by N. If
N is an internal node on level l and if a 0 , . . . , an are the labels of the children
of N, then the label of N is the resolvent ao(pt/vo) V . . . V an(pJvn).

306 Zbigniew Stachniak

LEMMA 2: Let X be a finite set of formulas refutable in Rs. Then every se-
mantic tree Tx of X is closed and the label of the root of Tx can be transformed
into a terminal verifier using the reduction rules of Rs.

Proof: Let X be as stated, let Tx be a semantic tree of X, and let P l , . . . ,Pk be
all the variables that occur in formulas of X. Since X is refutable, the resolution
rule of Rs can be used to deduce a formula c~ =/30 V . . . V/~s, where:

(a) for every choice v i i , . . . , vik of k verifiers there exists /3* C X such that
/3* (Pl ~vii , . . . , Pk/Vik) is one of the disjuncts of a (cf. 10, Lemma 4.17).

Moreover, c~ can be reduced to a terminal verifier. By (s3), every f l j , j < s, can
be reduced to a terminal verifier. So, for every leaf N we can select/3* E X (as
in (a)) tha t is falsified by N. This means that Tx is closed. Finally, we can label
the root of Tx with the disjunction of some (possibly all) disjuncts of c~ and, by
(s3), this label is reducible to a terminal verifier. -1

LEMMA 3: If a finite set X of formulas has a closed semantic tree, then X
is refutable in Rs.

Proof: The proof (by induction on the number k of inference nodes of Tx) is
left to the reader. V-I

PROOF OF THEOREM 1: By Lemma 2, there is a closed semantic tree T of
S (3 {G}. Since G is a goal, at least one variable occurs in it and, hence, T has
at least one non-leaf node. We prove this theorem by induction on the number
k of non-leaf nodes.

Let k --- 1. By Lemma 2, the label of the root N of T, i.e., the resolvent
of labels of the children of N, can be reduced to a terminal verifier G*. Since
S U {G} is minimal refutable, at least one of the children of N is falsified by
G while the remaining children are falsified by the formulas of S. Hence, the
sequence G, S, G* is a required SLD-refutation.

Next, assume that if a minimal refutable set $1 U {G1} has a closed semantic
tree of _ k internal nodes, then it has SLD-refutation with G1 as the top goal.
Suppose that our tree T has k + 1 internal nodes. First, we have to do some leaf
relabeling. Select an inference node N, on some level l, and consider the labels
(~o(pl),..., (~n(pl) of the children of N. Suppose that Pl is negative in some c~i(p~)
and that (~j(Pl) = G. If vi -~ vj, then, by (p4), c~s(p-/vy) -~ ~i(p-/vs) and, by
(sl) and (s4), the j - t h child of N also falsifies as. So, we can replace the label
of the j - t h child by as. By repeating this process of substitution enough times
we can guarantee that:

(a) if a child Nj of N is labeled with G, then for every child Ni ~ G such that
vi -~ vj, pt is positive or of no polarity in ai.

We repeat this procedure for the remaining inference nodes. Next, let us select
and fix an inference node N of T, say on level l, such that at least one of

Non-clausal Reasoning with Propositional Definite Theories 307

its children falsifies G (such an N exists since S U (G) is minimal refutable).
Assuming (a) and performing the 'renaming' operation on children of N similar
to that described above, we use (s2) to conclude that:

(b) if c~i(pi-) is a label of a child of N, then (~i = G.

By (b), Pt is negative only in G. So, the label G1 of N must be a goal formula.
Finally, we form $1 by removing from S all the formulas that label the

children of N and which are not the labels of some other leaves of T. The tree
T1 obtained from T by removing the children of N is a closed semantic tree of
S1 U {G1} with k internal nodes. By Lemma 3, $1 U {G1} is refutable (without
any loss of generality we can also assume that $1 U {G1 } is minimal refutable).
By the inductive hypothesis, there is a SLD-refutation 7~ of $1 U {G1} with G1
as the top goal. Hence, the sequence G, X, 7~ is a SLD-refutation of SU {G} with
G as the top goal, where X is the set of all the labels of children of N different
from G. --3

5 R e f e r e n c e s

1. H/ihnle, R., Murray, N. and Rosenthal, E.: Completeness for Linear Regular
Negation Normal Form Inference Systems. State University of New York,
Albany, Technical Report 97-2 (1997).

2. Lloyd, J. W.: Foundations of Logic Programming, 2nd ed. Springer-Verlag
(1987).

3. Malinowski, G.: Many-Valued Logics. Oxford University Press (1993).
4. Manna, Z. and Waldinger, R.: Special Relations in Automated Deduction.

J. ACM a3 (1986) 1-59.
5. McAllester, D.: Truth Maintenance. Proc. AAAI-90 (1990) 1109-1116.
6. Murray, N.: Completely Non-Clausal Theorem Proving. Artificial Intelli-

gence 18 (1982) 67-85.
7. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Princi-

ple. J. ACM 12 (1965) 23-41.
8. Roy-Chowdhury, R. and Dalai, M.: Model Theoretic Semantics and Tractable

Algorithm for CNF-BCP. Proc. AAAI-97 (1997) 227-232.
9. Shankar, S. and Slage, J.: Connection Based Strategies for Deciding Propo-

sitional Temporal Logic. Proc. AAAI-97 (1997) 172-177.
10. Stachniak, Z.: Resolution Proof Systems: An Algebraic Theory. Kluwer Aca-

demic Publishers (1996).

Representing and Reasoning with Context

Richmond H. Thomason

Abstract. This paper surveys the recent work in logical AI on context
and discusses foundational problems in providing a logic of context. As
a general logic of context, I recommend an extension of Richard Mon-
tague’s Intensional Logic that includes a primitive type for contexts.

1 Introduction

Naturally evolved forms of human communication use linguistic expressions that
are rather highly contextualized. For instance, the identity of the speaker, the
table and the computer that are mentioned in the following sentence depend
on the context of utterance. The time and location of the utterance, as well as
the imagined orientation to the table, are left implicit, and also depend on the
context.

(1.1) ‘I put the computer behind the table yesterday’.

These forms of contextualization are relatively familiar, and people are able
to deal with them automatically and, if necessary, prepared to reason about
them explicitly. Other forms of contextualization, especially those that affect
the meanings of words (see for instance, [Cru95,PB97]) can be more difficult to
isolate and think about.

I doubt that the level of contextualization humans find convenient and appro-
priate is the only possible way of packaging information, but for some reason we
seem to be stuck with it. We are made in such a way that we need contextualized
language; but this contextualization can be an obstacle to understanding. There
are psychological experiments indicating that highly verbose, decontextualized
language is unusual; and it is reasonable to suppose that this sort of language
is relatively difficult to comprehend. [WH90], for instance, is concerned with
task-oriented instructions. Decontextualized verbalizations of plans leave out
steps that the hearer can be assumed to know about; here, the context consists
of routines for instantiating abstract plans. 1 Other studies show that highly
contextualized discourse can be relatively unintelligible to someone who is not
familiar with the context.2

The challenge of contextualization arises not only in natural communica-
tion between humans, but in computerized transactions: in software, databases,
knowledge bases, and AI systems. The reasons for contextualization in these
cases are similar. In particular, (i) these systems are human products, and a

1 See [You97].
2 See [CS89].

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 29–41, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

30 Richmond H. Thomason

modular design makes them more intelligible and maintainable for the human
designers; and (ii) information and procedures are in general limited to the ap-
plications that a designer envisions. But a modular design will contextualize the
modules: for instance, the modularization of LATEX into style and document files
means that a LATEX formatted document will only work in combination with with
right supplementary files. The limits referred to in (ii) mean that software per-
formance can’t be predicted, and good performance can’t be expected, outside
of the limits envisaged by the designer.

In cases of human communication, it can be useful in anticipating and di-
agnosing misinterpretations to reason explicitly about context dependence; for
instance, if we find a message on the answering machine saying

(1.2) ‘This is Fred; I’ll call back at 2:00’

we may recall that Fred lives in a different time zone and wonder whether he
meant 2:00 his time or 2:00 our time. Similarly, it might be useful for software
systems to be able to perform this sort of reasoning. It is this idea that led John
McCarthy, in a number of influential papers, 3 to pursue the formalization of
context. In motivating this program, McCarthy proposes the goal of creating
automated reasoning that is able to transcend its context of application. Mc-
Carthy’s suggestions have inspired a literature in logical AI that is by now fairly
extensive.4

The sort of transcendence that would be most useful—an intelligent system
with the ability to recognize its contextual limitations and transcend them—
has to be thought of as a very long-range goal. But there are less ambitious
goals that can make use of a formal logic of context, and the formalizations
that have been emerged over the last ten years have led to useful applications in
knowledge representation and in the integration of knowledge sources. For the
former sort of application, see [Guh91], where explicit reference to context is used
to modularize the creation of a large-scale knowledge base. For the latter sort of
application, see [BF95]. There has been a good deal of interest in applications of
these ideas in natural language processing, with at least one conference devoted
to the topic,5 and perhaps we can hope to see these ideas put to use, but I am
not aware of a natural language processing system that was made possible by
these ideas.

In this paper, I will discuss the logical foundations of the theory of context.
The recent work on context in formal AI presents foundational issues that will
seem familiar to logicians, since they were addressed in classical work on the
semantic paradoxes and on modal logic. But some elements of this work are
new.

3 [McC86,McC93,MB95]
4 At http://www.pitt.edu/˜thomason/bibs/context.html, there is a bibliography to

this literature.
5 For the proceedings of this conference, see [BI97].

Representing and Reasoning with Context 31

2 The Ist Predicate

The nature and logical treatment of “propositional arguments” of predicates has
been thoroughly debated in the logical literature on modal logic and proposi-
tional attitudes; see, for instance, [Chu51,Qui53,Qui56]. Similar questions arise
in the logic of context.

In its simplest form, the language of a theory of context is an extension of
first-order logic containing constructions of the form

(2.1) ist(c, p).

The ist predicate is used to explicitly state the dependencies between contexts
and assertions. The following example, from [BF95], illustrates its use in stating
dependencies between data bases:

(2.2) ist(UA-db, (∀d)[Thursday(d) →
passenger-record(921, d,McCarthy) ∧
flight-record(921,SF,7:00,LA,8:21)])

The formula is taken from a hypothetical example involving a translation be-
tween entries in John McCarthy’s diary and the United Airlines data base. It says
that the United Airlines database contains an entry to the effect that McCarthy
is booked every Thursday on Flight 921 from San Francisco to Los Angeles.

The logical type of the first argument of (2.1) (the contextual argument)
is unproblematic; the constant c simply refers to a context. Part of an explicit
theory of contexts will have to involve a reification of contexts, and it is perfectly
reasonable to treat contexts as individuals and to allow individual constants of
first-order logic to refer to them.

We can’t treat the second argument (the propositional argument) in this way,
however, since formulas do not appear as arguments of predicates in first-order
logic. In very simple applications, an expression of the form (2.1) could be taken
to be an abbreviation of the first-order formula

(2.3) istp(c),

where for each formula p that we are interested in tracking we introduce a special
first-order predicate istp.

This technique, however, is very awkward even in very simple cases. More-
over, it will not allow us to state generalizations that involve quantifiers binding
variable positions in p—and these generalizations are needed in developing a
theory of the interrelationships between contexts. For instance, [BF95] contains
the following “lifting rule” relating statements in McCarthy’s diary to United
Airlines data base entries:

(2.4) ∀x∀d[ist(diary(x),Thursday(d)) ↔
ist(UA-db,Thursday(d))].

32 Richmond H. Thomason

This axiom calibrates the calendars of individual diaries with the United Airlines
calendar by ensuring that a date is a Thursday in anyone’s diary if and only if
it is a Thursday in the United Airlines data base. We could accommodate the
quantifier indexed to ‘x’ in (2.4) in a first-order reduction of ist , but not the
quantifer indexed to ‘d’. This variable occurs in the sentential argument to ist ,
and would have nothing to bind if Thursday(d), the formula containing this
variable, were absorbed into the predicate.

The applications envisaged for a logic of context, then, call for a logical
form in which the propositional argument is referential; but what sort of thing
does it refer to? The logical literature on the foundations of modal logic and
propositional attitudes offers two main alternatives:

(2.5) The argument is a syntactic object, a formula.
(2.6) The argument is an abstract object, a proposition or something

like a proposition.

3 The Quotational Approach and the Semantic
Paradoxes

There are two main problems with the quotational approach of (2.5): first, if
it is formulated naively it leads to paradox, and second, despite the apparent
naturalness of this approach, I believe that it doesn’t do justice to the nature of
the ist relation.

It is natural to use a first-order theory of syntax to formulate the quotational
theory.6 Expressions are treated as first-order individuals, the language has con-
stants referring to the syntactic primitives of its own language and is able to
express the concatenation function over expressions. In such a language we get
a name nφ for each formula φ of L.

In a theory of this kind, it is possible to display simple, plausible axioms for
ist that are inconsistent. The instances of the following schemes constitute such
a list.

AS1: ist(c0, nφ) for every formula φ that is an axiom of FOL.
AS2: [ist(c0, nφ ∧ ist(c0, nφ→ψ)] → ist(c0, nψ), for every formula φ and

ψ.
AS3: ist(c0, nφ → φ), for every formula φ.

The third axiom scheme is plausible if we imagine that we are axiomatizing
the assertions that hold in the context c0. It may be objected that it is unnec-
essary in any natural application of the theory to allow a context to reflect on
itself. But more complex forms of the paradox can be constructed using cycles
in which contexts reflect on each other, and cases such as this can come up in

6 It is also possible to achieve the effects of syntactic reflection—the ability to reason
about the syntactic expressions of ones own language—indirectly. Gödel’s arithme-
tization of syntax is an indirect way of achieving this.

Representing and Reasoning with Context 33

very simple applications—e.g., where we are considering two contexts, each of
them capable of modeling the other.

This inconsistency result is due to Richard Montague: see [Mon63]. It uses
a general form of the syntactic reflection techniques developed by Gödel and
appeals to the formalization of the so-called “knower’s paradox,” which involves
the following sentence:

KP: I don’t know this,

where the word ‘this’ refers to KP.
It is possible to develop a quotational theory of ist that avoids these para-

doxes by using a solution to the semantic paradoxes such as that of [Kri75]. But
there is a price to be paid here in terms of the underlying logic. (For instance,
a nonclassical logic is needed for the Boolean connectives.) There is room for
debate as to how high this price is, but I do not find it worth paying in this case,
since I don’t find a quotational theory of ist to be very compelling or useful. For
instance, the first-person pronoun is one of the most thoroughly investigated
context-dependent linguistic forms. At a first approximation, its contextual se-
mantics is very simple; the first-person pronoun refers in the context of an utter-
ance to the agent of that utterance. But the item that is interpreted in this way
is not a simple quoted expression. In English, the first person pronoun has two
quotational realizations, ‘I’ and ‘me’. This variation in the expression’s syntactic
form is entirely irrelevant to the meaning.

It seems necessary to infer some abstract level of representation here, at
which there is a single element that receives the appropriate interpretation. Of
course, you could treat this element as an expression in some sort of abstract
language. But, since abstract levels of representation are needed anyway, I prefer
to invoke a level that corresponds directly to a context-dependent meaning, and
to treat the propositional argument of ist as referring to this. As long as these
abstract representations are not themselves expressions, the semantic paradoxes
are not a problem.

This approach to ist is very similar to the standard treatments of proposi-
tional arguments in modal logic.

4 The Propositional Approach: Ist as a Modality

On the simplest forms of the propositional approach of (2.6), ist is an indexed
modal operator that does not differ to any great extent from the operators used
to model reasoning about knowledge; see [FHMV95] for details. The models for
these modal logics use possible worlds. The propositional argument of ist receives
a set of possible worlds as its semantic interpretation.

This idea provides a useful perspective on many of the existing formalisms
for and applications of context. And, of course, since modal operators have been
thoroughly investigated in the logical literature, this perspective allows us to
bring a great deal of logical work to bear on contexts.

34 Richmond H. Thomason

Just one way of illustrating this point is the following: it is natural to think
of contexts as the epistemic perspectives of various agents. When knowledge
is drawn from different databases, for instance, or from different modules of
a large knowledge base, it is tempting to speak of what the various modules
“know”. If we take this metaphor seriously, we can apply modeling techniques
from distributed systems (which in turn originate in epsitemic logic, a branch
of modal logic) to these cases. As Fagin et al. [FHMV95] shows in considerable
detail, these modeling techniques are very fruitful.

Suppose that Alice, Bob, Carol and Dan are talking. Alice’s husband is named
‘Bob’; Carol and Bob know this, Dan doesn’t. If Alice says ‘Bob and I are going
out to dinner tonight’, Carol and Bob are likely to think that Alice and her
husband are going out. Dan will probably think that Alice and the man standing
next to him are going out. The inferences that different hearers will make from
the same utterances depend crucially on the hearer’s knowledge; this point is
well made in many of Herbert H. Clark’s experimental studies; see, for instance,
[CS89]. This sort of case provides yet another reason for using epistemic logic to
model context.

Modal operators exhibit formal characteristics of the sort that are wanted
in a general theory of context. For instance, modal operators can provide a way
of adjusting a single agent’s reasoning to contextual changes in the accessible
information. The classical modalities like are not the best examples of this.
But consider a modal operator of the form [A1, . . . , An], where [A1, . . . , An]B
means that B follows from whatever assumptions apply in the outer context,
together with the explicitly mentioned auxiliary hypotheses A1, . . . , An. This
is not a great departure from standard modal logic, and is very close to the
mechanisms that are used for formalizing context.

These commonalities between modal logic and the theory of context have
been exploited in several of the recent theoretical approaches to context. Exam-
ples include

[BBM95,NL95,AP97,GN97].
It should perhaps be added that McCarthy himself is opposed to the use of

modal logic, in this and other applications; see, for instance, [McC97]. I believe
that this is mainly a matter of taste, and I know of no compelling reason to
avoid the use of modal logics in applications such as these.

5 Modal Type Theories

It has proved to be very useful as a methodological and conceptual technique
to use types in applications to programming languages and to natural language
semantics. The types provide a useful way of organizing information, and of
providing a syntactic “sanity check” on formulas. In natural language semantics,
for instance, types were an important part of Richard Montague’s approach,7 and
provided useful and informative constraints on the mapping of natural language

7 See [Mon74].

Representing and Reasoning with Context 35

syntactic structures to logical formulas. For arguments in favor of typing in
programming languages, see, for instance, [Sch94].

Types are historically important as a way of avoiding the impredicative para-
doxes, but I do not stress this reason for using them because these paradoxes
can be avoided by other means. I do not deny that in natural language, as well
as programming languages, it can be very useful to relax typing constraints or to
dispense with them entirely; for a useful discussion of the issues, with references
to the literature, see [Kam95]. But I do believe that a typed logic is the natural
starting point, and that we can work comfortably for a long time within the
confines of a type theory.

Together, these considerations provide good motivation for using Intensional
Logic8 as a framework for reasoning about context. A further benefit of this
approach is that there will be connections to the large literature in natural
language semantics that makes use of Intensional Logic.9

Intensional Logic is a version of higher-order logic that contains identity and
typed lambda abstraction as syntactic primitives. The basic types are the type
t of truth values, the type e of individuals, and the type w of possible worlds.
Complex types produced by the following rule: if σ and τ are types then so is
〈σ, τ〉, the type of functions from objects of type σ to objects of type τ .10 With
these few resources, a full set of classical connectives can be defined, as well as
the familiar modal operators and quantifiers over all types.

Ordinary modal logic does not treat modalities as objects, and makes avail-
able only a very limited variety of modalities. In Intensional Logic, modalities
can be regarded as sets of propositions, where propositions are sets of possible
worlds. Intensional Logic does not distinguish between a set and its character-
istic function; so the type of a modality is 〈〈w, t〉, t〉. It is reasonable to require
modalities to be closed under necessary consequence. So the official definition o
a modality in Intensional Logic would be this:

(5.1) ∀x〈〈w,t〉,t〉[Modality(x) ↔
∀y〈w,t〉∀z〈w,t〉[[x(y) ∧ ∀uw[y(u) → z(u)]] → x(z)]]

In Intensional Logic, modalities are first-class objects: they are values of variables
of type 〈〈w, t〉, t〉. And the apparatus of Intensional Logic permits very general
resources for defining various modalities.

This approach captures some of the important constructs of the AI formal-
izations of context. In particular, ist is a relation between an object of type
〈〈w, t〉, t〉 (a context) and one of type 〈w, t〉 (a proposition or set of possible
worlds), so it will have type

(5.2) 〈〈〈w, t〉, t〉, 〈〈w, t〉, t〉〉.
8 See [Mon74] and [Gal75].
9 See [PH96].

10 Montague formulated the types in a slightly different way, but Gallin showed that
this formulation is equivalent to the simpler one I sketch here.

36 Richmond H. Thomason

And we can define it as follows.

(5.3) ist = λc〈〈w,t〉,t〉λp〈w,t〉[c(p)].

This definition makes ist(c, p) equivalent to c(p). Here the second argument to
ist does not refer to a formula; it refers to a set of possible worlds.

The fact that higher-order logic is not axiomitizable may induce doubts about
its computational usefulness. But the unaxiomatizability of higher-order logic
has not prevented it from being used successfully as a framework for understand-
ing a domain. Using a logic of this sort in this way means that implementations
may fail to perfectly reflect the logical framework. But often enough, this is true
even when the framework is axiomatizable or even decidable. And we can always
hope to find tractable special cases.

6 Beyond Modality: The Need for a Theory of Character

A purely modal approach to the theory of context is inadequate in one major
respect. The logic of modality is a way of accounting for how variations in the
facts can affect the semantic behavior of expressions with a fixed meaning. A
sentence like:

(6.1) ‘The number of planets might be greater than 9’

can be represented as true because there is a possible world in which there are
more than 9 planets. But a sentence like

(6.2) ‘8 might be greater than 9’

can’t, and shouldn’t, be represented as true by presenting a possible world in
which ‘8 is greater than 9’ means that 8 is less than 9. There is no such possible
world, even though it is possible that ‘less’ might mean what ‘greater’ in fact
means.

In using possible worlds semantics to interpret an expression ξ, we work not
with ξ, but with a fixed, disambiguated meaning of ξ. It is relative to such a
meaning that we associate a semantic interpretation to ξ. (If ξ is a sentence, the
interpretation will be a set of possible worlds, i.e. it will have type 〈w, t〉. Other
sorts of expressions will have interpretations of appropriate type.)

However, many of the desired applications of the theory of context involve
cases in which the meaning of an ambiguous expression is resolved in different
ways, cases in which the meanings are allowed to vary as well as the facts. An
important application of context in the CYC project, for instance, involves cases
in which expressions receive different interpretations in different “microtheories”;
see [Guh91] for examples. In applications of context to knowledge integration, it
is of course important that different data bases have different views of the same
facts; but it is equally important that they use expressions in different ways.
[MB95] works out the details of a case in which ‘price’ takes on different meanings

Representing and Reasoning with Context 37

in different data bases, and these differences have to be reconciled in order to
formalize transactions between these data bases. And some applications of the
theory of context are directly concerned with the phenomenon of ambiguity; see
[Buv96].

In order to accommodate applications such as these, we need to generalize
the framework of modal type theory.

7 Contextial Intensional Logic

[Kap78] provides a good starting point for developing a generalization of Inten-
sional Logic that is able to deal with contexts. Kaplan treats contexts as indices
that fix the meanings of context-dependent terms, and concentrates on a lan-
guage in which there are only three such terms: ‘I’, ‘here’, and ‘now’. In this
case, a context can be identified with a triple consisting of a person, a place, and
a time. The truth-value of a context-dependent sentence, e.g. the truth-value of

(7.1) ‘I was born in 1732’,

will depend on both a context and a possible world, and the interpretation will
proceed in two stages. First, a context assigns an intensional value to (7.1); this
value will be a set of possible worlds. In case the context assigns ‘I’ the value
George Washington, then (7.1) will be the set of possible worlds in which George
Washington was born in 1732. Kaplan introduces some useful terminology for
discussing this two-stage interpretation. The set of possible worlds is the content
of an interpreted sentence. In general, we can expect contents to be functions
from possible worlds to appropriate values; in the case of a sentence, the function
will take a possible world to a truth value. We can now look at the context-
dependent meaning of an expression, or its character, as a function from contexts
to contents. The character of (7.1), for instance, will be a function taking each
context into the set of possible worlds in which the speaker of that context
was born in 1732. In these applications, contexts are to be regarded as fact-
independent abstractions that serve merely to fix the content of expressions.
When an utterance is made, it is of course a fact about the world who the
speaker is; but in order to separate the role of context and possible world in
fixing a truth value, we need to treat the speaker of the context independently
from these facts.

To formalize these ideas in the type-theoretic framework, we add to the three
basic types of Intensional Logic a fourth basic type: the type i of c-indices. The
c-indices affect contextual variations of meaning by determining the characters
of expressions.

For instance, suppose that we wish to formalize the contextual variation of
the term Account across two corporate data bases; in one data base, Account
refers to active customer accounts, in the other, it refers to active and inactive
customer accounts. We create two c-indices i1 and i2. Let I1 be the intension

38 Richmond H. Thomason

that we want the predicate to receive in i1 and I2 be the intension in i2; these
intensions will have type 〈w, 〈e, t〉〉.11

The type-theoretic apparatus provides a type of functions from c-indices to
intensions of type 〈w, 〈e, t〉〉; this will be the type of characters of one-place pred-
icates, such as Account. We represent the behavior of the predicate Account
by choosing such a function F , where F (i1) = I1 and F (i1) = I2. The interpre-
tation of the language then assigns the character F to the predicate Account.
The following paragraphs generalize this idea.

Suppose that the content type of a lexical item ξ is 〈w, τ〉. (The content type
of Account, for instance, will be 〈e, t〉.) Then the character type of ξ will be
〈i, 〈w, τ〉〉. An interpretation of the language will assign an appropriate character
(i.e., something of type 〈i, 〈w, τ〉〉) to each lexical item with content type 〈w, τ〉.
This is my proposal about how to deal with the content-changing aspect of
contexts.

To capture the insight of the modal approach to context, that contexts also
affect the local axioms, or the information that is accessible, we assume that an
interpretation also selects a function Info from contexts to modalities. That is,
Info has type 〈i, 〈〈w, t〉, t〉〉. In the current formalization, with a basic type for
contexts, the type of ist will simply be 〈i, 〈〈i, 〈w, t〉〉, t〉〉; ist inputs a context and
a propositional character, and outputs a truth-value. We want ist(c, p) to tell us
whether the proposition assigned to p in c follows from the information available
in c. The general and revised definition of ist, then, is as follows.

(7.2) ist = λciλp〈i,〈w,t〉〉Info(c)(p(c))

8 Conclusions

This paper has been primarily concerned with the motivation and formulation
of a type-theoretic approach to context that generalizes the uses of intensional
type theories in natural language semantics, and that is capable of dealing with
all (or almost all) of the applications that have been envisaged for the theory of
context in the recent AI literature.

The presentation here is in some ways a sketch. The underlying logic itself
is a very straightforward generalization of logics that have been thoroughly in-
vestigated (see, for instance, [Gal75]), and the logical work that needs to be
done here is a matter of showing how to use the apparatus to develop appropri-
ate formalizations of some reasonably complex examples. I plan to include such
formalizations in future versions of this work.

There are several dimensions in which the logical framework that I have
presented needs to be generalized in order to obtain adequate coverage:

(8.1) The logic needs to be made partial, to account for expressions
which simply lack a value in some contexts.

11 This type corresponds to a function that takes a possible world into a set of individ-
uals.

Representing and Reasoning with Context 39

(8.2) The logic needs dynamic operators of the sort described in Mc-
Carthy’s papers; e.g., an operator which chooses a context and enters
it.

(8.3) To account for default lifting rules, we need a nonmonotonic logic
of context.

Since we have a general sense of what is involved in making a total logic
partial, in making a static logic dynamic, and in making a monotonic logic
nonmonotonic, I have adopted the strategy of first formulating an appropriate
base logic to which these extensions can be made. Briefly, for (8.1) there are
a number of approaches partial logics; see [Mus96] for an extended study of
how to modify Intensional Logic using one of these approaches. For (8.2), I
favor an approach along the lines of [GS91]; essentially this involves relativizing
satisfaction not to just one context, but to a pair of contexts, an input context
and an output context. For (8.3), it is relatively straightforward to add a theory
of circumscription to Intensional Logic, and to the extension that I have proposed
here. (Circumscription is usually formulated in second-order extensional logic,
but the generalization to intensional logic of arbitrary order is straightforward.)

None of these logical developments is entirely trivial, and in fact there is
material here for many years of work. I hope to report on developments in these
directions in future work.

References

AP97. Gianni Amati and Fiora Pirri. Contexts as relative definitions: A formal-
ization via fixed points. In Sasa Buvač and Lucia Iwańska, editors, Working
Papers of the AAAI Fall Symposium on Context in Knowledge Represen-
tation and Natural Language, pages 7–14, Menlo Park, California, 1997.
American Association for Artificial Intelligence, American Association for
Artificial Intelligence.

BBM95. Saša Buvač, Vanja Buvač, and Ian Mason. Metamathematics of con-
texts. Fundamenta Mathematicae, 23(3), 1995. Available from http://www-
formal.stanford.edu/buvac.

BF95. Saša Buvač and Richard Fikes. A declarative formalization of knowledge
translation. In Proceedings of the ACM CIKM: the Fourth International
Conference in Information and Knowledge Management, 1995. Available
from http://www-formal.stanford.edu/buvac.

BI97. Sasa Buvač and Lucia Iwańska, editors. Working Papers of the AAAI Fall
Symposium on Context in Knowledge Representation and Natural Language.
American Association for Artificial Intelligence, Menlo Park, California,
1997.

Buv96. Saša Buvač. Resolving lexical ambiguity using a formal theory of context.
In Kees van Deemter and Stanley Peters, editors, Semantic Ambiguity and
Underspecification, pages 100–124. Cambridge University Press, Cambridge,
England, 1996.

Chu51. Alonzo Church. The need for abstract entities in semantic analysis. Pro-
ceedings of the American Academy of Arts and Sciences, 80:100–112, 1951.

40 Richmond H. Thomason

Cru95. D.A. Cruse. Polysemy and related phenomena from a cognitive linguistic
viewpoint. In Patrick Saint-Dizier and Evelyne Viegas, editors, Computa-
tional Lexical Semantics, pages 33–49. Cambridge University Press, Cam-
bridge, England, 1995.

CS89. Herbert H. Clark and Michael Schober. Understanding by addressees and
overhearers. Cognitive Psychology, 24:259–294, 1989.

FHMV95. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-
soning About Knowledge. The MIT Press, Cambridge, Massachusetts, 1995.

Gal75. Daniel Gallin. Intensional and Higher-Order Logic. North-Holland Publish-
ing Company, Amsterdam, 1975.

GN97. Dov Gabbay and Rolf T. Nossum. Structured contexts with fibred seman-
tics. In Sasa Buvač and Lucia Iwańska, editors, Working Papers of the AAAI
Fall Symposium on Context in Knowledge Representation and Natural Lan-
guage, pages 48–57, Menlo Park, California, 1997. American Association for
Artificial Intelligence, American Association for Artificial Intelligence.

GS91. Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguis-
tics and Philosophy, 14:39–100, 1991.

Guh91. Ramanathan V. Guha. Contexts: a formalization and some applications.
Technical Report STAN-CS-91-1399, Stanford Computer Science Depart-
ment, Stanford, California, 1991.

Kam95. Fairouz Kamareddine. Are types needed for natural language? In László
Pólos and Michael Masuch, editors, Applied Logic: How, What, and Why?
Logical Approaches to Natural Language, pages 79–120. Kluwer Academic
Publishers, Dordrecht, 1995.

Kap78. David Kaplan. On the logic of demonstratives. Journal of Philosophical
Logic, 8:81–98, 1978.

Kri75. Saul Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690–
715, 1975.

MB95. John McCarthy and Saša Buvač. Formalizing context (expanded notes).
Available from http://www-formal.stanford.edu/buvac., 1995.

McC86. John McCarthy. Notes on formalizing contexts. In Tom Kehler and Stan
Rosenschein, editors, Proceedings of the Fifth National Conference on Ar-
tificial Intelligence, pages 555–560, Los Altos, California, 1986. American
Association for Artificial Intelligence, Morgan Kaufmann.

McC93. John McCarthy. Notes on formalizing context. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, pages 81–
98, Los Altos, California, 1993. Morgan Kaufmann.

McC97. John McCarthy. Modality si! Modal logic, no! Studia Logica, 59(1):29–32,
1997.

Mon63. Richard Montague. Syntactical treatments of modality, with corollaries on
reflection principles and finite axiomatizability. Acta Philosophica Fennica,
16:153–167, 1963.

Mon74. Richard Montague. Formal Philosophy: Selected Papers of Richard Mon-
tague. Yale University Press, New Haven, CT, 1974.

Mus96. Reinhard Muskens. Meaning and Partiality. Cambridge University Press,
Cambridge, England, 1996.

NL95. P. Pandurang Nayak and Alan Levy. A semantic theory of abstractions.
In Chris Mellish, editor, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 196–203, San Francisco, 1995.
Morgan Kaufmann.

Representing and Reasoning with Context 41

PB97. James Pustejovsky and Brian Boguraev, editors. Lexical Semantics: The
Problem of Polysemy. Oxford University Press, Oxford, 1997.

PH96. Barbara H. Partee and Herman L.W. Hendriks. Montague grammar. In
Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and
Language, pages 5–91. Elsevier Science Publishers, Amsterdam, 1996.

Qui53. Willard V. Quine. Three grades of modal involvement. In Proceedings of the
XIth International Congress of Philosophy, Volume 14, pages 65–81, 1953.

Qui56. Willard V. Quine. Quantifiers and propositional attitudes. The Journal of
Philosophy, 53:177–187, 1956.

Sch94. David A. Schmidt. The Structure of Typed Programming Languages. The
MIT Press, Cambridge, Massachusetts, 1994.

WH90. D. Wright and P. Hull. How people give verbal instructions. Journal of
Applied Cognitive Psychology, 4:153–174, 1990.

You97. R. Michael Young. Generating Concise Descriptions of Complex Activities.
Ph.d. dissertation, Intelligent Systems Program, University of Pittsburgh,
Pittsburgh, Pennsylvania, 1997.

From Integrated Reasoning Specialists to

“Plug-and-Play” Reasoning Components ?

Alessandro Armando and Silvio Ranise

DIST – Università di Genova
Via all’Opera Pia 13 – 16145 Genova – Italy

armando,silvio@mrg.dist.unige.it

Abstract. There is an increasing evidence that a new generation of
reasoning systems will be obtained via the integration of different rea-
soning paradigms. In the verification arena, several proposals have been
advanced on the integration of theorem proving with model checking.
At the same time, the advantages of integrating symbolic computation
with deductive capabilities has been recognized and several proposals to
this end have been put forward. We propose a methodology for turn-
ing reasoning specialists integrated in state-of-the-art reasoning systems
into reusable and implementation independent reasoning components to
be used in a “plug-and-play” fashion. To test our ideas we have used
the Boyer and Moore’s linear arithmetic procedure as a case study. We
report experimental results which confirm the viability of the approach.

Keywords: integration of decision procedures, integration of deduction
and symbolic computation, automated theorem proving.

1 Introduction

There is an increasing evidence that a new generation of reasoning systems will
be obtained via the integration of different reasoning paradigms. In the verifica-
tion arena, several proposals have been advanced on the integration of theorem
proving with model checking. At the same time, the advantages of integrating
symbolic computation with deductive capabilities have been recognized and sev-
eral proposals to this end have been put forward.

As pointed out in [3], the approaches to integrating reasoning systems can
be classified in homogeneous integration and heterogeneous integration. Homoge-
neous integration amounts to embedding new reasoning paradigms into existing
reasoning systems. Examples of such an approach are the integration of deductive

? We wish to thank Fausto Giunchiglia for very helpful discussions. We are also grateful
to Alan Bundy and Alessandro Coglio for comments on an early draft of this paper.
The authors are supported in part by Conferenza dei Rettori delle Università Italiane
(CRUI) in collaboration with Deutscher Akademischer Austaunschdienst (DAAD)
under the Vigoni Programme.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 42–54, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

From Integrated Reasoning Specialists 43

capabilities into computer algebra systems as discussed, e.g., in [6,7], or the inte-
gration of model checking capabilities into deductive systems as advanced, e.g.,
in [12,11]. Heterogeneous integration aims at building hybrid reasoning systems
by combining the reasoning services provided by existing tools. For example,
[9] illustrates the combination of interactive proof-development systems with
computer algebra systems; [3] describes a generic interface to computer algebra
systems for the Isabelle prover.

Both approaches to integration have advantages and difficulties. Homoge-
neous integration requires the effort of implementing a reasoning technique from
scratch, but it allows for a higher degree of flexibility as the new reasoning tech-
nique can be tailored to the needs of the host system. However—as experienced
by Boyer and Moore [5]—turning a reasoning technique into an integrated rea-
soning specialist can be a challenge. Moreover both the efficiency and the range of
functionalities provided by state-of-the-art implementations are very difficult to
achieve and maintain. Etherogeneous integration—aiming at using services pro-
vided by existing tools—is apparently easier to achieve. However, even if state-of-
the-art reasoning systems are built out of a set of carefully engineered reasoning
specialists (e.g. simplifiers, constraint solvers, decision procedures, model check-
ers), they are in most cases conceived and built as stand-alone systems to be
used by human users. As a consequence direct access to the services provided by
reasoning specialists is rarely made available. This is particularly unfortunate
as existing reasoning systems represent a real cornucopia of powerful reasoning
specialists.

Our interest is in turning reasoning specialists integrated in state-of-the-art
reasoning systems into reusable and implementation independent reasoning com-
ponents thereby lessening the difficulties in attaining heterogeneous integration.
To this end we propose a two-step methodology which amounts to (i) modeling
(part of) an existing reasoning system as a set of reasoning specialists glued to-
gether by means of an integration schema, and (ii) lifting the selected reasoning
specialists and the integration schema identified in the first step into a set of
reasoning components and an interaction schema, respectively. Similarly to [8]
by reasoning components we mean open architectures capable of exchanging a
carefully selected set of logical services [13]. By interaction schema we mean a
communication protocol governing the interplay among the reasoning compo-
nents. To test our ideas we have used the Boyer and Moore’s linear procedure
as a case study. We have chosen this case study because of its significance (the
Boyer and Moore’s approach to integrating decision procedures is notoriously
complex, and a better understanding of how it works is by itself of considerable
interest) and because it constitutes one of the most challenging case studies we
could think of.

Structure of the paper. Sections 2 and 3 illustrate the two steps of our methodol-
ogy. The methodology is discussed by showing its application to our case study.
Section 4 presents and discusses the experimental results. Some final remarks
are drawn in Section 5.

44 Alessandro Armando and Silvio Ranise

Rewrite

Simplify

Augment Push-polys

Push-terms

DB
Linearize

LRs

Extract-eqs

Fig. 1. The reasoning specialists and the integration scheme

2 The Reasoning Specialists and the Integration Schema

The first step of our methodology amounts to opening up a given reasoning
system, to identifying the relevant reasoning specialists, the data-flow and the
shared data structures between them, and finally to identifying an integration
schema. In our case study this required the careful analysis of both the 40 page-
long report [5] and the actual implementation code.

As a result, we came up with the rational reconstruction of the Boyer and
Moore’s integration schema abstractly depicted in Figure 1. Square boxes and
black arrows represent the most significant reasoning specialists and their func-
tional dependences respectively. Round boxes denote shared data structured,
namely the data base of polynomials (DB) and the data base of the linear rules
(LRs). Gray thick edges represent the access to the shared data structures.

The reasoning specialists. Simplify takes a clause as input and returns a set
of supposedly simpler clauses as output. (A clause is an implicitly disjoint set of
literals.) Simplify works by successively rewriting each literal of the input clause
while assuming the complements of the remaining literals.

Rewrite exhaustively applies a set of conditional rewrite rules of the form:
∧n

i=1 hi → (lhs = rhs)

to the input term. A conditional rewrite rule causes Rewrite to replace all the
instances of lhs by the corresponding instance of rhs provided each of the in-
stantiated hi can be proved by a recursive call to Rewrite.

The linear arithmetic procedure incrementally maintains an implicitly con-
joint set of ‘normalized polynomial inequalities’ (from here on ‘polynomials’)
in the data base of polynomials (DB). A polynomial has the following form:

From Integrated Reasoning Specialists 45

a0 +
∑n

i=1 ai ∗ ti ≤ 0, where ai and ti (i = 1, . . . , n) are integer constants and
terms of the Boyer and Moore’s logic respectively. For instance, if MAX and MIN
are two user-defined function symbols, then 1 ∗ MIN(A) + −1 ∗ MAX(A) ≤ 0 is a
polynomial. The key idea of the procedure is to eliminate one multiplicand at
a time from the set of polynomials by cross-multiplying coefficients and adding
polynomials so as to cancel out the selected multiplicand in all possible ways.
This activity – which we call a macro Fourier step – is carried out by Push-polys.
If the resulting data base contains an impossible polynomial (that is a polyno-
mial whose constant is greater than 0 and whose coefficients are all greater than
or equal to 0, such as 2 ≤ 0), then the linear arithmetics procedure concludes
that the set of inequalities represented by the data base is unsatisfiable. The
logic decided by the procedure is the quantifier-free linear arithmetics over the
rationals where ≤, +, −, and ∗ denote the ‘less-than or equal’ relation, addition,
subtraction, and multiplication by an integer constant, respectively.

The axiomatization of Peano theory in the Boyer and Moore’s logic and the
choice of the rational based decision procedure for linear inequalities made nec-
essary the introduction of a linearization routine (Linearize) to map the validity
problem over the naturals into a satisfiability problem over the rationals. (For
our purposes it suffices to know that the language of nqthm logic contains
the equality symbol (=), the Peano ‘less-than’ and ‘less-than or equal’ relations
(≺ and �, resp.), the numerals 0, 1, 2, . . . , and the Peano addition (⊕) and
subtraction () functions.) The linearization of an inequality is a set of poly-
nomials each one equipped with a set of ‘linearization hypotheses’ stored in the
hyps field.1 Given a set of literals as input, Push-terms first invokes Linearize
to translate (the negation of) the input literals into a set of polynomials which
are then added to DB by Push-polys. If adding the polynomials to DB yields
an impossible polynomial, then Push-terms concludes that the literal given as
input is true.

The heuristic component stores previously proven lemmas into a data base
of linear rules (LRs). A linear rule can have one of the following two forms:

∧n
i=1 hi → (lhs ≺ rhs)

∧n
i=1 hi → (lhs � rhs)

The Augment routine looks for heuristically chosen instances of the linear rules
which might contribute to the derivation of an impossible polynomial in DB.
Notice that Augment may invoke Rewrite while attempting to relieve the hy-
potheses of linear rules, i.e. h1, . . . , hn. To see why new polynomials are needed,
consider the data base DB0 = {1 ∗ L + −1 ∗ MIN(A) ≤ 0, 1 + −1 ∗ K ≤
0,−1∗L+1∗K+1∗MAX(A) ≤ 0},2 where MIN (MAX) is the user-defined function
returning the minimum (maximum, resp.) element of a list of numbers. After two
macro Fourier steps, we get DB1 = DB0 ∪ {1 ∗K +−1 ∗ MIN(A) + 1 ∗ MAX(A) ≤
0, 1 + −1 ∗ MIN(A) + 1 ∗ MAX(A) ≤ 0}. At this stage, no further macro Fourier

1 For the lack of space we omit the explanation of the meaning and role of the lin-
earization hypotheses. See [5] for the details.

2 DB0 is the polynomial data base obtained by clausifying and linearizing the formula,
(L � MIN(A) ∧ 0 ≺ K)→ (L ≺ MAX(A)⊕K).

46 Alessandro Armando and Silvio Ranise

step can be performed according to our heuristic criterion. This is because the
unsatisfiability of DB0 is not a consequence of linear arithmetic reasoning only.
However, if MIN(X) � MAX(X) is an available lemma, then it can be instan-
tiated to MIN(A) � MAX(A). By adding the corresponding linearization, i.e.
1 ∗ MIN(A) + −1 ∗ MAX(A) ≤ 0, to DB1, a macro Fourier step yields the im-
possible polynomial 1 ≤ 0.

Finally, Extract-eqs detects and returns equalities entailed by DB. For ex-
ample, if the data base contains the polynomials 1 ∗ X + −1 ∗ Y ≤ 0 and
−1 ∗ X + 1 ∗ Y ≤ 0, then it can be easily seen that X = Y is entailed by
the data base.

The integration schema. A more detailed account of the Boyer and Moore’s
integration schema (w.r.t. Figure 1) is given in Figure 2.

As the work needed to build the polynomial data bases for adjacent literals
in a clause is very similar (linearize the negation of the inequalities contained
in the clause but the one being rewritten, perform all possible cross-multiply
and adds, and augment), Simplify sets up a single data base for the clause. If
such a data base contains an impossible polynomial the input clause is trivially
true and Simplify returns this fact. If an impossible polynomial has not been
derived, then Extract-eqs is invoked and the equalities extracted from DB are
added to the clause. Rewrite is then asked to rewrite each literal in turn. But
when rewriting lit we must pay attention not to use the polynomials (and their
derivatives) encoding the falsity of lit; otherwise we could rewrite lit to false. To
overcome the difficulty, the data structure representing a polynomial is enriched
with a field (called lits field) containing the literals from which it derives; the
cross-multiply and add routine is then instructed to ignore those polynomials
having any literal previously rewritten to false in the lits field as well as the
literal being rewritten. To this end, Simplify keeps track of the literals rewritten
to false.

When Rewrite is asked to establish a linear inequality, lit, it applies a first
set of rewrites to lit (collectively called Rewrite1 in Figure 2). If this rewriting
leaves lit untouched then the linear arithmetic procedure is invoked by pushing
the negation of lit onto the data base. If the resulting data base DB′ contains an
impossible polynomial, then Rewrite is entitled to rewrite lit to true; otherwise
a second set of rewrites is applied to lit (called Rewrite2 in Figure 2). Each time
a polynomial is pushed into DB and a contradiction is not found, then the linear
arithmetic procedure asks Augment for additional linear facts. As Augment may
invoke Rewrite when relieving the hypotheses of a linear rule, the rewriting and
the augmentation procedures are mutually recursive. It is worth noticing that
each literal in the clause is rewritten in the context of the initially set up data
base DB, i.e. the temporary data bases created while rewriting the previous
literal are discarded before the rewriting of the next literal begins.

From Integrated Reasoning Specialists 47

Function Simplify(cl)
Begin
DB← Push-terms(cl, DB);
if DB contains an impossible polynomial then return true;
cl← cl ∪ Extract-eqs(DB);
cl′ ← cl;
while cl′ 6= {} do

Begin
lit← first(cl′); cl′ ← rest(cl′);
lit′ ← Rewrite(lit, DB);
Replace lit with lit′ in cl;

End
return cl;
End

Function Rewrite(lit, DB)
Begin
lit′ ← Rewrite1(lit); /* First phase of rewriting */
if lit′ 6= lit then return lit′;
DB′ ← Push-terms({lit}, DB); /* Invoking the LA specialist */
if DB′ contains an impossible polynomial then return true;
lit′ ← Rewrite2(lit); /* Second phase of rewriting */
return lit;
End

Function Push-terms(terms, DB)
Begin
polys← {};
foreach term in terms do polys← polys ∪ Linearize(¬term);
return Push-polys(polys,DB);
End

Function Push-polys(polys, DB)
Begin
foreach poly in polys do
Begin
DB← Cross-multiply-and-add(poly, DB);
if DB contains an impossible polynomial then return DB;

End
DB← Push-polys(Augment(DB, LRs), DB);
return DB;
End

Function Augment(DB, LRs)
Begin
polys← {};
foreach new multiplicand m in DB do
foreach linear rule ‘hyps→ lr’ in LRs do

if m occurs in lr and Rewrite(hyps,DB) = true
then polys← polys ∪ Linearize(lr);

return polys;
End

Fig. 2. The integration schema

48 Alessandro Armando and Silvio Ranise

S: Push-polys(polys, flits) | Protect

R: mated-terms

R: Sat | Unsat(imp-poly)

S: Augment(key-mults)

LA

R: polys

Simplify

Rewrite

Push-terms

Linearize

Augment

Extract-eqs

DB

Push-polys

S: Extract-eqs

SIMP

LRs

INTERFACESIMPLIFIER

Fig. 3. The reasoning components and the interaction schema

3 The Reasoning Components and Interaction Schema

We now describe the application of the second step of our methodology. In our
case study this amounted to scrutinizing the data-flows between the reasoning
specialists introduced in Section 2. Data-flows which are too intensive (both
in the rate and in the amount of information exchanged) must be avoided as
they would compromise the efficiency of the combined system. Furthermore, as
we do not allow the sharing of data structures between distinguished reasoning
components, the information needed by components which have no longer direct
access to a previously shared data structure must be explicitly passed. Also, if
the behavior of a reasoning component depend on its internal state, then suitable
primitives for managing the state must be identified.

By applying the above analysis to our case study we ended up with the
interaction scheme of Figure 3. la and simp are the labels for the linear arith-
metic reasoning component and the simplifier respectively. The edges crossing
the boundary between the two components have been labeled with service re-
quests (S:msg) and service replies (R:msg).

The reasoning components. When Simplify wants the equalities entailed by
DB, it asks the service request S:Extract-eqs to the la and gets back a reply
of the form R:mated-terms. Push-terms can ask either for Push-polys(polys,flits)
(where polys is a list of polynomials and flits is the list of the literals previously
rewritten to false), or for Protect which amounts to asking la to save the current
content of DB for later use. (la is also equipped with an internal functionality,
Restore, which allows for the backtracking to a previously saved copy of DB.)
A reply R:Sat means that no contradiction has been found in DB, whereas
a reply R:Unsat(imp-poly) means that the impossible polynomial imp-poly has
been derived. Augmentation is invoked by means of S:Augment(key-mults) where

From Integrated Reasoning Specialists 49

Init

s2la!Push-polys

la2s?Unsat

la2s?Sat

la2s?mated-terms

la2s?Sat|Unsat

s2la!Push-polys

la2s?Augment

s2la!Reset,Push-polys

la2s?Augment s2la!Extract-eqs

s2la!Quit-LA

Push-polys
s2la!Protect,

Fig. 4. State transition diagram for simp

key-mults are (heuristically chosen) multiplicands occurring in DB. key-mults
encode all the information of DB needed by Augment which therefore no longer
needs to directly access DB. R:polys are the polynomials sent back by Augment.

The interaction schema. Figure 3 provides only an abstract account of the
interaction schema between la and simp as it simply specifies the correspon-
dence between the logical services required and those provided by the reasoning
components. This level of abstraction is unsatisfactory for many purposes as
it leaves unspecified necessary constraints of the sequencing of events. (For in-
stance, a Restore must follow a Protect, but this in not specified by Figure 3).
Therefore we complete the description of the interaction scheme by describing
a suitable communication protocol. This amounts to specifying the vocabulary
and the format of the messages exchanged, as well as the procedure rules of the
protocol [10].

The procedure rules are formalized by the state transition diagrams in Fig-
ure 4 and Figure 5, both the vocabulary and the format of the messages can
be easily inferred from the labels used in the diagrams and the following de-
scription. The labels associated to the edges denote the actions performed when
the corresponding transitions take place. s2la and la2s are channels over which
the messages are exchanged. If ch is a channel, and exp is an expression, then
ch!exp denotes the action of sending exp to ch, that is, it appends exp to the
tail of ch; ch?exp denotes the action of retrieving a message from the head of
ch provided that it matches with exp. If multiple expressions are transferred
per message, they are specified in a comma-separated list: ch!exp1, . . . , expn and
ch?exp1, . . . , expn. An edge labeled with ch!exp1|exp2 stands for two alternative
edges labeled with ch!exp1 and ch!exp2. Statements are separated by semicolons:
if s1 and s2 are statements, then s1; s2 is a statement whose execution amounts
to the execution of s1 followed by the execution of s2.

50 Alessandro Armando and Silvio Ranise

Init

s2la?Extract-eqs

s2la?Reset,Push-polys

s2la?Push-polys

la2s!Sat|Unsat;Restore

la2s!Sat|Unsat

la2s!Augment

s2la?Push-polys

la2s!Augment

s2la?Protect,Push-polys

la2s!mated-terms

s2la?Quit-LA

Fig. 5. State transition diagram for la

We now informally describe how the protocol specified by the state transition
diagrams of Figures 4 and 5 reproduce the functionality of Simplify given in
Figure 2. The protocol starts with simp issuing a message of the form Reset
followed by a Push-polys(polys) to la.3 Upon receipt of such messages la resets
DB and then pushes polys onto DB. If no contradiction is detected and some
new multiplicands have been introduced into DB, then la asks simp for new
polynomials by means of a message of the form Augment(key-mults). Notice
that an arbitrarily long iteration of Push-polys and Augment may occur. (This
is also the case in Simplify due to the mutually recursive calls of the functions
Push-terms, via Push-polys, and Augment.) As soon as an impossible polynomial
imp-poly is derived in DB, a message of the form Unsat(imp-poly) is sent by la
back to simp. If the result of pushing new polynomials does not introduces new
multiplicands in DB, then the (supposed) satisfiability of DB is notified to simp.
At this point, simp asks for and gets backs a (possibly empty) set of equalities
entailed by DB. The rest of the execution corresponds to the service calls and
replies produced during rewriting and everything proceeds similarly to the set
up phase. The only difference is that simp explicitly asks la to save the original
content of DB (Protect) which is later automatically restored by la (Restore).
Finally, simp issues a message of the form Quit-LA in order to start simplifying
a new clause. Indeed, upon recepit of such a message la sets DB to the empty
data base.

4 Experimental Results

We have extracted the linear arithmetic procedure from the 1992 version of
nqthm, turned it into an independent reasoning component (LA) and made
it interact with the rest of the prover (NQTHM) via the protocol presented in
3 For simplicity, in Figures 4 and 5 we have omitted the arguments of the service

requests.

From Integrated Reasoning Specialists 51

NQTHM+LA NQTHM(LA)
Name calls info time time

EXPT 19 45 0.7 0.0
ZEXPTZ 19 45 0.8 0.0
LEX 53 53 2.8 0.3
ALMOST-EQUAL1 19 47 0.9 0.0
PLUS-0 19 34 0.6 0.0
PLUS-NON-NUMBERP 35 38 1.4 0.1
PLUS-ADD1 21 48 1.2 0.1
COMMUTATIVITY2-OF-PLUS 3 34 0.1 0.0
COMMUTATIVITY-OF-PLUS 3 28 0.1 0.0
ASSOCIATIVITY-OF-PLUS 3 34 0.2 0.0
TIMES-0 25 36 0.7 0.0
TIMES-NON-NUMBERP 25 31 0.7 0.1
DISTRIBUTIVITY 25 71 2.8 0.1
TIMES-ADD1 89 119 16.8 0.2
COMMUTATIVITY2-OF-TIMES 25 64 2.7 0.1
COMMUTATIVITY-OF-TIMES 49 84 7.1 0.3
ASSOCIATIVITY-OF-TIMES 9 53 0.8 0.1
EQUAL-TIMES-0 71 55 6.0 0.3
EQUAL-LESSP 9 15 0.1 0.0

Legenda. Timings are averaged over five runs on a workstation SUN
SPARC10 with 32 MB of RAM. Both NQTHM and LA were compiled
using GNU Common Lisp 1.0.

Table 1. Experimental results

Section 3. The two reasoning components have been implemented as two distinct
processes interacting via a socket interface. In the sequel we use NQTHM(LA) and
NQTHM+LA to refer to the implementations of the original and of the combined
system respectively.

Clearly NQTHM+LA outperforms NQTHM(LA) in terms of flexibility and reusabil-
ity. In fact, it is straightforward to replace LA with a new version of the reasoning
component (perhaps implemented in a different implementation language), say
LA’, and obtain an upgraded reasoning system, say NQTHM+LA’. It is also rela-
tively easy to plug LA into a different reasoning system. Of course there is a price
to pay for the flexibility offered by the combined system. Indeed a performance
degradation is to be expected as a consequence of the fact that function calls
have been replaced with calls to an external process.

We have carried out an experimental comparison between NQTHM(LA) and
NQTHM+LA to test the practical feasibility of our approach. To this end we have
selected a set of definitions and lemmas from the Boyer and Moore’s corpus
available with the 1992 distribution package of nqthm. In particular, we focused
on the proof of facts contained in the file fortran.events as they represent the
kind of proofs which motivated the integration of the linear arithmetic procedure
in nqthm [5].

Table 1 lists the results of our experiments. The first three columns pro-
vide data relative to NQTHM+LA: the number of messages exchanged by the two
processes (calls), the ratio between the total amount of information (in bytes)
and the number of messages exchanged (info), and the timings (expressed in

52 Alessandro Armando and Silvio Ranise

seconds: 0.0 indicates that the computation time is less than 0.05 seconds). The
rightmost column contains the timings of NQTHM(LA).

Our experiments show that (with the only exception of TIMES-ADD1) the cur-
rent version of NQTHM+LA is ten times slower than NQTHM. In our view this perfor-
mance degradation is already a fair price to pay for the flexibility and reusability
of the reasoning component. However a careful analysis of the experimental data
reveals that there is room for significant improvements.

The data show that the performance of NQTHM+LA is influenced by two fac-
tors: the number of messages exchanged (calls) and the amount of information
exchanged per message (info). However the latter seems to have a more signif-
icant impact. Evidence to this fact is obtained by comparing the values of the
calls and info fields of TIMES-ADD1 and EQUAL-TIMES-0. While the number of mes-
sages exchanged is close, the amount of information per message is significantly
larger for TIMES-ADD1 and therefore is the (main) culprit for the bad behavior of
NQTHM+LA. This consideration is confirmed by comparing DISTRIBUTIVITY with
TIMES-NON-NUMBERP, and COMMUTATIVITY-OF-TIMES with LEX.

An analysis of the content of the messages exchanged by NQTHM and LA dur-
ing the proof of TIMES-ADD1 reveals that the reason of their size is due to the
content of the hyps and lits fields of the polynomials exchanged (see Section 2).
Because of the use LA makes of such fields, it is possible for NQTHM to map distinct
data structures (contained in such fields) into distinct identifiers and send the
latter instead of the lengthy printed representation of the data structures (as
the current implementation does). This allows for a much more compact repre-
sentation of the hyps and lits fields. We expect this to dramatically improve the
performance of info-intensive proofs.

In the light of the previous analysis, it is reasonable to expect that a new
version of the protocol incorporating the optimization hinted above will provide
us with a considerably faster combined reasoning system. Furthermore, we envis-
age that standard optimization techniques borrowed from the field of distributed
computing (e.g. pipelining) can yield a combined reasoning system outperform-
ing its original implementation when run on a multi-processor architecture.

5 Conclusions and Future Work

In this paper we have proposed a methodology for lifting tightly integrated rea-
soning specialists into “plug-and-play” reasoning components. This allows for the
reuse of the sophisticated reasoning functionalities currently embedded in exist-
ing state-of-the-art reasoning systems. We believe this is a first but significant
step toward the ultimate objective of building reasoning systems (or enhancing
existing ones) by combining reasoning components in a “plug-and-play” fashion
as envisaged in [8].

The viability of the approach is shown by applying the methodology to a
challenge case study: the lifting of the Boyer and Moore’s linear arithmetic deci-
sion procedure into a stand-alone reasoning component. Experiments conducted
on a prototype implementation indicate that the resulting loss of performance

From Integrated Reasoning Specialists 53

is a fair price to pay for the gained flexibility and reusability. Optimizations ca-
pable of making the prototype system to compete with (or even to outperform)
the original implementation are discussed.

The work described in this paper is part of a wider project, called Open
Mechanized Reasoning Systems (OMRS) [2,8,14], aiming at the definition of a
specification framework for describing logical services [13]. [4] extends the OMRS
framework to deal with the more general notion of mathematical services.

As a final remark it is worth pointing out that our work shares many of the
design goals of the OpenMath project [1]. However we regard our contributions as
complementary to OpenMath’s. In particular, while OpenMath mainly focuses on
the mathematical information exchanged by reasoning systems and its standard-
ization, following [8] we aim at a broader characterization taking into account
also of the control and of the interaction components of the reasoning systems.

References

1. J. Abbott, A. Dı́az, and R. S. Sutor. A report on OpenMath. A protocol for the
exchange of mathematical information. SIGSAM Bulletin (ACM Special Interest
Group on Symbolic and Algebraic Manipulation), 30(1):21–24, March 1996.

2. A. Armando, P. Bertoli, A. Coglio, F. Giunchiglia, J. Meseguer, S. Ranise, and
C. Talcott. Open Mechanized Reasoning Systems: a Preliminary Report. In Work-
shop on Integration of Deduction Systems (CADE-15), 1998.

3. C. Ballarin, K. Homann, and J. Calmet. Theorems and Algorithms: An Inter-
face between Isabelle and Maple. In International Symposium on Symbolic and
Algebraic Computation. ACM Press, 1995.

4. P.G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and Com-
bination of Theorem Provers and Computer Algebra Systems. In 4th International
Conference Artificial Intelligence And Symbolic Computation, Plattsburgh, NY,
USA, 1998.

5. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theo-
rem Provers: A Case Study of Linear Arithmetic. Mach. Intel., (11):83–124, 1988.

6. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A Survey of the Theorema Project. In International Symposium on Symbolic and
Algebraic Computation, Hawaii, USA, 1997.

7. E. Clarke and X. Zhao. Analytica – a Theorem Prover for Mathematica. Tech.
Rep. CS-92-117, Carnegie Mellon University, 1992.

8. F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an
Architecture for Open Mechanized Reasoning Systems. Tech. Rep. 9409-15, IRST,
1994.

9. J. Harrison and L. Théry. A Sceptic’s Approach to Combining HOL and Maple.
To appear in the J. of Automated Reasoning, 1997.

10. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1990.

11. O. Müller and T. Nipkow. Combining Model Checking and Deduction for I/O-
automata. In Tools and Algorithms for the Construction and Analysis of Systems,
1995.

12. S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, Types, and
Model Checking. In Tools and Algorithms for the Construction and Analysis of
Systems, Enschede, The Netherlands, 1997.

54 Alessandro Armando and Silvio Ranise

13. I. Sutherland and R. Platek. A Plea for Logical Infrastructure. In TTCP XTP-1
Workshop on Effective Use of Automated Reasoning Technology in System Devel-
opment, 1992.

14. The OMRS Taskforce. The Open Mechanized Reasoning Systems Project WWW
Page. http://www.mrg.dist.unige.it/omrs/.

Reasoning About Coding Theory: The Benefits

We Get from Computer Algebra

Clemens Ballarin and Lawrence C. Paulson

Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, UK
{Clemens.Ballarin, Larry.Paulson}@@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/{cmb33, lcp}

Abstract. The use of computer algebra is usually considered beneficial
for mechanised reasoning in mathematical domains. We present a case
study, in the application domain of coding theory, that supports this
claim: the mechanised proofs depend on non-trivial algorithms from com-
puter algebra and increase the reasoning power of the theorem prover.
The unsoundness of computer algebra systems is a major problem in in-
terfacing them to theorem provers. Our approach to obtaining a sound
overall system is not blanket distrust but based on the distinction be-
tween algorithms we call sound and ad hoc respectively. This distinction
is blurred in most computer algebra systems. Our experimental interface
therefore uses a computer algebra library. It is based on theorem tem-
plates, which provide formal specifications for the algorithms.
Keywords. Computer algebra, mechanised reasoning, combining sys-
tems, soundness of computer algebra systems, specialisation problem,
coding theory.
AISC topics. Integration of logical reasoning and computer algebra,
automated theorem provers.

1 Motivation

Is the use of computer algebra technology beneficial for mechanised reasoning in
and about mathematical domains? Usually it is assumed that it is. Many works in
this area have, however, either only little reasoning content, or the contribution
of symbolic computation is only the simplification of expressions. Exceptions
are Analytica [Clarke and Zhao, 1993] and work by [Harrison, 1996]. Both these
approaches do not scale up. The former trusts the computer algebra system too
much, the latter, too little. Computer algebra systems are not logically sound
reasoning systems, but collections of algorithms.

Apart from the verification of numerical hardware and software, linking mech-
anised reasoning and computer algebra gives insight into the design of logically
more expressive frameworks for computer algebra, has applications in educa-
tional software and is a step towards the development of mathematical assistants.
Among the applications, geometry theorem proving is a prospective candidate.
For a survey on this, see [Geddes et al., 1992, section 10.6].

This work presents a case study that requires hard techniques from both
sides. The proofs we mechanise require algorithms from computer algebra in

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 55–66, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

56 Clemens Ballarin and Lawrence C. Paulson

order to be solved effectively. They also rely on the formalisation of natural
numbers, sets and lists, which are available in Isabelle, and make heavy use of
advanced proof procedures.

The outline of this article is as follows. In section 2 we briefly describe the
context of interactive theorem proving and the prover Isabelle. We then present
an analysis of the soundness problems in computer algebra and based on this
describe the design of an interface. The rest of the paper is devoted to our case
study. Section 3 introduces the mathematical background along the lines of its
mechanisation in Isabelle. Section 4 is a brief introduction to coding theory and
section 5 presents the mechanised proofs. Section 6 reviews important details of
the implementation and in section 7 we draw conclusions.

2 Interface Between Isabelle and Sumit

The interface we present is between the prover Isabelle and the computer algebra
library Sumit. See [Paulson, 1994] and [Bronstein, 1996] respectively.

2.1 Isabelle

Isabelle is a natural deduction-style theorem prover. Proofs are carried out inter-
actively by the user by applying tactics to the proof state and so replacing sub-
goals by simpler ones until all the subgoals are proved. Isabelle provides tactics
that perform single inference steps and also highly automated proof procedures,
like the simplifier and a tactic that implements a tableau prover.

Isabelle, like other LCF-style theorem provers, allows the user to program
arbitrary tactics, which can implement specialised proof procedures. The design
of Isabelle ensures that unsoundness cannot be introduced to the system through
these procedures. This is achieved by using an abstract datatype thm for theo-
rems. Theorems can only be generated by operations provided by the datatype.
These operations implement the primitive inference rules of the logic.

Isabelle also provides an oracle mechanism to interface trusted external pro-
vers. An oracle can create a theorem, i.e. an object of type thm, without proving
it through the inference rules. This, of course, weakens the rigour of the LCF-
approach, but theorems proved later on can record on which external theorems
they depend.

We use Isabelle’s object logic HOL, which implements Church’s theory of
simple types, also known as higher order logic. This is a typed version of the
λ-calculus. The logic has the usual connectives (∧,∨,−→, . . .) and quantifiers
(∀, ∃). Currying is used for function application. We write f ab instead of f(a, b).
Equality = on the type bool is used to express if-and-only-if. For definitions we
use ≡, and =⇒ expresses entailment in a deduction rule. Some definitions require
Hilbert’s ε-operator, which is actually a quantifier: εx.P x denotes the unique
value for which the predicate P holds. The notation for formulae in this paper
is close to their representation in Isabelle. We have omitted all type information
from formulae to improve their legibility. If type information is necessary, we
give it informally in the context.

Reasoning About Coding Theory 57

2.2 Soundness in Computer Algebra

Computer algebra systems have been designed as tools that perform complicated
algebraic computations. Their soundness or, as some authors might prefer to
say, unsoundness has become a focus, see [Harrison, 1996, Homann, 1997] for
examples. A systematic presentation of more examples is [Stoutemyer, 1991]. We
have identified the following reasons for unsoundness in the design of computer
algebra systems:

– They present a misleadingly uniform interface to collections of algorithms.
An object, which is used with a particular meaning in one algorithm, can be
used with a different meaning in another algorithm. Particularly problematic
are symbols, which are used as formal indeterminates in polynomials and as
variables in expressions. Interfacing to a computer algebra system through
its user interface is therefore problematic.

– They have only limited capabilities for handling side conditions or case splits,
if they exist at all. An example is

∫
xn dx. Computer algebra systems return

xn+1

n+1 . Substituting n = −1 yields an undefined term, while the solution of
the integral is lnx. This problem is known as specialisation problem, but
hardly ever referred to in the literature, see [Corless and Jeffrey, 1997].

– Many of the algorithms that are implemented in computer algebra systems
rest on mathematical theory and their correctness is well established: proofs
for their correctness have been published. Examples for these are factorisa-
tion algorithms for polynomials, Gaussian elimination and Risch’s method
for integration in finite terms. The design of other algorithms is less rigorous.
Simplification rules like (x2)

1
2 = x are cause for some of the reported sound-

ness problems. [Corless and Jeffrey, 1996] argue that a satisfactory treat-
ment of these requires extending the underlying mathematical model. In this
case Riemann surfaces are appropriate. We call the former sort of algorithms
sound and the latter ad hoc. See [Calmet and Campbell, 1997, section 2] for
a historic perspective on this distinction.

Of course, computer algebra systems also contain implementation errors. De-
pending on how rigorous one wants to be, one can reject any result of a com-
puter algebra system without formal verification in the prover. Considering the
amount of work required to re-implement these algorithms in a theorem prover,
and the poor efficiency one could expect, we decide to live with possible bugs
but look for ways of avoiding the systematic errors.

2.3 Design of the Interface

The interface obviously needs to translate objects between Isabelle’s and the
computer algebra system’s representation. The translation cannot be performed
uniformly, but needs to take into account which algorithm the objects are passed
to or returned from. As we can only use a selection of algorithms of the system
safely, we need to interface to these directly rather than to the system as a whole.

58 Clemens Ballarin and Lawrence C. Paulson

Unfortunately, it turns out to be difficult to tell sound algorithms from ad
hoc ones in large, multipurpose computer algebra systems. Without lengthy code
inspections one cannot be sure that a piece of otherwise sound code depends on
a module that is ad hoc. We have therefore chosen the rather small computer
algebra library Sumit, which is written in the strongly typed language Aldor,
originally designed for the computer algebra system Axiom. References to the
literature for the algorithms this library implements are available. From these,
formal specifications can be extracted.

The implementation of a prototype interface between Isabelle and Sumit is
straightforward. We provide stubs that translate between Isabelle’s λ-terms and
Sumit’s algebraic objects. More than one stub is provided for Sumit types that
are used for several mathematical domains. This is, for example, the case for
Sumit’s type Integer, which is used to represent both natural numbers and
integers. Arguments and results of the computation are then composed to a λ-
term representing a theorem. This is done using what we call a theorem template:
at this experimental stage, simply a piece of code. The generated theorem is an
instance of the algorithm’s formal specification. The algebraic algorithms, stubs
and theorem templates are wrapped to a server dealing with Isabelle’s requests.
The server we obtain this way is only a skeleton: stubs and theorem templates
are added incrementally for algorithms that are to be used.

3 Polynomial Algebra

The algebraic approach to cyclic codes is based upon the theory of polynomial
rings. We sketch this theory briefly and also show to what extent it has been
formalised within Isabelle/HOL. The type system of this logic supports simple
types extended by axiomatic type classes, which we use to represent abstract
algebraic structures. Subtyping has to be made explicit using suitable embedding
functions.

3.1 The Hierarchy of Ring Structures

One obtains various kinds of rings by imposing conditions on the ring’s mul-
tiplicative monoid. Integral domains, or domains for short, do not contain any
zero divisors other than zero: formally, a 6= 0 and b 6= 0 implies a · b 6= 0.

An element a is said to divide b, if there is an element d such that a · d = b.
We write a | b. Two elements are associated a ∼ b, if both a | b and b | a. An
element that divides 1 is called a unit. Associated elements differ by a unit factor
only. An element is called irreducible if it is nonzero, not a unit and all its proper
factors are units. Formally, irreda ≡ a 6= 0 ∧ a - 1 ∧ (∀d. d | a −→ d | 1 ∨ a | d).
An element is called prime if it is nonzero, not a unit and, whenever it divides a
product, it already divides one of the factors. This is, formally, prime p ≡ p 6=
0 ∧ p - 1 ∧ (∀a b. p | a · b −→ p | a ∨ p | b). The factorisation of an element x into
irreducible elements is defined by the following predicate:

Factorisationx F u ≡ (x = foldr · F u) ∧ (∀a ∈ F. irreda) ∧ u | 1 (1)

Reasoning About Coding Theory 59

F is the list of irreducible factors and u is a unit element. The list operator foldr
combines all the elements of a list, here by means of the multiplication operation
“·”. The product of the elements of F and of u is x.

An integral domain R is called factorial if the factorisation of the elements
into irreducible factors is unique up to the order of the factors and associated
elements. This is equivalent to R satisfying a divisor chain condition and every
irreducible element of R being prime. The divisor chain condition is not needed
in our proofs. We therefore formalise factorial domains only using the second
condition, which is also called the primeness condition. Fields are commutative
rings where every non-zero element has a multiplicative inverse.

3.2 Polynomials

Polynomials are a generic construction over rings. For every ring R there is a ring
of polynomials R[X]. The symbol X is called the indeterminate of the polynomial
ring. Further to the ring operations there is the embedding const :

{
R → R[X]

a 7→ aX0

}
.

We derive the representation theorem deg p ≤ n =⇒ ∑n
i=0 piX

i = p, where the
pi denote the coefficients of p.

Polynomials must not be confused with polynomial functions.1 Their relation
is described in terms of the evaluation homomorphism. Given another ring S
and a homomorphism φ : R → S we define EVALφ a p ≡ ∑deg p

i=0 φpi · an.
EVAL φa : R[X]→ S is a homomorphism as well and evaluates a polynomial in
S substituting a ∈ S for the indeterminate and mapping the coefficients of p to
S by φ.

3.3 Fields and Minimal Polynomial

The field F2 = {0, 1} is fundamental in an algebraic treatment of binary codes.
Codewords are represented as polynomials in F2 [X]. Note that associated ele-
ments are equal in these domains.

Let h be an irreducible polynomial of degree n. The residue ring obtained
from F2 [X] by “computing modulo h” is a field with 2n elements. For our purpose
we do not carry out this quotient construction of a field extension explicitly, as
we only need it to define the notion of minimal polynomial. Let G be an extension
field of F and a ∈ G. The nonzero polynomial m ∈ F [X] of smallest degree, such
that m evaluated at a is zero, is the minimal polynomial. Our definition of the
minimal polynomial is as follows:

minimal g S ≡ g ∈ S ∧ g 6= 0 ∧ (∀v ∈ S. v 6= 0 −→ deg g ≤ deg v) (2)
min poly h a ≡ εg. minimal g {p. EVALconst a p remh = 0} (3)

Note that here a ∈ F2 [X] and hence the embedding const is needed to lift the
coefficients of p to F2 [X]. The computation is carried out modulo h by means of
the remainder function rem associated with polynomial division.
1 Polynomial functions are a subtype of R → R and not isomorphic to R[X] when R

is finite: for F2 we have |F2 [X]| = ∞, but |F2 → F2 | = 4.

60 Clemens Ballarin and Lawrence C. Paulson

4 Coding Theory

This discipline studies the transmission of information over communication chan-
nels. In practice, information gets distorted because of noise. Coding theory
therefore seeks to design codes that allow for high information rates and the
correction of errors introduced in the channel. At the same time, fast encoding
and decoding algorithms are required to permit high transmission speeds.

The following presentation of coding theory follows [Hoffman et al., 1991].
The codes we are interested in for the purpose of this case study belong to a
class of binary codes with words of fixed length, so called block codes. n-error-
detecting codes have the capability to detect n errors in the transmission of a
word; n-error-correcting codes can even correct n errors. The distance between
two codewords is the number of differing bit-positions between them. The dis-
tance of a code is the minimum distance between any two words of that code.

Definition 1 A code is linear if the exclusive or of two codewords is also a
codeword. It is cyclic if for every codeword a0 · · · an its cyclic shift ana0 · · · an−1

is also a codeword.

Codes that are linear and cyclic can be studied using algebraic methods. Linear
codes are F2 -vector spaces. A code with 2k codewords has dimension k and there
is a basis of codewords that span the code. It is convenient to identify codewords
with polynomials:

a0 · · ·an−1 ←→ a0 + a1X + . . . + an−1X
n−1

The cyclic shift of a codeword a is then X · a rem(Xn − 1), where rem is the
remainder function associated with polynomial division.

There is a nonzero codeword of least degree in every linear cyclic code. This
is called the generator polynomial. It is unique and its cyclic shifts form a basis
for the code. It is important, because a linear cyclic code is fully determined
by its length and its generator polynomial. The generator polynomial has the
following algebraic characterisation:

Theorem 2 (Generator polynomial) There exists a cyclic linear code of
length n such that the polynomial g is the generator polynomial of that code
if and only if g divides Xn − 1.

4.1 Hamming Codes

Hamming codes are linear codes of distance 3 and are 1-error-correcting. They
are perfect codes: they attain a theoretical bound limiting the number of code-
words of a code of given length and distance. For every r ≥ 2 there are cyclic
Hamming codes of length 2r − 1.

An irreducible polynomial of degree n that does not divide Xm − 1 for m ∈
{n + 1, . . . , 2n − 2} is called primitive.2 This allows us to state the following
structural theorem on cyclic Hamming codes:
2 Note that the term primitive polynomial is used with a different meaning in other

areas of algebra.

Reasoning About Coding Theory 61

Theorem 3 (Hamming code) There exists a cyclic Hamming code of length
2r − 1 with generator polynomial g, if and only if g is primitive and deg g = r.

4.2 BCH Codes

Bose-Chaudhuri-Hocquengham (BCH) codes can be constructed according to
a required error-correcting capability. We only consider 2-error-correcting BCH
codes. These are of length 2r − 1 for r ≥ 4 and have distance 5.

An element a of a field F is primitive if ai = 1 is equivalent to i = |F | − 1
or i = 0. Let G be an extension field of F2 with 2r elements and b ∈ G a
primitive element. The generator polynomial of the BCH code of length 2r−1 is
mb ·mb3 , where ma denotes the minimal polynomial of a in the field extension.
If we describe the field extension in terms of a primitive polynomial h, then
X corresponds to a primitive element. Note that, because h is irreducible, it is
minimal polynomial of X . Therefore we can define BCH codes a follows:

Definition 4 Let h ∈ F2 [X] be a primitive polynomial of degree r. The code of
length 2r − 1 generated by h ·min poly h X3 is called a BCH code.

5 Formalising Coding Theory

We formalise properties of codes with the following predicates. Codewords are
polynomials over F2 and codes are sets of them. The statement code n C means
C is a code of length n. The definitions of linear and cyclic are straightforward
while generatorn g C states that g is generator polynomial of the code C of
length n.

coden C ≡ ∀x ∈ C. deg x < n
linearC ≡ ∀x ∈ C. ∀y ∈ C. x + y ∈ C
cyclicn C ≡ ∀x ∈ C. X · x rem(Xn − 1) ∈ C
generatorn g C ≡ coden C ∧ linearC ∧ cyclicn C ∧minimal g C

5.1 The Hamming Code Proofs

We now describe our first application of the interface between Isabelle and Sumit.
We use it to prove which Hamming codes of a certain length exist. Restricting the
proof to a certain length allows us to make use of computational results obtained
by the computer algebra system. The predicate Hamming describes which codes
are Hamming codes of a certain length. Theorems 2 and 3 are required and
formalised as follows:

0 < n −→ (∃C. generatorn g C) = g | Xn − 1 (4)
(∃C. generator(2r − 1) g C ∧Hamming r C) = (deg g = r ∧ primitive g) (5)

These equations are asserted as axioms and are the starting point of the proof
that follows. Note that (5) axiomatises the predicate Hamming. The generators

62 Clemens Ballarin and Lawrence C. Paulson

of Hamming codes are the primitive polynomials of degree 2r− 1. The primitive
polynomials of degree 4 are X4 + X3 + 1 and X4 + X + 1. Thus for codes of
length 15 we prove

(∃C. generator 15 g C ∧Hamming r C) = (g ∈ {X4 + X3 + 1, X4 + X + 1}).
We now give a sketch of this proof, which is formally carried out in Isabelle. The
proof idea for the direction from left to right is that we obtain all irreducible
factors of a polynomial by computing its factorisation. The generator g is irre-
ducible by (5) and a divisor of X15 − 1 by (4). The factorisation of X15 − 1 is
computed using Berlekamp’s algorithm:

Factorisation(X15 − 1) [X4 + X3 + 1, X + 1, X2 + X + 1,

X4 + X3 + X2 + X + 1, X4 + X + 1] 1

Since associates are equal in F2 [X] every irreducible divisor of X15− 1 is in this
list. This follows from the lemma

irred c ∧ Factorisationx F u ∧ c | x =⇒ ∃d. c ∼ d ∧ d ∈ F, (6)

whose proof requires an induction over the list F . It follows in particular that
the generator polynomials are in the list above. But some polynomials in the
list cannot be generators: X + 1 and X2 + X + 1 do not have degree 4 and
X4 + X3 + X2 + X + 1 divides X5 − 1 and is therefore not primitive. The only
possible generators are thus X4 + X3 + 1 and X4 + X + 1.

It remains to show that these are indeed generator polynomials of Hamming
codes. This is the direction from right to left. According to (5) we need to show
that X4 + X3 +1 and X4 + X + 1 are primitive and have degree 4. The proof is
the same for both polynomials. Let p be one of these. The irreducibility of p is
proved by computing the factorisation, which is Factorisationp [p] 1, and follows
from the definition of Factorisation, equation (1).

The divisibility condition of primitiveness is shown by verifying p - Xm − 1
for m = 5, . . . , 14. 2

5.2 The BCH Code Proofs

The predicate BCH is, in line with definition 4, defined as follows:

BCH r C ≡ (∃h. primitive h ∧ deg h = r ∧
generator(2r − 1) (h ·min poly h X3) C)

(7)

We prove that a certain polynomial is generator of a BCH code of length 15:

generator15 (X8 + X7 + X6 + X4 + 1) C =⇒ BCH4 C

Here is the outline of the proof: X8 + X7 + X6 + X4 + 1 is the product of the
primitive polynomial X4+X+1 and the minimal polynomial X4+X3+X2+X+

Reasoning About Coding Theory 63

1. According to the definition (7) we need to show that the former polynomial
is primitive. This has been described in the second part of the Hamming proof.
Secondly, we need to show that the latter is a minimal polynomial:

min poly(X4 + X + 1) X3 = X4 + X3 + X2 + X + 1

In order to prove this statement, we need to show that X4 + X3 + X2 + X + 1
is a solution of

EVALconst X3 p rem(X4 + X + 1) = 0 (8)

of minimal degree, and that it is the only minimal solution.

– Minimal solution: Simplification establishes that X4 + X3 + X2 + X + 1 is
a solution of the equation. That there are no solutions of smaller degree can
be shown as follows:
Assume deg p ≤ 3, so p = p0 + p1X + p2X

2 + p3X
3 for p0, . . . , p3 ∈ F2 . We

substitute this representation of p in (8) and obtain, after simplification,

p0 + p1X
3 + p2(X2 + X3) + p3(X + X3) = 0.

Comparing coefficients leads to a linear equation system, which we can solve
using the Gaussian algorithm. The only solution is p0 = · · · = p3 = 0, so
p = 0. This is a contradiction to the definition of minimal.

– Uniqueness: We need to show that X4 + X3 + X2 + X + 1 is the only
polynomial of smallest degree satisfying (7). We study the solutions of (8)
of degree of ≤ 4 by setting p = p0 + . . . + p4X

4 and obtain another equation
system

p0 + p1X
3 + p2(X2 + X3) + p3(X + X3) + p4(1 + X + X2 + X3) = 0.

Its set of solutions, again computed by the Gaussian algorithm, is {0, X4 +
X3 + X2 + X + 1}. The definition of minimality excludes p = 0. Therefore
there are indeed no other solutions of minimal degree. 2

6 Review of the Development

We have mechanised the mathematics outlined in section 3 and the proofs de-
scribed in section 5 in our combination of Isabelle and Sumit. The mathematical
background presented in section 3 has been formalised by asserting definitions
for the entities and deriving the required theorems mechanically. This is advis-
able to maintain consistency. We have not done the same for coding theory. Here
we have only asserted the results, namely theorems 2 and 3 and then mechanised
the proofs described in section 5. This part is therefore considerably shorter than
the development of the mathematical background.

The following table gives an overview on the effort. The figures are, however,
misleading in such that developing proof scripts is much harder than ordinary
programming.

64 Clemens Ballarin and Lawrence C. Paulson

Isabelle Sumit
Interface 23.7 Interface 43.3
Formalisation of algebra 61.8 Stubs and
Coding theory proofs 14.6 theorem templates 20.4

Size of the development (code sizes in 1000 bytes)

The interface of Sumit is considerably larger, because datatypes for λ-terms
and the server functionality are provided as well. The entry “Coding theory
proofs” includes the implementation of proof procedures for irreducibility and
primitiveness of polynomials, which automatically examine the proof state and
retrieve the required theorems from Sumit.

6.1 Contributions of the Prover

We prove theorems about polynomial algebra, which do not have computational
content, in Isabelle. We also establish the relation between coding theory and
the specifications of the algebraic algorithms. In our informal presentation these
translations may appear simple, but some of them are in fact rather difficult.

For the Hamming code proofs take lemma (6), for example, which is proved
by list induction. The induction step, after unfolding definitions, is a quantifier
expression, which is solved almost automatically by Isabelle’s tableau prover.
However, it requires search to a depth of six, which means that six “difficult”
rules have to be applied, and produces a proof with 221 inferences. A depth of six
is unusually deep in interactive proof. The complete proof of (6) is 372 inferences
long but only requires 8 invocations of tactics, which resemble the manual proof
steps.

In the proofs about BCH codes, reasoning about minimality needs the full
power of first order logic. Note that the definition of minimality (2) contains
a quantifier and phrases like “x is the only element, such that P” are really
statements that involve quantifiers.

6.2 Contributions of Computer Algebra

Sumit computes normal forms for expressions that do not contain variables; here
in the domains N, F2 , F2 [X]. This includes the decision of equality, inequalities
and divisibility over these expressions. Their theorem templates are of the form
a� b = B, where � is the corresponding connective and B becomes either True
or False.

Polynomials are decomposed into square-free factors and then factorised over
F2 [X] using Berlekamp’s algorithm. We pass a polynomial p to this procedure
and obtain a list of irreducible factors [x1, . . . , xk] and a unit element u. These
are then assembled to the theorem

Factorisationx [x1, . . . , xk] u.

Linear equation systems over F2 are solved by Gaussian elimination. The
matrix (a0| · · · |an) is passed to the algorithm, where ai is the ith column vector.

Reasoning About Coding Theory 65

The algorithm returns a list of vectors [v1, . . . , vk] that span the solution space.
The theorem template generates the theorem

(
n∑

i=0

xiai = 0) = (∃t1 · · · tk. x = t1v1 + . . . + tkvk)

or (
n∑

i=0

xiai = 0) = (x = 0), if k = 0.

