
Managing Trade-offs in
Adaptable Software

Architectures

Managing Trade-offs in
Adaptable Software

Architectures

Edited by

Ivan Mistrik

Nour Ali

Rick Kazman

John Grundy

Bradley Schmerl

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright # 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or any information storage and retrieval system, without

permission in writing from the publisher. Details on how to seek permission, further information about the

Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance

Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden

our understanding, changes in research methods, professional practices, or medical treatment may become

necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and

using any information, methods, compounds, or experiments described herein. In using such information or

methods they should be mindful of their own safety and the safety of others, including parties for whom they

have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any

liability for any injury and/or damage to persons or property as a matter of products liability, negligence or

otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material

herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-802855-1

For information on all Morgan Kaufmann publications

visit our website at https://www.elsevier.com/

Publisher: Todd Green

Acquisition Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence

Production Project Manager: Priya Kumaraguruparan

Cover Designer: Maria Inês Cruz

Typeset by SPi Global, India

http://www.elsevier.com/permissions
https://www.elsevier.com/

Contributors

N. Ali
University of Brighton, Brighton, United Kingdom

M. Abdelrazek
Deakin University, Melbourne, VIC, Australia

S. Andrade
Federal Institute of Education, Science, and Technology of Bahia; Federal University of Bahia,
Salvador, Bahia, Brazil

F. Arcelli Fontana
University of Milano-Bicocca, Milan, Italy

P. Avgeriou
University of Groningen, Groningen, Netherlands

R. Bahsoon
University of Birmingham, Birmingham, United Kingdom

N. Bencomo
Aston University, Birmingham, United Kingdom

A. Bennaceur
The Open University, Milton Keynes, United Kingdom

P. Boxer
Boxer Research Limited, London, United Kingdom

J. Cámara
Carnegie Mellon University, Pittsburgh, PA, United States

K. Canavera
George Mason University, Fairfax, VA, United States

R. Capilla
Rey Juan Carlos University, Madrid, Spain

C. Carrillo
Polytechnic University of Madrid, Madrid, Spain

R. de Lemos
University of Kent, United Kingdom; CISUC, University of Coimbra, Portugal

N. Esfahani
Google Inc, Mountain View, CA, United States

D. Garlan
Carnegie Mellon University, Pittsburgh, PA, United States

J. Grundy
Deakin University, Melbourne, VIC, Australia

xv

A. Ibrahim
Deakin University, Melbourne, VIC, Australia

R. Kazman
Carnegie Mellon University, Pittsburgh, PA; University of Hawaii, Honolulu, HI, United States

R. Macêdo
Federal University of Bahia, Salvador, Bahia, Brazil

S. Mahdavi-Hezavehi
University of Groningen, Groningen, Netherlands; Linnaeus University, V€axj€o, Sweden

S. Malek
University of California, Irvine, Irvine, CA, United States

I. Mistrik
Independent Software Researcher, Heidelberg, Germany

G.A. Moreno
Carnegie Mellon University, Pittsburgh, PA, United States

H.A. M€uller
University of Victoria, Victoria, BC, Canada

B. Nuseibeh
The Open University, Milton Keynes, United Kingdom; Lero—The Irish Software Research Centre,
Limerick, Ireland

O. Ozcan
Bilkent University, Ankara, Turkey

P. Potena
Fondazione Bruno Kessler, Trento, Italy

C. Raibulet
University of Milano-Bicocca, Milan, Italy

M. Salama
University of Birmingham, Birmingham, United Kingdom

B. Schmerl
Carnegie Mellon University, Pittsburgh, PA, United States

H. Sozer
Ozyegin University, Istanbul, Turkey

G. Tamura
Universidad Icesi, Cali, Colombia

B. Tekinerdogan
Wageningen University, Wageningen, The Netherlands

N.M. Villegas
Universidad Icesi, Cali, Colombia

D. Weyns
Linnaeus University, V€axj€o, Sweden

xvi Contributors

About the Editors

IvanMistrı́k is a researcher in software-intensive systems engineering. He is a computer scientist who

is interested in system and software engineering and in system and software architecture, in particular:

life cycle system/software engineering, requirements engineering, relating software requirements and

architectures, knowledge management in software development, rationale-based software develop-

ment, aligning enterprise/system/software architectures, value-based software engineering, agile

software architectures, and collaborative system/software engineering. He has more than 40 years’

experience in the field of computer systems engineering as an information systems developer, R&D

leader, SE/SA research analyst, educator in computer sciences, and ICT management consultant. In

the past 40 years, he has been primarily working at various R&D institutions in United States and

Germany and has done consulting on a variety of large international projects sponsored by the

ESA, EU, NASA, NATO, and UN. He has also taught university-level computer sciences courses

in software engineering, software architecture, distributed information systems, and human-computer

interaction. He is the author or co-author of more than 90 articles and papers in international journals,

conferences, books, and workshops. He has written a number of editorials for special issues and edited

books. He has also written over 120 technical reports and presented over 70 scientific/technical talks.

He has served in many program committees and panels of reputable international conferences and or-

ganized a number of scientific workshops. He was the lead-editor of nine books between 2006 and

2015: Rationale Management in Software Engineering, Rationale-Based Software Engineering,
Collaborative Software Engineering, Relating Software Requirements and Architecture, Aligning
Enterprise/System/Software Architectures, Agile Software Architecture, Economics-Driven Software
Architecture, Relating System Quality and Software Architecture, and Software Quality Assurance.

Nour Ali has been a Principal Lecturer at the University of Brighton since Dec. 2012. She holds a Ph.D.

in Software Engineering from the Polytechnic University of Valencia-Spain for her work in Ambients

in Aspect-Oriented Software Architecture. She is a Fellow of the UK Higher Education Academy

(HEA). Her research area encompasses service-oriented architecture, software architecture, self-

adaptation, and mobile systems. In 2014, the University of Brighton granted her a Rising Stars award

in Service Oriented Architecture Recovery and Consistency. She is currently the Principal

Investigator for the Royal Society Newton grant, “An Autonomic Architectural Approach for Health

Care Systems,” and is the Knowledge Supervisor for the Knowledge Transfer Partnership project

for migrating legacy software systems using architecture centric approach. She has also been the

Principal Investigator for an Enterprise Ireland Commercialisation Project in Architecture Recovery

and Consistency and co-investigator in several funded projects. Dr. Ali serves on the Programme

Committee for several conferences (e.g., ICWS, ICMS, and HPCC) and journals (e.g., JSS, or JIST).

She has co-chaired and co-organized several workshops such as the IEEE International Workshop on

Engineering Mobile Service Oriented Systems (EMSOS) and the IEEE Workshop on Future of

Software Engineering for/in the Cloud. She was the co-editor of the JSS Special Issue on the Future

of Software Engineering for/in the Cloud published in 2013 and has co-edited three books including

Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice, published in 2012.

xvii

She is the Application Track chair for International Conference on Web Services (ICWS 2016). Her

personal website is: http://www.cem.brighton.ac.uk/staff/na179.

John Grundy is Professor of Software Engineering and Pro-Vice Chancellor ICT Innovation and

Translation at Deakin University, Australia. Previously he was Dean of the School of Software

and Electrical Engineering and also Director of the Swinburne University Centre for Computing

and Engineering Software Systems (SUCCESS). Before coming to Swinburne, he was Head of

Department for Electrical and Computer Engineering at the University of Auckland, New Zealand.

His teaching is mostly in the area of team projects, software requirements and design, software

processes, distributed systems, and programming. His research areas include software tools and

techniques, software architecture, model-driven software engineering, visual languages, software

security engineering, service-based and component-based systems and user interfaces. He has authored

over 300 publications and supervised over 50 Ph.D. and Masters by research students. He provides

consulting work for a range of companies which have included, among many others, Data61, DST

Group, Mailguard, Thales Australia, CA Labs, XSol Ltd, Orion Health Ltd, Peace Software Ltd,

and Whitecloud Systems Ltd.

Rick Kazman is a Professor at the University of Hawaii and a Principal Researcher at the Software

Engineering Institute of Carnegie Mellon University. His primary research interests are software

architecture, design and analysis tools, software visualization, and software engineering economics.

Kazman has created several highly influential methods and tools for architecture analysis, including

the SAAM (software architecture analysis method), the ATAM (architecture tradeoff analysis method),

the CBAM (cost-benefit analysis method), and the Dali and Titan tools. He is the author of over 200

publications, and co-author of several books, including Software Architecture in Practice, Designing
Software Architectures: A Practical Approach, Evaluating Software Architectures: Methods and Case
Studies, and Ultra-Large-Scale Systems: The Software Challenge of the Future. His publications have
been cited over 16,000 times, making him one of the most cited authors in all of software engineering.

Bradley Schmerl is a Principal Systems Scientist in the Institute for Software Research at Carnegie

Mellon University, USA. He has been involved in research in self-adaptive systems for over 20 years,

starting with his Ph.D. at Flinders University in South Australia, which investigated using configuration

management techniques to manage dynamically changing systems. He was a Lecturer at Flinders

University and an Assistant Professor at Clemson University in South Carolina before joining Carnegie

Mellon in 2000. He is involved in research using software architecture models as a basis for reasoning

about self-adapting systems, including using utility theory to select appropriate strategies that balance

multiple quality and business priorities. He has co-authored over a dozen journal and conference papers

on self-adaptation, co-organized the Second Workshop on Self-Organizing Architectures in 2011,

co-edited the Special Issue on “State of the Art in Self-Adaptive Systems” of the Journal of Software
and Systems in 2012, and was program chair for the 2015 International Symposium on Software

Engineering for Adaptive and Self-Managing Systems.

xviii About the Editors

http://www.cem.brighton.ac.uk/staff/na179

Foreword by David Garlan

The idea of a system that adapts itself while it is running is as old as the notion of computation. But for

many years the complexity of creating such systems hardly justified their value. Systems typically ran

in predictable, stable environments, and their requirements and fault models were fairly well

prescribed.

But over the past couple of decades, many things have driven system designers to reconsider the prop-

osition of self-adapting software systems.Today systemsmust function in complex environments built out

of infrastructure, components, services, and other systems that are not under direct control of the original

system’sdevelopers.Requirementsmaychange.Environments change, particularly in thepresenceofmo-

bility.Systemconfigurationsmustbeoptimized tosatisfymultiple (oftenconflicting)qualitygoalsdictated

bybusiness context.And, at the same time, the need to deploy systemswith 24/7 availability hasmovedout

of the niche system category (telephone system, energy grid, etc.) into mainstream software.

About a decade and a half ago, people began to realize that to account for this new reality, it was

important to understand how to make systems more resilient, more malleable, and more extensible,

without compromising quality, cost of development, and cost of deployment—and, significantly, with-

out taking systems offline. Old solutions of simply throwing more system administrators at the problem

were becoming increasingly cost-prohibitive. And engineering fault tolerance and system reconfigura-

tion directly into the system was leading to unsustainable complexity.

What emerged was a blossoming of a new focus on the software engineering of self-adaptive sys-

tems that could rise to the challenges of modern contexts. Almost simultaneously there emerged new

venues for discussing such issues: the ACM Workshops on Self-Healing Systems (WOSS), the Inter-

national Conference on Autonomic Computing (ICAC), the international workshop on self-adaptive

software (IWSAS), and others. And, within the domain of commercial systems, we began to see myriad

new (albeit special-purpose) mechanisms for adaptation: automated server monitoring and repair in

Internet-based systems, adaptive performance through cloud computing platforms, and micro-services

to support rapid, and frequent, deployment of functional enhancements.

Additionally, a major advance in our thinking about such systems emerged through the recognition

that one way to address the challenges of self-adaptation was to take a control systems perspective on

the problem. Specifically, a system could be made self-adaptive by adding sensors to monitor its run-

time state, actuators to change it at runtime, and a separate reasoning mechanism to decide when it is

appropriate to adapt the system, and how best to do so. This was famously referred to (in some circles)

as the MAPE-K loop, or monitor-analyze-plan-execute using a shared base of knowledge.

This perspective (among others) helped researchers and developers consider the architectures of

self-adaptive systems as first-class areas of study. And while the overall MAPE-K control architecture

tends to encompass most such efforts, numerous new challenges emerge in order to get the details right.

Monitoring: What does it mean to have sufficient situational awareness, and what can one do when

such information is unavailable or highly uncertain? How can one sift through large volumes of

low-level system observations to derive higher-level views of system behavior and state?

Analysis: How can a system determine when adaptation is necessary? How can it identify the part of

the system that needs to be adapted? How do you prioritize the possible problems that need to

be addressed when several are detected? To what extent should the system focus on faults, and to

xix

what extent on homeostatic improvement? What are appropriate measures of system quality that

take into account multiple dimensions of concern (e.g., cost, performance, security, availability)?

How do you recognize “softer” problems, where the system is out of balance with respect to

competing quality attributes (e.g., sacrificing deployment cost to improve performance)?

Planning: How can one determine an appropriate adaptation strategy that considers the inherent

trade-offs between different quality dimensions that might be affected? How can one balance

the need for rapid response to critical problems, while still support longer-range system

improvement? How can one provide assurance that adaptation will make a system better, and not

worse? How can one provide guarantees about coverage of potential problems? How can one

build planning mechanisms that are proactive in anticipating problems and correcting them before

they do damage? How do you reason about uncertainty, given the fact that we may not know

precisely the state of the system, environment, or even the outcomes of repair actions?

Execution: How can you build systems so their actuation interface provides more flexibility to the

adaptive process? How can you support concurrent adaptations of the same system?

Knowledge: What kinds of information are most useful to the adaptation process? How can you

strike a balance between abstract views of the system and detailed enough information to make

informed decisions about adaptation? Can cooperating adaptive systems share knowledge to

improve the adaptation behavior of the ensemble?

In addition to these kinds of challenges, new forces in technology are raising interesting questions about

positioning adaptive systems in today’s ecosystems. For example, increasingly computing systems

must work in the context of physical devices and technologically rich environments. Such systems,

sometimes referred to as the Internet of Things or cyber-physical systems, raise the question of

how to combine what we have learned about software adaptation with more traditional disciplines

of physical control. As another example, systems today must take into account the capabilities of

the humans that interact with them. Humans may be clients of the adaptive system, but also might

be viewed as components in the overall adaptation process. Indeed, in principle humans can serve

in any of the MAPE-K roles—for example, providing contextual information to the system, assisting

with adaptation, or performing physical actions to achieve some desired result.

It is clear that much remains to be done, and what we do know today will need to evolve with the

shifting landscape of technology and its use in our world. The chapters in this book span the entire field:

from engineering of adaptive systems, to reasoning about them, to exploring their use in emerging fron-

tiers. Despite this diversity, however, across all of these chapters is a broad concern with the question of

balancing trade-offs. The moment you go down the path of adaptation, you are faced with questions

about how best to reconcile conflicting goals and requirements: of timely response with optimal repair,

of multiple system qualities that must be balanced to provide overall utility, of automated versus

human-assisted adaptation, of localized versus distributed control, of human-assisted versus stand-

alone adaptation. Balancing trade-offs thus provides a common theme underlying these chapters,

and, in fact, any serious treatment of self-adaptation. As such, this book provides both a broad perspec-

tive and deep exploration of many of these issues, serving as an excellent starting point for someone

who wants to know more about the field, as well for researchers and practitioners who want a more in-

depth examination of recent research and its potential.

David Garlan

xx Foreword by David Garlan

Foreword by Nenad Medvidovic
Behold the Golden Age of Software Architecture

In the mid-to-late 1990s, I had the fortune of witnessing a great deal of activity and innovation that,

today, is sometimes referred to as the “golden age” of software architecture research. As a community,

we were trying to understand the phenomena underlying software systems’ architectures, develop ab-

stractions to capture those phenomena, construct models to embody the abstractions properly and ef-

fectively, analyze the models for interesting and important properties, and, finally, figure out how to

implement systems that would inherit all of the positive and none of the negative characteristics we

encountered along the way. This resulted in a seeming whirlwind of notations, techniques, tools, pat-

terns, styles, and reference architectures. It was an incredibly exciting and fun time if you were a soft-

ware architecture researcher. The rest, as they say, has been history.

An issue that emerged somewhat more slowly and deliberately by comparison to the above was archi-

tectural adaptation. One questionwas always there:Once you build the system, youwill inevitably change

it, so what does that do to the architecture? That question, however, turned out to have a more compelling

counterpart: What do you have to do to and with the architecture to make it support the change in the sys-

tem?Asa result ofmultiple years of investigating this question, several colleagues and I cameupwithwhat

we have since named (hopefully for obvious reasons) the “figure 8” model, shown below.

xxi

Themodel recognized the dichotomy and tight interconnection between the system and its architecture.

The upper portion of the diagram—adaptation management—was intended to capture the lifecycle of

adaptive software systems. The original vision was that the lifecycle may have humans in the loop or it

may be autonomous. The lower portion of the diagram—evolution management—was intended to cap-

ture the software mechanisms employed to change the system.

The objective here is not to explain the entire model; the interested reader can find more details

in the original papers that introduced the model [1,2], as well as subsequent publications that

have reflected and expounded upon it [3,4]. The important takeaway is that the approach was

architecture-based: changes were always formulated in, and reasoned over, an explicit

architectural model that resided on the implementation platform along with the implemented sys-

tem itself. Furthermore, changes to the architectural model were directly reflected in modifications

to the system’s implementation. The key to the “figure 8” was ensuring that the architectural model

and the implementation remained consistent with one another throughout the system’s life span.

The “figure 8” model was followed by and it inspired several other architecture-based software

adaptation models that shared its basic traits: the models looked at the adaptation problem at a very

high level and tried to prescribe activities and provide mechanisms for addressing the problem in a

general way. However, the details remained largely unaddressed. The models captured what and when
an engineer, or an automated agent, would have to do, and why. However, the existing models left

unspecified many details of how these activities would be accomplished. They also tended not to

specify precisely what would happen to the system’s properties as its architecture is adapted and

how trade-offs among those properties should be handled. In that sense, although these

architecture-based adaptation models are usually comprehensive in scope, targeting broad classes of

software systems and adaptation scenarios, they aimed to solve what is fundamentally the simpler por-

tion of the problem, leaving the harder portion unaddressed.

The actual details of how to adapt a system by modifying its architecture in order to accomplish

a given objective turn out to require more focused, targeted solutions because those solutions

depend on many, varying factors. The good news is that such solutions can typically be “plugged

into” the general-purpose adaptation models—a perfect symbiosis. This book aims to provide just

that: a broad cross-section of state-of-the-art solutions to the problem of how quality trade-offs are

managed in adaptable software architectures. The reader will find a great variety of methods,

techniques, and tools that can be adopted wholesale, adapted for different scenarios, or indeed,

plugged into one or more of the existing adaptation models. The reader may also walk away feeling

that there is still much work left to be done on this problem. If so, that will not be an inaccurate

impression. Software adaptation is a remarkably complex phenomenon and it must be and will

be studied for some time. The upside is that this is a very exciting area to work in, proving wrong

those who think that the “golden age” of software architecture has passed. So, dive in, read, learn,

and get inspired!

Nenad Medvidovic

University of Southern California
Los Angeles, CA, USA

xxii Foreword by Nenad Medvidovic

REFERENCES
[1] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Proceedings of the

20th International Conference on Software Engineering (ICSE’98), Kyoto, Japan, April 1998.

[2] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,

D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.

Appl. 14 (3) (1999) 54–62.
[3] P. Oreizy, N. Medvidovic, R.N. Taylor, Runtime software adaptation: framework, approaches, and styles,

in: Proceedings of the 30th International Conference on Software Engineering (ICSE 2008), Leipzig,

Germany, 2008.

[4] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations, Theory, and Practice,

John Wiley & Sons, Hoboken, NJ, 2009. ISBN-10: 0470167742, ISBN-13: 978-0470167748.

xxiiiForeword by Nenad Medvidovic

http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0025

Foreword by Paris Avgeriou

The software architecture community realized from the very beginning (more than 2 decades ago) that

functionality was not the main challenge; we could get that right, sooner or later, in an incremental and

iterative manner. The real focus for researchers and the main pain point in industrial architecture prac-

tice was and still remains how to tame quality attributes. Form (architecture) does follow function, but

form has some trouble following quality.

The problem of achieving requirements for quality attributes qualifies as a “wicked problem,” and it

is a multifaceted one. First, one cannot achieve each attribute in isolation as they are often interdepen-

dent and even contradictory. Consider, for example, the conflict between performance with almost any

other quality attribute; when you try to optimize for performance, you may hurt the modifiability or

security of your system. Second, a quality attribute cannot be dealt within a single component but re-

quires system-wide measures. It would have been wonderful to have, e.g., a “reliability component”

that can be simply integrated in a system, but it does not work that way; quality needs to be ensured

across the system. Third, in contrast to functionality that can be very tangible and expressed simply yet

effectively in use cases or user stories, quality attributes are rather elusive and often expressed in a

vague way. This has been the source of frustration in innumerable discussions between development

teams and other stakeholders, that started from a simple question like “What exactly does it mean for

the system to be usable?” Finally, quality attributes are almost always implicitly derived from business

goals. The link to business goals constitutes the rationale behind quality attributes; just like the ratio-

nale behind design decisions, it can hamper system evolution if it remains implicit.

However, all is not lost. The architecture community has been diligentlyworking onmethods and tools

to tackle the aforementioned problems and help architects systematically manage quality attributes and

their trade-offs. Software patterns for architecture and design describe in detail the quality attributes in

terms of the pattern forces and further elaborate how the solution incurs both benefits and liabilities regard-

ing those quality attributes; tactics contribute in the same direction by focusing on individual qualities.

Furthermore, architecture design methods consider quality attributes as inputs and match them with can-

didate patterns and tactics in order to make rational decisions. Subsequently, architecture evaluation

methods examine multiple quality attributes and perform explicit trade-offs by looking at related design

decisions. Moreover, there are proven techniques to express quality attribute requirements in a SMART

way for example bymeans of low-level scenarioswith a tangible input and ameasurable output. Addition-

ally, there are several architecture views that frame quality attributes and modeling techniques for formal

specification and verification of qualities. Finally, there are methods that elicit the relationships between

quality attributes and business goals, aswell asmethods that study the explicit trade-off between the utility

gained from achieving quality attribute requirements and the corresponding cost.

But then again, just as we thought we had tamed quality attributes, the advent and proliferation of

self-adaptive systems changes the rules of the game. Self-adaptive systems are moving towards more

and more flexibility where the design space is not fixed at design time but both problems and solutions

can shift during runtime in an unplanned manner. Especially the new generation of self-adaptive sys-

tems that is currently emerging will increasingly face this core challenge: uncertainty. Our entire

xxv

arsenal in the struggle towards managing quality attributes is going to be rendered obsolete as uncer-

tainty looms in a number of ways. We may not know whether the requirements for the system quality

attributes will change in the future or how they will change. We may be uncertain whether the com-

ponents and services being used will remain the same and will continue operating within the same func-

tional and quality boundaries. We cannot predict changes in the environment and other interacting

systems, or changes in the mission and goals of the overall system. We cannot ensure that new con-

figurations of the system will continue delivering the prescribed quality of service. There may be

doubts whether established and confirmed design decisions are still valid under future conditions.

Current architecture design methods can only optimize the design with respect to explicit require-

ments and trade-offs for quality attributes; introducing variability in both problem and solution space

can become extremely complicated. Similarly, architecture evaluation methods can gauge whether de-

sign decisions are sound for specific quality attributes, given that both decisions and qualities are de-

scribed in a nonambiguous manner. Software patterns and tactics describe both the problem and

solution space under a specific context and a “closed world assumption”; they do not take into account

unforeseen changes. And what is the point of expressing quality attributes in a SMARTway if the stim-

ulus changes or if the way we measure responses takes a different form? In other words, none of the

current available methods and tooling can be used as is, in the self-adaptive domain. This is why this

book is very timely in shedding some light on the intricate problem and potential solutions of managing

trade-offs of quality attributes in self-adaptive architectures.

I think this field will become increasingly important over the next years and the following directions

are particularly promising for further research:

Intertwinement of problem and solution space. While the interrelation between requirements

and architecture has long been recognized, it has remained to a large extent a “holy grail” in

practice. The different metamodels and schools of thought used for expressing problem and solution

spaces limit this interrelation while traces between them can be mostly constructed manually,

which is prohibitively expensive. However in self-adaptive architectures, we need to come up with

better traceability so that changes in the problem space can be translated more flexibly and

accurately to changes in the solution space and vice versa.

Data science to the rescue.We do not have a crystal ball to predict the future, but looking at the past

can often provide sound indications on where we are headed. Data science can contribute

enormously to this field with tools and techniques on how systems and environments evolve over

time, especially in an open source context, thereby reducing the uncertainty in the design

space. Furthermore, using theory and tools from machine learning, the knowledge base of a

self-adaptive architecture can be continuously updated to reflect the current situation from both the

problem and the solution side.

Variability management redefined. Handling uncertainty in self-adaptation can be viewed as a

variability management problem, where the sources of uncertainty are variation points, while the

different potential cases of problems and solutions are the variants. Variability management

theory and tools from software product lines or massively customizable software can be reused and

built on, to model deviations in quality attributes in self-adaptive systems as well the impact of

alternative design decisions. Emphasis needs to be given on the dependencies between the variants

which can be immensely complicated.

xxvi Foreword by Paris Avgeriou

The chapters in this book provide some initial steps towards solving these and related problems. I hope

you enjoy reading this volume as much as I did, and I would strongly encourage you to work persis-

tently on these hard problems, as this field holds both a challenging and rewarding future.

Paris Avgeriou

University of Groningen, the Netherlands

xxviiForeword by Paris Avgeriou

Foreword by Rog�erio de Lemos

Although the reasoning of software systems at the architectural level provides an effective way to

handle complexity, the emerging area of self-adaptive software systems is challenging traditional

approaches on how to develop, operate, and evolve software systems. However, at the same time that

current practices are being challenged, opportunities emerge regarding new application areas for

software system that are flexible when handling change (which may affect the system itself, its envi-

ronment, or its requirements). Associated with changes, inevitably, there are uncertainties that need to

be identified, analyzed, and handled, and this is the purposes of trade-off analysis in systems design.

In the context of self-adaptive software systems trade-off analysis is not an exclusive development-

time activity, trade-off analysis takes place also at runtime while the system is adapting itself.

Architectural-based development-time trade-off analysis is still a very much human activity, and

their techniques and practices cannot be easily automated. Even if they could be automated, one would

not be able to achieve the same level of thoroughness because of the lack of human insight, experience

and diversity. However, there are certain benefits for moving some of the trade-off analysis from

development-time to runtime, and one of these is related to the state space of uncertainties. At runtime,

the state space should be smaller than that at development-time since at development-time there is little

operational information of the actual system yet in the process of being designed. The amount of

operational information available during runtime should be exploited in order to support trade-off anal-

ysis for adapting the software system. The development-time and runtime trade-off analyses should be

complementary in order to optimize the service, and its qualities, to be delivered by the system. In order

words, there are decisions currently being made at development-time related to operational uncer-

tainties that can be deferred to runtime.

This rearrangement of trade-off analysis for handling uncertainties between development-time to

runtime raises a clear challenge: how to identify what kind of analyses should be performed at

development-time from those that should be performed at runtime. This identification, on its own,

should establish the limits of adaptation, and this in itself already involves some kind of trade-off

between adaptation and evolution. It is unquestionable that adaptation has its limits, and the decision

when to stop adapting and to start a new evolution cycle is something that should be related to runtime

limitations. An interesting feature to be considered in any self-adaptive software system should be the

system capability of decommissioning itself when is not able to adapt anymore. Whether to deploy

another redundant system, or completely stop its activities is a key decision to be made.

This book provides a timely springboard for starting a more insightful discussion on how to perform

trade-off analysis in architecture-based self-adaptive software systems. New processes for trade-off

analysis should be established, which should identify activities and decisions to be associated with

development-time and runtime. These processes should identify what should be tailored on existing

and well established practices, and identify challenges associated with the dynamic trade-off analysis

to be performed during runtime. As part of development-time trade-off analysis, decisions should be

made regarding the ability of the architecture in supporting runtime adaptation, and the easiness in

instrumenting the software in terms of probes and effectors, for example. Regarding runtime trade-

off analysis, since this has to be fully automated, some kind of decision maker should be adopted,

and the literature is reach regarding synthesis techniques. The challenge is on the analysis side in which

xxix

solution boundaries need to be explored in terms of their effectiveness, quality attributes and risks, for

example. In this context, the promising solutions rely on games to be played between the controller and

the sources of change that might affect the system. A more far reaching challenge, for the sake of the

evolving software, is how to consider and incorporate into the trade-off analysis performed at

development-time, the trade-off decisions, and their associated rationale, made during runtime.

Another major challenge regarding runtime trade-offs are the decision-making criteria. If a system,

its requirements and environment are expected to change, also the criteria regulating decision making

should be dynamic. Usually these criteria are considered static, which might lead to less than optimal

decisions, in a truly dynamic environment. If that is the case, trade-off analysis tools and techniques

should be capable of updating during runtime the values of the criteria. Moreover, one should not

expect that a single technique, for example, utility functions, should be sufficient for a wide range

of applications and contexts. The area of decision making is an area in which diversity of techniques

and tools should have a positive impact since changes in the parameters of the decision-making criteria,

or the techniques and tools being used, might have a great impact upon decisions. In summary, the

runtime trade-off analysis should be itself resilient against changes that might affect the self-adaptive

software system in which it is embedded.

Rog�erio de Lemos

March 2016

xxx Foreword by Rog�erio de Lemos

Preface

J. Grundy, I. Mistrik, B. Schmerl, R. Kazman, N. Ali

INTRODUCTION
Self-adaptive systems are those that, unlike traditional software systems, are engineered to be adaptable

at runtime and, in fact, adapt themselves in various ways to their changing environment, users, user

requirements, and related systems. Adaptation can take many forms: adaption to new data sources

and remote services; adaption to changing network, hardware or related software systems; adaption

in the presence of uncertainty and/or unreliability of other systems; adaption to new users and user

needs; adaption of security, privacy, and trust models and implementations; adaption to improve

one or more quality of service attributes; and adaption to handle catastrophic environmental events.

Engineering software systems that adapt is hard. A fundamental premise for such systems is a soft-

ware architecture that encapsulates, and is designed for in some way, adaptation. Some architectures

support a wide variety of adaptation, while others are more limited. In either circumstance, there will be

inherent trade-offs that need to be made by the architects to achieve the necessary kinds of adaption and

the supporting software and systems infrastructure required to achieve it.

Analyzing and managing these trade-offs is also very hard. A great deal of research and practice

interest has been focused on this problem due to its increasing need in a wide variety of contexts. These

include cloud-based systems, mobile applications, security- and safety-critical systems, and the emerg-

ing Internet of Things. Our goal in this book is to collect chapters on architecting for adaptability and,

more specifically, how to manage trade-offs between functional requirements and multiple quality

requirements in adaptable software architectures. The intention of this book is to collect state-of-

the-art knowledge on:

• what it means to architect a system for adaptability;

• software architecture for self-adaptive systems;

• what trade-offs are involved and how can one balance these;

• general models of self-adaptive systems;

• architectural patterns for self-adaptive systems;

• how to intertwine business goals and software quality requirements with adaptable software

architectures;

• how quality attributes are exhibited by the architecture of the system;

• how to connect the quality of a software architecture to system architecture or other system

considerations;

• what are the major challenges of engineering adaptive software architectures;

• what techniques are required to achieve quality management in architecting for adaptability;

• the best ways to apply adaptation techniques effectively in systems such as cloud, mobile,

cyber-physical, and ultra-large-scale/internet-scale systems;

xxxi

• the approaches that can be employed to assess the value of total quality management in a software

development process, with an emphasis on adaptable software architecture; and

• case studies of successful (or unsuccessful but useful lessons learned) application of trade-offs in

designing, developing, and deploying adaptive systems.

The book is arranged into four parts. Part I reviews key concepts and models for self-adaptive software

architectures. This includes key approaches to architecting systems for adaptation; tackling uncertainty

when architecting self-adaptive systems; viewpoint modeling for dynamically modifiable software sys-

tems; and adaptive security for software systems. Part II focuses on analysis and trade-offs in self-

adaptive software systems. This includes the use of automation in terms of inference techniques to

support architecting of adaptable systems; managing trade-offs when dealing with the human element

of adaptive systems; elicitation and evaluation of discovered trade-offs when architecting such sys-

tems; analysis for self-adaptive software architectures; and adaptive architectures for scalable

software-as-a-service based systems. Part III examines the management of trade-offs for self-adaptive

software architectures. A systematic mapping study reviews the large body of work in this area to date

and formulates key contributions and research gaps. Also in this part is a requirements-driven approach

to mediation solutions. Finally, Part IV addresses the issue of quality assurance for self-adaptive soft-

ware architectures. Quality evaluation mechanisms are reviewed, compared, and contrasted.

PART I: CONCEPTS AND MODELS FOR SELF-ADAPTIVE SOFTWARE
ARCHITECTURES
Chapter 1 is by the editors and provides a review of the concepts of self-adaptive software architectures,

their history, key features, some of the key challenges in managing trade-offs, and what we see as some

of the major outstanding areas for research and practice in this domain. We first review some of the key

prior work in architecting self-adaptive systems that has been published to date. We then discuss the

body of work that has looked at the issue of managing trade-offs when designing such self-adaptive

software systems. Trade-off management at run time in particular is then discussed including many

outstanding challenges that exist in this domain. We then outline a set of research challenges that

should lead us as a community to a better vision for managing trade-offs in self-adaptive systems.

Chapter 2, by Villegas, Tamura, and Muller, provides an overview of architecting software systems

for runtime self-adaptation: concepts, models, instrumentation and challenges. In this chapter the

authors introduce practitioners, researchers, and students to foundational concepts and reference

models associated with the architecture of self-adaptive software. It also presents challenges related

to the design of software architectures that enable self-adaptation of software systems at execution

time. They first introduce a running example to illustrate the studied concepts. They then explore

the meanings of adaptation and self-adaptation as well as the differences between these two concepts.

They explain fundamental concepts for architecting self-adaptive software systems and then present a

set of reference models and architectures relevant to the engineering of self-adaptive software.

Finally they discuss major challenges regarding the architecting of complex software systems for

self-adaptation.

Chapter 3, by Hezavehi, Avgeriou, and Weyns, provides a classification of current architecture-

based approaches. In this chapter the authors review the state-of-the-art of architecture-based

xxxii Preface

approaches tackling uncertainty in self-adaptive systems with multiple quality requirements, propose a

classification framework for this domain, and classify the current approaches according to their new

framework. To do this they conducted a systematic literature review by performing an automatic search

on 27 selected venues and books in the domain of self-adaptive systems. From detailed analysis of this

review they propose a novel classification framework for uncertainty and its sources in the domain of

architecture-based self-adaptive systems with multiple quality requirements. They map their identified

primary studies into their new framework and present the classified results. Results from this review

will help researchers to understand the current state of research regarding uncertainty in architecture-

based self-adaptive systems with multiple concerns, and identity areas for improvement in the future.

Chapter 4, adaptability viewpoint for modeling dynamically configurable software architectures, is

authored by Tekinerdogan and Sozer. In this chapter the authors introduce an “adaptability viewpoint”

that can be used for modeling dynamically configurable software architectures. They then illustrate the

use of the viewpoint for a demand-driven supply chain management system. To represent runtime

adaptability concerns more explicitly, the authors argue that an explicit dedicated architectural view

is required to model the decomposition of the architecture based on the runtime adaptability concern.

To this end they introduce a new runtime adaptability viewpoint that can be used for modeling dynam-

ically configurable software architectures. This viewpoint has been defined via domain analysis of

dynamic configurability and software architecture viewpoint modeling. The viewpoint is based on a

meta-model that defines the underlying semantics. The authors first provide a background about archi-

tecture viewpoints and then introduce their supply chain system case study as a motivating example

where runtime adaptability becomes a critical concern. They describe key related concepts and a

meta-model for their runtime adaptability viewpoint and then introduces a concrete notation and a

method for applying this viewpoint. The case study is then described by application of the viewpoint.

Chapter 5 is authored by Almorsy, Grundy, and Ibrahim, and describes a new framework for sup-

porting adaptive security for software systems. In this chapter the authors discuss the needs for adaptive

software security, and key efforts that have been made to date in this area. They then introduce a novel

runtime adaptive security engineering approach that enables adapting software security capabilities

at runtime based on new security objectives, risks/threats, and requirements, as well as newly reported

vulnerabilities. The authors then categorize the source of adaptation in terms of manual adaptation

(managed by end users), and automated adaption (automatically triggered by the supporting platform).

They describe the application of their approach to a large case study and discuss its strengths, limita-

tions, and areas for further enhancement.

PART II: ANALYZING AND EVALUATING TRADE-OFFS IN SELF-ADAPTIVE
SOFTWARE ARCHITECTURES
Chapter 6, by Malek, Canavera, and Esfahani, describes the use of automated inference techniques to

assist with construction of adaptable software architectures. The authors state that state-of-the-art in

engineering self-adaptive software systems involves manual construction of numerous models, which

are then used at runtime for making and effecting adaptation decisions. They show that the construction

of such models is unwieldy and impractical for use by practitioners and describe an alternative

approach for engineering adaptive software that aims to alleviate the challenges of manually develop-

ing such models using inference techniques to automatically derive the models necessary for building

xxxiiiPreface

an adaptive architecture. A machine-learning approach is used to automatically derive the models pre-

dicting the impact of architectural change on the system’s quality objectives. These types of models are

used to make adaptation decisions to fix problems that may arise at runtime. A data-mining approach is

then used to derive automatically the models expressing the probabilistic dependencies between the

architectural elements of the system. These types of models are used to ensure changes in the running

software do not create inconsistency, and jeopardize its functionality. The chapter discusses some

remaining research challenges and areas of future research in employing automated inference tech-

niques in the construction of adaptive architectures.

Chapter 7 focuses on evaluating trade-offs of human involvement in self-adaptive systems, and is

authored by Cámara, Moreno, Garlan, Moreno, and Schmerl. In this chapter the authors we identify

various roles that can perform in cooperating with self-adaptive systems. They focus on humans as

effectors—doing tasks which are difficult or infeasible to automate—and describe how they modified

their own self-adaptive framework to involve human operators in this way. This involved choosing

suitable human models and integrating them into the existing utility trade-off decision models of

their tool. They used probabilistic modeling and quantitative verification to analyze the trade-offs

of involving humans in adaptation. They then complement their study with experiments to show how

different business preferences and modalities of human involvement may result in different outcomes.

Chapter 8, principled eliciting and evaluation of trade-offs when designing self-adaptive systems

architectures, is by Andrade and Macêdo. The authors present a systematic approach for design and

analysis of self-adaptive systems architectures. This approach enables the representation of refined

knowledge as structured design spaces and relies on the use of multiobjective optimizationmechanisms

to elicit and evaluate the involved quality attributes trade-offs. The authors present the key require-

ments for an automated approach for software architecture design and analysis and detail the

underlying mechanisms and technologies adopted. They describe in detail how they have used their

infrastructure to automate the design of self-adaptive systems. The authors validate their approach

for effectiveness by using particular optimization performance indicators, as well as in functional pro-

totypes of self-adaptive web servers and elastic platforms for distributed MapReduce jobs.

Chapter 9, by Kazman and Boxer, focuses on an approach for analyzing the architectures of

software-intensive ecosystem. This chapter describes the core-periphery structures of the systems par-

ticipating in software ecosystems, and approaches the analysis of their behavior from the perspective of

the market behaviors that they are expected to support. The authors propose a key driver of the “wick-

edness” of these systems’ behaviors is the accelerating pace at which an ecosystem is expected to re-

spond to new kinds of demand. This makes it necessary to extend the concept of “architecture” to

include the resultant processes of dynamic alignment. It then becomes necessary to analyze architec-

ture in a way that includes the context of use of systems. The authors propose the use of a multisided

matrix to represent the variety of forms of dynamic alignment demanded by self-adaptive systems, and

describes an extension to the architecture trade-off analysis method as a means of discovering the risks

inherent in architectural decisions made to support a software-intensive ecosystem.

Chapter 10, architectural perspective for design and analysis of scalable software as a service

architecture, is authored by Tekinerdogan and Ozcan. In this chapter the authors discuss one of the

major challenges in designing and maintaining SaaS computing systems, the design for and analysis

of scalability. To address this they propose the scalability perspective for supporting the design and

analysis of scalable SaaS architectures. They argue that in order to address quality concerns in software

architecture design, an important approach is to define architectural perspectives that include a

xxxiv Preface

collection of activities, tactics, and guidelines that require consideration across a number of the archi-

tectural views. Their proposed architectural perspective can assist software architects in designing, an-

alyzing, and communicating decisions made regarding scalability as well as any trade-offs with other

concerns. They illustrate the scalability perspective on an industrial case study and discuss the lessons

learned from this application of the technique.

PART III: MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES
Chapter 11 is by Salama, Bencomo, and Bahsoon, and provides a systematic mapping study of managing

trade-offs in self-adaptive architectures. The authors conducted this systematic mapping study to identify

and analyze research related to analyzing and managing trade-offs for self-adaptive software architec-

tures. They argue that self-adaptation has been driven by the need to achieve and maintain quality

attributes in the face of continuously changing and emerging requirements, as well as the uncertain

demand at runtime. Designing architectures that exhibit a good trade-off between multiple attributes

is challenging, especially in the case of self-adaptive software systems, due to the complexity, heteroge-

neity and ultra-large scale of the modern software systems. Their study aims at collecting research work

that explicitly addresses trade-off management for self-adaptive software architectures, to obtain a com-

prehensive overview on the current state of research on this specialized area. They selected 20 primary

studies and analyzed these to classify software paradigms, quality attributes considered, and the proper-

ties that drive trade-off management. The results show constant interest in finding solutions for trade-offs

management at design-time and runtime. The authors findings call for a foundational framework in

analyzing and managing trade-offs for self-adaptive software architectures that can explicitly consider

specific multiple quality attributes, the runtime dynamics, the uncertainty of the environment and the

complex challenges of modern, ultra-large scale systems in particular software paradigms.

Chapter 12 is by Bennaceur and Nuseibeh and discusses the many facets of mediation. The authors

discuss the concept of “mediation,” which aims to enable dynamic composition of multiple compo-

nents by making them interact successfully in order to satisfy given requirements. They argue that

through dynamic composition, software systems can adapt their structure and behavior in dynamic

and heterogeneous environments such as ubiquitous computing environments. Their chapter provides

a review of existing mediation approaches and their key characteristics and limitations. The authors

claim that only a multifaceted approach that brings together and enhances the solutions of mediation

from different perspectives is viable in the long term. They then discuss how requirements can help

identify synergies and trade-offs between these approaches and drive the selection of the appropriate

mediation solution.

PART IV: QUALITY ASSURANCE IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES
Chapter 13 is authored by Raibulet, Arcelli, Capilla, and Carrillo, and provides an overview of quality

evaluation mechanisms for self-adaptive systems. In this chapter the authors aim to identify general

guidelines for the evaluation of self-adaptive systems independent of their type, application domain,

xxxvPreface

or implementation details. Evaluation is an important concern for building and monitoring the quality

of software. The complex nature of self-adaptive systems demands continuous monitoring of their be-

havior and execution of runtime changes, which challenge the quality of their adaptations in dynamic

environments. The characteristics of self-adaptive systems demand a continuous evaluation of their

performances and improvement of the adaptation process. The authors propose a new taxonomy for

the evaluation of the quality of self-adaptive systems based on five dimensions: scope, time, mecha-

nisms, perspective, and type. They have identified the main available evaluation approaches and an-

alyzed them using their proposed taxonomy. They discuss several trade-offs concerning each

dimension in the taxonomy, trade-offs which need to be addressed during system evaluation.

Finally, Chapter 14 by Rog�erio de Lemosa and Pasqualina Potenac provides a discussion of iden-

tifying and handling uncertainties in the feedback control loop, a common feature of many adaptive

systems. In this chapter they discuss how uncertainty is associated to different sources (e.g., the envi-

ronment) and appears in different forms (e.g., as noise in variables or imperfections in techniques being

used). They present the MAPE-K control loop, where uncertainty is normally handled by a decision

maker at the plan stage. However, depending on the complexity of the stages of the MAPE-K control

loop, uncertainties need also to be handled at other stages. The authors claim that uncertainties should

be considered as a nonfunctional property that should be collectively handled at the different stages of

the feedback control loop. One advantage of this approach is that it leads to a more accurate estimation

of the system quality attributes since uncertainties are handled in the context where they arise, bene-

ficial for trade-off analysis. Their approach relies on the identification of internal and external sources

of uncertainty for a given stage, and promotes error propagation analysis as a method for analyzing the

propagation of uncertainties.

We hope that you enjoy this book as much as we have in editing it. We thank the anonymous

reviewers for all of their time in reviewing all of the chapters in this book. All chapters were reviewed

by at least four reviewers, and many went through two or even three rounds of revision, many quite

substantial revision. We thank the Elsevier Editorial team for their professional and very helpful ap-

proach that makes many of the chores associated with academic publishing much more bearable. And

finally we sincerely thank the authors for their research efforts, willingness to respond to extensive

feedback from the reviewers and editorial team, and without whose excellent contributions this would

not have been possible.

xxxvi Preface

CHAPTER

MANAGING TRADE-OFFS IN
ADAPTABLE SOFTWARE
ARCHITECTURES

1
B. Schmerl*, R. Kazman*,†, N. Ali{, J. Grundy§, I. Mistrik¶

Carnegie Mellon University, Pittsburgh, PA, United States* University of Hawaii, Honolulu, HI, United States†

University of Brighton, Brighton, United Kingdom{ Deakin University, Melbourne, VIC, Australia§

Independent Software Researcher, Heidelberg, Germany¶

1.1 INTRODUCTION
As the field of software architecture enters into its third decade of formal study, it is moving from its

traditional and foundational focus on the nature of an architecture in terms of a system’s structure and

behavior, to the more general notion of software architecture as the set of design decisions made to

ensure software requirements are met. Consistent with this view is the trend towards focusing software

architecture documentation on meeting stakeholder needs and communicating how the software solu-

tion addresses their concerns. Usually, a software system is not isolated, but part of a larger system.

When making design decisions, not only is the quality of the software architecture itself important,

but the quality of the overall system also needs to be considered.

As such, software systems increasingly interact with each other and are more often part of critical

civil and business infrastructure. This means that software is increasingly required to operate for long

periods of time, in highly dynamic environments, where user demands may change, and where

systems’ interaction and business goals may evolve. Software architectures, in addition to the design

decisions that led to them, also must react and evolve to ensure old and new requirements are met, and

that the systems they represent operate reliably.

Design decisions are fundamentally about trade-offs. When deciding between architectural alter-

natives, architects need to consider how each alternative affects the functional and quality requirements

of the software being designed. Often, functional requirements can be architected in a number of ways;

the choice of architecture is made by trading off different software qualities. The architecture trade-off

analysis method (ATAM) [1,2] by the Software Engineering Institute defines a method for conducting

architectural trade-offs for classical quality attributes such as performance, availability, and modifi-

ability. However, this method works best for systems with fixed business goals, behaviors, and

bounded environments. Furthermore, the trade-offs are done manually with multiple stakeholders.

For over 15 years, there has been increasing research in the field of adaptable software

architectures—where systems are able to change their topology and behavior to adapt to changing

circumstances (e.g., changing environments and requirements). For example, in 1997, Robert

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00001-0

Copyright # 2017 Elsevier Inc. All rights reserved.
1

http://dx.doi.org/10.1016/B978-0-12-802855-1.00001-0

Laddaga [3] defined self-adaptive software as software that “evaluates its own behavior and

changes behavior when the evaluation indicates that it is not accomplishing what the software

is intended to do, or when better functionality or performance is possible.” Oreizy et al. [4] pro-

posed an architecture-based approach for the construction of self-adaptive systems that relies on

software agents, explicit representation of software components, the environment, messaging,

and event services. To be able to act autonomously, the software needs to evaluate potential ad-

aptations, taking into consideration trade-offs in new circumstances to make adaptations that are

best for meeting the system’s requirements.

There are at least two critical aspects of managing trade-offs for self-adaptive systems. First, how do

we design systems to be adaptable in the presence of other quality attributes? Through methods like

ATAM we have a reasonable understanding of how to manage design trade-offs for performance, avail-

ability, maintainability etc., but we have little idea about how to integrate the notion of adaptability in this

process. Second, how do we manage these trade-offs at runtime so that when the self-adaptive system

needs to decide on an adaptation, it can make appropriate trade-offs dynamically and autonomously?

Despite extensive research on self-adaptive systems, there are still many challenges that need to be

addressed. This book contains a set of chapters on the state of the art of managing trade-offs in self-

adaptive software systems. In this chapter, we summarize some of the prior work on this topic and lay

out a set of challenges that need to be addressed to realize a principled approach to trade-off manage-

ment in self-adaptive systems.

This chapter is organized as follows. Section 1.2 discusses prior work in architecting self-adaptive

systems. Section 1.3 discusses work in managing trade-offs when designing self-adaptive software sys-

tems. Trade-off management at runtime is discussed in Section 1.4. Finally, Section 1.5 outlines a set of

research challenges that should lead to a better vision for managing trade-offs in self-adaptive systems.

1.2 BACKGROUND
In recent years there has been a fundamental shift in software development, away from stovepipe ap-

plications that are intended to run on a small cluster of computers, to large distributed software appli-

cations that service many clients through public facing interfaces. These highly distributed systems

often run on cloud systems and implement big data analytics, meaning that software architects must

consider scale and autonomy as primary concerns in developing software. Furthermore, the use of agile

development methods and the emergence of DevOps (bringing together development and operation)

means that software must be designed with zero downtime, that is, it must run continuously. Moreover,

as the software requirements and business needs evolve, and as new, unanticipated threats and security

vulnerabilities emerge, the software itself must adapt to meet these challenges. Therefore, it is no lon-

ger feasible for many systems to architect them assuming a static set of requirements or a fixed and

known environment—systems need to restructure or reconfigure to meet this new and uncertain world.

Historically, the changes required to meet the challenges above have required human intervention in the

form of re-engineering the systems through updates, or reconfiguring the system. However, such human

intervention cannot scale because adaptations to meet new demands or threats must happen extremely

quickly, or the inherent complexity and distribution of modern systemsmeans that the systems are too large

and complex to understand. Therefore, there is a need for software to become self-adaptive, meaning that

softwaremust be able to autonomously change structure and/or behavior to respond to changing conditions,

and must do so reliably and without unnecessarily degrading quality of service (QoS) [5,6].

2 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

We can think of the design of self-adaptive systems from two perspectives. On one hand, individual

self-adaptive systems contain knowledge of the system’s goals and constraints, and adapt themselves to

maintain, as far as possible, the goals under changing conditions. On the other hand, because software

systems increasingly exist in large interconnected ecosystems, collective self-adaptive systems consist

of multiple autonomous elements that are coordinating to achieve a common set of goals. Both kinds of

adaptation have received extensive investigation.

The areas of intelligent agents [7], reflective computing [8], and control theory [9] have provided

inspiration for approaches to constructing individual adaptive systems. Furthermore, several architec-

tures and mechanisms to enable adaptation have been proposed, including the widely adopted IBM

autonomic computing approach [10]. The latter proposes an architectural pattern for self-adaptation

called the MAPE-K loop, which enumerates the activities that should be considered and coordinated

when designing autonomic systems: monitoring the system and the environment, analyzing the situ-

ation to determine if the system needs to change, planning what to do, and then executing an adaptation

on the system; all of these activities involve accessing some knowledge base of the system or part of the

system being managed, and in many cases its environment and context. This approach considers self-

adaptive systems as adding a closed control loop around the systems they manage. In the control loop, a

specific control component (e.g., the “autonomic manager” in the autonomic computing approach, or

the “meta-component” in reflective approaches) is responsible for each of these activities.

Collective adaptation requires coordinating adaptation among multiple self-adaptive systems.

Centralized approaches to this do not scale, but there is a variety of patterns for coordinating multiple

controllers and control loops that have been investigated [11,12]. A control approach to designing self-

adaptive system is only one possible approach. Although this approach is overwhelmingly favored in

existing self-adaptive systems research, other approaches using negotiation and market-oriented mech-

anisms have also been studied [7]. These approaches involve autonomic components cooperating to

adaptively converge on specific suitable configurations, possibly respecting specific global goals

[13]. In the past few years, a number of proposals have also suggested that adaptation in distributed

systems can be achieved with decentralized self-organization [14]. However, this raises the issue of

properly controlling and predicting the possible emergence of unexpected behaviors.

Research to date has primarily focused on approaches to engineering self-adaptive systems, trying

to distil generalized examples of architectures to implement self-adaptation. While these approaches

have resulted in engineering a number of successful self-adaptive systems, there has been little research

on how to decide which style of self-adaptation is suitable in what cases, how these different styles

support or inhibit other system qualities, and how to conduct trade-offs to decide the best architectural

approach in specific cases. Furthermore, there is a lack of architectural tactics that can be applied gen-

erally, in the same sense as architectural tactics for achieving other qualities (e.g., reliability, perfor-

mance) [15]. Some work [16,17] describes patterns for different domains (e.g., service-oriented

architecture and self-protection). Again, there is no discussion of how to choose these patterns in

the presence of multiple quality concerns.

1.3 TRADE-OFFS IN ADAPTIVE SYSTEMS DESIGN
Trade-offs occur in all designs of nontrivial systems, whether these systems are computational or not.

Trade-offs are inherent in the design process and resulting artifacts, arising from the properties of com-

ponents and their interactions. Trade-offs are, therefore, among the most important design decisions

that an architect has to make.

31.3 TRADE-OFFS IN ADAPTIVE SYSTEMS DESIGN

A trade-off is an architectural decision that affects two or more system properties, making at least

one property better and at least one property worse. Every system, and every system’s design, is con-

strained: by computational resources, by development time, by development team effort, and by invest-

ment dollars. And so the concerns and priorities of different groups of stakeholders cannot always be

fully met when designing the system. In such cases, the architect needs to make a decision, to value and

support one property of the system over another.

For example, the architect might decide to rush a system to market, knowing full well that it will not

easily scale. Or the architect might choose to implement ultra-high availability, using backup servers,

storage, and networks, knowing that this will unnecessarily increase the cost, or reduce the profitability,

of the system. Or the architect might choose to design and implement a very strong encryption scheme

on communications over the internet, knowing that this will negatively impact system throughput

and latency. These are all risky decisions and any of them might backfire on the architect and doom

the project. Trade-offs must, therefore, be carefully considered. And virtually every technical
trade-off—for performance, or security, or availability—must be balanced against the ubiquitous

trade-offs of cost and schedule [18] that all organizations must face.

Having tomake a trade-off in your architecture design does not necessarilymean that youwill be unable

to satisfy the goals of your stakeholders, but it does mean that some stakeholders will inevitably be more

satisfied than others. Yourmanager, for example, wants to keep costs and schedule as low as possible, while

your end users want as much performance and usability and security as possible, preferably with no down-

time ever. System administrators want systems that are easy to install, upgrade, and backup. And so forth.

A good design is one that satisfies the architectural drivers—the primary functionality, quality at-

tribute goals, architectural concerns, and constraints—of the stakeholders that the system is meant to

serve [5]. A good design does not, in most cases, need to optimize for any one of those drivers, at the

expense of the others. As Simon explained [19], designs only need to satisfice for most properties and

for most users: that is, the system designs typically only need to be “good enough,” rather than optimal.

In all software systems, trade-offs come in two possible flavors:

1. “static” or nonruntime decisions, made during the design, implementation, and evolutionary

maintenance of a system, which are relatively difficult and expensive to change, requiring extensive

development effort, and

2. “dynamic” or runtime decisions, that we can automatically make, monitor, and adapt to as the

system is executing. This is the realm of self-adaptive systems.

Trade-offs of type 1 are no different than trade-offs in nonself-adaptive systems.Wemake these decisions

and we live with them, or we pay the price in terms of refactoring and re-engineering costs or technical

debt [17,20]. Trade-offs of type 2 are those properties that we can manage and reason about at runtime,

such as performance, scalability, availability, security, and so forth. Such type 2 changes—adaptations—

may be necessitated because of changes in the environment (e.g., the failure of a network channel),

changes in resources (e.g., new servers coming online or being removed), or changes in user demand.

1.4 RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS
Even when adaptability is designed into a system, there may be a number of adaptations that can apply

when the software encounters a situation in which it needs to adapt. For example, adapting to address

4 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

low response time in a modern IT system might involve choosing between scaling up, scaling out, or

focusing service on important clients; or, reducing battery consumption in an autonomous robotics sys-

tem might involve switching to less-accurate sensing hardware and localization algorithms, or chang-

ing the mission profile of the robot to do fewer tasks. Furthermore, the choice of the best adaptation

depends on several factors, including the context in which the system resides, the future environment

that the system is likely to encounter, and the business context and goals that the system is trying to

achieve or maintain.

It may be theoretically possible to enumerate all the possible states that a system can be in and

predetermine the appropriate trade-off for each state, in which case the runtime decision is a simple

look-up that maps the current state to the best configuration. However, this approach is complicated

by various factors of uncertainty that make the state space extremely large.

First, there is considerable uncertainty involved in understanding the current context in which the

system finds itself. To overcome this, the system must sense itself and its environment, but this cannot

be done with absolute certainty. For example, self-adaptive systems usually abstract the state of the sys-

tem into runtime models (e.g., architectural models [21]), and this abstraction necessarily loses some de-

tail. Second, the environment itself needs to be monitored and abstracted, and because the environment is

typically out of the control of the system, there will be limitations in what knowledge the system can

ascertain about it. For example, if the number of requests increases, how can we discern if this is due

to an increase in the popularity of the application, or whether the system is undergoing a denial of service

attack? How dowe know if this change in environment is a durable shift that must be addressed withmore

permanent adaptations, or if it is temporary? How can we be sure that the adaptation we choose will have

the desired effect, or impact, on the system to address the concerns? Because of these (and other) sources

of uncertainty [22], these decisions need to be made and evaluated at runtime.

To make the appropriate choice, a self-adaptive system must, at runtime, trade-off multiple con-

cerns in this environment of uncertainty.

As many of these trade-offs involve understanding and managing the quality of the system in ad-

dition to the functionality of the system, the use of software architecture models at runtime has been

proposed and used to provide self-adaptive capabilities [4,23–25].
The use of architectural models as the central knowledge for runtime adaptation is embodied in a

framework called Rainbow [26]. The Rainbow framework uses software architectures and a reusable

infrastructure to support self-adaptation of software systems. Fig. 1.1 shows the adaptation control loop

of Rainbow. Probes are used to extract information from the target system and its environment that

update an architecture model via gauges, which abstract and aggregate this system-level information

to detect architecture-relevant events and properties. Gauges and probes together comprise the mon-
itoring aspect of the MAPE-K loop. The analysis aspect of MAPE-K is implemented in Rainbow as

architecture evaluators, which check for properties in the model, including satisfaction of constraints

and quality attributes in the model, and triggers adaptation if any violation is found. The adaptation

manager, on receiving the adaptation trigger, chooses the “best” strategy to execute, thus covering

planning in MAPE, and passes it on to the strategy executor, which executes the strategy on the target

system via effectors.

The adaptation manager may initially discover that several strategies are applicable, and so

must perform a trade-off to choose between them. The trade-off is captured by predicting the im-

pact each strategy will have on each quality attribute, and then prioritizing some qualities over

others to score the strategy. The best strategy is chosen on the basis of stakeholder utility

51.4 RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS

preferences and the current state of the system, as reflected in the architecture model. The under-

lying decision making model is based on decision theory and utility [27]; varying the utility pref-

erences allows the adaptation engineer to affect which strategy is selected. Each strategy, which is

written using the Stitch adaptation language [28], is a multi-step pattern of adaptations in which

each step evaluates a set of condition-action pairs and executes an action, namely a tactic, on the

target system with variable execution time. A tactic defines an action, packaged as a sequence of

commands (operators). It specifies conditions of applicability, expected effect and cost-benefit at-

tributes to relate its impact on the quality dimensions. Operators are basic commands provided by

the target system that implement a particular change.

As a framework, Rainbow can be customized to support self-adaptation for a wide variety of system

types. Customization points are indicated by the cut-outs on the side of the architecture layer in Fig. 1.1.

Different architectures (and architectural styles), strategies, utilities, operators, and constraints on the

system may all be defined to make Rainbow reusable in a variety of situations.

In addition to providing an engineering basis for creating self-adapting systems, Rainbow also pro-

vides a basis for their analysis. By separating concerns, and formalizing the basis for adaptive actions, it

is possible to reason about fault detection, diagnosis, and repair. For example, many of the standard

metrics associated with classical control systems can, in principle, be carried over: settling time, con-

vergence, overshoot, etc. In addition, the focus on utility as a basis for repair selection provides a formal

platform for principled understanding of the effects of repair strategies, and for reasoning about trade-

offs at runtime.

System
layer

Target system

Translation
infrastructure

System API
Probes

Resource
discovery

Effectors

Models manager

Model
analyzer

Adaptation
manager

Strategy
executor

Adaptation layer

Gauges

r a

Adaptation
r

Gau

FIG. 1.1

The Rainbow framework.

6 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

In summary, Rainbow uses architectural models of a software system as the basis for reasoning

about whether the system is operating within an acceptable envelope. If this is not the case, Rainbow

chooses appropriate adaptation strategies to return the system to an acceptable operating range. The key

concepts of this approach are thus:

(a) the use of abstract architecture models representing the runtime structures of a system, that

make reasoning about system-wide properties tractable;

(b) detection mechanisms that identify the existence and source of problems at an

architectural level;

(c) a strategy definition language called Stitch that allows architects to define adaptations that can

be applied to a system at runtime; and

(d) a means to choose appropriate strategies to fix problems, taking into consideration multiple quality

concerns to achieve an optimal balance among all desired properties.

In order to conduct trade-offs at runtime, Rainbow uses utility preferences and impact predictions to

choose the strategy that will have the best result according to the business goals of the system. This

approach is detailed in Refs. [28–30], and is summarized here. First, applicable strategies are chosen

based on whether they apply in the given context. For example, if the system is not under attack, then

there is no need to examine strategies that deal with attacks; or, if server resources have been depleted,

then there is no point in choosing strategies that add servers. Next, each applicable strategy is examined

to determine its predicted impact on the current state of the system. Each tactic in a strategy is assigned

an impact on each of the qualities of interest. For example, a tactic to add a server will have a positive

impact on response time but a negative impact on cost. Each strategy forms a tree of tactics guarded by

conditions and probabilities that the branch will be taken. This tree is traversed and an overall impact on

each quality is calculated as a combination of the tactics. These impacts are then assigned a value utility

based on utility functions defined for the business context, and then combined using preference weights

to determine an overall score for the strategy. The strategy with the highest score is then executed by

Rainbow.

Naturally, doing this trade-off at runtime is dependent on (a) accurate models of the state of the

system, (b) accurate models of impact, and (c) accurate quantification of utilities and preferences. Re-

cent work on Rainbow has begun to address (a) and (b). Accurate models of the system have been

addressed partially in Ref. [31], where theoretical limits on knowledge about the health states of parts

of the system that are unobservable have been determined. In Ref. [32], context sensitive and proba-

bilistic models of tactic impact, and how to modify the impact calculation using probabilistic model

checking have been defined.

Despite these advances in using trade-offs to make adaptation choices at runtime, there remain

some limitations. First, a decision is made considering only the cost and benefits, but not the risk.

A more nuanced approach to decision making might choose a less risky but less impactful strategy

over a strategy that has a high impact but might fail. Second, utility and preferences need to

be quantified, which is often hard for stakeholders to do accurately. Improving this approach

using a ranking scheme might be easier to specify and still provide good results in choosing the

most appropriate adaptation at runtime. Linking this runtime decision making to design time ra-

tionale for architecture tactics (as is discussed in Section 1.3), is also likely to be a worthwhile

advance.

71.4 RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS

1.5 CHALLENGES AND THE ROAD AHEAD
In this chapter we have reviewed the state of the art in managing trade-offs in self-adaptive systems.

While using trade-offs in designing software architectures has received a lot of investigation, incorpo-

rating adaptability as a quality attribute, and how it affects other quality attributes has received less

attention. Also, while mechanisms and formalisms for trading off quality attributes at runtime to decide

the best adaptation has emerged in the past decade, the ability to manage these trade-offs at runtime and

adapt the trade-offs has yet to gain traction.

The challenges ahead for taking an architectural perspective on adaptation, and using this as a basis

for managing this trade-off among quality attributes, can be divided into the following questions.

1.5.1 HOW TO ARCHITECT FOR ADAPTABILITY?
While a lot of work has been done on architecting systems for reliability, performance, etc., and the

styles, analysis, and patterns are well understood, how to architect an adaptable system is still largely

done in an a hoc manner. There has been considerable work on elaborating the design of autonomy

following the MAPE loop, but this represents only one way in which adaptability could be designed.

Software architects need principled approaches for designing for adaptability to address the concern of

modern software systems. This involves addressing the following concerns:

What are good software architectures or architecture styles for self-adaptive systems? Architec-

tural approaches to self-adaptation have been dominated by elaborations or variations of the MAPE

loop, which at its essence represents a control loop approach. However, this approach is not necessarily

the only approach, and may not be the best approach in some contexts. We need a good catalog of styles

from other communities. For example, Ref. [33] discusses a pattern-based style from the agent com-

munity as an alternative. Other approaches to self-organization that are biologically inspired might also

be applied [34]. The challenges in all these cases are what are the strengths and weaknesses of each

style, in what cases and domains do they apply, and how do they enhance or inhibit other qualities such

as performance and security?

What architectural patterns enhance adaptability? Architectural styles for adaptability are perhaps
most useful when adaptability is a primary concern. Architectural patterns (or tactics) are building

blocks that can be used to design part of a system to enhance a quality attribute. There are a number

of approaches that can be considered as patterns for implementing self-adaptation. For example hot

swapping of component, micro-rebooting, and component isolation all have requirements and rules

that must be satisfied by the components and connectors that make up the tactics. Notions such as com-

ponent isolation, quiescence, and tranquility might also be considered parts of patterns. These need to

be cataloged and examined considering the same questions as for architectural styles. Some patterns for

reliability and fault tolerance (like failing safe) also need to be examined in the context of adaptability.

How to quantify adaptability? One requirement for doing good design is being able to analyze the de-

sign toensure that it has theproperties thedesigner requires. For example, in the areaofperformance,queu-

ing theoryhasbeenuseful in establishingproperties suchas throughput, response time, andwhether there is

sufficient load; designs for real time systems can be analyzedwith ratemonotonic analysis to reason about

task deadlines beingmet. In these cases, the quality attributes can bemeasured quantifiably, and compared

with alternative designs.We need equivalentmetrics for adaptability. There has been littlework on this. In

Ref. [35] the authors develop adaptability metrics for business processes that examines a number of

8 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

alternative implementations of a particular service, and how often the service is used in the business pro-

cess.Muchwork needs to be done to developmore comprehensive and generalmetrics. Itmay be possible

to extend methods for quantifying the resilience and reliability of systems to deal with adaptability.

1.5.2 ADAPTABILITY IN MODERN SYSTEMS
A key driver of self-adaptive systems described in Section 1.1 is that it is often a consequence of the

need for continuous operation. This is particularly the case in the domains of cloud computing, service-

based systems, cyber-physical systems, and ultra-large-scale systems. The main question for all of

these domains is how do we consider adaptability as a first class concern, and trade it off with other

concerns that must be met by the systems in these domains. There has been some discussion of self-

adaptation in each of these domains, and each domain has its own approach.

1.5.2.1 Cloud computing
Cloud computing is characterized by the use of remote computing to provide computing resources.

Often, the cloud is used to provide scale of computation, where services are duplicated over multiple

remote servers to provide enough resources for the software to provide service. Third party providers

“rent” resources to clients so that clients do not need to provide or manage these resources in house.

Because providing these resources has a cost, clients typically do not want to pay for more resources

than are being used. This leads many cloud providers to provide autonomous management services that

scale resource usage based on the use of the applications. This is termed elasticity, where infrastructure
resources grow and shrink with application demands. Clients have some control over the elasticity used

for their applications, to balance cost and performance.

Elasticity is a form of self-adaptation, and is usually characterized by two different tactics: scaling
up and scaling out. Scaling up is used to expand the resources (storage, CPU cores, etc.) of the machines

that are already being used by an application. Scaling out adds more machines into the pool of machines

that can be used by an application. While these are the most common forms of self-adaptation used in

cloud computing, other forms of adaptation can be applied in other contexts that use cloud computing.

For example, in big data applications, database partitioning can be changed to account for scaling as-

sociated with different types of queries.

Cloud computing providers, in giving their application customers control over some of the param-

eters of elasticity, allow them some ability to trade-off the different concerns of cost and performance to

in turn meet their own clients’ needs. They can define rules that indicate what forms of scaling should

happen when monitored conditions happen. However, this control is limited. As discussed in Ref. [36],

cloud providers need to be careful about what they can monitor to maintain the intellectual property and

privacy of the applications they are hosting. So, monitoring is typically limited so that it does not pro-

vide visibility into application-level information. This in turn limits the kinds of rules that can be writ-

ten. For example, an application developer might want to write rules that are based on the types of jobs

in various queues in their application (because different types of jobs might take different amounts of

processing). However, they might only be able to monitor and adapt to the number of jobs because the
type of job is an application-level concern.

More generally, cloud computing is divided into several levels—Infrastructure, Platform, and Soft-

ware. Each level has its own adaptation rules and trade-offs that can be conducted. For example, at the

infrastructure level a developer might be concerned with adaptations that involve the number of ma-

chines and their capacity, at the platform level a developer might be concerned with adaptations that

91.5 CHALLENGES AND THE ROAD AHEAD

change partitioning in databases or thread counts in web servers, and at the software level they might be

concerned with more application-specific adaptations. However, each of these levels provides adap-

tation facilities isolated to those levels. Adaptations, and therefore trade-offs, need to be carefully co-

ordinated between the layers at deployment, but thereon run without the knowledge of what might be

happening in other levels. Thus, a key challenge is how to coordinate these layers and allow trade-offs

and information to cross these levels.

1.5.2.2 Service-based adaptation to QoS
Service-based adaptations (SBAs) are built by composing small and loosely coupled entities

called services that interact in a distributed environment. Service provider organizations usually admin-

ister services hosted on their servers or on the cloud, and can build their own services by composing

services provided by other service providers. A service-oriented architecture style has been successful

as it promises to allow systems to dynamically adapt at runtime and integrate distributed components

[19]. Adaptation of service-based applications is achievable as services can be discovered, selected,

and composed at runtime. Several approaches are based on selecting services for achieving one specific

quality. It is more complex to select services to achieve multiple qualities simultaneously as it can cre-

ate an NP-Hard problem [37]. To solve this, several approaches have proposed using artificial intel-

ligence optimization techniques: multi-agent systems for bidding candidate services to find a good

service composition focusing on cost [38], genetic algorithm based approaches [39,40] which work

fine with a scalable number of services and find nearly optimal solutions, or ant colony based ap-

proaches [41]. Approaches have used models as knowledge to self-adapt the SBA. Mostly, QoS

SBA adaptation is based on workflow models such as Business Process Models (or business specifi-

cation languages such as Business Process Execution Language) [42] or use design time variability

models along with business processes to define service compositions [18].

The above are not based on architecture at runtime solutions to adaptation. Approaches that are

architecture based are MUSIC [43] and SASSY [44]. MUSIC uses component based models and var-

iability models at design time and at runtime generate service-based models. In SASSY, structural and

behavioral architecture models are used to represent the SBA. QoS architectural patterns are stored in a

library and to adapt, adaptation patterns that define how to incorporate an architectural pattern into a

configuration to achieve QoS are followed. For example, a fault tolerance architectural pattern that

considers availability and execution time. When multiple QoS objectives need to be fulfilled a nearly

optimal solution is provided.

1.5.2.3 Cyber-physical systems
Cyber-physical systems are those systems where software concerns and physical concerns have equal

prominence. In traditional control systems, physical issues dominate, and so those are given priority

over software issues. However, as the control of different physical processes needs to be integrated and

combined with more complex software, the controls (or adaptations) that need to be exerted on the

system become more complex to manage. For example, in a smart building we might have control sys-

tems for climate control (HVAC - Heating, Ventilation, and Air Conditioning), lighting, emergency

and security, and energy consumption.

Traditionally, these would be separate control systems, but more recently there is a need for these to

be closely integrated. This need might come about, for example, if a building needs to achieve some

green or sustainable properties. In such a system, controlling the climate might affect all the other

10 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

control systems. Thus, a key challenge is how to integrate these separate controls into ones that can

achieve more global properties—how do we bridge the different providers, expertise, regulations,

etc. that are characteristic in each domain to understand and manage the trade-offs among them to guar-

antee the global properties?

Because cyber-physical systems have an impact on physical objects in an environment, safety be-

comes a real concern. In such situations, it becomes even more important for runtime trade-offs to guar-

antee that certain safety constraints will never be violated, regardless of the trade-offs on other

dimensions. For example, in a factory handling dangerous materials, we would never want to trade

power to a device transporting the material over concerns for energy standards. While these kinds

of constraints arise in other domains, they become critical in this domain. One avenue for exploring

this might be to incorporate concerns from the fault tolerance community regarding failure modes

and effects analysis [45] and adaptations like failing safely and redundancy.

Another concern in cyber-physical systems is their need to self-adapt to the constraint resources in

the devices or their environment. For example, the battery or power of the devices change, therefore the

systems have to evaluate trade-offs to keep functioning in these conditions. Self-adaptive software ar-

chitecture approaches are emerging to aid in allowing systems to choose suitable architectural config-

urations that satisfy the resources at runtime [27,46]. A critical challenge that needs exploration is how

do we provide self-adaptation architectural approaches without negatively affecting the resources of

these cyber-physical systems?

REFERENCES
[1] P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and Case Studies, Addison-

Wesley, Boston, MA, 2001.

[2] R. Kazman, M.H. Klein, P.C. Clements, ATAM: a method for architecture evaluation, Technical report

CMU/SEI-2000-TR-004, 2000.

[3] R. Laddaga, Active software, in: Proceedings of the First International Workshop on Self-Adaptive Software

(IWSAS 2000), Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2000, pp. 11–26
[4] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.

S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.

14 (3) (1999) 54–62.
[5] H. Cervantes, R. Kazman, Designing Software Architectures: A Practical Approach, Addison-Wesley,

Boston, MA, 2016.

[6] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.

Adapt. Sys. 4 (2) (2009).

[7] N.R. Jennings, An agent-based approach for building complex software systems, Commun. ACM 44 (4)

(2001) 35–41.
[8] T.Wantanabe, A.Yonezawa, Reflection in an object-oriented concurrent language, in: Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and Applications, 1988, pp. 306–315.
[9] T. Abdelzaher, Y. Diao, J.L. Hellerstein, C. Lu, X. Zhu, Introduction to control theory and its application to

computing systems, in: Performance Modeling and Engineering, Springer, New York, 2008, pp. 185–215.
[10] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.
[11] M. Puviani, G. Cabri, F. Zambonelli, A taxonomy of architecture patterns for self-adaptive systems,

in: Proceedings of the International C* Conference on Computer Science & Software Engineering

(C3S2E13), Porto, Portugal, July, 2013, pp. 77–85.

11REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060

[12] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,

J. Andersson, H. Giese, K. Goeschka, On patterns for decentralized control in self-adaptive systems,

in: Software Engineering for Self-Adaptive Systems II, Lecture Notes in Computer Science, vol. 7475,

Springer, Berlin, Heidelberg, 2012, pp. 76–107.
[13] G. Andrighetto, G. Governatori, P. Noriega, L.W.N. Van der Torre, Normative multi-agent systems, Dagstuhl

Follow-Ups, vol. 4, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2013.

[14] F. Zambonelli, M. Viroli, A survey on nature-inspired metaphors for pervasive service ecosystems, Int. J.

Pervasive Comput. Commun. 7 (13) (2011) 186–204.
[15] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, third ed., Addison-Wesley Professional,

Boston, MA, 2012.

[16] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D.A. Menasc�e, Software adaptation patterns for service-

oriented architectures, in: Proceedings of the 25th ACM Symposium on Applied Computing, Dependable

and Adaptive Distributed Systems, Sierre, Switzerland, March 22–26, 2010.
[17] L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Identifying and quantifying architectural debts, in: Proceedings

of the International Conference on Software Engineering (ICSE) 2016, (Austin, TX), May, 2016.

[18] J. Asundi, R. Kazman, M. Klein, Using economic considerations to choose among architecture design alter-

natives, Technical report CMU/SEI-2001-TR-035, Software Engineering Institute, Carnegie Mellon Univer-

sity, 2001.

[19] H. Simon, The Sciences of the Artificial, second ed., MIT Press, Cambridge, MA, 1981.

[20] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka, A case study in locating

the architectural roots of technical debt, in: Proceedings of the International Conference on Software Engi-

neering (ICSE) 2015, Florence, Italy, May, 2015.

[21] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, Upper

Saddle River, NJ, 1996.

[22] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-adaptive software, in: Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of SEngineering

(ESEC/FSE 011), ACM, New York, NY, USA, 2011, pp. 234–244.
[23] D. Garlan, B. Schmerl, J. Chang, Using gauges for architecture-based monitoring and adaptation,

in: Proceedings of the Working Conference on Complex and Dynamic Systems Architecture, Brisbane, Aus-

tralia, 12–14 December, 2001.

[24] D. Garlan, S.-W. Cheng, B. Schmerl, Increasing system dependability through architecture-based self-repair,

in: R. de Lemos, C. Gacek, A. Romanovsky (Eds.), Architecting Dependable Systems, Springer-Verlag,

Berlin, Heidelberg, 2003.

[25] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Proceedings of

the 20th International Conference on Software Engineering (ICSE 098), IEEE Computer Society,

Washington, DC, USA, 1998, pp. 177–186.
[26] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self adapta-

tion with reusable infrastructure, Computer 37 (10) (2004) 46–54.
[27] N. Ali, C. Solis, Self-adaptation to mobile resources in service oriented architecture, in: Proceedings of the

2015 IEEE International Conference on Mobile Services (MS), New York, NY, 2015, pp. 407–414.
[28] S.-W. Cheng, D. Garlan, Stitch: a language for architecture-based self-adaptation, in: D. Weyns,

J. Andersson, S. Malek, B. Schmerl (Eds.), State of the Art in Self-Adaptive Systems, J. Syst. Softw.

85 (12) (2012) (Special Issue).

[29] S.-W. Cheng, Rainbow: cost-effective software architecture-based self-adaptation, Ph.D. Thesis, Institute for

Software Research technical report CMU-ISR-08-113, CarnegieMellon University, Pittsburgh, PA,May 2008.

[30] B. Schmerl, J.Cámara, J.Gennari,D.Garlan, P.Casanova,G.A.Moreno,T.J.Glazier, J.M.Barnes,Architecture-

basedself-protection: composingandreasoningaboutdenial-of-servicemitigations, in:HotSoS2014:2014Sym-

posium and Bootcamp on the Science of Security, Raleigh, NC, USA, 8–9 April, 2014.

12 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155

[31] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing unobserved components in self-adaptive systems,

in: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, Hyderabad, India, 2–3 June, 2014.

[32] J. Cámara, A. Lopes, D. Garlan, B. Schmerl, Adaptation impact and environment models for architecture-

based self-adaptive systems, in: Science of Computer Programming, 2016. http://dx.doi.org/10.1016/

j.scico.2015.12.006.

[33] J.L. Fernandez-Marquez, G. Di Marzo Serugendo, P.L. Snyder, G. Valetto, F. Zambonelli, A pattern-based

architectural style for self-organizing software systems, in: N. Suri, G. Cabri (Eds.), Adaptive, Dynamic, and

Resilient Systems, CRC Press, Boca Raton, FL, 2014.

[34] Y. Brun, Building biologically-inspired self-adapting systems, in: B.H. Cheng et al., (Eds.), Proceedings of

the Schloss Dagstuhl Seminar 08031: Software Engineering for Self-Adaptive Systems, 2008.

[35] R. Mirandola, D. Perez-Palacin, P. Scandurra, M. Brignoli, A. Zonca, Business process adaptability metrics

for QoS-based service compositions, in: Service Oriented and Cloud Computing: 4th International European

Conference (ESOCC 2015), LNCS, vol. 9306, Springer, New York, September 2015.

[36] A. Gandhi, P. Dube, A. Karve, A. Kochut, L. Zhang, Adaptive, model-driven autoscaling for cloud applica-

tions, in: Proceedings of the 11th International Conference on Autonomic Computing, June 18–20, 2014.
[37] D. Ardagna, B. Pernic, Global and local QoS constraints guarantee in web service selection, in: Proceedings

of the IEEE International Conference on Web Services (ICWS ’05), IEEE Computer Society, Washington,

DC, 2005, pp. 805–806.
[38] V. Nallur, R. Bahsoon, A decentralized self-adaptation mechanism for service-based applications in the

cloud, IEEE Trans. Softw. Eng. 39 (5) (2013) 591–612.
[39] G. Canfora, M. Di Penta, R. Esposito, M. Luisa Villani, An approach for QoS-aware service composition

based on genetic algorithms, in: Proceedings of the Conference on Genetic and Evolutionary Computation,

2005, pp. 1069–1075.
[40] H. Liu, F. Zhong, B. Ouyang, J.Wu, An approach for QoS-aware web service composition based on improved

genetic algorithm, in: Proceedings of the 2010 International Conference on Web Information Systems and

Mining (WISM), vol. 1, 23–24 October, 2010, pp. 123–128.
[41] W. Zhang, C.K. Chang, T. Feng, H.-y. Jiang, QoS-based dynamic web service composition with ant colony

optimization, in: Proceedings of the IEEE 34th Annual Computer Software and Applications Conference,

July, 2010, pp. 493–502.
[42] V. Dellini, E. Casalicchio, V. Grassi, S. Iannucci, P. Lo Presti, R. Mirandola, MOSES: a framework for QoS

driven runtime adaptation of service-oriented systems, IEEE Trans. Softw. Eng. 38 (5) (2012) 1138–1159.
[43] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Mamelli, G.A. Papadopoulos, A

development framework and methodology for self-adapting applications in ubiquitous computing environ-

ments, J. Syst. Softw. 0164-121285 (12) (2012) 2840–2859.
[44] D. Menasce, H. Gomaa, S. Malek, J.P. Sousa, SASSY: a framework for self-architecting service-oriented

systems, IEEE Softw. 28 (6) (2011) 78–85.
[45] J.B. Bowles, R.D. Bonnel, Failure mode, effects, and criticality analysis, in: Annual Reliability and Main-

tainability Symposium, Tutorial Notes, 1993, pp. 1–36.
[46] G.G. Pascual, M. Pinto, F. Fuentes, Self-adaptation of mobile systems driven by the common variability lan-

guage, Futur. Gener. Comput. Syst. 47 (2015) 127–144.

13REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://dx.doi.org/10.1016/j.scico.2015.12.006
http://dx.doi.org/10.1016/j.scico.2015.12.006
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0235

CHAPTER

ARCHITECTING SOFTWARE
SYSTEMS FOR RUNTIME
SELF-ADAPTATION: CONCEPTS,
MODELS, AND CHALLENGES

2
N.M. Villegas*, G. Tamura*, H.A. M€uller†

Universidad Icesi, Cali, Colombia* University of Victoria, Victoria, BC, Canada†

2.1 INTRODUCTION
Self-adaptive software systems modify their own structure or behavior at runtime to regulate the sat-

isfaction of functional and nonfunctional requirements that change over time, for instance when af-

fected by changes in the system’s context of execution (e.g., when facing a sudden and unusually

large increment of user requests that causes the agreed upon throughput to be violated) [1–5]. For mod-

ifying the software structure or behavior, either at a coarse- or fine-grained level, and both at design

time and runtime, most of the approaches rely on the structure or behavior determined by the software

architecture. As a result, software architecture is among the most critical enablers for both adaptation

and self-adaptation as a means to regulate requirements satisfaction, in particular of nonfunctional

ones, under changing contexts of execution.

In traditional software engineering, as summarized succinctly by the Software Engineering Institute

(SEI) in 2006, architecture design usually starts from a set of architecturally significant requirements

[6]. Designed as the footprint for the solution, the architecture is expected to guarantee requirements

satisfaction, without special consideration of changes in context that can violate assumptions regarding

the immutability of requirements. In contrast, from the self-adaptive software engineering point of

view, even though architects depart also from functional and nonfunctional requirements, they focus

precisely on context changes that could violate the satisfaction of these requirements at execution time,

including the expected quality attributes. For systems facing this kind of context changes, the designed

architecture must enable the software to be self-aware, that is, it must include components that enable

the system to dynamically reconfigure its own structure or behavior at runtime. This implies, among

others, to monitor its own behavior with respect to its current goals (e.g., nonfunctional requirements),

and modify its own structure based on an internal, but explicit, representation of itself.

This chapter discusses the meaning of software design-time adaptation, and runtime self-

adaptation, and their implications for the task of architecting this kind of software systems. Of course,

architecting software systems that are self-adaptive at runtime implies the understanding of the way the

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2

Copyright # 2017 Elsevier Inc. All rights reserved.
17

http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2

satisfaction of nonfunctional requirements can be affected by internal and external context variables

that may not be fully characterized at design time. Once the meaning of architecting a particular system

for runtime self-adaptation is understood, architectural drivers can be identified and thus the architec-

ture of the self-adaptive system can be designed more realistically to successfully cope with changes on

requirements and context conditions happening at runtime. To achieve this, software engineers produce

architectural artifacts in the form of concrete models derived from reference models. Moreover, these

models must be operable at runtime to be used in the implementation of self-adaptation mechanisms

that reconfigure the system’s architecture or behavior, thus providing the means for self-awareness, and

realizing self-adaptation [7].

The goal of this chapter is to introduce practitioners, researchers, and students to foundational con-

cepts and reference models associated with the architecting of self-adaptive software, as well as to pre-

sent challenges related to this task. Besides contributing novel discussions about (self)adaptation, we

compile and summarize research work that has been conducted by researchers in the field, including

our own.

This chapter is organized as follows. Section 2.2 introduces the running example used in this chapter

to illustrate the studied concepts. Section 2.3 explores the meanings of adaptation and self-adaptation as

well as the differences between these two concepts, and their implications for architecting adaptive and

self-adaptive software systems. Section 2.4 explains fundamental concepts that must be understood for

architecting self-adaptive software systems. Section 2.5 presents referencemodels and architectures rel-

evant to the engineering of self-adaptive software. Section 2.6 discusses major challenges on architect-

ing software systems for self-adaptation. Finally, Section 2.7 summarizes and concludes the chapter.

2.2 MOTIVATION: A WEB-MASHUP APPLICATION
To illustrate the concepts and challenges on (self)adaptation analyzed in this chapter, we use a

web-mashup application as a running example. This application is built by combining existing services

of the Twitter social network platform,1 and generic weather services accessible programmatically

through REST and WSDL interfaces. It is worth noting that—without loss of generality or

complexity—it is possible to apply and analyze (self)adaptation concepts even in relatively simple

applications based on the orchestration of functionalities offered through software components and

services, such as this web mashup. In other words, the fundamental (self)adaptation problems are just

as challenging when the software complexity is reduced.

Basically, the web mashup application implements a weather-for-a-twitter-user functionality,

by composing the location service of a Twitter user (i.e., the city/country as stored in the user’s profile)

with a weather service. We can choose from different available weather information providers, such as

WebServiceX,2 Google,3 Yahoo,4 VisualWebservice,5 and the US National Weather Service.6

1https://dev.twitter.com/docs/api.
2http://www.webservicex.net/ws/WSDetails.aspx?CATID¼12&WSID¼56.
3http://code.google.com/p/java-weather-api.
4http://weather.yahooapis.com/forecastrss.
5http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL.
6http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl.

18 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

https://dev.twitter.com/docs/api
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://code.google.com/p/java-weather-api
http://weather.yahooapis.com/forecastrss
http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

The web mashup is partially based on two examples available on the Internet, which provide compo-

nents for two basic functionalities:7

• Twitter: For a given user, retrieves and decodes the public profile information. This includes the

user’s registered city and country.

• Weather: Retrieves the weather conditions on a given location as a pair city-country, using the

WSDL weather information service from WebServiceX.

The core components of these two examples are reused and their required services composed as illus-

trated in Fig. 2.1. In this figure, we follow the Service-Component Architecture (SCA) specification,

which is a computing model for realizing distributed Service Oriented Architecture (SOA) applications

[8, 9].

The fundamental concept of SCA is the notion of component, a gray-box software artifact with well-
defined provided interfaces (or services), required interfaces (service references), and exposed prop-
erties. Components can contain other components hierarchically (thus called composites) and can be

implemented using different programming constructs and languages. To exchange information among

them, components communicate either by wiring directly their respective interfaces, or by binding their

interfaces through communication protocols such as SOAP, RMI, JMS, or REST.

For a given user (the userId exposed property in the figure), the Twitter-Weather mashup compo-

nent (TWMashup) requests the user profile from Twitter using the twitter service. Once obtained, this

profile uses the XML Twitter profile decoder component (Decoder) to obtain the registered location as

a city-country pair. Finally, it uses this location to obtain the corresponding weather information

through the weather service.
Using this web-mashup application, the following sections introduce different requirements scenar-

ios that help analyze (self)adaptation concepts and reference models.

W

Internet

FIG. 2.1

The Twitter-Weather web-mashup application architecture.

7http://websvn.ow2.org/listing.php?repname¼frascati&path¼%2Ftags%2Ffrascati%2F\frascati-1.4%2Fexamples%2Ftwitter

and http://websvn.ow2.org/listing.php?repname¼\frascati&path¼%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%

2Fweather.

192.2 MOTIVATION: A WEB-MASHUP APPLICATION

http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather

2.3 ADAPTATION VS. SELF-ADAPTATION
This section presents an analysis of the difference between the concepts adaptation and self-adapta-
tion. This analysis is important to understand differences in engineering self-adaptive and adaptive

software.

2.3.1 BASIC DEFINITIONS
Even though several software engineering publications and research communities treat the terms ad-
aptation and self-adaptation as synonyms, we believe that understanding the difference between these

two concepts is key to effectively architect software systems that have to adapt to context changes at
runtime. In general, this chapter is based on the idea that adaptation takes place at (re)design time and is

performed by a software engineer in charge of maintenance tasks (i.e., software maintenance from a

traditional software engineering perspective [10]). In contrast, self-adaptation happens at runtime and

aims to minimize human intervention by making the software to perform the adaptation by itself [3, 11,

12].

According toMerriam-Webster,8 adaptation, in a general sense, can be defined as (i) “the process of

changing to fit some purpose or situation,” or (ii) “the process of adjusting to environmental condi-

tions.” From a software engineering perspective, adaptation has been defined as the process of chang-

ing the system to accommodate changes in its environment [13]. It is important to note that these

definitions do not imply that the adaptation must be dynamic nor, in the case of software, must take

place at runtime. Indeed, Heineman defines the term adaptation as the manual modification of com-

ponents by software engineers [14].

Self-adaptation, in turn, has been defined by several software engineering research communities as

“the process through which a software system adjusts its own behavior in response to the perception of

the environment and the system itself” [3, 15]. This self-adaptive behavior is realized by a software

subsystem that is usually known as the controller or adaptation mechanism [12, 16], which implies that

it must happen at runtime while maximizing automation and minimizing human intervention.

Analogously, in the same way that we treat the terms adaptation and self-adaptation as different

concepts, we also establish a clear difference between the terms adaptive software and self-adaptive
software, even though the second one can be considered as a subcategory of the first one. As Laddaga

[11], we argue that any piece of software code that is relatively easy to modify can be qualified as

adaptive, recalling that adaptation is the process of adapting it, performed by a human. That is, the

implied modification requires fundamental human intervention (e.g., at the source code level) and,

as a result, recompiling and interrupting the system execution. In contrast, self-adaptive software

performs self-adaptation by evaluating its own behavior and environment and adjusting itself, at run-

time, when this evaluation indicates that the system is no longer fulfilling its functional or nonfunc-

tional requirements, without interrupting its execution. Such adjustments can happen due to

changes in requirements or in the environment, including users and system context changes. An adap-

tive software can be converted into a self-adaptive one if enabled with self-awareness capabilities.