The ti are variables in F2 and the xi are elements of the vector x. Note that we
use polynomials to denote vectors in Isabelle, as indicated in the proof.

Mechanising the proofs in a system that integrates the computer algebra com-
ponent without trusting it would require to additionally prove the theorems gen-
erated by these templates formally. This holds in particular for [Harrison, 1996,
chapter 6] and [Kerber et al., 1996], who try to reconstruct the proofs using the
result of the computation and possibly further information, which resembles a
certificate for the computation.

In the case of our proofs, the irreducibility of the factors, which constitute
a factorisation, is hard to establish and also the direction from left to right in
the theorems generated by Gaussian elimination.3 This direction states that the
solution is complete, and it is the direction needed in the proofs.

7 Conclusion

Our approach is pragmatic: we trust the computer algebra component in our
system rather than reconstruct proofs for the results of computations within the
prover’s logic. The approach relies on implementations of algorithms that are
trustworthy. This can be achieved by restricting the use of computer algebra to
algorithms, for which proofs of their correctness have been published. This is
sufficient to avoid systematic soundness problems of computer algebra systems.
Errors in the implementation of these algorithms still jeopardise the integrity
of the prover, but bugs of this sort should not be more frequent in computer
algebra systems than in other software (including provers themselves).

Computational results are turned into theorems using theorem templates
that can produce arbitrary theorems. This is more flexible than the approach
suggested by one of us [Ballarin et al., 1995], which only allowed conditional
rewrite rules, because the logical meaning of the result can be exploited more
easily.

Our case study shows that theorems that are rather difficult to verify occur
naturally in proofs. It presents a challenge to the approach that does not trust
the computer algebra component. But it also makes a contribution: it clarifies
which theorems need to be certified.
3 Over some domains theorems of this kind can be proved by decision procedures for

linear arithmetic. Here, because |F2 | = 2, this could be done by checking all the 2n+1

cases.

66 Clemens Ballarin and Lawrence C. Paulson

Our approach avoids Analytica’s soundness problems. This means, of course,
that we cannot make use of algorithms that are ad hoc. In an interactive envi-
ronment it does not matter too much that these are not complete. They need,
however, to be made sound. Expressive formalisms that are able to deal with side
conditions and case splits are used in mechanised reasoning. Expertise gained
here could prove useful in the redesign of these algorithms as well.

Acknowledgements. This work has been funded in part by the Studien-
stiftung des deutschen Volkes and by EPSRC grant GR/K57381 “Mechanizing
Temporal Reasoning”.

References

[Ballarin et al., 1995] Clemens Ballarin, Karsten Homann, and Jacques Calmet. The-
orems and algorithms: An interface between Isabelle and Maple. In A. H. M. Levelt,
editor, ISSAC ’95: International symposium on symbolic and algebraic computation
— July 1995, Montréal, Canada, pages 150–157. ACM Press, 1995.

[Bronstein, 1996] Manuel Bronstein. Sumit — a strongly-typed embeddable computer
algebra library. In Calmet and Limongelli [1996], pages 22–33.

[Calmet and Campbell, 1997] J. Calmet and J. A. Campbell. A perspective on sym-
bolic mathematical computing and artificial intelligence. Annals of Mathematics and
Artificial Intelligence, 19(3–4):261–277, 1997.

[Calmet and Limongelli, 1996] Jacques Calmet and Carla Limongelli, editors. Design
and Implementation of Symbolic Computation Systems: International Symposium,
DISCO ’96, Karlsruhe, Germany, September 18–20, 1996: proceedings, number 1128
in Lecture Notes in Computer Science. Springer-Verlag, 1996.

[Clarke and Zhao, 1993] Edmund Clarke and Xudong Zhao. Analytica: A theorem
prover for Mathematica. The Mathematica Journal, 3(1):56–71, 1993.

[Corless and Jeffrey, 1996] Robert M. Corless and David J. Jeffrey. The unwinding
number. ACM SIGSAM Bulletin, 30(2):28–35, 1996.

[Corless and Jeffrey, 1997] R. M. Corless and D. J. Jeffrey. The Turing factorization
of a rectangular matrix. ACM SIGSAM Bulletin, 31(3):20–28, 1997.

[Geddes et al., 1992] Keith O. Geddes, Stephen R. Czapor, and George Labahan. Al-
gorithms for Computer Algebra. Kluwer Academic Publishers, 1992.

[Harrison, 1996] John Robert Harrison. Theorem proving with the real numbers. Tech-
nical Report 408, University of Cambridge, Computer Laboratory, November 1996.

[Hoffman et al., 1991] D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps,
C. A. Rodger, and J. R. Wall. Coding Theory: The Essentials. Number 150 in
Monographs and textbooks in pure and applied mathematics. Marcel Dekker, Inc.,
New York, 1991.

[Homann, 1997] Karsten Homann. Symbolisches Lösen mathematischer Probleme
durch Kooperation algorithmischer und logischer Systeme. Number 152 in Disserta-
tionen zur Künstlichen Intelligenz. infix, St. Augustin, 1997.

[Kerber et al., 1996] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating
computer algebra with proof planning. In Calmet and Limongelli [1996], pages 204–
215.

[Paulson, 1994] Lawrence C. Paulson. Isabelle: a generic theorem prover. Number 828
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Stoutemyer, 1991] David R. Stoutemyer. Crimes and misdemeanors in the computer
algebra trade. Notices of the American Mathematical Society, 38(7):778–785, 1991.

Automatic Generation of Epsilon-Delta Proofs

of Continuity

Michael Beeson

Department of Mathematics and Computer Science
San Jose State University

San Jose, California 95192, USA
beeson@mathcs.sjsu.edu

Abstract. As part of a project on automatic generation of proofs in-
volving both logic and computation, we have automated the production
of some proofs involving epsilon-delta arguments. These proofs involve
two or three quantifiers on the logical side, and on the computational
side, they involve algebra, trigonometry, and some calculus. At the bor-
der of logic and computation, they involve several types of arguments
involving inequalities, including transitivity chaining and several types
of bounding arguments, in which bounds are sought that do not de-
pend on certain variables. Control mechanisms have been developed for
intermixing logical deduction steps with computational steps and with
inequality reasoning. Problems discussed here as examples involve the
continuity and uniform continuity of various specific functions.1

1 Context of this Research

Mathematics consists of logic and computation, interwoven in tapestries of proofs.
“Logic” is represented by the manipulation of phrases (or symbols) such as for
all x, there exists an x, implies, etc. “Computation” refers to chains of formulas
progressing towards an “answer”, such as one makes when evaluating an integral
or solving an equation. Typically computational steps move “forwards” (from the
known facts further facts are derived) and logical steps move “backwards” (from
the goal towards the hypothesis, as in it would suffice to prove. The mixture of
logic and computation gives mathematics a rich structure that has not yet been
captured, either in the formal systems of logic, or in computer programs. The
research reported on here is part of a larger research program to do just that:
capture and computerize mathematics.

At present, there exist computer programs that can do mathematical compu-
tations, such as Mathematica, Maple, and Macsyma. These programs, however,
do not keep track of the logical conditions needed to make computations legal,
and can easily be made to produce incorrect results.2

1 This research partially supported by NSF Grant Number CCR-9528913.
2 Just to give one example: Start with the equation a = 0. Divide both sides by a. In

all the three systems mentioned, you can get 1 = 0 since the system thinks a/a = 1
and 0/a = 0. Many other examples have been given in the literature [1],[15].

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 67–83, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

68 Michael Beeson

On the other hand, there are theorem-proving programs such as Otter [13]
(and others too numerous to mention) which perform logical reasoning. These
programs are quite limited in their computational abilities, although some of
them can perform rewrites using a specified set of equations. The input consists
of a file containing axioms, and a goal, usually expressed in clausal form. The pro-
gram contains no mathematical knowledge except that supplied in the axioms;
it only “knows” the laws of logic. Proof-search, such as these programs perform,
is not what is meant here by “computation”; although of course in some sense
the execution of any algorithm is computation, what we call computation here
is more like what an ordinary mathematician means by the word, a sequence of
more or less purposeful-appearing steps, with little or no trial-and-error involved.

This paper will present a framework for integrating logic and computation,
and report on experiments with the implementation of that framework. The
implementation is contained in two computer programs, Mathpert and Weier-
strass. The former has been reported on elsewhere in detail [1,2,3]: it contains
implementations of over two thousand mathematical operations, together with
logical apparatus to keep track of assumptions that may be required or gen-
erated by those operations. Mathpert (as in “Math Expert”) uses these opera-
tions to provide a computerized environment for learning algebra, trigonometry,
and calculus. It is the second program, Weierstrass, which is used in the re-
search reported here. Weierstrass began life as a C-language implementation of
a “backwards Gentzen” theorem prover, whose Prolog progenitor was described
in [4]. To this backbone has been added a set of control structures, or if you like,
implementations of special inference rules, to allow the proper meshing of log-
ical and computational steps. These control structures operate at the top level
of Weierstrass, but the computational steps themselves can use, in principle,
anything that has been implemented in Mathpert, which is all of high-school al-
gebra, trigonometry, and one-variable calculus including limits, differentiation,
and integration, as well as a good many techniques for rewriting inequalities,
and a few advanced algorithms, such as the Coste-Roy algorithm [10], based on
Sturm’s theorem, for determining whether polynomials have roots in given inter-
vals. The implementations of these operations in Mathpert are logically correct,
so that they can be used in Weierstrass without the risk of inconsistency that
would accompany the similar use of Mathematica, Maple, or Macsyma.3

The plan of the paper is to describe the control structures used in Weierstrass,
and then to illustrate their use by giving several examples of proofs produced
by Weierstrass.

No program has ever before produced an epsilon-delta proof of the continuity
of any specific non-linear function. For example, Bledsoe and his student Hines
have used the prover STRIVE [6] to prove that the sum of continuous func-
tions is continuous, and that linear functions are continuous, but it lacks the

3 Weierstrass is not an interactive program for producing a proof step-by-step. The
user supplies axioms and a goal, and Weierstrass finds a proof if it can. However,
the techniques discussed in this paper could easily be used to build an interactive
program.

Automatic Generation of Epsilon-Delta Proofs of Continuity 69

computational ability to carry out the proofs given here. Analytica [9] is linked
to the computational facilities of Mathematica, but essentially deals only with
quantifier-free proofs. The Boyer-Moore prover [7] has proved some impressive
theorems of number theory, including the law of quadratic reciprocity, but like
Analytica, works best with free-variable proofs, and cannot find epsilon-delta
proofs. Other directly relevant work includes [11], [16], [8]. A lengthier discus-
sion of these and other projects is precluded by the length limit on papers in
this volume.

2 Nature of the Proofs Produced by Weierstrass

To avoid confusion, some discussion of nature and purpose of computer-generated
proofs is necessary. Weierstrass produces (internally) a proof-object, which can
be displayed or saved in more than one form. The intention is, to produce a proof
that can be read and checked for correctness by a human mathematician; the
standard to be met is “peer review”, just as for journal publication. By contrast:
the purpose of Weierstrass is not to produce formal proofs in a specified formal
system.

Nevertheless, the program does produce a formal proof object. This object
can be regarded as a proof in a formal system, but some of the steps in the proof
involve more computation than is normal in formal systems. In traditional logi-
cal systems, checking that an inference step is correct according to the system is
a simple syntactic comparison to the rule used at that inference. In Weierstrass,
an inference step might involve the use of a mathematical algorithm, even for
example a complicated algorithm based on Sturm sequences, so that the correct-
ness of the step might not be obvious by inspection. If the algorithms used have
been correctly implemented, then the proofs are formally correct.4 But certainly
we do not have proofs (formal or informal) of the correctness of the specific pro-
grams implementing more than two thousand mathematical operations available
in Weierstrass, so we must rely on human verifications that the actual output
of Weierstrass is an acceptable proof.

There is a different and more interesting reason why the proofs produced
by Weierstrass should be judged by the “peer review” standard. Namely, the
algorithms it uses represent theorems of all different “levels”. For instance, one
might protest that the “right way” to prove continuity theorems such as are con-
sidered here, is to prove general theorems about the continuity of compositions
of functions, etc., and quote them. Indeed, that is the way Mathpert proceeds
internally, e.g. when it has to verify the continuity of an integrand in evaluating a
definite integral. But when trying to prove the continuity of x3, we don’t want a
one-line proof based on the continuity of polynomials. To state the point another
4 This is really no different than in a purely logical theorem prover: one does not

demand that one should prove the correctness of the theorem-prover before accepting
its output as a proof. Otherwise, one would be involved either in an infinite regress
or a reflexive situation where a prover would prove its own correctness. And would
we believe it then?

70 Michael Beeson

way: People interested in foundations of mathematics try to order the concepts
and theorems of mathematics so that each one depends only on earlier results,
with everything resting on a few self-evident axioms. The body of mathematics
available to Weierstrass has not been so ordered; rather, there is simply a “web”
of known facts and algorithms, any of which can be used as required. We see one
example of this in the third example presented in this paper: Weierstrass doesn’t
mind using the mean value theorem to prove the continuity of f(x) =

√
x, even

though the result seems “simpler” than the tool.
Some of the descendants of this program may become the “mathematician’s

assistant” of the future, a tool to which a practicing mathematician may turn
when a stubborn inequality needs to be proved. The standard of “peer review” is
the appropriate one for this type of program. Other descendants of this program
may be used in a project to construct a database of formalized mathematics, sim-
ilar to the Mizar project of today. In that case the questions of formal correctness
proofs for the computational steps, and of ordering the results and deriving them
from axioms, will eventually arise, but this will be a difficult enterprise.

3 The Logical Backbone of Weierstrass

The core of the logical apparatus in Weierstrass is a “backwards Gentzen prover”.
I shall now explain what is meant by that phrase. A Gentzen sequent, or just
sequent, is an expression of the form A1, . . . , An ⇒ B, where the Ai and B are
logical formulae (in some language).5 The right side of the sequent symbol ⇒ is
called the succedent and the left side is the antecedent. The semantic interpre-
tation of a sequent is that the conjunction of the Ai implies B. We allow true
and false as atomic propositions. The sequent calculus is a set of inference rules
for deducing one sequent from another. One standard reference for these rules is
Kleene’s book [12]. In that reference, an empty list can appear in the succedent;
we use false for this purpose, so that a formula always stands in the succedent.

When the sequent calculus is implemented in Weierstrass, most of the an-
tecedent is kept in a list of assumptions, which could in principle be quite long.
If axioms of induction are used, for example, new instances of the axioms can
be generated as required; axioms belong in the antecedent, since the sequent
calculus is for producing purely logical proofs. The only parts of the antecedent
that will be “passed” as function parameters are assumptions that are made
temporarily during the argument. For example, to prove an implication A→ B,
we “assume” A and then try to derive B. This is the implementation of the
Gentzen rule

Γ, A⇒ B

Γ ⇒ A→ B

5 These are sometimes called intuitionistic sequents, by contrast with classical sequents
which allow B1, . . . , Bn on the right. Weierstrass uses intuitionistic logic, but that
is for efficiency and convenience only, and is not essential. Indeed some of the com-
putational steps may not be intuitionistically valid.

Automatic Generation of Epsilon-Delta Proofs of Continuity 71

In addition to the ordinary variables of logic, we also make use of “metavari-
ables”, whose values are expressions (terms or sometimes formulae), rather than
numbers or other mathematical objects which are the values of ordinary (object)
variables. Weierstrass introduces metavariables when it uses the Gentzen rules

Γ ⇒ A[t/x]
Γ ⇒ ∃xA

A[t/x], Γ ⇒ B

∀xA, Γ ⇒ B

For example, to prove ∃δ∀x, y(|x−y| < δ−|f(x)−f(y)| < ε), Weierstrass will
change δ to a metavariable, and try to prove ∀x, y(|x−y| < δ−|f(x)−f(y)| < ε).
Eventually, δ will be given a value (if the proof is successful), and when that
value is put in for the metavariable δ, the result will be a (part of a) proof tree
which is legal according to the Gentzen rules. In the meantime, that is before
the final unifications take place, what is being constructed is something slightly
more general than a Gentzen proof tree; it is a Gentzen proof tree in which
metavariables are allowed, and the metavariables may have values, and the values
may be expressions involving other metavariables. (That is, the metavariables
can be “partially instantiated”.) A formal definition of an extended derivation,
and some related theorems, can be found in [4].

In general, Weierstrass starts by loading an axiom file, which contains (zero
or more) axioms and a goal. The goal is placed in the succudent, and the axioms
in the assumption list, which implements the antecedent. Weierstrass then at-
tempts to construct an extended derivation of this sequent. Unification is used
in order to instantiate metavariables introduced as described above. Unification
is also used to control the selection of the next rule to be applied. Some of the
logical rules are broken into subcases, and the order in which they are tried is
important. These matters are discussed in [4]. For the present work, it suffices
to note that the logical apparatus, functioning on its own, is a decent theorem-
prover. While it makes no attempt to compete with Otter, the logic required
for ordinary mathematics is comparatively simple, and in no example has the
logical apparatus required revision beyond what was described in [4] seven years
ago.

The implementation of a metavariable X includes a data structure designed
to keep track of a list of variables that are “forbidden” to X ; this means that
X cannot have a value that contains variable forbidden to X . We make this
part of the definition (and implementation) of unification; see [5] for theoretical
reasons. This method provides an efficient way to keep track of the conditions
on variables that accompany the quantifier rules that introduce metavariables.
Instead of giving a metavariable a forbidden value, and carrying out another long
subproof, only to discard the result because the conditions on the quantifier rule
are violated, the unification will fail instead. I credit Natarajan Shankar for first
telling me something similar to this. The idea has been fruitful beyond this
improvement in efficiency, since we can use it in connection with computational
steps where we want to bound a certain quantity in terms of some bound that
does not depend on certain variables; this will be discussed below.

72 Michael Beeson

4 Computational Methods in a Quantifier-Free Prover

The theorem prover, or logical apparatus, in Mathpert is responsible for main-
taining the correctness of computations; it must block incorrect steps and ensure
that the assumptions do support the steps that are taken. The program Weier-
strass began by combining the methods of [4] for handling first-order logic, with
the methods of Mathpert for handling computations in a quantifier-free setting.
More precisely, the logical apparatus in Mathpert deals with sequents composed
of formulae which involve no implication or negation, but only disjunctions and
conjunctions of equalities and inequalities. When we say “quantifier-free” below,
this is what we mean. We describe those methods, as implemented in Weier-
strass, in this section.

4.1 Logical and Mathematical Simplification

Computational methods can be applied either to a mathematical expression
(term), or to a logical expression (proposition). That is, we can treat rewriting
propositions according to the laws of Boolean algebra on the same footing as
rewriting algebraic expressions according to the laws of eighth-grade algebra.
We apply the term “simplification” to describe the application of both algebraic
and logical operations.

4.2 Operations More General than Rewrite Rules

The term operation is here used to mean an algorithm that transforms an ex-
pression of a certain form into another expression, which is equal (algebraically
or logically) to the input, possibly under certain “side conditions”. For example,√

x2 = x represents an operation that transforms an expression of the form
√

A2,
where A is any expression, into A; but it has the side condition 0 ≤ A. Opera-
tions may be rewrite rules, but they may well be more general than rewrite rules.
For example, the operation named collect powers can be used to rewrite x2x3

as x5, which is not a rewrite rule since arithmetic on the exponents is involved.
The same operation can be used to collect powers separated by other terms, as
in x2yx3, and to collect any number of powers, as in x2yx3x4. But, like rewrite
rules, operations can be applied to any subterm.

4.3 Operations and Side Conditions

Weierstrass keeps the assumption list (the antecedent) in simplified form, so it
is not necessary to look for operations to apply to the antecedent.6

6 When an operation is applied to the succedent, any occurrences of the same formula
that was changed in the succedent are also changed in the antecedent, after which
some simplifications in the antecedent may be performed to keep the antecedent in
simplified form.

Automatic Generation of Epsilon-Delta Proofs of Continuity 73

When the succedent is quantifier-free, Weierstrass will try to simplify it, try-
ing a large number of logical and algebraic operations. These operations, for
example, may simplify Boolean combinations of inequalities, or simplify certain
inequalities to true or false. Purely algebraic simplification will also be per-
formed, but not, for example, factoring or common denominators; except that
greatest common divisors may be cancelled out of fractions.

This last example brings up the interesting question of the relationship be-
tween the antecedent (assumptions) and the simplifications performed in the
succudent. Consider, for example, the proposition

x4 − 1
x2 − 1

> 0

If we cancel x2 − 1 from numerator and denominator, we arrive at the proposi-
tion x2 +1 > 0, which will simplify to true. But, at some point we must assume
x2−1 6= 0; otherwise the result is incorrect. The points to consider here are two:
(1) the original expression is not defined for all values of x, and (2) the domain
changes as a result of the application of an operation, which on the common do-
main preserves equivalence. The problem of “partial terms” (terms which can be
undefined) is thus closely related to the problem of “side conditions” of symbolic
operations.

4.4 Partial Terms, Domains, and Side Conditions

There are two natural ways to make the assumption x2 − 1 6= 0 in the above
example: either at the outset, or when the cancellation is performed. Plan A
would be to analyze the domain of the goal when the problem is set up, and put
the domain conditions into the antecedent. According to plan A, the condition
x2 − 1 would have been assumed at the outset, and hence could have been
inferred when required as the side condition for cancelling the common factor
of numerator and denominator. Plan B would be to allow potentially undefined
terms in the partially constructed proof, and only assume x2 − 1 6= 0 when it is
required as a side condition for an operation. Plan B was mentioned in earlier
publications such as [4], but in the practical implementation of Mathpert , Plan
A was found to be more efficient; after all, we certainly need to assume that
the goal is defined to prove anything sensible at all. Therefore, Plan A has been
adopted in Weierstrass as well.

However, Plan B is not thereby consigned to the dustbin of history. There
remain situations in which a symbolic operation may have a side condition that
is not necessarily implied by the domain.7 In such situations, Plan B will still
be used. An example would be the application of the operation

√
x2 = x, whose

7 We use the word domain to mean a proposition giving the conditions under which
a term is defined; thus the domain of

√
x is 0 ≤ x. If propositions are thought of as

Boolean-valued functions, and sets are also thought of as Boolean-valued functions,
as Church suggested, then this coincides with the usual usage that the domain of√

x is {x|0 ≤ x}.

74 Michael Beeson

side condition 0 ≤ x is not implied by the domain.8 In the proof tree formalism
of logic, Plan B would entail copying the new assumption to the antecedents
all the way down the tree from the place where the operation is applied to the
conclusion. In the implementation, however, most of the antecedent is kept in
the assumption list, rather than duplicated at every line of the proof tree, and
so adding the new assumption once suffices.

4.5 Infer, Refute, Assume

When an operation has a side condition, there are two choices: either the opera-
tion can try to infer the side condition, and fail if the inference fails, or it can try
to check the side condition, which means that it will try to infer it, and if that
fails, it will try to refute it, and if that fails it will simply assume it. Thus, if we
try to simplify an expression of the form

√
A2 to A, the side condition 0 ≤ A will

be checked. If, for example, A is 3, the condition 0 ≤ 3 will be successfully in-
ferred, so the simplification takes place without an assumption. If, on the other
hand, A is −3, then the condition will be refuted, and the simplification will
not take place. If, however, A is an expression such that 0 ≤ A can neither be
inferred nor refuted, then it will be assumed.

Consider the example mentioned in the introduction, of dividing both sides
of a = 0 by a. The side condition for dividing both sides of an equation by a is
that a 6= 0. Can we infer this? No. Can we refute it? Not officially, since a = 0
is in the succedent, rather than the antecedent. Then, we will assume it, and
obtain the logically correct but useless proof

a 6= 0⇒ 1 = 0
a 6= 0⇒ a = 0
To prevent this sort of thing, refute is also allowed to use the antecedent as

a temporary assumption. That way, if the side condition is inconsistent with the
goal, we will avoid making a contradictory assumption. When this is done, the
attempt to divide a = 0 by a will result in an error message to the effect that
you can’t divide by zero. This can be seen working in Mathpert.

Note that the choice whether infer or check is used is specified in the oper-
ation itself. That is, there will be two different operations represented loosely
by the equation

√
x2 = x. One of them will infer the side condition (or fail)

and the other will check the side condition. In practice, it seems to work best
to avoid using check in the elementary simplification that are automatically ap-
plied in Weierstrass; after all, if we fail to prove the desired theorem because we
failed to list all the assumptions, we can run Weierstrass again after adding the
omitted assumption in the axiom file. But, the method is used to good advan-
tage in Mathpert, and may prove of value in future applications of systems like
Weierstrass.

To make this scheme work, infer and refute must be guaranteed to terminate,
and hence must be incomplete; that is, sometimes a true side condition will not be
8 In practice, few such operations are applied automatically in Weierstrass, but an

interactive prover based on these principles would certainly use Plan B extensively.

Automatic Generation of Epsilon-Delta Proofs of Continuity 75

inferred, or a false one not refuted. We may wind up making a false assumption.
For example, if p(x) is an expression which is really identically zero, but can’t be
simplified to zero by the means of simplification used by infer, then we might be
led to make the assumption p(x) 6= 0, e.g. to divide both sides of an equation by
p(x). This could lead to logically correct but senseless results. This is, however,
unavoidable, as the problem of determining whether mathematical expressions
p(x) are identically zero is recursively unsolvable [14].

A related situation arises in solving equations. For example, consider the
equation x2−x = 0. If we divide both sides by x, we make the assumption x 6= 0
and find the solution x = 1. This is logically correct, but we didn’t achieve the
goal of finding all solutions of the original equation. This may not be a logical
error, but it is a mathematical error, and hence has been blocked in Mathpert,
but in an interactive system based on Weierstrass, it would not necessarily be
blocked.

4.6 Using the Assumptions in a Computation

Suppose we try to simplify 0 ≤ x, while 0 < x is in the assumption list. Then
it is efficient to allow 0 ≤ x to simplify to true. For example, if 0 ≤ x occurs
inside a disjunction in the succedent, the whole succedent may simplify to true,
completing (that branch of) a proof. Similarly, a side condition involving x 6= 0
should be reduced to 0 < x if 0 ≤ x is in the assumption list.

4.7 Computation Within the Scope of a Bound Variable

Even though Weierstrass applies simplification only to quantifier-free formulae,
sometimes it is still necessary to compute inside the scope of a bound variable,
since variables can be bound by definite integrals or indexed sums. For example,
we want to conclude that

∑
k=1 → 5xk is everywhere defined, even though the

condition for xk to be defined (for an integer k) requires k > 0 ∨ x 6= 0. But
k > 0 holds because the lower limit of the sum is positive. In the case of definite
integrals and indexed sums, this is handled by making temporary assumptions
out of the limits of the sum or integral, while the focus of computation is in
the scope of the sum or integral. Limit terms are handled similarly, but the
assumptions to made involve infinitesimals and the use of non-standard analysis;
this much more complicated algorithm is discussed in detail in [3]. Computation
within the scope of bound variables will not be discussed further in this paper.

4.8 What Formal System Has Been Implemented?

It is an interesting question to formulate precisely a language and rules of infer-
ence that could be said to be implemented by Weierstrass. One such language
has been specified in [3]; it essentially allows variables for integers and real num-
bers, equality and inequality, and symbols for all the elementary functions used
in calculus. A complete and precise grammar for such a language can be found

76 Michael Beeson

in [3]. This language also allows the formation of integrals, derivatives, indexed
sums, and limit terms; definite integrals, indexed sums, and limit terms can
bind variables. Weierstrass also allows the formation of λ-terms which are not
specified in [3].

We turn now to rules of inference. A single additional rule schema describes
the simplest way to add computation to a quantifier-free prover:

Γ ⇒ B B, Γ ⇒ Aσ

Γ ⇒ A

where Aσ denotes the result of applying some mathematical or logical op-
eration to A, or to a subterm of A, replacing the subterm by the result of the
operation. In the rule, B is the side condition of the operation, if any; if the
operation has no side condition, the premise Γ ⇒ B does not occur. In principle
an operation could also have more than one side condition, in which case there
might be more than two premises.

The control strategy for applying this rule is this: whenever A contains no
quantifiers or implications or negations, try this rule, with a certain selection
of operations in a certain pre-specified order. But, the second premise Γ ⇒ B
representing the side condition is not passed recursively to the main theorem-
prover, but must be derived by very limited means. This is to prevent long delays
or even infinite regresses attempting to verify the side conditions of mathematical
operations; in other words, a practical rather than a theoretical consideration.

This rule of inference does not, however, adequately describe the technique
of using the antecedent in simplification as described above. One way to do so,
although it is admittedly not very elegant, is to generalize the rule to this:

C, Γ ⇒ (C → A)σ C, Γ ⇒ B

C, Γ ⇒ A

Here C is one assumption, and σ is an operation that can work on an impli-
cation (usually of inequalities). For example, σ might simplify a < c→ a ≤ c to
true. In both Mathpert and Weierstrass, we never use more than one assumption
at once in the simplification process.

The above rules still don’t adequately describe Weierstrass or even Mathpert,
because they do not account for keeping the assumption list in simplified form.
To describe this we need to add the rule

Γσ ⇒ A
Γ ⇒ A

where Γσ represents the result of simplifying the assumption list Γ . Since
simplification generally can use formulas in the assumption list, Weierstrass has
to be careful when simplifying assumptions, or each assumption would simplify
to true! Each assumption is temporarily removed from the assumption list,
then simplified (possibly using the other assumptions), and the result replaces
the original assumption. This process is continued until nothing changes. The
result of these simplifications is Γσ.

Automatic Generation of Epsilon-Delta Proofs of Continuity 77

5 Combining Computation with First-Order Logic

In previous sections, we have considered the backwards-Gentzen framework for
a theorem-prover, and the means of adding computation (simplification) to the
quantifier-free fragment of such a prover. We now take up the additional features
which were added to Weierstrass to allow it to handle epsilon-delta proofs.

The first point is that we must, under certain circumstances, allow Weier-
strass to factor, or even use trig factor identities. This is a question of control,
and not of something new in principle: since factoring preserves mathematical
equality, it can be treated exactly like the other computation rules discussed
above. It is just a question of factoring when it is useful, and not factoring when
it is not useful. To achieve this, we simply put it at the bottom of the list of
things to try; that is, below all the things that have been discussed above. It
will thus not be tried unless without it, the proof would fail. That will dispose
of the problem of factoring when it is not useful.

The other new features can be represented as additional inference rules, which
are, like the Gentzen rules, to be applied “backwards” with the aid of unification.
We shall describe several of these rules. Like all the rules in sequent calculus,
the premises and conclusion of these rules are sequents; but in all cases, the
antecedent is unchanged from premise to conclusion, so when writing the rules
below, we shall omit Γ ⇒ in both premises and conclusion.

5.1 Finding Upper and Lower Bounds

Every mathematician knows that many a proof boils down to finding a suitable
bound for some expression that does not depend on certain variables. We have
implemented a pair of algorithms called UpperBound and LowerBound. Upper-
Bound takes as input a term t to be bounded, and a list of variables on which
the bound may not depend. Otherwise put, it tries to find a legal value for a
metavariable M such that |t| ≤ M could be derived, with the specified list of
variables forbidden to M . For example, UpperBound knows that | sin x| ≤ 1. A
better example: if UpperBound is asked to bound x by a bound not depending
on x, and the current assumptions include a < x and x < b, then it will return
the bound |x| ≤ max(|a|, |b|). UpperBound is probably as good as a very good
calculus student at what it does. LowerBound is similar, but it tries to find M
such that M ≤ |t|. The two algorithms are defined by mutual recursion.

UpperBound is added directly to Weierstrass as a rule of inference with no
premises. That is, when we have a goal of the form α < M , where M is a
metavariable and α is some expression, we can directly terminate that proof
branch, instantiating M to the expression produced by UpperBound, supplying
as the second argument to UpperBound the list of variables forbidden to M .

5.2 Factor Bounding

The second new inference rule to be added is called FactorBounding. It says that
if you want to prove βγ is small, one way to do it is to prove that γ is small

78 Michael Beeson

and give a bound for β. The following rule is state for simplicity using only two
factors, but the rule is implemented for a product of any number of factors:

Γ, |α| < δ ⇒ γ ≤M Γ, |α| < δ ⇒ |β| < ε/(M + 1)
Γ, |α| < δ ⇒ |βγ| < ε

When this rule is implemented, we take M to be a fresh metavariable, and for-
bid to M all the variables that are forbidden to δ. In the present implementation
of Weierstrass, the rule is used only when δ is a metavariable. The implementa-
tion also provides an algorithm for deciding which of several factors to bound:
it first identifies the quantity in the antecedent that must be less then δ, and
then looks for a factor which has a nonzero finite limit as that quantity tends to
zero. Limit calculations are performed by symbolic code from Mathpert. These
limit calculations do not enter the actual proof; they are only used to select the
factor to try to bound.

At this point, you might want to turn to Example 1 in the next section, to
see how UpperBound and FactorBounding are used to prove the continuity of
f(x) = x3.

5.3 Inequality Chaining

A notorious difficulty in inequality proving is the necessity of using transitivity
chains, and the difficulty of finding the right chain of inequalities in an exponen-
tially large search space. However, many useful chains are of length two, based on
some standard “known” inequality. For example, if we want to prove | sin x| < ε,
it will suffice to prove |x| < ε in view of the known inequality | sinx| < |x|.
Weierstrass implements this idea in an algorithm UsefulBounds. Described as in
inference rule, this just looks like transitivity:

α ≤ β β < ε
α < ε

When implemented, α ≤ β is one of a list of specific known inequalities that
have been supplied to Weierstrass. For example, a special case of the rule would
be
| sinx| ≤ |x| |x| < ε

| sinx| < ε

This rule of inference is needed by Weierstrass to prove the uniform continuity
of sinx. See the discussion of this example in the next section.

UpperBound is also capable of controlling some transitivity chaining through
the inequalities present in the antecedent. For example, if it is trying to solve
x < M , where x and y are forbidden to M , and the antecedent contains x < y
and y < b, the bound x < b will be found, and M will get the value b.

5.4 Mean Value Theorem

Weierstrass can use the mean value theorem to prove an inequality. This is an
interesting rule of inference, because it reduces a quantifier-free goal to a subgoal

Automatic Generation of Epsilon-Delta Proofs of Continuity 79

involving quantifiers. The purely logical rules of Weierstrass use the cut-free rules
of sequent calculus, which always reduce goals to logically simpler subgoals. Here
is the rule of inference MVT:
∀z(x ≤ z ≤ y → f ′(x) ≤M) |x− y| ≤ ε/M

|f(x)− f(y)| ≤ ε

There is another rule under the same name, in which the conclusion and
the second premise have strict inequality. When implemented, M is a freshly-
created metavariable, and x and y are added to the list of variables forbidden
to M . Note that this would not be the case if the rule were stated with an
existential quantifier over M in the premise (combining the two premises into
a conjunction). It is by controlling the list of variable forbidden to M that
Weierstrass is induced to look for a bound independent of x and y. Now, in
general such a bound cannot exist unless the range of x and y is restricted by
further inequalities, so some inequality chaining will generally be needed to find
the bound M . As an example of such a proof, we consider in the next section, a
proof of the uniform continuity of

√
x on closed intervals [a, b] with a > 0.

6 Examples of Proofs That Weierstrass Can Find

In this section we describe the key points of certain illustrative example proofs.
The strict length limit does not permit the inclusion of the actual output of
Weierstrass.

6.1 Uniform Continuity of f(x) = x3 on Closed Intervals

. This example illustrates the use of UpperBound and FactorBounding. When
Weierstrass is asked to prove the uniform continuity of f(x) = x3 on closed
intervals [a, b], it soon arrives at the problem of finding a value for the metavari-
able δ such that, assuming |x− y| < δ, we could derive |x3 − y3| < ε. Factoring,
this reduces to |x−y||x2 +xy+y2| < ε. At this point, the above rule will be used
(in reverse, with α = |x − y|), creating the two new goals |x2 + xy + y2| ≤ M
and |x − y| < ε/(M + 1). The first one will be solved by using UpperBound,
instantiating the metavariable M to 3 max(|a|, |b|) and the second will be solved
by the axiom rule Γ, A⇒ A, where A is the assumption |x−y| < δ, instantiating
the metavariable δ to ε/(M + 1).9

6.2 Uniform Continuity of sin x and cos x

These two theorems are proved by Weierstrass in a way similar to the above
example. However, there are two new twists to the argument. First, Weierstrass
needs to use the trig factoring operations, not just polynomial factoring, in order
9 Weierstrass will be able to handle the case of f(x) = xn similarly, where n is an

integer variable, as soon as UpperBound is extended to handle indexed sums, since
an indexed sum arises when xn − yn is factored.

80 Michael Beeson

to write sinx − sin y as 2 sin(1/2(x − y)) cos((1/2)(x + y). Then in order to
instantiate δ, it must use UsefulBounds to apply the known inequality | sin u| ≤
|u|, since FactorBounding will produce the subgoal sin(1/2(x− y)) < ε/(M +1),
which does not unify directly with |x − y| < δ. Even after | sinu| ≤ |u| is used,
the 2 in the denominator still requires another step, which however Weierstrass
takes without difficulty, since an inequality can be simplified by multiplying both
sides by 2. This is an example of computation applied to a proposition rather
than a mathematical term.

6.3 Continuity of f(x) =
√

x

More precisely, the example is the uniform continuity of
√

x on closed intervals
[a, b] with 0 < a. To handle the continuity of

√
x by factoring, we would have to

get Weierstrass to write

|√x−√y| = |x− y|√
x +
√

y

It would certainly be possible to do this, but it would be ad hoc, as the kind of
computation rule that would do this would cause trouble elsewhere, so it would
have to be added as a logical inference rule for this special sort of inequality.
Rather than add an ad hoc rule, we chose to use this example as an illustration
of the use of the Mean Value Theorem. Weierstrass will compute the derivative
of
√

x and bound it. Specifically, the inference rule MV T described above will
introduce a new metavariable M and create the subgoals, |x − y| < ε/M and
∀z(x ≤ z ≤ y → |(1/2)z−2| ≤ M . Note that the derivative is evaluated. The
variables x,y, and z are forbidden to M . When UpperBound tries to bound z−2,
it calls LowerBound to bound z, and successfully finds the transitivity chain
a ≤ x ≤ z, arriving at the bound a ≤ z.

References

1. Beeson, M.: Logic and computation in Mathpert : an expert system for learning
mathematics, in: Kaltofen, E., and Watt, S. M. (eds.), Computers and Mathematics,
pp. 202–214, Springer-Verlag (1989).

2. Beeson, M.: Design Principles of Mathpert: Software to support education in alge-
bra and calculus, in: Kajler, N. (ed.) Human Interfaces to Symbolic Computation,
Springer-Verlag, Berlin/ Heidelberg/ New York (1996).

3. Beeson, M.: Using nonstandard analysis to ensure the correctness of symbolic com-
putations, International Journal of Foundations of Computer Science 6(3) (1995)
299-338.

4. Beeson, M.: Some applications of Gentzen’s proof theory in automated deduction,
in: Shroeder-Heister, P., Extensions of Logic Programming, Springer Lecture Notes
in Computer Science 475, pp. 101–156, Springer-Verlag (1991).

5. Beeson, M.: Unification in lambda-calculus, to appear in Automated Deduction:
CADE-15 - Proc. of the 15th International Conference on Automated Deduction,
Springer-Verlag, Berlin/Heidelberg (1998).

Automatic Generation of Epsilon-Delta Proofs of Continuity 81

6. Bledsoe, W. W.: Some automatic proofs in analysis, pp. 89–118 in: W. Bledsoe and
D. Loveland (eds.) Automoated Theorem Proving: After 25 Years, volume 29 in the
Contemporary Mathematics series, AMS, Providence, R. I. (1984).

7. Boyer, R., and Moore, J.: A Computational Logic, Academic Press (1979).

8. Buchberger, B.: History and basic features of the critical-pair completeion proce-
dure, J. Symbolic Computation 3:3–88 (1987).

9. Clarke, E., and Zhao, X.: Analytica: A Theorem Prover in Mathematica, in: Kapur,
D. (ed.), Automated Deduction: CADE-11 - Proc. of the 11th International Con-
ference on Automated Deduction, pp. 761–765, Springer-Verlag, Berlin/Heidelberg
(1992).

10. Coste, M., and Roy, M. F.: Thom’s lemma, the coding of real algebraic numbers,
and the computation of the topology of semi-algebraic sets, in: Arnon, D. S., and
Buchberger, B., Algorithms in Real Algebraic Geometry, Academic Press, London
(1988).

11. Harrison, J., and Thery, L.: Extending the HOL theorem prover with a computer
algebra system to reason about the reals, in Higher Order Logic Theorem Proving
and its Applications: 6th International Workshop, HUG ’93, pp. 174–184, Lecture
Notes in Computer Science 780, Springer-Verlag (1993).

12. Kleene, S. C., Introduction to Metamathematics, van Nostrand, Princeton, N. J.
(1952).

13. McCune, W.: Otter 2.0, in: Stickel, M. E. (ed.), 10th International Conference on
Automated Deduction pp. 663-664, Springer-Verlag, Berlin/Heidelberg (1990).

14. Richardson, D., Some unsolvable problems involving elementary functions of a real
variable, J. Symbolic Logic 33 511–520 (1968).

15. Stoutemeyer, R.: Crimes and misdemeanors in the computer algebra trade, Notices
of the A.M.S 38(7) 779–785, September 1991.

16. Wu Wen-Tsum: Basic principles of mechanical theorem-proving in elementary ge-
ometries, J. Automated Reasoning 2 221-252, 1986.

A Appendix: Output of Weierstrass on the Examples

Weierstrass produces an internal proof object, which can be viewed in either
“trace view” or “proof tree view”. These views both use two-dimensional display
of formulas on the screen. When you choose File | Save As, you save a text
representation of the proof, either as trace or as proof tree. Formulas are written
in a parseable form, similar to TEX, but without backslashes, and enclosed in
dollar signs. In the future, I intend to use these files with WebTEXto post proofs
to the Web. For purposes of these appendices, I have simply included these
files verbatim (inserting only some line breaks) to avoid any errors introduced
by transcribing them into TEX, and to demonstrate exactly what the program
produces. I have used trace view, since the files are more readable than with proof
tree view. Even so, these files do not convey the process of proof construction
well, since the metavariables are replaced by their final values; for example,
we don’t see how and when δ is found, but instead it appears to be “pulled
out of a hat” near the beginning of the proof. It is interesting that this very
phenomenon is often a problem in the presentation of proofs produced by human
mathematicians!

82 Michael Beeson

A.1 Continuity of f(x) = x3

Assuming $epsilon > 0$
Trying $exists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,

abs(x-y) < delta->abs(x^3-y^3) < epsilon))$
Trying $all(x,y,a <= x,x <= b,a <= y,y <= b,

abs(x-y) < X->abs(x^3-y^3) < epsilon)$
Assuming $a <= x,x <= b,a <= y,y <= b,abs(x-y) < X$
Trying $abs(x^3-y^3) < epsilon$
Factoring, it would suffice to prove:

$abs(x-y) abs(x^2+x y+y^2) < epsilon$
We have the following bound:

$abs(x^2+x y+y^2) <= 3(max(abs(a),abs(b)))^2$
So it would suffice to prove:

$abs(x-y) < epsilon/(3(max(abs(a),abs(b)))^2+1)$
Aha! we have

$abs(x-y) < epsilon/(3(max(abs(a),abs(b)))^2+1)$
success
Discharging

success
success
Discharging

A.2 Continuity of f(x) = sin x

Trying $epsilon > 0->exists(delta,all(x,y,abs(x-y) < delta->
abs(sin(x)-sin(y)) < epsilon))$

Assuming $epsilon > 0$
Trying $exists(delta,all(x,y,abs(x-y) <

delta->abs(sin(x)-sin(y)) < epsilon))$
Trying $all(x,y,abs(x-y) < 1/2 epsilon->

abs(sin(x)-sin(y)) < epsilon)$
Assuming $abs(x-y) < 1/2 epsilon$
Trying $abs(sin(x)-sin(y)) < epsilon$
Using trigonometry, it would suffice to prove:

$2abs(sin(x-y)/2) abs(cos(x+y)/2) < epsilon$
Dividing both sides, it would suffice to prove:

$abs(sin(x-y)/2) abs(cos(x+y)/2) < 1/2 epsilon$
We have the following bound:

$abs(cos(x+y)/2) <= 1$
So it would suffice to prove:

$abs(sin(x-y)/2) < epsilon/4$
In view of the known inequality |sin x| < |x| we have:

$abs(sin(x-y)/2) <= abs((x-y)/2)$
it would therefore suffice to prove:

$abs((x-y)/2) < epsilon/4$

Automatic Generation of Epsilon-Delta Proofs of Continuity 83

Simplifying, it would suffice to prove:
$2abs(x-y) < epsilon$

Dividing both sides, it would suffice to prove:
$abs(x-y) < 1/2 epsilon$

Aha! we have $abs(x-y) < 1/2 epsilon$
success
Discharging

success
success
Discharging
success

A.3 Continuity of f(x) =
√

x

Assuming $a > 0,epsilon > 0$
Trying $exists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,

abs(x-y) < delta->abs(sqrt(x)-sqrt(y)) < epsilon))$
Trying $all(x,y,a <= x,x <= b,a <= y,y <= b,abs(x-y) <

epsilon/(1/2 a^(-1/2))->abs(sqrt(x)-sqrt(y)) < epsilon)$
Assuming $a <= x,x <= b,a <= y,y <= b,

abs(x-y) < epsilon/(1/2 a^(-1/2))$
Trying $abs(sqrt(x)-sqrt(y)) < epsilon$
Simplifying, it would suffice to prove:

$abs(x^(1/2)-y^(1/2)) < epsilon$
By the mean value theorem applied to $fz = z^(1/2)$
it would suffice to prove:

$all(z,x <= z,z <= y->abs(1/2 z^(-1/2))
<= 1/2 a^(-1/2)),abs(x-y) < epsilon/(1/2 a^(-1/2))$

Trying $all(z,x <= z,z <= y->abs(1/2 z^(-1/2))
<= 1/2 a^(-1/2))$

Trying $x <= z,z <= y->abs(1/2 z^(-1/2)) <= 1/2 a^(-1/2)$
Assuming $x <= z,z <= y$
Trying $abs(1/2 z^(-1/2)) <= 1/2 a^(-1/2)$
We have the bound: $abs(1/2 z^(-1/2)) <= 1/2 a^(-1/2)$
success
Discharging

success
success
Trying $abs(x-y) < epsilon/(1/2 a^(-1/2))$
Aha! we have $abs(x-y) < epsilon/(1/2 a^(-1/2))$
success

success
Discharging

success
success
Discharging

Finite Model Search for Equational Theories

(FMSET)

Belaid Benhamou and Laurent Henocque

Laboratoire d’Informatique de Marseille
Centre de Mathématiques et d’Informatique

39, rue Joliot Curie - 13453 Marseille cedex 13, France
phone number : 91.11.36.22

Benhamou@gyptis.univ-mrs.fr

henocque@esil.univ-mrs.fr

Abstract. Finite model and counter model generation is a potential
alternative in automated theorem proving. In this paper, we introduce
a system called FMSET which generates finite structures representing
models of equational theories. FMSET performs a satisfiability test over
a set of special first order clauses called ”simple clauses”. Several ex-
periments over a variety of problems have been pursued. FMSET uses
symmetries to prune the search space from isomorphic branches with
very competitive performances in the domain.

Topics: Computer Algebra Systems and Automated Theorem Provers.
Keywords: Finite model, equational theories, symmetry.

1 Introduction

Model generation is well known as a difficult problem in mathematical logic,
undecidable in the general case. In this paper, we study finite model generation
for equational theories.

Equational theories provide a great number of difficult problems. Zhang in
[5] defines a set of problems which form the challenge of finite model search
systems. Several open problems were solved with different approaches: FALCON
[6], FINDER [3], MGTP-G [1], LDPP, SATO [4], and MACE [2]. FALCON is
the most recent and most efficient method for equational theories and serves as
a basis of comparison.

An equational theory is a set of axioms: first order logic formulas involving
equality (ex: ∀x, ∀y, ∀z : h(f(x, y)) = f(z, x)). Finding a finite model for such a
theory amounts to finding an interpretation of functional symbols over a finite
domain Dn which satisfies all the axioms. The existence of a model proves the
consistency of the theory. The existence of a counter model may prove refutation
of a conjecture. This is why model generation is a possible approach to automated
theorem proving.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 84–93, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Finite Model Search for Equational Theories (FMSET) 85

In this paper, we present a new finite model generator, the system FMSET
(Finite Model Search for Equational Theories). FMSET translates the set of
axioms in an equational theory to an equivalent set of “simple” first order clauses.
Model generation operates by variable domain enumeration, in the spirit of the
Davis and Putnam procedure. This enumeration is performed directly over the
simple clauses obtained in the first phase. It has the double advantage of: 1)
generating only the propositional clauses involved in the proof, 2) achieving
efficient unit clause propagation as in the propositional case.

Symmetry detection is used to eliminate isomorphic branches in the search
tree, thus improving FMSET’s performance. A heuristic for choosing literals
similar to the one used in Zhang[6] helps keeping symmetries as long as possible
during the search. The paper is organised as follows:

Section 2 defines equational theories. Section 3 describes the translation of
equational theories to simple first order clauses. The enumeration procedure,
the mechanism of propagations and the symmetry elimination procedure are
introduced in section 4. Experimental results are listed in section 5 and section
6 concludes the work.

2 Equational Theories

An equational theory is a set of axioms such as t1 = t2, and t1 6= t2, where t1
and t2 are terms. Each term is recursively built upon functional symbols and
universally quantified variables.

A model of an equational theory is a structure consisting in a non empty
set of individuals and functions that satisfy the axioms. We only consider finite
models, characterized by their number n of individuals. The domain Dn of a
model of size n is Dn = {0, 1, ..., n− 1}.
Example 1. Let T1 be the equational theory based on the following axioms:

– A1: ∀x, h(x, x) = x
– A2: ∀x, ∀y, h(h(x, y), x) = y

T1 has a model of size 4 :

h(0, 0) = 0, h(0, 1) = 2, h(0, 2) = 3, h(0, 3) = 1
h(1, 0) = 3, h(1, 1) = 1, h(1, 2) = 0, h(1, 3) = 2
h(2, 0) = 1, h(2, 1) = 3, h(2, 2) = 2, h(2, 3) = 0
h(3, 0) = 2, h(3, 1) = 0, h(3, 2) = 1, h(3, 3) = 3

3 Translation of an Equational Theory to a Set of Simple
First Order Clauses

In the sequel, except when necessary, the word equation designates equations as
well as disequations.

86 Belaid Benhamou and Laurent Henocque

Definition 1. – The number of functional symbol occurrences in an equation
defines its degree.

– An equation of degree 1 is a simple equation (which is a literal).
– A simple first order clause is a disjunction of simple equations.

The translation of equational theories to simple first order clauses is based
on the systematic replacement of axioms by simple equations, by means of
auxiliary variables. The principle is the following: when applied to the axiom
A2 : (h(h(x, y), x) = y) from the theory T1 in example 1, it produces the clause
h(x, y) 6= v1 ∨ h(v1, x) = y. The innermost term h(x, y) is replaced by an auxil-
iary variable v1 so as to turn the axiom into a disjunction of simple equations.
The result can be read “for all x, y, v1 if h(x, y) = v1 then h(v1, x) = y”. Ap-
plied to an axiom of initial degree 3: f(h(x, g(y)), x) = y, we obtain the clause
g(y) 6= v1 ∨ h(x, v1) 6= v2 ∨ f(v2, x) = y, which can be read “for all x, y, v1, v2 if
g(y) = v1 and if h(x, v1) = v2 then f(v2, x) = y”.

The translation of an equational theory is performed in two steps :

– Normalisation : consists in changing the original axioms into clauses where
literals have the form t = x, x being a variable and t a term.

– Simplification : consists in transforming the clauses resulting from the nor-
malisation into simple clauses.

If var(t) denotes the variable which replaces the term t, then the translation
algorithm uses the following set of rules:

1. the equation x = t1 becomes t1 = x (variable x is moved to the right)
2. the equation x 6= t1 becomes t1 6= x (variable x is moved to the right)
3. the equation t1 = t2 becomes ((t1 6= var(t1)∨t2 = var(t1))∧((t2 6= var(t2)∨

t1 = var(t2)) (a conjunct of two clauses)
4. the equation t1 6= t2 becomes ((t1 6= var(t1)∨t2 6= var(t1))∧((t2 6= var(t2)∨

t1 6= var(t2)) (a conjunct of two clauses)
5. the equation f(t1, t2) = z becomes (t1 6= var(t1)) ∨ (t2 6= var(t2)) ∨

(f(var(t1), var(t2)) = z)
6. the equation f(t1, t2) 6= z becomes (t1 6= var(t1)) ∨ (t2 6= var(t2)) ∨

(f(var(t1), var(t2)) 6= z)

Normalisation is the result of a single application of one of the rules 1 to 4
and simplification results from the repeated application of rules 5 and 6 to the
equations until fixed point is reached.

In the rules 3 to 6, var(t) is the variable which replaces the term t. If t itself
is a variable then var(t) is nothing but t.

This algorithm terminates because rules 1 to 4 are applied at most once, and
rules 5 and 6 strictly reduce the degree of their argument.

Remark 1. This algorithm produces simple Horn clauses, containing at most one
positive literal (t1 6= x is the negation of t1 = x).

Finite Model Search for Equational Theories (FMSET) 87

4 The Enumeration Procedure

We have tried two enumeration techniques inspired from the Davis and Putnam
procedure.

4.1 Working with Propositional Clauses

Given a domain Dn, it is straightforward to translate a set of simple clauses C
into a set of propositional clauses. It simply requires to generate the terminal in-
stances c[..., ei/xi, ...] for all c ∈ C, and for every possible substitution < ei/xi >
where ei belongs to Dn and xi is a variable that occurs in c. For a domain of size
n, and a clause having k variables, the number of propositional clauses produced
is nk in the worst case.

For instance, given a domain of size 2, the clause (h(x, y) 6= v1∨h(v1, x) = y)
representing the axiom A2 in the theory T1 (example 1 before) is expressed by
the following set of propositional clauses:

1: ¬h(0, 0) = 0 ∨ h(0, 0) = 0, 2: ¬h(0, 0) = 1 ∨ h(1, 0) = 0
3: ¬h(0, 1) = 0 ∨ h(0, 0) = 1, 4: ¬h(0, 1) = 1 ∨ h(1, 0) = 1
5: ¬h(1, 0) = 0 ∨ h(0, 1) = 0, 6: ¬h(1, 0) = 1 ∨ h(1, 1) = 0
7: ¬h(1, 1) = 0 ∨ h(0, 1) = 1, 8: ¬h(1, 1) = 1 ∨ h(1, 1) = 1

to which the set of clauses describing the mutual exclusion of function values
must be added. For instance, take h(0, 0), and a domain of size 3 or more :

h(0, 0) = 0 ∨ h(0, 0) = 1 ∨ h(0, 0) = 2 ∨ ...
¬h(0, 0) = 0 ∨ ¬h(0, 0) = 1
¬h(0, 0) = 0 ∨ ¬h(0, 0) = 2
¬h(0, 0) = 1 ∨ ¬h(0, 0) = 2

...

This simple example shows that such a set of clauses allows for monoliteral
propagation even in the presence of negative facts. For instance, if h(1, 1) 6= 0 is
true, clause 6 propagates ¬h(1, 0) = 1. Such propagations are not performed by
the algorithm described in [6], which only reacts to the introduction of positive
facts and thus loses in search efficiency.

The number of clauses grows quickly as the domain sizes grow, then us-
ing a classical model search procedure (like Davis and Putnam) for such sets
of propositional clauses must be intractable, except when the domain sizes are
small. Actually, even simple theories generate a huge number of clauses.

For instance, the theory T2 described in figure 1 expresses a non commuta-
tive group. For a domain of size 6, the translation of the axioms in figure 1 to
propositional clauses requires 252 literals and nearly 100000 clauses. Memory
consumption, and the time needed to simply generate the clauses renders this
approach irrealistic. This is why we prefer to use directly the first order clauses.

88 Belaid Benhamou and Laurent Henocque

h(x, 0) = x
h(0, x) = x

h(x, g(x)) = 0
h(g(x), x) = 0

h(h(x, y), z) = h(x, h(y, z))
h(1, 2) 6= h(2, 1)

Fig. 1. Non commutative group

4.2 Working with the Simple First Order Clauses

The clauses produced by the translation algorithm of section 3 contain at most
one positive literal (Horn simple first order clauses). As soon as a positive literal
propagates (for instance f(0) = 0), implied negative facts are numerous (here:
f(0) 6= 1, f(0) 6= 2, ... f(0) 6= n − 1). Many propositional clauses are removed
immediately (because they are true), and would have been created needlessly
with the first approach. It is thus realistic to envision the dynamic creation of
the only useful propositional clauses.

Our enumeration procedure FMSET is described by the recursive function
of figure 2.

function FMSET(F : a set of clauses):boolean;
begin

for each non assigned literal b on the stack pmod
begin

Assign(b);
if the empty clause appeared then return(false);
if all the clauses in F are satisfied then return(true);

end
choose next literal a
push a on the stack pmod
if FMSET(F) return(true)
push ¬a on the stack pmod
return(FMSET(F))

end

Fig. 2. The enumeration procedure

We use an intermediate representation between first order and propositional
clauses, producing exactly the same propagations as the latter, at a lower cost.
Propagations occur when a clause is shortened so that its length becomes equal
to one. To obtain these propagations without using propositional clauses, it is
enough to keep the simple clauses which generate the clauses shortened by the
current interpretation.

Finite Model Search for Equational Theories (FMSET) 89

For instance : let c1 be the clause f(z) 6= y ∨ h(x) 6= y ∨ g(y) = x. When
the literal f(0) = 1 becomes true, we generate the substitution σ = {< 1/y >
, < 0/z >} with which we produce the clause c2 : h(x) 6= 1∨ g(1) = x. Later on,
when g(1) = 3 becomes false, we build c3 : h(3) 6= 1 of length one. This forces
the propagation of h(3) 6= 1.

More interesting, the simple clause c4 : f(y) 6= z ∨ h(x) = y, when the literal
f(0) = 0 becomes true, produces the monoliteral clause c5 : h(x) = 0 which
forces the literals h(0) = 0, h(1) = 0, h(2) = 0...h(n− 1) = 0 to be true.

The simple clauses generated as a result of literal propagation are called
pseudo clauses in FMSET. They are well described by a substitution of part of
the set of variables of the original clause by values in the domain. Formally:

Definition 2. Let c ∈ C be a simple clause, Vc the set of variables occuring in
c, V a subset of Vc, and σ a substitution {< ei/xi >| ei ∈ D, xi ∈ V }. The
application of σ to the variables of c produces the pseudo-clause cσ.

Initially, every simple clause c maps to the pseudo-clause c∅ where ∅ is the
empty substitution.

Definition 3. Two substitutions σ1 and σ2 are incompatible iff there exists
< a/x >∈ σ1 and < b/x >∈ σ2 such that a 6= b.

Procedure Assign(a ∈ literals)
begin

for each pseudo clause cσ

for each simple equation s ∈ cσ

if unifiable(s,a) then
begin

let σ́ be the substitution due to unification of a and s
if σ and σ́ are compatible then
begin

build the pseudo clause ć = (cσ − s)σ∪σ́

if ć is of length 1 then
push on stack all monoliterals due to ć

else if not a tautology(ć) then
add ć

end
end

end

Fig. 3. Propagation procedure

The function FMSET described in figure 2 uses the propagation procedure
assign described in figure 3.

90 Belaid Benhamou and Laurent Henocque

4.3 Removing Symmetries

Many symmetries exist in equational theories. They slow down the algorithms
because of unwanted exploration of isomorphic branches within the search space.

As it was done in [6], some symmetries can be removed at low cost because
they are due to trivial symmetries in the set of domain individuals. Especially,
at the beginning of the search, all individuals in the domain are interchangeable.

Definition 4. A set of simple first order clauses C is symmetrical with respect to
a subset Dsym of the domain Dn iff it remains unchanged under any permutation
of the individuals in Dsym.

In particular, if Dn is the set of integers {0, 1, . . . , m, m + 1, . . . , n− 1} and
{0, 1, . . . , m} is the subset of Dn used by the literals in the current partial model
pmod that were set by a choice point, then the property of symmetries is char-
acterised by the following theorem :

Theorem 1. The set of simple clauses Cpmod generated by the partial model
pmod from C is symmetrical with respect to Dsym = {m + 1, . . . , n− 1}
Proof. There are only two possibilities of occurrence of an individual bigger than
m in pmod:
- because of the assignment of a positive literal of the form t = k, with k ≤ m.
In that case, for all k2 > m, the literal t 6= k2 is also in pmod. Hence this
propagation keeps the symmetry of pmod wrt. Dsym = {m + 1, . . . , n− 1}.
- because of the propagation of a simple clause of length one. Such a clause
being universally quantified, the propagation naturelly maintains the symmetry
of pmod wrt. Dsym = {m + 1, . . . , n− 1}. Thus, in both cases, the system Cpmod

is itself symmetrical wrt. Dsym.

This theorem is exploited in FMSET by a cut in the search and a heuristic
for literal selection. We use a number m equal to the maximum integer used in
literals chosen for assignment in pmod.

The cut operates as follows: when we choose a literal t = k for assign-
ment, we compute mt=k the greatest integer occurring in t = k, we set m =
max(m, mt=k), and we add to pmod the set of t 6= l, for all l ∈ [m + 2, n− 1].
Of course, we try to minimize the resulting value of m by a heuristic.

In a similar way as in [6], this heuristic consists in choosing for assignment
a literal t = k such that the value mt=k is lower or equal to m. When this is
impossible, the heuristic selects a literal which minimises the value of mt=k.

5 Experimentation

5.1 Description of the Problems

The problems that we have experimented are described in [6]. AG is an abelian
group. NG is a non commutative group (see figure 1). RU is a ring with unit.

Finite Model Search for Equational Theories (FMSET) 91

GRP is a non commutative group satisfying the additional axiom (xy)4 = x4y4.
RNA is a ring, plus a counter example of associativity, the existence of models
proves the independence of associativity. RNB is a non boolean ring plus the
axiom x7 = x.

These six problems are not open problems, but provide a good comparison
basis for FMSET and FALCON. Zhang in [6] shows that FALCON outperforms
both MACE and FINDER on these problems.

5.2 Results

FMSET is developped in C++, our computation times in seconds are obtained
on a Pentium 133. All of MACE, FINDER and FALCON are writen in C, the
corresponding CPU times are the ones given in [6] which are obtained on a
Sparc 2, (t0 + t1) for both MACE and FINDER and (t2) for FALCON. t0 is a
preprocessing time, t1 and t2 are search times. FALCON’s preprocessing time is
negligible as is FMSET’s. To the best of our knowledge, a Sparc 2 is about three
times slower than a Pentium 133.

The CPU time listed for problems AG, NG and RU corresponds to the search
for all models. The CPU time listed for GRP, RNA and RNB is only the search
time for model existence.

The branch count provides a better comparison basis for the two systems. In
FALCON (column b1 in table 1), the detection of a bad value through assign-
ment propagation is not counted as a branch. In FMSET (column b2 in table 1)
all branches are counted.

Our approach is very different, and can be generalized to arbitrary first or-
der logic theories. It is noteworthy that our execution times compare well to
FALCON’s times, and outperform the ones of MACE and FINDER, which fail
to conclude on several of these problems. Our branch counts are also close to
those from FALCON. In the results table 1, the column ”clauses” displays the
total count of simple clauses and mutual exclusion clauses used to express the
corresponding problems. The time spent generating these clauses is negligible,
never above 0.1 second. Note that ‘*’ indicates that the program runs out of
memory, and ‘+’ indicates that the execution time of the program exceeds one
hour. A ’?’ means that the information is not available.

6 Conclusion

We have implemented a system for searching finite models for equational theo-
ries. It is based on the direct use of first order clauses within a standard propo-
sitional logic model enumerator. This hybrid approach produces more propaga-
tions, without the cost of either the propositional clauses, or the full first order
logic. In a sense, the algorithm combines model enumeration and unification
based resolution.

In that framework, symmetries can be efficiently detected and improve FM-
SET’s efficiency. Our results compete with the best known system FALCON.

92 Belaid Benhamou and Laurent Henocque

Problems MACE FINDER FALCON FMSET

time time time b1 literals clauses time b2

Abelian groups
AG.4 0.37 0.07 0.05 4 80 28 0.13 2
AG.5 1.44 0.39 0.22 7 150 38 0.27 9
AG.6 6.50 8.95 0.68 13 252 50 1.03 22
AG.7 28.78 253,20 1.97 20 392 64 2.23 40
AG.8 493.24 + 4.73 33 576 80 7.5 63
AG.9 810 98 12.8 101

Non commutative groups
NG.4 0.37 0.07 0.05 4 80 28 0.08 6
NG.5 1.36 0.70 0.17 6 150 38 0.15 14
NG.6 5.13 12.95 0.48 7 252 50 0.56 24
NG.7 13.30 530.63 1.30 11 392 64 0.63 29
NG.8 198.28 + 3.37 20 576 80 1.5 41
NG.9 * + 7.70 31 810 98 3.1 75

Unit rings
RU.4 3.95 0.46 0.25 7 144 49 0.6 2
RU.5 19.64 6.00 1.27 9 275 68 1.4 8
RU.6 83.54 2078.23 3.50 15 468 91 7.5 29
RU.7 * + 9.43 22 735 118 18.8 44

Non commutative groups
satisfying (xy)4 = x4y4

GRP.4 40.22 0.7 0.08 ? 112 43 0.58 6
GRP.5 309.16 1.82 0.27 ? 200 55 1.78 14
GRP.6 * 499.78 0.65 ? 324 69 9.76 26
GRP.7 + 1.53 ? 490 85 15.9 29

ring not associative
RNA.5 25.60 + 24.72 ? 275 70 5.43 28
RNA.6 * 107.72 ? 468 93 52.4 172
RNA.7 562 ? 735 120 426 605
RNA.8 350 ? 1088 151 11.3 9

non boolean ring
RNB.4 3.81 3.32 0.2 ? 144 51 0.46 3
RNB.5 18.33 0.24 0.68 ? 273 70 0.22 4
RNB.6 67.83 2.11 1.67 ? 468 93 0.45 4
RNB.7 * 3.58 3.37 ? 735 120 3.7 12
RNB.8 * + 4.22 ? 1088 151 10.9 3
RNB.9 1539 186 23.5 34

Table 1. Results obtained by FALCON and FMSET

Finite Model Search for Equational Theories (FMSET) 93

We plan to generalize this approach to other categories of problems for which
the translation to propositional logic is not tractable and extend it’s input to
any first order logic formula. More symmetries can be detected in a set of sim-
ple clauses. The fact that this algorithm propagates more than other techniques
makes it a potentially good third party algorithm in the field of constraint pro-
gramming, in combination with other solvers.

References

1. J. Slaney M. Fujita and F. Bennett. Automatic generation of some results in finite
algebra. In proceedings of the 13th Internationnal Joint Conference on Artificial
Intelligence, Chambery, France, pages 52–57, 1993.

2. W. McCune. A Davis Putnam program and its application to finite fist order model
search : quasi-group existence problems. Technical Report ANL/MCS-TM-1994,
Argonne National Laboratory, 1994.

3. J. Slaney. Finder: Finite domain enumerator. version 3.0 notes and guide. Technical
report, Austrian National University, 1993.

4. H. Zhang and M. Stickel. Implementing the Davis and Putnam algorithm by tries.
Technical report, University of IOWA, 1994.

5. J. Zhang. Problems on the generation of finite models. in proceedings of CADE-12,
Nancy, France, pages 753–757, 1994.

6. J. Zhang. Constructing finite algebras with FALCON. Journal of automated rea-
soning, 17, pages 1–22, 1996.

Specification and Integration of Theorem

Provers and Computer Algebra Systems

P.G. Bertoli1, J. Calmet2, F. Giunchiglia3, and K. Homann4

1 bertoli@itc.it - ITC-IRST - Trento (Italy)
2 calmet@ira.uka.de - University of Karlsruhe (Germany)

3 fausto@itc.it - ITC-IRST - Trento and DISA - University of Trento (Italy)
4 karsten.homann@pn.siemens.de - Siemens Corporation - Munich (Germany)

Abstract. Computer algebra systems (CASs) and automated theorem
provers (ATPs) exhibit complementary abilities. CASs focus on effi-
ciently solving domain-specific problems. ATPs are designed to allow for
the formalization and solution of wide classes of problems within some
logical framework. Integrating CASs and ATPs allows for the solution
of problems of a higher complexity than those confronted by each class
alone. However, most experiments conducted so far followed an ad-hoc
approach, resulting in tailored solutions to specific problems. A struc-
tured and principled approach is necessary to allow for the sound inte-
gration of systems in a modular way. The Open Mechanized Reasoning
Systems (OMRS) framework was introduced for the specification and im-
plementation of mechanized reasoning systems, e.g. ATPs. The approach
was recasted to the domain of computer algebra systems. In this paper,
we introduce a generalization of OMRS, named OMSCS (Open Mech-
anized Symbolic Computation Systems). We show how OMSCS can be
used to soundly express CASs, ATPs, and their integration, by formal-
izing a combination between the Isabelle prover and the Maple algebra
system. We show how the integrated system solves a problem which could
not be tackled by each single system alone.

Topics: Integration of Logical Reasoning and Computer Algebra, Com-
puter Algebra Systems and Automated Theorem Provers.

Keywords: Computer Algebra Systems, Theorem Provers, Integration,
Formal Frameworks.

1 Introduction

Automated theorem provers (ATPs) are used in the formal verification and val-
idation of systems, protocols, and mathematical statements. These systems are
complex software packages, designed in a stand-alone way, and each implement-
ing a certain fixed logic which must be adopted to formalize and solve problems.
Computer Algebra Systems (CASs) have become a standard support tool for
performing complex computations, or for representing functions. Similarly to

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 94–106, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Specification and Integration of Theorem Provers 95

ATPs, these tools have been designed in a stand-alone way, and implement cus-
tomary syntaxes; the user may only perceive them as black boxes, and is forced
to trust them “blindly”.

ATPs and CASs exploit complementary abilities. ATPs implement heuristic
search procedures; their underlying logics are designed to express wide varieties
of problems. CASs can be perceived as extensive libraries of very complex and
efficient procedures, tailored to the solution of specific problems within specific
domains. Thus, by coupling the efficiency of CASs and the generality of ATPs, it
should be possible to obtain systems which are able to solve problems of a higher
complexity than those that have been confronted with by stand-alone CASs and
ATPs. Several approaches can be followed to combine these two paradigms,
e.g. integrating external algorithms into proof structures as oracles or untrusted
steps, or extending CASs by reasoning components. These approaches have led to
design and implement several integrations between ATPs and CASs. [4] reports
an experiment of integration between the Isabelle prover and the Maple algebra
system; [7] describes the implementation of an ATP within the Mathematica
environment; [9] defines an extension of the HOL prover to reason about real
numbers.

However, all the previous attempts are ad-hoc solutions, tailored to solving
specific problems. On the opposite, it is desirable to be able to make ATPs and
CASs cooperate in a more principled and generic way. This cooperation can
only be achieved by formally defining provers and algebra systems as symbolic
mathematical services. By symbolic mathematical service we mean a software
able to engage in useful and semantically meaningful two-way interactions with
the environment. A symbolic mathematical service should be structurally or-
ganized as an open architecture able to provide services like, e.g., proving that
a formula is a theorem, or computing a definite symbolic integral, and to be
able, if and when necessary, to rely on similar services provided by other tools.
In [8], the Open Mechanized Reasoning System (OMRS) architecture was in-
troduced as a mean to specify and implement reasoning systems (e.g., theorem
provers) as logical services. In [5], this approach has been recasted to symbolic
computer algebra systems. In this paper, we show a generalization of this ar-
chitecture, OMSCS (Open Mechanized Symbolic Computation Systems), which
can be used to specify both ATPs and CASs, and to formally represent their
integration. Section 2 summarizes the ideas which are at the base of the OMSCS
architecture, and provides the formal descriptions of its components. Section 3
describes the specification of an integration between the Isabelle prover and the
Maple algebra system. We highlight the synergic effects of the integration by
showing how the resulting system solves a problem none of the starting systems
could tackle alone. Section 4 is devoted to conclusions and future work.

2 The OMSCS Framework

In the OMRS framework, reasoning systems are presented as logical services.
The specification of a service must be performed at various levels. At the lower

96 P.G. Bertoli et al.

level, it is necessary to formally define the objects involved in the service, and
the basic operations upon them. E.g., for a theorem prover, one must define
the kind of assertions it manipulates, and the basic inference rules that can be
applied upon them. On top of this “object level”, a control level provides a
means to define the implementation of the computational capabilities defined
at the object level, and to combine them. The control level must include some
sort of “programming language” which is used to describe a strategy in the
applications of modules implementing basic operations, therefore to actually
define the behaviour of the complex system implementing the service. Finally,
the way the service is perceived by the environment, e.g. the naming of services
and the protocols implementing them, is defined within a further level, called
the interaction level. This leads to the following OMRS architectural structure:

Reasoning Theory = Sequents + Rules
Reasoning System = Reasoning Theory + Control

Logical Service = Reasoning System + Interaction

Analogously, as shown in [5], CASs can be presented as algorithmic services,
based upon a definition of computation system and computation theory:

Computation Theory = Objects + Algorithms
Computation System = Computation Theory + Control
Algorithmic Service = Computation System + Interaction

In order to allow for a unified description of both classes of systems, we syn-
thesize these definitions into that of Symbolic Mathematical Service. It is based
upon definitions of symbolic entities and operations which include the previous
definitions of sequents and objects, and of rules and algorithms respectively.

Symbolic Computation Theory = Symbolic Entities + Operations
Symbolic Computation System = Symbolic Computation Theory + Control
Symbolic Mathematical Service = Symbolic Computation System + Interaction

We call this architecture Open Mechanized Symbolic Computation Systems
(OMSCS). The following two subsections deal with the formal description of
the object and control layers. The interaction layer is the object of ongoing
research. In this document, we will consider one single service, namely, asking
the system to apply some computation strategy over some mathematical entity.
This amounts to the possibility of asking an ATP for a proof of a conjecture,
or a CAS for a computation over some algebraic structure. A naive functional
perception of this service will be sufficient to our purposes.

2.1 The Object Level

Actual systems implement a variety of computation paradigms, based on a wide
spectrum of classes of entities. The object level of the OMSCS framework is de-
signed to allow for the representation of this variety of objects and behaviours.
The notion of domain is extended by defining a system of symbolic entities as a

Specification and Integration of Theorem Provers 97

mean to represent the entities manipulated by a symbolic computation system,
and the basic relationships governing them. A system of entities includes a set
of symbolic objects, a system of symbolic instantiations and a system of sym-
bolic constraints. Objects, constraints and instantiations are taken as primitive
sorts. Objects and constraints may be schematic, to allow for the representation
of schematic computations via the instantiation system. The constraint system
allows for the representation of provisional computations. Thus a system of sym-
bolic entities is a triple as follows:

Esys = <O , Csys, Isys>

O is the set of symbolic objects. Csys is a constraint system <C , |=>, where C is a
set of constraints, and |=⊆ (Pω(C)×C) is a consequence relation on constraints.
Isys is an instantiation system <I , _[_]>, where I is the set of instantiation maps
(or instantiations), and _[_] is the operation for application of instantiations to
objects and to constraints, that is _[_] : [O × I → O] and _[_] : [C × I → C].
In order to qualify as a system of symbolic entities, Esys , and more specifically
|=, I , and _[_] must meet certain requirements, which can be lifted from [8].

The basic operations which can be performed over a system of symbolic
entities are defined in a set-theoretic way, as relations between single entities and
tuples of entities, instantiations and constraints. These relations are required to
be closed w.r.t. instantiation. Namely, let Esys = <O , Csys, Isys> be a symbolic
computation system, where Csys = <C , |=>, Isys = <I , _[_]>. Then the set of
operations Op[Esys] over Esys is defined as follows:

Op[Esys] =
{Op ⊆ (Pω(O)×O ×Pω(C)) ∀<õ , o, c̃ > ∈ Op : ∀ι ∈ I : <õ , o, c̃ >[ι] ∈ Op}

In order to conveniently identify operations, we use maps from identifiers
(belonging to a set Id) to operations. Thus we define the set of operations sets
as follows:

Opset[Esys , Id] = Id
f→ Op[Esys]

Based on the definition of a system of entities and of a set of operations, the
computation capabilities of a system are described by means of a symbolic com-
putation theory, a triple containing a system of entities Esys , a set of identifiers
Id , and a set of operations Õp ∈ Opset[Esys , Id]:

SCth = <Esys , Id , Õp >

A symbolic computation theory entails a generalized notion of computation
which is represented within symbolic mathematical structures. Intuitively, sym-
bolic mathematical structures are defined as nested directed graphs containing
two kinds of nodes, representing symbolic objects and links between them. A link
between an object o and a set of objects õ represents the fact that õ has been
computed from o, or vice versa (depending on the orientation of the arcs); the
link node provides a justification, which may consist in a basic operation, or in

98 P.G. Bertoli et al.

another symbolic mathematical structure. We point to [8] for a complete formal
description of (nested) structures, instantiated to the class of reasoning systems.
Standard derivations and proofs, and functional computations are represented
by specific subclasses of mathematical structures. This allows for the decoupling
the specification of derivability or computability from the control strategies for
executing computations, and gives greater flexibility for algorithm design and
for definition of high-level control abstractions.

The following two examples demonstrate the features of the OMSCS object
level, by formalizing sections of two state-of-the-art systems. In particular, we
describe (some of) the reasoning capabilities of the Isabelle prover, and (some
of) the computational capabilities of the Maple computer algebra system.

Example 2.1 (Isabelle at the object level). Isabelle is a tactical theorem
prover. Its basic deductive capabilities are implemented by means of modules
called primitive tactics. Primitive tactics receive and produce assertions, im-
plementing base inference steps. Some primitive tactics may manipulate some
additional information, which they use to compute their output. Primitive tactics
are combined by means of a tactical language. Isabelle uses a meta-theoretical
resolution tactic to refine a subgoal by unifying it with an instance of a ground
rule contained within the current theory. Other relevant primitive tactics of Is-
abelle include an “axiomaticity” tactic, which removes a goal whose value is the
logical constant True, and an “assumption” tactic, which removes a goal which
matches some assumption via a unifier. Several predefined ground theories can
be exploited in Isabelle. For instance, the theory of natural numbers includes
Peano’s axioms and an induction rule whose first-order axiomatization can be
presented as follows:

(induct) [P (a)∧(a ≤ n)∧∀x : (x ∈ N ∧(x ≥ a)∧P (x)) −→ P (x+1)] −→ P (n)

The theory can be enriched, e.g by a classical first-order axiomatization of (some
of) the properties of the less-than relation, such as transitivity, reflexivity, and
distributivity w.r.t. the sum and product operations.

We consider this theoretical setting of Isabelle to start our OMSCS for-
malization by describing its object level by means of a symbolic entity system
EsysI = <OI , CsysI , IsysI>. The symbolic objects we consider are first-order
sequents which represent goals under a set of assumptions :

OI = {TH `I g}
where TH is a sequence of first-order formulas, and g is a single first-order
formula. The I subscript to the sequent symbol identifies this specific sort of
object. The constraints we consider are equalities between first-order terms:

CsysI = <t1 = t2, |=>

where t1 and t2 are first-order terms, and |= is defined to obey monotonicity,
axiomaticity and cut. The simple system of instantiation we consider is based
upon maps between schematic objects and first-order terms, designed as pairs

Specification and Integration of Theorem Provers 99

<Sc, t> where Sc is a schematic object and t is a first-order term. The instanti-
ation application mechanism for these pairs is defined as a substitution of t for
Sc:

IsysI = <II , _[_]> :
{

II = {<Sc, t>}
O[<Sc, t>] = O|Sc←t

The deductive capabilities of the prover within the previous theory setting are
represented by OMSCS operation generators. Since the underlying system of en-
tities describes the ground assertions manipulated by Isabelle, the operations will
describe the manipulation of such entities. Thus, they will describe the induction
rule and the less-than formalization presented above, and the axiomaticity and
assumption rule presented by the prover as primitive tactics. No formalization
of Isabelle’s meta-resolution will appear. What follows is an informal representa-
tion of the generators, which resembles the classical presentation of logical rules
found in, e.g., [11]. Within such description, g(f) indicates a goal g contain-
ing a subformula f . In the context of a rule, g(f ′) will be an abbreviation for
g(f)|f←f ′ .

Induct
TH `I g(a) TH `I a ≤ n TH `I ∀x ∈ N : ((x ≥ a) ∧ g(x))→ g(x + 1)

TH `I g(n)

Ax
TH `I True

Trans
TH `I g(x ≤ y) TH `I g(y ≤ z)

TH `I g(x ≤ z)

Assume
φ1, . . . , φn `I g

φis = g Sum
TH `I g(x′ ≤ x′′) TH `I g(y′ ≤ y′′)

TH `I g(x′ + y′ ≤ x′′ + y′′)

Reflexivity
TH `I g(True)
TH `I g(x ≤ x)

Prod
TH `I g(x′ ≤ x′′) TH `I g(y′ ≤ y′′)

TH `I g(x′ ∗ y′ ≤ x′′ ∗ y′′)

The Induct, Reflexivity, Trans, Sum and Prod operations map the Is-
abelle rules presented when describing the system. The Ax and Assume oper-
ations represent Isabelle’s axiomaticity and assumption primitive tactics. The
schemas like those above should be thought of as presenting the generators
for the operations considered, linking them to operation identifiers. For in-
stance, the first schema links the Induct identifier to the following generator:

{<[TH `I g(a), TH `I a ≤ n, TH `I ∀x ∈ N :

((x ≥ a)∧g(x))→ g(x+1)], TH `I g(n), ∅>}

The symbolic computation theory SCthI = <EsysI , IdI , Õp I> represents Is-
abelle at the object level, where IdI ⊇ {Induct, Ax, Assume, Reflexivity, Trans,
Sum, Prod}, and Õp I maps IdI to the generators according to the presentation
above.

Example 2.2 (Maple at the object level). Maple is a powerful, complex
CAS, featuring a number of complex algorithms for solving equations, computing
integrals and derivatives, performing operations on matrixes, and so on. However,
at a high level of abstraction, Maple can be perceived simply as a term rewrite

100 P.G. Bertoli et al.

system (where the terms to take into account are those of the Maple mathemat-
ical language). Thus, every calculation performed by the system can be repre-
sented by means of a conditional rewrite rule of the form [P1, . . . , Pn] =⇒ t ≡ t′,
where Pi are preconditions to the equivalence between terms t and t′. The pre-
conditions include type declarations of the form x ∈ D, where x is a Maple
variable, and D is a Maple domain identifier, and equalities between terms.

In particular, among the plethora of capabilities featured by the system,
we focus on those that allow Maple to normalize natural powers of binomials or
polynomial powers of monomials to their “flat” polynomial form, and to evaluate
disequalities between natural values. It is possible to represent these capabilities
in a black-box form, making use of two functions, NormalizePoly and EvalBool,
specifying their semantics in terms of input/output behaviour.

We describe the entities manipulated by Maple at the OMSCS object level
via a symbolic entity system EsysM = <OM , CsysM , IsysM>. The objects we
consider represent equivalences between first-order terms under a set of declara-
tions, which we may view as sequents:

OM = {TH `M t ≡ t′}

where t and t′ are Maple terms, and TH contains a set of Maple type declara-
tions. The constraints we consider are equalities between Maple terms:

CsysM = <t1 = t2, |=>

where t1 and t2 are Maple terms, and |= is defined to obey the monotonicity,
axiomaticity and cut properties. The system of instantiation is based upon maps
between schematic objects and Maple terms, represented as pairs <Sc, t> where
Sc is a schematic object and t is a Maple term. The instantiation application
mechanism is defined as a substitution of t for Sc:

IsysM = <IM , _[_]> :
{

IM = {<Sc, t>}
O[<Sc, t>] = O|Sc←t

We represent the computation capabilities of Maple using OMSCS operation
generators, which we present using the informal notation used in the previous
example.

MapleEval
TH `M t ≡ t′ t′ = NormalizePoly(t)

MapleEvalLess
TH `M (x ≤ y) ≡ EvalBool(x, y) {x : Bool, y : Bool} ⊆ TH

The symbolic computation theory SCthM = <EsysM , IdM , Õp M>represents
Maple at the object level, where IdM ⊇ {MapleEval, MapleEvalLess}, and Õp M

maps IdM to the generators according to the presentation above.

The combination of systems at the object level is performed by gluing sym-
bolic computation theories. Gluing two symbolic computation theories SCth1 =

Specification and Integration of Theorem Provers 101

<Esys1, Id1, Õp1> and SCth2 = <Esys2, Id2, Õp2> via bridge operations Õpb

results in a new symbolic computation theory SCthg = <Esysg, Idg, Õpg> with
the following features:
– the new system of entities Esysg is the disjoint union of the starting systems

Esys1 and Esys2. Intuitively, the disjoint union of systems of entities results
from their set union, where matching objects belonging to different systems
are unified; the formal definition is presented in [8].

– the new identifiers and operations are simply the union of the identifiers and
operations presented by SCth1 and SCth2 with Idb and Õpb respectively.
Note that the bridge operations, which specify the way computations in the
two systems can be combined, must be defined over Opset[Esysg, Idb].

2.2 The Control Level

The control level of a mathematical service must specify the way the system
implements the computing capabilities specified at the object level, and the
strategies adopted to combine them to achieve complex behaviours.

OMSCS adopts the tactic-based approach to pursue the first aim. The ba-
sic computation abilities of a system are represented using primitive tactics. A
primitive tactic provides a particular implementation of an operation defined
within a symbolic computation theory. Intuitively, a primitive tactic is defined
to be a correct implementation of an operation op if every tuple describing its
input/output behaviour corresponds to some tuple contained within the def-
inition of op. A formal definition is given in [6]. Primitive tactics implement
OMSCS operations directionally. Tactics may fail, representing the partiality of
operation applications. It must be possible to control primitive tactics so that
they realize specific instances of operations. This is achieved by exploiting two
mechanisms, control arguments and control annotations. Control arguments are
additional objects manipulated by the tactics (in addition to symbolic entities) in
order to generate values for the output entities. Control annotations are meant
as a colouring of the symbolic entities manipulated by tactics, and consisting
of additional information, which can be removed via an “annotation removal
mapping”. Control arguments and control annotations capture the two forms
of control (explicit, or environment-driven and implicit, or system-driven) pre-
sented by systems. All the features above are taken into account by redefining
the notions provided at the object level accordingly. Thus a system of annotated
symbolic entities is a 5-tuple as follows:

Esysa = <Oa, Oc, F, Csysa, Isysa>

Oc is the set of control objects, F is the set of failures, which contains at least a
no-failure element Ok and a generic failure element Fail; Oa, Csysa = <Ca, |=>,
Isysa = <Ia, _[_]> are the annotated counterparts of the object level defini-
tions. Every annotated element of the components of Esysa is mapped to an
element of the corresponding component of a system of entities Esys via an
annotation removal mapping µ which must preserve the behaviour of the in-
stantiation maps and of the consequence relation between constraints. That is,

102 P.G. Bertoli et al.

if c1, c2 are constraints, and e a generic entity, then µ(ι(e)) = ι(µ(e)) and
α |= β −→ µ(α) |= µ(β).

The definition of primitive tactics at the control level must extend the ob-
ject level operation definition, taking into account the additional presence of
control arguments, and directionality. Therefore, every entity manipulated by a
tactic will be marked as an input or output argument. We indicate with OaIO,
OcIO, CaIO, IaIO the sets of pairs <oa, IO>, <oc, IO>, <oa, IO>, <ia, IO> re-
spectively, where IO ∈ {Input, Output}, oc ∈ Oc, oa ∈ Oa, ia ∈ Ia. The η
mapping retrieves the unannotated, orientation-free content of these pairs, e.g.
η(<Oc, IO>) = µ(Oc). Thus, primitive tactics will be defined as follows:

Tac[Esysa] = {PTac ⊆ (O∗aIO ×O∗cIO ×OaIO × CaIO∗ × F)|
∃Op ∈ µ(Esysa) :
∀<oaIO , ocIO , oaIO, caIO , f> ∈ PTac :
∃p1 ∈ Perm(|oaIO |), p2 ∈ Perm(|caIO |) :

(f = Ok) −→ <η(p1(oaIO)), η(oaIO), η(p2(caIO))> ∈ Op}

Similarly to operations, primitive tactics are linked to identifiers within sets
of tactics:

Tacset[Esysa, Id] = Id
f→ Tac[Esysa]

Thus the control level of a system is described by a symbolic control theory,
whose definition lifts from that of computation theory at the object level:

SCNth = <Esysa, Id , T̃ ac>

where T̃ ac ∈ Tacset[Esysa, Id]. The definition of tactic above allows for the
representation of various computational paradigms, e.g. standard backward and
forward reasoning.

The application of primitive tactics onto object nodes of mathematical struc-
tures can be represented as a series of applications of primitive actions onto such
structure; see [8] for details. The combination of primitive tactics is realized by
defining a control language. The definition of such a language can be performed
by specifying, for each construct, the relation between the OMSCS definition of
the compound tactic w.r.t. those of the originating tactics. The language must be
proven to be correctness-preserving: provided that primitive tactics correctly im-
plement computation capabilities, compound tactics must correctly implement
compound computations.

Example 2.3 (Isabelle at the control level). Let us consider the object
level formalization of the Isabelle prover, provided by Example 2.1. In order to
describe the system at the level of control, we first define the system of annotated
symbolic entities. In Isabelle, no implicit notion of control exists; thus, entities are
not annotated. Explicit control arguments appear instead; the control arguments
OIc are either natural numbers, used to identify uniquely the factorization of dis-
equality terms within the Sum or Prod rules, or first-order formulas, used to des-
ignate a matching candidate in the assumptions of an assertion. The annotated

Specification and Integration of Theorem Provers 103

system is simply an extension of EsysI : EsysIa = <OI , OIc, F, IsysI , CsysI>,
where F = {Ok, Fail}. In this case, control arguments do not modify the design
of instantiations and constraints. Rather than formally presenting the backward
primitive tactics corresponding to the operations described in Example 2.1, we
consider their former informal presentation and re-interpret it accordingly. In
particular, the tactics we consider are intended as bottom-to-top orientation of
the corresponding operations, where the output objects are returned in a left-to-
right order. Whenever input arguments do not match the symbolic schema given
in the presentation, tactics are supposed to return Fail. Tactics may receive con-
trol arguments. Namely, InductTac(a, n) is controlled w.r.t. the bound and the
term of the induction; AssumeTac(φi) is controlled w.r.t. the term to match with
the goal; ReflTac(x) and TransTac(y) receive the term involved in reflexivity
and transitivity respectively; SumTac(x′, x′′) and ProdTac(x′, x′′) require control
arguments to uniquely identify a decomposition of the input disequalities. The
control theory SCNthI which defines Isabelle parallels the computation theory
SCthI , based upon the annotated entity system and the tactics described above.
Notice that, since Isabelle is a tactical prover based on meta-resolution, and the
primitive tactics above implement ground rules, in general, a many-to-one cor-
respondence exists between these tactics and the original Isabelle tactics.

In order to combine primitive backward tactics, it is possible to adopt (a
conservative extension of) the language used in LCF and in Isabelle. The formal
definition of the variant of the LCF tactical language we adopt is given in [6].
The language is extended in order to allow tactics to handle control arguments;
thus, tactical expressions receive an atomic symbolic mathematical structure (a
single object node) and a list of control arguments. As a result, either a failure
or an updated symbolic mathematical structure is returned.

Example 2.4 (Maple at the control level). The representation of Maple’s
behaviour at the control level is straightforward, since Maple does not make use
of control annotations, nor of control arguments. Thus the system of annotated
symbolic entities is a trivial extension of EsysM . The presentation of the prim-
itive tactics MapleEvalTac and MapleEvalLessTac is inherited from Example
2.2. The tactics are intended as bottom-to-top orientations of the operations, re-
turning their results according to the left-to-right ordering in the presentation.
The control theory SCNthM which defines Maple parallels the computation the-
ory SCthM , based upon the annotated entity system and the tactics described
above.

The combination of systems at the control level is based on gluing the anno-
tated symbolic computation theories, and on combining the definitions of tactical
languages. The first aim is achieved by lifting the definition of gluing from the
object level. The definition of a formal framework for the uniform presentation
of tactical languages and compound tactical expressions is the subject of ongoing
work. In this document, we rely on a common definition of tacticals languages
between the components of the integration.

104 P.G. Bertoli et al.

3 An Example: Integrating Isabelle and Maple

In this section, we show how the framework can be used to integrate in a clear and
sound manner a computer algebra system and a theorem prover. We consider the
OMSCS formalizations provided in the previous examples as a starting point to
design a specific combination of Isabelle and Maple, and study how the resulting
system can be used to solve a problem none of the two single systems could
tackle alone. In [4], the two systems are combined in an ad-hoc way, by enriching
Isabelle’s simplifier with an additional external invocation rule referring to the
Maple system. In this way, Isabelle is configured to act as a master to Maple,
which is simply considered as an evaluation engine.

Starting from our previous OMSCS formalizations, we are able to formal-
ize such an integration of Isabelle and Maple at the object level by gluing the
symbolic computation theories SCthI and SCthM describing each system. To
represent the way terms contained within an Isabelle assertion are simplified by
using Maple as a rewriter, the gluing must include a bridge rule. Its informal
presentation follows:

Simplify
THM `M t ≡ t′ THI `I g(t′)

THI `I g(t) THM ⊂ THI

At the control level, the gluing between the annotated theories involves a
corresponding backward primitive bridge tactic SimplifyTac(t), which receives
as a control argument the term submitted to simplification. Its presentation
coincides with that of the originating operation. The tactical language adopted
in the Isabelle example is used to combine this tactic with Isabelle’s and Maple’s.
This allows for expressing the behaviour of the integrated system via a unique
compound tactic, perceiving the integrated system as a unique entity.

As an example of the abilities which derive from combining the two systems,
we consider a problem first described in [10]. Namely, we intend to prove that,
for every natural greater or equal than 5, it holds that n5 ≤ 5n; that is:

[n ∈ N ; 5 ≤ n] −→ n5 ≤ 5n (1)

Albeit a simple conjecture, this theorem cannot be solved by Maple alone, and
cannot be solved by Isabelle in an efficient way. Maple does not posses any
deductive capability to perform such a proof. Isabelle does not possess any basic
capability to expand powers of binomials, and evaluate disequalities. Formalizing
these abilities is possible, but would lead to a very lengthy proof search.

The proof of (1) develops along the following lines:

1. Isabelle’s induction rule is applied upon the main goal; this leads to three
subgoals, two of which define the base step, and the third defining the in-
duction step;

2. The subgoals defining the base step are simply solved by applying basic rules;

3. The subgoal defining the induction step contains a disequality between poly-
nomials in non-normal form; they are normalized by expanding it through

Specification and Integration of Theorem Provers 105

Maple calls. In concrete, this is performed by simplification via the evalua-
tion rules.

4. Finally, by a repeated use of the laws which governate disequalities between
products and sums, the induction step is proved. In this phase, additional
Maple calls are used to verify disequalities between ground values, e.g. 2 ≤ 5.

The compound OMSCS tactic that originates the proof in our formalization
closely resembles the series of Isabelle’s tactics invocations used in [10] to achieve
the result. Its execution results in a (flat) symbolic mathematical structure which
represents the proof of the conjecture. The following picture provides a simplified
presentation of the structure.

2 3

5

INDUCT

4

SIMPLIFY

MAPLE SIMPLIFY

6

7 8

MAPLE

REST

1

ASSUMEREFL

1 : TH `I n5 ≤ 5n

2 : TH `I 55 ≤ 55

3 : TH `I n ≤ 5
4 : TH `I ∀x : [x ∈ N ∧ 5 ≤ x ∧ x5 ≤ 5x] =⇒ (x + 1)5 ≤ 5(x+1)

5 : x ∈ N `M (x + 1)5 ≡ x5 + 5x4 + 10x3 + 10x2 + 5x + 1
6 : TH `I ∀x : [x ∈ N ∧ 5 ≤ x ∧ x5 ≤ 5x] =⇒

x5 + 5x4 + 10x3 + 10x2 + 5x + 1 ≤ 5(x+1)

7 : x ∈ N `M 5(x+1) ≡ 5 ∗ 5x

8 : TH `I ∀x : [x ∈ N ∧ 5 ≤ x ∧ x5 ≤ 5x] =⇒
x5 + 5x4 + 10x3 + 10x2 + 5x + 1 ≤ 5 ∗ 5x

Circles represent object nodes, whose labels are reported in the table; rectangles
represent link nodes, and contain their labels. The complex series of steps cor-
responding to the final phase of the proof are folded within the triangular REST
node. Link nodes labelled with SIMPLIFY identify the points where the systems
cooperate to the solution of the problem; namely, where Maple is invoked to ex-
pand some polynomial power. Note that the REST folded node hides away several
additional Maple calls, meant to perform evaluations of disequalitites.

106 P.G. Bertoli et al.

4 Conclusions

This paper described a framework for the uniform specification of symbolic com-
putation engines and mechanized reasoning systems. The framework can be ex-
ploited to specify the integration between computer algebra systems and theorem
provers, providing a clear formal description of the way they combine. As a re-
sult, the cooperation process between the tools is clearly represented within a
symbolic mathematical structure.

Several research directions are open. First of all, the concrete implementation
of the OMSCS specification and integration described in the example is in order.
Its feasibility is hinted at by [3], which describes a practical example of the use
of the framework. Regarding the interaction level of the framework, a standard,
extendible set of services must be determined; their formal semantics must be
defined, and given a concrete syntax. The work in [2] represents a first step in this
direction. The studies undertaken by many research groups, e.g. the OpenMath
group [12] and the PosSo/XDR group [1], must be considered as a starting point
to the formalization of this architectural component.

References

1. Abbott, J. PossoXDR specifications. Internal Posso technical report, 1994.
2. Armando, A., and Ranise, S. From Integrated Reasoning Specialists to “Plug-

and-Play” Reasoning Components. In Proceedings of AISC’98 , Springer Verlag.
3. Bertoli, P. Using OMRS for real: a case study with acl2. PhD thesis, Computer

Science Dept., University Rome 3, Rome, 1997. Forthcoming.
4. C. Ballarin, K. Homann, J. C. Theorems and Algorithms: An interface be-

tween Isabelle and Maple. In International Symposium on Symbolic and Agebraic
Computation, ISSAC ’95 (1995), H. M. Levelt, Ed., ACM Press, pp. 150–157.

5. Calmet, J., and Homann, K. Structures for symbolic mathematical reasoning
and computation. In Proceedings of DISCO ’96 - Design and Implementation of
Symbolic Computation Systems (1996), J. Calmet and C. Limongelli, Eds.

6. Coglio, A. Definizione di un formalismo per la specifica delle strategie di inferenza
dei sistemi di ragionamento meccanizzato e sua applicazione ad un sistema allo
stato dell’arte. Master’s thesis, University of Genoa, Italy, 1996.

7. E. Clarke, X. Z. Analytica - a theorem prover in mathematica. In Proc. of the
10th Conference on Automated Deduction (1992), Springer-Verlag, pp. 761–765.

8. Giunchiglia, F., Pecchiari, P., and Talcott, C. Reasoning Theories: Towards
an Architecture for Open Mechanized Reasoning Systems. Tech. Rep. 9409-15,
IRST, Trento, Italy, 1994. Short version in Proc. of the First International Work-
shop on Frontiers of Combining Systems (FroCoS’96), Munich, Germany, 1996.

9. J. Harrison, L. T. Extending the HOL prover with a Computer Algebra Sys-
tem to reason about the Reals. In Higher Order Logic Theorem proving and its
Applications, J. J. Joyce and J. H. Seger, Eds. Springer-Verlag, 1993, pp. 174–184.

10. Homann, K.. Symbolisches Loesen mathematischer Probleme durch Kooperation
algorithmischer und logischer Systeme. PhD thesis, Univ. of Karlsruhe, 1996.

11. Prawitz, D. Natural Deduction: A Proof-theoretical Study. , 1965.
12. Vorkoetter, S. OpenMath specifications: March 1994, March 1994.

COLETTE, Prototyping CSP Solvers Using a
Rule-Based Language

Carlos Castro

LORIA, 615, rue du Jardin Botanique, BP 101, 54602 Villers-lès-Nancy Cedex, France
e-mail: Carlos.Castro@loria.fr

Abstract. We are interested in modelling constraint solving as a de-
duction process. In previous works we have described how a constraint
solver can be viewed as a strategy that specifies the order of application
of a set of rules, to transform a set of constraints into a solved form. In
this framework, the computation process is associated to a constructive
proof of a formula. On one hand, the use of transformation rules allows to
prove termination in a very easy way. On the other, the use of strategies
allows to describe constraint handling in a very abstract way, prototype
new heuristics almost by modifying only the choice of rules, and com-
bine constraint solver in the same theoretical framework. In this paper,
we introduce COLETTE, an implementation of these ideas using ELAN,
a rule-based language. We exemplify step by step how a flexible strategy
language allows to prototype existing algorithms for solving CSPs. The
theoretical and practical results show that this approach could be useful
for better understand constraint solving.
Keywords: Constraint Satisfaction Problems, Rewriting Logic.

1 Introduction

The problem of finding values in the domain of variables such that a set of
constraints is satisfied is called a Constraint Satisfaction Problem (CSP) [12].
Polynomial algorithms have been developed to eliminate values that the variables
can take while preserving the set of solutions [11]. The incorporation of these
algorithms into an exhaustive search process is the main reason for the success
of CSP techniques. The need of distinction between basic transformations and
their control has been well-recognised. Now, the challenge is to have an abstract
way to control the basic transformations, which is easily modifiable by the user,
and to be able to integrate several solvers.

Several languages and libraries are now available to deal with CSPs and they
have been successfully applied for solving real-life problems. ILOG Solver [1]
allows to deal with constraints through the use of a library of C functions. In
the domain of Logic Programming, constraints were introduced giving origin to
the Constraint Logic Programming paradigm: during execution of a traditional
logic program, constraints are accumulated and solved externally by a solver
that can be seen as a black-box [9]. Constraint Handling Rules were proposed,
and included in the ECLiPSe system, to allow the users to define their own

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 107–119, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

108 Carlos Castro

propagation rules [8]. In this paper, we introduce COLETTE1, a computational
system [10], implemented in ELAN [4], for dealing with CSPs. The main orig-
inality of COLETTE with respect to the existing systems is the explicit use of
strategies to guide the search process in a flexible way. Indeed, at our best knowl-
edge, COLETTE is the first attempt to implement constraint solvers using a fully
rewrite-based approach.

From a theoretical point of view, our original goal was to model constraint
solving as an inference process, where a CSP is transformed into another, equiv-
alent one, but more simple. In this way we model constraint solving as a de-
duction process where the computation process is associated to a constructive
proof of a formula, the query, from a set of axioms [2]. In previous works, we
have described constraint solving as an inference process [6,7]. We have verified
how naturally a constraint solver can be viewed as a strategy that specifies the
order of application of a set of rules, to transform a set of constraints into a
solved form. From a practical point of view, our main motivation is to provide
an environment for prototyping heuristics using the expressive power of strate-
gies. Rewriting Logic and rule-based languages seem to be of greatest interest
for implementing these techniques. This is the reason why we are interested in
implementing CSP techniques within a language like ELAN . We have imple-
mented local consistency (Arc-Consistency) and exhaustive search algorithms
(Backtracking, Forward-Checking, ...) for solving constraints over Integers and
Finite Domains.

At the beginning, we were just interested in a clean rule-based formalization
of constraint solving without taking care about efficiency considerations. Using
the interpreter of the first version of ELAN we were able to solve simple sets
of constraints, for example, crypto arithmetic puzzles, like SEND + MORE =
MONEY , using some thousands of rewrite steps in some seconds. However, we
have been surprised that using the ELAN compiler, included in the latest version
of the language, we have been able to solve random instances of hard combi-
natorial problems, like Job-Shop, that are traditionally used as benchmarks by
the CSP community. These results are mainly due to the efficient compilation of
leftmost-innermost normalization and non-determinism carried out by the ELAN
compiler [15]. Techniques like many-to-one syntactic matching and reuse of parts
of terms allow to apply up to ten millions of rewrite rules per second. Based on
a typing of the strategies, smart inferences allow to eliminate choice points im-
proving in this way memory management and, as a consequence, performance in
terms of time. Considering the theoretical and practical results, we are convinced
that this approach can be of greatest interest to better understand constraint
solving.

This paper is organized as follows: in section 2, we briefly present CSPs.
In section 3, we present a set of transformation rules that express the basic
transformation carried out by existing algorithms used for solving CSPs. Section
4 describes in detail the system COLETTE: we first present the language used
for implementing the system, we show the rewrite rules implementing the set
of transformation rules, we then describe step by step how we can combine

1 http://www.loria.fr/~castro/COLETTE/index.html.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 109

these rules in order to built several constraint solvers, next we present the use
of parametrized strategies to built solvers in a very flexible way, and finally
we exemplify how we can integrate several solvers working together to solve a
global problem. In section 5, we present some standard benchmarks solved using
COLETTE. Finally, in section 6, we conclude the paper.

2 CSP

An elementary constraint c? is an atomic formula built on a denumerable set of
variables and a first-order signature 2. Elementary constraints can be combined
with usual first-order connectives. A CSP is any set C = (c?

1 ∧ . . . ∧ c?
n). We

consider CSPs in which the carrier D of the structure is a finite set. A solution
of C is a mapping α such that α(C) is true (T). C is satisfiable if it has at least
one solution. We use the constants F or Unsatisfiable to denote an unsatisfiable
CSP. To process C we introduce two kinds of constraints: a relation x ∈? Dx,
for a variable x and a non-empty set Dx ⊆ D, is called a membership constraint;
a relation x =? v, for a variable x and a value v ∈ D, is called an equality
constraint.

When solving CSPs we can be interested in finding one solution, all solutions,
or the best solution wrt some given criteria. Solving techniques can be described
as an interleaving process between local consistency verification and domain
splitting. Local consistency verification consists in the elimination of values that
the variables can take while preserving the set of solutions. The effect of these
eliminations is propagated through the set of constraints until a fixed point is
reached: no more values can be eliminated from the domain of the variables. If we
cannot derive directly a solution from the set of constraints so obtained, domain
splitting is carried out: we choose a variable and split its domain creating in this
way two independent subproblems. Then local consistency is verified for each
subproblem and this process is repeated until a solution is reached. By iterating
this process we obtain a search tree where nodes correspond to subproblems and
branches to splitting decisions.

3 Transformation Rules for Solving CSPs

In order to simplify their processing, we only deal with CSPs in Conjunctive
Normal Form (CNF.) That is, a CSP is any set C = (c?

1 ∧ . . . ∧ c?
n) such that

c?
i is a disjunction of elementary constraints. A basic form for a CSP P is any

conjunction of formulae of the form:

C =
∧

i∈I

(xi ∈? Dxi) ∧
∧

j∈J

(xj =? vj) ∧
∧

m∈M

(c?
m) ∧

∧

k∈K

∨

l=1,..,nk

(c?
kl)

2 For clarity, constraints are syntactically distinguished from formulae by a question
mark exponent on their predicate symbols.

110 Carlos Castro

equivalent to P , where c?
m and c?

kl are elementary constraints, and such that for
each variable appearing in the elementary constraints there must be associated
a membership constraint or an equality constraint, the sets of variables of the
membership constraints and equality constraints are disjoint, and the set asso-
ciated to each variable in the membership constraints is not empty. Variables
which are only involved in equality constraints are called solved variables and
the others non-solved variables. A solved form for a CSP P is a conjunction of
formulae in basic form equivalent to P and such that all assignments satisfy all
constraints.

In the rest of the paper we suppose that at the beginning of the constraint
solving process we start with a CSP where a membership constraint has been
created for each variable occuring in the set of constraints (the sets Dxi are set
up to D) and no equality constraint is present 3.

Given that we accept elementary constraints to be combined with all first-
order connectives we need to transform the input set of constraints. This kind of
preprocessing can be naturally specified as a normalization step: the following
set of rewrite rules is applied eagerly on the input problem:

c1 <-> c2 => (c1 -> c2) & (c2 -> c1)

c1 -> c2 => NOT(c1) V c2

NOT(NOT(c)) => c

NOT(c1 & c2) => NOT(c1) V NOT(c2)

NOT(c1 V c2) => NOT(c1) & NOT(c2)

c V (c1 & c2) => (c V c1) & (c V c2)

In [7], we propose the set of transformation rules presented in figure 1 that
express the basic operations carried out by the algorithms developed for solving
CSP.

[ArcConsistency] xi ∈? Dxi ∧ c?
m ∧ C⇒ xi ∈? RD(xi ∈? Dxi , c

?
m) ∧ c?

m ∧ C
if RD(xi ∈? Dxi , c

?
m) 6= Dxi

[Falsity] x ∈? ∅ ∧ C ⇒ F
[Instantiation] x ∈?Dx ∧ C ⇒ x =? v ∧ C if Dx = {v}
[Elimination] x =? v ∧ C ⇒ x =? v ∧ C{x 7→ v} if x ∈ Var(C)
[SplitDomain] x ∈?Dx ∧ C ⇒ x ∈?D′

x ∧ C or x ∈? D′′
x ∧ C

if D′
x ∪D′′

x = Dx and D′
x ∩D′′

x = ∅ and D′
x 6= ∅ and

D′′
x 6= ∅

[ChoicePoint]
∨

l=1,..,nk
(c?

kl)∧C⇒ ∨
l=1,..,l′(c

?
kl) ∧ Cor

∨
l=l′+1,..,nk

(c?
kl) ∧ C

Fig. 1. Transformation Rules for solving CSP

Formally, RD(xi ∈? Dxi , c
?
m) stands for the set D′xi

= {vi ∈ Dxi | (∃v1 ∈
Dx1 , . . . , vi−1 ∈ Dxi−1 , vi+1 ∈ Dxi+1 , . . . , vn ∈ Dxn) : c?

m(v1, . . . , vi, . . . , vn)}
and C{x 7→ v} denotes the conjunction of constraints obtained from C by re-
placing all occurrenc es of the variable x by the value v. In [7], we prove termina-
tion, correction and completeness of this set of rules. For a satisfiable problem,
3 By equality constraints we mean the constraints of the form xj =? vj presented in

this section. This does not mean that elementary constraints involving an equality
predicate cannot occur in the set of constraints.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 111

the application of these rules gives each solution in a particular solved form: we
only have an equality constraint associated to each variable, and all membership
constraints and the sets of elementary and disjunctive constraints have been
eliminated.

In the next section, we present the implementation of these rules using a
rule-based programming language and we show how we can combine them in
order to built a constraint solver.

4 COLETTE

In this section, we describe the system COLETTE. We first present the language
used for implementing the system, we show the rewrite rules implementing the
set of transformation rules presented in section 3, and we then describe step by
step how we can combine these rules in order to built several constraint solvers.
Next, we motivate how useful it can be to handle parametrized strategies in
order to built solvers in a very flexible way, and finally we exemplify how we can
integrate several solvers working together to solve a global problem.

4.1 A Rule-Based Programming Language

ELAN is an environment for prototyping computational systems [10]. A compu-
tational system is given by a signature providing the syntax, a set of conditional
rewrite rules describing the deduction mechanism, and a strategy to guide the
application of rewrite rules. Formally, this is the combination of a rewrite theory
in rewriting logic [13], together with a notion of strategy to efficiently compute
with given rewrite rules. Computation is exactly the application of rewrite rules
on a term. The strategies describe the intended set of computations, or equiva-
lently in rewriting logic, a subset of proofs terms. We now explain briefly ELAN
syntax and semantics. We describe informally only the features of the language
that we need to define our system. A full description of ELAN can be found in [4].

ELAN rules are of the form: [`] : l⇒ r if cond where y := (s)t, where ` is the
rule label, l and r the respective left and right-hand sides, cond the condition and
y is replaced in l and r by the terms computed through the application of strategy
s onto the term t. The constant rule id represents identity. For applying rules,
ELAN provides several elementary strategy operators. The operator ’;’ expresses
the concatenation of strategies. For instance, the strategy iterator dk(`1, . . . , `n),
standing for don’t know choose, returns all possible results of the application of
`i, and first(`1, . . . , `n) takes the first, in textual order, successful branch. The
strategy iterator repeat*(s), iterates a strategy s until it fails and returns the
terms resulting of the last unfailing call of the strategy.

4.2 Data Structure

The object representing a CSP and rewritten by the computation process is
defined as a 5-tuple CSP[lmc,lec,EC,DC,store], where lmc is a list containing the
membership constraints, lec is a list containing the equality constraints, EC is a

112 Carlos Castro

list containing the set of elementary constraints to solve, DC is a list containing
the set of disjunctive constraints to solve and store is a list containing the
elementary constraints already verified.

4.3 Rewrite Rules

The rule ArcConsistency verifies local consistency based on the algorithm AC-
3 [11]: the constraints in EC are verified and stored in store. Once a variable’s
domain is modified we extract all constraints in store where the variable is
involved in and add them to EC. The operator ReviseDxWRTc carries out the
verification of the set of values associated to each variable involved in the con-
straint c. For integer domains we have implemented the predicates ≤, <, ≥,
>, =, and 6=. We also implemented predicates like alldiff, known as global con-
straints and widely used for improving constraint propagation and memory use.
In fact, to extend our language we just have to define the propagation method
for the new predicates, and, as we will see further, their evaluation as a ground
formula.

[ArcConsistency] // This is the name of the rule. When applying

CSP[lmc,lec,c.EC,DC,store] // this rule, a term of the form CSP[,,,,] is

=> // replaced by the right-hand side of the rule.

CSP[append(lmc1,lmc2),lec,append(EC1,EC),DC,newstore]

where [lmc1,lmc2,lv] := ()ReviseDxWRTc(lmc,lec,c)

where [EC1,remainingstore] := ()GetConstraintsOnVar(lv,store,nil,nil)

choose try if ArityOfConstraint(c) == 1

where newstore := ()remainingstore

try if ArityOfConstraint(c) >= 2

where newstore := ()c.remainingstore

end

After application of rule ArcConsistency we could get two particular cases:
a variable’s domain is empty or is reduced to a singleton. The rule Falsity
detects an empty domain and in that case rewrites the problem to Unsatisfiable.
The rule Instantiation detects a singleton variable’s domain, and in that case
the membership constraint is deleted and a new equality constraint is added
instantiating the variable to its only possible value.

[Falsity] [Instantiation]

CSP[x in? empty.lmc,lec,EC,DC,store] CSP[x in? D.lmc,lec,EC,DC,store]

=> =>

Unsatisfiable CSP[lmc,x = v.lec,EC,DC,store]

if GetCard(D) == 1

where v:= ()GetFirstValueOfDomain(D)

Once a variable has been instantiated by creating an equality constraint we can
propagate its effect: the rule Elimination replaces an instantiated variable by its
value through the sets of constraints EC and DC. The rule Elimination reduces
the arity of constraints where the variable is involved in: unary constraints will
become ground formulae whose truth value has to be verified, binary constraints

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 113

will become unary constraints which will be more easily tested, and so on. When
evaluating ground formulae we use two logical rules: C∧T⇒ C and C∧F⇒ F. If
one of the ground formulae is evaluated to F the rule Eliminationwill return F,
that is the CSP has not solution. Otherwise, when ground formulae are evaluated
to T they are eliminated and the simplified set C is returned.

[Elimination]

CSP[lmc,x = v.lec,EC,DC,store]

=>

P

if occurs x in EC or occurs x in DC

where [l1,l2] := ()GetRemainingConstraintsInEC(x = v,EC,nil,nil)

choose try if l1 == false.nil

where P := ()Unsatisfiable

try if l1 != false.nil

where [l3,l4,l5]:=()GetRemainingConstraintsInDC(x = v,

DC,nil,nil,nil)

choose try if l3 == false.nil

where P := ()Unsatisfiable

try if l3 != false.nil

where lu := ()append(l1,l3)

where lb := ()append(l2,l4)

where P:=()CSP[lmc,ShiftConstraint(lec,x = v),

append(lu,lb),l5,store]

end

end

[InstantiateFirstValueOfDomain] [EliminateFirstValueOfDomain]

CSP[x in? D.lmc,lec,EC,DC,store] CSP[x in? D.lmc,lec,EC,DC,store]

=> =>

CSP[lmc,x = v.lec,EC,DC,store] CSP[x in? RD.lmc,lec,EC,DC,store]

if D != empty if GetCard(D) > 1

where v := ()GetFirstValueOfDomain(D) RD:= ()DeleteFirstValueOfDomain(D)

To deal with the non-determinism of the rule SplitDomain we decompose
it in the rules InstantiateFirstValueOfDomain and EliminateFirstValueOf
Domain. The rule InstantiateFirstValueOfDomain creates an equality con-
straint whose value is the first one in the variable’s domain and delete the
membership constraint. The rule EliminateFirstValueOfDomain reduces the
variable’s domain by deleting the first value. Of course, this is a particular in-
stance of domain splitting. We have also implemented rules for enumerating
values from last to first and for splitting where each new domain has at least
two values.

To deal with the non-determinism of the rule ChoicePoint we use an asso-
ciative-commutative operator V and the rule PostDisjunct. This rule extracts
a disjunct corresponding to an elementary constraint and add it to the list of

114 Carlos Castro

elementary constraints EC. When applying this rule with the don’t know choose
operator we get all elementary constraints involved in the disjunctive constraint.

[PostDisjunct]

CSP[lmc,lec,EC,c1 V c2.DC,store]

=>

CSP[lmc,lec,c1.EC,DC,store]

if ConstraintIsElementary(c1)

4.4 Strategies

The simplest heuristics for solving CSPs is the force brute algorithm Generate
and Test. The strategy GenerateTest implements this exhaustive search. The
heuristics Backtracking aims to detect failures earlier: it carries out constraint
checking immediately after each variable instantiation. By modifying a little the
order of application of the rules in GenerateTest we obtain the new strategy
Backtracking.

[] GenerateTest => // This is the name of the

repeat*(dk (InstantiateFirstValueOfDomain,// strategy. Each application

EliminateFirstValueOfDomain));// of dk returns two new

repeat*(Elimination) // problems, each one is an

// input for the next iteration.

[] Backtracking =>

repeat* (dk (InstantiateFirstValueOfDomain; first one (Elimination , id),

EliminateFirstValueOfDomain))

The strategies GenerateTest and Backtrackingmake a priori choices too early.
A well known general principle when dealing with combinatorial search problems
is to carry out deterministic computations as much as possible before branch-
ing. This is the key idea behind local consistency verification. With this idea in
mind we design the strategy LocalConsistencyForEC that verifies local consis-
tency for a set of elementary constraints. After reaching a fixed point applying
the strategy LocalConsistencyForEC we have to carry out an enumeration in
order to traverse the search space. When after each variable instantiation we
verify again local consistency for all elementary constraints we are implement-
ing the heuristics Full Lookahead. With a simple modification to the strategy
Backtracking, a new strategy FullLookAheadForEC can be easily designed.

The strategy FullLookAheadForEC only deals with elementary constraints.
We can modify the strategy LocalConsistencyForEC to take into account dis-
junctive constraints. We can use the widely used Choice Point approach: we
choose a disjunctive constraint, we extracts a disjunct, and we post it creating
in this way a new subproblem for each disjunct. The strategy LocalConsistency
ForEC&DC implements this idea, and again, it is designed by a simple modification
to an already existing strategy. The implementation of the rule PostDisjunct

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 115

[] LocalConsistencyForEC =>

repeat* (ArcConsistency ; first one (Instantiation ;

first one (Elimination , id) ,

Falsity ,

id))

[] FullLookAheadForEC =>

LocalConsistencyForEC ; repeat* (dk (InstantiateFirstValueOfDomain ;

first one (Elimination , id) ;

LocalConsistencyForEC ,

EliminateFirstValueOfDomain))

and its use in this strategy shows the elegance of being able to use associative-
commutative operators. Indeed, calling PostDisjunct with the don’t know oper-
ator will create just one choice point improving in this way memory management
and, as a consequence, performance in terms of time. Now we can easily design a
strategy implementing the heuristics Full Lookahead considering also disjunctive
constraints, the results is the strategy FullLookAheadForEC&DC.

[] LocalConsistencyForEC&DC =>

LocalConsistencyForEC; repeat*(dk (PostDisjunct); LocalConsistencyForEC)

[] FullLookAheadForEC&DC =>

LocalConsistencyForEC&DC ; repeat* (dk (InstantiateFirstValueOfDomain ;

first one (Elimination , id) ;

LocalConsistencyForEC ,

EliminateFirstValueOfDomain))

4.5 Strategies with Parameters

The art of constraint solving consists in interleaving local consistency verification
and domain splitting in a way that a small part of the search tree is explored
before reaching a solution. A criteria for guiding the search can be easily incor-
porated in the strategy FullLookAheadForEC&DC: before splitting a domain we
choose the variable that has the minimum set of remaining values.

FullLookAheadForEC&DC =>

LocalConsistencyForEC&DC ; repeat* (GetVarWithMinimumDomain ;

dk (InstantiateValue ;

first (Elimination , id) ;

LocalConsistencyForEC ,

EliminateValue))

Obviously, the criteria presented here, Minimum Domain, an instance of a
general principle known as First Fail Principle, is not the only one that we can

116 Carlos Castro

imagine. Minimal Width Ordering and Maximum Cardinality Ordering [18], are
examples of other principles used to choose the splitting variable. This shows the
importance of being able to tune strategies in a very flexible way [3]. The follow-
ing strategy applied with the parameter GetVarWithMinimumDomain is equiva-
lent to the previous one:

stratop

global FullLookAhead(@): (<csp -> csp>) <csp -> csp>;

end

strategies for csp

RuleChoiceVar: <csp -> csp>;

[] FullLookAhead(RuleChoiceVar) =>

LocalConsistencyForEC ; repeat* (RuleChoiceVar ;

dk (InstantiateValue ;

first (Elimination , id) ;

LocalConsistencyForEC ,

EliminateValue))

4.6 Interface with Other Solvers

As pointed out in [17], sometimes one would like to use solvers already de-
signed and implemented for solving specific constraints. As a very simple ex-
ample we could consider the following case: suppose that a CSP can be decom-
posed in several subproblems with disjoint sets of variables. In that case, we
could deal with each subproblem independently using, for example, the strategy
FullLookAheadForEC&DC that we have already presented. Once each subproblem
has been solved we could built a global solution as the union of the solutions of
each subproblem. Next, we briefly present how we can built such a solver using
a rule based approach.

A 5-tuple CSP[P,luCSP,lsCSP,laPID,liPID] is the object rewritten by the
main solver, where P is the input CSP, luCSP is a list containing all unsolved
CSPs, lsCSP is a list containing all solved CSPs, laPID is a list containing the
identification of active processes (running solvers) and liPID is a list containing
the idle process. The main solver is defined by the following strategy:

[] ParallelResolution =>

DecomposeCSP ;

CreateSolvers ;

repeat* (SendToSolver) ;

repeat* (GetFirstOutputOfSolver) ;

repeat* (ComposeCSP) ;

repeat* (CloseProcess)

The rule DecomposeCSP creates luCSP, a list of variable-disjoint unsolved
subproblems obtained from the original CSP P. The rule CreateSolvers cre-
ates n idle processes, each one containing a solver as specified by the strat-
egy FullLookAheadForEC&DC, where n is the size of the list luCSP. The rule
SendToSolver takes an unsolved problem from the list luCSP and an idle solver
from the list liPID creating an active solver in the list laPID. The rule GetFirst

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 117

OutputOfSolver reads a solution from the list of active solvers laPID and put
it in the list of solved CSPs lsCSP. The rules ComposeCSP and CloseProcess
built a solution to the original problem and close all process, respectively.

[CreateSolvers]

CSPII[P,luCsp,lsCsp,laPid,liPid]

=>

CSPII[P,luCsp,lsCsp,laPid,append(liPid,newliPid)]

where n := ()size(luCsp)

where newliPid := ()CreateProcess(n)

[SendToSolver] [GetFirstOutputOfSolver]

CSPII[P,csp.luCsp,lsCsp,laPid,pid.liPid] CSPII[P,luCsp,lsCsp,

pid.laPid,liPid]

=> =>

CSPII[P,luCsp,lsCsp,pid.laPid,liPid]

CSPII[P,luCsp,csp.lsCsp,laPid,pid.liPid]

where csp1 := ()write(pid,csp) where csp := ()read(pid)

5 Examples

The popularity of constraint solving techniques is mainly due to their succesful
application for dealing with real-life problems, like industrial scheduling. In this
section, we just concentrate on some classical benchmarks widely used by the
CSP community. Given that our goal is to introduce a general framework to deal
with CSPs, the analysis of different models for representing the problems and
tuning of heuristics for solving specific problems are beyond the scope of this
paper. It is well known that models considering redundant and global constraints
(like alldiff), can improve constraint propagation, however all the examples pre-
sented here were solved with a very naive strategy: Full Lookahead, choosing the
enumeration variable based on the Minimum Domain criteria, and enumerating
the values from first to last. In figure 2, columns I to VI contain, for each prob-
lem, the number of variables, the number of constraints, the time (in seconds)
to get the first solution, the number of rewrite steps for the first solution, the
time to get all the solutions (and also the total number of solutions), and the
number of steps for all solutions, respectively.

With respect to the performances presented in [19], where specific elaborated
models and heuristics are used to solve these problems, we require between 60
and 70 times its computation times. Taking into account that we use very naive
models and search strategies, we think that these performances are indeed very
good. We have also solved random instances of job-shop problems: using very
simple models and optimization strategies we are able to solve up to 6 × 6
problems. We can obtain in few seconds the first solution of 10× 10 problems,
however, optimization is not possible in a reasonable time. For this kind of
problems the need for more ellaborated models and smart search strategies is
really important. Considering the average performance of about 500,000 rewrite
steps per second, and the stability of the computation process (this average is

118 Carlos Castro

Problem I II III IV V VI
CROSS+ROADS=DANGER 14 50 0.10 27,092 0.28 (1) 169,649
DONALD+GERALD= 15 59 0.20 90,250 0.20 (1) 92,408

ROBERT
LIONNE+TIGRE=TIGRON 13 41 0.09 45,687 0.14 (1) 82,151
SEND+MORE=MONEY 12 39 0.08 36,934 0.09 (1) 40,478
8 queens 8 84 1.00 480,226 12.00 (92) 7,607,120
9 queens 9 108 1.06 223,275 59.00 (352) 34,279,650
10 queens 10 135 3.10 100,557 317.84 (724) 154,172,782
11 queens 11 165 6.21 1,261,591 1,525.77 (2680) 746,934,337
12 queens 12 198 5.22 865,741 9,713.19 (14200) 3,913,842,503

Fig. 2. Some classical benchmarks

the same for problems requiring from some seconds up to some hours) we think
that we could go towards more complex problems.

6 Conclusions

We have presented COLETTE, a computational system for solving CSPs. In this
framework, a constraint solver is viewed as a strategy that specifies the order
of application of a set of rewrite rules in order to reach a set of constraints in
a solved form. Transformation rules are a natural way to express operations on
constraints, and ELAN indeed allows one to control the application of the rules
using a flexible strategy language. Standard algorithms based on Chronological
Backtracking can be naturally implemented, and one can realize how easy is to
prototype new heuristics using the powerful of strategies. However, it is difficult
to implement heuristics like Intelligent Backtracking [5] and Conflict-Directed
Backjumping [16]: the basic strategy operator, don’t know choose, does not allow
to jump in the search tree. We have also shown how, in the same framework, we
can built constraint solvers that collaborate in order to solve a global problem.
Using the terminology of the constraint solving community, this is an attempt
to propose a general framework for collaboration of solvers [14], however, much
more work has to be done in that direction.

References

1. ILOG Solver 4.0, User’s Manual, May 1997.
2. K. R. Apt. A Proof Theoretic View of Constraint Programming. Fundamenta

Informaticae, 1998. To appear.
3. P. Borovanský, C. Kirchner, and H. Kirchner. Rewriting as a Unified Specification

Tool for Logic and Control: The ELAN Language. In Proceedings of The Interna-
tional Workshop on Theory and Practice of Algebraic Specifications, ASF+SDF’97,
Workshops in Computing, Amsterdam, September 1997. Springer-Verlag.

4. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN
Version 3.00 User Manual. CRIN & INRIA Lorraine, Nancy, France, first edition,
January 1998.

COLETTE, Prototyping CSP Solvers Using a Rule-Based Language 119

5. M. Bruynooghe. Solving Combinatorial Search Problems by Intelligent Backtrack-
ing. Information Processing Letters, 12(1):36–39, 1981.

6. C. Castro. Solving Binary CSP Using Computational Systems. In J. Meseguer,
editor, Proceedings of The First International Workshop on Rewriting Logic and its
Applications, RWLW’96, volume 4, pages 245–264, Asilomar, Pacific Grove, CA,
USA, September 1996. Electronic Notes in Theoretical Computer Science.

7. C. Castro. Building Constraint Satisfaction Problem Solvers Using Rewrite Rules
and Strategies. Fundamenta Informaticae, 1998. To appear.

8. T. Frühwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-
gramming: Basic and Trends. Selected Papers of the 22nd Spring School in The-
oretical Computer Sciences, volume 910 of Lecture Notes in Computer Science,
pages 90–107. Springer-Verlag, Châtillon-sur-Seine, France, May 1994.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19(20):503–581, 1994.

10. C. Kirchner, H. Kirchner, and M. Vittek. Designing Constraint Logic Programming
Languages using Computational Systems. In P. V. Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The Newport Papers,
pages 131–158. The MIT press, 1995.

11. A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99–118, 1977.

12. A. K. Mackworth. Constraint Satisfaction. In S. C. Shapiro, editor, Encyclopedia
of Artificial Intelligence, volume 1. Addison-Wesley Publishing Company, 1992.
Second Edition.

13. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

14. E. Monfroy. Collaboration de solveurs pour la programmation logique à contraintes.
PhD thesis, Université Henri Poincaré - Nancy 1, November 1996. Also available
in english.

15. P.-E. Moreau and H. Kirchner. Compilation Techniques for Associative-
Commutative Normalisation. In Proceedings of The International Workshop
on Theory and Practice of Algebraic Specifications, ASF+SDF’97, Amsterdam,
September 1997. Technical report CRIN 97-R-129.

16. P. Prosser. Domain filtering can degrade intelligent backtracking search. In Pro-
ceedings of The 13th International Joint Conference on Artificial Intelligence, IJ-
CAI’93, Chambéry, France, pages 262–267, August 29 - September 3 1993.

17. G. Smolka. Problem Solving with Constraints and Programming. ACM Computing
Surveys, 28(4es), December 1996. Electronic Section.

18. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
19. J. Zhou. Calcul de plus petits produits cartésiens d’intervalles: application au

problème d’ordonnancement d’atelier. PhD thesis, Université de la Mediterranée,
Aix-Marseille II, March 1997.

An Evolutionary Algorithm for Welding Task

Sequence Ordering

Martin Damsbo1 and Peder Thusgaard Ruhoff2

1 AMROSE A/S, Forskerparken 10, DK-5230 Odense M, Denmark
emailmez@amrose.spo.dk

2 The Maersk Mc-Kinney Moller Institute for Production Technology,
Odense University, Campusvej 55, DK-5230 Odense M, Denmark

ptr@mip.ou.dk

Abstract. In this paper, we present some of the results of an ongoing
research project, which aims at investigating the use of the evolutionary
computation paradigm for real world problem solving in an industrial
environment. One of the problems targeted in the investigation is that
of job sequence optimization for welding robots operating in a shipyard.
This is an NP-hard combinatorial optimization problem with constraints.
To solve the problem, we propose a hybrid genetic algorithm incorpo-
rating domain-specific knowledge. We demonstrate how the method is
successful in solving the job sequencing problem. The effectiveness and
usefulness of the algorithm is further exemplified by the fact, that it has
been implemented in the RoboCopp application program, which is cur-
rently used as the task sequence scheduler in a commercially available
robot programming environment.

1 Introduction

The welding of large structures using welding robots is a complicated problem.
An example of such a large structure is the ship section from Odense Steel
Shipyard1 shown in Fig. 1. The primary reason for these complications is, that
propagation of expanses in the structure can lead to unacceptable inaccuracies
in the final product. In order to avoid these problems, one must be very careful
in executing the individual welding jobs and ensure that they are only executed
in accordance with what we call welding expert knowledge. Basically, this means
that the welding jobs must be done in a sequence, which adhere to a set of con-
straints, where the constraints are derived from the welding expert knowledge.
To find such a sequence is not a difficult task. However, the problem of finding
a sequence, which minimize the time needed to complete the welding operations
is an altogether different matter. It is not difficult to realize that finding this
sequence is similar to solving a constrained sequential ordering problem; an NP-
hard combinatorial optimization problem. Finding such a minimal sequence is
clearly important in optimizing the overall performance of the construction yard.
1 Odense Steel Shipyard is mainly producing huge containerships and supertankers. It

is recognized throughout the world as one of the most modern and efficient shipyards.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 120–131, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

An Evolutionary Algorithm for Welding Task Sequence Ordering 121

Fig. 1. Overview of a typical shipsection to be welded using welding robots.

Several methods have been developed to solve this type of combinatorial
problems, e.g. simulated annealing, tabu search and genetic algorithms. For an
overview of these and other methods in combinatorial optimization consult the
book by Reeves [13]. Of course, there is no guarantee that these methods are
able to determine the optimal soultion. Nevertheless, we expect the methods to
be able to find good solutions at a reasonable computational cost.

The purpose of the present contribution is not to compare the various meth-
ods. Instead we will show how one can improve a standard genetic algorithm
by incorporating problem-specific information and use it in an industrial ap-
plication. The application of genetic algorithms to problems in industry is also
discussed by Stidsen [16].

The remainder of the paper is organized as follows. First, we present the evo-
lutionary computation paradigm. Then, in Sect. 3, we give a detailed description
of the welding task sequence ordering problem. In Sect. 4, we outline the evolu-
tionary algorithm. Sect. 5 is devoted to applications of the developed algorithm.
In Sect. 6 we show how one can easily modify the algorithm to give a task room

122 Martin Damsbo and Peder Thusgaard Ruhoff

division. Finally, we make some concluding remarks and give some directions for
future work.

2 The Evolutionary Computation Paradigm

One has only to observe the progress and diversity of nature to fully appreciate
the incredible force of evolution. It is not just a careful pruning of weaker indi-
viduals in populations and ‘survival of the fittest’. Co-evolving species, biological
arms races, host versus parasite wars, symbiotic relationships and emerging co-
operative and altruistic behavior are but a few of the facets that make up our
natural world. All interacting in extremely complex ways to create, sustain and
diversify the entire biosphere on earth. Natural evolution and selection oper-
ates on many levels, from genetic effects to full phenotype interaction, involv-
ing emerging properties on innumerable levels of abstraction. On a macroscopic
scale it is the most important force of nature; molding life and the environment
through time.

Motivated by the apparent success and progression of the evolutionary para-
digm in nature, a number of computational methods using the concepts of evolu-
tion have emerged over time. They are collectively known as evolutionary algo-
rtihms and include genetic algorithms, evolutionary programming, evolutionary
strategies. The term evolutionary computation describes any computer-based
problem solving system, which uses computational models of the mechanisms of
the evolutionary process, as key elements in their design and implementation.
These mechanisms include maintaining a pool of candidate solution structures,
which evolve according to genetic operators and selection. Evolutionary compu-
tation methods operate on populations of several solution representations simul-
taneously. Through generations of evolving solutions, individual representations
are modified (mutated), and subjected to fitness evaluation and selection pres-
sure. Most of these methods also employ recombination of existing candidates,
to encourage development and combination of partial solutions. Evolutionary
computation methods rely on these mutation and recombination operators to
gradually produce more and more optimal solutions, when subjected to the de-
sired fitness selection criteria.

John Holland was one of the first to experiment with evolutionary algorithms
during the 1960s, and he established the genetic algorithm theory formally in
1975 [10]. This included the renowned schema theorem, which stated, that par-
tial solution building blocks (schemas) would propagate according to how well
they performed in a genetic algorithm framework. Until recently virtually all
subsequent theoretical work on genetic algorithms has been based on this notion
of schemas. Some new approaches to establishing a theoretical foundation for
evolutionary algortihms have emerged, with the statistical mechanics view by
Prügel-Bennett and Shapiro [14] as one of the most promising.

The initial motivation was to create an artificial model to study adaptation
phenomena occurring in nature, but genetic algortihms were soon put to use as
general optimization algorithms. The original design has since been developed

An Evolutionary Algorithm for Welding Task Sequence Ordering 123

and extended by many researchers. Good introductions to the field are Goldberg
[9] and Mitchell [12].

Evolutionary programming in a sense takes genetic algorithms a step fur-
ther, by not operating directly on solution representations. This approach was
introduced by Fogel et al. [7], and has since been applied to a broad range of
problems. Evolutionary programming methods distinguish between the genotype
and phenotype of a particular solution, and evaluate genotypes only indirectly,
by rating the phenotypes. Genetic algorithms on the other hand modify and
evaluate the solution representations directly. The direct encoding approach has
so far proven the most successful, but evolutionary programming methods are
credited with the potential to do at least equally well, denoting a concept that
is closer to natural design.

In recent years the boundaries between evolutionary algorithm categories
have broken down to some extent. In fact, the way evolutionary algorithms have
evolved and developed into specialized sub-disciplines, in many ways resemble
the very natural concepts, that the algorithms seek to mimic. Hybridization of
known algorithms to achieve superior performance has fueled this development.
As already mentioned, the work presented here focuses mainly on the use of a
hybrid genetic algorithm.

For a comprehensive introduction to the ongoing research within the field of
genetic algorithms, one can consult the conference proceedings [15,18,19,3,2,8,6].

3 The Welding Task Sequence Ordering Problem

The basic representation of a welding project is a CAD 3D-object model and
accompanying tasks with interelated dependencies. These data are processed
and transformed into the resulting robot control programs, through the use of
several specialized application modules. Each takes the output from previous
modules and creates the input for subsequent processing in a batch execution as
illustrated in the data processing flow diagram of Fig. 2.

A welding task consists of a number of jobs which are described by their
spatial extension. The jobs must all be executed in sequence and in accordance
with a set of specified dependency conditions.

There are two different types of jobs in the welding tasks considered here

1. Regular welding jobs - defined as lines in space with two fixed end points.
2. Sense jobs - defined as a point in space, and used to dynamically measure and

correct any inconsistencies between the real world and the internal model of
the environment used during the execution of the welding robot program.

The primary objective is to minimize the path between welding jobs in a
route, where all jobs are executed. Minimum path means minimum time to
complete the welding operations. The actual welding length is not included in
the path as it remains constant regardless of different job sequences.

The optimization problem is further complicated by the fact that various
types of dependencies or constraints are imposed on the welding task. They
come in three varieties

124 Martin Damsbo and Peder Thusgaard Ruhoff

Trajectory
distance

calculation
constraints

identification

Logic

RoboCopp

Program
integrator

Welding
expert

knowledge

Auxiliary
welding
job data

Sequence

Rules

Constraints Distance table

3D Welding task data

Robot control program

Fig. 2. Schematic overview of the robot programming process. RoboCopp is
the welding task scheduler application program developed on the basis of the
evolutionary algorithm outlined in Sect. 4.

1. Order - some welding jobs must be performed before others to prevent ex-
panses from being displaced. Likewise, some sense jobs must precede certain
weld jobs to ensure a sufficient accuracy of the welding process.

2. Directional - some jobs (primarily vertical welding seams) need to be welded
in a certain direction to ensure the quality of the welding process.

3. Adjoining - some welding jobs must be executed in immediate succession of
each other. Again, this constraint is necessary in order to avoid gaps and
inaccuracies in the finished product.

The above mentioned dependencies are hard constrains. Thus, a solution
which do not adhere to them is unsuable and is termed illegal.

4 A Hybrid Genetic Algorithm for Task Sequence
Ordering

In the follwoing we give a detailed account of the hybrid genetic algorithm which
form the basis for the RoboCopp application program shown in Fig. 2.

An Evolutionary Algorithm for Welding Task Sequence Ordering 125

4.1 Data Representation

The distance tables and constraints (see, Fig. 2) are the only input the genetic
algorithm uses to realize the problem space. It makes no further assumptions
regarding model or type of problem, except for the heuristics introduced.

The genotype consists of an ordered list of job identifiers (task no.) repre-
senting the sequence in which jobs should be executed. Information about the
direction of each weld job is also included. The representation is shown in Fig. 3.
Every genotype started out as a random permutation of job numbers, i.e. each
job number appeared only once in the list.

Direction

#12 #1 #41 #67 #9 #6 #33Task no.

Fig. 3. Representation of candidate solution.

4.2 Crossover and Heuristics

The crossover operation is applied to new specimens stochastically. The operator
intends to combine characteristics from both parents in an effort to produce even
better solutions from previous partially good solutions. The conventional binary
encoded crossover operator does not work well for the type of constrained combi-
natorial optimization problems considered here. Several alternative approaches
have been proposed. One of the most promising is the genetic edge recombina-
tion method introduced by Whitley et al. [17]. In the algorithm presented here
an enhanced version of their method is developed. The crossover algorithm reads

1. Create an edge recombination matrix with information about job connections
and directions in the parents.

2. Choose the first job: Either the first job of parent 1, the first job of parent 2
or randomly chosen in a manner depending upon directional and adjoining
constraints (see, discussion of heuristics below).

3. Remove the selected job from the edge recombination matrix.
4. If both parents have the same job connected to the previously selected job,

then pick this as the next job in the sequence.
5. Otherwise select the job connected to the previously selected job which has

the least further edge connections. Ties are broken randomly. If there are no
jobs left connected to the newly selected, then pick one at random from the
remaining jobs.

6. If the whole sequence has been constructed then stop else go to 3.

126 Martin Damsbo and Peder Thusgaard Ruhoff

The following heuristics are used to enhance the quality of solutions

1. Jobs with adjoining dependencies are treated as one job cluster, i.e. if an
adjoining constrained job is selected, then the rest of the adjoining jobs
will be selected to follow. This will always be the optimum choice, as no
constraints are broken and the path length between them is zero.

2. Jobs with a directional constraint are always inserted in that direction. If
unconstrained, they are inserted according to their parents.

3. If adjoining jobs are directionallly constrained, they are inserted in the only
legal way.

The outlined crossover algorithm ensures that created specimens contain infor-
mation about the sequential structure of their parents, propagating favorable
sub-paths to the next generations.

4.3 Mutation

Following the crossover operation the specimens in the population can be mu-
tated. The algorithm distinguish between two different forms of mutation. A
minor mutation which modify the arrangement of two jobs in the sequence and
a major mutation which can involve any number of jobs. Following is a more
detailed description of the mutation operators and their relative frequencies

1. Minor mutation

– 50%: two single random jos are exchanged.
– 25%: two single adjacent jobs are interchanged.
– 25%: reversal of execution direction for a single job.

2. Major mutation

– 80%: a selected sub-path is inserted elsewhere in the sequence.
– 20%: a selected sup-path is reversed.

The mutational operators were designed to maximize the number of possible
favorable sequence modifications, that is creating shorter paths and obeying
constraints. The values of the relative frequencies are determined experimentally.

4.4 Fitness Criteria and Selection

The evolving candidate solutions are allowed to break the three types of depen-
dency constraints introduced in Sect. 3. Of course, any legal solution found in
the end must not contain any dependency errors. To achieve this we penalize
dependency errors through a penalty term in the objectve function. Illegal can-
didate solutions are then expected to die out. Including the penalty term, the
fitness or objective function is

F (s) = − (L(s) + Ne(s)Lmax) ,

An Evolutionary Algorithm for Welding Task Sequence Ordering 127

where s is a given sequence, L(s) is the path length of s, Ne(s) is the number of
dependency errors in s and Lmax is a penalty length. Ne(s)Lmax is the penalty
term.

Another approach to avoid the above problem is to construct crossover and
mutation operators that only produce solutions without dependency errors. How-
ever, not only are they much harder to implement, they also impose restrictions
in the state space search.

To find the appropriate parents for the next generation, individuals are
ranked according to fitness. The expected number of offspring is calculated
by assinging each specimen an expected fertility value. This value is a linear
function of the rank. Selection is implemented primarily by stochastic universal
sampling [1]. It should be pointed out that 90 % of the entire new generation
of parents were selected using this method. The remaining 10 % were chosen by
generic roulette wheel selection. This resembles Boltzmann selection and gives
every specimen an appropiate chance of reproducing itself. It was introduced to
further diversify the population.

5 An Example

The ship section shown in Fig. 1 is a typical example of a welding project. It con-
sists of 288 weld jobs and 140 sense jobs, giving a total of 428 jobs constrained by
849 dependencies. Of these, the 550 is order dependencies, 168 specified adjoining
weld jobs, and 131 restricted the direction in which a job should be welded. For
a problem this size, initially randomly created solutions had an average of 510
unsatisfied dependencies and a path length of 1430 for the population average,
and 430 errors and a path length of 1390 for the best specimen.

In Fig. 4 and Fig. 5 we see the typical development scenario for a genetic
algorithm population. Note that Fig. 5 is a magnification of the lower part of
Fig. 4, showing more clearly the details of the path length and dependency
error graphs. Curves for population average and best specimen converge almost
indentically, with the population average displaced some percentages above the
best specimen. Solutions with no dependency errors (best specimen) are found
relatively fast, but the average population specimens retain a certain amount of
unfulfilled dependencies. The best total fitness graph converges as a displacement
of the population average fitness, until it coincides with the best path length
curve, when legal solutions are found.

It should be stressed that the parameter settings used in the hybrid genetic
algorithm was determined through massive test runs on the departments SGI
Onyx with 24 MIPS R4400 processors. In fact, the accumulated computing power
expended in test and research, amounted to more than 5 years of CPU time on
a single MIPS R4400 processor. However, we will not in this paper go into a
detailed treatment of the parameter optimization. A detailed account of this
process can be found in Damsbo [4].

128 Martin Damsbo and Peder Thusgaard Ruhoff

Fig. 4. Typical development of a genetic algorithm population in terms of path
length, dependency errors and total fitness.

6 Task Room Division

The sequential ordering of welding jobs, is just one phase in the development of
robot control programs. One of the other tasks that participates in this process
(see, Fig. 2) is a division of jobs into separate working rooms. Jobs in the same
room were supposed to be appropiately related, i.e. rooms reflected the most
feasible grouping of the welding sequence in terms of execution flexibility. Fur-
thermore, no dependencies could exist between jobs inhabiting different rooms,
making them constraint independent clusters of jobs as well. With rooms di-
vided this way, operators could easily reschedule and rearrange job sections, if
the the original welding sequence ran into problems during execution. The task
of grouping jobs were originally carried out using heuristics, which considered
the location and orientation of jobs.

The room division ensuing from the heuristics approach is not always satis-
factory, making alternative implementations interesting. A straightforward ex-
tension to the evolutionary algortihm allows one to incorporate the room division

An Evolutionary Algorithm for Welding Task Sequence Ordering 129

Fig. 5. Typical development of a genetic algorithm population in terms of path
length, dependency errors for average and best specimen.

task in the sequence ordering optimization. Analogous to the penality term, a
room reward is introduced in the fitness evaluation. Rather than reducing fit-
ness due to unfulfilled constraints, it adds a certain fitness bonus proportionally
to the number of rooms in the solutions. Rooms are identified as constraint
independent clusters of jobs in each objective function evaluation.

One incentive to the above addition is to determine whether a fitness reward
has the same effect as a punishment. The two optimization objectives skew the
distance based fitness landscape in different ways, and they are associated with
different characteristics in solutions. Clearly, there is no guarantee that the two
can operate effectively in parallel and extract their respective solution traits,
without disturbing each other. This is a recurring problem in multi-objective
optimization, involving the extent to which two or more objectives can be inde-
pendently achieved. In this particular case, dependency errors must be weeded

130 Martin Damsbo and Peder Thusgaard Ruhoff

out before the room division can begin. This is due to the fact, that the definition
of rooms assume error-free candidate solutions.

Usiong the above approach, the algortihm can produce well-functioning room
divisions. However, for large problems some manual editing may be needed after-
wards. Nevertheless, it is considered an effective tool in the robot programming
process.

7 Conclusion

Evolutionary algorithms appears fit to apply to combinatorial optimization prob-
lems. They are relatively easy to implement, fine-tune and deploy. It is also pos-
sible to utilize the same algorithm core dynamics for different applications of
genetic algorithm optimization. Only solution representation, objective function
and recombination and mutation operators need to be customized for each prob-
lem type. Furthermore, problem specific information can be incorporated into
the optimization process, to take advantage of the characteristics of the problem
space and enhance algorithm performance.

The successful results of the hybrid evolutionary algorithm presented in this
paper seems to support the general notions above. The genetic algorithm con-
sistently finds feasible, error-free solutions with competitively short sequence
paths. Moreover, the task room division described in Sect. 6 clearly demon-
strates the flexibilty of the algorithm. Of course, this flexibilty is very important
in real world industrial applications where sudden changes in the production
environment may lead to changes in the problem-specific assumptions. The ef-
fectiveness and usefulness of the outlined approach which has been implemented
in the RoboCopp application program is further exemplified by the fact that it is
currently used as the task sequence scheduler in a commercially available robot
programming environment.

Encouraged by the immediate success of the evolutionary approach, we have
also developed a distributed parallel version of the algorithm displaying supe-
rior performance in accordance with [5,11]. Details about the parallel version
can be found in Damsbo [4]. In the future, we will try to further enhance the
performance of the algorithm by incorporating new strategies for exchange of
information between sub-populations.

References

1. Baker, J. E.: Reducing Bias and Inefficiency in the Selection Algorithm. In Grefen-
stette, J. J. (Ed.): Proceedings of the 2nd International Conference on Genetic
Algorithms. 14-21, Erlbaum, 1987.

2. Belew, R. K., Booker, L. B., (Eds.): Proceedings of the Fourth International Con-
ference on Genetic Algorithms. Morgan Kaufmann, 1991.

3. Belew, R. K., Vose, M. D., (Eds.): Foundations of Genetic Algorithms 4. Morgan
Kaufman, 1997.

4. Damsbo, M.: Evolutionary Algorithms in Constrained Sequence Optimization.
M.Sc. thesis, Odense University, 1998.

An Evolutionary Algorithm for Welding Task Sequence Ordering 131

5. Davidor, Y., Yamada, T., Nakano, R.: The ECOlogical Framework II: Improv-
ing GA Performance at Virtually Zero Cost. In Forrest, S., (Ed.): Proceedings of
the Fifth International Conference on Genetic Algorithms. 171-176, Morgan Kauf-
mann, 1993.

6. Eshelman, L. J., (Ed.): Proceedings of the Sixth International Conference on Ge-
netic Algorithms. Morgan Kaufmann, 1995.

7. Fogel, L. J., Owens, A. J., Walsh, M. J.: Artificial Intelligence through Simulated
Evolution. Wiley, 1966.

8. Forrest, S., (Ed.): Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgan Kaufmann, 1993.

9. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

10. Holland, J. H.: Adaption in Natural and Artificial Systems. Second edition. MIT
Press, 1992.

11. Lin S., Goodman, E. D., Punch, W. F.: Investigating Parallel Genetic Algorithms
on Job Shop Scheduling Problems. In Angeline, P. J., Reynolds, R. G., McDon-
nell, J. R., Eberhardt, R., (Eds.): Evolutionary Programming VI. 6th International
Conference, EP97. 383-393, Springer, 1997.

12. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, 1996.
13. Reeves, C. R. (Ed.): Modern Heuristic Techniques for Combinatorial Problems.

McGraw-Hill, 1995.
14. Prügel-Bennett, A., Shapiro, J. L.: An Analysis of Genetic Algorithms Using Sta-

tistical Mechanics. Physical Review Letters, 72, 1305-1309, 1994.
15. Rawlins, G. J. E., (Ed.): Foundations of Genetic Algorithms. Morgan Kaufmann,

1991.
16. Stidsen, T.: Genetic Algorithms for Industrial Planning. Presented at Emerging

Technologies Workshop, University College London, 1997. Electronically available
at http://www.daimi.aau.dk/~evalia/

17. Whitley, D., Starkweather, T., Shaner, D.: The Travelling Salesman and Sequence
Scheduling: Quality Solutions using Genetic Edge Recombination. In Davis, L.,
(Ed.): Handbook of Genetic Algorithms. 350-372, Van Nostrand Reinhold, 1991.

18. Whitley, L. D., (Ed.): Foundations of Genetic Algorithms 2. Morgan Kaufmann,
1993.

19. Whitley, L. D., Vose, M. D., (Eds.): Foundations of Genetic Algorithms 3. Morgan
Kaufmann, 1993.

Intuitionistic Proof Transformations and Their

Application to Constructive Program Synthesis

Uwe Egly1 and Stephan Schmitt2?

1 Abt. Wissensbasierte Systeme 184/3
TU Wien, Treitlstr. 3, A–1040 Wien

uwe@kr.tuwien.ac.at
2 Department of Computer Science

Cornell University, Ithaca, NY
steph@cs.cornell.edu

Abstract. We present a translation of intuitionistic sequent proofs from
a multi-succedent calculus LJmc into a single-succedent calculus LJ .
The former gives a basis for automated proof search whereas the latter
is better suited for proof presentation and program construction from
proofs in a system for constructive program synthesis. Well-known trans-
lations from the literature have a severe drawback; they use cuts in order
to establish the transformation with the undesired consequence that the
resulting program term is not intuitive. We establish a transformation
based on permutation of inferences and discuss the relevant properties
with respect to proof complexity and program terms.

1 Introduction

Constructive program synthesis relies on the parallel process of program con-
struction and program verification. Using constructive program development
systems, for example the NuPRL-system [3], this process can be divided into
two steps (see top of Fig. 1). Assume that we have a logical specification of a
program within a constructive logic, i.e., Intuitionistic Type Theory (ITT) [9].
In the first step, this specification “formula” will be proven valid using an in-
teractive proof editor based on a sequent calculus for ITT. More precisely, one
finds a constructive proof for the existence of a function f which maps input
elements to output elements of the specified program. In the second step, f
will be extracted from the computational content of the proof according to the
“proofs-as-programs” paradigm [1]. Hence, f forms a correctly verified program
term with respect to the given specification.

Since the interactive nature of the proof process stands in contrast to an
efficient development of programs, every effort has been made in order to support
automated proof search in fragments of ITT. This approach turns NuPRL into
a coherent program synthesis system which integrates a variety of interactively

? The research report is supported by the German Academic Exchange Service DAAD
with a fellowship to the second author.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 132–144, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Intuitionistic Proof Transformations 133

controlled and automated techniques from theorem proving and algorithm design
at different levels of abstraction [2].

In this paper we focus on the automated construction of the purely logical
parts of a NuPRL-proof, i.e., subproofs formalized in first-order intuitionistic
logic J . The first-order fragment in NuPRL’s calculus corresponds to Gentzen’s
sequent calculus LJcut [6] (including the cut rule). The integration of an auto-
mated theorem prover for J into NuPRL is depicted at the bottom of Fig. 1:
given a subgoal in J , a separation process constructs a J -formula which serves
as input for an intuitionistic matrix prover1. The resulting matrix proofMJ has
to be integrated into the actual context of the NuPRL-system in order to provide
global program extraction from the whole proof. Thus, theMJ -proof has to be
transformed back into an LJ -proof which can be integrated as a proof plan for
solving the original J -goal.

Since the matrix characterization for J [15] is based on a multiple-succedent
sequent calculus LJmc, proof reconstruction has to be done in two steps (T1
and T2 in Fig. 1). For realization of the presented concept, efficient proof search
procedures [10] as well as reconstruction procedures for efficient generation of
LJmc-proofs from machine-generated proofs have been developed [12]. The con-
struction of LJcut-proofs from LJmc-proofs (step T2) is presented for example
in [11]. This transformation T2 is based on a simulation of the multiple succe-
dent in an LJmc-proof by a disjunction and using the cut rule (see also [8,4]).
For this reason, the extracted program term from the resulting LJcut-proof to a
large extent differs from the original specification since the cut rule is applied in
each proof step when a multiple succedent is involved. An important impact on
the program term results: each operation in the succedent has to be prepared
by a selection function which identifies the subformula to be reduced. This was,
of course, not intended when specifying the original problem.

In this paper we focus on an alternative transformation step T2 which em-
phasizes its relation to the original goal, i.e., constructive program synthesis.
We present a permutation-based transformation from LJmc-proofs to LJ -proofs
(without using the cut rule) and investigate the complexity of these proofs. On
the one hand, we show that there exists no transformation which yields in every
case an LJ -proof with polynomial length (with respect to the LJmc-proof). On
the other hand, the resulting LJ -proofs preserve the intended (sub)specification
of the program to be synthesized since introduction of additional connectives
and inference rules will be avoided. We emphasize that an exponential increase
of proof length by our transformation occurs rather seldom, but every program
term benefits from our construction. The key aspect of our approach is given
by a construction of a normal form for LJmc-proofs. This will be achieved by
applying permutation schemata locally within a given LJmc-proof which will be
pre-structured using so-called layers. From this we obtain a proof transforma-
tion procedure which is based on a hierarchical system of permutation steps and
hence, can easily be implemented into the environment of the NuPRL-system.

1 Its use has historical reasons. There are only a few theorem provers for J (e.g., in
[13]), but there is nearly no work on comparing implementations.

134 Uwe Egly and Stephan Schmitt

concrete, interactive

proof process

proof plan

in LJ

J -goal

autom.
theorem
prover

for J

matrix
prover MJ

proof

extraction

mechanism

constructive

proof
program

sequent calculus for ITT

J -subgoal

Γ ` C

separation

integration

J -formula

` Γ ′ → C

T2

proof
reconstruction

into LJmc

T1

logical

specification

NuPRL System
interactive

proof editor

Fig. 1. Application to Constructive Program Synthesis.

2 Preliminaries

Throughout this paper we use a first-order language consisting of variables,
constants, function symbols, predicate symbols, logical connectives, quantifiers
and punctuation symbols. Terms and formulae are defined according to the usual
formation rules.

A sequent S is an ordered tuple of the form Γ ` ∆, where Γ, ∆ are finite
sets of first-order formulae. Γ is the antecedent of S, and ∆ is the succedent of
S. The semantical meaning of a sequent A1, . . . , An ` B1, . . . , Bm is the same as
the semantical meaning of the formula (

∧n
i=1 Ai) → (

∨m
i=1 Bi). We write A, ∆

(A, Γ) instead of {A} ∪∆ ({A} ∪ Γ). Furthermore, we denote ∆ = ∅ (Γ = ∅) in
sequents by Γ ` (` ∆) with the intended meaning Γ ` ⊥ (> ` ∆). The empty
sequent ’`’ is interpreted by > ` ⊥.

As proof system we use the (cut-free) sequent calculi LJmc and LJ shown in
Fig. 2. In order to reduce the number of cases in our proofs, we consider negation
as defined; e.g., ¬A is A→ ⊥, and use an additional⊥-axiom. Sometimes, we will
use the above calculi with an explicit negation rule (and without the ⊥-axiom)
in order to improve readability. These calculi are denoted by LJ ¬mc and LJ ¬,
respectively. We will also consider LJ extended by the cut rule; this calculus is
denoted by LJcut.

There exist two “directions” in which an inference rule can be read. The first
one, the “synthetic direction” is from the rule’s premise(s) to its conclusion. In
this case, we say that the principal formula (i.e., the formula which is new in
the conclusion) is introduced by the inference. The second one, the “analytic
direction”, is from the rule’s conclusion to its premise(s). In this case, we say
that the principal formula is reduced to its immediate subformula(e). These
subformulae are called the active formulae of the inference.

The main difference between LJmc and LJ is given by the fact that LJmc-
sequents may contain several succedent formulae whereas in LJ at most one
succedent formula is allowed; sequents of the latter kind are called intuitionistic.

An inference rule R of LJmc is called generative if R ∈{→l,∨r, ∃r}; it is
called critical if R ∈{→r, ∀r}. For a generative rule R, at least one premise

Intuitionistic Proof Transformations 135

LJmc : LJ : LJ
:

mc
: LJ

: :

Γ,A ` A,∆ ax.
Γ, A ` A ax.

Γ,A `
Γ ` ¬A,∆ ¬r Γ,A `

Γ ` ¬A ¬r

Γ,⊥ ` A,∆ ⊥ax.
Γ,⊥ ` A ⊥ax.

Γ,¬A ` A,∆
Γ,¬A ` ∆ ¬l

Γ,¬A ` A
Γ,¬A ` C ¬l

Γ ` A,B,∆
Γ ` A ∨ B,∆ ∨r Γ ` A

Γ ` A ∨ B ∨r 1

Γ ` B
Γ ` A ∨ B ∨r 2

LJcut / LJ:cut:

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆ ∧r Γ ` A Γ ` B

Γ ` A ∧ B ∧r Γ ` A Γ,A ` C
Γ ` C cut

Γ,A ` B
Γ ` A→ B,∆

→r
Γ,A ` B
Γ ` A→ B

→r

Γ ` A[x\a]
Γ ` ∀x.A,∆ ∀r a∗

Γ ` A[x\a]
Γ ` ∀x.A ∀r a∗

Γ ` A[x\t],∃x.A,∆
Γ ` ∃x.A,∆ ∃r t

Γ ` A[x\t]
Γ ` ∃x.A ∃r t

Γ,A ` ∆ Γ,B ` ∆
Γ,A ∨B ` ∆ ∨l

Γ, A ` C Γ,B ` C
Γ,A ∨ B ` C ∨l

Γ,A,B ` ∆
Γ,A ∧ B ` ∆ ∧l

Γ, A,B ` C
Γ, A ∧ B ` C ∧l

Γ,A→ B ` A,∆ Γ,B ` ∆
Γ,A→ B ` ∆ →l

Γ, A→ B ` A Γ,B ` C
Γ,A→ B ` C →l

Γ, ∀x.A,A[x\t] ` ∆
Γ, ∀x.A ` ∆ ∀l t

Γ, ∀x.A,A[x\t] ` C
Γ, ∀x.A ` C ∀l t

Γ,A[x\a] ` ∆
Γ, ∃x.A ` ∆ ∃l a∗

Γ, A[x\a] ` C
Γ, ∃x.A ` C ∃l a∗

∗ a must satisfy the eigenvariable condition for ∀r and ∃l.

Fig. 2. The calculi LJmc, LJ , and their extensions.

contains more succedent formulae than the conclusion of R does. An application
of an inference r depends on an application of an inference r′ iff r′ reduces
a superformula of the formula reduced by r in an analytic sequent proof. An
application of an inference r is called dependent generative (d-generative), iff
r is generative or r = ∧r and r depends on a generative rule. The generative
branches of a d-generative rule r are the branches above the premises of r except
for r =→ l, where only the branches above the left premise are generative.

3 Complexity of Proof Transformations

Our goal is to construct an LJ -proof of a sequent S for the NuPRL-system
from an LJmc-proof of S which itself is a reconstruction of a proof in some ma-

136 Uwe Egly and Stephan Schmitt

trix calculus. The question which we consider in this section is whether such a
construction (named T2 in Fig. 1) yields an LJ -proof whose length is “approxi-
mately” the length of the corresponding LJmc-proof. More precisely, we consider
minimal (or shortest) LJ -proofs and LJmc-proofs for some classes of formulae
and compare their length. As the length of a proof, we use the number of its
axioms. “Approximately” means that the length of the LJ -proof is bounded
by a polynomial function in the length of the LJmc-proof. We give a negative
answer to the question stated above by providing a class of formulae for which
there are short LJmc-proofs but any LJ -proof is long (i.e., its length cannot be
bounded by a polynomial in the length of the former proof).

The following definition of a polynomial simulation is adapted from [5] and
restricted to the case that the connectives in both calculi are identical. A calculus
P1 can polynomially simulate (P-simulate) a calculus P2 if there is a polynomial
p such that the following holds. For every proof of a formula (or sequent) F in
P2 of length n, there is a proof of F in P1, whose length is not greater than p(n).

We restrict our attention to cut-free LJ and LJmc; if both calculi are ex-
tended by the cut rule then they P-simulate each other [8,4,11]. The next lemma
can be proved easily.

Lemma 1. LJmc P-simulates LJ .

We will show in the remainder of this section that the reverse simulation
is not polynomial. We present a class of formulae for which any LJ -proof is
exponential. For arbitrary n ∈ IN we consider the formulae

F (n) ≡ ∀w.(Anw) ∧ [
n−1∧

i=0

Oi ∧Ni]→ ∀z.A0z

where Oi ≡ ∀x.((Bi∨Aix)∨Bi) and Ni ≡ ¬(Bi∧∀y.Ai+1y). In order to simplify
the discussion, we use the calculi LJ ¬ and LJ ¬mc with negation rules instead of
LJ and LJmc where ¬A is an abbreviation for A→ ⊥. The result can be lifted
to the latter calculi by adding axioms of the form ⊥ax.

Lemma 2. LJ does not P-simulate LJmc.
Proof (sketch). By counterexample F (n). We show:

(i) There exists an LJ ¬
mc-proof with 3n+ 1 axioms.

(ii) Each LJ ¬-proof requires 2n+2 − 3 axioms.

(i) By induction on n. (ii) First we prove that the eigenvariable condition forces a

unique direction for deriving the axioms in a cut-free LJ ¬-proof: namely, from A0 up

to An. Let G,H be subformulae of F (n). We define a reduction ordering G 7→ H which

means that G has to be reduced before H . Each LJ ¬-proof for F (n) has to respect the

reduction ordering Oj 7→ Nj 7→ Oj+1 7→ Nj+1 for 0 ≤ j ≤ n− 2. This can be shown by

induction on j, separately for Oj 7→ Nj and Nj 7→ Oj+1. Then, by induction on n, we

prove (ii). (q.e.d.)

The above result can be understood as follows. An LJ ¬mc-proof of F (n) consists
of n subproofs each of them uses atoms with index i. Subproof i needs 3 axioms,

Intuitionistic Proof Transformations 137

i = 0, . . . , n − 1, whereas subproof n needs only one axiom. This results in
(
∑n−1

i=0 3) + 1 = 3n + 1 axioms. In contrast, in an LJ ¬-proof, each subproof i

is duplicated 2i times. Thus, we have (
∑n−1

i=0 3 · 2i) + 2n = 3(2n − 1) + 2n =
2n+2 − 3 axioms. From a complexity theoretical viewpoint, the result can easily
be generalized to the calculi LJ and LJmc since avoiding the ¬-rules yields a
polynomial (with respect to the length of the LJ -proof) increase of proof length.

4 Permutation-Based Transformations

Let us start with an overview of our procedure which constructs an LJ -proof
from an LJmc-proof. Given an LJmc-proof αmc of a sequent S (essentially from
our matrix prover for J), we first structure αmc into layers. A layer of αmc is
a maximal subtree L of αmc such that (i) the leaf nodes of L are either axioms
or intuitionistic sequents, and (ii) no intuitionistic sequents occur below the
leaves. The excluded root SL of a layer L is the topmost intuitionistic sequent
not contained in L. αmc can be considered to consist of a couple of layers where
the boundaries between layers are intuitionistic sequents and distinct layers do
not overlap. Applications of critical inferences c form boundaries between layers
because the premise of c is an intuitionistic sequent. The basic idea is to stepwise
transform each layer L into an LJ -proof with endsequent SL using (essentially)
the leaf sequents of L as “given axioms”. The stepwise transformation is based on
two key observations, namely (i) that each relevant application of a d-generative
inference rule can be permuted above all “highest” ∨l-inferences in L, and (ii)
that an LJmc-proof βmc of Γ ` ∆ can be transformed easily into an LJ -proof
β of Γ ` D (for some D ∈∆) if βmc does not contain any ∨l-inference. After the
application of all permutations of (i), the resulting LJmc-proof is in a specific
normal form.

4.1 Permutation Schemata

We start our detailed description with an explanation of permutable inferences
(rules) and necessary permutation schemata.

Rule R′ is permutable over rule R (towards the axioms), if, for all applications
r of R, r′ of R′, r immediately above r′ such that

1. the principal formula F of r is not active in r′; hence, the two principal
formulae do not overlap.

2. A is the set of all premises of r, S the conclusion of r, r′ takes premises from
B ∪ {S} (B possibly empty) and yields the conclusion S′,

there is a proof of S′ from A∪B′ in which an application of R′ occur immediately
above an application of R, or one of the two applications disappear. If F is an
α-formula, then the set B′ is obtained by replacing some sequent s ∈B by a
sequent s′ such that s′ is the premise of the inference which introduces F . If F is
a β-formula, then B′ is obtained by replacing some sequent s ∈B by two sequents
s1, s2 such that s1, s2 are the premises of the inference which introduces F .

138 Uwe Egly and Stephan Schmitt

For a discussion of non-permutabilities of inference rules in Gentzen’s calcu-
lus LJ see [7,14]. Before we prove the local permutation lemma for LJmc, we first
introduce some notational conventions. Let S := A1, .., An ` B1, .., Bm be a se-
quent. We consider S as a set of signed formulae (A1)a, .., (An)a, (B1)s, .., (Bm)s

where a is chosen for antecedent formulae and s is chosen for succedent formulae.
For sequents, we write S, T , U , . . . , possibly subscripted. If S = Γ ` ∆ and
T = Γ ′ ` ∆′, then ST denotes ΓΓ ′ ` ∆∆′. Arbitrary signs are denoted by p, q.

Lemma 3. In LJmc-proofs, rule R′ is always permutable over R (towards the
axioms) except in the following cases:

R ∀l ∀l, ∃r → l → r, ∀r → r, ∀r
R′ ∀r ∃l → r, ∀r ∨l → l

The first two non-permutabilities concerning quantifiers are identical for
LJ and LJmc. The last non-permutabilities occur only if → r or ∀r occurs
in the right premise of the → l-inference. The non-permutabilities except the
first two categories do not affect the transformation of a layer into an LJ -proof
because a critical rule forms a boundary (the premise of a critical rule is intu-
itionistic). Important for our approach is the permutability of any generative
rule and of the ∧r-rule over any non-generative rule (except critical rules) and
over the → l-rule. Permuting the ∧r-rule is important if a generative formula
contains a conjunction as a subformula which eventually appears as the principal
formula of an ∧r-inference; this inference depends on the generative inference
and has to be permuted over all highest ∨l in the layer before the generative
rule can be permuted. After these explanations, we prove Lemma 3.

Proof . The following sequents justify the non-permutabilities (R,R′) from Lemma 3.

(∀l, ∀r) ∀xAx ` ∀x(Ax ∨B) (∀l, ∃l) ∀xAx,∃x(Ax→ ⊥) `
(∃r, ∃l) ∃x(Ax ∧ B) ` ∃xAx (→ l, → r) A→ (A→ ⊥) ` A→ B
(→ l, ∀r) C,C → B ` ∀xAx,B (→ r, ∨l) A ∨B ` C → B,A
(∀r, ∨l) A ∨ ∀xBx ` ∀yB(y),A (→ r, → l) A ∨E,A→ B ` C → B,E
(∀r, → l) A ∨E,A→ ∀xBx ` ∀xBx,E

Due to the critical rules, some permutations need not to be considered (for instance,
the case when R and R′ are critical). Moreover, we only consider LJmc-deductions
without locally superfluous applications of inference rules. For instance, consider the
sequent A → B,Γ ` C → D,∆. If the (critical) inference → r with principal formula
C → D occurs immediately above the→ l-inference with principal formula A→ B (in
the left branch), then the latter inference is locally superfluous and can be deleted.

One-premise rule over one-premise rule. If R is a critical rule and R′ ∈{∨r,∃r} then
the second rule is superfluous. ψp, φq are sequences of signed formulae which contain
the principal formula and additional formulae introduced by the critical rule.

STU

(φ)pTU
R

(φ)p(ψ)qU
R′ =⇒

STU

(ψ)qSU
R′

(φ)p(ψ)qU
R

One-premise rule over two-premise rule. If R′ is a critical rule then R 6= ∧r. Moreover,
the indicated non-permutabilities forbid the case when R =→ l and R′ is critical.

Intuitionistic Proof Transformations 139

S1TU S2TU

(F)pTU
R

(F)p(ψ)qU
R′ =⇒

S1TU

(ψ)qS1U
R′ S2TU

(ψ)qS2U
R′

(F)p(ψ)qU
R

Two-premise rule over one-premise rule. If R is critical then R′ 6∈{→ l,∧r}. Moreover,
the indicated non-permutabilities forbid the case when R is critical and R′ = ∨l.
Observe that (F)p (occurring in the end sequent of α) is replaced by S resulting in
ST2U . No problem can arise in the modified deduction since (F)p is replaced by S
and S consists of the immediate subformulae of (F)p. If (F)p is of the form (∀xA)a

then S = {(F)a, (A{x\t})a}; eigenvariable conflicts with the new free variables in t
can be avoided by renaming eigenvariables in α′. Moreover, since (F)a ∈S, appropriate
“instances” can be generated in α′ if necessary. A similar argument applies to the case
if (F)p = (∃xA)s and S = {(F)s, (A{x\t})s}. The “right permutation” case is similar.