These capabilities are instrumented for instance through an adaptation mechanism that monitors its

8http://www.merriam-webster.com.

20 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

http://www.merriam-webster.com

environment—including its own execution health and requirements, analyzes the satisfaction of re-

quirements in light of environmental situations, plans a strategy to adapt itself depending on the results

of the analysis, and implements this strategy to reconfigure itself as required. All these tasks must take

place at runtime and be supported by a knowledge base comprising information gathered at design-time

and runtime. In other words, self-adaptive software is enabled to perform self-adaptation because of its

self-aware capabilities, thus eliminating (or reducing at minimum) the need for human intervention and

execution interruption.

Having established these conceptual differences, next we illustrate the implications of architecting

software systems for adaptation (adaptive software) versus architecting software systems for self-

adaptation (self-adaptive software), using the subject system described in Section 2.2.

2.3.2 ARCHITECTING SOFTWARE FOR ADAPTATION AND SELF-ADAPTATION
Adaptation—and also self-adaptation—processes are triggered usually when some of the nonfunc-

tional requirements are not fulfilled by a developed software system, for instance under unexpected

circumstances of execution. This incorrect behavior can be detected and corrected by a human by

means of observing and evaluating the software requirements satisfaction, and adjusting the source

code to make the software satisfy its functional and nonfunctional requirements under the unexpected

conditions. Of course, this procedure implies the recompilation and redeployment of the application.

Dramatic consequences can result if the unexpected circumstances affect nonfunctional requirements

and demand a more drastic redesign of the system. We characterize this procedure as an adaptation

process, given that it is performed mainly by humans; it would be a self-adaptation process if the de-

tection and correction would be performed by the software itself, and with minimum human

intervention.

We examine the differences between adaptation and self-adaptation in more detail by analyzing

concrete examples of both processes, based on the motivational running example introduced in the

previous section.

2.3.2.1 Architecting for adaptation
Assume that the Twitter-Weather mashup of our case study stops reporting the weather for the cities the

Twitter users are located in. The developer detects that the weather service used in the mashup, Web-

serviceX, has been unavailable for the last day because of an infrastructure maintenance. To correct this

problem, she performs an adaptation process as follows. The developer finds the Yahoo weather service

available on the Internet, and proceeds to adapt her mashup application code. Basically, she has to de-

termine how to obtain results from the weather service, for both the current one (i.e., WebserviceX) and

the new one (i.e., Yahoo). Then, she has to modify (i.e., adapt) the code to compute the required

parameters for the new service, and process its results appropriately.

However, if the Yahoo weather service becomes also unavailable, the developer must readapt the

code again, this time to invoke the Google weather service. In order to avoid changing the weather

service invocation used in the code and recompiling it every time the service used in the code is una-

vailable, the developer could even decide to guard the service invocation on each of the three alterna-

tive weather services with a condition, checking service availability and using the one of the three that

is available, in an if-then-else chain.

212.3 ADAPTATION VS. SELF-ADAPTATION

2.3.2.2 Architecting for self-adaptation
In the case of architecting for self-adaptation, the problem of the possible weather service unavailabil-

ity is expected to be addressed exactly as the possibility of facing an otherwise completely unexpected

circumstance in which the system’s requirements satisfaction would be compromised. Architecting the

solution for self-adaptation means that it is the software itself, not the human (i.e., developer, system

administrator, or system operator), that must detect whenever this circumstance happens, and in re-

sponse, decide to perform an adaptation on itself to maintain requirements satisfaction, at runtime

and without interrupting its execution. Therefore, in contrast to the adaptation case, architecting the

solution for self-adaptation implies fundamentally to enable the software system to be self-aware

and self-managed, as proposed in the vision of Autonomic Computing [17]. Self-awareness implies,

beyond equipping the software system with the components that realize the system’s functional re-

quirements (i.e., target system components), to integrate it with components comprising the self-

adaptation mechanism, as depicted in the lower part of Fig. 2.2, namely:

1. Monitor: Detects events from the system’s context that may compromise the system requirements

satisfaction. For instance, detecting that the weather service of WebserviceX is unavailable.

2. Analyzer: Receives events detected by the monitor and analyze whether it is necessary to perform an

adaptationonthesystemitself (thuscalledself-adaptation).For instance,determiningthatWebserviceX

has been unavailable for an unacceptable amount of time, thus requiring some corrective action.

3. Planner: Synthesizes the adaptation plan. For instance, to change the WebserviceX weather service

invocation by one to the Yahoo weather service.

4. Executor:Realizes the adaptationplan in the actual software system,without interrupting its execution.

Moreover, inourexample, for theself-adaptationplansynthesizer tobemoremaintainableand lesscoupled

to the particular adaptation logic of each weather service that could be used in the mashup, the next key

architectural decision is to use the Adapter design-pattern [18]. Indeed, as part of the architecting process

pb

G

m

WT

Internet

FIG. 2.2

The Twitter-Weather architecture designed for self-adaptation.

22 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

for self-adaptation of our mashup application, we anticipate that existing weather information services,

available on the Internet, have different method signatures and thus different service interfaces to ask

foranddeliver theweather information.Thus,weapply theAdapterdesign-patternby introducingageneric
weather service interface,which is implemented by each of the concrete adapters (cf. the weather services

in Fig. 2.2). These concrete adapters allow the weather service invoker to be able to use any of the existing

weather services independently of their particular service interfaces and implementations (i.e., Adaptees).

Additionally, theweather orchestrator component (cf.WeatherOrchestrator in Fig. 2.2) is responsible for

providing the generic weather service (through the interface WeatherSCAService), from the different

weather service providers. The WebServiceXWeatherAdapter component (and corresponding weather

adapters for Google and Yahoo) is responsible for translating the generic weather invocation, and respec-

tive response, to each of the particular weather providers interface specifications.

Once developed and deployed, the self-adaptationmechanismof ourmashup allows the system to self-

adapt at runtime, whenever the monitor detects significant periods of the weather service unavailability.

Human intervention would be necessary only to deploy components implementing new weather service

adapters. Nevertheless, the deployment of these components can be realized transparently for the users

(i.e., without interrupting the system services execution) using extended SCA frameworks such as the

one proposed by Tamura et al. [5, 19].

2.3.2.3 Implications of self-adaptation
In the previous sections we described how to solve the problem of service unavailability using two

similar strategies (i.e., adaptation and self-adaptation) that produce very different solutions. The plain

adaptation solution involved the use of several conditional statements, which could be coded as in

Listing 2.1.

LISTING 2.1
The adaptation solution

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18

232.3 ADAPTATION VS. SELF-ADAPTATION

In this solution, the application logic is adapted by the developer by modifying the application

source code and recompiling and redeploying it, for each time a new weather service is added. Thus,

it is possible to argue that the service availability conditions (cf. lines 4, 8, and 12) replace the func-

tionality of the self-adaptation’s monitor and analyzer components, and the service invocations them-

selves (cf. lines 6, 10, and 14) make the planner and executor components unnecessary. Naturally, as

illustrated in the code, these service invocations require the previous instructions for mapping and

translating the actual parameters to the ones required by each of the weather service providers, as well

as the following instructions for translating their responses to the expected weather information. In fact,

in Listing 2.1 we have presented the code for mapping and translating parameters and return values. A

similar, but more standardized way of invoking the different weather services results from the appli-

cation of the Adapter design pattern, which we proposed as part of the architectural decisions in the

self-adaptation strategy. However, there are fundamental differences between these two strategies:

• Adaptation time and responsibility: in the adaptation strategy, the actual adaptation of the

application code is performed at (re)design time and is realized by a human, requiring

recompilation, redeployment, and restarting of the application; in the self-adaptation strategy, the

adaptation is performed at runtime, and realized by the software itself without recompilation,

redeployment, or restarting. In the first case, the adaptation decision and responsibility is assumed

and performed by the developer, given that the software itself is not aware of its own structure

(i.e., components, services, bindings), nor of its behavior (e.g., fulfillment status of its

nonfunctional requirements), and thus, it has no possibilities to act upon or modify itself (i.e., self-

adapt). In the second case, the adaptation decision is a function completely of the software itself.

• Separation of concerns as enabler for dynamic reconfiguration: from Fig. 2.2 and Listing 2.1, it is

evident that in the self-adaptation strategy the code for performing the adaptation is clearly

separated from the code that implements the application logic, whereas in the plain adaptation one

there is no adaptation code. Monitoring components are executed in independent threads,

reporting changing-context events to the analyzer, while the application logic is executed in a

different thread of control flow. Planner and executor logic, located in different components, allow

the complete substitution of the application logic components, if needed. Thus, separation of

concerns, both between application and adaptation logic, and among the adaptation logic

components, is a critical enabler for the dynamic reconfiguration and self-adaptation of the

application components. Furthermore, intertwining all of the adaptation logic with the application

logic would render the system more challenging to maintain.

• Maintainability and policy-driven behavior: as a result of the separation of concerns, the self-

adaptation strategy not only promotes maintainability and decoupled components, but also the

policy-driven specification of behavior. For instance, the decision of changing the weather service

provider should involve the notion that web services may have an associated cost of use and

also differentiated preferences by users. Thus, changing the weather service should not depend

solely on a simple check of service unavailability, but on a set of comprehensive conditions that

could include monitoring the unavailability for a certain amount of (maximum acceptable) time, or

the observation of repeating a series of short unavailability periods in a given time frame.

• Feedback control: in terms of the process, the plain adaptation strategy can be seen as a closed loop

controlled and performed by a human. That is, the human monitors, analyzes, and determines

whether the software application code requires to be adapted. If an adaptation is required to

accomplish a given goal, the human performs the adaptation by modifying, recompiling and

24 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

redeploying the application code. Then, she starts the loop again, evaluating whether the

source code adaptation accomplished the desired goal. However, the resulting software in general

has no feedback control implemented in it, by definition, only conditional statements or similar

control-flow structures. In contrast, the self-adaptation mechanism of self-adaptive software

systems is by itself a closed loop, in which human intervention is eliminated or reduced to the

minimum. This mechanism permanently monitors the software application behavior, analyzes

whether an adaptation is needed, and plans and executes it in the software application components,

if required. Thus, instead of chained conditional statements guarding method invocations, the

self-adaptation strategy replaces the actual method invocations and its defining components by the

required ones, as needed, through component redeployment and service rebinding operations at

the architecture level.

Performing adaptation processes by hand to adaptive software is a challenging task. However, our goal

in this chapter is to focus on architecting self-adaptive software. From the previous sections and dis-

cussions, it should be clear that the main difference between adaptive and self-adaptive software is that

the latter is aware of its own status about the accomplishment of its goals, and is able to modify itself at

runtime, without human intervention. In the following sections, we analyze and discuss the most im-

portant aspects that architects of self-adaptive systems ought to consider.

2.4 FOUNDATIONAL CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE
SOFTWARE
This section presents foundational concepts on architecting software systems for self-adaptation.

2.4.1 FUNDAMENTAL DIMENSIONS OF SELF-ADAPTIVE SOFTWARE
We characterize self-adaptive software through a set of dimensions or elements that play an important

role in the architectural design of this kind of software systems. These dimensions are defined as fol-

lows [7]:

1. Self-adaptation goal: Themain reason for the system to be self-adaptive. These goals can be defined

through one or more of the self-* properties defined in Autonomic Computing (e.g., self-

configuring, self-healing, self-optimizing, self-protecting, self-managing) [17], the regulation of

quality of service (QoS) properties (e.g., nonfunctional requirements), or the preservation of

functional requirements. In the context of our example (cf. Section 2.2), a self-adaptation goal is the

self-healing property, since the system is able to detect the failure associated with the service that

becomes unavailable and to recover from this situation.

2. Structure of self-adaptive software: Self-adaptive systems have two well-defined subsystems

(although sometimes indistinguishable, depending on the level of separation of concerns applied):

(i) the self-adaptation mechanism (also known as self-adaptation controller or autonomic manager)

and (ii) the managed system (also known as target system). The architecture of these two

subsystems not only must be explicitly designed and maintained, but also must coexist in a proper

manner, albeit not necessarily on the same processor. In our example, the target system corresponds

to the mashup application (cf. the Twitter-Weather composite depicted in Fig. 2.2), which is

252.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

clearly separated from the self-adaptation controller (cf. the Self-Adaptation Mechanism

composite in the same figure).

3. Reference inputs: The set of values with corresponding types that are used to specify the

self-adaptation goal to be achieved and maintained in the managed system by the self-adaptation

mechanism. As presented in [7], reference inputs are specified as (a) one or more reference values

(e.g., a physically or logically measurable property); (b) some form of contract (e.g., QoS, service

level agreements (SLA), or service level objectives (SLO); (c) goal-policy-actions; (d) constraints

defining computational states (according to the particular proposed definition of state); or even

(e) functional requirements (e.g., logical expressions as invariants or assertions, regular expressions).

4. Measured outputs: The set of values with corresponding types that are measured in the managed

system. These measurements must be specified, monitored and compared against the reference

inputs to evaluate whether the self-adaptation goal has been achieved. Often, measured outputs are

specified through (a) continuous domains for single variables or signals; (b) logical expressions or

conditions for contract states; and (c) conditions expressing states of system malfunction. Most

common options for monitoring measured outputs are (a) measurements on physical properties

from physical devices (e.g., CPU temperature); (b) measurements on logical properties of

computational elements (e.g., request processing time in software or CPU load in hardware);

and (c) measurements on external context conditions (e.g., user location or weather conditions). For

the self-adaptive system of our case study, measure outputs are in the form of conditions expressing

states of system malfunction (e.g., service unavailability).

5. Computed control actions: Correspond to the means used by the self-adaptation mechanism to

affect or modify the managed system to achieve the self-adaptation goal. In general, computed

control actions can be (a) continuous signals that affect behavioral properties of the managed

system; (b) discrete operations affecting the computing infrastructure executing the managed

system (e.g., host system’s buffer allocation and resizing operations; modification of process

scheduling in the CPU); (c) discrete operations that affect the processes of the managed system

directly (e.g., processes-level service invocation, process execution operations-halt/resume, sleep/

respawn/priority modification of processes); and (d) discrete operations affecting the managed

system’s software architecture (e.g., managed system’s architecture reconfiguration operations

such as deploying/undeploying components, binding/unbinding services). The nature of these

controller outputs is related to the extent of the intrusiveness of the self-adaptation mechanism with

respect to the managed system. In our example, the self-adaptation mechanism relies on

discrete operations that affect the software architecture. Particularly, it uses service unbinding and

binding operations to connect to a new weather service after the current one becomes unavailable.

6. Observable adaptation properties: Correspond to characteristics that can be observed on the

self-adaptation mechanism to evaluate its quality. Properties of the self-adaptation controller are (a)

stability, (b) accuracy, (c) settling-time, (d) small-overshoot, (e) robustness, (f) termination, (g)

consistency (in the overall system structure and behavior), (h) scalability, and (i) security. For the

managed system, the identified properties result from the self-adaptation process: (a) behavioral/

functional invariants and (b) QoS conditions, such as performance (i.e., latency, throughput,

capacity); dependability (i.e., availability, reliability, maintainability, safety, confidentiality,

integrity); security (i.e., confidentiality, integrity, availability); and safety (i.e., interaction

complexity and coupling strength).

26 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

2.4.2 SELF-ADAPTATION GOALS
Adaptation goals are the main reasons for a system to be self-adaptive [7]. These goals are generally

defined in terms of the self-* properties, as defined in the Autonomic Computing vision [17], as well as

in terms of nonfunctional and functional requirements. This section presents definitions for the self-*

properties and most commonly addressed nonfunctional requirements, from the perspective of self-

adaptive software architecture design.

The purpose of self-adaptation can be characterized as the need for the continuous satisfaction of

functional requirements, and the regulation of nonfunctional requirements under changing conditions

on requirements and execution contexts [7]. The continuous satisfaction of requirements at runtime

may be affected by two main factors [20]: (i) changes in goals (i.e., requirements evolve according

to changes in business goals, for example, a renegotiation of SLAs, and changes in user preferences,

for example, when the situation of the user changes); and (ii) changes in the environment, which in-

clude changes in the system itself (e.g., unavailability caused by a service failure) and changes in the

external environment (e.g., peaks of transactions caused by seasonal events such as the Black Friday).

2.4.2.1 Self-properties as self-adaptation goals
Autonomic Computing, as envisioned by IBM [17], refers to the capability of computing systems to

manage themselves according to goals and policies defined by system administrators. The essential

purpose of Autonomic Computing is self-management, which is realized through self-adaptation, ex-

posing one or more of the following four properties that are commonly known as the self-* or self-

management properties: self-configuration, self-optimization, self-healing, and self-protection. In

the context of architecting software systems for self-adaptation, these properties can be defined as

follows:

1. Self-configuration: This property refers to the automatic configuration of the system architecture at

runtime. Self-configuration is generic in the sense that it can be used to realize any other self-*

property, or even any self-adaptation goal achievable through the automatic reconfiguration of the

system architecture (of both the structure of the managed system and of the self-adaptation

mechanism). Systems with self-configuration capabilities reconfigure themselves automatically,

based on high level policies, and reconfiguration symptoms and strategies.

2. Self-optimization: The capability of the system to continuously improve the satisfaction of

nonfunctional properties (i.e., quality attributes such as performance, or resource usage such as

power consumption, or SLA profit) through the self-configuration of the system architecture

according to changes in business goals and environmental situations.

3. Self-healing: The capability of the system to detect, diagnose and repair malfunctions by itself, at

runtime. In particular, failures originating in the software architecture can be fixed through self-

reconfiguration.

4. Self-protection: The capability of the system to protect itself against malicious attacks or intrusions,

adopting secure configurations through self-adaptation.

As we already mentioned, concerning the self-* properties, the self-adaptation goal for our webmashup

example is self-healing.

272.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

2.4.2.2 Nonfunctional requirements as self-adaptation goals
This subsection presents nonfunctional requirements that are commonly defined as self-adaptation

goals in self-adaptive software. For each nonfunctional requirement, we give its definition and a set

of related quality attributes. The following selected definitions are borrowed from the framework

for evaluating quality-driven self-adaptive software that we proposed previously [7].

1. Performance: Refers to system responsiveness, that is, the time required for the system to respond to

processing events, or inversely, the event processing rate in a time interval. Identified factors

that affect performance are latency (the time the system takes to respond to a specific event);

throughput (the number of events that can be completed in a given time interval; and capacity

(a measure of the amount of work the system can perform).

2. Dependability: Defines the level of reliance that can be placed on the services the software system

delivers. Adaptation goals associated with dependability are availability (readiness for usage);

reliability (continuity of service); maintainability (capacity to self-repair and evolve); safety (from

a dependability point of view, nonoccurrence of catastrophic consequences from an external

environment perspective); confidentiality (immune to unauthorized disclosure of information);

integrity (nonimproper alterations of the system structure, data and behavior).

3. Security: Concerns of security are defined in terms of confidentiality (protection from disclosure);

integrity (protection from unauthorized modification); and availability (protection from

destruction).

4. Safety: The level of reliance that can justifiably be placed on the software system as not generator of

accidents. Safety is concerned with the occurrence of accidents, defined in terms of external

consequences. The following two properties of critical systems can be used as indicators of system

safety: interaction complexity and coupling strength. In particular, interaction complexity is the

extent to which the behavior of one component can affect the behavior of other components.

Referred to our example, availability, as a nonfunctional requirement, is the most important

self-adaptation goal. In this case, the self-adaptation mechanism must guarantee is the readiness for

usage of the mashup application, even when some services may be unavailable at any moment of

the system execution.

2.4.3 SELF-ADAPTATION FUNDAMENTAL PROPERTIES
Properties inherent to self-adaptive software are qualities (or characteristics) that can be observed on

self-adaptation mechanisms. These properties, one of the main contributions of our research on self-

adaptive software, are key for evaluating the quality of self-adaptation mechanisms [7]. Therefore,

these properties should be considered when making design decisions on architecting self-adaptive

software.

1. Stability: Represents the degree in which the self-adaptation process makes the observed target

system behavior to converge toward the self-adaptation goal, and to stabilize around it. An

unstable self-adaptation process will repeat self-adaptation tasks without reaching stability.

2. Accuracy: Represents how close the observed target system behavior approximates the

self-adaptation goal, in its stable state.

28 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

3. Settling time: Represents how fast the self-adaptation process makes the observed target system

behavior reach the self-adaptation goal.

4. Resource overshoot: Refers to how well the self-adaptation process performs under given

conditions in terms of the amount of resources used in excess to achieve a required settling-time,

before reaching a stable state.

5. Robustness: Applies to both the target system and the self-adaptation mechanism. From the

perspective of the target system, robustness implies that the target system must remain stable and

guarantee accuracy, short settling time, and small resource overshoot, even if its current state

differs from the expected state in some measurable way. From the perspective of the

self-adaptation mechanism, robustness refers to the capability of the self-adaptation mechanism to

operate within desired limits even under unforeseen conditions.

6. Termination: Guarantees that the execution of the self-adaptation mechanism will finish, even if

the target system does not reach the self-adaptation goal.

7. Consistency (also known as integrity): Aims at ensuring the structural and behavioral integrity

of the target system after performing a self-adaptation process. For instance, when a self-adaptation

plan is based on dynamic reconfiguration of software architecture, consistency must guarantee

sound interface bindings between component services (e.g., component and service-based

structural/behavioral compliance) and ensure that when a component is replaced dynamically by

another one, the execution will continue without affecting the function of the system.

8. Atomicity: Guarantees that the self-adaptation process is executed atomically.

9. Durability: Guarantees that the final result of the self-adaptation process endures over time (i.e.,

especially after restarting the target system).

10. Security: Ensures that not only the target system, but also the data and components shared with the

self-adaptation mechanism, are protected from disclosure (confidentiality), modification

(integrity), and destruction (availability).

2.4.4 SENSORS AND EFFECTORS
In Autonomic Computing, sensors and effectors constitute what has been defined as the manageability

interface. Through this interface, one or more autonomic managers manage or control the managed

resources or components. A manageability interface is composed of one or more manageability

endpoints (also known as touchpoints), whose functions are to expose the state and management

operations of the managed resource or component. An autonomic manager is a software component

that implements an intelligent control loop. This loop, which is referred to as Monitoring-Analysis-

Planning-Execution and shared Knowledge (MAPE-K) loop (cf. Section 2.5) comprises four

phases—monitoring, analysis, planning, and execution—that operate over a knowledge base.

Similarly, when architecting software systems for self-adaptation, components intended to be dy-

namically adapted at runtime must implement a self-adaptation interface composed of sensors and

effectors. The functionality of sensors is twofold. First, they allow the gathering of context information

from the environment, and second, they expose the state of the self-adaptive component to other com-

ponents or systems. Effectors expose the methods that implement the self-adaptation operations on the

component. Architectures of self-adaptive software must implement standard and interoperable self-

adaptation interfaces using specifications such as WSDL, REST, and RMI. In our example, sensors

allow the self-adaptive system to monitor the availability of the multiple weather services, whereas

292.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

effectors are part of the execution phase of theMAPE-K loop and correspond to a method that invokes a

dynamic binding reconfiguration.

2.4.5 UNCERTAINTY AND DYNAMIC CONTEXT
The dynamic capabilities of self-adaptive software are highly affected by the entities in the execution

environment, including system requirements and the system itself. The observable characteristics of

these entities are known as context information. According to Whittle et al. [21], the uncertainty in-

herent in self-adaptation is generated by two main sources. The first one, environmental uncertainty,
is the uncertainty due to changing environmental conditions. The second one, behavioral uncertainty,
originates from changes in software requirements or in the system behavior. Therefore, context mon-

itoring in self-adaptive software concerns not only entities external to the system, but also entities

within the boundaries of the system and system requirements.

So far, most monitoring mechanisms for supporting context-aware and self-adaptive systems have

been based on the classical definition of context [7]. This definition characterizes context as “any in-
formation that describes the situation of entities that can affect the system’s behavior” [22]. It is im-

portant to point out that this definition, given by Dey in 1999, did not consider changes in the states of

these entities while the system that is intended to be context-aware is in execution. On the contrary, in

the case of self-adaptive software, which by definition is significantly affected by uncertainty, context

is not simply the state of a predefined environment with fixed entities, but part of an interacting process

with a continuously changing and uncertain environment. Therefore, architecting software systems for

runtime self-adaptation must involve an operational definition in which context, and their requirements

monitoring, are modeled as first-class entities, in such a way that its changing states can be acquired

from the environment, manipulated along its life cycle explicitly by taking into account its dynamic

nature, and provisioned based on changes on requirements [23].

Dynamic context differs from static context in aspects related to its modeling and management.

Concerning context modeling, static context specifies, at design-time, relevant context entities, and the

interactions among them, which remain immutable at runtime. The birthday and gender of a user are

instances of static context. Thereforemonitoringmechanisms based on static context keep track of entities

specifiedatdesign-time.Once the systemis inexecution, the additionofnewentities is not supportedby the

static context specification. On the contrary, dynamic context requires modeling techniques that support

changes in the specification of context entities and corresponding monitoring requirements at runtime.

For example, location, product, and service preferences are instances of highly dynamic context.

Concerning context management, monitoring strategies that keep track of static context are deter-

mined at design-time and remain fixed at runtime, whereas monitoring strategies that manage dynamic

context are required to change over time, at runtime. Dynamic context management is key to leverage

the dynamic capabilities of self-adaptive systems and manage the uncertainty that can affect their be-

havior. Furthermore, the architecture of context management infrastructures must also be reconfigured

at runtime to support changes in context monitoring requirements generated by high levels of uncer-

tainty. Coping with uncertainty is perhaps the most complex aspect of architecting software systems for

runtime adaptation. In our example, a manifestation of uncertainty is the modification of the current

self-adaptation goal of availability, by another goal of performance. In particular, to satisfy the new

goal, new sensors would have to be deployed tomonitor, for example, the latency of the weather service

configured to be consumed.

30 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE
In this section we analyze, from the software architecture perspective, representative reference models

that have been proposed for engineering self-adaptive software systems. A reference model is a stan-

dard decomposition of a known kind of problems into distinguishable parts or components, each having

well defined functionalities and control/data flow [24]. We start with the feedback-loop reference

model of control theory, which has been instantiated in several ways for different self-adaptive soft-

ware systems. More abstractly, it has served directly or indirectly as a foundation for defining the struc-

ture of the reference models analyzed in this section.

2.5.1 THE FEEDBACK LOOP MODEL OF CONTROL THEORY
In control theory, the feedback loop is a generic model designed with the goal of automatically con-

trolling the dynamic behavior of a system (thus called target system). As such, it has been used to au-

tomate a large number of processes in diverse fields of engineering [25]. More recently, it also has been

adopted as a model for self-adaptation in computing and software engineering [26, 27].

As depicted in Fig. 2.3, the feedback loop model clearly distinguishes and separates the controller
from the target system. To control the dynamic behavior of the target system, the model regularly com-

pares the measured outputs (A) of the target system behavior to the control objectives given as refer-
ence inputs (B), yielding the control error (C), and then adjusting the controlling inputs (D)

accordingly for the target system to behave as defined by the reference input. The target system’s mea-

sured output can also be affected by external disturbances (E), or even by the noise (F) caused by the

system self-adaptation. Transducers (G) translate the signals coming from sensors, as required by the

comparison element (H).

To compute the controlling inputs, the representative mechanism in control theory is the system
transfer function, a mathematical model built upon the physical properties and characteristics of the

target system. For instance, depending on these characteristics, in classic control the transfer function

can be built with proportional, derivative and integral (PID) terms. The parameters in a PID controller

have special significance given that there exist precise and sophisticated methods for tuning their

values in a specific controller.

Controller Target system

Transducer
(G)

+
–

Disturbance
input

Noise
input

Transduced
output

(A)
Measured

output

(B)
Reference

input

(C)
Control
error

(D)
Control
input

(E)(F)
(H)

FIG. 2.3

Block diagram of a general feedback control system.

Source: Modified from J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury, Feedback Control of Computing Systems, Wiley, Chichester,

2004.

312.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

2.5.2 THE MAPE-K MODEL
Even though the application of control theory and its feedback-loop model to industrial processes is

well understood, it requires to be adapted for its application to the control of software systems. First,

the system’s transfer function, which represents the target system’s behavior model, is defined in terms

of continuous mathematics. Second, this theory relies on measurements taken from, and actions per-

formed into, physical, self-contained and self-performing artifacts, that is, on variables in the

continuous-time domain (e.g., sensors, gauges and valves/actuators for temperature, pressure and other

variables). In contrast, models for software systems are usually built using discrete formalisms, given

that they are composed of intangible artifacts with discrete-time behavior and not always well char-

acterized properties. Moreover, to fully exploit the possibilities of software self-adaptation from the

software architecture perspective, the output of the self-adaptation mechanism must be based on some

kind of discrete operations rather than on controlling signals to be transduced by electro-mechanical

devices. For instance, it would be more appropriate for this output to be a plan of ordered instructions to

be instrumented by the software actuators on the target software components.

Inspired by the human autonomous nervous system, IBM researchers adapted the feedback-loop

model to define the autonomic element as a building block for developing self-managing and self-

adaptive software systems. They synthesized this adaptation in the form of the so-called MAPE-K loop

model, as depicted in Fig. 2.4. The purpose of this model is to develop autonomous controlling mech-

anisms to regulate the satisfaction of dynamic requirements, specifically in software systems [17, 26,

28].

In Fig. 2.5 we illustrate our interpretation of the MAPE-K loop, mapped from the general feedback-

loop block diagram. To autonomously regulate the satisfaction of the system requirements (cf. refer-
ence control inputs in the figure), which vary with context changes, a Monitor gathers information from

the internal and the external contexts. This information, in the form of control symptoms, is analyzed by

Sensor Effector

Monitoring Execution

Analysis Planning

Sensor Effector

Symptoms

Change
request

Apply
plan

Knowledge
base

FIG. 2.4

The MAPE-K loop.

Source: Based on J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.

32 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

the Analyzer, which compares them to the reference control input, yielding a control error. Based on

this difference, the Planner element computes control actions to be instrumented by the Executor in

the managed software system. A KnowledgeManagermanages relevant information, such as adaptation

policies, thresholds, and rules, shared with the other MAPE-K loop elements. The measured control

data can also be affected by context disturbances caused, for instance, by the system adaptation itself

[20, 26].

The concrete responsibilities for each of the MAPE-K loop elements are as follows:

1. Monitor: Monitoring elements are responsible for sensing changes in both, the managed

application’s internal variables corresponding to QoS properties (e.g., measured QoS data), and also

the external context (i.e., measured from outside the managed application). Based on these changes,

monitors must notify relevant context events to the analyzer. Relevant context events are those

derivable from system requirements (e.g., from QoS contracts).

2. Analyzer: The analyzer, based on the high-level requirements to fulfill, and the context events

notified bymonitors, determineswhether a system adaptationmust be triggered. Thiswould occur, for

instance, when the notified events signal changes that (may) violate the reference control inputs.

Context analyzers can be based on either, multi-event or single-event pattern matchers, as

discussed in [29]. Multi-event matchers produce complex events based on single events that

accumulate over time. These single events are produced by single-event matchers, which identify

partial matches in the flow of the monitored events.

3. Planner: Once notified with a reconfiguration event from the context analyzer, the planner selects a

strategy to fulfill the new requirements, using the accumulated knowledge in the shared

Knowledge Manager. By applying the selected strategy, the planner computes the necessary control

actions to be instrumented in the managed software system. An important difference between the

feedback and the MAPE-K loops is that, in the former, the control actions are continuous signals for

physical actuators (e.g., resistors and motors), whereas in the latter, they are sequences of discrete

operations (thus called reconfiguration plans). These discrete operations are then interpreted by the

executor.

4. Executor: Upon reception of a reconfiguration plan, the executor interprets each of the operations

specified in the plan and effects them in the managed software system. This implies to translate

or adequate the reconfiguration actions to the ones implemented by the particular runtime component

platform that executes the managed software system.

FIG. 2.5

The MAPE-K loop as adapted from the feedback loop.

Source: From G. Tamura, QoS-CARE: a reliable system for preserving QoS contracts through dynamic reconfiguration, PhD Thesis,

University of Lille 1—Science and Technology and University of Los Andes, May 2012.

332.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

5. (Reconfiguration) Knowledge Manager: The reconfiguration knowledge manager makes explicit the

relevant knowledge about the managed software application configuration, and how to perform its

reconfiguration at runtime. In a feedback loop, the controller encodes fundamental knowledge

about the properties of the physical plant or target system to control in the system transfer function.

Based on this mathematical model of the target system, and its response to context disturbances,

control properties such as short settling-time, stability, accuracy, and small resource-overshoot can

be guaranteed on a controller [25, 26]. In contrast to physical systems, built from materials with

well known standard properties such as conductance, capacitance, and heat conduction, software

systems are developedwith software components with no standardized properties. Thus, in the case of

the MAPE-K loop (i.e., in the software systems domain), the knowledge manager, provided by the

adaptation designer, must supply the lack of information about the properties of themanaged software

application, in order to make adequate decisions for its adaptation.

Referring to our case study, using the MAPE-K model to design the architecture produces the solution

already explained in Section 2.3.2.2, and illustrated in Fig. 2.2. The monitor regularly checks the avail-

ability of the currently selected weather service provider (e.g., WebserviceX).When it accumulates ev-

idence of service unavailability, notifies the analyzer with the respective information. If this evidence

justifies changing the provider, the analyzer notifies the planner about this need. The planner, depend-

ing on the reported information and the availability of the other two providers (e.g., Yahoo and Google

weather), generates a reconfiguration (i.e., adaptation) plan to solve the unavailability problem. This

plan basically must link the interface of the required “weatherMgr” service of the “WeatherOrchestra-

tor” component, unlink it from the provided “weather” service of the “WebserviceXWeatherAdapter,”

and linking it to the provided “weather” service of the selected provider (i.e., “GoogleWeatherAdapter”

or “YahooWeatherAdapter”).

2.5.3 KRAMER AND MAGEE’S SELF-MANAGEMENT REFERENCE MODEL
Inspired by the reference architecture defined by the artificial intelligence and robotics community

[30], Kramer and Magee proposed a three-layer reference model for self-managed systems. Each of

the layers has defined responsibilities at different abstraction levels. These responsibilities correspond

to: goal management, change management, and component control, being executed in independent

threads of control [31, 32], as depicted in Fig. 2.6.

The component control layer is responsible for implementing the functionalities of a feedback loop

to control the operational-level actions the system has to accomplish, such as a particular task or func-

tion. These functionalities would include, for instance, self-tuning algorithms, and the capability of

identifying situations for which the current configuration of components is not designed to deal with.

In this latter case, this layer reports this situation to higher layers.

The change management layer has the responsibility of handling decentralized configuration man-

agement, identifying inconsistencies in the system (i.e., component configuration) state, and reestab-

lishing a satisfactory stable state. It also reacts to events reported by the component-control layer, for

instance by executing plans that set new control behaviors in that layer in response to new objectives.

These new objectives could have been introduced by the layer above. The change management layer

can introduce new components to the layer below, as well as modify component interconnections and

parameters of operation. However, all of the actions in this layer are prespecified in adaptation plans. If

it detects a situation for which a plan does not exist, it must ask the higher layer for such a plan. A

34 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

similar situation occurs when a new goal is required for the system, which implies the higher layer to

introduce new plans into this layer.

Finally, the goal management layer is responsible for the global planning to achieve high-level

goals. This layer produces plans required by lower layers by considering the current component con-

figuration state, and the specification of the (possibly new) high-level goal. Changes in the environ-

ment, such as context conditions not considered in the current reconfiguration plans would involve

reconsideration of planning in this layer.

This referencemodel can be applied in our case study as follows. The component control layer can be

implemented exactly as described in theMAPE-Kmodel section (cf. final part of Section 2.5.2). That is,

this layer is comprised of a MAPE-K loop that solves the system unavailability by reconfiguring (i.e.,

adapting) the weather service. This is achieved by unlinking this service from the unavailable one (e.g.,

the one fromWebserviceX), and then relinking it to one that is available, among the ones registered in the

reconfiguration subsystem (e.g., the ones from Google and Yahoo). However, if both of these are also

unavailable, the component control layer notifies the change management layer about this situation. In

response, this layer could introduce two new software components and two new reconfiguration rules

into the component control layer. The new components provide the functionalities for consuming the

weather services from VisualWebservice,9 and the US National Weather Service,10 for instance. The

new reconfiguration rules would allow the component control layer to make use of the new registered

weather services. Finally, the user could specify a newgoal for the system, for instance requiring not only

high availability but also lowest response time, among the registered weather services. To satisfy this

newgoal, themanagement layer should generate new software components and reconfiguration rules for

the layers below. Some of the new software components would monitor the new context variables of

interest, namely those measuring the response time of the registered weather services. Other software

components would implement the new logic for choosing the weather service that satisfies the new

Goal
management

Change plans

Change actions

Plan request

Status

C1 C2

P2P1

G′

G

G′′

Change
management

Component
control

FIG. 2.6

The three-layer reference architecture for self-management.

Source: From J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the 2007Workshop on the Future

of Software Engineering (FOSE 2007), IEEE Computer Society, 2007, pp. 259–268.

9http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL.
10http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl.

352.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

established conditions. The new reconfiguration rules would allow the layers below to make use of the

new software components.However, themodel does not specify how itwould use these newcomponents

when their functionality affects or replaces directly the behavior of the model’s own feedback loop el-

ements, in this case, the monitor and analyzer of the component control layer.

2.5.4 THE DYNAMICO REFERENCE MODEL
Dynamic Adaptive, Monitoring and Control Objectives model (DYNAMICO) is a reference model in-

spired by classic control theory that explicitly addresses: (i) the achievement of self-adaptation goals

and their usage as the reference control objectives; (ii) the separation of control concerns by decoupling

the different feedback loops required to satisfy the reference objectives as context changes; and (iii) the

specification of context management as an independent control function to preserve the contextual rel-

evance with respect to internal and external context changes.

The model is composed of three types of feedback loops, as depicted in the high level view that

presents Fig. 2.7. Each of these feedback loops manages each of the three levels of dynamics that char-

acterize highly context-dependent self-adaptation: (i) the control objectives feedback loop (CO-FL) (cf.
CO-FL in the figure), (ii) the target system adaptation feedback loop (A-FL) (cf. A-FL in the figure),11

and (iii) the dynamic monitoring feedback loop (M-FL) (cf. M-FL in the figure). As a reference model,

DYNAMICO provides guidelines for designing the software architecture of self-adaptive software that is

highly sensitive to changes in context situations and self-adaptation goals. Thus, the model is tailored

Reference control
objectives (e.g., SLAs)

(D)

Sensed
context

information

Objectives feedback loop

Adaptation feedback loop

 Monitoring feedback loop

(A)(B) (C)

Control/data flow

Legend:

Feedback loop abstractionCO-FL

A-FL

M-FL

FIG. 2.7

The three levels of dynamics in a context-driven self-adaptive software systems..

Source: From N.M. Villegas, G. Tamura, H.A. M €uller, L. Duchien, R. Casallas, DYNAMICO: A Reference Model for Governing Control

Objectives and Context Relevance in Self-Adaptive Software Systems, vol. 7475 of LNCS, Springer, Berlin, 2013, pp. 265–293.

11Based on the analysis of the differences between the concepts of self-adaptation and adaptation (cf. Section 2.3), this feed-

back loop is associated with self-adaptation and not with adaptation.

36 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

for architecting self-adaptive systems prone to be adapted not only in their structure, but also in their

monitoring infrastructure, as a result of adaptations in their control objectives. In this sense, this ref-

erence model emphasizes the need for checking if these three levels of dynamics have to be addressed

in the architectural design. Moreover, it defines the elements and functionalities, as well as the control

and data interactions to be implemented, not only among the three types of feedback loops, but also

among the internal elements of each feedback loop. The reference model characterizes the interactions

among the three types of feedback loops in such a way that the model can be applied partially, that is,

omitting any of its feedback loops, targeting self-adaptive systems where supporting changes in any of

the three levels of dynamics is a crucial requirement.

The separation of concerns among the three levels of dynamics made explicit by DYNAMICO is par-

ticularly crucial for cases in which the self-adaptation goals are modified significantly. For instance,

referring to our case study, changing the objective of high-availability to high-performance requires the

self-adaptation of not only the managed system, but also the monitoring infrastructure, to preserve the

relevance of the self-adaptation mechanism with respect to the modified control objectives. However,

the automatic reconfiguration of the monitoring infrastructure is impractical having the context

manager (i.e., including the monitoring infrastructure) tightly coupled to the self-adaptation mecha-

nism. Similarly, the explicit control of changes in self-adaptation goals (i.e., control objectives)

requires separate instrumentation. Fig. 2.8 depicts a detailed view of the feedback loops for the three

levels of dynamics presented in Fig. 2.7. These feedback loops are explained in the following sections.

2.5.4.1 The control objectives feedback loop (CO-FL)
The CO-FL (cf. CO-FL in Fig. 2.8) addresses the first level of dynamics specified by DYNAMICO. It gov-

erns changes in control objectives (e.g., SLAs) with the collaboration of the A-FL and the M-FL. We

define requirements and self-adaptation properties as system variables to be controlled. We refer to

these variables as control objectives and self-adaptation goals interchangeably. Moreover, control ob-

jectives are subject to change by user-level (re)negotiations at runtime and therefore must be addressed

in a consistent and synchronized way by the self-adaptation mechanism (i.e., A-FL) and the context

manager (i.e., M-FL). For example, as with the Kramer and Magee scenario defined for our case study

(cf. final part of Section 2.5.3), the user could introduce the response time in the CO-FL, thus requiring

not only high availability but also lowest response time, among the registered weather services. There-

fore, the context monitors must keep track of a new context variable, the response time of the registered

weather services. Both availability and response time must be managed explicitly as the control ob-

jectives for the adaptive system. Thus, both reference inputs, the A-FL reference control input and

the M-FL reference context input, are derived automatically from control objectives and fed into

the corresponding feedback loops, as illustrated by interaction (A) in Fig. 2.8.

2.5.4.2 The adaptation feedback loop (A-FL)
The A-FL, the second level of dynamics, regulates the target system requirements satisfaction and the

preservation of self-adaptation properties. Recalling our self-adaptation scenario (cf. Section 2.2), the

system availability represent a nonfunctional requirement. Due to changing objectives, the satisfaction

of this requirement and the one introduced in the CO-FL (cf. Section 2.5.4.1) depend on the adaptive

capabilities of the mashup application. For example, under the initial goal, the system reconfigures

itself to change the weather service provider. After the control objective modification, the response

time of the registered weather service providers becomes a new context variable to be monitored. Thus,

according to the available services and their current response times, the A-FLwill trigger the adaptation

372.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

of the system by relinking the weather service to the one being available and with better response time.

For this, the A-FL gathers measurements from the target system and registered weather services

through context monitors provided by the M-FL (cf. Label (C) in Fig. 2.8).

2.5.4.3 The context monitoring feedback loop (M-FL)
The M-FL in Fig. 2.8 represents a dynamic context manager, the third level of dynamics specified by

DYNAMICO. The reference context inputs correspond to the context monitoring requirements and are de-

rived from the CO-FL reference control objectives. In our case study the reference control objectives

are defined as nonfunctional requirements. Thus, the context monitoring requirements are derived from

the metrics and conditions defined for these requirements and, as a result, monitors for measuring the

response time of the registered weather services would be deployed in the managed system. The con-

text analyzer decides about the adaptation of the monitoring strategy. The context adaptation controller

Target
system

System control output
preprocessing

Reference
control input

Control
error

Control
input

Measured control
output

Preprocessed
system output

Planner Executor

System adaptation
controller

Context control output
preprocessing

Preprocessed internal
and external context

Context
symptoms

Adaptation
noise

Sensed internal
context

Reference
context

input

Adaptation
analyzer

Adaptation
monitor

Context
monitor

Control
symptoms

Sensed external
context (environment)

Context
analyzerControl

symptoms

Control
error

Context
manager

Adaptation
noise

Control
input

Measured control
output

Planner Executor

Context adaptation
controller

(A)

(D)(C)

(B)

Reference control
objectives

Control
objectives
differences Control objectives outputs

Planner Executor

Objectives controllerObjectives
analyzer

Objectives
monitor Control

objectives
symptoms

Context
symptoms

User level
negotiations

CO-FL

A-FL

M-FL

DYNAMICO reference model

FIG. 2.8

The DYNAMICO reference model with a detailed view of the controllers for the three abstract levels of dynamics

presented in Fig. 2.7.

Source: From N.M. Villegas, G. Tamura, H.A. M €uller, L. Duchien, R. Casallas, DYNAMICO: A Reference Model for Governing Control

Objectives and Context Relevance in Self-Adaptive Software Systems, vol. 7475 of LNCS, Springer, Berlin, 2013, pp. 265–293.

38 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

is responsible for defining and triggering the execution of the adaptation plan to adjust the context man-

ager (i.e., the target system of the M-FL).

In summary, referring to our case study and compared to the Kramer and Magee’s reference model,

DYNAMICO’s CO-FL and A-FL supply the functionalities of the three layers of their model. Nonetheless,

the M-FL in DYNAMICO solves effectively the problem of incorporating the functionalities of the new

monitoring components in the model’s feedback loop. That is, the feedback loops of Kramer and

Magee’s reference model are designed to adapt the managed system structure and behavior, but not

its own adaptation logic.

2.5.5 THE AUTONOMIC COMPUTING REFERENCE ARCHITECTURE (ACRA)
The ACRA, depicted in Fig. 2.9, provides a reference architecture to organize and orchestrate self-

adaptive (i.e., autonomic) systems using autonomic elements, where an autonomic element is basically

an implementation of the MAPE-K model. ACRA was proposed as the foundation for realizing the

Autonomic Computing vision [28]. In this vision, ACRA-based autonomic systems are defined as a

multiple-layer hierarchy of MAPE-K elements, which correspond to orchestrating managers and re-

source managers, controlling managed resources.

...

M
an

ua
l m

an
ag

er
s

K
now

ledge sources

Orchestrating managers

Resource managers

Managed resources

FIG. 2.9

The autonomic computing reference architecture (ACRA).

Source: Based on IBM Corporation, An architectural blueprint for autonomic computing, tech. rep., IBM Corporation, 2006.

392.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

ACRA differs from the previously analyzed models in two important ways. First, those models are

based either on a single MAPE-K loop element or on a three-layer structure of MAPE-K loop elements,

whereas ACRA is based on a multiple-layer hierarchy in which each layer adds autonomic control over

the layers below it. Second, each layer on each of the three-layered models has specific responsibilities

of control, whereas ACRA defines mainly generic responsibilities of orchestration and resource man-

agement for its multiple layers.

Referring to our case study, the ACRA model is applied very differently compared to the DYNAMICO

and Kramer and Magee models. Starting with the lowest layer, ACRA would define the weather ser-

vices as managed resources. For each of the registered weather services in the reconfiguration mech-

anism, it would dedicate a MAPE-K loop, to control it as a managed resource, even though they are

external services. In the layer above, ACRA would specify the “resource managers” to control the

weather services. Then, the orchestrating managers would be responsible for coordinating not only

the multiple feedback loops execution and interactions, but also the information exchange among them.

The purposes of each of the layers in ACRA, as applied to our case study, could be similar to those of

Kramer and Magee’s reference model.

Yet another scheme for controlling self-adaptation of software systems has been proposed by dis-

tributing and then combining the MAPE-K loop elements in different machines. Examples of these

decentralized architectural variants are the proposals by Vromant et al. [33] and Weyns et al. [34]. Fur-

thermore, even though the MAPE-K and feedback loops have been recognized as fundamental design

elements for self-adaptation, their visibility is usually hidden in the related approaches. In many cases,

the self-adaptation mechanisms are intertwined with the managed applications, rendering them as hard

to reuse and manipulate, and more importantly, as unanalyzable and uncomparable in their inherent

properties [7, 27, 32, 35]. To alleviate this problem, M€uller et al. advocate to make feedback loops

explicit and highly visible as first class entities in self-adaptive architectures [27]. Thus, when studying

the architecture of an existing self-adaptive system, the feedback architectures discussed in this section

are easily recognized and characterized by experienced software engineers.

2.6 MAJOR ARCHITECTURAL CHALLENGES IN SELF-ADAPTATION
Architectural challenges concern the design of both the target system as well as the self-adaptation

mechanisms.

1. Concerning visibility of control: Making control loops explicit requires, beyond the consolidation

of architecture knowledge in the form of different MAPE configurations as patterns, practical

interface definitions (signatures and APIs), message formats, and protocols. Making control

explicit and exposing self-adaptive properties are important aspects to assure self-adaptation

mechanisms [12, 27].

2. Concerning separation of concerns: Recalling the DYNAMICO reference model presented in

Section 2.5.4, the separation of concerns between the monitoring process, the self-adaptation

controller, and the management of control objectives (self-adaptation goals) is still an open

challenge. This challenge is crucial for governing the consistency between self-adaptation

mechanisms and control objectives, while preserving the relevance of context monitoring of the

self-adaptation mechanism [20].

40 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

3. Concerning distribution and decentralization: In complex self-adaptive software (i.e., systems

composed of several feedback loops with multiple interactions among them), distribution and

decentralization are considered important architectural drivers. Distribution is used to deal with

issues such as latency, concurrency, and partial failures. Decentralization is important to

guarantee robust execution in situations where partial failures can occur. According to [12, 36], a

number of interesting challenges exist regarding self-adaptive control schemes, including:

(i) Pattern applicability: In what circumstances and for what systems are the different patterns of

control applicable?Which quality attribute requirements hinder or encourage which patterns?What

styles and domains of software are more easily managed with which patterns? (ii) Pattern

completeness: What is the complete set of patterns that could be applied to self-adaptation? (iii)

QoS analysis: For decentralized approaches, what techniques can we use to guarantee system-wide

quality goals? What are the coordination schemes that can enable guaranteeing these qualities?

4. Concerning the process of architecting the system: (i) Reference architectures for self-adaptive

systems that address issues such as structural arrangements of control loops (e.g., sequential,

parallel, hierarchical, decentralized), interactions among control loops, data flow around the control

loops, tolerances, trade-offs, sampling rates, stability and convergence conditions, hysteresis

specifications, context uncertainty [3], and the preservation of self-adaptation properties on both the

target system and the self-adaptation mechanism [7]; (ii) patterns that characterize control-loop

schemes and elements, along with associated obligations; and (iii) development of reference

models and architectures, as well as further validation of existing ones in industrial settings.

2.7 SUMMARY
This chapter began with an analysis of the difference between the terms adaptation and self-adaptation,

and then presented foundational concepts and reference models that facilitate the architectural design

of self-adaptive software. Furthermore, the chapter presented a list of research challenges. This chapter

is useful for students, researchers and practitioners to acquire a general understanding on the engineer-

ing of self-adaptive software systems, in particular of its architectural design.

REFERENCES
[1] R. Laddaga, Guest editor’s introduction: creating robust software through self-adaptation, IEEE Intell. Syst.

14 (3) (1999) 26–29.
[2] R. Laddaga, Active software, in: Proceedings of the First International Workshop on Self-Adaptive Software,

IWSAS 2000, Springer-Verlag, New York, NY, 2000, pp. 11–26.
[3] B.H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun,

B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,

H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. M€uller, S. Park, M. Shaw, M. Tichy,

M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive systems: a research roadmap,

Springer-Verlag, Berlin, 2009, pp. 1–26.
[4] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.

Adapt. Syst. 4 (14) (2009) 1–14:42.

41REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0025

[5] G. Tamura, R. Casallas, A. Cleve, L. Duchien, QoS contract preservation through dynamic reconfiguration: a

formal semantics approach, Sci. Comput. Program. 94 (3) (2014) 307–332.
[6] L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, R. Sangwan, Comparison of requirements specifica-

tion methods from a software architecture perspective, tech. rep, 2006.

[7] N.M. Villegas, H.A. M€uller, G. Tamura, L. Duchien, R. Casallas, A framework for evaluating quality-driven

self-adaptive software systems, in: Proceedings of the Sixth International Symposium on Software Engineer-

ing for Adaptive and Self-Managing Systems (SEAMS 2011), ACM, New York, NY, 2011, pp. 80–89.
[8] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, et al., Service component architecture, assembly

model specification, tech. rep, Open Service Oriented Architecture Collaboration, 2007.

[9] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: state of the art and re-

search challenges, Computer 40 (2007) 38–45.
[10] P. Bourque, R.E. Fairley (Eds.), Guide to the software engineering body of knowledge—SWEBOK v3.0,

2014th ed, IEEE CS, ashington, DC, 2014.

[11] R. Laddaga, Active software, Self-Adaptive Software, Springer, Berlin, 2001, pp. 11–26.
[12] R. de Lemos, H. Giese, H.A. M€uller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N.

M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cikic, R. Desmarais,

S. Dustdar, G. Engels, K. Geihs, K.M. G€oschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer,

A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,

C. Prehofer, W. Sch€afer, R. Schlichting, D.B. Smith, J.P. Sousa, L. Tahvildari, K. Wong, J. Wuttke,

Software engineering for self-adaptive systems: a second research roadmap, 7475, Springer, Berlin,

2013, pp. 1–32.
[13] N. Subramanian, L. Chung, Software architecture adaptability: an NFR approach, in: Proceedings of the

Fourth International Workshop on Principles of Software Evolution, IWPSE ’01, ACM, New York, NY,

2001, pp. 52–61.
[14] G.T. Heineman, Adaptation and software architecture, in: Proceedings of the Third International Workshop

on Software Architecture, ISAW ’98, ACM, New York, NY, 1998, pp. 61–64.
[15] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,

D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.

14 (3) (1999) 54–62.
[16] Y. Brun, G.D.M. Serugendo, C. Gacek, H.M. Giese, H. Kienle, M. Litoiu, H.A. M€uller, M. Pezzè,

M. Shaw, Engineering self-adaptive systems through feedback loops, 5525 of Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 2009, pp. 48–70.
[17] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.
[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented software,

Addison-Wesley Longman Publishing, Boston, MA, 1995.

[19] G. Tamura, QoS-CARE: a reliable system for preserving QoS contracts through dynamic reconfiguration,

PhD Thesis, University of Lille 1—Science and Technology and University of Los Andes, May 2012.

[20] N.M. Villegas, G. Tamura, H.A. M€uller, L. Duchien, R. Casallas, DYNAMICO: a reference model for gov-

erning control objectives and context relevance in self-adaptive software systems, 7475 of LNCS, Springer,

Berlin, 2013, pp. 265–293.
[21] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, J.-M. Bruel, RELAX: a language to address uncertainty in

self-adaptive systems requirement, Requir. Eng. 15 (2) (2010) 177–196.
[22] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a better understanding of

context and context-awareness, in: Proceedings of the First International Symposium on Handheld and Ubiq-

uitous Computing (HUC 1999), 1707 of LNCS, Springer, Berlin, 1999, pp. 304–307.
[23] N.M. Villegas, H.A. M€uller, Managing dynamic context to optimize smart interactions and services,

Springer-Verlag, Berlin, Heidelberg, 2010, pp. 289–318.

42 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110

[24] L. Bass, P. Clements, R. Kazman, Software architecture in practice, Addison-Wesley, Reading, MA, 2003.

[25] K. Ogata, Modern control engineering, third edition, Prentice Hall, Upper Saddle River, NJ, 1996.

[26] J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury, Feedback control of computing systems, John Wiley &

Sons, Chichester, 2004.

[27] H. M€uller, M. Pezzè, M. Shaw, Visibility of control in adaptive systems, in: Proceedings of the Second In-

ternational Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS 2008), 2008, pp. 23–26.
[28] I.B.M. Corporation, An architectural blueprint for autonomic computing, IBM Corporation, 2006.

[29] D.C. Luckham, The power of events: an introduction to complex event processing in distributed enterprise

systems, Addison-Wesley Longman Publishing, Boston, MA, 2001.

[30] E. Gat, On three-layer architectures, MIT/AAAI, Palo Alto, CA, 1998, pp. 1–26.
[31] J. Kramer, J. Magee, Dynamic structure in software architectures, SEN 21 (6) (1996) 3–14.
[32] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the 2007 Work-

shop on the Future of Software Engineering (FOSE 2007), IEEE Computer Society, 2007, pp. 259–268.
[33] P. Vromant, D. Weyns, S. Malek, J. Andersson, On interacting control loops in self-adaptive systems,

in: Proceedings of the Sixth International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS 2011), ACM, New York, NY, 2011, pp. 202–207.
[34] D. Weyns, S. Malek, J. Andersson, On decentralized self-adaptation: lessons from the trenches and chal-

lenges for the future, in: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS 2010), ACM, New York, NY, 2010, pp. 84–93.
[35] H.A. M€uller, H.M. Kienle, U. Stege, Autonomic computing: now you see it, now you don’t–design and

evolution of autonomic software systems, 5413 Lecture Notes in Computer Science, Springer, Berlin,

2009, pp. 32–54.
[36] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese,

K.M. G€oschka, On patterns for decentralized control in self-adaptive systems, Software Engineering for Self-

Adaptive Systems—II, Springer, Berlin, 2013, pp. 76–107.

43REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175

CHAPTER

A CLASSIFICATION FRAMEWORK
OF UNCERTAINTY IN
ARCHITECTURE-BASED
SELF-ADAPTIVE SYSTEMS WITH
MULTIPLE QUALITY
REQUIREMENTS

3

S. Mahdavi-Hezavehi*,†, P. Avgeriou*, D. Weyns†

University of Groningen, Groningen, Netherlands* Linnaeus University, V€axj€o, Sweden†

3.1 INTRODUCTION
Software systems are subject to continuous changes due to new requirements and the dynamics of the

system context. Engineering such complex systems is often difficult as the available knowledge at de-

sign time is not adequate to anticipate all the runtime conditions. Missing or inaccurate knowledge may

be due to different types of uncertainty such as vagueness regarding the availability of resources, op-

erating conditions that the system will encounter at runtime, or the emergence of new requirements

while the system is operating.We define uncertainty in a software system as the circumstances in which

the system’s behavior deviates from expectations due to dynamicity and unpredictability of a variety of

factors existing in software systems.

One way to deal with this uncertainty is to design systems that adapt themselves during runtime,

when the knowledge is accessible. Self-adaptive systems are capable of autonomously modifying their

runtime behavior to deal with dynamic system context, and changing or new system requirements in

order to provide dependable, and recoverable systems [1]. In this research, we focus on architecture-

based approaches ([2,3,34]), which are widely used to support self-adaptation. Architecture-based self-

adaptive systems achieve this capability by means of using reflective software architecture models. In

order to manage a system, an architecture-based self-adaptive system is equipped with adaptation soft-

ware that uses models of the system, its environment, and goals whenmonitoring the running system, to

detect problems, identify solutions, and apply adaptation actions to modify the system.

However, incorporating self-adaptation into a system may lead to further uncertainty in its own

right: defective adaptation actions or unforeseen consequences of adaptation on the system can result

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00003-4

Copyright # 2017 Elsevier Inc. All rights reserved.
45

http://dx.doi.org/10.1016/B978-0-12-802855-1.00003-4

in unexpected system behavior. This is further aggravated in the case of self-adaptive systems that need

simultaneously to fulfill multiple quality requirements without interrupting the system’s normal func-

tions, and deal with a growing number of both adaptation scenarios and requirements trade-offs [4].

This implies that the system should be able to prioritize the adaptation actions, choose the optimal ad-

aptation scenarios, adapt the system, and presumably handle the positive or negative chain of effects

caused by the adaptation of certain requirements. However, when the number of system quality require-

ments increases, so does the number of adaptation alternatives. Therefore, the decision making, as well

as the handling of requirements trade-offs becomes more complex. If the problem is not handled prop-

erly, over time uncertainty provokes inconsistency in certain subsystems, and the accumulated incon-

sistencies may result in unforeseen circumstances, and possibly in unexpected system behavior.

Over the past years, numerous approaches have been proposed to quantify and mitigate existing

uncertainty in self-adaptive systems. However, the concept of uncertainty and its different types

and categories are hardly ever studied in the domain of architecture-based self-adaptive systems with

multiple quality requirements. As a result, identification, investigation, and consequently selection of

suitable approaches for tackling uncertainty in this domain may be problematic. To alleviate this prob-

lem, in this paper we present a framework to classify existing uncertainty concepts for architecture-

based solutions in self-adaptive systems with multiple quality requirements. To create the framework,

we systematically review all the papers that propose approaches to deal with uncertainty and its

sources. Subsequently, we study these approaches according to the proposed classification framework

in order to facilitate their potential comparison and selection. This classification framework may fur-

ther be used to propose new solutions tackling the uncertainty problem more efficiently in the future.

This paper is organized as follows: in Section 3.1 we present background and related work. In

Section 3.2 we introduce our research questions, discuss both the search strategy, and data extraction

method. In Section 3.3 we present the results of the study, and extensively answer the research ques-

tions. In Section 3.4 we discuss the results of the study including main findings, limitations of the study,

and threats to validity. Finally, Section 3.5 concludes the paper.

3.1.1 BACKGROUND
In this section, we present a brief description for self-adaptive systems, architecture-based self-adap-

tation, architecture-based self-adaptive systems with multiple quality requirements, and uncertainty in

architecture-based self-adaptive systems.

3.1.1.1 Self-adaptive systems
Self-adaptive systems are capable of modifying their runtime behavior in order to achieve system

objectives. Unpredictable circumstances such as changes in the system’s environment, system faults,

new requirements, and changes in the priority of requirements are some of the reasons for triggering

adaptation actions in a self-adaptive system. To deal with these uncertainties, a self-adaptive system

continuously monitors itself, gathers data, and analyzes them to decide if adaption is required.

The challenging aspect of designing and implementing a self-adaptive system is that not only must

the system apply changes at runtime, but also fulfill the system requirements up to a satisfying level.

Engineering such systems is often difficult as the available knowledge at design time is not adequate to

anticipate all the runtime conditions. Therefore, designers often prefer to deal with this uncertainty at

runtime, when more knowledge is available.

46 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

3.1.1.2 Architecture-based self-adaptation
Architecture-based self-adaptation [3] is one well recognized approach that deals with uncertainties by

supporting modifiable runtime system behavior. The essential functions of architecture-based self-

adaptation are defined in the MAPE-K (i.e., monitor, analyze, plan, execute, and knowledge compo-

nent) reference model [5]. By complying with the concept of separation of concerns (i.e., separation of

domain specific concerns from adaptation concerns), the MAPE-K model supports reusability and

manages the complexity of constructing self-adaptive systems. This makes the MAPE-K model a suit-

able reference for designing feedback loops and developing self-adaptive systems [6]. One well-known

architecture-based self-adaptive framework is Rainbow [2]. Rainbow uses an abstract architectural

model to monitor software system runtime specifications, evaluates the model for constraint violations,

and if required, performs global or module-level adaptations. Calinescu et al. [7] present a quality of

service management framework for self-adaptive services-based systems, which augments the system

architecture with the MAPE-K loop functionalities. In their framework, the high-level quality of ser-

vice requirements are translated into probabilistic temporal logic formulae which are used to identify

and enforce the optimal system configuration while taking into account the quality dependencies.

Moreover, utility theory can be used [4,8] to dynamically compute trade-offs (i.e., priority of quality

attributes over one another) between conflicting interests, in order to select the best adaptation strategy

that balances multiple quality requirements in the self-adaptive system.

3.1.1.3 Architecture-based self-adaptive systems with multiple quality requirements
Similar to any other software system, architecture-based self-adaptive systems should fulfill a variety

of quality attributes in order to support a desired runtime system behavior and user experience. To de-

sign and develop such self-adapting systems, it is important to analyze the tradeoffs between multiple

quality attributes at runtime, and ensure a certain quality level after adaptation actions. This means that

not only requirements with higher priorities, which define the system’s goal, should be met; but also

quality attributes of the system should be fulfilled at an acceptable level. After all, a systems’ overall

quality is a desired combination of several runtime and design time requirements. However, when the

number of adaptation dimensions increases, representing the choices for adaptation, and updating and

maintaining trade-offs becomes problematic [4]. Therefore, the majority of current architecture-based

self-adaptive systems approaches do not address trade-offs analysis explicitly, and specifically the neg-

ative impacts of the applied adaptation method on multiple quality attributes, which deteriorates sys-

tems’ overall quality in complex software systems. A recent survey [9] summarizes the state of the art

in architecture-based adaptation in general, and handling multiple requirements in particular.

3.1.1.4 Uncertainty in architecture-based self-adaptive systems
Uncertainty in an architecture-based self-adaptive system, or self-adaptive systems in general, can be

studied from a number of different perspectives. The first and foremost genre of uncertainty is the dyna-

micity and unpredictability of a variety of factors existing in software systems. In fact, this type of un-

certainty justifies the need for design and development of self-adaptive systems. An architecture-based

self-adaptive system should be able to investigate a solution space, choose the optimal adaptation ac-

tion, and adapt the system while fulfilling quality requirement of the system in a specified satisfying

level. However, in a system with multiple objectives and quality goals the decision making process

for selecting the optimal adaptation action is quite complex; which leads us to the second genre of un-

certainty in architecture-based self-adaptive systems: consequences of self-adaptation in a software

473.1 INTRODUCTION

system. Incorporating a self-adaptation capability into a software system may produce even more com-

plexity and undesirable effects in the system. Not only the self-adaptive system should deal with a grow-

ing solution space for adaptation, but it also needs to handle possible negative effects of adaptation on

the system. Adversely affecting quality requirements of the system, noise in sensing and imperfect ap-

plication of adaptation actions are examples of uncertainties which are aftermaths of self-adaptation in a

system. Lastly, the concept of uncertainty itself and its characteristics are vaguely described and inter-

changeably used to refer to a variety of notions in domain of architecture-based self-adaptive systems

withmultiple quality requirements; this poses more ambiguity to the topic of uncertainty in this domain.

3.1.2 RELATED WORK
During the past decade, several studies have been conducted to address uncertainty issue in different

phases of software systems life cycle. Rotmans et al. [10] attempt to harmonize the uncertainty termi-

nology by proposing a conceptual framework (i.e., uncertainty matrix which considers uncertainty from

three different dimensions: location, level of uncertainty, and nature of uncertainty), which helps to iden-

tify and characterize uncertainty in model-based decision support activities. Although the uncertainty

matrix presented in that paper can be used as a guideline in the domain of self-adaptive systems as well;

we found it difficult to use their detailed taxonomies and definitions of uncertainty dimensions, as it is

mainly applicable to the field of model-based decision support. Following the same theme of uncertainty

dimensions (i.e., location, level, and nature of uncertainty) [11] present a taxonomy for uncertainty in the

modeling of self-adaptive systems. In their work, they also provide an extensive list of examples for

sources of uncertainty, which is extracted from the literature. Nonetheless, the authors do not manage

to provide descriptions for the sources of uncertainty. In Ref. [12], the authors present terminology

and a topology of uncertainty and explore the role of uncertainty at different stages of a water manage-

ment modeling process. However, their terminology is substantially inspired by the work of Rotmans

et al. [10], and their field of research is remarkably different from our domain of interest; which makes

it difficult to apply their work in the domain of self-adaptive systems. In Ref. [13], the author argues that

in today’s software systems uncertainty should be considered as a first-class concern throughout the

whole system life cycle, and discusses a number of sources of uncertainty affecting software systems.

What we think is missing in this work is the mapping of these sources of uncertainty into the previously

discussed dimensions and taxonomies of uncertainty in the literature. Esfahani and Malek [14] mostly

focus on sources of uncertainty, and present an extensive list of sources with examples. Moreover, they

investigate uncertainty characteristics (reducibility versus irreducibility, variability versus lack of knowl-

edge, and spectrum of uncertainty), and sources of uncertainty characteristics in their work; however the

connection between these characteristics and dimensions of uncertainty is unclear. Lastly, Ramirez et al.

[15] provide a definition and taxonomy for uncertainty in dynamically adaptive systems. The presented

taxonomy describes common sources of uncertainty and their effect on requirements, design and runtime

phases of dynamically adaptive systems. The main focus of this paper is sources of uncertainty as well.

Investigating the current state of research regarding uncertainty in software systems, and identify-

ing gaps and inconsistencies in the literature, motivated us to conduct an exhaustive review of the topic

in domain of architecture-based self-adaptive systems with multiple quality requirements. We argue

that it is crucial to systematically study and grasp current approaches, investigate different dimensions

of uncertainty to precisely comprehend the problem statement (i.e., uncertainty definition, dimensions,

sources, etc.), and to identify issues which need to be resolved in order to propose approaches that can

48 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

be tailored and reused in a variety of systems. The classification framework we present aims to provide

a consistent and comprehensive overview of uncertainty and its specifications in domain of

architecture-based self-adaptive systems with multiple quality requirements.

3.2 STUDY DESIGN
In this study, we aim at identifying, exploring, and classifying the state of the art on architecture-based

methods handling uncertainty in self-adaptive systems with multiple quality requirements. Therefore,

we perform a systematic literature review [16] to collect and investigate existing architecture-based

methods, and to answer a set of predefined research questions. The first step of conducting a systematic

literature review is to create a protocol,1 in which all the steps and details of the study are specified. In

this section, we report parts of the protocol and its execution: we present our research questions, a ge-

neric overview of the process and the search strategy whichwe use to search through selected databases,

inclusion and exclusion criteria for filtering the collected papers, data extraction procedure, and the data

synthesis method we used to answer the research questions and propose the classification framework.

3.2.1 RESEARCH QUESTIONS
We pose the following research questions to investigate the current architecture-based approaches

tackling uncertainty in self-adaptive systems with multiple quality requirements.

(1) What are the current architecture-based approaches tackling uncertainty in self-adaptive systems

with multiple requirements?

(2) What are the different uncertainty dimensions which are explored by these approaches?

(a) What are the options for these uncertainty dimensions?

(3) What sources of uncertainties are addressed by these approaches?

(4) How are the current approaches classified according to the proposed uncertainty classification

framework?

By answering research question 1, we get an overview of current architecture-based approaches tack-

ling uncertainty. “Architecture-based” implies that the approach presented in the study should provide

architectural solutions (e.g., architectural models) to handle and reason about the dynamic behavior of

the system. To be more specific, the software system that is subject of adaption (i.e., the managed sys-

tem) should be equipped with adaptation software that uses architectural models of the system, its en-

vironment, and goals when monitoring the running system and adapt the managed system at runtime

when needed. In particular, it should be possible to map the components of the adaptation software to

MAPE-k functionalities. With multiple requirements, we refer both to approaches that handle more

than one adaptation concern (e.g., adapt for reliability and security) and approaches that consider a

single adaptation concern (e.g., reliability) but also the effects on one or more other concerns (e.g.,

performance overhead). The answer to this research question will be a list of current studies, related

venues and books in which they have been published, year of publication, and authors’ names.

1The protocol is available at: http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf.

493.2 STUDY DESIGN

http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf

Research question 2 aims to identify and investigate possible dimensions for uncertainty. Dimen-

sions refer to different aspects of uncertainty in self-adaptive systems with multiple quality require-

ments. For instance, we are interested in figuring out whether or not locations (e.g., environment,

the managed system, components of the adaptation software) in which the uncertainty manifests itself

are a commonly discussed subject, or if phases of systems life cycle in which the existence of uncer-

tainty is acknowledged, etc. are discussed in the selected papers or not. The answer to this research

question will help us to derive the most significant and common aspects of uncertainty in this domain.

Research question 2.a aims to understand the dimensions of uncertainty resulting from answering

the previous research question, on a more concrete level. By answering this research question, we come

up with a list of common categories and options for each of the aforementioned dimensions. For in-

stance, we intend to come up with a list of possible locations in which the uncertainty appears in a self-

adaptive system, or identify in which particular phases of systems life cycle the existence of uncertainty

is acknowledged or the problem is tackled.

The source of uncertainty is one of the most important dimensions of uncertainty, Therefore, we

investigate it in more depth in research question 3. By answering this research question, we aim to

identify and list common sources of uncertainty, from which the uncertainty originates. Sources of

uncertainty refer to a variety of circumstances, which affect and deviate system behavior from expected

behavior in the future. For example, changes in the environment or system requirements are considered

as sources of uncertainty. The list of sources of uncertainty will be a separate part of the final classi-

fication framework. Answers to research questions 2 and 3 help to compose the classification frame-

work, which is the main contribution of this study.

Finally, we pose research question 4 to indicate how the proposed uncertainty classification frame-

work can be used to study and classify current approaches tackling uncertainty in the domain of self-

adaptive systems with multiple quality requirements. Essentially, we investigate the usefulness of the

proposed classification framework by analyzing selected primary studies and mapping them to the

framework.

To sum up, by answering the aforementioned research questions, we aim to present an overview of

existing architecture-based approaches tackling uncertainty in self-adaptive systems with multiple re-

quirements. In addition, we strive to identify common dimensions, characteristics of those dimensions,

and sources, which are treated in the literature, and propose a comprehensible classification framework

for uncertainty in self-adaptive systems with multiple quality requirements. Finally, we use the pro-

posed framework as the basis for further analysis of extracted data from the selected papers to present

a statistical overview of the current research in this domain.

3.2.2 SEARCH STRATEGY
In this section, we present the main steps we performed in order to identify, filter, and include all the

relevant papers in our study. An extended and more detailed description of our search strategy can be

found in the protocol.

3.2.2.1 Search scope and automatic search
The scope of the search is defined in two dimensions: publication period and venues. In terms of pub-

lication period, we limited the search to papers published over the period Jan. 1, 2000 to Jul. 20, 2014.

We chose this start date because the development of successful self-adaptive software hardly goes back

to a decade ago; after the advent of autonomic computing [17]. Note that even though some major

50 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

venues on self-adaptive systems started to emerge after 2005 (e.g., International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems), we chose to start the search in the year

2000 to avoid missing any studies published in other venues.

Since the number of published papers in this domain is over several thousand, manual searchwas not

a feasible approach to search databases [18]. Therefore, we used the automatic search method to search

through selected venues. By automatic search wemean search performed by executing search strings on

search engines of electronic data sources (i.e., IEEE Xplorer, ACM digital library, SpringerLink, and

ScienceDirect). An advantage of automatic search is that it supports easy replication of the study.

One of the main challenges of performing an automatic search to find relevant studies in the domain

of self-adaptive systems was a lack of standard, well-defined terminology in this domain. Due to this

problem, and to avoid missing any relevant paper in the automatic search, we decided to use a more

generic search string and include a wider number of papers in the initial results. We used the research

questions and a stepwise strategy to obtain the search terms; the strategy is as follows:

(1) Derive main terms from the research questions and the topics being researched.

(2) If applicable, identify and include alternative spellings and synonyms for the terms.

(3) When database allows, use “advance” or “expert” search option to insert the complete search

string.

(a) Otherwise, use Boolean “or” to incorporate alternative spellings and synonyms, and use

Boolean “and” to link the major terms.

(4) Pilot different meaningful combinations of search terms.

(5) Check the pilot results with the “quasi-gold” standard which is a set of manually derived primary

studies from a given set of studies (see below for further explanation).

(6) Organized discussions between researchers to adjust the search terms, if necessary.

As a result, the following terms were used to formulate the search string:

Self, Dynamic, Autonomic, Manage, Management, Configure, Configuration, Configuring, Adapt,

Adaptive, Adaptation, Monitor, Monitoring, Heal, Healing, Architecture, Architectural.

The search string consists of three parts based on the combination of key terms: Self AND Adap-

tation AND Architecture. The alternate terms listed above are used to create the main search string.

This is done by connecting these keywords through logical OR as follow:

(selfOR dynamicOR autonomic) AND (manageORmanagementOR configureOR configuration

OR configuringOR adaptOR adaptiveOR adaptationORmonitorORmonitoringOR analyzeOR

analysis OR plan OR planning OR heal OR healing OR optimize OR optimizing OR optimization

OR protect OR protecting) AND (architecture OR architectural)

Although manual search is not feasible for databases where the number of published papers can be

enormous, we still incorporated a manual search (i.e., “quasi-gold” standard [19]) into the search pro-

cess to make sure that the search string works properly. To establish the “quasi-gold” standard, we

manually searched three different venues. To perform the manual search, we looked into papers’ titles,

keywords, abstracts, introductions, and conclusions. The manually selected papers were cross-checked

with the results of automatic search to ensure that all the relevant papers are found during the automatic

search. This means that papers found for “quasi-gold” standard should be a subset of automatic results.

This step (i.e., creating “quasi-gold” standard) ensures validity of the created search string.

513.2 STUDY DESIGN

In total, we have selected and included 51 papers derived from 27 different venues and books. To be

more specific, the venues include 13 different conferences, 4 workshops, 7 journals, and 3 books.

3.2.2.2 Overview of search process
We adopted a four-phased search process to search the selected venues and books, filter results, and

collect relevant papers. The different steps of the process are shown in Fig. 3.1.

FIG. 3.1

Search process.

52 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

In the first phase (i.e., manual search), we manually searched three selected venues (see Table 3.18)

to create the “quasi-gold” standard. The final set of papers from this phase should be cross checked with

the automatic results in the filtering phase. In the next phase (i.e., automatic search), we performed the

automatic search of selected venues (see Table 3.19). Depending on the search engines’ capabilities,

different search strategies were picked. If the search engine allowed, we used the search string to search

the full paper; otherwise, titles, abstracts and keywords were searched. In the filtering phase, we filtered

the results based on titles, abstracts, keywords, introductions, and conclusions, and also removed the

duplicate papers.

We ended up having 7453 potentially relevant papers, which then were compared with the “quasi-

gold” standard. Since the “quasi-gold” standard papers were a subset of potentially relevant papers, we

proceeded to the next step and started filtering the papers based on inclusion and exclusion criteria. At

this point, we started reading the whole papers as it was not possible to filter some of the papers only

based on abstract, introduction, and conclusion. Therefore, for certain papers we also started extracting

and collecting data simultaneously. Finally, we included 51 papers as our primary studies, and finished

the data extraction for all of the papers.

3.2.2.3 Refining the search results
We used the following inclusion and exclusion criteria to filter our extracted set of papers.

3.2.2.3.1 Inclusion criteria
To be selected, a paper needed to cover all the following inclusion criteria:

(1) The study should be in the domain of self-adaptive systems.

(2) The method presented to manage systems adaptability should be architecture-based. This implies

that the study should provide architectural solutions (e.g., architectural models) to handle and

reason about the dynamic behavior of the system. In other words, it should be possible to map

components of the systems adaptation logic to MAPE-k functionalities.

(3) The study should tackle multiple quality requirements, either as a goal of adaptation or as a

consequence of applying a self-adaptation method.

3.2.2.3.2 Exclusion criteria
A paper was excluded if it fulfilled one of the following exclusion criteria:

(1) Study is editorial, position paper, abstract, keynote, opinion, tutorial summary, panel discussion, or

technical report. A paper that is not a peer-reviewed scientific paper may not be of acceptable

quality or may not provide reasonable amount of information.

(2) The study in not written in English.

3.2.3 DATA EXTRACTION
We used our selected primary studies to collect data and answer the research questions. Our data ex-

traction approach was semistructured. We created initial uncertainty dimensions and source classifi-

cation schemas (see Tables 3.1 and 3.2) based on the literature, namely the work by Perez-palacin et al.

[11], Refsgaard et al. [12], Rotmans et al. [10], David Garlan [13], Esfahani and Male [14], and

533.2 STUDY DESIGN

Ramirez et al. [15]. Our intent was to extend and complete both the dimension and source classifica-

tions schemas based on data we extract from the primary studies.

We also recorded comments to capture additional observations about certain papers or data fields;

the comments were used to solve any disagreements among researchers, if necessary.

3.2.4 DATA ITEMS
Table 3.3 lists the data fields we used to extract useful data from the primary studies in order to answer

our research questions (RQ). Descriptions of the data fields are provided in Tables 3.1 and 3.2.

Table 3.1 Uncertainty Dimensions Initial Classification Schema

Uncertainty
Dimension Dimension Descriptions

Location [10] “It is an identification of where uncertainty manifests itself within the whole model complex.”

Nature [10] “Specifies whether the uncertainty is due to the imperfection of our knowledge, or is due to the

inherent variability of the phenomena being described.”

Level/spectrum

([10,14])

“Indicates where the uncertainty manifests itself along the spectrum between deterministic

knowledge and total ignorance.”

Sources [14] “Factors challenge the confidence with which the adaptation decisions are made.” Refers to a

variety of uncertainties originating from system models, adaptation actions, systems goals,

and executing environment

Table 3.2 Sources of Uncertainty Initial Classification Schema

Uncertainty Source Descriptions

Model Refers to a variety of uncertainties originating from system models

Goals Refers to a variety of uncertainties originating from system’s goal-related complications

Environment Refers to a variety of uncertainties originating from environmental circumstances

Table 3.3 Data Form Used for Data Extractions

Item ID Data Field Purpose

F1 Author(s) name RQ1

F2 Title RQ1

F3 Publication year RQ1

F4 Venue RQ1

F5 Location RQ2

F6 Nature RQ2

F7 Level/spectrum RQ2

F8 Emerging time RQ2

F9 Sources RQ3

54 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

3.2.5 QUALITY ASSESSMENT OF SELECTED PAPERS
We use a quality assessment (QA) method to assess the quality of all the selected papers that were

included in this review. We adopted the quality assessment mechanism (i.e., definitions and quality

assessment questions) used by Dybå and Dingsøyr [20] as follows:

(1) Quality of reporting: Papers’ rationale, aim, and context should be clarified.

(a) QA1: Do the authors clarify the aims and objectives of the paper, and is there a clear rationale

for why the study is undertaken?

(b) QA2: Is there an adequate description of the context in which the research was carried out?

(2) Rigor: A thorough and appropriate approach is applied to key research methods in the paper.

(a) QA3: Is there an adequate justification and clear description for the research design?

(3) Credibility: The papers’ findings are well presented and meaningful.

(a) QA4: Has sufficient data been presented to support the finding, are the findings are stated clearly?
(b) QA5: Do the researcher examine their own potential bias and influence during the formulation

of research questions and evaluation of results?

(c) QA6: Do the authors discuss the credibility and limitations of their findings?

The quality assessment mechanism of Dybå and Dingsøyr covers also relevance (i.e., explores the

value of the paper for the related community) of papers. However, in this systematic review we have

only included papers published in high quality venues that are relevant to our domain of interest, thus

further investigation of usefulness of the papers for the community is unnecessary.

To assess the quality of the papers, each paper is evaluated against the abovementioned quality as-

sessment questions. Answers to each of the questions can be either “yes,” “to some extend” or “no,” and

then numerical values are assigned to the answers (1¼“yes,” 0¼“no,” and 0.5¼“to some extent”).

The final quality score for each primary paper is calculated by summing up the scores for all the ques-

tions. The results of quality assessment are used in the synthesis phase to support the validity of in-

cluded papers in this review. The scores assigned to the selected papers are presented in Section 3.3.1.

3.3 RESULTS
In this section, we present a basic analysis of our results through various tables and charts, and then

answer the research questions.

3.3.1 QUALITY OF SELECTED PAPERS
Our list of venues (Table 3.19) for automatic search includes the list of venues searched by Weyns et al.

[9]. In that systematic literature review, the authors included a list of high quality primary studies in the

domain of self-adaptive systems, software architectures, and software engineering. Furthermore, to

broaden the search scope and extend the list of venues, we usedMicrosoft Academic Search2 to findmore

relevant venues in the domains of self-adaptive systems and software architecture, and included them in

the study. However, to verify the quality of selected papers furthermore, we assessed all the papers based

2http://academic.research.microsoft.com/.

553.3 RESULTS

http://academic.research.microsoft.com/

on the method described in Section 3.2.5. In Fig. 3.2, we indicate all the selected papers and their

associated quality assessment scores. Bubbles located between scores 4 and 4.5 contain papers with an

average quality, those located between scores 5 to 6 contain papers with a higher quality, and the rest

of the papers were of a lower quality of reporting. The results suggest that the selected papers for this

study are of relatively high quality: 18 papers are located score 4 or 4.5, and 22 papers score from 5 to 6.

3.3.2 RQ1: WHAT ARE THE CURRENT ARCHITECTURE-BASED APPROACHES
TACKLING UNCERTAINTY IN SELF-ADAPTIVE SYSTEMS WITH MULTIPLE
REQUIREMENTS?
In this study, we included 51 papers in total (see Table 3.17 for complete list of papers). Fig. 3.3 shows

the number of included papers per venue with publication numbers equal or higher than two. Software

Engineering for Adaptive and Self-Managing Systems conference (SEAMS) and Software Engineering

FIG. 3.2

Quality assessment of selected papers.

FIG. 3.3

Number of published papers per venue.

56 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

for Self-Adaptive Systems (SESAS) volumes I and II have the most number of selected papers with 14

publications and 6 papers respectively.

From Fig. 3.4, we can see that most of the studies started to appear around 2009; suggesting that

architecture-based approaches tackling uncertainty in self-adaptive systems with multiple quality re-

quirements were not widely studied before the year 2008. Since architecture-based approaches have

been used in the domain of self-adaptive system even before 2009, we speculate that uncertainty in

self-adaptive systems with multiple quality requirements has been understudied before the year 2009.

3.3.3 RQ2: WHAT ARE THE DIFFERENT UNCERTAINTY DIMENSIONS WHICH ARE
EXPLORED BY THESE APPROACHES?
We used the initial classification schema of uncertainty dimensions (see Table 3.1) to extract data from

the selected papers, and then gradually extended that initial classification schema to create our frame-

work. Table 3.4 presents a list of significant dimensions we found in the literature, descriptions of the

dimensions, and possible options for each of the dimensions.

As indicated in Table 3.4, we found five different noteworthy dimensions of uncertainty (i.e.,

location, nature, level, emerging time, and sources). This implies that current architecture-based

approaches in the domain of self-adaptive systems with multiple quality requirements examine uncer-

tainty from five distinct perspectives. The fact that these dimensions were extracted from the literature

suggests that any effective solution tackling uncertainty should at least address these dimensions in

order to thoroughly explore underlying uncertainty in self-adaptive systems, and afterwards, propose

solutions to tackle uncertainty.

Notice that the primary dimensions descriptions listed in Table 3.1 were refined into those pre-

sented in Table 3.4. Although undertaking the systematic review did not change the core of the def-

initions presented in the primary classification schema, it did help to refine the definitions in order to be

further applicable in the domain of architecture-based self-adaptive systems and to fit into the final

classification framework.

FIG. 3.4

Number of published papers per year.

573.3 RESULTS

Table 3.4 Classification Framework for Dimensions of Uncertainty and Its Options

Uncertainty
Dimension Description Options Descriptions

Location Refers to the locale, where uncertainty

manifests itself within the whole system

Environment Refers to execution context and

humans interacting with, or affecting

the system

Model Refers to a variety of conceptual

models representing the system

Adaptation

functions

Refers to functionalities performed as

part of MAPE-K model

Goals Refers to specification, modeling and

alteration of system goals

Managed

system

Refers to the application specific

system, which is being monitored and

adapted

Resources Refers to a variety of essential factors

and components which are required

by the self-adaptive system in order to

operate normally

Nature Specifies whether the uncertainty is due to

the imperfection of available knowledge,

or is due to the inherent variability of the

phenomena being described

Epistemic The uncertainty is due to the

imperfection of our knowledge,

which may be reduced by more

research and empirical efforts

Variability The uncertainty is due to inherent

variability in the system complex

including randomness of nature,

human behavior, and technological

surprises

Level/

spectrum

Indicates the position of uncertainty along

the spectrum between deterministic

knowledge and total ignorance

Statistical

uncertainty

Statistical uncertainty refers to

deterministic knowledge in the

uncertainty spectrum and is any

uncertainty that can be described

adequately in statistical terms.

Scenario

uncertainty

A scenario is a plausible description

of how the system and or its driving

forces may develop in the future.

Scenarios do not forecast what will

happen in the future; rather they

indicate what might happen.

Emerging

time

Refers to time when the existence of

uncertainty is acknowledged or

uncertainty is appeared during the life

cycle of the system.

Runtime Refers to the uncertainties appearing

after systems deployment, which also

includes system evolution over time.

Design time Refers to the uncertainties

manifesting themselves during any

software development phases carried

out before system deployment.

Sources Refers to a variety of circumstances

affecting the adaptation decision, which

eventually deviate system’s performance

from expected behavior

See Table 3.5

58 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

3.3.3.1 RQ2.a: What Are the Options for These Uncertainty Dimensions?
In Table 3.4, we also provide detailed descriptions for each of the options listed for uncertainty dimen-

sions. Furthermore, we expanded the options list by adding new options (i.e., managed system, and

sources) to the primary schema. By providing a full list of options and their descriptions, this table

can be used as a guideline for researchers to avoid any ambiguity while addressing dimensions options

in their work.

We note that the dimension “level of uncertainty” may also include recognized ignorance (i.e., ac-

knowledging uncertainty, but not proposing any remedy), and total ignorance (i.e., completely ignoring

the existence of uncertainty) as options. However, these two options do not apply for any of the primary

studies: all the studies acknowledge the existence of uncertainty and propose solutions to handle it.

3.3.4 RQ3: WHAT SOURCES OF UNCERTAINTIES ARE ADDRESSED BY THESE
APPROACHES?
Finally, to answer this research question, we used the initial classification schema for sources of uncer-

tainty (see Table 3.2) for data extraction and created an extended list of sources of uncertainty. In

Table 3.5 we present the extended list, along with the descriptions for the options and examples from

literature. The sources of uncertainty refer to a variety of circumstances from which the uncertainty

originates. Furthermore, we added one more column, “classes of uncertainty”, which is only used for

grouping purposes: sources of uncertainties with similar origins are grouped in the same class of uncer-

tainty. This helps making a long list of sources of uncertainty easier to analyze in the next section.

In this table, specific examples from the literature are provided to help with the comprehensibility of

sources.

3.3.5 RQ4: HOW ARE THE CURRENT APPROACHES CLASSIFIED ACCORDING TO THE
PROPOSED UNCERTAINTY CLASSIFICATION FRAMEWORK?
From 51 selected papers, 12 papers discuss one class of uncertainty. Environment is the most-addressed

class of uncertainty, and adaptation functions is the least (see Table 3.6).

The rest of the papers (39 out of 51) discuss multiple classes of uncertainty. A variety of combi-

nations of classes of uncertainty are discussed in the literature; “Environment, Goal, and Adaptation

functions” is the most addressed set of classes of uncertainty, for details see Table 3.7.

From Tables 3.6 and 3.7, we can conclude that the majority of existing studies (39 papers) explore

different classes of uncertainty, and do not focus on proposing solutions to tackle certain class of un-

certainty and its sources. We can also observe that “Environment” and “Goal” seems to be the most

important classes of uncertainty, and the majority of researchers are interested in tackling uncertainties

emanating from environmental circumstances and self-adaptive system’s goal related complications.

Regarding the nature of uncertainty (see Table 3.8), 35 papers (68.6%) discuss uncertainty due to

variability, and only two papers tackle uncertainty due to lack of knowledge (i.e., epistemic). Although

14 papers address both variability and lack of knowledge as the nature of uncertainty in self-adaptive

systems; variability seems to be the main source from which uncertainty originates, as 35 primary stud-

ies’ main focus is only variability.

593.3 RESULTS

Table 3.5 Sources of Uncertainty

Class of
Source of
Uncertainty

Options (for
Sources of
uncertainty) Description Example

Model

uncertainty

Abstraction Uncertainty caused by omitting

certain details and information from

models for the sake of simplicity

Simplifying assumptions [14]

Incompleteness Uncertainty caused by parts (of

models, mechanisms, etc.) that are

knowingly missing because of a lack

of (current) knowledge

Model structural uncertainty [11]

Model drift Uncertainty caused by a discrepancy

between the state of models and the

represented phenomena

Violation of requirements in

models [21]

Different

sources of

information

Uncertainty caused by differences

between the representations of

information provided by different

sources of information. Uncertainty

may be due to different

representations of the same

information, or result of having

different sources of information, or

both

Granularity of models [22]

Complex

models

Uncertainty caused by complexity of

runtime models representing

managed sub systems

Complex architectural models

[23]

Adaptation

functions

uncertainty

Variability

space of

adaptation

Uncertainty caused by the size of the

variability space that the adaption

functions need to handle. This type

of uncertainty arises from striving to

capture the whole complex

relationship of the system with its

changing environment in a few

architectural configurations which is

inherently difficult and generates the

risk of overlooking important

environmental states [4]

Being unable to foresee all

possible environment states as

well as all the system

configurations in the future [24]

Sensing Uncertainty caused by sensors which

are inherently imperfect

Noise in sensing [14]

Effecting Uncertainty caused by effectors of

which the effects may not be

completely deterministic

Futures parameter value [14]

Automatic

learning

Uncertainty caused by machine

learning techniques of which the

effects may not be completely

predictable.

Modeling techniques [22]

Decentralization Uncertainty due to decision making

by different entities of which the

Decentralized control in a traffic

jams monitoring system [25]

Continued

60 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Table 3.5 Sources of Uncertainty—cont’d

Class of
Source of
Uncertainty

Options (for
Sources of
uncertainty) Description Example

effects may not be completely

predictable

Changes in

adaptation

mechanisms

Uncertainty due to required

dynamicity of adaptation

infrastructure to maintain its

relevance with respect to the

changing adaptation goals [26]

Additional monitoring

infrastructure [26]

Fault

localization and

identification

Uncertainty caused by inaccurate

localization and identification of

faults in the managed system

Identifying and ranking faulty

component [27]

Goals

uncertainty

Goal

dependencies

Dependencies between goals, in

particular quality goals, may not be

captured in a deterministic manner,

which causes uncertainty

Conflict resolution between

competing quality attributes [28]

Future goal

changes

Uncertainty due to potential changes

of goals that could not be completely

anticipated

Rapid evolution [13]

Future new

goals

Uncertainty due to the potential

introduction of new goals that could

not be completely anticipated

Rapid evolution [13]

Goal

specification

Uncertainty due to lack of

deterministic specifications of

quality goals

Quality goals priorities changes

[29]

Outdated goals Uncertainty caused by overlooking

outdated goals

Addressing goals which are

irrelevant to the system [30]

Environment

uncertainty

Execution

context

Uncertainty caused by the inherent

unpredictability of execution

contexts

Mobility [13]

Human in the

loop

Uncertainty caused by the inherent

unpredictability of human behavior

Objectives [14]

Multiple

ownership

Uncertainty caused by lack of proper

information sharing, conflicting

goals, and decision making policies

by multiple entities that own parts of

the system

Uncertain execution time and

failure rate of a component

operated by a third-party

organization [31]

Resources

uncertainty

New resources Uncertainty caused by availability of

new resources in the system

Availability of new services in the

system [32]

Changing

resources

Uncertainty caused by dynamicity of

resources in the system

Resources mobility [33]

Managed

system

uncertainty

System

complexity and

changes

Uncertainty caused by complexity

and dynamicity of nature of the

managed system

Complex systems and complex

architectural models [23]

613.3 RESULTS

Table 3.6 List of Papers Discussing Single Class of Uncertainty

Class of Uncertainty Number of Papers Study Numbers

Environment 4 S20, S34, S37, S38

Goal 3 S4, S29, S41

Model 3 S11, S16, S23

Adaptation functions 2 S5, S14

Table 3.7 List of Papers Discussing Combinations of Classes of Uncertainty

Classes of Uncertainty
Number of
Papers Study Numbers

Environment, goal, adaptation functions 9 S8, S9, S25, S31, S32, S43, S44, S45,

S49

Environment, goal 8 S7, S15, S18, S33, S46, S47, S51

Environment, adaptation functions 3 S17, S42, S50

Environment, model, adaptation functions 3 S13, S12, S19

Environment, model 2 S3, S24

Environment, goal, adaptation function, model 2 S26, S10

Environment, goal, managed system 2 S27, S36

Environment, goal, model 2 S30, S40

Adaptation function, model, goal 1 S48

Goal, adaptation function 1 S39

Environment, resources 1 S2

Environment, resources, adaptation functions 1 S21

Environment, goal, resources 1 S1

Environment, adaptation functions, goal, managed

system

1 S35

Environment, adaptation functions, goal, resources 1 S22

Environment, model, managed system 1 S6

Goal, adaptation function, resources 1 S28

Table 3.8 List of Papers and Nature of Uncertainty

Nature
Number of
Papers Study Numbers

Variability 35 S1, S2, S4, S5, S6, S7, S8, S9, S10, S14, S15, S16, S17, S18, S19, S20, S21, S22,

S25, S28, S29, S31, S34, S36, S37, S38, S39, S40, S41, S43, S45, S47, S48, S49,

S51

Variability,

epistemic

14 S3, S11, S12, S13, S24, S26, S27, S30, S32, S33, S35, S42, S46, S50

Epistemic 2 S23, S44

62 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Regarding the level of uncertainty (see Table 3.9), most of the primary studies (i.e., 28 papers) ex-

plore uncertainty at the scenario level, 7 papers use only statistical methods to investigate uncertainty,

and 12 papers use a combination of both scenarios and statistical methods. Investigating uncertainty at

the scenario level is easier to understand, it helps to anticipate potential system behavior in presence of

uncertainty, and estimates how the quality requirements may be affected; on the downside it lacks rig-

orous analysis of system state. Statistical methods, however, can use runtime knowledge to accurately

calculate system status in presence of uncertainty, and also enable finding the best adaptation option

with the least side effects on quality requirements. Therefore, we envision that using a combination of

both scenario and statistical levels will be the most advantageous option for handling multiple quality

requirements.

Regarding emerging time, Table 3.10 indicates that most of the existing approaches (i.e., 36 papers)

postpone the treatment of uncertainty to the runtime phase. This is not surprising as researchers are

mostly interested to study requirements trade-offs at runtime. In 13 papers, uncertainty is treated in

both design and runtime. One common way of dealing with uncertainty in these approaches is to ac-

knowledge the existing uncertainty and anticipate probable solutions at design time, but tackle the un-

certainty in the runtime phase when more knowledge is available. Finally, we found two papers in

which uncertainty is explored and tackled only at design time.

Regarding the sources of uncertainty, we note that in some cases there might be an overlap between

two or more of the listed sources (e.g., human in the loop, and multiple ownership) definitions; in these

cases, we have assigned the primary studies to the most relevant sources. In some cases it is not clear

Table 3.9 List of Papers and Level of Uncertainty

Level
Number of
Papers Study Numbers

Scenario 28 S1, S3, S4, S6, S8, S10, S11, S15, S16, S17, S18, S19, S20, S22, S23, S24, S25,

S29, S31, S32, S35, S36, S37, S40, S44, S48, S50, S51

Scenario,

statistical

12 S5, S7, S21, S27, S30, S33, S34, S38, S39, S46, S47, S49

Statistical 7 S9, S12, S13, S14, S26, S42, S43

Not

specified

4 S2, S28, S41, S45

Table 3.10 List of Papers and the Uncertainty Treatment Time

Emerging
Time

Number of
Papers Study Numbers

Runtime 36 S1, S2, S4, S5, S8, S10, S14, S16, S17, S19, S20, S21, S23, S25, S26, S27, S28,

S29, S30, S31, S32, S33, S34, S35, S37, S38, S39, S41, S42, S43, S45, S46, S47,

S48, S49, S51

Runtime,

design time

13 S6, S7, S9, S11, S12, S13, S15, S18, S22, S24, S36, S44, S50

Design time 2 S3, S40

633.3 RESULTS

from the paper which source is the most relevant one; in these cases we list the source as hybrid and

indicate which multiple sources are applicable. Furthermore listing papers under certain types of

sources does not necessarily indicate that the paper provides a solution to tackle uncertainty originating

from those particular sources. It means that the paper discusses uncertainty due to those sources; how-

ever, it may or may not propose solutions to resolve uncertainty emerging from one or multiple of those

sources.

The most common types of sources of uncertainty in the literature are environmental sources

(addressed in 38 papers). From Table 3.11, we see that execution context and human in the loop

are respectively the most and the least common sources of uncertainty from the environment uncer-

tainty class. This is not a surprise since the most commonly addressed nature of uncertainty is variabil-

ity, and variability normally occurs in the execution context of the self-adaptive systems.

Although S6, S18, and S44 address uncertainty originating from environmental sources as well, we

could not decide to which source they should be assigned. Therefore, we recoded sources discussed in

S6 and S18 as hybrid sources, as they both can be considered uncertainty originating from system and/

or environment. Regarding S44, the environmental fact causing the uncertainty is considered as “com-

plexity,” despite the rest of the papers which explore the uncertainty due to the dynamicity of the

environment.

Table 3.12 lists sources from the goal uncertainty class. Addressed by twelve papers, future goal

changes seem to be the most studied goal-related uncertainty in the literature. This suggests that re-

searchers are mainly concerned with the ability of the self-adaptive system to handle its current goals

and the potential changes in the future; adding new goals to the system (i.e., future new goals) does not

seem to be as important. In Table 3.12 we also list different sets of sources that we found in the liter-

ature; however, the numbers of papers addressing these sets of sources are rather low.

Both S39 and S40 address the sources achieving stakeholder’s objectives and meeting quality of

service which can be considered a form of goal uncertainty class. However, we did not assign them

to any of our listed sources as it was unclear which sources would be the most relevant. What we

noticed from the analysis of goal uncertainty sources is that, although all the included primary studies

somehow deal with multiple quality requirements, the trade-off analysis gained little attention in the

literature. From 51 selected primary studies, only 8 paper address goal dependencies. In addition, the

potential negative impact of self-adaptation on systems quality requirements is not explicitly explored

as sources of uncertainty.

Table 3.11 List of Papers Addressing Environment Uncertainty Sources

Types of Environment
Uncertainty Source

Number of
Papers Study Numbers

Execution context 30 S1, S3, S7, S8, S9, S11, S13, S17, S19, S20, S24, S25, S26, S27, S30,

S31, S32, S33, S34, S35, S36, S37, S38, S40, S42, S43, S45, S46, S47,

S51

Execution context, human

in the loop

4 S2, S10, S22, S50

Human in the loop 1 S21

64 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Table 3.13 indicates sources of uncertainty from adaptation functions class. The most commonly

discussed (i.e., addressed by 10 papers) source is variability of solution space. This shows that the cur-

rent focus of research is mainly on providing assurances for applying the best adaptation actions in a

system. Self-adaptive systems should be capable of exploring the solution space, and selecting the best

solution to adapt the systems with minimum negative side effect on other systems functionalities and

quality aspects. Interestingly, the next most common source is fault localization and identification in a

system. This suggests that although the most significant source of uncertainty is the selection of most

Table 3.12 List of Papers Addressing Goal Uncertainty Sources

Types of Goals Uncertainty
Source

Number of
Papers Study Numbers

Future goal changes 12 S7, S10, S18, S22, S26, S27, S28, S30, S31, S32, S33,

S36

Goal dependency 8 S15, S41, S43, S44, S46, S47, S49, S51

Future new goals 3 S1, S4, S8

Future goal changes, future new

goals

2 S38, S45

Goal dependency, future new goals 1 S9

Goal dependency, future goal

changes

1 S25

Goal specification, goal

dependency

1 S13

Future goal changes, outdated

goals

1 S29

Table 3.13 List of Papers Addressing Adaptation Function Uncertainty Sources

Types of Adaptation Functions Uncertainty
Source

Number of
Papers Study Numbers

Variability of solution space 10 S9, S13, S15, S25, S26, S39, S42, S43,

S44, S48

Fault localization and identification 5 S10, S17, S21, S22, S28

Decentralization 4 S1, S19, S32, S45

Variability of solution space, fault localization and

identification

3 S5, S8, S14

Changes in adaptation mechanisms 2 S31, S35

Variability of solution space, decentralization 1 S11

Sensing 1 S12

Decentralization, multiple ownership 1 S49

Adaptation action’s effects 1 S50

653.3 RESULTS

suitable approach for adaptations, in many cases the problem itself, which triggers the need for adap-

tation, is not identified properly and therefore causes more uncertainty in the system. Sensing and ad-

aptation actions affects are the least common sources from this class of uncertainty. Note that although

investigation of adaptation action effects is a major part of resolving the uncertainty due to variability

of solution space, and also is a key factor in exploring adaptation effects on quality requirements and

handling trade-offs, it has only been explicitly addressed in one paper. These results again confirm the

lack of sufficient research on quality requirements trade-off analysis.

Table 3.14 presents sources from the model uncertainty class. Our results indicate that uncertainty

due to differences in sources of information is the most commonly addressed source in this class. How-

ever, we could not find any source which is explored in a significantly higher number of papers; all of

the sources from model uncertainty class are discussed in almost equal (low) number of papers.

Table 3.15 presents sources of uncertainty from the resources class. Four papers address changing

resources as the origin of uncertainty in self-adaptive system, and one paper deals with newly arrived

resources as an uncertainty sources.

Finally, four papers (i.e., S6, S27, S35, and S36) state that sources of uncertainty may be due to

systems’ circumstances. Complexity in the system is considered as the source of uncertainty in S6,

and S27, while systems changes are considered as the sources of uncertainty in S35, and S36.

3.4 DISCUSSION
In this section, we first present a discussion about sources of uncertainty, and then list the main findings

derived from our results and provide implications for researchers.

Table 3.14 List of Papers Addressing Model Uncertainty Sources

Types of Model Uncertainty Source Number of Papers Study Numbers

Different sources of information 3 S3, S16, S19

Model drift 2 S7, S20

Incompleteness 3 S11, S12, S48

Abstraction 2 S23, S26

Incompleteness, abstraction 2 S24, S30

Erroneous models 1 S40

Complex models 1 S6

Table 3.15 List of Papers Addressing Resource Uncertainty Sources

Types of Resource Uncertainty Source Number of Papers Study Numbers

Changing resources 4 S2, S21, S22, S28,

New resources 1 S1

66 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

3.4.1 ANALYSIS OF DERIVED SOURCES OF UNCERTAINTY BASED ON UNCERTAINTY
DIMENSIONS
One of the major goals of this study was to deliver a comprehensive and well-organized list of com-

monly addressed sources of uncertainty in self-adaptive systems with multiple quality requirements.

Therefore, we believe it is also essential to analyze the derived sources of uncertainty and investigate

how each one of these sources is handled. In the following, we explore the sources of uncertainty (see

Table 3.5) based on emerging time, level, and nature dimensions. Note that although we performed the

same analysis for all classes of sources listed in Table 3.5, we have omitted results of minor

significance.

3.4.1.1 Environment uncertainty
From 35 papers (see Table 3.11) that addressed sources of uncertainty originating from environment,

10 papers (i.e., S1, S8, S10, S17, S19, S20, S25, S31, S37, and S51) deal with uncertainty at scenario

level, due to variability in the context, at runtime. This indicates that variability in the execution context

and human behavior are the most common sources of uncertainty, and are mainly handled at runtime. It

also shows that researchers mostly use scenarios to understand systems behavior at runtime and resolve

the uncertainty. This is an interesting finding as it suggests that statistical methods may be used at run-

time to benefit from available knowledge, and study the solutions space to improve the decisionmaking

process in self-adaptive systems.

3.4.1.2 Goals uncertainty
From 29 papers (see Table 3.12), in which sources of uncertainty originate from goals, eight papers

(i.e., S1, S4, S8, S10, S25, S29, S31, and S51) deal with uncertainty due to variability of goals. In these

papers, researchers use scenarios to explore how variability may affect the system goals, and deal with

the goal uncertainty at runtime. Furthermore, we found that four papers (i.e., S18, S15, S22, and S36)

deal with this type of uncertainty both at design and runtime. This indicates that only in a small number

of papers (i.e., four papers) researchers manage to touch the issue of goals uncertainty at design time,

and in most cases it is postponed to runtime. Despite the fact that more knowledge about system’s status

is accessible at runtime, statistical solutions are not commonly used to propose rather accurate solutions

for handling goals uncertainty at self-adaptive systems with multiple quality requirements. However, a

remarkable number of papers (i.e., S7, S27, S30, S33, S38, S46, S47, and S49) use a combination of

statistical methods and scenarios to deal with goals uncertainty.

3.4.1.3 Adaptation functions uncertainty
Following the same pattern we found in previous sections, from 28 papers (see Table 3.12) in which

adaptation functions uncertainty sources are addressed, 11 papers (i.e., S1, S8, S10, S17, S19, S25, S31,

S32, S35, S48, S49) deal with this class of uncertainty due to variability issues, at scenario level, and

at runtime. Interestingly, we found four papers (i.e., S14, S26, S42, and S43) in which statistical

methods are used at runtime to deal with adaptation functions uncertainty sources with both variability

and epistemic natures. This indicates that although statistical methods are rarely used at runtime, they

are favored methods when dealing with adaptation functions uncertainty; specifically, uncertainty due

to variability of solution space and fault localization at runtime. Uncertainty due to variability of the

solution space is in fact one of the main challenges which needs to be handled when dealing with

673.4 DISCUSSION

multiple requirements in self-adaptive systems. The system should be able to manage (i.e., identify,

investigate) an increasing number of possible scenarios for adaptation, and predict their effects on qual-

ity attributes and select the best adaptation actions. Therefore, it is very crucial to design a self-adaptive

system in a way that it collects the most relevant data at a given time and use the right tools to predict

the system’s behavior in order to handle the quality attributes trade-offs.

3.4.1.4 Model uncertainty
From 14 papers, in which model uncertainty is addressed, six papers (i.e., S3, S11, S12, S24, S26, and

S30) deal with model uncertainty sources due to both variability and lack of knowledge (i.e., episte-

mic). This is interesting because we have only found 14 papers investigating uncertainty due to

combination of both variability and lack of knowledge, and in nearly half of them source of uncertainty

is related to models. This shows that lack of knowledge greatly affects credibility of models, and

generates uncertainty in self-adaptive systems with multiple quality requirements. From these six

papers, three of them (i.e., S11, S12, and S24) deal with uncertainty at both design and runtime,

two papers at runtime (i.e., S26, S30), and one paper (i.e., S3) at design time.

It might be interesting for researchers to find methods to use runtime knowledge to constantly adjust

and update models. Updated and accurate models are better representatives of the actual self-adaptive

systems and ultimately improve the decision making process and trade-off analysis.

3.4.2 MAIN FINDINGS AND IMPLICATIONS FOR RESEARCHERS
The following paragraphs elaborate on the main findings, while the end of each paragraph provides

implications for researchers in terms of future directions.

3.4.2.1 Model uncertainty is investigated in both design and runtime
We found that among those approaches which deal with both design time and runtime phases of the

system’s life cycle, model uncertainty is the most commonly addressed class of uncertainty (see

Tables 3.10 and 3.14). From 51 studies, 13 papers (i.e., S6, S7, S9, S11, S12, S13, S15, S18, S22,

S24, S36, S44, S50) consider uncertainty in both design and runtime phases, and 5 of these 13 studies

(i.e., S6, S7, S11, S13, S24) investigate different types of model uncertainty. This indicates that, al-

though many researchers are focusing on models at runtime to tackle the uncertainty issue, dealing

with this particular type of uncertainty (i.e., model uncertainty) is not completely postponed to runtime.

In other words, researchers strive to use the available knowledge at design time and probably anticipate

system behavior in the future in order to be able to start dealing with model uncertainty as soon as

possible (i.e., design time). Although our results cannot prove the efficiency of this way of combining

both design and runtime solutions in dealing with model uncertainty, it confirms its popularity.

3.4.2.2 Uncertainty is often explored at scenario level regardless of emerging time
Our results show that most of the current studies (i.e., 17 papers) deal with uncertainty at scenario level

(see Table 3.16) at runtime. Researchers frequently try to understand the current state, foresee future

behavior of the system, and demonstrate system state during and after application of uncertainty rem-

edy only through scenarios. Surprisingly, approaches expanding through both design time and runtime

phases also lack statistical methods. This means that despite the availability of knowledge at runtime,

most of these approaches do not consider using statistical methods to reassess their assumptions

68 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

regarding systems’ runtime state in face of uncertainty. Most of the current approaches simply study

uncertainty at scenario level (i.e., showcase the behavior of system in the future) through examples, and

do not provide rigorous techniques (e.g., probabilistic methods) to support these scenarios. It may be

interesting for researchers to further explore incorporating runtime information into statistical methods

to mathematically strengthen their anticipations of system behavior.

3.4.2.3 Uncertainty starting to get acknowledged in both design and runtime
Our results indicate that over a decade ago, researchers were focused on solving uncertainty related

issues mainly at runtime. This means that both identification of uncertainty and tackling the uncertainty

were postponed to the runtime phase. However, around the year 2009 (see Fig. 3.5) researchers started

to acknowledge the uncertainty in design time as well. In order to deal with uncertainty in a more struc-

tured manner, we propose that researchers investigate whether certain sources of uncertainty can be

handled specifically in design or runtime.

3.4.2.4 Current approaches mainly focus on tackling uncertainty due to variability through
approaches in both design and runtime
Variability may emerge in system requirements, execution environment, or may be a result of dyna-

micity of self-adaptive systems solutions space. Our results indicate that the main focus of current

research is on the variability issues rather than problems originating from lack of knowledge in

Table 3.16 Emerging Time Versus Level of Uncertainty

Emerging Time

Level

Scenario Statistical Both

Runtime 17 papers 4 papers 11 papers

Both 9 papers 3 papers 1 paper

Design time 2 papers None None

FIG. 3.5

Number of papers acknowledging uncertainty in design time per year.

693.4 DISCUSSION

self-adaptive systems (see Tables 3.8 and 3.10). Therefore, more investigation is required to distinguish

the differences in characteristics of variability in different circumstances, and possibly propose tailored

solutions capable of dealing better with uncertainty due to variability.

3.4.2.5 Most commonly addressed source of uncertainty is dynamicity of environment
Not surprisingly, changes in the environment are considered as the main reason behind uncertainty in

self-adaptive systems (see Table 3.11). This is because at the design time, engineers can not anticipate

the potential changes in the environment in the future as it is out of their control, and most of the de-

cision making process should be postponed to runtime when more information is available.

3.4.2.6 Future goal changes is the second most important uncertainty source
From the selected primary studies, we can see that researchers consider changes of system goals as one

of the main sources of uncertainty in self-adaptive systems. However, studies rarely explore details of

these changes and how changes in one or two goals affects other goals of the system (i.e., requirements

trade-offs) explicitly. Therefore, the first step toward handling the requirements trade-offs may be the

thorough monitoring of the requirements; this means that adequate data on how the systems’ require-

ments, intentionally or unintentionally, are affected by the adaptation actions (or human’s intervene)

should constantly be collected, and then the data should properly be analyzed in order to make the best

decision and fulfill the requirements at a desired level.

3.4.3 LIMITATIONS OF THE REVIEW AND THREATS TO VALIDITY
In this section, we discuss the limitations and risks that may have potentially affected the validity of the

systematic literature review and represent solutions we used to mitigate these threads.

3.4.3.1 Bias
The pilot search indicates that, it is not always easy to extract relevant information from the primary

studies. Therefore, there may be some bias and inaccuracy in the extracted data and creation of the

classification framework. This is especially prominent for establishing the sources of uncertainty clas-

sification due to existing overlap of certain sources definitions. To mitigate this, we included a list of

examples from the literature to clarify the sources and help the reader to better comprehend them.

Moreover, we had discussions among researchers and asked experts to judge the accuracy of data when

the researchers could not reach a consensus on certain extracted data occasionally.

3.4.3.2 Domain of study
One of the main risks of performing a systematic literature review in the domain of self-adaptive systems

is lack of a common terminology. This problem emanates from the fact that research in this field is to a

large extend still in an exploratory phase. The lack of consensus on the key terms in the field implies that

in the searching phase, wemay not cover all the relevant studies on architecture-based self-adaptation [9].

To mitigate the risk, we used a generic search string containing all the mostly used terms, and we avoided

a much narrowed search string to prevent missing papers in the automatic search. In addition, we estab-

lished “quasi-gold” standard to investigate the trustworthiness of the created search string. Furthermore,

we had a look at the references of the selected primary studies to figure out if we have missed any

well-known paper due to the fact that they are out of the search scope. If applicable (i.e., if they match

the search scope), we included them in our final set of selected primary studies.

70 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

3.5 CONCLUSION AND FUTURE WORK
We conducted a systematic literature review to survey the current state of research regarding uncer-

tainty in architecture-based self-adaptive systems with multiple quality requirements. Our results pre-

sent a classification framework for concept of uncertainty and its different types and categories, and

sources of uncertainty in this domain. Furthermore, we investigate the usefulness of the proposed clas-

sification framework by analyzing the selected primary studies, and mapping them to the framework.

Our work may be interesting for researchers in field of self-adaptive systems as it offers an overview of

the existing research and open areas for future work.

Analysis of the selected primary studies suggests that although researchers consider changes of sys-

tem goals as one of the main sources of uncertainty in architecture-based self-adaptive systems with

multiple quality requirements, studies rarely explore details of these changes explicitly and often over-

look how changes in one or two of the goals may affect other goals of the system (i.e., requirements

trade-offs).

Our results also indicate that uncertainty in architecture-based self-adaptive systems with multiple

quality requirements is often explored at scenario level regardless of emerging time of the uncertainty.

This means that despite the availability of sufficient knowledge at runtime, most existing approaches

do not consider using statistical methods to reassess their assumptions regarding systems’ runtime state

in face of uncertainty, or incorporate runtime information into statistical methods to mathematically

strengthen their anticipations of system behavior in the future. This implies that statistical methods

can further be used to more efficiently handle quality requirements and their trade-offs in

architecture-based self-adaptive systems tackling uncertainty.

For our future work, we plan to particularly focus on uncertainty and its potential influences on

quality attributes. To be more specific, we plan to identify types of requirements for which uncertainty

in architecture-based self-adaptive systems is more relevant, and investigate the relationship between

uncertainty and quality requirements tradeoffs.

Another direction for future work is to focus on proposing methods that are designed to handle a

specific class of uncertainty (i.e., uncertainty originating from certain sources) and its sources rather

than covering a variety of classes and their sources to a limited degree. Different sources of uncertainty

assigned to one class are more likely to overlap, and therefore, focusing on a specific class of uncer-

tainty may result in proposing more structured and efficient methods dealing with multiple sources of

uncertainty and their potential interplay.

APPENDIX

Table 3.17 Primary Studies Included in the Review

Study # Title Authors Year Venues

1 Architecture-driven self-adaptation and

self-management in robotics systems

G. Edwards, J. Garcia, H. Tajalli, D.

Popescu, N. Medvidovic, G. Sukhatme,

and B. Petrus

2009 ICSE

2 Self-adaptation for everyday systems S. Hallsteinsen, E. Stav, and J. Floch 2004 SIGSOFT

Continued

713.5 CONCLUSION AND FUTURE WORK

Table 3.17 Primary Studies Included in the Review—cont’d

Study # Title Authors Year Venues

3 Adapt cases: extending use cases for

adaptive systems

M. Luckey, B. Nagel, C. Gerth, and

G. Engels

2011 SEAMS

4 A case study in software adaptation G. Valetto and G. Kaiser 2002 WOSS

5 Diagnosing architectural run-time failures P. Casanova, D. Garlan, B. Schmerl,

and R. Abreu

2013 SEAMS

6 Adaptation and abstract runtime models T. Vogel and H. Giese 2010 SEAMS

7 Dealing with nonfunctional requirements

for adaptive systems via dynamic

software product-lines

C. Ghezzi and A. Sharifloo 2013 LNCS

8 A case study in goal-driven architectural

adaptation

W. Heaven, D. Sykes, J. Magee, and

J. Kramer

2009 LNCS

9 Designing search based adaptive systems:

a quantitative approach

P. Zoghi, M. Shtern, and M. Litoiu 2014 SEAMS

10 Rainbow: architecture-based self-

adaptation with reusable infrastructure

D. Garlan, S.-W. Cheng, A.-C. Huang,

B. Schmerl, and P. Steenkiste

2004 JC

11 Models at runtime to support the iterative

and continuous design of autonomic

reasoners

F. Chauvel, N. Ferry, and B. Morin 2013 JC

12 Context-aware reconfiguration of

autonomic managers in real-time control

applications

R. Anthony, M. Pelc, W. Byrski 2010 ICAC

13 Taming uncertainty in self-adaptive

software

N. Esfahani, E. Kouroshfar, and S. Malek 2011 SIGSOFT

14 Architecture-based run-time fault

diagnosis

P. Casanova, B. Schmerl, D. Garlan,

and R. Abreu

2011 LNCS

15 Requirements and architectural

approaches to adaptive software systems:

a comparative study

K. Angelopoulos, V.E. Souza, and

J. Silva Pimentel

2013 SEAMS

16 An architecture for coordinating multiple

self-management systems

D. Garlan, B. Schmerl, and P. Steenkiste 2004 WICSA

17 Robust, secure, self-adaptive and resilient

messaging middleware for business

critical systems

H. Abie, R.M. Savola, and I. Dattani 2009 CW

18 A development framework and

methodology for self-adapting

applications in ubiquitous computing

environments

S. Hallsteinsena, K. Geihsb, N. Paspallisc,

F. Eliassend, G. Horna, J. Lorenzoe,

A. Mamellif, and G.A. Papadopoulosc

2012 JSS

19 Architecting self-aware software systems F. Faniyi, P. Lewis R. Bahsoon,

and X. Yao

2014 WICSA

20 High-quality specification of self-

adaptive software systems

M. Luckey and G. Engels 2013 SEAMS

21 Implementing adaptive performance

management in server applications

Y. Liu and I. Gorton 2007 SEAMS

22 A framework for distributed management

of dynamic self-adaptation in

heterogeneous environments

M. Zouari, M. Segarra, and F. Andr�e 2010 ICCIT

Continued

72 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Table 3.17 Primary Studies Included in the Review—cont’d

Study # Title Authors Year Venues

23 A language for feedback loops in self-

adaptive systems: executable runtime

megamodels

T. Vogel and H. Giese 2012 SEAMS

24 Learning revised models for planning in

adaptive systems

D. Sykes, D. Corapi, J. Magee, J. Kramer,

A. Russo, and K. Inoue

2013 ICSE

25 gocc: a configuration compiler for self-

adaptive systems using goal-oriented

requirements

H. Nakagawa 2011 SEAMS

26 A learning-based approach for

engineering feature-oriented self-

adaptive software systems

A. Elkhodary 2010 SIGSOFT

27 Towards run-time adaptation of test cases

for self-adaptive systems in the face of

uncertainty

E. Fredericks, B. DeVries, and B. Cheng 2014 SEAMS

28 Model-based adaptation for self-healing

systems

D. Garlan and B. Schmerl 2002 WOSS

29 Improving context-awareness in self-

adaptation using the DYNAMICO

reference model

G. Tamura, N. Villegas, H. M€uller,
L. Duchien, and L. Seinturier

2013 SEAMS

30 FUSION: a framework for engineering

self-tuning self-adaptive software

systems

A. Elkhodary, N. Esfahani, and S. Malek 2010 SIGSOFT

31 DYNAMICO: a reference model for

governing control objectives and context

relevance in self-adaptive software

systems

N. Villegas, G. Tamura, H. M€uller,
L. Duchien, and R. Casallas

2013 LNCS

32 On decentralized self-adaptation: lessons

from the trenches and challenges for the

future

D. Weyns, S. Malek, and J. Andersson 2010 ICSE

33 Improving architecture-based Self-

adaptation through Resource Prediction

S. Cheng, V. Poladian, D. Garlan,

B. Schmerl

2009 LNCS

34 Evolving an adaptive industrial software

system to use architecture-based self-

adaptation

J. Camara, P. Correia, R. de Lemos,

D. Garlan, P. Gomes, B. Schmerl,

R. Ventura, and J. Cámara

2013 SEAMS

35 Towards practical runtime verification

and validation of self-adaptive software

systems

G. Tamura, N. Villegas, H. M€uller,
J. Sousa, B. Becker, G. Karsai, S.

Mankovskii, M. Pezzè, W. Sch€afer,
L. Tahvildari, and K. Wong

2013 LNCS

36 Model-driven engineering of self-

adaptive software with EUREMA

T. Vogel and H. Giese 2014 TAAS

37 Achieving dynamic adaptation via

management and interpretation of runtime

models

M. Amoui, M. Derakhshanmanesh,

J. Ebert, and L. Tahvildari

2012 JSS

38 Towards self-adaptation for dependable

service-oriented systems

V. Cardellini, E. Casalicchio, V. Grassi,

F. Lo Presti, and R. Mirandola

2009 LNCS

Continued

733.5 CONCLUSION AND FUTURE WORK

Table 3.17 Primary Studies Included in the Review—cont’d

Study # Title Authors Year Venues

39 Architecture-based self-adaptation in the

presence of multiple objectives

S. Cheng, D. Garlan, and B. Schmerl 2006 SEAMS

40 QUAASY: QUality Assurance of

Adaptive SYstems

M. Luckey, C. Gerth, C. Soltenborn,

and G. Engels

2011 ICAC

41 Using CVL to support self-adaptation of

fault-tolerant service compositions

A. Nascimento, C. Rubira, and F. Castor 2013 SASO

42 Online model-based adaptation for

optimizing performance and

dependability

K. Joshi, M. Hiltunen, R. Schlichting,

W. Sanders, and A. Agbaria A

2004 SIGSOFT

43 On the relationships between QoS and

software adaptability at the architectural

level

D. Perez-Palacin, R. Mirandola,

and J. Merseguer

2014 JSS

44 Quality attribute tradeoff through

adaptive architectures at runtime

J. Yang, G. Huang, W. Zhu, X. Cui,

and H. Mei

2009 JSS

45 Towards automated deployment of

distributed adaptation systems

M. Zouari and I. Rodriguez 2013 LNCS

46 A self-optimizing run-time architecture

for configurable dependability of services

M. Tichy and H. Giese 2004 LNCS

47 Model-driven assessment of QoS-aware

self-adaptation

V. Grassi, R. Mirandola, and E. Randazzo 2009 LNCS

48 Evaluation of resilience in self-adaptive

systems using probabilistic model-

checking

J. Camara and R. De Lemos 2012 SEAMS

49 Managing nonfunctional uncertainty via

model-driven adaptivity

C. Ghezzi, L. Pinto, P. Spoletini,

and G. Tamburrelli

2013 ICSE

50 Coupling software architecture and

human architecture for collaboration-

aware system adaptation

C. Dorn and R. Taylor 2013 ICSE

51 Qos-driven runtime adaptation of service

oriented architectures

V. Cardellini, E. Casalicchio, V. Grassi,

F. Lo Presti, and R. Mirandola

2009 SIGSOFT

Table 3.18 List of Manually Searched Venues to Create the “Quasi-Gold” Standard

Venues

International Conference on Software Engineering

Software Engineering for Adaptive and Self-managing

Systems Transactions on Autonomous and Adaptive Systems

74 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

REFERENCES
[1] R. de Lemos, H. Giese, H.A. M€uller, M. Shaw, J. Andersson, M. Litoiu, J. Wuttke, Software engineering for

self-adaptive systems: a second research roadmap, in: R. de Lemos, H. Giese, H.A. M€uller, M. Shaw (Eds.),

Software Engineering for Self-Adaptive Systems II, Springer, Berlin, Heidelberg, 2013, pp. 1–32. Retrieved
from, http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1.

[2] D. Garlan, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation with reusable infrastruc-

ture, in: IEEE Proceedings of International Conference on Autonomic Computing, 2004, pp. 276–277,
http://dx.doi.org/10.1109/ICAC.2004.1301377.

Table 3.19 List of Automatically Searched Venues and Books

Conference proceedings and

symposiums

International Conference on Software Engineering (ICSE)

IEEE Conference on Computer and Information Technology (IEEECIT)

IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO)

European Conference on Software Architecture (ECSA)

International Conference on Autonomic Computing (ICAC)

International Conference on Software Maintenance (CSM)

International Conference on Adaptive and Self-adaptive Systems and

Applications (ADAPTIVE)

Working IEEE/IFIP Conference on Software Architecture (WICSA)

International Conference of Automated Software Engineering (ASE)

International Symposium on Architecting Critical Systems (ISARCS)

International Symposium on Software Testing and Analysis (ISSTA)

International Symposium on Foundations of Software Engineering (FSE)

International Symposium on Software Engineering for Adaptive & Self-

Managing Systems (SEAMS)

Workshops Workshop on Self-Healing Systems (WOSS)

Workshop on Architecting Dependable Systems (WADS)

Workshop on Design and Evolution of Autonomic Application Software

(DEAS)

Models at runtime (MRT)

Journals/transactions ACM Transactions on Autonomous and Adaptive Systems (TAAS)

IEEE Transactions on Computers (TC)

Journal of Systems and Software (JSS)

Transactions on Software Engineering and Methodology (TOSEM)

Transactions on Software Engineering (TSE)

Information & Software Technology (INFSOF)

Software and Systems Modeling (SoSyM)

Book chapters/lecture notes/

special issues

Software Engineering for Self-Adaptive Systems (SefSAS)

Software Engineering for Self-Adaptive Systems II (SefSAS)

ACM Special Interest Group on Software Engineering (SIGSOFT)

Assurance for Self-Adaptive Systems (ASAS)

75REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1109/ICAC.2004.1301377

[3] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution. in: Proceedings of

the 20th International Conference on Software Engineering, 1998, pp. 177–186, http://dx.doi.org/10.1109/
ICSE.1998.671114.

[4] S.-W. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation in the presence of multiple objec-

tives. in: ACM Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing

Systems, 2006, pp. 2–8, http://dx.doi.org/10.1145/1137677.1137679.
[5] Autonomic Computing, W. Paper, T. Edition, An architectural blueprint for autonomic computing. IBM

White Paper. June 2005.
[6] D. Weyns, S. Malek, J. Andersson, FORMS: unifying reference model for formal specification of distributed

self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7 (1) (2012) 1–61, http://dx.doi.org/10.1145/
2168260.2168268.

[7] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli, Dynamic QoS management and

optimization in service-based systems, IEEE Trans. Softw. Eng. 37 (3) (2011) 387–409.
[8] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, Utility functions in autonomic systems, in: IEEE Proceedings

of International Conference on Autonomic Computing, 2004, pp. 70–77, http://dx.doi.org/10.1109/

ICAC.2004.1301349.

[9] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-adaptation: a systematic literature re-

view, Software Architecture, (2013). Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-

39031-9_22.

[10] W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B. van Asselt, P. Janssen, M.P. Krayer von

Krauss, Defining uncertainty: a conceptual basis for uncertainty management in model-based decision

support, Integrated assessment 4 (1) (2003) 5–17.
[11] D. Perez-Palacin, R. Mirandola, Uncertainties in the modeling of self-adaptive systems: a taxonomy and an

example of availability evaluation, In Proceedings of the 5th ACM/SPEC international conference on Per-

formance engineering (2014) 3–14. ACM.

[12] J.C. Refsgaard, J.P. van der Sluijs, A.L. Højberg, P.A. Vanrolleghem, Uncertainty in the environmental

modelling process—a framework and guidance. Environ. Model. Softw. 22 (11) (2007) 1543–1556,
http://dx.doi.org/10.1016/j.envsoft.2007.02.004.

[13] D. Garlan, Software engineering in an uncertain world. in: Proceedings of the FSE/SDPWorkshop on Future

of Software Engineering Research—FoSER’10, 2010, p. 125, http://dx.doi.org/10.1145/1882362.1882389.

[14] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H.A.M€uller,
M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Springer, Berlin, Heidelberg, 2013,

pp. 214–238. Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9.

[15] A.J. Ramirez, A.C. Jensen, B.H.C. Cheng, A taxonomy of uncertainty for dynamically adaptive systems.

in: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012,

http://dx.doi.org/10.1109/SEAMS.2012.6224396.

[16] B. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering,

(2007). Retrieved from, http://www.citeulike.org/group/14013/article/7874938.

[17] J.O. Kephart, D.M. Chess, The vision of autonomic computing, J. Chem. Theory Comput. 36 (1) (2003)

41–50, http://dx.doi.org/10.1109/MC.2003.1160055.

[18] M.S. Ali, M. Ali Babar, L. Chen, K.-J. Stol, A systematic review of comparative evidence of aspect-oriented

programming, Inf. Softw. Technol. 52 (9) (2010) 871–887. Retrieved from, http://www.sciencedirect.com/

science/article/pii/S0950584910000819.

[19] H. Zhang, M. Ali Babar, On Searching Relevant Studies in Software Engineering, British Informatics

Society, Keele, 2010. Retrieved from, http://ulir.ul.ie/handle/10344/730.

[20] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a systematic review. Inf. Softw.

Technol. 50 (9–10) (2008) 833–859, http://dx.doi.org/10.1016/j.infsof.2008.01.006.

76 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

http://dx.doi.org/10.1109/ICSE.1998.671114
http://dx.doi.org/10.1109/ICSE.1998.671114
http://dx.doi.org/10.1145/1137677.1137679
http://dx.doi.org/10.1145/2168260.2168268
http://dx.doi.org/10.1145/2168260.2168268
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0035
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.1145/1882362.1882389
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1109/SEAMS.2012.6224396
http://www.citeulike.org/group/14013/article/7874938
http://dx.doi.org/10.1109/MC.2003.1160055
http://www.sciencedirect.com/science/article/pii/S0950584910000819
http://www.sciencedirect.com/science/article/pii/S0950584910000819
http://ulir.ul.ie/handle/10344/730
http://dx.doi.org/10.1016/j.infsof.2008.01.006

[21] C. Ghezzi, A.M. Sharifloo, Dealing with non-functional requirements for adaptive systems via dynamic soft-

ware product-lines, in: R. de Lemos, H. Giese, H.A. M€uller, M. Shaw (Eds.), Software Engineering for Self-

Adaptive Systems II, Springer, Berlin, Heidelberg, 2013, pp. 191–213. Retrieved from, http://link.springer.

com/chapter/10.1007/978-3-642-35813-5_8.

[22] L. Cheung, L. Golubchik, N. Medvidovic, G. Sukhatme, Identifying and addressing uncertainty in architec-

ture-level software reliability modeling, in: Parallel and Distributed Processing Symposium, 2007. IPDPS

2007. IEEE International (2007) 1–6. IEEE.
[23] T. Vogel, H. Giese, Adaptation and abstract runtime models, in: Proceedings of the 2010 ICSEWorkshop on

Software Engineering for Adaptive and Self-Managing Systems—SEAMS ’10, ACM Press, New York, NY,

2010, pp. 39–48, http://dx.doi.org/10.1145/1808984.1808989.
[24] F. Chauvel, N. Ferry, B. Morin, N. Bencomo, R.B. France, S. G€otz, B. Rumpe (Eds.), Models@Runtime to

Support the Iterative and Continuous Design of Autonomic Reasonersvol. 1079, 2013, pp. 26–38. Retrieved
from, http://ceur-ws.org/Vol-1079/mrt13_submission_20.pdf.

[25] D.Weyns, S. Malek, J. Andersson, On decentralized self-adaptation: lessons from the trenches and challenges

for the future, in: Proceedings—International Conference on Software Engineering, Department of Computer

Science, Katholieke Universiteit Leuven, Leuven, 2010, pp. 84–93. Retrieved from, http://www.scopus.com/

inward/record.url?eid¼2-s2.0- 77954577834&partnerID¼40&md5¼1f389e0a603761b96aa46db6bf06e287.

[26] N.M. Villegas, G. Tamura, H.A. M€uller, L. Duchien, R. Casallas, DYNAMICO: a reference model for gov-

erning control objectives and context relevance in self-adaptive software systems, in: R. de Lemos, H. Giese,

H.A. M€uller, M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Springer, Berlin,

Heidelberg, 2013, pp. 265–293. Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-

35813-5_11.

[27] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing Architectural Run-Time Failures, (2013).

pp. 103–112. Retrieved from, http://dl.acm.org/citation.cfm?id¼2487336.2487354.

[28] P. Zoghi, M. Shtern, M. Litoiu, Designing search based adaptive systems: a quantitative approach.

in: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, ACM, 2014, pp. 7–16, http://dx.doi.org/10.1145/2593929.2593935.
[29] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-adaptive software, in: Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineer-

ing, ACM, 2011, pp. 234–244, http://dx.doi.org/10.1145/2025113.2025147.
[30] G. Tamura, N.M. Villegas, H.A. Muller, L. Duchien, L. Seinturier, Improving context-awareness in self-

adaptation using the DYNAMICO reference model. in: ICSE Workshop on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS), 2013. http://dx.doi.org/10.1109/SEAMS.2013.6595502.

[31] C. Ghezzi, L.S. Pinto, P. Spoletini, G. Tamburrelli, Managing non-functional uncertainty via model-driven

adaptivity. in: 35th International Conference on Software Engineering (ICSE), 2013. http://dx.doi.org/

10.1109/ICSE.2013.6606549.

[32] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic, G. Sukhatme, B. Petrus, Architecture-driven

self- adaptation and self-management in robotics systems. in: ICSE Workshop on Software Engineering

for Adaptive and Self-Managing Systems, SEAMS ’09, 2009. http://dx.doi.org/10.1109/

SEAMS.2009.5069083.

[33] S. Hallsteinsen, E. Stav, J. Floch, Self-adaptation for everyday systems. in: Proceedings of the 1st ACM

SIGSOFT Workshop on Self-Managed Systems, ACM, 2004, pp. 69–74, http://dx.doi.org/10.1145/

1075405.1075419.

[34] J. Kramer, J. Magee, Self-managed systems: an architectural challenge. In Future of Software Engineering,

(2007). FOSE’07, pp. 259–268. IEEE.

77REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://dx.doi.org/10.1145/1808984.1808989
http://ceur-ws.org/Vol-1079/mrt13_submission_20.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://dl.acm.org/citation.cfm?id=2487336.2487354
http://dl.acm.org/citation.cfm?id=2487336.2487354
http://dx.doi.org/10.1145/2593929.2593935
http://dx.doi.org/10.1145/2025113.2025147
http://dx.doi.org/10.1109/SEAMS.2013.6595502
http://dx.doi.org/10.1109/ICSE.2013.6606549
http://dx.doi.org/10.1109/ICSE.2013.6606549
http://dx.doi.org/10.1109/SEAMS.2009.5069083
http://dx.doi.org/10.1109/SEAMS.2009.5069083
http://dx.doi.org/10.1145/1075405.1075419
http://dx.doi.org/10.1145/1075405.1075419
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf9000

CHAPTER

AN ARCHITECTURE VIEWPOINT
FOR MODELING DYNAMICALLY
CONFIGURABLE SOFTWARE
SYSTEMS

4
B. Tekinerdogan*, H. Sozer†

Wageningen University, Wageningen, The Netherlands* Ozyegin University, Istanbul, Turkey†

4.1 INTRODUCTION
Dynamic system configurability defines the ability to modify and extend a system while it is running.

This is an important requirement for an increasing number of software-intensive systems in which it is

not possible or economically feasible to stop the complete system and modify it to meet new require-

ments. Dynamic configurability is not only important during operation of the system but can also be

useful during development time. In fact, many systems are now being developed in an incremental

manner in which dynamic configurability is also useful during the incremental integration of the com-

ponents in the system.

Dynamic software architectures support reconfigurations of their structures during execution and as

such aid system evolution. A current practice to model software architectures is usually based on ar-

chitecture views to separate the concerns and as such support the modeling, understanding, commu-

nication, and analysis of the software architecture for different stakeholders. An architecture view

is a representation of a set of system elements and relations associated with them to support a particular

concern [14]. Architectural views conform to viewpoints that represent the conventions for construct-

ing and using a view. Given the complexity of applications where necessary new viewpoints have been

defined to address new concerns. In this paper we focus on dynamic configurability in software archi-

tecture. Considering the existing viewpoint approaches we can observe that the modeling of dynamic

configurability is not explicitly considered. This seems to be the case for quality concerns in general.

The ISO/IEC 42010 [2] standard intentionally does not define particular viewpoints to address the dif-

ferent concerns. In the Views and Beyond (V&B) approach, quality concerns appear to be implicit in

the different views and specific viewpoints have to be introduced to represent quality concerns [3–6].
Software architecture analysis approaches have been introduced [7] to analyze the software architec-

ture and provide guidelines for adapting it with respect to the quality concern. However, the difficulty

here is that these approaches usually apply a separate quality model, such as Markov models, queuing

networks or process algebra, to analyze the quality properties. Although these models represent precise

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00004-6

Copyright # 2017 Elsevier Inc. All rights reserved.
79

http://dx.doi.org/10.1016/B978-0-12-802855-1.00004-6

calculations they do not depict the decomposition of the architecture and an additional translation from

the evaluation of the quality model needs to be performed [8].

To represent runtime adaptability concerns more explicitly, preferably an explicit dedicated ar-

chitectural view is required to model the decomposition of the architecture based on the runtime

adaptability concern. In this context, we introduce the runtime adaptability viewpoint that can be

used for modeling dynamically configurable software architectures. The viewpoint has been de-

fined after a domain analysis to both dynamic configurability and software architecture viewpoint

modeling. The viewpoint is based on a metamodel that defines the underlying semantics. Further

we provide the necessary notation for supporting software architects in modeling dynamic config-

urability concerns of software architectures. We illustrate the viewpoint for a demand-driven sup-

ply chain management (DDSCM) system in which the dynamic configurability plays an important

aspect.

The remainder of this paper is organized as follows. Section 4.2 provides background information

regarding architecture viewpoints. Section 4.3 introduces the case study as a motivating example where

runtime adaptability becomes a relevant concern. Section 4.4 presents the related concepts and a meta-

model for runtime adaptability viewpoint. Section 4.5 introduces a concrete notation and a method for

applying this viewpoint. Section 4.6 describes the application of the viewpoint for the case study.

Section 4.7 presents the related work and finally Section 4.8 provides the conclusions.

4.2 ARCHITECTURE VIEWPOINTS
Software architecture is an abstract representation that serves various purposes including the under-

standing of the system, communication among the stakeholders, guideline for supporting the life cycle

activities, support for organizational concerns such as work allocation, budget planning and develop-

ment structure of the software development project [9].

In practice, software architecture is modeled and documented using architecture views, which are

basically representations of a system for particular concerns. In the literature, initially a fixed set of

viewpoints have been proposed to document the architecture [10–13]. Because of the different con-

cerns that need to be addressed for different systems, the current trend recognizes that the set of views

should not be fixed but multiple viewpoints might be introduced instead. The ISO/IEC 42010 stan-

dard [2] indicates in an abstract sense that an architecture description consists of a set of views, each

of which conforms to a viewpoint realizing the various concerns of the stakeholders. The V&B ap-

proach as proposed by Clements et al. is another multiview approach [14] that proposes the notion of

architectural style similar to the notion of architectural viewpoint. For addressing the general con-

cerns, we shall use the viewpoints in the V&B approach [14]. In this approach, typically the notions

of view category and style are used to define viewpoints. Hereby, three different view categories are

identified:

• Module view category that is used for documenting a system’s principal units of implementation

• Component and connector (C&C) category that is used for documenting the system’s units of

execution

• Deployment view category that is used to document the relationships between a system’s software

and its development and execution environments

80 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Although the V&B approach has defined a predefined set of architectural styles it is also possible to

define new styles for particular concerns. Views are instantiations of styles. The relations between view

category, style and view is depicted in Fig. 4.1.

To define new viewpoints, the guidelines and templates of the recommended standard for architec-

ture description can be adopted [2].

4.3 CASE STUDY: DDSCM SYSTEMS
A supply chain is defined as a system consisting of organizations, people, activities, information, and

resources involved in moving a product or service from supplier to customer. Supply chain activities

transform natural resources, raw materials, and components into a finished product that is delivered to

the end customer [15]. Due to the increased global competition many companies are forced to improve

their efficiency of the supply chain using systematic supply chain management (SCM) approaches. A

conceptual model for SCM is shown in Fig. 4.2.

The underlying idea for SCM is based on the observation that practically every product that reaches

an end user represents the cumulative effort of multiple organizations defining the supply chain. SCM,

as such, is the active management of supply chain activities to maximize customer value and achieve a

sustainable competitive advantage [15]. SCM activities typically include the management of the flow

of materials, information, and finances in a process from supplier to manufacturer to wholesaler to re-

tailer to consumer. Further, SCM involves coordinating and integrating these flows both within and

among companies. To provide an effective SCM it is important to develop the appropriate software

architecture for it [16–19].
In SCM, we can identify different entities that require input, process this input, and deliver this to

the next entity. The overall supply chain network consists of organizations moving a product or service

from supplier to customer. Currently, an increasing number of organizations focus on so-called

DDSCMs [17]. The main motivation for DDSCM is to manage and optimize the material and infor-

mation flow that propagates up the supply chain from the source of demand to the suppliers. Usually

customer demand is rarely stable and likewise businesses must forecast demand to properly position

inventory and other resources.

FIG. 4.1

Relations among view category, style, and view in the V&B approach.

814.3 CASE STUDY: DDSCM SYSTEMS

To meet the requirements for DDSCMs, the corresponding software system and likewise the archi-

tecture must be dynamically adaptable. We can identify the following important components in a SCM

system:

• Enterprise resource planning (ERP) systems—providing services for purchase management,

production management, and sales management, in particular for manufacturers and trading

companies

• Warehouse management systems (WMS)—providing services for logistics, in particular for

wholesalers

• Transport management systems (TMS)—providing services for transport booking, planning, and

monitoring

The deployment architecture for a general SCM system is presented in Fig. 4.3. The architecture fol-

lows the guidelines of the so-called supply-chain operations reference model which is a process ref-

erence model for SCM [15]. The architecture consists of five different node types: supplier,
manufacturer, distributor, warehouse, and retailer. Note that each node has three similar components

including report engine, message conversion engine, and data communication engine. Further each
node has also its’ specific type of components. Finally, a manufacturer node is connected to an

ERP system, a distributor to a TMS, and a warehouse to a WMS. To model DDSCMs, the components

and nodes need to be dynamically configurable. This means that for example, a supplier node can be

replaced by another supplied node, or a copy of the report engine can be transferred to the other nodes

etc. In the following section, we introduce a metamodel for runtime adaptability viewpoint to capture

such dynamic configuration capabilities.

FIG. 4.2

A conceptual model of supply chain management.

82 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

4.4 METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT
In Fig. 4.4 we show the conceptual model for architectural view modeling. In fact, the conceptual model

is based on the ISO/IEC recommended standard for architectural description [2] but it enhances the stan-

dard to explicitly depict quality concerns and defines their relation to architectural views. The left part of

the figure shows basically the definition of the architectural drivers. A system has one or more stake-

holders who have interest in the systemwith respect to one or more concerns. Concerns can be functional

or quality related. The right part of the figure focuses on the architectural views for the different concerns.

Each system has an architecture, which is described by an architectural description. The architectural

description consists of a set of views that correspond to their viewpoints. Viewpoints aim to address

the stakeholder’s concerns. Functional concerns will define the dominant decomposition along architec-

tural units that are mainly functional in nature. On the other hand, quality concerns will define the dom-

inant decomposition of the architecture along architectural units that explicitly represent quality

concerns. Runtime adaptability is a specific quality concern that is addressed by runtime adaptability

view. Run-adaptability is not directly considered in the other viewpoints.

To define the foundation for the runtime adaptability viewpoint we have performed a domain anal-

ysis regarding architectural frameworks introduced for dynamic configurability. These frameworks

employ different adaptation mechanisms. We have reviewed these mechanisms and we focus on

FIG. 4.3

General deployment view for supply chain management system.

834.4 METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT

the adaptation capabilities that they can provide. For providing adaptability, one also needs to decide on

the type of adaptation mechanism. However, we decided not to integrate this in the viewpoint because

we aim to provide a generic viewpoint in which we address only what can be adapted. We did not wish

to fix the mechanisms. The viewpoint is agnostic to the adaptation mechanisms and as such could be

used together with existing adaptation frameworks. However, our approach allows the extension of the

viewpoint to include also the mechanisms for adaptation.

Existing frameworks assume either a component-based architecture [20–25] or service-oriented
architecture (SOA) [26]. So, reconfigured architectural elements are components, connectors, or ser-

vices. We have observed that the majority of the existing approaches mainly focus on the C&C view

to depict the runtime structure and reason about dynamic adaptation [20–23,25,27]. Hence, the pro-
posed viewpoint mainly relies on the C&C viewpoint as defined by the V&B approach [14]. The

following figure depicts a metamodel of the viewpoint as described in this approach (Fig. 4.5).

In the C&C viewpoint, there are two basic types of elements: component types that represent prin-
cipal processing units and data stores, and connector types that represent interaction mechanisms. Each

of these elements has two properties: a name that suggests its functionality, and a type that determines

the general functionality and constraints for the element. Every component has one or more ports.
These ports have names that suggest the corresponding interface of the component. On the other hand,

every connector has two or more roles. These roles have names that suggest the interacting parties.

There is an attachment relation defined between a port and one or more roles.

System

Stakeholder

Architecture

Architectural
description

Concerns Viewpoint View

Functional
concern

Quality
concern

Runtime
adaptability

Runtime
adaptability view

has

1..*
1..*

1..*
1..*

1..*

conforms

has

has has

selects

described by

organized by

addressed
by

addressed by

FIG. 4.4

Conceptual model for architectural views and the relation of runtime adaptability.

Based on IEEE Standard: ISO/IEC 42010:2007 Recommended practice for architectural description of software-intensive systems (ISO/

IEC 42010), July 2007.

84 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

As stated in the V&B approach many C&C styles allow C&Cs to be created or destroyed as the

system is running. For example, in client-server based systems new server instances might be created

as the number of client requests increases. In a peer-to-peer system, new components may dynamically

join or leave the peer-to-peer network. In principle, any C&C style supports the dynamic creation and

destruction of elements.

In addition to the C&C views, allocation views [14] are also highly relevant for runtime adaptabil-

ity. These views document a mapping between software elements and nonsoftware elements in the con-

text of the system [14]. In particular, deployment views constitute a type of allocation view, which

describes a mapping between software elements and hardware elements in the computing platform.

These views conform to the deployment style and they are relevant for dynamic reconfiguration be-

cause the allocation of software elements can be dynamic. Three types of dynamic relations are defined

for deployment views in the V&B approach [14]: (1) migrates-to: a software element can move from

one processor to another processor, (2) copy-migrates-to: a software element can be copied to another

processor and different copies can execute on different processors at the same time, (3) execution-
migrates-to: a software element can be copied to another processor, where only one of the copies

can be executed at a time. The corresponding metamodel is depicted in Fig. 4.6. Migration relations

are mainly triggered by changing application profiles and operational context for supporting quality

concerns such as performance, availability, reliability, and security [14]. For example, performance

improvements can be achieved by deploying some components together when the frequency of inter-

communication is increased. Some components can be migrated for isolating them from the other com-

ponents to improve reliability [4] or security. Resource utilization and hardware faults can also trigger a

migration.

To support the viewpoint for runtime adaptability and dynamic configurability we have integrated

the metamodels of Figs. 4.5 and 4.6 as shown in Fig. 4.7.

Dynamic configurability is facilitated in three ways (1) adaptation of elements by change of mode,

state, parameters [20,28,29], (2) replacement of elements [22,23,26] leading to a structural change

[28,29], (3) migration of elements to different nodes. In general, formal specifications for dynamic

software architectures utilize the second one; they define reconfigurations as a series of C&C

FIG. 4.5

A metamodel of the C&C viewpoint as described by V&B approach [14].

854.4 METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT

addition/removal operations [30]. To differentiate between elements that can be subject to configur-

ability, we have introduced adaptable components and adaptable connectors. Such a distinction is also

being made in existing frameworks [22]. In some of the existing approaches, communication is as-

sumed to be asynchronous and architectural elements are assumed to be stateless and independent

[26]. However, in some other approaches, architectural elements can be interdependent and they

can be stateful [22,23]. This makes a difference because adaptable components that are stateful provide

means for loading and storing state information [22,25]. In principle, connectors can also involve rich

semantics [14] just like components. For this reason, we also distinguished between stateful and state-

less connectors in our viewpoint as depicted in the metamodel.

4.5 RUNTIME ADAPTABILITY VIEWPOINT
Once we have identified the important concepts regarding runtime adaptability and defined the meta-

model we can define the corresponding viewpoint. Defining a new architectural viewpoint implies

writing a viewpoint guide. This is similar to the notion of style guide as defined in Ref. [14]. The view-
point guide includes the vocabulary of the architectural element and relation types, and describes the

rules for how that vocabulary can be used. The adaptability viewpoint guide that we have defined is

shown in Table 4.1. Hereby, we focus on capturing the adaptability capabilities of the managed system

[31], rather than the adaptation mechanism involved [32]. The viewpoint guide for dynamic configur-

ability is largely the same as for the viewpoints that address functional concerns. The important dif-

ference here is that the architectural elements now are used to explicitly represent dynamic

FIG. 4.6

A metamodel of the deployment style as described by V&B approach.

86 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

configurability properties in the software architecture. These properties are aligned with the introduced

metamodel.

Note that the viewpoint provides two complementary ways in terms of notation. The first option is

to use visual representations of different element types. These representations are created by minor

alterations (like a stereotype definition) of the commonly used representations [14].

The second option is to represent relations by mapping the involved elements with each other in a

table, which provides another overview of these relations. There are three such tables to represent (1)

relations among C&Cs, (2) relations between C&Cs and nodes, and (3) relations among nodes.

The first table includes the set of C&Cs both in the rows and the columns. The cells on the diagonal

are used for marking possible adaptations of the corresponding C&C with symbol A. If a C&C can be

replaced by another C&C, the corresponding cell is marked with the symbol R. If there is also a state

transfer during replacement, the symbol RS is used instead. A C&C can be replaced with a replica in a

different state. In this case, again the RS symbol is marked in the corresponding cell on the diagonal.

FIG. 4.7

A metamodel of the viewpoint for dynamic configurability.

874.5 RUNTIME ADAPTABILITY VIEWPOINT

Table 4.1 Runtime Adaptability Viewpoint

Viewpoint Element Description

Name Runtime adaptability viewpoint:

C&C viewpoint U deployment style

Element types • Adaptable component (AC): represents a component that can be adapted

• Stateful component (SC): represents an AC that keeps state information to be

considered when replaced by another component

• Adaptable connector (ACN): represents a connector that can be adapted

• Stateful connector (SCN): represents an ACN that keeps state information

to be considered when replaced by another connector

• Adaptable node (AN): represents a processing element that can be tuned

at runtime

• The other types as they are defined for the C&C viewpoint and deployment

style

Relation types • Replaces relation as defined by the metamodel

• Migrates relations as defined by the metamodel

• The other types as they are defined for the C&C viewpoint and deployment

style

Properties of elements Mode: the active mode among the possible set of modes that can be activated by runtime

adaptation

Properties of relations Mode: the active mode among the possible set of modes that can be activated by runtime

adaptation

Topology constraints Same as the C&C viewpoint and deployment style

Notation

<<AC>>

<<SC>>

Node
<<AN>>

Communication path << type>>

Deployed to

Migrates-to

Copy-migrates-to

Exec-migrates-to

Replaces [state]

Continued

88 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

The second table includes the set of C&Cs in the rows and the set of nodes in the columns. Symbols

in the cells define where each C&C is initially deployed, and where it can be potentially migrated.

There is symbol for each migration type as defined by the metamodel.

The third table includes the set of nodes both in the rows and the columns. The cells on the diagonal

are used for marking possible adaptations of the corresponding node with symbol A. If a node can be

replaced by another node, then the corresponding cell is marked with the symbol R.
In the following subsection, we introduce a method for applying this viewpoint. Then, in the fol-

lowing section, we shall provide an example application of the viewpoint in the context of the SCM

case study.

4.5.1 METHOD FOR APPLYING THE ADAPTABILITY VIEWPOINT
So far, we have defined the runtime adaptability viewpoint that can be used to define runtime adapt-

ability views for particular applications. In this section we provide the method for applying the view-

point as shown in Fig. 4.8. The method starts with defining the C&C view as well as the deployment

view. Based on these provided two views, the nodes, the components, and the connectors will be an-

alyzed and their characteristics will be identified with respect to the requirements for runtime adapt-

ability. The characterization will be based on the possible properties as defined in the metamodel and

viewpoint. As such, components will be, for example, characterized as regular component, adaptable

component, or stateful component. After the characterization of the separate elements the relations will

be considered including the node-to-node, C&C-to-node, and C&C-to-C&C relations. These will be

again defined based on the relations defined in the viewpoint. Subsequently, the runtime adaptability

view will be defined that meets the characterization of the architectural elements and the identified

adaptability relations. The presented view is evaluated and if needed necessary iterations will be

carried out.

Table 4.1 Runtime Adaptability Viewpoint—cont’d

Viewpoint Element Description

Mapping
Table

Type Cell
Marking

C&C to
C&C

Adapted A
Replaces R
Replaces /w State RS

C&C to
Node

Deployed-to D
Migrates-to M
Copy-migrates-to CM
Exec -migrates -to EM

Node to
Node

Adapted A
Replaces R

Relation to other views/

viewpoints

Same as the C&C viewpoint and deployment style

894.5 RUNTIME ADAPTABILITY VIEWPOINT

4.6 CASE STUDY—ADAPTABILITY VIEW OF THE SCM SOFTWARE
ARCHITECTURE
We have applied the runtime adaptability viewpoint for documenting possible runtime adaptations that

can take place in the SCM software architecture. Fig. 4.9 depicts some of these adaptations.

FIG. 4.8

Method for applying runtime adaptability viewpoint.

90 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Hereby, eight nodes are shown. Two of them (MM and AM) are dedicated for manufacturing pro-

cess. Four of them (MD, AD, ED, EED) are dealing with distribution. One node (W) is used for storage,

and another one (ERP) is keeping the overall management system and related components. Different

types of runtime adaptability relations can be seen here. For instance, we can see that TTM-S compo-

nent can replace TTM component. Tracking and tracing functionalities can change depending on the

goods that are distributed in a SCM system. TTM provides only the basic functionalities. TTM-S is

used for sensitive products like food and medicine that has to be tracked with respect to many attributes

such as shelf life, temperature, etc.

It can be observed in the figure that the view quickly gets cluttered with many relations depicted to

represent different types of runtime adaptations. As a complementary notation, table-based views can

be used to capture runtime adaptability options for the overall SCM software architecture. This ap-

proach leads to more readable and scalable documentation for systems that involve a high number

of adaptation relations.

In the following, we document runtime adaptability for the same system with three tables that con-

form to the viewpoint notation listed in Table 4.1. Tables 4.2–4.4 list runtime adaptability relations

between C&Cs and nodes, among C&Cs, and among nodes, respectively.

Table 4.2 shows runtime adaptability relations among C&Cs. Here, we can see that IM is an adapt-

able component. TTM-S can replace TTM. We can also see that PM can be replaced with a replica of

itself in a different state.

Table 4.3 defines runtime adaptability relations between C&Cs and nodes. Hereby, C&Cs are listed

in the rows and nodes are listed in the columns. The cells marked with D show the initial deployment of

C&Cs: PM onMM, TTM and TTM-S onMD, IM onW, and RE on ERP.We see that PM canmigrate to

FIG. 4.9

Adaptability view for part of the SCM software architecture.

914.6 CASE STUDY—ADAPTABILITY VIEW OF THE SCM SYSTEM

AM. On the other hand, a copy of RE can migrate to all the nodes except ERP. We also see that copies

of TTM and TTM-S can migrate to the nodes AD, ED, and EED.

Table 4.4 shows runtime adaptability relations among nodes. There are two such relations. First,

EED can replace ED. Second, AM can replace MM. State information must also be transferred for this

replacement.

We have adopted tables since the visual representation is less scalable. For large cases, the table

representations will also have limitations. For this, we might need additional tool support.

Table 4.2 Runtime Adaptability Relations Among C&Cs

C&C

C&C

PM TTM TTM-S RE IM

PM RS

TTM

TTM-S R

RE

IM A

Table 4.3 Runtime Adaptability Relations Between C&Cs and Nodes

C&C

Node

MM AM MD AD ED EED W ERP

PM D M

TTM D CM CM CM

TTM-S D CM CM CM

RE CM CM CM CM CM CM CM D

IM D

Table 4.4 Runtime Adaptability Relations Among Nodes

Node

Node

MM AM MD AD ED EED W ERP

MM

AM RS

MD

AD

ED

EED R

W

ERP

92 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

4.7 RELATED WORK
In this paper we have defined a viewpoint for modeling dynamically configurable software architec-

tures. The viewpoint has been defined based on a domain analysis of the existing runtime adaptability

mechanisms. The introduced abstractions can be extended if needed and more refined viewpoints can

be defined. However, it should be noted that an architectural view represents the gross level abstraction

of the system and likewise should preferably not include implementation details. In the following, pro-

vide a review of related studies in two different categories: (i) modeling of quality concerns in software

architecture including adaptability, and (ii) architectural modeling techniques and frameworks intro-

duced for supporting runtime adaptability.

4.7.1 QUALITY CONCERNS IN SOFTWARE ARCHITECTURE MODELING
Separating quality concerns at the architecture design modeling phases has been also addressed earlier

with the notion of so-called attribute-based architectural style (ABAS). ABAS refers to prepackaged

units of architectural design and analysis. The purpose of ABAS is to enhance precise reasoning about

architectural design which is achieved by explicitly associating a reasoning framework with an archi-

tectural style. The reasoning framework shows how to reason about the design decisions comprised by

the style. The reasoning frameworks are based on quality attribute-specific models, which exist in the

various quality attribute communities. ABASs are quality attribute specific and consider only one qual-
ity attribute at a time. Our work could be compared to the idea presented in ABAS, that is, define the

architectural model for particular quality concerns. The difference is that we focus on the notion of

architectural viewpoint. We do not provide a reasoning framework but this could be a complementary

and useful elaboration on our work as well as the other viewpoint approaches in general.

Aspect-oriented software development (AOSD) [1,33] promotes the separation of crosscutting con-

cerns principle [34–36] to increase modularity. Hereby, crosscutting concerns are separately repre-

sented as first-class abstractions (aspects) and woven into the base code. In our approach we have

applied the separation of concerns principle to separate the views for quality concerns. Similar to cross-

cutting concerns in AOSD, quality concerns seem to crosscut the elements in the functional views. By

separating these quality concerns and providing explicit abstractions in the viewpoints, we have sup-

ported an enhanced description of the architecture.

Architectural perspectives [37] are a collection of activities, tactics, and guidelines to modify a set

of existing views to document and analyze quality properties. Architectural perspectives as such are

basically guidelines that work on multiple views together. An analysis of the architectural perspectives

and our approach shows that the crosscutting nature of quality concerns can be both observed within an
architectural view and across architectural views. Both approaches focus on providing a solution to the
crosscutting problem. We have chosen for providing separate architectural viewpoints for quality con-

cerns. It might be interesting to look at integrating the guidelines provided by the architectural per-
spectives and the definition/usage of the viewpoints developed by our approach. In that sense the

approaches can also be considered as complimentary to each other.

Architectural tactics [38] aim at identifying architectural decisions related to a quality attribute re-

quirement and composing these into an architecture design. Defining explicit viewpoints for quality

concerns can help to model and reason about the application of architectural tactics.

934.7 RELATED WORK

Several software architecture analysis approaches have been introduced for addressing quality

properties. They usually perform either static analysis of formal architectural models or they apply

a set of scenario-based architecture analysis methods [7]. The goal of these approaches is to assess

whether or not a given architecture design satisfies desired concerns including quality requirements.

The main aim of the viewpoint definitions in our approach, on the other hand, is to communicate and

support the architectural design with respect to quality concerns. As such our work can directly support

the architectural analysis to select feasible design alternatives.

4.7.2 ARCHITECTURAL APPROACHES FOR RUNTIME ADAPTABILITY
Oreizy et al. [25] discuss the use of existing architectural styles to represent dynamically adaptable

software architectures. In particular, they describe how runtime changes can be facilitated by the

Weaves and C2 architectural styles. However, they do not propose a dedicated view for dynamic ad-

aptation. Many existing frameworks like PLASMA [21] and Rainbow [20] mainly focus on the C&C

view to depict the runtime structure and reason about dynamic adaptation. Contract-based adaptive

software architecture [22] is a framework that facilitates dynamic adaptation by dynamic recomposi-

tion of components. They define the adaptable class/component concept for replaceable components.

They also introduce a handle class/component that is inspired from the bridge pattern. This provides a

layer of transparency between the application code and the dynamic replacement process. It is assumed

that adaptable components provide a means for loading and storing state. They propose the specifica-

tion of adaptation policy of the application in a so-called application contract. However, they do not

also propose a model or view for the representation of the overall architecture.

Self-architecting software systems [26] is a framework for dynamic service-oriented systems. It is

based on functionally equivalent services, which can be replaced based on their desired properties, for

example, QoS levels. It employs basic elements of SOAs. The list of services is registered to a service

directory. These services are discovered and selected based on so-called service activity schemas that

express system requirements. They employ an extension of xADL and finite state models to represent

the software architecture. A software adaptation pattern is specified as a list of steps to be performed for

adaptation. However, they do not propose a view for explicitly representing the dynamic adaptation.

There is a coordinator component for each client. Communication is asynchronous. Services are state-

less and independent.

Rainbow [20] is a framework that supports architecture-based adaptation. It introduces a language

for specifying adaptation techniques as first-class adaptation concepts. The basic idea is that the ad-

aptation strategies depend on the architectural style of the target system. It augments the notion of style

with operators that define style-specific reconfiguration options.

The K-component model [23] was introduced to support dynamic adaptation. Dynamic reconfi-

guration of software architecture is modeled as graph transformations. These adaptation models are

specified as adaptation contracts, separate from the implementation. Types of supported dynamic

reconfigurations are limited to C&C replacement.

According to a survey on formal specification of dynamic software architectures [30], three ap-

proaches stand out: graph-based; process algebra; and logic-based description languages. These ap-

proaches provide a formal basis for the description of types of changes, rules for selection of

changes and their application. Four phases are identified for dynamic architectural changes: change

initiation, selection of architectural transformation; implementation of transformation; assessment

94 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

of architecture after transformation. Basic changes are listed as C&C addition and removal. These basic

changes can be composed by sequencing, choice, and iteration.

Dynamic software product lines (DSPL) [39] extend conventional product line approaches to sup-

port runtime variability. Therefore, they are considered as a systematic approach for developing adap-

tive systems [39]. However, existing DSPL approaches mainly focus on extensions of feature models

and orthogonal variability diagrams [40] for modeling and documentation. Extensions of the architec-

tural models have not been considered for creating a dedicated view for runtime adaptability.

4.8 CONCLUSION
Dynamic software architectures support reconfigurations of their structures during execution and as

such aid system evolution useful during the incremental integration of the components in the system.

In this paper we have addressed the problem of dynamic configurability from the modeling perspective.

In this context we have proposed an architecture viewpoint for runtime adaptability. The viewpoint has

been defined based on a well-definedmetamodel that includes the concepts related to component-based

runtime structure, architecture deployment, and runtime adaptability. Unlike existing general purpose

architecture viewpoints, the proposed viewpoint can support the architect in modeling the concerns for

runtime adaptability and as such support the communication among stakeholders and the analysis of the

architecture. We have illustrated the viewpoint for a DDSCM. In our future work, we shall investigate

the trade-off of runtime adaptability with time performance and scalability, and also study the integra-

tion of the various different viewpoints with the runtime adaptability viewpoint that we have proposed.

REFERENCES
[1] R.Chitchyan,A.Rashid, P. Sawyer, J. Bakker,M.P.Alarcon,A.Garcia, B. Tekinerdogan, S.Clarke,A. Jackson,

Survey of aspect-oriented analysis and design, in: R. Chitchyan, A. Rashid (Eds.), AOSD-Europe Project De-

liverable No. AOSD-Europe-ULANC-9, 2005.

[2] ISO/IEC 42010:2007 Recommended practice for architectural description of software-intensive systems

(ISO/IEC 42010), July 2007.

[3] H. S€ozer, B. Tekinerdogan, Introducing recovery style for modeling and analyzing system recovery,

in: Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture, 2008, pp. 167–176.
[4] H. S€ozer, B. Tekinerdogan, M. Akşit, FLORA: a framework for decomposing software architecture to intro-

duce local recovery, J. Softw. Pract. Exp. 39 (10) (2009) 869–889.
[5] B. Tekinerdogan, H. S€ozer, Defining architectural viewpoints for quality concerns, in: Proceedings of the 5th

European Conference on Software Architecture, 2011, pp. 26–34.
[6] B. Tekinerdogan, H. S€ozer, Variability viewpoint for introducing variability in software architecture view-

points, in: Proceedings of the 2nd International Workshop on Variability in Software Architecture, 2012,

pp. 163–166.
[7] L. Dobrica, E. Niemela, A survey on software architecture analysis methods, IEEE Trans. Softw. Eng. 28 (7)

(2002) 638–654.
[8] H. Boudali, H. S€ozer, M. Stoelinga, Architectural availability analysis of software decomposition for local

recovery, in: Proceedings of the 3rd International Conference on Secure Software Integration and Reliability

Improvement, 2009, pp. 14–22.

95REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040

[9] B. Tekinerdogan, Software architecture, in: T. Gonzalez, J.L. Dı́az-Herrera (Eds.), Computer Science Hand-

book, second ed., Computer Science and Software Engineering, vol. I, Taylor and Francis, London, 2014.

[10] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture, Addison-Wesley, New York, NJ, 2009.

[11] P. Kruchten, The 4+1 view model of architecture, IEEE Softw. 12 (6) (1995) 42–50.
[12] P. Kruchten, The Rational Unified Process: An Introduction, second ed., Addison-Wesley, Boston, MA,

2000.

[13] A.J. Lattanze, Architecting Software Intensive Systems: A Practitioner’s Guide, CRC Press, Taylor & Francis

Group, Boca Raton, FL, 2009.

[14] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Stafford,

Documenting Software Architectures: Views and Beyond, second ed., Addison-Wesley, Boston, 2010.

[15] R.G. Poluha, Application of the SCOR Model in Supply Chain Management, Cambria Press, Amherst, NY,

2007.

[16] B. Chaibdraa, J. M€uller, Multiagent Based Supply Chain Management, Springer, New York, NY, 2006.

[17] K. Kumar, Technology for supporting supply chain management: introduction, Commun. ACM44 (6) (2001)

58–61.
[18] J. Li, L. Yuan, J. Guo, Business integrated architecture for dynamic supply chain management with web ser-

vice, in: Proceedings of the International Conference on New Trends in Information and Service Science,

2009, pp. 356–361.
[19] V. Misra, M.I. Khan, U.K. Singh, Supply chain management systems: architecture, design, vision, J. Strateg.

Innov. Sustain. 6 (4) (2010) 102–108.
[20] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-

adaptation with reusable infrastructure, IEEE Comput. 37 (10) (2004) 46–54.
[21] H. Tajalli, J. Garcia, G. Edwards, N. Medvidovic, PLASMA: a plan-based layered architecture for software

model-driven adaptation, in: Proceedings of the IEEE/ACM International Conference on Automated Soft-

ware Engineering, 2010, pp. 467–476.
[22] A. Mukhija, M. Glinz, Runtime adaptation of applications through dynamic recomposition of components,

in: Proceedings of the 18th International Conference on Architecture of Computing Systems Conference on

Systems Aspects in Organic and Pervasive Computing, 2005, pp. 124–138.
[23] J. Dowling, V. Cahill, The K-component architecture meta-model for self-adaptive software, in: Proceedings

of the Third International Conference on Metalevel Architectures and Separation of Crosscutting Concerns,

2001, pp. 81–88.
[24] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the Future of Soft-

ware Engineering, 2007, pp. 259–268.
[25] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,

D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.

14 (3) (1999) 54–62.
[26] D. Menasc�e, H. Gomaa, S. Malek, J. Sousa, SASSY: a framework for self-architecting service-oriented sys-

tems, IEEE Softw. 28 (6) (2011) 78–85.
[27] D. Garlan, J.M. Barnes, B.R. Schmerl, O. Celiku, Evolution styles: foundations and tool support for software

architecture evolution, in: Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture

(WICSA’09), 2009, pp. 131–140.
[28] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. Cheng, Composing adaptive software, IEEE Comput.

37 (7) (2004) 56–64.
[29] N.M. Villegas, H.A. M€uller, G. Tamura, L. Duchien, R. Casallas, A framework for evaluating quality-driven

self-adaptive software systems, in: Proceedings of the 6th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, 2011, pp. 80–89.

96 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145

[30] J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger, A survey of self-management in dynamic software

architecture specifications, in: Proceedings of the 1st ACM SIGSOFTWorkshop on Self-Managed Systems,

2004, pp. 28–33.
[31] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41–50.
[32] S. Kell, A survey of practical software adaptation techniques, J. Univers. Comput. Sci. 14 (13) (2008)

2110–2157.
[33] T. Elrad, R. Fillman, A. Bader, Aspect-oriented programming, Commun. ACM 44 (10) (2001) 29–32.
[34] E.W. Dijkstra, On the role of scientific thought, in: E.W. Dijkstra (Ed.), Selected Writings on Computing: A

Personal Perspective, Springer-Verlag, New York, NY, 1982, pp. 60–66.
[35] J. Bakker, B. Tekinerdogan, M. Aksit, Characterization of early aspects approaches, in: Workshop on Early

Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, Held in Conjunction With

AOSD Conference, 2005.

[36] M. Aksit, B. Tekinerdogan, L. Bergmans, The six concerns for separation of concerns, in: Proceedings of

Workshop on Advanced Separation of Concerns, European Conference on Object-Oriented Programming,

Budapest, Hungary, 2003.

[37] N. Rozanski, E.Woods, Software Systems Architecture—WorkingWith Stakeholders Using Viewpoints and

Perspectives, Addison-Wesley, Boston, 2005.

[38] F. Bachmann, L. Bass, M. Klein, Architectural tactics: a step toward methodical architectural design, Tech-

nical report CMU/SEI-2003-TR-004, Carnegie Mellon University, Pittsburgh, PA, 2003.

[39] M. Hinchey, S. Park, K. Schmid, Building dynamic software product lines, IEEE Comput. 45 (10) (2012)

22–26.
[40] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortes, M. Hinchey, An overview of dynamic software product line

architectures and techniques: observations from research and industry, J. Syst. Softw. 91 (2014) 3–23.
[41] M. Klein, R. Kazman, L. Bass, S.J. Carriere, M. Barbacci, H. Lipson, Attribute-based architectural styles,

in: Proceedings of the First Working IFIP Conference on Software Architecture, San Antonio, TX, February,

1999.

97REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205

CHAPTER

ADAPTIVE SECURITY FOR
SOFTWARE SYSTEMS 5

M. Abdelrazek, J. Grundy, A. Ibrahim
Deakin University, Melbourne, VIC, Australia

5.1 INTRODUCTION
Enterprise security objectives, reported risks and threats, and vulnerabilities are themain sources of soft-

ware security requirements. During the software development lifecycle, software vendors iteratively

refine these high-level security needs into software security requirements and mechanisms to be used.

Many software security engineering efforts [1] have been developed to help software vendors in captur-

ing,modeling, refining, and engineering these security requirements into their software systems at design

time or ultimately at deployment time. These design-time security engineering efforts are very important

not only in engineering users’ security requirements into software, but also in engineering secure sys-

tems—that is, taking into consideration secure software development best practices in architecting, de-

signing, coding, and testing the underling software.

However, security has never been a one-time process. Enterprise security objectives, risks and threats

(e.g., execute arbitrary scripts and breach confidential data, elevate malicious user privileges, take the

system down), and vulnerabilities change over time due to new business goals, changes in software op-

erational IT environment (e.g., new deployment or operational environment—Cloud/SOA/etc.), and the

continuously changing threat landscape. This usually requires changing software security capabilities to

meet these new requirements. In addition, mitigating new reported vulnerabilities is usually done man-

ually, and sometimes by modifying application source code and deploying new patches. These modifi-

cations are usually translated into new software change requests sent to software vendors to effect these

new requirements. However, this usually takes a long time to fix [2]. As shown in Fig. 5.1, time greatly

lags between vulnerability detection and patching. Thismeans that a software service remains vulnerable

to security breaches exploiting such vulnerabilities. The possibility of vulnerability exploitation in-

creases dramatically in cloud computing, given the public accessibility of the cloud services and the shar-

ing of services with multiple tenants. Thus, in such deployment models there is an increasing need for an

online, automated vulnerability patching approach that can stop such vulnerabilities once reported.

In this chapter, we introduce a new adaptive security engineering approach meant to address the

following key challenges:

1. What are the key security aspects we should capture?

2. How can we model such security requirements taking into consideration that these requirements

will change overtime?

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00005-8

Copyright # 2017 Elsevier Inc. All rights reserved.
99

http://dx.doi.org/10.1016/B978-0-12-802855-1.00005-8

3. How can we detect new security vulnerabilities in a running system?

4. How can we automate the realization/enforcement of the new security requirements and virtual

patching of reported vulnerabilities at runtime?

Our work is based on externalizing the security engineering practices so that we can update software

security capabilities at runtime, on the fly, to realize new requirements, mitigate new reported vulner-

abilities, or automated adaptation actions. All the security requirements modeling and refinement

activities are done externally, and are easy to change at runtime.

5.2 MOTIVATION
Consider SwinSoft, an imaginary software company building a large web-based enterprise resources

planning (ERP) system, called “Galactic.” Galactic provides customer management, order manage-

ment, and employee management modules. Please see Fig. 5.9 for a detailed description model of

Galactic including features, architecture, classes, and deployment details. SwinSoft targets different

markets in different countries for Galactic. However, such markets, domains and likely customers have

different regulations and information security standards that must be satisfied. Galactic must integrate

with diverse customers’ existing security solutions and other application security. Moreover, SwinSoft

has found that customers’ security requirements that Galactic must meet may change dramatically

over time.

A customer, Swinburne University now wants to purchase a new ERP solution in order to improve

its internal enterprise management processes. Swinburne has special security requirements because it is

ISO27001 certified. Its enterprise security architects conduct periodic risk assessment that may require

reconfiguring the deployed applications’ security to block newly discovered threats. Swinburne also

wants to have its ERP system security flexible enough as it is planning to integrate its new ERP system

with its partners. This implies that the Galactic application’s security will change over time after its

deployment.

At the same time, another potential SwinSoft customer, SwinMarket, a big brand supermarket

chain, has decided to purchase Galactic. SwinMarket also has a need for highly customizable security

options on different system features that Galactic must satisfy. SwinMarket expects security solutions

deployed in its application operational environment to change over time. Galactic must be able to be

92

138

17

160

88

0 50 100 150 200

XSS

SQLI

CSRF

Improper authentication

Improper authorization

Avg time (days)

Avg time (days)

FIG. 5.1

Average time to fix security vulnerabilities (in days) [2].

100 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

updated quickly to adjust to these as well as any emergent security threats. A delay in patching newly

discovered vulnerabilities means a loss of money.

An analysis of this scenario identifies many challenges including: security requirements differ from

one customer to another; each customer’s security requirements may change over time based on current

operational environment security and business objectives; Galactic system security must be integrated

with customers’ deployed security controls in order to achieve coherent security operational environ-

ment; and new security vulnerabilities may be discovered in the Galactic system at any time. Using

traditional security engineering techniques would require SwinSoft to conduct a lot of system main-

tenance iterations to deliver system patches that block vulnerabilities and adapt the system to every new

customer needs.

A better security engineering approach that addresses these challenges should: enable each cus-

tomer to specify and enforce their security requirements based on their current security needs; security

should be applied to any arbitrary system component/entity; no predefined/hardcoded secure points or

capabilities, usually built at design time; security specification should be supported at different levels

of abstraction based on software customers’ experience, scale, and engineers’ capabilities. Integration

of security controls with system entities should be supported at different levels of abstraction, from the

system as one unit to a specific system method. The security engineering approach should ease the

integration with third-party security controls. System and security specifications should be reconfigur-

able at runtime.

5.3 SECURITY ENGINEERING STATE-OF-THE-ART
Existing security engineering efforts focus on capturing and enforcing security requirements at design

time, security retrofitting (maintenance), and adaptive security engineering. On the other hand, most

industrial efforts focus on delivering security platforms to help software developers in implementing

their security requirements using readymade standard security algorithms and mechanisms. Some

of the key limitations we found in these efforts include: (i) these efforts focus mainly on design-time

security engineering—that is, how to capture and enforce security requirements during software

development phase; (ii) limited support to dynamic and adaptive security and require design-time

preparation. Fabian et al. [1] introduce a detailed survey of the existing security engineering efforts

but did not highlight limitations of these approaches. We discuss key efforts in these areas.

5.3.1 DESIGN-TIME SECURITY ENGINEERING
Software security engineering aims to develop secure systems that remain dependable in the face of

attacks [3]. Security engineering activities include: identifying security objectives that systems should

satisfy; identifying security risks that threaten system operation; elicitation of security requirements

that should be enforced on the system to achieve the expected security level; developing security ar-

chitectures and designs that deliver the security requirements and integrates with the operational

environment; and developing, deploying, and enforcing the developed or purchased security controls.

Below, we summarize the key efforts in the security engineering area.

1015.3 SECURITY ENGINEERING STATE-OF-THE-ART

5.3.1.1 Early-stage security engineering
The early-stage security engineering approaches focus mainly on security requirements engineering

including security requirements elicitation, capturing, modeling, analyzing, and validation at design

time from the specified security objectives or security risks. Below we discuss some of the key existing

security requirements engineering efforts.

Knowledge acquisition in automated specification (KAoS) [4] is a goal-oriented requirements en-

gineering approach. KAoS uses formal methods for models analysis [5]. KAoSwas extended to capture

security requirements [6] in terms of obstacles to stakeholders’ goals. Obstacles are defined in terms of

conditions that when satisfied will prevent certain goals from being achieved. This is helpful in under-

standing the system goals in details but it results in coupling security goals with system goals.

Secure i* [7,8] introduces a methodology based on the i* (agent-oriented requirements modeling)

framework to address security and privacy requirements. The secure i* focuses on identifying security

requirements through analyzing relationships between users, attackers, and agents of both parties. This

analysis process has seven steps organized in three phases of security analysis as follows: (i) attacker

analysis focuses on identifying potential system abusers and malicious intents; (ii) dependency vulner-

ability analysis helps in detecting vulnerabilities according to the organizational relationships among

stakeholders; (iii) countermeasure analysis focus on addressing and mitigating the vulnerabilities and

threats identified in previous steps.

Secure TROPOS [9–11] is an extension of the TROPOS requirements engineering approach that is

based on the goal-oriented requirements engineering paradigm. TROPOS was initially developed for

agent-oriented security engineering. TROPOS introduces a set of models to capture the system actors

(actors’ model) and their corresponding goals (goal model: hard goals represent the actor functional

requirements and soft-goals represent the actor nonfunctional requirements). These goals are itera-

tively decomposed into subgoals until these subgoals are refined into tasks, plans, and resources. Se-

cure TROPOS is used to capture security requirements during the software requirements analysis.

Secure TROPOSwas appended with new notations. These included: (i) security constraints: restriction
related to certain security issue like: privacy, integrity…etc.; (ii) security dependency: this adds con-
straints for the dependencies that may exist between actors to achieve their own goals and defines what

each one expects from the other about the security of supplied or required goals; and (iii) security
entities: are extensions of the TROPOS notations of entities like goals, tasks, and resources as follows:

secure goal: means that the actor has some soft-goal related to security (no details on how to achieve)

this goal will be achieved through a secure task; secure task: is a task that represents a particular way of

satisfying a secure goal; secure resource: is an informational entity that’s related to the security of the

system; and secure capability: means the capability of an actor to achieve a secure goal.

Misuse cases [12,13] capture use cases that the system should allow side by side with the use cases

that the system should not allow which may harm the system or the stakeholders operations or security.

The misuse cases focus on the interactions between the system and malicious users. This helps in de-

veloping the system expecting security threats and drives the development of security use cases.

5.3.1.2 Later-stage security engineering
Efforts in this area focus on how to map security requirements (identified in the previous stage) on

system design entities at design time and how to help in generating secure and security code specified.

Below we summarize the key efforts in this area organized according to the approach used or the un-

derlying software system architecture and technology used.