ST1U

(F)pT1U
R α

(F)pT2U

(F)p(G)qU
R′ =⇒

ST1U
α′

ST2U

(G)qSU
R′

(F)p(G)qU
R

Two-premise rule over two-premise rule. Observe that (F)p is introduced by ∨l, → l,
or ∧r, and that replacing (F)pT2U by S1T2U and S2T2U results in two deductions
which are simpler than the deduction of (F)pT2U (some branches of an inference with
principal formula F in polarity p become obsolete; we will call the deletion of these
branches branch modification). The “right permutation” case is similar.

S1T1U S2T1U

(F)pT1U
R

(F)pT2U

(F)p(G)qU
R′ =⇒

S1T1U S1T2U

(G)qS1U
R′S2T1U S2T2U

(G)qS2U
R′

(F)p(G)qU
R

(q.e.d.)

The following example illustrates the “two-premise over two-premise” case.

Example 1. Consider the following LJmc-proof with two → l-inferences.

α
A→ B,C → D,Γ ` C,A,∆

β
A→ B,D, Γ ` A,∆

A→ B,C → D,Γ ` A,∆ → l
γ

B,C → D,Γ ` ∆
A→ B,C → D,Γ ` ∆ → l

This proof is transformed into the following one (all inferences are → l-inferences).

α
A→ B,C → D,Γ ` C,A,∆

γ′

B,C → D,Γ ` C,∆
A→ B,C → D,Γ ` C,∆

β
A→ B,D, Γ ` A,∆

γ′′

D,B, Γ ` ∆
A→ B,D, Γ ` ∆

A→ B,C → D,Γ ` ∆

This yields the following instantiations: S1 := (C → D)a, (C)s, T1 = (A → B)a, (A)s,
S2 := (D)a, T2 := (B)a, U := (Γ)a, (∆)s, (F)p := (C → D)a, and (G)q := (A→ B)a.

4.2 Constructing LJ -Proofs via Normal Form Proofs in LJmc
In this subsection, we describe a transformation of LJmc-proofs into LJ -proofs.
The following lemma provides a transformation for LJmc-proofs without ∨l-
inferences.

140 Uwe Egly and Stephan Schmitt

Lemma 4. Let αmc be an LJmc-proof of S := Γ ` ∆, without an application of
∨l and ∆ is non-empty2. Then there exists an LJ -proof α of Γ ` D for some
D ∈ ∆. Moreover, the length of α is polynomial in the length of αmc.

Proof . By induction on the depth of αmc.
Base. αmc consists of an axiom Γ,A ` A,∆ or Γ,⊥ ` ∆. Then Γ,A ` A or Γ,⊥ ` A

are the corresponding axioms in LJ .
Step. (IH) Assume that the lemma holds for all LJmc-proofs of depth < n. We

consider an LJmc-proof αmc of depth n and proceed by case analysis with respect to
the last inference in αmc. In the different cases, the LJ -proof(s) β (or β1 and β2 in the
binary case) are given by IH.

cases ∀l,∃l,∧l, ∀r,→ r can be transformed directly into LJ -inferences.

case → l. Consider the left deduction below. IH provides an LJ -proof of
B → C,Γ ` D.

βmc
1

B → C, Γ ` B,∆
βmc
2

C, Γ ` ∆
B → C, Γ ` ∆

(ii)
=⇒

β1
B → C, Γ ` B

β2
C, Γ ` A

B → C, Γ ` A

Now, we have the following two subcases: (i) D ∈ ∆. Then the indicated
occurrence of B is not relevant in βmc

1 and we can replace αmc by an LJmc-
proof of B → C,Γ ` ∆ of depth n − 1. IH provides an LJ -proof α in this
case. (ii) D 6∈ ∆. By IH, we obtain LJ -proofs β1 and β2 of B → C,Γ ` B and
C,Γ ` A, respectively. A final application of → l results in α.

case ∃r. IH provides an LJ -proof β of Γ ` D. There are the following two sub-

βmc

Γ ` B{x\t},∃xB,∆
Γ ` ∃xB,∆

cases: (i) D = B{x\t}. Extending β by an ∃r-
inference yields α. (ii) Otherwise, take β as α.

case ∧r. IH provides two LJ -proofs β1 and β2 of Γ ` D and Γ ` E, respec-

βmc
1

Γ ` B,∆
βmc
2

Γ ` C,∆
Γ ` B ∧ C,∆

tively. (i) D = B and E = C or D = C and
E = B. Then an additional ∧r-inference yields α.
(ii) D ∈ ∆. Set α = β1. (iii) E ∈ ∆. Set α = β2.

case ∨r. IH provides an LJ -proof β of Γ ` D.

βmc

Γ ` A,B,∆
Γ ` A ∨ B,∆

(i) D = A or D = B. Then an additional ∨r 1 or
∨r 2 yields α. (ii) Otherwise, set α = β.

(q.e.d.)

Let us return to the general case, i.e., a transformation of LJmc-proofs with
∨l-inferences. Lemma 3 provides a “micro-step” for this transformation. The
lemma is called the local permutation lemma for LJmc because only two adja-
cent inferences with non-overlapping principal formulae can be permuted. The
following lemma provides a “macro-step” relying on the micro-steps and requir-
ing the concept of an admissible branch.

Let αmc be an LJmc-proof of a sequent S, L be a layer in αmc. A branch
b in L is called admissible if it contains inferences r, ◦ such that the following
conditions are satisfied.
2 ∆ can be considered to contain at least ⊥.

Intuitionistic Proof Transformations 141

1. r is a topmost ∨l-inference in L.
2. ◦ is the topmost d-generative rule below r such that (i) b is a generative

branch of ◦, and (ii) each → l-inference between r and ◦ does not contain
any ∨l-inferences in its generative branches.

Lemma 5. Let αmc be an LJmc-proof of a sequent S, L be a layer in αmc.
Moreover, let b be an admissible branch in L containing r and ◦. Let r′ be the
lowmost ∨l-inference between r and ◦ on b. Then αmc can be transformed into
an LJmc-proof βmc of S such that ◦ occurs above r′.

Proof (sketch). We proceed by induction on the number d of inferences between ◦ and
r′. It is important that b is a branch in L, i.e., no critical rules occur on b. Moreover,
no eigenvariable problems can occur when we permute ∃r towards the axioms.

Base d = 0. The inferences r′ and ◦ are adjacent, r′ is above ◦, and ◦ is a d-
generative rule. Since ◦ can be (locally) permuted above ∨l, we obtain βmc by Lemma 3.

Step. We assume that the lemma holds for all generative branches between r′ and
◦ (containing r, r′, ◦ as described above) and d < n. Consider a generative branch b
with d = n and let p, ◦ the two inferences corresponding to the last two elements of
b where p is above ◦. First, we show that the principal formulae of p and ◦ cannot
overlap. We first consider the subbranch b1 ending at p. Observe that p is neither a
critical rule (because these rules do not occur on b) nor the d-generative rule satisfying
the admissibility conditions for b (because ◦ is the topmost occurrence of such a rule).
p is either → l without ∨l-inferences in its generative branches, another left rule or a
non-dependent ∧r. Moreover, ◦ affects only the succedent of its (left) premise. In all
of these cases, no overlap can occur between principal formulae of p and ◦ for which
reason permutation cannot fail.

Second, we have to guarantee termination. For this, consider the case where ◦ =

p = → l and reconsider Example 1 for the proof pattern. Observe that α does not

contain any ∨l-inferences since b has to be admissible. Apply Lemma 4 to α in order

to obtain the (single) relevant succedent formula F . If F ≡ A then delete p. If F ∈∆
then delete p and ◦. If F ≡ C then permute ◦ over p. Since F ≡ C, the → l-inference

◦ below α and the subdeduction γ′ have to be deleted. Hence, p remains ∨l-free on its

generative branches which yields termination of the transformation. A similar analysis

can be performed for ◦ = ∧r and p = → l occurring in the left or right premise of

◦. For all other cases, permuting ◦ with its predecessor p also reduces the number of

inferences between r′ and ◦. (q.e.d.)

The following lemma provides the construction of normalized LJmc-proofs.

Lemma 6. Let RI,L be the set of all topmost ∨l-inferences in the layer L which
occur above the inference I. Let αmc, L, ◦ be given as in Lemma 5 such that all
generative branches of ◦ containing an r ∈R◦,L are admissible. Then αmc can be
transformed into βmc such that, for all r ∈R◦,L, ◦ occurs above r.

Let nr be the number of ∨l-inferences between ◦ and r, and let n = max{nr |
r ∈R◦,L}. The proof is based on nested induction: (1) on n (outer induction);
(2) on the maximal number of not permuted ∧r-inferences and → l-inferences
with ∨l-free generative branches between ◦ and a lowmost ∨l-inference r′ above
◦ (inner induction).

142 Uwe Egly and Stephan Schmitt

A normal form for an LJmc-proof αmc is defined by a normal form for each
layer L of αmc. The excluded root of a layer L is the topmost intuitionistic
sequent SL not contained in L. Let N = {S1, . . . , Sn} be the leaves of L where
each Si is either of the form Γi ` Ci or an axiom. The layer normal form of L is
a subdeduction ML which consists of several layers and is structured as follows:
(1) SL remains the endsequent of ML.
(2) ML has the leaves N ′ = {S′1, . . . , S′m}, m ≥ n, such that for each S′j there
exists a Si ∈N with either S′j = Si, or S′j and Si differ only in eigenvariables
renaming and/or branch modification according to the proof of Lemma 3.
(3) Let R′ be the set of topmost ∨l-inferences in ML. Each premise of r′ ∈R′ is
either a leaf S′j ∈N ′, or it is an excluded root of a layer l from ML. l itself is
either a single layer (possibly l ∈N ′), or it has a subset of N ′ as leaves.
(4) Each sequent between SL and the premises of all r′ ∈R′ is intuitionistic and
forms a single layer in ML.

The normal form αmcN of an LJmc-proof αmc is defined by all its layer normal
forms. The normal form can be constructed by repeated application of Lemma 6
which locally transforms each layer L of αmc into a layer normal form ML.

Theorem 1. (normal form) Each LJmc-proof αmc can be transformed into a
normal form proof αmcN via permutation of inferences.

By definition of the layer normal form, no ∨l-inferences occur within the
topmost layers of ML. In order to construct an LJ -proof α from a normalized
LJmc-proof αmcN we have to eliminate redundant formulae and inferences in the
topmost (non-single) layers of each subdeduction ML. Such a construction is
accomplished by a procedure extracted from the constructive proof of Lemma 4.

Example 2. Consider the formula F ≡ (∀x.Ax ∨ Bx) ∧ (∃y.Ay → ∃z.¬Az) → ∃x.Bx
with its LJ ¬

mc-proof αmc shown in Fig. 3. 3 We have two layers where permutations
take place, namely (i) L1 in subgoal 1, between the premise of the ∃l-inference as its
excluded root and the axioms, and (ii) L2 containing the left branch of the→ l-inference
with the premise of ∧l as its excluded root. First, we permute in L1 the ¬l-inference
(i.e., an → l-inference) above the (only) ∨l-inference. Second, in L2, we permute the
→ l-inference above the ∨l-inference in its generative (i.e., left) branch.

The resulting normal form αmc
N is depicted in Fig. 4. The layer normal form ML1

of L1 is given within subgoal 1’ above the excluded root of L1 (the antecedent formula
X will be ignored). ML2 is given by the deduction above the excluded root of L2,
containing eigenvariable renaming b for a, and the duplication of subgoal 1 , which
results in subgoal 1’ and subgoal 1” due to the permutation schemata of Lemma 3.
Renaming requires a second instance of ∀x.Ax∨Bx and ∃x.Bx, whereas X = Aa and
X = Ba reflects branch modification in these two subgoals.

In order to obtain an LJ -proof α of ` F , we have to delete inferences according
to the proof of Lemma 4. In subgoal 2, the →l-inference can be deleted since the
additional succedent formula ∃y.Ay in its left premise does not contribute to the axiom
Ba ` ∃y.Ay,Ba. Hence, subgoal 1” can be deleted as well. For a similar reason, the
¬l-inference in the right branch of the remaining subgoal 1’ is deleted. Putting together
the results yields an LJ -proof α of ` F .

3 If possible, we omit explicit contractions in ∀l,→ l,¬l, and ∃r.

Intuitionistic Proof Transformations 143

Aa ` Aa, ∃x.Bx
Aa ` ∃y.Ay,∃x.Bx ∃r a

Ba ` ∃y.Ay,Ba
Ba ` ∃y.Ay,∃x.Bx ∃r a

Aa ∨ Ba ` ∃y.Ay,∃x.Bx ∨l
∀x.Ax ∨ Bx ` ∃y.Ay,∃x.Bx ∀l a

subg. 1

∀x.Ax ∨ Bx, ∃y.Ay→ ∃z.¬Az ` ∃x.Bx →l

(∀x.Ax ∨ Bx) ∧ (∃y.Ay→ ∃z.¬Az) ` ∃x.Bx ∧l

` (∀x.Ax ∨Bx) ∧ (∃y.Ay → ∃z¬Az)→ ∃x.Bx→r

subgoal 1:

Aa ` Aa, ∃x.Bx
Ba ` Aa,Ba

Ba ` Aa, ∃x.Bx ∃r a

Aa ∨ Ba ` Aa, ∃x.Bx ∨l
∀x.Ax ∨ Bx ` Aa, ∃x.Bx ∀l a

∀x.Ax ∨ Bx,¬Aa ` ∃x.Bx ¬l
∀x.Ax ∨ Bx, ∃z.¬Az ` ∃x.Bx ∃l a

Fig. 3. An LJ ¬mc proof of ` F from Example 2.

Aa ` Aa, ∃x.Bx
Aa ` ∃y.Ay,∃x.Bx ∃r a

subg. 1’

Aa, ∃y.Ay → ∃z.¬Az ` ∃x.Bx →l
subg. 2

Aa ∨ Ba, ∃y.Ay → ∃z.¬Az ` ∃x.Bx ∨l
∀x.Ax ∨ Bx, ∃y.Ay → ∃z.¬Az ` ∃x.Bx ∀l a

(∀x.Ax ∨Bx) ∧ (∃y.Ay → ∃z.¬Az) ` ∃x.Bx ∧l

` (∀x.Ax ∨ Bx) ∧ (∃y.Ay → ∃z¬Az)→ ∃x.Bx→r

subgoal 1’ X = Aa: subgoal 1” X = Ba:

X,Ab ` Ab, ∃x.Bx
X,Ab,¬Ab ` ∃x.Bx ¬l

X,Bb ` Ab,Bb
X,Bb ` Ab, ∃x.Bx ∃r b

X,Bb,¬Ab ` ∃x.Bx ¬l
X,Ab ∨Bb,¬Ab ` ∃x.Bx ∨l

X, ∀x.Ax ∨ Bx,¬Ab ` ∃x.Bx ∀l b

X, ∀x.Ax ∨ Bx,∃z.¬Az ` ∃x.Bx ∃l b

subgoal 2:
Ba ` ∃y.Ay,Ba

Ba ` ∃y.Ay,∃x.Bx ∃r a
subgoal 1”

Ba, ∃y.Ay → ∃z.¬Az ` ∃x.Bx →l

Fig. 4. The normal form αmcN from Example 2.

5 Conclusion and Future Work

We have presented a permutation-based proof transformation from LJmc-proofs
into LJ -proofs. It relies on a layer-oriented construction of normal form proofs in
LJmc. Furthermore, we have shown that, in general, no polynomial simulation
exists between LJmc and LJ (both without cut). Our approach will be inte-
grated into NuPRL as an improved transformation step T2 (see Fig. 1) since,
in contrast to existing approaches, it preserves the original logical specifica-
tions when extracting the program terms from the resulting LJ -proofs. Again,
we stress that, in practice, there are only few examples where an exponential
increase of proof length occurs but every program term benefits from our con-
struction. In future work, we have to combine a controlled introduction of cut
with our permutation approach in order to obtain LJcut-proofs which preserve
the intended specifications and provide an at most polynomial increase of proof
length for all formulae. We will investigate the computational correspondence
between structuring LJ -proofs with the cut rule and procedural programming
concepts.

References

1. J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on
Programming Languages and Systems, 7(1):113–136, January 1985.

2. W. Bibel, D. Korn, C. Kreitz, F. Kurucz, J. Otten, S. Schmitt, and

G. Stolpmann. A Multi-Level Approach to Program Synthesis. In 7th LoPSTr
Workshop, LNCS, 1998.

3. R. L. Constable, S. F. Allen, and H. M. Bromley. Implementing Mathemat-
ics with the NuPRL proof development system. Prentice Hall, 1986.

144 Uwe Egly and Stephan Schmitt

4. H. B. Curry. Foundations of Mathematical Logic. Dover, Dover edition, 1977.
5. E. Eder. Relative Complexities of First Order Calculi. Vieweg, 1992.
6. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische

Zeitschrift, 39:176–210, 405–431, 1935.
7. S. C. Kleene. Permutability of Inferences in Gentzen’s Calculi LK and LJ. Mem-

oirs of the AMS, 10:1–26, 1952.
8. S. Maehara. Eine Darstellung der intuitionistischen Logik in der klassischen.

Nagoya Mathematical Journal, 7:45–64, 1954.
9. P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory

Lecture Notes. Bibliopolis, Napoli, 1984.
10. J. Otten and C. Kreitz. A Uniform Proof Procedure for Classical and Non-

classical Logics. In 20th German Annual Conference on AI, LNAI 1137, pp. 307–
319, 1996.

11. S. Schmitt and C. Kreitz. On transforming intuitionistic matrix proofs into
standard-sequent proofs. In 4th TABLEAUX Workshop, LNAI 918, pp. 106–121,
1995.

12. S. Schmitt and C. Kreitz. Converting non-classical matrix proofs into sequent-
style systems. In CADE–13, LNAI 1104, pp. 418–432, 1996.

13. T. Tammet A Resolution Theorem Prover for Intuitionistic Logic. In CADE–13,
LNAI 1104, pp. 2–16, 1996.

14. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
Univ. Press, 1996.

15. L. Wallen. Automated deduction in nonclassical logics. MIT Press, 1990.

Combining Algebraic Computing and

Term-Rewriting for Geometry Theorem
Proving?

Stéphane Fèvre and Dongming Wang

Laboratoire LEIBNIZ – Institut IMAG
46, avenue Félix Viallet, 38031 Grenoble Cedex, France

Abstract. This note reports some of our investigations on combining
algebraic computing and term-rewriting techniques for automated geom-
etry theorem proving. A general approach is proposed that requires both
Clifford algebraic reduction and term-rewriting. Preliminary experiments
for some concrete cases have been carried out by combining routines im-
plemented in Maple V and Objective Caml. The experiments together
with several examples illustrate the suitability and performance of our
approach.

1 Motivation

This work is motivated by our investigations on automated geometry theorem
proving (GTP) using Clifford algebra and rewrite rules [4,12]. Recent research
by Li [7,8] and us has demonstrated the power and capability of Clifford algebra
in expressing geometric problems for the purpose of automated reasoning. Using
the proposed methods, one needs to deal with Clifford algebraic expressions
(or Clifford expressions for short), for which computer algebra (CA) systems
such as Maple and Mathematica have shown to be appropriate. Since Clifford
expressions usually involve operators (e.g., outer and inner products) other than
sum and product as in the polynomial case, an expression that is identically
equal to 0 does not simply evaluate to 0. We found that effective evaluation of
such expressions may be achieved by developing a term-rewriting system (TRS)
with suitably chosen rules.

Implementing a geometry theorem prover based on our approach thus re-
quires tools for both symbolic algebraic computation and term-rewriting. The
former are available typically in CA systems, while the latter have been devel-
oped largely in the community of rewriting techniques. There is no satisfactory
common environment in which the two kinds of tools are integrated with desired
performance. Although some CA systems like Mathematica provide rewriting
functionality in their programming languages, the power of rewriting techniques
is not fully implemented therein; whereas the existing TRS and tools do not con-
tain functions for advanced algebraic computation. Given the nature and design
? This work is supported partially by CEC under Reactive LTR Project 21914 (CU-

MULI) and a project of LIAMA.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 145–156, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

146 Stéphane Fèvre and Dongming Wang

of such systems, it is clearly inefficient to implement algorithms for algebraic
computation in a TRS, and vice versa. Take for example Maple, in which alge-
braic computations such as simplification and factorization that we need work
pretty well. For experimental purpose, we wrote a set of rewriting routines in
Maple to evaluate Clifford expressions to 0. It turns out that the performance
of these routines is rather poor. The reason seems quite simple: Maple is not
suitable for implementing term-rewriting techniques.

For these and other technical reasons, we chose to implement functions for
Clifford algebraic computation in Maple and those for term-rewriting in Objec-
tive Caml; these functions are combined by building an interface between the
two systems. Implementation issues and other considerations will be described
in Sect. 3 of this paper. In the following section, we shall explain a general
approach that combines Clifford algebraic computation and term-rewriting for
GTP. The suitability and performance of this approach will be illustrated by
some examples and our preliminary experiments in Sect. 4.

2 A Combinational Approach

In this section we sketch a general approach for GTP, based on a combination
of calculation with Clifford expressions and evaluation of such expressions to 0
by term-rewriting.

2.1 Clifford Algebra

We shall work with a ground field K of characteristic 6= 2, an n-dimensional
vector space V , and a Clifford algebra C associated to some fixed quadratic form
over K . The reader is referred to [5,8,12] for some basics of Clifford algebra. The
elements of C, sometimes called Clifford numbers, are multivectors. Among Clif-
ford numbers, various operators may be introduced. Typical operators include
geometric sum, geometric product, inner product, outer product, cross product,
meet, and dual operator. They will be referred to as Clifford operators.

For example, let a and b be any two vectors in V . The geometric sum of a
and b, a + b, is also a vector of V ; the inner product a · b of a and b is an
element of K ; the outer product a ∧ b of a and b is a bivector in C. All these
Clifford operators have clear geometric meanings, see [5] for details. They obey
certain basic calculational laws and are related to each other. For instance,

a ∧ b = ab− a · b,

where ab denotes the geometric product of a,b ∈ V . Some of the laws/relations
are selected and grouped as rewrite rules in [12]. The rich variety of operators to-
gether with such rules makes Clifford algebra a powerful language for expressing
geometric notions and relations.

Combining Algebraic Computing and Term-Rewriting 147

2.2 Formulation of Geometric Theorems

Now, let us take a concrete geometry of fixed dimension. Examples of such ge-
ometries are plane Euclidean geometry, solid geometry, non-Euclidean geometry,
and differential geometry. By a geometric entity we restrict it to be a point, or
a geometric scalar such as the length of a segment or the area of a triangle.
Consider those theorems in the geometry, each of which may be formulated
constructively as follows.

Starting with finitely many given free geometric entities µ1, . . . , µe, construct
new geometric entities one by one. Some of the constructed entities may be
completely free, while the others are constrained by the geometric hypotheses.
Let the former be denoted µe+1, . . . , µd (d ≥ e) and the latter χ1, . . . , χr. For
convenience, we shall call the free geometric entities µ1, . . . , µd parameters , ab-
breviated to µ, and the constrained geometric entities χ1, . . . , χr dependents .

Take a proper Clifford algebra so that the geometric relations for the con-
structed dependents χi can be given algebraically in the following form

h1(µ, χ1) = 0,

h2(µ, χ1, χ2) = 0,
· · · · · ·

hr(µ, χ1, χ2, . . . , χr) = 0,

(H)

where each hi is composed by means of Clifford operators. Then, (H) consti-
tutes the hypothesis of the geometric theorem under discussion. The reader may
consult [4,7,8,12] for how to represent geometric relations using Clifford algebra.

Or more generally, one may consider any geometric theorem whose hypothesis
can be first Clifford-algebraized and then transformed into the form (H). One
such triangularization procedure as proposed by Li and Cheng [7,9] is an analogy
to Ritt-Wu’s well-ordering principle [13] for polynomials.

It is a special and simple case when each dependent χi can be solved in terms
of µ and χ1, . . . , χi−1 using Clifford operators; namely,

χi = fi(µ, χ1, . . . , χi−1), 1 ≤ i ≤ r. (H∗)

Suppose that the conclusion of the theorem to be proved is given as another
Clifford expression

g = g(µ, χ1, . . . , χr) = 0. (C)

Proving the theorem amounts to verifying whether (C) follows from (H),
possibly under some subsidiary conditions.

2.3 Reduction and Rewriting

In order to show that (H) implies (C), one proceeds to reduce the conclusion-
expression g by the hypothesis-expressions hr, . . . , h1 successively. During the
reduction, some conditions of the form di 6= 0 may have to be imposed; such
conditions are usually taken as the non-degeneracy conditions for the theorem

148 Stéphane Fèvre and Dongming Wang

to be true. After the reduction is completed, a Clifford expression r will be
obtained.

In the special case when (H) is replaced by (H∗), the reduction is performed
by simply substituting the expressions fi of the dependents into the conclusion-
expression g; the obtained r involves µ only, i.e., r = r(µ). This has been detailed
in [4,12].

Next, we want to verify whether r is identically equal to 0, i.e., whether r = 0
is an identity. Recall that r may comprise several Clifford operators. It does not
automatically evaluate to 0 even if it is identically 0. How to evaluate r or a
factor of r to 0 is a crucial issue that was not addressed in the work of Li and
his collaborators. An easy way that was taken by Li is to use Wu’s coordinate-
based method when r cannot be simplified to 0. Note that the main advantage
of using Clifford algebra for GTP is to work with points and invariants, so we
apparently wish to avoid introducing coordinates if possible. This is one of the
major motivations for us to advocate using term-rewriting techniques explained
below.

The Clifford operators involved in the expression r are related by a set of
computational laws. It is under these laws that r = 0 may become an identity.
The laws can be written as equational relations and thus can be represented
as rewrite rules. So now the problem is how to rewrite r to 0 using the rules.
For this, one can develop a TRS on the basis of various efficient techniques that
have been proposed. In [4] we have presented one such rewriting system for the
special case in which r = r(µ) and only geometric sum, inner/outer/geometric
products, and plane dual operator are involved.

2.4 Combination

What we have suggested above is a general approach for GTP that requires
the manipulation and computation with Clifford expressions and the proof of
identities by term-rewriting. It is known that algebraic computation and term-
rewriting are two related yet somewhat separate areas of research. The existing
CA systems do not have rich rewrite functionality, nor provide ideal features for
easy and efficient implementation of up-to-date rewrite techniques.

On the other hand, the well-developed rewrite libraries and tools do not sup-
port effective algebraic computation. In our case, some rather advanced algebraic
computations such as simplification and factorization are needed. It is certainly
expensive and unrealistic to develop routines for such computations in a rewrit-
ing environment. As a consequence, we propose to combine routines and tools
developed in CA and rewriting systems. Advantages and general methodologies
of combining algebraic computing and theorem proving have been discussed, for
instance, in [2,3,6]. Following some of the suggested strategies, we have been
experimenting with our combinational approach for some restricted cases, in
particular, proving theorems in plane Euclidean geometry.

Combining Algebraic Computing and Term-Rewriting 149

3 Implementation in Maple and Caml

To experiment with the combinational approach suggested in the preceding sec-
tion, we have started an implementation in Maple V and Objective Caml for a
large enough class of theorems in plane Euclidean geometry, whose hypotheses
can be expressed in the form (H∗). A technical account of our method for prov-
ing this class of theorems is given in [4,12]. This section provides details about
implementation issues and combination strategies. The objective of this work is
twofold: on one hand, we want to develop a new and high-performance geome-
try theorem prover based on coordinate-free methods, in particular, those using
Clifford algebra; the current program will be part of this prover. On the other
hand, we are interested in recent research on combining algebraic computing and
theorem proving (see [2,6]). Our investigation may be considered as a practical
exercise on this subject for the case of geometry.

3.1 Why Maple and Caml

In order to achieve a fine combination of term-rewriting and algebraic comput-
ing, we need polynomial formulas coded into the rewriting steps. Most popular
rewriting packages do not supply any evaluation mechanism for such formulas
and thus are not capable of handling our problem appropriately. So it is neces-
sary to develop a new sample package for such a very special kind of rewriting.
We decided to do it in Objective Caml, a functional polymorphic language di-
alect of ML. Note that ML is widely used in the automated theorem proving
community and recognized for being well-suited to develop prototypes. Its type
inference mechanism is well-adapted to programming, and polymorphism allows
to program once an algorithm used in several contexts. Our representation of
Clifford expressions uses terms both for scalar expressions and purely geometric
expressions. Although being of different types, the two kinds of terms are mostly
treated by the same polymorphic functions; only few of them had to be adapted.
Moreover functionality provides a good solution for combining strategies. Last,
the interpreter provides a good interactive system.

On the other hand, it is very time consuming and difficult to program efficient
algebraic computation procedures (in a rewriting environment) as mentioned be-
fore. It is desirable to take one of the existing CA systems in which powerful al-
gebraic computation routines have already been well implemented. Despite that
Mathematica and other CA systems are good candidates, our long-time experi-
ence influenced our choice of Maple. The main features we need are substitution,
simplification, factorization, collection and sorting, which exist in Maple as well
as many other CA systems. Previous experiments with Maple have showed us
the importance of designing sophisticated strategies and efficient rewriting pro-
cedures. However, the Maple language tends to make large programs very tricky
and makes difficult the modification and test of new strategies — it is not ad-
equate for programming rewriting techniques. The above considerations give us
the major motivations for pursuing a combination of Caml and Maple.

150 Stéphane Fèvre and Dongming Wang

3.2 Rewriting

In [4] we have presented a technique allowing to perform algebraic computations
while rewriting a term into another by replacing a variable with a constant stand-
ing for the result of these computations. This idea is presented as an operational
semantic of normalized rewriting [10].

In our implementation, we make a distinction between constant symbols of
the signature of the term algebra and constants, also called atoms, representing
algebraic objects (here, polynomials). Normalized rewriting is presented by its
authors as an attempt to unifying the Knuth-Bendix completion, Buchberger
critical-pair and many other similar algorithms. In some previous work, for ex-
ample [2], external computations are modeled by mappings from variables or
constants to external objects. Actually the notion of extended term rewriting
system is more general than what is presented here as we do not consider rules
with variables in their left-hand side matching external objects. In our scheme
they only match ground terms whose constants denote algebraic laws or ele-
ments in an algebraic domain. Moreover, as suggested in [4], these objects are
normalized before a rule is applied. This normalization concretely consists in
sending an algebraic expression to a CA system and then reading the result.
The simple interface may be done either by using Unix pipes as we did or by
using the Maple’s facilities for calling kernel functions. The normalization strat-
egy is called immediate computation in [2]. Following the notations in [10], this
could be defined as follows. If s ↓S denotes the S-normal form of the term s, the
rewrite relation by a rule r at position p is defined by: s→p

r/S t iff there is a term
u such that s →p

r u and t = u ↓S. The two previous approaches to including
external computations in rewriting are different, while ours may be situated in
their intersection. Also, it seems that none of the former has been validated by
combining a CA system with a TRS.

3.3 Design

The architecture of our prototype is simple and allows one to use the user inter-
face of GEOTHER [11], a geometry theorem prover developed by the second au-
thor using several methods (Wu’s characteristic sets [13], Buchberger’s Gröbner
bases [1], etc.).

User Interface Computer Algebra System

TranslatorRewriting System

High-level functions of GEOTHER are used to send the Clifford expressions
to be reduced to the rewriting module. The latter then uses the CA capabilities
to simplify some expressions involving polynomials for instance. When the ex-
pression is reduced, a function is called with the result as argument. Thus both
the CA system and the TRS cooperate.

Combining Algebraic Computing and Term-Rewriting 151

3.4 Term Representation

Clifford expressions are represented by terms based on the signature

Σ = {+,−, ∗, /, 1, 0, ∗∗,∧, ·, v},
where every symbol is binary except the unary “−”, the ternary v, and the
constants “1, 0”. Multivectors are either stated and thus represented by a new
constant or built up from others. The term v(g, f, e) stands for the geometric
product of f and g, where f is any expression in the basic field (e.g., a frac-
tion), e is a Clifford expression and g is the grade of the expression e when
e is not equal to 0. If e equals 0, g does not mean anything. For instance,
v(2, +(−(t), 1)),∧(x, y)) represents (1 − t)x ∧ y, where t is a scalar parameter
and x, y are multivectors. As the multivector is assumed to be of grade 2, x and
y here should necessarily represent vectors (see [4] for an overview of the rules
for computing a grade). In the previous expression, the two first arguments are
what we call atoms. Atoms are considered as constant symbols by the rewrite
system, except that they actually are subtrees and assumed to be in canonical
form. This form is computed by the CA system. An atom can only be matched by
another atom structurally identical. Rules have four parts: a conditional part,
the left-hand side, the right-hand side and a definition part. The last defines
what computation should be done for atoms. For instance, the following rule,
written in infix form, is part of the system:

a > b : v(g1, f1, v(g2, f2, a) ∧ v(g3, f3, b))→ v(g1, f4, v(g3, 1, b) ∧ v(g2, 1, a))

{ f4 = (−1)(g2+g3)f1f2f3 }.
In general, the fourth part of a rule defines a substitution to apply after

computation of the terms to substitute. Any variable occurring in this part
denotes an atom. Thus variables are replaced by atoms.

The key point in designing a strategy for reducing Clifford expressions is to
avoid a dramatic combinatorial explosion. This is due to the definition of inner
and outer products of two vectors:

x · y =
xy + yx

2
, x ∧ y =

xy − yx

2
which are bilinear. That is why any derived term is further reduced by another
simplification system. The whole strategy is defined by composition of several
elementary strategies (see [4] for more details).

Strategy

Matching Atoms

SubstitutionTerms

System

Computer Algebra

152 Stéphane Fèvre and Dongming Wang

This kind of implementation is made very easy by the use of a special-purpose
rewriting system named EZTerm we have developed. Moreover, pattern-matching
and substitution are performed by linear time complexity algorithms. The use of
a CA system not only makes easy the computation of algebraic expressions but
also helps in normalizing expressions. For instance, to improve efficiency of our
system for disproving conjectures, summands are efficiently grouped by grade
and sorted by Maple. Then the system attempts to reduce each homogeneous
expression to zero starting from the (supposedly) highest grade expression to the
lowest (see the above figure). This reduces the size of each treated expression
and improves the performance. Thus combining systems can also contribute to
use new strategies.

4 Examples and Performance

As shown in the table below, a number of non-trivial geometric theorems may
be proved effectively by combining algebraic computing and term-rewriting. The
following three examples serve to illustrate the suitability of this combinational
approach.

Example 1. Let ABC1, BCA1 and CAB1 be three equilateral triangles drawn
all inward or all outward on the three sides of an arbitrary4ABC. It is proved as
Example 3 (b) in [4] that the circumcircles of4ABC1,4BCA1,4CAB1 are con-
current. Now denote the centroids of 4ABC1,4BCA1,4CAB1 by C0, A0, B0

respectively. Then the circumcircles of 4ABC0,4BCA0,4CAB0 are also con-
current.

 A B

 B 0

 C

 A 0

 M

 C 0

Let the vertex C be located at the origin, i.e., C = 0. Then the points
A0, B0, C0 may be represented in terms of A and B as follows

A0 =
B

2
±
√

3
6

B∼, B0 =
A

2
∓
√

3
6

A∼, C0 =
A + B

2
±
√

3
6

(A∼ −B∼),

Combining Algebraic Computing and Term-Rewriting 153

where ∼ is the dual operator (see [12] for example). Denote the circumcenters of
4BCA0,4CAB0,4ABC0 by OA, OB , OC respectively. We have

OA =
B ·B A∼0 −A0 ·A0 B∼

2 B ·A∼0
,

OB =
A ·AB∼

0 −B0 ·B0 A∼

2 A ·B∼
0

,

OC =
(A ·A−B ·B)C∼

0 + (B · B − C0 · C0)A∼ + (C0 · C0 −A ·A)B∼

2 (A · C∼
0 −B · C∼

0 −A ·B∼)
.

Let M be the reflection of C with respect to OAOB; then

M = 2
(OB ·OB −OA ·OB)OA + (OA ·OA −OA ·OB)OB

(OB −OA) · (OB −OA)
.

We want to prove that

g = (M + B − 2 OA) ∧ (OC −OA) = 0,

i.e., M is the reflection of B with respect to OAOC . For this purpose, substitute
the expressions of M, OC , OB , . . . into g. This is a typical problem of algebraic
computation with functions and radicals. For instance, after the substitution
done in Maple V the numerator of g is of the form

c1

√
3 + c0,

where the coefficients c1 and c0 of
√

3 are two Clifford polynomials consisting of
17 and 16 terms, respectively. The collection of c1 and c0 is also typical in CA

systems. Obviously, g ≡ 0 under the conditions

B · A∼0 6= 0, % not col(A0, B, C)
A · B∼

0 6= 0, % not col(B0, A, C)
A · C∼

0 −B · C∼
0 −A · B∼ 6= 0, % not col(C0, A, B)

(OB −OA) · (OB −OA) 6= 0 % OAOB is non-isotropic

iff both c1 ≡ 0 and c0 ≡ 0 (here “not col(A, B, C, . . .)” means that A, B, C, . . .
are not collinear). To show the latter we need rewrite c0 and c1 to 0 by applying
the rules relating the Clifford operators.

Application of our rewriting package EZTerm in Objective Caml to both c0

and c1 yields 0, so the theorem is proved to be true under the above-mentioned
non-degeneracy conditions.

It is not so simple to prove this theorem using Wu’s and other coordinate-
based methods.

Example 2. Let ABC be an arbitrary triangle with orthocenter H and cir-
cumcenter O. Denote the circumcenters of 4BCH and 4ACH by A1 and B1

respectively. Then the three lines AA1, BB1 and OH are concurrent.

154 Stéphane Fèvre and Dongming Wang

Using the constructions listed in
[4,12], the hypothesis of this the-
orem may be given as follows

H = ort ctr(A, B, C),
O = cir ctr(A, B, C),
A1 = cir ctr(B, C, H),
B1 = cir ctr(A, C, H).

To simplify calculation, one may
take C as the origin: C = 0. Let

I = int(A, A1, B, B1).

The explicit expressions of O,
A1, B1 and I can be written out

 O

 A B

 A 1

 C

 B 1

 H

according to the formulas in [4,12]. The conclusion of the theorem to be proved
is

g = (I −O) ∧ (H −O) = 0. % col(I, O, H)
Substituting the Clifford expressions of I, B1, etc. into g, we get a fraction of
Clifford polynomials in A and B. The numerator consists of 42 terms and can
be proved to be identically 0 by our TRS, wherefore the theorem is true under
some non-degeneracy conditions.

Example 3. Using our combinational approach to prove the butterfly theorem,
we need to rewrite a large Clifford expression r (consisting of 588 terms) to 0.
Application of EZTerm without using Maple takes 58.9 seconds. When r is sent
to and factored by Maple, we get six factors, one of which is easily rewritten
to 0. So the theorem may be proved in about 44 seconds of total CPU time as
shown in the table.

Factorization is one of the most difficult tasks in computer algebra, for which
modern research has been conducted for several decades. The above example ex-
hibits an obvious advantage of combination, as implementing another (efficient)
factorizer in Caml is neither easy nor reasonable.

We provide below a table of experimental results for 15 significant well-known
theorems proved automatically; some of them cannot be easily proved by using
other methods like Wu’s [13]. These experiments were made on a Sparcserver
400 with 128MB of memory using Maple V R3 and Objective Caml v1.6. Maple,
Comm and Caml in the heading entries of the table indicate the computing times
in Maple, for communication, and in Caml, given in CPU seconds. The size of
the expressions (to be rewritten to 0) measured by the Maple function length
is shown in the Size column. As usual, times give only an indication and may
slightly vary from one session to another. It should be noticed that these times
also depend on the initial statements of the theorems. Some of them are stated
using high-level predicates further translated into Clifford expressions, while the
others are stated directly using Clifford expressions.

Combining Algebraic Computing and Term-Rewriting 155

Theorem Maple Comm Caml Size
Orthocenter 1.4 0.01 0.01 74
Centroid 0.74 0.01 1.18 297
Euler line 2.09 0.02 0.34 429
Desargues 0.92 0.02 1.26 457
Pappus 3.5 0.04 0.01 1665
Gauss line 2.12 0.02 0.75 489
Ex 3 (a) [4] 2.09 0.43 1.79 797
Ex 3 (b) [4] 6.08 1.27 30.5 1741
Ex 3 (c) [4] 0.51 0.22 0.51 154
Ex 3 (d) [4] 0.34 0.02 0.57 112
Example 1 2.6 1.01 9.17 1892
Example 2 0.03 0.01 0.01 529
Pivot 1.02 0.34 49.24 274
Simson 2.24 0.51 15.63 3591
Butterfly 12.85 8.17 22.7 36828

This table shows that the time needed for communication between Maple
and EZTerm is negligible compared with that for computation. As opposed to
the approach described in [4] (where expressions were extracted from the initial
statements by hand), Maple is used here more intensively. For instance, every
summation is now simplified by Maple. Moreover, we try to factor large expres-
sions to find a null factor. Last, a better strategy (compared with [4]) used for
computing the statements allows to reduce the problem size. It is interesting
to note that for larger theorems the rewriting side becomes less efficient with
respect to algebraic computing.

Comparing the proofs and timings produced by our approach with those by
others is beyond our current intention and interest. The comparison and how to
do it fairly and significantly still remain for further investigations.

5 Conclusion and Remarks

This paper studies the combinational aspects of algebraic computing and term-
rewriting, and respectively two strongly interfaced systems, Maple V and Ob-
jective Caml. A significant extension has been implemented that makes possible
to work on base fields other than Q (the field of rationals). This also allows to
deduce necessary and sufficient algebraic conditions from a reduced Clifford ex-
pression involving scalar parameters. Preliminary experiments have shown that
combination in our case is a realistic and promising approach, by which difficult
geometric theorems can be proved efficiently in a coordinate-free environment.

Although this work is incremental with respect to [4,12], the approach pro-
posed here is more general, the TRS is extended and refined, the combinational
strategies have not been described before, and the implementation of modules
combining Caml and Maple is new. Our implementation is still in progress. For
the Maple part, the Clifford operators like inner/outer products and the dual

156 Stéphane Fèvre and Dongming Wang

operator are defined as Maple procedures. When used in computation, they often
have some uneven behavior. We continue observing such behavior and believe
that a lot of improvements can be obtained by optimizing the Maple code. We
also try to mechanize the analysis of produced Clifford expressions to get a min-
imal set of conditions (for the theorem to be true) and the interpretation of such
conditions in a high-level language involving the usual predicates (collinearity,
parallelism and so on). For the rewriting part, we still study the properties of
the equational system to improve the application of rules. For the combined sys-
tem, we are introducing new strategies to limit the size of computed expressions:
some experiments by hand seem to show that lots of improvements are possi-
ble. Studying new communication strategies is the most promising possibility
for proving still more complicated theorems. We also plan to extend the appli-
cation domain of our implementation for proving theorems in other geometries
including solid geometry and differential geometry in the near future.

References

1. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal the-
ory. In: Multidimensional systems theory (N. K. Bose, ed.), D. Reidel, Dordrecht
Boston, pp. 184–232 (1985).

2. Bündgen, R.: Combining computer algebra and rule based reasoning. In: Proc.
AISMC-2 (Cambridge, UK, August 3–5, 1994), LNCS 958, pp. 209–223 (1995).

3. Fèvre, S.: Integration of reasoning and algebraic calculus in geometry. In: Auto-
mated deduction in geometry (D. Wang et al., eds.), LNAI 1360, pp. 218–234
(1998).

4. Fèvre, S., Wang, D.: Proving geometric theorems using Clifford algebra and rewrite
rules. In: Proc. CADE-15 (Lindau, Germany, July 5–10, 1998), LNAI (to appear).

5. Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dor-
drecht Boston (1984).

6. Homann, K., Calmet, J.: Combining theorem proving and symbolic mathematical
computing. In: Proc. AISMC-2 (Cambridge, UK, August 3–5, 1994), LNCS 958,
pp. 18–29 (1995).

7. Li, H.: New explorations on mechanical theorem proving of geometries. Ph.D thesis,
Beijing University, China (1994).

8. Li, H.: Vectorial equations-solving for mechanical geometry theorem proving. J.
Automat. Reason. (to appear).

9. Li, H., Cheng, M.-t.: Proving theorems in elementary geometry with Clifford alge-
braic method. Chinese Math. Progress 26: 357–371 (1997).

10. Marché, C.: Normalized rewriting: An alternative to rewriting modulo a set of
equations. J. Symb. Comput. 3: 253–288 (1996).

11. Wang, D.: GEOTHER: A geometry theorem prover. In: Proc. CADE-13 (New
Brunswick, USA, July 30 – August 3, 1996), LNAI 1104, pp. 166–170 (1996).

12. Wang, D.: Clifford algebraic calculus for geometric reasoning with application to
computer vision. In: Automated deduction in geometry (D. Wang et al., eds.),
LNAI 1360, pp. 115–140 (1998).

13. Wu, W.-t.: Mechanical theorem proving in geometries: Basic principles. Springer,
Wien New York (1994).

Cooperation Between Top-Down and Bottom-Up

Theorem Provers by Subgoal Clause Transfer

Dirk Fuchs

FB Informatik
Universität Kaiserslautern

67663 Kaiserslautern, Germany
dfuchs@informatik.uni-kl.de

Abstract. Top-down and bottom-up theorem proving approaches have
each specific advantages and disadvantages. Bottom-up provers profit
from strong redundancy control and suffer from the lack of goal-orienta-
tion, whereas top-down provers are goal-oriented but have weak calculi
when their proof lengths are considered. In order to integrate both ap-
proaches our method is to achieve cooperation between a top-down and
a bottom-up prover: the top-down prover generates subgoal clauses, then
they are processed by a bottom-up prover. We discuss theoretic aspects
of this methodology and we introduce techniques for a relevancy-based
filtering of generated subgoal clauses. Experiments with a model elimina-
tion and a superposition prover reveal the high potential of our approach.

1 Introduction

Automated deduction is—at its lowest level—a search problem that spans huge
search spaces. In the past, many different calculi have hence been developed
in order to cope with problems from the area of automated theorem proving.
Essentially, for first-order theorem proving two main different paradigms for
calculi are in use: Top-down calculi like model elimination (ME, see [Lov68])
attempt to recursively break down and transform a goal into subgoals that can
finally be proven immediately with the axioms or with assumptions made during
the proof. Bottom-up calculi like superposition (see [BG94]) go the other way by
producing consequences from the initial clauses until the empty clause is derived.

When comparing results of various provers it is obvious that provers based
on different paradigms often have quite a different behavior. There are prob-
lems where bottom-up theorem provers perform considerably well, but top-down
provers perform poorly, and vice versa. The main reason for this is that many
bottom-up provers suffer from the lack of goal-orientation of their search, but
profit from their strong redundancy control mechanisms. In contrast, top-down
provers profit from their goal-orientation and suffer from insufficient redundancy
control thus entailing long proofs for many problems. Therefore, a topic that has
come into focus of research is the integration of both approaches. In particular,
cooperation between theorem provers based on top-down and bottom-up princi-
ples (see, e.g., [Sut92, Sch94, Fuc98b]) appears to be a promising way because by

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 157–169, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

158 Dirk Fuchs

exchanging information each approach can profit from the other. Note that it is
also possible to modify calculi or provers which work according to one paradigm
so as to introduce aspects of the other paradigm into it. This, however, requires a
lot of implementational effort to modify the provers, whereas our approach does
not require changes of the provers but only changes of their input (see section
3). As a consequence, we can employ arbitrary state-of-the-art provers.

Information well-suited for top-down provers are lemmas deduced by bottom-
up provers. These lemmas are added to the input of a top-down prover and can
help to shorten the proof length by immediately solving subgoals. Since the
arising problem to filter relevant lemmas has already been discussed (see, e.g.,
[AS92], [AL97], [Fuc98b]) we are not going to deal with this aspect here.

Instead, we want to consider top-down/bottom-up integration by transferring
information from a top-down prover to a bottom-up prover. By transferring
top-down generated subgoal clauses we are able to introduce a goal-oriented
component into a bottom-up prover which enables it to solve proof problems
considerably faster (see section 5). However, since similar to the use of lemmas
an unbounded transfer of subgoal clauses is not sensible, techniques for filtering
relevant subgoal clauses must be developed. Note that the method proposed
here is a possible solution to the problem of extracting information suitable for
cooperation from top-down theorem provers. This problem remained unsolved in
[DF98] where a general framework for cooperation of different kinds of theorem
provers was introduced.

In order to examine our kind of top-down/bottom-up integration we start
by giving a brief overview about superposition and model elimination theorem
proving in section 2. After that, in section 3 we introduce subgoal clauses and
discuss effects of the integration of ME subgoal clauses into the search state
of a superposition-based prover. In section 4, we point out two variants of a
relevancy-based filtering of subgoal clauses. An experimental study conducted
with the theorem provers Setheo [MIL+97] and SPASS [WGR96] reveals the
potential of our techniques. Finally, a discussion and an outlook at possible
future work conclude the paper.

2 Automated Theorem Proving with Superposition and
Model Elimination

The general problem in first-order theorem proving is to show the inconsistency
of a given set C of clauses. Clauses are sets of literals. As already discussed,
theorem provers utilize either top-down or bottom-up calculi to accomplish this
task. In the following, we want to introduce the calculi that we employ for our
theoretic and experimental study.

Typically, a bottom-up calculus contains several inference rules which can be
applied to a set of clauses that constitute the search state. The superposition
calculus (e.g., [BG94]) contains the inference rules superposition, equality reso-
lution, and equality factoring. It is to be emphasized that we employ the version

Cooperation Between Top-Down and Bottom-Up Theorem Provers 159

of the superposition calculus introduced in [BG94]. Specifically this entails that
factoring is only applied to positive literals.

Usually, a bottom-up theorem prover maintains a set FP of so-called potential
or passive clauses from which it selects and removes one clause C at a time. This
clause is put into the set FA of activated clauses. Activated clauses are, unlike
potential clauses, allowed to produce new clauses via the application of some
inference rules. The inferred new clauses are put into FP . Initially, FA = ∅ and
FP = C. The indeterministic selection or activation step is realized by heuristic
means. To this end, a heuristic H associates a natural number $C ∈ IN with
each C ∈ FP , and the C ∈ FP with the smallest weight $C is selected.

A typic top-down calculus is model elimination, a restricted version of the
connection tableau calculus (CTC) [LMG94]. This calculus works on connected
tableaux for the initial clause set C. A tableau for a set of clauses C is a tree whose
non-root nodes are marked with literals and where it holds: if the immediate
successor nodes n1, . . . , nm of a node n are marked with literals l1, . . . , lm, then
the clause l1 ∨ . . . ∨ lm (tableau clause) is an instance of a clause from C. A
tableau is called connected if it holds: if a non-leaf node n is marked with literal
l then there is an immediate successor leaf-node n′ marked with literal l′ such
that l =∼ l′. (Note that ∼ l = ¬l, if l is positive, ∼ l = l̃, if l = ¬l̃.)

The connection tableau calculus contains inference rules for transforming
tableaux into others. The rules are start , extension, and reduction. The start
rule can only be applied to the trivial tableau consisting of the unmarked root.
It selects a clause from C and attaches its literals to the unmarked root. The
step to select a clause from C and to attach its literals to an open leaf node
(the branch leading to this node does not contain complementary literals) is also
called expansion. Note that the start rule can be restricted to so-called start
relevant clauses without causing incompleteness. Start relevancy of a clause is
defined as follows. If C is an unsatisfiable set of clauses we call S ∈ C start rel-
evant if there is a satisfiable subset C′ ⊂ C such that C′ ∪ {S} is unsatisfiable.
Since the set of negative clauses contains at least one start relevant clause, in
the following we also consider a restricted calculus which employs only negative
clauses for the start expansion (CTCneg). Tableau reduction closes a branch by
unifying the literal which is the mark of an open leaf node (also called subgoal)
with the complement of a literal on the same branch and applying the substi-
tution to the whole tableau. Extension is performed by expanding a subgoal s
and immediately performing a reduction step involving s and one of the newly
introduced subgoals. We write T ` T ′ if the tableau T ′ can be derived from T by
the application of one inference rule. A search tree T C defined by a set of clauses
C is given by a tree, whose root is labeled with the trivial tableau. Every inner
node in T C labeled with tableau S has as immediate successors the maximal set
of nodes {v1, . . . , vn}, where vi is labeled with Si and S ` Si, 1 ≤ i ≤ n.

A theorem prover based on the connection tableau calculus tries to solve
a proof problem C by deriving from the trivial tableau a closed tableau, i.e. a
tableau with no open branch. A common way to perform derivations is to employ
iterative deepening procedures ([Kor85]): in this approach iteratively larger finite

160 Dirk Fuchs

segments of T C are explored in a depth-first manner. These segments are defined
by a so-called bound (which poses structural restrictions on the tableaux which
are allowed in the current segment) and a fixed natural number, a so-called
resource. Iterative deepening is performed by starting with a basic resource value
n ∈ IN and iteratively increasing n until a closed tableau is found in the current
segment. A prominent example for a bound is the inference bound (see [Sti88])
which limits the number of inferences needed to infer a certain tableau. Note
that the connection tableau calculus has no specific rules for handling equality.
Hence, the common equality axioms must be added to the initial clause set when
equality is involved in a problem.

3 Subgoal Clauses for Top-Down/Bottom-Up Integration

3.1 Transferring Top-Down Generated Clauses to a Bottom-Up
Prover

Because of the fact that connection tableau-based provers have a search state
which contains deductions (tableaux) instead of clauses, it is at first sight not
obvious how to extract valid clauses from such a search state which are well-
suited for a superposition-based prover. A common method in order to extract
valid clauses is to employ lemma mechanisms of ME provers: Assume that a
literal s is a label of the root node of a closed subtableau T s. Let l1, . . . , ln be
the literals that are used in reduction steps and that are outside of T s. Then,
the clause ∼ s∨ ∼ l1 ∨ . . .∨ ∼ ln may be derived as a new lemma (since it is
a logical consequence of the tableau clauses in T s). Then, such a lemma could
be transferred to a bottom-up prover. As appealing as this idea sounds, it has
some grave restrictions: Usually, such lemmas are—due to instantiations needed
to close other branches before—not as general as they could be. Hence, they
often cannot be used in inferences, especially not in contracting inferences (sub-
sumption, rewriting) which are very important for bottom-up provers. Moreover,
since these clauses are generated during the proof run in a rather unsystematic
way they do not really introduce much goal-orientation and hence do not make
use of the advantages of the search scheme typic for ME.

The concept of subgoal clauses, however, allows for the generation of clauses
derived by inferences involving a proof goal: A subgoal clause ST regarding a
tableau T is the clause ST ≡ l1 ∨ . . . ∨ lm, where the literals li are the subgoals
of the tableau T . The subgoal clause set SB,n,C w.r.t. a bound B, a resource n,
and a clause set C, is defined by SB,n,C = (∪ST) \ C, T is a tableau which is a
label of a node in the initial segment of the search tree for C that is defined by
bound B and resource n. Note that subgoal clauses are valid clauses, i.e. logical
consequences of the initial clause set. In order to make our method more goal-
directed it is wise to only consider subgoal clauses which are derived from “real”
proof goals, i.e. which are derived from start relevant clauses. E.g., it might be
sensible to restrict the set of subgoal clauses to descendants of the set of negative
clauses, i.e. to only consider such subgoal clauses where the start expansion was
performed with a negative clause. We call the set of these subgoal clauses SB,n,C

neg .

Cooperation Between Top-Down and Bottom-Up Theorem Provers 161

Example 1. Let C = {¬g,¬p1 ∨ . . . ∨ ¬pn ∨ g,¬q1 ∨ . . . ∨ ¬qm ∨ g}. Then,
¬p1 ∨ . . . ∨ ¬pn is the subgoal clause ST belonging to the tableau obtained
when extending the goal ¬g with the clause ¬p1 ∨ . . . ∨ ¬pn ∨ g. If we em-
ploy B = inference bound (Inf) and resource k = 2, then SB,k,C = SB,k,C

neg =
{¬p1 ∨ . . . ∨ ¬pn,¬q1 ∨ . . . ∨ ¬qm}.

A subgoal clause ST represents a transformation of an original goal clause
(which is the start clause of the tableau T) into a new subgoal clause realized by
the deduction which led to the tableau T . The set SInf,k,C is the set of all possible
goal transformations into subgoal clauses within k inferences if we consider all
input clauses to be goal clauses, the set SInf,k,C

neg is the set of all possible goal
transformations into subgoal clauses within k inferences if we only consider the
negative clauses to be goal clauses.

Now, in order to couple a ME and a superposition prover, we generate
with the inference bound and a fixed resource k > 1 either the set SInf,k,C

or the set SInf,k,C
neg , depending on the fact whether CTC or CTCneg is used. A

superposition-based prover obtains then C ∪ SInf,k,C (C ∪ SInf,k,C
neg) as input.

3.2 Reduction of Proof Length and Search Through Subgoal
Clauses

The introduced method gives rise to the question whether a proof length re-
duction is possible, i.e. whether there are shorter superposition proofs of the
inconsistency of C ∪SInf,k,C or C ∪SInf,k,C

neg than of the inconsistency of C. Note
that we measure the length of a proof by counting the number of inference steps
needed in it . This question is mainly of theoretical interest. It is more impor-
tant whether a bottom-up prover can really profit from a possible proof length
reduction in form of a proof search reduction, i.e. a reduction of the number of
inferences the prover needs in order to find a proof. Specifically, it is interesting
to find out in which cases the proof search reduction is high.

First, we assume that no equality is involved in the problem, i.e. superposition
corresponds to (ordered) resolution.

Theorem 1.
1. Let C be a set of ground clauses not containing equality, let � 6∈ C, and let

k > 1 be a natural number. Let P1 and P2 be minimal (w.r.t. the number
of inference steps |P1| and |P2|) resolution refutation proofs for C and C ∪
SInf,k,C , respectively. Then, it holds: |P1| > |P2|.
But there is a set of ground clauses C not containing equality (� 6∈ C) where
no minimal resolution refutation proof of the inconsistency of C ∪ SInf,2,C

neg

has a shorter length than a minimal proof of the inconsistency of C.
2. For each k > 1 there is a set of (non-ground) clauses Ck not containing

equality (� 6∈ Ck), such that no minimal resolution refutation proof for Ck ∪
SInf,k,Ck or Ck ∪ SInf,k,Ck

neg is shorter than a minimal resolution refutation
proof for Ck.

162 Dirk Fuchs

Proof:
1. Due to lack of space we only prove the first part. (The proof of the second

part can be found in [Fuc98a].) Note that no factorization steps are needed
in the case of ground clauses (recall that clauses are sets of literals). Then,
the claim is trivial since the result of the first resolution step of each minimal
proof is an element of SInf,k,C .

2. Let k > 1. Let Ck be defined by Ck = {¬p(x1) ∨ . . . ∨ ¬p(xk), p(y1) ∨ . . . ∨
p(yk)}. Let >= ∅ be the ordering used for superposition. Then, a minimal
resolution refutation proof for Ck requires k−1 factorization steps (resulting
in the clause p(y1)) and k resolution steps. Furthermore, in SInf,k,Ck are only
clauses which contain at least one positive and one negative literal. Thus,
none of these clauses can lead to a refutation proof for Ck ∪SInf,k,Ck in less
than 2k− 1 inferences. Since SInf,k,Ck

neg is a subset of SInf,k,Ck we obtain the
same result in this case.

�

Hence, a reduction of the proof length is at least for ground clauses possible.
However, the (heuristic) proof search of a superposition-based prover need not
always profit from the proof length reduction obtained. E.g., it is possible that
all clauses of a minimal refutation proof for C have smaller heuristic weights than
the clauses from SInf,k,C (SInf,k,C

neg) and will hence be activated before them:

Example 2. Let >= ∅ be the ordering used for superposition. Let the clause set
C be given by C = {¬a ∨ ¬b ∨ c,¬g ∨ b, a, g,¬c}. The heuristic H corresponds
to the FIFO heuristic. Further, resolvents of the two most recently activated
clauses are preferred by H. Then, following clauses are activated by the prover
(in this order): ¬a∨¬b∨c,¬g∨b,¬a∨¬g∨c, a,¬g∨c, g, c,¬c,�. Furthermore, if
the subgoal clauses of SInf,k,C (SInf,k,C

neg) are inserted behind the original axioms
the prover will find the same refutation proof as before and the proof search can
hence not profit from a possible proof length reduction.

However, since the example (especially the chosen heuristic) is somewhat con-
trived it can be expected that for many problems clauses from SInf,k,C (SInf,k,C

neg)
will be activated and can contribute to a reduction of the search effort.

In the case that equality is involved in the problem, a proof length reduction
is not guaranteed even for ground clauses.

Theorem 2. For each resource k > 1 there is a set of ground unit equations
Ck (� 6∈ Ck) where the minimal superposition refutation proofs for Ck ∪SInf,k,Ck

(Ck ∪ SInf,k,Ck
neg) are not shorter than minimal proofs for Ck.

Proof: Let >= ∅ be the ordering used for superposition. Consider the set of unit
equations Ck = {a = b, fk−1(a) 6= fk−1(b)}. We assume that >= ∅ is used as an
ordering for superposition. Then, a minimal superposition refutation proof for
Ck requires two inferences, a superposition step into fk−1(a) 6= fk−1(b) resulting
in the inequation fk−1(a) 6= fk−1(a), and then an equality resolution step. In
the set SInf,k,Ck are either non-unit clauses whose refutation requires at least 2

Cooperation Between Top-Down and Bottom-Up Theorem Provers 163

inferences or the units U = {f i(a) 6= f i(b), f j(a) = f j(b) : 0 ≤ i < k − 1, 0 <
j ≤ k − 1}. Since also the refutation of Ck ∪ U requires a superposition and an
equality resolution step a proof length reduction is impossible. Since SInf,k,Ck

neg is
a subset of SInf,k,Ck we obtain the same result in this case. �

Despite this negative result, it is sometimes possible to shorten the proof
search if the search space is restructured in a favorable way.

All in all, we obtain that in general the reduction of the heuristic search for
a proof cannot be guaranteed although sometimes proof lengths—at least for
ground clauses and if no equality is involved in the problems—are shortened.
Nevertheless, in practice it might often be the case that a restructuring of the
search caused by using subgoal clauses allows for finding proofs faster. The inte-
gration of subgoal clauses into the search state of a superposition-based prover
promises a strong gain of efficiency in the following cases:

Firstly, it is important that some of the subgoal clauses can be proven quite
easily, especially more easily than the original goal(s). In order to estimate this,
it is necessary to judge whether they can probably be solved with the help of
clauses of the initial clause set. E.g., measuring similarity between a goal and
other clauses with the techniques developed in [DF94] may be well-suited.

Secondly, a solution of a newly introduced subgoal clause should not always
entail a solution of an original goal within few steps of the prover. If this were
the case then the integration of new subgoal clauses would not promise much
gain. Criteria in order to estimate this are: on the one hand, the transformation
of an original goal clause into a subgoal clause by a ME prover should have
been performed by using many inferences, i.e. k should be quite high. Then, it
is possible that a solution of a new subgoal clause does not entail a solution of
an original goal within few steps because the probability is rather high that a
bottom-up prover cannot—due to its heuristic search—quickly reconstruct the
inferences needed to infer the original goal. On the other hand, if there is a
subgoal clause ST and some of the tableau clauses of the tableau T have a high
heuristic weight regarding the heuristic of the superposition-based prover, a high
gain of efficiency may occur if the prover can prove ST . This is because inferences
needed to infer the original goal may not be performed by the prover.

4 Relevancy-Based Selection of Subgoal Clauses

Already when using small resources k the set SInf,k,C (SInf,k,C
neg) can become

quite large. Thus, it is not sensible to integrate all subgoal clauses from SInf,k,C

(SInf,k,C
neg) into the search state of a superposition-based prover: Integrating too

many clauses usually does not entail a favorable rearrangement of the search be-
cause the heuristic “gets lost” in the huge number of clauses which can be derived
from many subgoal clauses. Hence, it is reasonable to develop techniques for fil-
tering subgoal clauses that entail a large gain of efficiency for a superposition
prover if they can be proven. I.e. we are interested in filtering relevant subgoal
clauses. Therefore, our approach is as follows: At first, we generate a set of sub-
goal clause candidates and then we select some subgoal clauses from this set. The

164 Dirk Fuchs

Fig. 1. Inference-based generation of a set of subgoal clause candidates

chosen subgoal clauses are added to the search state of the bottom-up prover.
We shall first introduce two techniques for generating a set of subgoal clause
candidates. After that, we shall deal with selecting relevant subgoal clauses.

In order to generate a set of interesting subgoal clauses it is important that
we employ a large resource for generating subgoal clauses. As we have already
discussed, subgoal clauses that are generated with a small number of inferences
do not promise much gain because a bottom-up prover may easily reconstruct the
inferences needed to infer them. Thus, if the prover is able to prove the subgoal
clause it can also prove the original goal clause with few inferences and we do
not gain much efficiency. However, it is not possible to generate all subgoal
clauses SInf,k,C (SInf,k,C

neg) for a sufficiently large resource k as subgoal clause
candidates because their large number entails too high costs for the generation
and additional selection. Hence, we are only able to choose as subgoal clause
candidates a subset of SInf,k,C (SInf,k,C

neg), k sufficiently large (see section 5).

Our first variant, an inference-based method, starts by generating subgoal
clauses from SInf,k,C (SInf,k,C

neg) for a rather large resource k and stops when Nsg

subgoal clause candidates are generated. The advantage of this method is that it
is very easy and can efficiently be implemented: Tableaux are enumerated with
a fixed strategy for selecting subgoals for inferences (usually left-most/depth-
first) and for each tableau its subgoal clause is stored. The main disadvantage
of this method is that due to the fixed strategy and the limit of the number
of subgoal clauses, we only obtain subgoal clauses which are inferred from goal
clauses by expanding certain of their subgoals with a high number of inferences,
other subgoals only with a small number of inferences. (See also Figure 1: Ovals
are tableaux in a finite segment of the search tree T , the lines represent the
` relation. Grey ovals represent enumerated tableaux, i.e. their subgoal clauses
are stored, white ovals represent tableaux which are not enumerated within Nsg

inferences.) Thus, the method is somewhat unintelligent because no information
about the quality of the transformation of an original goal clause into a subgoal
clause is used. Certain transformations are favored only due to the uninformed
subgoal selection strategy.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 165

Fig. 2. Adaptive generation of a set of subgoal clause candidates

Our second variant, an adaptive method, tries to overcome the disadvantages
of the first in the following way: Instead of allowing for more inferences when
generating subgoal clauses due to an uninformed subgoal selection strategy, we
want to allow for more inferences at certain interesting positions of the search
tree T C for a given set of clauses C.

In detail, our approach is as follows: At first, we generate all subgoal clauses
SInf,k1,C (SInf,k1,C

neg) with a resource k1 which is smaller compared to the first
variant. Then, a fixed number Nref of subgoal clauses is chosen which promise
the highest gain of efficiency regarding the criteria from section 3. More exactly,
we choose subgoal clauses which are maximal w.r.t. function ψ:

ψ(ST) = α1 · I(ST) + α2 ·max{$C : C is a tableau clause in T }
+α3 ·max{sim(ST , C) : C ∈ C, |C| = 1}

The higher the number of inferences I(ST) is which are needed to infer ST

the higher ψ(ST) should be. Hence, α1 should be positive. Also a rating α2 > 0
is sensible. If there are tableau clauses C in T which have a high heuristic weight
$C regarding the heuristic H of the superposition-based prover we can perhaps
gain a lot of efficiency. The function simmeasures whether literals from ST could
probably be solved with unit clauses from C. We utilized the function occnest
[DF94] for accomplishing this task.

Now, let MNref ⊆ SInf,k1,C (SInf,k1,C
neg) be the set of chosen subgoal clauses.

Then, we generate again with a resource k2 subgoal clauses but employ as start
clauses for the tableau (subgoal clause) enumeration the clauses from MNref .
We call the set of subgoal clauses generated with this method SInf,k2,C,MNref .
(Consider also Figure 2: The dotted line shows which subgoal clauses are gen-
erated with resource k1. Then some of them are selected (black ovals) and used
as starting points for the generation of new subgoal clauses (grey ovals) with
resource k2.) The resource k2 should again be not too high in order to allow for
a fast enumeration of the subgoal clauses. The set of subgoal clause candidates
is then given by SInf,k1,C ∪ SInf,k2,C,MNref (SInf,k1,C

neg ∪ SInf,k2,C,MNref) . Thus,
subgoal clause candidates are all subgoal clauses derived with a certain number
of inferences which may—at least for ground clauses and if no equality is in-
volved in the problem—guarantee a reduction of the proof length. Further, we

166 Dirk Fuchs

have some subgoal clause candidates derived with a higher number of inferences,
at most k1 + k2. These subgoal clauses promise a high gain of efficiency because
they are derived from subgoal clauses selected with function ψ.

For selecting subgoal clauses from the set of subgoal clause candidates we
employed function ϕ, defined by ϕ(ST) = ψ(ST) − θ(ST) and selected clauses
with the highest weight. θ simply counts a weighted sum of the number of vari-
ables in ST and two times the number of function or predicate symbols in ST .
Hence, “general” subgoal clauses are preferred because they can more often be
used in inferences of a bottom-up prover.

5 Experimental Results

In order to evaluate our concept of integrating top-down/bottom-up provers by
cooperation, we coupled two renowned provers: the ME prover Setheo (which
employs CTCneg) and the superposition prover SPASS. Each prover runs on an
own processor and obtains the initial clause set C as input. When tackling simple
problems it is unnecessary to let the provers cooperate. Therefore, each prover
tries to solve the problem independently with a timeout of 4 seconds. If no prover
could solve the problem, the top-down prover generates subgoal clauses with one
of the two variants. Note that in our context this does not require changes in
the top-down prover but can be performed with built-ins of the PROLOG-style
input language of Setheo. Then, these subgoal clauses are filtered, transferred
to the bottom-up prover, and integrated into its search state. Finally, the provers
proceed to tackle the problem in parallel.

Hence, we can efficiently solve simple problems. Moreover, cooperation can
be performed for harder problems after the first timeout. Note that during this
cooperation phase it is also possible to add some clauses that the bottom-up
prover has generated to the axiomatization of the ME prover. Thus, we can
achieve cooperation by exchanging lemmas and subgoal clauses without one
concept disturbing the other.

We experimented in the light of problems from the well-known problem li-
brary TPTP [SSY94]. In order to obtain a reliable collection of data, we used
two domains of TPTP as our test set, the domains CAT (category theory) and
LDA (LD-algebras). The CAT domain consists of 58 problems, the LDA domain
of 22. From these domains we extracted 22 and 15 non-trivial problems, respec-
tively, i.e. problems none of the provers can solve within 4 seconds. Note that
the problems in both domains contain equality. The subgoal clause candidates
were generated in the following way: For variant 1 we employed the resource
k = 10 which performed best in the experiments. The use of higher resources
did not entail better results. We limited the set of subgoal clauses by Nsg = 500.
For variant 2 we employed as resources k1 = k2 = 9. These resources allowed
for the efficient generation of all subgoal clauses within the initial segments of
the search tree. Usually at most 500 subgoal clauses were generated, i.e. about
the same number as when employing variant 1. As start clauses for an adaptive
refinement we selected Nref = 5 clauses.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 167

Table 1. Integration of top-down/bottom-up approaches by cooperative provers

problem SPASS Seth. inf. adapt. problem SPASS Seth. inf. adapt.

LDA004-1 – – – – CAT001-1 – – – –

LDA005-1 – – – – CAT001-3 134s 32s 6s 6s

LDA005-2 279s – 265s 8s CAT001-4 33s 11s 5s 5s

LDA006-1 – – – – CAT002-2 – – – –

LDA006-2 276s – 304s 10s CAT003-1 – – – –

LDA007-1 16s 366s 19s 21s CAT004-3 – 23s – 9s

LDA007-2 – 50s 7s 7s CAT008-1 91s 126s 6s 6s

LDA008-1 – – – – CAT009-1 – – 10s 10s

LDA008-2 – – – – CAT009-3 – – – 29s

LDA009-1 – – – – CAT009-4 53s – 47s 50s

LDA009-2 – – – 24s CAT010-1 – – 11s 9s

LDA010-1 – – – 9s CAT011-3 17s – 12s 12s

LDA010-2 – – – 26s CAT014-3 18s – 11s 11s

LDA011-1 54s – 58s 9s CAT018-3 – – – 74s

LDA011-2 21s – 35s 7s CAT019-4 – – – –

Finally, 100 clauses were selected from the set of candidates and transmit-
ted to SPASS. Table 1 presents results of our experiments (we omitted some
problems which could not be solved by any of the alternatives from table 1).

Column 1 of each part of the table displays the name of the problem. Columns
2 and 3 present the runtimes of SPASS and Setheo (on a SPARCstation 20)
when working alone. SPASS was used with its standard setting. Setheo em-
ployed the weighted-depth bound ([MIL+97]) which performed best in the con-
sidered domains. Columns 4 and 5 display the runtimes of SPASS when it
obtains subgoal clauses from Setheo which are generated regarding variants
1 and 2, respectively. Note that the runtimes include the 4 seconds before the
cooperation, the selection of subgoal clauses, and the transmission to SPASS.
The entry “–” means that the problem could not be solved within 1000 seconds.

The results reveal the high potential of our approach to significantly improve
on single provers. However, when considering the results of variant 1, they also
show that a naive and uninformed generation of subgoal clauses usually does not
entail much gain. In the LDA domain, we can solve 9 of 15 hard problems by us-
ing variant 2 for subgoal generation, whereas SPASS can only solve 5, Setheo
only 2. A simple competitive prover which employs SPASS and Setheo in par-
allel would also only be able to solve 6 problems. Hence, cooperation is really
important in order to increase the success rate. We can also in almost all cases
significantly decrease the runtimes. E.g. problems LDA005-2 and LDA006-2which
require a runtime of more than 4 minutes when using SPASS can be proven in
a few seconds. In the CAT domain the results are similar. By employing sub-
goal clauses generated regarding variant 2 we can solve 11 of 22 hard problems.
SPASS and Setheo are only able to solve 6 and 4, respectively.

168 Dirk Fuchs

6 Discussion and Future Work

Integration of top-down and bottom-up provers by employing cooperation is
very promising in the field of automated deduction. Due to certain strengths
and weaknesses of provers following different paradigms, techniques that try
to combine the strengths by cooperation can allow for an improvement of the
deductive system. Our approach of combining top-down and bottom-up provers
by processing top-down generated subgoal clauses in a bottom-up prover achieves
this combination by introducing goal-orientation into a bottom-up prover thus
combining strong redundancy control mechanisms and goal-directed search.

So far, related approaches mainly aimed at supporting a top-down prover
by a bottom-up based lemma component. Results presented, e.g., in [Sch94] or
[Fuc98b], reveal that also these approaches are well-suited. However, in some
domains, especially if equality is involved, superposition-based provers clearly
outperform ME provers. Thus, in such domains it may be more sensible to
develop techniques in order to support the more powerful bottom-up prover
than the weaker top-down prover. Transmitting information from a top-down
to a bottom-up prover was so far—to our knowledge—only discussed in [Sut92].
However, there bottom-up lemmas generated by a ME prover were transferred
to resolution-based provers and the results were not satisfactory.

Future work should deal with an extension of the empiric investigation. It
would be interesting to detect in which kinds of domains (Horn/non-Horn, equal-
ity/no equality) the approach is especially well-suited. Moreover, it might be in-
teresting to develop more complex methods for generating subgoal clause candi-
dates. The results from section 5 suggest that an even more intelligent generation
and selection of subgoal clauses leads to further improvements.

References

[AL97] O.L. Astrachan and D.W. Loveland. The use of Lemmas in the Model
Elimination Procedure. Journal of Automated Reasoning, 19(1):117–141,
1997.

[AS92] O.L. Astrachan and M.E. Stickel. Caching and Lemmaizing in Model Elim-
ination Theorem Provers. In Proceedings of CADE-11, pages 224–238,
Saratoga Springs, USA, 1992. Springer LNAI 607.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[DF94] J. Denzinger and M. Fuchs. Goal oriented equational theorem proving. In
Proc. 18th KI-94, pages 343–354, Saarbrücken, 1994. LNAI 861.

[DF98] J. Denzinger and D. Fuchs. Enhancing conventional search systems with
multi-agent techniques: a case study. In Proc. Int. Conf. on Multi Agent
Systems (ICMAS) 98, Paris, France, 1998.

[Fuc98a] D. Fuchs. Cooperation between Top-Down and Bottom-Up Theorem
Provers by Subgoal Clause Transfer. Technical Report SR-98-01, University
of Kaiserslautern, Kaiserslautern, 1998.

Cooperation Between Top-Down and Bottom-Up Theorem Provers 169

[Fuc98b] M. Fuchs. Similarity-Based Lemma Generation for Model Elimination. In
Proc. CADE-15, Lindau, Germany, 1998.

[Kor85] Richard E. Korf. Depth-First Iterative-Deepening: An Optimal Admissi-
ble Tree Search. AI, 27:97 – 109, 1985. Elsevier Publishers B.V. (North-
Holland).

[LMG94] R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into
Connection Tableau Calculi. Journal of Automated Reasoning, (13):297–
337, 1994.

[Lov68] D.W. Loveland. Mechanical Theorem-Proving by Model Elimination. Jour-
nal of the ACM, 15(2), 1968.

[MIL+97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. spe-
cial issue of the Journal of Automated Reasoning, 1997.

[Sch94] J. Schumann. Delta - a bottom-up preprocessor for top-down theorem
provers. system abstract. In Proceedings of CADE-12. Springer, 1994.

[SSY94] G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library.
In CADE-12, pages 252–266, Nancy, 1994. LNAI 814.

[Sti88] M.E. Stickel. A prolog technology theorem prover: Implementation by an
extended prolog compiler. Journal of Automated Reasoning, 4:353–380,
1988.

[Sut92] G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS’92
Workshop W3, 1992.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141–145, New Brunswick, 1996. LNAI 1104.

Polymorphic Call-by-Value Calculus Based on

Classical Proofs

(Extended Abstract)

Ken-etsu Fujita

Kyushu Institute of Technology, Iizuka, 820-8502, Japan
fujiken@dumbo.ai.kyutech.ac.jp

Abstract. We introduce a polymorphic call-by-value calculus, λv
exc,

based on 2nd order classical logic. The call-by-value computation rules
are defined based on proof reductions, in which classical proof reductions
are regarded as a logical permutative reduction in the sense of Prawitz
and a dual permutative reduction. It is shown that the CPS-translation
from the core λv

exc to the intuitionistic fragment, i.e., the Damas-Milner
type system is sound. We discuss that the use of the dual permutative re-
duction is, in general, uncorrected in polymorphic calculi. We also show
the Church-Rosser property of λv

exc, and the soundness and completeness
of the type inference algorithm W. From the subject reduction property,
it is obtained that a program whose type is inferred by W never leads
to a type-error under the rewriting semantics. Finally, we give a brief
comparison with ML plus callcc and some of the existing call-by-value
styles.

1 Introduction

Information can be represented as symbols, and symbolic computation is im-
portant in artificial intelligence such as problem solving, reasoning, knowledge
representation, natural language processing, learning, expert systems and so on
[26]. For symbolic computation, it is essential to provide an underlying system or
language which describes symbols and algorithm. On the other hand, based on
the Curry-Howard-De Bruijn isomorphism [14], types are assigned to formulae
and terms to proof trees, and proof reductions can be regarded as computational
rules or symbolic rewriting rules. This principle is widely applied to automated
theorem proving, constructive programming, analogical reasoning, etc. The com-
putational meaning of proofs has been investigated by many researchers, not
only in intuitionistic logic but also in classical logic and modal logic [15]. In the
area of classical logic, Griffin [11], Murthy [17], Parigot [21], Berardi&Barbanera
[4], Rehof&Sørensen [24], de Groote [6], Ong [19], and so on, are some of the
noteworthy investigators. As far as we know, however, polymorphic call-by-value
calculus is less studied from the viewpoint of classical logic. As an application
of the isomorphism to construct a symbolic computation system with a control
operator, we investigate the fragment of second order classical logic, in the sense

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 170–182, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Polymorphic Call-by-Value Calculus Based on Classical Proofs 171

of the Damas-Milner type discipline [5], based on the call-by-value strategy. The
isomorphism can give a neat guide to define symbolic computation rules, espe-
cially in the case of polymorphic call-by-value systems.

First, we introduce a simple system λv
exc of polymorphic call-by-value lan-

guage based on classical logic, and the CPS-translation from the core λv
exc to the

intuitionistic fragment, i.e., the Damas-Milner type system. The soundness of the
translation is established under a strict notion of values but an extended form.
The call-by-value computation rules are defined based on proof reductions, in
which classical proof reductions are regarded as a logical permutative reduction
in the sense of Prawitz [23] and a dual permutative reduction. Here, continua-
tions can be naturally treated by the logical permutative reductions. Second, we
discuss that from the viewpoint of proof reductions, one of the important clas-
sical proof reductions, called dual permutative reduction, in general, becomes
uncorrected not only in full polymorphic calculi but also in the Damas-Milner
style. Our observation reveals some conditions under which the dual permutative
reduction can be accepted. Third, it is shown that λv

exc has the Church-Rosser
property. We also show the soundness and completeness of the type inference
algorithm W . From the subject reduction property, we found that a program
whose type is inferred by W never leads to a type-error under the rewriting
semantics. Finally, we give a brief comparison with ML [16,12] and some of the
existing call-by-value styles.

2 Polymorphic Call-by-Value Language Based on
Classical Logic

In this section we give the definition of the core language λv
exc. The types τ and

the type schemes σ are defined as usual. The terms are defined by two kinds of
variables; x is used as usual, like in λ-calculus. On the other hand, y is called an
exceptional variable or a continuation variable, where y is used only for negation
types ¬τ defined as τ → ⊥. The binary relation τ ≤ ∀α1 · · ·αn.τ ′ (n ≥ 0) is
defined such that the type τ is obtained from the type τ ′ by substituting the type
τi for αi (1 ≤ i ≤ n), i.e., τ = τ ′[α1 := τ1, · · · , αn := τn]. A type assumption is a
finite set of declarations with the form x :σ or y :¬τ , all with distinct subjects.
The inference rule (⊥I) below is introduced, since we do not consider a term
of the form My for some M . Based on the continuation semantics discussed
in the next section, the variable y is used for representing a continuation, and
the continuation can be regarded as the context in which a term is evaluated.
Since the variable y is waiting for the rest of the computation, it is natural to
consider an η-expansion form M(λx.yx) instead of My. Here, a negation type
¬τ plays a role of the type of continuation that expects a term of type τ , which
is reflected in the definition of values below. In contrast to a system with the
double negation elimination, to establish a classical system we have to introduce
both (⊥E) below and the classical rule (exc), which is a variant of the law of
the excluded middle.

172 Ken-etsu Fujita

λv
exc:

Types Type Schemes Type Assumptions
τ ::= α | ⊥ | τ → τ σ ::= τ | ∀α.σ Γ ::= 〈 〉 | x :σ, Γ | y :¬τ, Γ
Terms
M ::= x | MM | λx.M | let x=M in M | raise(M) | yM | {y}M
Type Assignment

Γ ` x : τ if τ ≤ Γ (x)

Γ `M1 : τ1 → τ2 Γ `M2 : τ1

Γ `M1M2 : τ2
(→ E)

Γ, x :τ1 `M : τ2

Γ ` λx.M : τ1 → τ2
(→ I)

Γ `M1 : τ1 Γ, x :∀α.τ1 `M2 : τ2

Γ ` let x=M1 in M2 : τ2
(let)∗

Γ, y :¬τ `M : τ

Γ ` {y}M : τ
(exc)

Γ `M : ⊥
Γ ` raise(M) : τ

(⊥E) Γ `M : τ
Γ ` yM : ⊥ (⊥I) if Γ (y) ≡ ¬τ

(let)∗ denotes the side condition such that the sequence of type variables α, say
α1 · · ·αn, does not appear free in Γ .

The notion of values is defined below as an extended form; the class of val-
ues is closed under both value-substitution and term-replacement, as defined
later. The notion of values will be discussed based on the CPS-translation. The
definition of the reduction rules is given based on the call-by-value strategy.
In particular, the classical reduction (5-1) below can be explained as a logical
permutative reduction in the sense of Prawitz [23] and Andou [1]. Here, in the
reduction of ({y}M)N . {y}(M [y ⇐ N])N , since both the type of M and the
type of each subterm M ′ with the form yM ′ in M can be considered as mem-
bers of the segments ending with the type of {y}M , the application of (→ E)
is shifted up to the occurrence M and each occurrence M ′, and then MN and
M [y ⇐ N] (each yM ′ is replaced with y(M ′N)) are obtained. This reduction
is also called a structural reduction in Parigot [21]. On the other hand, since a
term of the form {y}M is not regarded as a value, (λx.M1)({y}M2) will not be a
β-contractum, but will be a contractum of (5-2) below, which can be considered
as a dual permutative reduction. FV (M) stands for the set of free variables in
M .
Values V ::= x | λx.M | yM
Term reductions
(1) (λx.M)V . M [x := V];
(2-1) (raise M1)M2 . raise M1; (2-2) V (raise M) . raise M ;
(3-1) let x=V in M . M [x := V];
(4-1) {y}M . M if y 6∈ FV (M); (4-2) {y}raise(yM) . {y}M ;
(5-1) ({y}M1)M2 . {y}(M1[y ⇐M2])M2; (5-2) V ({y}M) . {y}V (M [V ⇒
y]),
where the term-replacement M [y ⇐ N] is used such that an operand of {y}M ,
i.e., the right context (continuation) of {y}M , is replaced on an argument posi-
tion of y in M . each y The term M [y ⇐ N] is defined as a term obtained from
M by replacing each subterm of the form yM ′ in M with y(M ′N). Similarly,

Polymorphic Call-by-Value Calculus Based on Classical Proofs 173

the dual operation M [N ⇒ y] is used such that each subterm of the form yM ′

in M is replaced with y(NM ′).
We identify {y}{y1}M with {y}M [y1 := y] for technical simplicity. The bi-

nary relation .∗ is defined by the reflexive transitive closure of ., and the con-
gruence relation is denoted by =. We sometimes use the term {y :¬τ}M with
the type τ of M .

From the definition, λv
exc is a simple fragment of the second order λ-calculus

λ2 (Girard’s F) together with the excluded middle. Moreover, for the finite-type
fragment of λv

exc (i.e., with neither σ nor (let)), there exists a term M such that
Γ `M : τ iff τ as a formula is provable from Γ in classical propositional logic.

3 CPS-Translation of λv

exc
-Terms

We provide the CPS-translation from classical logic λv
exc to the intuitionistic

fragment (the Damas-Milner style) ML, which logically induces Kuroda’s trans-
lation. The system of ML is defined as usual. The reduction rules are defined
from (1) and (3-1) without restricting to values. The one step reduction relation
and the reflexive transitive closure are denoted by .β and .∗β, respectively. The
congruence relation is denoted by =β .
ML:

Γ ` x : Γ (x)

Γ `M1 : τ1 → τ2 Γ `M2 : τ1

Γ `M1M2 : τ2
(→ E)

Γ, x :τ1 `M : τ2

Γ ` λx.M : τ1 → τ2
(→ I)

Γ `M : ∀α.σ
Γ `M : σ[α := τ]

(Inst) Γ `M : σ
Γ `M : ∀α.σ

(Gen)∗

Γ `M1 : σ Γ, x :σ `M2 : τ

Γ ` let x=M1 in M2 : τ
(Let)

(Gen)∗ denotes the side condition such that the type variable α does not appear
free in Γ .

As mentioned in Harper&Lillibridge [13], there are difficulties in defining
translation rules for polymorphic let-expressions. With respect to λv

exc, the let-
expression, let x=M in N , cannot be interpreted as (λx.N)M = λk.M(λx.Nk)
in the full polymorphic lambda calculus λ2 (System F of Girard), since the
denotation is not well-typed under our negative translation of Kuroda, which
also relates to the use of the dual permutative reduction in polymorphic calculi
discussed in the next section. To define the translation, we start with separating
the λ-variables x into two categories, depending on a finite or polymorphic use;
x is used monomorphically, and x∗ is used polymorphically. The syntax of the
terms in λv

exc is rewritten as follows:
M ::= x | x∗ | MM | λx.M | let x∗=M in M | raise(M) | yM | {y}M

In an explicit type system, the polymorphic variable x∗ is used in the form x∗τ ′

by the instantiation rule, where x∗ :∀α.τ for some τ . This means that even in an
implicit type system, the expression x∗ cannot be regarded as a value in a strict

174 Ken-etsu Fujita

sense (a trivial computation may be needed). We also consider a strict class of
values, excluding a single occurrence x∗: V ::= x | λx.M | yM
The call-by-value reduction rules are applied for the strict class V in this section.
To establish the CPS-translation, the distinction between V and x∗ is used only
in this section. For programs containing no free variables x∗, the discrimination
would not be important.

The translation, with an auxiliary function Ψ for values V , comes from
Plotkin [22] and de Groote [6]. It is proved that the translation is sound with
respect to conversions.

Definition 1 (CPS-translation from λv
exc to ML) x = λk.kx; x∗ = λk.x∗k;

λx.M = λk.k(λx.M); yM = λk.k(My);
MN = λk.M(λm.N(λn.mnk)); let x∗=M in N = λk.(let x∗=M in (Nk));
raise(M) = λk.M(λx.x); {y}M = λy.My.
Ψ(x) = x; Ψ(λx.M) = λx.M ; Ψ(yM) = My.

According to the continuation semantics of Meyer&Wand [18], our definition of
the CPS-translation is given as follows, where the type ⊥ plays the role of the
answer type: If we have a variable x, then the value x is sent to the continuation
k. In the case of a λ-abstraction, a certain function that will take two arguments
is sent to the continuation k. If we have a term with a continuation variable
y, then a certain function with the argument y is sent to the continuation k,
where the variable y will be substituted by a continuation. Here, it would be
natural that a value is regarded as the term that is mapped by Ψ to some term
consumed by the continuation k, since the continuation is the context in which
a term is evaluated and then to which the value is sent. Our notion of values as
an extended form is derived based on this observation.

Lemma 1 i) For any term M where k 6∈ FV (M), λk.Mk .β M .
ii) For any value V , V = λk.kΨ(V).
iii) For any term M and value V , M [x := V] = M [x := Ψ(V)].
iv) For any terms M and N , M [x∗ := N] .∗β M [x∗ := N].

The above lemma can be proved by straightforward induction. Based on the
CPS-translation, the term-replacements M [y ⇐ N] and M [N ⇒ y] can be
interpreted as the following substitutions for continuation variables, respectively.

Lemma 2 i) For any term M and N , M [y ⇐ N] .∗β M [y := λm.N(λn.mny)].
ii) For any term M and value V , M [V ⇒ y] .∗β M [y := λn.Ψ(V)ny].

Proof. By induction on the structure of M . Only the case of yM is shown:
(yM)[V ⇒ y] = λk.k((λk′.V (λm.M [V ⇒ y](λn.mnk′)))y)
.β λk.k((λk′.k′Ψ(V))(λm.M [V ⇒ y](λn.mny)))
.∗β λk.k(M [V ⇒ y](λn.Ψ(V)ny)) .∗β λk.k(M [y := λn.Ψ(V)ny](λn.Ψ(V)ny))
= λk.k(My)[y := λn.Ψ(V)ny] = yM [y := λn.Ψ(V)ny]. 2

Polymorphic Call-by-Value Calculus Based on Classical Proofs 175

Lemma 3 If M . N , then M =β N .

Proof. By induction on the derivation of M . N . We show some of the cases:
(3-1) let x∗=V in M . M [x∗ := V]:
let x∗=V in M = λk.(let x∗=V in (Mk))
.β λk.M [x∗ := V]k .∗β λk.M [x∗ := V]k .β M [x∗ := V].
(5-2) V ({y}M) . {y}(V (M [V ⇒ y])):
V ({y}M) = λk.V (λm.(λy.My)(λn.mnk))
.β λk.(λk′.k′Ψ(V))(λm.M [y := λn.mnk](λn.mnk))
.∗β λk.M [y := λn.Ψ(V)nk](λn.Ψ(V)nk) = λy.M [y := λn.Ψ(V)ny](λn.Ψ(V)ny)
=β λy.M [V ⇒ y](λn.Ψ(V)ny) =β λy.(λm.M [V ⇒ y](λn.mny))Ψ(V)
=β λy.(λk.V (λm.M [V ⇒ y](λn.mnk)))y = {y}V (M [V ⇒ y]). 2

Now, under the strict notion of values, we have confirmed the soundness
of the translation in the sense that equivalent λv

exc-terms are translated into
equivalent ML-terms.

Proposition 1 (Soundness of the CPS-Translation) If we have M = N
in λv

exc, then M =β N in ML.

The translation logically establishes the double-negation translation of Kuroda.

Definition 2 (Kuroda’s Translation) τq = τ where τ is atomic;
(τ1 → τ2)q = τq

1 → ¬¬τq
2 ; (∀α.τ)q = ∀α.¬¬τq .

(x :σ, Γ)q = x :σq , Γ q; (y :¬τ, Γ)q = y :¬τq , Γ q.

Proposition 2 If we have Γ `M : τ in λv
exc, then Γ q `M : ¬¬τq in ML.

Proof. By induction on the derivation. We show some of the cases.
Case 1-1. x : τ is derived from x : τ :
λk.kx : ¬¬τq is derived from x : τq in ML.
Case 1-2. x∗ : τ [α := τ1] is derived from x∗ : ∀α.τ :
λk.xk : ¬¬τq [α := τq

1] is derived from x∗ : ∀α.¬¬τq in ML. One also has that
(τ [α := τ1])q = τq [α := τq

1] for any types τ and τ1.
Case 2. Γ ` let x∗=M1 in M2 : τ2 from Γ `M1 : τ1 and Γ, x∗ :∀α.τ1 `M2 : τ2:
By the induction hypotheses, we have Γ q ` M1 : ¬¬τq

1 where α is not free in
types in Γ q, and Γ q, x∗ : ∀α.¬¬τq

1 ` M2 : ¬¬τq
2 . One also has Γ q, k : ¬τq

2 , x∗ :
∀α.¬¬τq

1 `M2k : ⊥, and Γ q, k :¬τq
2 ` M1 : ∀α.¬¬τq

1 . Hence, Γ q ` λk.(let x∗=
M1 in M2k) : ¬¬τq

2 is derived in ML. 2

From the consistency of ML, it is also derived that λv
exc is consistent in the sense

that there is no closed term M such that `M : ⊥.
Note that all of the above results are also available for the system with (3-1’)

let x = N in M . M [x := N], without restricting to values. The reason is
explained based on the observation in the next section. The polymorphic use of
the term {y}M cannot treat the left context correctly, i.e., the dual permutative
reduction, in general, becomes an uncorrected proof reduction. Here, we do not
forbid the polymorphic use of {y}M , since the polymorphic term can treat the

176 Ken-etsu Fujita

right context correctly by the permutative reduction. The reduction rule (3-
1’) supports this computation, and the CPS-translation would work for the ’by
name’ semantics for let-expressions in [12]. This is one of the reasons why the
CPS-translation logically establishes the negative translation of Kuroda without
restricting let-bound expressions, M1 in (let)∗ to a value, as compared with
that of [13]. Next, we introduce new reduction rules that transform the local
definition part to a value form, since the system is working with (3-1) under the
call-by-value strategy.

4 Dual Permutative Reduction and Polymorphism

In the core language, one problem is that there is no reduction rule for the fol-
lowing polymorphic program:

let x={y}(λx.N) in M where N is in normal.
As a naive extension of the reduction rule (5-2): V ({y}N) . {y}V N [V ⇒ y] to
the polymorphic case, one may take the rule such that

(a) let x={y}N in M . {y}(λx.M)N [λx.M ⇒ y].
Here, the reduced term cannot be well-typed in the Damas-Milner type dis-
cipline. However, the main defect is not the weakness of the underlying type
system, but the reduction itself cannot be a correct proof reduction. This situ-
ation was discovered by Harper&Lillibridge [13]. Now we observe this from the
viewpoint of proof reductions, which reveals some conditions that justify the
reduction. Take the following rule in a β-reduced form of the above (a):

(b) let x={y}N in M . {y}M [x := N [y(M [x := N ′])/yN ′]], where
the term N [y(M [x := N ′])/yN ′] is a term obtained from N , replacing each
subterm of the form yN ′ in N with y(M [x := N ′]).

Assume that we have the following proof figure in the Damas-Milner type
system:

[y :¬τ1]
Π1

N ′ : τ1

yN ′ : ⊥
Π2

N : τ1

{y}N : τ1

[x : ∀α.τ1]
x : τ1[α := τ3]

[x : ∀α.τ1]
x : τ1[α := τ4]

Π3

M : τ2

let x={y}N in M : τ2
(let)∗

First, compute the type of N [y(M [x := N ′])/yN ′], and then one obtains the
following type assignment:

y :¬τ2S

Π1[α := τ3] ◦ S
N : τ1[α := τ3] ◦ S

Π1[α := τ4] ◦ S
N : τ1[α := τ4] ◦ S

Π3S
M [x := N ′] : τ2S

y(M [x := N ′]) : ⊥
Π2[α := τ3] ◦ S

N [y(M [x := N ′])/yN ′] : τ1[α := τ3] ◦ S ,

Polymorphic Call-by-Value Calculus Based on Classical Proofs 177

if τ3 and τ4 are unifiable under some substitution S, considering the case such
that the assumption whose type contains a free variable α in Π1 is discharged by
(→ I) in Π2. Second, compute the type of {y}M [x := N [y(M [x := N ′])/yN ′]],
and then finally the following assignment is obtained:

[y :¬τ2S]....
N [y(M [x := N ′])/yN ′] : τ1[α := τ3]◦S

[y :¬τ2S]....
N [y(M [x := N ′])/yN ′] : τ1[α := τ4]◦S

Π3S
M [x := N [y(M [x := N ′])/yN ′]] : τ2S

{y}M [x := N [y(M [x := N ′])/yN ′]] : τ2S

Following the above observation, we obtain that (b) represents a correct proof
reduction only if all types of x in M can be unified. Here, the merit of polymor-
phism is lost. Moreover, the type of the reduced term becomes a substitution
instance of τ2. It can also be observed that, in the above proof figure, if Π2

contains no (→ I) that discharges the type containing free α, then there is no
need to unify each type of x in M , and (b) becomes correct. For instance, in the
case of let x={y}λx′.raise(y(λv.x′)) in M , one may have to unify each type
of x in M , if one uses (b). On the other hand, (b) is a correct reduction for the
case of let x={y}λv.raise(y(λx′.x′)) in M .

In general, even with λ2+(exc), in which one can obtain a sound type, the
reduction rule (5-2) is still uncorrected in the sense that the reduced term does
not present a correct proof. Following the similar observation (to be skipped
here), there exists a case where the side condition of polymorphic generalization
is not satisfied. The observation means that the polymorphic term of the form
{y}M cannot manage the left context correctly. This also shows that one cannot
adopt the dual structural reduction in Parigot’s λµ-calculus (2nd order classical
logic) [21]. Otherwise, we can obtain a self application for any value. For instance,
the following example is derived from that of Harper&Lillibridge [13]:

λg.λx.g((λf.(λv.λx.x)(fx)(f(λx.x))) ({y}λx.raise(y(λv.x))) x)
with type (α→ α)→ α→ α

is reduced to λg.λx.g(xx) by the use of (5-2), where, in the reduction process
with the type, the side condition of polymorphic generalization is not satisfied.
This observation is not in conflict with that of Harper&Lillibridge.

Our solution is to take the reduction rule {y}(λx.M).λx.{y}M [y⇐ x]. The
two terms are extensionally equivalent in the sense that for any V , ({y}(λx.M))V
= (λx.{y}M [y ⇐ x])V , where both are reduced to {y}M [y ⇐ V][x := V].
However, in general, adding the reduction rule breaks down the Church-Rosser
property. Hence, we use the reduction rule in the local definition of (let):

(3-2) let x={y}(λx′.M1) in M2 . let x=λx′.{y}M1[y ⇐ x′] in M2.
For example,
HL ≡ let f ={y}λx.raise(y(λv.x)) in (λv.λx.x)(f1)(ftrue) with type bool
is now reduced to true. On the other hand,

(λf.(λv.λx.x)(f1)(f2))({y}λx.raise(y(λv.x))) with type int

178 Ken-etsu Fujita

is reduced to 1. Relating to the CSP-translation, if one naively interpreted HL
as (λf.(λv.λx.x)(f1)(ftrue))({y}λx.raise(y(λv.x))),
then λk.k1 was derived simulating (5-2) by β-reductions. In our turn, HL =β

λk.ktrue is obtained following the CPS-translation.
One may also consider a more general rule, such that
let x={y :¬(τ1 → τ2)}N in M . let x=λx′.{y :¬τ2}Nx′[y ⇐ x′] in M .

However, the reduction rule also breaks down the confluence property under the
call-by-value strategy.

Following the above observation, we add the reduction rule (3-2), and simi-
larly (3-3) let x=raiseτ1→τ2(M1) in M2 . let x=λv.raiseτ2(M1) in M2

where v is fresh.
The idea is that the reduction rules transform the local definition part to a value
form, and we treat only the right context with respect to {y}(λx.M) for some
M in the polymorphic declaration.

With respect to all of the reductions, including (3-2) and (3-3), we can prove
that λv

exc has the Church-Rosser property by the well-known method of parallel
reductions [2,22] and the Lemma of Hindley-Rosen, see [2].

Proposition 3 (Church-Rosser Theorem) If we have M.∗M1 and M.∗M2,
then M1 .∗ N and M2 .∗ N for some N .

5 Type Inference Algorithm

From a practical point of view, we give the type inference algorithm W to λv
exc

extended with constants, a recursion operator, and so on.
Types Type Schemes Type Assumptions
τ ::= b | α | τ → τ σ ::= τ | ∀α.σ Γ ::= 〈 〉 | x :σ, Γ | c :
σ, Γ | y :¬τ, Γ
Terms
M ::= c | x |MM | λx.M | if M then M else M | fix x.M | let x=M in M

| raise(M) | yM | {y}M
Type Assignment λv

exc plus

Γ ` c : τ if τ ≤ Γ (c)

Γ `M : bool Γ `M1 : τ Γ `M2 : τ

Γ ` if M then M1 else M2 : τ
(if)

Γ, x :τ `M : τ

Γ ` fix x.M : τ
(fix)

Reduction rules: (1) ∼ (5) together with
(6-1) if true thenM1 elseM2 . M1; (6-2) if false thenM1 elseM2 . M2;
(7-1) fix x.M . M [x := fix x.M].

Proposition 4 (Subject Reduction) If we have Γ `M : τ and M . N , then
Γ ` N : τ .

Proof. By induction on the derivation of M.N . 2

Polymorphic Call-by-Value Calculus Based on Classical Proofs 179

We use the Robinson’s unification algorithm U that computes the most general
unification U(τ1, τ2) = S for any types τ1 and τ2. For any substitutions S1 and
S2, the composition S1 ◦ S2 is defined as usual.

Following Milner [16] and Damas&Milner [5], we give the type inference al-
gorithm that computes the principal type under the given type assignment.
W(Γ ; M) = (S, τ), where

1) If M is x or c and Γ (M) = ∀α1 · · ·αn.τ ′ (0 ≤ n), then S = Id (identity
substitution) and τ = τ ′[α1 := β1, · · · , αn := βn] where βi is a new type variable
(0 ≤ i ≤ n).
2), 3), 4), 5), 6) The case M of λx.M1, M1M2, if M0 then M1 else M2,
fix x.M1, or let x=M1 in M2 is defined as usual.
7) If M is yM1, then:
let ¬τ1 = Γ (y), (S1, τ2) =W(Γ ; M1), and U = U(τ1, τ2);
then S = S1 ◦ U and τ = ⊥.
8) If M is raise(M1), then:
let (S1, τ1) =W(Γ ; M1), and U = U(τ1,⊥);
then S = S1 ◦ U and τ = α where α is fresh.
9) If M is {y}M1, then:
let (S1, τ1) =W(Γ, y :¬α; M1) where α is fresh, and U = U(τ1, αS1);
then S = S1 ◦ U and τ = τ1.

Proposition 5 (Soundness and Completeness) i) For any Γ and M ,
if W(Γ, M) = (S, τ), then we have ΓS `M : τ .
ii) For any Γ and M , if we have ΓS `M : τ for some S and τ , thenW(Γ, M) =
(S1, τ1), and ΓS = ΓS1 ◦ S2 and τ = τ1S2 for some S2.

Proof. By induction on the structure of M . 2

From the soundness and completeness ofW , it is confirmed thatW computes the
principal type under the given type assignment. It is also obtained that from the
subject reduction property and the soundness ofW , if a type of M is inferred by
W , then the program M never gives a type error under the rewriting semantics.

We give a simple example due to Friedman&Felleisen, page 57 in [7]. Given
a : α and l : α list, compute a sublist of l, which is the tail part of l from the
last occurrence a. Let remberuptolast be

λa.λl′.{y} (fix f.λl. if l=nil then nil else if car(l)=a
then raise(y(f(cdr(l)))) else cons (car(l)) (f(cdr(l))))l′

with type α→ α list → α list.
Then we have let f =remberuptolast in f 1 [1, 2, 1, 3, 1, 4, 5] .∗ [4, 5].
One can also define remberuptolast a l = P(aux a l), where
aux a l′ is

λexit. (fix f.λl. if l=nil then nil else if car(l)=a
then exit(f(cdr(l))) else cons (car(l)) (f(cdr(l))))l′, and

P is a proof of Peirce’s law ((α→ β)→ α)→ α, i.e., λx1.{y}x1(λx2.raise(yx2)).
Along this line, together with the proofF = λx1gf.{y}g(x1(λx2.raise(y(fx2))))
with type ((α→ β)→ γ)→ (γ → δ)→ (α→ δ)→ δ, one can write a program
with a case analysis: remberuptolast′ a l g f = F(aux a l) g f .

180 Ken-etsu Fujita

When l contains a, remberuptolast′ a l g f = f(remberuptolast a l);
otherwise remberuptolast′ a l g f = g(remberuptolast a l).

6 Comparison with Related Work and Concluding
Remarks

We briefly compare λv
exc with ML [16] together with callcc [12]. In ML, the

class of type variables is partitioned into two subclasses, i.e., the applicative
and the imperative type variables, where the imperative type variable is intro-
duced for polymorphic references in Tofte [25]. The type of callcc is declared
with imperative type variables to guarantee the soundness of the type inference.
Based on the classification, the typing rule for let-expression is given such that
if the let-bound expression is not a value, then generalization is allowed only for
applicative type variables; otherwise (i.e., the let-bound expression is a value),
generalization is possible with no restriction. On the other hand, we have no
distinction of the type variables, and a single typing rule for (let) is used. There
is a simple translation from the ML-programs to the λv

exc-terms, such that the
two subclasses of type variables in ML are degenerated into a single class.

dcallcc(M)e = {y}dMe(λx.yx); dthrow M Ne = raise(dMedNe),
and dτ conte = ¬dτe.

Then the typing relation is preserved under the translation in the following sense:

Proposition 6 If Γ `M : τ in ML, then dΓ e ` dMe : dτe in λv
exc.

However, there are some distinctions; according to Harper et al. [12], the program
let f =callcc(λk.λx.throw k (λx′.x)) in (λx′.λx.x)(f1)(ftrue)

is not typable in ML, since callcc(λk.λx.throw k (λx′.x)) with imperative type
variables is not a value, and in the case of non-value expressions, polymorphism
is allowed only for expressions with applicative type variables. On the other
hand, under the translation d e, we have

let f ={y}λx.raise(y(λx′.x)) in (λx′.λx.x)(f1)(ftrue) with type bool,
and it is reduced to true.

With respect to the implemented system (Standard ML of New Jersey, Ver-
sion 110, December 9, 1997 [CM&CMB]),

(let f =λx.callcc(λk.throw k x) in λx.x(f1)(f(λx.x))) (λx′.λx.x) 0
with type int is evaluated to 0. However, the type checking of the subterm

let f =λx.callcc(λk.throw k x) in λx.x(f1)(f(λx.x))
gives this warning: type vars not generalized because of value restriction are
instantiated to dummy types, i.e., the result alone could not be used polymor-
phically. On the other hand, under the translation, we have

let f =λx.{y}raise(yx) in λx.x(f1)(f(λx.x))
with type (int→ (α→ α)→ β)→ β, and it is evaluated to λx.x1(λx.x).

rule,
The construction of λv

exc is, in part, under the influence of the work by Parigot
[21] and de Groote [6]; The call-by-name version of our system is isomorphic to

Polymorphic Call-by-Value Calculus Based on Classical Proofs 181

Parigot’s λµ-calculus with respect to finite types, in the sense that equivalent
λµ-terms are translated into equivalent λv

exc-terms and vice versa.
Ph.de Groote [6] introduced a call-by-value language based on the simply

typed lambda calculus for formalizing an exception-handling mechanism. At
first appearance, our finite type fragment is a small subsystem of his; however,
under some translations, they are logically equivalent with respect to finite types.
Moreover, our system can be regarded as a meaningful simplification of his, see
Fujita [10]. For comparison with the call-by-value style, λc of Felleisen [8,9], see
also [10].

Ong&Stewart [20] extensively studied a call-by-value programming language
based on a call-by-value variant of Parigot’s λµ-calculus. There are some distinc-
tions between Ong&Stewart and our finite type fragment; their reduction rules
have type annotations like the Church-style, and, using the annotation, more
reduction rules are defined than ours, which can give a stronger normal form. In
addition, our notion of values is an extended one, which would be justified by
observation based on the CPS-translation.

References

1. Y.Andou: A Normalization-Procedure for the First Order Classical Natural De-
duction with Full Logical Symbols, Tsukuba Journal of Mathematics, Vol.19, No.1,
pp.153-162, 1995.

2. H.P.Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition),
North-Holland, 1984.

3. H.P.Barendregt: Lambda Calculi with Types, Handbook of Logic in Computer
Science Vol.II, Oxford University Press, pp.1-189, 1992.

4. F.Barbanera, S.Berardi: Extracting Constructive Context from Classical Logic via
Control-like Reductions, LNCS 664, pp.45-59, 1993.

5. L.Damas, R.Milner: Principal type-schemes for functional programs, Proc. 9th
Annual ACM Symposium on POPL, pp.207-212, 1982.

6. P.de Groote: A Simple Calculus of Exception Handling, LNCS 902, pp.201-215,
1995.

7. M.Felleisen, D.P.Friedman: The Seasoned Schemer, The MIT Press, 1996.
8. M.Felleisen, D.P.Friedman, E.Kohlbecker, B.Duba: Reasoning with Continuations,

Proc. Annual IEEE Symposium on LICS, pp.131-141, 1986.
9. M.Felleisen, R.Hieb: The Revised Report on the Syntactic Theories of Sequential

Control and State, Theor.Comput.Sci. 103, pp.131-141, 1992.

10. K.Fujita: Calculus of Classical Proofs I, LNCS 1345, pp.321-335, 1997.

11. T.G.Griffin: A Formulae-as-Types Notion of Control, Proc. 17th Annual ACM
Symposium on POPL, pp.47-58, 1990.

12. R.Harper, B.F.Duba, D.MacQueen: Typing First-Class Continuations in ML,
J.Functional Programming, 3 (4) pp.465-484, 1993.

13. R.Harper, M.Lillibridge: Polymorphic type assignment and CPS conversion, LISP
and Symbolic Computation 6, pp.361-380, 1993.

14. W.Howard: The Formulae-as-Types Notion of Constructions, Academic Press,
pp.479-490, 1980.

15. S.Kobayashi: Monads as modality, Theor.Comput.Sci. 175, pp.29-74, 1997.

182 Ken-etsu Fujita

16. R.Milner:A Theory of Type Polymorphism in Programming, J.Comput.Syst.Sci.17,
pp.348-375, 1978.

17. C.R.Murthy: An Evaluation Semantics for Classical Proofs, Proc. 6th Annual IEEE
Symposium on LICS, pp.96-107, 1991.

18. A.Meyer, M.Wand: Continuation Semantics in Typed Lambda-Calculi, LNCS 193,
pp.219-224, 1985.

19. C.-H.L.Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical,
and Denotational Characterizations, Linear Logic ’96 Tokyo Meeting, 1996.

20. C.-H.L.Ong, C.A.Stewart: A Curry-Howard Foundation for Functional Compu-
tation with Control, Proc. 24th Annual ACM Symposium of POPL, Languages,
1997.

21. M.Parigot: λµ-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction, LNCS 624, pp.190-201, 1992.

22. G.Plotkin: Call-by-Name, Call-by-Value and the λ-Calculus, Theor.Comput.Sci.1,
pp. 125-159, 1975.

23. D.Prawitz: Ideas and Results in Proof Theory, Proc. 2nd Scandinavian Logic
Symposium, edited by N.E.Fenstad, North-Holland, pp.235-307, 1971.

24. N.J.Rehof, M.H.Sørensen: The λ∆-Calculus, LNCS 789, pp.516-542, 1994.
25. M.Tofte: Type Inference for Polymorphic References, Information and Computa-

tion 89, pp.1-34, 1990.
26. P.H.Winston, B.K.P.Horn: LISP (3rd, Ed), Addison Wesley, 1989.

Inference and Verification in Medical

Appropriateness Criteria Using Gröbner Bases ?

L. M. Laita1, E. Roanes-Lozano2, and V. Maojo1

1 Universidad Politécnica de Madrid, Dept. I.A. (Fac. Informática)
Campus de Montegancedo, Boadilla del Monte, 28660-Madrid, Spain

laita@fi.upm.es; vmaojo@infomed.dia.fi.upm.es
2 Universidad Complutense de Madrid, Dept. Algebra

Edificio “La Almudena”, Paseo Juan XXIII s/n, 28040-Madrid, Spain
eroanes@eucmos.sim.ucm.es

Abstract. In this article techniques borrowed from Computer Algebra
(Gröbner Bases) are applied to deal with Medical Appropriateness Crite-
ria including uncertainty. The knowledge was provided in the format of a
table. A previous translation of the table into the format of a “Rule Based
System” (denoted RBS) based on a three-valued logic is required before-
hand to apply these techniques. Once the RBS has been obtained, we
apply a Computer Algebra based inference engine, both to detect anoma-
lies and to infer new knowledge. A specific set of criteria for coronary
artery surgery (originally presented in the form of a table) is analyzed
in detail.

Keywords. Verification. Inference Engines. RBSs in Medicine. Gröbner Bases.

Topics: Integration of Logical Reasoning and Computer Algebra.

Symbolic Computation for Expert Systems and Machine Learning.

1 Introduction

“Appropriateness criteria” are ratings of the appropriateness for a given diag-
nostic or therapeutic procedure. Whereas other policies such as clinical practice
guidelines are designed to assist practitioners in patient decision making, those
criteria are developed primarily to evaluate retrospectively the appropriateness of
clinical decisions ([7], [4]). Nevertheless, these Medical Appropriateness Criteria
are usually tested for consistency by using ad hoc techniques, and no mechanical
procedures for extracting new information are usually provided.

In this article we present a method of verification and knowledge extraction
that, using Computer Algebra and Logic, deals with appropriateness criteria
translated into RBSs.

A considerable amount of work has been done in the field of dealing with
medical information from logic (for instance [15]), and under the form of RBSs

? Partially supported by projects FIS 95/1952 and DGES PB96-0098-C04 (Spain).

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 183–194, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

184 L. M. Laita, E. Roanes-Lozano, and V. Maojo

(for instance, but not only, [3]). The difference with the method described in
this paper is that it uses an algebraic theory that can cope with medical infor-
mation (or other) that can be expressed as an RBS based on a multivalued and
modal logic. This kind of logic is very convenient both to represent incomplete
knowledge and to be treated with a Computer Algebra based inference engine.
A short comment about the efficiency of this article’s approach is included at
the end of the Appendix.

2 Table Description and Translation into IF-THEN
Statements

A set of medical data regarding coronary diseases [12] (asymptomatic; effort-
test positive or negative; one, two, three blood vessel disease; anterior proximal
descendent affected or not; LVEF values) was presented to a panel of ten experts,
and they were asked about the appropriateness of taking action accordingly
(Revascularization, PTCA, CABG)1. Data and actions were resumed in a table
under the following format.

LVEF Revasc. Appropriate PTCA, CABG Approp.

L > 50 1: 1 2 3 4 5 6 7 81 ∗9 +A 2: 1 2 3 4 5 6 7 81 ∗9 −+ A
50 ≥ L > 30 5: 1 2 3 4 5 6 7 8 ∗10 +A 6: 1 2 3 4 5 6 7 81 ∗9 −+ A
30 ≥ L ≥ 20 9: 1 2 3 4 5 6 7 81 ∗9 +A 10: 1 2 3 4 5 6 71 81 ∗8 −+ A

Fig. 1. Asymptomatic. A: Effort test: positive.
1: Left Common trunk disease. Surgical risk low/moderate.

LVEF Revasc. Appropriate PTCA, CABG Approp.

L > 50 3: 1 2 3 4 5 6 7 84 ∗6 +A 4: 1 2 3 4 51 6 71 81 ∗7 −+ A
50 ≥ L > 30 7: 1 2 3 4 5 6 7 83 ∗7 +A 8: 1 2 3 4 5 61 71 82 ∗6 −+ A
30 ≥ L ≥ 20 11: 1 2 3 4 5 6 71 82 ∗7 +A 12: 1 2 3 4 5 62 7 82 ∗6 −+ A

Fig. 2. Asymptomatic. A: Effort test: positive.
1: Left Common trunk disease. Surgical risk high.

LVEF Revasc. Appropriate PTCA, CABG Approp.

50 ≥ L > 30 20: 1 2 33 42 5 ∗ 7 82 93 + + D
L > 50 39: 12 2 31 41 ∗3 6 73 8 9 ?D 40: 15∗ 21 33 4 51 6 7 8 9 ?−A

Fig. 3. Asymptomatic. A: Effort test: positive.
1: Three blood vessel disease. Surgical risk high.

1 LVEF means “Left Ventricle Ejection Fraction”, CABG means “Coronary Artery
Bypass Grafting”, and PTCA means “Percutaneous Transluminal Coronary Angio-
plasty”.

Inference and Verification in Medical Appropriateness Criteria 185

The table assigns a number (1, 2, etc), to each row of digits, symbols +,−,
∗, and letters A, D, I.

The superscripts, for instance (1) in 1 (appropriateness of Revasculariza-
tion): 1 2 3 4 5 6 7 81 ∗9 +A, express the number of experts that have assigned
that value (8 in a scale from 1 to 9) to the appropriateness of the action. The
symbol “∗” stands for the median. The symbol + means “appropriateness of
the treatment (Revascularization or PTCA or CABG)”. The symbol “−” that
appears in other rows of the table means “inappropriateness” and the symbol
“?” means “undecided appropriateness”.

The letter A (after the symbol + or − or ?), means that there is “Agree-
ment” among the panelists about the appropriateness (+), inappropriateness
(−) or undecided appropriateness (?) of Revascularization, PTCA or CABG. A
letter D means that there is “Disagreement” and a letter I means “Undecided
Agreement”. There exists disagreement (D) if of the ten panelists, the opinion
of three of them ranks between 1 and 3, and the opinion of another three ranks
between 7 and 9 (i.e. big standard deviation). There is agreement (A) when the
opinion of no more than two of them is outside the interval of [1, 3], [4, 6], [7, 9]
containing the median. Otherwise there exists undecided agreement (I).

Observe that we have transcribed here just 17 of the more than 400 rows in
the table (these rows are the ones needed in the examples given in this paper).
The rest of the table is similar with the following changes.

Instead of the heading “A: Effort test positive”, two other sections of the
table begin respectively with: “B: Effort test negative”, and “C: Effort test not
performed or not determined”. In each of sections A,B,C, the heading “1: Left
common trunk disease”, can also be: “2: Three blood vessel disease”, “3: Two
blood vessel disease with proximal anterior descendent affected”, “4: Two blood
vessel disease with proximal anterior descendent not affected”, “5: One blood
vessel disease with proximal anterior descendent affected”, or “6: One blood
vessel disease with proximal anterior descendent not affected”. Under each of
these 6 headings there are 12 items of information.

3 Translation of a Set of Criteria into an RBS

3.1 Introductory Note

An RBS rule is usually represented by an implication between a conjunction of
propositional variables X [i] and a disjunction (or a conjunction) of propositional
variables, as

◦X [1] ∧ ◦X [2] ∧ ... ∧ ◦X [n]→ •(◦X [n + 1] ∨ ∨ ◦X [s]) .

Under our three-valued logic, the symbol “◦” can be replaced by symbol L,
3, ¬, a combination of them (for instance 3¬X), or no symbol at all. LX means
“it is necessary that X holds”. X means “X holds”. 3X means “it is possible
that X holds”. ¬X means “not-X”.

186 L. M. Laita, E. Roanes-Lozano, and V. Maojo

The symbol “•” refers to the degree of certainty of the whole rule or the
certainty of the conclusions and is to be replaced by a combination of the symbols
¬ , L, 3 .

3.2 Translation of the Information in the Table

We can assign a propositional variable X [i] , to each datum and action.
Asymptomatic: no variable is assigned (all other symptoms suppose that this

case is assumed).
Surgical risk.- low/moderate: ¬X [1], high: X [1].
Effort test.- positive: X [2], negative: ¬X [2], not done or not decisive: 3¬X [2]

(this case is translated as “it is possible that the effort test is negative”).
Left common trunk disease: X [3]. Three blood vessel disease: X [4]. Two

blood vessel disease: X [5]. One blood vessel disease: X [6].
Anterior proximal descendent.- affected: X [13], not affected: ¬X [13].
LVEF (L).- L > 50%: X [7], 50% ≥ L > 30%: X [8], 30 % ≥ L ≥ 20%: X [9].
Revascularization: X [10], PTCA: X [11], CABG: X [12].
These variables are combined to form rules, under the following conventions

(which we have designed, in order to translate as accurately as possible the
information in the tables):

(i) Data is written with no symbol preceding it. The reason is that we can
suppose that it has been collected with a reasonable degree of certainty.

(ii) The symbols +, ?, and −, are respectively translated into L, 3, and L¬.
(iii) The symbol “•” (see subsection 3.1 above) will be replaced by L, 3, or

3¬. They respectively mean that the experts agree, have undecided agreement,
or disagree, on the appropriateness of Revascularization, PTCA and CABG.

Item 1 in the table can be reinterpreted as: “IF a patient is asymptomatic
AND his/her surgical risk is low/moderate AND his/her effort test is positive
AND he/she has a left common trunk disease AND his/her LVEF is strictly
larger than 50% THEN the panel of experts have judged that Revascularization
is appropriate”. Moreover, “there is agreement (A) about this judgment”. It is
translated as:

R1: ¬X [1] ∧X [2] ∧X [3] ∧X [7]→ L(LX [10])
The following list is a translation of the 2nd to 12th rules of the part of

the table that refers to “effort test positive”. The whole table can be trans-
lated similarly. The system automatically performs logical simplifications such
as LLX ↔ LX .

R2: ¬X [1] ∧X [2] ∧X [3] ∧X [7]→ L(L¬X [11]∧ LX [12])
R3: X [1] ∧X [2] ∧X [3] ∧X [7]→ L(LX [10])
R4: X [1] ∧X [2] ∧X [3] ∧X [7]→ L(L¬X [11]∧ LX [12])
R5: ¬X [1] ∧X [2] ∧X [3] ∧X [8]→ L(LX [10])
R6: ¬X [1] ∧X [2] ∧X [3] ∧X [8]→ L(L¬X [11]∧ LX [12])
R7: X [1] ∧X [2] ∧X [3] ∧X [8]→ L(LX [10])
R8: X [1] ∧X [2] ∧X [3] ∧X [8]→ L(L¬X [11]∧ LX [12])
R9: ¬X [1] ∧X [2] ∧X [3] ∧X [9]→ L(LX [10])

Inference and Verification in Medical Appropriateness Criteria 187

R10: ¬X [1] ∧X [2] ∧X [3] ∧X [9]→ L(L¬X [11] ∧ LX [12])
R11: X [1] ∧X [2] ∧X [3] ∧X [9]→ L(LX [10])
R12: X [1] ∧X [2] ∧X [3] ∧X [9]→ L(L¬X [11] ∧ LX [12]) .
An example of a rule in which there exists disagreement, that is, symbols 3¬

precede its conclusion, is (see the Explanatory Note below, that justifies why
writing the symbol “∨” in the conclusion):

R20: X [1] ∧X [2] ∧X [4] ∧X [8]→ 3¬(LX [11]∨ LX [12]).
Other rules that will be used in this example are:
R39: X [1] ∧X [2] ∧X [5] ∧ ¬X [13] ∧X [7]→ 3¬(3X [10]) ,
which translates in the conclusion the disagreement on the undecided appro-

priateness of revascularization, and:
R40: X [1] ∧X [2] ∧X [5] ∧ ¬X [13] ∧X [7]→ L(3X [11]∧ L¬X [12]) ,
which translates the agreement in both the undefined appropriateness of

PTCA and the unappropriateness of CABG.

Explanatory note: Let us justify why writing “∧” in the conclusion of some
rules, but “∨” in some other rules.

In principle, only ∧ but no ∨ symbols would appear in the consequent of
each rule. But, in addition to the information given in the table, it is neces-
sary to take into account information that does not appear explicitly in it, but
that belongs to medical practice. For instance, PTCA and CABG cannot be
performed simultaneously. This is translated into L¬(LX [11]∧LX [12]) (the ex-
pression LX [11] ∧ LX [12] is an example of what in RBSs context is called an
“integrity constraint”). Then L¬(LX [11]∧LX [12]) would lead to a logical con-
flict with rule 20 if rule 20 had an ∧ in its consequent. So, there must be an
initial pre-process to obtain the definitive rules, and some ∧ are substituted by
∨ (in the consequent of some rules) in order to avoid logical conflicts.

4 Knowledge Extraction and Consistency in the Set of
Criteria

For the sake of simplicity, we will consider only rules 1 to 12 and rules 20, 39
and 40, which are enough to clarify the concepts to be described.

(1) Potential facts and facts
It is known in RBSs literature that a potential fact in a set of rules is any

literal, which stands in the antecedent of some rule(s) of the set but not in any
consequent of any rule(s) in the set. A literal is a variable preceded or not by
the symbol ¬ (if we are in bivalued logic) or by ¬, 3, L, or by some combination
of these symbols (in the three valued case).

Then, potential facts in our example are X [1],¬X [1], X [2], X [3], X [4], X [5],
X [7], X [8], X [9], ¬X [13].

In each case, those among the potential facts that are stated will be called
“facts”.

188 L. M. Laita, E. Roanes-Lozano, and V. Maojo

(2) Integrity constraints
In our example, both PTCA and CABG cannot be carried out simultane-

ously. To take both actions simultaneously (Integrity Constraint: IC) is trans-
lated as LX [11] ∧ LX [12]. Therefore, the formula (NIC) that strongly negates
it, L¬(LX [11] ∧ LX [12]), needs to be added as new information.

(3) Addition of information directly by the experts
As Revascularization can be carried out by PTCA or CABG (under the

integrity constraint in (2)), we add as information the formula X [10]↔ X [11]∨
X [12]. The formula X [10] ↔ X [11]∨ X [12], will be hereafter referred to as
“ADDI1” (additional information 1).

Addition of more information suggested by the anomalies found will be ex-
plained in (4).

(4) Anomalies
In our implementation, we will ask the computer the following questions.

(4-1) Is the set of rules 3, 4, 7, 8, 11, 12, 20, 39, 40 together with the facts
X [1], X [2], X [3] X [4], X [5], X [7], X [8], X [9], ¬X [13] (plus ADDI1 and NIC)
consistent? The answer will be NO (see Appendix).

The same occurs with the set of rules 1, 2, 5, 6, 9, 10, 20, 39, 40, together with
the facts ¬X [1], X [2], X [3], X [4], X [5], X [7], X [8], X [9], ¬X [13] (plus ADDI1
and NIC).

Note that we do not ask about consistency of all rules 1 to 12 with their
potential facts altogether because ¬X [1] and X [1] can never be given as facts
simultaneously, as they give inconsistency immediately.

(4-2) Is the set of rules 3, 4, 7, 8, 11, 12 together with their respective potential
facts, NIC and ADDI1, consistent? (ADDI2 is not included because it contains
another different variable). The answer will be YES.

The same occurs with the set of rules 1, 2, 5, 6, 9, 10 together with their
respective potential facts, NIC and ADDI1.

(4-3) Is the set of rules 8, 20 together with their potential facts consistent? The
answer will be NO.

The contradiction between rules 8 and 20 is conditional on the case when
simultaneously a left common trunk disease (X [3]) and a three vessel disease
(X [4]) occur. But if X [3] (left common trunk disease) holds, rule 8 says that
PTCA is absolutely disregarded (under agreement) and if X [4] (three vessel
disease) holds, PTCA is considered appropriate (under disagreement).

We wonder if in a situation where X [3] and X [4] hold together it would
be better to assess that if a left common trunk disease implies (under agree-
ment) absolutely disregarding PTCA, then a three vessel disease should imply
(also under agreement) at least a possibility of disregarding PTCA. In symbols:
(X [3]→ L(L¬X [11]))→ (X [4]→ L(3¬X [11])) .

Inference and Verification in Medical Appropriateness Criteria 189

This is the kind of information to be added, if the experts agree. The formula
above will be denoted “ADDI2” (additional information 2).

(4-4) Is the set of rules 39, 40 together with the potential facts in these two rules
and ADDI1 consistent? The answer will be again NO.

The existence of contradictions in the points (4-3) and (4-4) suggests changes
in the rules, and therefore a way to improve the information in the table. In the
case (4-3) we could leave rule 8 as it is and exchange rule 20 with:

RN20: X [1] ∧X [2] ∧X [4] ∧X [8]→ •(3¬X [11]∨ LX [12]) ,
where • could be L or 3 (according to the judgement of the experts). “RN”
means “new rule”.

In the case (4-4) we could exchange rule 39 with:
RN39: X [1] ∧X [2] ∧X [5] ∧ ¬X [13] ∧X [7]→ 3(3X [10])

and leave rule 40 as it is.
It will have to be checked that no contradiction appears under these changes.

(4-5) Exchange in question (4-3) rule 20 with RN20 plus ADDI2, and check the
consistency of this new set. The answer will be YES.

(4-6) Exchange in question (4-4) rule 39 with RN39 and check the consistency
of this new set. The answer will be YES.

(5) Knowledge extraction
Theorem proving is an important field of research in A.I. A particular case

is the extraction of knowledge which is implicit in an RBS. The implementation
to be described in the Appendix allows asking the computer questions in the
form of propositional formulae that are written using the propositional variables
which appear in the RBS. Let us illustrate this with two examples÷

i) Is 3(LX [11] ∨ LX [12]) a consequence of rules 3, 4, 7, 8, 11, 12, their
potential facts and ADDI1? The answer will be YES.

ii) Is ADDI2 a consequence of rules 8 and RN20 together with their potential
facts? The answer will be YES, which is a nice result because it certifies that
exchanging rule 20 with RN20 can be proposed to the panelists.

As a consequence of these and other suggestions, they have decided to make
substantial changes in the configuration of the tables. For instance the +/− is
not considered any longer. The knowledge included has also been revised.

5 Theory Description: Two Basic Items and the Main
Result

In this section we briefly summarize the RBSs theory of verification and of knowl-
edge extraction on which the treatment of this paper is based. The theoretical
model is developed in [14] and [11], and therefore only some important basic
items and an informal statement of the main result together with its application
to consistency checking are stated below.

190 L. M. Laita, E. Roanes-Lozano, and V. Maojo

This theory is related to term-rewriting and theorem proving (see for instance
[8], [9], [13]). The main theorem first appeared in [2], was improved in [6] and
is proved in a different way in [14] and [11]. The method differs substantially
from other known verification methods (a state of the art in Knowledge Systems
verification is studied in [10]).

5.1 Tautological Consequences and Contradictory Domains

A propositional formula A0 is a tautological consequence of the propositional for-
mulae A1, A2, ..., Am, denoted {A1, A2, ..., Am} |= A0 iff for any truth-valuation
v such that if v(A1) = v(A2) = ... = v(Am) = 2, then v(A0) = 2 (0, 1, 2 are the
values respectively assigned to “false”, “indeterminate” and “true” in our three
valued logic).

In this context, {A1, A2,...,Am} is called “a contradictory domain” iff {A1,
A2,...,Am} |= A, where A is any formula of the language in which A1, A2, ..., Am

are expressed. The name contradictory domain comes from the fact that, if all
formulae follow from {A1, A2, ..., Am}, in particular contradictory formulae fol-
low.

5.2 Translation of Logical Formulae into Polynomials

The information contained in the RBS is translated into polynomials. From
here onwards the polynomial ring will be (ZZ/(3)ZZ)[x1, ..., xn]/I where the xi

are the polynomial variables that correspond to the propositional variables that
appear in the RBS and I is the ideal generated by the polynomials of the form
x3

i − xi. In the three-valued case (Lukasiewicz’s Logic with modal connectives),
the polynomial translation of the connectives is (see [14] for details):

f¬(q) = (2 − q) + I
f3(q) = 2q2 + I

fL(q) = (q2 + 2q) + I
f∨(q, r) = (q2r2 + q2r + qr2 + 2qr + q + r) + I

f∧(q, r) = (2q2r2 + 2q2r + 2qr2 + qr) + I
f→(q, r) = (2q2r2 + 2q2r + 2qr2 + qr + 2q + 2) + I

f↔(q, r) = (q2r2 + q2r + qr2 + 2qr + 2q + 2r + 2) + I

5.3 The Main Result

Theorem 1. * A formula A0 is a tautological consequence of {A1, A2, ..., Am}
({A1, A2, ..., Am} |= A0) iff the polynomial translation of the negation of A0

belongs to the ideal generated by the polynomial translation of the negations of
A1, A2, ..., Am:

f¬(A0) ∈<f¬(A1), ..., f¬(Am)>+I .

In particular the A1, ..., Am can be rules, facts, integrity constraints and addi-
tional information.

Inference and Verification in Medical Appropriateness Criteria 191

Corollary 1. * If 1 belongs to the ideal above, the ideal is the whole ring. But
this is the same as to say that the set of the formulae in the RBS is a contradic-
tory domain. Therefore the condition of inconsistency is: the RBS is inconsistent
iff

1 ∈<f¬(Rules), f¬(Facts), f¬(NICs), f¬(ADDIs)>+I .

6 Conclusion

We have suggested the possibility of translating medical knowledge in terms of
RBSs based on a multivalued and modal logic. This approach is more dynamic
than the one using tables: it allows the addition of new knowledge (with no
changes in the inference devices), to improve knowledge, and even to extract
knowledge that is not explicit in the RBS. Despite the fact that dealing with
medical knowledge under an RBS interpretation is not new, we think this ap-
proach using a multivalued and modal logic and Computer Algebra is.

7 Acknowledgments

We would like to thank Dr. P. Lázaro (Institute of Health, Carlos III Hospital)
for providing the set of criteria used in this research (that is now in a process of
improvement and simplification) and for his most valuable comments.

We would also like to thank Ana Maŕıa Dı́az, for her contribution to the
article.

Appendix: CoCoA Implementation of Our Set of Criteria

The language CoCoA2 (see [5]) is very well suited for our purposes, as it is
specialized in computing “Gröbner Bases” (GB) and “Normal Forms” (NF) in
polynomial rings over finite fields (see [16], and [1]).

In this subsection we describe step by step in CoCoA the example of section 4.

(1) Declare the ring of polynomials to be ZZ/(3)[x1, ..., x13]:
A := Z/(3)[x[1..13]];
USE A;

(2) Declare the ideal generated by the polynomials x3
i − xi, for i = 1 to 13.

I:=Ideal(x[1]3-x[1],...., x[13]3-x[13]);
Explanation: CoCoA has not yet implemented quotient rings. Instead of check-
ing an ideal J in A/I, the ideal J + I will be studied in A.

2 A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing Computations in
Commutative Algebra. Available via anonymous ftp from: cocoa@dima.unige.it

192 L. M. Laita, E. Roanes-Lozano, and V. Maojo

(3) Translate connectives into polynomials (see subsection 5.2)
NEG(M) := NF(2-M, I)
POS(M) := NF(2*M^2,I);
NEC(M) := NF(M^2+2*M, I);
OR1(M,N) := NF(2*M^2*N^2+M^2*N +M*N^2+2*M*N+M+N, I);
AND1(M,N) := NF(2*M^2*N^2+2*M^2*N +2*M*N^2+M*N, I);
IFF(M,N) := NF(2*M^2N^2+ 2*M^2*N + 2*M*N^2+ M*N + 2*M + 2, I);
IMP(M,N) := NF(M^2*N^2 + M^2*N + M*N^2+ 2*M*N +2*M +2*N + 2, I);

(4) Declare the rules in prefix form. As an illustration, rule 20 is rewritten as:
R20 := IMP(AND1(AND1(AND1(X[1],X[2]),X[4]),X[8]),

OR1(NEC(X[11]),NEC(X[12])));

(5) Declare the potential facts
F1 := NEG(X[1]); F2 := X[1];
F3 := X[2]; F4 := X[3];
F5 := X[4]; F6 := X[5];
F7 := X[7]; F8 := X[8];
F9 := X[9]; F10 := NEG(X[13]);

(6) Declare integrity constraints and other additional information (see 4(3)):
NIC := NEC(NEG(AND1(NEC(X[11]), NEC(X[12]))));
For example, ADDI1, that is, X [10]↔ X [11] ∨X [12], is introduced as:
ADDI1 := AND1(IMP(X[10],OR1(X[11],X[12])),IMP(OR1(X[11],X[12]),

X[10]));
and ADDI2, that is, (X [3]→ L(L¬X [11]))→ (X [4]→ L(3¬X [11])), as:
ADDI2 := IMP(IMP(X[3],NEC(NEC(NEG(X[11])))),IMP(X[4],

NEC(POS(NEG(X[11])))));

(7) Declare the ideal J generated by the negations of rules 3, 4, 7, 8, 11, 12, 20,
39, 40 and all potential facts (with the exception of F1), integrity constraints
and additional information:
J := IDEAL(NEG(F2),NEG(F3),...,NEG(F9),NEG(F10),NEG(R3),NEG(R4),

NEG(R7),NEG(R8),NEG(R11),NEG(R12),NEG(R20),NEG(R39),NEG(R40),
NEG(NIC),NEG(ADDI1);

(8) Check the consistency of the set of rules, facts... of (7):
GBasis(I+J);
As the answer is [1], there is inconsistency (as advanced in 4(4-1)).

(9) Let us suppress rules 20, 39, 40 and facts F5, F6, F10 from the generators of
J and let us denote H the new ideal. As
GBasis(I+H);
returns a set of polynomials, there is consistency (as advanced in 4(4-2)).

Inference and Verification in Medical Appropriateness Criteria 193

(10) Similarly, the set {R8, R20, F2, F3, F4, F5, F8} and also the set {R39,
R40, F2, F3, F4, F6, F7, F10, ADDI1} give inconsistency (as advanced in 4(4-3)
and (4-4)).

(11) The existence of inconsistency in (9) suggest (subsection 4(4-5) and (4-6)),
exchanging {R8, R20} and {R39, R40}, respectively with {R8, RN20, ADDI2}
and {RN39, R40}. Accordingly we define two new ideals S and T.
S := Ideal(NEG(F2),NEG(F3),NEG(F4),NEG(F5),NEG(F8),NEG(F13),

NEG(R8),NEG(RN20),NEG(ADDI2));
T := Ideal(NEG(F2),NEG(F3),NEG(F6),NEG(F7),NEG(RN39),NEG(R40),

NEG(ADDI1));
GBasis(I+T);
Now, in both cases, CoCoA returns a set of polynomials, which means consis-
tency, as advanced in 4(4-5) and (4-6).

(12) Knowledge extraction. Let us check, for instance, if the first formula in (5)
of section 4: 3(LX [11]∨ LX [12]) , that is:
FOR1 := POS(OR1(NEC(X[11]),NEC(X[12])));
is a consequence of the information given by the ideal H above:
NF(NEG(FOR1), I+H);
The answer is 0, and therefore the formula FOR1 follows from the generators of
ideal H.

Another example from (5) of section 4: Is ADDI2 a consequence of rules 8
and RN20, together with all their potential facts?
U := Ideal(NEG(F2),NEG(F3),NEG(F4),NEG(F5),NEG(F8),NEG(R8),

NEG(RN20));
NF(NEG(ADDI2), I+U);
The answer is 0, and therefore ADDI2 follows from rules 8 and RN20.

(13) Detecting the formula that produces the inconsistency. Our implementation
also contains a program CONSIST, that can be applied to check where the incon-
sistency is. It adds one new formula each time (in the order in which they are
given) and points out the first element that produces inconsistency.

The whole process of processing all the examples in this section (translating
rules, facts, integrity constraints and additional information, checking for con-
sistency, answering if the given formulae are consequences of the corresponding
ideal, and the application of the program CONSIST) takes about fifteen seconds
in a standard 64 MB RAM Pentium-based PC.

References

1. V. Adams, P. Loustanau, An Introduction to Gröbner Bases. Graduate Studies in
Mathematics 3, American Mathematical Society, Providence, RI, (1994).

194 L. M. Laita, E. Roanes-Lozano, and V. Maojo

2. J. A. Alonso and E. Briales, Lógicas Polivalentes y Bases de Gröbner. Procs. of the
V Congress on Natural Languages and Formal Languages, Ed. M. Vide, Barcelona,
(1989), 307-315.

3. B.G. Buchanan and E.H. Shortliffe, Rule Based Expert Systems: The MYCIN ex-
periments of the Stanford Heuristic Programming Project. Addison-Wesley, Read-
ing, MA. (1984).

4. S. Bernstein, J. Kahan, Personal communication. RAND Corporation (1993).
5. A. Capani and G. Niesi, CoCoA User’s Manual (v. 3.0b). Dept. of Mathematics,

University of Genova (1996).
6. J. Chazarain, A. Riscos, J.A. Alonso, E. Briales, Multivalued Logic and Gröbner

Bases with Applications to Modal Logic. Journal of Symbolic Computation, 11,
181-194 (1991).

7. M. Field, M., K. Lohr, (Eds). Guidelines for Clinical Practice. From Development
to Use. National Academy Press, Washington D.C. (1992).

8. J. Hsiang, Refutational Theorem Proving using Term-rewriting Systems, Artificial
Intelligence, 25 (1985), 255-300.

9. D. Kapur and P. Narendran, An Equational Approach to Theorem Proving in
First-Order Predicate Calculus. 84CRD296 General Electric Corporate Research
and Development Report, Schenectady, NY, March 1984, rev. Dec. 1984. Also in ,
Proceedings of IJCAI-85 (1985), 1446-1156.

10. L.M. Laita, L. de Ledesma, Knowledge-Based Systems Verification, Encyclopedia
of Computer Science and Technology, Eds. A Kent, J.G. Williams. Marcel Dekker,
New York (1997), 253-280.

11. L.M. Laita, E. Roanes-Lozano, J.A. Alonso, L. de Ledesma, Automated Multi-
Valued Logic reasoning in rule based Expert Systems. Preprint, AI Dept., Uni-
versidad Politécnica de Madrid, sent for tentative publication in Soft Computing
(1998).

12. P. Lázaro, K. Fitch, Criterios de uso apropiado para by-pass coronario. Unpub-
lished Report (1996).

13. G. C. Moisil, The Algebraic Theory of Switching Circuits. Pergamon Press, Oxford
(1969).

14. E Roanes-Lozano, L.M. Laita, E. Roanes-Maćıas, A Polynomial Model for Multi-
valued Logics with a Touch of Algebraic Geometry and Computer Algebra. Special
Issue “Non-Standard Applications of CA”, in Mathematics and Computers in Sim-
ulation, 45/1-2 (1998), 83-99.

15. J.K. Slaney, Formal Logic and its application in medicine. Pillips CI. Logic in
Medicine, British Medical journal (1988).

16. F. Winkler, Introduction to Computer Algebra. Lecture Notes WS 93/94, RISC-
Linz (1994).

The Unification Problem for One Relation Thue

Systems?

Christopher Lynch

Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA,
clynch@sun.mcs.clarkson.edu,

http://www.clarkson.edu/∼clynch

Abstract. We give an algorithm for the unification problem for a gen-
eralization of Thue Systems with one relation. The word problem is a
special case. We show that in many cases this is a decision procedure with
at most an exponential time bound. We conjecture that this is always a
decision procedure.

1 Introduction

In this paper we study the unification problem and word problem for Thue
Systems. This basic problem appears under several different names. It is also
known as the unification and word problem for semigroups, terms with monadic
function symbols, and ground terms with one associative operator.

In particular, we are interested in Thue Systems with only one equation,
but we have generalized our results to larger classes. The word problem for one
equation can be stated simply: Given an equation s = t, and two words u0 and
un, is there a sequence of words u0, · · · , un such that each ui+1 is the result of
replacing an occurrence of s in ui by t, or replacing an occurrence of t in ui by
s?

Despite the very simple formulation of the problem, it is unknown whether
the problem is decidable. It has been shown to be undecidable when there are
three equations instead of one [9], but the case for two equations is also unknown.
The word problem for groups with one defining equation has been known to be
decidable for 65 years [8]. However, despite considerable work in the area [2,4]
(see [6] for a survey), the decidability for one equation Thue systems is unknown.

In this paper, we address (but do not solve) the problem, and we also gen-
eralize the problem in some ways. One of our generalizations is to consider the
unification problem, which is a generalization of the word problem. The unifica-
tion problem is as follows: Given an equation s = t and words u and v, are there
words x and y such that vy can be reached from ux with a sequence of replace-
ments of s by t and t by s. We also generalize from one equation Thue systems
to allow more than one equation but require a certain syntactic structure. Our
? This work was supported by NSF grant number CCR-9712388 and partially done

while visiting INRIA Lorraine and CRIN.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 195–208, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

196 Christopher Lynch

result is a procedure that decides the unification problem when it halts, and also
produces the most general unifier. We have not been able to prove that it halts
for all instances of our generalization of the one equation unification problem,
but we conjecture that it does.

Although we have not proved a decidability result, we believe our work is im-
portant. We have provided some theorems showing how to automatically detect
that the algorithm is a decision procedure for certain Thue systems. We even
give a complexity result, showing that the algorithm is at most exponential for a
large class of Thue systems We have implemented an algorithm for one equation
Thue systems, based on the one in this paper. On every example we have tried,
it always terminates quickly with the answer.

Our main interest in this problem is not just for one equation Thue systems.
Our goal is to extend these results to equations over terms. Popular methods
for deciding word and unification problems, like the Knuth-Bendix completion
method have many examples, even very simple ones, where they do not halt.
Our method attempts to avoid those problems. Although our presentation here
is only for monadic function symbols, the ideas extend to function symbols of
higher arity. The syntactic restrictions on the class used in this paper allow
for our algorithm to be deterministic. Relaxing those restrictions is possible if
we allow the algorithm to be non-deterministic. Our plan for the near future
is to investigate all these extensions. We expect the ideas in this paper will be
important for finding decision procedures for interesting classes of equational
theories. The main inspiration for our paper is our previous work on SOUR
graphs [7]. This paper is actually a simplification of those ideas, although the
ideas have evolved quite a lot. We have achieved the two main purposes we
sought in the evolution of those ideas: First, they are vastly simplified to allow
much easier understanding and implementation. Second, we have shown the use
of the method to solve decision problems, which we did not realize before.

The next section of the paper gives some required background. The section
after that builds up the necessary machinery for our algorithm. We convert the
unification problem into a problem in rewrite systems. The following section
develops the rewrite system problem into an algorithm. Interestingly, in this sec-
tion we show that the unification (and word) problem is equivalent to a problem
in termination of rewrite systems. We show how to detect loops in rewrite sys-
tems, and conjecture that all nonterminating rewrite sequences are loops, which
forms the basis of our algorithm. Interesting this is the same conjecture made
for termination of one rule semi-Thue systems [10], another decision problem
whose solution is unknown. That gives us the impression that the same tech-
niques used for solving the termination problem will be useful for solving the
word (and unification) problem. In the conclusion, we relate our work with other
work.

The Unification Problem for One Relation Thue Systems 197

2 Preliminaries

We are given a set A as alphabet. In this paper, we use letters a, b, c, d, e, f, g, h
as members of the alphabet. A word is a sequence of members of the alphabet.
We use letters r, s, t, u, v, w to represent words. If w is a word then |w| is the
number of symbols in w. If |w| = 0, then we write w as ε and call it the empty
word. If u and v are words, then uv represents the concatenation of u and v.
Then u is a prefix of uv, and v is a suffix of uv. Also, v is a subword of uvw.
u ≈ v is an equation if u 6= ε and v 6= ε.1

A Thue System is a set of equations. We assume it is closed under symmetry.2

Let E be a Thue system. If s ≈ t ∈ E then we write usv ≈E utv. If E is obvious,
we may write usv ≈ utv. We call this an equational step at position p, where
p = |u|. If p = 0, then this is called an equational step at the top. A proof of
u ≈E v is of the form u0 ≈E u1 ≈E · · · ≈E un where n ≥ 0, u = u0, v = un,
and ui−1 ≈E ui for all i > 0. Given a Thue system E and a pair of words u
and v, the uniform word problem for Thue Systems is the problem of deciding
whether u ≈E v. This is also called the word problem for semigroups, although
in this case the problem is stated semantically 3. The syntactic version of the
word problem for semigroups was shown equivalent to the semantic version by
Birkhoff.

Another way to examine the problem is to view the members of A as monadic
function symbols. In that case, a set of variables V is added to the language.
We refer to members of V with letters x, y, z. Also, a set of constants C is
added. A term is a variable, or a constant, or a function symbol applied to a
term (parentheses are omitted). Equations are of the form s ≈ t, where s and
t are terms. A substitution is a mapping from the set of variables to the set of
terms, which is the identity almost everywhere. A substitution is extended to
its homomorphic extension (i.e., (ft)σ = f(tσ)). A ground instance of a term
(resp. equation) t is anything of the form tσ, where xσ is ground for all x in
t. If t is a term or equation, then Gr(t) is the set of all ground instances of t.
If E is a set of equations, then v ≈E v if and only if every ground instance of
u ≈ v is in the congruence closure of the set of all ground instances of equations
in E. That is the semantic definition. This also could be defined syntactically
by saying that us ≈E ut if s ≈ t is an instance of an equation of E. Proofs
are defined as for Thue Systems, and the word problem is stated in the same
way. Birkhoff showed that the semantic and syntactic definition are equivalent.
In this paper the syntactic definition will be more useful.

Given terms u and v and a set of equations E, σ is an E-unifier of u and v if
uσ ≈E vσ. The unification problem for monadic function symbols is to find all
E-unifiers of u and v. A set of equations E is said to be unitary if for every pair
of terms u and v, there is one E-unifier σ such that for every E-unifier θ there

1 See [1] for the case where u = ε or v = ε.
2 Therefore one relation Thue Systems are presented with two equations.
3 u ≈E v if and only if u ≈ v is true in every model of E

198 Christopher Lynch

is a substitution η such that xση ≈E xθ for every variable x in u or v. Then σ
is a most general unifier of u and v.

It is well-known that the word problem for Thue Systems can be expressed
as a word problem for monadic function symbols. Given the word problem for
Thue Systems u ≈E v, where E = {s1 ≈ t1, · · · , sn ≈ tn}, we transform it into
a word problem for monadic function symbols by asking if uc ≈E vc, such that
E = {s1x ≈ t1x, · · · , snx ≈ tnx}, where x is a variable and c is a constant.4

We need the notion of rewriting in terms of words. Let s and t be words
(possibly empty), then s→ t is a rewrite rule. If R is a set of rewrite rules, then
we write usv → utv, and say usv rewrites to utv if s → t ∈ R. The reflexive
transitive closure of → is written as→∗. A word u is in R- normal form if there
is no v such that u rewrites to v. A set of rewrite rules is confluent if s→∗ t and
s →∗ u implies that there is a v such that t →∗ v and u →∗ v. A set of rewrite
rules R is weakly terminating if for every u there is a v in normal form such
that u →∗ v. R is strongly terminating if there is no infinite rewrite sequence.
A confluent and strongly terminating set of rewrite rules has the property that
every rewrite sequence from u leads to the same v in normal form. We say that
a set of rewrite rules R is non-overlapping if there are no rules s→ t and u→ v
such that a nonempty prefix of s is a suffix of u or s is a subword of u. If a set of
rewrite rules R is non-overlapping and weakly terminating then R is confluent
and strongly terminating.

3 The Word and Unification Problem

In this section we give a class of Thue systems which is a generalization of one
equation Thue systems. Then we give the structure of a proof of a unification
(or word) problem in this generalized class. Finally, we show how this proof
structure leads us to a problem in rewrite systems.

First we give the generalized class. A key idea is the notion of syntacticness
from [5].

Definition 1. A proof u0 ≈ u1 ≈ · · · ≈ un is syntactic if there is at most one
i such that ui−1 ≈E ui is an equational step at the top. A Thue System E is
syntactic if whenever there is a proof of u ≈E v, then there is a syntactic proof
of u ≈E v.

There is another restriction we need on the class to allow for our final pro-
cedure to be deterministic.

Definition 2. A Thue System s1 ≈ t1, · · · , sn ≈ tn has a repeated top equation
if there is an i 6= j and a, b ∈ A and words u, v, u′, v′ such that si = au, ti = bv
and sj = au′, tj = bv′. A Thue System s1 ≈ t1, · · · , sn ≈ tn has a repeated top
symbol if there is an i and j (i 6= j) and a ∈ A and words u, v such that si = au
and sj = av, or if there is an i and an a and an si and ti and words u and v
such that si = au and sj = av.
4 We sometimes confuse the notation of words and terms. When the distinction is

important, we clarify it.

The Unification Problem for One Relation Thue Systems 199

Every word problem for Thue systems of one relation can be reduced to a
simpler word problem which is either known to be solvable or has a different top
symbol on the left and right side [3]. Therefore, for one equation Thue systems,
it is only necessary to consider word problems where the one equation is of the
form as ≈ bt, where a and b are different symbols and s and t are words. Such
theories are syntactic [2]. Such theories also have no repeating equation. Below,
we show that any theory with no repeating top symbol is syntactic and has no
repeating top equation.

Theorem 1. Let E be a Thue system that has no repeating top symbol. Then
E has no repeating top equation and E is syntactic

Proof. The fact that E has no repeating top equation follows by definition. We
prove that E is syntactic by contradiction. Consider the set of all shortest proofs
between any pair of terms. Consider the shortest proof u0 ≈E u1 · · · ≈E un of
that set with more than one equational step at the top. Then there is a step
from some ui to ui+1 at the top using some equation au ≈ bv, and later there is
another step from some uj to uj+1 using bv ≈ au. Since this is the shortest proof,
every proper subproof must be syntactic. But then there can be no intermediate
steps involving u and v, so the steps from ui to ui+1 and from uj to uj+1 can
be removed from the proof resulting in a shorter proof of u1 ≈E un.

The results in this paper apply to syntactic Thue systems with no repeating
top equation. Next we look at the structure of proofs of the unification problem
in such theories. First we consider the case of unifying two terms with a different
top symbol.

Lemma 1. Let E be a syntactic Thue System. Let aux and bvy be terms. If σ
is an E-unifier of aux and bvy then σ is of the form [x 7→ u′z, y 7→ v′z] and
there exists

– an equation asx ≈ btx ∈ E,
– words r1, r2 such that u′ = r1r2,
– words w1, w2 such that v′ = w1w2,
– and words s′, t′ such that ur1 ≈E ss′, tt′ ≈E vw1, and s′r2 ≈E t′w2.

Proof. Let u0 ≈E · · · ≈E un be the proof of auxσ ≈E bvyσ. There must be
exactly one equational step at the top. The proof can be divided up into four
parts. First auxσ must be changed to a new word with as as prefix. The second
part is to change as to bt. The third part is all the steps below bt, and the fourth
part is to change bt into a word with bv as prefix. The second and third parts
can be exchanged, but wlog we assume they happen in the order given.

Suppose that ui ≈E ui+1 is the first equational step at the top. Then ui has
as as a prefix. This means that xσ must have some r1 as a prefix, such that there
is an s′ where ur1 ≈E ss′. Therefore ui+1 has bts′ as a prefix. That gives us the
first part of the proof. The third part is all the steps below bt so there must be
r2, t

′, w2 such that s′r2 ≈E t′w2. The fourth part changes tt′ to something with
a v as a prefix, so there must be a w1 such that tt′ ≈E vw1.

200 Christopher Lynch

To sum it all up, the proof looks like: aur1r2 ≈E ass′r2 ≈E bts′r2 ≈E

btt′w2 ≈E bvw1w2.

Now we look at the proof structure when unifying two terms with the same
top symbol.

Lemma 2. Let E be a syntactic set of monadic equations containing no equation
of the form as = at. Then σ is an E-unifier of u and v if and only if σ is an
E-unifier of au and av.

Proof. Suppose there is an equational step at the top of the proof of au ≈E bv.
Since there is no equation of the form as ≈ at, there must be two equational steps
at the top of the proof. But that cannot be, because E is syntactic. Therefore,
there is no equational step at the top of the proof.

Note that the condition of no equation of the form as ≈ at is implied by
the condition of no repeated equation, since each Thue System is assumed to be
closed under symmetry.

Our next step is to convert each unification problem to a rewrite system over
an extended language, where the above two lemmas are applied as rewrite rules.
First we define a new alphabet Ā = {ā | a ∈ A}. Let B = A ∪ Ā. We define an
inverse function on words in B∗ such that

– If a ∈ A then a−1 = ā.
– If ā ∈ Ā then (ā)−1 = a.
– (b1 · · · bn)−1 = bn

−1 · · · b1
−1 for n ≥ 0, and bi ∈ B for all 1 ≤ i ≤ n.

Any word w ∈ B∗ can be represented uniquely in the form u1v1
−1 · · ·unvn

−1

where n ≥ 0, each ui, vi ∈ A∗, ui = ε only if i = 1 and vi 6= ε , and similarly
vi = ε only if i = n and ui 6= ε. We say that w has n blocks.

Given a Thue System E = {a1s1 ≈ b1t1, · · · , ansn ≈ bntn} over A, we define
a rewrite system RE over B containing

– āibi → siti
−1 for all 1 ≤ i ≤ n, and

– āa→ ε for all a ∈ A. These are called cancellation rules.

Example 1. Given the Thue System {abaa ≈ bbba, bbba ≈ abaa}, the associated
rewrite system RE is

1. āb→ baaāb̄b̄
2. b̄a→ bbaāāb̄
3. āa→ ε
4. b̄b→ ε

Given an E-unification problem G = ux ≈ vy, we associate a word wG =
u−1v. Then we have the following theorem which translates a unification problem
into a rewrite problem.

The Unification Problem for One Relation Thue Systems 201

Theorem 2. Let E be a syntactic Thue System with no repeating equation, and
G be a unification problem over A. Then G has a solution if and only if wG has
an RE-normal form of the form u′(v′)−1 with u′ and v′ in A∗.5 Furthermore
σ = [x 7→ u′z, y 7→ v′z] is the most general unifier of G in E.

Proof. Given a word w of n blocks, where w = u1v1
−1 · · ·unvn

−1, we think of w
as representing the unification problem (x = u1z1) ∧

∧
2≤i≤n(vi−1zi−1 = uizi) ∧

(vnzn = y) for some z1, · · · , zn. Therefore, if G = ux ≈E vy, then wG = u−1v
represents the unification problem x = z1∧uz1 = vz2∧z2 = y, that is ux ≈E vy.

Since each word w represents a unification problem, the solution to the uni-
fication problem has a corresponding proof. We will give an induction argument
based on the lexicographic combination of the length of that corresponding proof
and the number of symbols in w.

Suppose we are given a word w = u−1v, representing the unification problem
ux ≈E vy. If ux = au1x and vy = av1y for some u1 and v1, then ux ≈E vy
has most general unifier σ if and only if u1x ≈E v1y has most general unifier σ.
Then the word w = u−1v = u1

−1āav1 → u1
−1v1, which is a smaller unification

problem.
Suppose that ux = au1x and vy = bv1y, and suppose there is an equation

as ≈ bt ∈ E. Then āb → st−1. Furthermore, the unification problem ux ≈E vy
is satisfiable and has most general unifier σ = [x 7→ u′z, y 7→ v′z] if and only if
there are words r1, r2 such that u′ = r1r2, words w1, w2 such that v′ = w1w2,
and words s′, t′ such that u1r1 ≈E ss′, tt′ ≈E v1w1, and s′r2 ≈E t′w2. So
u1
−1s → r1s

′−1, t−1v1 → t′w1
−1, and s′−1

t′ → r2w2
−1, Then the word w =

u−1v = u1
−1ābv1 → u1

−1st−1v1 → r1s
′−1

t′w1
−1 → r1r2w2

−1w1
−1. This is in

normal form, and it represents the unification problem x = r1r2z1∧w1w2z1 = y,
which has σ as most general unifier.

Suppose that ux = au1x and vy = bv1y, and there is no equation as ≈ bt ∈ E.
Then w = u−1v = u1

−1ābv1 has no redex at the subword āb, and therefore has
no normal form with zero or one block.

This theorem also shows that any syntactic Thue system with no repeating
equation has a unitary E-unification problem, because the rewriting is deter-
ministic and leads to at most one most general unifier.

The following corollary shows how the theorem applies to word problems.

Corollary 1. Let E be a syntactic Thue System with no repeated equation, and
G be a word problem over A. Then G is true in E if and only if the normal form
of wG in RE is ε.

Proof. The corollary follows from the theorem because the word problem is true
if and only if σ = [x 7→ z, y 7→ z] is a most general unifier.

Example 2. For example, consider the Thue System {aa ≈ ba, ba ≈ aa}. Then
RE is
5 Notice that if A has two symbols, then every normal form is of this form.

202 Christopher Lynch

1. āb→ aā
2. b̄a→ aā
3. āa→ ε
4. b̄b→ ε

Let G be the unification problem abb ≈E bb. Then wG = b̄b̄ābb. This gives
us the following rewrite sequence: wG = b̄b̄ābb → b̄b̄aāb → b̄b̄aaā → b̄aāaā →
b̄aā → aāā, which is in normal form. That means that the most general unifier
of G in E is σ = [x 7→ az, y 7→ aaz]. The word problem for G is not true,
because the normal form is not ε. However, if we consider the word problem
G′ = abba ≈ bbaa, then wG′ = āwGaa →∗ āaāāaa →∗ ε. Therefore, the word
problem G′ is true in E.

Example 3. For another example, consider the Thue System E = {a ≈ bba, bba ≈
a}. Then RE is

1. āb→ āb̄
2. b̄a→ ba
3. āa→ ε
4. b̄b→ ε

Consider the unification problem G = ba ≈E a. Then wG = āb̄a → āba →
āb̄a = wG. So this rewrite sequence loops, and there are no other possible rewrite
sequences. Therefore āb̄a has no normal form in RE which implies that the
unification problem ba ≈E a (and also the word problem) has no solution in E.

4 Deciding the Unification Problem

In this section we first show why the condition of syntacticness and no repeating
equations leads to a deterministic procedure. Then we define an ordering to
show termination of rewrite sequences. This ordering is used to define a decision
procedure for certain classes of problems. In some cases, we can even bound the
complexity by an exponential of the goal size. Finally, we give an algorithm that
we conjecture decides the unification problem in all cases.

First we show the interest of the class of problems we are considering.

Theorem 3. If E is a syntactic Thue System with no repeating top equation,
and G is a satisfiable unification problem in E, then RE is confluent and strongly
terminating on wG.

Proof. It follows from the fact that RE is non-overlapping and is weakly termi-
nating on wG.

This gives us a deterministic procedure to decide the word problem. We
can assume that we always apply the rightmost rewrite step. Unfortunately, this
deterministic procedure may not always halt. So we need some ways to determine
non-termination or rewrite sequences. One way to do this is to find loops. First,
let’s define a useful ordering to determine terminating rewrite sequences.

We define an ordering on words of three or fewer blocks.

The Unification Problem for One Relation Thue Systems 203

Definition 3. Let w be an n block word of the form u1v1
−1 · · ·unvn

−1, with
each ui, vi ∈ A∗ and n ≤ 3. Define µ(w) to be the ordered pair (i, j) such that if
n ≥ 1 then i = |v1| else i = 0, and if n = 3 then j = |u3| else j = 0. Ordered
pairs are compared lexicographically, i.e., (i, j) > (k.l) if and only if i > k, or
i = k and j > l. Note that this ordering is well-founded.

Now we define a set of words that we will later use to show that if we can
find the normal forms of these words, then we can find the normal form of any
given word, or determine that it does not have one.

Definition 4. Let A be a set of words and R be a rewrite system on B = A∪ Ā.
Let C be a set of words in (Ā)∗, such that every non-empty prefix of C is in C.
A word ua is called an extended word of C if u ∈ C and a ∈ A. Let C′ be the
set of all R-normal forms w of extended words of C. Then R is C-complete if
for all w in C

1. w contains one at most one block, and
2. if w contains one block (i.e., w = u1v1 with u1 ∈ A∗ and v1 ∈ (Ā)∗) then v1

is in C if v1 6= ε.

Note that condition 2 is trivially true if a is the inverse of the last letter in
u.

Definition 5. Let R be a rewrite system of the form {ā1b1 → s1t1
−1 · · · ānbn →

sntn
−1}, with each ai, bi ∈ A, and si, ti ∈ A∗. C is said to be a completion of R

if R is C-complete and ti
−1 ∈ C if ti 6= ε.

If we rewrite in a certain way, we can force one of these special words to
appear in a certain place in the word.

Definition 6. Let C be a set of words. The word w is C-reducible if and only
if w has at most three blocks, and if w has three blocks (i.e., is of the form
u1v1

−1u2v2
−1u3v3

−1) then v2
−1 ∈ C.

We use the previous four definitions in the following crucial lemma. It shows
that any word of a particular form can be reduced to a smaller word of the same
form, or we can detect that it will not have an appropriate normal form.

Lemma 3. Let E be a Thue System and C be a completion of RE . Let w be a
C-reducible word in B∗ of three or fewer blocks. Suppose that for all extended
words ua of C, it is decidable whether ua has an RE-normal form. If w is not
in normal form, then we can find a smaller C-reducible w′ with three or fewer
blocks such that w → w′ or we can detect that w has no normal form with one
or fewer blocks.

Proof. If w has at most one block, then w is in normal form. Suppose w has two
blocks, then w = u1v1

−1u2v2
−1 with u1, v1, u2, v2 ∈ A∗. Suppose v1 = av and

u2 = bu. Then w = u1v
−1ābuv2

−1. If a = b then w → u1v
−1uv2

−1 = w′, which

204 Christopher Lynch

is smaller than w because µ(w) = (|v1|, 0) > (|v|, 0) = µ(w′). Also, w′ has fewer
than three blocks, so it is C-reducible.

Suppose a 6= b and there is a rule in RE of the form āb → st−1. Then
w → u1v

−1st−1uv2
−1 = w′, which is smaller than w because µ(w) = (|v1|, 0) >

(|v|, |u|) = µ(w′). 6 w′ has three or fewer blocks. Also, note that t−1 ∈ C by
definition of C-complete, therefore w′ is C-reducible.

If a 6= b and there is no rule in RE of the form āb→ st−1, then any normal
form of w must have more than one block.

Now suppose w has three blocks, then w = u1v1
−1u2v2

−1u3v3
−1 with u1, v1,

u2, v2, u3, v3 ∈ A∗. Suppose v2 =av and u3 =bu. Then w=u1v1
−1u2v

−1ābuv3
−1.

If a = b then w → u1v1
−1u2v

−1uv3
−1 = w′, which is smaller than w because

µ(w) = (|v1|, |u3|) > (|v1|, |u|) = µ(w′). w′ has at most three blocks. v2
−1 ∈ C

since w is C-reducible, therefore v−1 ∈ C since C is closed under prefixes, so w′

is C-reducible.
Suppose a 6= b. Then, v2

−1 ∈ C, because w is C-reducible. So we can decide
whether v2b has an RE-normal. form. If it has no RE-normal form then neither
does w. Otherwise, we can calculate the normal form of v2b. By definition of
C-complete, the normal form v2b is of the form u′v′−1, with v′−1 ∈ C.7 Then
w → u1v1

−1u2u
′v′−1

uv3
−1 = w′, which is smaller than w because µ(w) =

(|v1|, |u3|) > (|v1|, |u|) = µ(w′). w′ has at most three blocks. Also, w′ is C-
reducible, since v′−1 ∈ C.

If a 6= b and there is no rule in RE of the form āb→ st−1, then any normal
form of w must have more than one block.

The following theorem is the main result used to decide the word and unifi-
cation problem.

Theorem 4. Let E be a Thue System and G a goal over A. Let C be a comple-
tion of RE .

1. Suppose that for all extended words ua of C it is decidable whether ua has an
RE-normal form. Then the word and unification problem for E is decidable.

2. If C is finite, then the word and unification problem is decidable in time at
most exponential in the size of the goal.

Proof. We construct RE and wG. Note that wG has two blocks. Let w be a C-
reducible word with three or fewer blocks. We perform induction on µ(w). The
induction hypothesis is that we can find the normal form of all smaller words or
prove they do not have one with one or fewer blocks. By the previous lemma,
we can either reduce w to a smaller C-reducible w′ with three or fewer blocks,
or else detect that w has no normal form with one or fewer blocks. In the second
6 In all of these cases, we should consider the case where u = ε, but then µ(w′) < µ(w)

because the second number in the ordered pair of µ(w′) is 0.
7 Here we do not consider the simpler cases where the normal form is ε or only contains

members of A or A−1.

The Unification Problem for One Relation Thue Systems 205

case, we are done. In the first case, w has the same normal form as w′, so we are
also done.

This takes care of the first part of the theorem. When C is finite, the above
argument still shows that the word problem is decidable, since decision problems
on finite sets are always decidable. But we must show that the decision procedure
runs in at most exponential time in the size of the goal. For that we must analyze
the procedure induced by the previous lemma. If µ(w) = (i, j), then there are at
most j rewrite steps before i gets smaller. But during that time, w can increase
by a product of k, where k is the maximum size of u1 for a normal form u1v1

−1

of ua with u ∈ C. Therefore, to calculate the normal form of w, we potentially
multiply w by k, |w| times, at most. So the word can become as big as k|w| at
most. And since each operation is linear in the size of the goal, the running time
as also bounded by an exponential.

We give some examples to illustrate.

Example 4. Let E = {aba ≈ bab, bab ≈ aba}. Then RE is

1. āb→ bab̄ā
2. b̄a→ abāb̄
3. āa→ ε
4. b̄b→ ε

Let C = {b̄, ā, b̄ā, āb̄}. The normal forms of b̄a, āb, b̄āb and āb̄a are respectively
abāb̄, bab̄ā, ab̄ā, and bāb̄. Each of these normal forms contains only one block.
Since all nonempty prefixes of āb̄ and b̄ā are in C, then C is a completion of RE .

Example 5. Let E = {abb ≈ baa, baa ≈ abb}. Then RE is

1. āb→ bbāā
2. b̄a→ aab̄b̄
3. āa→ ε
4. b̄b→ ε

Let C = {ā, b̄, āā, b̄b̄}. The normal forms of āb and b̄a are respectively bbāā
and aab̄b̄. Note that āāb → ābbāā → bbāābāā which contains āāb as subword.
Therefore āāb has no normal form. Similarly, b̄b̄a has no normal form. We only
need to consider the normal forms bbāā and aab̄b̄. Since all the nonempty prefixes
of āā and b̄b̄ are in C, then C is a completion of RE .

Here is an example for which C is infinite.

Example 6. Let E = {bab ≈ a, a ≈ bab}. Then RE is

1. b̄a→ ab
2. āb→ b̄ā
3. āa→ ε
4. b̄b→ ε

206 Christopher Lynch

Let C = {(b̄)n |n > 0}∪{(b̄)nā |n ≥ 0}. Given n, the normal form of (b̄)na is
abn, and the normal form of (b̄)nāb is (b̄)n+1ā. These can be proved by induction
on n. The cases where n = 0 are trivial. If n > 0, we have (b̄)nāb = b̄(b̄)n−1āb→
(b̄)nā. Also, (b̄)na = b̄(b̄)n−1a→ b̄abn−1 = ((b̄)n−1āb)−1 → ((b̄)nā)−1 = abn.

Here we used the fact that u−1 → v−1 if u→ v.
Now we must address the question of how to determine if a word has a

nonterminating rewrite sequence. We say a word w loops if there exist words u
and v such that w →+ uwv. We conjecture that every nonterminating rewrite
sequence loops. This is the same as the conjecture for one rule semi-Thue systems
in [10].

Conjecture 1. Let E be a syntactic Thue System with no repeated equations,
and G be a unification problem. Then wG has a nonterminating rewrite sequence
in RE if and only if there are some words u, v, w such that wG → uvw and v
loops.

It is possible to detect loops, so a proof of the conjecture would imply that
the unification and word problem are decidable. We now give an algorithm for
deciding the unification problem, whose halting relies on the truth of the con-
jecture.