102 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

UMLsec [14–16] is one of the first model-driven security engineering efforts. UMLsec extends

UML specification with a UML profile that provides stereotypes to be used in annotating system design

elements with security intentions and requirements. UMLsec provides a comprehensive UML profile

but it was developed mainly for use during the design phase. Moreover, UMLsec contains stereotypes

for predefined security requirements (such as secrecy, secure dependency, critical, fair-exchange, no

upflow, no downflow, guarded entity) to help in security analysis and security generation. UMLsec is

supported with a formalized security analysis mechanism that takes the system models with the spec-

ified security annotations and performs model checking. UMLsec [17] has recently got a simplified

extension to help in secure code generation.

SecureUML [18] provides UML-based language for modeling role-based access control (RBAC)

policies and authorization constraints of the model-driven engineering (MDE) approaches. This ap-

proach is still tightly coupled with system design models. SecureUML defines a set of vocabulary that

represents RBAC concepts such as roles, role permissions, and user-assigned roles.

Satoh et al. [19] provides end-to-end security through the adoption of model-driven security using

the UML2.0 service profile. Security analysts add security intents (representing security patterns) as

stereotypes for the UML service model. Then, this is used to guide the generation of the security

policies. It also works on securing service composition using pattern-based by introducing rules to

define the relationships among services using patterns. Shiroma et al. [20] introduce a security engi-

neering approach merging model-driven security engineering with patterns-based security. The

proposed approach works on system class diagrams as input along with the required security patterns.

It uses model transformation techniques (mainly ATL—atlas transformation language) to update

the system class diagrams with the suitable security patterns applied. This process can be repeated

many times during the modeling phase. One point to be noticed is that the developers need to be aware

of the order of security patterns to be applied (i.e., authentication then authorization, then…).

Delessy et al. [21] introduce a theoretical framework to align security patterns with modeling of

Service-Oriented Architecture SOA systems. The approach is based on a security patterns map divided

into two groups: (i) abstraction patterns that deliver security for SOA without any implementation

dependencies and (ii) realization patterns that deliver security solutions for web services’ implemen-

tation. It appends metamodels for the security patterns on the abstract and concrete levels of models.

Thus, architects become able to develop their SOA models (platform independent) including security

patterns attribute. Then generate the concrete models (platform dependent web services) including the

realization security patterns. Similar work introduced by Schnjakin et al. [22] to use security patterns in

capturing security requirements and then enforce these requirements using predefined security patterns.

Hafner et al. [23] introduce the concept of security-as-a-service (SeAAS) where a set of key security

controls are grouped and delivered as a service to be used by different web-based applications and ser-

vices. It is based on outsourcing security tasks to be done by the SeAAS component. Security services

are registered with SeAAS and then it becomes available for consumers and customers to access when-

ever needed. A key problem of the SeAAS is that it introduces a single point of failure and a bottleneck

in the network. Moreover, it did not provide any interface where third-party security controls can im-

plement to support integration with the SeAAS component. The SECTET project [24] focuses on the

business-to-business collaborations (such as workflows) where security needs to be incorporated be-

tween both parties. The solution was to model security requirements (mainly RBAC policies) at high

level and merged with the business requirements using SECTET-PL [25]. These modeled security

1035.3 SECURITY ENGINEERING STATE-OF-THE-ART

requirements are then used to automate the generation of implementation and configuration of the re-

alization security services using WS-security as the target applications are assumed to be SOA-

oriented.

We have also determined different industrial security platforms that have been developed to help

software engineers realizing security requirements through a set of provided security functions and

mechanisms that the software engineers can select from. Microsoft has introduced more advanced

extensible security model—Windows Identity Foundation [26] to enable service providers delivering

applications with extensible security. It requires service providers to use and implement certain inter-

faces in system implementation. The Java Spring framework has a security framework—Acegi [27].

It implements a set of security controls for identity management, authentication, and authorization.

However, these platforms require developers’ involvement in writing integration code between their

applications and such security platforms. The resultant software systems are tightly coupled with these

platforms’ capabilities and mechanisms. Moreover, using different third-party security controls

requires updating system source code to add necessary integration code.

5.3.2 SECURITY RETROFITTING
Although a lot of security engineering approaches and techniques do exist as we discussed in the last

section, the efforts introduced in the area of security reengineering and retrofitting are relatively lim-

ited. This comes, based on our understanding, from the assumption that security should not be consid-

ered as an afterthought and should be considered from the early system development phases. Thus,

research and industry efforts focus mainly on how to help software and security engineers in capturing

and documenting security in system design artifacts and how to enforce using MDE approaches. Se-

curity maintenance is implicitly supported throughout updating design-time system or security models.

In the real world, system delivery plans are dominated by developing business features that should be

delivered. This leads to systems that miss customers expected or required security capabilities. These

existing legacy systems lackmodels (either system or security or both) that could be used to conduct the

reengineering process. The maintenance or reengineering of such systems is hardly supported by exist-

ing security (re)engineering approaches.

Research efforts in the security retrofitting area focus on how to update software systems in order

to extend their security capabilities ormitigate security issues. Abdulkarim et al. [28] discussed the lim-

itations anddrawbacks of applying the security retrofitting techniques including cost and timeproblems,

technicality problems, issues related to the software architecture and design security flaws. Hafiz and

Johnson [29,30] propose a security on demand approach, which is based on a developed catalog of se-

curity-oriented program transformations to extend or retrofit system security with new security patterns

that have been proved to be effective and efficient inmitigating specific system-security vulnerabilities.

These program transformations include adding policy enforcement point, single access point, authen-

tication enforcer, perimeter filter, decorated filter and more. A key problem with this approach is that it

depends on predefined transformations that are hard to extend especially by software engineers.

Ganapathy et al. [31,32] propose an approach to retrofit legacy systems with authorization security

policies. They used concept analysis techniques (locating system entities using certain signatures) to

find fingerprints of security-sensitive operations performed by system under analysis. Fingerprints are

defined in terms of data structures (such as window, client, input, Event, Font) that we would like to

secure their access and the set of APIs that represent the security-sensitive operations. The results

104 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

represent a set of candidate join-points where we can operate the well-known “reference monitor” au-

thorization mechanism.

Ganapathy et al. [33] present a practical tool to inject security features that defend against low-level

software attacks into system binaries. The authors focus on cases where the system source code is not

available to system customers. The proposed approach focuses on handling buffer overflow related

attacks for both memory heap and stack.

Welch and Stroud [34] introduce a security reengineering approach based on java reflection con-

cept. Their security reengineering approach is based on introducing three metaobjects that are respon-

sible for authentication, authorization, and communication confidentiality. These metaobjects are

weaved with the system objects using java reflection. However, this approach focuses only on adding

predefined types of security attributes and do not address modifying systems to block reported security

vulnerabilities.

5.3.3 ADAPTIVE APPLICATION SECURITY
Several research efforts target to enable systems to adapt their security capabilities at runtime.Elkhodary

andWhittle [35] survey adaptive security systems.Extensible security infrastructure [36] is a framework

that enables systems to support adaptive authorization enforcement through updating inmemory autho-

rization policy objects with new low-level C code policies. It requires developing wrappers for every

system resource that catch calls to such resource and check authorization policies. Strata Security

API [37] where systems are hosted on a strata virtual machine which enables interception of system

execution at instruction level based on user security policies. The framework does not support securing

distributed systems and it focuses on low-level policies specified in C code.

The SERENITY project [38–40] enables provisioning of appropriate security and dependability

mechanisms for ambient intelligence systems at runtime. The SERENITY framework supports: def-

inition of security requirements in order to enable a requirements-driven selection of appropriate

security mechanisms within integration schemes at runtime; provide mechanisms for monitoring

security at runtime and dynamically react to threats, breaches of security, or context changes; and

integrating security solutions, monitoring, and reaction mechanisms in a common framework. SEREN-

ITY attributes are specified on system components at design time. At runtime, the framework links

serenity-aware systems to the appropriate security and dependability patterns. SERENITY does not
support dynamic or runtime adaptation for new unanticipated security requirements neither adding
security to system entities that was not secured before and become critical points.

Morin et al. [41] propose a security-driven and model-based dynamic adaptation approach to adapt

applications’ enforced access control policies in accordance to changes in application context—that is,

applying context-aware access control policies. Engineers define security policies that take into con-

sideration context information. Whenever the system context changes, the proposed approach updates

the system architecture to enforce the suitable security policies. The key limitation of this work is that it
focuses mainly on access control policies and requires design-time preparation of the software.

Mouelhi and others [41] introduce a model-driven security engineering approach to specify and

enforce system access control policies at design time based on aspect-oriented programming

(AOP)-static weaving. These adaptive approaches require design-time preparation (to manually write

integration code or to use specific platform or architecture). They also support only limited security

1055.3 SECURITY ENGINEERING STATE-OF-THE-ART

objectives, such as access control. Unanticipated security requirements are not supported. No valida-
tion that the target system (after adaptation) correctly enforces security as specified.

Yuan et al. [42] introduce a more comprehensive survey of efforts in the area of self-protecting

software systems. They have also outlined the key research gaps in the existing techniques. This in-

cludes: (i) lack of comprehensive self-protecting systems either from the monitoring, planning, exe-

cution perspective, or from the software stack perspective—that is, host, network, and software; (ii)

lack of an integrated solution that supports both design-time and runtime security, (iii) support of more

security adaptation patterns. Our approach focus is the first problem, which is to extend a given soft-

ware system with necessary security monitors (using user-defined metrics and properties), security

analysis (using formalized vulnerability signatures), planning (using models for manual adaptation

and rules for automated adaptation), and execution (using AOP). Furthermore, we generate a set of

integration test cases to verify that the specified adaptations (realized by security controls’ integration

with the software system) are functioning as expected. The big picture of our approach is available in

Ref. [43]. In this chapter we focus mainly on how adaptation can be specified (manually/automatically)

and how such adaptations can be realized.

5.4 RUNTIME SECURITY ADAPTATION
We identified two potential types of security adaptation: manual adaptation: usually triggered manu-

ally by security engineers/administrators based on change in security goals, security threats, and risks;

and automated adaptation: triggered automatically based on specified adaptation rules fired when a

certain metric exceeds a user-defined threshold, a property is violated, or a new vulnerability was

reported.

Our approach, outlined in Fig. 5.2, is based on externalizing the software security capabilities from

the software so that we can easily change such security capabilities without the need to change the

software itself. At the same time being able to integrate (inject) such new capabilities within the soft-

ware at any arbitrary system entity. This is abstracted to end users by a set of domain-specific visual

FIG. 5.2

Block diagram of our adaptive security approach.

106 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

languages (DSVLs) at different levels of abstraction to help them describe their security needs, soft-

ware details, and mapping security to system entities at the right level of abstraction for different stake-

holders. This helps in speeding up the software change time to ad hoc security needs. The security

vulnerability analysis is based on formalized signatures that describe bad code smells we need to look

for in a given system. The same idea is used in the security monitoring component. All these inputs

(requirements for adaptation) are realized/executed using the same execution component (MDSE@R,

security engineering at runtime).

5.4.1 SUPPORTING MANUAL ADAPTATION USING MDSE@R
The MDSE@R approach [44,45] targets externalizing all security engineering activities so we can de-

fine and change system security at any time, while being able to integrate these new security capabil-

ities on the system at runtime. MDSE@R is based on two key concepts: (i) MDE, using DSVL models

at different levels of abstraction to describe system and security details; and (ii) AOP, which enables

dynamic runtime weaving of interceptors and system code based on configuration files that specify the

required security point-cuts in the system. Fig. 5.3 shows an overview of how to apply MDSE@R in

engineering security for a given system at runtime, as discussed here.

Build system-description model (SDM): A detailed SDM (Fig. 5.3(1), see Fig. 5.9 for an example)

made up of a set of models delivered by the system provider. This describes various details of the target

software application. Our SDMs include: system features (using use case diagrams), system architec-

ture (using component diagrams), system classes’ model (using class diagrams), system behavior

model (using sequence diagrams), system deployment (using deployment diagrams), and system con-

text (using component diagrams). We have selected these models as they cover all system perspectives

that may be required in order to specify system security. The use of many of these submodels is op-

tional. It depends on howmany of the system details the system provider exposes to their customers and

how many details customers’ security engineers will need in enforcing the required security on the

target system. Security engineers may be interested in specifying security on system entities (using

System description models Security specification models

Security enforcement point

System engineer Security engineer

Sy
st

em
co

nt
ai

ne
r

Sy
st

em

Se
cu

rit
y

se
rv

ic
es

Security services Develop Develop

1 3

Live system
interceptors
document

Live security
specification

document

Se
cu

rit
y

te
st

in
g

85
2

4

67

9

10

FIG. 5.3

Security engineering at runtime.

1075.4 RUNTIME SECURITY ADAPTATION

system components and/or classes models), on system status (using system behavior model), on system

hosts (using system deployment model), or external system interactions (using system context model).

Moreover, system customers can specify security on coarse-grained level (using system component

model), or on fine-grained level (using system class models). The SDMs can be synchronized with

the running system instance using models@runtime synchronization techniques [25,26], or manually

by the system provider. Some of such system-description information can be reverse-engineered, if not

available, from the target system (Fig. 5.3(2)).

Build security specification model (SSM): A set of models developed and managed by security en-

gineers (Fig. 5.3(3)) to specify the security needs that must be satisfied in the target system. They in-

clude a set of submodels that capture the details required during the security engineering process

including: security goals and objectives, security risks and threats, security requirements, security ar-

chitecture for the operational environment, and security controls to be enforced. These models deliver

different levels of abstractions and enable separation of concerns between customer stakeholders in-

cluding business owners, security analysts, security architects and implementers. The key mandatory

model in the SSMs set is a security controls model. This is required in generating interceptors and se-

curity aspect code.

System-security models weaving: A many-to-many mapping between the SDMs and SSMs is de-

veloped by the customer security engineers (Fig. 5.3(4)). One or more security concepts (security ob-

jective, security requirement, and/or security control) is mapped to one or more system model entities

(system-level, feature-level, component-level, class-level, and/or method-level entities). Mapping a

security concept on a higher level system entity implies a delegation to the underlying levels.Whenever

a security specification is mapped to a system feature, this implies that the same security specification is

mapped on the feature related components, classes, and methods.

The few steps discussed so far helps in addressing the planning phase in security adaption. New

security requirements (objectives, risks, etc.) can easily be reflected on the SSM described earlier.

The next steps related to enforcing (executing) the specified security, and are automated by MDSE@R

without any involvement from the security or system engineers. Whenever a mapping is defined or

updated between a SSM and a SDM, the underlying MDSE@R framework propagates such changes

as follows:

Update Live System Interceptors’Document (Fig. 5.3(5))—this maintains a list of point-cuts where

security controls should be weaved/integrated with the target software application entry points. This

document is updated based on the modeled security specifications and the corresponding system

entities where security should be applied. Update a Live Security Specification Document (Fig. 5.3
(6))—this maintains a list of security controls to be applied at every point-cut defined in the system

interceptors’ document. Update the system container (Fig. 5.3(7))—this is responsible for injecting

interceptors defined in the system interceptors’ document into the target system at runtime using dy-

namic weaving AOP. Any call to a method, with a matching in the interceptors’ document, will be

intercepted and delegated to a central security enforcement point. Test current system security
(Fig. 5.3(8))—this validates that the target system is currently enforcing the specified security levels.

The security-testing component makes sure that the intended security is correctly integrated with

the target application at runtime. MDSE@R generates and fires a set of security integration test cases.

This is done before MDSE@R gives confirmation to security engineers that required security is now

enforced. Security enforcement point (Fig. 5.3(9))—this acts as a bridge between the target system

(system container) and the security controls that deliver the required security. The security enforcement

108 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

point uses the live security specification document to determine, and initiate, security control to be

enforced on a given, intercepted, request. Security services (Fig. 5.3(10)) are the application security

controls (deployed in the system operational environment) that are integrated with the security enforce-

ment point. This enables the security enforcement point to communicate with these services via APIs

implemented by each service.

Thus, MDSE@R covers manually adaptation scenarios. A given set of security objectives and re-

quirements are reflected on the SSM, and MDSE@R will make sure to automatically inject (or may be

leave out) these security requirements as needed. For legacy systems, this might seem infeasible, but

we have used static aspect oriented to modify system binaries and add calls to our security

enforcement point.

5.4.2 AUTOMATED ADAPTATION USING VULNERABILITY ANALYSIS ANDMITIGATION
Another key trigger for security adaption is the discovery of a new vulnerability in the software. In our

approach [46–48], we assume that this requires automated adaptation of the enforced security to (vir-

tually) patch the reported security until the software vendor develops a real patch. In this section we

discuss how we can do the vulnerability analysis, and then using a set of rules to come up with nec-

essary adaptation actions to block such vulnerability. Fig. 5.4 summarizes the interactions between the

vulnerability analysis component, security mitigation component, and the software. Our vulnerability

analysis approach depends on a formalized vulnerability definition schema that covers many concepts

of software security weaknesses (flaws) such as vulnerability signature—what are the key things in the

software when found, it means that the system suffers from such vulnerability, andmitigation actions—

what adaptation we need to apply to patch the vulnerability.

Formalizing vulnerability signatures helps automating the vulnerability analysis process. Ideally, a

formal vulnerability signature should be specified on an abstract level far from the source code and

programming language details, enabling locating of possible vulnerability instances in different pro-

grams written in different programming languages. We use Object Constraint Language (OCL) as a

well-known, extensible, and formal language to specify semantic rather than syntactical signatures

of security weaknesses. To support specifying and validating OCL-based vulnerabilities’ signatures,

we have developed a system-description metamodel, shown in Fig. 5.5. This model is inspired from

FIG. 5.4

Automated vulnerability analysis and mitigation.

1095.4 RUNTIME SECURITY ADAPTATION

FI
G
.
5
.5

S
o
ft
w
a
re

d
e
sc
ri
p
tio
n
m
e
ta
m
o
d
e
l.

110 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

our analysis of the nature of the existing security vulnerabilities. It captures the main entities in any

object-oriented program and relationships between them including components, classes, instances, in-

puts, input sources, output, output targets, methods, method bodies, statements, for example, if-else

statements, loops, new objects, etc. Each entity has a set of attributes such as method name, accessi-

bility, variable name, variable type, method call name. This model helps conducting semantic analysis

of the specified vulnerability signatures. Table 5.1 shows examples of vulnerability signatures spec-

ified in OCL and using our SDM.

SQL Injection - SQLI: Any method statement “S” of type “MethodInvocation” where the callee

function is “ExecuteQuery” and one of the parameters passed to it, is assigned to “identifier”
coming from one of the input sources. Taint analysis “IsTainted” can be defined as an OCL function

that adds every variable assigned to a user input parameter to a suspected list.

Cross-Site Scripting - XSS signature: Any method statement “S” of type assignment statement

where left part is of type “output target” for example, text, label, grid, etc. and right part uses input

from the input sources or tainted identifier as just discussed.

Authentication bypass: Any public method that has statement “S” of type “MethodInvocation”
where the callee method is marked as Authentication function while this method call can be skipped

using user input as part of the bypassing condition.

Improper authorization: Any public method that has statement “S” that uses input data X without

being sanitized, authorized.

5.4.2.1 OCL-based vulnerability analyzer
Given that vulnerability signatures become now formally specified using OCL, the static vulnerability

analysis component simply traverses the given program looking for code snippets with matches to the

given vulnerabilities’ signatures.

Table 5.1 Example Vulnerability Signatures

Vulnerability Vulnerability Signature

SQLI Context Method Inv SQLICheck:

self.Statements->exists(S j S.StatementType ¼ ‘MethodInvocation’ and S.MethodName ¼
‘ExecuteSQL’ and S.Parameters.exists(P j self.IsTainted(P.ParameterName) ¼ true)

XSS Context Method Inv SQLICheck:

self.Exists(S j S.StatementType ¼ ‘Assignment’ and S.RightPart.Contains(InputSource) and

S.LeftPart.Contains(OutputTarget))

Authentication

bypass

Context Method Inv SQLICheck:

self.IsPublic ¼¼ true and self->Exists(S j S.StatementType ¼ ‘MethodInvocation’ and S.

IsAuthenitcationFn

¼¼ true and S.Parent ¼¼ IFElseStmt and S.Parent.Condition.Contains(InputSource))

Improper

authorization

Context Method Inv SQLICheck:

self.IsPublic¼¼ true and self.Contains(Sj S.Exists(XjX.StatementType¼ ‘InputSource’ and

X.IsSanitized

¼ false or X.IsAuthorized ¼¼ False)

1115.4 RUNTIME SECURITY ADAPTATION

The architecture of our formal and scalable static vulnerability analysis component, as shown in

Fig. 5.6, is based on our formalized vulnerability signature concept.

Program source code: We should have source code or binaries (dlls, exes—de-compilation is used

to reverse engineer source code) of the application to be analyzed.

Abstract program representation: Source code is transformed into an abstract syntax tree

(AST) representation. This abstracts language-specific source code details away from specific

language constructs. Extracting source code AST requires using different language parsers

(currently support C++, VB.Net, and C#). Then, we perform more abstract transforming from AST

to SDM that conforms to the model.

OCL functions: Represent a library of predefined functions that can be used in specifying

vulnerability signatures and in identifying matches to these signatures. This includes control flow,

data flow, string patterns, program taint analysis, etc.

Signature locator: This is the main component in our vulnerability analysis tool. It receives the

abstract service/application model and outputs the list of discovered vulnerabilities in the given

system along with their locations in code. At analysis time, it loads the platform (C#, VB, PHP)

profile based on the details of the program under analysis. Then, it loads the existing weaknesses

defined in the weaknesses’ signatures database, based on the target program platform/language.

The signature locator transforms these signatures into C# methods that check different program

entities based on the specified vulnerability signature. We use Application Vulnerability

Description Language to represent the identified vulnerabilities in XML format to support

interoperability with existing vulnerability databases such as National Vulnerabilities Database.

5.4.2.2 Vulnerability mitigation
Discovered application/service security vulnerabilities can be mitigated in different approaches includ-

ing: modifying application source code to block the identified problems (patches); however, this so-

lution will be hard to approach in public accessible software systems—for example, cloud systems—as

it may take long time to deliver patched version. A quick solution is to use Web application firewall

(WAF) to filter requests/responses that exploit such vulnerabilities; however, WAF has many limita-

tions including it does not help in output validation, cryptography storage, and mitigating improper

authorization.

Program
representation 1

AST

Program
representation

……

……

Signature-based static
signature locator

OCL
functions

Platform
profile

Weakness
signatures

(OCL)

Vulnerability list

Program
source

FIG. 5.6

OCL-based vulnerability analysis.

112 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

Our approach supports integrating different security controls including identity management, au-

thentication controls, authorization controls, input validation, output encoding, WAF, cryptography

controls, etc. In our approach, each vulnerability mitigation action specifies a security control type/

family to be used in mitigating the related vulnerability, its required configurations, and applica-

tion/service entity where the security control will be integrated with (hosting service—webserver or

operating system, components, classes, and methods). Thus, a reported SQLI vulnerability in a method

(M) that belongs to component (C) can be mitigated by adding input sanitization control (Z) on com-

ponent (C) that removes SQL keyword from every single request to the method (M). In Table 5.2, we

show examples of mitigation actions for some of the known security vulnerabilities. These actions

should be specified in XML and included as a part of the formalized vulnerability definition.

5.4.2.3 Vulnerability mitigation component
The analysis component outputs a list of the discovered vulnerabilities in the software system (Fig. 5.7

(1)). Each entry in this list has a service/application vulnerable entity (method, class, or component)

along with the list of discovered vulnerabilities in this entity. Given this list of vulnerabilities, the se-

curity vulnerability mitigation manager queries the vulnerability definition schema database (Fig. 5.7

(2)) to retrieve the appropriate actions to be taken in order to mitigate each of such reported vulner-

abilities. Examples of the retrieved actions are shown in Table 5.2. Using these two lists (vulnerable

software entities and mitigation actions), the vulnerability mitigation manager (Fig. 5.7(3)) decides the

patching level (component level, class level, or method level) using, for example, HttpModules, object

6

3 Vulnerability mitigation manager

Security specification
document5

7 Security kernel

Application interceptors
document4

1

OCL-based vulnerability
analysis component

Discovered vulnerabilities

Vulnerability definition
schema

Mitigation actions 2

8

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

w
ra

pp
er

Se
cu

rit
y

se
rv

ic
es

FIG. 5.7

Vulnerability mitigation component.

Table 5.2 Example Vulnerability Mitigation Rules/Actions

Vulnerability Security Control Entity Level

SQLI Input sanitization Method level

XSS Input encoding Component level

Authentication bypass WAF Component level

Improper authorization Authorization Method level

1135.4 RUNTIME SECURITY ADAPTATION

interceptor using dependency injection, or method-level interception using dynamic weaving AOP re-

spectively. The rest of the steps to enforce the right security control at the right place are as described in

the MDSE@R section.

5.5 USAGE EXAMPLE
To demonstrate the capabilities of our new MDSE@R security engineering approach we revisit our

example discussed in Section 5.2, the ERP system “Galactic” developed by SwinSoft and procured

by Swinburne and SwinMarket. The two customers using the Galactic ERP system have their own dis-

tinct security requirements to be enforced on each of their Galactic ERP application instances. We il-

lustrate this security engineering scenario using screen dumps from our prototype tool.

5.5.1 TASK 1—MODEL GALACTIC SYSTEM DESCRIPTION—ONE-TIME TASK
This task is done during or after the system is developed. SwinSoft decides the level of application

details to provide to its customers in the Galactic system model. Fig. 5.8 shows that SwinSoft provides

its customers with description of system features including customer, employee, and order manage-

ment features (Fig. 5.8B), system architecture including presentation, business logic layer, and data ac-

cess layer (Fig. 5.8C), system classes including CustomerBLL, OrderBLL, EmployeeBLL (Fig. 5.8D),

and system deployment including web tier, application tier, and data tier (Fig. 5.8E). SwinSoft uses

the provided UML profile (Fig. 5.8A) to specify the dependences and relations between system fea-

tures and components, and components and their classes. Fig. 5.8A shows the UML profile we built to

extend UML with security properties (what security controls/requirements/objectives) are mapped to a

given system entity; and to store the traceability information between different system artifacts—for

example, system features to realization components, components to classes, etc.

5.5.2 TASK 2—MODEL SWINBURNE SECURITY NEEDS
This step is conducted by Swinburne and SwinMarket security engineers during their repetitive security

management process. In our scenario, Swinburne security engineers document Swinburne security ob-

jectives that must be satisfied by Galactic system. This is done using a high-level security-objectives

model (Fig. 5.9A). This model can be revisited at any time to incorporate changing Swinburne security

objectives. Security engineers refine these security objectives in terms of security requirements that

must be enforced on the Galactic system, developing a security requirements model. This model keeps

track of the detailed security requirements and their link back to the high-level security objectives

(Fig. 5.9B). This example shows user authentication requirements to be enforced on the Galactic ap-

plication and its hosting server.

Swinburne security engineers next develop a detailed security architecture including other existing

IT systems. This security architecture (Fig. 5.9C) identifies the different security zones (Big Boxes) that

cover Swinburne network and the allocation of IT systems, including Galactic, as either one unit or in

terms of system components according to theGalactic deploymentmodel. The security architecture also

shows the security services, security mechanisms and standards that should be deployed. Swinburne

security engineers finally specify the security controls (i.e., the real implementations) for the security

114 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

FIG. 5.8 AND 5.9

Examples of Galactic software definition model (upper panel) and examples of Swinburne security specification

model (lower panel).

1155.5 USAGE EXAMPLE

services modeled in the security architecture model (Fig. 5.9D). This includes SwinIPS Host Intrusion

Prevention System, LDAP access control, and SwinAntivirus. These are used to realize the security

requirements and security architecture as previously specified. Each SSM maintains traceability infor-

mation to parent models’ entities. In Fig. 5.9D, we specify that LDAP “realizes” the AuthenticateUser
requirement. Whenever MDSE@R finds a system entity with a mapped security requirement Authen-
ticateUser it adds LDAP as its realization control, that is, an LDAP authentication check is run before

the entity is used, for example, before a method or web service is called or module loaded.

5.5.3 TASK 3—SYSTEM-SECURITY WEAVING
After developing the system SDMs—done by SwinSoft, and the security SSMs—done by Swinburne

security engineers, the Swinburne security engineers map security attributes (in terms of objectives,

requirements, and controls) to Galactic system specification details (in terms of features, components,

classes). This is achieved by drag and drop of security attributes to system features in our toolset. Any

system feature, structure, or behavior can dynamically and at runtime reflect different levels of security

based on the currently mapped security attributes on it.

Fig. 5.9E shows a sample of the security objectives, requirements, and controls mapped to Cus-

tomerBLL class. In this example the security engineer has specified that the AuthenticateUser secu-
rity requirement should be enforced on the CustomerBLL class (1). Such a requirement is achieved

using LDAP control (3). Moreover, they have specified Forms-based authentication on the GetCus-

tomers method (2). This means that a request to a method in the CustomerBLL class will be authen-

ticated by the caller’s Windows identity, but a request to the GetCustomers method will be

authenticated with a Forms-based identity. MDSE@R uses security attributes mapped to system en-

tities to generate the full set of methods’ call interceptors and entities’ required security controls, as

shown in Fig. 5.13.

5.5.4 TASK 4—GALACTIC SECURITY TESTING
Once security has been specified and interceptors and configurations are generated, MDSE@R makes

sure that the system is correctly enforcing security as specified. MDSE@R generates and fires a set of

required security integration test cases. Our test case generator uses the system interceptors and security

specification documents to generate a set of test cases for each method listed in the interception doc-

ument. The generated test case contains a set of security assertions (one for each security property spec-

ified on a given system entry). During the firing phase, the security enforcement point is instrumented

with logging transactions to reflect the calling method, called security control, and the returned values.

Security engineers should check the security test cases execution log, as shown in Fig. 5.10, to make

sure that no errors introduced during the security integration with Galactic entities. Fig. 5.11 shows a

sample run of Galactic after weaving Forms-based authentication control when calling

GetCustomers method.

SwinMarket security engineers go through the same process as Swinburne did when specifying

their security requirements. However, SwinMarket specifies their requirements, context, security con-

trols, and IT applications. This results in quite different generated security enforcement controls.

Both Swinburne and SwinMarket security engineers can modify the security specifications while

their Galactic applications are in use. MDSE@R framework updates interceptors in the target systems

and enforces changes to the security specification for each system as required. For example, the

116 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

Swinburne Galactic security model can be updated with a Shibboleth single sign-on security authen-

tication component. The updated interceptors and security specification are applied to the running Ga-

lactic deployment, which then enforces this authentication protocol instead of the Forms approach

as above.

5.5.5 TASK 5—GALACTIC CONTINUOUS VULNERABILITY ANALYSIS AND
MITIGATION
We have applied the vulnerability analysis tool on Galactic ERP system (and many other applications),

and using the mitigation actions, summarized in Table 5.2. Table 5.3 shows the number of reported

vulnerability instances grouped by vulnerability type. We applied the vulnerability analysis

FIG. 5.10

Sample test cases firing log.

FIG. 5.11

Testing Galactic with injected form-based authentication.

Table 5.3 Number of Reported Vulnerabilities

SQLI XSS Authentication Bypass Improper Authorization

TP FP FN TP FP FN TP FP FN TP FP FN

2 0 0 3 1 1 4 0 0 2 1 0

TP, true positives; FP, false positives; FN, false negative.

1175.5 USAGE EXAMPLE

incrementally—that is, SQLI analysis, then XSS, and so on. For each of these reported vulnerabilities,

we have checked that the proper security control(s) was integrated successfully as specified in the ac-

tions table, Table 5.2, and that the reported vulnerability is no longer exploitable.

5.6 DISCUSSION
Our approach is based on promoting security engineering from design time to runtime by externalizing

security engineering activities including capturing objectives, requirements controls, and realization

from the target system implementation. This permits both security to be enforced and critical points

to secure to evolve at runtime (supporting adaptive security at runtime). Using a common security

interface helps integrating different security controls without a need to develop new system-security

control connectors. Moreover, a key benefit reaped from MDSE@R approach is to the support model-

based security management. Enterprise-wide security requirements, architecture and controls are main-

tained and enforced through a centralized SSM instead of low-level scattered configurations and code

that lack consistency and are difficult to modify. Thus any update to the enterprise security model will

be reflected on all IT systems that use our security engineering platform. This is another key issue in

environments where multiple applications must enforce the same security requirements. Having one

place to manage security reduces the probability of errors, delays, and inconsistencies. Moreover,

automating the propagation of security changes to underlying systems simplifies the enterprise security

management process.

One may argue that MDSE@R may lead to a more vulnerable system as we did not consider se-

curity engineering during design time. Our argument is that at design time we need to think more about

building secure systems. However, given that we continue to discover a lot of vulnerabilities in systems

even those with design-time security consideration, we have supported our approach with both contin-

uous vulnerability analysis and mitigation. The vulnerability analysis component is based on formal

vulnerability definition schema that includes vulnerability signature and mitigation actions. Using ab-

stract representation instead of source code helps to generalize/abstract our analysis from programming

language and platform details. It also helps to make the approach more scalable for larger applications.

AOP is always suspected as a source of potential security attacks [49] given that a malicious user

might be able to plug vulnerable aspect code that can alter the innovation parameter, redirect the

request or discard it completely. Moreover, using AOP to integrate security aspects as a cross cutting

concern is also questionable given that these security aspects could lead to inconsistent update of sys-

tem properties. However, the authors did not stop using AOP to develop their permission model, they

have suggested a set of recommendations when using AOP such as dealing woven code, define appro-

priate language extension, and analyze weaver components for potential flaws. To avoid such issues,

we disable the write permission on the interceptor document and security handlers. Thus only our plat-

form will have write access to these documents.

Security adaptation of existing software systems: The security engineering of existing services

(extending system-security capabilities) has three possible scenarios: (i) systems that already

have their SDMs, we can use MDSE@R directly to specify and enforce security at runtime; (ii)

systems without SDMs, we reverse engineer parts of systemmodels (specifically the class diagram)

using MDSE@R. Then we can use MDSE@R to engineer required system security. Finally,

118 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

systems with built-in security, in this case we can use MDSE@R to add new security capabilities

only. MDSE cannot help modifying or disabling existing security. We have built another tool

(re-aspects) to leave out existing built-in security methods and partial code using modified AOP

techniques.

Security and performance trade-off: The selection of the level of details to apply security on

depends on the criticality of the system. In some situations like web applications, we may intercept

calls to the presentation layer only (webserver) while considering the other layers secured by default

(not publicly accessible). In other cases, such as integration with a certain web service or using

third-party component, we may need to have security enforced at the method level (for certain

methods only). Security and performance trade-off is another dilemma to consider. The more

security validations and checks the more resources required. MDSE@R enables adding security

only whenever needed. Thus, when we believe that the system operational environment we can

reduce the security controls required which improves system performance and vice versa. So the

trade-off between performance and security is now at the hand of system/security admins.

Hybrid vulnerability analysis: From our experience in developing signatures of the OWASP Top 10

vulnerabilities (most frequently reported vulnerabilities) we determined that:

1. the accuracy of our vulnerability analysis depends heavily on the accuracy of the specified

vulnerability signatures;

2. it is better to use dynamic analysis tools with certain vulnerabilities, such as cross site reference

forgery, because these vulnerabilities can be handled by the web server. This means static

analysis may result in high FP, if used;

3. some vulnerabilities can be easily identified and located by static analysis such as SQLI and

XSS vulnerabilities; and

4. some vulnerabilities such as DOM-based SQL and XSS vulnerabilities need a collaborating

static and dynamic analysis to locate them.

We believe that combining static and dynamic analysis is needed to increase the precision and recall

rates. Static analysis approaches usually result in high false positives as they work on source code

level—that is, the vulnerability may be addressed on the component or the application level. Employ-

ing dynamic vulnerability analysis can solve this problem. However, dynamic vulnerability analysis

approaches cannot help locating specific code snippets where vulnerabilities exist. Moreover, they

do not help testing code coverage by generating all possible test cases.

Virtual patching trade-off: From our experiments in the mitigation actions and security controls

integrations, we found that although the use of WAFs is a straightforward solution, it is not always

feasible to useWAF to block all discovered vulnerabilities. The selection of the entity level to apply

security controls on (application, component, method, etc.) impacts the application performance—

that is, instead of securing only vulnerable methods, we intercept and secure (add more calls) the

whole component requests. A key point that worth mentioning is that the administration of security

controls should be managed by the service/cloud provider admins. We focus on integrating controls

within vulnerable entities. Our vulnerability mitigation component works online without a need for

manual integration with the applications/services under its management. The overhead added by the

mitigation action can be easily saved if the service developers worked out a new service patch. In

this case, the vulnerability analysis component will not report such vulnerability. Thus, the

mitigation component will not inject security controls.

1195.6 DISCUSSION

Pros & cons: The key benefits of our adaptation approach are: (i) we support both manual security

adaptation and rule-based adaptation. Most of the existing efforts either focus on engineering

systems to support adaptiveness with either intensive development required, or limiting the

approach to specific security properties—for example, access control; (ii) our approach also takes

into consideration different sources of adaptation including: new security requirements, current

system status (using security monitors), and/or reported security vulnerabilities. Most of the

existing efforts consider only one source: either new security requirements or monitored system

status but not reported vulnerabilities; and (iii) we adopt security externalization and MDE

techniques, which make it easier to change system-security capabilities whenever needed and at

system, component, and method levels based on user experience and needs. The security model

itself can be shared between different systems. Thus, an enterprise security model can be easily

managed.

5.7 CHAPTER SUMMARY
In this chapter we discussed our adaptive security engineering approach, which enable adapting soft-

ware security capabilities at runtime based on the new security objectives, risks/threats, requirements

as well as the newly reported vulnerabilities. We categorize the source of adaptation in terms of manual

adaptation (managed by end users), and automated adaption (automatically triggered by the platform).

The platform makes use of the formal vulnerability definition schema, the formal signature-based se-

curity analysis, externalization of security engineering using AOP, and MDE techniques.

APPENDIX
PLATFORM IMPLEMENTATION
The architecture of our approach is aggregate of two key components: the security engineering at run-

time (MDSE@R) and the security vulnerability analysis. Both of them are end-user oriented—that is,

both depend on end-user specifications in terms of security objectives, requirements, controls, prop-

erties, vulnerabilities, and mitigation action. Both components are discussed below in more details.

MDSE@R: MODEL-DRIVEN SECURITY ENGINEERING AT RUNTIME
The architecture of the MDSE@R platform is shown in Fig. 5.12. It consists of a system-description

modeling tool (1), a security specification modeling tool (2), a repository for the system and security

models (3), a library of registered security controls and extensible security patterns that can be used by

security engineers in enforcing their security needs (4), a system container that manages system exe-

cution and intercepts requests and function calls for system entry points at runtime (5), and a security

test case generator (6) that is used to test the integration of configured application with required security

controls.

The system-description modeler (1) was developed as an extension of Microsoft VS 2010 modeler

with an UML profile to enable system engineers modeling their systems’ details with different perspec-

tives including system features, components, deployment, and classes. The UML profile defines

120 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

stereotypes and attributes to maintain the track back and foreword relations between entities from dif-

ferent models. Moreover, a set of security attributes to maintain the security concepts (objectives, re-

quirements, and controls) mapped to system entities. The minimum level of details expected from the

system provider is the system deployment model. MDSE@R uses this model to reverse engineer sys-

tem classes using .Net Reflections.

The security specification modeler tool (2) is a VS 2010 plug-in. It enables application customers,

represented by their security engineers, to specify the security attributes and capabilities that must

be enforced on the system and/or its operational environment. The security modeler delivers a set

of security DSVLs. The security-objectives DSVL captures customer’s security objectives and the re-

lationships between them. Each objective has a criticality level and the defense strategy to be followed:

preventive, detective, or recovery. The Security requirements DSVL captures customer’s security

requirements and relationships between requirements including composition and referencing relations.

The Security Architecture DSVL captures security architectures and designs of the customer opera-

tional environment in terms of security zones and security level for each zone; security objectives,

requirements, and controls to be enforced in each layer; components and systems to be hosted in each

layer; security services, mechanisms, and standards to be deployed in each layer or referenced from

other layers. The security controls DSVL captures details of security controls that are registered

and deployed in the customer environment and relationships between these and the security require-

ments they cover. The system models, security models, interception documents, and security specifi-

cation documents are maintained under one repository (3). We use Visual Studio T4 Templates and

FIG. 5.12

MDSE@R architecture.

121APPENDIX

code generation language to generate these documents from the software and SSMs and mapping be-

tween both sets of models. T4 templates are a mixture of text blocks and control logic that can generate

a text file. The control logic is written as program code in C#.

The security controls database is a library of available and registered security patterns and controls.
It can be extended by the system providers or by a third-party security provider. Security controls im-

plement certain APIs as defined by the security enforcement point in order to be able to integrate with

target security control systems. Having a single enforcement point with a predefined interface for each

security control category enables security providers to integrate with systems without having to rede-

velop adopters for every system. We adopted the OWASP Enterprise Security API library as a part of

MDSE@R security controls database.

To support runtime security enforcement, MDSE@R uses a combined interceptor and AOP ap-

proach. Whenever a client or application component makes request to any system component method,

this request is intercepted by the system container. The system container supports wrapping of both new

developments and existing systems. For new development, SwinSoft system engineers should use the

Unity application block delivered by Microsoft PnP team to intercept calls to registered classes. This is

a .NET-based implementation of the dependency injection design pattern. It supports dynamic runtime

injection of interception points on methods, attributes, and class constructors. For existing systems we

adopted Yiihaw AOP for C#, where we can modify application binaries (dll and exe files) to add se-

curity aspects at any arbitrary method (in our implementation we add a call to our security

enforcement point).

The security test case generator (6) uses the NUnit testing framework to partially automate security

controls and system integration testing. We developed a test case generator library that generates a set

of security test cases for authentication, authorization, input validation, and cryptography for every

enforcement point defined in the interceptors’ document. MDSE@R uses NUnit library to fire the gen-

erated test cases and notifies security engineers via test case execution result logs. At runtime, when-

ever a request for a system resource is received (7), the system container checks for the requested

method in the live interceptors’ document. If a matching found, the system delegates this request with

the given parameters to the default interception handler—security enforcement point (8).

The security enforcement point (9) is a class library that we developed to act as the default inter-

ception handler and the mediator between the system and the security controls. Whenever a request for

a target application operation is received, it checks the system-security specification document to en-

force the particular system-security controls required. It then invokes such security controls through

APIs published in the security control database (4). The security enforcement point validates a request

via the appropriate security control(s) configured and specified, for example, imposes authentication,

authorization, encryption, or decryption of message contents. The validated request is then propagated

to the method for execution (10).

Both system and security modeling tools are based on VS 2010 Modeling SDK that enables devel-

oping DSVLs integrated with VS IDE. To develop each DSVL, we developed a metamodel for the DSL

domain and specified the corresponding shapes that visualize each domain model concept. Then we

specified the mapping between the domain concepts’ attributes and the shape compartments. Finally

we developed code generation templates that generate the system live interceptors’ document and the

security specification document from the system and security models. Our modeling tools use a repos-

itory to maintain models developed either by the system engineers or by the security engineers. It also

maintains the system live interceptors’ document and security specification document. Examples of

122 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

these documents are shown in Fig. 5.13. Examples of MDSE@R weaved system interceptors and se-

curity specification files. This example shows a sample of the Galactic interceptors’ document gener-

ated from the specified security-system mapping. It informs the system container to intercept

GetCustomers and GetCustomerByName methods (1); a sample of Swinburne security specification

file defining the security controls to be enforced on every intercepted point (2); and a sample of the

security enforcement point API that injects the necessary security control calls before and after appli-

cation code is run (3).

VULNERABILITY ANALYSIS AND MITIGATION
We developed a GUI, as shown in Fig. 5.14, to assist security experts in capturing vulnerability

signatures’ in OCL. This provides vulnerability signature editing, validity checking, and testing these

signatures’ specifications on simple target applications. We use an existing OCL parser to parse and

validate signatures against our system-description metamodel. Once validated, the vulnerability signa-

ture is stored in our weakness signatures database. To parse the given program source code and generate

a system abstract model, we use NReFactory .NET parser Library, which parses source code and gen-

erates its corresponding AST (it supports VB.Net and C#.We are currently working on parsers for PHP

and Java). Applications without source code—that is, only binaries are available—are decompiled

using ILSPY. This is currently supported for C# and VB.NET. We developed a class library to

public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext) {
EntitySecurity entity = LoadMethodSecurityAttributes(…);
if (entity == null || entity.HasSecurityRequirements() == false) {

return getNext().Invoke(input, getNext);
}

//logging Before Call
this.source.TraceInformation("Invoking {0}", input.Arguments[0].ToString());
//Check for Authentication
if (entity.GetAuthenticationMethod() != AuthenticationMethod.None) {

. . .
}
//Check for Authorization
if (entity.GetAuthorizationMethod() != AuthorizationMethod.None) {

. . .
}

}

. . .
<systemlevel>
<Entitylevel>1</Entitylevel>

. . .
<componentlevel>

<objectname>
. . .

<classlevel>
<objectname>

. . .
<methodlevel>
. . .

< ObjectName> GetCustomers </ObjectName>
<Authentication_Method>Forms</Authentication_Method>
<Authorization_Method>RBAC_Impersonate</Authorization_Method>

. . .

. . .
<extension type="Interception" />

<register type="PresentationLayer.CustomerBLL, PresentationLayer ">
. . .
<interception>
<policy name="PolicyCustomersBLL">
<matchingRule name="MatchingRuleCustomersBLL“

Type="MemberNameMatchingRule">
<constructor>
<param name="nameToMatch" value="GetCustomers" />

<param name="nameToMatch" value="GetCustomerByName" />
. . .

<callHandler name="callhandlerCustBLL"t
Type="SecurityKernel.SecurityCallHandler, SecurityKernel">

. . .

2

3

1

FIG. 5.13

Examples of MDSE@R weaved system interceptors and security specification files.

123APPENDIX

transform the generated AST into a more abstract (summarized) representation that conforms to our

SDM. Our signature locator has an OCL translator that translates a given OCL signature into a corre-

sponding C# class with a signature matching method that checks the passed in system entity looking for

matches to specified signatures. The OCL functions library maintains a set of functions that extend the

system-description metamodel entities capabilities and can be used during the vulnerability analysis

phase. This includes control-flow analysis, data-flow analysis, and tainted-data analysis. These func-

tions can be extended with further analysis functions based on future vulnerability analysis needs. The

OCL to C# transformer performs a transformation for these functions as well as new OCL signatures

once defined. Program slicing and taint analysis techniques (core techniques in program and security

analysis area) can be easily captured in OCL. Platforms’ profiles are specified in XML documents that

contain information about specific platforms’ details. It is used to set the context of the signature locator

according to the software.

REFERENCES
[1] B. Fabian, S. G€urses, M. Heisel, T. Santen, H. Schmidt, A comparison of security requirements engineering

methods, Requir. Eng. 15 (2010) 7–40.
[2] R. Barnett, WAF virtual patching challenge: securing WebGoat with ModSecurity, (2009).

[3] R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems, John Wiley and

Sons, New York, NY, 2001.

[4] A. Dardenne, A.v. Lamsweerde, S. Fickas, Goal-directed requirements acquisition, in: Selected Papers of the

Sixth International Workshop on Software Specification and Design, 1993.

[5] H.S.F. Al-Subaie, T.S.E. Maibaum, Evaluating the effectiveness of a goal-oriented requirements engineering

method, in: Proceedings of the Fourth International Workshop on Comparative Evaluation in Requirements

Engineering (CERE’06—RE’06 Workshop), 2006.

FIG. 5.14

Snapshot of the vulnerability analysis tool.

124 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030

[6] A. Lamsweerde, S. Brohez, et al., System goals to intruder anti-goals: attack generation and resolution for

security requirements engineering, in: Proceedings of the RE’03 Workshop on Requirements for High As-

surance Systems, Monterey, 2003, pp. 49–56.
[7] L. Liu, E. Yu, J. Mylopoulos, Secure ¡*: engineering secure software systems through social analysis, Int.

J. Softw. Inform. 3 (2009) 89–120.
[8] L. Liu, E. Yu, J. Mylopoulos, Security and privacy requirements analysis within a social setting,

in: Proceedings of the 11th IEEE International Requirements Engineering Conference, 2003.

[9] H. Mouratidis, P. Giorgini, Secure Tropos: a security-oriented extension of the Tropos methodology, Int.

J. Softw. Eng. Knowl. Eng. 17 (2007) 285–309.
[10] H. Mouratidis, J. Jurjens, From goal-driven security requirements engineering to secure design, Int. J. Intell.

Syst. 25 (2010) 813–840.
[11] R. Matulevičius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, N. Genon, Adapting secure tropos for

security risk management in the early phases of information systems development, in: Proceedings of the

20th International Conference on Advanced Information Systems Engineering, 2008, pp. 541–555.
[12] G. Sindre, A. Opdahl, Eliciting security requirements with misuse cases, Requir. Eng. 10 (2005) 34–44.
[13] D.G. Firesmith, Security use cases, J. Object Technol. 2 (3) (2003) 53–64.
[14] J. J€urjens, Towards development of secure systems using UMLsec, in: Fundamental Approaches to Software

Engineering, vol. 2029, Springer, Berlin, Heidelberg, 2001, pp. 187–200.
[15] J. Jurjens, J. Schreck, Y. Yu, Automated analysis of permission-based security using UMLsec,

in: Proceedings of the 11th International Conference on Fundamental Approaches to Software Engineering,

2008, pp. 292–295.
[16] J. J€urjens, UMLsec: extending UML for secure systems development, in: Proceedings of the 5th International

Conference on the Unified Modeling Language, 2002.

[17] L. Montrieux, J. Jurjens, C.B. Haley, Y. Yu, P.-Y. Schobbens, H. Toussaint, Tool support for code generation

from a UMLsec property, in: Proceedings of the IEEE/ACM International Conference on Automated Soft-

ware Engineering, Antwerp, Belgium, 2010.

[18] T. Lodderstedt, D. Basin, J. Doser, SecureUML: a UML-based modeling language for model-driven security,

in: Proceedings of the 5th International Conference on the Unified Modeling Language, Dresden, Germany,

2002, pp. 426–441.
[19] F. Satoh, Y. Nakamura, N.K. Mukhi, M. Tatsubori, K. Ono, Methodology and tools for end-to-end SOA se-

curity configurations, in: IEEE Congress on Services—Part I, 2008, pp. 307–314.
[20] Y. Shiroma, H. Washizaki, Y. Fukazawa, A. Kubo, Model-driven security patterns application based on de-

pendences among patterns, in: Proceedings of the International Conference on Availability, Reliability, and

Security, Krakow, 2010, pp. 555–559.
[21] N.A. Delessy, E.B. Fernandez, A pattern-driven security process for SOA applications, in: Proceedings of the

Third International Conference on Availability, Reliability and Security, 2008, pp. 416–421.
[22] M. Schnjakin, M. Menzel, C. Meinel, A pattern-driven security advisor for service-oriented architectures,

in: Proceedings of the 2009 ACM Workshop on Secure Web Services, Chicago, Illinois, USA, 2009.

[23] M. Hafner, M. Memon, R. Breu, SeAAS—a reference architecture for security services in SOA, J. Univers.

Comput. Sci. 15 (2009) 2916–2936.
[24] M. Alam, Model driven security engineering for the realization of dynamic security requirements in collab-

orative systems, in: T. K€uhne (Ed.), Models in Software Engineering, vol. 4364, Springer, Berlin, 2007,

pp. 278–287.
[25] M. Alam, R. Breu, M. Hafner, Modeling permissions in a (U/X)ML world, in: Proceedings of the First In-

ternational Conference on Availability, Reliability and Security, 2006, 8 pp.

[26] V. Bertocci, Programming Windows Identity Foundation, Microsoft Press, Redmond, WA, 2010.

[27] L. Peng, Y. Zhao-Lin, Analysis and extension of authentication and authorization of Acegi security frame-

work on spring, Comput. Eng. Des. (6) (2007) 1313–1316.

125REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0140

[28] L.A. Abdulkarim, Z. Lukszo, Information security implementation difficulties in critical infrastructures:

smart metering case, in: Proceedings of the International Conference on Networking, Sensing and Control,

2010, pp. 715–720.
[29] M. Hafiz, R.E. Johnson, Improving perimeter security with security-oriented program transformations,

in: ICSE Workshop on Software Engineering for Secure Systems, 2009, pp. 61–67.
[30] M. Hafiz, R.E. Johnson, Security-oriented program transformations, in: Proceedings of the 5th AnnualWork-

shop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence

Challenges and Strategies, Oak Ridge, Tennessee, 2009.

[31] V. Ganapathy, D. King, T. Jaeger, S. Jha, Mining security-sensitive operations in legacy code using concept

analysis, in: Proceedings of the 29th International Conference on Software Engineering, 2007.

[32] P. O’Sullivan, K. Anand, A. Kothan, M. Smithson, R. Barua, A.D. Keromytis, Retrofitting security in COTS

software with binary rewriting, in: Proceedings of the 26th IFIP International Information Security Confer-

ence (SEC), Lucerne, Switzerland, 2011.

[33] V. Ganapathy, T. Jaeger, S. Jha, Retrofitting legacy code for authorization policy enforcement,

in: Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006, pp. 15–229.
[34] I.S. Welch, R.J. Stroud, Re-engineering security as a crosscutting concern, Comput. J. 46 (2003) 578–589.
[35] A. Elkhodary, J.Whittle, A survey of approaches to adaptive application security, in: Proceedings of the 2007

International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’07),

2007, pp. 1–16.
[36] B. Hashii, S. Malabarba, R. Pandey, et al., Supporting reconfigurable security policies for mobile programs,

in: Proceedings of the 9th International World Wide Web Conference on Computer Networks, Amsterdam,

The Netherlands, 2000, pp. 77–93.
[37] K. Scott, N. Kumar, S. Velusamy, et al., Retargetable and reconfigurable software dynamic translation,

in: Proceedings of the International Symposium on Code Generation and Optimization, San Francisco,

California, 2003.

[38] F. Sanchez-Cid, A. Mana, SERENITY pattern-based software development life-cycle, in: 19th International

Workshop on Database and Expert Systems Application, 2008, pp. 305–309.
[39] F. Sanchez-Cid, A. Mana, Patterns for automated management of security and dependability solutions,

in: Proceedings of the 18th International Conference on Database and Expert Systems Applications, 2007.

[40] A. Benameur, S. Fenet, A. Saidane, S.K. Sinha, A pattern-based general security framework: an eBusiness

case study, in: Proceedings of the 11th IEEE International Conference on High Performance Computing and

Communications, 2009, pp. 339–346.
[41] B. Morin, T. Mouelhi, F. Fleurey, Security-driven model-based dynamic adaptation, in: Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 2010.

[42] E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACMTrans. Auton.

Adapt. Syst. 8 (2014) 17.

[43] M. Almorsy, A. Ibrahim, J. Grundy, Adaptive security management in SaaS applications, in: S. Nepal,

M. Pathan (Eds.), Security, Privacy and Trust in Cloud Systems, Springer, Berlin, 2014, pp. 73–102.
[44] M. Almorsy, J. Grundy, A.S. Ibrahim, MDSE@R: model-driven security engineering at runtime,

in: Proceedings of the 4th International SymposiumonCyberspace Safety andSecurity,Melbourne, Australia,

2012.

[45] M. Almorsy, J. Grundy, SecDSVL: a domain-specific visual language to support enterprise security model-

ling, in: 2014 Australian Conference on Software Engineering, Sydney, 2014.

[46] M. Almorsy, J. Grundy, A.S. Ibrahim, Supporting automated vulnerability analysis using formalized vulner-

ability signatures, in: Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering, Essen, Germany, 2012.

126 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235

[47] M. Almorsy, J. Grundy, A.S. Ibrahim, Automated software architecture security risk analysis using formal-

ized signatures, in: Proceedings of the 36th International Conference of Software Engineering, San Francisco,

2013, pp. 300–309.
[48] M. Almorsy, J. Grundy, A. Ibrahim, VAM-aaS: online cloud services security vulnerability analysis and

mitigation-as-a-service, in: X.S. Wang, I. Cruz, A. Delis, G. Huang (Eds.), Web Information Systems Engi-

neering—WISE 2012, Springer, Berlin, 2012, pp. 411–425.
[49] B.D. Win, F. Piessens, W. Joosen, How secure is AOP and what can we do about it? in: Proceedings of the

2006 International Workshop on Software Engineering for Secure Systems, Shanghai, China, 2006.

127REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0250

CHAPTER

AUTOMATED INFERENCE
TECHNIQUES TO ASSIST WITH
THE CONSTRUCTION OF
SELF-ADAPTIVE SOFTWARE

6
S. Malek*, K. Canavera†, N. Esfahani{

University of California, Irvine, Irvine, CA, United States* George Mason University, Fairfax, VA, United States†

Google Inc, Mountain View, CA, United States{

6.1 INTRODUCTION
As software engineers have developed new techniques to address the complexity associated with the

construction of modern-day software systems, an equally pressing need has risen for mechanisms that

automate and simplify the management of those systems after they are deployed, that is, during run-

time. It is estimated that one-half of a company’s total IT budget is spent on managing and trouble-

shooting its IT infrastructure [1,2]. According to Ganek [3], vice president of IBM Corporation’s

Software Group, “the spiraling cost of managing the increasingly complex computing systems is be-

coming a significant inhibitor that threatens to undermine the future growth and societal benefits of

information technology.”

To mitigate the difficulty of managing ever increasingly complex software, approaches that enable

substantially higher levels of automation have become appealing. A vision of autonomic computing
[4] promoting the development of self-adaptive software has started to emerge. A self-adaptive soft-

ware is capable of automatically modifying its behavior at runtime to achieve certain functional or

quality of service objectives [5,6]. This vision, however, has remained largely elusive. The overarch-

ing problem is that enabling a software system to manage automatically itself at runtime tends to ex-

acerbate the complexity of constructing the software in the first place [5,7]. This has been the key

obstacle that has hindered adoption of self-adaptation capabilities in real world products. This chapter

aims to explore and, at least partially, answer the following question: What automated techniques and

tools could be developed to assist the developers with construction of dependable self-adaptive

software?

More specifically, there are three issues with the existing approaches that heavily contribute to the

problem outlined above and form the focus of this project: (1)Manually intensive: Existing techniques

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00006-X

Copyright # 2017 Elsevier Inc. All rights reserved.
131

http://dx.doi.org/10.1016/B978-0-12-802855-1.00006-X

place a heavy burden on the engineer to manually construct numerous models (e.g., queuing network

models, Markov models), which are used at runtime to assess the impact of adaptation choices on the

system’s quality objectives (e.g., response time, availability). This is a daunting task, especially when

one considers the complexity of today’s software systems, and the fact that most practitioners are not

adept at those modeling languages. (2) Fragile: The manually constructed models make the manage-

ment logic fragile to any change in the running software that was not account for in their construction.

This challenges the engineer with yet another daunting task of thinking about all possible runtime con-

ditions prior to system deployment. (3) Inefficient: the manually constructed models are often static and

coarse-grained, and thus do not provide the level of detail that is necessary for efficient decision-

making and fast adaptation of the system.

In our research over the past few years [8–12], we have tackled the complexity of engineering self-

adaptive software by pursuing an alternative approach. The premise guiding our research is that any

technique aimed at alleviating the complexity of runtime management at the expense of exacerbating

the complexity of developing the software in the first place is not a plausible solution. The resulting

solution heavily draws on inference techniques, such as machine learning [13] and data mining [14], to

derive automatically the models necessary for building a self-adaptive software system. In particular,

our work so far has followed two complementary thrusts: (1) A machine learning approach for goal

management: we have used machine learning techniques to automatically derive the models predicting

the impact of adaptation actions (i.e., enabling a particular capability at runtime, such as caching or

authentication) on the system’s quality objectives (e.g., response time, availability) [9,11]. These types

of models are used to make management decisions to fix problems that may arise at runtime and

achieve the system’s objectives, that is, goals. (2) A data mining approach for change management:

we have used data mining techniques to derive automatically the models expressing the probabilistic

dependencies between the components in the system [8,10,12]. These types of models are used to en-

sure changes in the running software do not create inconsistency, and jeopardize the system’s

functionality.

In this chapter, we provide an overview of several challenges with the state-of-the-art, outline an

inference-based approach for engineering adaptive software that aims to address these challenges,

specific elements of which have appeared in several disjointed publications [8–12], and elaborate

on the areas of future research. The contributions of an inference-based approach are threefold.

(1) Automatic derivation of the models for runtime management of applications significantly reduces

the manual engineering effort. (2) The ability to automatically adjust and fine-tune the runtime

models to emerging patterns of behavior makes self-adaptive software developed in this manner re-

silient to unexpected changes that may occur at runtime. (3) The highly detailed and dynamic models

learned using the proposed approach improve the efficiency of both making decisions and effecting

changes.

The remainder of this chapter is organized as follows. Section 6.2 describes a running example

that is used for illustration of challenges as well as explanation of the approach. Section 6.3 demon-

strates the challenges of engineering self-adaptive software, particularly with respect to the manual

construction of models for goal management and change management. Section 6.4 provides an over-

view of the overarching approach devised in our research. Sections 6.5 and 6.6 describe our auto-

mated inference techniques for goal management and change management, respectively. Finally,

Sections 6.7 provides an overview of the related work, and Section 6.8 wraps up the chapter with

the concluding remarks.

132 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

6.2 MOTIVATING APPLICATION
Two major paradigm shifts are increasingly defining the future of computing. Self-management capa-

bilities are sought after in both of these paradigms. First is the migration of software to mobile, per-

vasive, and cyber-physical settings. Since these environments are known to be highly dynamic and

unpredictable, it is difficult to determine the best configuration for the software prior to its deployment,

forcing some of those decisions to be made at runtime. Second, software is increasingly provisioned

from parts that are developed, maintained, and operated by independent parties, that is, service-orien-
tation. Here, no single stakeholder oversees and controls all parts, which may change over time. Yet, by

assembling the whole, one commits to achieve a certain goal, formalized in a contract that defines a

service-level agreement. The software in these paradigms is expected to operate under changing sit-

uations and conditions, and the only way that can be achieved is to employ dependable self-

management capabilities.

For the purpose of motivating and describing the research, we use a service-oriented software,

called travel reservation system (TRS), but note that the principles and techniques developed as part

of this project will be applicable in other domains as well. TRS is a web-based portal for preparing and

making travel reservations. TRS relies on several internal and external services. Fig. 6.1 shows only a

small subset of its architecture for illustration purposes. The actual software developed by an external

organization is significantly larger than what is depicted here. TRS needs to be self-adaptive to deal

with unexpected situations, such as failure of services in meeting their advertised service-level agree-

ments. To that end, TRS may choose from numerous runtime solutions at its disposal, such as swap

service providers that do not meet their service-level agreements, enable caching to improve perfor-

mance during a traffic spike, change authentication protocol to thwart a security attack. The adaptation

logic of TRS also needs to balance trade-offs, for example, improving security may degrade response

time. The approach described in this chapter tackles the complexity of enabling a system such as TRS to

become self-adaptive.

Travel

agent

Agent

discovery

Cache

Channel
request

Request
access

Store

Quote
request

Query
itinerary

Discover

Look up

GUI

Log
Business

tier

Authenticate

FIG. 6.1

Subset of travel reservation system’s software architecture. The bold path indicates the get price quote scenario.

1336.2 MOTIVATING APPLICATION

6.3 SHORTCOMINGS WITH THE STATE-OF-THE-ART
Two seminal frameworks have highly influenced the way self-adaptive software systems are concep-

tualized. First is MAPE-K from IBM [4], which advocates an architecture consisting of four types of

components that operate on the managed system and provide monitoring, analysis, planning, and ex-
ecution (MAPE) capabilities. MAPE components share various models using what is known as knowl-
edgebase, resulting in MAPE-K. Second framework is the so-called three-layer architecture [6], where
the three layers provide separation of concern as follows: (1) goal management at the top is responsible
for ensuring the managed application satisfies its quality objectives, such as response time and avail-

ability, by developing new configurations. (2) Change management below that is responsible for

executing the steps necessary to “safely” transition the software system to a new configuration. (3)

Component control at the bottom provides the low-level facilities, such as (un)binding software mod-

ules in the runtime environment.

Our approach targets the challenges of realizing models that comprise the MAPE-K’s knowledge-
base. Moreover, in our research so far, we have focused on goal management and change management
layers, mainly because those currently pose the greatest challenge. There are numerous existing plat-

forms (middleware solutions) [15–19] for realizing component control capabilities that could benefit

from the concepts described here. The remainder of this section provides an overview of the state-of-

the-art in goal management and change management, in particular their shortcomings, which motivate

this research.

6.3.1 GOAL MANAGEMENT
Most existing approaches (e.g., [20,21]) to goal management leverage manually constructed analytical

models. These models are used together with the monitored data to predict the impact of adaptation

choices on system’s quality objectives, that is, goals. For instance, queuing network models [22]

and hidden Markov models [23] have been used extensively for assessing the system’s performance

and reliability properties, respectively. When there are several quality attributes of interest, a utility

function representing the desirable trade-offs is also used [24,25]. The output from goal management

is a new configuration for the software, often in the form of a new software architecture [26].

There are three issues with the existing approaches:

Manually intensive—they place a heavy burden on the engineers to construct manually analytical

models, especially when one considers the complexity of today’s software systems. These models

often need to be customized to the unique characteristics of each application, and provide little

opportunity for reuse. Further exacerbating the situation is the fact that practitioners are not adept at

those modeling languages (e.g., queuing networks, Markov chains).

Fragile—any analytical model inevitably relies on some simplifying assumptions by the virtue

of being an abstract representation of a system or its environment. For instance, in the construction

of a queuing network model, an engineer may make some assumptions as to the main sources

of delay in the system. If any of those assumptions are not borne out or become invalidated due to

some unexpected events or conditions, the analysis, and hence the adaptation decisions become

inaccurate.

134 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

Inefficient—most formulations of goal management problem that aim to optimize the system’s

quality objectives by finding the best configuration are NP-complete (e.g., [20,21]). That is, at the

state-of-the-art, it is not possible to prune the search space without trading off optimality. Referring

to TRS example of Fig. 6.1, let us assume that Cache, Authenticate, and Log are all optional

components that could be installed at runtime. Given a response time problem and a queuing

networkmodel of the system, there is no mechanism to find the best configuration by discriminating

among the 2Optional components¼23¼8 architectures, other than evaluating all. The state-of-the-art is

brute force exploration of the configuration space, and takes a long time to solve in any sizable

system with many adaptation choices.

6.3.2 CHANGE MANAGEMENT
In the change management literature [27], transaction is defined as an exchange of information be-

tween two components by which the state of a component is affected. A dependent transaction is a

transaction whose completion depends on the completion of consequent transactions. It is commonly

accepted that to ensure a component remains in a consistent state during/after adaptation, it should not

be changed in the middle of a (dependent) transaction. Fig. 6.2 shows the transactions comprising the

get price quote scenario of TRS. Here, T4 is an independent transaction, while T1 is a dependent trans-
action. Consider a situation in which Business Tier component is replaced after sending request e2, but
before receiving response e2ʹ. Since the newly installed component does not have the same state as the

FIG. 6.2

Dependent transactions comprising TRS’s get price quote scenario.

1356.3 SHORTCOMINGS WITH THE STATE-OF-THE-ART

old one, it may not be able to handle e2ʹ and initiate T4, resulting in an inconsistency, and potentially

the system’s failure.

Even if the component is stateless, inconsistency problems may arise. Consider a stateless compres-

sion component that compresses and decompresses data using two interfaces that are reverse of one

another. Replacing this component with one that uses a different type of compression algorithm in

the middle of a transaction could break the system’s functionality, since the decompression cannot

be performed on data that was compressed using the old component. By the same reasoning, state trans-

fer in the case of stateful components is not sufficient to address inconsistency due to adaptation. More-

over, it breaks the black-box treatment of components—the premise underlying this line of research is

to avoid placing restrictions or making changes to the internal logic of components [27,28].

The state-of-the-art for safe adaptation of system is quiescence [27]. A component is in quiescence

and can be adapted if (1) it is inactivated, meaning it is not participating in any transaction, and (2) all

of the components that may initiate transactions requiring services of that component are passivated.
A component is passive if it continues to receive and process transactions, but does not initiate any

new transactions. At runtime, the decision about which part of the system should be passivated to

replace a component is made using a component dependency model, such as that showed in

Fig. 6.1. For instance, to change the Authenticate component, the Business Tier and GUI components

need to be passivated, since those are the components that may initiate a transaction on the Authen-
ticate component.

Interestingly, a similar set of issues as that facing goal management can be observed here as well:

Manually intensive—quiescence requires the engineer to develop manually not only models of the

component dependencies, but also the logic necessary for controlling the internal behavior of

components, that is, for passivating them. This problem is exacerbated in emerging systems where

the dependencies become known at runtime, such as service-oriented software, as well as systems

where the component’s implementation is not available, such as systems composed of commercial-

off-the-shelf components.

Fragile—component dependency models, such as Fig. 6.1, are tightly coupled with the

application logic. As the system evolves, the internal logic of components may change, leading to

inaccurate dependency models, which if used for making changes may break the system’s

consistency.

Inefficient—quiescence is known to be very disruptive [28]. This is particularly true for changing

a component that is depended upon by many others, as they all have to be passivated. In the

worst case, updating a component that all other component may indirectly initiate a transaction on

is equivalent to stopping the entire system. Thus, quiescence has the potential of significantly

slowing down the system.

6.4 OVERVIEW OF INFERENCE-BASED TECHNIQUES
Our research aims to address the shortcomings outlined in the previous section by fundamentally

changing the way self-adaptive software is designed and developed. Our objective is to do away

with manually intensive processes by providing the techniques and tools that can empower a

software system to learn automatically how to manage itself. A byproduct of this automation is that

136 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

fragility and inefficiency issues can also be dealt with. We have followed a two-pronged research

agenda as follows:

1. Learning-based approach for goal management: We have developed a novel method of

automatically deriving the models necessary for reasoning about adaptation choices using machine

learning techniques. The result of learning is a set of relationships between the adaptation
alternatives in the system and the quality attributes of interest (e.g., response time, availability).

The novelty with respect to existing approaches is that the models used for making adaptation

decisions are generated automatically, minimizing the required manual effort. The same process

used to derive the initial models can be used to adjust them to emerging events and conditions at

runtime. Moreover, using the learned models, it is possible to prune the search space significantly

without compromising the quality of decisions.

2. Mining-based approach for change management: We have developed an approach for mining the

execution history of a software system to derive a set of rules expressing the probabilistic

relationships between occurrences of transactions in the system. Given a set of transactions

currently running in the system, these rules can be used to predict the probability with which a

component can be changed at a point in time without jeopardizing the system’s functionality,

while minimizing the interruptions. Finally, by continuously monitoring the transactions and the

accuracy of predictions, the approach provides the means to adjust the rules as new patterns of

interaction emerge.

The following two sections describe the two facets of this research agenda in more detail. Interested

reader may find additional details in our prior publications on these topics [8–12].

6.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT
The objective of learning in goal management is to derive a model that can quantify the impact of the

adaptation alternatives on the quality attributes of interest (e.g., response time, availability). The ad-

aptation alternatives correspond to variation points in the software that could be exercised at runtime.

Each variation point is what we call a feature, a concept that we have borrowed from software product

line engineering [29–31], except here we propose to use features as units of adaptation. We refer to the

quality attributes monitored from the running system as metrics. Here, we assume one of the existing

technologies (e.g., [32–34]) is used to measure and collect the required metrics from the running soft-

ware system.

Fig. 6.3A shows a feature model representing the variability in a subset of TRS. Here, there are four

features in the system and one common core. The features in the example use two kinds of relation-

ships: dependency andmutual exclusion. Feature modeling supports several other types of relationships

(see [35]) that are also supported in our approach, but elided for brevity. The use of feature as an ab-

straction makes the approach independent of a particular adaptation methodology. For example, fea-

tures may correspond to configuration parameters that are stored in configuration files (Fig. 6.3B),

aspects that are dynamically weaved to the running system (Fig. 6.3C), or modification of the system’s

software architecture at well-defined variation points (Fig. 6.3D).

As depicted in Fig. 6.4, and further described in the following section, the approach consists of two

cycles.

1376.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT

6.5.1 LEARNING CYCLE
The learning cycle starts prior to system’s deployment, and continues as needed throughout its oper-

ation. Prior to deployment, a benchmark or simulation environment is used to execute the software

system in different feature combinations, and collect metrics (e.g., response time) from the running

system. The metrics collected from benchmarks are used to induce a preliminary model that can predict

FIG. 6.3

(A) Feature model of TRS. Features may map to (B) parameters in a configuration file, (C) aspects that are (un)

weaved with the running system, and (D) parts of the architecture providing the corresponding capabilities.

FIG. 6.4

Overview of the learning-based approach for making adaptation decisions.

138 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

the system’s behavior under different configurations. The relationships identified through learning

could be represented as functions that quantify the impact of features on metrics. In other words, fea-

tures are independent variables, while metrics are dependent.
Modern machine learning techniques, such as support vector machine (SVM) [36], are capable of

identifying the interactions among the independent variables, that is, features. A feature interaction
occurs when the effect of two or more features being enabled is different from the sum of their indi-

vidual effects.

The following steps comprising the learning cycle are executed for each benchmarked configura-

tion (see Fig. 6.4). Based on the metrics collected from the running system, observe normalizes the data

in preparation for learning, and induce learns the properties associated with a particular system vari-

ation and stores that in the knowledgebase, such that informed adaptation decisions can be made at

runtime.

Based on the collected observations, the induce activity constructs a function that estimates the im-

pact of making a feature selection on the metrics. Induce executes two steps to obtain these functions.

The first step is a significance test that determines the features with the most significant impact on each

metric. This allows for substantial reduction in the number of independent variables that learning needs

to consider for each metric. After the significance test, the learning algorithm is employed, which given

the normalized observations, derives the functions relating the impact of features on metrics. In an ex-

periment in which we applied SVMs regression [36] to data obtained from TRS, we were able to derive

the following function estimating the impact of features on the system’s response time, indicated asG1:

G1 ¼ 1:553F1�0:673F2 + 0:709F3 + 0:163F1F3�0:843

Here each feature is assigned a coefficient that is effective only when the feature is enabled (i.e., it is set

to “1”). The function estimates the impact of features on the system’s response time. The learned func-

tions are stored in the knowledge base for use in the adaptation cycle.

A similar process could be applied at runtime to fine-tune the models to conditions and events that

may change the system’s behavior. We keep track of the prediction errors by collecting the gap be-

tween predicted and actual impact of adaptations on the metrics. Once the prediction error reaches a

certain threshold, it is taken as an indicator that new patterns of behavior are emerging, and the models

are adjusted by initiating a new round of learning (induce activity in Fig. 6.4) using the collected data.

6.5.2 ADAPTATION CYCLE
As depicted in Fig. 6.4, the adaptation cycle uses the automatically inferred models to satisfy the qual-

ity objectives by executing the following three activities:

• Based on the metrics collected from the running system, Analyze calculates the achieved quality

attributes to determine if a quality objective is violated.

• In case of a violation, Plan is invoked to search for a new configuration that restores the system’s

quality objectives. The search problem could be formulated in different ways. One possibility is

to find a feature selection that satisfies all quality objectives, while a more sophisticated approach

is to optimize (minimize/maximize) the quality objectives. When optimizing, utility functions

representing the user preferences with respect to trade-offs among the quality objectives may be used

[24,37].

1396.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT

• Given a new configuration, Effect determines the adaptation steps to place the system in that

configuration. An adaptation step is to enable, disable, or swap a feature. The steps have to abide by

the feature constraints (i.e., dependency, mutual exclusion). As discussed in Section 6.6, each

adaptation step at this layer itself is realized as a set of changes in the running software by the

change management layer.

An important contribution of our approach is that the adaptation cycle can use the learned models to

prune the search space significantly, without compromising quality (accuracy) of decisions. Learned

models provide two opportunities to generate dynamically an optimization problem tailored to the sit-

uations that may arise at runtime:

1. Given a violated quality objective, the learned model is used to eliminate all of the features with

no significant impact on that objective. We call the set of features that may affect a given objective

as significant features. They represent our decision variables.

2. Significant features may affect other quality objectives, the set of which we call the conflicting
objectives. To detect the conflicts, again the learned models are used, except this time backtracked.

For each significant feature, the other objectives that the feature affects are found.

Therefore, the learned models allow us to focus the decision on a subset of the system’s features and

objectives. This is in contrast to the state-of-the-art, where manually constructed models do not provide

a convenient mechanism for discriminating among the features and objectives. By representing each

feature as a binary decision variable, this problem could be formulated as a linear-programming prob-
lem [38], which when solved using a constraint solver provisions the optimal solution. Interested reader
can find the detailed formulation of this problem as a linear-programming problem in our prior pub-

lication [9,11].

6.5.3 EXPERIMENTAL RESULTS
We have shown the feasibility of some of the key facets of the approach in a controlled execution of

TRS [9,11]. These experiments were performed on an instance of TRS consisting of 78 features and

8 quality objectives to understand better the characteristics of the learning cycle. We used SVM [36] to

induce a model predicting the impact of adaptations on the system’s response time. We also developed

a queuing network model, which assumes that workload and service demand parameters follow an ex-

ponential distribution. We chose queuing network, since it is a commonly used approach in the liter-

ature [39] for assessing a system’s response time. Fig. 6.5 shows the results under two different

scenarios:

Similar context—here the system is evaluated in a setting that is comparable to that used during

the training. As shown in Fig. 6.5A, both approaches achieve good level of accuracy under

expected execution conditions, which serves as preliminary evidence that through machine

learning it is possible to learn complex interaction between the system’s features and its quality

attributes.

Unexpected situation with emerging pattern—here the system faces an unexpected change,

which results in a new behavioral pattern (i.e., change in the impact of features on metrics). In this

scenario, we simulated occurrence of an unexpected behavior by manually injecting a database

index failure, in which the index of a database table used by the Business Tier component fails,

140 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

and forces a full table scan. Fig. 6.5B shows that as a result of the index failure, a new pattern of

behavior emerges, and both online learning and queuing network approaches perform poorly at the

beginning. However, online learning gradually adjusts the models to the new behavior in two

rounds of learning. As a result, the error rate drops from an average of 54% to less than 5%, at which

point the system reaches an acceptable threshold and no additional learning is performed. In

contrast, the prediction error of queuing network model remains on average at 80%, since the model

presumes the existence of a table index, that is, service demand of the queue representing the

database in the model has become inaccurate.

We also conducted experiments involving the adaptation cycle. The results have been very promising.

We compared the decisions made using the learned models against state-of-the-art, that is, manually

constructed queuing network models. In both cases, we used commercially available linear-

programming solvers [38]. Fig. 6.6 shows that the proposed approach achieves significant speed-

ups over the state-of-the-art in the nine experiments. This is attributed to the fact that learned models

allow the adaptation cycle to prune the search space significantly, by eliminating insignificant features

and irrelevant objectives (recall Section 6.5.2). At the same time, although the pruning allowed for only

a small subset of each system to be optimized, the quality of solutions developed using the proposed

approach were on average within 3% of those resulting from optimizing the entire system.

10

5

0

(A)

(B)

150

100

50

0

Time

Time

P
re

d
ic

ti
o

n
 e

rr
o

r
(%

)
P

re
d

ic
ti

o
n

 e
rr

o
r

(%
)

Online learning Learning initiationQueuing network

FIG. 6.5

Accuracy of learning: (A) similar context, (B) emerging pattern caused by a database index failure.

1416.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT

6.5.4 NOTEWORTHY RESEARCH CHALLENGES AND RISKS
While our experiments indicate that a learning-based approach is indeed feasible, there are several

topics of special importance that need further investigation.

6.5.4.1 Extraneous and confounding variables
Two important risks to knowledge inferred through machine learning are extraneous and confounding
variables [40]. Extraneous variables are factors other than features that may also bear an effect on the

behavior of the system. An example of an extraneous variable alluded to earlier is the system’s work-

load, which may impact some of the system’s quality attributes, such as response time. A confounding
variable is a special type of an extraneous variable that correlates positively or negatively with both

dependent and independent variables. Unlike extraneous variables that introduce an error in the model,

a confounding variable could result in identifying incorrect relationships. There are several possible

approaches to deal with such problems. One technique is to include factors other than features

(e.g., workload) that may influence the behavior of the software in the learning process as additional

independent variables. Additionally, there are several known techniques [41] for testing the causality of

the learned models that deserve further research.

6.5.4.2 Overhead of monitoring and learning
Another issue is the computational complexity of learning. Note that the use of feature-oriented adap-

tation model pioneered in our prior work [9,42] already offers two opportunities for tackling this issue:

(1) Learning operates on feature selection space, which is significantly smaller than the traditional

architectural configuration space. The features encode the engineer’s domain knowledge of the adap-

tation choices that are practical in a given application, and thus significantly reduce the number of

independent variables. (2) By using the feature relationships (e.g., mutual exclusions, dependencies),

one could further reduce the feature selection space to a subset that is valid with respect to those con-

straints. Yet, learning in systems with very large number of features and many contextual parameters

could become prohibitively expensive. One possible solution is to develop a significance test that
would occur at the outset of learning. The test determines whether a feature in isolation has an impact

on each metric. This allows for substantial reduction in the number of independent variables, and per-

formance gains, but potentially at the expense of slight degradation in the accuracy of learned models.

1 2 3 4 5 6 7 8 9

State-of-the-art 26.08 17.89 21.52 34.94 33.56 39.50 36.42 26.11 25.96

Learning-driven 0.22 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22

0.00

10.00

20.00

30.00

40.00

50.00

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

FIG. 6.6

Execution time in making decisions.

142 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

Another related issue is determining how much data needs to be collected for machine learning to

produce accurate models of the system’s behavior. For that purpose, the learning accuracy threshold
provided by most modern machine learning algorithms provides a good starting point.

6.5.4.3 Adaptation in the presence of uncertainty
The quality of adaptation decisions depends on the accuracy of an inferred model. When there are un-

anticipated changes, our approach is forced to make some decisions using the inaccurate models. An

important issue is whether the decisions made during this period of time could exacerbate the violated

objectives. Here, again, the feature-oriented adaptation paradigm provides us with an opportunity to

address this issue. Our experience shows that while an inferred model may fail to predict accurately

the magnitude of impact on metrics, it gets the general direction of impact (i.e., positive vs. negative)

correctly. For instance, the fact that cache feature improves the system’s response time, regardless of

any other factor, is a property that is learned. Hence, even in the presence of inaccurate models, the

approach will make decisions that are good, but not necessarily optimal, until the knowledgebase is

refined.

Another potential avenue of future research is to investigate opportunistic self-training as a way of

detecting emerging behaviors before adaptation decisions are made—for instance, a self-training pro-

cess that takes place using a shadow clone of the running system during periods of low utilization.

6.5.4.4 Structure of learned model
In some cases, using functions to model the impact of features onmetrics is not feasible. For instance, in

the case of discrete metrics, classification-based techniques [40] are more suitable, as they can effi-

ciently represent such relationships in the form of decision trees [43]. To that end, suitability of various

machine learning techniques to different types of quality objectives should be explored. A few notable

examples include SVMs [36], neural networks [44], decision trees [43], CART [45], MARSplines [46],

etc. A follow on issue that would need to be investigated is how tomake decisions using models derived

from different learning techniques.

6.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT
Once goal management finds a new feature selection, change management is invoked to put it into

effect. As depicted in Fig. 6.3, there are many ways of conceptualizing features, but regardless, at

the change management layer, changes in features manifest themselves in terms of changes to the soft-

ware components comprising the running software. For clarity, in this section, we assume the solution

selected by the goal management layer has already mapped to a set of software components that need to

be changed.

According to quiescence, to ensure safe adaptation, a component should not be adapted in the mid-

dle of a dependent transaction. It achieves this by first passivating (halting) all components that may

initiate a transaction on the component that is being adapted. However, as you may recall from

Section 6.3.2, the existing approach has three issues: (1) manually intensive, requiring the engineer

to model the component dependencies, (2) fragile, since when the software evolves, the models become

inaccurate representation of dependencies, and (3) inefficient, due to the severe disruptions caused by

passivation.

1436.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT

We have developed an alternative approach that alleviates these shortcomings [8,10]. We assume

the events intended for the component that is being adapted can be buffered during the change, and

delivered afterward. The key insight is that the quiescence constraint that a component can only be

adapted when it is not participating in a dependent transaction is overly constraining, since there

are also certain times within the execution of a transaction that a component can be safely adapted.

More specifically, a component can be safely adapted unless it has already participated in a dependent

transaction that will require services of that component again to complete. For instance, Authenticate
component in Fig. 6.2 can be safely adapted either prior to e2 or after e2ʹwithout the need to wait for the
top-level transaction (TLT) T1 to complete. As another example, Business Tier component can be

safely adapted either prior to e1 or after e1ʹ, but not in between, since it participates twice in the trans-
action T1.

The research challenge then is developing a detailed model of the system’s transactions, such as

Fig. 6.2, that would allow us to make such refined decisions about when components can be safely

changed. At first blush, it may seem that simply tagging events comprising the dependent transactions

(i.e., establishing sessions) would solve this problem, but that breaks the black-box treatment of com-

ponents.We have developed an approach that learns the details of dependent transactions bymining the

execution history of a software system. The result of mining is a set of rules expressing the probabilistic

relationships between occurrences of transactions, and consequently involvement of corresponding

components in servicing those transactions. Given a set of transactions currently running in the system,

these rules can be used to predict the probability with which a component can be safely changed at any

point in time. Finally, by continuously monitoring the transactions and the accuracy of predictions, the

approach provides the means to adjust the rules as new patterns of interaction emerge.

6.6.1 MINING FOR RUNTIME DEPENDENCIES
Fig. 6.7 shows the steps comprising our approach. Mining operates on an event log of the system, which

contains the events and the time at which they occur in the system. Similar to prior research [27,28], we

assume events, which mark the beginning and end of transactions, can be observed in a running soft-

ware system. For instance, looking at Fig. 6.2, it is reasonable to assume the GUI component can

determine the beginning and end of dependent transaction T1 in terms of request e1 and response

e1ʹ. What is missing is the ability to infer automatically the causal relationship among the transactions

that happen in between, and whether those transactions are initiated in response to T1, given that there
may be multiple concurrently running dependent transactions at any point in time.

As shown in Fig. 6.7, the first step is to construct baskets. A basket is a set of events that occur close
together in time. A new basket is formed for each transaction if its beginning, end, or both do not fall

within the beginning and end of another transaction. In reference to Fig. 6.2, a new basket would be

created for T1, as its beginning and end (determined by e1 and e1ʹ) do not fall within any other trans-

actions. As such, a basket is created for each “top-level” transaction, but not the transactions that those

TLTs initiate. All transactions beginning and ending within the time frame of a basket are added to that

basket. In the example of Fig. 6.2, all three transactions T2, T3, and T4 are added to T1 basket, repre-

sented as bT1¼{T1,T2,T3,T4}.
Using this process, an entire segment of a software system’s event log can be transformed into a set

of baskets representing the occurrence of transactions together in time. Several data mining ap-

proaches, such as apriori [47], Eclat [48], and FP-growth [49], can then be used to process baskets

144 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

constructed in this way to derive a set of transaction association rules (TARs). TARs are probabilistic
rules for predicting the occurrence of transactions. A TAR is a rule of the form A!B:p. It states that the
occurrence of transaction set A implies the occurrence of transaction set Bwith probability p. As shown
in Fig. 6.7, TARs derived in this way are stored in the rule base for use during system’s adaptation at

runtime.

Given a sufficiently large usage history, the approach compensates for concurrently running trans-

actions. Consider the scenario in which a user is performing the TLT T1 as shown in Fig. 6.2, when a

second user initiates another TLT T5 overlapping partially in time with T1 and itself initiating a trans-
action T6 that falls wholly within the beginning and end times of both T1 and T5. The proposed

approach will include T6 in both bT1 and bT5 baskets. However, since transactions T6 and T5 are truly

independent, the false placement of T6 in bT1 is a random event that is not likely to occur in a signif-

icantly large number of baskets, and thus safely ignored by modern data mining algorithms.

6.6.2 USING THE MINED DEPENDENCIES
As shown in Fig. 6.7, a usage prediction registry for every component in the system is maintained. This

registry stores the probability that the component will imminently be used as a result of transactions

running in the system. When an event (indicating the beginning or end of a transaction) occurs, the

update predictions activity consults the rule base for any TARs that are satisfied. A TAR is satisfied

if all of the transactions on its left-hand side have been initiated and currently running. If so, it is

expected that the transactions predicted by the rule (i.e., right-hand side) will occur with a probability

p. Those predictions are used to update the registries for components that handle those transactions.

However, since a value may already be present in the registry, the probability p cannot simply be

placed in there. Instead, three cases must be considered and appropriate update mechanisms would

need to be developed: (1) Independent: The new TAR is independent of the TARs that are already

FIG. 6.7

Overview of mining-based approach for change management.

1456.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT

affecting the registry, that is, no transactions on the left-hand sides of the TARs are shared. (2) Depen-
dent: The new TAR is dependent on the TARs that are already affecting the registry, that is, the left-

hand side of the new TAR is a superset of the left-hand side of the previous TARs. (3)Overlapping: The
left-hand side of the new TAR shares some transactions with the left-hand side of the previous TARs.

Each registry keeps track of the TARs that combine to create the overall usage probability of a com-

ponent at any point in time. When an event signifies the termination of a transaction, the usage pre-

diction registry also has to be updated. Thereby, the probability values in usage prediction registries

change as events that begin and end transactions are observed.

The usage probability of a component together with the recent history of its participation in running

transactions are taken to determine the time for enacting the changes. In one extreme, a component that

has already participated in a running transaction, and irrespective of its usage probability in future, is

not changed until the transaction ends. This approach provides safety guarantee, even if the mined rules

are inaccurate. Alternatively, to achieve faster adaptation, but at the expense of slightly higher risk, the

component may be adapted if its usage probability reaches either zero or less than an acceptable thresh-

old. As mentioned earlier, since a new transaction requiring the services of the component may start

while it is being changed, the events intended for the component would have to be buffered, and de-

livered after it is replaced. Therefore, even if a component has not participated in any running trans-

action, and thus there is no risk of inconsistency, the usage probability may still be taken into

consideration to minimize the interruptions. Compared to quiescence, the proposed approach reduces

interruptions, as it does not require passivation of any part of the system, and allows for changes to

occur in the middle of transactions.

Over time, changes that occur in the software system may render the TARs in the rule base incom-

plete or inaccurate. For instance, components may be updated with new or modified functionality that

alter their interaction patterns. As shown in Fig. 6.7, the check prediction accuracy activity denotes the
process of monitoring the accuracy of usage predictions at runtime. When the predictions become in-

accurate, it initiates a new round of data mining-based on the recently collected event log.

6.6.3 EXPERIMENTAL RESULTS
We have developed a prototype of the approach using an implementation of Apriori provided inWEKA

[50]. We performed extensive experimentation on runtime adaptation of an emergency response soft-

ware system, the details of which can be found in our publications [8,10,12]. To evaluate the approach,

we used several versions of the emergency response system with different concurrency levels. We used

a baseline version of the system with a single user. We then repeated the evaluations on higher con-

currency systems to evaluate the susceptibility of the approach to concurrency errors. The 80 and 137

experiments were simulated by using hyperactive dummy users, as the system never naturally reached

that level of concurrency error. We intentionally use very low confidence and support thresholds. We

chose confidence value of 0.05 and support threshold of 0.045.

Table 6.1 shows what percentage of all recorded transactions where actually erroneous duplicates

caused by concurrency, as well as the average number of these erroneously recorded transactions per

TLT. As expected, with increased concurrency, the number of erroneously recorded transactions

grows. Each experiment had roughly eight true transactions per TLT. The effectiveness of our rule

pruning heuristics can also be observed from Table 6.1.

146 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

The quality of differentiating active and inactive components can be viewed with a receiver oper-
ating characteristic (ROC) curve, often used to evaluate a binary classifier, as shown in Fig. 6.8. In this
experiment, we change the usage probability threshold, which indicates the likelihood of the compo-

nent being used before the currently active transactions end. In essence, the threshold indicates the level

of inaccuracy the user may be willing to tolerate with respect to the adaptation of the system’s com-

ponents. The ROC curve, thus, depicts the change in the ratio of true positive (TP) to false positive (FP)

as different thresholds are chosen.

It can be seen how the TP and FP rates respond by moving the threshold. The ROC curve shows that

the approach does an incredible job of achieving TPs despite changes in the threshold. The comparison

of the different experiments also shows the effect of concurrency on the approach. With many users in

the system, there are many more observations that allow the approach to predict usage of a component,

Table 6.1 Experimental Systems Used in Evaluation, and Effects of TAR Pruning Heuristics

of Users # of TLT Observed

Concurrency Errors # of TAR

Rate (%) Per Itemset Initial Remain

1 500 0.00 0.00 38,582 1683

10 1628 1.69 0.13 34,050 2190

28 2787 4.51 0.35 38,248 2331

40 3330 10.94 0.92 38,460 1758

80 11,920 36.32 4.19 35,168 3126

137 3543 60.77 11.26 31,442 3143

FIG. 6.8

ROC curve for determining safe adaptation of components under different levels of concurrency.

1476.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT

when the component is actually used. Therefore, as concurrency increases, the approach keeps the high

quality in differentiating active and inactive components. However, when we approach 137 users, the

concurrency error rate is roughly 60% and active components are constantly used until the transactions

they participate in subside, making it more difficult to identify situations in which the components can

be adapted. In such extreme scenarios, a passive approach, such as the one advocated in our research,

needs to fall back on an active approach, such as quiescence, that forces some of the components to halt

execution.

6.6.4 NOTEWORTHY RESEARCH CHALLENGES AND RISKS
In spite of the promising results that have shown the feasibility of a mining-based approach for the

construction of change management capabilities, as outlined in our prior publications [8,10,12], several

challenging issues remain. We provide an overview of these topics to frame a future research agenda

for the community.

6.6.4.1 Long-living transactions and high workload
As described in Section 6.6.1, given sufficiently large number of baskets, mining can account for the

anomalies caused by concurrency. However, there are two extreme cases that challenge the mining

approach: (1)When there are long-living TLTs that are always running in the system, resulting in many

wrong baskets. (2) When the system has an exceptionally high workload, resulting in many TLTs over-

lapping in time, and thus increasing the possibility of placing events in wrong baskets. One plausible

approach to mitigate these challenges is to use known measurement techniques [51] for evaluating the

entropy and variance of data (i.e., baskets), which would allow us to detect baskets that are problematic

to be treated differently.

6.6.4.2 Overhead of mining and updating predictions
Another issue of importance is the overhead of mining, in particular at runtime. Since due to changes in

the system, it is likely that only a subset of TARs become inaccurate, it would be important to develop a

partial mining approach, where the event log is pruned to include only the information that is relevant

for updating the affected TARs. Another source of overhead is the computational complexity of updat-

ing the usage prediction registries for components. One possible approach to reduce this overhead is to

adopt a just-in-time policy, where only when it is decided to update a component, the usage predictions

are calculated. Future research also needs to devise and employ efficient data structures, such as spe-

cialized hash tables and map-reduce functions, for achieving fast update of registries.

6.6.4.3 Transaction coverage and other forms of mining
The accuracy of mined rules depends on the availability of a sufficiently large usage history of the

software, exercising the interactions among the system’s component. Such data could either be col-

lected through benchmark of the system or its previous deployments. However, determining howmuch

data is needed to allow for generation of accurate rules is challenging. The notion of component inter-
action coverage metric [52] provides a good starting point in addressing this issue. Another interesting
avenue of research is emerging forms of mining, such as the use of data stream mining [53], which

allows the mining to be performed incrementally and based on the real-time stream of monitoring data.

148 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

6.7 RELATED WORK
Over the past decade, many frameworks and technologies intended to support the construction of self-

adaptive systems have been developed (see recent surveys [5–7,54–56]). In Section 6.3, we described

the shortcomings with the most relevant research. Here we outline other related work.

Numerous approaches [4,6,15,16,19] have advocated the use of software architectures in the con-

struction of self-adaptive software. IBM’s autonomic computing architecture [4] advocates hierarchies

of feedback-control loop (i.e., MAPE-K discussed in Section 6.3). Oreizy et al. present the architecture-

based approach to runtime adaptation and evolution management in their seminal work [19]. Garlan

et al. describe the Rainbow framework [15], a style-based approach for developing reusable self-

adaptive systems. Georgiadis et al. [16] propose a decentralized adaptation approach, where each

self-organizing component manages its own adaptation with respect to the overall system goal. These

works form the foundation of our research, manifested by the key role of architecture in the proposed

approach.

Several models of adaptation other than architecture-based have also been proposed, such as para-

metric [57,58], component-based [17], aspect-oriented [59,60], and feature-oriented [61–63]. The
work outlined in this chapter have also used feature-orientation as a method of modeling the dynamic

variability in software, but unlike these approaches we propose to use learning to identify the impact of

features on quality objectives.

Automated inference techniques have been applied extensively in the construction of adaptive soft-

ware (e.g., [64–70]), but not in the context of self-adaptive software. The distinction between adaptive
and self-adaptive software lies in the feedback-control loop. An adaptive software has an external
feedback-control loop, that is, between the software and the domain (environment) in which it is

deployed. For instance, a robotic software system is often adaptive; based on the data collected from

the environment, it reasons and reacts accordingly. On the other hand, a self-adaptive software has an

internal feedback-control loop, that is, between the management subsystem (meta-level logic) and the

managed subsystem (application logic).

Providing assurances in effecting runtime changes is a topic that has been studied extensively in the

past (e.g., [17,28,71–73]). Most relevant is tranquility [28], which also aims to reduce the interruptions

caused by quiescence. However, unlike the proposed research, tranquility is specific to a proprietary

middleware, called Draco, and makes an unrealistic assumption that not only components can provide

a list of transactions they have already participated in the past, but also transactions they will participate

in future. This is an issue that we have overcome through data mining techniques.

6.8 CONCLUSION
Self-adaptive software systems rely on several types of models to reason about the adaptation of the

software at runtime. The majority of existing literature and approaches targeted at the engineering of

adaptive software systems require manual development of models for use at runtime. Manual devel-

opment of models, however, is a time-consuming, laborious task. In addition, keeping manually con-

structed models in sync with the changing software system at runtime, and in a timely fashion, is a

challenge. Finally, since it is difficult to build manually models that capture the fine-grained behavior

1496.8 CONCLUSION

of the managed software system, reasoning about adaptation decisions using such models introduces

further uncertainty in the autonomic management of software.

In this chapter, we first illustrated the shortcomings of manually constructed models, in light of the

prior research, and with respect to two exemplary self-adaptation concerns occurring at the goal man-

agement and change management layers. We further provided an overview of a body of recent research

that has attempted to address these challenges through automated means of inferring the models.

Namely, we provided an overview of two complementary thrusts of research: (1) A machine learning

approach to automatically derive the models predicting the impact of architectural change (i.e.,

enabling a particular capability at runtime, such as caching or authentication) on the system’s quality

objectives (e.g., response time, availability). These types of models are used to make adaptation de-

cisions to fix problems that may arise at runtime. (2) A data mining approach to derive automatically

the models expressing the probabilistic dependencies between the architectural elements (components)

of the system. Finally, we described a set of research challenges that we have come across in our own

experiences of employing automated inference techniques for the construction of self-adaptive soft-

ware, which we hope to frame future research directions for the community of researchers.

ACKNOWLEDGMENTS
We would like to acknowledge the contributions of Ahmed Elkhodary in the development of our learning-based

approach for goal management. This work was supported in part by awards CCF-1252644 from the National

Science Foundation, D11AP00282 from the Defense Advanced Research Projects Agency, W911NF-09-1-0273

from the Army Research Office, HSHQDC-14-C-B0040 from the Department of Homeland Security, and

FA95501610030 from the Air Force Office of Scientific Research.

REFERENCES
[1] D.A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,

M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft, Recovery-oriented com-

puting (ROC): motivation, definition, techniques, and case studies, U.C. Berkeley computer science technical

report, UCB//CSD-02-1175, University of California, Berkeley, CA, 2002.

[2] Yankee Group Report. How much is an hour of downtime worth to you? Must-Know Business Continuity

Strategies, Yankee Group, Boston, MA, 2002, pp. 178–187.
[3] A.G. Ganek, T.A. Corbi, The dawning of the autonomic computing era, IBM Syst. J. 42 (1) (2003) 5–18.
[4] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (2003) 41–50.
[5] B. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,

G. Karsai, H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. M€uller, S. Park, M. Shaw,

M. Tichy,M. Tivoli, D.Weyns, J.Whittle, Software engineering for self-adaptive systems: a research roadmap,

in: Software Engineering for Self-Adaptive Systems, LNCS Hot TopicsSpringer, Berlin, 2009, pp. 1–26.
[6] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: International Conference on Soft-

ware Engineering, Vancouver, Canada, May, 2007.

[7] R. De Lemos, H. Giese, H.A. M€uLler, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K.M. Goeschka, A. Gorla,

V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek, S. Mankovskii,

150 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Sch€afer, R. Schlichting,

B. Schmerl, D.B. Smith, J.P. Sousa, G. Tamura, L. Tahvildari, N.M. Villegas, T. Vogel,

D. Weyns, K. Wong, J. Wuttke, Software engineering for self-adaptive systems: a second research roadmap,

in: Dagstuhl Seminar Proceedings, Number 10431, 1862-4405Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, Wadern, 2011.

[8] K.R. Canavera, N. Esfahani, S. Malek, Mining the execution history of a software system to infer the best

time for its adaptation, in: 20th ACM SIGSOFT International Symposium on the Foundations of Software

Engineering (FSE 2012), Cary, North Carolina, November, 2012.

[9] A. Elkhodary, N. Esfahani, S. Malek, FUSION: a framework for engineering self-tuning self-adaptive soft-

ware systems, in: 18th ACM SIGSOFT International Symposium on the Foundations of Software Engineer-

ing (FSE 2010), Santa Fe, NM, November, 2010.

[10] N. Esfahani, E. Yuan, K.R. Canavera, S. Malek, Inferring software component interaction dependencies for

adaptation support, ACM Trans. Auton. Adapt. Syst. 10 (4) (2016).

[11] N. Esfahani, A. Elkhodary, S. Malek, A learning-based framework for engineering feature-oriented self-

adaptive software systems, IEEE Trans. Softw. Eng. 39 (11) (2013) 1467–1493.
[12] E. Yuan, N. Esfahani, S. Malek, Automated mining of software component interactions for self-adaptation,

in: 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS 2014), Hyderabad, India, June, 2014.

[13] E. Alpaydın, in: Introduction to Machine Learning, Adaptive Computation and Machine Learning, MIT

Press, Cambridge, MA, 2004.

[14] P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-Wesley, Boston, MA, 2006.

[15] G. Garlan, et al., Rainbow: architecture-based self-adaptation with reusable infrastructure, IEEE Comput.

37 (2004) 46–54.
[16] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architectures for distributed systems,

in: Workshop on Self-healing Systems, Charleston, SC, November, 2002.

[17] H. Gomaa, M. Hussein, Software reconfiguration patterns for dynamic evolution of software architectures,

in: Working IEEE/IFIP Conference on Software Architecture, 2004.

[18] S. Malek, M. Mikic-Rakic, N. Medvidovic, A style-aware architectural middleware for resource-constrained

distributed systems, IEEE Trans. Softw. Eng. 31 (5) (2005) 256–272.
[19] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: International

Conference on Software Engineering, Kyoto, Japan, April, 1998.

[20] M. Bennani, D.Menasce, Resource allocation for autonomic data centers using analytic performance models,

in: IEEE International Conference on Autonomic Computing, Seattle, WA, June, 2005.

[21] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola, Qos-driven runtime adaptation of service

oriented architectures, in: 7th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE ‘09), Amsterdam,

The Netherlands, August, 2009.

[22] G. Gross, C.M. Harris, Fundamentals of Queuing Theory, second ed., John Wiley & Sons, New York, NY,

1985.

[23] L.R. Rabiner, A tutorial on hidden Markov models, Proc. IEEE 77 (1989) 257–286.
[24] R. Das, I. Whalley, J.O. Kephart, Utility-based collaboration among autonomous agents for resource alloca-

tion in data centers, in: 5th International Joint Conference on Autonomous Agents and Multiagent Systems,

Hakodate, Japan, 2006.

[25] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, Utility functions in autonomic systems, in: International Con-

ference on Autonomic Computing (ICAC 2004), New York, NY, USA, May, 2004.

[26] R.N. Taylor, N. Medvidovic, E. Dashofy, Software Architecture Foundations, Theory, and Practice, John

Wiley & Sons, Hoboken, NJ, 2008.

151REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0135

[27] J. Kramer, J. Magee, The evolving philosophers problem: dynamic change management, IEEE Trans. Softw.

Eng. 16 (1990) 1293–1306.
[28] Y. Vandewoude, P. Ebraert, Y. Berbers, T. D’Hondt, Tranquility: a low disruptive alternative to quiescence

for ensuring safe dynamic updates, IEEE Trans. Softw. Eng. 33 (2007) 856–868.
[29] D. Batory, Feature models, grammars, and propositional formulas, in: 9th International Conference on Soft-

ware Product Lines, Rennes, France, September, 2005.

[30] P. Clements, L. Northrop, in: Software Product Lines: Practices and Patterns, SEI Series in Software Engi-

neeringAddison-Wesley, Boston, MA, 2001.

[31] S. Trujillo, D. Batory, O. Diaz, Feature oriented model driven development: a case study for portlets, in: 29th

International Conference on Software Engineering, Minneapolis, MN, 2007.

[32] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, J.A. Subhlok, Resource query interface for

network-aware applications, Clust. Comput. 2 (1999) 139–151. Baltzer.
[33] A. Mos, J. Murphy, COMPAS: adaptive performance monitoring of component-based systems,

in: Workshop on Remote Analysis and Measurement of Software System (RAMSS), Edinburgh, Scotland,

May, 2004.

[34] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, M. Thompson, A monitoring sensor management

system for grid environments, in: IEEE International Symposium on High Performance Distributed Comput-

ing, Pittsburgh, PA, August, 2000.

[35] K. Kang, S. Cohen, et al., Feature-oriented domain analysis (FODA) feasibility study, Technical report CMU/

SEI-90-TR-21, Software Engineering Institute, Pittsburgh, PA, 1990.

[36] A.J. Smola, B. Sch€olkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004) 199–222.
[37] J.O. Kephart, R. Das, Achieving self-management via utility function, IEEE Internet Comput. 11 (1) (2007)

40–48.
[38] L.A. Wolsey, Integer Programming, John Wiley & Sons, New York, 1998.

[39] C. Ghezzi, G. Tamburrelli, Predicting performance properties for open systems with KAMI, in: International

Conference on Quality of Software Architecture, June, 2009.

[40] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, John Wiley & Sons, Hoboken,

NJ, 2003.

[41] J. Pearl, Causality: Models, Reasoning and Inference, Cambridge University Press, Cambridge, 2000.

[42] A. Elkhodary, S. Malek, N. Esfahani, On the role of features in analyzing the architecture of self-adaptive

software systems, in: 4th International Workshop on Models at Runtime, Denver, Colorado, October, 2009.

[43] Y. Yuan, M.J. Shaw, Induction of fuzzy decision trees, Fuzzy Sets Syst. 69 (2) (1995) 125–139.
[44] D. Kriesel, A Brief Introduction to Neural Networks, University of Bonn/Epsilon, Bonn, 2005.

[45] J. Gehrke, Classification and regression trees (C&RT), Encyclopedia of Data Warehousing and Mining,

2008, 192–195.
[46] J.H. Friedman, Multivariate adaptive regression splines, Ann. Stat. 19 (1) (1991) 1–67.
[47] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: 20th International

Conference on Very Large Data Bases (VLDB), Santiago, Chile, September, 1994, pp. 487–499.
[48] M.J. Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng. 12 (3) (2000) 372–390.
[49] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation, Data Min. Knowl.

Disc. 8 (1) (2004) 53–87.
[50] WEKA 3: Data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka.

[51] S. Farzi, A.B. Dastjerdi, Data quality measurement using data mining, Int. J. Comput. Theor. Eng. 2 (1) 2010

115–118.
[52] A.W. Williams, R.L. Probert, A measure for component interaction test coverage, in: ACS/IEEE Interna-

tional Conference on Computer Systems and Applications (AICCSA 2001), Beirut, Lebanon, June, 2001.

152 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0250
http://www.cs.waikato.ac.nz/ml/weka
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0260

[53] M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, ACM SIGMOD Rec. 0163-5808,

34 (1) (2005) 18–26.
[54] J. Andersson, R. De Lemos, S. Malek, D. Weyns, Modeling dimensions of self-adaptive software systems,

Lecture Notes on Computer Science Hot Topics, in: B.H.C. Cheng, R. De Lemos, H. Giese, P. Inverardi,

J. Magee (Eds.), Software Engineering for Self-Adaptive Systems, Springer, New York, 2009.

[55] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Modeling dimensions of self-adaptive software systems,

in: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for Self-

Adaptive Systems, Lecture Notes on Computer Science Hot Topics, Springer, Berlin, 2009.

[56] J. Andersson, R. De Lemos, S. Malek, D. Weyns, Reflecting on self-adaptive software systems, in: ICSE

2009 Workshop on Software Engineering for Adaptive and Self-Managing Systems, Vancouver, Canada,

May, 2009.

[57] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.

Adapt. Syst 4 (2) (2009) 1–42.
[58] D. Menasce, M. Bennani, H. Ruan, On the use of online analytic performance models in self-managing and

self-organizing computer systems, in: Self-Star Properties in Complex Information Systems, 3460 Springer,

New York, 2005.

[59] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K. Seamons, Adaptive trust negotiation and access control,

in: ACM Symposium on Access Control Models and Technologies, 2005, pp. 139–146.
[60] B. Morin, O. Barais, G. Nain, J.-M. Jzquel, Taming dynamically adaptive systems with models and aspects,

in: 31st International Conference on Software Engineering, Vancouver, Canada, May, 2009.

[61] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jzquel, A. Solberg, V. Dehlen, G. Blair, An aspect-oriented and

model-driven approach for managing dynamic variability, in: ACM/IEEE 11th International Conference

on Model Driven Engineering Languages and Systems, Toulouse, France, October, 2008.

[62] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines, IEEE Comput. 41 (4)

(2008) 93–95.
[63] J. Lee, K. Kang, A feature-oriented approach to developing dynamically reconfigurable products in product-

line engineering, in: Software Product Lines Conference, August, 2006.

[64] P. Trinidad, A. Ruiz-Cortes, J.P. Na, Mapping feature models onto component models to build dynamic soft-

ware product lines, in: International Workshop on Dynamic Software Product Line, 2007.

[65] J.C. Georgas, R.N. Taylor, Towards a knowledge-based approach to architectural adaptation management,

in: Workshop on Self-Healing Systems, Newport Beach, CA, October, 2004.

[66] D. Kim, S. Park, Reinforcement learning-based dynamic adaptation planning method for architecture-based

self-managed software, in: International Workshop on Software Engineering for Adaptive and Self-

Managing Systems, Vancouver, Canada, May, 2009.

[67] K. Rieck, P. Laskov, Language models for detection of unknown attacks in network traffic, J. Comput. Virol.

2 (4) (2007) 243–256.
[68] M. Sabhnani, G. Serpen, Application of machine learning algorithms to KDD intrusion detection dataset

within misuse detection context, in: International Conference on Machine Learning: Models, Technologies

and Applications, 2003, pp. 209–215.
[69] D. Sykes, et al., From goals to components: a combined approach to self-management, in: International

Workshop on Software Engineering for Adaptive and Self-Managing Systems, Leipzig, Germany, May,

2008.

[70] G. Tesauro, N.K. Jong, R. Das, M.N. Bennani, A hybrid reinforcement learning approach to autonomic

resource allocation, in: International Conference on Autonomic Computing, Washington, DC, June, 2006.

[71] G. Tesauro, Reinforcement learning in autonomic computing: a manifesto and case studies, IEEE Internet

Comput. 11 (1) (2007) 22–30.

153REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0315
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0315
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0325
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0325
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0355
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0355

[72] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D.A. Menasce, Software adaptation patterns for service-

oriented architectures, in: 25th ACM Symposium on Applied Computing (SAC 2010), Dependable and

Adaptive Distributed Systems track, Sierre, Switzerland, March, 2010.

[73] A.J. Ramirez, D.B. Knoester, B.H.C. Cheng, P.K. McKinley, Applying genetic algorithms to decision mak-

ing in autonomic computing systems, in: International Conference on Autonomic Computing, 2009,

pp. 97–106.
[74] J. Zhang, B.H.C. Cheng, Model-based development of dynamically adaptive software, in: International Con-

ference on Software Engineering (ICSE), Shanghai, China, May, 2006.

[75] N. Esfahani, S. Malek, J.P. Sousa, H. Gomaa, D.A. Menasce, Amodeling language for activity-oriented com-

position of service-oriented software systems, in: ACM/IEEE 12th International Conference on Model

Driven Engineering Languages and Systems (MODELS 09), Denver, Colorado, October, 2009.

154 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0370
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0370
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375

CHAPTER

EVALUATING TRADE-OFFS
OF HUMAN INVOLVEMENT
IN SELF-ADAPTIVE SYSTEMS

7
J. Cámara*, D. Garlan*, G.A. Moreno*, B. Schmerl*
Carnegie Mellon University, Pittsburgh, PA, United States*

7.1 INTRODUCTION
Modern society increasingly relies upon software-intensive systems to support a wide range of tasks

in multiple application domains, such as energy, transportation, and communications. Despite the

critical nature of many of these systems, it is increasingly difficult to obtain guarantees about their

ability to provide service that can justifiably be trusted in the presence of changes in their environment

(e.g., resource availability), or within the system itself (e.g., faults). The growing complexity of these

systems and the high degree of uncertainty in the environment in which they operate are two of the main

factors that contribute to their lack of predictability.

Early attempts to address this situation involved human oversight, which is expensive and has often

been considered unreliable due to the fact that humans are liable to err and have difficulty in reacting in

a timely manner when situations that demand changes to the system at run time arise. In contrast,

approaches developed over the last decade in the area of self-adaptive systems [1–3] advocate for

the full automation of mechanisms to adapt the structure and behavior of a system at runtime to over-

come some of the limitations associated with human oversight. Self-adaptive approaches often rely on

closed-loop control, eliminating the human factor from the solution.

Although fully automated adaptation has proven successful in a variety of application domains, this

class of approach may be suboptimal in some situations (e.g., when information required for decision-

making is difficult to capture and/or analyze), or may simply be insufficient to effect changes in the

system (e.g., when adaptations involve physical changes that cannot be automated).

Among self-adaptive approaches, one of the most successful paradigms to date is MAPE-K, which

includes activities to monitor and analyze a software system and its environment, and if the situation

demands it, plan and execute adaptations. MAPE-K systems rely on a knowledge base that can include

models of a system’s environment, goals, and architecture [3, 4]. The different activities in the MAPE-

K loop can benefit from human involvement in a variety of ways:

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00007-1

Copyright # 2017 Elsevier Inc. All rights reserved.
155

http://dx.doi.org/10.1016/B978-0-12-802855-1.00007-1

• Monitoring can receive information from humans (acting as sophisticated sensors) that would

otherwise be difficult to automatically monitor (e.g., operators can indicate whether there is an

ongoing anomaly based on context information that is not captured by the models included in the

knowledge base).

• Analysis and planning can incorporate into the decision-making process input (e.g.,

recommendations, validation) from application domain experts who have additional insight about

the best way of adapting the system.

• Execution can employ humans as system-level effectors to execute adaptations when changes to the

system cannot be fully automated, or as a fallback mechanism.

Despite the benefits that involving humans in adaptation can bring, it is worth noticing that their

behavior is influenced by factors external to the system that affect their effectiveness at carrying

out different tasks, such as fatigue, or training level. These factors need to be carefully considered

if we want to enable systems to discriminate situations in which human involvement is preferable over

fully automated adaptations.

Analyzing the trade-offs of involving humans in adaptation demands new approaches to support

systematic reasoning about the way in which the behavior of human participants affects the outcome

of adaptations. In this chapter, we describe a formal framework to analyze trade-offs in self-adaptation

at two levels: (i) reasoning about business concerns in the context of other (potentially conflicting)

business properties; and (ii) reasoning about the effectiveness of automated vs. human-driven

adaptations with respect to a set of business concerns and preferences.

The core of the framework consists of an extended version of a language to express adaptation

models with elements that capture some of the main factors affecting human behavior. Moreover,

we show how adaptation models expressed in this language can be encoded as stochastic multiplayer

games (SMGs), a formalism amenable to automated verification that can be employed to analyze

human-system-environment interactions.

Weexplore the topicsdiscussedinthischapterusinganextensionoftheStitchlanguage[5]employedby

the Rainbow framework for self-adaptation [4] with elements inspired from opportunity-willingness-

capability (OWC) models employed in cyber-human systems (CHS) [6] that capture major factors that

influence human-system interactions. We illustrate our approach in the domain of security, employing

as a motivating scenario the mitigation of denial of service (DoS) attacks in Znn.com, a simple news site

system that has been extensively used to assess different research advances in self-adaptive systems.

In the remainder of this chapter, Section 7.2 describes the example that we employ to illustrate our

approach, and Section 7.3 discusses related work. Section 7.4 provides an overview of trade-off anal-

ysis in self-adaptation as embodied in Stitch. Next, Section 7.5 describes our human model and its in-

tegration in adaptation models described using Stitch. Section 7.6 describes probabilistic modeling and

analysis of adaptation models including humans in the loop. Finally, Section 7.7 concludes the chapter,

indicating research avenues to explore in future work.

7.2 MOTIVATING SCENARIO
Before detailing the formal framework to reason about trade-offs of human involvement in adaptation,

we introduce an example that will be used to illustrate the approach.

156 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com

Znn.com [7] is a case study portraying a representative scenario for the application of self-

adaptation in software systems embodying the typical infrastructure for a news website. It has a

three-tier architecture consisting of a set of servers that provide contents from back-end databases

to clients via front-end presentation logic (Fig. 7.1). The system uses a load balancer to balance requests

across a pool of replicated servers, the size of which can be adjusted according to service demand. A set

of clients makes stateless requests, and the servers deliver the requested contents.

From time to time, Znn.com can experience spikes in requests that it cannot serve adequately, even

at maximum pool size. These spikes can result either from legitimate client traffic caused by a popular

event (slashdot effect), or by DoS attacks in which malicious clients try to overwhelm system capacity

in order to render system services unavailable.

7.2.1 SYSTEM OBJECTIVES
Regarding Znn.com’s objectives, users of the system are concerned with experiencing service without

any disruptions, whereas the organization is interested in minimizing the cost of operating the infra-

structure (including not incurring additional operating costs derived from DoS attacks). For users,

service disruption can be mapped to specific run time conditions such as (i) experienced response time

for legitimate clients, and (ii) user annoyance, often related to disruptive side effects of defensive tac-

tics. For the organization, we map cost to the specific resources being operated in the infrastructure at

runtime (e.g., number of active servers). Moreover, in addition to keeping costs below budget, the

organization is also interested in minimizing the fraction of that cost that corresponds to resources con-

sumed by malicious clients. Hence, we identify minimizing the presence of malicious clients as an

additional objective.

In short, we identify four quality objectives for Znn.com: legitimate client response time (R), user

annoyance (A), cost (C), and client maliciousness (M).

c0

c1

c2

lbproxy

s0

s1

s2

s3

FIG. 7.1

Znn.com system architecture.

1577.2 MOTIVATING SCENARIO

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

7.2.2 ADAPTATION MECHANISMS
When response time becomes too high due to spikes in requests, the system can employ two general

approaches for dealing with the situation: absorb excess traffic or suppress it. While the former ap-

proach is better suited to situations in which legitimate user traffic has increased due to a popular event,

the latter is indicated for dealing with DoS attacks.

Znn.com can absorb excess traffic employing the tactics: (i) adding capacity, which commissions a

new replicated web server to share the load; and (ii) reducing service, which reduces the level of service
to text only (Znn.com has two fidelity levels: high, which includes full multimedia content; and text
only, which does not provide any multimedia content). These tactics are fully automated, and are good
at improving the performance of the system without increasing the annoyance to legitimate users.

However, employing these tactics comes at a price, since they do not deal with reducing the cost

derived from resources consumed by potentially malicious clients, and they can even result in an

increment of the cost of operating the system (in the case of adding capacity).

Alternatively, Znn.com can eliminate excess traffic by enacting the tactics: (i) blackholing, which
adds the IP addresses of clients that are deemed to be attacking the system to a blacklist that blocks their

requests; and (ii) throttling, which limits the rate of requests accepted from potentially malicious

clients. Eliminating excess traffic from potentially malicious clients is an approach that to be effective

requires accurately identifying the attackers. Znn.com relies upon the judgment of a human operator to

enact these tactics. In general, well-trained operators will be effective at eliminating traffic from ma-

licious clients, but poorly trained operators can increase user annoyance if they cause service disruption

to legitimate clients due to mistakes in malicious client identification.

7.3 RELATED WORK
Deciding whether humans should be involved in the execution of adaptation is no easy task, since their

behavior and the outcome of their actions can be affected by transient factors such as changing levels of

attention and load, fixed attributes (e.g., level of expertise in carrying out a particular task), or even

their physical context (e.g., access to different locations, timing issues). These factors constitute an

additional source of uncertainty affecting the self-adaptive system (classified by Esfahani and Malek

as uncertainty due to human in the loop [8]) that needs to be managed if we want to answer the fol-

lowing questions:

Q1: How can the outcome of adaptation be predicted if human actors are involved in its execution?

Q2: How can it be determined whether human actors should be involved in adaptation?

While answering Q1 calls for employing models of human characteristics sufficient for representing

the probabilistic nature of human behavior and its interaction with the system, Q2 also demands

exploring mechanisms suitable to compare candidate solutions that might include human-system

collaborations, as well as fully automated adaptations.

Some existing approaches in self-adaptation that automatically generate adaptation plans at run

time are able to propose candidate solutions by analyzing trade-offs among different qualities [9],

consider uncertainty when tuning the operation of the system (e.g., by dynamically adjusting param-

eters [10, 11]), or fall back to a graceful degradation of the system by relaxing constraints in system

requirements [12]. However, despite their consideration of uncertainty as a first-order element, most of

158 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

these approaches do not systematically consider the trade-offs of alternative solutions in the context of

multiple quality concerns. Hence, these approaches are not natural candidates for analyzing the trade-

offs of involving humans in adaptation in a context-sensitive manner.

Other approaches in self-adaptation that rely on selection of adaptation strategies defined by a de-

signer at development time [4, 13] are also able to rank candidate solutions by analyzing trade-offs

among different quality concerns. Moreover, these approaches are sometimes able to deal with some

aspects of uncertainty and timing [4]. These proposals are limited to ranking and selecting fully auto-

mated adaptations, since the knowledgemodels they employ are unable to capture the multiple facets of

uncertainty derived from human behavior that affect the outcome of adaptations.

While the aforementioned approaches focus on fully automated adaptations, Dorn and Taylor [14]

introduce a framework that enables a system adaptation manager to reason about the effects of

software-level changes on human interactions and vice versa bymapping amodel of what they describe

as human architecture (described in a language called hADL) to a model of the system’s architecture

updated at runtime. This approach focuses on the collaboration topology and is able to compare

collaboration-(un)aware adaptations in order to select the best course of action, although it does not

explicitly consider uncertainty derived from human behavior as a major factor affecting the outcome

of adaptations.

Outside of the scope of self-adaptive systems, some approaches in the business process modeling

domain include some aspects of human involvement, providing constructs for describing human ac-

tivities in business processes and their dependencies [15, 16]. These languages primarily target

service-oriented architectures and have limited support for other common architectural styles.

Eskins and Sanders [6] introduce a definition of a Cyber-Human Systems (CHS) and the Opportunity-

Willingness-Capability (OWC) ontology for classifying CHS elements with respect to system tasks. This

approach provides a structured and quantitative means of analyzing cyber security problems whose out-

comes are influenced by human-system interactions, reflecting the probabilistic nature of human behavior.

If we contrast questions Q1 and Q2 with the characteristics of the related approaches described in

this section, we can list a set of requirements that a suitable approach to our problem should satisfy:

R1: The approach must include a value system that enables candidate solution trade-off analysis,

allowing context-sensitive adaptation.

R2: The approach must be able to consider uncertainty as a primary factor that affects the effectiveness

of tasks or adaptations.

R3: The approach must consider timing delays that capture the notion of task or adaptation latency.

R4: The approach must be able to represent and enable the analysis of human participant behavior.

R5: The approach must provide support for a variety of architectural styles.

Although the approaches described in this section partially satisfy these requirements (see Table 7.1),

in this chapter we describe an approach that combines the strengths of the Rainbow framework for self-

adaptation [4] and the OWC ontology described in [6]. On the one hand, Rainbow includes a value

system based on utility to rank candidate adaptations, explicit time delays to observe the effects of

adaptation actions executed on the target system, and it is able to account for uncertainty in the selec-

tion of adaptive actions. On the other hand, OWC models provide the concepts required to capture

human factors that can influence adaptation, some of which are of a probabilistic nature.

In previous work [17], we presented an analysis technique based on model checking of SMGs

to quantify the potential benefits of employing different types of algorithms for self-adaptation.

1597.3 RELATED WORK

Specifically, we showed how the technique enables the comparison of alternatives that consider tactic

latency information for proactive adaptation with those that are not latency-aware. The work in [18]

places this analysis technique in the context of human-in-the-loop adaptation, extending SMG models

with elements that encode an extended version of Stitch adaptation models with OWC constructs. That

work focuses on a simple scenario, does not explore trade-off analysis with respect to multiple quality

concerns, and involved two versions (automated and human) of the same adaptation tactic. In this chap-

ter, we extend our study to consider trade-off analysis at two different levels: (i) discriminating cases in

which the involvement of human actors in execution leads to an improvement in system qualities, pro-

viding the basis to combine human-based and automated adaptations; and (ii) deciding about human

involvement in a context-sensitive manner, selecting different adaptations for different preferences

over business concerns. Moreover, we explore human involvement in self-adaptation in the domain

of self-protecting systems, illustrating our approach in a richer adaptation scenario (a comprehensive

description is provided in [19]), both in terms of tactics and dimensions of concern.

7.4 ANALYZING TRADE-OFFS IN SELF-ADAPTATION
In this section, we show how elevating the reasoning to an architectural level can provide a principled

basis for analyzing the trade-offs among potentially conflicting business objectives. To illustrate this

point, we first introduce the main concepts behind the Stitch language for self-adaptation, which will be

used as the vehicle to explore the questions discussed in the remainder of this chapter.

7.4.1 ADAPTATION MODEL
Althoughmany proposals rely on closed-loop control exploit architectural models for adaptation [4, 13,

20], in this chapter we use some of the high-level concepts in Stitch [5] as a reference framework to

illustrate our approach. Stitch is the language employed by the Rainbow framework [4] to describe

automated repairs based on an architectural description of the underlying target system. Rainbow

has among its distinct features an explicit architecture model of the target system, a collection of ad-

aptation tactics, and utility preferences to guide adaptation.

Table 7.1 Requirements Satisfied by Related Approaches

Area Approach R1 R2 R3 R4 R5

Self-adaptive systems Sykes et al. [9] ✓ ✓

Calinescu et al. [10] ✓ ✓

Epifani et al. [11] ✓ ✓

Cheng et al. [4] ✓ ✓ ✓ ✓

Oreizy et al. [13] ✓ ✓

Dorn and Taylor [14] ✓ ✓ ✓

Business process BPMN [16] ✓ ✓

modeling WSBPEL4People [15] ✓ ✓

Cyber-human systems Eskins and Sanders [6] ✓ ✓

160 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

We assume a model of adaptation that represents adaptation knowledge employing the following

high-level concepts1: (i) tactics, or primitive actions that correspond to a single step of adaptation;

(ii) strategies, which encapsulate an adaptation process, where each step is the conditional execution

of a tactic; and (iii) utility profile, which drives the selection of strategies at runtime based on a set of

utility functions and preferences.

7.4.1.1 Tactic
A tactic is a primitive action that corresponds to a single step of adaptation. Tactics require three parts

to be specified: (1) the condition, which specifies when a tactic is applicable; (2) the action, which
defines the script for making changes to the system; and (3) the effect, which specifies the expected

effect that the tactic will have.

Listing 7.1 shows an example tactic for activating a set of servers in Znn.com. Line 3 specifies the

applicability condition, which says that the tactic may be executed if (i) there is a client experiencing a

response above the maximum acceptable threshold (predicate cHiRespTime defined in line 1), and (ii)

there are enough servers available to activate. Lines 4–7 specify the action, which is to select a set of

servers among those currently inactive (line 5), and enable them (line 6). Line 8 states that the intended

effect of the tactic is achieved only if all clients experience a response time below the maximum

acceptable threshold.

Tactics have an associated cost/benefit impact on the different dimensions of concern in the system.

Table 7.2 shows the impact on different properties of the tactics employed in Znn.com, as well as an

indication of how the tactic affects the utility for every particular dimension of concern (the number of

upward or downward arrows is directly proportional to the magnitude of utility increments and dec-

rements, respectively).2 While all tactics reduce the response time experienced by legitimate clients,

LISTING 7.1
Tactic for activating a server in Znn.com

1 define boolean cHiRespTime = exists c:T.ClientT in M.components |
c.experRespTime>M.MAX RESPTIME;

2 tactic enlistServers (int n) {
3 condition { cHiRespTime && set.Size(s : T.ServerT in M.components | !s.isArchEnabled)>=n;}
4 action {
5 set servers = Set.randomSubset(Model.findServices(T.ServerT), n);
6 for (T.ServerT freeSvr : servers) { M.enableServer (freeSvr, true); }
7 }
8 effect { !cHiRespTime; }
9 }

1We use a simplified version of Stitch [5] to illustrate the main ideas in this chapter.
2To obtain the impact on the different quality dimensions of tactics in practice, the approach relies on expert knowledge or

field data about similar existing systems, although nothing prevents the use of machine learning techniques to obtain that

information. In this chapter we consider fixed cost/benefit impacts for illustration purposes, although Stitch also supports

the specification of sophisticated impact models that are context-sensitive, and can capture probabilistic aspects in the out-

come of tactic executions [21].

1617.4 ANALYZING TRADE-OFFS IN SELF-ADAPTATION

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

some of them (e.g., enlistServers and blackholeAttacker) cause a more drastic reduction, resulting in

higher utility gains in that particular dimension. Regarding the presence of malicious clients, tactic

blackholeAttacker is the most effective, whereas other tactics (e.g., enlistServers) do not have any im-

pact. With respect to cost, tactic enlistServers increases the operating cost and reduces utility in this

dimension, since it employs additional resources to absorb incoming traffic. Finally, tactics blackho-

leAttacker and throttleSuspicious impact negatively on user annoyance, since there is a risk that incor-

rect detection of malicious clients will lead to annoying a fraction of legitimate clients by blackholing

or throttling them.

7.4.1.2 Strategy
A strategy encapsulates an adaptation process, where each step is the conditional execution of a tactic.

Strategies are characterized in Stitch as a tree of condition-action-delay decision nodes, where delays

correspond to a time window for observing tactic effects. System feedback (through the dynamically

updated architectural model of the system) is used to determine the next tactic at every step during

strategy execution.

Listing 7.2 shows the Stitch code for a simple adaptation strategy in Znn.com that deals with de-

graded performance by activating additional servers and reducing the fidelity of the contents served3:

line 1 specifies the applicability condition that needs to be satisfied for the strategy to be eligible for

execution (in this case, predicate cHiRespTime indicates that there are clients experiencing a response

time above the acceptable threshold). In the body of the strategy, node t0 (line 2) executes tactic enlist-

Servers if the guard cHiRespTime evaluates to true. To account for the delay in observing the outcome of

tactic execution in the system (settling time), t0 specifies a timewindow of 30 s, after which, if the tactic’s

intended effect (as defined in the tactic script—Listing 7.1, line 8) is observed, successful tactic comple-

tion (keyword success, line 3) leads to the end of strategy execution in normal conditions through node t1

(keyword done). Otherwise, if the intended tactic effect is not observed after the delay window expires

Table 7.2 Tactic Cost/Benefit on Qualities and Impact on Utility Dimensions

Response Time (R) Malicious Clients (M) Cost (C) User Annoyance (A)

Tactic
ΔAvg. Resp. Time

(ms) ΔUR

ΔMal. Clients

(%) ΔUM

ΔCost

(usd/h) ΔUC

ΔU.

Annoyance (%) ΔUA

enlistServers �1000 """ 0 ¼ +1.0 ### 0 ¼
lowerFidelity �500 "" 0 ¼ �0.1 " 0 ¼
blackholeAttacker �1000 """ �100 """ 0 ¼ +50 ##
throttleSuspicious �500 "" 0 ¼ 0 ¼ +25 #

3Although strategies can be complex decision trees involving multiple executions of multiple tactics with different orderings,

we provide here a simple example for illustration purposes.

162 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com

(keyword fail, line 4), the strategy attempts to reduce response time by executing the tactic lowerFidelity

and waiting 2 s to observe its effect, exiting through node t2a if the tactic succeeds. If the intended

effect of lowerFidelity is not observed, the strategy exits with an error status via node t2b (line 6).

7.4.1.3 Utility profile
In Stitch, the selection of strategies at run time is driven by utility functions and preferences, which are

sensitive to the context of use and able to consider trade-offs among multiple potentially conflicting

objectives. The different qualities of concern are characterized as utility functions that map architec-

tural properties capturing quality attributes to utility values.

Utility functions are defined by an explicit set of value pairs (with intermediate points linearly in-

terpolated). Table 7.3 summarizes the utility functions for Znn.com. Function UR maps low response

times (up to 100 ms) to maximum utility, whereas values above 2000 ms are highly penalized (utility

below 0.25), and response times above 4000 ms provide no utility. In this case, utility and mapped

property values across all quality dimensions are inversely proportional, although this is not necessarily

true in general.

Utility preferences capture business preferences over the quality dimensions, assigning a weight to

each of them. We consider two scenarios in Znn.com, whose priority concerns are summarized in

Table 7.4.

Table 7.3 Utility Functions for Znn.com

UR UM UC UA

0:1.00 0:1.00 0:1.00 0:1.00

100:1.00 5:1.00 1:0.90 100:0.00

200:0.99 20:0.80 2:0.30

500:0.90 50:0.40 3:0.10

1000:0.75 70:0.00

1500:0.50

2000:0.25

4000:0.00

LISTING 7.2
Strategy for absorbing excess traffic.

1 strategy Outgun [cHiRespTime] {
2 t0: (cHiRespTime) −> enlistServers(1) @[30000 /∗ms∗/] {
3 t1: (success) −> done;
4 t2: (fail) −> lowerFidelity() @[2000 /∗ms∗/] {
5 t2a: (success) −> done;
6 t2b: (fail) −> TNULL;
7 }
8 }
9 }

1637.4 ANALYZING TRADE-OFFS IN SELF-ADAPTATION

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

7.4.2 ADAPTATION STRATEGY SELECTION
A situation that demands adaptation can generally be addressed in different ways by executing alter-

native adaptation strategies, many of which may be applicable under the same run time conditions (e.g.,

excess traffic under high workload can be either absorbed or eliminated). Since different strategies im-

pact run time quality attributes in various ways, there is a need to choose a strategy that will result in the

best outcome with respect to achieving the system’s desired quality objectives.

To enable decision-making for selecting strategies we use the utility functions and preferences in-

troduced in the previous section. By evaluating all applicable strategies against the different quality

objectives, we obtain an aggregate expected utility value for each strategy by using the specified utility

preferences. The strategy selected for execution by the adaptation manager is the one that maximizes

expected utility.

The aggregated impact on utility of a strategy is obtained by: (i) computing the aggregate impact of

the strategy on the system’s state, (ii) merging aggregated strategy impact with current system state to

obtain the expected state after strategy execution, (iii) mapping expected state to utilities, and (iv) com-

bining all utilities using utility preferences.

As an example of how the utility of a strategy is calculated, let us assume that the adaptation cycle is

triggered in system state [1500, 90, 2, 0], indicating response time, percentage of malicious clients, op-

erating cost, and user annoyance level, respectively. We focus on the evaluation of strategy Outgun.

To obtain the aggregate impact on system state of a strategy, we need to estimate the likelihood of

selecting different tactics at run time due to the uncertainty in their selection and outcome within the

strategy tree. To this end, Rainbow uses a stochastic model of a strategy, assigning a probability of

selection to every branch in the tree.4 Fig. 7.2 shows how the aggregate impact on state is computed

from the leaves to the root of the strategy tree: the aggregate impact of each node is computed by adding

the aggregate impact of its children, reduced by the probability of their respective branches, with the

cost-benefit attribute vector of the tactic in the node (if any). In the example, the impact contributed by

nodes t0 and t2 correspond to the cost-benefit vectors of the associated tactics, whereas leaf nodes make

no changes to the system and therefore have no impact.

Once the aggregate impact of the strategy is computed, it is merged with the current system state to

obtain the expected system state after strategy execution:

½1500,90,2,0�+ ½�1250,0, + 0:95,0� ¼ ½250,90,2:95,0�
Next, we map the expected conditions to the utility space:

½URð250Þ,UMð90Þ,UCð2:95Þ,UAð0Þ� ¼ ½0:975,0,0:11,1:0�

Table 7.4 Utility Preferences for Znn.com Scenarios

Scenario Priority wUR
wUM

wUC
wUA

1 Minimizing number of malicious clients 0.15 0.6 0.1 0.15

2 Optimizing good client experience 0.3 0.3 0.1 0.3

4By default, probabilities are divided equally among the branches, although they can be progressively adjusted in accordance

with information collected from system executions.

164 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com

And finally, all utilities are combined into a single utility value by making use of the utility preferences.

Hence, if we assume that we are in Scenario 2, the aggregate utility for strategy Outgun would be:

0:975�0:3 +0�0:3+ 0:11�0:1+ 1:0�0:3¼ 0:6035

Utility scores are computed similarly for all strategies. In this case, strategies Eliminate and Outgun

score 0.81 and 0.6, respectively, thus Eliminate would be selected.

7.5 ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION
In the previous section, we described a language to express adaptation models that can be analyzed to

evaluate trade-offs among different concerns in self-adaptation. In this section, we first present a can-

didate model for quantifying how human involvement in adaptation can affect business objectives. This

model is inspired by the OWC ontology described in [6]. Next, we describe how the concepts behind

Stitch and the proposed OWC model can be combined to capture descriptions of adaptations that in-

volve collaborations among the system and its human participants. This extension enables the evalu-

ation of trade-offs of involving humans in adaptation with respect to a given set of concerns and

preferences expressed in a utility profile.

done
[0,0,0,0]

enlistServers()
[−1000,0,+1.0,0]

0.5 0.5

done
[0,0,0,0]

fail
[0,0,0,0]

lowerFidelity()
[−500,0,−0.1,0]

0.5 0.5

[−1250,0,+0.95.0,0]

1

[-250,0,-0.05,0]

[-1250,0,+0.95,0]

[0,0,0,0]

[0,0,0,0][0,0,0,0]

t0

t1t2

t2a t2b

FIG. 7.2

Calculation for aggregate impact of strategy Outgun. Grayed out tuples adjacent to tree branches indicate

aggregate impact corresponding to the child subtree (including adjustments due to branch probabilities).

1657.5 ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION

7.5.1 HUMAN MODEL
Attributes of human actors that might affect interactions with the system are captured in a model in-

spired by an OWC ontology described in the context of CHSs [6]. The OWC ontology provides a struc-

tured way of defining and grouping human model elements for different (adaptation) tasks that can be

refined to incorporate other models, enabling fine-grained reasoning about certain aspects of humans

interacting with the system. OWC models extend the description of the underlying system’s architec-

ture, and can incorporate multiple human actor types (e.g., human actor roles specialized in different

tasks), each of which can have multiple instances (e.g., operators with different levels of training in a

particular task). Attributes of human actor types fall into three categories:

7.5.1.1 Opportunity
Opportunity captures the applicability conditions of the adaptation tactics that can be executed by hu-

man actors on the target system as constraints imposed on the human actor (e.g., by the physical con-

text—is there an operator physically located on site?).

Example 7.1. We consider a tactic to have a human operator manually select malicious clients to

blackhole (blackholeAttacker) in a DoS attack scenario. Opportunity elements are OEblackholeAttacker ¼
{L,B}, where L represents the operator’s location, and B tells us whether the operator is busy doing

something else:

• L.state 2 {operator on location (ONL), operator off location (OFFL)}.
• B.state 2 {operator busy (OB), operator not busy (ONB)}.

Using OEblackholeAttacker, an opportunity function for the tactic fO
blackholeAttacker ¼ (L.state ¼¼ ONL) ^

(B.state ¼¼ ONB) can be used to constrain its applicability only to situations in which there is an

operator on location who is not busy (e.g., in a meeting).

7.5.1.2 Willingness
Willingness captures transient factors that might affect the disposition of the operator to carry out a

particular task (e.g., load, stamina, stress). Continuing with our example, willingness elements in

the case of the blackholeAttacker tactic can be defined as WEblackholeAttacker ¼ {S}, where S.state 2
[0,10] represents the operator’s stress level. A willingness function mapping willingness elements

to a probability of tactic completion can be defined as fW
blackholeAttacker ¼ prW(S.state), with

prW : S!½0,1�.

7.5.1.3 Capability
Capability captures the likelihood that the human participant will successfully carry out a particular

task, which is determined by relatively stable attributes of the human actor, such as training level.

In our example, we define capability elements as CEblackholeAttacker ¼ {T}, where T represents the

operator’s level of training (e.g., T.state 2 [0,1]). We define a capability function that maps training

level to a probability of successful tactic performance as fC
blackholeAttacker ¼ prC(T.state), with

prC : T!½0,1�. This models the fact that better trained operators are more effective at eliminating

malicious users and less likely to blackhole legitimate clients, resulting in better reductions in the

percentage of malicious clients with little or no increase in user annoyance.

166 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

7.5.2 INTEGRATING HUMAN AND ADAPTATION MODELS
Incorporation of OWC elements for adaptation execution in Stitch affects the specification of different

elements in adaptation tactics and strategies.

7.5.2.1 Tactics
In tactics involving humans, constraints that affect the applicability of a tactic can be derived either

from the human model (opportunity elements), or properties of the architecture itself (e.g., are there

any available servers to activate?). In general, applicability conditions of these tactics will be a com-

bination of both. In Listing 7.3, the condition block of tactic blackholeAttacker (line 4) combines

opportunity elements from the human model (operator on location and not busy—predicate ONLNB,

defined in line 1), with a predicate defined over the properties of the architecture (legitimate clients are

experiencing a high response time—cHiRespTime).

The action block of these tactics can execute automated operations, as in the case of tactic enlistServers

(Listing 7.1), and also notify human actors to perform a task. The action block of tactic blackholeAttacker

(Listing7.3, lines5and6) first selects anavailableoperator (line5), andnext it notifies the selectedoperator

that she has to blackhole potentially malicious clients via a text message (line 6).

7.5.2.2 Strategies
Tactics, both fully automated ones and those involving humans, can be combined to achieve better

outcomes in adaptation strategies. Listing 7.4 shows strategy Eliminate for eliminating excess traffic

from potentially malicious clients first by notifying an operator (via tactic blackholeAttacker, line 5)

LISTING 7.4
Strategy to eliminate excess traffic inZnn.com

1 define boolean unhandledMalicious=exists c:T.ClientT in M.components | c.maliciousness>M.MAL THR && !c.isBlackHoled;
2 define boolean unhandledSuspicious=exists c:T.ClientT in M.components | c.maliciousness > M.SUS THR and !c.isThrottled;
3 ...
4 strategy Eliminate [unhandledMalicious || unhandledSuspicious] {
5 t0: (unHandledMalicious) −> blackholeAttacker () @[300000] {
6 t0a: (success) −> done;
7 t0b: (unHandledSuspicious) −> throttleSuspicious () @[300000] {
8 t1a: (success) −> done;
9 t1b: (default) −> fail; }

10 }
11 }

LISTING 7.3
Tactic for blackholing malicious clients via human operator.

1 define boolean ONLNB=exists o:operatorT in M.participants | o.onLocation && !o.busy;
2 ...
3 tactic blackholeAttacker(){
4 condition {ONLNB && cHiRespTime;}
5 action {ao=Set.RandomSubSet({select o:operatorT in M.participants | o.onLocation && !o.busy},1);
6 notify(ao, ”Blackhole potentially malicious clients”);}
7 effect {!cHiRespTime;}
8 }

1677.5 ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION

mailto:Znn.com

to manually block traffic from malicious clients. If the assigned time window of 5 min expires and the

intended effect of the tactic (!cHiRespTime, Listing 7.3) is not observed, the strategy notifies an

operator to execute the throttleSuspicious tactic as a fallback, throttling suspicious clients (line 7).

7.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION
When defining a collection of adaptation strategies and their associated utility profile, we need to

guarantee not only that the system will carry out reasonable choices under all possible circumstances,

but also that the effect of those choices combined with the behavior of human participants will have a

reasonable impact on business concerns. To provide such guarantees, we use a formal model based on

an abstraction of the extended Stitch profile for human-in-the-loop adaptation presented in

Section 7.5.1 that enables us to reason about: (i) the choices made by the adaptation manager for

adaptation strategy selection, and (ii) the impact of the execution of selected adaptation strategies

on the target system.

Our modeling approach for human-in-the-loop adaptation consists of describing an SMG in which

we consider that one of the players is the adaptive system (including both automated adaptation mech-

anisms and human actors) and the other is the environment within which the system operates. The goal

of the system player is to maximize accrued utility during the system’s execution (encoded formally as

a reward structure), while we consider the environment to be an antagonistic player that tries to min-

imize that same reward. SMG analysis enables the quantification of the maximum utility reward that

the system player is able to guarantee in the most adverse conditions of the environment ((i.e., a worst-

case scenario).

In the remainder of this section, we first introduce some background on model checking SMGs, the

formal technique that we use to formally reason about human involvement in adaptation. Next, we

provide a description of our Znn.com model implemented in the probabilistic model-checker

PRISM-games [22], as well as the analysis and results that we obtained for human-in-the-loop adap-

tation analysis.

7.6.1 MODEL CHECKING STOCHASTIC MULTIPLAYER GAMES
Automatic verification techniques for probabilistic systems such as probabilistic model checking pro-

vide a means to model and analyze systems that exhibit stochastic behavior, effectively enabling rea-

soning quantitatively about probability and reward-based properties (e.g., about the system’s use of

resources, or time).

Competitive behavior may also appear in (stochastic) systems when some component cannot be

controlled, and could behave according to different or even conflicting goals with respect to other com-

ponents in the system. In such situations a natural fit is modeling a system as a game between different

players, adopting a game-theoretic perspective. Automatic verification techniques have been success-

fully used in this context, for instance for the analysis of security [23] or communication protocols [24].

Our approach to analyzing human involvement in adaptation builds upon a recent technique for

modeling and analyzing SMGs [25]. In this approach, systems are modeled as turn-based SMGs, mean-

ing that in each state of the model, only one player can choose between several actions, the outcome of

168 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com

which can be probabilistic. Players can either cooperate to achieve the same goal, or compete to achieve

their own goals.

The approach includes a logic called rPATL for expressing quantitative properties of SMGs, which

extends the probabilistic logic PATL [26]. PATL is itself an extension of ATL [27], a logic extensively

used in multiplayer games and multiagent systems to reason about the ability of a set of players to

collectively achieve a particular goal. Properties written in rPATL can state that a coalition of players

has a strategy5 which can ensure that either the probability of an event’s occurrence, or an expected

reward measure, meets some threshold.

rPATL is a branching-time temporal logic that incorporates the coalition operator hhCii of ATL,
and the reward operator Rr

⋈x from [28] to reason about goals related to rewards. An extended version of

the rPATL reward operator hhCiiRr
max¼?½F? ϕ�6 enables the quantification of the maximum accrued

rewards. An example of a property employing the reward maximization operator is hhphoneiiRmax¼?
time [F

empty_battery], meaning “the value of the maximum operation time that a cell phone can guarantee

before its battery is fully discharged, independently of the behavior of its environment.”

Reasoning about strategies is a fundamental aspect of model checking SMGs, which enables check-

ing for the existence of a strategy that is able to optimize an objective expressed as a property including

an extended version of the rPATL reward operator. The checking of such properties also supports strat-

egy synthesis, enabling us to obtain the corresponding optimal strategy. An SMG strategy resolves the

choices in each state, selecting actions for a player based on the current state and a set of memory

elements.7

7.6.2 FORMAL MODEL
Our game is played in turns by two players that are respectively in control of the behavior of the en-

vironment (env) and the Znn.com system, including human actors (sys), who are assumed to share

goals with the system. The SMG model consists of the following parts.

7.6.2.1 Player definition
Listing 7.5 illustrates player definition in the SMG. Player env is in control of all the (asynchronous)

actions that the environment can take (defined in the environment module), while system player sys

controls all the actions that belong to the human actor and the target system, whose behavior is specified

in the processes ha_system, as well as Outgun and Eliminate (adaptation strategies for absorbing and

eliminating excess traffic, respectively). Moreover, the system player controls the synchronization of

actions between adaptation strategies and the target system, thus modeling the triggering of adaptation

tactics. Global variable turn (line 4) is used to explicitly encode alternating turns between the system

and environment players.

5The term strategy employed in the context of SMGs refers to a game strategy (referred to also as policy or adversary) as
defined in [25], and should not be confused with Stitch adaptation strategies.
6The variants of F?ϕ used for reward measurement in which the parameter ?2f0,∞,cg indicate that, when ϕ is not reached,

the reward is zero, infinite or equal to the cumulated reward along the whole path, respectively.
7See [25] for more details on SMG strategy synthesis.

1697.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION

mailto:Znn.com

7.6.2.2 Environment
The environment process (Listing 7.6) controls the evolution of variables in the execution context that

are out of the system’s control. For the sake of simplicity, we assume in our model a simple behavior of

the environment that only keeps track of time, although additional behavior controlling other elements

(e.g., network delay) can be encoded (please refer to [17] for further details illustrating the modeling of

adversarial environment behavior in turn-based SMGs).

7.6.2.3 Human model
Listing 7.7 shows the encoding of the OWC elements corresponding to an operator in the Znn.com

system. Opportunity elements (line 2) indicate whether the operator is on location and/or busy. These

predicates are used to guard the execution of tactics blackholeAttacker and throttleSuspicious in the

model (Listing 7.8, line 19). The willingness function of the operator (line 6) is inversely proportional

to her stress level, declared in line 5. The capability function (line 9) corresponds to the training level of

the operator in this case.

LISTING 7.5
Player definition for the Znn.com SMG.

1 player sys ha system, Eliminate, Outgun, [blackholeAttacker], [throttleSuspicious], [enlistServers],
[lowerFidelity] endplayer

2 player env environment endplayer
3 const ENVT=0; const SYST=1;
4 global turn:[ENVT..SYST] init ENVT;

LISTING 7.6
Environment module.

1 const MAX TIME; // Exercution time frame [0,MAX TIME]
2 module environment
3 t:[0..MAX TIME] init 0;
4 [] (turn=ENVT) & (t<MAX TIME) −> (t’=t+1) & (turn’=SYST);
5 endmodule

LISTING 7.7
Human actor model encoding for a Znn.com operator.

1 // Opportunity elements
2 global op onLocation:bool init true, op busy: bool init false;
3 // Willingness elements and function
4 const MAX STRESS LEVEL, INIT STRESS LEVEL;
5 global op stressLevel: [0..MAX STRESS LEVEL] init INIT STRESS LEVEL;
6 formula op f w=(MAX STRESS LEVEL−op stressLevel) / MAX STRESS LEVEL;
7 // Capability elements and function
8 const double op trainingLevel;
9 formula op f c= op trainingLevel;

10 // Combined WC probability for tactic BlackholeAttacker
11 formula ba wc prob = op f c ∗ op f w;

170 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

7.6.2.4 System
The combined behavior of the target system and human actors is described in module ha_system

(Listing 7.8). The module incorporates a collection of variables encoding the different system qualities

of concern, as well as the aspects relevant to the applicability conditions of tactics (e.g., values of pred-

icates used in the condition block of a tactic). Lines 12–17 illustrate how the different variables are

initialized:

• rt, as, mc, and ua encode the response time, number of active servers, percentage of malicious

clients, and level of user annoyance in the system, respectively.

• cnt_es and cnt_ba are counters used to keep track of the latency of tactics enlistServers and

blackholeAttacker, respectively.8

The model also includes commands that specify the effect of executing the different tactics as updates

on its variables. In particular, there are three commands per tactic in the module. We focus on tactic

blackholeAttacker to illustrate how tactic execution is modeled:

LISTING 7.8
Target system extended with human actors module.

1 // EnlistServer Tactic cost/benefit attribute vector functions
2 formula es f rt = rt−1000 >=0 ? (rt−1000<=MAX RT? rt−1000 : MAX RT) : 0;
3 formula es f as=as<MAX SERVERS ? as+1:as;
4 // BlackholeAttacker Tactic cost/benefit attribute vector functions
5 formula ba f rt = rt−1000 >=0 ? (rt−1000<=MAX RT? rt−1000 : MAX RT) : 0;
6 formula ba f mc = ba wc prob∗mc > 0 ? (ba wc prob∗mc < 100? floor(ba wc prob∗mc) : 100) : 0;
7 formula ba f ua = ua+(1−ba wc prob)∗50 >=0 ? (ua+(1−ba wc prob)∗50<=100?

floor(ua+(1−ba wc prob)∗50) : 100) : 0;
8 ...
9 formula cost=as ∗ cost per server;

10 ...
11 module ha system
12 rt : [0..MAX RT] init init rt; // Response time
13 as : [0..MAX SERVERS] init init as; // Active servers
14 mc : [0..100] init init mc; // Malicious clients
15 ua : [0..100] init init ua; // level of annoyance
16 cnt es :[0..MAX TIME] init 0;
17 cnt ba :[0..MAX TIME] init 0;
18 // Tactic triggers
19 [blackholeAttacker] (turn=SYST) & (op onLocation) & (!op busy) & (mc>0) & (cnt ba=0) −>

(cnt ba’=1) & (op busy’=true);
20 [enlistServers] (turn=SYST) & (as<MAX SERVERS) & (cnt es=0) −> (cnt es’=1) & (turn’=ENVT);
21 // Tactic latency counter update
22 [] (turn=SYST) & (cnt ba>0) & (cnt ba<ba latency) −> (cnt ba’=cnt ba+1) & (turn’=ENVT);
23 [] (turn=SYST) & (cnt es>0) & (cnt es<es latency) −> (cnt es’=cnt es+1) & (turn’=ENVT);
24 // Tactic completion (after latency period expires)
25 [] (turn=SYST) & (cnt ba=ba latency) −> (cnt ba’=0) & (rt’=ba f p) & (mc’=ba f mc) &

(ua’=ba f ua) & (op busy’=false) & (turn’=ENVT);
26 [] (turn=SYST) & (cnt es=es latency) −> (rt’=es f rt) & (cnt es’=cnt es+1) & (as’=es f as) &

(cnt es’=0) & (turn’=ENVT);
27 // Do nothing
28 [] (turn=SYST) & (cnt es=0) & ... & (cnt ba=0) −> (turn’=ENVT);
29 endmodule

8We do not describe the code corresponding to tactics lowerFidelity and throttleSuspicious in Listing 7.8 for the sake of clarity.

1717.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION

• Tactic trigger (line 19): Triggers tactic execution when: (i) an operator is on location and not busy,
(ii) the estimated percentage of malicious clients is above zero, and (iii) the latency counter for the

tactic is zero, meaning that the tactic is not being executed. As a consequence, the operator is

flagged as busy and the latency counter is activated (cnt_ba’¼1).

• Tactic latency counter update (line 22): If the tactic counter is active, but still has not reached the

tactic’s latency value, the counter is incremented in one unit.

• Tactic completion (line 25): When the tactic’s latency counter expires, the command updates

variables rt,mc, and ua according to the encoding of the impact of the tactics on the different quality

dimensions (lines 5–7), which are affected by the probability ba_wc_prob (determined by the

willingness and capability elements defined in Listing 7.7). The latency counter is reset, and the

busy status of the operator is set to false.

The encoding used for the enlistServers tactic (lines 20, 23, and 26) follows the same structure, but

without any OWC elements encoded in the guards or updates of the commands.

Every command in themodule includes a predicate in the guard to ensure that the command is triggered

only during the system player’s turn (turn¼SYST), and an additional predicate in the post state that yields

the turn to the environment player (turn’¼ENVT). Moreover, an additional command (line 28) lets the pro-

cess progress without any variable updates when none of the latency periods for the tactics are active. Note

that in our model, we assume sequential execution of tactics (in accordance with Stitch semantics).

7.6.2.5 Adaptation logic
Modules Eliminate and Outgun model the adaptation logic placed in the controller, according to the

description of their respective Stitch strategies described in Listings 7.4 and 7.2. Each of the commands

corresponds to a tactic that can be executed in the target system via synchronization on shared action

names with trigger commands in the ha_system module (Listing 7.8, lines 19–20).
Module Eliminate (Listing 7.9) models the strategy to eliminate excess traffic with the help of a

human operator. The command on line 3 encodes the triggering of tactic blackholeAttacker,9 which

sets the value of the timestamp variable ba_trigger_t that indicates at which time point the tactic

was triggered. This variable is used on the guard of the command encoding the execution of

LISTING 7.9
Eliminate and Outgun adaptation strategy modules.

1 module Eliminate
2 ba trigger t:[0..MAX TIME] init 0;
3 [blackholeAttacker] (turn=SYST) −> (ba trigger t’=t);
4 [throttleSuspicious] (turn=SYST) & (t=ba trigger t+ba settling) & (ba fail) −> true;
5 endmodule
6

7 module Outgun
8 es trigger t:[0..MAX TIME] init 0;
9 [enlistServers] (turn=SYST) −> (es trigger t’=t);

10 [lowerFidelity] (turn=SYST) & (t=es trigger t+es settling) & (es fail) −> true;
11 endmodule

9We abstract away predicates unhandledMalicious and unhandledSuspicious (Listing 7.4, lines 4, 5), which we assume to be

true in the scenarios encoded in our model.

172 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

throttleSuspicious (line 4) to determine whether the settling time for observation of the previous tactic’s

effect has already expired. If this is the case, and the blackholing of malicious clients by the human

operator is not successful (ba_fail), the command executes, triggering the throttleSuspicious tactic, con-

sistently with the Stitch code in Listing 7.4, line 4.

Module Outgun (Listing 7.9, line 7) follows a similar PRISM encoding that models the automatic

strategy to absorb excess traffic in Znn.com.

7.6.2.6 Utility profile
Utility functions and preferences are encoded using formulas and reward structures that enable the

quantification of the utility of a given game state. Formulas compute utility on the different dimensions

of concern, and reward structures weigh them against each other by using the utility preferences of a

given scenario.

Listing 7.10 illustrates in lines 1–5 the encoding of utility functions using a formula for linear in-

terpolation based on the points defined for utility function UM in the second column of Table 7.3. Lines

7–10 show how a reward structure can be defined to compute a single utility value for any state by using

the utility preferences defined for a particular scenario.

7.6.3 ANALYSIS
SMGmodels of human-in-the-loop adaptation can be exploited to determine: (i) the expected outcome

of human involvement in adaptation, and (ii) the conditions under which such involvement improves

over fully automated adaptation. To analyze these two aspects of human involvement, we use rPATL

specifications that include reward-specific operators aimed at checking quantitative properties over

SMGmodels. Specifically, our technique enables us to statically analyze a particular region of the state

space, which first has to be discretized to check rPATL properties. Obtaining the results of the analysis

for each state in the discrete set requires an independent run of the model checker in which model pa-

rameters are instantiated with variable values corresponding to that state.

7.6.3.1 Strategy utility
The expected utility value of an adaptation strategy (potentially including nonautomated tactics) is

quantified by checking the reachability reward property:

umau≜hhsysiiRrGU
max¼?½Fc t¼MAX_TIME�:

LISTING 7.10
Utility reward structure for Znn.com DoS scenarios.

1 formula uM = (mc>=0 & mc <=5? 1:0)
2 +(mc>5 & mc <=20? 1+(0.80−1)∗((mc−5)/(20−5)):0)
3 +(mc>20 & mc <=50? 0.80+(0.40−0.80)∗((mc−20)/(50−20)):0)
4 +(mc>50 & mc <=70? 0.40+(0.00−0.40)∗((mc−50)/(70−50)):0)
5 +(mc>70 ? 0:0);
6 ...
7 rewards ”rGU”
8 scenario=1 : 0.15∗uR +0.6∗uM +0.1∗uC +0.15∗uA;
9 ...

10 endrewards

1737.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION

mailto:Znn.com
mailto:Znn.com

The property obtains the maximum accrued utility value (i.e., corresponding to reward rGU—Listing

7.10) that the system player can achieve until the end of execution (t¼MAX_TIME).

Fig. 7.3A depicts strategy utility analysis results for the different adaptation strategies in a DoS

scenario in which the priority is to eliminate malicious clients (Scenario 1 in Table 7.4). In the figure,

a discretized region of the state space is projected over the dimensions that correspond to the training

level of a human actor, and the percentage of malicious clients (with values in the range [0,1] and

[0,100], respectively). Each point in the mesh represents the maximum accrued utility that the system

can achieve on the model instanced for a time frame of 15 min. The initial state of the scenario cor-

responds to 0 stress level of the operator, a response time is 2000 ms, 0% of user annoyance, and 2

active servers. Tactic cost/benefit values and the utility profile employed are those described in

Section 7.4, whereas the latency value employed for tactics blackholeAttacker and throttleSuspicious

is 5 min (this latency models the time that the human operator takes to decide which clients have to

be blackholed or throttled). Time delays to observe the effect of tactic executions in the different strat-

egies are those indicated in the Stitch code shown in Listings 7.4 and 7.2, respectively.

In the top left of Fig. 7.3, the plot shows that the utility obtained by the strategy Outgun in this

scenario is not affected by the level of training of the human operator because the tactics employed

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau (Eliminate) = 12.88Avg. umau(Outgun) = 11.43

0

(A)

(B) (C)
4020 60 80 100

0

0.2

0.4

0.6

0.8

1

Malicious clients (%)

T
ra

in
in

g
le

ve
l

s↑ = outgun (49.78%)
s↑ = eliminate (50.22%)

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau (s↑) = 13.65

FIG. 7.3

Results for Scenario 1 (minimizing number of malicious clients): (A) outgun (top left) and eliminate (top right)

strategy utility, (B) strategy selection (bottom left), and (C) combined utility (bottom right).

174 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

by the strategy are fully automated. Moreover, the utility that can be obtained decreases progressively

with increasing levels of malicious clients. This is consistent with the fact that strategyOutgun employs

only tactics that try to improve user experience without dealing with malicious users (e.g., adding new

servers), and in Scenario 1, the main contribution to utility results from low levels of malicious clients.

The top right of Fig. 7.3 depicts the utility obtained by strategy Eliminate. In contrast with strategy

Outgun, the plot shows how increasing levels of training yield better results. When the percentage of

malicious clients is low, the impact of training on utility is negligible because there are few or no ma-

licious clients to deal with. However, the outcome of the execution of tactics blackholeAttacker and

throttleSuspicious in situations with increasing levels of malicious clients can vary significantly

depending on the level of training of the human operator, who has to judge which clients will be af-

fected by the tactics. Poorly trained operators may erroneously apply countermeasures to legitimate

clients, being less efficient at reducing the percentage of malicious clients while increasing the level

of annoyance in legitimate clients when blackholing or throttling.

Fig. 7.4 shows the results for Scenario 2, in which the top priority is optimizing the experience of

legitimate clients, independently of the level of malicious clients making use of system resources.

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau (Outgun) = 15.04 Avg. umau (Eliminate) = 12.86

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

0 20

(A)

(B)
40 60 80 100

0

0.2

0.4

0.6

0.8

1

Malicious clients (%)

T
ra

in
in

g
le

ve
l

s↑ = outgun (80.09%)
s↑ = eliminate (19.91%)

0 20 40 60 80 100
0

0.5

1

0

10

20

Malicious clients (%)
Tra

ining lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau (s↑) = 15.36

(C)

FIG. 7.4

Results for Scenario 2 (optimizing experience of legitimate clients): (A) outgun (top left) and eliminate (top right)

strategy utility, (B) strategy selection (bottom left), and (C) combined utility (bottom right).

1757.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION

The top left plot of the figure shows how strategyOutgun still experiences a reduction in the utility with

increasing levels of malicious users (similarly to Scenario 1). However, in this scenario the reduction in

utility is less pronounced than in Scenario 1 because in this case the main contribution to utility results

from optimizing legitimate client experience, and efficiency at reducing the percentage of malicious

clients is not as relevant.

7.6.3.2 Strategy selection
Given a repertoire of adaptation strategies S, we can analyze their expected outcome in a given situ-

ation by computing their expected accrued utility according to the procedure described above. Based on

this information, the different strategies can be ranked to select the one that maximizes the expected

outcome in terms of utility. Hence the selected strategy s" can be determined according to:

s"≜arg max
s2S

umauðsÞ

where umau(s) is the value of property umau (maximum accrued utility, cf. Section 7.6.3.1) evaluated in a

model instantiated with the adaptation logic of strategy s.
Fig. 7.3B shows the results of the analysis of strategy selection in Scenario 1. The states in which

human involvement via strategy Eliminate is chosen (50.22% of states) are represented in white,

whereas states in which the automated strategy Outgun is selected (49.78%) are colored in black.

The figure shows how progressively higher levels of malicious clients make human involvement pref-

erable even when the level of training of the operator is limited (0.3–0.4) because, even under these

conditions, Eliminate is still better at improving utility than Outgun. This is explained by the fact that

the top priority in Scenario 1 is minimizing the number of malicious clients, and Outgun does not em-

ploy any tactics for dealing with them. However, it is worth noting that when the training level is very

low, the improvement on user experience provided byOutgun can outweigh the moderate improvement

in utility provided by inefficient executions of Eliminate (even if the percentage of malicious clients is

high). This situation can be observed in the area in which training levels are below 0.4 and the percent-

age of malicious clients are in the range 80–100%.

Fig. 7.3C shows the combined accrued utility mesh that results from the selection process (i.e.,

every point in the mesh is computed as umau(s")). The average improvement is 16.3% over the Outgun

strategy, and 5.6% over Eliminate. Note that the minimum accrued utility never goes below the achiev-

able utility level of the automatic approach, over which improvements are made in the areas in which

the strategy involving human actors is selected.

Fig. 7.4Bshows the results of the analysis of strategy selection inScenario2. In this case, the plot shows

how Outgun is selected in more than 80% of the states. This represents a remarkable increment in

the selection of the automated strategy with respect to Scenario 1, which is explained by the different

priorities that exist in Scenario 2 (improving legitimate client experience, independently of the percentage

of malicious clients). Indeed, it can be observed that the selection of Eliminate in this scenario is justified

only in the area in which both the percentage of malicious clients and the training level of the operator

are high.

Fig. 7.4C shows the combined accrued utility mesh in Scenario 2. In this case, the improvement in

utility obtained by the combined approach with respect to the individual strategies is not too far from

those in Scenario 1, but transposed (the improvement over Outgun is 2%, and 16.2% for Eliminate).

176 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

This is motivated by the better alignment of the priorities in Scenario 2 and the target of strategyOutgun

(improving client experience), whereas the priorities of Scenario 1 are better aligned with the target of

Eliminate (dealing with malicious clients).

7.7 CONCLUSION
In this chapter, we have described an approach that employs formal reasoning to analyze trade-offs in

self-adaptation at two different levels: (i) reasoning about business concerns in the context of other

(potentially conflicting) business properties; and (ii) reasoning about the effectiveness of automated

versus human-driven adaptations with respect to the different business concerns.

We have focused on human involvement in the execution stage of MAPE-K systems, in which

human actors adopt the role of system-level effectors. We have shown how to incorporate concepts

from CHS that model the probabilistic aspects of human behavior into a language tailored to describe

runtime adaptation (Stitch) that supports systems described in a variety of architectural styles, as well

as the specification of timing delays and probabilistic outcomes in adaptation tasks. We have also

shown how such specifications can be encoded into SMG models amenable to analysis via model

checking. We illustrated our approach in the context of Znn.com, a benchmark system in the self-

adaptive systems community that embodies the typical infrastructure of a dynamically scalable

web infrastructure. Our results showed that our approach can: (i) discriminate cases in which the

involvement of human actors in execution leads to an improvement of system utility, providing

the basis to combine human-based and automated adaptations; and (ii) decide about human involve-

ment in a context-sensitive manner, selecting different adaptations for different preferences over

business concerns.

Concerning future work, our current models assume that actors and system are working in coop-

eration to achieve goals. In fact, the interaction may be more subtle than that; Eskins and Sanders

point out that humans may have their own motivations that run counter to policy [6]. To capture this

possibility, we plan on extending the encoding of SMGs to model human actors as separate players.

In particular, we intend to assess the impact on the application of our technique across different do-

mains of various degrees of separation between the goals of human actors and those of the system. To

this end, we shall explore different scenarios that include models of operators with different incen-

tives, such as economic compensation models (e.g., per-task payments vs. fixed income), or oper-

ators with different goals who have to make use of shared platforms and resources. Moreover, we

shall extend our approach to formally model and analyze human involvement in other stages of

MAPE-K, studying how to best represent human-controlled tactic selection, and human-assisted

knowledge acquisition.

In this chapter, we have described our approach on a simple OWC model that maps attributes of

human operators to simple values for illustrative purposes. However, pragmatic solutions across dif-

ferent application domains might entail different instances of human models based on more nuanced

representations of human operators [29, 30]. An additional future direction of research involves

considering alternative models of human operators employed in different application domains, and

exploring their use in the context of self-adaptive systems involving humans.

1777.7 CONCLUSION

mailto:Znn.com

ACKNOWLEDGMENTS
This work was supported in part by awards N000141310401 and N000141310171 from the Office of Naval Re-

search, CNS–0834701 from the National Science Foundation, the National Security Agency, and in collaboration

with the Software Engineering Institute, a federally funded research and development center operated by Carnegie

Mellon University. The views and conclusions contained herein are those of the authors and should not be inter-

preted as representing the official policies, either expressed or implied, of the Office of Naval Research, the Soft-

ware Engineering Institute, or the U.S. Government.

REFERENCES
[1] B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N.Bencomo, Y. Brun,

B. Cukic, G.D.M. Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,

H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. M€uller, S. Park, M. Shaw, M. Tichy,

M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive systems: a research roadmap,

in: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for

Self-Adaptive Systems [Outcome of a Dagstuhl Seminar], Volume 5525 of Lecture Notes in Computer

Science, Springer, Berlin, 2009, pp. 1–26.
[2] M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees, models, and applications, ACM

Comput. Surv. 40 (3) (2008) 1–28.
[3] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41–50.
[4] D. Garlan, S.-W. Cheng, A. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation

with reusable infrastructure, IEEE Comput. 37 (10) (2004) 46–54.
[5] S.-W. Cheng, D. Garlan, Stitch: a language for architecture-based self-adaptation, J. Syst. Softw. 85 (12)

(2012) 2860–2875.
[6] D. Eskins, W.H. Sanders, The multiple-asymmetric-utility system model: a framework for modeling cyber-

human systems, in: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011,

Aachen, Germany, September 5–8, 2011, IEEE Computer Society, 2011, pp. 233–242.
[7] S. Cheng, Evaluating the effectiveness of the rainbow self-adaptive system, in: ICSEWorkshop on Software

Engineering for Adaptive and Self-Managing Systems, 2009, pp. 132–141.
[8] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H. Muller,

M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Volume 7475 of Lecture Notes in Com-

puter Science, Springer, New York, 2013, pp. 214–238.
[9] D. Sykes, W. Heaven, J. Magee, J. Kramer, Exploiting non-functional preferences in architectural adaptation

for self-managed systems, in: S.Y. Shin, S. Ossowski, M. Schumacher, M.J. Palakal, C. Hung (Eds.), Pro-

ceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22–26,
2010, ACM, 2010, pp. 431–438.

[10] R. Calinescu, M.Z. Kwiatkowska, Using quantitative analysis to implement autonomic IT systems, in: J.

M. Atlee, P. Inverardi (Eds.), Proceedings of the 31st International Conference on Software Engineering,

ICSE 2009, May 16–24, 2009, Vancouver, Canada, IEEE, 2009, pp. 100–110.
[11] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by run-time parameter adaptation, in: J.

M. Atlee, P. Inverardi (Eds.), Proceedings of the 31st International Conference on Software Engineering,

ICSE 2009, May 16–24, 2009, Vancouver, Canada, IEEE, 2009, pp. 111–121.

178 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060

[12] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, J. Bruel, RELAX: a language to address uncertainty in

self-adaptive systems requirement, Requir. Eng. 15 (2) (2010) 177–196.
[13] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,

A. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst. Appl. 14 (3) (1999)

54–62.
[14] C. Dorn, R.N. Taylor, Coupling software architecture and human architecture for collaboration-aware system

adaptation, in: D. Notkin, B.H.C. Cheng, K. Pohl (Eds.), Proceedings of the 35th International Conference on

Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18–26, 2013, IEEE/ACM, 2013, pp. 53–62.
[15] L. Clement, D. Konig, V. Mehta, R. Mueller, R. Rangaswamy, M. Rowley, I. Trickovic, WS-BPEL extension

for people BPEL4People, 2010. http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html.

[16] P.Wohed,W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, On the suitability of BPMN for

business process modelling, in: S. Dustdar, J.L. Fiadeiro, A.P. Sheth (Eds.), Proceedings of the Fourth

International Conference on Business Process Management, BPM 2006, Vienna, Austria, September 5–7,
2006 Volume 4102 of Lecture Notes in Computer Science, Springer, Berlin, 2006, pp. 161–176.

[17] J. Cámara, G.A. Moreno, D. Garlan, Stochastic game analysis and latency awareness for proactive

self-adaptation, in: G. Engels, N. Bencomo (Eds.), Proceedings of the Ninth International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, Hyderabad, India, June

2–3, 2014, ACM, 2014, pp. 155–164.
[18] J. Cámara, G.A. Moreno, D. Garlan, Reasoning about human participation in self-adaptive systems,

in: P. Inverardi, B.R. Schmerl (Eds.), Proceedings of the 10th IEEE/ACM International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,

May 18–19, 2015, IEEE, 2015, pp. 146–156.
[19] B.R.Schmerl, J.Cámara, J.Gennari,D.Garlan,P.Casanova,G.A.Moreno,T.J.Glazier, J.M.Barnes,Architecture-

based self-protection: composing and reasoning about denial-of-service mitigations, in: L.A. Williams, D.

M.Nicol,M.P. Singh (Eds.), Proceedings of the 2014 Symposium andBootcamp on the Science of Security, Hot-

SoS 2014, Raleigh, NC, USA, April 08–09, 2014, ACM, 2014, p. 2.

[20] J. Kramer, J. Magee, Self-Managed Systems: An Architectural Challenge, in: L.C. Briand, A.L. Wolf (Eds.),

International Conference on Software Engineering, ISCE 2007, Workshop on the Future of Software

Engineering, FOSE 2007, May 23–25, 2007, 2007, pp. 259–268.
[21] J. Cámara, A. Lopes, D. Garlan, B. Schmerl, Impact models for architecture-based self-adaptative systems,

in: Proceedings of the 11th International Symposium on Formal Aspects of Component Software, FACS

2014, Bertinoro, Italy, September 10–12, 2014, Volume 8997 of Lecture Notes in Computer Science,

Springer, Berlin, 2014, pp. 89–107.
[22] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, A. Simaitis, PRISM-games: a model checker for stochastic

multi-player games, in: N. Piterman, S.A. Smolka (Eds.), Proceedings of the 19th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16–24,
2013, Volume 7795 of Lecture Notes in Computer Science, Springer, Berlin, 2013, pp. 185–191.

[23] S. Kremer, J. Raskin, A game-based verification of non-repudiation and fair exchange protocols, in: K.

G. Larsen, M. Nielsen (Eds.), Proceedings of the 12th International Conference on Concurrency Theory,

CONCUR 2001, Aalborg, Denmark, August 20–25, 2001, Volume 2154 of Lecture Notes in Computer

Science, Springer, Berlin, 2001, pp. 551–565.
[24] W.V.D. Hoek, M.Wooldridge, Model checking cooperation, knowledge, and time—a case study, Res. Econ.

(2003) 200–203.
[25] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, A. Simaitis, Automatic verification of competitive sto-

chastic systems, Formal Methods Syst. Des. 43 (1) (2013) 61–92.

179REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0130

[26] T. Chen, J. Lu, Probabilistic alternating-time temporal logic and model checking algorithm, in: J. Lei (Ed.),

Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD

2007, August 24–27, 2007, Haikou, Hainan, China, vol. 2, IEEE Computer Society, 2007, pp. 35–39.
[27] R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672–713.
[28] V. Forejt, M.Z. Kwiatkowska, G. Norman, D. Parker, Automated Verification Techniques for Probabilistic

Systems, in: M. Bernardo, V. Issarny (Eds.), Formal Methods for Eternal Networked Software

Systems—11th International School on Formal Methods for the Design of Computer, Communication

and Software Systems, SFM 2011, Bertinoro, Italy, June 13–18, 2011, Advanced Lectures, Volume 6659

of Lecture Notes in Computer Science, Springer, Berlin, 2011, pp. 53–113.
[29] J. Rasmussen, Mental models and the control of action in complex environments, in: D. Ackermann,

M.J. Tauber (Eds.), Mental Models and Human-Computer Interaction 1 [Selected Papers of the Sixth Inter-

disciplinaryWorkshop in Informatics and Psychology, Sch€arding, Austria, June 1987], North-Holland, 1990,
pp. 41–69.

[30] J. Rasmussen, The role of hierarchical knowledge representation in decisionmaking and systemmanagement,

IEEE Trans. Syst. Man Cybernet. 15 (2) (1985) 234–243.

180 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0155

CHAPTER

PRINCIPLED ELICITING AND
EVALUATION OF TRADE-OFFS
WHEN DESIGNING SELF-ADAPTIVE
SYSTEMS ARCHITECTURES

8
S. Andrade*,†, R. Macêdo†

Federal Institute of Education, Science, and Technology of Bahia, Salvador, Bahia, Brazil*

Federal University of Bahia, Salvador, Bahia, Brazil†

8.1 INTRODUCTION
Over the past few years, advances in areas such as virtualization, big data storage, and high perfor-

mance computer networks have changed the way we develop modern software-intensive distributed

systems [1–3]. Requirements for scalability, fault tolerance, and adaptability—to mention just a

few—become substantially more critical in scenarios such as cloud computing environments [4],

cyber-physical systems [5], QoS-aware web services [6], and applications for mobile devices [7]. In

such scenarios, operational environments and workloads highly uncertain and dynamic introduce a

number of shortcomings in those architectures that commit to nonadaptive solutions, taken in the early

stages of software design. As a consequence, the delivered service easily degrades when conditions

deviate from those assumed in design-time.

Moving one or more activities of the software development process—previously undertaken off-

line by designers and developers—to runtime allows for endowing software systems with self-

management or self-adaptation capabilities [8–10]. Such activities—now undertaken online solely

by the system itself or assisted by the operator—require the adoption of some infrastructure for system

and environment monitoring, reasoning about the needs for adaptation, generation of effective adap-

tation plans, and enacting of adaptation changes in the running system.

Over the past years, several mechanisms for enabling self-adaptation have been proposed by dif-

ferent research communities, including the use of graph grammars [11], machine learning [12], control

theory [13, 14], intelligent agents [15], event-condition-action rules [16, 17], and models at runtime

[18]. As a consequence, being informed about all alternative candidate architectures, making judicious

decisions about trade-offs, and performing early rigorous analysis of quality attributes are still quite

challenging tasks, even for skilled architects.

This chapter presents an approach for principled eliciting and evaluation of trade-offs when design-

ing software architectures. Such an approach provides the underpinnings for the systematic

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00008-3

Copyright # 2017 Elsevier Inc. All rights reserved.
181

http://dx.doi.org/10.1016/B978-0-12-802855-1.00008-3

representation of refined design knowledge in terms of well-structured design spaces [19], as well as for

the use of multiobjective optimization techniques [20] as a rigorous mechanism to reveal and analyze

design trade-offs. For that purpose, we developed a new modeling language—named DuSE [21]—

which provides the constructs for describing well-structured design spaces for a given domain appli-

cation. Such design space entails the domain’s prominent architectural concerns, possible solutions for

each concern, and associated architecture evaluation metrics.

A design space—when instantiated for a given problem from the application domain—yields an

application-specific design space: a potentially huge search space containing all possible candidate ar-

chitectures for such a problem. For those application domains where effective architectures are the

result of subtle and ingenious combinations of architectural tactics, finding out such solutions by man-

ual exploration of design spaces is quite unlikely. Therefore, the adoption of multiobjective optimiza-

tion may leverage the eliciting of those candidate architectures which exhibit optimal trade-offs in the

fulfillment of conflicting quality attributes.

The aforementioned infrastructure was conceived, designed, and implemented to be domain-

independent and, therefore, amenable to be reused to capture refined design knowledge across different

application domains. Such an infrastructure was instantiated in order to create SA:DuSE [22]—a

specific design space aimed at capturing the most prominent architectural concerns when

designing self-adaptive systems based on control-theoretical feedback loops [14]. SA:DuSE enables

the automated design of architectures that adopt different solutions for five design dimensions: control

cardinality, control law, control tuning, control adaptation, and interloop interaction. Each candidate

architecture—representing a particular combination of solutions for the cited dimensions—is evaluated

regarding four domain-specific quality attributes: average settling time, average overshoot, control

robustness, and control overhead.

Our approach has been validated regarding three different aspects, all of them evaluated in two rep-

resentative self-adaptive scenarios: an adaptive web server and an elastic platform for distributed

MapReduce jobs. First, we investigated to which extent SA:DuSE effectively captures the expected

trade-offs when designing feedback control loops for such scenarios. To achieve this, we evaluated

the optimality and diversity of results from a single optimization run by using the hypervolume per-

formance indicator. We also undertook statistical tests to find out the minimum number of iterations

required to produce sufficiently optimal solutions. Second, we investigated with which accuracy the

values of average settling time and average overshoot—predicted by SA:DuSE—are actually observed

in real prototypes of three candidate architectures in each scenario. Such candidates were implemented

on top of Apache httpd web server (for the adaptive web server scenario) and Apache Hadoop (for the

elastic platform for distributed MapReduce jobs scenario). Finally, we undertook a quasi-experiment

that investigated whether our approach improves the design self-adaptive systems architectures in

terms of architectural complexity and control effectiveness, when compared to a traditional architec-

ture design process.

The remainder of this chapter is organized as follows. Section 8.2 presents the most prominent re-

quirements for an automated approach for software architecture design and analysis. Section 8.3 pre-

sents our approach, detailing the rationale which guided its inception, the underlying mechanisms and

technologies adopted, and how we have used such an infrastructure to automate the design of self-

adaptive systems architectures. Section 8.5 discuss the evaluation activities we have undertaken in

order to assess the proposed approach. Finally, Section 8.6 presents the conclusions and draws the

venues for future investigation.

182 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

8.2 REQUIREMENTS FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS
Although software architectures undergo continuous evolution in diverse stages of a software develop-

ment process, their primary inception occurs in early stages of design, as by-product of a software archi-

tecture design process [23]. Fig. 8.1 depicts the usual stages defined in a software architecture design

process. In the requirement analysis stage, major functional and nonfunctional requirements are elicited

and then verified for any architecturally significant impact. Such requirements are passed as input for

the decision making stage, where the well-orchestrated use of distilled design knowledge enables the

judicious choice of those architectural tactics that yields a candidate architecture that effectively fulfill

the desired quality attributes. The candidate architecture is then analyzed—regarding distinct

quality attributes—and a new design cycle is undertaken if results show that further improvements

may be achieved.