For the algorithm, we are given a Thue System E, and a goal G. We construct
RE and wG. The intention of the algorithm is to reduce the goal to its normal
form at the same time we are creating a subset of the extensions of C (the
completion of RE), and keeping track of the normal forms or lack of normal
forms of those extensions of C.

The algorithm involves w which is initially set to wG and any applicable
cancellation rules are applied. w is always a reduced version of wG with at most
three blocks. The algorithm also involves a stack T of ordered pairs. Each element
of T is an ordered pair (u, v) such that u is of the form u′−1

a with u′ ∈ A∗ and
a ∈ A, and v is a word of at most three blocks. The values of u will be words
that we are trying to find the normal form of, and v will be a reduced version of
u. There is a set of ordered pairs S involved in the algorithm. An element of S
is an ordered pair (u, v) where u is of the form u′−1

a with u′ ∈ A∗ and a ∈ A,
and v is a word of one or fewer blocks which is the normal form of u. S and T
are both initially empty.

The algorithm proceeds as follows:
First check if T is empty. If T is empty and w is in normal form, then check

if w has one or fewer blocks. If it does, then return w. That is the normal form
of wG. If it does not, then return FALSE, because wG has no normal form of
one or fewer blocks, thus the unification problem is false.

Suppose T is empty and w is not in normal form, we examine the rightmost
redex position of w. Either w has two blocks and is of the form u1v1

−1u2v2
−1, or

w has three blocks and is of the form u1v1
−1u2v2

−1u3v3
−1. If w has two blocks,

set u′ = v1
−1 and set c to be the first letter of u2. If w has three blocks, set

u′ = v2
−1 and set c to be the first letter of u3. If d̄ is the last character in u′ and

there is no c such that d̄c ∈ RE , then return FALSE. Search for an ordered pair

The Unification Problem for One Relation Thue Systems 207

(u′c, v) in S for some v. If it exists, then replace u′c in w by v and perform any
cancellation rules that now apply. Note that w still has at most three blocks. If
no (u′c, v) exists in S, then push (u′c, u′c) onto T .

If T is not empty, let (u, v) be on top of the stack. Either v has two blocks
and is of the form u1v1

−1u2v2
−1, or v has three blocks and is of the form

u1v1
−1u2v2

−1u3v3
−1. If v has two blocks, set u′ = v1

−1 and set c to be the
first letter of u2. If v has three blocks, set u′ = v2

−1 and set c to be the first
letter of u3. If d̄ is the last character in u′ and there is no c such that d̄c ∈ RE ,
then return FALSE. Search for an ordered pair (u′c, v′) in S for some v′. If it
exists then replace u′c in v by v′ and perform applicable cancellations. Note that
v still has at most three blocks. If v is now in normal form, then if v has at most
one block, then we add (u, v) to S and remove (u, v) from T , else return FALSE.
If v contains u as a subword, or if v contains s as a subword with (s, t) in T for
some T , we return FALSE. If no (u′c, v′) exists in S, then push (u′c, v) onto T .

Keep repeating this process until it halts.
Based on our implementation, this algorithm appears to be very efficient, and

we conjecture that it always halts. Note that the algorithm constructs extensions
of a completion of RE . Based on theorem 4, we can see that this algorithm
will halt in time at most exponential in the size of the goal if RE has a finite
completion.

There is another interesting generalization of the class of problems. We con-
sider Thue systems to only contain equations of the form ux ≈ vx. Suppose
we allowed other monadic terms. For example ux ≈ vy. If all our equations are
of this type, then lemma 1 is still true, with the removal of the condition that
s′r2 ≈E t′w2. We could say a simliar thing for equations of the form ua ≈ vb.
This would allow us to modify the definition of RE so that the right hand side of
the rewrite rules have a marker between the two halves, preventing interaction
between the two. This allows us to solve the unification problem in polynomial
time in terms of the goal if E is a syntactic set of monadic terms, with no re-
peated equations, and no equations of the form ux ≈ vx. Space prevents us from
giving the details of this argument. But it is interesting to note that the problem
becomes easier when the equations are not linear.

5 Conclusion

We have given a method for trying to solve the unification (and word) problem for
one equation Thue systems and other monadic equational theories. Our method
works on a larger class of problems, which we have defined. We have shown
certain cases where we can prove that the method is a decision procedure. We
gave an algorithm, which has been implemented, and appears to be efficient. It
halts and serves as a decision procedure for every input we have tried. This is
opposed to the Knuth-Bendix procedure which often runs forever. The closest
work to our approach is given in [4]. This is based on an algorithm in [2] for
Thue systems with one equation. The algorithm does not always halt. In [4], a
rewrite system is given to help determine when the algorithm of [2] halts. They

208 Christopher Lynch

also needed to prove the termination of the rewrite system. But their method
and rewrite system is quite different from ours. For example, our rewrite system
halts on different problems than theirs. They also gave an example of a rewrite
system with a word that did not terminate but had no loop (called a simple
loop in their paper). It would be interesting to do a more detailed comparison of
our two methods. We think that methods used to decide termination of one rule
semi-Thue systems might be helpful for us. Our ultimate goal is to extend our
method to all unification problems over terms, and find a large class of problems
for which our approach halts. This approach in this paper was designed with
that intention.

References

1. S. Adian. Definining relations and algorithmic problems for groups and semigroups.
Trudy Matem. in-ta im. Steklova AN SSSR, 85, 1996 (Russian).

2. S. Adian. Transformations of words in a semigroup presented by a system of defining
relations. Algebra i logika, 15(6),611-621, 1976 (Russian).

3. S. Adian, and G. Oganesian. On the word and divisibility problems in semigroups
with a single defining relation. Izv. An. SSSR Ser. Matem., 42(2),219-225, 1978
(Russian).

4. J. Bouwsma. Semigroups Presented by a Single Relation. PhD dissertation at
Pennsylvania State University, 1993.

5. C. Kirchner. Computing unification algorithms. In Proceedings of the First Sympo-
sium on Logic in Computer Science, Boston, 200-216, 1990.

6. G. Lallement. The word problem for Thue rewriting systems. In Spring School in
Rewriting, ed. H. Comon and J. P. Jouannaud, Lecture Notes in Computer Science,
1994.

7. C. Lynch. Goal Directed Completion using SOUR Graphs. In Proceedings of the
Eighth International Conference on Rewriting Techniques and Applications (RTA),
Sitges, Spain, June 2–4, 1997.

8. W. Magnus. Das Identitätsproblem für Gruppen mit einer definierenden Relation.
Math Ann., 106,295-307, 1932.

9. Y. Matisaevich. Simple examples of unsolvable associative calculi. Dokl. Akad.
Nauk. SSSR, 173,1264-1266, 1967.

10. R. McNaughton. Well-behaved derivations in one-rule Semi-Thue Systems. Tech.
Rep 95-15, Dept. of Computer Science, Rensselaer Polytechnic Unstitute, Troy, NY,
Nov. 1995.

11. W. Savitch. How to make arbitrary grammars look like context-free grammars.
SIAM Journal on Computing, 2(3),174-182, September 1973.

Basic Completion with E-cycle Simplification

Christopher Lynch1? and Christelle Scharff2

1 Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA - Christopher.Lynch@clynch.mcs.clarkson.edu -

http://www.clarkson.edu/∼clynch
2 LORIA BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France -

Christelle.Scharff@loria.fr - http://www.loria.fr/∼scharff

Abstract. We give a new simplification method, called E-cycle Sim-
plification, for Basic Completion inference systems. We prove the com-
pleteness of Basic Completion with E-cycle Simplification. We prove that
E-cycle Simplification is strictly stronger than the only previously known
complete simplification method for Basic Completion, Basic Simplifica-
tion, in the sense that every derivation involving Basic Simplification is
a derivation involving E-cycle Simplification, but not vice versa. E-cycle
Simplification is simple to perform, and does not use the reducibility-
relative-to condition. We believe this new method captures exactly what
is needed for completeness. ECC implements our method.

1 Introduction

In automated theorem proving, it is important to know if an inference system is
complete, because a complete inference system guarantees that a proof will be
found if one exists and if it halts without a proof, then the theorem is false. How-
ever, in practice, incomplete inference systems are often used because complete
ones are not efficient.

An example of this phenomenon is the case of Basic Completion [BGLS95],
[NR92]. This is a restriction on Knuth-Bendix Completion [KB70] such that the
most general unifier is saved as a constraint, instead of being applied to the
conclusion of an inference [KKR90]. The effect of this restriction is that much
of a term is stored in a constraint, and therefore the variable positions appear
closer to the root than in the non-basic case, or else variable positions occur
where there are no variable positions in the non-basic case. In Knuth-Bendix
Completion, there is a restriction that inferences are not allowed at variable po-
sitions. This restriction then becomes much more powerful in Basic Completion.
In [BGLS95,NR92], it was shown that Basic Completion is complete.

Simplification rules are crucial in any form of completion. However, in [NR92]
it was shown that the combination of Basic Completion and Standard Sim-
plification is not complete (see [BGLS95] for more incompleteness examples).
In [BGLS95], a new form of simplification, called Basic Simplification, is shown
? This work was supported by NSF grant number CCR-9712388 and partially done

during a visit in the PROTHEO group in Nancy.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 209–221, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

210 Christopher Lynch and Christelle Scharff

to be complete in combination with Basic Completion. Unfortunately, Basic Sim-
plification can only be performed under certain circumstances. So, to retain com-
pleteness, a theorem prover must either not simplify under these circumstances,
or else apply the constraint of the simplifying equation before simplifying. The
first solution is unsatisfactory because it does not allow as much simplification.
The second solution is unsatisfactory because it removes the advantages of Basic
Completion.

These results lead us to an analysis of simplification strategies for Basic Com-
pletion. The goal is to understand when simplification will destroy completeness
and when it will not. We provide an abstract setting to develop and prove the
completeness of a concrete simplification method for Basic Completion, called
E-cycle Simplification, which does not use the reducibility-relative-to condition
of Basic Simplification. We prove that E-cycle Simplification is complete and
strictly stronger than Basic Simplification, in the sense that every derivation
involving Basic Simplification is a derivation involving E-cycle Simplification,
but not vice versa (see section 5). Also, there are many examples where E-cycle
Simplification may be performed but Basic Simplification may not (see section
5 for an example) .

The idea behind E-cycle Simplification is simple. No equation may simplify
one of its ancestors 1. In the inference procedure we build a dependency (directed)
graph. The nodes of the dependency graph are labelled by the equations. When
we deduce a new equation, we add a node to the graph labelled by the new equa-
tion to show dependencies and ancestors. A Basic Critical Pair inference adds
an Inference edge to indicate that the conclusion depends on the premises if it
has an irreducible constraint. A Simplification adds Simplification edges. When
the rule deduces a constrained equation, Constraint edges are added from the
constrained equation to its original ancestors in E. These dependencies are only
needed if the constraint of the equation is reducible, to be able to create a re-
duced version of the constrained equation. Edges are associated with reducibility
constraints, which may conflict with each other. We define E-paths and E-cycles
in the dependency graph to be paths and cycles with no conflict in reducibility
constraints. E-cycles may only occur when an equation simplifies an ancestor.
Whenever a simplification would create an E-cycle in the dependency graph, we
disallow the simplification.

Our completeness proof is based on the model construction proof of [BG94],
which is also used in the completeness proofs of Basic Completion in [BGLS95],
[NR92]. Like those proofs, we build a model of irreducible equations, based on
an ordering of the equations. The difference is that we do not use the multiset
extension of the term ordering but a different ordering �g directly based on the
dependency graph. If there is an edge from a node labelled with equation e1 to a
node labelled with equation e2, then e1 is larger than e2 in our ordering �g and
we write e1 �g e2. The ordering �g is well-founded, because the dependency
graph does not have any E-cycles or infinite E-paths.

1 We define the notion of ancestor in the paper.

Basic Completion with E-cycle Simplification 211

The paper is organized as follows. Section 2 contains some definitions and
notions useful for the comprehension of the paper. Section 3 defines dependency
graphs, E-cycles, E-cycle Simplification and the construction of the dependency
graphs. In section 4, we show that Basic Completion with E-cycle Simplification
is complete. Then, in section 5, we show that E-cycle Simplification is strictly
more powerful than Basic Simplification.

The full version of this paper that includes complete details and full proofs
is available in [LSc97].

2 Preliminaries

We assume the reader is familiar with the notation of equational logic and rewrit-
ing. A survey of rewriting is available in [DJ90]. We only define important notions
for the comprehension of the paper and new notions and definitions we introduce.

Let =? be a binary infix predicate. An equational constraint ϕ is a conjunction
s1 =? t1 ∧ . . . ∧ sn =? tn of syntactic equality si =? ti . > is the true equational
constraint and⊥ is the false constraint. The symbol≈ is a binary symbol, written
in infix notation, representing semantic equality. In this paper �t will refer to
an ordering on terms (�t in its strict version), which is a well-founded reduction
ordering total on ground terms. ≈ is symmetric and, when we write the equality
s ≈ t, we assume that s 6≺t t. We extend the ordering �t to ground equations and
we call the new ordering �e (�e in its strict version). Let s ≈ t and u ≈ v be two
ground equations. We define the ordering �e such that s ≈ t �e u ≈ v if either
s �t u or, s = u and t �t v 2. A pair s ≈ t[[ϕ]] composed of an equation s ≈ t and
an equational constraint ϕ is called a constrained equation. An equation sσ ≈ tσ
is a ground instance of a constrained equation t[[ϕ]] if σ is a ground substitution
solution of ϕ. We denote by Gr(e[[ϕ]]) the set of ground instances of an equation
e[[ϕ]]. This is extended to a set E by Gr(E) =

⋃
e∈E Gr(e). We call eσ1[[ϕ2]] a

retract form of a constrained equation e[[ϕ]] if σ = mgu(ϕ), σ2 = mgu(ϕ2) and
∀x ∈ Dom(σ), xσ = xσ1σ2. For example, g(f(y)) ≈ b[[y =? a]] is a retract of
g(x) ≈ b[[x =? f(a)]].
Reducibility Constraints: We define a predicate symbol Red, which is applied to
a term.

A reducibility constraint is:
- > denoting the empty conjunction and the true reducibility constraint or
- ⊥ denoting the false reducibility constraint or
- of the form ϕr1 ∧· · ·∧ϕrn , where ϕri is of the form (

∨
j Red(tj)) or ¬Red(t)

or > where t, tj ∈ T (where T is the set of terms built on a particular signature).
The syntax of the Red predicate is extended in [LSc97]. First instances of

reducibility constraints can be found in [Pet94] and in [LS95].
A ground reducibility constraint is a reducibility constraint such that the

parameter of the predicate Red is a ground term. Let ϕr be a ground reducibility
constraint, and R be a ground rewrite system. Then ϕr is satisfiable in R, if and
only if one of the following conditions is true:
2 Recall that s 6≺t t and u 6≺t v

212 Christopher Lynch and Christelle Scharff

- ϕr = >.
- ϕr = Red(t) and t is reducible in R.
- ϕr = ¬ϕ′r and ϕ′r is not satisfiable in R.
- ϕr = ϕ′r ∧ ϕ′′r and ϕ′r and ϕ′′r are satisfiable in R.
- ϕr = ϕ′r ∨ ϕ′′r and ϕ′r is satisfiable in R or ϕ′′r is satisfiable in R.
A reducibility constraint ϕr is satisfiable iff there exists a rewrite system R

and a ground substitution σ such that ϕrσ is satisfiable in R. Satisfiability is a
semantic notion. In our inference procedure, we deal with syntactic objects. For
that, we need the notion of consistency.

Definition 1. A reducibility constraint ϕr is inconsistent if and only if, ϕr = ⊥
or there exist u1[t1σ1], · · · , un[tnσn] such that σi are substitutions and (

∨
i∈{1,···,n}

Red(ti)) appears in ϕr and ¬Red(ui[tiσi]) (i ∈ {1, · · · , n}) appear in ϕr.
A reducibility constraint is consistent if and only if it is not inconsistent.

Note that it is simple to test if a reducibility constraint is consistent using this
definition. There is a close relationship between consistency and satisfiability.

Theorem 2. Let ϕr be a reducibility constraint. If ϕr is satisfiable, then ϕr is
consistent.

Let ϕ be an equational constraint. We define RedCon(ϕ) as the reducibility
constraint

∨
{Red(xσ) | x ∈ Dom(σ) and σ = mgu(ϕ)} and, in particular,

RedCon(>) = ⊥.

Inference Systems: Our inference system is based on Basic Completion.
The main inference rule of Basic Completion is the Basic Critical Pair infer-

ence rule:

Basic Critical Pair
u[s′] ≈ v[[ϕ1]] s ≈ t[[ϕ2]]
u[t] ≈ v[[s =? s′ ∧ ϕ1 ∧ ϕ2]]

if :

– s′ is not a variable,
– there exists a substitution σ such that σ ∈ Sol((s =? s′) ∧ ϕ1 ∧ ϕ2),

sσ 6�t tσ and u[s′]σ 6�t vσ.

Let Γ be a set of equations. This inference means that the set of equa-
tions {u[s′] ≈ v[[ϕ1]], s ≈ t[[ϕ2]]} ∪ Γ is transformed to {u[s′] ≈ v[[ϕ1]], s ≈
t[[ϕ2]], u[tσ] ≈ v[[s =? s′ ∧ ϕ1 ∧ ϕ2]]} ∪ Γ 3.

We now present Standard Simplification and Basic Simplification deletion
rules.

3 In rules, we assume the two premises have disjoint sets of variables. If the two equa-
tions share some variables, we first rename one premise so that they no longer share
any variables, before performing the rule. We denote by “into” equation, the equa-
tion u[s′] ≈ v[[ϕ1]], by “from” equation, the equation s ≈ t[[ϕ2]] and by conclusion
equation, the deduced equation.

Basic Completion with E-cycle Simplification 213

The Standard Simplification deletion rule is the following:

Standard Simplification
u[s′] ≈ v[[ϕ1]] s ≈ t[[ϕ2]]

u[tσ2µ] ≈ v[[ϕ1 ∧ ϕ2µ]] if :

– s′ is not a variable,
– there exists a substitution µ, σ1 = mgu(ϕ1) and σ2 = mgu(ϕ2) such that

s′σ1 = sσ2µ, sσ2µ �t tσ2µ, and vσ1 �t tσ2µ if u = s′.

Let Γ be a set of equations. In this rule, the set of equations {u[s′] ≈
v[[ϕ1]], s ≈ t[[ϕ2]]}∪Γ is transformed to {s ≈ t[[ϕ2]],u[tσ2µ] ≈ v[[ϕ1 ∧ ϕ2µ]]}∪
Γ .4

Basic Simplification is based on the notion of reduced-relative-to and is de-
scribed in [BGLS95].

Basic Simplification
u[s′] ≈ v[[ϕ1]] s ≈ t[[ϕ2]]

u[tµ] ≈ v[[ϕ1 ∧ ϕ2µ]] if :

– s′ is not a variable,
– there exists a match µ and σ1 = mgu(ϕ1) such that s′ = sµ

and (u ≈ v)σ1 �e (s ≈ t)σ2µ, and
– (s ≈ t[[ϕ2]])µ is substitution reduced relative to u[s′] ≈ v[[ϕ1]].
There are two optional but useful rules. If the conditions for the application

of Basic Simplification are not true, it is possible to apply the Retraction rule
which consists of retracting the “from” equation of the inference to make the ap-
plication of Basic Simplification possible. Basic Blocking is a deletion rule based
on the reduced-relative-to condition that deletes an equation with a reducible
constraint.

We call BCPBS the Basic Completion inference system consisting of Basic
Critical Pair and Basic Simplification plus Basic Blocking and Retraction. In this
paper we give a new Basic Completion inference system BCPES which uses the
Basic Critical Pair rule and a restricted version of the Standard Simplification
rule, that we call E-cycle Simplification. In the full version of the paper [LSc97],
BCPES is extended by E-cycle Retraction and E-cycle Blocking rules.

3 E-cycle Simplification

In this section, we describe the framework used in the paper. We first describe
the dependency graph of a set of unconstrained equations E to complete and
then we give the definition of an E-cycle. We describe the way the dependency
graph is constructed using the rules of BCPES using Graph Transitions.

4 This formulation resolves the ambiguity of the first notation. The ambiguity can
be resolved by remembering that inference rules add equations, while simplification
deletion rules add and delete an equation.

214 Christopher Lynch and Christelle Scharff

3.1 The Dependency Graph and E-cycles

The dependency graph is a directed graph. The vertices of the dependency graph
are labelled by equations. We associate a set of vertices C ancestor(v) to each
vertex. There are three kinds of edges in the dependency graph: C edges, I
edges and S edges. C stands for Constraint, I stands for Inference and S stands
for Simplification. Each edge has a reducibility constraint associated with it
determined by the type of the edge (C, I and S) and the constraints of equations
labelling the vertices at the extremities of the edge.

Let ed be an edge from a vertex v1 labelled by an equation e1[[ϕ1]] to a
vertex v2 labelled by an equation e2[[ϕ2]] in the dependency graph. If ed is a C
edge, then the constraint associated with ed is RedCon(ϕ1). ed is denoted by
(v1, v2, C). If ed is an I edge, the constraint associated with ed is ¬RedCon(ϕ2).
ed is denoted by (v1, v2, I). If ed is an S edge, then the constraint associated with
ed is >. ed is denoted by (v1, v2, S).

An E-path is a path of C, I and S edges in the dependency graph such that the
conjunction of the reducibility constraints associated to the edges is consistent.
An E-cycle is an E-path which begins and ends at the same vertex and which
contains at least a C and an S edge. The problem of finding an E-path and so
an E-cycle in the dependency graph is NP-complete [HM98].

3.2 Construction of the Dependency Graph and E-cycle
Simplification

At the beginning of the Basic Completion process, the initial set E is represented
by the initial dependency graph Ginit that is defined as follows. Each equation of
the set of equations E to complete is a label of a vertex of the initial dependency
graph Ginit = (Vinit, EDinit) and EDinit = ∅. C ancestor(v) = {v} for all
v ∈ Vinit. When an inference of BCPES is performed, the dependency graph is
updated. A new vertex labelled by the conclusion of the rule is added and edges
are added.

We now present the E-cycle Simplification rule and explain how Basic Critical
Pair inferences and E-cycle Simplification update the dependency graph using
Graph Transitions.

The BCPES inference system is composed of the Basic Critical Pair Infer-
ence rule and of the following E-cycle Simplification deletion rule.

E-cycle Simplification
u[s′] ≈ v[[ϕ1]] s ≈ t[[ϕ2]]

u[tσ2µ] ≈ v[[ϕ1 ∧ ϕ2µ]] if :

– u[s′] ≈ v[[ϕ1]] can be standard simplified by s ≈ t[[ϕ2]] and
– the addition of S edges from the “into” premise to the “from” premise and

from the “into” premise to the conclusion equation does not create an E-cycle
in the dependency graph.

Definition 3. A Graph Transition is denoted by (Ei, Gi)→ (Ei+1, Gi+1), where
Ei and Ei+1 are sets of equations such that Ei+1 is obtained from Ei by per-

Basic Completion with E-cycle Simplification 215

forming a Basic Critical Pair Inference or a deletion rule 5 and Gi = (Vi, EDi)
and Gi+1 = (Vi+1, EDi+1) are dependency graphs such that Gi+1 is obtained
from Gi by:
– A Basic Critical Pair Inference.

We have the following Graph Transition ({e0, e1} ∪ Γ, Gi) → ({e0, e1, e2} ∪
Γ, Gi+1) where e0 is the “into” equation, e1 is the “from” equation and e2

is the conclusion equation of the Basic Critical Pair inference.
Let e0 be the label of v0 and e1 be the label of v1.
- Vi+1 = Vi ∪ {v2} such that label(v2) = e2

- EDi+1 = EDi ∪ EC ∪EI where:
If e2 is an unconstrained equation then EC = ∅, otherwise EC =⋃

v∈C ancestor(v0)
(v2, v, C) ∪

⋃
v∈C ancestor(v1)(v2, v, C).

C ancestor(v2) = C ancestor(v0) ∪C ancestor(v1).
EI = {(v0, v2, I)}

– A deletion rule.
We have the following Graph Transition ({e0, e1, · · · , en} ∪ Γ, Gi) →
({e1, e2, · · · , en} ∪ Γ, Gi+1) where e0 is removed because of e1, · · · , en.
Let ei be the label of vi for i ∈ {0, · · · , n}.
- Vi+1 = Vi

- EDi+1 = EDi ∪ES where:
ES =

⋃
i∈{1,···,n}(v0, vi, S).

We now summarize the above definition. A C edge is created from a con-
strained equation to its initial ancestors, initial unconstrained equations of E.
An I edge is added from the vertex labelled by the “into” premise of an infer-
ence to the vertex labelled by the conclusion of the inference. This indicates
that the “into” premise depends on the conclusion. We can notice that E-paths
and also E-cycles do not contain an I edge followed by a C edge. This is due to
the reducibility constraints associated to I and C edges. An S edge is from the
simplified equation to the simplifier, and also from the simplified equation to
the conclusion of the simplification. This indicates that the simplified equation
depends on the other two. The dependency graph will not contain an E-cycle,
because only a S edge could create an E-cycle (see theorem 7) and E-cycle Sim-
plification forbids creation of E-cycles.

Definition 4. Given a sequence of equations E0, E1, · · ·, the limit E∞ is⋃
i

⋂
j≥i Ej. Given a sequence of graphs G0, G1, · · · where Gi = (Vi, EDi) for

all i, the limit G∞ is (V∞, ED∞), where V∞ =
⋃

i

⋂
j≥i Vj, label(v) =

⋃
i

⋂
j≥i

label(vj) for all v ∈ V∞, and ED∞ =
⋃

i

⋂
j≥i EDj .

Definition 5. A Graph Transition Derivation from E is a possibly infinite
derivation (E0 = E, G0 = Ginit) → (E1, G1) → · · ·, where for all i, (Ei, Gi) →
(Ei+1, Gi+1) is a Graph Transition. The Transition Limit is denoted by T∞ =
(E∞, G∞).

5 A Simplification rule consists of a Critical Pair inference that adds an equation plus
a deletion rule.

216 Christopher Lynch and Christelle Scharff

The two following theorems are consequences of the way the dependency
graph is constructed. The first theorem proves, in particular, that an E-cycle
does not contain only C edges. The second theorem proves that it is only a
deletion rule, so the addition of an S edge that could create an E-cycle. It also
proves that an E-cycle contains at least an S edge.
Theorem 6. An E- cycle does not contain only C edges.
Theorem 7. Let (E0 = E, G0 = Ginit) → (E1, G1) → · · · → (En−1, Gn−1) →
(En, Gn) · · · be a Graph Transition Derivation. If Gn−1 does not contain an E-
cycle and Gn contains an E-cycle, then En was obtained from En−1 by a deletion
rule.

To illustrate BCPES, we now develop the counter-example of Nieuwenhuis
and Rubio [NR92], that proves that Basic Completion with Standard Simplifi-
cation is incomplete. We adopt the same execution plan.
Example 8. Let E = {a ≈ b (1), f(g(x)) ≈ g(x) (2), f(g(a)) ≈ b (3)}. We assume
a lexicographic path ordering based on the precedence f �prec g �prec a �prec b.

The dependency graph for the two inferences processed here is in figure 1.
The full development of this example can be found in the full version of the
paper [LSc97]. The saturated set, we obtain, is E∞ = {a ≈ b (1), f(g(x)) ≈
g(x) (2), f(b) ≈ b (5), f(g(b)) ≈ b (7), g(x) ≈ b[[x =? b]] (8)}.

1. f(g(x)) ≈ g(x) (2) f(g(a)) ≈ b (3)
g(x) ≈ b[[x =? a]] (4)

We add C edges from equation (4) to the initial equations (2) and (3). The
reducibility constraint associated to these edges is Red(a).
We add an I edge from equation (2) to equation (4). The reducibility con-
straint associated to this edge is ¬Red(a).

2. f(g(a)) ≈ b (3) g(x) ≈ b[[x =? a]] (4)
f(b) ≈ b (5)

We add no C edge because equation (5) is an unconstrained equation. How-
ever, the set of initial equations equation (5) depends on is recorded. Equa-
tion (5) depends on the initial equations (2) and (3).
We add an I edge from equation (3) to equation (5). The reducibility con-
straint associated to this edge is >.
Equation (3) can be standard simplified by equation (4). However, there is
no E-cycle Simplification. Indeed, if we add S edges, an E-cycle is created.
The S edge from (3) to (4) (whose associated reducibility constraint is >)
and the C edge from (4) to (3) (whose associated reducibility constraint is
Red(a)) describe an E-cycle.
If we delete equation (3) as in Standard Simplification, then we cannot con-
struct a confluent system (equation g(b) ≈ b has no rewrite proof), therefore
the inference system would not be complete. The presence of the E-cycle
prevents us from deleting equation (3). Thus we have used the dependency
graph to detect incompleteness. The reducibility-relative-to condition of Ba-
sic Simplification also detects this. However, that condition also prevents
some simplifications that would not cause loss of completeness, which E-
cycle Simplification allows.

Basic Completion with E-cycle Simplification 217

C edges

I edges

Intermediary edges

to see inferences

f(g(a))=b (3) a=b (1)

g(x)=b[x=?a] (4)

f(b)=b (5)

Red(a)^Red(a)

T

f(g(x))=g(x) (2)

Red(a)

Fig. 1. Dependency graph of Basic Completion with E-cycle Simplification of
E = {a ≈ b, f(g(x)) ≈ g(x), f(g(a)) ≈ b} : the first two inferences.

4 BCPES Is Complete

In this section, we give the completeness result of BCPES. In the completeness
proof, we need to construct a ground dependency graph which is an instance of
the dependency graph we created in the previous section. Our proof is based on
the model construction proof of [BG94]. The ground dependency graph is used
to built a model of irreducible equations and a well-founded ordering �g of the
equations.

4.1 The Ground Dependency Graphs

In the ground dependency graph, the labels of vertices are ground equations.
Edges are added only if the reducibility constraints associated to them are sat-
isfiable in a particular set of ground equations.

We first define GGinit for a (non-ground) set of equations E to complete.
GGinit is the initial ground dependency graph (Vinit, EDinit), where Vinit is the
set of vertices such that each e ∈ Gr(E) labels one vertex of Vinit and EDinit = ∅.
As in the non-ground case, we set C ancestor(v) = {v} for every v ∈ Vinit.
In a ground dependency graph, C edges are added from ground instances of
constrained equations to ground instances of unconstrained initial equations.
An I edge is added as previously from the “into” premise to the conclusion of
an inference. Furthermore, we add an I edge from the “into” premise to the
“from” premise of an inference. We also add I edges from the “into” equation
to the “from” and the conclusion equation of inferences at the ground level that
simulates “inferences” at a variable position not in the constraint at the non-
ground level 6. In a ground dependency graph, we no longer speak about E-cycle
but only about cycle.
6 At the non-ground level, no inference or simplification is performed at a variable

position. However, we refer to it as an inference. At the ground level, the inference
or the simplification must be performed. This remark applies to the rest of section 4.

218 Christopher Lynch and Christelle Scharff

The consequences of a rule on the ground dependency graph are formalized
using Ground Graph Transitions modulo an equational theory E′ distinguishing
the applied rule at the ground level. E′ is a set of ground equations with respect
to which the reducibility constraints are tested. In the completeness proof, this
set is instantiated by Gr(E∞). Ground Graph Transitions modulo an equational
theory are described in detail in [LSc97]. We need to lift from ground level to
non-ground level. It is why we speak about Ground Graph Transition Derivation
associated to (non-ground) Graph Transition Derivation.

4.2 Completeness Proofs

In this section, we first give completeness results concerning the Ground Graph
Transition Derivation and then completeness results concerning BCPES. But
first, we give some lemmas describing properties of ground dependency graphs.
These properties follow from the construction of ground dependency graphs.

The following theorem provides the result that a cycle in a ground depen-
dency graph contains at least a C and an S edge. The proof is done by contra-
diction.
Theorem 9. Let (EG0 = Gr(E), GG0 = GGinit) → (EG1, GG1) → · · · →
(EGn, GGn) · · · be a Ground Graph Transition Derivation modulo E′. If GGn

contains a cycle, then this cycle contains at least a C and an S edge.
The following lemma proves that if an I edge goes from a vertex v1 to a

vertex v2 in GG∞, then label(v1) is reducible in Gr(E∞).
Lemma 10. Let (EG0 = Gr(E), GG0)→ (EG1, GG1)→ · · · → (EGn, GGn) · · ·
be a Ground Graph Transition Derivation modulo Gr(E∞). If there is an edge
from a vertex v1 to a vertex v2 in GG∞, then label(v1) is reducible in Gr(E∞).

The following lemma proves that a cycle in a ground dependency graph
does not contain an I edge from an “into” equation to a “from” equation of an
inference.
Lemma 11. Let (EG0 = Gr(E), GG0 = GGinit) → (EG1, GG1) → · · · →
(EGn, GGn) · · · be a Ground Graph Transition Derivation modulo Gr(E∞). If
GGi is a dependency graph containing a cycle C, then C does not contain an I
edge from an “into” equation to a “from” equation of an inference.

The following lemma proves that if there is a cycle or an infinite path at
the ground level then there is an E-cycle at the non-ground level. For the proof
of this lemma, we basically need to show that the extra edges we added to the
graph in the ground case do not create any cycles that do not already exist at
the non-ground level. In particular, lemma 11 and theorem 9 are used.
Lemma 12. Let (E0 = E, G0 = Ginit) → (E1, G1) → · · · → (En, Gn) · · ·
be a Graph Transition Derivation and (EG0 = Gr(E), GG0 = GGinit) →
(EG1, GG1) → · · · → (EGn, GGn) · · · its associated Ground Graph Transition
Derivation modulo Gr(E∞), then for all i,

– if GGi contains a cycle then Gi contains an E-cycle.
– if GGi contains an infinite path, then Gi contains an E-cycle.

Basic Completion with E-cycle Simplification 219

The first completeness theorem provides a completeness result for Ground
Graph Transition derivations. The proof of this theorem is based on the con-
struction of a model of Gr(E∞) which is a convergent rewrite system. For doing
that the ordering �g is constructed directly from the ground dependency graph
GG∞.
Definition 13. Let �g be the ordering such that e �g e′ if and only if there are
two vertices v and v′ in GG∞ such that label(v) = e, label(v′) = e′, and there
is a path in GG∞ from v to v′.

The ordering may not be total, but it is defined on the equations we use
in the completeness proof. GG∞ contains no infinite path or cycle if we do
Basic Completion with E-cycle Simplification (see lemma 12) and so �g is well-
founded.

We define redundancy in terms of this ordering.
Definition 14. A ground equation e is g-redundant in a set of ground equations
E if there are equations e1, · · · , en ∈ E such that e1, · · · , en |= e and ei ≺g e for
all i.

E-cycle simplification is an example of g-redundancy as expressed in the
following lemma.
Lemma 15. Let E be a set of unconstrained equations. Let (E0 = E, G0 =
Ginit) → (E1, G1) → · · · → (En, Gn) · · · be a Graph Transition and (EG0 =
Gr(E), GG0 = GGinit) → (EG1, GG1) → · · · → (EGn, GGn) · · · its associated
Ground Graph Transition Derivation modulo Gr(E∞) where, GG∞ does not
contain a cycle and an infinite path. Let e be an equation that is E-cycle simplified
in some Ei. Then every ground instance e′ of e is g-redundant in Gr(E∞).

Theorem 16. Let E be a set of unconstrained equations. Let (EG0 = Gr(E),
GG0 = GGinit) → (EG1, GG1) → · · · → (EGn, GGn) · · · be a Ground Graph
Transition Derivation modulo Gr(E∞) where, GG∞ does not contain a cycle or
an infinite path. Then this Ground Graph Transition Derivation is complete in
the sense that Gr(E∞) is convergent.

The following main theorem proves the completeness of BCPES. The proof
is based on the correspondence between the procedural construction of the non-
ground dependency graph presented in section 3.2 and the abstract construction
of the ground dependency graph presented in section 4. Lemma 12 is mainly
used for the proof.
Theorem 17. Basic Completion with E-cycle Simplification is complete.

5 Comparison with Basic Simplification

In this section, we compare E-cycle Simplification with Basic Simplification. We
prove that if we simplify because of a Basic Simplification then there is no E-cycle
in the dependency graph we construct and so there is an E-cycle Simplification.
So Basic Simplification is a subset of E-cycle Simplification. The proof of this
theorem is based on a series of lemmas that show what patterns of edges can be

220 Christopher Lynch and Christelle Scharff

added to the graph. So we show that the reducibility-relative-to condition never
allows an edge to be added that would create an E-cycle. Furthermore, we give
an example where we can simplify with E-cycle Simplification and where Basic
Simplification does not permit us to simplify.

Lemma 18. Let (E0 = E, G0 = Ginit) → (E1, G1) → · · · → (En, Gn) · · · be a
Graph Transition Derivation such that E0 → E1 → · · · → En is a derivation of
BCPBS. Then for all i, Gi contains no E-path consisting of an I edge followed
by S edges and then by a C edge.

Lemma 19. Let (E0 = E, G0 = Ginit) → (E1, G1) → · · · → (En, Gn) · · · be a
Graph Transition Derivation such that E0 → E1 → · · · → En is a derivation of
BCPBS. Then if there is an i such that Gi contains an E-cycle, then this E-cycle
does not contain any I edge.

Theorem 20. Let (E0 = E, G0 = Ginit)→ (E1, G1)→ · · · → (En, Gn) · · · be a
Graph Transition Derivation such that E0 → E1 → · · · → En is a derivation of
BCPBS. Then there is no i such that Gi contains an E-cycle.

As a direct corollary, we get that if E0, E1, · · · , En is a derivation of BCPBS,
then it is also a derivation of BCPES. Inversely, we provide an example that
shows that a derivation of BCPES is not a derivation of BCPBS.

Example 21. Let E = {g(x) ≈ f(x) (1), g(a) ≈ b (2), h(f(a)) ≈ b (3)}. We
assume a lexicographic path ordering based on the precedence h �prec g �prec

f �prec a �prec b. Let us assume the following execution plan using BCPES.

1. g(x) ≈ f(x) (1) g(a) ≈ b (2)
f(x) ≈ b[[x =? a]] (4)

We add C edges from equation (4) to initial equations (1) and (2). The
reducibility constraint associated to these edges is Red(a).
We add an I edge from equation (1) to equation (4). The reducibility con-
straint associated to this edge is ¬Red(a).

2. h(f(a)) ≈ b (3) f(x) ≈ b[[x =? a]] (4)
h(b) ≈ b (5)

The equation h(f(a)) ≈ b (3) is E-cycle simplified by equation f(x) ≈ b[[x =?

a]] (4). Indeed, no E-cycle is created when we add S edges from equation (3)
to equations (4) and (5).
With Basic Simplification, the equation h(f(a)) ≈ b cannot be deleted be-
cause f(x) ≈ b[[x =? a]] is not reduced relative to h(f(a)) ≈ b.

6 Conclusion

We have presented a new method of Simplification in the Basic Completion
of a set of equations E, called E-cycle Simplification. Our approach is easy to
understand because it is based on a graph. Indeed, E-cycle Simplification is based
on the creation of a dependency graph during the completion process showing
the dependencies between equations. It permits us to control completeness of

Basic Completion with E-cycle Simplification 221

Completion such that, whenever E-cycle Simplification allows a simplification,
completeness is preserved. We compare our method with Basic Simplification
and prove that Basic Simplification is a strict subset of E-cycle Simplification.

Our method is shown complete using an abstract proof technique based on
model construction. We think that this abstract framework is promising in the
sense that this method of proof can lead us to an analysis of different simplifica-
tion strategies from the point of view of completeness in constrained completion
procedures. We conjecture that all complete Simplification methods for Basic
Completion can be fit into our framework. We plan to use this method for AC
Basic Completion and in particular, for simplification in AC Basic Completion.

We have implemented our method of Basic Completion with E-cycle Sim-
plification. The system is called ECC (E-cycle Completion). It is written in
ELAN [KKV95], which is a language based on rewriting and adapted for pro-
totyping. The system is fully operational. Some implementation and experi-
mental details with the two different methods of simplification are available at
http://www.loria. fr/∼scharff.

References

BG94. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation, 4(3):217-247,
1994.

BGLS95. L. Bachmair and H. Ganzinger and C. Lynch and W. Snyder. Basic
Paramodulation. Information and Computation, 121(2):172-192, 1995.

DJ90. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer
Science, volume B, chapter 6: Rewrite Systems, pages 244-320. Elsevier Science Pub-
lishers B. V. (North-Holland), 1990. Also as: Research report 478, LRI.

HM98. M. Hermann. Constrained Reachability is NP-complete.
http://www.loria.fr/ hermann/publications.html#notes.

KB70. D.E. Knuth and P.B. Bendix. Simple word problems in universal alge-
bras. Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press,
Oxford, 1970.

KKR90. C. Kirchner and H. Kirchner and M. Rusinowitch. Deduction with
symbolic constraints. Revue d’Intelligence Artificielle, 4(3):9-52, 1990. Special issue
on Automatic Deduction.

KKV95. C. Kirchner and H. Kirchner and M. Vittek. ELAN V 1.17 User Manual
Inria Lorraine & Crin, Nancy (France), first edition, november 1995.

LS95. C. Lynch and W. Snyder. Redundancy criteria for constrained completion.
Theoritical Compluter Science, volume 142, pages 141-177, 1995.

LSc97. C. Lynch and C. Scharff. Basic Completion with E-cycle Simplification.
1997, http://www.loria.fr/∼scharff.

NR92. R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-
Brückner, editor, Proceedings of ESOP’92, volume 582 of Lecture Notes in Computer
Science, pages 371-389. Springer-Verlag, 1992.

Pet94. G.E. Peterson. Constrained Term-Rewriting Induction with Applications.
Methods of Logic in Computer Science, 1(4):379-412, 1994.

SoleX: A Domain-Independent Scheme

for Constraint Solver Extension

Eric Monfroy1 and Christophe Ringeissen2

1 CWI
P.O. Box 94079, NL-1090 GB Amsterdam, the Netherlands

Eric.Monfroy@cwi.nl, http://www.cwi.nl∼eric
2 LORIA-INRIA

615 rue du Jardin Botanique, BP 101, F-54602 Villers-lès-Nancy Cedex, France
Christophe.Ringeissen@loria.fr, http://www.loria.fr∼ringeiss

Abstract. In declarative programming languages based on the con-
straint programming paradigm, computations can be viewed as deduc-
tions and are enhanced with the use of constraint solvers. However, ad-
missible constraints are restricted to formulae handled by solvers and
thus, declarativity may be jeopardized. We present a domain-independent
scheme for extending constraint solvers with new function symbols. This
mechanism, called SoleX, consists of a collaboration of elementary solvers.
They add and deduce information related to constraints involving new
functions, complete the computation domain and purify constraints. Some
extensions of computation domains have already been studied to demon-
strate the broad scope of SoleX potential applications.

1 Introduction

In the last decade constraint programming (CP) [8] emerged as a new program-
ming paradigm. The basic notion of this framework is the separation between
(1) a programming language to specify requirements (the constraints) on objects
(the computation domain) and (2) a mechanism (the solver) for solving con-
straints. CP has to face the dilemma “declarativity vs. efficiency”. Thus, the
solvers cannot always handle all the constraints the user manipulate in the pro-
gramming languages. A solver is said to be complete if it is able to solve any
constraint defined by the language. However, solvers of CP systems are not al-
ways complete: for example CLP(R) [9] does not solve non-linear constraints,
i.e., they are suspended till they become linear. Although this kind of technique
is sufficient for some applications, it is not satisfactory in the general case.

Designing a solver that handles all the constraints the programming language
provides is a hard task. Possibly, there may be no solver for this computation
domain. Thus, we are concerned with a general framework and mechanisms for
extending/completing efficient solvers so they can handle new function symbols.
In [6] a decision procedure on R is extended to a decision procedure on R+M 1.
1 CLP(R +M) is obtained by extending the domain of CLP(R) with some special

nonarithmetic function symbols.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 222–233, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 223

In this paper, we extend the method of [6] with other syntactical manipulations
and semantic transformations as well. Moreover, our framework is independent
from the computation domain and the programming language.

The inverse robot kinematics problem [3] illustrates our motivations. We want
to determine, for a given robot, a position and an orientation of the end-effector,
the distances at the prismatic joints and the angles at the revolute joints (see Fig-
ure 1). The problem for a robot having two degrees of freedom can be described
by a system of equations (see Section 5) that also involves trigonometric func-
tions. However, neither trigonometric solvers nor trigonometric simplifications
automatically return the solution we expect, i.e., a symbolic expression describ-
ing the relation between parameters and variables. Thus, we would like to extend
a solver for non-linear polynomial constraints with the trigonometric functions
sine and cosine. Let us give a second example. One may have to consider unifi-
cation problems together with constraints on depths of ground terms, i.e., con-
straints such as depth(X) = 4−depth(g(Z)) ∧ g(g(Z)) = g(g(g(b))) ∧ g(Y) = g(g(X))

We have here two disjoint sorts: terms (solved by unification) and integers. Since
no solver over the integers can handle the function depth, we want to extend a
Diophantine solver (or a finite domain like solver) with the depth function.

Nowadays, some methods may be investigated for extending solvers. Solver
combination methods [1,11,15,7] aim at designing a general solver (correspond-
ing to a new mixed domain which is a conservative extension of the original ones)
based on the cooperation of elementary solvers. Since we want to stay on the
same interpretation domain, such frameworks are not well suited. Independently
of these theoretical results, more practical issues have been explored for the coop-
eration of several solvers on a single domain [14,4,2], or on several domains [12].
However, such systems cannot directly handle extra function symbols.

The need of integrating deduction techniques into computer algebra is now
well-established [16], and standard computer algebra systems (such as Mathe-
matica [17]) already provides some equation simplification tools. Although they
are powerful, no method/technique are available for designing a solver extension
or to insure its soundness. Similar comments can be done about CHRs [5] and
ELAN [10] 2. Some works were also conducted in the area of constraint transfor-
mation [12], but these techniques act only as a pre-processing.

To overcome the problems of solver extension and to generalize/formalize
some of the previous works, we designed SoleX, a mechanism for extending3

constraint solvers. SoleX enables one increasing the declarativity of CP systems
without jeopardizing completeness of solvers, nor designing new solvers from
scratch. The aim of SoleX is to enrich the solvers so they can treat new function
symbols called alien symbols. Their semantics can be of different kinds. First,
they can be syntactic sugar to replace the extensional definition of a function
(e.g., 3.x2 +2.x+1 may be named p(x)). Second, they can be standard functions
that are not handled by the solver. For example, usual solvers for arithmetic con-
straints cannot manipulate the functions sine and cosine. Thus, it is important

2 However, these systems are really well suited for implementing our framework.
3 This mechanism can also be viewed as a way to complete constraint solvers.

224 Eric Monfroy and Christophe Ringeissen

to be able to extend methods such as Gaussian elimination or Gröbner bases for
solving constraints with occurrences of these trigonometric functions. Unlike to
the previous cases, the last class of alien symbols corresponds to functions with
no defined meaning on the domain. For example, a function can be characterized
by experimental measures that can be expressed as constraints. The solved form
may define the extensional definition of the function or of a class of functions.

SoleX is the ordered application of four phases (collections of rules or compo-
nent solvers) to process alien function symbols and deduce related information.
The Reduction phase reduces the search space by adding semantic and syn-
tactical information carried by the functions. The Expansion phase completes
the constraints with always valid (w.r.t. the extended domain) constraints, i.e.,
characteristics of the functions (e.g., an absolute value is always greater than or
equal to zero). Then, the constraint store is purified by abstracting remaining
function symbols that cannot be processed by the solver. After application of
the built-in solver (Solving phase), the Contraction phase replaces abstraction
variables with their related alien terms (this is the “opposite” of abstraction)
and removes “redundancies” added by the expansion phase. Several applications
of SoleX may be necessary to reach a fixed point and to solve the constraints.

The paper is organized as follows. Section 2 formalizes our framework. Sec-
tion 3 describes the (rule-based) elementary solvers. We then examine (Section 4)
the problem of controlling solvers. Section 5 describes some applications of SoleX
over different domains. Finally, comparisons, conclusions and future works are
discussed in Section 6. A longer version of this paper [13] includes the transfor-
mation rules that formalize the solver extensions, and some proofs as well.

2 Basic Concepts

Let us first introduce some standard notations about terms and substitutions
of variables by terms. Given a first-order signature Σ and a denumerable set V
of variables, T (Σ,V) denotes the set of FΣ-terms with variables in V . Terms
(resp. variables) are denoted by t1, . . . , tn (resp. x1, . . . , xn). A ground term is
a term without variables. The terms t|ω, t[s]ω and t[ω ←↩ s] denote respectively
the subterm of t at the position ω, the term t with the subterm s at the position
ω and the replacement in t of t|ω by s. The symbol of t occurring at the position
ω (resp. the top symbol of t) are written t(ω) (resp. t(ε)). The term t[s] denotes
a term t with some subterm s. The term t[s ←↩ u] denotes the term where s
is replaced by u in all occurrences of s in t. V(t) denotes the set of variables
occurring in the term t. A substitution {x1 7→ t1, . . . , xn 7→ tn} is an assignment
from V to T (Σ,V). We use letters σ, µ, γ, φ, . . . to denote substitutions. The
application of a substitution σ to a term t is written in postfix notation tσ.
We now define the objects handled by SoleX: solvers, and constraint systems.

Definition 1 (Constraint system).
A constraint system is a 4-tuple (Σ,D,V ,L) where:

– Σ is a first-order signature given by a set of function symbols FΣ, and a set
of predicate symbols PΣ,

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 225

– D is a Σ-structure (its domain is denoted by |D|),
– V is an infinite denumerable set of variables,
– L is a set of constraints: it is a non-empty set of (Σ,V)-atomic formulas

closed under conjunction and disjunction. The unsatisfiable constraint is de-
noted by ⊥ and the truth constraint is denoted by >. An assignment is a
mapping α : V → |D|. The set of all assignments is denoted by ASSVD.
An assignment α extends uniquely to a homomorphism α : T (Σ,V) → D.
The set of solutions of a constraint c ∈ L is the set SolD(c) of assignments
α ∈ ASSVD such that α(c) holds. A constraint c is valid in D (denoted by
D |= c) if SolD(c) = ASSVD.

The enrichment of a constraint system CS consists of some additional func-
tions defined on the original domain. The interpretation of symbols defined in
CS is unchanged.

Definition 2 (Constraint system enrichment).
Let CS+ = (Σ+,D+,V+,L+) and CS = (Σ,D,V ,L) be two constraint systems.
Then, CS+ is an enrichment of CS if:

– FΣ ⊆ FΣ+ and PΣ = PΣ+

– |D| = |D+| and ∀r ∈ Σ, rD+ = rD 4

– V = V+, L ⊆ L+

A set of constraints {c1, . . . , cn} where ci ∈ L+ for i = 1, . . . , n (a constraint
store) is represented by a conjunction of constraints c1∧· · ·∧ cn 5. This conjunc-
tion can be split into an impure component in L+ and a pure component in L.
Hence, we represent a constraint in L+ by a pair (C,P) where C ∈ L+, P ∈ L,
and (C,P) means the conjunction C ∧ P . If C is in L, then (C,P) is said pure.

Definition 3 (Aliens, pure and impure constraints). A pure constraint
(resp. term) is a constraint (resp. term) in L. An Alien subterm in a term t is a
term with a top-symbol in Σ+\Σ such that its super-terms (whenever they exist)
have top-symbols in Σ. The set of aliens in C denoted by Alien(C) is the set of
alien subterms of terms occurring as arguments of atomic constraints in C. A
constraint C is impure if Alien(C) is non-empty.

Intuitively, a component solver is an algorithm which transforms a constraint
C into a new constraint C′ “simpler” than C, but equivalent to C in the structure
D (a solver preserves the solutions). Moreover, the repeated application of a
solver always reaches a fixed-point which is a constraint in solved form.

Definition 4 (Component Solver). A component solver (or solver in short)
for a constraint system (Σ,D,V ,L) is a computable function S : L → L s.t.:

1. ∀C ∈ L, SolD(S(C)) ⊆ SolD(C) (correctness)
2. ∀C ∈ L, SolD(C) ⊆ SolD(S(C)) (completeness)
3. ∀C ∈ L, ∃n ∈ N , Sn+1(C) = Sn(C)

4 rD (resp. rD+) represents the interpretation of r on the Σ-structure D (resp. D+).
5 The ci’s are elements of L+ and not necessarily atomic constraints.

226 Eric Monfroy and Christophe Ringeissen

A constraint C is in solved form w.r.t. S if S(C) = C. We denote by S+, Sn

for some n ≥ 0. Similarly S∗ denotes the repeated application of S till reaching
the solved form.

In the following, we are interested in the design of a rule-based solver for an
enrichment CS+ of CS based on a solver S known for CS together with a given
set of domain-independent transformation rules (solver extensions).

Example 1. The following rule defines a solver for CS+ if S is a solver for CS.
Solve (C,P)

(C, S(P))

We will develop a rule-based solver for CS+ using the rule Solve. In addition
to Solve, some other solvers (solver extensions, see Section 3) are applied on C.

3 Solver Extensions

The solver extensions have been grouped together w.r.t. the kind of action they
have on the constraint store. On one hand, semantic rules (Section 3.2) make
use of the properties of the domain or of the properties of the alien functions.
On the other hand syntactical rules (Section 3.1) are based on syntactical trans-
formations like Abstraction or its opposite Alien Replacement.

3.1 Syntactical Solver Extensions

The following transformation rules are sound in any constraint system enrich-
ment.

Variable Abstraction The rule Abstraction transforms impure constraints into
pure ones by adding new variables to name aliens. These variables Xu replace
terms u not in CS and the related equations Xu = u are added to the constraint
store. The reader should note that equations Xu = u are no more transformed
and remain in the constraint store. In the following, we use a bijective mapping
which associates to each non-variable term u a unique variable Xu. Hence, two
occurrences of the same term will be automatically replaced by the same variable.

Example 2. Consider the constraint C = (sin2(x + y) + cos2(x + y)) = 1 −
sin3(2x)∗(sin(x+y)+cos(x+y)). Abstraction∗ transformsC into C′ = (X2+Y 2 =
1− Z3 ∗ (X + Y)) ∧ ((X = sin(x+ y)) ∧ (Y = cos(x+ y)) ∧ (Z = sin(2x))).

Alien Replacement In the previous paragraph, we have seen how to purify
the constraint store with Abstraction. Then, we can apply Solve (see Example 1).
This leads to a conjunction of impure solved forms (involving new variables called
abstraction variables) together with a simpler pure constraint. In order to be able
to apply semantic solver extensions (described later on), it is necessary to re-build
an impure constraint without abstraction variables. Hence, AlienRep consists in

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 227

replacing abstraction variables by their related alien subterms. Obviously, the
rule is the converse of Abstraction and so (AlienRep∗◦Abstraction∗) is the identity
solver, where ◦ represents the usual composition of functions.

Inter-Reduction The idea of the transformation rule InterRed is to consider
equations occurring in the constraint store as (ground) rewrite rules and then
to use rewriting to simplify the store. For this purpose, we use a total ordering
≺ on T (Σ+,V+) such that non-ground terms are greater than ground terms
and non-ground (resp. ground) impure terms are greater than non-ground (resp.
ground) pure terms. For comparing non-ground (resp. ground) terms, we can
use a lpo-ordering on T (Σ+ ∪ V+) based on a precedence such that additional
function symbols in Σ+\Σ are greater than function symbols in Σ and function
symbols in Σ+ are greater than variables in V+. This ordering is total, closed
under contexts and satisfies the subterm property.

Example 3. Consider the constraint C = (y ≤ sin 2x + sin z) ∧ (sin z = 1) ∧
(sin 2x = 0). InterRed transforms C into (y ≤ 0 + 1) ∧ (sin z = 1) ∧ (sin 2x = 0)
provided that sin z � 1 and sin 2x � 0.

Moving constraints As said before, a constraint store is represented by a
couple (C,P). When a constraint c in C becomes pure (e.g., after Abstraction),
it can be carried to P , the pure part of the store. This is realized with the
rule ToPure. In a similar way, constraints in P that become impure (e.g., after
AlienRep) are moved to C with the rule FromPure.

3.2 Semantic Solver Extensions

In this section, some meta-transformation rules (mainly based on rewriting)
are proposed. These transformations must be regarded as solvers and aim to
integrate properties relevant to functions and predicates in CS+. For instance,
a solver S on CS is usually able to normalize any term in CS (which is more
or less its internal representation) and it would be interesting to enhance this
normalization on terms in CS+.

Normalization We assume that the solver S is equipped with a normalizing
mapping NF , that is an idempotent computable mapping NF : T (Σ,V) →
T (Σ,V) such that ∀t ∈ T (Σ,V), D |= t = NF (t). Moreover, the computation
of NF (t) does not depend on the names of variables in V(t) but just depends
on the total ordering of variables occurring in t. This ordering is given by the
restriction of ≺ to variables.

Definition 5. The mapping NF+ : T (Σ+,V+)→ T (Σ+,V+) is defined by:

– NF+(f(t1, . . . , tm)) = f(NF+(t1), . . . , NF+(tm)) if f ∈ Σ+\Σ.
– If t is pure, then NF+(t) = NF (t)
– If t is an impure term with a top symbol in Σ, then NF+(t) is recursively

obtained as follows:

228 Eric Monfroy and Christophe Ringeissen

1. Compute bi = NF+(ai) for every alien ai ∈ Alien(t).
2. Compute the term tπ obtained by replacing in t aliens a1, . . . an by new

variables x1, . . . , xn such that xk ≺ xl ⇔ bk ≺ bl and xk = xl ⇔ bk = bl
for 1 ≤ k, l ≤ n.

3. NF+(t) is NF (tπ){xk 7→ bk}k=1,...,n.

The transformation rule Normalize consists in the replacement of any term t
by its normal form NF+(t) following an innermost strategy.

Example 4. Let us consider the function symbols +, ∗,−, the predicate symbol
≤ in Σ (interpreted as usual over reals), the new function symbol f in Σ+, and
the normalizing mapping NF such that: NF (x − x) = 0, NF (x + 0) = x and
NF (1 ∗ x) = x. Then NF+(f(1 ∗ x)− f(x+ 0)) = 0 and applying Normalize on
the constraint C = (f(1 ∗ x)− f(x+ 0) ≤ x− y) leads to 0 ≤ x− y. The built-in
solver can now treat this constraint and so we get the solution y ≤ x.

More generally, rewriting is a very natural concept for replacing a term by
another one which is supposed to be simpler but equivalent in the constraint
system. Termination is required in order to get an extended solver. Intuitively,
the database of rewrite rules (TGR for terms and CGR for constraints) must
simplify the impure subpart of the constraint. We define in the following how to
apply such rules coming from a database of properties. Guarded rules are con-
sidered and applied only if the current constraint store entails the related guard
(or constraint). Matching of left-hand sides of rules is performed syntactically
but one should note that the equality in the built-in constraint system has been
incorporated thanks to the Normalize solver.

Term Dependent Guarded Reduction The term rewrite system TGR is a
finite set of guarded rules (l→ r‖g) where g is a constraint in CS+ and l, r are
terms such that D+ |= g ⇒ l = r. An instance of the term l, say lσ, occurring
in the constraint store C can be replaced by rσ when gσ is entailed by C. This
transformation rule is called TermRed.

Example 5. Consider the guarded rules (|x| → x‖x ≥ 0) and (|x| → −x‖x < 0).
The constraint C = (|y− 2| = x+ |x|+ 1)∧ (y ≥ 3)∧ (x ∗ y < 0) can be reduced
to y = 3 ∧ x < 0 thanks to TermRed and Solve (see Example 1).

Constraint Dependent Guarded Reduction The constraint rewrite system
CGR consists of a finite set of guarded rules (L → R‖G) where G is a con-
straint in CS+ and L,R are conjunctions of atomic constraints in CS+ such
that D+ |= G ⇒ (L ⇔ R). A rewrite relation is defined as previously, except
that matching is now performed modulo the associativity-commutativity of ∧
and ∨. The corresponding transformation rule is called ConsRed.

Example 6. Consider the guarded rule (
√
x = y → x = y2‖x ≥ 0). The con-

straint (x > 2) ∧ ((x − 1) ∗ (y − 3) > 0) ∧ (
√
y − 2 = y − 4) can be reduced to

(x > 2) ∧ ((x− 1) ∗ (y − 3) > 0) ∧ (y − 2) = (y − 4)2 since y − 2 ≥ 0. Finally we
get the solutions for y by calling the built-in solver.

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 229

Formally, checking the implication (entailment) requires a validity checker
for the enriched constraint system. If such a decision algorithm is not provided,
then the semantic entailment can be approximated by a syntactic constraint
inclusion test.

Domain Dependent Completion/Deletion In order to Complete/Delete the
information encoded in the constraint store, we consider a database of valid facts,
i.e. a finite set DDR of valid conjunctions of constraints in CS+. This leads to
a pair of quite opposite transformation rules, namely DomComp and DomDel.
DomComp completes the constraint store C by an instance of a constraint C′ ∈
DDR provided this instance is not yet entailed by C. Conversely DomDel deletes
an instance of C′ ∈ DDR occurring in the constraint store. For trigonometric
functions, examples of valid constraints in DDR are: −1 ≤ sinx ≤ 1, −1 ≤
cosx ≤ 1, cos2(x) + sin2(x) = 1.

Example 7. Consider the constraint C = (1−sin 2x = y) and the valid constraint
(−1 ≤ sinX ≤ 1) ∈ DDR. The constraint C is transformed into C ∧ (−1 ≤
sin 2x ≤ 1) thanks to DomComp. We do not have to add the constraint (−1 ≤
sin 2x ≤ 1) to C′ = (y ∗ (y − 1) = 0) ∧ C since (y ∗ (y − 1) = 0) ∧ (1 − V = y)
already implies (−1 ≤ V ≤ 1), where V stands for sin 2x.

4 SoleX: The Solver Collaboration

The solver for CS+ is described as a set of transformation rules (presented in
Section 3) together with control. The basic operation we used for combining
solvers is the composition (of functions). The extended solving process SoleX is
(Contraction◦Solve◦Expansion◦Reduction) where the four phases are as follows:

– Reduction phase (Reduction = (ConsRed+◦TermRed+◦InterRed+◦Normalize+)):
the constraint store is transformed using semantic and syntactical solver ex-
tensions introduced in the two previous sections.

– Expansion phase (Expansion = (ToPure∗ ◦ Abstraction∗ ◦ DomComp∗)) : the
constraint store is completed by valid constraints which may be helpful in
the next phase and may be purified thanks to Abstraction.

– Solve phase (Solve): the built-in solver is applied on the pure part of the
constraint store.

– Contraction phase (Contraction = (DomDel∗ ◦ AlienRep∗ ◦ FromPure∗)): the
impure equations introduced in the second phase are merged with the new
pure part of the constraint store. The remaining valid constraints added in
the same phase are removed.

It is important to notice that a transformation rule is not necessarily a solver
since its repeated application may not terminate. For the same termination prob-
lem, a composition of two solvers yields a new function which is not necessarily a
solver (Definition 4). For proving the termination of a composition of solvers, we
may need to embed all orderings related to elementary solvers into a Noetherian

230 Eric Monfroy and Christophe Ringeissen

cos(δ1) ∗ cos(δ2)− cos(φ) ∗ cos(θ) ∗ cos(ψ) + sin(φ) ∗ sin(ψ) = 0
sin(δ1) ∗ cos(δ2)− sin(φ) ∗ cos(θ) ∗ cos(ψ)− cos(φ) ∗ sin(ψ) = 0
sin(δ2) + sin(θ) ∗ cos(ψ) = 0
− cos(δ1) ∗ sin(δ2)− cos(φ) ∗ cos(θ) ∗ sin(ψ) + sin(φ) ∗ cos(ψ) = 0
− sin(δ1) ∗ sin(δ2) + sin(φ) ∗ cos(θ) ∗ sin(ψ)− cos(φ) ∗ cos(ψ) = 0
cos(δ2)− sin(θ) ∗ sin(ψ) = 0
sin(δ1)− cos(φ) ∗ sin(θ) = 0
− cos(δ1)− sin(φ) ∗ sin(θ) = 0
cos(θ) = 0
l2 ∗ cos(δ1) ∗ cos(δ2)− px = 0
l2 ∗ sin(δ1) ∗ cos(δ2)− Py = 0
l2 ∗ sin(δ2) + l1 − pz = 0

Fig. 1. Robot-arm with two degrees of freedom

ordering <. As solver extensions are parameterized by NF,≺, rewrite rules in
TGR and CGR, or by valid constraints in DDR, we have to give more precise
sufficient conditions in order to insure the termination of the SoleX process.

Theorem 1. Let ≥ be a quasi-ordering on L+\L such that > is Noetherian.
SoleX is a solver for CS+ if the following conditions are satisfied:

1. TermRed and ConsRed are solvers,
2. For any E ∈ {Normalize, InterRed,TermRed,ConsRed}, we have

E(C,P) = (C′, P) and C′ ∈ L+\L ⇒ C ≥ C′
3. ExtSolve = Contraction ◦ Solve ◦ Expansion is a solver such that

ExtSolve(C,P) = (C′, P ′)⇒ C > C′

The proof is quite obvious since SoleX is ExtSolve◦Reduction and we assume
a complexity measure that does not increase by Reduction but strictly decreases
by ExtSolve. SoleX becomes a solver in the particular case where DDR, TGR,
CGR are empty, and NF is the identity mapping. More generally, one can find
more details about a possible ordering in [13], as well as some sufficient conditions
to insure that ExtSolve (respectively TermRed, and ConsRed) is a solver.

5 Applications

Inverse Robot Kinematics We can now solve the problem [3] briefly described
in Section 1. This problem for a robot (see Figure 1) having two revolute joints
(degrees of freedom) can be described by the system of equations presented in
Figure 1 where l1, l2, px, pz are parameters and Py , δ1, δ2, φ, θ, ψ are variables.
l1, l2 are the lengths of the robot arms, (px, Py, pz) is the position of the end-
effector, φ, θ, ψ are the Euler angles of the orientation of the end-effector, and
δ1, δ2 are the rotation angles of the revolute joints. The expected solution is a

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 231

symbolic expression describing the dependence of the joint variables on the ge-
ometrical and position parameters. For this application, neither trigonometric
solvers nor trigonometric simplifications automatically return a symbolic solu-
tion expressing the relation between parameters and variables. Thus, we extend
a solver working on the domain of non-linear polynomial constraints (namely
Gröbner bases which simplify polynomial equations and return relations be-
tween the variables) with trigonometric functions (sine and cosine). Hence, let
DDR be {sin2(X) + cos2(X) − 1 = 0}. The DomComp solver completes the
system by adding for each angle (δ1, δ2, φ, θ, ψ) the property of sine and cosine
(sin2(X) + cos2(X) = 1). The Abstraction solver replaces every remaining sine
and cosine with new variables. Finally after Solve and AlienRep, SoleX reaches
a fixed-point which is the desired solution:

sin(ψ) + k1 ∗ cos(φ) ∗ sin(δ1) ∗ cos(δ1) = 0
∧ sin(θ) + k2 ∗ cos(φ) ∗ sin(δ1) = 0
∧ sin(φ) + k3 ∗ cos(φ) ∗ sin(δ1) ∗ cos(δ1) = 0
∧ cos(ψ) + k4 ∗ cos(φ) ∗ sin(δ1) = 0
∧ cos(θ) = 0
∧ cos2(φ) + k5 = 0

∧ Py + k6 ∗ sin(δ1) ∗ cos(δ1) = 0
∧ sin(δ2) + k7 = 0
∧ sin2(δ1) + k8 = 0
∧ cos(δ2) + k9 ∗ cos(δ1) = 0
∧ cos2(δ1) + k10 = 0

where k1, . . . , k10 are constants, depending on the parameters l1, l2, px, pz.

Constraint solving over integers and terms This example illustrates how to
extend a constraint solver working on conjunctions of two-sorted constraints: the
integers and the terms. Constraints over integers are equations and inequations
between linear polynomials with integer coefficients. Constraints over terms are
equations between terms. Formally, the signature is as follows:

Σ =

�≤: Z×Z; +,− : Z×Z→ Z; 0, 1 : Z
f : T× T→ T; g : T→ T; a : T

T (resp. Z) denotes ground terms (resp. integers) and the function symbols and
the predicate symbol ≤ are interpreted as usual. We consider two new function
symbols depth : T → Z and max : Z× Z→ Z, interpreted respectively as the
depth of a term and the maximum of two integers. Since we want to extend the
constraint solvers associated to integers and terms, we choose the sets of Term-
dependent (Constraint-dependent) Guarded Reduction and DDR as follows:

TGR =

8>>>><
>>>>:

(1) depth(f(X,Y))→ 1 +max(depth(X), depth(Y))
(2) depth(g(X))→ 1 + depth(X)
(3) depth(a)→ 1
(4) (max(x, y)→ y||x ≤ y)
(5) (max(x, y)→ x||y ≤ x)

CGR = {(1) depth(X) = 1→ X = a, (2) depth(X) < 1→ ⊥}, DDR = {1 ≤
depth(X)} where a rule l → r is an abbreviation for (l → r||>). Consider the
repeated application of SoleX to8>>>><

>>>>:

(I) z′ − z = depth(g(Y))− depth(Y)
(II) max(z′, z)− z = u
(III) 0 ≤ 1− v + u
(IV) depth(g(X)) ≤ v
(V) f(W,W ′) = f(g(W ′), f(X,X))

232 Eric Monfroy and Christophe Ringeissen

First, TermRed applies rule (2) of TGR on equation (I). After Normalize, (I)
becomes z′ = z+1. TermRed applies rule (4) of TGR on (II), and after Normalize
(II) becomes u = 1. Then, after ToPure, Solve applies the solver for integers and
(III) is transformed into v ≤ 2. TermRed can now apply rule (2) of TGR on (IV):
then application of Normalize, DomComp and ConsRed (rule (1)) leads to X = a.
Finally, after Normalize and ToPure, Solve (solver for terms, i.e., unification)
transforms (V) into W = g(f(a, a)) ∧W ′ = f(a, a). The solved form is:
z′ = z + 1 ∧ u = 1 ∧ v ≤ 2 ∧X = a ∧W = g(f(a, a)) ∧W ′ = f(a, a)
Here, the complexity measure for proving the termination of SoleX is based on a
combination of elementary measures corresponding to the number of depth and
max occurrences and to the multiset of sizes of depth arguments.

6 Conclusion

SoleX enables one extending solvers to handle alien function symbols, i.e., a
built-in solver (seen as a black-box) is completed with a glass-box mechanism.
The extension is composed of syntactical solvers that process the constraints
independently from the computation domain, and semantic solvers that enrich
constraints with information on the domain or on the function interpretation.

In [6], Heintze & al. propose an extension of the solver of CLP(R) for con-
straints over R +M. This extension is based on two methods: simplifications
that are similar to our notion of normal form extension, and substitutions that
can be seen as our rule InterRed. However, our framework for extension is more
complete since we also propose some other syntactic rules, as well as seman-
tic rules. Moreover, we can extend every kinds of domains whereas in [6] novel
constraint solvers, simplification algorithms or computation domains are always
related to R. In an other hand, Heintze & al. not only extend the solver, but
also the programming language. Thus, their work also enables applications such
as debuggers or prototyping of novel CP systems.

A first implementation of SoleX has been realized into CoSAc [14]: two solvers
of CoSAc (one based on Gröbner bases computation and the other one based on
Gaussian elimination) are extended with new function symbols (such as sin,
cos and √ with their usual interpretation). Hence, significant problems like
the Inverse Robot Kinematics problem [3] (which is originally expressed with
trigonometric functions) and the Robot in a Corridor problem [14] (which uses
square roots of polynomials) are solved automatically.

In this paper, SoleX has been presented as a set of transformation rules plus a
built-in solver. Therefore, we could imagine to prototype this rule-based extended
solver with a rule-based programming language. In this context, ELAN [10] is a
very good candidate since it provides facilities to express strategies for applying
rules and to call external solvers. However, we believe that a more efficient im-
plementation should be based on a collaboration of several component solvers
running concurrently. This explains why a more complete implementation is cur-
rently under way with BALI [12] which provides a logical framework for manag-
ing constraints and a language for designing and executing solver collaborations.

SoleX: A Domain-Independent Scheme for Constraint Solver Extension 233

BALI and SoleX have similarities that have to be studied to completely merge
the two concepts and realize a framework including both solver collaboration
and solver extension. Furthermore, extensions of solvers with new sorts and new
constraints will enable to design solvers on totally different domains. Thus, ex-
tending a solver on a “simple” domain could lead to realize solvers on complex
domains thanks to solver extension of SoleX and solver collaboration of BALI.

References

1. F. Baader and K. Schulz. On the combination of symbolic constraints, solution
domains, and constraint solvers. In Proc. of CP’95, volume 976 of LNCS, 1995.

2. F. Benhamou and L. Granvilliers. Combining local consistency, symbolic rewriting,
and interval methods. In J. Pfalzgraf, editor, Proc. AISMC-3, volume 1138 of
LNCS, Steyr, Austria, Sep. 1996. Springer-Verlag.

3. B. Buchberger. Applications of Gröbner Bases in Non-Linear Computational Ge-
ometry. In D. Kapur and J. Mundy, editors, Geometric Reasoning, pages 413–446.
MIT Press, 1989.

4. O. Caprotti. Extending risc-clp(cf) to handle symbolic functions. In A. Miola,
editor, Proc. of DISCO’93, volume 722 of LNCS. Springer-Verlag, Sep. 1993.

5. T. Frühwirth. Constraint handling rules. In A. Podelski, editor, Constraint Pro-
gramming: Basics and Trends, volume 910 of LNCS. Springer-Verlag, 1995.

6. N. Heintze, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. Meta-Programming in
CLP(R). JLP, pages 221–259, 1997.

7. K. Homann and J. Calmet. Combining Theorem Proving and Symbolic Mathemat-
ical Computing. In J.A. Campbell J. Calmet, editor, Proc. of AISMC-2, volume
814 of LNCS, pages 18–29. Springer-Verlag, 1995.

8. J. Jaffar and M. Maher. Constraint Logic Programming: a Survey. JLP, 19,20:503–
581, 1994.

9. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and
System. ACM Transactions on Programming Languages and Systems, 14(3):339–
395, 1992.

10. C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming
languages using computational systems. In P. Van Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The Newport Papers.,
pages 131–158. MIT press, 1995.

11. H. Kirchner and C. Ringeissen. Combining symbolic constraint solvers on algebraic
domains. JSC, 18(2):113–155, 1994.

12. E. Monfroy. Collaboration de solveurs pour la programmation logique à contraintes.
Phd thesis, Université Henri Poincaré - Nancy 1, Nov. 1996. Also available in
english.

13. E. Monfroy and C. Ringeissen. SoleX: a Domain-Independent Scheme for Con-
straint Solver Extension (Extended Version). Research report, INRIA, Jun. 1998.
Also available at url http://www.inria.fr.

14. E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Constraints
with Cooperative Solvers. In Proc. of ACM SAC’96, pages 63–72, Feb. 1996.

15. C. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2), 1979.

16. The Calculemus Project. Calculemus Workshop: Systems for Integrated Computa-
tion and Deduction, Edinburgh, Scotland, Sep. 1997.

17. S. Wolfram. The Mathematica Book, 3rd ed. Cambridge University Press, 1996.

Optimising Propositional Modal Satisfiability for

Description Logic Subsumption

Ian Horrocks1 and Peter F. Patel-Schneider2

1 University of Manchester, Manchester, UK (horrocks@cs.man.ac.uk)
2 Bell Labs Research, Murray Hill, NJ, U.S.A. (pfps@research.bell-labs.com)

Abstract. Effective optimisation techniques can make a dramatic dif-
ference in the performance of knowledge representation systems based
on expressive description logics. Because of the correspondence between
description logics and propositional modal logic many of these tech-
niques carry over into propositional modal logic satisfiability checking.
Currently-implemented representation systems that employ these tech-
niques, such as FaCT and DLP, make effective satisfiable checkers for
various propositional modal logics.

1 Introduction

Description logics are a logical formalism for the representation of knowledge
about individuals and descriptions of individuals. Description logics represent
and reason with descriptions similar to “all people whose friends are both doc-
tors and lawyers” or “all people whose children are doctors or lawyers or who
have a child who has a spouse”. The computations performed by systems that
implement description logics are based around determining whether one descrip-
tion is more general than (subsumes) another. There have been various schemes
for computing this subsumption relationship, depending on the expressive power
of the description logic and the degree of completeness of the system. As descrip-
tion logic systems perform numerous subsumption checks in the course of their
operations, they need to have a highly-optimised subsumption checker.

Recent work [16] has shown that determining subsumption in expressive de-
scription logics is equivalent to determining satisfiability of formulae in propo-
sitional modal or dynamic logics. Thus one part of a system that implements a
description logic is equivalent to a satisfiability checker for a propositional modal
or dynamic logic. Several description logic systems have been built for such de-
scription logics, and thus include what is essentially a satisfiability checker, in-
cluding Kris [2] and Crack [5]. These two systems have incorporated a number
of optimisations to achieve better performance of their subsumption checkers.

Description logic systems are also optimised in other ways. In particular,
their operations are optimised to avoid the potentially-costly subsumption checks
whenever possible. There are also other optimisations to subsumption possible
in description logic systems, having to do with the nature of the representation
of knowledge in a description logic, but these have little or nothing to do with
optimising propositional modal satisfiability.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 234–246, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Optimising Propositional Modal Satisfiability 235

We have built two systems that explore the optimisations required to build an
expressive description logic system, namely FaCT [11], a full description logic sys-
tem, and DLP [14], an experimental system providing only a limited description
logic interface. FaCT is available at http://www.cs.man.ac.uk/~horrocks;
DLP is available at http://www-db.research.bell-labs.com/user/pfps.

We have incorporated a range of known, adapted and novel optimisation tech-
niques into the subsumption checkers for these two systems. The optimisation
techniques include: lexical normalisation, semantic branching search, boolean
constraint propagation,dependency directedbacktracking, heuristic guided search
and caching.

These optimisations techniques make a drastic difference to the performance
of the overall system. As evidence, Kris is not able to load a modified version of
the Galen knowledge base because it gets stuck trying to determine one of the
thousands of subsumptions required to load the knowledge base. FaCT and DLP,
which have higher levels of optimisation, are able to easily load this knowledge
base, classifying over two thousand definitions in about two hundred seconds.

We have also performed experiments with both FaCT and DLP on several
test suites of propositional modal formulae. The optimisations built into the
two systems qualitatively change their behaviour on the test suites, indicating
that the optimisations have considerable utility simply taken as optimisations
for reasoning in propositional modal logics.

2 Background

FaCT and DLP are designed to build and maintain taxonomies of named con-
cepts. Given a collection of definitions of named concepts and statements about
these concepts, they determine the subsumption partial order for the named
concepts. To do this they have to determine subsumption relationships between
descriptions in a description logic.

The description logic that DLP implements is called ALCR+ . FaCT imple-
ments a considerably more-expressive logic, but most of the satisfiability opti-
misations in FaCT are demonstrable in ALCR+ . ALCR+ is built up from atomic
concepts and two kinds of atomic roles, non-transitive roles and transitive roles.
Concepts in ALCR+ are formed using the grammar A | > | ⊥ | ¬C | C u D |
C tD | ∃R.C | ∀R.C | ∃T.C | ∀T.C,1 where A is an atomic concept, C and D
are concept expressions, R is a non-transitive role, and T is a transitive role.

The semantics of ALCR+ is a standard extensional semantics, using an in-
terpretation I that is a pair (∆I , .I) consisting of a domain and a mapping
from concepts to subsets of the domain and from roles to binary relations on the
domain (transitive relations for transitive roles, of course). The semantics for
concept expressions are given in Table 1. One concept then subsumes another if

1 Throughout the paper, we will be using the syntax of description logics. To translate
into the syntax of modal propositional logics, replace ∀R with �R and ∃R with �R

and perform several other obvious replacements.

236 Ian Horrocks and Peter F. Patel-Schneider

Syntax Semantics

A AI ⊆ ∆I

> ∆I

⊥ ∅
¬C ∆I − CI

C uD CI ∩DI

C tD CI ∪DI

∃R.C {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
∀R.C {d ∈ ∆I | RI(d) ⊆ CI}
∃T.C {d ∈ ∆I | T I(d) ∩ CI 6= ∅}
∀T.C {d ∈ ∆I | T I(d) ⊆ CI}

Table 1. Semantics of ALCR+ concept expressions

and only if the extension of the first concept includes the extension of the second
in all interpretations.

The semantics of ALCR+ is a simple transformation of the possible world
semantics for propositional modal logics. In this transformation elements of the
domain correspond to possible worlds, atomic concepts correspond to proposi-
tional variables, and roles correspond to modalities. This transformation shows
that fragments of ALCR+ correspond to K(m) and K4(m). Transitive roles in
ALCR+ are used for K4(m) and non-transitive roles are used for K(m). ALCR+

can also express formulae in KT(m) and S4(m) via the usual encoding that maps
∀R.C into C u ∀R.C, etc.

Determining subsumption in ALCR+ is Pspace-complete [15], as is the re-
lated problem of determining whether a concept in ALCR+ is satisfiable. How-
ever, it is possible to build practical description logic systems based on expressive
description logics [2,5,11] that have this sort of computationally intractable sub-
sumption. Systems that are based on description logics like ALCR+ generally
determine whether a subsumption holds by transforming the subsumption ques-
tion into a satisfiability question and then attempting to construct a model for
this concept, just as a tableaux satisfiability checker for a propositional logic
attempts to construct a model for a formula. During this process, various nodes
are created, where each node represents an individual (possible world), and tells
whether the individual belongs to various concepts (gives values to formulae at
this world). This set of concepts is said to form the label of the node—we will
use L(x) to denote the label of a node x. The nodes are connected by modal
relationships in a tree fashion, starting at a root node. If a node is related to
another node via role R, the second node is called an R-successor of the first.

The basic algorithm starts out with a single node representing an individual
(possible world) that must be in the extension of the concept being tested for
satisfiability (must have a formula evaluate to true at it). This concept (formula)
is expanded to produce simpler concepts that must have the individual in their
extension (simpler formulae that evaluate at the world). Disjunctive concepts

Optimising Propositional Modal Satisfiability 237

(formulae) give rise to choice points in the algorithm (branches in the tableau).
Existential role concepts, ∃R.C, (existential modal formulae) cause the creation
of new successor nodes representing other individuals (possible worlds).

Universal role concepts (universal modal formulae) augment the concepts
that these individual must belong to (formulae that are true at these possible
worlds). In order to guarantee termination, transitive roles (transitive modali-
ties) require filtration or blocking: a check to ensure that no other node has the
same set of concepts (formulae)—if so, the two nodes can be collapsed into a
cycle. If the algorithm constructs a collection of nodes where there are no com-
pound concepts (formulae) that have not been expanded and where there are no
obvious contradictions, called clashes, at any of the nodes, then the collection
of nodes corresponds to a model for the initial concept (formula). If the algo-
rithm fails to construct such a collection then the initial concept (formula) has
no model—it is said to be unsatisfiable.

The details of the algorithm, including precise termination conditions, are
fairly standard, and can be found in [15].

3 Optimisation Techniques

The basic algorithm given above is too slow to form the basis of a useful de-
scription logic system. We have therefore investigated and employed a range of
known, adapted and novel optimisations that improve the performance of the
satisfiability testing algorithm, including lexical normalisation, semantic branch-
ing search, boolean constraint propagation, dependency directed backtracking,
heuristic guided search, and caching.

Theoretical descriptions of tableaux algorithms generally assume that the
concept expression to be tested is in negation normal form, with negations ap-
plying only to atomic concepts. This simplifies the (description of the) algorithm
but it means that a clash will only be detected when an atomic concept and its
negation occur in the same node label. For example, when testing the satisfi-
ability of the concept expression ∃R.(C u D) u ∀R.¬C, where C is an atomic
concept, a clash would be detected when the algorithm creates an R-successor y
because {C,¬C} ⊆ L(y). However, if C is a concept expression, then the clash
would not be detected immediately because ¬C would have been transformed
into negation normal form. If C is a large or complex expression this could lead
to costly wasted expansion.

This problem is addressed by transforming concept expressions into a lex-
ically normalised form, and by identifying lexically equivalent expressions. All
concepts can then be treated equally, whether or not they are atomic, with a
clash being detected whenever a concept expression and its negation occur in the
same node label.2 In lexically normalised form, concept expressions consist only
of (possibly negated) atomic concepts, conjunction concepts and universal role

2 Kris addresses the same problem, in a less complete manner, by lazily expanding
named concepts, and retaining their names in node labels [1].

238 Ian Horrocks and Peter F. Patel-Schneider

concepts: expressions of the form ∃R.C are transformed into ¬(∀R.¬C) and ex-
pressions of the form (C1t, . . . ,tCn) are transformed into ¬(¬C1u, . . . ,u¬Cn),
where the C1, . . . , Cn are sorted and duplicates are eliminated. The normalisa-
tion process can also include simplifications such as ∀R.> −→ >, (⊥u. . .) −→ ⊥
and (C u¬C u . . .) −→ ⊥; in extreme cases the need for a tableau expansion can
be completely eliminated by simplifying expressions to > or ⊥. Efficiency can
be further enhanced by tagging each lexically distinct expression with a unique
code so that equivalent expressions can be identified simply by comparing tags.3

Tableau expansion of concepts in this form is no more complex than if
they are in negation normal form: ¬(∀R.C) can be dealt with in the same
way as ∃R.¬C and ¬(C1u, . . . ,uCn) can be dealt with in the same way as
(¬C1t, . . . ,t¬Cn). The expression ∃R.(C uD) u ∀R.¬C would be transformed
into ¬(∀R.¬(C u D)) u ∀R.¬C, and the ¬(∀R.¬(C u D)) term would lead di-
rectly to the creation of an R-successor whose label contained both C and ¬C.
As the two occurrences of C will be lexically normalised and tagged as the same
concept, a clash will immediately be detected, regardless of the structure of C.

Standard tableaux algorithms are inherently inefficient because they use a
search technique based on syntactic branching. When expanding the label of
a node x, syntactic branching works by choosing an unexpanded disjunction in
L(x) and searching the different models obtained by adding each of the disjuncts.
As the alternative branches of the search tree are not disjoint, there is nothing
to prevent the recurrence of an unsatisfiable disjunct in different branches [9].
The resulting wasted expansion could be costly if discovering the unsatisfiability
requires the solution of a complex sub-problem. For example, tableau expansion
of a node x, where {(C t D1), (C t D2)} ⊆ L(x) and C is an unsatisfiable
concept expression, could lead to the search pattern shown below, where the
unsatisfiability of C must be demonstrated twice.

t t

x

t t

x

x1 x2

x3 x4

x

x

L(x) [fCg) clash L(x)[fD1g

L(x2) [fCg) clash L(x2) [fD2g

This problem is dealt with by using a semantic branching technique adapted
from the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used
to solve propositional satisfiability (SAT) problems [6,8]. Instead of choosing an
unexpanded disjunction in L(x), a single disjunct D is chosen from one of the
unexpanded disjunctions in L(x). The two possible sub-trees obtained by adding
either D or ¬D to L(x) are then searched. Because the two sub-trees are strictly
disjoint, there is no possibility of wasted search as in syntactic branching.

An additional advantage of using a DPLL based search technique is that a
great deal is known about the implementation and optimisation of this algorithm.

3 A similar technique is used in Ksat, but without the benefit of tagging [9].

Optimising Propositional Modal Satisfiability 239

clash clash

t

t

t

t

t

x

x1

x2

t

L(x) [f:C1; D1gL(x) [fC1g

L(x1) [fC2g

x

R

xn
L(xn�1) [fCng

L(x1) [f:C2; D2g

L(x2) [f:C3; D3g

xf(C1 tD1); : : : ; (Cn tDn); 9R:(C uD); 8R::Cg

y1 : : :
x

y2n
f(C uD);:C;C;Dg f(C uD);:C;C;Dg

clash clash

y1

t

t

t

t

t

x

x1

x2

t

x

R

xn

x

PruningBackjump

x

: : :
x

y2n

Fig. 1. Thrashing in backtracking search/Backjumping

In particular, both boolean constraint propagation and heuristic guided search
can be used to try to minimise the size of the search tree.

Boolean constraint propagation (BCP) is a technique used to maximise de-
terministic expansion, and thus pruning of the search tree via clash detection,
before performing non-deterministic expansion (branching) [8]. Before semantic
branching is applied to the label of a node x, BCP deterministically expands
disjunctions in L(x) which present only one expansion possibility and detects a
clash when a disjunction in L(x) has no expansion possibilities. The number of
expansion possibilities presented by a disjunction (C1t . . .tCn) ∈ L(x) is equal
to the number of disjuncts Ci such that ¬Ci /∈ L(x). In effect, BCP is using the
inference rule ¬C,CtD

D to simplify the expression represented by L(x).
For example, given a node x such that {(Ct(D1uD2)), (¬D1t¬D2),¬C} ⊆

L(x), BCP deterministically expands the disjunction (C t (D1 uD2)) because
¬C ∈ L(x). The expansion of (D1uD2) adds both D1 and D2 to L(x), allowing
BCP to identify (¬D1t¬D2) as a clash without any branching having occurred.

Inherent unsatisfiability concealed in sub-problems can lead to large amounts
of unproductive backtracking search known as thrashing. The problem is ex-
acerbated when blocking is used to guarantee termination, because blocking
may require that sub-problems only be explored after all other forms of expan-
sion have been performed. For example, expanding a node x, where L(x) =
{(C1 tD1), . . . , (Cn tDn), ∃R.(C uD), ∀R.¬C}, would lead to the fruitless ex-
ploration of 2n possible R-successors of x before the inherent unsatisfiability
is discovered. The search tree created by the tableau expansion algorithm is
illustrated in Fig. 1.

This problem is addressed by adapting a form of dependency directed back-
tracking called backjumping, which has been used in solving constraint satisfi-
ability problems [3] (a similar technique was also used in the HARP theorem
prover [13]). Backjumping works by labeling concept expressions with a depen-
dency set indicating the branching points on which they depend. A concept
expression C ∈ L(x) depends on a branching point when C was added to L(x)

240 Ian Horrocks and Peter F. Patel-Schneider

at the branching point or when C ∈ L(x) depends an another concept expression
D ∈ L(y), and D ∈ L(y) depends on the branching point. A concept expression
C ∈ L(x) depends on a concept expression D ∈ L(y) when C was added to L(x)
by a deterministic expansion which used D ∈ L(y), e.g., if A ∈ L(x) was derived
from the expansion of (AuB) ∈ L(x), then A ∈ L(x) depends on (AuB) ∈ L(x).

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. The algorithm can then jump back
over intervening branching points without exploring alternative branches.

For example, when expanding the node x from the previous example, the
search algorithm will perform a sequence of n branches, eventually leading to
the node xn with {∃R.(C u D), ∀R.¬C} ⊂ L(xn). When ∃R.(C uD) ∈ L(xn)
is expanded the algorithm will generate an R-successor y1 with L(y1) = {(C u
D),¬C}. The concept expression (C u D) will then be expanded and a clash
will be detected because {C,¬C} ⊂ L(y1). As neither C nor ¬C in L(y1) will
have the branching points leading from x to xn in their dependency sets, the
algorithm can either return unsatisfiable immediately (if both the dependency
sets were empty) or jump directly back to the most recent branching point on
which one of C or ¬C did depend. Figure 1 illustrates how the search tree below
x is pruned by backjumping, with the number of R-successors explored being
reduced by 2n − 1.

Heuristic techniques can be used to guide the search in a way which tries to
minimise the size of the search tree. A method which is widely used in DPLL
SAT algorithms is to branch on the disjunct which has the Maximum number of
Occurrences in disjunctions of Minimum Size [8]. By choosing a disjunct which
occurs frequently in small disjunctions, this heuristic tries to maximise the ef-
fect of BCP. For example, if the label of a node x contains the unexpanded
disjunctions {C tD1, . . . , C tDn} ⊆ L(x), then branching on C leads to their
deterministic expansion in a single step: when C is added to L(x), all of the dis-
junctions are fully expanded and when ¬C is added to L(x), BCP will expand
all of the disjunctions. Branching first on any of D1, . . . , Dn, on the other hand,
would only cause a single disjunction to be expanded.

Unfortunately this heuristic interacts adversely with the backjumping op-
timisation by overriding any “oldest first” order for choosing disjuncts: older
disjuncts are those which resulted from earlier branching points and will thus
lead to more effective pruning if a clash is discovered [11]. Moreover, the heuris-
tic itself is of little value because it relies for its effectiveness on finding the
same disjuncts recurring in multiple unexpanded disjunctions: this is likely in
SAT problems, where the disjuncts are propositional variables, and where the
number of different variables is usually small compared to the number of dis-
junctive clauses (otherwise problems would, in general, be trivially satisfiable);
it is unlikely in concept satisfiability problems, where the disjuncts are concept
expressions, and where the number of different concept expressions is usually
large compared to the number of disjunctive clauses. As a result, the heuristic

Optimising Propositional Modal Satisfiability 241

will often discover that all disjuncts have similar or equal priorities, and the
guidance it provides is not particularly useful.

An alternative strategy is to employ a heuristic which tries to maximise the
effectiveness of backjumping by using dependency sets to guide the expansion.
Whenever a choice is presented, the heuristic chooses the concept whose de-
pendency set includes the earliest branching points. This technique can be used
both when selecting disjuncts and when ordering R-successors. The use of heuris-
tics is an area of continuing research, but preliminary results suggest that the
dependency heuristic is a promising technique.

During a satisfiability check there may be many successor nodes created.
These nodes tend to look considerably alike, particularly as the R-successors for
a node x each have the same concept expressions for the universal role concepts
in L(x). Considerable time can thus be spent re-performing the computations
on nodes that end up having the same label. As the satisfiability algorithm only
cares whether a node is satisfiable or not, this time is wasted.

If successors are only created when other possibilities at a node are exhausted,
then the entire set of concept expressions that come into a node label can be
generated at one time. The satisfiability status of the node is then completely
determined by this set of concept expressions. Then, if there exists another
node with the same set of initial formulae the two nodes will have the same
satisfiability status [7]. Thus work need be done only on one of the two nodes,
potentially saving a considerable amount of processing, as not only is the work
at one of the nodes saved, but also the work at any of the successors of this node.

The downside of caching is that the dependency information required for
backjumping cannot be effectively calculated for the nodes that are not ex-
panded. This happens because the dependency set of any clash detected depend
on the dependency sets of the incoming concept expressions, which will differ
between the two nodes. Backjumping can still be performed, however, by com-
bining the dependency sets of all incoming concept expressions and using that
as the dependency set for the unsatisfiable node.

Another problem with caching is that it requires that nodes, or at least sets
of formulae, be retained until the end of a satisfiability test, changing the storage
requirements of the algorithm from polynomial to exponential in the worst case.

4 Testing

All the above optimisations are implemented in FaCT and DLP, and we have
tested their efficacy on several test suites. (FaCT and DLP differ on their im-
plementation details, how well they implement some of the above optimisations,
and the exact heuristic optimisation they do.) All times reported are for runs on
machines with approximately the speed of a SPARC Ultra 1.

We would prefer to test on actual description logic knowledge bases, as that
is what FaCT and DLP are designed for. However, there are very few description
logic knowledge bases that use the more-powerful constructs provided by FaCT
and DLP. One test that we have been able to do is to take the Galen knowledge

242 Ian Horrocks and Peter F. Patel-Schneider

FaCT DLP DLP∗ KSAT Kris

p n p n p n p n p n

K branch 6 4 18 12 10 11 8 8 3 3
d4 >20 8 >20 >20 8 6 8 5 8 6
dum >20 >20 >20 >20 10 12 11 >20 15 >20
grz >20 >20 >20 >20 >20 >20 17 >20 13 >20
lin >20 >20 >20 >20 >20 >20 >20 3 6 9
path 7 6 >20 >20 7 11 4 8 3 11
ph 6 7 7 8 6 8 5 5 4 5
poly >20 >20 >20 >20 >20 >20 13 12 11 >20
t4p >20 >20 >20 >20 6 4 10 18 7 5

KT 45 >20 >20 >20 >20 9 >20 5 5 4 3
branch 6 4 18 12 16 11 8 7 3 3
dum 11 >20 >20 >20 9 >20 7 12 3 14
grz >20 >20 >20 >20 >20 >20 9 >20 0 5
md 4 5 3 >20 3 >20 2 4 3 4
path 5 3 8 8 2 >20 2 5 1 13
ph 6 7 7 18 5 19 4 5 3 3
poly >20 7 >20 8 >20 2 1 2 2 2
t4p 4 2 >20 >20 1 1 1 1 1 7

S4 45 >20 >20 >20 >20 >20 >20
branch 4 4 >20 12 16 12
grz 2 >20 >20 >20 0 >20
ipc 5 4 10 >20 3 10
md 8 4 3 >20 3 >20
path 2 1 6 >20 2 >20
ph 5 4 4 5 5 15
s5 >20 2 19 >20 1 >20
t4p 5 3 >20 >20 0 >20

Table 2. Results for Tableaux’98 Benchmarks

base and construct versions of it that are acceptable to FaCT, DLP and Kris,
by, among other things, making all roles non-transitive and eliminating inclusion
axioms. To illustrate the importance of backjumping, caching, and the heuris-
tics, times are also given for DLP with these optimisations disabled—we will
refer to this system as DLP∗. FaCT and DLP processed the knowledge base in
210 seconds, classifying over two thousand concept definitions requiring tens of
thousands of satisfiability tests. Both DLP∗ and Kris were unable to complete
the processing of the knowledge base in four hours.

Our other testing has been against test suites for propositional modal log-
ics, using the propositional modal logic interface for FaCT and DLP. We have
tested against the test suite for the Tableaux’98 propositional modal logic com-
parison [10] and against a collection of random formulae initially generated by
Hustadt and Schmidt [12].

Optimising Propositional Modal Satisfiability 243

K-dum-p KT-t4p-n

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

problem size

Neither
Backjumping

Caching
Both

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

problem size

Neither
Backjumping

Caching
Both

Fig. 2. Solution times for constructed satisfiability problems

The Tableaux’98 test suite consists of several classes of formulae (e.g. branch),
in both provable (p) and non-provable (n) forms, for each of K, KT, and S4.
For each type of formula, 21 examples of supposedly exponentially increasing
difficulty are provided, and the result of a test is the number of the largest
formula which the system was able to solve within 100 seconds of CPU time. The
results of these tests with FaCT, DLP, DLP∗, Ksat 4 and Kris are summarised
in Table 2. In the table, >20 indicates that the hardest problem was solved in
less than 100 seconds. (Neither Ksat nor Kris can reason with transitive roles,
so they cannot be used to perform S4 satisfiability tests.)

In these tests FaCT and DLP outperformed the other systems in this test,
with DLP being a clear winner, because of its more-complete caching. Even DLP∗

performed better than other systems due to the optimizations retained in it.
DLP also outperformed the other systems that took part in the the Tableaux’98
comparison [4].

Further analysis of the difference between DLP and DLP∗, not presented
here because of space limitations, shows that caching is more important than
backjumping in these tests, which is more important than the heuristics. In fact
the heuristics significantly degraded performance in some cases.

The optimisations in FaCT and DLP often resulted not simply in improved
absolute performance but in a different qualitative behaviour. This is illustrated
by Fig. 2 which shows the actual solution times for two types of formulae for
DLP with backjumping and caching turned off and on. In one of these examples
the qualitative improvement is due to caching (a common occurrence); in the
other it is due to backjumping (a less-common occurrence).

Our second propositional modal logic test suite uses a method for testing SAT
decision procedures that has been adapted for use with propositional modal K by
Giunchiglia and Sebastiani [9], and further refined by Hustadt and Schmidt [12].

4 The tests here used the original Lisp implementation of Ksat; a much faster C
implementation is now available.

244 Ian Horrocks and Peter F. Patel-Schneider

PS12 PS13

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

C
P

U
 ti

m
e

(s
)

L/N

FaCT
DLP

DLP*
KSAT

Kris

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

C
P

U
 ti

m
e

(s
)

L/N

FaCT
DLP

DLP*
KSAT

Kris

Fig. 3. Median solution times for randomly generated satisfiability problems

The method uses a random generator to produce formulae, with the characteris-
tics of the formulae being controlled by a number of parameters. Each formula is
a conjunction of L K-clauses, where a K-clause is a disjunction of K elements,
each element being negated with a probability of 0.5. An element is either a
modal atom of the form ∀R.C, where C is itself a K-clause, or at the maxi-
mum modal depth D, a propositional variable chosen from the N propositional
variables which appear in the formula. Hustadt and Schmidt used two sets of
formulae, denoted PS12 and PS13, choosing N = 4 and N = 6 respectively,
with K = 3 and D = 1 in both cases. The test sets are created by varying L
from N to 30N , giving formulae with a probability of satisfiability varying from
≈1 to ≈0, and generating 100 formulae for each integer value of L/N .

The median time required to test the satisfiability of the PS12 and PS13
formulae, with a limit of 1,000s per formula, using FaCT, DLP, DLP∗, Ksat
and Kris are shown in Fig. 3. It can be seen that in these tests the performance
differences between FaCT, DLP and Ksat are much less marked than was the
case in the Tableaux’98 tests. This is because the purely propositional problems
at depth 1 can always be solved deterministically, and so performance is depen-
dent on the efficiency of propositional reasoning at depth 0. The optimisations
which allowed FaCT and DLP to outperform Ksat, notably caching, are of little
use with these formulae as there are no hard modal sub-problems.

Although the Tableaux’98 and random test suites show how our optimisations
perform on propositional modal logics, neither is very good for our purposes. In
particular, for the collection of random formulae most of the computational
difficulties have to do with the initial non-modal component. In realistic KBs
we expect to encounter problems where the hardness comes from the number of
successors that have to be considered and their interaction with the non-modal
component. The Tableaux’98 formulae have this form, but there are too few hard
collections there to validate our optimisations, and the regular structure of the
formulae tends to exaggerate the utility of the caching optimisation, particularly
for satisfiable (non-provable) formulae.

Optimising Propositional Modal Satisfiability 245

5 Summary

The collection of optimizations we have described are effective in improving
the speed of modal propositional logic reasoners, as shown by the results we
have given above. They can also dramatically improve the speed of subsumption
reasoning on description logic knowledge bases. To our knowledge some of these
improvements have not been investigated in the modal propositional reasoning
literature. The combination appears to be unique and, moreover, results in a
powerful reasoner for the propositional modal logics K, KT, and S4.

Unfortunately, the benefits of the various optimizations are not yet com-
pletely clear. Caching is best in some areas, backjumping in others. In order to
better understand these effects, we continue to analyze and improve the opti-
misations we have incorporated into our provers. We also plan to create a test
suite that emphasizes the modal nature of our description logic. Further, we are
embarking on a project to create a description logic system for a description
logic that corresponds to a propositional dynamic logic. This project will give
us further opportunities to investigate optimisation of satisfiability reasoners.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR’92), pages 270–281. Morgan-Kaufmann Publishers,
San Francisco, CA, 1992. Also available as DFKI RR-93-03.

2. F. Baader and B. Hollunder. Kris: Knowledge representation and inference system.
SIGART Bulletin, 2(3):8–14, 1991.

3. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon, 1995.

4. P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics —
introduction and summary. In H. de Swart, editor, Automated Reasoning with Ana-
lytic Tableaux and Related Methods: International Conference Tableaux’98, number
1397 in Lecture Notes in Artificial Intelligence, pages 25–26. Springer-Verlag, May
1998.

5. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson,
Andrew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage
for Efficiency: Proceedings of the First International KRUSE Symposium, pages
28–39, 1995.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

7. F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for ALC.
In L. Padgham, E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Patel-
Schneider, editors, Collected Papers from the International Description Logics
Workshop (DL’96), number WS-96-05 in AAAI Technical Report, pages 107–110.
AAAI Press, Menlo Park, California, 1996.

246 Ian Horrocks and Peter F. Patel-Schneider

8. J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial Intelligence, 81:183–198, 1996.

9. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In
L. C. Aiello, J. Doyle, and S. Shapiro, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Fifth International Conference (KR’96),
pages 304–314. Morgan Kaufmann Publishers, San Francisco, CA, November 1996.

10. A. Heuerding and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. Technical report IAM-96-015, University of Bern, Switzer-
land, October 1996.

11. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

12. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal
logic. Technical Report MPI-I-97-2-003, Max-Planck-Institut Für Informatik, Im
Stadtwald, D 66123 Saarbrücken, Germany, February 1997.

13. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of
Automated Reasoning, 4:69–100, 1988.

14. P. F. Patel-Schneider. System description: DLP. Bell Labs Research, Murray Hill,
NJ, December 1997.

15. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence, pages 333–345.
Springer Verlag, 1996.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 466–471, 1991.

Instantiation of Existentially Quantified

Variables in Inductive Specification Proofs

Brigitte Pientka? and Christoph Kreitz

Department of Computer Science,Cornell University
Ithaca, NY 14853-7501, U.S.A.

{pientka,kreitz}@cs.cornell.edu

Abstract. We present an automatic approach for instantiating exis-
tentially quantified variables in inductive specifications proofs. Our ap-
proach uses first-order meta-variables in place of existentially quantified
variables and combines logical proof search with rippling techniques. We
avoid the non-termination problems which usually occur in the presence
of existentially quantified variables. Moreover, we are able to synthe-
size conditional substitutions for the meta-variables. We illustrate our
approach by discussing the specification of the integer square root.

1 Introduction

Constructive type theory [12] offers the unique advantage of total correctness of
synthesized programs. In this setting a specification is of the form

∀input. ∃output. spec(input, output)

where input is a vector of arguments, output is a result and spec is a proposition
describing the required relation between them. A program meeting this specifi-
cation can be extracted from its proof via the proofs-as-programs principle [3].
This style is widely advocated [13] and supported in a number of implementa-
tions such as NuPRL [8]. The application of such systems however is limited by
its low degree of automation. In order to overcome this drawback, we suggest
incorporating techniques from inductive theorem proving.

The first difficult step within a proof is the choice of the appropriate in-
duction scheme. Different induction schemes result in algorithms which differ in
their complexity. In this paper we focus on the second crucial step during the in-
duction step, the instantiation of existentially quantified variables. The witness
for an existentially quantified variable corresponds to the recursive calls in the
program. Sometimes a case split is necessary before decomposing the existential
quantifier. The existentially quantified variables are then instantiated according
to the cases.

A standard technique to deal with existentially quantified variables is to use
meta-variables in place of the existential witness and allow the application of
? The research reported is supported by the Gottlieb Daimler and Karl Benz Founda-

tion with a fellowship to the first author.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 247–258, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

248 Brigitte Pientka and Christoph Kreitz

logical rules that refine the goal. To complete the proof, a unification proce-
dure provides the instantiation of the meta-variables. In inductive specification
proofs, standard unification techniques are not sufficient; we need to rewrite the
expression from the induction conclusion towards the application of the corre-
sponding expression in the induction hypothesis. Both expressions have to be
equal after some rewriting steps. The crucial question is how can we find a chain
of rewriting steps, such that both expressions can be made equal by rewriting in
the presence of meta-variables.

In inductive theorem proving, an annotated rewriting technique, called rip-
pling [7,6], has been used successfully in order to control the rewriting process.
However, only little focus has been devoted to the automatic instantiation of
existentially quantified variables. In this paper we suggest combining the logic
provided by constructive type theory with inductive theorem proving techniques
such as rippling, in order to compute valid instantiations for the existentially
quantified variables. We use first-order meta-variables during proof search within
the sequent calculus. During rippling the meta-variables are treated in the same
way as potential “sink variables”. We develop a reverse rippling match that
matches the induction conclusion with the induction hypothesis. If this match
is successful, it returns an instantiation for the meta-variables and a rippling
sequence, that rewrites the instantiated induction conclusion to the induction
hypothesis. With this approach we avoid non-termination problems that usually
occur in the presence of existentially quantified variables. Moreover, we check
the consistency of the remaining subgoals under the synthesized substitution.
During this consistency check, we are able to synthesize constraints that form
a case split during the proof. We demonstrate the strength of our approach by
discussing the proof of the integer square root specification.

In Section 2, we give a brief introduction to rippling and discuss the rippling
approaches for dealing with meta-variables. In Section 3 we describe the general
idea of our approach and in 4 we consider the proof of the integer square root. We
show step-by-step how we can derive conditional substitutions for the existen-
tially quantified variables. In Section 5 we present a more technical description
of our method using ML-notation. In Section 6 we describe the formalization
in NuPRL. In Section 7 an extension to our technique is presented. We discuss
related work concerning program synthesis in Section 8 and finally in Section 9
we outline future work and draw some conclusions.

2 A Brief Introduction to Rippling

Rippling is an annotated rewriting technique that has been successfully ap-
plied in inductive theorem proving. Differences between the induction hypothesis
(given) and the induction conclusion (goal) are marked by meta-level annota-
tions, called wave annotations. Expressions that appear both in the goal and in
the given are called skeleton. Expressions that appear in the goal, but not in
the given are called wave-fronts. The induction (or recursive) variable that is
surrounded by a wave-front is called wave-hole. Sinks are parts of the goal which

Instantiation of Existentially Quantified Variables 249

correspond to universally quantified variables in the given and are marked by
bsinkc. We call the annotated rewrite rules wave-rules. To illustrate, consider
the following wave-rule which is derived from the recursive definitions of +.

s(U)
↑

+ V
R7−→ s(U + V)

↑
(1)

In this wave-rule s(. . .) denotes the wave-front that is marked by a box. The
underlined parts U resp. U + V mark the wave-holes. Intuitively, the position
and orientation of the wave-fronts define the direction in which the wave-front
has to move within the term tree. An up-arrow ↑ indicates that the wave-front
has to move from a position within the term tree towards the root of the term
tree (rippling-out). A down-arrow ↓ moves the wave-front inwards or sideways
towards the sink in the term tree, i.e. the sink is filled with the wave-front
(rippling-in). If rippling succeeds in moving the annotations either to the root of
the term tree or to a sink, then rippling terminates successfully and the induction
hypothesis matches the induction conclusion. Rippling terminates unsuccessfully
if the rewriting process is blocked, i.e. no wave-rule is applicable anymore and
the induction hypothesis (given) does not match the induction conclusion (goal).

In Basin & Walsh [2], a calculus for rippling is presented and well-founded
measure, called wave measure is defined, under which rippling terminates if no
meta-variables occur in the goal. The wave measure associates weights to the
wave-fronts to measure the width and the size of the wave-front. The width of
a wavefront is defined by the number of nested function symbols between the
root of the wave-front and the wave-hole. The size of a wave-front is the number
of function symbols and constants in the wave-front. Rewriting is restricted
such that each application of a wave-rule is skeleton preserving and measure
decreasing according to the defined wave measure.

For instantiating existentially quantified variables via rippling, mainly two
approaches have been suggested in the literature. In Bundy et al. [6] special
existential wave-rules are suggested. Existential wave-rules can be derived from
non-existential wave-rules. For example, the existential wave-rule corresponding
to wave-rule (1) takes the following form:

∃ U : N. U + V
R7−→ ∃ U ′ : N. s(U ′ + V)

↑
(2)

Unfortunately, the search problem is exacerbated in the presence of existen-
tial quantifiers. Another disadvantage of this approach is that the process of
existential rippling does not explicitly record the relationship between the non-
existential wave-rule (1) and its existential analogue (2), more precisely the rela-
tion between U and U ′. This does not matter if we are just interested in provabil-
ity. In program synthesis, however, the identity of the existential witness plays
a vital role of defining the program to be synthesized.

Other approaches [1,10,16] use meta-annotations; the existentially quantified
variable x is replaced by F (X) where capital letters indicate meta-variables.
Middle-out reasoning [9] is used in order to instantiate the function F and its

250 Brigitte Pientka and Christoph Kreitz

argument X . This problem requires a computationally expensive higher-order
unification. The presence of higher-order variables also leads to non-termination
of rippling, as the width and the size of the wave-front cannot be determined.

Our approach overcomes these drawbacks by combining rippling with first–
order theorem proving techniques and using an extended matching procedure
for finding the witness for the existentially quantified variables.

3 Automatic Instantiation of Meta-variables

Our research interest is to automate key steps such as the instantiation of the
existentially quantified variable in sequent proofs. By the proofs–as–programs
paradigm we are then able to extract a program from the proof of a specification.
In Figure 1 an overview of our approach is presented. In order to deal with

1. Refinement of the step case formula by applying sequent rules and using
meta-variables in place of existential witness

2. On atomic subgoals: Matching of the induction hypothesis with induction
conclusion is extended by reverse rippling match in order to compute valid
substitutions for the meta-variables and a rippling sequence

3. Consistency check: test, if all subgoals are true under the found substitution

Fig. 1. Automatic instantiation of meta-variables – 3 steps

existentially quantified variables, we suggest first decomposing the existentially
quantified formula and use first-order meta-variables in place of the existentially
quantified variables. Secondly, an extended matching procedure tries to find
a rippling sequence and an instantiation for the meta-variables such that the
induction hypothesis term and the corresponding induction conclusion term are
equal. Rippling is used to manipulate the atomic subgoals. It rewrites part of the

rippling reverse rippling

..
.......................................*

..
.......................................Y

IC
R7−→ C0

R7−→ . . .
R7−→ Ci

R7−→ . . .
R7−→ Cn

R7−→ IH

induction conclusion to some formula Ci. Either Ci matches directly with the
corresponding induction hypothesis term IH or the rippling sequence Ci

R7−→
. . .

R7−→ Cn
R7−→ IH is computed by backwards reasoning from the induction

hypothesis towards Ci. This process is called reverse rippling.
For rippling and reverse rippling we use the rippling–distance strategy [11,4].

Each wave-front is mapped to a selected (goal)-sink. The distance between a
wave-front and its assigned (goal) sink in the term tree is called distance mea-
sure. Each application of a wave-rule must reduce this distance until the sink
is filled with the wave-front and the distance measure is zero. The main ad-
vantage of this approach is the uniform efficient treatment of rippling. Hence,
we need not treat the various rippling strategies differently, and it is redundant

Instantiation of Existentially Quantified Variables 251

to mark the wave-fronts with up-arrows ↑ and down-arrows ↓. For uniformly
integrating rippling-out the definition of sink has been generalized to arbitrary
term positions. By putting a sink around the whole term rippling-out can be
simulated by rippling–distance. This approach can be extended easily to incor-
porate meta-variables. During rippling, meta-variables are treated as potential
sink variables. By adopting rippling for meta-variables and using reverse rip-
pling, higher-order variables can be avoided and rippling terminates. For reverse
rippling we use the rippling–distance strategy backwards and synthesize a rip-
pling sequence Ci

R7−→ . . .
R7−→ Cn

R7−→ IH together with a substitution for the
meta-variables.

Finally, a consistency checker tests if the remaining subgoals can be proven
under the synthesized substitution. If necessary, conditions can be synthesized
which constrain the substitution. These conditional substitutions form a case
split in the proof.

Our approach combines rippling techniques with logical proof search. If it
succeeds, the rippling proof is translated back into sequent style.

4 Proving the Specification of the Integer Square Root

In this section we illustrate the automatic instantiation of existentially quantified
variables by discussing the proof of the following integer square root specification:

∀x : N. ∃y : N. y2 ≤ x ∧ x < (y + 1)2 (3)

The top–down sequent proof starts by induction on x. We concentrate on the
step case of the induction:

x : N, ∃y : N. y2 ≤ x ∧ x < (y + 1)2 ` ∃y : N. y2 ≤ s(x) ∧ s(x) < (y + 1)2

This sequent is proved by a procedure which searches for a rippling proof and an
instantiation for the existentially quantified variable y. It proceeds as described
in figure 1. In the first step, logical inference rules are used in order to decompose
the induction hypothesis and the conclusion. The existentially quantified variable
in the conclusion is replaced by a meta-variable Y . This gives us two subgoals,
(4) and (5):

x : N, y : N, y2 ≤ x, x < (y + 1)2 ` Y 2 ≤ s(x) (4)

and

x : N, y : N, y2 ≤ x, x < (y + 1)2 ` s(x) < (Y + 1)2 (5)

During the second step, the goal is annotated in such a way, that its skeleton
matches the corresponding part in the induction hypothesis. Corresponding parts
are underlined in this example. Note, that the meta-variable Y matches the

252 Brigitte Pientka and Christoph Kreitz

variable y in the given. The following wave-rules are derived from the definitions
of functions used in the specification:

U + W) < V + W) R7−→ U < V (6)

s(U) + V
R7−→ s(U + V) (7)

(s(A))2 R7−→ A2 + 2A + 1 (8)

Note, while in wave-rule (7) and (8) wave-fronts occur on both sides of the
wave-rule, in wave-rule (6) the wave-fronts are dropped on the right hand side
of the wave-rule. Wave-rules like (6) are usually used to complete proofs1. As no
wave-rule is applicable, rippling leaves the subgoal unchanged.

The reverse rippling match reasons backwards from the induction hypoth-
esis towards the (rippled) conclusion and extracts a rippling sequence and an
instantiation for the meta-variable Y . In the induction hypothesis y is marked
as a sink variable. During the first reverse wave-rule application wave-fronts are
created by wave-rules of the same type as wave-rule (6). The inserted wave-front
is refined step–by–step. This wave-front has to move towards the sink variable
y by reverse rippling and results in the instantiation of the meta-variable Y .
We start with the second subgoal (5) and try to match s(x) < (Y + 1)2 (in-
duction conclusion IC – goal) and x < (y + 1)2 (induction hypothesis IH –
given). The induction hypothesis IH represents the final formula in the rippling
sequence. In order to determine which formula preceded the induction hypoth-
esis, the wave-rule set is inspected. The given must match the right hand side
of a wave-rule. The left hand side of this rule constitutes the predecessor to IH ,
if further rippling towards the sink variable is possible. By wave-rule (6) it is
suggested that the formula before reaching the induction hypothesis x < (y+1)2

is x + W < (y + 1)2 + W) . This formula can be rippled by wave-rule (8) and

W can be instantiated with 2(y+1)+1. The inserted wave-front moves closer to
the sink variable y. Rippling towards the sink variable y is straightforward and
the generated rippling sequence is presented in Figure 2. By wave-rule (7) the
wave-front s is moved to a position where it surrounds y; therefore our rippling
sequence terminates successfully. As no wave-rule is available to justify the final
step, we need to prove that the induction conclusion is implied by the last step2.
Typically these implications can be proven by decision procedure using standard
arithmetic. In this case the proof is trivial. Therefore s(y) is a valid substitution
for Y .

This substitution and its corresponding rippling sequence (cp. Figure 2) con-
stitute a successful match if the remaining subgoals are true under the found
substitution (step 3 in Figure 1). We use a heuristic to check the subgoals and
synthesize case splits if necessary. In order to restrict search space, we require
1 We consider here proofs by strong fertilization, which aim for total match between

the induction conclusion term and induction hypothesis term.
2 The rippling rule Ci

R7−→ Ci+1 corresponds to the logical implication Ci+1 ⇒ Ci.

Instantiation of Existentially Quantified Variables 253

s(x) < (s(y) + 1)2

x + 2(y + 1) + 1 < (

�
s(y)

�
+ 1)2

R7−→←−

Y

by decision
proc.............

............
............
............
............
............
...

R7−→ x + 2(y + 1) + 1 < s((byc+ 1))
2

Y

by wr (7)
............
............
............
............
............
............
...

R7−→ x + 2(y + 1) + 1 < (byc+ 1)2 + 2(y + 1) + 1)

Y

by wr (8)
............
............
............
............
............
............
...

R7−→ x < (byc+ 1)2

Y

by wr (6)
............
............
............
............
............
............
...

Fig. 2. Rippling sequence generated by extended matching

that the subgoals can be proven by standard arithmetic, rippling and equational
reasoning. If one of the remaining subgoals is not provable by these techniques,
we use this subgoal as a constraint of the substitutions. In order to be consistent,
we then prove all the remaining subgoals under the negated constraint. In this
example, (4) is the only remaining subgoal. We use the subgoal (s(y))2 ≤ s(x)
as a constraint, and therefore try to prove both cases (4) and (5) for the case
¬(s(y))2 ≤ s(x). We use unfolding of the successor and ¬(. . . ≤ . . .) function
s and normal matching, to derive a substitution. We start again by inspecting
subgoal (5). Matching between s(x) < (Y + 1)2 and s(x) < (y + 1)2 returns the
substitution [y/Y]. The subgoal (4) is trivially true under this substitution.

By combining logical proof search with rippling and extended matching, we
are able to generate automatically a proof for the step case and to synthesize a
set of conditional substitutions:[(s(y))2 ≤ s(x), s(y)/Y], [¬((s(y))2 ≤ s(x)), y/Y].

5 An Algorithm for Extended Matching

In this section we present a technical description of the steps performed during
the automatic instantiation of existentially quantified variables (see Figure 1).
We use ML-notation to describe the algorithm. To automate step 1 standard
theorem proving methods can be used. We concentrate on the extended matching
procedure (step 2 and 3) which is the core of the automatic instantiation of
existentially quantified variables.

Before calling the algorithm extended matching, the wave-rule set wrs con-
tains potential wave-rules. The wave-rules are annotated dynamically during
the rippling and reverse rippling process. The function extended matching re-
turns (conditional) substitutions and proofs, if

1. The list of subgoals, sgoal list, contains at least one element sgoal. In this
case calling rippling sequence (conclusion sgoal) (hypothesis sgoal) wrs finds
a rippling sequence rip seq and a substitution subst (Figure 3); (conclusion
sgoal) gives us the rippled conclusion and (hypothesis sgoal) returns the cor-
responding hypothesis.

254 Brigitte Pientka and Christoph Kreitz

2. the remaining subgoals, sgoal list\{sgoal}, are consistent with this substitu-
tion (check subgoals sgoal list sgoal subst).

The function rippling sequence (Figure 3) computes a rippling sequence
rip conc

R7−→ . . .
R7−→ . . . Ci

R7−→ . . .
R7−→ ind hyp and a substitution for the meta-

variable. First the variable in the induction hypothesis that corresponds to the

let rippling sequence conc ind hyp wrs =
let ann conc = annotate conc ind hyp in
let rip conc = ripple ann conc wrs in
let predecessors = poss predecessors ind hyp rip conc wrs in
letrec reverse rippling in path predecessors =

if predecessors = [] & filled sink (hd path) & (hd path) → rip conc
then path
else select p ∈ predecessors

let new predecessors = poss predecessors p wrs in
reverse rippling in p::path new predecessors in

reverse rippling in [] predecessors

Fig. 3. Algorithm for synthesizing rippling sequence Cn
R7−→ . . . IH

meta-variable in the induction conclusion is marked with a sink. The function
poss predecessors computes possible predecessors Ci−1 for a given formula Ci in
the rippling sequence by inspecting the wave-rule set wrs. It simulates the back-
wards application of one rippling rule. The function reverse rippling in triggers
the reverse rippling process. It proceeds recursively by depth first search if there
are several predecessors to a formula. It reasons backwards from the induction
hypothesis ind hyp towards the rippled conclusion rip conc. In each recursion,
the next possible predecessors are computed. It is successful if the sink variable
is surrounded by a wave-front, i.e. the sink is filled and this formula Ci+1 implies
Ci. Otherwise backtracking is initiated.

The function check subgoals checks if the remaining subgoals are provable
under the substitution derived by rippling sequence. If all the remaining subgoals
can be proven under the substitution, then the match is successful. If there are
subgoals that are not provable by a simple proof procedure simplify3, then we
use one of the remaining unprovable subgoal as a constraint c and prove
1. each g ∈ sgoal list \{sgoal}. g is provable by simplify under the constraint c
2. each g ∈ sgoal list. g is provable by simplify and matching under constraint ¬c.
With the presented algorithm we are able to instantiate existentially quantified
variables automatically and solve the step case of an inductive proof automati-
cally. Moreover, by a simple heuristic, which is integrated in check subgoals we
are able to synthesize conditional substitutions. These conditions form a case
split in the proof. For a more detailed version we refer to [15].

3 simplify is a combination of NuPRL’s tactics Unfold, SupInf and Auto. It is a decision
procedure that uses standard arithmetic.

Instantiation of Existentially Quantified Variables 255

6 Integrating into NuPRL

In this section we discuss the integration of our proof method into NuPRL, an
interactive, tactic based theorem prover. The described proof procedure is imple-
mented and embedded within the tactic TReverseRipple. If the proof procedure
finds a substitution for the meta-variables and all the subgoals can be solved,
this proof is translated back into sequent style. Due to the nature of reverse rip-
pling, the eigenvariablen condition is observed, and does not cause any problems
for the back translation.

The sequent-style proof in NuPRL for the integer square root specification
is presented in Figure 4. In this proof the user specified the induction scheme.

 8x:N.9y:N. y2�x ^ x<(y+1)2

BY allR
|
1. x: N

 9y:N. y2�x ^ x<(y+1)2

BY TNatInd ‘x‘
|n
| 9y:N. y2�0 ^ 0<(y+1)2

1 BY exR d0e

| |
| 0*0 � 0 ^ 0 < (0+1)*(0+1)
1 BY Auto
n
2. 9y:N. y2�x ^ x<(y+1)2

 9y:N. y2�s(x) ^ s(x)<(y+1)2

BY exL 2 THEN andL 3
|
2. y: N

3. y2 � x

4. x < (y+1)2

BY Decide d(y+1)2 � s(x)e THENW Auto
|n
| 5. (y+1)2 � s(x)

1 BY exR ds(y)e

| |

| (s(y))2�s(x) ^ s(x)<(s(y)+1)2

1 BY andR
| |n
| | (s(y))2�s(x)
1 2 BY Auto
| n

| n
| s(x) < (s(y)+1)2

1 BY Cut dx + 2*(y+1) + 1 < (y+1)2 + 2*(y+1) + 1e

| |n
| | x + 2*(y+1) + 1 < (y+1)2 + 2*(y+1) + 1
1 2 BY Substitution THEN Lemma wave-rule 2
| n
| 6. x + 2*(y+1) + 1 < (y+1)2 + 2*(y+1) + 1

1 BY Cut dx + 2*(y+1) + 1 < (s(y + 1))2e

| |n
| | x + 2*(y+1) + 1 < (s(y + 1))2

1 2 BY Substitution THEN Lemma wave-rule 4
| n
| 7. x + 2*(y+1) + 1 < s((y + 1))2

1 BY Cut dx + 2*(y+1) + 1 < (s(y)+1)2e

| |n
| | x + 2*(y+1) + 1 < (s(y)+1)2

1 2 BY Substitution THEN Lemma wave-rule 3
| n
| 8. x + 2*(y+1) + 1 < (s(y)+1)2

1 BY Unfold ‘s‘ 0 THEN SupInf THEN Auto

| 5. :((y+1)2 � s(x))

BY exR dye

|

 y2 � s(x) ^ s(x) < (y+1)2

BY andR
|n
| y2 � s(x)
1 BY Unfold ‘s‘ 0 THEN Auto
n
 s(x) < (y+1)2

BY Auto

Fig. 4. Proof of the integer square root in NuPRL

First, the universal quantifier on the right hand side is decomposed by tactic allR.
The tactic TNatInd ‘x‘ then splits the conjecture into base and step case. Our
automation efforts concentrate on the step case of the induction. The step cases
of an induction proof are challenging for mainly two reasons: 1) It is harder than
in the base case to find the witness for the existentially quantified variable(s). 2)
Sometimes, a case split is required and the existentially quantified variable is in-
stantiated according to the different cases. These case splits are not immediately
obvious, and often require user insight.

256 Brigitte Pientka and Christoph Kreitz

The tactic TReverseRippling synthesizes a conditional substitution set for the
existentially quantified variable and translates this information into a sequent
proof. The proof displays the subtactics which were applied by TReverseRipple. A
case split is performed by tactic Decide based on the conditional substitution set
before instantiating the existential quantifier on the right hand side. The tactic
exL decomposes the existential quantifier on the left hand side. Applications of
tactic andL resp. andR eliminate the conjunction on the left resp. right hand
side. The generated rippling sequence is translated back into sequent proof by
cut, substitution and lemma applications as described in [11].

7 Extensions to Reverse Rippling

Examples, that can be solved by our method include the specification of quotient
remainder, append, half, or last. These examples span the range of specifications
usually considered (see [5,10,16]) and do not require any case splits. We also can
prove the specification for log2 which results in a similar proof to the integer
square root example. Moreover, we used the extended matching procedure to
instantiate universally quantified variables in the hypothesis list. With this ex-
tension we are also able to prove the specification of the integer square root and
log2 by using non-standard induction schemes allowing us to synthesize while
loops for these two specifications.

To illustrate the flexibility and strength of our technique, we prove the inte-
ger square root specification by a different induction scheme4. In the step case
(induction proceeds over k) we yield the following conjecture:

k : N, ∀x, y : N. x− y < p(k) ∧ y2 ≤ x ∧ 0 ≤ y → ∃n : N. y ≤ n ∧ n2 ≤ x ∧ x < (n + 1)2

` ∀x, y : N. x− y < k ∧ y2 ≤ x ∧ 0 ≤ y → ∃n : N. y ≤ n ∧ n2 ≤ x ∧ x < (n + 1)2

Rippling would annotate the term x − y < k to give bxc − byc < s(p(k)) as
it operates on the induction conclusion. However, no rippling proof for the left
hand side of the sequent can be found. Our approach first decomposes the right
and left hand side and then uses extended matching to find a match between
x − y < k in the hypothesis list and X − Y < p(k) on the conclusion side. By
reverse rippling starting from x−y < k we try to generate a rippling sequence and
an instantiation for X and Y . The following additional wave-rules are derived
from monotonicity laws and the definition of − is provided:

V > 0 ∧ U > 0→ p(U) < p(V) R7−→ U < V (9)

p(U − V) R7−→ U − s(V) (10)

By wave-rule (9) and wave-rule (10) the extended matching procedure generates
the following rippling sequence:

x− s(y) < p(k) R7−→
(10)

p(x − y) < p(k) R7−→
(9)

x− y < k

4 This induction scheme will result in a more efficient program, namely a while loop.
In each iteration y is incremented until (y + 1)2 > x.

Instantiation of Existentially Quantified Variables 257

This example illustrates that the conventional rippling approach [7] to instantiate
universally quantified variables in the induction hypothesis by rippling-in is not
expressive enough. Moreover, it supports the strength of our approach. The
combination of logical proof search and rippling gives us the flexibility to deal
with complex logical formulas.

8 Related Work

One of the first approaches to automate the instantiation of existentially quan-
tified variables has been by Biundo [5]. Existentially quantified variables are
replaced by Skolem functions which describe the program which is to be synthe-
sized. After induction the formula in the step case is put into clausal form. The
synthesis proceeds by clause–set translations (e.g. rewriting and case splitting)
which induce an AND/OR search space. The work of Kraan et al.[10] builds
upon the idea to replace existentially quantified variables by skolem functions
in order to synthesize logical programs. In order to control better the search
space within the inductive step, rippling and middle–out reasoning [9] are used
to construct predicate definitions from specifications in classical logic. However,
both approaches do not guarantee that the synthesized program is correct, it
has to be verified after the synthesis. We believe that constructive type theory
provides a firmer mathematical foundation than is found in these systems.

In Smaill & Green [16], an approach for the synthesis of functional programs
within the framework of constructive type theory is suggested. This approach
builds on higher–order embeddings and higher–order rippling. Middle-out rea-
soning and higher order embeddings have the disadvantage of a big search space,
as rippling in the presence of higher-order function variables does not terminate.

The rippling approaches rely exclusively on this technique and encode logical
inference rules as wave-rules. The whole induction conclusion is rippled and
these systems aim for a match of the whole induction conclusion with the entire
induction hypothesis. The underlying logical calculus is not used to decompose
the step case during proof search. This causes major problems when we deal
with specifications of more complex formulas, as we illustrated in section 7.

9 Conclusion and Future Work

We have presented an approach for the instantiation of existentially quantified
variables which provides a significant degree of automation to proofs in construc-
tive type theory. The key idea is to use first-order meta-variables in place of the
existential witness during proof search and rippling and instantiate this meta-
variable by an extended matching procedure. Because we reason backwards from
the induction hypothesis towards the rippled conclusion by reverse rippling, our
approach is highly goal directed and we are able to synthesize lemmata during
reverse rippling. By combining logical proof search methods with rippling tech-
niques, we gain flexibility and are able to synthesize case splits which cannot be
derived by other comparable systems.

258 Brigitte Pientka and Christoph Kreitz

We see our work in a more general framework of matching: two terms t1
and t2 match, if the meta-variables in t1 can be instantiated in such a way that
rippling rewrites t1 towards t2. This approach allows us to treat meta-variables
uniformly. We plan to extend and refine our method in this direction.

Moreover, we plan to explore the use of specially tailored logical proof search
methods such as connection method [14] or resolution [17] instead of direct proof
search in the sequent calculus. These proof methods are more goal directed. For
future research we aim to combine these techniques with a matching procedure
which uses rippling and reverse rippling techniques.

References

1. A. Armando, A. Smaill, and I. Green. Automatic synthesis of recursive programs:
The proof-planning paradigm. In Proceedings of the 12th IEEE International Au-
tomated Software Engineering Conference, p 2–9. IEEE Computer Society, 1997.

2. D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of
Automated Reasoning, 16(2):147–180, 1996.

3. J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on
Programming Languages and Systems, 7(1):113–136, January 1985.

4. W. Bibel, D. Korn, C. Kreitz, F. Kurucz et al.. A multi-level approach to program
synthesis. In Logic Program Synthesis and Transformation,Springer, 1998.

5. S. Biundo. Automated synthesis of recursive algorithms as a theorem proving
tool. In Proceedings of the 8th ECAI, 1988.

6. A. Bundy, A. Stevens, F. van Harmelen et al.. Rippling: A heuristic for guiding
inductive proofs. Artificial Intelligence, 62(2):185–253, August 1993.

7. A. Bundy, F. van Harmelen, A. Smaill et al.. Extensions to the rippling–out tactic
for guiding inductive proofs. In Proceedings of the 10th International CADE, p
132–146. LNAI, 1990.

8. R. L. Constable, S. F. Allen, H. M. Bromley, and et al. Implementing Meta-
Mathematics with the NuPRLProof Development System. Prentice-Hall, 1086.

9. Jane T. Hesketh. Using Middle-Out Reasoning to Guide Inductive Theorem Prov-
ing. PhD thesis, Dept. of Artificial Intelligence, University of Edinburgh, 1991.

10. I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning. In
Logic Program Synthesis and Transformation, p 1–14. Springer, 1993.

11. Ferenc Kurucz. Realisierung verschiedender Induktionsstrategien basierend auf
dem Rippling-Kalkül. Master’s thesis, Technical University Darmstadt, 1997.

12. Per Martin-Löf. Constructive mathematics and computer programming. In 6-th
International Congress for Logic, Methodology and Philosophy of Science, 1979, p
153–175. North-Holland, 1982.

13. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löfs Type
Theory. An introduction. Clarendon Press, Oxford, 1990.

14. J. Otten and C. Kreitz. A Uniform Proof Procedure for Classical and Non-classical
Logics. KI-96: Advances in Artificial Intelligence, LNAI 1137, p 307–319. Springer.

15. B. Pientka. Automating the instantiation of existentially quantified variables. tech-
nical report, Dept. of Computer Science, Cornell University,1998.

16. A. Smaill and I .Green. Automating the synthesis of functional programs. Research
paper 777, Dept. of Artificial Intelligence, University of Edinburgh, 1995.

17. T. Tammet. A resolution theorem prover for intuitionistic logic. In Proceedings of
the 13th International CADE, LNAI 1104, p 2–16, 1996.

Knowledge Discovery Objects and Queries in

Distributed Knowledge Systems

Zbigniew W. Raś and Jiyun Zheng

University of North Carolina, Dept. of Comp. Science, Charlotte, N.C. 28223, USA
ras@uncc.edu or jzheng@uncc.edu

Abstract. The development of many knowledge discovery meth-
ods (see [14], [7], [16]) provided us with good foundations to build
a kd-Query Answering System (kdQAS) for Distributed Knowl-
edge Systems (DKS). By DKS we mean a number of autonomous
processing elements (called knowledge systems) that are intercon-
nected by a computer network and that cooperate in their assigned
tasks. A knowledge-system we see as a relational database coupled
with a discovery layer which is simplified in this paper to a set of
rules.
Queries handled by kdQAS are more general than SQL. Also, the
queried objects are far more complex than tuples in a relational
database. To distinguish them from objects and queries in DBMS,
we introduce kd-objects and kd-queries respectively. In general, by
kd − object we mean any set of tuples and rules. By kd − query
we mean a predicate which queries kd-object in DKS and returns
another kd-object for an answer. Our kd-objects may not exist a
priori, thus querying them at one site of DKS may require gen-
eration, at run time, of new kd-objects either at the same site or
at other sites of DKS. So, querying has to major roles: generation
of new kd-objects and retrieval of the ones which were generated
before.
In relational databases, the result of a query is a relation that can be
queried further. This is typically referred to as a closure principle,
and it should be one of the most important design principles for
kdQAS. Our kd-queries satisfy such a closure principle.

Key Words: incomplete information system, cooperative query answering, rough
sets, multi-agent system, knowledge discovery.

1 Introduction

In many research fields, such as military, medical, manufacturing, and educa-
tional, similar databases are kept at many sites. Each database stores informa-
tion about local events and the information is expressed in attributes compat-
ible among databases. When similar databases are designed, their events are

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 259–269, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

260 Zbigniew W. Raś and Jiyun Zheng

described in terms of the same attributes with some minor or major exceptions.
Values of the same attribute may have different generality among databases. The
procedures used to collect the data do not have to be the same among databases
which means their operational semantics can be different. Also, some attributes
might be missing in one database but they occur in many others. Missing at-
tributes lead to problems. Medical doctor may query a database in his hospital
to find all patients having certain symptoms, only to realize that one component
of that description is a result of a medical test which is missing in the database
schema and the same the query cannot be answered. The same query would work
on many other databases but the doctor is interested in identifying the patients
in his hospital. In this paper we develop a theory for intelligent answering these
”locally unreachable” queries.

The task of integrating independently built databases is complicated not
only by the differences between the data contents but also by the differences in
structure and semantics of the information they contain. The problem is exac-
erbated when one needs to provide access to such a system for the end-users.
For more than 10 years research has been devoted to the question of informa-
tion retrieval from heterogonous distributed databases. This research has sought
to provide integrated access to such databases and has focused on distributed
databases, multidatabases, federated databases and their interoperability. The
main purpose of integrated access is to enable a number of heterogeneous dis-
tributed databases to be queried as if they were a single homogeneous database.
Common practice in integrating database systems involves manual integration
of each database schema into a global schema [1]. This approach does not work
when the number of database systems is large. Navathe and Donahoo [9] pro-
pose to allow the database designers to develop a metadata description of their
database schema. The collection of metadata descriptions can be automatically
processed by a schema builder to create a partially integrated global schema.
The heterogeneity problem can be eliminated (see [8]) by using an intermediate
model that controls the knowledge translation from a source database or knowl-
edgebase. The intermediate model they developed is based on the concept of
abstract knowledge representation. It has two components: a modeling behav-
ior which separates the knowledge from its implementation, and a performative
behavior which establishes context abstraction rules over the knowledge. In this
paper we propose to handle the heterogeneity problem among independently
built databases through the use of discovery layers.

First, we introduce the notion of a Distributed Information System (DIS)
which is the main vehicle for development of a Distributed Knowledge System
(DKS). Basically to transform DIS to DKS we need to add a discovery layer
to every site of DIS. Discovery layers are homogeneous and for simplicity reason
they are simplified in this paper to sets of rules. The content of discovery layers
may constantly change because by querying one site of DKS, its other sites can
be asked for help to answer the query. Rules in this paper are seen as operational
definitions providing a commonly sharable information among independently

Knowledge Discovery Objects and Queries 261

built information systems. So, the transfer of rules from one site of DKS to
another site does not cause much problems.

All distributed DBMSs support deduction of information. Our goal is to build
a knowledge discovery based Query Answering System (kdQAS) for each site
of DKS which satisfies the closure principle (the response for a query can be
queried further). The access to kdQAS is through WWW.

Predicate logic is the vehicle chosen to represent knowledge in DKS and
queries in kdQAS. Many other representations are, of course, possible. We have
chosen predicate logic because of the need to manipulate queries and rules syn-
tactically without changing their semantical meaning. This syntactical manipu-
lation of queries will be handled by kdQAS. By designing an axiomatic system
which is sound and complete we are certain that queries we manipulate will not
change their semantical meaning. Clearly, this property is very much needed.
Without it, we may be looking for an answer to queries which are semantically
different from the queries asked by the user. Such a situation has to be avoided.

2 Distributed Information Systems

In this section, we introduce the notion of a Distributed Information System
(DIS) which is the main vehicle for development of a Distributed Knowledge
System (DKS). Basically to transform DIS to DKS we need to add a discovery
layer to every site of DIS. A discovery layer is simplified in our paper to the set
of rules. Its content may constantly change because by querying DKS we may
discover rules at one site and store them at other sites of DKS.

In this paper, we consider two types of queries called local and global (locally
unreachable). Global queries are queries which can be resolved only through the
interaction of sites (exchanging knowledge between them) in DKS. Local queries
are resolved entirely by a single site of DKS.

So, let us start with basic definitions.

By an information system S we mean a sequence (X, A, V, h), where X is a
finite set of objects, A is a finite set of attributes, V is the set-theoretical union of
domains of attributes from A, and h is a classification function which describes
objects in terms of their attribute values (see [12], [13]). We assume that:

– V =
⋃{Va : a ∈ A} is finite,

– Va ∩ Vb = ∅ for any a, b ∈ A such that a 6= b,
– h : X ×A −→ V ∪ 2V where h(x, a) ∈ Va or h(x, a) = Va for any x ∈ X and

a ∈ A.

Attribute a is called incomplete in S if there is x ∈ X such that h(x, a) = Va.
By In(X, a) we mean the set {x ∈ X : h(x, a) = Va}. We will be referring to
this set when we give the definition of kdQAS.

262 Zbigniew W. Raś and Jiyun Zheng

Let S1 = (X1, A1, V1, h1), S2 = (X2, A2, V2, h2) be information systems. We
say that S2 is a subsystem of S1 if X2 ⊆ X1, A2 ⊆ A1, V2 ⊆ V1 and h2 ⊆ h1.
By h2 ⊆ h1 we mean that either h2(x, a) = h1(x, a) or [h2(x, a) ∈ Va and
h1(x, a) = Va].

We use a table-representation of a classification function h which is naturally
identified with an information system S = (X, A, V, h). For simplicity reason,
instead of a set Va we place the blank symbol which is interpreted here as all
values in Va are possible. For example, let S = (X, A, V, h) is an information
system where X = {a1, a6, a8, a9, a10, a11, a12}, A = {C, D, E, F, G} and V =
{e1, e2, e3, f1, f2, g1, g2, g3, c1, c2, d1, d2}. Additionally, we assume here that VE =
{e1, e2, e3}, VF = {f1, f2}, VG = {g1, g2, g3}, VC = {c1, c2}, and VD = {d1, d2}.
Then, the function h defined by Table 1 is identified with information system S.

X2 F C D E G

a1 f1 c1 d2 e2 g1
a6 f2 d2 e3 g2
a8 f1 c2 g1
a9 f2 c1 g1

a10 f2 c2 d2 e3 g1
a11 f1 d1 e3 g2
a12 f1 c1 d1 e3 g1

Table 1. Information System S

By a Distributed Information System [13] (DIS) we mean a pair DS =
({Si}i∈I , L) where:

– Si = (Xi, Ai, Vi, hi) is an information system for any i ∈ I,
– L is a symmetric, binary relation on the set I,
– I is a set of sites.

Systems Si1, Si2 (or sites i1, i2) are called neighbors in a distributed infor-
mation system DS if (i1, i2) ∈ L. The transitive closure of L in I is denoted by
L+.

A distributed information system DS = ({Si}i∈I , L) is consistent if:

– (∀i)(∀j)(∀x ∈ Xi ∩ Xj)(∀a ∈ Ai ∩ Aj)[(x, a) ∈ Dom(hi) ∩ Dom(hj) −→
hi(x, a) = hj(x, a)].

We assume here that any site of DIS can be queried either for objects or for
knowledge. Knowledge in this paper is simplified to a set of rules. Syntactically,
a query is built from values of attributes belonging to V =

⋃{Vi : i ∈ I}. A
query is called local for a site i, if it is built from values in Vi. Otherwise, it is
called global (locally unreachable) for i. Both, local and global queries will be

Knowledge Discovery Objects and Queries 263

handled by kd-Query Answering System (kdQAS). In order to resolve a global
query at site i, a transfer of newly discovered knowledge at other sites of DIS
to a site i will be needed. This knowledge is stored in discovery layer of site i.
If a queried information system S in DIS is incomplete, then a new query has
to be invoked and answered first. To be more precise, system S is queried first
for certain consistent rules to be discovered locally at S and at its remote sites.
Next, this newly discovered set of consistent rules is treated as a new local query
which, when applied to the system S, transforms S to a more complete system.
In the final step, this new system is queried by the original query. If this origi-
nal query is global and it is submitted to site i, a transfer of newly discovered
knowledge from other sites of DIS to a site i is needed.

In relational databases the result of a query is a relation which can be queried
further. Clearly, our kdQAS should have a similar property. To achieve this, we
will extend DIS to a Distributed Knowledge System (DKS) where each site
is defined as an information system coupled with a discovery layer simplified in
this paper to a set of rules. Before we proceed any further, let us give an example
of a kd-query.

For instance, SQL-type query

select ∗ from Flights
where airline = ”Delta”
and departure time = ”morning”
and departure airport = ”Charlotte”
and aircraft = ”Boeing”

is global (locally unreachable) for a database
Flights(airline, departure time, arrival time, departure airport, arrival airport)
because of the attribute aircraft. In order to resolve it, a transfer of newly dis-
covered definitions of aircraft = ”Boeing” from other sites of DIS to a site i
is needed. So, this query can be called a knowledge discovery query (kd-query).

We begin with a definition of s(i)-terms and their standard interpretation Mi

in a distributed information system DS = ({Sj}j∈I , L), where Sj = (Xj , Aj , Vj ,
hj) and Vj =

⋃{Vja : a ∈ Aj}, for any j ∈ I.

By a set of s(i)-terms we mean a least set Ti such that:

– 0,1 ∈ Ti,
– (a, w) ∈ Ti for any a ∈ Ai and w ∈ Via,
– ∼ (a, w) ∈ Ti for any a ∈ Ai and w ∈ Via,
– if t1, t2 ∈ Ti, then (t1 + t2), (t1 ∗ t2) ∈ Ti.

264 Zbigniew W. Raś and Jiyun Zheng

We say that:

– s(i)-term t is atomic if t ∈ {(a, w),∼ (a, w),0,1} where a ∈ Bi ⊆ Ai and
w ∈ Via

– s(i)-term t is positive if it is of the form
∏{(a, w) : a ∈ Bi ⊆ Ai and w ∈ Via}

– s(i)-term t is primitive if it is of the form
∏{tj : tj is atomic }

– s(i)-term is in disjunctive normal form (DNF) if t =
∑{tj : j ∈ J} where

each tj is primitive.

Standard interpretation Mi of s(i)-terms in a distributed information system
DS = ({Sj}j∈I , L) is defined as follows:

– Mi(0) = ∅, Mi(1) = Xi,
– Mi((a, w)) = {x ∈ Xi : w = hi(x, a)} for any w ∈ Vi,
– Mi(∼ (a, w)) = {x ∈ Xi :∼ (w ∈ hi(x, a))} for any w ∈ Vi,
– if t1, t2 are s(i)-terms, then

Mi(t1 + t2) = Mi(t1) ∪Mi(t2),
Mi(t1 ∗ t2) = Mi(t1) ∩Mi(t2).

3 Distributed Knowledge Systems

In this section we introduce the notion of i-rules, kd-objects and, kd-queries. We
define a Distributed Knowledge System (DKS) and introduce the notion of its
consistency. We also provide a basic architecture of DKS. Finally, we describe
the process of querying kd-objects at site i of DKS.

The definition of s(I)-terms is similar to the definition of s(i)-terms with
only one difference. Namely, the set Vi in the definition of s(i)-terms is replaced
by the set V =

⋃{Vj : j ∈ I}. The meaning of s(I)-terms, which forms the
foundations for kdQAS, is clarified after kd-objects and kd-queries are defined.
It depends on the site of DKS it is interpreted in.

By (k, i)-rule in DS = ({Sj}j∈I , L), k, i ∈ I, we mean a triple (c, t, s) such
that:

– c ∈ Vk − Vi,
– t, s are s(k)-terms in DNF and they both belong to Tk ∩ Ti,
– Mk(t) ⊆Mk(c) ⊆Mk(t + s).

By (i, i)-rule in DS = ({Sj}j∈I , L), i ∈ I, we mean a triple (c, t, s) such that:

– c ∈ Via,
– t, s are s(i)-terms in DNF built from values of attributes belonging to Vi−Via,
– Mi(t) ⊆Mi(c) ⊆Mi(t + s).

For simplicity reason both (i, i)-rules and (k, i)-rules are called i-rules.

System DS = ({(Si, Di, kdQASi, Agenti)}i∈I , L), where (for any i ∈ I):

– Di is a discovery layer simplified to a consistent set of i-rules,
– Si is an information system (a database),

Knowledge Discovery Objects and Queries 265

– kdQASi is a query answering system for a site i,
– Agenti is a set of knowledge discovery based client/server protocols.

is called a Distributed Knowledge System (DKS).

If there is i ∈ I such that Si is incomplete, then DKS is called incomplete
Distributed Knowledge System. Figure 1 shows its basic architecture (WWW
interface is added).

Discovery
Layer
Discovery
Layer
Discovery
Layer

Discovery
Layer

Discovery
Layer

Discovery
Layer

WWW interface WWW interface

mining mining

WWW interface WWW interface

Client/server
protocols

Client/server
protocols

Client/server
protocols

Database Database Database Database

kdQAS kdQAS kdQAS kdQAS

Fig. 1. Distributed Knowledge System

By kd-object at site i of DS = ({(Si, Di, kdQASi, Agenti)}i∈I , L), we mean
any subsystem of (Si, Di) or saying another words any subsystem of Si coupled
with a consistent set of i-rules.

By kd-query at site i, i ∈ I, we mean either any s(I)-term or any consistent
set of (i, i)-rules.

Now, we describe the process of querying a kd-object at site i of DKS. In
this paper we consider four options for a kd-query q:

– q is a primitive s(i)-term,
– q is an s(i)-term in DNF,
– q is a primitive s(I)-term,
– q is an s(I)-term in DNF.

266 Zbigniew W. Raś and Jiyun Zheng

Let us assume that qi is a primitive s(i)-term. First, kdQASi identifies all
incomplete attributes among attributes used in qi. Let us say that ai1, ai2, ..., aik

is the list of all these attributes. In the second step, kdQASi finds all certain rules
at Si = (Xi−In(Xi, aij), Ai, Vi, hi) describing attribute aij in terms of attributes
from Ai − {aij}. Let’s denote these rules by Rij . This process is repeated for
every j ∈ {1, 2, 3, ..., k}. In the third step, kdQASi applies the rules in Rij to find
the value of aij for a maximal number of objects from (In(Xi, aij), Ai, Vi, hi).
These values are stored in a temporary matrix Mij , for every j ∈ {1, 2, 3, ..., k}.
In the fourth step, all values stored in temporary matrices Mij are moved to
corresponding locations in a system Si = (Xi, Ai, Vi, hi) to replace some of its
null values. Let us denote the resulting information system by S1

i . At this point,
kdQASi goes back again to the first step and the process continues to iterate un-
til all newly generated temporary matrices are empty. Let us assume that after m
iterations, the process will stop and denote the resulting information system by
Sm

i . In the final step, kdQASi finds all objects in Sm
i satisfying the description qi.

If qi is an s(i)-term in DNF, then the strategy described for primitive s(i)-
terms is repeated for every disjunct of qi.

Assume now that qi is a primitive s(I)-term which is global for Si. First,
kdQASi identifies all incomplete attributes in Ai among attributes used in qi.
Let us say that ai1, ai2, ..., aik is the list of all these attributes. In the second
step, kdQASi finds all certain rules at Si = (Xi− In(Xi, aij), Ai, Vi, hi) describ-
ing attribute aij in terms of attributes from Ai − {aij}. Let’s denote these rules
by Rij . This process is repeated for every j ∈ {1, 2, 3, ..., k}. In the third step,
kdQASi applies the rules in Rij to find the value of aij for a maximal number
of objects from (In(Xi, aij), Ai, Vi, hi). These values are stored in a temporary
matrix Mij , for every j ∈ {1, 2, 3, ..., k}. In the fourth step, all values stored
in temporary matrices Mij are moved to corresponding locations in a system
Si = (Xi, Ai, Vi, hi) to replace some of its null values. Let us denote the result-
ing information system by S1

i . At this point, kdQASi goes back again to the
first step and the process continues to iterate until all newly generated tempo-
rary matrices are empty. Let us assume that after m iterations, the process will
stop and denote the resulting information system by Sm

i . Now, kdQASi identi-
fies all attributes used in qi which do not belong to Ai (we call them concepts for
the site i). Agenti sends request to other sites of DKS to find rules describing
all these concepts in terms of attributes from Ai. These newly discovered rules
are used to approximate query qi by a new local query pi for Si. Also, these rules
are stored in the discovery layer Di which can be used (for new global queries)
by kdQASi before any help from Agenti is requested. In the final step, kdQASi

finds all objects in Sm
i satisfying the description pi.

If qi is an s(I)-term in DNF, then the strategy described for primitive s(I)-
terms is repeated for every disjunct of qi.

Knowledge Discovery Objects and Queries 267

4 Interpretation of Primitive kd-Queries

In this section we propose a class of i-based operational semantics for a kd-query
q, assuming that q is an s(I)-term. Next, for this class of operational semantics
we give a complete and sound set of axioms and rules.

Standard interpretation Mi, introduced in a previous section, shows how to
interpret i-queries in DIS. Now, we propose how to interpret non-local queries
(called global) bounded in this paper to the class of primitive s(I)-terms. We
call them primitive kd-queries.

Parentheses will be used, if necessary, in the obvious way. As will turn out
later, the order of a sum or product is immaterial. So, we will abbreviate finite
sums and products as

∑{tj : j ∈ J} and
∏{tj : j ∈ J}, respectively. Inten-

tionally, s(I)-terms are names of certain features of parts being processed by
kdQAS, more complex than those expressed by constants.

Let Mi be a standard interpretation of s(i)-terms in DS = ({Sj}j∈I , L).

Let Ci =
⋃{Vk : k ∈ I−{i}}−Vi is a set of concepts for Si. By i-based oper-

ational semantics for s(I)-terms in DS = ({(Si, Di)}i∈I , L), Si = (Xi, Ai, Vi, hi)
and Vi =

⋃{Via : a ∈ Ai}, we mean the interpretation Mi,Ki such that:

– Mi,Ki(0) = ∅, Mi,Ki(1) = Xi

– for any w ∈ Vi,
Mi,Ki(w) = Mi(w),
Mi,Ki(∼ w) = Xi −Mi,Ki(w)

– for any w ∈ Ci,
Mi(w) = {x ∈ Xi : (∃t, s)((w, t, s) ∈ Di ∧ x ∈Mi(t))}
Mi(∼ w) = {x ∈ Xi : (∃t, s)((w, t, s) ∈ Di ∧ x 6∈Mi(s))}

– for any s(I)-terms t1, t2
Mi,Ki(t1 + t2) = Mi,Ki(t1) ∪Mi,Ki(t2),
Mi,Ki(t1 ∗ t2) = Mi,Ki(t1) ∩Mi,Ki(t2),
Mi,Ki(∼ (t1 + t2)) = (∼Mi,Ki(t1)) ∩ (∼Mi,Ki(t2)),
Mi,Ki(∼ (t1 ∗ t2)) = (∼Mi,Ki(t1)) ∪ (∼Mi,Ki(t2)),
Mi,Ki(∼∼ t) = Mi,Ki(t).

– for any s(I)-terms t1, t2
Mi,Ki(t1 = t2) = (if Mi,Ki(t1) = Mi,Ki(t2) then T else F)
where T stands for True and F for False

From the point of view of Si the interpretation Mi,Ki represents a pessimistic
approach to query evaluation. It means that Mi,Ki(t) is interpreted as a set of
objects in Xi which have the property t for sure. We are not retrieving here
objects which might have property t.

268 Zbigniew W. Raś and Jiyun Zheng

Let us adopt the following set A of Axiom Schemata:
A1. Substitutions of the axioms of distributive lattices for s(I)-terms and

the axioms of equality
A2. ∼ w ∗ w = 0 for any constant w
A3. ∼ w + w = 1 for any w ∈ Vi

A4. for each w ∈ Vi there is a subset w1, w2, ..., wn of Vi such that
∼ w = w1 + w2 + ... + wn

A5. v1 ∗ v2 = 0
if v1, v2 ∈ Via for some a ∈ Ai

A6. for any s(I)-term t,
∼ 0 = 1, ∼ 1 = 0, 1 + t = 1, 1 ∗ t = t, 0 ∗ t = 0, 0 + t = t, ∼∼ t = t

A7. for any w /∈ Vi

w =
∑{t : [w, t, s] ∈ Di}

A8. for any w /∈ Vi

∼ w =
∑{t : [∼ w, t, s] ∈ Di}

A9. ∼ (t1 + t2) = (∼ t1) ∗ (∼ t2)
A10. ∼ (t1 ∗ t2) = (∼ t1) + (∼ t2)
A11. Substitutions of the propositional calculus axioms
The rules of inference for our formal system are the following:
R1. from (α⇒ β) and α we can deduce β for any formulas α, β
R2. from t1 = t2 we can deduce t(t1) = t(t2),

where t(t1) is a s(I)-term containing t1 as a subterm and t(t2) comes
from t(t1) by replacing some of the occurrences of t1 with t2.

We write A ` (t1 = t2) if there exists a derivation from a set A of formulas
as premises to the formula (t1 = t2) as the conclusion.

We write A |= (t1 = t2) to denote the fact that A semantically implies
(t1 = t2), that is, for any i-standard interpretation Mi,Ki of s(I)-terms in DKS
we have Mi,Ki(t1 = t2) = T .

Theorem 1. (Completeness). For any s(I)− terms t1, t2, if A |= (t1 = t2) then
A ` (t1 = t2).

The above completeness theorem gives us the set of axioms which is sound
and sufficient to transform any global s(I)-term to its equivalent DNF. So, the
set of kd-queries does not have to be bounded to primitive terms.

5 Conclusion

This paper presents a methodology and theoretical foundations of a kd-Query
Answering System for DKS which is partially implemented at UNC-Charlotte
on a cluster of SPARC 20 workstations.

Knowledge Discovery Objects and Queries 269

References

1. Batini, C., Lenzerini, M., Navathe, S., “A comparative analysis of methodologies
for database schema integration”, in ACM Computing Surveys, Vol 18, No. 4, 1986,
325-364

2. Bosc, P., Pivert, O., “Some approaches for relational databases flexible querying”,
in Journal of Intelligent Information Systems, Kluwer Academic Publishers, Vol.
1, 1992, 355-382

3. Chu, W.W., “Neighborhood and associative query answering”, in Journal of In-
telligent Information Systems, Kluwer Academic Publishers, Vol. 1, 1992, 355-382

4. Chu, W.W., Chen, Q., Lee, R., “Cooperative query answering via type abstrac-
tion hierarchy”, in Cooperating Knowledge-based Systems (ed. S.M. Deen), North
Holland, 1991, 271-292

5. Cuppers, F., Demolombe, R., “Cooperative answering: a methodology to provide
intelligent access to databases”, in Proceedings 2nd International Conference on
Expert Database Systems, Virginia, USA, 1988

6. Gaasterland, T., Godfrey, P., Minker, J., “An overview of cooperative answering”,
Journal of Intelligent Information Systems, Kluwer Academic Publishers, Vol. 1,
1992, 123-158

7. Grzymala-Busse, J., Managing uncertainty in expert systems, Kluwer Academic
Publishers, 1991

8. Maluf, D., Wiederhold, G., “Abstraction of representation for interoperation”, in
Proceedings of Tenth International Symposium on Methodologies for Intelligent
Systems, LNCS/LNAI, Springer-Verlag, No. 1325, 1997, 441-455

9. Navathe, S., Donahoo, M., “Towards intelligent integration of heterogeneous infor-
mation sources”, in Proceedings of the Sixth International Workshop on Database
Re-engineering and Interoperability, 1995

10. Pawlak, Z., “Rough Sets - theoretical aspects of reasoning about data”, Kluwer
Academic Publishers, 1991

11. Pawlak, Z., “Rough sets and decision tables”, in Proceedings of the Fifth Symposium
on Computation Theory, Springer Verlag, Lecture Notes in Computer Science, Vol.
208, 1985, 118-127

12. Ras, Z., “Resolving queries through cooperation in multi-agent systems”, in Rough
Sets and Data Mining, (Eds. T.Y. Lin, N. Cercone), Kluwer Academic Publishers,
1997, pp. 239-258

13. Ras, Z., Joshi, S., “Query approximate answering system for an incomplete DKBS”,
in Fundamenta Informaticae Journal, IOS Press, Vol. 30, No. 3/4, 1997, 313-324

14. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, “Advances in
Knowledge Discovery and Data Mining”, AAAI Press/MIT Press, 1996

15. Ras, Z., “Collaboration control in distributed knowledge-based systems”, in Infor-
mation Sciences Journal, Elsevier, Vol. 96, No. 3/4, 1997, pp. 193-205

16. Skowron, A., “Boolean reasoning for decision rules generation”, in Methodologies
for Intelligent Systems, Proceedings of the 7th International Symposium on Method-
ologies for Intelligent Systems, (eds. J. Komorowski, Z. Ras), Lecture Notes in
Artificial Intelligence, Springer Verlag, No. 689, 1993, 295-305

ALLTYPES:

An ALgebraic Language and TYPE System

Fritz Schwarz

GMD, Institute SCAI, 53754 Sankt Augustin, Germany
fritz.schwarz@gmd.de,

http://www.gmd.de/SCAI/people/schwarz.html

Abstract. The software system ALLTYPES provides an environment
that is particularly designed for developing computer algebra software
in the realm of differential equations. Its most important features may
be described as follows: A set of about thirty parametrized algebraic
types is defined. Data objects represented by these types may be manip-
ulated by more than one hundred polymorphic functions. Reusability of
code is achieved by genericity and inheritance. The user may extend the
system by defining new types and polymorphic functions. A language
comprising seven basic language constructs is defined for implementing
mathematical algorithms. The easy manipulation of types is particularly
supported by ALLTYPES. To this end a special portion of the language
that is enclosed by a pair of absolute bars is dedicated to manipulating
typed objects, i. e. user-defined or automatic type coercions. Type in-
quiries are also included in the language. A small amount of parallelism
is supported in terms of two language constructs pand and por where
the letter p indicates a parallel version of the respective logical function.
Currently ALLTYPES is implemented in Reduce and Macsyma (to be
completed soon). Software implemented on top of ALLTYPES should
work independent of the underlying computer algebra language.

1 Organization of Computer Algebra Software

The origin of the software described in this article is the desire to provide an en-
vironment for implementing high quality computer algebra software for working
with differential equations. Areas of its application are for example the symme-
try analysis of ordinary and partial differential equations, finding closed form
solutions of ordinary differential equations and computations in D-modules, for
example Janet base algorithms.

Before entering into the details of ALLTYPES, the following question will
be dealt with: Why not work with one of the popular systems like for example
Axiom, Macsyma, Maple or Reduce directly? Apart from the first system, the
answer is obvious. In our terminology, Macsyma, Maple or Reduce are computer
algebra languages because they neither allow the structuring of large pieces of
software in terms of an algebraic type system, nor do they allow the reuse of
code by some kind of inheritance mechanism. ALLTYPES provides a collection of

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 270–283, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

ALLTYPES: An ALgebraic Language and TYPE System 271

types especially designed for working with differential equations and differential
algebra in general. This fine-structured type system requires special tools for
manipulating objects of these various types easily; they are made available by
ALLTYPES in terms of a specialized portion of the language. Furthermore this
language defines a small number of powerful control constructs that are especially
well suited for writing computer algebra code. Software developed on t op of
ALLTYPES has the following characteristic properties.

. Due to the powerful language constructs, code may be written such that each
line may be executed individually, its action may be specified in mathemat-
ical terms, and the result may be checked against this specification;

. Whenever a bug occurs, in almost all cases the type of this bug in a newly
implemented piece of software is such that its repair does not create new
bugs somewhere else.

These features make ALLTYPES into an environment that has turned out to
be better suited for implementing differential equations software than other sys-
tems. Nevertheless the current implementation is considered only as a first ver-
sion of a more advanced system. These questions will be discussed further in the
summary at the end of this article.
Principles from Software Engineering. This section contains a short review
of those concepts from software engineering that are relevant for the design of
computer algebra software. It turns out that many aspects that arise during
the design and the implementation of computer algebra software may be better
understood if they are considered in this more general context. References for
this part are the books by Booch [1], Coad and Yourdon [2] and Meyer [3]. A
recent review by Taivalsaari [6] is also useful.

A little consideration leads to the conclusion that the ultimate reason for
most of the problems which occur during the development and the maintenance
of large pieces of computer algebra software is the fact that too many lines of
code have to be considered at a single time. As a consequence, the two most
important principles of software design follow rather naturally.

. Decompose large pieces of software into smaller ones through modularity;

. Limit the growth of software through reusability.

The principles according to which modularization is achieved is the most
important part of the design process. In a computer algebra context appropriate
modules are represented by algebraic types. Each type should represent a concept
from the underlying mathematical field. In order to achieve a high degree of
reusability, the flexibility of most of the types is increased by parametrization.

Another important mechanism for increasing reusability is inheritance. Its
basic idea is to allow new types to be based on already existing ones. As a
consequence, often the functionality of software can be extended by adding a
small amount of new code instead of modifying existing code, or unnecessarily
reimplementing features that are already there. This mechanism is established
by the Is a relationship between two types. If A and B are types, the statement

272 Fritz Schwarz

Abstraction Level Description

Application Software Main Objective: Generation of results in application field

Operations: Provides user interface

Logic Verification System Main Objective: Correctness of Implementation

Operations: Theorem Provers

Example: Theorema

Algebraic Type System Main Objective: Structure

Data & Operations: Parametrized algebraic types

Polymorphic functions

Examples: Axiom, Magma

Algebraic Language Main Objective: Efficiency

Data & Operations: Polynomials and rational functions

Arithmetic, gcd’s, factorization

Examples: Macsyma, Maple, Mathematica, Reduce, Derive

Implementation Language Objective: Connection to hardware

Examples: C, LISP

Fig. 1. Hierarchical levels of computer algebra software

A Is a B means that A has all the features of B and in addition those that are
defined particularly for the new type A. This is expressed by saying A inherits
from B or A is a descendant or successor of B, or B is an ancestor or predecessor
of A. In ALLTYPES any type may inherit from any number of predecessors,
i. e. multiple inheritance is supported. In this way the Is a relation generates a
hierarchical structure between the various members of the type system.

In Figure 1 the organization of computer algebra software according to these
principles is shown. The various levels of abstraction necessary for closing the
huge gap between the mathematics on the top and the hardware at the bot-
tom are obvious. Their distinguishing feature is the functionality they provide.
The distinction between an algebraic language and an algebraic type system is
especially emphazised. The former provides above all efficiency, the latter struc-
ture. The logic verification system Theorema is currently under development by
Buchberger [7].

In principle ALLTYPES is an independent piece of software. It is connected
to the underlying computer algebra language by a well defined interface that
is described in a separate article by Scheller [11]. In this document type names
are always written in capitals, for example POLY, PARF or LIEALG. Usually
they abbreviate the full name of a mathematical object like polynomial, partial
fraction or Lie algebra in these examples. Polymorphic functions are written in
italics and begin always with a capital letter, examples are Degree, Substitute or
CoefficientVariables.

ALLTYPES: An ALgebraic Language and TYPE System 273

2 Design of ALLTYPES

There are basically two different constituent parts of ALLTYPES. On the one
hand there is the type system comprising about 30 parametrized algebraic types
for modeling mathematical objects supplemented by about 100 polymorphic
functions for working with them. Their action is achieved by a multiple dis-
patching mechanism that selects the proper methods for the data objects at
hand, either at compile time or at run time. A good comparison of single dis-
patching vs. multiple dispatching may be found in the article by Taivalsaari [6],
section 3.9. Secondly there is a language provided that is especially designed for
implementing mathematical algorithms efficiently and safely. These components
are described in detail in this section. Theoretical questions on the design of an
algebraic type system are discussed in [12], see also [8].

Informally a type describes the features that are common among a collection
of mathematical objects. The user interface of any type is made up of its name,
its parameters and perhaps certain attributes that are collectively called the
category of the type, they may be considered as the type of a type or a second
order type. The totality of all types decomposes naturally into the following three
kinds.

. Basic types are data objects supported by the underlying language, they are
essentially various kinds of numbers, variables and collections of any kind of
objects represented as lists. They are introduced for efficiency reasons;

. Algebraic types are the main components of the type system, they serve to rep-
resent structured objects like e. g. univariate polynomials, partial fractions
or linear differential equations. Most of them have one or more parameters
and belong to one or more categories;

. Set types are applied for representing homogeneous collections of objects of the
same type like e. g. polynomial ideals, rational function fields or Lie algebras.
In the object-oriented terminology they correspond to container classes.

Basic Types. For efficiency reasons, the representation of numbers and variables
is essentially taken over from the underlying computer algebra language.
Number NUM. Subtypes Integer: IN, Rational Number: RN, Algebraic Number:
AN(k), Modular Number: MN(k) are the number types currently supported by
the system. The single argument of MN defines the modulus. The argument
of AN has the following meaning. Algebraic numbers are not considered as
individual elements but as members of an appropriate algebraic number field
that is determined by a primitive element. This number field determines the
type. The totality of algebraic number fields required in a problem is organized
globally, the individual fields are enumerated by the parameter k. Any change of
these number types is handled by user defined or automatic type coercions. In
general the system tries to avoid the introduction of unnecessary field extensions.
Variable: VAR and Derivative: DER. Next to the numbers, these are the most
elementary building blocks of all symbolic expressions. A derivative may have

274 Fritz Schwarz

a number of dependencies attached to it so that it behaves differently within a
type of category DIFFERENTIAL.

Algebraic Types. They form the backbone of the type system of ALLTYPES.
Each individual type is characterized by its parameters and the categories which
are attached to it. The parameter values are either a type denoted by TY PE,
or a data object denoted by letters followed by a colon and its type. Examples
of this notation are v : V AR, {v1, v2 . . .} : SET V AR or n : IN . In some
cases a predicate name is also allowed. It is not always necessary that all type
parameters are specified. Beginning with the leftmost parameter, a sufficient
set has to be specified such that the required action may be executed with a
meaningful result. For example, if an object of type POLY is to be coerced
into a distributive polynomial, calling DPOLY without any parameter yields a
DPOLY w.r.t. to all variables or derivatives with coefficients of some number
type. If the first parameter is POLY and the second a set of variables {v1, v2, . . .},
the result is a distributive polynomial in these variables with polynomial co
efficients in the remainig ones that may be considered as parameters. A similar
systematics applies to the other types of the system. If the required coercion is
mathematically not meaningful an error will occur, for example if it is requested
that a genuine rational function of type RATF be coerced to a DPOLY over
all its variables.

There are four categories known to the system at the moment, they are
RING, FIELD, DIFFERENTIAL and CONTAINER. They are applied
for controling various operations like for example how to divide out the content
of a polynomial or how to apply derivatives.

Subsequently a selection of types is listed, supplemented by some remarks
on the meaning of the type parameters. The usage of these type notations for
manipulating the types of data objects will be explained in the next section.
Polynomial: POLY NUM, CATEGORY RING. The main purpose of this
type is to act as a mediator between the representation of polynomials in the
underlying computer algebra language. Within the type system they often rep-
resent those parts of a more structured object for which at a certain point addi-
tional structure is not available or not relevant, for example the coefficients of a
univariate polynomial that depend on some additional parameters. The order-
ing of these objects is determined globally by the underlying computer algebra
language. The coefficient type of any POLY is some number type NUM . It is
carried along with the individual objects.
Rational Function: RATF NUM, CATEGORY FIELD. The same remarks
apply as for the preceding type.
Univariate Polynomial: UPOLY (TY PE, v : V AR), CATEGORY RING. The
first parameter determines the coefficient type, the second parameter is a variable
name with respect to which the data object must have a polynomial dependency.
Partial Fraction: PARF (TY PE, v : V AR), CATEGORY FIELD. The pa-
rameters have the same meaning as for UPOLY . Univariate partial fractions
may be considered as the natural extension of univariate polynomials.