The aforementioned architecture design process may be instantiated in different ways. It may im-

plement very agile cycles or a more bureaucratic approach; the analysis stage may include only manual

inspections/reviews or be assisted by evaluation tools; and qualitative and/or quantitative aspects may

be taken into account during analysis activities. Our approach aims at automating such a process by

providing the underlying infrastructure for: (i) the systematic capture of refined design knowl-

edge—supporting, therefore, the use of well-structure design spaces in the decision making stage;

and (ii) a more rigorous approach for trade-off eliciting and analysis—by adopting multiobjective op-

timization mechanisms in the architecture analysis stage.

Under such perspective, we identified a set of six requirements that should be addressed by an au-

tomated process for architecture design and analysis, described as follows.

R1: Design knowledge should be systematically represented in a well-structured design space. Such a

requirement enables the automatic design of architectures implementing any combination of

architectural tactics defined for a given application domain. That helps ensuring that all candidate

Requirement
analysis

System requirements and project context

Decision making

Architecturally significant aspects

Architectural analysisCandidate architectural
elements

Is the architecture
acceptable?

Analysis results

No

Yes

FIG. 8.1

Usual stages defined in a software architecture design process. Architecturally significant requirements—yielded

in the Requirements Analysis stage—are passed as inputs to the decision making stage. Refined architectural

knowledge is then applied in order to produce a given candidate architecture (decision making stage’s output).

Such a candidate is analyzed regarding the fulfillment of different quality attributes in the Architectural Analysis

stage. The process repeats until an acceptable candidate architecture is obtained.

1838.2 REQUIREMENTS FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

architectures—including those subtle and ingenious—will be taken into account during the

decision making stage.

R2: Impacts of architectural tactics on quality attributes should be quantitatively measurable by

accurate evaluation models. While the use of qualitative analysis enables a more thorough

investigation about amorphous aspects like design rationale, fully automated design processes

must rely on a set of evaluation models which quantitatively inform how good is a candidate

architecture in the achievement of the desired quality attributes.

R3: Alternative architectures regarding a particular trade-off should be amenable to rigorous eliciting

and evaluation. In general, architectural decisions are strategically taken in order to induce desired

properties in the final solution. When such properties are conflicting, different candidate

architectures provide different balances in the fulfillment of such quality attributes. Having such

trade-offs explicitly identified and rigorously evaluated is mandatory if we are to prospect

principled processes for software design and analysis.

R4: The adopted architectural modeling notation should be rigorous enough to support the automated

process. The decision making stage must produce models described in a notation/language that

fulfill the minimum requirements of ambiguity and accuracy in order to support the automatic

analysis activities adopted in the process.

R5: Mechanisms for feeding analysis results back to the upcoming cycle should be adopted. As in

nonautomated architecture design processes, candidate architectures are expected to be evolved

until the minimum requirements for the quality attributes at hand are sufficiently fulfilled.

R6: The automated architecture design and analysis approach should be domain-independent. We

expect such an approach be amenable to be adopted in a range of application domains.While some

particular domains may require some uncommon model manipulations, we believe a set of

common architectural changes (e.g., addition/removal of a component/connector and change of an

element’s property) is likely to support the automatic design of architectures for a broad class of

application domains.

As for the self-adaptive systems domain in particular, it isworthmentioning that automated approaches for

architecture design and analysis may play two different roles. First, as an off-line mechanism to come up

with effective architectures—as in any other application domain to which a systematic design space is

available. Second, as an online infrastructure responsible for continuously finding out an effective new

architecture (adaptation) given the new conditions observed in the environment and in the system itself.

Theworkwepresent in thischapter focuseson the first roleaforementioned.Anumberofnewrequirements

should be introducedwhen focusing on the second role, such as constraints regarding the temporal predict-

ability of adaptations and the detection of those system states in which adaptation can be safely enacted.

8.3 THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS
DuSE is an automated software architecture design process—proposed by us and initially described in

[21, 22]—which provides the underpinnings for the systematic representation of refined architecture

design knowledge for a given application domain. Furthermore, is enables the use of rigorous multi-

objective optimization mechanisms to elicit and evaluate the involved trade-offs when designing ar-

chitectures for a particular system of such a domain.

184 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

8.3.1 THE RATIONALE
During the DuSE inception, a number of underlying new and existing technologies and mechanisms

have been selected and integrated in order to effectively fulfill the aforementioned requirements for

automated architecture design and analysis approaches. Such decisions are described below, along with

the reasons for their adoption and the requirements addressed by each decision.

D1: Use of models as underlying technology for systematizing the representation of design

knowledge. Since we wanted our approach to be automatic, the forging of new architectures was

supported by a machine-consumable representation of the possible architectural tactics (design

space)—described in a model that captures the prominent design dimensions and solutions for a

given domain application at hand. To support this, we designed a new modeling language—also

named DuSE—which provides all the constructs required to define a design space for a given

application domain. Such a decision addresses requirements R1 and R4, as it supports the well-

structured representation of design spaces in a modeling notation (meta object facility—MOF and

unified modeling language—UML) which is rigorous enough to achieve the approach’s goals.

D2: Use of meta-models as enabling mechanism for domain-independence. The generic architecture

optimization enginewe devised performs all its operations based on constructs from themeta-model

level of the language used when creating the design space model. That allows for reusing the

whole architecture optimization infrastructure across a range of application domains, varying

only the particular design space guiding the process. The DuSE language is described in MOF

[24] and all generated candidate architectures are described in UML [25]. We decided to base

our approach in MOF and UML languages because of their wide use in industry and high

expressiveness when modeling software architectures. Such decision addresses requirement R6.

D3: Use of a posteriori preference articulation to reveal architectural trade-offs. Multiobjective

optimization problems in which two or more objectives are potentially conflicting may be

addressed by a priori or a posteriori approaches. In a priori approaches, a preference vector is

defined in advance to indicate the weights that will govern the fulfillment of the multiple

objectives. The problem is then reduced to a single objective one where different weights yield

solutions exhibiting varying trade-offs when meeting the objectives. However, finding out an

optimal solution depends highly on the adopted weight vector, often set up subjectively, based on

previous experience and, therefore, amenable to bias. In our work, we rely on a posteriori

preference articulation, where the output of an optimization run is a set of equally optimal

architectures (named Pareto-front [20]), differing only at which objective is favored. Such

decision addresses requirement R3 and sets the stage for addressing requirement R2.

D4: Use of highly scalable optimization mechanisms, even at the cost of nonguaranteed optimality. It’s

commonly agreed that, for some intricate application domains, the set of all architectural tactics

available for use in the design stage is potentially huge. Manually evaluating all possible

combinations of tactics in order to come up with an effective architecture for a problem at

hand is obviously unlikely. On the other hand, we believe the most outstanding architectures

may result from subtle and nonnaive combinations, which abide in regions of such huge design

space hardly found by manual exploration. Our approach adopts multiobjective evolutionary

optimization mechanisms in order to cope with huge design spaces without incurring in

exponentially large search times. Even though that implies in nonguaranteed optimality, we

believe that finding out near-optimal architectures in a reasonable time already constitutes

valuable results. Such decision addresses requirement R5.

1858.3 THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

8.3.2 THE APPROACH
DuSE aims at supporting the automated design of software architectures by systematically representing

refined design knowledge for a given application domain and adopting multiobjective optimization

mechanisms to enable the principled eliciting and evaluation of design trade-offs. Although such an

approach has been initially conceived to support the design of self-adaptive systems, the decisions men-

tioned in Section 8.3.1 make it amenable to use in any application domain for which a design space has

been created. The domain-independent operation of our approach is described as follows.

In order to make DuSE domain-independent, we designed a generic meta-modeling infrastructure

which provides the means for specifying a new design space for an application domain of interest. Such

a design space entails the architectural changes that represent all possible tactics implementing alter-

native solutions for a set of design concerns considered prominent in the application domain. Further-

more, a design space specifies a set of quality attributes and its corresponding evaluation metrics. Each

candidate architecture—a valid combination of tactics for each design concern—may then be evaluated

regarding the different quality attributes present in the design space.

Since such design spaces may easily span a huge number of candidate architectures, we use multi-

objective optimization mechanisms to automatically reveal those candidates that represent (near-)

optimal trade-offs between the involved quality attributes. The whole optimization mechanism we pro-

pose operates at the meta-modeling level of the design space representation and it is, therefore, ame-

nable to be used across a range of application domains.

Fig. 8.2 describes the design workflow we propose. Qualified architects use distilled design knowl-

edge to specify: (i) a domain-specific UML profile; (ii) the most prevalent design dimensions and their

corresponding alternative solutions in such a domain; and (iii) the quality metrics which evaluate can-

didate architectures regarding desired attributes. These tasks are performed once per application do-

main, at the design space inception stage (Fig. 8.2A).

Henceforth—in the design space usage stage (Fig. 8.2B)—the domain-specific design space (DuSE

instance) and UML profile can be used by (novice) architects either to manually explore redesign al-

ternatives for a given initial system or to hand over such task to the multiobjective optimization engine

provided by DuSE.

A concrete design space and its quality attributes are specified by using a modeling language—also

named DuSE—we have designed for such a purpose. A supporting UML profile is also defined for the

application domain at hand, enabling the annotations that drive the automated design process. A design
space (e.g., for the application domain of distributed and concurrent systems) is defined as a set of

ndesign dimensions representing specific design concerns in such a domain (e.g., concurrency strategy,

caching algorithm, and event dispatching model).

Definition 8.1. A design space is a tuple ds¼ hDD,QM,Pi, whereDD is a nonempty totally ordered

set of design dimensions, QM is a nonempty totally ordered set of quality metrics, and P is the accom-

panying UML profile for such an design space.

Each design dimension holds a set of variation points, which represent alternative solutions for such a
concern (e.g., leader-followers or half-sync/half-async; for the concurrency strategy dimension).

Definition 8.2. A design dimension is a tuple dd¼ hV P,targetElementsExpi, where V P is a none-

mpty totally ordered set of variation points and targetElementsExp is an object constraint language

(OCL) expression which returns—when evaluated on an initial UML architectural model M—the

elements ofM that demand a decision about the architectural concern represented by dd. Such elements

are named target elements of dd with respect to M and denoted by targetElements(dd,M).

186 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

The targetElementsExp expression uses annotations from the associated UML profile to detect, in

the initial model, the architectural loci that demand decisions about such a concern. For instance,

in the distributed and concurrent systems domain, an initial model may require the choice of a

particular concurrency strategy for two different service components. Therefore, two instances

of the concurrency strategy design dimension are created to capture the decisions for those

architectural loci.
Definition 8.3. A design dimension instance is a tuple ddi¼ hM,dd,tei, whereM is an initial UML

architectural model, dd is a design dimension, and te is a target element of dd with respect to M.

A variation point describes the architectural elements that must be added to, removed from, or changed

in the initial model in order to implement such a particular solution.

Definition 8.4. A variation point is a tuple vp¼ hC,postConditionExpi, whereC is a totally ordered

set of architectural changes and postConditionExp is an OCL expression evaluated after all changes in

C are applied in the initial model. Such an expression must return true for valid architectures or false

otherwise.

Definition 8.5. An architectural change c is a single indivisible operation that, when applied to a

model M, results in a model M0 6¼M. An architectural change c may represent an element addition, el-

ement removal or element’s property change.

The set of all design dimension instances generated by ds, when evaluated in M, provides the under-

lying search space in which our approach perform the optimization activities.

Create initial system
model

Validate design space’s
design dimension instances

Optimize
architecture

Select final
candidate from

Pareto-front

Annotations containing
domain-specific information

Initial system model

Optimization
parameters

The application domain’s
design space (DuSE instance)

App-specific de-
sign space instance

Pareto-optimal
candidate architectures

Repeat as necessary

Final system architecture

Design space inception (A)

Design space usage (B)

Specify domain-
specific UML profile

Create domain-specific
design space using

DuSE language

Define domain-specific
quality metrics using

DuSE language

Supports the definition of Candidates are evaluated by

Domain-specific design knowledge

FIG. 8.2

DuSE-based architecture design process. In the design space inception stage (A) domain-specific design

knowledge is systematically captured, by an experienced architect, in a new DuSE design space. Afterwards, in

the design space usage stage (B), architects may submit initial models to be modified according the knowledge

captured in a given DuSE design space.

1878.3 THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

Definition 8.6. An application specific design space is a tuple asds¼ M,ds,DDIh i, whereM is an

initial UML architectural model, ds is a design space, and DDI is a partially ordered set of design di-

mension instances, defined as:

DDI¼
[dd2ds:DD [te2dd:targetElementsðMÞ

ddi¼ M,dd, teh i
 !

(8.1)

The ultimate decision space may then be specified in terms of an application specific design space.

Definition 8.7. The architectural decision spaceDasds for a given application specific design space

asds is the Cartesian product of all variation point indexes of design dimensions associated to each

design dimension instance in asds.DDI:

Dasds ¼f1,2,…, asds:DDI1:dd:VPj jg
�f1,2,…, asds:DDI2:dd:VPj jg
�⋯
�f1,2,…, asds:DDI DDIj j:dd:VP

�� ��g
(8.2)

A vector x2Dasds is named candidate vector. The architectural model resulting from the valid appli-

cation of all changes of variation points whose indexes are described in x is named candidate archi-
tecture. The subset of Dasds formed only by those candidate vectors resulting in valid architectures is

named architectural feasible space (F asds).

Therefore, a candidate architecture (a location in such an n-dimensional space) is formed by the initial

model modified with the merge of all architectural changes provided by all involved variation points.

Finally, a quality metric may be defined for a given design space.

Definition 8.8. A quality metric is a tuple qm¼ Φ,gh i.Φ is a functionΦ :F asds !V, whereF asds is

an architectural feasible space and V is a set supporting measurements at least in interval scale [26]. g
must take the value 1 or � 1 indicating, respectively, whether the metric should be maximized or min-

imized. The architectural objective spaceOasds is defined as the Cartesian product V1�V2�⋯�Vn,

where V i is the image of the function Φi (evaluation of the ith metric of asds.ds.QM).

As a consequence of such an infrastructure, huge design spaces may easily be spawned even for small

input models, motivating the adoption of meta-heuristics and multiobjective optimization approaches.

The number of different candidate vectors inDasds (including those resulting in invalid architectures) is

given by: Y
dd2ds:DD

dd:VPj j dd:targetElementsðMÞj j
(8.3)

Once a concrete design space is defined, architects can submit initial models to manual design space

exploration or rely on the multiobjective optimization engine we provide (design space usage stage).
The domain-independent optimization engine we provide handles all required steps to forge candidate

architectures for a given set of design space locations, evaluate their quality regarding the attributes

defined for the design space, and find out a set of Pareto-optimal architectures.

Let Φasds.ds.QM(Mc) be the function that evaluate all quality metrics in asds.ds.QM with respect to a

candidate architecture Mc:

ΦQM :F asds !O
ΦQMðMrÞ7!ð�g1 �Φ1ðMrÞ,�g2 �Φ2ðMrÞ,…,�gn �ΦnðMrÞÞ

(8.4)

188 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

Let T : x
0 !Mc be the function that produces the candidate architecture Mc associated to a candidate

vector x
0 2 F asds. The optimization problem may then be stated as:

min
�

x
0 2F asds

ΦQMðT ðx0 ÞÞ (8.5)

where min
�

denote minimization for Pareto optimality [20].

8.3.3 TOOL SUPPORT
Our approach is fully supported by DuSE-MT1 —a cross-platform open source tool we develop to inte-

grate the functionalities of creating design spaces and submittingmodels for automatic design and analysis.

The tool was implemented in C++ and makes use of Qt2 toolkit’s computational reflection capabilities to

provide a meta-model-agnostic core which accepts new modeling languages as plug-ins. The DuSE lan-

guage was, therefore, implemented as one of such plug-ins and its meta-model is depicted in Fig. 8.3.

1Website: http://duse.sf.net. Development repository: http://wiki.ifba.edu.br/duse-mt.
2http://www.qt.io.

Element

0..1

+/owner
{readOnly, union}

*
+/ownedElement
{readOnly,union}

NamedElement
+name : String[0..1]

DesignSpaceDesignDimension QualityMetric

+designSpace
{subsets owner}

1
+designDimension

{subsets ownedElement}
1..*

+designSpace
{subsets owner}

1
+qualityMetric

{subsetsownedElement}1..*

*

+handledBefore

VariationPoint
+rationale: String[0..*]

1..*+variationPoint

ModelChange

1..*

+modelChange

UML::OpaqueExpression

+body: String[0..*]
+language: String[0..*]1

+instanceSelectionRule

+changeablePropertyValuesRule

1

+changeableElementSelectionRule

1

+preChangeValidationRule

0..*

MOF::PropertyMOF::Element

+changeableProperty1
+addedElement

0..*

UML::Profile

+requiredProfile1

Design
dimension
instance

+instance

0..*

+targetElement

1

= MOF meta-classes

= UML meta-classes

= DuSE meta-classes

FIG. 8.3

DuSE meta-model for domain-independent design space specification. The DuSE meta-classes implement the

constructs required to systematically capture a domain’s refined design knowledge (design dimensions, variation

points, model changes, and so on) and evaluation metrics.

1898.3 THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

http://duse.sf.net
http://wiki.ifba.edu.br/duse-mt
http://www.qt.io

By having the DuSE meta-model implemented as a DuSE-MT plug-in, users are able to create new

design spaces for a particular application domain by merely creating a new model and selecting the

DuSE language as meta-model (rather than, e.g., UML or MOF). All expressions for identifying a

design dimension’s target elements and specifying pre- and postconditions are defined in JavaScript,

since that Qt already provides scripting capabilities with minimal coding demands.

Fig. 8.4 presents some functionalities of the DuSE-MT tool. TheModel Inspector (panel 1) enable
users to visualize the initial model submitted to optimization or the resulting candidate architecture for

a given design space location. Such a location may be either manually selected in the Design Space tab
(panel 4) or selected from the output of an optimization run (panel 5). Whenever a model’s element is

selected in the Model Inspector, its properties may be visualized and modified in the Property Editor
(panel 2). Scripts written in JavaScript may be created and executed in the Interpreter Console (panel
3). The values of the design space’s quality metrics for the model shown in the Model Inspector may be

visualized in the panel 6. Finally, panel 7 presents the DuSE-MT’s welcome dashboard.

DuSE-MT’s architecture was conceived to ease the tool evolution in distinct ways. First—as

already mentioned—the tool is meta-model-agnostic and, therefore, supports the seamlessly integra-

tion of new user defined languages, implemented as plug-ins. Second, even though we currently adopt

the NSGA-II algorithm [27] as optimization back-end, alternative evolutionary mechanisms may be

easily integrated also as DuSE-MT plug-ins. Third, our approach poses no constraints on the kind

FIG. 8.4

The DuSE-MT tool and the GUI elements supporting our automated architecture design and analysis

approach: (1) the initial model or the candidate architecture for a particular design space location; (2)

properties of a selected model element; (3) scripting console; (4) panel for manual design space exploration;

(5) architectures resulting from an optimization run; (6) quality attribute values for a given candidate architecture;

and (7) welcome dashboard.

190 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

of models used to evaluate the design space’s quality attributes. Such metrics may range from simple

expressions written in JavaScript to interfacing with external tools like simulators or statistical toolkits.

8.4 AUTOMATING THE DESIGN AND ANALYSIS OF SELF-ADAPTIVE
SYSTEMS ARCHITECTURES
A number of efforts from the software engineering for self-adaptive systems community [28] have

addressed the issue of providing principled engineering approaches, leveraging the systematic capture

of design knowledge and enabling the early reasoning of self-adaptation quality attributes. In this sec-

tion we describe how the generic design space and architecture optimization infrastructure presented in

Section 8.3 was instantiated to support the automatic design of architectures for self-adaptive systems

which employ control theory as the governing law of their feedback loops.

Fig. 8.5 presents the common elements of a feedback control system. The target system is a software

systemwith a systemoutput—y(t)—which represents the quality attribute (e.g., average service response

time or CPU utilization) intended to be controlled. Such attribute is directly influenced by a system
input signal—v(t), which manipulates, for instance, buffer sizes or the number of threads in a pool.

The goal is to retain the system output as close as possible to a reference input, which represents

the desired service level specified by the administrator. Uncertainties in the operating environment

(e.g., changing workloads or hardware failures) introduce a disturbance input signal—d(t)—which

makes it harder to derive accurate models for system input-output relationships. Noise input sig-
nals—n(t)—produced by sensors with high stochastic sensitivity may further complicate the control

goals. Dealing with unmodeled and unforeseen disturbances and noises has motivated the idea where

the measured output—m(t) ¼ y(t) + n(t)—is fed back to the controller. By calculating how much the

measured output deviates from the reference input (control error—e(t)), the feedback controller makes

use some specific control law to decide about the control input signal—u(t)—to be applied in the target

system. A transducer is commonly used in cases demanding unit conversion and/or delay handling.

The use of control theory as the enabling mechanism for endowing software systems with self-

adaptation capabilities has been the focus of many current research efforts [29–34]. Such researches

have been contributing to increasing our confidence on the benefits of control theory—and its accom-

panying rigorous foundations for design and analysis of feedback loops—when designing self-adaptive

-
+

Feedback
controller

+
+

Target
system

+
+

Transducer

Reference
input

r(t)

Control
error

e(t)

Control
input

u(t) v(t) y(t)

Measured
output
m(t)

Transduced output

w(t)

Disturbance input
d(t)

Noise input
n(t)

FIG. 8.5

Basic elements of a feedback control loop. The goal is to retain the target system’s output y(t) as close as possible

to a reference value r(t) by enacting changes in a target system’s input v(t). Feedback control uses the measured

output m(t) to calculate a control error e(t), which serves as input for a particular control law adopted by the

feedback controller.

1918.4 AUTOMATING THE DESIGN AND ANALYSIS OF SELF-ADAPTIVE SYSTEMS
ARCHITECTURES

systems. On the other hand, the required preliminary understanding of basic system dynamics model-

ing, analysis in the frequency domain, and the vast array of available control approaches [14] make it

harder for novice architects to fully consider design alternatives, make judicious decisions, and be

aware of the impact of decisions on software’s quality attributes. The result is an application domain

quite rich and promising, but also undisciplined and ad-hoc regarding the use of refined design and

analysis knowledge.

Our work tries to mitigate such a problem by promoting a systematic capture of design knowledge

related to the use of control theory when designing self-adaptive systems. For that purpose, the afore-

mentioned design space and architecture optimization infrastructure was instantiated to create SA:

DuSE—a particular design space devoted to the self-adaptive systems domain.

Table 8.1 presents the five design dimensions and their corresponding variation points captured in

the SA:DuSE design space. Dimension DD1 entails the control cardinality adopted in the candidate

architecture. In single-input single-output (SISO) approaches, each control input in the target system

has its own controller, which is responsible for retaining a single measured output as close as possible

the its corresponding reference value. On the other hand, multiple-input multiple-output (MIMO) ap-

proaches, adopt a single controller for all control inputs and all measured outputs present in the target

system. SISO approaches are usually easier to be designed, at the cost of reduced control performance

in systems with a strong relationship between multiple inputs and outputs.

Dimension DD2 captures the control law adopted by each controller in the candidate architecture.

Seven different control laws were represented in this dimensions: five variations of SISO laws (propor-

tional, integral, proportional-integral, proportional-derivative, and proportional-integral-derivative) and

two variations of MIMO laws (static state feedback control and dynamic state feedback control). Archi-

tectures representing invalid combinations of variation points for dimensions DD1 and DD2 are automat-

ically detected and discharged during optimization runs.

Dimension DD3 captures the tuning method which should be used to adjust the parameters of each

controller added by DD1’s variation points. The tuning methods represented in this dimension are: four

variations of the Chien-Hrones-Reswich method, the Ziegler-Nichols method, the Cohen-Coon

method, and the linear-quadratic regulator method.

Dimension DD4 entails the adaptability mechanism adopted for each controller in the candidate

architecture. Adaptive control is usually required in highly dynamic and uncertain environments,

where the parameter values found off-line by tuning methods no longer imply in an acceptable control

performance, given the new operational conditions. Five mechanisms are captured in this dimensions:

fixed gain (no adaptation), gain scheduling, model identification adaptive control, model reference

adaptive control, and reconfiguring control. Further details about such mechanisms may be found

at [35].

Finally, dimension DD5 captures six interloops arrangements for systems where multiple feedback

control loops are in place. These arrangements are derived from the work of Weyns at al. [36] and

define different trade-offs between interloop communication overhead and the fulfillment of global

adaptation goals. The arrangements captured in this dimensions are: independent loops (no coopera-

tion), information sharing, coordinated control, regional planning, master/slave, and hierarchical

control.

Table 8.2 presents the quality attributes and evaluation metrics defined in the SA:DuSE design

space. Metrics M1 (average settling time) and M2 (average overshoot) are originated from the control

theory and, therefore, have predictive purposes. On the other hand, metrics M3 (control effectiveness)

192 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

and M4 (control overhead) were defined by us as dimensionless quantities and serve only for compar-

ative purposes.

The average settling time (M1) is the time elapsed from a control actuation to the time when the

system stabilizes its measured output (steady-state value). This metrics is intended to be minimized

since high settling times usually imply in violations in service level agreements and multiple loop in-

terference. The average overshoot (M2) is the normalized maximum amount by which the system out-

put exceeds its steady-state value. This metric is also intended to be minimized, since high overshoots

usually imply in waste of resources.

The control effectiveness (M3) is the extent to which the controller keeps presenting acceptable

control performance even when operational conditions deviate from those considered when tuning

the controller. This evaluation metric is the average value of the weighted mean (controlled by βE

Table 8.1 Overview of Architectural Tactics Captured in the SA:DuSE Design Space

Design Dimension Variation Point

DD1: Control cardinality VP11: Single-input single-output

VP12: Multiple-input multiple-output

DD2: Control law VP21: Proportional

VP22: Integral

VP23: Proportional-integral

VP24: Proportional-derivative

VP25: Proportional-integral-derivative

VP26: Static state feedback

VP27: Dynamic state feedback

DD3: Tuning method VP31: Chien-Hrones-Reswick with 0% overshoot and disturbance rejection goal

VP32: Chien-Hrones-Reswick with 0% overshoot and reference tracking goal

VP33: Chien-Hrones-Reswick with 20% overshoot and disturbance rejection goal

VP34: Chien-Hrones-Reswick with 20% overshoot and reference tracking goal

VP35: Ziegler-Nichols

VP36: Cohen-Coon

VP37: Linear-quadratic regulator

DD4: Control adaptability VP41: Fixed gain (no adaptation)

VP42: Gain schedule

VP43: Model identification adaptive control

VP44: Model reference adaptive

VP45: Reconfigurable control

DD5: Multiple loops interaction VP51: Independent loops

VP52: Information sharing

VP53: Coordinated control

VP54: Regional planning

VP55: Master/slave

VP56: Hierarchical control

1938.4 AUTOMATING THE DESIGN AND ANALYSIS OF SELF-ADAPTIVE SYSTEMS
ARCHITECTURES

parameter) of the effectiveness given by the ith loop robustness (Eri) and the effectiveness given by the

ith interloop arrangement (Emi
). Eri generates a value between 0 and 1, according to the variation point

selected for design dimension DD4 (0 for fixed gain, increasing to 1 in Reconfigurable Control). Sim-

ilarly, Emi
produces a value between 0 and 1, according to the interloop arrangement selected for design

dimension DD5. Independent loops (no cooperation) are expected to decrease the global control effec-

tiveness (0), increasing to a maximum effectiveness (1) when selecting Hierarchical Control. The con-

trol overhead (M4) adopts a similar approach to estimate computational and communication overhead.

8.4.1 RUNNING EXAMPLES
This section presents two self-adaptation scenarios widely investigated nowadays and that have been

used to evaluate our approach. The first one, depicted in Fig. 8.6, represents a self-adaptive web server.

The self-adaptive systems architect is in charge of designing an effective feedback control loop which

controls the server’s memory and CPU utilization by regulating two impacting parameters: IMaxRW (the

number of working threads serving client requests) and IKATimeout (the number of seconds to wait for

a new request until the server closes the current connection). These two parameters affect both memory

and CPU utilization (measurable, respectively, from the IMemUtilization and ICPUUtilization in-

terfaces) and the architect would have to consider alternative solutions (degrees of freedom) for a num-

ber of design dimensions in order two fulfill the expected quality attributes (e.g., small average settling

time and average overshoot).

Fig. 8.6A and 8.6B present two examples of candidate architectures generated by SA:DuSE. The

former adopts MIMO control (VP12), with dynamic state feedback as control law (VP27) and LQR as

tuning method (VP37). The later, on the other hand, adopts two SISO controllers (VP11), both with

Proportional-Integral as control law (VP23) and using, respectively, Ziegler-Nichols (VP35) and

Cohen-Coon (VP36) as tuning methods. For both candidate architectures, no control adaptation has

been adopted (VP41) and no interloop arrangements have been applied (VP51) since one single loop

Table 8.2 Overview of Quality Attributes and Metrics Captured in the SA:DuSE Design Space

Quality Attribute Evaluation Metric

M1: Average settling time X
i

�4

logri

� �
n

M2: Average overshoot
X
i

MPi

n
; whereMpi �

0 real dominant pole p1i � 0

p1ij j real dominant pole p1i < 0

r
π= θj j
i real dominant poles p1i ,p2i ¼ re�jiθ

i

8<
:

M3: Control effectiveness
X
i

EiðcÞ

n
; where EiðcÞ¼ βE �EriðcÞ+ ð1�βEÞ �Emi

ðcÞ

M4: Control overhead
X
i

OiðcÞ

n
; whereOiðcÞ¼ βO �Ori ðcÞ + ð1�βOÞ �Omi

ðcÞ

194 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

is in place. These two candidate architecture exhibit specific values for the four metrics defined in SA:

DuSE. Other variation points’ combinations yield different candidate architectures, with different bal-

ances in the fulfillment of the quality attributes.

The second self-adaptation scenario, depicted in Fig. 8.7, is an elastic cluster for the distributed

execution of MapReduce jobs. The entire cluster, depicted as the ElasticCluster component, entails

a set of NodeManager components representing each storing/processing node in the cluster. Such sce-

nario poses a number of self-adaptation challenges since multiple loops may operate at different levels.

For instance, each cluster’s node may adopt a local feedback loop which controls the node throughput

(measurable from the INodeThrput interface) by regulating the maximum number of map tasks which

simultaneously operate on that node (parameter IMaxMappers). In addition, a cluster-wide feedback

control loop may control the total job throughput by regulating the number of nodes operating in

«SSProcessComponent»
{A = "..."}
{B = "..."}
{C = "..."}

WebServer

:ICpuUtilization[0..1]

:IMaxRW[0..1]

:IKATimeout[0..1]

:IMemUtilization[0..1]

«DSController»
{kp = "31, −114;106, −2121"}

{ki = "22, −44;14, −921"}
WSController

:~ICpuUtilization[1]

:~IMaxRW[1]

:~IKATimeout[1]

:~IMemUtilization[1]

:ICpuUtilizationRV[1]:IMemUtilizationRV[1]

(A)

(B)

(C)

«SSProcessComponent»
{A = "..."}
{B = "..."}
{C = "..."}

WebServer

:ICpuUtilization[0..1]

:IMaxRW[0..1]

:IKATimeout[0..1]

:IMemUtilization[0..1]

«PIDController»
{kp = "31", ki = "22", kd = "0"}

WSController1
:~ICpuUtilization[1]

:~IKATimeout[1]

:ICpuUtilizationRV[1]

«PIDController»
{kp = "106", ki = "14", kd = "0"}

WSController2
:~IMemUtilization[1]

:~IMaxRW[1]

:IMemUtilizationRV[1]

= Initial system model (optimization’s input model)

= Feedback control loop(s) (automatically designed by our automated approach)

«ReferenceValueInterface»
«ProcedureCall»

ICpuUtilizationRV

+setCpuUtilization(cpuUtilization:Real)

«ReferenceValueInterface»
«ProcedureCall»

IMemUtilizationRV

+setMemUtilization(memUtilization:Real)

FIG. 8.6

(A) Candidate architecture representing an initial web server model endowed with a single MIMO controller.

(B) Candidate architecture representing an initial web server model endowed with two SISO controllers. (C)

Interfaces for adjusting the reference values for memory and CPU utilization.

1958.4 AUTOMATING THE DESIGN AND ANALYSIS OF SELF-ADAPTIVE SYSTEMS
ARCHITECTURES

the cluster. In spite of finding out effective combinations of variation points, architects must in this case

be also concerned about issues regarding multiple loops interactions. Part of such concerns are auto-

matically handled when optimizing models with the SA:DuSE design space, marking candidate archi-

tectures with pernicious combinations as invalid.

8.5 EVALUATION
We have evaluated our approach for automated architecture design and analysis regarding different

aspects. First, the performance of optimization runs and the SA:DuSE effectiveness in capturing the

most prominent trade-offs when designing self-adaptive systems based on control theory were

«TFProcessComponent»
{tfNum=" − 0.11z"}

{tfDen="1 .6z + 0.6"}
ElasticCluster

internal structure

:IJobThrput[0..1]:INbrOfNodes[0..1]

«TFProcessComponent»
{tfNum=" − 0.11z"}

{tfDen="1 .6z + 0.6"}
nm:NodeManager[1..*]

{ordered}

:IMaxMappers[0..1]

:INodeThrput[0..1]

«PIDController»
{kp= − 41}
{ki= − 58}

{kd=0}
nmCtrl: NMController [1..*]

{ordered}

:INodeThrputRV[1]

«PIDController»
{kp= − 41}
{ki= − 58}

{kd=0}
ClusterController

:~IJobThrput[1]:~INbrOfNodes[1]

:IJobThrputRV[1]

(A)
«ReferenceValueInterface»

IJobThrputRV

+setJobThrput(jobThrput:Real)

«ReferenceValueInterface»
INodeThrputRV

+setNodeThrput(nodeThrput:Real)

«ShareReferenceValue»

(B)
= Initial system model (optimization’s input model)

= Feedback control loops(s) (automatically designed by our automated approach)

FIG. 8.7

(A) Candidate architecture representing an initial elastic cluster model for MapReduce applications endowed with

two nested SISO controllers. (B) Interfaces for adjusting the reference values for job throughput and node

throughput.

196 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

evaluated by using performance indicators from the multiobjective optimization field (experiment 1).

Second, the predictive capabilities of SA:DuSE’s quality metrics were evaluated by comparing the

metric values presented by the optimization’s output with observations of real prototypes implement-

ing candidate architectures (experiment 2). Third, the impact of our approach in the effectiveness and

complexity of resulting architectures—when compared to a traditional architecture design process—

were investigated in a quasi-experiment (experiment 3). This chapter focuses on the description of the

experiment 1. A comprehensive report on experiment 3 may be found at [37].

The experiment 1 aimed at evaluating the following research questions:

RQ1.1: Do the design dimensions defined in the SA:DuSE design space actually capture the

multiobjective aspect of the design of self-adaptive systems architectures?

RQ1.2: Do the solutions yielded by the multiobjective architecture optimization mechanism we

proposed actually represent effective architectures and provide alternatives in the fulfillment

of involved quality attributes?

To answer RQ1.1, we undertook 31 optimization runs for each of the two example applications de-

scribed in Section 8.4.1. Replication was needed because of the inherent nondeterministic nature of

evolutionary optimization algorithms. We then calculated the Pareto-front (set of equally optimal ar-

chitectures) of the merge of all 31 optimization run’s outputs. We call this the reference Pareto-front
P* and assume it is a nice representative of the global Pareto-front (usually unknown because its actual

discovery requires a complete design space exploration).

Fig. 8.8 depicts the scatter plot matrix for the population of architectures resulting from the opti-

mization runs using the elastic cluster architecture (presented in Section 8.4.1) as initial model. The

matrix’s main diagonal presents—for each quality metric—the histograms of solutions in the

Pareto-front and of dominated solutions. The remaining cells present the projection of the final pop-

ulation with respect to the quality metrics indicated at the cell’s row and column. For instance, the

scatter plot at the first column and second row depicts solutions using average settling time values

in the abscissa and average overshoot values in the ordinate. Solutions in the Pareto-front are presented

as diamonds, while the dominated ones are depicted as circles. A partial Pareto-front—regarding only

the two quality metrics involved in a given cell—is shown as diamonds connected by a line. As indi-

cated in the figure’s legend, the solution color represents the interloop arrangement adopted by such an

architecture. Finally, the solution size denotes the architecture’s control robustness (the bigger, the

more robust).

The outcome of our approach provides useful insights and supports the self-adaptive systems ar-

chitect in several aspects. First, we observe that architectures exhibiting short average settling times

are quite rare in the final population, making it harder for novice architects to find out such effective

solutions by manually scouring the design space or by performing random searches. Second, the out-

come reveals pronounced trade-offs between two pairs of quality attributes: (i) average settling time

and average overshoot (first column, second row); and (ii) control robustness and control overhead

(third column, fourth row). The Pareto-fronts for such combinations are smooth, providing alternative

solutions regarding the fulfillment of such quality attributes. No significant trade-off has been found in

other quality metric pairs. Third, the rigorous identification of Pareto-optimal solutions prevents novice

architects from adopting those combinations of control law, tuning technique, and control adaptation

mechanism that lead to inferior architectures. Finally, the metric values presented by solutions in the

1978.5 EVALUATION

Pareto-front allow for the early analysis of the dynamics exhibited by real prototypes implementing

such architectures.

During the 31 optimization runs, 334,800 candidate architectures have been evaluated (probably

including repeated ones) and the reference Pareto-front P* presented 18 optimal candidates.

Fig. 8.9 shows, for a single optimization run, the values of the hypervolume [20] metric for each op-

timization iteration i. The hypervolume calculates the extent of the search space covered by an opti-

mization run. By comparing the hypervolume of a single optimization run with the one calculated for

the reference Pareto-front, we can estimate how close of such optimal architectures are the solutions

yielded by a single optimization run. This tell us how much we can rely on the output of a single

Average
settlingtime(s)

A
ve

ra
ge

se
ttl

in
g

tim
e(

s)

Control
overhead

C
on

tr
ol

ov
er

he
ad

0

20

40

C
on

tr
ol

ef
fe

ct
iv

en
es

s

100 150 200

0

0.5

1

= Nondominated solutions = Pareto-front solutions Size = controller adaptability

= Histogram of all solutions = Histogram of Pareto-front solutions

Average
overshoot(%)

Independent loops Information sharing Coordinated control

Regional planing Master/slave Hierarchical control

0 0.5 1

0 20 40
Control

effectiveness 0 0.5 1

100

150

200

A
ve

ra
ge

ov
er

sh
oo

t (
%

)

0

0.5

1

FIG. 8.8

Scatter plot matrix for the reference Pareto-front P* for the elastic cluster initial architectural model.

198 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

optimization run regarding the effectiveness of the resulting candidates in the fulfillment of involved

quality attributes. Fig. 8.9 presents the minimum, average, maximum, and standard deviation values for

the hypervolume of the resulting population at each iteration i—HV (P(Ti)), compared to the hypervo-

lume value obtained from the reference Pareto-front—HV (P*).
We conclude that the hypervolume of a single optimization run converges, in average, to

HVðPðT300ÞÞ¼ 3612:8311, nearly 85.53% of the reference Pareto-front’s hypervolume. We also no-

ticed that the hypervolume becomes sufficiently close (95%) to its final value at iteration 169. Keep

running the optimization beyond such number of iterations produces no significantly enhanced candi-

date architectures. In order to better evaluate the convergence of the hypervolume metric for a single

optimization run we investigated—at every iteration i—the null hypothesis that the average hypervo-

lume is less or equal than 95% of its final value—H0 :HVðPðT
iÞÞ	 0:95 �HVðPðT300ÞÞ

. The goal was

to find out, with a given significance level α, the first iteration where H0 is rejected (its hypervolume

exceeds 95% of its final value).

Table 8.3 presents the results of the statistical tests undertaken. For each iteration i, we used the

Anderson-Darling test to verify whether the hypervolume values for the 10 replications are uniformly

distributed (p-value � 0.5). The Levene test investigates where the hypervolume values are homosce-

dastic (also p-value� 0.5). If both conditions are satisfied, theH0 may be evaluated by a parametric test

(use adopted the t-test). Otherwise, a nonparametric test should be applied (we adopted the Wilcoxon
Signed Rank test). We conclude that, with a significance level α ¼ 0.05, we claim the hypervolume

reaches 95% of its final value at the 213th iteration. With a significance level α¼ 0.01, the convergence

happens at the 215th iteration.

8.6 CONCLUSIONS AND FUTURE WORK
Software architectures play a paramount role in the fulfillment of nonfunctional requirements and their

design is usually driven by the use of refined experience, domain-specific knowledge, and

50 100 150 200 250 300
0

1,000

2,000

3,000

4,000
HV (P∗) = 4174.793

Iteration i

H
yp

er
vo

lu
m

e
H

V
 (

P
(T

i))

Hypervolume HV (P∗)

Maximum

Average

Minimum

Standard deviation

FIG. 8.9

Convergence of hypervolume metric during optimization iterations of the elastic cluster model for distributed

execution of MapReduce jobs.

1998.6 CONCLUSIONS AND FUTURE WORK

well-informed decision making. In this chapter, we presented a novel approach for systematically

representing distilled architecture design knowledge through the use of a meta-modeling infrastructure

for the definition of domain-specific design spaces. Multiobjective optimization approaches were then

adopted to leverage the discovery of (local-)optimal architectures. We described how such an infra-

structure has been used to support the automated design and analysis of feedback control loops for

self-adaptive systems.

On the other hand, we assume that an initial input model for the system being redesigned is available

and minimally annotated. How hard this task is depends on the skills of the architect designing the

domain-specific design space and UML profile. Future work include the use of alternative optimization

methods, the definition of design space navigation traces to document design rationale, and the inte-

gration of our process with the prospection of design theories. Additionally, moving such architecture

optimization engine to runtime may constitute a useful infrastructure to support Dynamic Adaptive

Search-Based Software Engineering.

REFERENCES
[1] M.A. Heroux, Software challenges for extreme scale computing: going from petascale to exascale systems,

Int. J. High Perform. Comput. Appl. 23 (4) (2009) 437–439. http://dx.doi.org/10.1177/1094342009347711.
[2] L.M. Northrop, Does scale really matter? Ultra-large-scale systems seven years after the study (keynote),

in: Proceedings of the 35th International Conference on Software Engineering, ICSE ’13, May 18–26,
2013, San Francisco, CA, USA, 2013, p. 857. http://dl.acm.org/citation.cfm?id¼2486902.

[3] V. Sarkar,W. Harrod, A.E. Snavely, Software challenges in extreme scale systems, J. Phys. Conf. Ser. 180 (1)

(2009) 012045. http://stacks.iop.org/1742-6596/180/i¼1/a¼012045.

[4] L.M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling applications in the cloud, SIGCOMM

Comput. Commun. Rev. 41 (1) (2011) 45–52. http://doi.acm.org/10.1145/1925861.1925869.

[5] M. Conti, S.K. Das, C. Bisdikian, M. Kumar, L.M. Ni, A. Passarella, G. Roussos, G. Tr€oster,
G. Tsudik, F. Zambonelli, Looking ahead in pervasive computing: challenges and opportunities in the era

of cyber-physical convergence, Pervasive Mobile Comput. 8 (1) (2012) 2–21. http://dx.doi.org/10.1016/j.
pmcj.2011.10.001.

[6] E.D.Nitto,C.Ghezzi,A.Metzger,M.P.Papazoglou,K.Pohl,A journey tohighlydynamic, self-adaptive service-

basedapplications,Autom.Softw.Eng.15 (3–4) (2008)313–341.http://dx.doi.org/10.1007/s10515-008-0032-x.

Table 8.3 Hypothesis Test’s Results of the Hypervolume Convergence in the Elastic Cluster

Model for Distributed Execution of MapReduce Jobs

Iteration i HVðPðTiÞÞ Anderson-Darling p-Value Levene p-Value Used Test p-Value

…

212 3512.200411 0.113852 0.274383 t-Test 0.101512

213 3533.574236 0.152420 0.260664 t-Test 0.046263

214 3533.574236 0.152420 0.260664 t-Test 0.046263

215 3539.272402 0.047992 0.320262 Wilcoxon SR 0.009520

216 3539.272402 0.047992 0.320262 Wilcoxon SR 0.009520

…

200 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

http://dx.doi.org/10.1177/1094342009347711
http://dl.acm.org/citation.cfm?id=2486902
http://dl.acm.org/citation.cfm?id=2486902
http://stacks.iop.org/1742-6596/180/i=1/a=012045
http://stacks.iop.org/1742-6596/180/i=1/a=012045
http://stacks.iop.org/1742-6596/180/i=1/a=012045
http://doi.acm.org/10.1145/1925861.1925869
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1007/s10515-008-0032-x

[7] T. Kunz, An architecture for adaptive mobile applications based on mobile code, in: Proceedings of the 17th

IASTED International Conference on Applied Informatics, February 15–18, 1999, Innsbruck, Austria, 1999,
pp. 308–311.

[8] M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees, models, and applications, ACM

Comput. Surv. 40 (3) (2008) 7:1–7:28. http://doi.acm.org/10.1145/1380584.1380585.

[9] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41–50. http://
doi.ieeecomputersociety.org/10.1109/MC.2003.1160055.

[10] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges. ACM Trans. Auton.

Adapt. Syst. (TAAS) 4 (2) (2009) 14:1–14:42. http://dx.doi.org/10.1145/1516533.1516538.
[11] D.L. Mtayer, Describing software architecture styles using graph grammars, IEEE Trans. Softw. Eng. 24 (7)

(1998) 521–533. http://dblp.uni-trier.de/db/journals/tse/tse24.html#Metayer98.

[12] N.Esfahani,A.M.Elkhodary,S.Malek,Alearning-basedframeworkforengineeringfeature-orientedself-adaptive

software systems, IEEE Trans. Softw. Eng. 39 (11) (2013) 1467–1493. http://doi.ieeecomputersociety.org/10.

1109/TSE.2013.37.

[13] M.M. Kokar, K. Baclawski, Y.A. Eracar, Control theory-based foundations of self-controlling software,

IEEE Intell. Syst. Appl. 14 (3) (1999) 37–45.
[14] D.M. Tilbury, S. Parekh, Y. Diao, J.L. Hellerstein, Feedback Control of Computing Systems, Wiley IEEE

Press, Hoboken, NJ, USA, 2004. http://opac.inria.fr/record¼b1119042 ISBN 0-471-26637-X.

[15] H.V.D. Parunak, S.A. Brueckner, Software engineering for self-organizing systems, in: D. Weyns,

J.P. M€uller (Eds.), Proceedings of the 12th International Workshop on Agent-Oriented Software Engineering

(AOSE 2011), AAMAS 2011, Taipei, Taiwan, 2011.

[16] S. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation in the presence of multiple objectives,

in: Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing Systems, ACM

Press, New York, NY, USA, 2006, pp. 2–8.
[17] D. Gil de la Iglesia, A formal approach for designing distributed self-adaptive systems, Ph.D. thesis, Linnaeus

University, 2014.

[18] T. Vogel, H. Giese, A language for feedback loops in self-adaptive systems: Executable runtime megamo-

dels, in: Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2012, June 4–5, 2012, Zurich, Switzerland, IEEE, Washington, DC, USA,

2012, pp. 129–138. http://dx.doi.org/10.1109/SEAMS.2012.6224399.

[19] M. Shaw, The role of design spaces, IEEE Softw. 29 (1) (2012) 46–50. http://dx.doi.org/10.1109/MS.2011.121.

[20] K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons,

Inc., New York, NY, USA, 2001. ISBN 047187339X.

[21] S.S. Andrade, R.J. de Araújo Macêdo, Architectural design spaces for feedback control concerns in self-

adaptive systems (S), in: Proceedings of the 25th International Conference on Software Engineering and

Knowledge Engineering, June 27–29, 2013, Boston, MA, USA, 2013, pp. 741–746.
[22] S.S. Andrade, R.J. de Araújo Macêdo, A search-based approach for architectural design of feedback control

concerns in self-adaptive systems. in: Proceedings of the Seventh IEEE International Conference on Self-

Adaptive and Self-Organizing Systems, SASO 2013, September 9–13, 2013, Philadelphia, PA, USA,
2013, pp. 61–70. http://dx.doi.org/10.1109/SASO.2013.42.

[23] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, P. America, Generalizing a model of software ar-

chitecture design from five industrial approaches, in: Proceedings of the FifthWorking IEEE/IFIPConference

on Software Architecture, WICSA 2005, pp. 77–88. http://dx.doi.org/10.1109/WICSA.2005.36.

[24] OMG, OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1. Object Management Group,

2011. http://www.omg.org/spec/MOF/2.4.1.

[25] OMG, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1. Object Management

Group, 2011. http://www.omg.org/spec/UML/2.4.1.

[26] S.S. Stevens, On the theory of scales of measurement, Science 103 (2684) (1946) 677–680. http://dx.doi.org/
10.2307/1671815.

201REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0040
http://doi.acm.org/10.1145/1380584.1380585
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1160055
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1145/1516533.1516538
http://dblp.uni-trier.de/db/journals/tse/tse24.html#Metayer98
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.37
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.37
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0070
http://opac.inria.fr/record=b1119042
http://opac.inria.fr/record=b1119042
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0085
http://dx.doi.org/10.1109/SEAMS.2012.6224399
http://dx.doi.org/10.1109/MS.2011.121
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0105
http://dx.doi.org/10.1109/SASO.2013.42
http://dx.doi.org/10.1109/WICSA.2005.36
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/UML/2.4.1
http://dx.doi.org/10.2307/1671815
http://dx.doi.org/10.2307/1671815

[27] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197. http://dx.doi.org/10.1109/4235.996017.
[28] R. de Lemos, H. Giese, H.A. M€uller, M. Shaw, J. Andersson, M. Litoiu, B.R. Schmerl, G. Tamura,

N.M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais,

S. Dustdar, G. Engels, K. Geihs, K.M. G€oschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer,

A. Lopes, J. Magee, S. Malek, S. Mankovski, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,

C. Prehofer, W. Sch€afer, R.D. Schlichting, D.B. Smith, J.P. Sousa, L. Tahvildari, K. Wong,

J. Wuttke, Software engineering for self-adaptive systems: a second research roadmap, in: International

Seminar on Software Engineering for Self-Adaptive Systems II, October 24–29, 2010,Dagstuhl Castle,Germany,
Revised Selected and Invited Papers, 2010, pp. 1–32. http://dx.doi.org/10.1007/978-3-642-35813-5_1.

[29] R. Hebig, H. Giese, B. Becker, Making control loops explicit when architecting self-adaptive systems,

in: Proceedings of the Second International Workshop on Self-Organizing Architectures, SOAR ’10,

ACM, Washington, DC, USA, 2010, pp. 21–28. ISBN 978-1-4503-0087-2.

[30] H.C. Lim, S. Babu, J.S. Chase, S.S. Parekh, Automated control in cloud computing: challenges and oppor-

tunities, in: Proceedings of the First Workshop on Automated Control for Datacenters and Clouds, ACDC

’09, ACM, New York, NY, USA, 2009, pp. 13–18. http://doi.acm.org/10.1145/1555271.1555275.

[31] H.C. Lim, S. Babu, J.S. Chase, Automated control for elastic storage, in: Proceedings of the Seventh Inter-

national Conference on Autonomic Computing, ICAC ’10, ACM, New York, NY, USA, 2010, pp. 1–10.
http://doi.acm.org/10.1145/1809049.1809051.

[32] H. M€uller, M. Pezzè, M. Shaw, Visibility of control in adaptive systems, in: Proceedings of the Second In-

ternational Workshop on Ultra-Large-Scale Software-Intensive Systems, ULSSIS ’08, ACM, New York,

NY, USA, 2008, pp. 23–26. http://doi.acm.org/10.1145/1370700.1370707.

[33] T. Patikirikorala, A.W. Colman, J. Han, L.Wang, A systematic survey on the design of self-adaptive software

systems using control engineering approaches, in: Proceedings of the Seventh International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2012, June 4–5, 2012, Zurich,
Switzerland, 2012, pp. 33–42. http://dx.doi.org/10.1109/SEAMS.2012.6224389.

[34] D. Weyns, M.U. Iftikhar, J. S€oderlund, Do external feedback loops improve the design of self-adaptive sys-

tems? A controlled experiment, in: M. Litoiu, J. Mylopoulos (Eds.), Proceedings of the Eighth International

Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2013, May 20–21,
2013, San Francisco, CA, USA, IEEE/ACM, Washington, DC, USA, 2013, pp. 3–12. http://dl.acm.org/

citation.cfm?id¼2487341.

[35] I. Landau, R. Lozano, M. M’Saad, A. Karimi, Adaptive Control: Algorithms, Analysis and Applications,

Communications and Control Engineering, Springer, New York, NY, USA, 2011. http://books.google.

com.br/books?id¼fb1GVyJHeBgC.

[36] D. Weyns, B.R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,

H. Giese, K.M. G€oschka, On patterns for decentralized control in self-adaptive systems, in: R. de Lemos,

H. Giese, H.A. M€uller, M. Shaw (Eds.), International Seminar on Software Engineering for Self-Adaptive

Systems II, October 24–29, 2010, Dagstuhl Castle, Germany, Revised Selected and Invited Papers, Volume

7475 of Lecture Notes in Computer Science, Springer, New York, NY, USA, 2010, pp. 76–107. http://dx.doi.
org/10.1007/978-3-642-35813-5_4.

[37] S.S. Andrade, R.J. de A Macdo, Assessing the benefits of search-based approaches when designing self-

adaptive systems: a controlled experiment. J. Softw. Eng. Res. Dev. 3 (1) (2015) 1–27. http://dx.doi.org/
10.1186/ s40411-015-0016-z.

202 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00008-3/rf0145
http://doi.acm.org/10.1145/1555271.1555275
http://doi.acm.org/10.1145/1809049.1809051
http://doi.acm.org/10.1145/1370700.1370707
http://dx.doi.org/10.1109/SEAMS.2012.6224389
http://dl.acm.org/citation.cfm?id=2487341
http://dl.acm.org/citation.cfm?id=2487341
http://dl.acm.org/citation.cfm?id=2487341
http://books.google.com.br/books?id=fb1GVyJHeBgC
http://books.google.com.br/books?id=fb1GVyJHeBgC
http://books.google.com.br/books?id=fb1GVyJHeBgC
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1186/ s40411-015-0016-z
http://dx.doi.org/10.1186/ s40411-015-0016-z

CHAPTER

ANALYZING THE ARCHITECTURES
OF SOFTWARE-INTENSIVE
ECOSYSTEMS

9
P. Boxer*, R. Kazman†,{

Boxer Research Limited, London, United Kingdom* Carnegie Mellon University, Pittsburgh, PA, United States†

University of Hawaii, Honolulu, HI, United States{

9.1 INTRODUCTION
An ecosystem is a community of managerially and operationally independent organizations interacting

with each other and with their environment. Software-intensive ecosystems—ecosystems in which the

behaviors of the participating organizations are themselves dependent on software because of the in-

tensive use they make of it—are an increasingly important social, financial, and political force in the

world. We find examples of software-intensive ecosystems in industries concerned with such things as

transport, healthcare, defense, government, and communications.

These software-intensive ecosystems are different from traditional “closed-world” software sys-

tems that can be analyzed independently of the contexts in which they are embedded. Such ecosystems

exhibit ultra-large-scale characteristics: they are constantly evolving, they have no centralized control,

they have many heterogeneous elements, their requirements are inherently conflicting and unknow-

able, failures are normal, and the boundary between people and systems is blurred [1]. In software eco-

systems, unlike systems-of-systems, the participating organizations may be in competition with each

other. And the emergent properties of such ecosystems could not have been predicted by the designers

of the software systems on which they depend. For example, performance problems due to unantici-

pated demands on the ecosystem, or unanticipated interactions between parts of the ecosystem, are a

common form of emergent property that challenge designers.

A number of key drivers underlie this change, challenging the former “closed-world” perspective

on software engineering which underlies system and system-of-system design. Among these are the

tempo at which the ecosystems are themselves expected to evolve, the ubiquity and criticality of

the software on which they depend, and the entanglement not only between software systems and

the way they are used by people, but also between interoperating software systems that are themselves

managerially and operationally independent of each other [2].

To understand the behaviors of such ecosystems, the analysis of their architectures must not sep-

arate the software systems from the organizational contexts-of-use that depend on them. New ways are

needed for analyzing the patterns in how the parts of the ecosystem interact, and to what ends. This is

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00009-5

Copyright # 2017 Elsevier Inc. All rights reserved.
203

http://dx.doi.org/10.1016/B978-0-12-802855-1.00009-5

the case even where the interactions between the organizations within the ecosystem primarily concern

the use of software itself, such as is to be found in the Microsoft and iPhone ecosystems [3].

9.1.1 THE CHALLENGE OF “WICKEDNESS”
Understanding the behavior of ecosystems presents a form of “wicked” problem [4]. Wicked problems

have a number of characteristics. Every wicked problem is essentially unique while also being a symp-

tom of other problems. It has no definitive formulation; there is neither clarity over when it will no

longer be a problem nor an immediate or ultimate test of a solution. There are no well-described

set of potential solutions and numerous ways of explaining its causes. While every implemented so-

lution has consequences, therefore, solutions are not true-or-false, but good-or-bad. The final twist,

however, is that the planner (designer) has no right to be wrong. As Rittel and Webber said: “As

we seek to improve the effectiveness of actions in pursuit of valued outcomes, as system boundaries

get stretched, and as we become more sophisticated about the complex workings of open societal sys-

tems, it becomes ever more difficult to make the planning idea operational” [4]. With wicked problems,

we simply cannot draw a “closed-world” box around the ecosystem and analyze it, even though that is

what is expected of us. This presents us with a challenge not just at the level of the ecosystem, but also at

the level of the software systems on which it depends.

In particular, consider the characteristic: “Every implemented solution has consequences.” The na-

ture of this characteristic appears to undermine our ability to do any meaningful analysis of an ecosys-

tem.Where does one stop analyzing consequences? On the other hand, simply not analyzing ultra-large

scale software-intensive ecosystems is an unpalatable option. Society is increasingly dependent on

them, for example, the social networking communities enabled by the internet, the patterns of energy

production, distribution and use enabled by the Smart Grid, the interconnected networks of healthcare

providers, users, and organizations, or the forms ofmilitary response enabled by networked capabilities.

Let us briefly consider just one of these examples. The US Army, in considering the impact of such

wicked problems concluded that a different approach to problem solving was needed by a commander

(as the planner/designer) that was inductive in nature, concerned with producing a well-framed problem

hypothesis (what the Army calls a “mission objective”) and an associated design for engaging with it—

a conceptual approach for the problem. Thus as much attention had to be paid to the way the problem

was framed—the way the boxes were defined—as to the subsequent analysis of what was placed within

and between those boxes. The conclusion reached was as follows:

The issue is whether a commander should begin by analyzing the mission objective, or whether com-

plexity compels the commander to first understand the operational problem, and then — based upon

that understanding — design a broad approach to problem solving. The answer to this question

depends upon the problem and the mission objective. If the problem is structured so that professionals

can agree on how to solve it, and the mission objective received from higher headquarters is properly

framed and complete, then it makes sense to begin with the analysis of the mission objective (break-

ing it down into specified, implied, and essential tasks). However, if the problem is unstructured (pro-

fessionals cannot agree on how to solve the problem), or the mission objective received from higher

headquarters is not properly framed (it is inappropriate for this problem), or higher headquarters pro-

vided no clear guidance (permissive orders), then it is crucial to begin by starting to identify and un-

derstand the operational problem systemically.

204 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

Another way of stating the challenge, therefore, is to improve our systemic understanding of the or-

ganizational contexts-of-use into which software systems are being deployed, before analyzing any

proposed architectures or architectural changes for such systems.

9.1.2 ANALYZING COMPLEMENTARITY WITHIN ECOSYSTEMS
The early work on sociotechnical systems defined enterprises as composite systems combining tech-

nological and social systems [5]. Analysis of the technological system involved “establishing a system-

atic picture of the tasks and task interrelations required by a technological system,” revolving around

the establishment and control of the boundaries of this technological system and the way it interacted

with its environment. But analysis of the social system involved establishing the nature of the social

relations between the people engaged in the tasks defined by the technological system. The boundaries

around these social systems related to the way in which meaning was shared within these boundaries

[6]. The technological and social systems were therefore complementary: the behavior of each type of
system was entangled in the behavior of the other, and the behavior of neither system could be defined

independently of the other [7]. The composite system that was the enterprise therefore involved man-

aging the alignment between these two complementary systems to meet a shared goal. This sociotech-

nical system was defined as being open, so that this alignment process had to be dynamic in order to be

able to change and adapt to changes in its environment [8].

With software-intensive ecosystems we are dealing with multiple enterprises that are managerially

and operationally independent of each other, but that are still necessarily sociotechnical [9]; their

software-intensive nature tells us something about the technological systems that they use. As a result,

any analysis of software-intensive ecosystems has to be able to account for the behaviors of the com-

plementary technological and social systems, and also has to be able to account for their alignment.

In this we examine the architectural characteristics of adaptability that follow from this character-

ization of the problem of understanding ecosystems. We do this as a means of motivating how

traditional architectural analysis can be extended to take account of complementarity. Such an analysis

can give us insight into the properties of an ecosystem and can help us reason about the alignment of the

technological systems within the ecosystem with the goals of the stakeholders within its many social

systems (an example of the complexity of which can be seen with the Smart Grid [10,11]). For any

organization that is planning on creating a substantial piece of an ecosystem, it is prudent to examine

the architecture for this piece, to ensure that it will meet the organization’s goals and will be appro-

priately adaptive to change from within and without.

9.2 THE METROPOLIS MODEL AND CORE-PERIPHERY STRUCTURES
The entanglement of the technological and social systems within an ecosystem demands an approach

that can understand the impact of software not only on the technological systems, but also on the cor-

responding social systems with their associated alignment processes. This understanding is necessary

to considering consequences for software development. The Metropolis Model [12] provides a starting

point for understanding how software systems are constructed, maintained, and operated.

At the heart of this model is the distinction between the core and the periphery, which has been often

noted as a key architectural construct in complex software systems [13]. The core-periphery

2059.2 THE METROPOLIS MODEL AND CORE-PERIPHERY STRUCTURES

architectural pattern provides the maximum opportunity for developers (and the producers and con-

sumers sometimes called prosumers—of content) at the periphery to embed the behavior of a system

into their own contexts-of-use, enabling the activities of the eventual customers and end-users within

the larger ecosystem. Examples of cores include the Linux kernel, the Android platform, Facebook’s

application platform, the Apache core, iPhone’s iOS platform, Hadoop Common, and so forth. Each of

these “cores” provides an abstraction upon which the actual end-user-facing functionality is built. The

core itself provides little or no end-user value, but rather provides the architectural foundation upon

which others build value. The core is typically relatively small, compared with the size of the periphery.

It controls access to the platform’s resources and hence provides the means to achieve the system’s

most important quality attributes (performance, modifiability, availability, security, etc.).

For example, the core (iOS) platform of the iPhone enables application developers and users to

develop uses independently that can in turn taken up within a wide variety of contexts-of-use. Making

GPS location data accessible to users and application developers on the iPhone platform has spawned a

wide variety of location-based services. A simple diagram showing the relationships defined by the

Metropolis Model is given in Fig. 9.1.

We can apply the core-periphery distinction to the way modularity and its associated interdepen-

dencies are defined for a software system. For modules in the core, tight coupling between them creates

mutual dependencies. In the periphery, coupling is much looser creating a measure of independence in

the way modules can be used. The strength of the core-periphery pattern is therefore the relatively few

constraints it imposes at the periphery on how modules may be used and combined, and how it allows

their use to be modified. A core-periphery structure is less over-determining of its use at the periphery

than it is at the core. This under-determination at the periphery frees stakeholders to use systems in

ways that have not been anticipated in their original design. This enables novel compositions of sys-

tems (such as the mashups that appear regularly in web-based and open-source applications), but it also

leads to emergent system properties.

The core-periphery distinction applied to the software describes patterns of necessary dependency.
It can also be applied to the social systems within an ecosystem, describing the ways in which stake-

holders align their behaviors to each other. For example, according to the mirroring hypothesis [14],

differences in the ways software modules are coupled will also tend to be mirrored by the organizations

FIG. 9.1

Metropolis model roles and relationships.

206 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

that develop them, even if these “organizations” are open-source communities or other ad hoc collec-

tions of interested individuals. And even in open-source communities there is a subset of all developers,

called committers, who have primary responsibility for the core functionality, integrity, and evolution

of the overall system [3]. The core-periphery distinction applied to a social system thus describes pat-

terns of chosen dependency reflecting choices made by stakeholders, in contrast to the necessary de-

pendencies in software systems.

Together, the chosen and necessary dependencies described by the core-periphery distinction re-

flect the complementary forms of dependency associated with the technological and social systems

within an ecosystem. The challenge in analyzing the adaptability of the architecture of an ecosystem

therefore involves describing how necessary and chosen dependencies interact, bringing their comple-

mentarity within a unifying framework.

9.3 THE CHALLENGE TO ARCHITECTURE ANALYSIS
Architecture analysis has been used for over two decades as a risk analysis and risk mitigation tech-

nique. The central tenet of architecture analysis is that one can profitably analyze the proposed archi-

tecture for a software system before it has been built, or before major changes to it are made [15]. In

doing so, potential risks to the systemmay be discovered and mitigated at a low cost (relative to the cost

of these risks going undiscovered until the system is developed and fielded). This has been shown over

many years, by many researchers (e.g., [16–18]). In this chapter we focus on extending the architecture
tradeoff analysis method (ATAM) [19], as it is the most widely adopted method and it has already been

shown to be effective in analyzing larger contexts, such as systems-of-systems [20].

The ATAM and its various progeny [21–23] have adopted the use of software system scenarios to

elaborate and reify the quality attributes demanded of the system. This technique has shown itself to be

well suited to understanding and analyzing the architectural characteristics of the single systems (and of

directed and acknowledged systems-of-systems1) needed to deliver those attributes. It has been

employed countless times over the past decade, in hundreds of large companies and government

organizations.

A quality-attribute scenario is a description of a stimulus-response pair: some portion of the system

is stimulated and the system responds in a specified, measurable way. The impact of scenarios, like use-

cases, can be traced through a software system. These scenarios, in addition to describing the direct
interaction of some end-user with the software system, also describe a quality attribute of the system

(e.g., a latency goal) within the context-of-use defined by the scenario. The achievement of these

quality-attribute-related responses brings benefit to the stakeholders in the behavior of the system.

For example, a correct response might be of great value to an end-user stakeholder if it arrives predict-

ably within 100 ms, of moderate value if it arrives predictably within 1 s, and of little value if it arrives

unpredictably or if it predictably arrives within 10 s.

1Both directed and acknowledged systems-of-systems have a single design authority over the development of their compo-

sition from their (managerially and operationally independent) constituent systems. When deployed into an operational

space, these systems-of-systems operate concurrently alongside other systems-of-systems using overlapping sets of constit-

uent systems, collectively forming a collaborative system-of-systems [17]. These collaborative systems-of-systems create

distinctly different demands on systems of governance [24].

2079.3 THE CHALLENGE TO ARCHITECTURE ANALYSIS

We can use scenarios to trace through the core-periphery interactions when trying to identify, mea-

sure, and understand the benefits radiating out to end-users at the periphery on the basis of their direct

uses of the system. Scenarios such as these are necessary to analyze a shared infrastructure, such as a

core. Such scenarios might illuminate contention for resources; consider, for example, understanding

the load on an operating system kernel when multiple processes are operating and competing for shared

resources.On a larger scale, cloud computing platforms such asAmazon’sEC2 support large numbers of

simultaneous users, each of which could request thousands of server instances [http://aws.amazon.com/

ec2/]. And social computing platforms such as Facebook have over 250 million active users each day

[http://www.facebook.com/press/info.php?statistics], each of whom will consume core resources, po-

tentially interacting through applications that are built on top of Facebook’s core application platform.

This is depicted in Fig. 9.2, where three different scenarios are shown at the periphery. Each sce-

nario sits within a particular context-of-use, and connects some end-user input—a stimulus—to an

output (perceived by a potentially different end-user). Consider, for example, the connecting lines

for each scenario: α1β1, α2β2, and α3β3. These might represent different contexts-of-use in which

end-users are making voice-over-IP (VoIP) connections, for example conferencing, or saying hello

to a colleague on the other side of the world, or giving a seminar. The end-users within each scenario

might be employing different software, but in the end they must use, and share, some resources at the

core—name servers, protocol translators, routers, satellite links, IP stacks, fiber-optic cables, etc. Fur-

thermore, the stakeholder perspective on each of these scenarios could be that the VoIP call would only

be of value if latency and jitter were both kept within specified ranges.

In a software-intensive ecosystem, the under-determining effects of core software systems on their

periphery free end-users to act independently of each other, but also enable new kinds of interactions

between end-users. The scenarios associated with these interactions are not necessarily directly related

to their use of any given system, and may involve multiple core systems that can be operationally

and managerially independent of each other. For example, Facebook’s location features allow users

and service providers to interact with each other in ways that are only made possible by their use

of a smartphone.

FIG. 9.2

Scenarios over a core-periphery structure.

208 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.facebook.com/press/info.php?statistics

This creates a much larger and more complex environment defined by interactions that are indirect
(from the perspective of the core software systems). For example, the actors within scenarios 1, 2, and 3

in Fig. 9.2 may belong to different research institutions, but are all involved in a single research col-

laboration for which a number of core systems become a key enabling element. It is the dominance of

these indirect interactions over direct interactions that are the distinguishing characteristic of an eco-

system and that increase the demands on the adaptability of an ecosystem’s architecture.

9.3.1 MULTISIDED INTERACTIONS
This more complex environment is represented in Fig. 9.3 as a matrix of multisided interactions in
which the sets of columns correspond to sets of direct interactions associated with direct use of parti-

cular core technological systems (e.g., particular uses of VoIP or screen-sharing) that are operationally

and managerially independent of each other. The rows correspond to the indirect interactions associ-

ated with particular forms of social collaboration across multiple core systems (e.g., a research collab-

oration or a marketing project). Thus the matrix represents interactions between the technological and

social systems within the larger ecosystem.

A new challenge arises therefore for architecture analysis: what is the impact of these indirect in-
teractions on the architecture of the operationally and managerially independent core systems (VoIP,

Screen-sharing, etc.)? From the perspective of the core systems, each row is a collaborative system-of-

systems in which indirect effects dominate its behaviors.

For example, in Fig. 9.3, consider the indirect effects that might arise where the end-users in the

research collaboration are combining the use of VoIP, screen-sharing, and file-sharing systems. Mul-

tiple X’s in a column represent the architectural challenges facing the technological system. For

example, many users of the VoIP systems will be competing for resources, such as computation

and bandwidth, affecting latency. Or the developers of those applications may have chosen a common

protocol affecting the development time of individual systems. Or charging schemes may affect an

Research
collaboration

Marketing
project

Board
meeting

...

VoIP direct
scenarios

Screen-sharing
scenarios

File-sharing
scenarios

X

X X

X X

X X X X X

X

XX

XX

XX

FIG. 9.3

Multisided interactions.

2099.3 THE CHALLENGE TO ARCHITECTURE ANALYSIS

end-user’s choice of combined systems to employ (e.g., as a result of differential charging schemes for

relatively time-sensitive internet-traffic such as VoIP packets, and relatively non-time-sensitive traffic,

such as file sharing).

Such considerations are of real concern to core providers because these indirect interactions can

collectively have a huge effect on the performance and behavior of the core. As an example, Google

Maps imposes resource restrictions on the services that it provides to other organizations, in an effort to

moderate worst-case resource usage [http://www.zdnet.com/blog/google/google-maps-api-team-says-

stop-it/429].

But decisions made affecting the capabilities of core systems will also impact on the way they can

participate in the indirect interactions chosen by stakeholders. The variety and scale of these indirect

interactions arising between stakeholders within the social system will determine the emergent qual-

ities of the ecosystem. But multiple X’s in a row represent social collaborations that also present ar-

chitectural challenges: how will the systems interoperate, and how will the collaboration manage that

interoperation within its larger context?

To summarize, the presence and impact of these indirect interactions is an essential characteristic of
software-intensive ecosystems, arising from the entanglement of the technological and social systems.

To understand these ecosystems, and to analyze them, we therefore need to be able to characterize a

pragmatically representative set of the interactions between many independent actors across indepen-

dent systems [25]. But if we just analyze the direct impact of the αβ paths of each direct interaction

(vertical in the matrix) with the core-periphery architecture of any given system—what we do in tra-

ditional architectural analysis—we shall not understand the collective impact of the indirect interac-

tions (horizontal in the matrix) between many such direct interactions across many systems caused by

the social collaborations taking place within the larger sociotechnical ecosystem. We shall thus not be

in a position to analyze the potential emergent effects and behaviors arising from the way the core sys-

tems are used within this larger context. We must therefore be able to analyze the multisidedness of

demands arising from these indirect interactions. This analysis will always be a sample of such de-

mands, and hence effort must be taken when creating the multisided matrix to ensure that the indirect

interactions collected are pragmatically representative of the population of users and usages across

their variety of contexts-of-use. This is where the limitations imposed by wickedness emerge. Any sys-

temic understandingmust always be limited by the nature of the interests of the stakeholders driving the

need for understanding.

9.4 EXTENDING ARCHITECTURAL ANALYSIS
To be able to respond to this challenge, a modeling approach is needed that can represent the way the

multiple stakeholders within a sociotechnical ecosystem interact with each other. The multisided ways

in which the technological and social systems align to each other within the ecosystem need to be de-

scribed and analyzed. To give three examples from our own experience:

• The suppliers of orthotic services within the UK National Healthcare System wanted to change

the ways in which orthotics clinics were managed and regulated in order to improve the quality of

care that they provided and reduce the underuse of their services by the larger ecosystem [26].

210 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

http://www.zdnet.com/blog/google/google-maps-api-team-says-stop-it/429
http://www.zdnet.com/blog/google/google-maps-api-team-says-stop-it/429

• A supplier of unmanned aerial vehicles (UAVs) needed to understand the way the use of these

UAVs was changing within the context of the missions arising within operational theater. Their

understanding of this dynamic then determined what kinds of architectural change needed to

be made to the UAV systems themselves [27].

• A government department supplying on-line search capabilities in support of an eGovernment

initiative needed to understand how citizens’ questions were changing. The department’s

understanding of how this dynamic impacted on the way departments needed to collaborate then

determined what kind of architectural change was needed to the search capabilities [28].

In each case, it was necessary to analyze the way indirect interactions between enterprises (clinics,

mission commanders, collaborating departments) and their customers (patients’ conditions, adversar-

ies’ threats, citizens’ questions) created multisided demands on the supporting technological systems.

This involved distinguishing the stakeholders in the technological systems supplying products and ser-

vices, and the stakeholders in the social systems identified with the horizontal collaborations creating

indirect demands on those products and services. And it involved being able to model the impact of new

and anticipated forms of collaboration on demands as well as on the way the supporting technological

systems were used [29]. Again, this modeling could never represent all possible demands, but our in-

tention was to represent a pragmatically valid sample of the known and anticipated forms of demand, to

drive the analyses.

But these software-intensive ecosystems are “wicked”: any models of multisidedness are also hy-

potheses about what forms of multisidedness should be supported by any given technological systems

within it on the basis of the view they take of the larger ecosystem. And this view depends on a prior

analysis both of way the current technological systems can be aligned to the social systems of demand,

and also of the way these demands are themselves changing. For example, Facebook makes its appli-

cation platform available to developers who then create applications that add value to Facebook users.

But these applications often weave together much more than just Facebook resources—they might in-

corporate Google maps, demographic data from the census.gov, Twitter feeds, personal information

from other web-sites, and so forth. The forms of alignment are constantly changing and evolving.

We can never completely master such evolutionary pressures (as Rittel andWeber warned in their orig-

inal discussion of wickedness, nearly 40 years ago), but the analysis that we can do endeavors to capture

the dimensions and degrees of wickedness as accurately as possible.

9.4.1 ELICITING MODELS OF MULTISIDEDNESS
An analysis of a software-intensive ecosystem starts from an analysis of the way forms of value are

created within the ecosystem. That is, we must understand value as it pertains to the social systems

creating demand rather than solely to the technological systems supplying products and services

[30]. Consider, for example, the case of the orthotics clinics. The value was in the way treatments im-

pacted on the patient’s condition through the life of the condition within the context of the patient’s life.

For the UAVs, the value was in the way the UAVs could be combined with other assets to produce

operational effects on threats with much greater timeliness and proportionality. And for the government

departments responding to citizens’ questions, the value was in the ability to respond to greater num-

bers and varieties of questions without commensurate increases in staffing levels.

2119.4 EXTENDING ARCHITECTURAL ANALYSIS

These forms of value arise within specific contexts, giving rise to indirect demands on the support-

ing technological systems. The scope of an analysis of an ecosystem is therefore bounded by the anal-

ysis of the relationships between these indirect demands, the direct demands they give rise to, and the

activities of the technological systems through which the demands are ultimately satisfied. This scop-

ing starts with defining the relevant customer situations giving rise to indirect demands. The varieties of

collaboration that respond to these indirect demands are then analyzed in terms of the multisidedness of

demands they generate on the supporting technological systems [25]. In the case of the orthotics clinics,

this meant understanding the referral pathways through which demands for treatment were defined. For

the UAVs, it involved understanding how the tempo and nature of threats were changing within the

context of unconventional warfare. And for the government it meant understanding how the nature

of the questions varied over time with respect to the changing concerns of citizens.

The corresponding analysis of the supporting technological systems and the processes by which

their use is aligned to the multisidedness of demands involves modeling tasks, resources, organiza-

tional processes, and governance. Different methods of conceptual or structural modeling are con-

strained by the different categories of things and relationships between things that they make it

possible to represent [31]. These determine the forms of knowledge that can be represented in particular

domains [32,33]. Many such frameworks exist, for example, Zachman [34], DoDAF [35], or Federal

Enterprise Architecture [36]. The characteristic of all of these frameworks, however, is that they model

physical and digital structures and behaviors, and the accountability hierarchies under which these op-

erate. Thus they assume a single unifying architecture for a single organization (whether virtual or not).

Our method of analysis used for eliciting models of multisidedness admits multiple organizations,

adding representations for network relationships across these organizations, and for the organization of

customers’ contexts-of-use [37]. This enables the relationships between multiple organizations to be

modeled, aligned to different definitions of demand, for example, reflecting different ways of organiz-

ing multiepisode treatments [26], using UAVs in concert with other assets [38], or collaborating across

government [28].

This extended representation [39] allows us to analyze the different forms of alignment with respect

to different forms of demand through analyzing patterns of simple relations across the underlying

models. These patterns enable us to represent the way underlying technological systems are aligned

to the ultimately social contexts-of-use through a set of layers, producing a stratified analysis

[26,40]. The structural characteristics of this stratification then reveals different kinds of risk associated

with the way their constituent parts within and between layers interoperate [41].

The multisided matrix therefore represents one layer within this stratification, being the intersection

between these two analyses: of the way the technological systems respond to direct demands, and of the

way the social systems of collaboration generate indirect demands.

9.4.2 MULTISIDED ATAM
The nine steps of the ATAM, as it currently exists, are as follows:

Phase 1:

1. Present the ATAM.

2. Present business drivers.

3. Present architecture.

212 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

4. Identify architectural approaches.

5. Generate quality-attribute utility tree.

6. Analyze architectural approaches.

Phase 2:

7. Brainstorm and prioritize scenarios.

8. Analyze architectural approaches.

9. Present results.

To analyze a software-intensive ecosystem a number of steps must be modified in order to take into

account the complementary nature of its technological and social systems. The steps of the ATAM

remain the same, but how we carry out those steps changes.

The presentation of business drivers in the ATAM (step 2) has previously assumed a single techno-

logical system directly supplying products or services. In an ecosystem, there is another set of “business

drivers” that aremore difficult to elicit and prioritize as they emerge from the social collaborations of end-

users. These business drivers are associated not just with the customer’s business, but also with the other

stakeholders with which the customer collaborates in responding to the customer’s customers. Identify-

ing them means elaborating the architecturally significant characteristics of the collaborations in which

the customer participates. These are represented by indirect interactions reflecting the different forms of

collaboration supported by the technological systems, following the process described in Ref. [26].

The presentation of the architecture (step 3) will always be a snapshot, since the ecosystem is con-

tinually changing, but like the analysis of business drivers, it will be based on the prior elicitation pro-

cess. Thus the analysis of collaborations from which the multisided matrix is derived will need to

document the way in which architectural constraints are placed on them, and the way the technological

and social systems are dynamically aligned. Both the underlying technological systems and the social

systems defining these collaborations are outputs of the elicited models of multisidedness described

earlier. The multisided matrix therefore represents the particular ways in which these systems comple-

ment each other, representing the layer in the stratification where these two systems meet. From the

perspective of a multisided ATAM therefore, the social layers of the overall stratification represent the

indirect interactions giving rise to the direct demands on the technological systems.

The most important change in a multisided ATAM is therefore this elicitation of the indirect in-

teractions, followed by their prioritization. In the ATAM there are two techniques for eliciting and

prioritizing scenarios: the quality-attribute utility tree (step 5) and scenario brainstorming and priori-

tization (step 7). In the multisided ATAM, step 7 must be modified to elicit two sets of scenarios, de-

scribing direct and indirect interactions, distinguishing the interests of the stakeholders in the

technological systems and in the social systems of collaboration respectively. The rows of the multi-

sided matrix therefore define indirect scenarios presenting a set of stimuli and responses in the same

way as the columns, but for different kinds of scenario. For the orthotics clinics, these indirect scenarios

were the different kinds of referral situation emerging from the referral pathways through which de-

mands for treatment were defined. For the UAVs, the indirect scenarios were different types of threat

situation needing to be countered, and for eGovernment it meant understanding the different types of

collaboration needed to respond to different types of questions from citizens.

Returning to the small-scale example in Fig. 9.3, each column for VoIP stream, screen-sharing, and

file-sharing session must have direct scenarios with associated stimuli and responses defining their di-

rect scope across the rows. But since the rows themselves represent indirect scenarios (the point of

2139.4 EXTENDING ARCHITECTURAL ANALYSIS

which is to satisfy a social demand arising in the larger ecosystem, for which its technological systems

had potentially never been designed), we must consider both dependencies and alignment processes

between the direct scenarios along a row, each of which presents an interoperability requirement

and a potential contention for shared resources between operationally and managerially independent

systems. Consider, for example, the Research Collaboration in the first row in Fig. 9.4.

Perhaps an end-user in this interaction wishes to capture the content of a screen-sharing session and

share that with other end-users. Such a scenario imposes an interoperability requirement between the

screen-sharing and file-sharing systems. This might be accomplished via a separate system function

(i.e., this interoperability requirement might have been anticipated by the architects and implemented)

or it might be accomplished via a user interaction (e.g., the user saves a file from the screen-sharing

session, and then copies this file to a separate device from which it is file-shared with another user). If

the former, then the systemmay be said to have an indirect scope defined by the systems it can enable to

interoperate, shown in Fig. 9.4 as a separate set of columns.

Whether the response to this intersystem portion of the indirect scenario is automated or manual, it

has a number of important effects on the quality-attribute responses of the collaboration as a whole that

must be taken into consideration:

• its latency must be considered when analyzing the performance of the ecosystem as a whole;

• if the interoperation is accomplished by a system function, that function might be a single point of

failure, thus compromising availability;

• if the interoperation is accomplished by a user, that use might be a security risk for the system

(by writing the information on a sheet of paper, or by transferring it using unsecured channels); and

• if the interoperation is anticipated to change frequently, this might be a modifiability risk for

the system.

Research
collaboration

Marketing
project

Board
meeting

...

X X X X X X X

X

XX

XXXX

X X X X

X

X

VoIP direct
scenarios

Screen-sharing
scenarios

Screen-file
function

Indirect scope defined
by number of different

systems spanned

Direct scope defined
by number of rows

spanned

File-sharing
scenarios

FIG. 9.4

Functions with direct and indirect scope.

214 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

Furthermore, the set of rows (the indirect scenarios) in the multisided matrix define the environment
under which each individual row is evaluated. Referring once again to Fig. 9.4, the Research Collab-

oration will be sharing and competing for resources with theMarketing Project, the BoardMeeting, and

perhaps other indirect interactions which collectively may be modeled as stochastic processes.

The consideration of such a complex set of indirect scenarios then proceeds as any other scenarios

would be analyzed in the traditional version of the ATAM: by mapping each scenario to a documented

set of architectural approaches, and probing for risks associated with the mapping. In the above case we

might probe for interoperability, availability, security, and performance risks. However, there is one

important difference with the traditional ATAM scenario analysis: the rows of the multisided matrix

describe the environment within which each direct scenario is analyzed. This analysis process will be

exemplified in the next section.

9.5 AN EXAMPLE ANALYSIS
In this section we provide an example showing how the multisided ATAM was approached, using a

prototype system.

This system is a prototype integrated grid supercomputing infrastructure for distributed high per-

formance computing, in which the emphasis is on the variety of collaborations that can be supported.

While the specific details of the system have been fabricated, the technical challenges identified are

representative of those faced by the real system as it builds on the existing capabilities of the TeraGrid,

particularly with reference to the role of Science gateways in supporting collaboration across science

communities supported from gateways [https://www.teragrid.org/web/science-gateways/home].

To analyze this system, a multisided matrix was elicited through structured interviews with strate-

gic stakeholders, in order to establish a pragmatically representative set of indirect interactions. A por-

tion of the multisided matrix is shown in Fig. 9.5. The indirect scenarios will be described in

Section 5.9.1.

Each row of the multisided matrix describes an indirect scenario with a set of end-to-end stimuli and

responses addressing different quality-attribute concerns. But recall that each row requires the orches-

tration of independent systems. An X in a cell of the matrix describes a single use of a single system

(which includes its stimulus-response behavior). The entire row is a collection of these systems, ap-

propriately interoperating, via human or system mediation. Finally, each column in the matrix de-

scribes a set of potential simultaneous demands on the systems—a set of simultaneously occurring

stimuli with associated response goals. We shall use this information in probing for risks in the eco-

system architecture.

Consider the example view of the grid-based high performance computing architecture presented in

Fig. 9.6, in which the services to end-users all have an indirect scope spanning multiple data providers

(DPs), for example the research institutions within the Southern Earthquake Centre; and resource pro-

viders (RPs) or example facilities provided by TeraGrid, each of which is operationally and manage-

rially independent. An example of the type of scenario being considered is physics-based earthquake

wave propagation simulations [42], with their associated challenges of managing large-scale scientific

workflows [43] with their associated semantics [44]. Data transformation is concerned with aligning

time-series physics calculations across different mesh sizes, and data visualization involves animated

renderings of terrain deformations [45].

2159.5 AN EXAMPLE ANALYSIS

https://www.teragrid.org/web/science-gateways/home

9.5.1 EXAMPLE INDIRECT SCENARIOS
Consider the following scenarios which were a subset of those collected from the Utility tree and sce-

nario brainstorming exercises:

1. A new job request from a high priority user occurs that spans multiple RPs. Within 15 min, an

administrator reviews current usage and availability of resources suitable to accommodate this

request, and enters the job into the job queue with high priority. The job is dispatched within 3 min

and completes execution within its deadline (6 h).

Indirect scenarios

1. High priority use

2. Research group

3. Complex workflow

4. Interrupted workflow

5. Data bottleneck

6. Seismologists

Services supporting
indirect scenarios:

virtual scheduler,
workflow language/

compiler,
data relocation,

data transformation,
data visualization

Resource provider
direct scenarios

Data provider
direct scenarios

etc.

Direct scenarios

FIG. 9.5

The elicited multisided matrix.

Data visualization

message
high speed
throughput channel
resource provider

local data store

client

service

data provider

DP1

RP1

RP2

RP3

RP4

DP2

DP3

Data transformation/
fusion

Virtual
scheduler

Workflow language/
compiler

Data relocation/
checkpoint

Client

FIG. 9.6

Architectural representation.

216 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

2. An international research group schedules a regularly run job that employs six RPs and two DPs, all

from different organizations. The schedule contains legacy-based estimates of the resources

required from each of the providers, and the bandwidth required to move the data so that it is

available “just in time” at each RP. The job executes as scheduled and terminates within 4 h.

3. Three collaborating scientists submit a workflow entailing three related jobs at different remote

sites, each of which needs different processing capabilities (speed, memory, cache size, etc.). The

system automatically matches two of the three jobs to resources that satisfy their execution

requirements. The third job requests resources beyond what is available. The system matches this

request to the best available RP and notifies the user of the anticipated response time, given this

allocation, within 30 min. The user can then choose to accept the allocation or cancel the workflow.

4. While a long-running collaborative scientific simulation employing four RPs at remote sites is

executing one RP is shut down because it has lost its air conditioning. Jobs executing on this RP

are suspended, relocated to an alternate RP, and restarted. Users of the workflow are notified

within 10 min and the workflow is reconstituted within 20 min. Users can then choose to accept this

new workflow or resubmit the job (or a portion of it, resuming from a checkpoint).

5. A team of scientists collaborating on an analysis requiring intensive simulation submit a 10-h

(scheduled) job for execution that runs 100 interdependent jobs at three different RP sites. This

job involves a large amount of data staging from six other RP and DP sites, and transfers of

computed data between these sites. The job was scheduled to use 50% of the resources at site 1

throughout its execution cycle, but, due to slow arrival of data, a site monitor determines that site 1

is consistently only using 50% of its resources over the first hour of the job, and alerts the users.

The users in turn contact a system administrator who suspends the job, determines that the source

of the bottleneck is a single DP, re-allocates two additional DPs to share the load, and restarts the

job from the latest checkpoint. Execution completes with less than a 2 h delay.

6. A team of seismologists concerned about an impending earthquake in a highly populated area needs

to use multiple sets of sensor data to anticipate forthcoming events. These scientists need to run

concurrent simulations of 1000 predictive models at different levels of fidelity within 6 h, to

generate recommendations for civil defense authorities.

9.5.2 PERFORMING THE ANALYSIS
To see how this elicited information is employed let us first consider the evaluation of indirect scenario

6 in Section 5.9.1. The architect traced out the steps involved in satisfying this scenario using the ar-

chitectural representation depicted in Fig. 9.6:

• a user first interacts with theWorkflow language and compiler component to define the programs to

be run and their (data) dependencies; the Workflow language/compiler provides an executable

script that ensure that programs are executed in the correct order and that data is transferred, stored,

and transformed appropriately;

• this script is transferred to the virtual scheduler, which begins allocating resources in an attempt to

meet the specified 6 h deadline;

• the virtual scheduler allocates jobs to a set of organizationally independent RPs and DPs;

• the data relocation/checkpoint service is used to transfer data among the independent RPs and to

perform periodic checkpoints (to provide snapshots of stable intermediate results in case of

processing failures or interruptions);

2179.5 AN EXAMPLE ANALYSIS

• the data transformation/fusion service is used to translate data formats and to fuse data sets so that

different programs, RPs, and DPs can exchange data and interoperate; and

• when the jobs have all completed the results are sent to the data visualization service and then

returned to the requesting user.

The purpose of the multisided ATAM is to discover risks in the architectural decisions that have been

made and in decisions that have not been made as they apply to the row collaborations. In the course of

evaluating scenario 6, a number of risks were noted:

1. Thevirtual scheduler employs “best effort” scheduling; it allocates jobs fairly, according to thepoolof

jobs to execute, the pool of available resources, and the priorities of the jobs.However, the policies for

job prioritization are unclear, particularly since the system is not “owned” by a single organization.

2. The virtual scheduler is a single service and hence represents a single point of failure for the

system.

3. The performance characteristics ofWorkflow language/compiler are unknown for very large jobs;

it is possible that the calculation of the workflow itself could consume significant time, putting the

deadline for the job at risk.

4. Combining data relocation and fusion into a single service component adds unnecessary

complexity and if the component fails both services are disabled.

5. The data relocation/checkpoint service is a single point of failure and potential performance

bottleneck; if this service is split and/or distributed into multiple service components then it will

become a potential complexity risk for the system as a whole.

6. The data transformation/fusion service is a single point of failure and a potential performance

bottleneck.

7. There is no system-wide standard protocol for reporting service failures and outages.

These risks could be discerned purely through an examination of the indirect scenario as it was mapped

onto the architectural representation. Additional risks could be found when considering the

“environment” of scenario 6, which is to say the other scenarios (1–5) that may be competing with

scenario 6 for resources. Based on a consideration of this environment, additional risks were disco-

vered. The risks identified below emerged during the process of elicitation as a consequence of brin-

ging the separate parts of the analysis together. The emergence of such insights is intrinsic to an

ATAM-like process. More detailed analysis of risks arising from the absence of interoperabilities

across the wider ecosystem is beyond the scope of this but an example of their analysis within a

different ecosystem is detailed in Ref. [46].

8. The worst-case performance characteristics of the system are not well understood. Scenarios 1, 2,

and 5 all have deadlines. Scenarios 3 and 4 will impose additional loads on the system. Without a

system-wide policy and processes for resource reservation, negotiation, arbitration, or bidding, it

is unclear at best how the worst-case behaviors of the system will be controlled within the context

of concurrent research collaborations.

9. Scenarios 3 and 4 both involve user responses. While waiting for these responses resources (that

could otherwise have been used) may be allocated but not used. This represents a performance and

availability risk for the system.

10. The anticipated distribution of job requests that the system will face is not well understood. This

needs to be studied and statistically characterized in order to understand how the variability in

218 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

indirect demands on the system will impact on its performance. The impact of such variability will

be on the economics of supporting emergent forms of collaboration, risks to existing

collaborations arising from new forms of interoperability, and of course performance issues

arising from changing loads on the different parts of the system.

What else can we learn from this collection of scenarios? The risks identified above relate to the sys-

tems supporting horizontal collaborations. These systems are themselves sociotechnical, so that a num-

ber of risks arose during the analysis due to a consideration of the human elements in these

collaborations. For example, scenarios 1 and 5 require the actions of a system administrator. This per-

son is, then, a potential performance bottleneck if these scenarios, and others like them, occur concur-

rently. In scenario 3, the actions of the collaborating scientists could lock valuable resources while the

system waits for the users to make a decision, preventing other users in the ecosystem from employing

them. In the analysis of scenario 4 it was noted that some RPs require data in different formats. This

presents an interoperability risk (since a human would need to introduce a format translation as a repair

mechanism), and a performance risk (since the computation will need to be suspended until the human

has acted and the data transformation has completed). The analysis therefore presents us with the chal-

lenge of levels of detail: how much refinement is needed to satisfy the interests of the stakeholders in

the analysis process itself? This brings us back to the importance of prioritization. The methods de-

scribed here have to serve those priorities, but cannot determine them.

9.5.3 DISCUSSION
Clearly the analysis that we have just described builds upon the existing ATAM techniques. But the

analysis goes beyond what would be done in an ATAM in several important ways, beginning with the

multisided matrix. The elicitation of the multisided matrix causes the analysts to consider not just direct

scenarios (which the traditional ATAM considered), but also indirect scenarios. A consideration of

indirect scenarios requires analysis of the system as a sociotechnical ecosystem, including humans

as both principals and agents, and including many resources that are not under direct control of any

single authority. These humans both determine and become part of the execution of the system and

may themselves represent performance, availability, security, interoperability, or other kinds of risks.

The resulting steps for the multisided ATAM are as follows, with the modified steps shown in

italics:

Phase 1:

1. Present the ATAM.

2. Present ecosystem business drivers.
3. Present ecosystem architecture.
4. Identify architectural approaches.

5. Generate quality-attribute utility tree.

6. Analyze architectural approaches.

Phase 2:

7. Brainstorm and prioritize direct and indirect scenarios.
8. Analyze architectural approaches.

9. Present results.

2199.5 AN EXAMPLE ANALYSIS

Each of these changes is a departure from the traditional ATAM, which was focused on analyzing the

architectures of systems under the control of a single organization (or a known, finite number of or-

ganizations) with reasonably well understood requirements. The analysis of ecosystem architecture

forces us to relax those assumptions and, in doing so, creates new obligations for analysis [47].

9.6 CONCLUSIONS/FUTURE RESEARCH
In this we have examined the architectural characteristics of software-intensive ecosystems, to suggest

how traditional architectural analysis can be extended to address the complementary nature of their

technological and social systems, reflected in the multisidedness of demands on the use of technolog-

ical systems. We have argued that, in fact, such analysis must be extended. It must be extended to

account for how dynamic processes of alignment, in response to rapidly changing demands, can be

made sufficiently adaptive to the wicked (ill-structured) nature of ecosystems.

We have proposed the use of a multisided matrix to represent the variety of forms of dynamic align-

ment and, given this information, have proposed an extension to the ATAM that allows us to analyze

software ecosystems. Such an analysis can give us insight into the properties of an ecosystem and can

help us reason about the dynamic alignment of the ecosystemwith the goals of its many stakeholders. In

the early years of ATAM, the challenge was to define effective architectures for the use of software

systems. Now this challenge extends to analyzing the effectiveness of embedding these software sys-

tems within sociotechnical ecosystems.

In addition to the application of ATAM to multisidedness, several other forms of analysis can

be based on the data elicited to generate the multisided matrix. These evaluate the impact of adapt-

able architectures—architectures which are structurally agile—on the performance of the larger

ecosystem [48]:

1. A structural analysis of potential hazards arising from both technological and social system

architectures, using a dependency structure matrix to identify core-periphery characteristics in both

technological and social systems [13].

2. A stratification analysis of the processes aligning the technological and social systems to new and/

or different forms of demand. This identifies the hazards to aligning systems to different forms of

demand (e.g., in evaluating the risks facing military operational capabilities in a changing threat

environment [49]).

3. An economic analysis of the consequences of changes in demand on the use of the architecture

(e.g., in assessing the value of investment in eGovernment search capabilities to support greater

responsiveness to citizens [24], and in assessing the value of investing in UAV capabilities to

support greater agility in military force structures [46]). This quantifies the impact on the overall

cost of ecosystem performance of increasing the adaptability of its supporting systems [11,50,51].

REFERENCES
[1] L. Northrop, et al., Ultra-Large-Scale Systems: The Software Challenge of the Future, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, 2006.

[2] L. Coyle, et al., Guest editor’s introduction: evolving critical systems, Computer 43 (5) (2010) 28–33.

220 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0015

[3] S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community: a research agenda for software ecosystems,

in: 31st International Conference on Software Engineering (New Ideas and Emerging Results Track), IEEE

CS Press, Vancouver, Canada, 2009.

[4] H. Rittel, M. Webber, Dilemmas in the general theory of planning, Policy Sci. 4 (1973) 155–169.
[5] F.E. Emery, E.L. Trist, Socio-technical systems, in: C.W. Churchman, M. Verhulst (Eds.), Management Sci-

ence, Models and Techniques, Pergamon, London, 1960, pp. 83–97.
[6] E.J. Miller, A.K. Rice, Systems of Organization: The Control of Task and Sentient Boundaries, Tavistock,

London, 1967.

[7] H. Atmanspacher, H. Romer, H.Walach,Weak quantum theory: complementarity and entanglement in phys-

ics and beyond, Found. Phys. 32 (3) (2002) 379–406.
[8] L.v. Bertalanffy, The theory of open systems in physics and biology, Science 111 (1950) 23–29.
[9] G. Walker, et al., A Review of Sociotechnical Systems Theory: A Classic Concept for New Command and

Control Paradigms, Human Factors Integration Defence Technology Centre, 2007.

[10] National Energy Technology Laboratory, Advanced Metering Infrastructure, NETL, 2008.

[11] R.Kazman,L.Bass,G.Moreno,Architecture evaluationwithout an architecture: experiencewith the smart grid,

in: Proceedings of 33rd International Conference on Software Engineering (ICSE 33), Honolulu, Hawaii, 2011.

[12] R. Kazman, H.-M. Chen, The metropolis model: a new logic for the development of crowdsourced systems,

Commun. ACM 52 (7) (2009) 76–84.
[13] J. MacCormack, C. Baldwin, J. Rusnak, The architecture of complex systems: do core-periphery structures

dominate? MIT Sloan School of Management, 2010, Working paper 4770-10.

[14] L. Colfer, C.Y. Baldwin, The mirroring hypothesis: theory, evidence and exceptions, Harvard Business

School working paper, 2009.

[15] D. Falessi, et al., Decision-making techniques for software architecture design: a comparative survey, ACM

Comput. Surv. (2010).

[16] P. Bengtsson, J. Bosch, Architecture level prediction of software maintenance, in: 3rd European Conference

on Software Maintenance and Reengineering (CSMR 99), Amsterdam, Netherlands, 1999.

[17] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict changes at architecture design time? J. Syst.

Softw. 65 (2003) 141–153.
[18] P. Tarvainen, Adaptability evaluation of software architectures: a case study, in: 31st Annual International

Computer Software and Applications Conference, Beijing, 2007.

[19] P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and Case Studies, Addison-

Wesley, USA, 2001.

[20] R. Kazman, M. Gagliardi, W. Wood, Scaling up software architecture analysis, J. Syst. Softw. 85 (2013)

1511–1519.
[21] H.-M. Chen, R. Kazman, A. Garg, BITAM: an engineering-principled method for managing misalignments

between business and IT architectures, J. Sci. Comput. Program. 57 (1) (2005) 5–26.
[22] M. Barbacci, et al., Quality attribute workshops, Software Engineering Institute technical report, CMU/SEI,

2003.

[23] M. Moore, et al., Quantifying the value of architectural design decisions: lessons from the field,

in: Proceedings of the 25th International Conference on Software Engineering (ICSE 25), Portland, OR, 2003.

[24] P. Boxer, P. Kirwan, H. Sassenburg, The impact of governance approaches on SoS environments, in: IEEE

International Systems Conference, IEEE, San Diego, CA, 2010.

[25] P. Boxer, et al., Systems-of-systems engineering and the pragmatics of demand, in: Second International Sys-

tems Conference, IEEE, Montreal, QC, 2008.

[26] B. Cohen, P. Boxer, Why critical systems need help to evolve, Computer 43 (5) (2010).

[27] P.J. Boxer, Evaluating platform architectures within ecosystems: modeling the relation to indirect value,

School of Engineering and Information Sciences, Middlesex University, London, 2012.

[28] P. Boxer, H. Sassenburg, The Swiss eGov Case: “Metadata 2010,” CMU/SEI-2010-SR-003 Unlimited dis-

tribution, Pittsburgh, 2010.

221REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0140

[29] C.Y. Baldwin, Where do transactions come from?Modularity, transactions, and the boundaries of firms, Ind.

Corp. Chang. 17 (1) (2008) 155–195.
[30] C.K. Prahalad, V. Ramaswamy, The Future of Competition: Co-Creating Unique Value With Customers,

Harvard Business School Press, Boston, 2004.

[31] J.F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/

Cole, Pacific Grove, CA, 2000.

[32] A. Amin, P. Cohendet, Architectures of Knowledge: Firms, Capabilities and Communities, Oxford Univer-

sity Press, Oxford, 2004.

[33] R. Hopkins, K. Jenkins, Eating the IT Elephant: Moving From Greenfield Development to Brownfield, IBM,

Indianapolis, IN, 2008.

[34] J.A. Zachman, A framework for information systems architecture, IBM Syst. J. 26 (3) (1987) 276–292.
[35] U.S. Department of Defense, DoD Architecture Framework Version 2.0, 2009.

[36] The Office of Management and Budget, Federal Enterprise Architecture Consolidated Reference Model

V2.3, 2007.

[37] P. Boxer, S. Garcia, Limits to the use of the Zachman framework in developing and evolving architectures for

complex systems of systems, SATURN, SEI, Pittsburgh, 2009.

[38] P. Boxer, Valuing Multi-Sided Systems, CMU/SEI-2009-SR-012 Unlimited distribution (in draft), Pitts-

burgh, 2009.

[39] P.J. Boxer, S. Garcia, Enterprise architecture for complex system-of-systems contexts, in: 3rd International

Systems Conference, IEEE, Vancouver, BC, 2009.

[40] P.J. Boxer, Building organizational agility into large-scale software-reliant environments, in: 3rd Interna-

tional Systems Conference, IEEE, Vancouver, BC, 2009.

[41] W.B. Anderson, P. Boxer, Modeling and analysis of interoperability in systems of systems environments,

in: IDGA Systems of Systems Engineering Forum, 2009.

[42] E. Deelman, et al., Managing large-scale workflow execution from resource provisioning to provenance track-

ing: the cybershake example, in: IEEE e-Science and Grid Computing, Amsterdam, The Netherlands, 2006.

[43] E. Deelman, Y. Gil, Managing large-scale scientific workflows in distributed environments: experiences and

challenges, in: IEEE e-Science and Grid Computing, Amsterdam, Netherlands, 2006.

[44] Y. Gil, et al., Wings for Pegasus: a semantic approach to creating very large scientific workflows, in: OWL:

Experiences and Directions 2006, Athens, GA, 2006.

[45] A. Chourasia, et al., Insights gained through visualization for large scale earthquake simulations: discovering

the unexpected, Comput. Graph. Appl. 2 (6) (2007) 28–33.
[46] W. Anderson, P. Boxer, Modeling and analysis of interoperability in systems of systems environments,

CrossTalk, 2008.

[47] P.J. Boxer, Leading organisations without boundaries: “Quantum” organisation and the work of making

meaning, Org. Social. Dyn. 14 (1) (2014) 130–153.
[48] P.J. Boxer, The Architecture of Agility: Modeling the Relation to Indirect Value Within Ecosystems,

Lambert Academic Publishing, Saarbr€ucken, Germany, 2012.

[49] W. Anderson, P. Boxer, L. Brownsword, An Examination of a Structural Modeling Risk Probe Technique,

2006, CMU/SEI-2006-SR-017, Pittsburgh, 2006.

[50] J. Asundi, R. Kazman, M. Klein, Using economic considerations to choose among architecture design alter-

natives, Software Engineering Institute technical report, CMU/SEI, Pittsburgh, 2001.

[51] R. Nord, et al., Integrating the Architecture Tradeoff Analysis Method (ATAM)With the Cost Benefit Anal-

ysis Method (CBAM), CMU/SEI, Pittsburg, PA, 2003.

222 CHAPTER 9 ANALYZING THE ARCHITECTURES OF S-I ECOSYSTEMS

http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf9010
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf9010
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00009-5/rf0230

CHAPTER

ARCHITECTURAL PERSPECTIVE
FOR DESIGN AND ANALYSIS
OF SCALABLE SOFTWARE AS
A SERVICE ARCHITECTURES

10
B. Tekinerdogan*, O. Ozcan†

Wageningen University, Wageningen, The Netherlands* Bilkent University, Ankara, Turkey†

10.1 INTRODUCTION
Different from traditional enterprise applications that rely on the infrastructure and services provided

and controlled within an enterprise, cloud computing is based on services that are hosted on providers

over the Internet. Hereby, services are fully managed by the provider, whereas consumers can acquire

the required amount of services on demand, use applications without installation and access their per-

sonal files through any computer with Internet access. Recently, a growing interest in cloud computing

can be observed thanks to the significant developments in virtualization and distributed computing, as

well as improved access to high-speed Internet and the need for economical optimization of resources.

The services that are hosted by cloud computing approach can be broadly divided into three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)

[1,2]. Research on cloud computing has focused on different issues, one of which is the need for adapt-

ability. Within the context of cloud computing adaptability manifests itself primarily as requirements

for scalability. Designing and maintaining SaaS computing systems for scalability can be considered as

one of the key concerns in SaaS since it affects both the cloud consumers and cloud producers. Scal-

ability can be defined as the ability of a system, network, or process to handle a growing amount of

work in a capable manner or its ability to be enlarged to accommodate that growth [3,4]. A system

whose performance improves after adding hardware, proportionally to the capacity added, is said to

be a scalable system.

Scalability is an important quality concern that has a systemic, global impact on the overall system,

both from the cloud consumer and the cloud producer. Hence it is important to address this concern

early on at the software architecture design level. In the literature, the basic components required

for cloud computing and its conceptual reference architecture are given. Based on these existing ref-

erence architectures one could derive multiple different application architectures, but the overall guid-

ance for designing an architecture for a particular quality concern is left to the application architect.

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00010-1

Copyright # 2017 Elsevier Inc. All rights reserved.
223

http://dx.doi.org/10.1016/B978-0-12-802855-1.00010-1

Designing a cloud architecture that is scalable is not a trivial task and involves many different design

decisions.

To address quality concerns in software architecture design, an important approach is to define so-

called architectural perspectives [5] that include a collection of activities, tactics [6,7] and guidelines

that require consideration across a number of the architectural views. Several architectural perspectives

have been defined for selected quality concerns but scalability for cloud systems has not been explicitly

addressed. In this chapter we propose the Scalability Perspective for supporting the design and analysis
of scalable SaaS architectures. The proposed architectural perspective can assist software architects in

designing, analyzing, and communicating the decisions regarding scalability as well as the trade-offs

with other concerns. We illustrate the scalability perspective for a real industrial case study and discuss

the lessons learned.

The remainder of the chapter is organized as follows. In Section 10.2, we describe the background

on Software as a Service Architecture. Section 10.3 presents the work on software architecture perspec-

tives [5] on which the approach in this chapter builds. Section 10.4 presents the case study that we shall

use as a running example throughout the chapter. Section 10.5 discusses the proposed software archi-

tecture perspective for scalability. Section 10.6 discusses the related work and finally Section 10.7 con-

cludes the paper.

10.2 SOFTWARE AS A SERVICE ARCHITECTURE
A study of the computing literature reveals a number of reference architectures for SaaS. Based on the

literature [1,2,8–10], we have defined a reference architecture for SaaS as given in Fig. 10.1, which is a

hybrid view including both the deployment view and layered view. In SaaS systems the thin clients rent

FIG. 10.1

SaaS reference architecture.

224 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

and access the software functionality from providers on the Internet. As such the cloud client includes

only one layer User Layer which usually includes a web browser and/or the functionality to access the

web services of the providers. This includes, for example, data integration and presentation. The SaaS

providers usually include the layers of Distribution Layer, Presentation Layer, Business Service Layer,

Application Service Layer, Data Access Layer, Data Storage Layer, and Supporting Service Layer.

Distribution Layer defines the functionality for load balancing and routing. Presentation Layer rep-
resents the interfacing to the users. The Application and Business Service Layer represents services
such as identity management, application integration services, and communication services. Data Ac-
cess Layer represents the functionality for accessing the database through a database management sys-

tem. Data Storage Layer includes the databases. Finally, the Supporting Service Layer includes

functionality that supports the horizontal layers and may include functionality such as monitoring, bill-

ing, additional security services, and fault management. Each of these layers can be further decom-

posed into sublayers.

Although Fig. 10.1 describes the common layers for SaaS reference architecture, it deliberately

does not commit on specific application architecture. The application architecture can have multiple

nodes in which the layers are allocated in different ways. This results in various design alternatives.

Figs. 10.2 and 10.3 show two different application architectures derived from the reference architecture

in Fig. 10.1. The design in Fig. 10.2 supports the need for multitenancy by adopting a single database

management system with a shared database and shared schemas for the tenants. In the alternative in

FIG. 10.2

SaaS application architecture alternative with shared data servers.

22510.2 SOFTWARE AS A SERVICE ARCHITECTURE

Fig. 10.3 the data storage is not shared but a separate data server provided for each tenant is provided.

Obviously these design models are not the only alternatives and a considerable number of other design

alternatives may be derived from the same reference SaaS architecture. Each of these alternatives will

perform different with respect to scalability. SaaS application designers must be able to explicitly com-

pare, evaluate, and select among various alternatives based on the required scalability requirements.

While designing SaaS architectures, software engineers apply their knowledge, experience, and intu-

ition to compare the design alternatives and design the feasible scalable architecture. However, this

process is primarily implicit and lacks explicit modeling support. As such, the lack of an active guid-

ance for the design of scalable SaaS architecture can lead to a nonoptimal SaaS system which will im-

pede the realization of the desired scalability levels.

10.3 SOFTWARE ARCHITECTURE PERSPECTIVE
For supporting the design of software architecture proper modeling and design approaches should be

adopted. A common practice in software architecture design is to model and document different ar-
chitectural views for describing the architecture according to the stakeholders’ concerns [11]. An

FIG. 10.3

SaaS application architecture alternative with separate single distribution and single application server.

226 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

architectural view is a representation of a set of system elements and relations associated with them to

support a particular concern. Having multiple views helps to separate the concerns and as such support

the modeling, understanding, communication, and analysis of the software architecture for different

stakeholders. Architectural views conform to viewpoints that represent the conventions for construct-

ing and using a view. An architectural framework organizes and structures the proposed architectural

viewpoints.

For supporting the architecture design Rozanski and Woods propose an architecture framework

consisting of seven different viewpoints: Functional, Information, Concurrency, Development, De-
ployment and Operational, and Context viewpoints for architecture design [5]. The Functional view-
point defines the functional elements of the system, their responsibilities, interfaces, and interactions.

The Information viewpoint represents the way that the architecture stores, manipulates, manages, and

distributes information. The Concurrency viewpoint illustrates the concurrency structure of the system
and identifies the parts of the systems which should execute concurrently, and shows these are coor-

dinated and controlled. The Development viewpoint describes the architecture that supports the system
development. TheDeployment viewpoint defines the environment into which system will be deployed.

The Operational viewpoint describes how the system will be operated, managed, and supported. The

Context viewpoint describes the relationships, dependencies, and interactions between the system and

its environment such as external systems, people, and groups.

Rozanski and Woods state that quality concerns are crosscutting on these viewpoints and as such

creating a viewpoint for a given quality concern seems less appropriate. As such, they define several

architectural perspectives for selected quality concerns whereby each relevant perspective is applied to

some or all views. In this way, the architectural views provide the description of the architecture, while

the architectural perspectives can help to analyze and modify the architecture to ensure that system

exhibits the desired quality properties.

Rozanski andWoods [5] define Security, Performance and Scalability, Availability and Resilience,
Evolution, Accessibility, Development Resource, Internationalization, Location, Regulation, and Us-
ability perspectives. For example, the Security perspective describes the ability of the system reliably

control, monitor, and audit who can perform which activity on which resources, detect and recover

from failures. The Performance and Scalability perspective defines the ability of the system to be ex-

ecuted in desired performance profile and to handle increased processing volumes. TheAvailability and
Resilience perspective describes the ability of the system to be fully or partly operational as and when

required and to effectively handle failures that could affect system availability. For a detailed analysis

of these and the other perspectives we refer to [5].

Each perspective is defined using the following description:

• the perspective description in brief in desired quality;
• the perspective’s applicability to views to show which views are to be affected by applying the

perspective;

• the concerns which are addressed by the perspective;

• an explanation of activities for applying the perspective to the architectural design;

• the architectural tactics as possible solutions when the architecture doesn’t exhibit the desired

quality properties the perspective addresses [6,7];

• some problems and pitfalls to be aware of and risk-reduction techniques; and

• checklist of things to consider when applying and reviewing the perspective to help make sure

correctness, completeness, and accuracy.

22710.3 SOFTWARE ARCHITECTURE PERSPECTIVE

Similar to the provided perspectives by Rozanski and Woods we could in principle define novel

architectural perspectives for various quality concerns. In this chapter we focus on scalability of

cloud-based systems for which we shall propose a novel architectural perspective in the following

sections.

10.4 CASE STUDY
In this section we describe a case study on cloud hotel management system (CHMS) that we shall use as

a running example throughout the paper. The system provides various services to support the manage-

ment of hotel departments. Important stakeholders of the system are guests, hotel managers, and travel

agencies. For modeling the architecture it would be first required to define the architecture views. We

shall illustrate two important example views for this case study. The development view of the system is

shown in Fig. 10.4.

As shown in the figure, the system consists of nine subsystems including Reservation and Booking,

Room, Points of Sale (POS), Guest, Accounting, Agency, Channel, General, and Report Management.

Reservation and Booking Management module includes services for supporting the reservation and

booking of hotel rooms. Room Management module includes services related to the management

of hotel rooms, such as room availability, room schema, room status, room wakening list, and other

activities. POS Management module includes services for managing the product selling and delivery

operations made by the guests. Guest Management module keeps track of the information about guests

that stays in a hotel. AccountingManagement module manages all of the accounting operations that are

performed in the hotel. AgencyManagement module manages all the information about travel agencies

and the sales information. Channel Management module keeps track of selling channels and admin-

istrators. General Management module includes general services that are used by the other modules.

Finally, Report Management module manages the generation of various types of reports.

In practice, most of the hotels serve only during a limited amount of time (e.g., only during summer

season) and as such developing/buying, installing, and maintaining a standalone software solution for

Room

Accounting

General

POS

Agency

Report
Management

Reservation
and Booking

Guest

Channel

FIG. 10.4

Development view of the CHMS.

228 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

such a small period is less feasible and costly. Hence, it has been decided to develop a cloud-based

solution instead, whereby hotels can rent the required services from the cloud provider that provides

the various services for hotel management.

Another architecture view of the system is the deployment view which shows the allocation of soft-

ware modules to nodes. Fig. 10.5 shows the deployment view of the case study. In the system multiple

tenants can connect simultaneously to CHMS via a travel agency or a hotel. Example scenarios here

could be the booking of hotel rooms, downloading invoices, searching customers, checking customer

details, and generating reports.

In addition to the functional requirements the system needs to meet several quality requirements. As

stated before different quality concerns can be addressed by different architectural perspectives. For

example, for addressing and modeling the impact of security concerns on the architectural views

one could use the predefined Security perspective. For addressing availability, the corresponding Avail-
ability and Resilience perspective, etc. In the given case it is required that the system is scalable for

various loads. To identify the scalability requirements and analyze the impact on the architectural

views it would be required to adopt a corresponding scalability perspective. We present this in the next

section.

10.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY
Scalability of a cloud application is the ability of an application that handles the service level agreement

(SLA) requirements for all customers. As long as the minimum requirements of SLA are maintained for

all users, that application can be considered as a scalable cloud application. In this section we focus on

scalability at the software architecture design level. In fact, one of the perspectives in the Rozanski and

Woods’ perspective catalog [5] is performance and scalability. The focus hereby tends to be more to-

wards performance, and scalability for the cloud environment is not explicitly discussed. We propose

the scalability perspective dedicated for scalability whereby we adopt the guidelines of Rozanski and

Woods [5] for defining perspectives. The overall description of the scalability perspective is shown in

Table 10.1. The impact of the scalability perspective on the architecture views is shown in Table 10.2.

In the following subsections we discuss the concerns (Section 10.5.1), the activities for scalability

(Section 10.5.2), and the problems and pitfalls (Section 10.5.3).

ClientMachine

WebView

Forms DataSet

ApplicationServer

Authorization

Management DataTransfer
RDBMS

DatabaseInstance
Logging

FIG. 10.5

Deployment view of the CHMS.

22910.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

10.5.1 CONCERNS
The notion of concern refers to any matter of interest when designing a software architecture [7,12].

The primary sources for concerns are elicited from stakeholders, a person, group, or entity with an in-

terest (concern) about the realization of the software architecture [13]. While scalability is in our case

Table 10.1 Brief Description of Scalability Perspective

Desired quality Scalability—the ability of a system, network, or process to handle a growing amount of work in

a capable manner or its ability to be enlarged to accommodate that growth

Applicability Any system where future expansion is important. Systems with complex, unclear, or ambitious

scalability requirements

Concerns User access load, communication traffic load, data storage access load, transaction, response

time, throughput, hardware resource requirements, cost, predictability, availability, and

reliability

Activities Capture the scalability requirements, create scalability models, analyze scalability models,

assess against the requirements, rework the architecture

Architectural

tactics

Multitiered architecture, component-based architecture, service-oriented architecture, database

partitioning, scale-out, scale-up, key-value stores, dynamic provisioning, caching, replication,

virtualization, load balancing, parallel processing

Problems and

pitfalls

Inaccurate scalability goals, use of simple requirements for complex cases, unrealistic models,

choice of inappropriate or redundant scalability approach, invalid environment, platform, and

user behavior assumptions

Table 10.2 Applicability of Scalability Perspective to Architectural Views

View Applicability

Functional

view

Applying this perspective leads to changes in functional elements, such as adding new elements or

splitting some elements into more, and to change some of the links between elements. Also it

requires determining which elements need to be scalable. The models from this view can be used

to create scalability models

Information

view

This view identifies shared resources, static data structure, dynamic information flow, information

lifecycle, and transactional requirements. Some of the obstacles to scalability may be identified in

this view. It gives information about which data can be cached or replicated, and also how the data

can be partitioned. It may provide input to scalability models

Concurrency

view

Application of this perspective may change the concurrency design. It may divide the work on

some functional elements or it may provide solutions for excessive contention on key resources.

To meet requirements of the perspective will change the concurrency design. Elements in this

view can also provide input to scalability models

Development

view

This viewwill change based on the scalability approaches chosen. There may be an increase of the

number of packages. Change in layers has low possibility, yet it may happen if the architectural

pattern changes

Deployment

view

Scalability tactics that are chosen will affect this view and requires redefining types, specification,

and quantity of hardware required, network requirements, third-party software requirements and

physical constraints. Scalability models are usually created by using this view

Operational

view

Applying this perspective makes performance monitoring more important, it also may cause to

change the migration model

230 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

the basic quality factor we can also identify several concerns that need to be considered when reasoning

about scalability. We have identified the following concerns [5,14].

User access load: The number of concurrent users who access the system, number of online users, in

a given time unit [14]. Usually each system can have a limited amount of concurrent connections.

User access load also affects the communication traffic load of the servers and the load on data

storage access. The system should accommodate the growing user load in scalable systems.

Communication traffic load: The amount of incoming and outgoing communication messages and

transactions within a given time unit [14]. Important metrics that define the communication traffic

load are request per second, hits per second, and transaction per second.

Data storage access load: The data storage access load of the underlying system, such as the

number of data store access, and data storage sizing [14].

Transactions: A unit of work, typically encapsulating a number of operations, such as reading or

writing an object.

Response time: The duration of a process between start and end time, when the system finishes and

reacts to the given input [5].

Throughput: The amount of workload the system can handle within a unit time period.

Hardware resource requirements: Resource requirements imposed on hardware. These will define

how much workload the system can handle, how fast the system responds to requests, and how

many devices can be connected and likewise these will have a high impact on the scalability of the

system.

Cost: Generally, increased level of hardware resources leads to higher throughput and better

response times, but also higher costs.

Predictability: The degree to which a correct prediction of a system’s state can be made either

qualitatively or quantitatively. Predictability of the system’s performance is important for

scalability, for ensuring the scalability goals when the workload increases.

Availability: The capability of providing the intended service of the system fully or partly. An

available system should effectively handle failures and maintain its operation.

Reliability: Reliability is the probability of failure or availability. A potential overload of the system

due to limited scalability harms reliability.

10.5.2 ACTIVITIES FOR APPLYING SCALABILITY PERSPECTIVE
The activities for applying the scalability perspective are shown in Fig. 10.6. We discuss these in the

following subsections.

10.5.2.1 Capture scalability requirements
To meet the scalability goals of a system the only way is to specify each of them clearly and unam-

biguously. Further, these goals should be determined accurately at the earliest phase of the system de-

velopment [15] and as such one should not wait after the development of the system since this would be

too late. To reveal the scalability goals the following must be clearly specified [5,16]:

Specify workload requirements: Description of workload goals should include user access load,

communication traffic load, and data storage access load with the deployment information.

23110.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

Specify response time requirements: Response time goals should described with the information

how much workload the system has, measurement location, and features of hardware resources

during that time [5].

Specify throughput requirements: Scalability requirements should state how many requests or

transactions of each kind processed and go through the system per unit time as throughput [17]. It

should be determined for the steady cases when the number of incoming requests would be equal to

the number of processed requests. Also, it should be determined for homogenous tasks when a

system doing the same type of business operations for a given time.

Specify hardware resource requirements: Features and quantities of CPU, memory, storage, I/O,

network, etc. of the system should be specified [17].

These goals and needs are determined according to certain amount of estimations, assumptions, and

constraints. To be able to capture scalability requirements we follow existing requirements engineering

techniques defined in the IEEE Software Engineering Book of Knowledge (SWEBOK) [18]. It defines

four stages for requirements that are elicitation, analysis, specification, and validation. A more specific

FIG. 10.6

Activity diagram for applying the scalability perspective.

232 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

approach is presented in [15,16] in which the rules of GORE (goal-oriented requirements engineering)

are applied to identify and analyze scalability requirements. The presented method includes the follow-

ing steps: (1) specifying scaling assumptions, (2) specifying scalability goals, (3) identifying scalability

obstacles, (4) assessing scalability obstacles, (5) resolving scalability obstacles.

Based on these guidelines we can derive the scalability requirements for the provided case study.

An example set of the requirements for the case study are shown in Fig. 10.7.

10.5.2.2 Create scalability model
The scalability requirements define the specific scalability need of the stakeholders. To reason about

the scalability requirements and support the design of the system, scalability models need to be created

that explicitly depict the scalability properties. More concretely, the purpose of scalability modeling

includes: (1) To make scalability requirements and estimations more understandable, visual, manage-

able, and easier for the stakeholders. (2) To be able to see both runtime behavior and deployment of the

system with scalability features. (3) To provide a tool for scalability assessment for the stakeholders.

(4) To identify resources that cannot achieve scalability.

We have chosen to adopt unified modeling language (UML) profiling mechanisms in which exist-

ing UMLmodels are decorated with the essential scalability properties. The profile that we use is based

on the OMG’s general resource model (GRM) which is a framework for modeling systems with the

usage of quality of service (QoS) information [19]. QoS information represents, either directly or in-

directly, the physical properties of the hardware and software environments of the application repre-

sented by the model. GRM has two viewpoints, domain viewpoint and UML viewpoint. Domain

FIG. 10.7

Part of the scalability related requirements for the case study.

23310.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

viewpoint describes the common structural and behavioral concepts and patterns that characterize a

system. UML viewpoint defines the realization of the elements of domain model using UML. It mainly

consists of a set of UML extensions, such as stereotypes, constraints, tagged values, and is supplemen-

ted by specifications of the mappings of the domain concepts to those extensions. GRM provides

mostly abstract concepts that are not applied directly to elements of a UML model. It provides a basis

for UML profiles so that concrete extensions can be generated. Table 10.3 shows an example set of

stereotypes that we have defined in the scalability perspective.

Fig. 10.8 shows an example sequence diagram of the case study in which scalability profile is used

for defining the scalability properties. The diagram shows the increase of the scalability properties to-

gether with the adopted scalability tactics. Fig. 10.9 shows an example deployment diagram with

adopted stereotypes. In the figure different values related to scalability such as traffic load and access

load are explicitly provided. When defining the architecture views with scalability other quality con-

cerns besides of scalability will be taken into account. In particular the cases whereby a scalability

decision has an impact on other quality concerns. The presented approach, i.e., an architectural

perspective for scalability, helps to reason about the design decision for scalability and is broader than

trade-off analysis approach.

10.5.2.3 Analyze scalability model
Similar to the analysis of other quality requirements, scalability analysis can be carried out at two dif-

ferent levels: analysis at the architecture design level, and analysis at the code level. Since architecture

is critical for the success of a project, different architectural evaluation approaches have been intro-

duced to evaluate the stakeholders’ concerns. A comparison of conventional architecture analysis

methods has been given by, for example, Dobrica et al. [20] and Babar et al. [21]. Kazman et al.

[22] have provided a set of criteria for comparing the foundations underlying different methods, the

effectiveness and usability of methods. In essence, each architecture evaluation approach takes as input

the stakeholder concerns, the environment issues, and the architecture description. Based on these in-

puts, the evaluation results in an architecture evaluation report, which is used to adapt the architecture.

Some metrics cannot be easily evaluated at the architecture design level because of the runtime

properties. As such, the evaluation of these metrics requires running code. Scalability analysis at code

level analyzes the behavior of the system at various load levels, identifies scalability problems, and the

Table 10.3 Example UML Scalability Stereotypes in the Corresponding Profile

Stereotype Description

<<SCAcontext>> This stereotype models scalability analysis context

<<SCAstep>> A step in a scalability analysis scenario

<<SCAhost>> A processing resource

<<SCAresource>> A passive resource

<<SCAopenLoad>> An open workload

<<SCAclosedLoad>> A closed workload

<<SCAuserAccessLoad>> A user access workload

<<SCAcomTrafficLoad>> A communication traffic workload

<<SCAdbAccessLoad>> A database access workload

<<SCAtactic>> A tactic in a scalability analysis scenario

234 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

bottlenecks of the system. For analyzing the code in scalability perspective we can apply one or more of

testing methods that involve performance testing, load testing, endurance testing, stress testing, spike

testing, and scalability testing [23,24].

10.5.2.4 Assess against requirements
After analyzing the scalability models, the results will be compared against the identified requirements.

The result of this is that either the models or the requirements need to be updated. Another decision

could be to iterate over the analysis and testing of the models. The final decision will be to complete the

FIG. 10.8

Example sequence diagram with scalability annotations.

23510.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

cycle or to rework the architecture. Within this activity, no new artifacts will be generated but a process

and its steps will be followed to ensure that the requirements are realized. The overall process and the

decisions need to be explicitly documented.

10.5.2.5 Rework architecture
The previous step might conclude that the architecture needs to be enhanced to realize the identified

scalability requirements. This will imply that several architecture views need to be adapted. Table 10.4

shows the impact of the scalability perspective on the defined architecture views of the case study.

To support the adaptation of the architecture to meet the scalability requirements we have derived

several architecture tactics from the literature. Architecture tactics are defined as a characterization of

architectural decisions that are used to achieve a desired quality attribute response [6]. As such a scal-

ability architecture tactic includes architectural decisions to support scalability. Based on a literature

study we have identified the following important architectural tactics for scalable SaaS:

• Component-based architecture
For supporting adaptable, scalable system architecture it is worthwhile to adopt component

abstractions. Component-based development will provide a reuse-based approach for defining,

implementing, and composing loosely coupled independent components into systems [25,26].

In the component-based software engineering (CBSE) paradigm individual software components

are independently executable and ready-to-assemble into larger systems. As such, the construction

of applications is now based on using and assembling components rather than a programming

process thereby targeting faster and more predictable software construction. In well-designed

scalable software, the components should be separated according to their functional domain, i.e.,

the separation of concerns design principle should be applied and these components should have

high cohesion internally and low coupling to the outside.

• Service-oriented architecture
It is necessary to avoid coupling in the architecture so that a change in a part of the software system

should not affect other parts [10]. Service-oriented architecture (SOA) is a software architecture

design pattern that is composed of services, pieces of software providing application functionality

FIG. 10.9

Example annotated deployment model for CHMS.

236 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

[27]. SOA supports low coupling, since services are unassociated units of functionality that are

self-contained. SOA also provides asynchrony meaning system can perform useful work while

waiting for input and output to complete, and concurrency meaning tasks can be done in parallel

taking advantages of the distributed nature of hardware and software.

• Minimize the workload on the server
Most of the cloud-based SaaS applications have several similar operations, such as making a

request, authorization of the requests, fetching data from the database, inserting or updating or

deleting data, validation of data, and making some operations, calculations, merging, etc. on data.

These operations are either executed on the client or on the server. If all of these operations are

executed on the server, then the server may become unresponsive, or even unavailable. Scaling-up

the server solves this problem just temporarily, since as the demands grow the server always needs

to be scaled-up and it is costly. Moving the workload from the server to the clients as much as

possible can minimize the workload on the server [5,10].

• Scale-up
To cope with dynamically increasing demands from multiple tenants, the first approach that comes

to mind is scaling the system vertically (scaling-up). This means adding resources to a single

node in a system, typically involving the addition of processors or memory to a single computer.

In order to be scalable, the more nodes are added to the system, the higher the achievable throughput

should be. When adding new hardware to the platform, the total capacity of the entire

environment increases, becoming more scalable for not just a single customer, but for the entire

client base. Such vertical scaling of a system also enables to use virtualization approach more

effectively, as it provides more resources for the operating system (OS) and application modules to

share [28].

• Scale-out
The other and a popular approach that includes hardware addition is scaling horizontally

(scale-out). It means adding more nodes to a system, such as adding a new server to a distributed

Table 10.4 Impact of Scalability Perspective on the Architecture Views of the Case Study

View Applicability to the Case Study

Functional Sessionless authorization has been applied. Field validations have been moved from database layer

to client business logic layer. Data to be displayed in web view has been cached on the client device

Information We could see that hotel, guest, and other information related with them may cause a scalability

problem, since with multitenancy number of their records is high. Also, we could understand

reservation data is sensitive in terms of consistency and availability, so that we have taken care of

that during applying scalability tactics

Concurrency No change has been made

Development Layers have been reorganized. Database has been separated from the server layer and as a result, the

system has client, application, and database layers

Deployment Application layer and database has been placed on the same Amazon EC2 server machine. Database

has been moved to another EC2 instance. Instead of using shared memory TCP/IP will be started to

use to access database. Memory cache will be added in front of the database, the contents of the

application will be reproduced, and a load balancer will be put in front of them

Operational Performance monitoring and management has been started and metrics related to concerns have

been collected and tracked periodically. It has seen that auto scaling can be needed and can be

applied in the future

23710.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

server cluster [29]. Vertical scalability is addressed by increasing the power of nodes whereas

horizontal scalability uses more nodes for the same job. It provides a more cost effective and

smooth scalability versus scale-up approach [30]. When more computing power is required, a

multitenant architecture makes it easy to increase capacity. Since SaaS platform consists of

many tenants and all tenants share the same application and data store, and tenants are usually

distributed to servers.

• Database partitioning
Partitioning is the process of pruning subsets of the data from a database andmoving the pruned data

to other databases or other tables in the same database [9,12]. Database partitioning in SaaS

means that tenant data are partitioned well in the back-end database so that processing and I/O

can be done in parallel, and data can be repartitioned easily. You can partition a database by

relocating whole tables, or by splitting one or more tables up into smaller tables horizontally or

vertically. Horizontal partitioning means that the database is divided into two or more smaller

databases using the same schema and structure, but with fewer rows in each table. Vertical

partitioning means that one or more individual tables are divided into smaller tables with the same

number of rows, but with each table containing a subset of the columns from the original.

Partitioning is also an example of scale-out approach, since in order to improve the efficiency the

number of databases or tables is increased.

• Key-value stores
In a multitenant environment that has high number of requests, database must be able to execute

large requests with low response times and also redistribute data and load on the new hardware.

To be able to satisfy these requirements of the database and scale data layer successfully key-value

stores (KVS) are used [28]. KVS allow the application to store its data in a schema-less way. In

KVS, data is viewed as key-value pairs and atomic access is supported only at the granularity

of single keys. Since the data could be stored in a data type of a programming language, there is

no need for a fixed data model. In DBMS all data within a database is treated as a whole and it

is the responsibility of the DBMS to guarantee the consistency of the entire data. In the context of

KVS this relationship is completely severed into key-values where each entity is considered an

independent unit of data or information and hence can be freely moved from one machine to the

other. Also, single key atomic access semantics naturally allows efficient horizontal data

partitioning. Moreover, the design of the KVS provides dynamic provisioning in the presence of

load fluctuations easily. On the other hand, traditional DBMS are more appropriate for static

provisioning. Due to the above desirable properties of KVS, they have almost limitless scalability.

KVS can be applied either from the beginning of the system setup or leveraging from it during

using the conventional DBMS architecture.

• Dynamic provisioning
By adding new resources to the system or partitioning data we can guarantee scalability for a while.

For sudden load fluctuations on an application or a service due to demand surges dynamic

provisioning can be applied. Dynamic provisioning mechanism uses scalability approaches

dynamically, i.e., a system can be scaled-up dynamically by adding more nodes or can be scaled-

down by removing nodes.

• Caching
Caching is a common practice of storing data in a medium holding smaller amounts of data

but which can deliver it faster than a secondary complete source when future requests are made [31].

The purpose of caching is to be able to serve data faster when dealing with thousands of requests per

238 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

second. By serving data faster throughput of the system is increased, response time is decreased,

and scalability can be satisfied. Caching can be done in any tier, but generally the application tier

caches database state for quick local access. The data to be cached is determined according to

percentage and time of use of data. Data that has frequent use or recent use has the priority of

caching. For read-intensive applications, caching approach can provide large performance gains,

great scalability as application processing time and database access is reduced. On the other hand,

write-intensive applications usually do not see as a great benefit, but solutions that include

modifications to caching approach exist. For SaaS systems distributed caching, the extension of

caching applied to multiple servers, is used. Distributed caching is scalable because of the

architecture it employs [31]. Since caching mechanism is much simpler than a DBMS, usage of

distributed cache avoids the scalability problems that a database usually faces.

• Replication
When running a high traffic site, one of the biggest bottlenecks becomes the database. In order to

solve this problem and to achieve scalability of database, replication is applied as one of the

most common techniques. In replication all or part of the data in a database is copied to another

database, and then these replicas are kept synchronized with the original [14]. This increases

the availability of the data, so that processes or threads that are waiting in the queue to be able

to do some operation with data do not need to wait anymore. Since there are multiple copies of data,

it can reach it from the next available one. Replication of data is recommended for mostly read-type

operations in terms of scalability perspective. This is because for writing operations consistency

of data to all of the copies need to be updated when one of them is changed, which on its turn

brings another workload to the database layer. Besides of data replication we could also

replicate applications. This means that components in the application layer or the whole

application layer can be stored on multiple server instances. Thus, the workload on the application

layer can be distributed to multiple machines and processed concurrently by each of the

application instances, so a performance improvement can be satisfied and it can reply to more

number of requests without performance degradation. Moreover, to support dynamically increasing

demands from multitenants, the cloud service providers have to duplicate computing resources

dynamically to cope with the fluctuation of requests from tenants. This is currently handled by

virtualization and duplication at the application level in the existing cloud environment [32,33].

• Virtualization
Virtualization refers to the act of creating a virtual (rather than actual) version of something,

including (but not limited to) a virtual computer hardware platform, OS, storage device, or

computer network resources. As we mentioned in the scale-up approach increasing the number of

resources in the system, also increases the performance of the system which as such supports

scalability. Resources can be provided to the system by not only plugging in the server machine but

through virtualization. The resources of the system that is comprised of OS, memory, storage,

network, etc. can be virtualized. This will allow, for example, the running of multiple systems on a

single physical system or one OS on multiple physical systems. To be able to dynamically

respond to increasing demands of the multitenants, virtualization is widely used in current cloud

computing systems.

• Load balancing
With an increased number of end users, the performance of a SaaS degrades and it will become

soon necessary to distribute client requests to different servers in order to perform parallel

processing and provide scalability. This process of distributing workloads across multiple

23910.5 SOFTWARE ARCHITECTURE PERSPECTIVE FOR SCALABILITY

computing resources is referred as load balancing. Its purpose is to optimize resource usage,

maximize throughput, minimize response time, and avoid overload of any one of the resources.

In most of the existing SaaS, client requests towards web servers are distributed using a front-end

load balancer [34]. To do better load balancing among partitions of a database or application

servers, an effective algorithm that can migrate, distribute, and duplicate tenants among partitions

through monitoring the load is highly desirable.

• Parallel processing
In multitenant environment the SaaS has high number of requests from users, and in order to

respond to all of these requests in a very short time, an approach that improves SaaS scalability

should be followed. A request is composed of many tasks, including computing operations,

database access, etc. In order to be able to reduce execution time of tasks and to reduce the workload

of each component, the tasks should be grouped and executed in a parallel and

asynchronous manner.

• Distributing processing in time

Excessive usage can result in peak loads on the server which will cause low response time and

scalability problems. One way to overcome this problem is reduce the system load, and

postpone some of the workload to other times in your processing cycle [32]. Some of the tasks

on the server occur continually at all times of day or night, and some of them are not urgent, or

not need to do real-time, so these tasks can be postponed to other times. Distributing the

processing time will reduce the total workload during the peak load times, and as such lead to

performance and scalability improvement.

10.5.3 PROBLEMS AND PITFALLS
Given the scalability perspective we have provided an instrument to explicitly reason about scal-

ability and guide the architecture design process. An important benefit of the perspective is

of course the explicit focus on scalability. This is helpful both from the analysis and design per-

spective. In the end, the perspective results in architecture views in which scalability is explicitly

considered which will support the communication among the stakeholders and the design

decisions.

Like each architecture perspective also the scalability perspective might need to cope with

problems and pitfalls. For the problems and pitfalls related to this scalability perspective we

can identify the listed problems and pitfalls as defined by Rozanski and Woods [5]. These include

incomplete scalability goals, unrealistic models, use of simple measures for complex cases, inap-

propriate partitioning, invalid environment, and platform assumptions [32], concurrency-related

contention, careless allocation of resources, and disregard for network and in-process invocation

differences.

10.5.3.1 Checklist
In this section, we provide a checklist to consider when applying and reviewing the perspective. The

identified checklist items are based on various resources, such as [5,10,16,17]. The items [CH1]–[CH8]
present the checklist for requirements and the items [CH9]–[CH19] present the checklist for architec-
ture definition (Table 10.5).

240 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

10.6 RELATED WORK
Scalability is not only a concern in cloud computing but has been addressed for the broader domain of

distributed systems and web-based systems for a longer period. Lehrig et al. [27] provide the results of a

systematic literature review in which they aim to investigate the existing definitions and metrics for

scalability, elasticity, and efficiency. The identified concepts can be used by cloud consumers and pro-

viders as a common vocabulary and understanding. The concepts that we have used in this study seem

to align with the concepts of the systematic literature review. The metrics of the systematic review

could be used to support the analysis activities of the scalability perspective that we have provided.

Separating quality concerns at the architecture design modeling phases has been also addressed ear-

lier with the notion of so-called Attribute-Based Architectural Style (ABAS) [35]. ABASs refer to pre-
packaged units of architectural design and analysis. The purpose of ABASs is to enhance precise

reasoning about architectural design which is achieved by explicitly associating a reasoning framework
with an architectural style. The reasoning framework shows how to reason about the design decisions

comprised by the style. The reasoning frameworks are based on quality attribute-specific models,

which exist in the various quality attribute communities. ABASs are quality attribute specific and con-
sider only one quality attribute at a time. Our work could be compared to the idea presented in ABAS,

that is, define the architectural model for particular quality concerns. Since the perspective provides

Table 10.5 Checklist Including Questions for Applying Scalability Perspective

Item Explanation

[CH1] Have you identified scalability goals with stakeholders?

[CH2] Have you identified the platform features of the system?

[CH3] Are scalability goals driven by business needs?

[CH4] Does cost of your hardware requirements conform to your project budget plan?

[CH5] Have you considered goals for user access load, communication traffic load, data access load, response

time, and throughput?

[CH6] Have you assessed your scalability goals for reasonableness?

[CH7] Have you appropriately set expectations among your stakeholders of what is feasible in your architecture?

[CH8] Have you defined all scalability goals within the context of a particular load on the system?

[CH9] Have you identified possible scalability problems in your architecture?

[CH10] Have you done sufficient analysis and testing to figure out the scalability need of the system?

[CH11] What are the expected and maximum workloads the system can process?

[CH12] Do you define the way how to detect the time when to apply the scalability solution?

[CH13] Do you know to which components you will apply a scalability tactic?

[CH14] Do you know by which tactics your architecture can be scaled when needed?

[CH15] Have you assessed the impact of the scalability solution on functionality and other quality concerns such

as performance? Is this impact acceptable?

[CH16] Have external experts reviewed your scalability design?

[CH17] Have you verified and validated estimations you have made for scalability goals?

[CH18] Have you updated your scalability requirements after you validated the scalability goals estimated?

[CH19] Have you applied the results of the scalability perspective to all of the affected views?

24110.6 RELATED WORK

also guidelines for identifying, modeling, and analyzing scalability concerns, it could be also consid-

ered as a kind of reasoning framework.

Aspect-oriented software development (AOSD) [12] promotes the separation of crosscutting con-

cerns principle [13,39] to increase modularity. Hereby, crosscutting concerns are separately repre-

sented as first class abstractions (aspects) and woven into the base code. In our approach we have

applied the separation of concerns principle to separate the views for quality concerns at the architec-

ture design level [7,40]. Similar to crosscutting concerns in AOSD, quality concerns seem to crosscut

the elements in the functional views. To address this problem in essence two different kinds of solutions

can be provided. In our earlier work we have considered the explicit modeling of viewpoint for quality

concerns [36,37]. Hereby, each quality concern such as adaptability and recoverability require a dif-

ferent decomposition of the architecture. To define the required decompositions for the quality

concerns architectural elements and relations are defined accordingly. Earlier work on local recover-

ability has shown that this approach is also largely applicable.We consider this work complementary to

the architectural perspectives approach. It seems that both alternative approaches seem to have merits.

In our future work we shall also consider defining architecture viewpoint for scalability. The other al-

ternative for addressing crosscutting concerns at the architecture design level is to adopt architecture

perspectives promoted by Rozanski and Woods [5]. For various selected quality concerns correspond-

ing architectural perspectives have been provided. As stated before an architectural perspective

dedicated for scalability in cloud computing is currently missing.

Architectural tactics [6] aim at identifying architectural decisions related to a quality attribute re-

quirement and composing these into an architecture design. As described in the scalability perspective

architectural tactics are needed to design and rework the architecture if necessary.

Several software architecture analysis approaches have been introduced for addressing quality

properties. They usually perform either static analysis of formal architectural models or they apply

a set of scenario-based architecture analysis methods [20]. The goal of these approaches is to assess

whether or not a given architecture design satisfies desired concerns including quality requirements.

Typically these approaches tend to be general purpose and do not focus on a particular concern. The

benefit of architectural perspectives and reasoning frameworks for quality concerns is the dedicated

focus and analysis which will in the end provide a more precise and consistent view on the selected

quality concern. As such, the architecture perspective that we have proposed for scalability can directly

support the architectural modeling and analysis for scalability.

Object management group (OMG) has proposed various UML profiles, such as profile for sche-

dulability, performance and time (SPT) [19] and profile for modeling Quality of Service and Fault

Tolerance (QoS & FT) [38]. SPT profile has enabled the construction of models that can be used for

making quantitative predictions regarding these characteristics. Performance profile has extended

the UML metamodel with stereotypes, tagged values, and constraints, which make it possible to

attach performance annotations, such as resource demands and visit ratios to a UML model. It

has provided facilities for capturing performance requirements within the design context, associ-

ating performance-related QoS characteristics with selected elements of the UML model, specify-

ing execution parameters which can be used by modeling tools to compute predicted performance

characteristics, and presenting performance results computed by modeling tools or found by mea-

surement. To support the architecture perspective we have adopted a UML profile for scalability.

For reasoning about multiple quality concerns multiple profiles could be adopted but the integration

of these would require further research.

242 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

10.7 CONCLUSION
In designing and analyzing SaaS-based systems for scalability the architect needs to be assisted with

suitable modeling approaches. Architectural perspectives have shown to be of value for addressing

quality concerns. In this paper we have provided a scalability perspective dedicated for SaaS systems.

To design the scalability perspective we have first carried out a domain analysis to scalability and de-

fined a scalability perspective according to the guidelines by Rozanski andWoods. The scalability per-

spective appeared to be really practical, especially since it forced the designers to think about the design

decisions regarding the scalability. The scalability perspective was not only useful as a guidance tool

for assisting the architect, but it also helped in the early analysis of the architecture. The proposed per-

spective has only been applied to the existing case study which is from a real industrial context. In our

future work we aim to apply it for other case studies as well. Also we shall consider the trade-off anal-

ysis using the scalability perspective with the perspectives as defined for other quality concerns.

REFERENCES
[1] B. Tekinerdogan, K. €Ozt€urk, A. Doğru, Modeling and reasoning about design alternatives of software as a

service architectures, in: Proceedings of Architecting Cloud Computing Applications and Systems Work-

shop, 9th Working IEEE/IFIP Conference on Software Architecture, June 20–24, 2011, pp. 312–319.
[2] B. Adler, Building Scalable Applications in the Cloud: Reference Architecture & Best Practices, RightScale,

Edinburgh, Scotland, 2011.

[3] A. Bondi, Characteristics of scalability and their impact on performance, in: Proceedings of the Second In-

ternational Workshop on Software and Performance—WOSP’00, 2000, p. 195.

[4] C.B. Weinstock, J.B. Goodenough, On system scalability, SEI technical note, CMU/SEI-2006-TN-012,

2006.

[5] N. Rozanski, E. Woods, Software Architecture Systems Working with Stakeholders Using Viewpoints and

Perspectives, first ed., Addison-Wesley, Boston, MA, 2005.

[6] F. Bachmann, L. Bass, M. Klein, Architectural tactics: a step toward methodical architectural design, Tech-

nical report CMU/SEI-2003-TR-004, Pittsburgh, PA, 2003.

[7] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, third ed., Addison-Wesley, Boston, MA,

2012.

[8] F. Chong, G. Carraro, R. Wolter, Multi-tenant data architecture, MSDN, 2006.

[9] S. Fang, Q. Tong, A comparison of multi-tenant data storage solutions for Software-as-a-Service,

in: Proceedings of 6th International Conference on Computer Science & Education (ICCSE), IEEE, August

3–5, 2011, pp. 95–98.
[10] J. Gao, X. Bai,W. Tsai, Y. Huang, Scalable architectures for SaaS, in: Proceedings of IEEE 15th International

Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, 2012.

[11] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Stafford,

Documenting Software Architectures: Views and Beyond, second ed., Addison-Wesley, Boston, MA, 2010.

[12] R. Chitchyan, A. Rashid, P. Sawyer, J. Bakker, M.P. Alarcon, A. Garcia, B. Tekinerdogan, S. Clarke,

A. Jackson, in: R. Chitchyan, A. Rashid (Eds.), Survey of Aspect-Oriented Analysis and Design, 2005.

AOSD-Europe project deliverable no. AOSD-Europe-ULANC-9.

[13] M. Aksit, B. Tekinerdogan, L. Bergmans, The six concerns for separation of concerns, in: Proceedings of

Workshop on Advanced Separation of Concerns, European Conference on Object-Oriented Programming,

Budapest, Hungary, 2003.

243REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0070

[14] J. Gao, P. Pattabhiraman, X. Bai, W.T. Tsai, SaaS performance and scalability evaluation in clouds,

in: Proceedings of the 6th IEEE International Symposium on Service Oriented System Engineering (SOSE),

2011, pp. 61–71.
[15] L. Duboc, E. Letier, D.S. Rosenblum, Systematic elaboration of scalability, IEEE Trans. Softw. Eng. 39 (1)

(2013) 119–140.
[16] L. Duboc, E. Letier, D.S. Rosenblum, T. Wicks, A case study in eliciting scalability requirements,

in: Proceedings of the 16th IEEE International Requirements Engineering Conference, September 8–12,
2008, pp. 247–252.

[17] A. Podelko, Multiple dimensions of performance requirements, in: Proceedings of the 33rd International

Computer Measurement Group (CMG) Conference, December 2–7, 2007.
[18] IEEE, Guide to the Software Engineering Body of Knowledge (SWEBOK), IEEE, Piscataway, NJ, 2004.

[19] Object Management Group, UML profile for schedulability, performance and time specification, OMG doc-

ument, version 1.1, formal/05-01-02, (2005).

[20] L. Dobrica, E. Niemela, A survey on software architecture analysis methods, IEEE Trans. Softw. Eng. 28 (7)

(2002) 638–654.
[21] M.A. Babar, L. Zhu, R. Jeffrey, A framework for classifying and comparing software architecture evaluation

methods, in: Proceedings of 5th Australian Software Engineering Conference, April, 2004, pp. 309–319.
[22] R. Kazman, G. Abowd, L. Bass, P. Clements, Scenario-based analysis of software architecture,

in: Proceedings of IEEE Software, November, 1996, pp. 47–55.
[23] J.D. Meier, C. Farre, P. Bansode, S. Barber, D. Rea, Performance Testing Guidance for Web Applications,

Microsoft Corporation, Seattle, US, 2007.

[24] B.M. Subraya, Integrated Approach to Web Performance Testing, IRM Press, Hershey, PA, 2006.

[25] G.T. Heineman, W.T. Councill, Component-Based Software Engineering: Putting the Pieces Together, Ad-

dison-Wesley, Boston, MA, 2001.

[26] C. Szyperski, Component Software, Addison-Wesley Professional, Boston, MA, 2002.

[27] S. Lehrig, H. Eikerling, S. Becker, Scalability, elasticity, and efficiency in cloud computing: a systematic

literature review of definitions and metrics, in: Proceedings of the 11th International ACM SIGSOFT Con-

ference on Quality of Software Architectures, 2015, pp. 83–92.
[28] D. Agrawal, A. El Abbadi, S. Das, A.J. Elmore, Database scalability, elasticity, and autonomy in the cloud,

in: Proceedings of the 16th International Conference on Database Systems for Advanced Applications (DAS-

FAA), April 22–25, Springer-Verlag, Berlin, 2011, pp. 2–15.
[29] W. Tsai, Q. Shao, Y. Huang, X. Bai, Towards a scalable and robust multi-tenancy SaaS, in: Proceedings of the

Second Asia-Pacific Symposium on Internetware, ACM, New York, 2010.

[30] L. Jiang, J. Cao, P. Li, Q. Zhu, A mixed multi-tenancy data model and its migration approach for the SaaS

application, in: Proceedings of IEEEAsia-Pacific Services Computing Conference (APSCC), December 6–8,
2012, pp. 295–300.

[31] I. Khan, Distributed caching on the path to scalability, MSDN Magazine (2009), July.

[32] B. Tekinerdogan, S. Bilir, C. Abatlevi, Integrating platform selection rules in the model driven architecture

approach, in: Proceedings of the 2003 European Conference onModel Driven Architecture: Foundations and

Applications, June 26–27, 2003, pp. 159–173.
[33] X. Sun, Q. Shao, G. Qi, Two-tier multi-tenancy scaling and load balancing, in: IEEE 7th International Con-

ference on e-Business Engineering (ICEBE), November 10–12, 2010, pp. 484–489.
[34] D. Yuanyuan, N. Hong, W. Bingfei, L. Lei, Scaling the data in multi-tenant business support system,

in: Pacific-Asia Conference on Knowledge Engineering and Software Engineering, IEEE, 2009.

[35] M. Klein, R. Kazman, L. Bass, S.J. Carriere, M. Barbacci, H. Lipson, Attribute-based architectural styles,

in: Proceedings of the First Working IFIP Conference on Software Architecture, San Antonio, TX, February,

1999.

244 CHAPTER 10 ARCHITECTURAL PERSPECTIVE FOR SCALABILITY

http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0180

[36] H. S€ozer, B. Tekinerdogan, M. Aksit, Optimizing decomposition of software architecture for local recovery,

Softw. Qual. J. 21 (2) (2013) 203–240.
[37] B. Tekinerdogan, H. S€ozer, Defining architectural viewpoints for quality concerns, in: Proceedings of the 5th

European Conference on Software Architecture (ECSA 2011), LNCS 6903, 2011, pp. 26–34.
[38] Object Management Group, UML profile for modeling quality of service and fault tolerance characteristics

and mechanisms, Request for proposal, ad/02-01-07, 2002.

[39] J. Bakker, B. Tekinerdogan, M. Aksit, Characterization of early aspects approaches, in: Workshop on Early

Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, Held in Conjunction with

AOSD Conference, 2005.

[40] B. Tekinerdogan, ASAAM: aspectual software architecture analysis method, in: Proceedings of 4th Working

IEEE/IFIP Conference on Software Architecture (WICSA), June, 2004, pp. 5–14.

245REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00010-1/rf0260

CHAPTER

MANAGING TRADE-OFFS IN
SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC
MAPPING STUDY

11
M. Salama*, R. Bahsoon*, N. Bencomo†

University of Birmingham, Birmingham, United Kingdom* Aston University, Birmingham, United Kingdom†

11.1 INTRODUCTION
Self-adaptation has been primarily driven by the need to achieve and maintain quality attributes in the

face of the continuously changing requirements and uncertain demand during run-time. Designing ar-

chitectures that exhibit a good trade-off betweenmultiple quality attributes is challenging, especially in

the case of self-adaptive software systems, due to the continuously changing run-time requirements as a

result of operating in dynamic, open, and uncertain contexts [1–3]. This challenge increases with the

complexity of the imposed trade-offs, due to considering more quality dimensions and the conflicts that

might appear between different quality attributes [1–3]. Further challenges are imposed from the need

for complying to environmental, regulatory, and sustainability requirements; such as energy consump-

tion regulations [4].

Researchers and practitioners have recognized the architecture is the appropriate level of abstrac-

tion for making such trade-offs decisions explicit [2,3]. The subject of trade-offs analysis in software

architecture has received plenty of attentions over the years [2,3]. Contributions have motivated the

need for systematic approaches that can inform the decision of architecting software systems [5–7].
The state-of-art and practice provide tangible evidence on the importance and wide adoption of con-

tributions, which are grounded on systematic analysis for trade-offs [2,3]. The adoption of such anal-

ysis has demonstrated impact in various architecting domains. Examples of seminal work include

Architecture Tradeoff Analysis Method (ATAM) [8], and Cost Benefit Analysis Method (CBAM)

[9]. Research has encountered many efforts for analyzing and managing quality attributes trade-offs

and the field has attracted a wide range of researchers and practitioners. Despite the maturity of re-

search in this topic, we still lack a clear picture of trade-offs management approaches, which are

designed for self-adaptive environments.

This paper presents a systematic mapping study examining trade-offs management, to compile rel-

evant literature related to self-adaptive software architectures. A systematic mapping study is a meth-

odological mean to analyze systematically a research topic, in order to provide an overview of the

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00011-3

Copyright # 2017 Elsevier Inc. All rights reserved.
249

http://dx.doi.org/10.1016/B978-0-12-802855-1.00011-3

research area, analyze the quality and type of research conducted, and identify the gaps and research

opportunities in this area [10–12]. The focus is on the studies that explicitly considered trade-offs

management; i.e., modeled trade-offs, or devised management solutions; not implicit consideration

for trade-offs. This study has also a specific concern about self-adaptive architectures; i.e., studies

related to classical software architectures; such as [8,9] are not taken into consideration in this study.

We have carefully chosen the systematic mapping study approach, as the trade-offs management topic

is quite broad; cross-cutting multiple software paradigms and many self-* properties, which requires

analyzing the research landscape. This mapping study mainly aims to (i) get an overview of the current

state of the research on trade-offs management for self-adaptive software architectures, (ii) obtain a

comprehensive understanding of the process of managing trade-offs and its related challenges with

respect to self-adaptive software and different software paradigms, and (iii) identify trends and prom-

ising future research directions to support self-adaptive software architectures.

The mapping study analyzed the landscape of self-adaptive software systems, exploring the self-*

properties that drive trade-offs management, and the software paradigms in which trade-offs manage-

ment was considered. The study also investigated the quality attributes considered in trade-offs,

reviewed the mechanisms for resolving trade-offs and analyzed them with respect to scale and

operating time. More specifically, we draw our analysis based on the following dimensions: when,
who, what, and how, for a comprehensive look for trade-offs management. The when reflects the time

when trade-offs are considered and managed; i.e., design-time, or run-time. By design-time, we mean

trade-offs management is considered while evaluating the architectural design alternatives and

making architectural decisions. The run-time is meant to be managing trade-offs while the system

is operating and the change requests are implemented. The who dimension is related to the actor per-

forming the analysis at run-time and/or design-time. At design-time, architects and stakeholders are

the ones involved in conducting trade-offs management. During run-time, trade-offs management

might be conducted on-line while the system is operating, off-line using simulations, for example,

or following an interactive mode. The what dimension reflects the subject of trade-offs; i.e., what

is meant to be traded off. This could be different quality attributes, run-time goals or sustainability

goals. The how dimension echoes the mechanism used to manage trade-offs; i.e., multi-objective

optimization, utility theory.

The results of the study contribute to the understanding of state of the research in this area and pave

the way for solutions from both academia and industry. Despite the mature and systematic treatment for

trade-offs in software design and architecture fields, research in the area of self-adaptive software ar-

chitectures has not sufficiently discussed trade-offs frameworks and specialized foundations, which are

specifically designed for self-adaptivity and run-time requirements [13]. This calls for foundational

framework for analyzing and managing trade-offs in self-adaptive software architectures, both while

designing self-adaptive systems and at run-time during their operation. More specifically, we envision

the need for a systematic way for managing trade-offs that can consider multiple quality attributes ex-

plicitly, the run-time dynamics and the uncertainty of the environment. Self-adaptive software archi-

tectures can hugely benefit from such focus to render cost-effectiveness and better seamless solutions.

With the vision that architectures play an important role in the software sustainability and long-livety,

modern complex software systems; e.g., systems of systems [14–16], ultra-large scale systems, smart

cities [17–20], smart homes [21], cloud federations [22–24]; call for approaches that can cater hetero-

geneity of the environment, better deal with uncertainty, and scale for managing trade-offs for a sus-

tainable and long-living software.

250 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

The manuscript is structured as follows. Section 11.2 presents a background on self-adaptive soft-

ware architectures and their related trade-offs. A description of the systematic mapping study protocol

is presented in Section 11.3. Section 11.4 shows the systematic mapping study process conducted.

Section 11.5 presents the principal results of the analysis, the answers to the research questions,

and discussions. Section 11.6 presents related surveys. New trends and research directions are dis-

cussed in Section 11.7, whereas conclusions and further work are then summarized in Section 11.8.

11.2 BACKGROUND
In this section, we give a brief background about self-adaptive software architectures and the trade-offs

they encounter during operation.

Self-adaptive software systems feature the ability to adjust their behavior in response to their per-

ception of the environment and the system itself [7,25]. The “self” prefix indicates that the system is

capable to decide autonomously how to adapt or organize for accommodating changes in their contexts

and environments [26]. The capability of the system to adjust its behavior in response to changes in

requirements and the environment, in the form of self-adaptation, has received significant attention

in the research community [27–29].
Self-adaptation has been used as a mechanism to deal with the increasing complexity of software

systems and uncertainty of their environments [26]. By architecting self-adaptive systems, we tend to

cover two areas: (i) architectures and models which are developed to support self-adaptive software

systems and (ii) self-managed architectures which automatically configure their components in a

way that is compatible with an overall architectural specification while interacting in response to

the system goals. The former could include reference architectural styles and models, which are archi-

tectural in essence and tend to guide the adaptation of the system. Notable examples include the work

by Oreizy et al. [30] providing a general outline of an architectural approach which includes adaptation

and evolution management, the work by Garlan and Schmerl [31] describing the use of architecture

models to support self-healing, and the work by Dashofy et al. [32] proposing the use of an architecture

evolution manager to provide the infrastructure for run-time adaptation and self-healing. The latter,

often backed up by reference architectural models, enacts architectural changes at run-time; not only

implements the change internally, but also initiates, selects and assesses the change itself without the

assistance of an external user [7]. As an example, the works of Kramer and Magee [33,34] have pro-

vided a context for achieving the vision of self-management at the architectural level, where the self-

managed architecture components automatically configure their interaction in a way that is compatible

with an overall architectural specification and achieves the goals of the system.

Software architectures that provide trade-offs management between multiple quality attributes to

support decision making are essential to deal with the complexity, heterogeneity, and ultra-large scale

of the modern software systems. As the complexity of systems increases, it is expected that more qual-

ity attributes need to be managed and handled for satisfaction, and therefore more conflicts will arise.

Also, challenges are further imposed from the need for complying to environmental, regulatory, and

sustainability requirements; such as energy consumption regulations. Research roadmaps for self-

adaptive software systems [7,25] have identified several research challenges related to trade-offs to

support decision making for self-adaptive systems. First, in the case of multiple conflicting goals,

trade-offs should be analyzed for identifying an optimal configuration of the goals to be met. Second,

25111.2 BACKGROUND

trade-offs between the adaptation cost and benefit need to be taken into consideration. Third, trade-off

between flexibility and assurance of meeting the critical high-level goals is required when developing

self-adaptive systems due to uncertainty levels. Recently emerging self-adaptive styles; such as self-

awareness; have been promoted to seamlessly manage uncertainty of the operating environment across

dimensions related to goal-, time-, and interaction-awareness [35–37].
The issues discussed above call for a deeper, profounder analysis and management for trade-offs

that can better cater for dynamic changes in the system and the environment, both while designing self-

adaptive systems and at run-time during their operation. Designing and engineering self-adaptive sys-

tems with better trade-offs management result in having more sustainable architectures in the face of

uncertainty at run-time. At run-time, better trade-offs management result in better selection of adap-

tation action to fulfill the continuously changing run-time requirements, which will sustain the archi-

tecture in fulfilling multiple quality attributes.

11.3 SYSTEMATIC MAPPING PROTOCOL
A systematic mapping study is “the process of identifying, categorizing, analyzing existing literatures

that are relevant to a certain research topic” [10]. The aim of a systematic mapping study is to get a

comprehensive overview on a particular research topic, present unbiased assessment of current liter-

ature, identify research gaps and collect evidence for future research directions [11,12,38–40]. The out-
come of a mapping study is a classified portfolio of publications on the research area [41,42]; i.e., a high

level map reporting the structure of existing literature related to the research field subject of interest,

visualizing the status of that field with respect to pre-defined research questions, and giving a visual

summary and mapping with respect to various classification categories [10].

A systematic mapping study is a form of secondary study that aims at providing an overview of the

research area, and allows discovering research gaps and trends [10,42]. This form of studies, used to

give an overview of a research area and designed to structure it [42], involves searching the literature in

order to identify the topics covered in the literature [10]. Another form of secondary studies is the sys-

tematic literature review (SLR) that, in contrast, focuses on gathering and synthesizing evidence [42].

Although these two forms of studies have some commonalities in the process of conducting the search

and studies selection, they are different in terms of goals, and thus the research process is different

[38,42]. A systematic mapping study is primarily concerned with structuring a research area

[38,42], while a systematic review considers only evidence and their strengths [42]. In more details,

the differences are with respect to the type of research questions, analysis conducted on the literature,

quality evaluation, and results [38,43]. The research questions in mapping studies are general and

broad, since they aim to classify topics covered in the literature and discover research trends

[38,42]. Then again, systematic reviews provide in-depth analysis to answer more specific questions

[38], with the aim to aggregate evidence [42]. Given the classification conducted in systematic map-

ping studies, solution proposals are included in the analysis, while this category would not be included

in SLRs [42]. This reflects the importance of systematic mapping studies in spotting research trends and

topics currently in-progress [42].

We have chosen to conduct a systematic mapping study, as the involved topic of trade-offs man-

agement is quite broad cross-cutting multiple software paradigms andmany self-* properties.We cover

and classify research in the area of self-adaptive software systems following the inclusion criteria. Our

252 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

focus is on analyzing and classifying research topics, as well as identifying trends and gaps in this area.

The procedure of this mapping study followed the guidelines for conducting secondary studies [38],

and dedicated guidelines for performing mapping studies [10]. It has been also informed by other sys-

tematic mapping studies relevant to software and architecture [40,44–46]. And, we have employed

some guidelines from SLR, since some research questions cannot be answered only by mappings

and required further data synthesis.

The systematic mapping study is conducted in the following steps (depicted in Fig. 11.1): (1)

planning of the study, (2) search execution, (3) selection of primary studies, (4) data extraction and

classification, (5) analysis and mapping.

1. Systematic mapping planning:

In this step, we establish the plan that will be used as a basis to conduct the systematic mapping

study. The following is to be defined and carried during this step:

(a) Definition of research questions: These questions reflect the objective that the study is intended

to attain.

(b) Definition of the scope: To frame the research questions, defining the scope helps to decide the

research initial boundaries and guide the course of the research.

(c) Establishment of the search strategy: This includes the selection of search sources; e.g.,

indexing services, digital libraries, publication venues; that will be used to find the primary

studies, as well as the search strings. Quality criteria of the journals and conferences are taken

into account.

(d) Establishment of selection criteria: The selection criteria consist of the inclusion and exclusion

criteria. These are used to select the primary studies that are relevant to answer the research

questions and exclude the irrelevant ones.

2. Search execution:

In this step, the search is conducted in the search sources using the search strings, according the

previously defined search strategy.

Definition of
research questions

Step 1: Systematic mapping planning

Definition of the
scope

Establishment of
search strategy

Establishment of
selection criteria

Analysis and
mapping

Conduct the study

Step 5 Step 4 Step 3 Step 2

Data extraction and
classification

Selection of primary
studies

Search execution

FIG. 11.1

Systematic mapping process.

25311.3 SYSTEMATIC MAPPING PROTOCOL

3. Selection of primary studies:

In this step, the selection criteria are applied in order to select the relevant primary studies. To

conduct further examination, the titles, abstracts, introductions, and conclusions are screened for

better relevance decision.

4. Data extraction and classification:

The classification scheme is built; i.e., the clusters that will be used to form the categories of the

map. The researchers read the whole paper, and look for keywords and concepts that reflect the

contribution of the studies. The actual data extraction takes place, where the studies are classified

using the classification scheme, with the aim of providing the set of results to address the research

questions. During this process, data sheets are created to store extracted information.

5. Analysis and mapping:

During this step, statistics are extracted from the extracted information and the visual maps

are built.

11.4 SYSTEMATIC MAPPING PROCESS
Having presented the protocol for conducting a systematic mapping study, this section presents the

application of the protocol to this study. The study presented in this paper focuses on the specific topic

of managing trade-offs for self-adaptive architectures to support decision making and maintain quality

of service. By managing trade-offs for self-adaptive software architectures, we are looking for studies

that explicitly considered handling and managing trade-offs; i.e., modeled trade-offs, or devised man-

agement solutions for trade-offs. The systematic mapping was conducted according to the process pre-

sented in the aforementioned steps in Section 11.3, and completed with discussing limitations of

the study.

11.4.1 STEP 1: SYSTEMATIC MAPPING PLANNING
In this step, the research questions, scope, search strategy, and selection criteria are defined and

established.

11.4.1.1 Research questions
The overall research objective of the study is to give an overview of the current state of the art related to

managing trade-offs for self-adaptive software architectures in research and practice. This mapping

study focuses on the research questions, presented in Table 11.1 along with their motivations.

11.4.1.2 Search strategy
11.4.1.2.1 Search sources
The search process for this study is based on automated search in the following digital libraries and

indexing systems: IEEE Xplore, ACM Digital Library, ScienceDirect, Web of Science, and Springer-

Link (details in Table 11.2). These are considered as the largest and most complete scientific databases

for conducting literature reviews [47,48] and most relevant electronic databases to computer science

and software engineering [10]. The selected trustworthy search sources have direct impact on the qual-

ity of conferences and journals when retrieving the search results. As technical reports and white papers

do not appear in these libraries, we consider Google Scholar for this type of publications only.

254 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

Table 11.1 Research Questions

RQ Research Question Motivation

RQ1 What are the studies that explicitly addressed trade-

offs management for self-adaptive software

architectures?

The aim of this question is to identify the existing

studies that explicitly considered trade-offs

management for self-adaptive software

architectures and their significant contribution in

this field

RQ2 What are the types of research and contribution

presented in these studies?

The goal to devise this question is to find the

research approaches (research types) used to

conduct the studies identified, as well as the

advances to the literature developed in the study

(contribution types)

RQ3 What are the publication types of these studies, and

their chronological distribution? Which research

groups are actively contributing into this topic?

This question aims at analyzing the landscape of

the published work, by examining the publication

types, their chronological and geographical

distributions. This allows identifying the maturity

of the work, the progress over the time and the

research groups heavily interested in the subject

RQ4 Which self-* properties have driven trade-offs

management for self-adaptive software

architectures?

Self-* properties are one of the main

characteristics of self-adaptive software systems.

These self-* properties drive and call for managing

imposed trade-offs

RQ5 Which software paradigms have been considered in

architectures trade-offs management?

Different software paradigms exhibits dissimilar

trade-offs, arising from the nature of the paradigm

and their environment. Understanding the nature of

these software paradigms, and their environment is

important to manage their associated trade-offs

RQ6 Which quality attributes are investigated in trade-

offs management?

The conflict between some quality attributes that

are required to be fulfilled is the main source of

trade-offs. The goal here is to identify the quality

attributes that were investigated and handled in

trade-offs management

RQ7 Which mechanisms were used to manage trade-offs

for self-adaptive software architectures? What is the

time dimension of the trade-off management

approaches?

This research question looks for the approaches

and mechanisms that were used to manage and

resolve trade-offs, and when these approaches

could operate; whether during designing the

system, or during run-time while the system is

operating

Table 11.2 Search sources

Database Location

IEEE Xplore http://ieeexplore.ieee.org/

ACM Digital Library http://dl.acm.org/

ScienceDirect http://www.sciencedirect.com/

Web of Science http://www.webofknowledge.com/

SpringerLink http://link.springer.com/

Google Scholar https://scholar.google.co.uk/

25511.4 SYSTEMATIC MAPPING PROCESS

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://www.sciencedirect.com/
http://www.webofknowledge.com/
http://link.springer.com/
https://scholar.google.co.uk/

We have also identified specialized venues in the field of software architecture and self-adaptive

software. The main journals are:

• ACM Transactions on Software Engineering and Methodology;

• ACM Transactions on Autonomous and Adaptive Systems;

• IEEE Transactions on Software Engineering;

• Journal of Software and Systems (Elsevier);

• Information and Software Technology (Elsevier); and

• Software and System Modelling (Springer).

For the specialized conferences, we have identified:

• International Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS);

• IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO);

• Working IEEE/IFIP Conference on Software Architecture (WICSA);

• International ACM SIGSOFT Conference on the Quality of Software Architectures (QoSA); and

• European Conference on Software Architecture (ECSA).

Furthermore, in order not to miss any relevant studies, we designated the cross-referencing technique to

find potentially relevant studies, by checking the references of the selected primary studies.

11.4.1.2.2 Search string
The aim of the search string is to capture all results related to trade-offs associated with architecture in

the context of self-adaptive software. Trial searches were performed in each database with the intention

of checking the number of returned papers and their relevance. The objective of the trial searches is to

check the feasibility of the search string and adjust it accordingly.

The general search string used on all databases is:

(trade*) AND (architecture) AND (self-*) AND (software)

The first parentheses capture the different ways “trade-offs” are usually written; i.e., tradeoffs or

trade-offs. The term “management” was not included, as pre-tests showed false positives because this

term is frequently used in business or operational contexts. Same applies for the term “decision” as a

synonym. The second onemakes it explicit for architecture and the third and fourth are for self-adaptive

software. Other keywords; such as design for architectures, multi-objective for trade-offs; when tried,

had led to a vast wide set of irrelevant results. The simplicity and generality of the search string helps in

maximizing the number of returned relevant papers, as it places as few restrictions as possible on the

search string.

11.4.1.3 Selection criteria
Inclusion criteria, formalized with the aim to increase the possibilities of having relevant studies, are:

1. Papers published in conferences and journals, as full research paper, short and position paper

presenting new and emerging ideas, as well as doctoral symposiums.

2. Literatures published as books, book chapters, technical reports, and white papers.

3. When similar studies were reported in several papers as work-in-progress, the most comprehensive

version is considered, unless significant details were reported in the earlier version.

256 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

4. Papers presenting a technique for trade-offs management.

5. Papers evaluating architectures with multi-dimensional trade-offs.

6. Papers discussing general or particular aspects of architecture trade-offs management.

Exclusion criteria, applied on the results retrieved, are:

1. Duplicate studies.

2. Papers in the form of abstract, tutorials, posters, or presentation.

3. Abstract not available.

4. Full-text papers not accessible.

5. Papers not in English language.

6. Papers not explicitly addressing architecture trade-offs.

7. Papers focusing on trade-offs for any types of software without self-adaption.

8. Papers focusing on hardware or network architecture.

11.4.2 STEP 2: SEARCH EXECUTION
The search was executed on the databases using the search string, as specified earlier. In practice, par-

ticular settings were built for each search engine (Table 11.3 for details), since each digital library

works in a specific manner. This was attempted to minimize duplications and rejections by setting

the appropriate options in each search engine. In particular, a filter was applied for setting the search

engine to retrieve only studies published by its own engine, and a language filter was applied, whenever

available, to retrieve documents in English language only. Minimizing results by excluding irrelevant

Table 11.3 Search Strings and Settings

Database Search String and Settings

ACMDigital Library Searching for: (trade) AND (architecture) AND (self-) AND (software)

Refinements:

Publishers: ACM

Content Formats: Pdf

IEEE Xplore You searched for: (“Metadata”: ((trade) AND (architecture) AND (self-) AND (software)))

You Refined by:

Publisher: IEEE

Content Type: Conference Publications, Journals & Magazines, Books & eBooks

ScienceDirect TITLE-ABSTR-KEY(trade* AND architecture AND self-* AND software)

(All Sources(Computer Science, Engineering))

SpringerLink “trade AND architecture AND self- AND software”

within Language: English

Discipline: Computer Science

Sub-discipline: SWE

Web of Science TOPIC: ((trade*) AND (architecture) AND (self-*) AND (software))

Refined by:

RESEARCH AREAS: (COMPUTER SCIENCE OR ENGINEERING)

Timespan: All years

25711.4 SYSTEMATIC MAPPING PROCESS

disciplines was also used, whenever available. In case the search engine does not imply enough filters

and large number of irrelevant results were retrieved, we used the first 200 search results ordered

according to the relevance with regard to the search string. This decision was made after carefully

checking up to other 150 search results after the first 200 and found complete irrelevance.

Regarding the search in the specialized venues, manual search method on target venues was not

needed, after we manually ensured that the papers published in these venues were retrieved in the da-

tabases included in the automated search. A separate search was done on Google Scholar, searching

only for technical reports and white papers.

The search was executed during March 2015, by the main researcher. As a result of this step, we

obtained 4489 (first 200 used) fromACMDigital Library, 29 from IEEE Xplore, 5 from ScienceDirect,

5029 (first 200 used) from SpringerLink, and 28 from Web of Science. It is worth to note here that the

limited number of search results—compared with some systematic mapping studies—is due to the fact

that this study is focused on a very specific aspect; i.e., managing trade-offs; for self-adaptive archi-

tectures only. This reflects the fact of the narrow scope and specialization of this study; compared to

systematic mapping studies with wider scope [49,50]. Table 11.4 shows the total results retrieved from

each database. Bibliographic data, including abstracts, and full texts were exported and stored using

EndNote [51], an efficient reference management system by Thomson Reuters, for further analysis.

We have also created a sheet listing the primary sources with their meta-information.

11.4.3 STEP 3: SELECTION OF PRIMARY STUDIES
During the screening of search results, the title, abstract, introduction, and conclusion for each candi-

date paper were examined closely to determine the relevance of the paper. The aforementioned inclu-

sion and exclusion criteria were applied at this stage. Since quality assessment is not a necessary task

for mapping studies, as stated by Kitchenham and Charters [38], we do not use it to filter primary stud-

ies. But, we evaluated the contributions of the primary studies, as well as the scale and completeness of

proposed approaches, as described later in the results (Section 11.5). Table 11.5 shows the figures of

included studies from each database. This step was performed by the main researcher, and supervised

by the second researcher.

After performing the selection of the primary studies retrieved by the search execution, we have

applied the cross-referencing technique to find potentially relevant studies, by checking the references

of the selected primary studies. These referenced papers are then taken forward to the step of primary

studies selection to apply the same process.

Table 11.4 Summary of Search Results

Database Search Results

ACM Digital Library 4489

IEEE Xplore 29

ScienceDirect 5

SpringerLink 5029

Web of Science 28

258 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

The selection of primary studies has resulted in a final list of 20 relevant papers, after removing the

duplicate studies. The reference list of the primary studies is included in Appendix A. Despite the fact

of the limited number of primary studies identified, we believe that our search found all primary studies

that explicitly deal with trade-offs management for self-adaptive software architectures. We interpret

this number of primary studies due to the narrow focus on which the study was designed; i.e., trade-offs

management, that is a specific architectural aspect for self-adaptive software architectures only.

11.4.4 STEP 4: DATA EXTRACTION AND CLASSIFICATION
For each selected primary study, the whole paper was read to extract the data items listed in Table 11.6.

These data items include publication year, publication type, authors’ country of affiliation, research

type, contribution type, software paradigm, self-* properties, traded quality attributes, as well as the

mechanisms used in managing trade-offs, their scale, and time. This step was performed by the main

researcher, and supervised by the second researcher reviewing the whole process, having thorough dis-

cussions and looking iteratively at the literature. The extracted data were recorded on a spreadsheet.

Detailed information about the data extracted and classifications of each study is summarized in the

table appearing in Appendix B.

With respect to the classification, we have chosen the following classification schemes, to analyze

the research landscape:

Research type
The research type facet reflects the research approach used in the papers. To classify the types of re-

search in the primary studies, we adopted the classification suggested by Wieringa et al. [41], as sug-

gested by the guidelines for performing mapping studies [10] and similar to other studies [52,53]. The

classification is summarized in Table 11.7.

Contribution type
This facet reflects what was developed in order to achieve advances in the focus area. Possible con-

tributions, based on Petersen et al. [10], are summarized in Table 11.8.

Along the classification, we have allowed a paper to be associated to more than one category in a

certain classification facets. This explains why the accumulated number of papers in some figures

and tables appearing in Section 11.5 is more than 20.

Table 11.5 Selection Summary

Database Included Studies

ACM Digital Library 2

IEEE Xplore 6

ScienceDirect 3

SpringerLink 4

Web of Science 10

25911.4 SYSTEMATIC MAPPING PROCESS

Table 11.6 Data Extracted From Each Primary Study

Data Item Description Relevant RQ

Key A key for referencing the study None

Title The title of the study None

Authors The list of authors None

Affiliations The affiliations of the authors None

Publication venue The name of the publication venue None

Publication type Journal paper, conference paper, technical report, book chapter RQ3

Publication year The publication year of the study RQ3

Country of affiliation The countries of the authors’ affiliation RQ3

Research type The research approach used in the study; e.g., solution proposal,

validation research, evaluation research, philosophical paper, opinion

paper, experience paper

RQ2

Contribution type The advances developed in the study; e.g., process, approach, model,

tool, metric, case study, experiment, non-empirical study, literature

review

RQ2

Software paradigm The type of software that the study has considered; e.g., cloud-based,

service-oriented, mobile, real-time

RQ5

Self-* property The self-* property that the study focused on; e.g., self-managing, self-

organizing, self-healing, self-configuring

RQ4

Quality attributes The quality attributes that were investigated and handled in trade-offs

management; e.g., performance, security, energy consumption, cost

RQ6

Trade-offs

management

mechanism

The approach used in managing and resolving trade-offs; e.g., multi-

objective optimization, Pareto-optimality, utility theory

RQ7

Time dimension The time in which the mechanism is operating; i.e., during design-time

of the system, or during run-time while the system is operating

RQ7

Contribution A brief summary about the main contribution of the study RQ1

Table 11.7 Types of Research Facet

Category Description

Solution proposal Proposes new technique to solve a problem, where the technique can be either novel or

significant extension of an existing technique. Applicability of the solution is supported by

examples and solid arguments

Validation

research

Describes investigation of a novel technique that has not been implemented yet

Evaluation

research

Describes investigation of an existing technique in practice to acquire understanding of a

problem. This shows how the technique is implemented in practice (solution implementation)

and what the consequences are of the implementation (implementation evaluation)

Philosophical

paper

Describes the nature of background and knowledge research by presenting structuring the field

in form of a taxonomy or conceptual framework

Opinion paper Describes the researcher’s opinion, values, and preferences without introducing new research

results

Experience paper Describes the researcher’s experience in conducting a practice

260 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

11.4.5 STEP 5: ANALYSIS AND MAPPING
Once the data extraction and classification task had been accomplished, the results obtained were an-

alyzed and the systematic mapping was created. Data analysis aims to synthesize the extracted data to

answer the RQs defined in Section 11.4.1.1. Descriptive statistics and frequency analysis were

employed in analyzing the data. In more details, the following analyses were conducted:

• When synthesizing the data to answer RQ1, besides listing the studies that explicitly addressed

trade-offs management for self-adaptive architectures and their contributions, a weighted word

cloud was created to analyze the topical content of the publications.