ALLTYPES: An ALgebraic Language and TYPE System 275

Factored Polynomial: FPOLY (TY PE). The single parameter determines the
type of the irreducible components of an object of this type.
Linear Form: LFORM(TY PE, {v1, v2, . . .} : SET V AR| fn : predicate, Order-
ing). The first parameter determines the coefficient type. Objects of this type
must be linear and homogeneous w.r.t. the variables on the list {v1, v2, . . .} or
w.r.t. to those variables for which the predicate returns true. If the Ordering
parameter is provided, it is applied for establishing the respective term ordering,
if not, a system dependent default ordering is applied.
Differential Polynomial: DFPOLY(TY PE,{d1, d2,. . .} :SET DER,{v1, v2,. . .} :
SET V AR, Ordering), CATEGORY {DIFFERENTIAL, RING}.
Distributive Polynomial: DPOLY (TY PE, {v1, v2, . . .} : SET V AR, Ordering),
CATEGORY RING. The first argument determines the coefficient type, ob-
jects of this type must be polynomial in the variables v1, v2,
Function Field: FFIELD(TY PE, {e1, e2, . . .} : SET V AR), CATEGORY
FIELD. Objects of this type must be rational in the variables e1, e2, . . . that
may be elementary or algebraic functions.
Linear Differential Form: LDF (TY PE, {d1, d2, . . .} : SET DER, {v1, v2, . . .} :
SET V AR, Ordering). Objetcs of this type must be linear and homogeneous in
the derivatives of a set of functions d1, d2, With respect to these derivatives
they are LFORM ’s with coefficient type determined by the first parameter.
Linear Differential Operator: LDO(TY PE, {v1, v2, . . .} : SET V AR). The first
argument determines the coefficient type, the first order partial derivatives are
taken w.r.t. to the variables {v1, v2, . . .}.
Linear Ordinary Differential Equation: LODE(TY PE, y : DER, x : V AR).
Objects of this type are linear and homogeneous in y and its derivatives w.r.t.
x with coefficient type determined by the first parameter.
Ordinary Differential Equation: ODE(TY PE, y : DER, x : V AR)). Objects of
this type must be polynomial in y and its derivatives w.r.t. x with coefficient
type determined by the first parameter.

LFORM

LDF DPOLY LDO

LODE ODE PDE

@
@
@
@@R

�
�

�
�

��=

HHHHHHHHHj

?

�
�

�
��	

@
@
@
@@R

POLY RATF DRATF

DFPOLY DFRATF ELFUN
? ? ?

Fig. 2. The inheritance hierarchy of the algebraic type system is shown. The
full names of the types and its parameters are given in the text.

276 Fritz Schwarz

Polymorphic Functions and Methods. The operations that may be per-
formed on the various data objects are specified in mathematical terminology
for the polymorphic functions. They are applied by the user for writing the code
that realizes the desired algorithms. A polymorphic function cannot come into
action by itself, only after it is replaced by the appropriate method the code may
be executed. In general many methods corresponding to different types, possi-
bly with varying number of arguments, may be defined for a single polymorphic
function name. The proper method is determined by the types of the data ob-
jects to be operated upon. It is the responsibility of the user to assure that the
required method is available at execution time. A method may either be defined
in the code of the respective type, or it may be inherited from some other type.

There are several advantages of organizing software in this manner. On the
one hand, the degree of reusablitiy is increased by writing code in terms of poly-
morphic functions instead of the methods itself. Secondly introducing a new
type means going through the collection of polymorphic functions and imple-
menting those methods for the newly defined type that apply to it, and possibly
additional methods that are valid exclusively for this newly defined type and its
descendants. This is a unique and well-defined procedure including the guaran-
tee that all necessary changes have been performed without explicit changes of
already existing code. Finally for the user it is much more efficient to become
acquainted with a single set of polymorphic functions providing essentially the
same functionality for the complete type system, instead of repeating this effort
for the individual types. In other words, the learning curve increases faster.

The mechanism applied in ALLTYPES that gives rise to a polymorphic func-
tion call being replaced by the proper method will be explained now in more
detail. The methods corresponding to a polymorphic function are denoted by
extending the polymorphic function name by the type names, separated by un-
derscores; they are called type extensions. There may be as many type extensions
as there are parameters, however a single extension is also possible. Providing
fewer extensions than parameters is used as another mechanism for increasing
reusability. The significance of the various type extensions is not symmetric how-
ever. The first type extension of a method determines the type where it is defined.
For a type homogeneous polymorphic function the first extension of any of its
methods determines also the type of the returned result. As an example the type
homogeneous polymorphic function Multiply may be called as Multiply(u, v)
by a user. Valid examples of method calls that may be generated from it are

Multiply POLY POLY (u : POLY, v : POLY) : POLY

Multiply POLY BASIC(u : POLY, v : BASIC) : POLY

Multiply LFORM(u : LFORM, v : TY PE) : LFORM

The first two methods define the multiplication of an object of type POLY by
another POLY or an object of type BASIC which may be some number or
a variable respectively. The last method defines the multiplication of an object
of type LFORM by an object of any type that is consistent with the type
homogeneity of Multiply. Essentially this means that the coefficients of the first

ALLTYPES: An ALgebraic Language and TYPE System 277

argument u are multiplied by v. In accordance with the type homogeneity of the
polymorphic function Multiply the type of the returned object is as indicated
after the closing bracket of the method calls. A method

Multiply LFORM LFORM(u : LFORM, v : LFORM)
is not allowed by type homogeneity because the result cannot be coerced to
an object of type LFORM . If u and v for example both have the same type
LFORM(POLY NUM,{a, b, c}), an appropriate call for multiplying them would
be

Multiply(u|QFORM(POLY NUM, {a, b, c})|, v)

where QFORM abbreviates Quadratic Form. It generates the method call

Multiply QFORM LFORM(u|QFORM(POLY NUM, {a, b, c})|, v)

is generated and the result of type QFORM(POLY NUM, {a, b, c}) is returned.
Type homogeneity entails also the different answer for the two polymorphic
function calls

Multiply(u : LFORM, v : RATF) : LFORM
and

Multiply(u : RATF, v : LFORM) : RATF
Another example showing the flexibility gained by this software organization is
the polymorphic function Coefficient. Some of its method calls are

Coefficient POLY POLY (u : POLY, v : POLY)
Coefficient POLY BASIC(u : POLY, v : V AR)
Coefficient UPOLY BASIC(u : UPOLY, n : IN)
Coefficient LFORM BASIC(u : LFORM, v : V AR)

In the first call, the second argument v must be a monomial, its coefficient in u
is returned. In the second call, u must be linear in the variable v, otherwise a
runtime error occurs. In third call n must be a positive integer, the coefficient
of the n− th power of the univariate polynomial is returned. In the last call, v
must be a variable w.r.t. which u is linear and homogeneous.

There are more than 1000 methods defined in ALLTYPES. All the informa-
tion necessary for working with them may be obtained by applying a few online
utility functions provided for this purpose.
The Language Constructs. The complete language is composed of two funda-
mentally different parts. On the one hand, there is the algebraic language which
is applied for manipulating algebraic objects according to the mathematical rules
that are valid for them, for example arithmetic, differentiation, integration and
many others. Secondly, there is the type manipulation part that is applied for
manipulating the types of the mathematical objects such that they satisfy the
constraints imposed by the type system. This latter part of the language is syn-
tactically separated from the former by the occurrence of a pair of |, i. e. any piece
of input code enclosed between two bars specifies a type manipulation. These two
parts of the language will be described now one after the other. The fundamen-
tal syntactic units are the FunctionConstructor and the IterationConstructor.

278 Fritz Schwarz

They are partially described by the following set of productions where keywords
are given in boldface letters.

FunctionConstructor = FunctionName(Expression|Predicate,

Iterator[, Iterator])
FunctionName = applies|select|exists|satisfies|separate
Iterator = V ariable from[..from]Set|V ariable

from Integer ..[Integer ..]Integer

IterationConstructor = iterate(true?Predicate,

Expression[, Expression])|iterate(
Expression[, Expression], true? Predicate)

OrderingConstructor = orders(BooleanExpression,

V ariable and V ariable from Set[, Set])
The remaining part of the syntax and the semantics will be explained informally.
An Expression is any piece of code that is syntactically and semantically accepted
by the interpreter or compiler and returns a result. In Axiom it is essentially an
expression, in a LISP system it is very similar to a form. The free variables
occurring in an Expression or a Predicate are evaluated in the environment
in which the FunctionConstructor is called. All local variables are attached to
certain sets by the subsequent Iterator.

The V ariable in the first production alternative for the Iterator determines
a variable name which may occur in the Expression, it specifies an element of
the Set. Each occurrence of the keyword from determines a level of nesting of
Set. If there is a single occurrence, the iteration occurs over elements of a set, if
there are two, elements of a set of sets are taken, and so forth. If there is more
than a single iterator, the iteration takes place over several sets, set of sets etc.
in parallel. Both the number of iterators and the depth of nestings of sets are
arbitrary up to the following constraints. The level of nestings in each iterator
must be the same, the same is true for the cardinality of sets at each level. The
second production for the Iterator allows it to iterate over intervals of integers,
the stepsize being determined by the optional middle Integer.

The applies constructor causes the Expression to be evaluated for each
selection of variables as determined by the Iterator. It returns an object with
the same structure as it occurs in the latter with the result of the evaluations
taken at the respective positions. The objects may be sets, sets of sets etc.

In the select and the exists constructors the Expression must be a pred-
icate. The returned object of the select constructor has the same structure as
those occurring in the iterators, it contains those elements of the Set occurring
in the last Iterator for which the Expression evaluates to true. The exists
constructor returns only the first element occurring in this Set for which the
Expression is true. If the Expression begins with the keywords maximal or
minimal, the remaining part of it must evaluate to an integer. In this case
the select constructor returns all elements from the Set occurring in the last
Iterator for which the Expression returns the maximal or minimal value re-

ALLTYPES: An ALgebraic Language and TYPE System 279

spectively. The same applies to the exists constructor except that only the first
element with this property is returned. A meaningful application will presume
the proper number of occurrences in either case.

The satisfies constructor is actually a predicate. It returns true if all evalu-
ations of its first argument which must be a predicate also evaluate to true.

The separate constructor generates new sets of objects from the Set which
occurs in the last Iterator. The newly created sets are formed such that the
value of the Expression is the same for all elements of its member sets.

The two versions of the IterationConstructor are the basic syntactic unit
for an unspecified number of repetitions of an action. In the first version, the
Predicate is evaluated before any other action is taken. If the result is true,
the Expression’s are evaluated from left to right one after the other. This pro-
ceeding is repeated until the Predicate evaluates to something that is not true.
In this case the result of the last evaluation in the Expression is returned.
If the Predicate is not true at the first evaluation, the value of the complete
IterationConstructor is false. In the second version, a similar evaluation scheme
is applied except that the Predicate is evaluated at the end of each round. The
returned value of the constructor is always that of the last evaluation in the
Expression.

The BooleanExpression in the orders constructor contains the two arguments
Variable of the subsequent and clause. It causes the Set to be rearranged such
that the evaluation of the BooleanExpression with any pair of elements such that
the first member is located to the left of the second member evaluates to true. If
the last optional argument of type Set is provided, its elements are rearranged
in the same way as the first argument and this latter set is returned.

Parallel Jobs with pand and por. The language constructs pand and por
which abbreviates parallel and and parallel or respectively allow a limited amount
of parallelism in all situations where the hardware on which ALLTYPES is run-
ning provides at least two processors. In computer algebra applications it occurs
frequenly that there are various alternatives available at a certain point of an
algorithm for obtaining the desired result, it is not known however in advance
which alternative will produce the answer more efficiently. Due to the overhead
for generating a copy of a process and the communication between both of them,
they should be applied only for a coarse parallelization. Examples meeting this
criterion are Gröbner- or Janet- base calculations w.r.t. different term orderings,
or heuristic solutions as opposed to decision procedures, e.g. for determining
the symmetries of an ordinary differential equation. If the code for these two
alternatives is denoted by A1 or A2 respectively, the call

z := A1 por A2

may be applied with the following semantics. At first an exact copy of the original
process is generated. Then the two processes are started executing version A1

or A2 respectively. The process that terminates first cancels the other one and
returns the produced result as the value of z. The syntax for calling pand is
similar.

z := A1 pand A2

280 Fritz Schwarz

After a copy of the first process is generated, the two processes execute the code
for A1 and A1 respectively. If either process terminates with a value nil, the
other process is cancelled and the value nil is assigned to z. If both processes
terminate with a value different from nil, the result A2 is assigned to z.

3 Working with ALLTYPES

Typically working with ALLTYPES means implementing a piece of software in
terms of the type system and the language described above. Before it may be
applied for generating results, it has to be compiled. This proceeding is explained
first.
Writing and Compiling ALLTYPES Code. The compilation process com-
prises two passes. In the first pass, the compiler of the underlying computer
algebra language generates essentially the same kind of output as is generated
from code that does not use the features of ALLTYPES. Upon completion of
the first pass, all methods defined in the system are globally known. Whenever
possible, this information is applied in the second pass for attaching the proper
types to the polymorphic function calls of the user code, i. e. to replace them
by the methods. This is true in those cases where the types of the arguments of
a polymorphic function call are known at compile time. In the remaining cases
the dispatching takes place at runtime. There is a continuous transition between
those two alternatives, the only difference is the efficiency of the runtime system
provided all type declarations are correct. Some details of the underlying type
inference and inheritance mechanism will be discussed later on.

Methods are implemented as procedures of the underlying language. The
most distinctive feature of ALLTYPES code is the declaration of types and how
they are handled. This process is governed by the following rules.

. The user calls exclusively the polymorphic functions and not the methods for
achieving a certain action;

. In all cases where the type of a variable is known at compile time it should
be declared in order for enabling the compiler to insert the proper methods.
This is true also for the parameters of the polymorphic function calls.

Defining New Methods. The details of this proceeding are explained infor-
mally for a polymorphic function f00 and a method f00 TY PE1 TY PE2 cor-
responding to it. The general structure of such a definition may be seen from
the following example.

procedure f00 TYPE1 TYPE2(u,v);
begin TYPE1 u; TYPE2 v; TYPE3 w,z;
BASIC x; SET UPOLY p; scalar y;
w:=f01(u,x);
w:=f02(u,y);
z:=f03(v,w);
...

ALLTYPES: An ALgebraic Language and TYPE System 281

return applies(Lcoef x,x from p);
end;

The body of any method consists of a BEGIN - END block, f01, f02 and f03
are polymorphic function names. The declaration scalar is applied for those
variables the type of which cannot be determined at compile time. Consequently
for a polymorphic function with any argument declared as scalar the method
cannot be determined at compile time. If a homogeneous collection of objects of
the same type T is assigned to a variable, the proper declaration is SET T. In the
above example, during the second pass of the compiler the code

w:=f01 TYPEi1 BASIC(u,x);
w:=f02(u,y);
z:=f03 TYPEi2 TYPEi3(v,w);
return applies(Lcoef UPOLY x,x from p);

is generated. Whenever the compiler succeeded in substituting the proper method
for a polymorphic function call, the compiled code for the corresponding method
is inserted. In the above example this applies to the polymorphic functions f01
and f03 where the type extensions TY PEik

have been attached to the respec-
tive polymorphic functions. Type TY PEik

may or may not be identical to type
TY PEk depending on whether the respective method is obtained by inheritance
or not. If a method cannot be determined at compile time, a piece of code is in-
serted that performs this substitution at runtime as it is true for the polymorphic
function f02.

Creating New Types. The language construct DefineAlgebraicType is pro-
vided for extending the type system. Its syntax is formally defined by the fol-
lowing production rules.

DefineAlgebraicTypeType [CATEGORYCategory]REP(Field[, F ield]∗)
DefineAlgebraicType Type Is a Parent

[CATEGORY Category][with(Field[, F ield]∗)]
Type ::= TypeName|TypeName(ParameterName[, ParameterName] ∗)
Parent ::= ParentName|{ParentName[, ParentName] ∗ }
Category ::= CategoryName|{CategoryName[, CategoryName] ∗ }
Field ::= FieldName := Expression.

The first version of DefineAlgebraicT ype is applied if a new type is defined
from scratch. Whenever it is based on types already existing in the system, the
second option with the inheritance operator Is a is applied. Any type A may
inherit from one or more types B, C, . . . in the system. Valid type definitions are

DefineAlgebraicT ype A Is a B or

DefineAlgebraicT ype A Is a {B, C, D, . . .} (1)

defining a single or multiple inheritance relation respectively. In detail, any in-
heritance relation implies the following features for the descendant.

282 Fritz Schwarz

. All methods of the ancestors are inherited to the descendant. Details of
how repeated inheritance and multiple inheritance are handled are explained
below;

. All categories of the ancestors are inherited to the descendant;

. In the internal representation, the fields of the descendant are the union of
the fields of its anchestors.

Inheritance relations create a hierarchical structure between the individual
types of the system. For the current implementation of ALLTYPES these rela-
tions are shown in Figure 2. If new types are defined by the user, these hierarchies
have to be extended appropriately. The inheritance relation (1) may be repre-
sented by the following tree.

A
A
A
A
AU

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

.

B C D
@
@
@
@
@
@R?

�
�

�
�

�
�	

. . .

A

It indicates that type A has parents B, C, D and possibly more. Each of these
parent types may inherit from some other types, and so forth. If A is the type
of the single argument of a polymorphic function call f00, this tree is traversed
in a depth-first-search from right to left until a method for f00 is found. If upon
completion of this traversal no method has been found, an error occurs. This rule
resolves uniquely the ambiguities that may occur due to repeated inheritance.
If a polymorphic function call has n > 1 arguments with types A1, A2, . . . , An,
for each argument type the inheritance tree is constructed similar as for type A
above. The first n − 1 types are fixed to its root values and An is treated like
the single argument A above. If this search fails, a single step in the traversal
of the tree for An−1 is performed and the tree for An is traversed again. This
procedure is extended in an obvious way until a method has been found or until
all trees are traversed.

4 Summary and Outlook

The system ALLTYPES described in this article is very well suited for imple-
menting sophisticated software for working with differential equations. Its orga-
nization by means of a fine structured type system of well adjusted types has
turned out to be a fundamental prerequisite for developing high quality software
efficiently. In particular the following features of ALLTYPES should prove to be
valid design principles for any advanced computer algebra software.

ALLTYPES: An ALgebraic Language and TYPE System 283

. The separation of the computer algebra language level responsible for efficiency
and the computer algebra type system on top of it responsible for structure;

. A small set of powerful language constructs bringing about a programming
style such that each single line of code may be specified in mathematical
terms, executed and the result may be tested against this specification;

. The syntax and semantics of the type manipulation facilities implemented as
a specialized part of the language.
The implementation of ALLTYPES on top of Reduce will be supplemented

soon by an implementation on top of Macsyma [13]. Upon completion, the soft-
ware for working with differential equations should run without change on both
software platforms. Similar implementations based on other systems like for ex-
ample MathEdge of Maple or MathLink of Mathematica are highly desirable
as well as a detailed description of the system [14].

The most important shortcomings of the current implementation are the lack
of type checking by the compiler and the lack of any facilities for encapsulation
like for example the definition of local functions in a module. The reason lies in
the fact that the underlying implementation language does not support it, all the
less does it support any of the more advanced object-oriented principles like e. g.
inheritance and dynamic type binding. These will be important considerations
for a future implementation in a modern computer language.

Acknowledgments. A critical reading of this article and numerous help-
ful comments by Bruno Buchberger and Tony Hearn, the continuous advice of
Winfried Neun of the ZIB Berlin on the internals of the Reduce system and the
careful implementation by Dietlind Scheller are gratefully acknowledged.

References

1. Booch, G, Object Oriented Design, Benjamin/ Cummings Publishing, 1991.
2. Coad, P., Yourdon, E., Object-Oriented Analysis and Object-Oriented Design,

both published by Yourdon Press, Englewood Cliffs, 1991.
3. Meyer, B., Object-oriented Software Construction, Prentice Hall, 1988.
4. Budd, T., Object-Oriented Programming, Addison-Wesley, 1991.
5. Cardelli, L., Wegner, P., On Understanding Types, Data Abstraction, and Poly-

morphism, Computing Surveys 17, 471-522 (1985).
6. Taivalsaari, A., On the Notion of Inheritance, ACM Computing Surveys 28, 438-

479 (1996).
7. Buchberger, B., Symbolic Computation: Computer Algebra and Logic, Proceed-

ings of the Frontiers in Combining System Conference, Munich, F. Baader and
K. U. Schulz, eds, Applied Logic Series, Kluwer Academic Publishers, 1996.

8. Fedoraro, J. F., The Design of a Language for Algebraic Computation Systems,
Thesis, Berkeley, 1983.

9. Hearn, A. C., Reduce User’s Manual, part of Reduce.
10. Jenks, R. D., Sutor, B., Axiom, Springer, 1992.
11. Scheller, D., ALLTYPES: The Reduce Implementation, GMD Report, 1998.
12. Weber, A., Structuring the Type System of a Computer Algebra System, Disser-

tation, Universität Tübingen, 1992.
13. Golden, J., private communication.
14. Schwarz, F., ALLTYPES: The User Manual, GMD Report, to appear.

Real Parametrization of Algebraic Curves ?

J. Rafael Sendra1 and Franz Winkler2

1 Dpto de Matemáticas, Universidad de Alcalá de Henares, E-28871 Madrid, Spain
mtsendra@alcala.es

2 RISC-Linz, J. Kepler Universität Linz, A-4040 Linz, Austria
Franz.Winkler@risc.uni-linz.ac.at

Abstract. There are various algorithms known for deciding the para-
metrizability (rationality) of a plane algebraic curve, and if the curve is
rational, actually computing a parametrization. Optimality criteria such
as low degrees in the parametrization or low degree field extensions are
met by some parametrization algorithms. In this paper we investigate real
curves. Given a parametrizable plane curve over the complex numbers,
we decide whether it is in fact real. Furthermore, we discuss methods
for actually computing a real parametrization for a parametrizable real
curve.

1 Introduction

In [SW91], [SW97] we have described a symbolic algorithm for computing a
rational parametrization (x(t), y(t)) of a plane algebraic curve C of genus 0 (only
these curves have a rational parametrization). This algorithm is implemented
in the system CASA [MW96]. Approaches to the parametrization problem for
algebraic curves are also described in [AB88] and [vH97].

Definition: Let K be a field of characteristic 0, K the algebraic closure of K .
Let the irreducible affine curve C be defined as the set of solutions in the affine
plane A (K)2 of the polynomial equation

f(x, y) = 0

over K , i.e. f ∈ K [x, y]. Then x(t), y(t) in K(t), the field of rational functions over
K, constitute a rational parametrization of C, if and only if, except for finitely
many exceptions, every evaluation (x(t0), y(t0)) at t0 ∈ K is a point on C, and,
conversely, almost every point on C is the result of evaluating the parametrization
at some element of K.

In this case C is called parametrizable or rational.
Equivalently, P(t) = (x(t), y(t)) is a rational parametrization of C if P :

K −→ C is rational and not both x(t) and y(t) are constant. Furthermore, if P
is birational we say that P(t) is a proper parametrization. 2

? The first author was supported by DGICYT PB 95/0563 and UAH-Proj. E010/97.
The second author was supported by the Austrian Fonds zur Förderung der wis-
senschaftlichen Forschung under Proj. HySaX, P11160-TEC. Both authors were sup-
ported by the Austrian-Spanish exchange program Acción Integrada 30/97.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 284–295, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Real Parametrization of Algebraic Curves 285

The parametrization problem for algebraic curves consists in first deciding
whether the given curve C has such a rational parametrization, and if so finding
one.

In our geometrical approach to parametrization we basically determine the
singularities of the curve C, decide the genus of C (C can be parametrized if
and only if genus(C) = 0), find a couple of simple points on C in a low degree
(i.e. degree 1 or 2) algebraic extension K (γ) of K , and from the singularities
and these simple points derive a parametrization of C. The parametrization will
have coefficients in K (γ). So starting with a parametrizable curve defined by a
polynomial f(x, y) ∈ Z[x, y] we will either get a parametrization with rational
coefficients or with coefficients in Q(γ), γ algebraic over Q of degree 2. If the
curve C is a real curve, i.e. if C has infinity many real points, then for obvious
reasons we will not be satisfied with a parametrization with complex coefficients.

For practical applications, such as in computer aided geometric design, we
need to be able to parametrize real curves with real coefficients, if possible. In
this paper we demonstrate that if C is a real curve, then our algorithm actually
computes a parametrization of C with real coefficients. Alternatively, one could
take a possibly complex parametrization and, if possible, transform it to a real
one. This approach is developed in [RS95] and [RS97a].

2 Real Curves

Let f(x, y) ∈ C [x, y] be a non-constant polynomial. f defines a plane affine curve
C over the complex numbers, i.e. C ⊂ A 2 (C), the affine plane over C . Whenever
useful or necessary, we will also consider the curve C in the projective plane, i.e.
P2(C). Points in the projective plane are written as (a : b : c).

Definition: The curve C is a called a real curve, if and only if C has infinitely
many points in A 2 (R). 2

A real curve always has a defining polynomial over the reals. A proof of the
following Lemma is given in [RS97a].

Lemma 1: If the curve C is real, then it can be defined by a real polynomial. 2

Not only can every real curve be defined over the reals, also the irreducibility
of the curve is independent from whether we view it in A 2 (R) or in A 2 (C). A
proof of the following Lemma is given in [Wi96], Theorem 5.5.3.

Lemma 2: Let C be a real curve. C is irreducible over R if and only if it is
irreducible over C . 2

The algorithm presented in [SW91] implies that every parametrizable plane
curve over an algebraically closed field K of characteristic zero can be parame-
trized over any subfield of K that contains the coefficients of the irreducible poly-
nomial defining the curve, and the coordinates of one simple point of the curve.
Thus, as a consequence of Lemma 1, one deduces that every real parametrizable
plane curve can be parametrized over the reals (this result is also known as the

286 J. Rafael Sendra and Franz Winkler

algebraic version of the real Lüroth’s theorem [RS97b]), and that a parametriz-
able plane curve is real if and only if it has at least one real simple point.

Example 1: Let the curve C1 ([Wi96]) be defined by

f1(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2) = 0.

C1 is a real curve. In fact C1 is a parametrizable real curve, and a parametrization
over the reals is

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

On the other hand, the curve C2 ([RS97a]) defined by

f2(x, y) = 2y2 + x2 + 2x2y2 = 0

is not a real curve. The only point of C2 in the affine plane over the reals is the
double point (0, 0). The complex curve C2 is parametrizable, and a parametriza-
tion is

x(t) =
−t2 − 2t + 1
t2 − 2t− 1

, y(t) =
it2 + 2it− i

2t2 + 2
.

2

3 A Real Parametrization Algorithm

Let L be a computable subfield of C , and let the irreducible affine curve C be
defined by the polynomial f(x, y) ∈ L[x, y]. We may assume that f is a real
polynomial (indeed associated with a real polynomial), for otherwise by Lemma
1 one knows that C is not a real curve. Thus, we may suppose that L is a subfield
of R. In the process of parametrization it is necessary to view C as a projective
curve in the projective plane P2(C). This projective curve, also denoted by C,
is defined by the homogeneous polynomial F (x, y, z) ∈ L[x, y, z], where F is the
homogenization of f .

The property of parametrizability is independent of whether we view C in
the affine or the projective plane, and parametrizations can be easily converted
[SW91].

Definition: Let the irreducible curve C of degree d be defined by the irreducible
polynomial f(x, y) ∈ L[x, y] of degree d. The singular point P ∈ P2(C) of multi-
plicity m on C is an ordinary singular point, if and only if there are m different
tangents to C at P .

If C has only ordinary singularities P1, . . . , Pn of multiplicities r1, . . . , rn,
respectively, then the genus of C is defined as

genus(C) =
1
2
[(d− 1)(d− 2)−

n∑

i=1

ri(ri − 1)].

Real Parametrization of Algebraic Curves 287

This definition, and also the method described in this paper, can be extended
to curves with non-ordinary singularities. For the sake of simplicity we do not
consider this situation here.

The linear system of adjoint curves of degree d′ to C consists of all the curves
of degree d′ having every point Pi, 1 ≤ i ≤ n, as a point of multiplicity at least
ri − 1. 2

Since the adjoint curves of any degree d′ to a rational plane curve C have
defining polynomial over L, and can be computed in a finite number of ground
field operations [SW91], the problem of parametrizing is reduced to the problem
of determining a simple point on the curve. We will do that by transforming
C birationally to a conic D. The simple real points on C and on D correspond
uniquely to each other, except for finitely many exceptions. So there is a simple
real point on C if and only if there is a simple real point on D. This question can
be decided. If the answer is yes, a real point on D can be computed, transformed
to a real point on C, and from this point we can derive a parametrization of C
over R.

In [SW97] we prove the following generalization of a theorem by Hilbert and
Hurwitz [HH90].

Theorem 1: Let C be a rational plane curve of degree d defined by a polynomial
over L, Ha the linear system of adjoint curves to C of degree a ∈ {d, d−1, d−2},
and H̃s

a a linear subsystem of Ha of dimension s with all its base points on C.
Then we have the following:

(i) If Φ1, Φ2, Φ3 ∈ H̃s
a are such that the common intersections of the three curves

Φi and C are the set of base points of H̃s
a, and such that

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

is a birational transformation, then the birationally equivalent curve to C,
obtained by T , is irreducible of degree s.

(ii) Those values of the parameters for which the rational transformation T is
not birational satisfy some algebraic conditions. 2

We will use Theorem 1 to transform the curve C to either a line or a conic.
For the transformed curves it will be easy to decide the existence of real points
and if so to determine a real point. So we need to select a linear subsystem of low
dimension in the system of adjoint curves, e.g. by fixing additional base points.
These additional base points will introduce algebraic coefficients into the system,
unless we can find rational ones or whole conjugate families of such points.

Definition: Let F ∈ L[x1 , x2, x3] be a homogeneous polynomial defining a
parametrizable projective curve C. Let p1, p2, p3, m ∈ L[t]. The set of projec-
tive points F = {(p1(α) : p2(α) : p3(α)) | m(α) = 0} ⊂ P2(C) is a family of s
conjugate simple points on C if and only if the following conditions are satisfied:
m is squarefree, deg(m) = s, deg(pi) < deg(m) for i = 1, 2, 3, gcd(p1, p2, p3) = 1,

288 J. Rafael Sendra and Franz Winkler

F contains exactly s points of P2(C), F (p1(t), p2(t), p3(t)) = 0 mod m(t), and
there exists i ∈ {1, 2, 3} such that ∂ F

∂ xi
(p1(t), p2(t), p3(t)) mod m(t) 6= 0. 2

If we choose all the points in a family of conjugate points as additional base
points in the system of adjoint curves, then the corresponding subsystem will
again have coefficients over the ground field L.

Definition: Let C be a plane curve defined by a polynomial over L, H a linear
system of curves in which all the elements are of the same degree, H̃ the defining
polynomial of a linear subsystem H̃ of H, and let S̃ be the set of base points of
H̃ that are not base points of H. Then, we say that H̃ is a rational subsystem of
H if the following conditions are satified:
(1) H̃ has coefficients in L.
(2) For almost every curve Φ ∈ H, and Φ̃ ∈ H̃ it holds that

dim(H)− dim(H̃) =
∑

P∈S̃
(multP (Φ̃, C)−multP (Φ, C)),

where multP (C1, C2) denotes the multiplicity of intersection of the curves C1, C2
at the point P . 2

Essentially, this notion requires that when a point or a family of points on C
are used to generate a subsystem H̃ of H (by introducing some points on C as
new base point on H with specific multiplicities) the linear system of equations
containing the contraints is over L, and its rank equals the number of new known
intersection points between C and a generic representative of the subsystem. In
the next proposition some special cases of rational linear subsystem are analyzed.
The following Proposition 1 and Theorem 2 are proved in [SW97].

Proposition 1: Let C be a rational plane curve of degree d defined by a poly-
nomial over L, Ha the linear system of adjoint curves to C of degree a ∈
{d, d − 1, d − 2}, and F = {(p1(t) : p2(t) : p3(t))}A(t) a family of k conjugate
points on C over L. Then we have the following:

(i) If F is a family of simple points, k ≤ dim(Ha), and H̃a is the subsystem of
Ha obtained by forcing every point in F to be a simple base point of H̃a,
then H̃a is rational, and dim(H̃a) = dim(Ha)− k.

(ii) If F is a family of r-fold points, r · k ≤ dim(Ha), and H̃a is the subsystem
of Ha obtained by forcing every point in F to be a base point of H̃a of
multiplicity r, then H̃a is rational, and dim(H̃a) = dim(Ha)− r k. 2

Theorem 2: Let C be a rational plane curve of degree d defined by a polynomial
over L, and Ha the linear system of adjoint curves to C of degree a ∈ {d, d −
1, d − 2}. Then every rational linear subsystem of Ha of dimension s with all
its base points on C provides curves that generate families of s conjugate simple
points over L by intersection with C. 2

As a consequence of Proposition 1 and Theorem 2 we get the following algo-
rithmically important facts.

Real Parametrization of Algebraic Curves 289

Theorem 3: Let C be a rational plane curve of degree d, defined by a polynomial
f(x, y) ∈ L[x, y].

(i) C has families of d− 2, 2d− 2, and 3d− 2 conjugate simple points over L.
(ii) C has families of 2 conjugate simple points over L.
(iii) If d is odd, then C has a simple point over L.
(iv) If d is even, then C has simple points over an algebraic extension of L of

degree 2.

Proof: (i) Let P1, . . . , Pn be the singular points on C, having multiplicities
r1, . . . , rn, respectively. Since we assume that all singularities are ordinary and
C is rational, we have

(d− 1)(d− 2) =
n∑

i=1

ri(ri − 1).

By application of Proposition 1 we see that the dimension of the system of
adjoint curves of degree d− 2, Hd−2, to C is

(d− 1)d
2

− 1−
n∑

i=1

(ri − 1)ri

2
= d− 2.

Now we can apply Theorem 2 for s = d− 2 (i.e. choosing the whole system) and
we get that C has families of d − 2 conjugate simple points. Similarly, by using
systems of adjoint curves of degrees d− 1 and d, respectively, we get that C has
families of 2d− 2 and 3d− 2 conjugate simple points.
(ii) We first apply statement (i) to obtain two different families of (d−2) simple
points. Let Hd−1 be the system of adjoint curves of degree (d − 1). Applying
Proposition 1 one has that the linear subsystem H̃d−1 obtained by forcing all
the points in these two families to be simple base points of Hd−1 is rational
of dimension 2. Thus, applying Theorem 2 to H̃d−1 one obtains families of two
simple points.
(iii) Applying statement (ii) one can determine d−3

2 different families of two
simple points on C. Let Hd−2 be the system of adjoint curves of degree (d− 2).
Applying Proposition 1 one has that the linear subsystem H̃d−2 obtained by
forcing all the points in these families to be simple base points ofHd−2 is rational
of dimension one. Thus, applying Theorem 2 one concludes that C has simple
points over L.
(iv) This is an inmediate consequence of statement (ii). 2

Summarizing we get the following algorithm for deciding the parametrizabil-
ity over R and, in the positive case, computing such a parametrization.

Algorithm Real-Param(f)

– Input: F (x1, x2, x3) ∈ L[x1 , x2, x3] is an irreducible homogeneous polyno-
mial of degree d, that defines a rational plane curve C.

290 J. Rafael Sendra and Franz Winkler

– Output: a real parametrization of C, or
“no-real-parametrization” if no real parametrization exists.

(1) Compute the linear system H of adjoint curves to C of degree (d− 2).
(2) If d is odd, apply Theorem 3 (iii) to find (d− 3) simple points of F over L.
(3) If d is even, apply Theorem 3 (ii) to find d−3

2 families of two simple points
of F over L.

(4) Determine the linear rational subsystem H̃ obtained by forcing the points
computed in steps (2) and (3) to be simple base points on H .

(5) Take Φ̃1, Φ̃2, Φ̃3 ∈ H̃ such that the common intersections of the three curves
Φ̃i and F are the set of base points of H̃, and such that

T = {y1 : y2 : y3 = Φ̃1 : Φ̃2 : Φ̃3}

is a birational transformation (Theorem 1).
(6) Determine the transformed curve D to C obtained by T . Note that applying

Theorem 1 one has that D is either a conic or a line depending on whether
d is even or odd, respectively. D can be easily determined by sending a few
points from C to D and then interpolating.

(7) If d is odd, parametrize the line D over L. Apply the inverse transformation
T −1 to find a parametrization of C over L, and therefore over R. (Or, alter-
natively, determine as many points on D over L as necessary, transfer them
back to C by T −1, and use them for computing a parametrization of C over
L.)

(8) If d is even, decide whether the conic D can be parametrized over R. If so,
parametrize D over R. Apply the inverse transformation T −1 to find a real
parametrization of C over R. (Or, alternatively, determine as many points
on D over R as necessary, transfer them back to C by T −1, and use them for
computing a parametrization of C over R.)
If not, report “no-real-parametrization”. 2

In step (8) we have to decide whether an irreducible conic D, defined by a
homogeneous polynomial G(y1, y2, y3) ∈ L[y1 , y2, y3], contains a real point P . If
so, then we can obviously parametrize D by intersecting it by lines through P .

In fact we can decide whether D contains a rational point. For details see
[IR82] and [HW98]. If this is not the case, we can transform D to an equivalent
conic D′ by a birational mapping over R, such that the defining equation of D′
has the form

y2
1 ± y2

2 ± y2
3 = 0

(see, e.g., the Law of Inertia in [Ga59]). Then D′, and hence D, has a real point
if and only if the defining equation of D′ is not equivalent to y2

1 + y2
2 + y2

3 = 0.
In fact, if D contains a real point, then we can compute one. Thus, the question
in step (8) can be completely decided.

An alternative approach is to decide the reality of C by computing the signa-
ture of the corresponding quadratic form, and once the reality is decided, to find
a family of two conjugate points on C (Theorem 3 (ii)) whose quadratic defining
polynomial has real roots.

Real Parametrization of Algebraic Curves 291

4 Real Reparametrization

If a complex rational parametization P(t) of an irreducible affine plane curve C
over C is given, or computed by any parametrization algorithm, the alternative
approach presented in [RS97a] may be considered. In this situation, the reality of
C is decided by computing a gcd of two real bivariate polynomonials, and if the
curve is real, a linear parameter change is determined to transform the original
parametrization into a real one.

The main idea of the algorithm presented in [RS97a] is to associate with
the original parametrization a plane curve that contains as points the complex
values (taking the real and imaginary parts) of the parameter that generates,
via the parametrization, the real points on the original curve. Then the reality
of the original curve is characterized by means of the reality of the associated
curve, that is proved to be either a line or a circle. More precisely, let P(t) be
the proper complex parametrization of C:

x(t) =
q1(t)
h(t)

, y(t) =
q2(t)
h(t)

,

where q1, q2, h ∈ C [t] and gcd(q1, q2, h) = 1. Then, we apply the formal change
of variable t = t1 + it2 to P(t) to obtain:

x(t1 + it2) =
u1(t1, t2) + iv1(t1, t2)
h1(t1, t2)2 + h2(t1, t2)2

,

y(t1 + it2) =
u2(t1, t2) + iv2(t1, t2)
h1(t1, t2)2 + h2(t1, t2)2

where h1, h2 ∈ R[t1 , t2], u1, v1 ∈ R[t1 , t2] and u2, v2 ∈ R[t1 , t2] are the real and
imaginary parts of h(t1+i t2), q1(t1+i t2)·h̄(t1−i t2) and q2(t1+i t2)·h̄(t1−i t2),
respectively (h̄ denotes here the conjugate of h). Then, it is proved in [RS97a]
that the plane curve C is real if and only if gcd(v1, v2) is either a real line or a
real circle. Furthermore, if the plane curve C is real, and (m1(t), m2(t)) is a real
proper rational parametrization of gcd(v1, v2), then P(m1(t) + i m2(t)) is a real
proper rational parametrization of C.

Clearly, these two results provide an algorithm for deciding the reality of
curves, and in the affirmative case, computing the linear change of parame-
ter that reparametrizes the original complex proper parametrization into a real
proper parametrization.

5 Examples

Example 2: We consider the curve C1 of Example 1. C1 is defined by

f1(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2) = 0.

Let us first apply the algorithm Real-Param to C1 to see whether it is
parametrizable.

292 J. Rafael Sendra and Franz Winkler

C1 has 3 double points in the projective plane, namely

(0 : 0 : 1) and (1 : ±i : 0).

So genus(C1) = 0, which means that C1 is rational and must have a parametriza-
tion over C (the picture actually suggests that it is a real curve, and therefore
must have a parametrization over R).

The system H̃ of conics (curve of degree 2) passing through all three of these
double points is defined by

h(x, y, z, s, t) = x2 + sxz + y2 + tyz,

so it is a system of dimension 2. Let the birational transformation T be

T = (Φ1 : Φ2 : Φ3) = (h(x, y, z, 0, 1) : h(x, y, z, 1, 0) : h(x, y, z, 1, 1)),

i.e.

Φ1 = x2 + y2 + yz, Φ2 = x2 + xz + y2, Φ3 = x2 + xz + y2 + yz.

We determine the birationally equivalent conic D1 to C1 by sending the 6 points
in the families

F1 = {(t : −t + 2 : 1) | 4t4 − 32t3 + 80t2 − 128t + 80},
F2 = {(t : 1− 2t : 1) | t2 − 4t + 1}

onto D1 by T . This gives us the conic defined by

15x2 + 7y2 + 6xy − 38x− 14y + 23.

D1 has the real (in fact, rational) point (1, 8/7), which (by T −1) corresponds to
the point P = (0,−8) on C1.

Now we restrict H̃ to the curves through P . This restricted linear system is
defined by (after renaming of the free parameter)

h?(x, y, z, t) = x2 + txz + y2 + 8yz.

Computing the resultants of f1(x, y) and h?(x, y, 1, t), with respect to x and y,
respectively, and taking the primitive parts with respect to the parameter t, one
gets two polynomials R1 ∈ C [y, t] and R2 ∈ C [x, t], such that the degrees of
R1 and R2, with respect to y and x, respectively, are one. Hence, solving the
system {R1 = 0, R2 = 0} in the variables {x, y}, one gets the following real
parametrization P(t) of C1:

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

Let us now apply the real reparametrization approach of section 4 to C1.
The idea is, therefore, to apply any basic parametrization algorithm to C1 with-
out taking care of the field extensions, and afterwards to analyze the possible

Real Parametrization of Algebraic Curves 293

reparametrization of the achieved parametrization over the ground field. Thus,
the first steps are the same. We consider the linear system H̃ of adjoint curves
of degree 2, and then we force H̃ to pass through any simple point on the curve.
We take, for instance, Q = (− 128

9 i : − 160
9 : 1). The obtained linear subsystem of

H̃ has dimension 1 and is defined by the polynomial

h?(x, y, z, t) = x2 + txz + y2 + (
34
5
− 4

5
it) yz.

Now, proceeding as above, we get the following parametrization Q(t) over C of
C1:

x(t) = −32
−1024 i + 128 t− 144 i t2 + i t4 − 22 t3

2304− 3072 i t− 736 t2 + 9 t4 − 192 i t3

y(t) = −40
1024− 256 i t− 80 t2 + t4 + 16 i t3

2304− 3072 i t− 736 t2 + 9 t4 − 192 i t3
.

Now, we execute the formal change of parameter t = t1 + i t2 in Q(t), and we
compute the gcd of the imaginary parts, v1(t1, t2) and v2(t1, t2), of the nor-
malized (i.e. with denominators in R[t1 , t2]) rational functions x(t1 + i t2) and
y(t1 + i t2), respectively:

D(t1, t2) = gcd(v1, v2) = t21 + t22 + 6t2 − 16.

In this situation, since D(t1, t2) defines a real circle, it follows that the original
curve C1 is real and, therefore, parametrizing over the reals the curve defined by
D(t1, t2) one gets the linear change of parameter to transform Q(t) into a real
parametrization. More precisely, one takes the real parametrization of D(t1, t2):

t1(t) =
−10t

t2 + 1
, t2(t) =

−10t

t2 + 1
.

Therefore, L(t) = Q(−10t
t2+1 + i −10t

t2+1) is a real parametrization of C1. In fact, L(t)
is the parametrization:

x(t) =
−32t

16t4 + 8t2 + 1
, y(t) = 8

4t4 − 1
16t4 + 8t2 + 1

.

2

Example 3: We consider the curve C2 of Example 1. C2 is defined by

f2(x, y) = 2y2 + x2 + 2x2y2 = 0.

Let us apply the algorithm Real-Param to C2 to see whether it can be para-
metrized. The singularitities of C2 in the projective plane are

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),

each of which is a double point. So genus(C2) = 0, which means that C2 can be
parametrized over C .

294 J. Rafael Sendra and Franz Winkler

The system H̃ of conics passing through all three of these double points is
defined by

h(x, y, z, s, t) = xz + tyz + sxy,

so it is a system of dimension 2. Let the birational transformation T be

T = (Φ1 : Φ2 : Φ3) = (h(x, y, z, 1, 0) : h(x, y, z, 0, 1) : h(x, y, z, 1, 1)),

i.e.
Φ1 = xz + xy, Φ2 = xz + yz, Φ3 = xz + yz + xy.

We determine the birationally equivalent conic D2 to C2 by sending the 8 points
in the families

F1 = {(t : −2t + 1 : 1) | 8t4 − 8t3 + 11t2 − 8t + 2},
F2 = {(t : −t + 2 : 1) | 2t4 − 8t3 + 11t2 − 8t + 8}

onto D2 by T . This gives us the conic defined by

5z2 − 6xz − 6yz + 3x2 + 2xy + 3y2.

D2 has no real point. So also C2 can have no real point, i.e. it is NOT parametriz-
able over R.

But we can parametrize C2 over C by passing the system of adjoint curves
through the point

P = (−α, α), where 2α2 + 3 = 0,

getting

h?(x, y, z, t) = xz + tyz +
2
3
(α− αt)xy.

Now, proceeding as in Example 2, we get the following parametrization P(t) of
C2 over C :

x(t) =
−αt2 − 2α

t2 − 2t− 2
, y(t) =

−αt2 − 2α

t2 + 4t− 2
.

We leave the application of the reparametrization algorithm to the reader. 2

Conclusion

So, as we have seen above, we can parametrize any parametrizable real curve
by a real parametrization P(t) = (x(t), y(t)), i.e. x(t), y(t) ∈ R(t). This is what
we usually need in applications, such as in computer aided geometric design.
The algorithms described in this paper allow us, for the first time, to decide the
possibility of a real parametrization and, if it exists, to actually compute one.

Real Parametrization of Algebraic Curves 295

References

AB88. Abhyankar S.S, Bajaj C.L., (1988), Automatic parametrization of rational
curves and surfaces III: Algebraic plane curves. Computer Aided Geometric
Design 5, 309-321.

Ga59. Gantmacher F.R., (1959), The Theory of Matrices. Chelsea, New York.
HH90. Hilbert D., Hurwitz A. (1890), Über die Diophantischen Gleichungen vom

Geschlecht Null. Acta math. 14, 217-224.
HW98. Hillgarter E., Winkler F. (1998), Points on algebraic curves and the parametri-

zation problem. In: D. Wang (ed.), Automated Deduction in Geometry, 185–203,
Lecture Notes in Artif. Intell. 1360, Springer Verlag Berlin Heidelberg.

vH97. van Hoeij M. (1997), Rational parametrizations of algebraic curves using a
canonical divisor. J. Symbolic Computation 23/2&3, 209–227.

IR82. Ireland K., Rosen R. (1982), A classical introduction to modern number theory.
Springer Verlag, Graduate Texts in Mathematics, New York.

MSW96. Mňuk M., Sendra J.R., Winkler F. (1996), On the complexity of parametrizing
curves. Beiträge zur Algebra und Geometrie 37/2, 309–328.

MW96. Mňuk M., Winkler F. (1996), CASA — A System for Computer Aided Con-
structive Algebraic Geometry. In: J. Calmet and C. Limongelli (eds.), Proc.
Internat. Symp. on Design and Implementation of Symbolic Computation Sys-
tems (DISCO’96), 297–307, LNCS 1128, Springer Verlag Berlin Heidelberg New
York.

RS95. Recio T., Sendra J.R. (1995), Reparametrización real de curvas reales para-
métricas. Proc. EACA’95, 159-168, Univ. de Cantabria, Santander, Spain.

RS97a. Recio T., Sendra J.R. (1997), Real parametrizations of real curves. J. Symbolic
Computation 23/2&3, 241–254.

RS97b. Recio T., Sendra J.R. (1997), A really elementary proof of real Lüroth’s theo-
rem. Revista Matemática de la Universidad Complutense de Madrid 10, 283–
291.

SW91. Sendra J.R., Winkler F. (1991), Symbolic parametrization of curves. J. Symbolic
Computation 12/6, 607-631.

SW97. Sendra J.R., Winkler F. (1997), Parametrization of algebraic curves over opti-
mal field extensions. J. Symbolic Computation 23/2&3, 191–207.

Wa50. Walker R.J. (1950), Algebraic curves. Princeton Unversity Press.
Wi96. Winkler F. (1996), Polynomial algorithms in computer algebra. Springer-Verlag

Wien New York.

Non-clausal Reasoning with Propositional

Definite Theories

Zbigniew Stachniak?

York University, Toronto, Canada
zbigniew@cs.yorku.ca

Abstract. In this paper we propose a non-clausal representational for-
malism (of definite formulas) that retains the syntactic flavor and al-
gorithmic advantages of Horn clauses. The notion of a definite formula
is generic in the sense that it is available to any logical calculus. We
argue that efficient automated reasoning techniques which utilize defi-
nite formula representation of knowledge (such as SLD-resolution) can
be developed for classical and a variety of non-classical logics.

1 Introduction

Among the most effective methods by which the efficiency of automated reason-
ing in classical logic can be achieved is the restriction of the reasoning process
to formulas in a specific syntactic form, most notably to clauses, and the use
of inference rules and proof techniques that are tailored to the selected normal
form. Resolution (Robinson, [7]) and Clausal Boolean Constrain Propagation
(McAllester, [5]) for clauses, and SLD-resolution for Horn clauses (cf. [2]) can
serve as examples.

The construction of efficient clause-based automated reasoning methods for
non-classical logics presents two major obstacles. First, the syntactic analogue
of a clause that would provide a syntactic base for an efficient reasoning could
be difficult to find. The notion of a clause in classical logic relies on the standard
interpretation of logical connectives. In a non-standard logic classical connec-
tives can be either absent, supplemented with other connectives (modal, tem-
poral, etc), or interpreted in a non-standard way. Second, some applications
require that the logical equivalence, rather than satisfiability, is to be preserved
through the transformation of formulas of an object language into clauses. Even
for classical logic such a transformation can result in an exponentially larger
theory. For these reasons non-clausal proof techniques have been developed for
AI applications that do not (or cannot) relay on clause manipulation (e.g, some
truth-maintenance systems or general purpose knowledge representation sys-
tems). Some of the recent examples include Restricted Fact Propagation (Roy-
Chowdhury and Dalal, [8]), linear resolution for theories in negation normal form
[1], resolution proof systems for Resolution Logics (Stachniak, [10]).
? Research supported by a grant from the Natural Sciences and Engineering Research

Council of Canada.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 296–307, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Non-clausal Reasoning with Propositional Definite Theories 297

In this paper we propose a representational formalism (of definite formulas)
that is intrinsically non-clausal, but at the same time it retains the syntactic
flavor and algorithmic advantages of Horn clauses. It does not relay on a rigid
structure of a normal form but, instead, it captures the logical features of liter-
als in a clause. The proposed non-clausal analogue of a Horn clause has decided
advantages. Due to its free-form nature, “we avoid the proliferation of sentences
and the disintegration of intuition that accompany the translation to clausal
form”, [4]. Another is that it allows a universal Horn close-like representation of
knowledge across the class of logical systems. For classical logic, definite formula
and Horn clause fragments are of equal expressive power. However, represent-
ing knowledge using definite formulas rather than Horn clauses may result in
an exponentially smaller theory. And finally, efficient automated reasoning tech-
niques that utilize definite formula representation of knowledge can be developed
for classical and a variety of non-classical logics. In this paper we adopt SLD-
resolution to definite formula fragments of logical systems for which non-clausal
resolution proof systems are available.

The rest of the paper is divided into three parts. In the first part, Section 2, we
use the example of classical logic for a brief and informal introduction to definite
formulas. In Section 3 we discuss ways of defining definite formulas in the con-
text of non-classical logics. Our extension relies on the notion of polarity which
we discuss in the first place. We then briefly review the non-clausal resolution
framework for non-classical logics and define its SLD refinement. The last part,
Section 4, comprises the mathematical results on non-clausal SLD-resolution.
We give a list of conditions sufficient for the completeness of SLD-resolution.
We use classical propositional logic and Lukasiewicz three-valued propositional
logic to illustrate concepts and theoretical results reported in this paper. Only
propositional logics are discussed; the extension of the proposed representational
framework to first-order logic is the subject of a forthcoming paper.

2 From Polarity to Definite Formulas

The basic idea behind the notion of a definite formula of classical logic is quite
simple: atoms in a Horn clause (literals) satisfy two polarity constraints:

(p1) every atom has a polarity value ‘+’ (positive, e.g. p is ‘+’ in p← q r),
‘−’ (negative, e.g. atoms q and r are both ‘−’ in p← q r), or
‘0’ (no polarity, e.g. p in p← p q);

(p2) at most one of the atoms is non-negative (i.e., it is either ‘+’ or ‘0’).

Since polarity values of atoms can be computed for an arbitrary formula (cf. [4]
and [6], see also Example B in Section 3.1) these two constraints determine a
special class of formulas whose atoms have the same polarity features as literals
in a Horn clause. And this is exactly the class of formulas we are interested in.
As an example, consider

α = (p1 ∧ ¬q1) ∨ (¬p2 ∧ ¬q2) ∨ . . . ∨ (¬pn ∧ ¬qn).

298 Zbigniew Stachniak

If we accept the position that polarity values of variables of α reflect the mono-
tonic behavior of the Boolean function fα(p1, . . . , pn, q1, . . . , qn) defined by α,
then we can assign ‘+’ to p1 to indicate that fα is nondecreasing in p1, and ‘−’
to all the other variables of α, to reflect the fact that fα is nonincreasing in any
of these variable arguments. In short, the polarity status of the variables in α is
the same as in the Horn clause αH = p1 ∨¬q1 ∨¬p2 ∨¬q2 ∨ . . .∨¬pn ∨¬qn. In-
deed, Boolean function defined by αH is nondecreasing in p1 and nonincreasing
in all the other variable arguments. Let us stress however, that α and αH are not
equivalent in classical logic. Moreover, the transformation of α into conjunctive
normal form using the distributivity law yields 2n Horn clauses.

To sum things up, by adopting a certain notion of polarity that effectively
labels atoms in formulas as positive, negative, or of no polarity, we can select
a class of definite formulas (in short, d-formulas), i.e., formulas of an object
language whose atoms satisfy (p1) and (p2). The formulaic analogues of the
familiar notions such as ‘goal clause’, ‘axiom clause’, or ‘rule clause’, can be eas-
ily reconstructed (e.g., a ‘goal formula’ is a d-formula with only negative atoms).

Having the notion of a d-formula introduced (still informally at this point),
we can now ask the question if efficient automated reasoning methods for Horn
clauses can be adopted for efficient reasoning with d-formulas. To answer this
question we select a well-known method – SLD-resolution. Any other method
could have been chosen (e.g., Clausal Boolean Constraint Propagation, cf. [5]).

SLD-resolution procedure (which we identify in this paper with the input
refinement of resolution with a goal as the top clause) restricts deductions to
sequences

G0, C0, . . . , Gs−1, Cs−1, Gs,

of Horn clauses, where: G0 is a goal clause (the top goal) and C0, . . . , Cs−1 are
non-goal clauses which, together with G0, represent a given reasoning task. Every
Gi+1, i < s, is a goal clause obtained by resolving Gi with Ci. The well-known
fact for ground Horn clauses states that if X = {C0, . . . , Cs−1} consists of non-
goal clauses, then X ∪{G0} is inconsistent iff there is SLD-refutation of this set
(i.e., SLD-deduction of the empty clause) with G0 as the top goal. First-order
logic analogue of this fact is the basis of SLD-refutation procedure employed in
logic programming systems for definite clauses (cf. [2]).

In order to obtain a similar result for d-formulas of classical logic, we must
replace the clausal form of the resolution principle by its non-clausal analogue
(cf. [4], [6], [10]):

Res :
α(p), β(p)

α(p/F) ∨ β(p/T)

where F is a contradictory formula (say p∧¬p) while T is ¬F . If we view F and
T as constants (i.e., if we ignore the fact that they contain variables), then the
resolvent α(p/F)∨G(p/T) of a goal formula G(p) with a d-formula α(p) in which
p is non-negative, is also a goal formula. This allows an almost direct adaptation

Non-clausal Reasoning with Propositional Definite Theories 299

of the SLD-resolution procedure to d-formulas. We informally describe this in the
following example (for the detailed discussion of SLD-resolution for d-formulas
we have to wait until Section 3.2).

Example A: Let the set X consist of the following four formulas of classical
propositional logic:

(a) r, p, (p ∧ q)→ ¬r, p→ q.

Every formula of X is a d-formula under the standard notion of polarity (which
we recall in Example B of the next section). The variables of (p ∧ q) → ¬r
have negative polarities which, for simplicity, we record by superscripting them
by ‘−’ (the superscript ‘+’ will be used to indicate the positive occurrence of a
variable). Hence, (p−∧q−)→ ¬r− is a goal d-formula. The remaining formulas of
X can be rewritten as: r+, p+, and p− → q+. To refute X we use the non-clausal
resolution rule to deduce F in the following way:

G0 : (p− ∧ q−)→ ¬r− [top goal]
C0 : r+ [formula of X]

Resolving C0 with G0 upon r gives us F ∨ ((p− ∧ q−) → ¬T) which can be
simplified to

G1 : F ∨ ((p− ∧ q−)→ F)

by replacing ¬T with syntactically ‘simpler’ but equivalent F . We continue the
refutation by selecting

C1 : p− → q+ [formula of X]
G2 : (p− → F) ∨ F ∨ ((p− ∧ T)→ F) [resolvent of C1 and G1 upon q]
C2 : p+ [formula of X]

By resolving C2 and G2 upon p we get F ∨ (T → F)∨F ∨ ((T ∧ T)→ F) which
can be simplified to

G3 : F

by applying Boolean-like reduction rules (e.g., substituting T → F by F , or
F ∨ F by F). This successfully terminates the deductive process. The structure
of this refutation resembles clausal SLD-refutation; we always resolve the current
goal with a formula of X . The simplified forms of goals are obtained by applying
Boolean-like reduction rules.

3 Reasoning with d-Formulas

Among interesting features of d-formulas there is almost universal applicability
of this representational framework to a variety of non-classical logics; all that is
needed is a suitable generalization of the notion of polarity and, for resolution-
based reasoning with such formulas, an extension of the resolution principle
beyond classical logic. We derive both by adopting or reusing ideas from various
sources, primarily from ([4], [6], [10]). We begin with the formal definition of a
definite formula.

300 Zbigniew Stachniak

3.1 d-Formulas Defined

Let P = 〈L,`〉 be an arbitrary propositional logic, where L denotes the language
and ` the inference operation of P (we identify L with the set of all well-formed
formulas of P). Our task is to select a set DL ⊆ L of definite formulas according
to the criterion spelled out in the preceding section:

Definition: α ∈ DL (is a d-formula) iff atoms of α satisfy (p1) and (p2).

This criterion is well-defined only when a suitable method of assigning polar-
ity values ‘+’, ‘−’, and ‘0’ to variables in formulas of L is selected. Clearly, not
every assignment of polarity values to variables would be useful. Indeed, our
intention is to model the notion of a d-formula after the role of positive and
negative literals in a Horn clause of classical logic: polarity values of these lit-
erals indicate whether or not the Boolean function defined by a given clause
is nonincreasing or nondecreasing in its arguments (under the assumption that
the truth-value F is smaller than T). Although this interpretation of polarity
values is semantic and our definition of a logic P does not explicitly involve any
semantic concepts (P is just a pair 〈L,`〉), we can still formulate an analogous
but syntactic interpretation of polarity values. The clue is to view formulas of L
as reference points, or truth-values, that are ordered using some binary preorder
relation ≺ on L. We read ‘α ≺ β’ as ‘β is logically at least as large as α’ and
require only that α ≺ β implies α ` β. Although ≺ can be chosen in a number
of ways, the relation that is most frequently used in the literature is, in fact, the
inference operation ` itself, i.e., we let α ≺ β iff α ` β. This relation is implicitly
used in [6]; it is the ‘if-then’ relation in [4] and the ≤Rs polarity relation in [10].
Other choices for the relation ‘logically larger than’ can be found in the works
just quoted.

Having chosen a ‘logically larger than’ relation ≺, we can require that a
polarity assignment algorithm should label variables of formulas of L with ‘+’,
‘−’, or ‘0’ in such a way that:

(p3) if a variable p is labeled ‘+’ in a formula α and if β ≺ γ, then
α(p/β) ≺ α(p/γ).

Informally speaking, (p3) says that a polarity assignment algorithm may label
a variable p with ‘+’ in α, only when α is nondecreasing in p with respect to ≺.
Similarly,

(p4) if a variable p is labeled ‘−’ in a formula α and if β ≺ γ, then
α(p/γ) ≺ α(p/β).

In conclusion, for every logic P a class of d-formulas can be defined by selecting
a polarity assignment algorithm that satisfies (p3) and (p4) with respect to a
preselected ‘logically larger than’ relation. Clearly, in practical applications we
would like the assignment of polarity values to be a computationally feasible
process. In the examples that follow we discuss two such algorithms that define
classes of d-formulas for classical logic and the three-valued logic of Lukasiewicz.

Non-clausal Reasoning with Propositional Definite Theories 301

Example B: We describe the class of d-formulas for classical logic determined
by polarity assignment algorithm whose variant is called the relational polarity
in [4] and the operator polarity in [10]. Let L be the language of classical logic
with the connectives ¬, ∨, ∧, and →. Let α(p) ∈ L be a formula containing a
variable p. To assign a polarity value to p in α, we first compute the polarity
value of every occurrence of p in this formula. This is done by induction on the
complexity of α.

– If α(p) is the variable p, then the only occurrence of p (in itself) is positive.
– Having the polarity values of occurrences of p in a formula β assigned, we

proceed as follows. Select an occurrence of p in β. This occurrence retains
its polarity value in: γ ∨ β, β ∨ γ, γ ∧ β, β ∧ γ, and in γ → β; it changes to
the opposite polarity value in: ¬β and β → γ.

Finally, we declare p positive (negative) in α if every occurrence of p in α is
positive (negative). If p is neither positive nor negative, then the polarity value
‘0’ is assigned to it. The reader is asked to verify that this polarity assignment
method satisfies (p3) and (p4) with respect to `.

If we run this algorithm on the formulas of the set X of Example A, then
the polarity values generated for the variables occurring in these formulas will
be as indicated in Example A.

Under this polarity assignment algorithm, Horn clause and d-formula frag-
ments of classical logic have the same expressive power: every Horn clause is a
d-formula and, conversely, every d-formula can be transformed into an equiv-
alent set of Horn clauses. However, representing knowledge using d-formulas
rather than Horn clauses may result in an exponentially smaller theory. Indeed,
the transformation of the formula α discussed at the beginning of Section 2 into
conjunctive normal form using the distributivity law yields 2n Horn clauses.

We finally note that the membership in DL can be decided in polynomial
time.

Example C: We now turn to the three-valued logic L3 of Lukasiewicz. We
have selected this particular logic since it is a well-known non-classical calculus
(see [3] for its definition) and since a non-clausal resolution proof system for L3

is available (cf. [10], Appendix B).
Although L3 and classical logic have the same language, the polarity assign-

ment algorithm described in Example B cannot be fully applied to formulas of
 L3 and ` without violating (p3) and (p4). While assigning ‘+’ to p in, say, p∨ q
(q being a variable) would not violate (p3), making p negative in, e.g, ¬p would
certainly be wrong. Indeed, if we let α be q ∨ ¬q and β be ¬(α → ¬α), then
in L3, α ` β but not ¬β ` ¬α, violating (p4). Even if we restrict the class of
d-formulas to only those formulas whose variables satisfy (p3) and (p4) with
respect to `, the resulting class will not be a very impressive collection.

In principle, switching to another polarity assignment algorithm and/or a
different ‘logically larger than’ relation the selection of d-formulas could be more
favorable. This is indeed the case for L3; under vo-polarity assignment algorithm

302 Zbigniew Stachniak

(for its definition see [10]) the class of d-formulas is the same as for classical logic
defined in Example B (cf. [10], Section 5.8).
Automated reasoning literature contains a number of polarity assignment algo-
rithms for classical and non-classical logics, and we refer the interested reader to
[4], [9], [10]. As we have indicated in Example C, different polarity assignment
algorithms typically define different classes of d-formulas, and it is most likely
the trade-of between the efficiency of labeling and the expressiveness of the re-
sulting class of d-formulas that will guide the selection of a polarity assignment
algorithm for practical applications.

3.2 Non-clausal Resolution

Having the notion of a definite formula at our disposal, we can now move to
the next task – efficient resolution-based proof procedures that manipulate d-
formulas. As indicated in Section 2, our target is the generalization of SLD-
resolution. In this section we provide the necessary definitions; in Section 4 we
investigate the scope of applicability of SLD-resolution.

Non-clausal form of the resolution principle comes up in a natural way. The
resolution rule Res of classical logic (see Section 2) is a case analysis on the
truth of the common atom p: if α(p) and β(p) are simultaneously satisfiable, then
α(p/F) or β(p/T) is satisfiable, and hence, so is the resolvent α(p/F)∨ β(p/T).
Under the truth-functional semantics (such as logical matrix semantics, cf. [3])
a non-classical logic may require more than two truth-values (and some of these
truth-values might not be definable in the object language). Hence, in general,
the analysis of satisfiability may consist of more than two cases. In [10] the
generalized non-clausal resolution rule is defined by the expression

Res :
α0(p), . . . , αn(p)

α0(p/v0) ∨ . . . ∨ αn(p/vn)
,

where α0(p), . . . , αn(p) are arbitrary formulas of the object language with a
common variable p and v0, . . . , vn are preselected formulas called verifiers. The
idea behind this generalization of the resolution rule is straightforward: verifiers
v0, . . . , vn play a similar role to that of the formulas F and T in the classical
case; they realize the case analysis of simultaneous satisfiability of α0, . . . , αn.
(We assume here that the disjunction connective is available; this assumption is
not necessary but it simplifies things mildly.)

During the refutation process new information is generated by applying the
resolution rule. Additional rules, called the reduction rules, are also used to keep
the deduced facts in a syntactically simple form (see [6] and the transformation
rules in [4] and [10]). The reduction rules are instructions of the form

replace a subformula f(w1, . . . , wk) with a simpler w

(in symbols, f(w1, . . . , wk) ⇒ w), where f is a k-ary connective of a logic in
question and w, w1, . . . , wk are verifiers. In Example A we have already seen
such rules in action: ¬T ⇒ F has been used to obtain formula G1 while the

Non-clausal Reasoning with Propositional Definite Theories 303

rules (T → F)⇒ F, (T ∧ T)⇒ T , and (F ∨ F)⇒ F have been used to deduce
G3.

To be able to determine at what point a refutation process should be termi-
nated we select a special subset F of the set of verifiers. These are the terminal
verifiers; the deduction of any of these verifiers from a set X of formulas success-
fully terminates the deductive process and we declare X refutable. In Example
A, we had implicitly assumed that F = {F}; with the deduction of F (formula
G3) we had successfully terminated the refutation of X . The resolution rule, the
reduction rules, and the set of terminal verifiers constitute a deductive proof
system called a resolution proof system.

3.3 SLD-Resolution

Let L be a propositional language, let DL be a given class of d-formulas, and let
Rs be a resolution proof system on L whose rule is n + 1-argument.

Definition: Let X ∪ {G0} ⊆ DL be finite, where G0 is a goal. SLD-deduction
from X with G0 as the top goal is a sequence

G0, C0, . . . , Gs−1, Cs−1, Gs.

Every Ci is a set of ≤ n formulas of X. Every Gi+1, i < s, is a goal obtained by
first, resolving Gi with the formulas of Ci and then by simplifying the resolvent
using the reduction rules of Rs. This deduction is called a refutation, if Gs is a
terminal verifier of Rs.

In the definition of a SLD-deduction every goal Gi+1 is obtained by resolving
the goal formula Gi with the formulas of Ci We should not, however, interpret
this to mean that exactly one copy of Gi and exactly one copy of each formula of
Ci is used for the resolution. Indeed, Gi may occupy several argument positions
of an instance of the resolution rule and so may the formulas of Ci.

Example D: Let us return to the three-valued logics L3 of Lukasiewicz. In [10],
Appendix B, one can find the description of the non-clausal resolution proof
system, called Rs3, for this logic. It can be briefly described in the following
way.

Rs3 is defined in terms of six verifiers v0, . . . , v5. While all these verifiers are
required by the reduction rules, only three of them (v3, v4, v5) are needed by the
resolution rule

α(p), β(p), γ(p)
α(p/v3) ∨ β(p/v4) ∨ γ(p/v5)

.

The terminal verifiers are: v0, v1, v3, v4. Some of the reduction rules are listed in
the following refutation of the set X defined in Example A:

G0 : (p− ∧ q−)→ ¬r− [top goal]
C0 : {r+} [subset of X]

304 Zbigniew Stachniak

Resolving r, r and G0 upon r gives us v3 ∨ v4 ∨ ((p− ∧ q−)→ ¬v5) which reduces
to the goal

G1 : v4 ∨ ((p− ∧ q−)→ v0)

using the rules (v3 ∨ v4)⇒ v4 and ¬v5 ⇒ v0. We continue the refutation with

C1 : {p− → q+} [subset of X]
G2 : (p− → v3) ∨ (p− → v4) ∨ v4 ∨ ((p− ∧ v5)→ v0)

[resolvent of p→ q, p→ q, and G1 upon q]
C2 : {p+} [subset of X]

Resolving p, p, and G2 upon p gives us v3 ∨ v4 ∨ (v5 → v3) ∨ (v5 → v4) ∨ v4 ∨
((v5 ∧ v5) → v0). Using the reduction rules of Rs3 (such as (v3 ∨ v4) ⇒ v4,
(v5 → v3)⇒ v3, and (v5 → v4)⇒ v4) we simplify this resolvent to

G3 : v4

which is a terminal verifier of Rs3.

There are logics P for which no resolution proof system Rs (as described in
Section 3.2) can be constructed so that the notions of inconsistency in P and
refutability in Rs coincide (this problem is throughly investigated in [10]). Hence,
SLD-resolution method could be unavailable to some logics even when a rich
class of d-formulas can be found. In such cases, other reasoning methods for
d-formulas should be sought.

4 Technical Results

Having the principles of SLD-resolution spelled out, it is now time to answer a
question of a technical nature: for which resolution proof systems the notions of
a refutable set of d-formulas and of SLD-refutable set of d-formulas coincide?

To answer this question let us select a propositional language L and let DL ⊆
L be the set of d-formulas determined by some ‘logically larger than’ relation ≺
and some polarity assignment algorithm. Moreover, let Rs be a resolution proof
system on L. Henceforth, L,DL,≺, and Rs are fixed. So far in our discussion we
have not required that the choice of DL and of the relation ≺ is to be linked in
any way to the properties of Rs. This has to change if we want SLD-resolution
to be complete for d-theories (i.e., if we want every refutable set of d-formulas
to be SLD-refutable). Below we state four conditions that imply completeness
of SLD-resolution (cf. Theorem 1 below).

(s1) If v and w are verifiers such that v ≺ w and w is a terminal verifier of Rs,
then so is v.

(s1) states that terminal verifiers should not be logically larger than non-terminal
verifiers. In classical logic, (s1) prohibits T ≺ F while F ≺ T may or may not
hold. To force F ≺ T to be true, we add:

Non-clausal Reasoning with Propositional Definite Theories 305

(s2) If v and w are two different verifiers that appear in the resolution rule of
Rs, then either v ≺ w or w ≺ v.

Next, we want proper ‘refutational’ behavior of disjunction, i.e., if the disjunction
v ∨ w of two verifiers is refutable, then both v and w should be refutable:

(s3) If v and w are verifiers of Rs, then v ∨ w can be reduced to a terminal
verifier iff both v and w are terminal verifiers.

The role of the reduction rules is not to generate new information during the
deductive process but only to rewrite resolvents into a simpler form. Therefore,
this process should preserve ≺:

(s4) If α∗ is obtained from α by an application of a reduction rule and if β∗ is
obtained from β in the same way, then α ≺ β implies α∗ ≺ β∗.

Theorem 1: Let S ∪ {G} be a finite minimal refutable set of d-formulas, where
G is a goal. If Rs satisfies (s1)–(s4), then S ∪ {G} has SLD-refutation with G
as the top goal.
The non-clausal resolution proof system for classical logic discussed informally in
Section 2, and the resolution system Rs3 for the three-valued logic of Lukasiewicz
satisfy (s1)–(s4) with respect to the class of d-formulas defined in Examples B
and C. By Theorem 1, SLD-resolution is available to these systems.
The rest of this section is devoted to the proof of Theorem 1. This is accomplished
using the semantic tree argument.

Let v0, . . . , vn be the verifiers used in the resolution rule of Rs. To make
the presentation reasonably simple, we shall treat the verifiers of Rs as logical
constants, i.e., we shall be ignoring the fact that they may contain variables.
Let X be a finite set of formulas of L and let p1, . . . , pk be all the variables that
occur in formulas of X . A semantic tree of X is a finite tree TX that represents
all possible assignments of verifiers v0, . . . , vn to the variables p1, . . . , pk. The
root node of TX (on level 0) represents the empty assignment. The path from
the root of TX to a node N at level l determines a partial assignment hN which
assigns verifiers to the first l variables p1, . . . , pl and which is undefined for the
remaining variables. A non-leaf node N has n+1 children; the i-th child extends
the assignment hN by assigning the verifier vi to pl+1.

A node N of TX is a failure node if and only if there is α ∈ X which can be
reduced to a terminal verifier when all its variables are replaced by verifiers as
indicated by the assignment hN ; in such a case, we shall say that N falsifies α.
We do not expand failure nodes further, hence they are leaves in TX . A node N
is an inference node if it is a non-failure node whose every child is a failure node.
A semantic tree TX of X is said to be closed provided that every leaf of TX is a
failure node.

Given a closed semantic tree TX of X , we label all the nodes of TX in the
following way. The label of a leaf N is any formula of X that is falsified by N . If
N is an internal node on level l and if α0, . . . , αn are the labels of the children
of N , then the label of N is the resolvent α0(pl/v0) ∨ . . . ∨ αn(pl/vn).

306 Zbigniew Stachniak

Lemma 2: Let X be a finite set of formulas refutable in Rs. Then every se-
mantic tree TX of X is closed and the label of the root of TX can be transformed
into a terminal verifier using the reduction rules of Rs.

Proof: Let X be as stated, let TX be a semantic tree of X , and let p1, . . . , pk be
all the variables that occur in formulas of X . Since X is refutable, the resolution
rule of Rs can be used to deduce a formula α = β0 ∨ . . . ∨ βs, where:

(a) for every choice vi1 , . . . , vik
of k verifiers there exists β∗ ∈ X such that

β∗(p1/vi1 , . . . , pk/vik
) is one of the disjuncts of α (cf. [10], Lemma 4.17).

Moreover, α can be reduced to a terminal verifier. By (s3), every βj , j ≤ s, can
be reduced to a terminal verifier. So, for every leaf N we can select β∗ ∈ X (as
in (a)) that is falsified by N . This means that TX is closed. Finally, we can label
the root of TX with the disjunction of some (possibly all) disjuncts of α and, by
(s3), this label is reducible to a terminal verifier.

Lemma 3: If a finite set X of formulas has a closed semantic tree, then X
is refutable in Rs.

Proof: The proof (by induction on the number k of inference nodes of TX) is
left to the reader.

Proof of Theorem 1: By Lemma 2, there is a closed semantic tree T of
S ∪ {G}. Since G is a goal, at least one variable occurs in it and, hence, T has
at least one non-leaf node. We prove this theorem by induction on the number
k of non-leaf nodes.

Let k = 1. By Lemma 2, the label of the root N of T , i.e., the resolvent
of labels of the children of N , can be reduced to a terminal verifier G∗. Since
S ∪ {G} is minimal refutable, at least one of the children of N is falsified by
G while the remaining children are falsified by the formulas of S. Hence, the
sequence G, S, G∗ is a required SLD-refutation.

Next, assume that if a minimal refutable set S1∪{G1} has a closed semantic
tree of ≤ k internal nodes, then it has SLD-refutation with G1 as the top goal.
Suppose that our tree T has k + 1 internal nodes. First, we have to do some leaf
relabeling. Select an inference node N , on some level l, and consider the labels
α0(pl), . . . , αn(pl) of the children of N . Suppose that pl is negative in some αi(pl)
and that αj(pl) = G. If vi ≺ vj , then, by (p4), αi(p−l /vj) ≺ αi(p−l /vi) and, by
(s1) and (s4), the j-th child of N also falsifies αi. So, we can replace the label
of the j-th child by αi. By repeating this process of substitution enough times
we can guarantee that:

(a) if a child Nj of N is labeled with G, then for every child Ni 6= G such that
vi ≺ vj , pl is positive or of no polarity in αi.

We repeat this procedure for the remaining inference nodes. Next, let us select
and fix an inference node N of T , say on level l, such that at least one of

Non-clausal Reasoning with Propositional Definite Theories 307

its children falsifies G (such an N exists since S ∪ {G} is minimal refutable).
Assuming (a) and performing the ‘renaming’ operation on children of N similar
to that described above, we use (s2) to conclude that:

(b) if αi(p−l) is a label of a child of N , then αi = G.

By (b), pl is negative only in G. So, the label G1 of N must be a goal formula.
Finally, we form S1 by removing from S all the formulas that label the

children of N and which are not the labels of some other leaves of T . The tree
T1 obtained from T by removing the children of N is a closed semantic tree of
S1 ∪ {G1} with k internal nodes. By Lemma 3, S1 ∪ {G1} is refutable (without
any loss of generality we can also assume that S1 ∪ {G1} is minimal refutable).
By the inductive hypothesis, there is a SLD-refutation R of S1 ∪ {G1} with G1

as the top goal. Hence, the sequence G, X,R is a SLD-refutation of S∪{G} with
G as the top goal, where X is the set of all the labels of children of N different
from G.

5 References

1. Hähnle, R., Murray, N. and Rosenthal, E.: Completeness for Linear Regular
Negation Normal Form Inference Systems. State University of New York,
Albany, Technical Report 97-2 (1997).

2. Lloyd, J. W.: Foundations of Logic Programming, 2nd ed. Springer-Verlag
(1987).

3. Malinowski, G.: Many-Valued Logics. Oxford University Press (1993).
4. Manna, Z. and Waldinger, R.: Special Relations in Automated Deduction.

J. ACM 33 (1986) 1–59.
5. McAllester, D.: Truth Maintenance. Proc. AAAI-90 (1990) 1109–1116.
6. Murray, N.: Completely Non-Clausal Theorem Proving. Artificial Intelli-

gence 18 (1982) 67–85.
7. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Princi-

ple. J. ACM 12 (1965) 23–41.
8. Roy-Chowdhury, R. and Dalal, M.: Model Theoretic Semantics and Tractable

Algorithm for CNF-BCP. Proc. AAAI-97 (1997) 227–232.
9. Shankar, S. and Slage, J.: Connection Based Strategies for Deciding Propo-

sitional Temporal Logic. Proc. AAAI-97 (1997) 172–177.
10. Stachniak, Z.: Resolution Proof Systems: An Algebraic Theory. Kluwer Aca-

demic Publishers (1996).

	Front matter
	Chapter 1
	Introduction
	Machine Learning and Data Mining: The ILP View
	RDM : A Relational Database Mining Query Language
	Data Mining with RDM
	Answering Database Mining Queries
	Conclusions

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Introduction
	Frege's Puzzle
	Russell, on Denoting
	Modal Issues
	Formal Semantics
	A Few Examples
	Herbrand's Theorem
	Dynamic Logic
	Tableau Proof Methods
	More Examples
	Conclusions

	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Introduction
	The {em Ist} Predicate
	The Quotational Approach and the Semantic Paradoxes
	The Propositional Approach: {em Ist} as a Modality
	Modal Type Theories
	Beyond Modality: The Need for a Theory of Character
	Contextial Intensional Logic
	Conclusions

	Chapter 28
	Introduction
	The Reasoning Specialists and the Integration Schema
	The Reasoning Components and Interaction Schema
	Experimental Results
	Conclusions and Future Work

	Chapter 29
	 Motivation
	 Interface Between Isabelle and Sumit
	 Isabelle
	 Soundness in Computer Algebra
	 Design of the Interface

	 Polynomial Algebra
	 The Hierarchy of Ring Structures
	 Polynomials
	 Fields and Minimal Polynomial

	 Coding Theory
	 Hamming Codes
	 BCH Codes

	 Formalising Coding Theory
	 The Hamming Code Proofs
	 The BCH Code Proofs

	 Review of the Development
	 Contributions of the Prover
	 Contributions of Computer Algebra

	 Conclusion

	Chapter 30
	Context of this Research
	Nature of the Proofs Produced by {em Weierstrass}
	The Logical Backbone of {em Weierstrass}
	Computational Methods in a Quantifier-Free Prover
	Logical and Mathematical Simplification
	Operations More General than Rewrite Rules
	Operations and Side Conditions
	Partial Terms, Domains, and Side Conditions
	Infer, Refute, Assume
	Using the Assumptions in a Computation
	Computation Within the Scope of a Bound Variable
	What Formal System Has Been Implemented?

	Combining Computation with First-Order Logic
	Finding Upper and Lower Bounds
	Factor Bounding
	Inequality Chaining
	Mean Value Theorem

	Examples of Proofs That Weierstrass Can Find
	Uniform Continuity of $f(x)
= x^3$ on Closed Intervals
	Uniform Continuity of $mathop {mathgroup symoperators sin}nolimits x$ and $mathop {mathgroup symoperators cos}nolimits x$
	Continuity of $f(x)
= sqrt x$

	Appendix: Output of {em Weierstrass} on the Examples
	Continuity of $f(x)
= x^3$
	Continuity of $f(x)
= mathop {mathgroup symoperators sin}nolimits x$
	Continuity of $f(x)
= sqrt x$

	Chapter 31
	Introduction
	Equational Theories
	Translation of an Equational Theory to a Set of Simple First Order Clauses
	The Enumeration Procedure
	Working with Propositional Clauses
	Working with the Simple First Order Clauses
	Removing Symmetries

	Experimentation
	Description of the Problems
	Results

	Conclusion

	Chapter 32
	Introduction
	The OMSCS Framework
	The Object Level
	The Control Level

	An Example: Integrating Isabelle and Maple
	Conclusions

	Chapter 33
	Introduction
	CSP
	Transformation Rules for Solving CSPs
	{sf COLETTE}
	A Rule-Based Programming Language
	Data Structure
	Rewrite Rules
	Strategies
	Strategies with Parameters
	Interface with Other Solvers

	Examples
	Conclusions

	Chapter 34
	Introduction
	The Evolutionary Computation Paradigm
	The Welding Task Sequence Ordering Problem
	A Hybrid Genetic Algorithm for Task Sequence Ordering
	Data Representation
	Crossover and Heuristics
	Mutation
	Fitness Criteria and Selection

	An Example
	Task Room Division
	Conclusion

	Chapter 35
	Introduction
	Preliminaries
	Complexity of Proof Transformations
	Permutation-Based Transformations
	Permutation Schemata
	Constructing ${cal L}{cal J}$-Proofs via Normal Form Proofs in ${cal L}{cal J}_{mc} $

	Conclusion and Future Work

	Chapter 36
	Motivation
	A Combinational Approach
	Clifford Algebra
	Formulation of Geometric Theorems
	Reduction and Rewriting
	Combination

	Implementation in Maple and Caml
	Why Maple and Caml
	Rewriting
	Design
	Term Representation

	Examples and Performance
	Conclusion and Remarks

	Chapter 37
	Introduction
	Automated Theorem Proving with Superposition and Model Elimination
	Subgoal Clauses for Top-Down/Bottom-Up Integration
	Transferring Top-Down Generated Clauses to a Bottom-Up Prover
	Reduction of Proof Length and Search Through Subgoal Clauses

	Relevancy-Based Selection of Subgoal Clauses
	Experimental Results
	Discussion and Future Work

	Chapter 38
	Introduction
	Polymorphic Call-by-Value Language Based on Classical Logic
	CPS-Translation of $lambda _{exc}^v$-Terms
	Dual Permutative Reduction and Polymorphism
	Type Inference Algorithm
	Comparison with Related Work and Concluding Remarks

	Chapter 39
	Introduction
	Table Description and Translation into IF-THEN Statements
	Translation of a Set of Criteria into an RBS
	Introductory Note
	Translation of the Information in the Table

	Knowledge Extraction and Consistency in the Set of Criteria
	Theory Description: Two Basic Items and the Main Result
	Tautological Consequences and Contradictory Domains
	Translation of Logical Formulae into Polynomials
	The Main Result

	Conclusion
	Acknowledgments

	Chapter 40
	Introduction
	Preliminaries
	The Word and Unification Problem
	Deciding the Unification Problem
	Conclusion

	Chapter 41
	Introduction
	Preliminaries
	E-cycle Simplification
	The Dependency Graph and E-cycles
	Construction of the Dependency Graph and E-cycle Simplification

	{em BCPES} Is Complete
	The Ground Dependency Graphs
	Completeness Proofs

	Comparison with Basic Simplification
	Conclusion

	Chapter 42
	Introduction
	Basic Concepts
	Solver Extensions
	Syntactical Solver Extensions
	Semantic Solver Extensions

	{sffamily bfseries SoleX}: The Solver Collaboration
	Applications
	Conclusion

	Chapter 43
	Introduction
	Background
	Optimisation Techniques
	Testing
	Summary

	Chapter 44
	Introduction
	A Brief Introduction to Rippling
	Automatic Instantiation of Meta-variables
	Proving the Specification of the Integer Square Root
	An Algorithm for Extended Matching
	Integrating into NuPRL
	Extensions to Reverse Rippling
	Related Work
	Conclusion and Future Work

	Chapter 45
	Chapter 46
	Organization of Computer Algebra Software
	Design of ALLTYPES
	Working with ALLTYPES
	Summary and Outlook

	Chapter 47
	Introduction
	Real Curves
	A Real Parametrization Algorithm
	Real Reparametrization
	Examples

	Chapter 48
	Introduction
	From Polarity to Definite Formulas
	Reasoning with d-Formulas
	d-Formulas Defined
	Non-clausal Resolution
	SLD-Resolution

	Technical Results
	References