• To answer RQ2, descriptive analyses for the distribution of the research types and the contribution

types were generated.

• To analyze the characteristics of publications (RQ3), we generated the distribution of the

publication types, the chronological distribution of the publications, and the geographical

distribution of researchers based on their country of affiliation. Also, chronological distribution of

the publications related to the publication types was considered for more thorough analysis.

• To answer RQ4, frequency analysis for the self-* properties driving trade-offs management was

created. Also, the self-* properties found were mapped to the research types. This map provides the

distribution of all the research types conducted with respect to the self-* properties.

• For RQ5, studies related to software paradigms are listed and the frequency analysis of these

paradigms in studies was created.

• With respect to RQ6, the frequency analysis for the quality attributes investigated in trade-offs

management was created. We have also considered the correlation between the quality attributes

considered in trade-offs management and different software paradigms.

• To answer RQ7, the mechanisms used for trade-offs management and their related studies were

tabulated, and their time dimension was analyzed using frequency analysis.

Table 11.8 Types of Contribution Facet

Category Description

Process Describes activities or actions and their work flow

Approach Describes a method or approach stating the rules of how things should be done. This includes

algorithms, frameworks, and infrastructures

Model Provides a description of the real world omitting details, it has a higher degree of formality, and

should have semantics and notations

Tool Is a software tool developed to support the development of a proposed solution

Metric Presents metrics and measurements related to trade-offs management

Case study Presents descriptive explanation of empirical enquiries performed in an in-depth study

Experiment Presents evaluation method or empirical evidence for an existing technique

Non-empirical

study

Describes the researcher’s persuasive ideas and arguments without data validation. This includes

also taxonomies, research challenges, and conceptual frameworks

Literature

review

Reports critical analysis of prior researched studies that summarizes, classifies, compares, and

evaluates them

26111.4 SYSTEMATIC MAPPING PROCESS

• In order to get a comprehensive view about the research conducted, we have created a correlation

matrix, summarizing the research conducted with respect to the software paradigm, the quality

attributes, and the mechanisms for trade-offs management.

The analyses conducted and their relevant RQs are summarized in Table 11.9. The results of the anal-

ysis with regard to each research questions are detailed in Section 11.5.

11.5 RESULTS AND DISCUSSIONS
This section presents the findings of the study, addressing and discussing each of the research questions

listed in Table 11.1.

11.5.1 RQ1. WHAT ARE THE STUDIES THAT EXPLICITLY ADDRESSED TRADE-OFFS
MANAGEMENT FOR SELF-ADAPTIVE SOFTWARE ARCHITECTURES?
This first research question aims to identify the existing studies that explicitly considered trade-offs

management for self-adaptive software architectures and their significant contribution in this field.

These studies are listed below, identified by the key used in Appendix A. The contributions of the pri-

mary studies are summarized below:

Table 11.9 Analyses Conducted

Analysis
Relevant
RQ

Weighted word cloud RQ1

Distribution of the research types RQ2

Distribution of the contribution types RQ2

Distribution of the publication types RQ3

Chronological distribution of the publications RQ3

Chronological distribution of the publications related to the publication types RQ3

Distribution of researchers based on their country of affiliation RQ3

Frequency of self-* properties driving trade-offs management RQ4

Systematic mapping between research types and self-* properties RQ2, 4

Frequency of software paradigms considered for trade-offs management RQ5

Frequency of quality attributes investigated in trade-offs management RQ6

Correlation between quality attributes and software paradigms RQ5, 6

Frequency of the time dimension of trade-offs management mechanisms RQ7

Correlation between software paradigms, quality attributes, and the mechanisms for trade-offs

management

RQ5, 6, 7

262 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

[Ardagna 2008] employed analysis-oriented models to support analyzing and reasoning about non-

functional system properties; precisely performance and reliability.

[Inoue 2008] work resulted in optimized trade-offs between system design complexity, system

performanceandpower impact,byproposingon-line self-test features inamulti-/many-corearchitecture.

[Sousa 2008] attempted engineering resource-adaptive software systems targeted at small mobile

devices, by empowering users to control trade-offs among service-specific aspects of quality of

service and coordinating resource usage among several applications.

[Sousa 2009] further developed their earlier research [Sousa 2008] by presenting a framework for

engineering resource-adaptive systems that empowers users to control trade-offs among a set of

quality aspects, and coordinates resource usage among several applications.

[Teich 2009] presented a paradigm of parallel computing for giving embedded systems the ability

to explore and claim resources in a certain neighborhood, where the trade-off between flexibility

and cost is considered.

[Mirandola 2010] introduced a dynamic adaptation for service-based systems that minimizes the

adaptation costs and guarantees the required quality of service, based on an optimization model.

[Sawyer 2010] presented a research agenda for self-adaptive systems towards being able to adapt

dynamically to new environmental uncertain contexts. This work called for research into how self-

adaptive systems envisage run-time trade-offs of requirements that are present as the environment

changes; i.e., how self-adaptive systems can have run-time flexibility to ignore temporarily some

requirements in favor of others.

[Landauer 2011] studied trade-offs between safety and capability in the autonomic agent

infrastructure of self-organizing real-time systems. This work used off-line simulations to tune the

trade-off at deployment time—based on what is known or expected of the environment—as well as

to monitor and change those assumptions when necessary.

[Menasce 2011] presented a model-driven framework targeted at dynamic settings for

self-architecting service-oriented systems in which a requirements might change, taking into

consideration trade-offs that reflect stakeholders’ priorities.

[Perez-Palacin 2011] proposed an adaptation process for service-based self-adaptive systems,

which guarantees a trade-off between energy consumption and quality of service offered, while

maintaining suitable revenues for the service provider.

[Peng 2012] proposed a control-theoretic method for self-tuning software systems, combining goal

models with feedback controllers, to tune dynamically the preferences of different quality

requirements and make dynamic trade-off among conflicting soft goals. That was achieved through

preference-based goal reasoning procedure, in order to find Pareto-optimal configurations for

dynamic quality trade-off.

[Perez-Palacin 2012] extended their previous work [Perez-Palacin 2011] by developing an

adaptation framework for service-based applications that can be used to reduce power consumption

according to the observed workload. This work aimed at guaranteeing a trade-off between energy

consumption and performance, using stochastic Petri nets for the modeling where their analyses

give results about the trade-offs.

[Shen 2012] proposed a quality-driven self-adaptation approach for designing architectures of self-

adaptive software systems, which incorporates design decisions as the bridge between requirements-

and architecture-level adaptations. This was based on making value-based quality trade-off decisions

26311.5 RESULTS AND DISCUSSIONS

with the aim of maximizing system-level value propositions, and using a preference-driven goal

reasoner to reconfigure the run-time goal models based on the results of dynamic quality trade-off.

[Andrade 2013] defined a model-based approach for design spaces representation and exploration

which entails a search-based mechanism that points out decision trade-offs between feedback

controls and performance overhead to find out a set of Pareto-optimal candidate architectures for

self-adaptive software systems.

[Sandionigi 2013] proposed an approach for service selection in a pervasive environment, framed

as a quality of service optimization problem. The approach evaluates at run-time the services

optimal binding as well as the trade-off between the remote execution of software fragments and

their dynamic deployment on local nodes of the computational environment.

[Andrade 2014] reported the results of a controlled experiment that evaluates the design of self-

adaptive systems using a search-based approach, in contrast to the use of a style-based non-

automated approach, for finding out subtle effective designs and providing well-informed means to

reveal quality attributes trade-offs.

[Chen 2014] addressed trade-offs between global benefit of the cloud and local optimization of

virtual machines from one side, and between global benefit of the cloud and overhead in the design

for selecting an elastic strategy from another side, in order to determine dynamically and efficiently

an architectural elastic strategy that produces globally-optimal benefit.

[Perez-Palacin 2014] proposed an approach for analyzing and evaluating trade-offs between the

system adaptability and other system quality attributes, like availability or cost. The approach was

based on a set of metrics that allows evaluating the system adaptability at the architecture level to

guide architecture decisions on system adaptation for fulfilling system quality requirements.

[Sutcliffe 2014] proposed a reference architecture for context-aware adaptive system, where the

heuristics and metrics of design architecture strategies are used to refine conceptual architectures in

trade-off analysis to deal with non-functional requirements.

[Andrade 2015] reported the results of another controlled experiment, following their earlier work

[Andrade 2014]. This experiment evaluated the design of self-adaptive systems using a search-based

approach for explicitly eliciting design trade-offs, in contrast to a non-automated approach based on

architectural styles catalogs, with the goal of investigating to which extent the adoption of search-

based design approaches impacts on the effectiveness and complexity of resulting architectures.

In order to gain first impression on the topical content of the publications and show on which areas the

studies are focused, we have created a simple weighted word cloud (see Fig. 11.2) that was generated

from the abstracts of the primary studies. This was created with Tagxedo [54], which uses a stemming

algorithm to filter the textual input. Observing the density of terms, the most frequently used (given

other forms between brackets) are: software, system (systems), architecture (architectures, architec-

tural), requirements (goals), quality (QoS), design, self-adaptive (adaptation, adaptive), run-time (dy-

namic, dynamically, on-line), and trade-offs. This reflects the generality of the type of software and

systems addressed when working for trade-offs management. Same applies to the appearance of the

general term of self-adaptive, compared with other self-* properties. This also reflects that trade-offs

management acquired on the architecture level is interleaving with the requirements level. The distinct

appearance of the word “performance” might leave the impression of its special concern among other

quality attributes, though it might be used in the context of measuring the performance of the proposed

work. The word “design,” if added to other words such as model and framework, gives the impression

of the nature of work done in the primary studies.

264 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

11.5.2 RQ2. WHAT ARE THE TYPES OF RESEARCH AND CONTRIBUTION PRESENTED
IN THESE STUDIES?
To answer this question, we analyzed the types of researches used in the primary studies collected, and

their contributions types, as described earlier in the classification step (Section 11.4.4).

The categorization of the primary studies according to the research types appears in Fig. 11.3. The

results show a significant number of solutions proposed in comparison with evaluation researches. This

FIG. 11.2

Weighted word cloud.

Experience paper

Opinion paper

Philosophical paper

Evaluation research

Validation research

Solution proposal

1

0

2

5

2

15

0 2 4 6 8 10 12 14 16

FIG. 11.3

Distribution of the research types.

26511.5 RESULTS AND DISCUSSIONS

indicates a relative high degree of interest in providing solutions for supporting trade-offs management.

On the other hand, this research area still lacks other types of researches; such as validation research

investigating new techniques to advance the research, experience papers investigating existing tech-

niques in practice, as well as philosophical papers describing the nature of background and knowledge

research and structuring the field. Further analysis about the implications of these studies appears in the

plot, mapping the research types to the self-* properties (Section 11.5.4).

We have also analyzed the research studies according to their contribution type, as illustrated in

Fig. 11.4. The descriptive statistics show that most of the researches proposed an approach and eval-

uated it by experiment, whereas other contribution types; such as tool, model, process, and metric; have

lower figures.

11.5.3 RQ3. WHAT ARE THE PUBLICATION TYPES OF THESE STUDIES, AND THEIR
CHRONOLOGICAL DISTRIBUTION? WHICH RESEARCH GROUPS ARE ACTIVELY
CONTRIBUTING INTO THIS TOPIC?
This question aims at analyzing the landscape of the published work, by examining the publication

types, their chronological and geographical distributions. This allows identifying the maturity of the

work, the progress over the time and the research groups heavily interested in the subject. We analyzed

the primary studies from different perspectives: (1) publication types, (2) chronological distribution of

the studies, and (3) geographical distribution of the research in this area.

First, the distribution of the collected studies related to the method of publication is shown in

Fig. 11.5. The results show that a significant number of publications were made through conferences

Experiment

Non-empirical study

Literature review

Case study

Tool

Metric

Model

Approach

Process

9

3

0

2

4

2

2

14

2

0 2 4 6 8 10 12 14 16

FIG. 11.4

Distribution of contribution types.

266 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

(55%), followed by a less significant number of publications (25%) in journals. A limited number of

publications were found in the form of book chapters (15%) and magazines papers (5%), whereas none

technical reports were published. Ideas and solutions are still being proposed in conferences, and some

of them have matured and reported through journals and books. This indicates that research in this par-

ticular area is still considered maturing. Yet, no technical reports and magazine papers have reflected

transition between pure research and pure practice, transferring ideas, methods, and experiences among

researchers and practitioners.

Further, we analyzed the number of published studies for each year, as illustrated in Fig. 11.6. The

results show that publications related to trade-offs management for self-adaptive software architecture

started at 2008 with a constant and stable attention, regardless the limited number of publications. It is

also worth to note that this mapping study was conducted early 2015, which interprets the decrease

appearing in 2015.

For a better insight about the publications, Fig. 11.7 shows the chronological distribution of the

publication types. This illustrates an overall constant figure in the number of papers published in con-

ferences, while papers published in journals, books, and magazines maintained a lower and inconstant

number. The publication of studies in conferences might indicate a shift towards more mature, com-

plete, and technical work in the future.

Despite the narrow scope of the study topic, we analyzed the location where the collected researches

were conducted.The aim is to identify the research communities that contributed to this subject, based on

the number of resided researchers. Therefore, the demographic distribution of the researchers upon their

affiliationswas analyzed. Fig. 11.8 illustrates the distribution of this analysis. This shows that 24%of the

collected paperswere investigated by researchers in Italy, followedby20%and16%by researchers from

United States and United Kingdom, respectively, whereas the rest of papers are fairly distributed

amongst the other countries; Spain and Brazil (12%), and Singapore and China (8%).

By that, we have identified four main research groups (other groups of authors are not listed for their

single contributions) that are working actively and providing progressive contributions, namely:

Conference paper

Magazine paper

Journal paper

Book chapter

Technical report

Conference
paper
55%

Magazine paper
5%

Journal paper
25%

Book chapter
15%

Technical
report

0%

FIG. 11.5

Distribution of the publication types.

26711.5 RESULTS AND DISCUSSIONS

• [Perez-Palacin] focused on service-based applications and proposed the use of stochastic Petri nets

for modeling trade-offs between three different sets: (a) energy consumption and quality of service,

(b) energy consumption and performance, (c) system adaptability and quality of service.

• [Andrade] focused on designing self-adaptive systems architectures, presenting a search-based

approach to find out a set of Pareto-optimal candidate architectures and followed by a multi-

objective optimization engine that relies on the Non-dominated Sorting Genetic Algorithm II.

• [Sousa] presented a framework for engineering resource-adaptive software systems targeted at

small mobile devices, that empowers users to control trade-offs among some aspects of quality of

service, founding their approach on the utility theory.

2007
0

1

2

3

4

5

2008 2009 2010 2011

Publication year

N
o

.
o

f
p

u
b

li
c
a

ti
o

n
s

2012 2013 2014 2015

FIG. 11.6

Chronological distribution of the publications.

2007

3

2

1

0

2008 2009 2010 2011 2012 2013 2014 2015

Conference paper

Conference paper

Magazine paper

Journal paper

Book chapter

Book chapter

Technical report

Technical report

FIG. 11.7

Chronological distribution of the publication types.

268 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

• [Shen] and [Peng] used value-based reasoning for quality-driven self-adaptation design and

continued the work towards a dynamic trade-off with little human intervention.

11.5.4 RQ4. WHICH SELF-* PROPERTIES HAVE DRIVEN TRADE-OFFS MANAGEMENT
FOR SELF-ADAPTIVE SOFTWARE ARCHITECTURES?
This research question provides the analysis of the self-* properties which drive trade-offs and call for

their management. As self-* properties are inter-linked; e.g., self-managing might embed some self-

organizing or self-optimizing capabilities; we relied in this analysis on the explicit consideration of a

particular self-* property. We considered this type of simple and explicit analysis, due to the fact that

each of the self-* properties exhibits its own challenges that affect trade-offs management, beside the

common trade-offs among general self-adaptivity. A distinct example is the recently emerging self-

awareness, which was built on top of self-adaptivity. Self-awareness aims for more efficiency in

the way the self-adaptation is performed, by making the computation node aware of certain useful in-

formation; such as run-time goals, interaction with the environment and historical information [35–37].
Extracting the self-* properties from the primary studies, Fig. 11.9 presents this descriptive

analysis. The results show that the majority of the research considered the general self-adaptive prop-

erty. Self-managing, self-organization, and self-optimization properties received some equal attention,

whereas all other properties had less attention. This indicates the generality of the trade-offs manage-

ment approaches, yet specialized approaches are still required to manage trade-offs for specific self-*

properties and handle their related challenges.

For profounder view of the research status, we related the self-* properties with the research types

found in the literature. We have constructed a bubble plot diagram for mapping the distribution of re-

search types with the self-* properties. Fig. 11.10 presents the bubble plot diagram illustrating this

Brazil
12%

China
8%

Spain
11%

UK
15%

Italy
23%

Singapore
8%

Germany
4%

USA
19%

Italy

UK

USA

Germany

Singapore

China

Spain

Brazil

FIG. 11.8

Distribution of researchers based on their country of affiliation.

26911.5 RESULTS AND DISCUSSIONS

mapping. The systematic map illustrates that the significant contribution of the research field was so-

lution proposals for the general self-adaptive property. The self-adaptive property has also taken some

attention in the validation and evaluation research types. All other self-* properties gained some atten-

tion in the solution proposal only. This view of the research field clarifies the lack of different research

types, rather than solution proposals, for specific self-* properties.

11.5.5 RQ5. WHICH SOFTWARE PARADIGMS HAVE BEEN CONSIDERED IN
ARCHITECTURES TRADE-OFFS MANAGEMENT?
This research question provides the analysis of software paradigms in which trade-offs management

was considered. Different software paradigms and their related studies are listed in Table 11.10.

Analyzing software paradigms that were considered in trade-offs management in different re-

searches, Fig. 11.11 shows the descriptive analysis of this distribution. Themajority found were addres-

sing general self-adaptive software and software systems. A limited special attention was given to

service-based and mobile software. Single researches covered other different types of software, includ-

ing cloud-based software, embedded systems, real time and pervasive applications.

Oneobservation is that themajorityof theproposedwork tends tobegeneric andnot explicitlydesigned

for the requirements of a particular paradigm. This implies that generality can come with advantages and

disadvantages. Generality can imply application and evaluation of the proposedwork under different con-

text and applications, as well as reflecting on their strengths and weaknesses in dealing with the said par-

adigm. This can consequently provide inputs for further improvements and extensions. On the other hand,

theseapproachescan takesimplisticassumptions,or tend tobe limitedwhenaddressing the requirementsof

Self-awareness
4%Self-tuning

4%
Self-optimizing

4%

Self-managing
8%

Self-healing
4%

Self-configuration
4%

Self-organization
9%

Self-test
4%

Self-adaptive
59%

Self-test

Self-healing

Self-adaptive

Self-configuration

Self-organization

Self-optimizing

Self-managing

Self-awareness

Self-tuning

FIG. 11.9

Self-* properties driving trade-offs management.

270 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

Self-awareness 0 0 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 1 0 0

0 0 0 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

11 2 4 1 0 1

Self-tuning

Self-optimizing

Self-managing

Self-healing

Self-configuration

Self-organization

Self-test

Solution proposal Validation research Evaluation research Philosophical paper

Research

P
ro

p
e
rt

y

Opinion paper Experience paper

Self-adaptive

FIG. 11.10

Systematic mapping (bubble plot) for research types and self-* properties.

2
7
1

1
1
.5

R
E
S
U
L
T
S
A
N
D
D
IS
C
U
S
S
IO
N
S

someparadigms,where specialityandcustomization isdesirable formoreeffectiveadaptation.More trade-

offs arising froma particular software paradigmneed to be explicitly considered. For instance, considering

a cloud federation, a cloud node exhibits trade-offs arising from the run-time environment and the quality

goals received fromother nodes in the federation. Trade-offsmanagement that considers characteristics of

particular software paradigms will result in advancing these paradigms. Yet, the validity of these obser-

vations can be subject to further empirical studies.

Table 11.10 Software Paradigms and Related Studies

Software Paradigm Studies

Self-adaptive software

and systems

[Ardagna 2008], [Sawyer 2010], [Peng 2012], [Shen 2012], [Andrade 2013], [Andrade

2014], [Chen 2014], [Perez-Palacin 2014], [Andrade 2015]

Embedded systems [Teich 2009]

Pervasive systems [Sandionigi 2013]

Large-scale systems [Inoue 2008]

Real-time distributed

systems

[Landauer 2011]

Mobile software [Sousa 2008], [Sousa 2009], [Sutcliffe 2014]

Cloud-based software [Andrade 2013]

Service-based software [Mirandola 2010], [Menasce 2011], [Perez-Palacin 2011], [Perez-Palacin 2012]

Cloud-based
software

5%

Service-based
software

19%

Mobile software
14%

Self-adaptive
software and systems

43%

Real-time
distributed systems

5%
Large-scale

systems
5%

Pervasive
applications

5%
Embedded systems

4%

Embedded systems

Real-time distributed systems

Self-adaptive software and
systems

Large-scale systems

Pervasive applications

Cloud-based software

Mobile software

Service-based software

FIG. 11.11

Software paradigms considered for trade-offs management.

272 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

11.5.6 RQ6. WHICH QUALITY ATTRIBUTES ARE INVESTIGATED IN TRADE-OFFS
MANAGEMENT?
As part of analyzing the details of research work done in the literature, we have listed out the quality

attributes investigated in trade-offs management. Fig. 11.12 illustrates the statistics of these attributes

among the primary studies. The major case of trade-offs management considered quality attributes on a

general level. Special attention was given to performance and cost. Other attributes; such as safety,

reliability, and adaptation cost; were considered in single research efforts.

In the case of considering specific attributes, Table 11.11 summarizes the related studies and the

attributes considered. Beside quality attributes, we have also considered feedback loops in trade-offs

management, for feedback loops became a crucial element of the overall architecture in engineering

self-adaptive software systems [26]. Feedback loops—in all forms—can carry information about

emerging or implied behavior of the system and imply new trade-off that needs to be managed. Con-

sidering multiple feedback loops, or multiple decisions from a feedback loop, or internal and external

feedback loops, more trade-offs will arise and need to be managed.

Another observation is that the majority of the studies, considering specific attributes, were con-

cerned only with two attributes for trade-offs as examples in illustrating their approaches. Examples

include [Ardagna 2008] considered performance and reliability only, [Perez-Palacin 2011] and [Perez-

Palacin 2012] considered performance and energy only. However, the formalism behind their trade-

offs management process might not be limited to treating only two quality attributes.

Considering multiple quality attributes in trade-offs management will result in selecting better ad-

aptation action that is able to fulfill multiple qualities. With many efforts and claims indicating the

validity of this statement, we still need formal and rigorous investigations. Empirical studies provide

the means for this, but no controlled experiments have been performed to provide that evidence. Af-

terwards, we call for more comprehensive trade-offs management approaches that consider multiple
specific quality attributes.

Design complexity

Cost

Adaptation cost

Energy consumption

Feedback control loop

Flexibility

Safety

Reliability

Performance

Quality soft goals

Quality attributes

1

5

2

3

1

2

1

1

5

1

11

0 2 4 6 8 10 12

FIG. 11.12

Quality attributes investigated in trade-offs management.

27311.5 RESULTS AND DISCUSSIONS

As trade-offs are imposed from the recent advancements of different software paradigms, we con-

sidered the correlation between the quality attributes considered in trade-offs management and the dif-

ferent software paradigms. We have identified a cross-reference matrix classifying the primary studies,

as depicted in Fig. 11.13.

11.5.7 RQ7. WHICH MECHANISMS WERE USED TO MANAGE TRADE-OFFS FOR
SELF-ADAPTIVE SOFTWARE ARCHITECTURES? WHAT IS THE TIME DIMENSION OF
THE TRADE-OFF MANAGEMENT APPROACHES?
This research question looks for the mechanisms that were used to manage trade-offs. The trade-offs

mechanisms and their related studies are listed in Table 11.12.

Analyzing the extracted mechanisms, we identified that utility theory and multi-objective optimi-

zation appeared to be the most used techniques. Some efforts approached the use of stochastic Petri

nets, value-based reasoning and Pareto-optimality. We have identified these mechanisms, listed as

follows:

• Utility theory was used to model and quantify quality of service trade-offs [Sousa 2008, Sousa 2009,

Menasce 2011] for engineering resource-adaptive software systems targeted at small mobile

devices in order to coordinate resource usage among several applications.

• Stochastic Petri nets were proposed for modeling trade-offs for service-based applications [Perez-

Palacin 2011, Perez-Palacin 2012, Perez-Palacin 2014].

• Multi-objective optimization was employed for optimizing trade-offs between system design

complexity, system performance and power impact [Inoue 2008], for minimizing the adaptation

costs while guaranteeing the quality of service [Mirandola 2010], for pointing out decision trade-

offs between feedback controls and performance overhead [Andrade 2013, Andrade 2014], as well

as for optimizing service selection [Sandionigi 2013].

Table 11.11 Studies Considering Specific Attributes

Study Attributes

[Ardagna 2008] Performance, reliability

[Inoue 2008] Design complexity, performance, power impact

[Teich 2009] Flexibility, cost

[Mirandola 2010] Adaptation cost, quality attributes

[Landauer 2011] Safety, resources

[Menasce 2011] Stakeholders’ priorities

[Perez-Palacin 2011] Performance, energy

[Perez-Palacin 2012] Energy consumption, performance

[Andrade 2013] Feedback control loop, performance overhead

[Sandionigi 2013] Flexibility, cost

[Chen 2014] Global QoS, cost

274 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

[Sawyer 2010]

Trade-off attributes S
oft

w
ar

e
par

ad
ig

m

Self
-a

da
pt

ive
 so

ftw
ar

e
& sy

ste
m

s

Em
be

dd
ed

 sy
ste

m
s

La
rg

e-
sc

ale
 sy

ste
m

s
Rea

l-t
im

e
dis

tri
bu

te
d

sy
ste

m
s

M
ob

ile
 so

ftw
ar

e

Clou
d-

ba
se

d
so

ftw
ar

e

Ser
vic

e-
ba

se
d

so
ftw

ar
e

Per
va

siv
e

ap
pli

ca
tio

ns

Quality attributes

Quality soft goals

Performance

Flexibility

Safety

Reliability

Energy consumption

Feedback control loop

Design complexity

Cost

Adaptation cost

[Sawyer 2010]

[Shen 2012]
[Andrade 2014]

[Andrade 2013] [Andrade 2013]

[Andrade 2013]

[Andrade 2013]

[Andrade 2013]

[Andrade 2013]
[Andrade 2014]

[Ardagna 2008]

[Ardagna 2008]

[Ardagna 2008]

[Andrade 2015] [Teich 2009]

[Sandionigi 2013]

[Sandionigi 2013]

[Inoue 2008] [Landauer 2011]

[Landauer 2011]

[Sousa 2008]
[Sutcliffe 2014]

[Sousa 2009]

[Sousa 2009]

[Inoue 2008]

[Peng 2012]

[Chen 2014]
[Perez-Palacin 2014]

[Perez-Palacin 2011]

[Perez-Palacin 2012]

[Perez-Palacin 2011]

[Perez-Palacin 2012]

[Mirandola 2010]
[Menasce 2011]

[Perez-Palacin 2014]

FIG. 11.13

Correlation of software paradigms and quality attributes.

2
7
5

1
1
.5

R
E
S
U
L
T
S
A
N
D
D
IS
C
U
S
S
IO
N
S

• Pareto-optimal solutions were also used to point out trade-offs decision using a search-based

mechanism [Andrade 2015] and to find optimal configurations for dynamic quality trade-off for

self-tuning [Peng 2012].

• Value-based reasoning was used to make design decisions that bridge between requirements- and

architecture-level adaptations [Shen 2012] and dynamically to make trade-offs among quality

requirements [Peng 2012].

Analyzing the time dimension of these mechanisms (see Fig. 11.14); i.e., when these mechanisms tend

to operate; we found 50% of the mechanisms were design-time mechanisms, approximately equals to

Table 11.12 Trade-offs Management Mechanisms and Related Studies

Trade-offs Mechanism Studies

Utility theory [Sousa 2008], [Sousa 2009], [Menasce 2011]

Stochastic Petri [Perez-Palacin 2011], [Perez-Palacin 2012], [Perez-Palacin 2014]

Multi-objective

optimization

[Inoue 2008], [Mirandola 2010], [Andrade 2013], [Sandionigi 2013], [Andrade

2014]

Pareto-optimal solutions [Peng 2012], [Andrade 2015]

Value-based reasoning [Peng 2012], [Shen 2012]

Analysis-oriented method [Ardagna 2008]

Invasive algorithms [Teich 2009]

Requirements reflection [Sawyer 2010]

Simulations [Landauer 2011]

Objective functions [Chen 2014]

Heuristics [Sutcliffe 2014]

Design-time
50%Run-time

45%

Offline
5%

Design-time

Run-time

Offline

FIG. 11.14

Time dimension of trade-offs management mechanisms.

276 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

45% run-time ones and 5% off-line. The design-time and run-time mechanisms studied and analyzed

above are meant to be either design decisions or run-time adaptation decisions respectively. For both

types of decisions, linkage of architectures with requirements is expected to enrich and better-inform

the trade-offs decisions. More precisely, design-time trade-offs management requires linkage with re-

quirements elucidated while designing the system, and run-time trade-offs management requires run-

time monitoring of requirements changes. Such linkage should, then, employ requirements reflection,

as proposed in [Sawyer 2010].

To get a comprehensive view about the research landscape, we have created a correlation matrix

(see Fig. 11.15), summarizing the research conducted in the primary studies with respect to the software

paradigms, the quality attributes, and the mechanisms for trade-offs management.

11.5.8 LIMITATIONS OF THE STUDY
Despite the fact that this study has been conducted following mainly the systematic mapping study

methodology, there are some limitations that need to be clarified:

• The limited number of search results and selected primary studies—compared with other

systematic mapping studies [45]—might leave a question about the completeness and coverage

of the study. However, the study was designed from the beginning to focus on a specific

architectural aspect; i.e., managing trade-offs for self-adaptive software only. This reflects partly

the narrow scope and specialization of this study; which is similar to the case of [55] that constructs

a systematic mapping study focusing on software architecture knowledge (13 primary studies),

and [56] that focused on measuring the understandability of architectural structures (25 primary

studies). Obviously, the narrow scope of the systematic mapping interprets the limited number

of search results and selected primary studies. Thus, we believe that we have covered much of

the significant studies relevant to the topic. It is also worth to note the quality of conferences

and journals of the primary studies that are used in the analysis.

• Along this study, only a set of criteria was presented to classify and analyze the research done in the

topic studied. There could be other criteria to evaluate the work of these studies; such as the

technical details of these studies, their efficiency and limitations. However, this requires a

systematic literature review rather than a systematic mapping study [12,57].

• Some relevant papers might not have been found in the identified digital databases when

executing the search, as automated searches rely on the search engine quality. However, the

search sources used are considered as the largest and most complete scientific databases for

conducting literature reviews [8,9] and are highly relevant electronic databases to computer

science and software engineering [4]. Therefore, we are reasonably confident that significant

studies have been unlikely missed.

• The search was based on meta-data (abstract, title, and keywords) only and might missed some

studies that have considered trade-offs management as part of their proposed work, and have not

mentioned this in their titles, abstract and keywords. Though the meta-data are specified by the

authors of the papers, we reasonably rely on how well the digital databases classify and index

papers.

• The search process and data extraction were performed by one researcher implying that some bias

might, therefore, have been introduced in the results for many reasons; such as the background of

27711.5 RESULTS AND DISCUSSIONS

S
oft

w
ar

e
par

ad
ig

m

Self
-a

da
pt

ive
 so

ftw
ar

e
& sy

ste
m

s

Em
be

dd
ed

 sy
ste

m
s

La
rg

e-
sc

ale
 sy

ste
m

s

Rea
l-t

im
e

dis
tri

bu
te

d
sy

ste
m

s
M

ob
ile

 so
ftw

ar
e

Clou
d-

ba
se

d
so

ftw
ar

e

Ser
vic

e-
ba

se
d

so
ftw

ar
e

Per
va

siv
e

ap
pli

ca
tio

ns

[Perez-Palacin 2014]

Quality attributes,
adaptation cost

[Sandionigi 2013]

Flexibility, cost

[Inoue 2008]

Performance,
reliability

[Sousa 2008]

Quality attributes

[Sousa 2009]

Flexibility, cost
[Menasce 2011] Quality
attributes

[Perez-Palacin 2011]

Safety, adaptation cost
[Perez-Palacin 2012]

Performance, energy
consumption

[Landauer 2011]

Performance,
energy
consumption

[Sutcliffe 2014]

Quality attributes

[Mirandola 2010]

Quality attributes

[Andrade 2013]

Feedback control
loop, cost

[Sawyer 2010]

Quality attributes,
adaptation cost

[Chen 2014]

Quality attributes

[Peng 2012] Quality soft
goals

[Peng 2012] Quality soft
goals
[Shen 2012] Quality
attributes

[Andrade 2013]

Feedback control loop,
cost
[Andrade 2014]

Quality attributes, cost

[Ardagna 2008]

Performance, energy
consumption, design
complexity

[Teich 2009]

Quality
attributes

Trade-off attributes

Utility theory

Stochastic petri

Multi-objective
optimization

Pareto-optimal solutions

Value-based reasoning

Analysis-oriented method

Invasive algorithms

Requirements reflection

Simulations

Objective functions

Heuristics

[Andrade 2015]

Quality attributes

FIG. 11.15

Correlation of software paradigms, quality attributes, and mechanisms.

2
7
8

C
H
A
P
T
E
R
1
1

M
A
N
A
G
IN
G
T
R
A
D
E
-O
F
F
S
IN

S
E
L
F
-A
D
A
P
T
IV
E
S
O
F
T
W
A
R
E

A
R
C
H
IT
E
C
T
U
R
E
S
:
A
S
Y
S
T
E
M
A
T
IC

M
A
P
P
IN
G
S
T
U
D
Y

the researcher and the researcher’s subjectivity that affects the entire process. However, the second

researcher’s supervision reviewing the whole process, looking iteratively at the literature, and

having thorough discussions with the third researcher lead us to believe that the effect of this error is

minimal.

11.6 RELATED SURVEYS
There have been many surveys in the literature related to self-adaptive software architectures. The SLR

of Weyns and Ahmad [58] was performed on the claims and evidence for architecture-based self-

adaptation. This study concluded that the trade-offs implied by self-adaptation have not received much

attention, and evidence is mainly obtained from simple examples. Other surveys related to self-

adaptive architectures include the survey of Bradbury et al. [59] that evaluated the self-managing

approaches in dynamic software architecture specification, the work of Wynes et al. [60] on under-

standing formal methods for self-adaptive systems, and the work of Yuan et al. [61] on understanding

self-protecting software systems. Some of these studies discussed the decision making process in the

light of multiple quality concerns for self-adaptive systems, yet none has extensively and explicitly

looked at trade-offs management.

It is worth to mention further surveys related to software architectures which reviewed topics that

can indirectly contribute to trade-offs management. Examples include the systematic review conducted

about software architecture evolution [62] and another one more specialized to characterize software

architecture changes [63]. Sustainability evaluation of software architectures was reviewed in [64].

Another survey reviewed the reliability and availability prediction methods from the viewpoint of soft-

ware architecture [65].

11.7 CHALLENGES AND RESEARCH DIRECTIONS
As modern software systems are increasingly expected to be autonomous, smarter and scalable, re-

search in self-adaptivity faces new and unique challenges in the way software systems are architected.

As discussed earlier, solutions for architecting self-adaptive software systems face numerous trades-

offs across different dimensions related to quality goals, workload, time, context, and environment.

Based on our study, we identify in this section challenges and research directions in managing

trade-offs for self-adaptive software architectures.

• Separation of trade-offs concerns of the managing and the managed systems. Analyzing quality

attributes considered in trade-offs management studies, existing research have not well addressed

the separation of trade-offs of the managed system and the managing system of a self-adaptive

software system [7,66–68]. Managed systems can have their own trade-offs; such as quality

concerns and run-time goals. The managing system can be informally referred to as the “engine”

for enabling self-adaptation. The trade-offs for the managing system, for example, could be related

to: (i) operation efficiency, cost, and benefits of supporting multiple systems under its own

management, (ii) styles for management (eg, centralized, decentralized, semi-decentralized), and

(iii) the use of various trade-offs management and conflict resolution mechanisms to optimize for its

27911.7 CHALLENGES AND RESEARCH DIRECTIONS

operation.However, these shouldnotbediscussed in isolationof thecontext; that is the situationand the

managed systems themselves. We call for explicit consideration and separation of trade-offs for both

the managed and the managing systems to promote flexibility, scalability, and heterogeneity in the

analysis.

• Managing trade-offs of trade-offs. Observations fromprimary studies that explicitly looked at trade-

offs management have revealed that trade-offs are often treated without clear separation between

trade-offs of the managed system and trade-offs of the managing system [7,66–68]. While it is

imperative that the managing and managed systems can influence each other’s trade-offs

management decisions, a question that becomes relevant is how can trade-offs of trade-offs be

managed. That is, trade-offs of trade-offs are dynamically encountered in the managed and the

managing environment to reach a compromise. For example, it may be possible that the separation

can benefit from fine-grained view of the management process, that can reveal situations where the

trade-offs of both systems can be in agreement, or in conflict, and other situations leading to risks.

• Catering for heterogeneity in systems. Trade-offs management should cater for heterogeneity in

the managed systems [69], where these systems can be of varying scale, environments, and operate

under different assumptions, constraints, and optimization objectives. Consider, for the example,

managing trade-offs in Systems of Systems [14–16] (e.g., smart cities [17–20], smart homes) [21] and

open systems that rely on sharedmodels andmulti-tenant provision (e.g., cloud, and cloud federations)

[22–24], the challenge can include scaling the trade-offs analysis and management to cater for the

individual systems and the welfare of the composed system—as a whole—in the operating

environment. The trade-offs management shall also look at mechanisms that can scale the

identification, analysis, and mitigation of the numerous uncertainties that an operating and evolving

system may exhibit.

• The need of viewpoints for managing uncertainties when handling trade-offs. As discussed earlier,

self-adaptation has been used as a mechanism to deal with the increasing complexity of software

systems and uncertainty of their environments [30]. As architectures are facing higher levels of

uncertainties [7,25], future research in managing trade-offs shall better deal with uncertainty. As

systems become more complex, the uncertainties can relate to various viewpoints of the system.

Research shall look at identifying various viewpoints, predicting uncertainties relative to these

viewpoints, performing automatic negotiation, and reconciling these viewpoints. The aim is to

reach a comprehensive model that can better reflect on possible risks associated with the various

viewpoints of the systems to better cope with uncertainties.

• Dynamic run-time trade-offs management. As run-time adaptation is heavily motivated by the

autonomic management for quality of service, scalability, and improving users’ satisfaction and

experience [7]; while reducing operational cost and minimizing or eliminating human intervention;

managing trade-offs is seen to be a live process with critical importance. This calls for a

foundational framework in the architecture for managing run-time trade-offs, rather than acting or

reacting to solve trade-offs. Such foundational work would embrace systematic modeling, analysis,

management, as well as continuous refinement and control for trade-offs at run-time. Such

framework is expected to act autonomously during run-time or tested off-line using simulations and

the simulation results are carried out to the running architecture.

• Building frameworks combining design-time and run-time trade-offs management. Though we
advocate the need for run-time frameworks for systematically managing trade-offs; this should

not undermine the role of design-time frameworks.Asan example ofdesign-timeapproaches, thework

ofHassanetal. [70] thatallowsdesigners tomakeexplicit linksbetween thepossible emergenceof risks

280 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

and design decisions. We view these two strands as complementary; where a rich body of work on

architecture trade-off analysis techniques at design-time facilitates run-time self-adaptation [31]. In

more detail, design-time approaches can provide us with information related to possible trade-offs

and related scenarios, while run-time frameworks are expected to increase our understanding to these

trade-offs, their importance and criticality through continuous monitoring, measurement, and

feedback. For instance, the work of Faniyi et al. [71] combined some properties of the ATAM and

security testing using Implied Scenarios. Such combination is likely to identify new trade-offs points,

and give better idea about the performance of adaptation decisions.

• Considering individual self-* properties. According to the analysis performed in Section 11.5.4

about the self-* properties that have driven trade-offs management for self-adaptive software

architectures, general self-adaptivity has received the most attention among self-* properties,

whereas all other properties had less attention. An important issue in managing trade-offs is that

individual self-* properties drive related trade-offs that need to be considered. This calls for

building generic frameworks focusing on particular self-* properties [69,72]. The benefit of such

generic frameworks is that they could be applicable to different software paradigms implementing

particular self-* properties.

• Simultaneous multiple trade-offs management. Analyzing quality attributes considered in trade-offs
management in Section 11.5.6 has revealed the consideration of quality attributes on a general level,

and in case of considering specific attributes, this tends to be limited to two or three as explicit

examples. For better trade-offs management, specific multiple quality attributes need to be

considered simultaneously. A preliminary analysis of architectural primitives, performed in the

light of the characteristics of self-adaptive software, arise other trade-offs. These primitives are

considered as the factors influencing the selection of the suitable adaptation strategy. Examples

include: (i) multiple feedback loops; as reconciling multiple feedback loops in the adaptation

would lead to a better adaptation [26], (ii) environmental interaction; where a computational

node with limited resources is expected to interact with other nodes for fulfilling run-time goals

[36], (iii) cost/benefit of adaptation; reasoning between the cost and benefit of adaptation

should be considered when making adaptation decisions, implying also the overhead of

adaptation (i.e., the frequency of adaptation and the number of adaptation cycles).

• Novel solutions to be borrowed from other disciplines. Novel solutions could be borrowed from

different disciplines; such as nature, biology, ecology, physics, economics, or cognition sciences; to

reach better and more effective adaptation. We can further inform the design of the system by

drawing inspiration from other disciplines for a better informed adaptation decision. An

example could be engaging economics and decisions theories for handling trade-offs arising from

conflicts between different quality attributes [73]. Another example could be the use of dynamic

decision networks, a form of Bayesian Networks, to support decision-making in self-adaptive

software [74–76]. We also draw on game theory for selecting the adaptation strategy to take a

strategic decision under the run-time uncertainty while managing the run-time trade-offs [77].

In more details, adaptation strategies are evaluated for their pay-off values, and based on such

evaluation, an adaptation strategy will be selected in a way to support trade-offs management

between different quality requirements under uncertainty and environmental constraints. Game

theory also leverages the ability handle decisions under run-time uncertainty.

• Devised learning for managing trade-offs. There is a great potential for Artificial Intelligence (AI)
techniques to provide benefits to software engineering, and specifically in engineering self-adaptive

systems [76,78]. Here, we draw on machine learning techniques to be employed to learn from

28111.7 CHALLENGES AND RESEARCH DIRECTIONS

historical information accumulated about the performance of adaptation action, for better future

adaptation.

• Self-aware trade-offs management. With the recent emergence of self-awareness [35–37], we rely
on combining self-awareness capabilities [36] with trade-offs management approaches to realize

better informed trade-offs management for architectures operating in open, dynamic scalable

environments. The different levels of self-awareness, called capabilities, (i.e., stimulus-,

interaction-, time-, goal-, and meta-self-awareness) [36], are expected to enrich the decisions

making process with knowledge about run-time goals, interaction goals and historical information.

11.8 CONCLUSIONS AND FUTURE WORK
The main contribution of this work is a systematic mapping study analyzing the research landscape

related to managing trade-offs of self-adaptive software architectures. Hence, the aim was to draw

a picture of the current state of the research in this specialized topic, to help researchers and developers

identify what has been established so far, to understand which software paradigms, quality attributes,

self-* properties, and techniques have seen particular emphasis, as well as what is still under research

and warrant greater attention.

To this end, the study has been conducted methodologically, by employing the standard guidelines

for conducting secondary studies in order to ensure the quality of the analysis. The search was con-

ducted in five main publications databases resulting in 462 studies that have been reviewed, and 20 rel-

evant studies have been selected as primary studies.

Our findings show some attention and growing work in trade-offs management for self-adaptive

software architectures. Our observation is that there is an adoption for the general “self-adaptivity”

property without a discrete specialization on self-* properties. The generality also applies to the quality

attributes considered in trade-offs management. When considering certain qualities, they tend to be

limited to two or three attributes, as explicit examples. It was also noted that work related to trade-offs

management has covered some software paradigms. It was also observed that the published work have

not moved yet towards the full maturity as publications in journals, as well as towards practice in tech-

nical report. Although the work discussed has provided much that is useful in contributing towards self-

adaptive architectures, it has not yet resolved some of the general and fundamental issues in order to

provide a comprehensive, systematic, and integrated approach. As a general conclusion, the current

work tend to be a solution for trade-offs management that act on trade-offs; not fundamental work that

changes the architectural self-adaptivity. The dynamics and uncertainty of modern software environ-

ments require us to look for novel approaches that can provide systematic design and run-time support

for change and uncertainty while managing trade-offs. Design-time and run-time mechanisms should

be complementary for a comprehensive trade-offs decision, both while designing the system and while

the system is operating.

Future work could be devised into: (i) future directions related to the study itself, and (ii) the im-

plications of our study in identifying gaps and motivating new research directions in the field. With

respect to future directions related to the study itself, we shall complement this study with empirical

and comparative evaluation for the effectiveness, efficiency, and scalability of trade-offs management

mechanisms to provide quantitative assessment of representative techniques to complement our

282 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

findings. It is also worth looking at other emerging domains to uncover new criteria, if possible.

The investigation can provide confirmation or threats to the validity of our findings. Such analysis

can help in identifying patterns for common and variable trade-off problems, to inform the design

of more effective mechanisms suited for a given context, situation, and scale. It can also lead for better

tuning and optimization for the trade-offs process and how conflicts could be effectively handled. In

general, this will help to shed the light on the most promising directions for future research in the land-

scape of self-adaptive software architectures. Finally, with respect to research directions in the field

subject to review, possible directions have been identified in Section 11.8.

APPENDIX A PRIMARY STUDIES
[1] S.S. Andrade, R.J. de Araujo Macedo, Assessing the benefits of searchbased approaches when

designing self-adaptive systems: a controlled experiment, J. Softw. Eng. Res. Dev. 3 (1) (2015)

1–27, doi:10.1186/s40411-015-0016-z.
[2] S.S. Andrade, R.J. de Araujo Macedo, A search-based approach for architectural design of

feedback control concerns in self-adaptive systems, in: IEEE7th International Conference onSelf-

Adaptive and Self-Organizing Systems (SASO), 2013, pp. 61–70, doi:10.1109/SASO.2013.42.
[3] S.S. Andrade, R.J. de Araujo Macedo, Do search-based approaches improve the design of self-

adaptive systems? A controlled experiment, in: 28th Brazilian Symposium on Software

Engineering (SBES), 2014, pp. 101–110, doi:10.1109/sbes.2014.17.
[4] D. Ardagna, C. Ghezzi, R. Mirandola, Rethinking the use of models in software architecture, in:

S. Becker, F. Plasil, R. Reussner (Eds.), Quality of Software Architectures Models and

Architectures, Lecture Notes in Computer Science, vol. 5281, Springer, Berlin, Heidelberg,

2008 pp. 1–27, doi:10.1007/978-3-540-87879-7_1.
[5] T. Chen, R. Bahsoon, Symbiotic and sensitivity-aware architecture for globally-optimal benefit

in self-adaptive cloud, in: 9th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), ACM, 2014, pp. 85–94, doi:10.1145/2593929.2593931.
[6] H. Inoue, Y. Li, S. Mitra, VAST: virtualization-assisted concurrent autonomous self-test, in:

IEEE International Test Conference (ITC), 2008, pp. 1–10, doi:10.1109/TEST.2008.4700583.
[7] C. Landauer, Abstract infrastructure for real systems: reflection and autonomy in real time, in:

14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops (ISORCW), 2011, pp. 102–109, doi:10.1109/
ISORCW.2011.44.

[8] D. Menasce, H. Gomaa, S. Malek, J.P. Sousa, SASSY: a framework for self-architecting service-

oriented systems, IEEE Softw. 28 (6) (2011) 78–85, doi:10.1109/MS.2011.22.

[9] R. Mirandola, P. Potena, Self-adaptation of service based systems based on cost/quality attributes

tradeoffs, in: 12th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), 2010, pp. 493–501, doi:10.1109/synasc.2010.16.
[10] X. Peng, B. Chen, Y. Yu, W. Zhao, Self-tuning of software systems through dynamic quality

tradeoff and value-based feedback control loop, J. Syst. Softw. 85 (12) (2012) 2707–2719,
doi:10.1016/j.jss.2012.04.079.2

283APPENDIX A PRIMARY STUDIES

[11] D. Perez-Palacin, R. Mirandola, J. Merseguer, On the relationships between QoS and software

adaptability at the architectural level, J. Syst. Softw. 87 (2014) 1–17, doi:10.1016/j.
jss.2013.07.053.

[12] D. Perez-Palacin, R. Mirandola, J. Merseguer, QoS and energy management with Petri nets: a

self-adaptive framework, J. Syst. Softw. 85 (12) (2012) 2796–2811, doi:10.1016/j.
jss.2012.04.077.

[13] D. Perez-Palacin, R. Mirandola, J. Merseguer, Enhancing a QoS-based self-adaptive framework

with energy management capabilities, in: Joint ACM SIGSOFT Conference – QoSA and ACM

SIGSOFT Symposium – ISARCS on Quality of Software Architectures –QoSA and Architecting

Critical Systems – ISARCS, ACM, 2011, pp. 165–170, doi:10.1145/2000259.2000287.
[14] C. Sandionigi, D. Ardagna, G. Cugola, C. Ghezzi, Optimizing service selection and allocation in

situational computing applications, IEEE Trans. Serv. Comput. 6 (3) (2013) 414–428,
doi:10.1109/tsc.2012.18.

[15] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein, Requirements-aware systems: a

research agenda for RE for self-adaptive systems, in: 18th IEEE International Requirements

Engineering Conference (RE), 2010, pp. 95–103.
[16] L.W. Shen, X. Peng, W.Y. Zhao, Quality-driven self-adaptation: bridging the gap between

requirements and runtime architecture by design decision, in: X. Bai, F. Belli, E. Bertino,

C.K. Chang, A. Elci, C. Seceleanu, H. Xie, M. Zulkernine (Eds.), IEEE 36th Annual Computer

Software and Applications Conference (COMPSAC), Proceedings International Computer

Software & Applications Conference, 2012, pp. 185–194, doi: 10.1109/compsac.2012.29.

[17] J.P. Sousa, R.K. Balan, V. Poladian, D. Garlan, M. Satyanarayanan, User guidance of

resource-adaptive systems, in: J. Cordeiro, B. Shishkov, A. Ranchordas, M. Helfert (Eds.),

3rd International Conference on Software and Data Technologies (ICSOFT), 2008,

pp. 36–44.
[18] J.P. Sousa, R.K. Balan, V. Poladian, D. Garlan, M. Satyanarayanan, A software infrastructure for

user-guided quality-of-service tradeoffs, in: J. Cordeiro, B. Shishkov, A.K. Ranchordas,

M. Helfert (Eds.), Software and Data Technologies, Communications in Computer and

Information Science, vol. 47, 2009, pp. 48–61.
[19] A. Sutcliffe, An architecture framework for self-aware adaptive systems, in: I. Mistrik,

R. Bahsoon, R. Kazman, Y. Zhang (Eds.), Economics-Driven Software Architecture, Morgan

Kaufmann, Boston, 2014, pp. 59–80, doi: 10.1016/B978-0-12-410464-8.00004-0.
[20] J. Teich, From dynamic reconfiguration to self-reconfiguration: invasive algorithms and

architectures, in: International Conference on Field-Programmable Technology (FPT), 2009,

pp. 11–12, doi:10.1109/FPT.2009.5377603.
[21] U. Abmann, S. Gotz, J.M. Jezequel, B. Morin, M. Trapp, A reference architecture and roadmap

for Models@run.time systems, in: N. Bencomo, R. France, B. Cheng, U. Abmann (Eds.),

Models@run.time, Lecture Notes in Computer Science, vol. 8378, Springer International

Publishing, 2014, pp. 1–18.
[22] E. Alonso, M. Fairbank, Emergent and adaptive systems of systems, in: IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2013, pp. 1721–1725.
[23] A. Ardini, M. Hosseini, A. Alrobai, A. Shahri, K. Phalp, R. Ali, Social computing for software

engineering: a mapping study, J. Comput. Sci. Rev. 13–14 (2014) 75–93.

284 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

[24] M.R.M. Assis, L.F. Bittencourt, R. Tolosana-Calasanz, Cloud federation: characterization and

conceptual model, in: IEEE/ACM 7th International Conference on Utility and Cloud Computing,

IEEE Computer Society, 2014, pp. 585–590.
[25] N. Bencomo, A. Belaggoun, Supporting decision-making for self-adaptive systems: from goal

models to dynamic decision networks, in: J. Doerr, A. Opdahl (Eds.), Requirements Engineering:

Foundation for Software Quality, Lecture Notes in Computer Science, vol. 7830, Springer,

Berlin, Heidelberg, 2013, pp. 221–236, doi:10.1007/978-3-642-37422-7_16.
[26] N. Bencomo, A. Belaggoun, V. Issarny, Dynamic decision networks for decision-making in self-

adaptive systems: a case study, in: 8th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), IEEE Press, 2013, pp. 113–122.
[27] N. Bencomo, A. Belaggoun, V. Issarny, Bayesian artificial intelligence for tackling uncertainty in

self-adaptive systems: the case of dynamic decision networks, in: 2nd International Workshop on

Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), 2013, pp. 7–13.
[28] J. Bradbury, J. Cordy, J. Dingel, M. Wermelinger, A survey of self-management in dynamic

software architecture specifications, in: 1st ACM SIGSOFT Workshop on Self-managed

Systems, ACM, 2014, pp. 28–33.
[29] H.P. Breivolda, I. Crnkovicb, M. Larsson, A systematic review of software architecture evolution

research, J. Inf. Softw. Technol. 54 (1) (2012) 16–40.
[30] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from applying the

systematic literature review process within the software engineering domain, J. Syst. Softw.

80 (4) (2007) 571–583.
[31] Y. Brun, G. DiMarzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Muller, M. Pezze,

M. Shaw, Engineering self-adaptive systems through feedback loops, in: B. Cheng, R. de Lemos,

H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for Self-Adaptive Systems, Lecture

Notes in Computer Science, vol. 5525, Springer, Berlin, Heidelberg, 2009, pp. 48–70,
doi:10.1007/978-3-642-02161-9_3.

[32] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using mapping studies in software

engineering, in: 20th Annual Meeting of the Psychology of Programming Interest Group (PPIG

2008), Lancaster University, 2008, pp. 195–204.
[33] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic computing through reuse of variability

models at runtime: the case of smart homes, IEEE Comput. 42 (10) (2009) 37–43.
[34] T. Chen, F. Faniyi, R. Bahsoon, P. Lewis, X. Yao, L. Minku, L. Esterle, The Handbook of

Engineering Self-Aware and Self-Expressive Systems, Technical Report, University of

Birmingham 2014, arXiv:1409.1793 [cs.SE].

[35] B. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Muller, P. Pelliccione, A. Perini,

N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, N. Villegas, Using models at runtime to

address assurance for self-adaptive systems, in: N. Bencomo, R. France, B. Cheng, U. Abmann

(Eds.), Models@run.time, Lecture Notes in Computer Science, vol. 8378, Springer International

Publishing, 2014, pp. 101–136.
[36] B. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs,

V. Grassi, G. Karsai, H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Muller,

S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, J. Whittle, Software engineering for

self-adaptive systems: a research roadmap, in: B. Cheng, R. Lemos, H. Giese, P. Inverardi, J.

285APPENDIX A PRIMARY STUDIES

mailto:Models@run.time

Magee (Eds.), Software Engineering for Self-Adaptive Systems, Springer-Verlag, 2009,

pp. 1–26.
[37] T. Clohessy, T. Acton, L. Morgan, Smart City as a Service (SCaaS): a future roadmap for

e-government smart city cloud computing initiatives, in: IEEE/ACM 7th International

Conference on Utility and Cloud Computing (UCC), 2014, pp. 836–841.
[38] E. Dashofy, A. Hoek, R. Taylor, Towards architecture-based self-healing systems, in: 1st

Workshop on Self-healing Systems, ACM, 2002, pp. 21–26.
[39] T. Dyba, T. Dingsoyr, G. Hanssen, Applying systematic reviews to diverse study types: an

experience report, in: 1st International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), 2007, pp. 225–234.
[40] E. Engstrom, P. Runeson, Software product line testing: a systematic mapping study, J. Inf.

Softw. Technol. 53 (1) (2011) 2–13.
[41] F. Faniyi, R. Bahsoon, A. Evans, R. Kazman, Evaluating security properties of architectures in

unpredictable environments: a case for cloud, in: 9th Working IEEE/IFIP Conference on

Software Architecture (WICSA 2011), 2014, pp. 127–136.
[42] F. Faniyi, P. Lewis, R. Bahsoon, Y. Xin, Architecting Self-Aware Software Systems, in: 11th

Working IEEE/IFIP Conference on Software Architecture (WICSA’14), 2014, pp. 91–94.
[43] F. Febrero, C. Calero, M.A. Moraga, A systematic mapping study of software reliability

modeling, J. Inf. Softw. Technol. 56 (8) (2014) 839–849.
[44] D. Garlan, Software architecture: a travelogue, in: International Conference on Future of

Software Engineering, ACM, 2014, pp. 29–39.
[45] D. Garlan, A 10-year perspective on software engineering self-adaptive systems (keynote), in: 8th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), IEEE Press, 2013, pp. 2–2.
[46] D. Garlan, Software architecture: a roadmap, in: Conference on the Future of Software

Engineering, 2000, pp. 91–101.
[47] David. Garlan, B. Schmerl, Model-based adaptation for self-healing systems, in: 1st Workshop

on Self-healing Systems, ACM, 2002, pp. 27–32.
[48] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architectures for distributed systems,

in: 1st Workshop on Self-healing Systems, ACM, 2002, pp. 33–38.
[49] M. Harman, The role of Artificial Intelligence in Software Engineering, in: 1st International

Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE),

2012, pp. 1–6.
[50] S. Hassan, N. Bencomo, R. Bahsoon, Minimizing nasty surprises with better informed

decision-making in self-adaptive systems, in: 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE Press, 2015,

pp. 134–144.
[51] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, S. Kounev, Modeling run-time adaptation at the

system architecture level in dynamic service-oriented environments, Serv. Oriented Comput.

Appl. 8 (1) (2014) 73–89.
[52] M.C. Huebscher, J.A. Mccann, A survey of autonomic computing, ACM Comput. Surv. 40 (3)

(2008) 1–28.
[53] IBM, An architectural blueprint for autonomic computing, Technical Report, 2003.

286 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

[54] A. Immonen, E. Niemela, Survey of reliability and availability prediction methods from the

viewpoint of software architecture, J. Softw. Syst. Model. 7 (1) (2008) 49–65.
[55] R. Kazman, R. Bahsoon, I. Mistrik, Y. Zhang, Economics-driven software architecture:

introduction, in: I. Mistrik, R. Bahsoon, R. Kazman, Y. Zhang (Eds.), Economics-Driven

Software Architecture, Morgan Kaufmann, Boston, 2014, pp. 1–8.
[56] R. Kazman, M. Klein, P. Clements, ATAM: Method for Architecture Evaluation, Technical

Report CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon University,

2000.

[57] S. Kehua, L. Jie, F. Hongbo, Smart city and the applications, in: International Conference on

Electronics, Communications and Control (ICECC), 25011, pp. 1028–1031.
[58] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003)

41–50.
[59] B. Kitchenham, What’s up with software metrics? – a preliminary mapping study, J. Syst. Softw.

83 (1) (2010) 37–51.
[60] B.A. Kitchenham, D. Budgen, O.P. Brereton, The value of mapping studies: a participantobserver

case study, in: 14th International Conference on Evaluation and Assessment in Software

Engineering, British Computer Society, 2010, pp. 25–33.
[61] B. Kitchenham, P. Brereton, D. Budgen, Mapping study completeness and reliability – a case

study, in: 16th International Conference on Evaluation & Assessment in Software Engineering

(EASE 2012), 2012, pp. 126–135.
[62] B. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis for further research

– a participant-observer case study, J. Inf. Softw. Technol. 53 (6) (2011) 638–651.
[63] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature Reviews in

Software Engineering, Technical Report, Keele University, 2007.

[64] J. Klein, H. Vliet, A systematic review of system-of-systems architecture research, in: 9th

international ACM Sigsoft Conference on Quality of Software Architectures, ACM, 2013,

pp. 13–22.
[65] B. Knowles, L. Blair, M. Hazas, S. Walker, Exploring sustainability research in computing:

where we are and where we go next, in: ACM International Joint Conference on Pervasive and

Ubiquitous Computing, ACM, 2013, pp. 305–314.
[66] A. Koziolek, H. Koziolek, R. Reussner, PerOpteryx: automated application of tactics in multi-

objective software architecture optimization, in: I. Crnkovic, J.A. Stafford, D. Petriu, J. Happe, P.

Inverardi (Eds.), Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT Symposium –
ISARCS on Quality of Software Architectures – QoSA and Architecting Critical Systems –
ISARCS (QoSA-ISARCS’11), ACM, 2011, pp. 33–42.

[67] H. Koziolek, Sustainability evaluation of software architectures: a systematic review, in: Joint

ACM SIGSOFT Conference – QoSA and ACM SIGSOFT Symposium – ISARCS on Quality of

Software Architectures – QoSA and Architecting Critical Systems – ISARCS (QoSA-

ISARCS’11), 2011.

[68] J. Kramer, Adventures in adaptation: a software engineering playground!, in: IEEE/ACM10th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), 2015, pp. 1–1.
[69] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Future of Software

Engineering (FOSE’07), 2007, pp. 259–268.

287APPENDIX A PRIMARY STUDIES

[70] R. Lemos, H. Giese, H. Muller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N.

Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R.

Desmarais, S. Dustdar, G. Engels, K. Geihs, K. Goschka, A. Gorla, V. Grassi, P. Inverardi, G.

Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O.

Nierstrasz, M. Pezze, C. Prehofer,W. Schafer, R. Schlichting, D. Smith, P.J. Sousa, L. Tahvildari,

K. Wong, J. Wuttke, Software engineering for self-adaptive systems: a second research roadmap,

in: R. Lemos, H. Giese, H. Muller, M. Shaw (Eds.), Software Engineering for Self-Adaptive

Systems II, Lecture Notes in Computer Science, vol. 7475, Springer-Verlag, 2013, pp. 1–32.
[71] G. Lewis, E. Morris, P. Place, S. Simanta, D. Smith, L. Wrage, Engineering systems of systems,

in: 2nd Annual IEEE Systems Conference, 2008, pp. 1–6.
[72] P. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Torresen, Yao Xin,

A survey of self-awareness and its application in computing systems, in: 5th IEEE Conference on

Self-Adaptive and Self-Organizing Systems Workshops (SASOW’11), 2011, pp. 102–107.
[73] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its management,

J. Syst. Softw. 101 (2015) 193–220.
[74] Z. Li, P. Liang, P. Avgeriou, Application of knowledge-based approaches in software

architecture: a systematic mapping study, J. Inf. Softw. Technol. 55 (5) (2013) 777–794.
[75] N.Medvidovic, Adapting our view of software adaptation: an architectural perspective (keynote),

in: 9th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS), ACM, 2014, pp. 5–6.
[76] A. Monzon, Smart cities concept and challenges: bases for the assessment of smart city projects,

in: International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), 2015,

pp. 1–11.
[77] E.Y. Nakagawa, D. Feitosa, K.R. Felizardo, Using systematic mapping to explore software

architecture knowledge, in: ICSE Workshop on Sharing and Reusing Architectural Knowledge,

ACM, 2010, pp. 29–36.
[78] R. Nord, M. Barbacci, P. Clements, R. Kazman, M. Klein, L. O’Brien, J. Tomayko, Integrating

the Architecture Tradeoff Analysis Method (ATAM) with the Cost Benefit Analysis Method

(CBAM), Technical Report CMU/SEI-2003-TN-038, Software Engineering Institute, Carnegie

Mellon University, 2003.

[79] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,

D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE

Intell. Syst. 14 (3) (1999) 54–62.
[80] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, X. Franch, Systematic

mapping study on software engineering for sustainability (SE4S), in: 18th International

Conference on Evaluation and Assessment in Software Engineering, ACM, 2014, pp. 1–14.
[81] D. Petcu, Multi-cloud: expectations and current approaches, in: International Workshop on

Multi-cloud Applications and Federated Clouds, ACM, 2013, pp. 1–6.
[82] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in software

engineering, in: 12th International Conference on Evaluation and Assessment in Software

Engineering, British Computer Society, 2008, pp. 68–77.
[83] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic mapping studies

in software engineering: an update, Inf. Softw. Technol. 64 (2015) 1–18.

288 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

[84] N. Qureshi, M. Usman, N. Ikram, Evidence in software architecture, a systematic literature

review, in: 17th International Conference on Evaluation and Assessment in Software Engineering

(EASE’13), 2013, pp. 97–106.
[85] M. Roscia, M. Longo, G.C. Lazaroiu, Smart city by multi-agent systems, in: International

Conference on Renewable Energy Research and Applications (ICRERA), 2013, pp. 371–376.
[86] M. Salama, Stability of self-adaptive software architectures, in: 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2015), Doctoral Symposium, 2015.

[87] M. Salama, R. Bahsoon, Managing run-time trade-offs for self-adaptive architectures: a game

theoretical vision, in: 7th ACM/SPEC International Conference on Performance Engineering

(ICPE), Vision Track, 2016.

[88] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM

Trans. Auton. Adapt. Syst. 4 (2) (2009) 1–42.
[89] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein, Requirements-aware systems: a

research agenda for RE for self-adaptive systems, in: 18th IEEE International Requirements

Engineering Conference (RE 2010), 2010, pp. 95–103.
[90] S. Stevanetic, U. Zdun, Software metrics for measuring the understandability of architectural

structures: a systematic mapping study, in: 19th International Conference on Evaluation and

Assessment in Software Engineering, ACM, 2015, pp. 1–14.
[91] D. Tofan, M. Galster, P. Avgeriou, W. Schuitema, Past and future of software architectural

decisions – a systematic mapping study, J. Inf. Softw. Technol. 56 (8) (2014) 850–872.
[92] A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing environments:

challenges, taxonomy, and survey, ACM Comput. Surv. 47 (1) (2014) 1–47.
[93] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-adaptation: a systematic

literature review, in: K. Drira (Ed.), Software Architecture, Lecture Notes in Computer Science,

vol. 7957, Springer, Berlin, Heidelberg, 2013, pp. 249–265.
[94] D.Weyns, M.U. Iftikhar, D.G. Iglesia, T. Ahmad, A survey of formal methods in self-adaptive

systems, in: 5th International Conference on Computer Science and Software Engineering, ACM,

2012, pp. 67–79.
[95] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper classification

and evaluation criteria: a proposal and a discussion, J. Requir. Eng. 11 (1) (2005) 102–107.
[96] B. Williams, J. Carver, Characterizing software architecture changes: a systematic review, J. Inf.

Softw. Technol. 52 (1) (2010) 31–51.
[97] E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACM

Trans. Auton. Adapt. Syst. 8 (4) (2014) 1–41.
[98] EndNote, http://endnote.com/.

[99] Tagxedo, 2005, http://www.tagxedo.com/app.html.

289APPENDIX A PRIMARY STUDIES

http://endnote.com/
http://www.tagxedo.com/app.html

Key

Publication

Year

Publication

Type

Country

of

Affiliation

Research

Type

Contribution

Type

Software

Paradigm

Self-*

Property

Trade-off

Attributes Mechanism Time

[Ardagna

2008]

2008 Book

chapter

Italy Solution

proposal

Taxonomy Self-

adaptive

software

Self-adaptive Performance,

reliability

Analysis-oriented

methods

Design-

time

[Inoue

2008]

2008 Conference

paper

United

States

Solution

proposal

Process,

experiment

Large-scale

systems

Self-test Design

complexity,

system

performance,

power impact

Optimized

hardware and

software co-design

Design-

time

[Sousa

2008]

2008 Conference

paper

United

States,

Singapore

Solution

proposal

Framework,

experiment

Mobile

software

Self-adaptive

(resource-

adaptive)

Quality attributes Utility theory Design-

time

[Sousa

2009]

2009 Book

chapter

United

States,

Singapore

Evaluation

research,

validation

research

Framework,

tool, metric

Mobile

software

Self-adaptive

(resource-

adaptive)

Quality attributes Utility theory Design-

time

[Teich

2009]

2009 Conference

paper

Germany Philosophical

paper (vision)

Research

challenges

Embedded

systems

Self-

organization,

self-

configuration

Flexibility, cost Invasive

algorithms and

architectures

Run-

time

[Mirandola

2010]

2010 Conference

paper

Italy Validation

research

Framework Service-

based

systems

Self-adaptive Adaptation cost,

quality attributes

Optimization

model

Run-

time

[Sawyer

2010]

2010 Conference

paper

United

Kingdom

Philosophical

paper

(vision),

solution

proposal

Research

challenges

Self-

adaptive

systems

Self-adaptive Requirements Requirements

reflection

Run-

time

[Landauer

2011]

2011 Conference

paper

United

States

Solution

proposal

Infrastructure Real-time

distributed

systems

Self-

organization

Safety, resources Simulations Off-

line

APPENDIX B CLASSIFICATION AND DATA EXTRACTION OF PRIMARY STUDIES

[Menasce

2011]

2011 Magazine

paper

United

States

Solution

proposal

Framework Service-

oriented

systems

Self-

adaptive,

self-healing,

self-

managing,

self-

optimizing

Stakeholders’

priorities

Utility functions to

quantify QoS

trade-offs

Run-

time

[Perez-

Palacin

2011]

2011 Conference

paper

Spain,

Italy

Solution

proposal

Approach Service-

based

applications

Self-adaptive Performance,

energy

Stochastic Petri

nets

Run-

time

[Peng 2012] 2012 Journal

paper

China,

United

Kingdom

Solution

proposal

Framework,

experiment

Self-

adaptive

software

systems

Self-tuning Quality soft goals

(goals with no

binary satisfaction

criteria)

Value-based goal

reasoning, Pareto-

optimal solutions

Run-

time

[Perez-

Palacin

2012]

2012 Journal

paper

Spain,

Italy

Solution

proposal,

evaluation

research

Framework,

tool,

experiment

Service-

based

applications

Self-adaptive Energy

consumption,

performance

Stochastic Petri Design-

time

[Shen 2012] 2012 Conference

paper

China Solution

proposal

Approach,

experiment

Self-

adaptive

software

systems

Self-adaptive Quality

requirements

Value-based

quality trade-off

decisions

Run-

time

[Andrade

2013]

2013 Conference

paper

Brazil Solution

proposal

Approach,

tool, metric,

case study

Self-

adaptive

systems,

cloud-based

services

Self-adaptive Feedback control

loop performance

overhead

Multi-objective

optimization

approach, built

upon elitist

evolutionary

optimization

approach NSGA-II

Design-

time

[Sandionigi

2013]

2013 Journal

paper

Italy Solution

proposal

Approach,

experiment

Pervasive

applications

Self-

managing

Remote execution

of software

fragments,

dynamic

deployment on

local nodes of the

computational

environment

Optimization

problem

Run-

time

Continued

Key

Publication

Year

Publication

Type

Country

of

Affiliation

Research

Type

Contribution

Type

Software

Paradigm

Self-*

Property

Trade-off

Attributes Mechanism Time

[Andrade

2014]

2014 Conference

paper

Brazil Solution

proposal,

evaluation

research

Infrastructure,

experiment

Self-

adaptive

systems

Self-adaptive Quality attributes Multi-objective

optimization, on

the NSGA-II

algorithm to find

out a set of Pareto-

optimal candidate

architectures

Design-

time

[Chen 2014] 2014 Conference

paper

United

Kingdom

Solution

proposal

Approach,

model,

experiment

Self-

adaptive

software

Self-adaptive Global QoS, cost Objective

functions

Run-

time

[Perez-

Palacin

2014]

2014 Journal

paper

Spain,

Italy

Solution

proposal

Approach,

tool,

experiment

Self-

adaptive

software

Self-adaptive System

adaptability,

quality of service

Metrics for

quantifying

adaptability

Design-

time

[Sutcliffe

2014]

2014 Book

chapter

United

Kingdom

Evaluation

research

Framework,

case study

Mobile

software

Self-

awareness

Non-functional

requirements

Heuristics Design-

time

[Andrade

2015]

2015 Journal

paper

Brazil Evaluation

research,

experience

paper

Model,

experiment

Self-

adaptive

systems

Self-adaptive Quality attributes Pareto-optimal

solutions

Design-

time

REFERENCES
[1] A. Koziolek, H. Koziolek, R. Reussner, PerOpteryx: automated application of tactics in multi-objective soft-

ware architecture optimization, in: I. Crnkovic, J.A. Stafford, D. Petriu, J. Happe, P. Inverardi (Eds.), Joint

ACM SIGSOFT Conference—QoSA and ACM SIGSOFT Symposium—ISARCS on Quality of Software

Architectures—QoSA and Architecting Critical Systems—ISARCS (QoSA-ISARCS), ACM, 2011,

pp. 33–42.
[2] D. Garlan, Software architecture: a roadmap, in: Conference on the Future of Software Engineering,

Limerick, Ireland, 2000, pp. 91–101.
[3] D. Garlan, Software architecture: a travelogue, in: International Conference on Future of Software Engineer-

ing, Hyderabad, India, ACM, 2014, pp. 29–39.
[4] B. Knowles, L. Blair, M. Hazas, S. Walker, Exploring sustainability research in computing: where we are and

where we go next, in: ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich,

Switzerland, ACM, 2013, pp. 305–314.
[5] U. Abmann, S. Gotz, J.-M. Jezequel, B. Morin, M. Trapp, A reference architecture and roadmap for Models

@run.time systems, in: N. Bencomo, R. France, B. Cheng, U. Abmann (Eds.), Models@run.time, Lecture

Notes in Computer Science, vol. 8378, Springer International Publishing, Switzerland, 2014, pp. 1–18.
[6] B. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Muller, P. Pelliccione, A. Perini,

N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, N. Villegas, Using models at run-time to address assur-

ance for self-adaptive systems, in: N. Bencomo, R. France, B. Cheng, U. Abmann (Eds.), Models@run.time,

Lecture Notes in Computer Science, vol. 8378, Springer International Publishing, 2014, pp. 101–136.
[7] B. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,

N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein,

C. Gacek, K. Geihs, V. Grassi, G. Karsai, H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,

H. Muller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-

adaptive systems: a research roadmap, in: B. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Soft-

ware Engineering for Self-Adaptive Systems, Springer-Verlag, Berlin, 2009, pp. 1–26.
[8] R. Kazman, M. Klein, P. Clements, ATAM: Method for Architecture Evaluation, Software Engineering In-

stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2000.

[9] R. Nord, M. Barbacci, P. Clements, R. Kazman, M. Klein, L. O’Brien, J. Tomayko, Integrating the Archi-

tecture Tradeoff Analysis Method (ATAM) with the Cost Benefit Analysis Method (CBAM), Software En-

gineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2003.

[10] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in software engineering, in: 12th

International Conference on Evaluation and Assessment in Software Engineering, University of Bari, Italy,

British Computer Society, 2008, pp. 68–77.
[11] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using mapping studies in software engineering, in: 20th

Annual Meeting of the Psychology of Programming Interest Group (PPIG 2008), Open University, UK,

Lancaster University, 2008, pp. 195–204.
[12] B. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis for further research—a

participant-observer case study, Journal Information and Software Technology 53 (6) (2011) 638–651.
[13] P. Sawyer, N. Bencomo, J.Whittle, E. Letier, A. Finkelstein, Requirements-aware systems: a research agenda

for RE for self-adaptive systems, in: 18th IEEE International Requirements Engineering Conference (RE),

Sydney, Australia, 2010, pp. 95–103.
[14] G. Lewis, E. Morris, P. Place, S. Simanta, D. Smith, L. Wrage, Engineering systems of systems, in: 2nd An-

nual IEEE Systems Conference, Montreal, QC, Canada, 7–10 April 2008, 2008, pp. 1–6.
[15] E. Alonso, M. Fairbank, Emergent and adaptive systems of systems, in: IEEE International Conference on

Systems, Man, and Cybernetics (SMC), Manchester, United Kingdom, 2013, pp. 1721–1725.

293REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0080

[16] J. Klein, Hv Vliet, A systematic review of system-of-systems architecture research, in: 9th international ACM

Sigsoft Conference on Quality of Software Architectures, Vancouver, British Columbia, Canada, ACM,

2013, pp. 13–22.
[17] A. Monzon, Smart cities concept and challenges: bases for the assessment of smart city projects,

in: International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Lisbon, Portugal,

2015, pp. 1–11.
[18] T. Clohessy, T. Acton, L.Morgan, Smart City as a Service (SCaaS): a future roadmap for e-government smart

city cloud computing initiatives, in: IEEE/ACM 7th International Conference on Utility and Cloud Comput-

ing (UCC), London, UK, 2014, pp. 836–841.
[19] M. Roscia, M. Longo, G.C. Lazaroiu, Smart City by multi-agent systems, in: International Conference on

Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 2013, pp. 371–376.
[20] S. Kehua, L. Jie, F. Hongbo, Smart city and the applications, in: International Conference on Electronics,

Communications and Control (ICECC), Ningbo, China, 2011, pp. 1028–1031.
[21] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic computing through reuse of variability models at run-

time: the case of smart homes, IEEE Computer 42 (10) (2009) 37–43.
[22] A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing environments: challenges, taxon-

omy, and survey, ACM Computing Surveys 47 (1) (2014) 1–47.
[23] M.R.M. Assis, L.F. Bittencourt, R. Tolosana-Calasanz, Cloud federation: characterisation and conceptual

model, in: IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC), London,

UK, IEEE Computer Society, 2014, pp. 585–590.
[24] D. Petcu, Multi-cloud: expectations and current approaches, in: International Workshop on Multi-cloud Ap-

plications and Federated Clouds, Prague, Czech Republic, ACM, 2013, pp. 1–6.
[25] Rd Lemos, H. Giese, H. Muller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. Villegas,

T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,

G. Engels, K. Geihs, K. Goschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer,

A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,

C. Prehofer, W. Schafer, R. Schlichting, D. Smith, P.J. Sousa, L. Tahvildari, K. Wong, J. Wuttke, Software

engineering for self-adaptive systems: a second research roadmap, in: Rd Lemos, H. Giese, H. Muller,

M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Lecture Notes in Computer Science,

vol. 7475, Springer-Verlag, Berlin, 2013, pp. 1–32.
[26] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Muller,

M. Pezze, M. Shaw, Engineering self-adaptive systems through feedback loops, in: B. Cheng, R. de

Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for Self-Adaptive Systems, Lecture

Notes in Computer Science, vol. 5525, Springer, Berlin, Heidelberg, 2009, pp. 48–70.
[27] D. Garlan, A 10-year perspective on software engineering self-adaptive systems (keynote), in: 8th Interna-

tional Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), San

Francisco, CA, USA, IEEE Press, 2013, p. 2.

[28] N. Medvidovic, Adapting our view of software adaptation: an architectural perspective (keynote), in: 9th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Hy-

derabad, India, ACM, 2014, pp. 5–6.
[29] J. Kramer, Adventures in adaptation: a software engineering playground! in: IEEE/ACM 10th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Firenze, Italy,

2015, p. 1.

[30] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D.

S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intelligent

Systems 14 (3) (1999) 54–62,
[31] D. Garlan, B. Schmerl, Model-based adaptation for self-healing systems, in: 1st Workshop on Self-Healing

Systems, Charleston, South Carolina, USA, ACM, 2002, pp. 27–32.

294 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0160

[32] E. Dashofy, Ad Hoek, R. Taylor, Towards architecture-based self-healing systems, in: 1st Workshop on Self-

Healing Systems, Charleston, South Carolina, USA, ACM, 2002, pp. 21–26.
[33] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architectures for distributed systems, in: 1st

Workshop on Self-Healing Systems, Charleston, South Carolina, USA, ACM, 2002, pp. 33–38.
[34] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Future of Software Engineering

(FOSE), Minneapolis, Minnesota, USA, 2007, pp. 259–268.
[35] P. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Torresen, Y. Xin, A survey of self-

awareness and its application in computing systems, in: 5th IEEE Conference on Self-Adaptive and Self-

Organizing Systems Workshops (SASOW), Ann Arbor, Michigan, USA, 2011, pp. 102–107.
[36] F. Faniyi, P. Lewis, R. Bahsoon, Y. Xin, Architecting self-aware software systems, in: 11th Working IEEE/

IFIP Conference on Software Architecture (WICSA), Sydney, Australia, 2014, pp. 91–94.
[37] Chen T, Faniyi F, Bahsoon R, Lewis P, Yao X, Minku L, Esterle L, The handbook of engineering self-aware

and self-expressive systems, University of Birmingham, 2014. doi:arXiv:1409.1793 [cs.SE].

[38] Kitchenham B, Charters S, Guidelines for performing systematic literature reviews in software engineering,

Keele University, 2007.

[39] E. Engstrom, P. Runeson, Software product line testing—a systematic mapping study, Journal Information

and Software Technology 53 (1) (2011) 2–13.
[40] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its management, Journal of

Systems and Software 101 (2015) 193–220.
[41] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper classification and evaluation

criteria: a proposal and a discussion, J. Requir. Eng. 11 (1) (2005) 102–107.
[42] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic mapping studies in software

engineering: an update, Information and Software Technology 64 (2015) 1–18.
[43] B.A. Kitchenham, D. Budgen, O.P. Brereton, The value of mapping studies: a participant observer case study,

in: 14th International Conference on Evaluation and Assessment in Software Engineering, Keele University,

UK, British Computer Society, 2010, pp. 25–33.
[44] B. Kitchenham, What’s up with software metrics?—A preliminary mapping study, Journal of Systems and

Software 83 (1) (2010) 37–51.
[45] D. Tofan, M. Galster, P. Avgeriou, W. Schuitema, Past and future of software architectural decisions—a sys-

tematic mapping study, Journal Information and Software Technology 56 (8) (2014) 850–872.
[46] Z. Li, P. Liang, P. Avgeriou, Application of knowledge-based approaches in software architecture: a system-

atic mapping study, Journal Information and Software Technology 55 (5) (2013) 777–794.
[47] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from applying the systematic literature

reviewprocesswithin the software engineering domain, Journal of Systems andSoftware 80 (4) (2007) 571–583.
[48] T. Dyba, T. Dingsoyr, G. Hanssen, Applying systematic reviews to diverse study types: an experience report,

in: 1st International Symposium on Empirical Software Engineering and Measurement (ESEM), Madrid,

Spain, 2007, pp. 225–234.
[49] A. Ardini, M. Hosseini, A. Alrobai, A. Shahri, K. Phalp, R. Ali, Social computing for software engineering: a

mapping study, Journal Computer Science Review 13–14 (2014) 75–93.
[50] F. Febrero, C. Calero, M.A. Moraga, A systematic mapping study of software reliability modeling, Journal

Information and Software Technology 56 (8) (2014) 839–849.
[51] EndNote. X7 edn. Thomson Reuters. http://endnote.com/

[52] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, X. Franch, Systematic mapping study on

software engineering for sustainability (SE4S), in: 18th International Conference on Evaluation and Assess-

ment in Software Engineering, London, England, United Kingdom, ACM, 2014, pp. 1–14.
[53] N. Qureshi, M. Usman, N. Ikram, Evidence in software architecture, a systematic literature review, in: 17th

International Conference on Evaluation and Assessment in Software Engineering (EASE), Porto de Galinhas,

Brazil, 2013, pp. 97–106.
[54] Tagxedo. http://www.tagxedo.com/app.html (accessed August 2005).

295REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0245
http://endnote.com/
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0255
http://www.tagxedo.com/app.html

[55] E.Y. Nakagawa, D. Feitosa, K.R. Felizardo, Using systematic mapping to explore software architecture

knowledge, in: ICSE Workshop on Sharing and Reusing Architectural Knowledge, Cape Town, South

Africa, ACM, 2010, pp. 29–36.
[56] S. Stevanetic, U. Zdun, Software metrics for measuring the understandability of architectural structures: a

systematic mapping study, in: 19th International Conference on Evaluation and Assessment in Software En-

gineering, Nanjing, China, ACM, 2015, pp. 1–14.
[57] B. Kitchenham, P. Brereton, D. Budgen, Mapping study completeness and reliability—a case study, in: 16th

International Conference on Evaluation &Assessment in Software Engineering (EASE), Ciudad Real, Spain,

2012, pp. 126–135.
[58] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-adaptation: a systematic literature re-

view, in: K. Drira (Ed.), Software Architecture, Lecture Notes in Computer Science, vol. 7957, Springer,

Berlin, Heidelberg, 2013, pp. 249–265.
[59] J. Bradbury, J. Cordy, J. Dingel, M. Wermelinger, A survey of self-management in dynamic software archi-

tecture specifications, in: 1st ACM SIGSOFT Workshop on Self-Managed Systems, Newport Beach,

California, USA, ACM, 2004, pp. 28–33.
[60] D. Weyns, M.U. Iftikhar, DGdl Iglesia, T. Ahmad, A survey of formal methods in self-adaptive systems,

in: 5th International C* Conference on Computer Science and Software Engineering, Montreal, Quebec,

Canada, ACM, 2012, pp. 67–79.
[61] E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACM Transactions

on Autonomous and Adaptive Systems 8 (4) (2014) 1–41.
[62] H.P. Breivolda, I. Crnkovicb, M. Larsson, A systematic review of software architecture evolution research,

J. Inform. Softw. Tech. 54 (1) (2012) 16–40.
[63] B. Williams, J. Carver, Characterizing software architecture changes: a systematic review, J. Inform. Softw.

Tech. 52 (1) (2010) 31–51.
[64] H.Koziolek, Sustainability evaluation of software architectures: a systematic review, in: JointACMSIGSOFT

Conference—QoSA and ACM SIGSOFT Symposium—ISARCS on Quality of Software Architectures—

QoSA and Architecting Critical Systems—ISARCS (QoSA-ISARCS), Boulder, Colorado, USA, 2011.

[65] A. Immonen, E. Niemela, Survey of reliability and availability prediction methods from the viewpoint of

software architecture, J. Softw. Syst. Model. 7 (1) (2008) 49–65.
[66] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41–50.
[67] IBM, An Architectural Blueprint for Autonomic Computing, White Paper, 2003.

[68] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, S. Kounev, Modeling run-time adaptation at the system

architecture level in dynamic service-oriented environments, Service Oriented Computing and Applications

8 (1) (2014) 73–89.
[69] M.C. Huebscher, J.A. Mccann, A survey of autonomic computing,ACMComput. Surveys 40 (3) (2008) 1–28.
[70] S. Hassan, N. Bencomo, R. Bahsoon, Minimizing nasty surprises with better informed decision-making in

self-adaptive systems, in: 10th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), Florence, Italy, IEEE Press, 2015, pp. 134–144.
[71] F. Faniyi, R. Bahsoon, A. Evans, R. Kazman, Evaluating security properties of architectures in unpredictable

environments: a case for cloud, in: 9th Working IEEE/IFIP Conference on Software Architecture (WICSA),

Boulder, Colorado, USA, 2011, pp. 127–136.
[72] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.

Adap. Sys. 4 (2) (2009) 1–42.
[73] R. Kazman, R. Bahsoon, I. Mistrik, Y. Zhang, Economics-driven software architecture: introduction, in: I. -

Mistrik, R. Bahsoon, R. Kazman, Y. Zhang (Eds.), Economics-Driven Software Architecture, Morgan Kauf-

mann, Boston, 2014, pp. 1–8.
[74] N. Bencomo, A. Belaggoun, Supporting decision-making for self-adaptive systems: from goal models to dy-

namic decision networks, in: J. Doerr, A. Opdahl (Eds.), Requirements Engineering: Foundation for Software

Quality, Lecture Notes in Computer Science, vol. 7830, Springer, Berlin, Heidelberg, 2013, pp. 221–236.

296 CHAPTER 11 MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES: A SYSTEMATIC MAPPING STUDY

http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0315
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0325
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0350

[75] N. Bencomo, A. Belaggoun, V. Issarny, Dynamic decision networks for decision-making in self-adaptive

systems: a case study, in: 8th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), San Francisco, CA, USA, IEEE Press, 2013, pp. 113–122.
[76] N. Bencomo, A. Belaggoun, V. Issarny, Bayesian artificial intelligence for tackling uncertainty in self-

adaptive systems: the case of dynamic decision networks, in: 2nd International Workshop on Realizing Ar-

tificial Intelligence Synergies in Software Engineering (RAISE), San Francisco, CA, USA, 2013, pp. 7–13.
[77] M. Salama, Stability of self-adaptive software architectures, in: 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Doctoral Symposium, Lincoln, NE, USA, 2015.

[78] M. Harman, The role of artificial intelligence in software engineering, in: 1st International Workshop on Re-

alizing Artificial Intelligence Synergies in Software Engineering (RAISE), Zurich, Switzerland, 2012,

pp. 1–6.

297REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0355
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0355
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0355
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00011-3/rf0375

CHAPTER

THE MANY FACETS OF MEDIATION
A REQUIREMENTS-DRIVEN APPROACH
FOR TRADING OFF MEDIATION SOLUTIONS 12

A. Bennaceur*, B. Nuseibeh*,†

The Open University, Milton Keynes, United Kingdom*

Lero—The Irish Software Research Centre, Limerick, Ireland†

12.1 INTRODUCTION
To software developers, life may sometimes seem like a scene from “Modern Times” where Charlie

Chaplin is laboring away at an assembly line, frantically tightening bolts over and over again. Modern

software systems are increasingly built by assembling, and reassembling, existing components—

possibly distributed among many devices—so as to create innovative services. Since the components

of a software system are often designed and implemented independently, software developers spend a

lot of time, and effort, adding pieces of code so as to allow these components to work together and

satisfy the requirements of the software system. The rapid pace of technological change combined with

the increasing demands for high-quality software in reduced time and at lower cost, may overwhelm

developers who have to deal with a multitude of details just to make components work together. Be-

sides being a complex and error-prone task, enabling independently developed components to work

together is both daunting and tedious. Developers should be free to spend more time creating new

services and designing innovative software systems and less time tightening and retightening bolts.

Therefore, we must enable independently developed software components to work together, if need

be, despite the many differences in their implementations.

Middleware provides an abstraction that facilitates the communication and coordination of distrib-

uted components despite the heterogeneity of the underlying platforms, operating systems, and pro-

gramming languages. However, middleware also defines specific message formats and coordination

models, which makes it difficult (or even impossible) for applications using different middleware so-

lutions to interoperate. For example, SOAP-based clients developed using Java and deployed on Mac

can seamlessly access a SOAP-based Web Service developed using ASP.NET and deployed on a Win-

dows server. However, a SOAP-based client cannot access a RESTful Web Service [1]. Furthermore,

the evolving application requirements lead to a continuous update of existing middleware tools and the

emergence of new approaches. For example, SOAP has long been the protocol of choice to interface

Web services but RESTful Web services are somehow prevailing nowadays. As a result, application

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00012-5

Copyright # 2017 Elsevier Inc. All rights reserved.
299

http://dx.doi.org/10.1016/B978-0-12-802855-1.00012-5

developers have to juggle with a myriad of technologies and tools, and include ad hoc glue code when-
ever it is necessary to integrate applications implemented using different middleware.

To make heterogeneous components work together, without modifying them, intermediary soft-

ware entities, called mediators, are used [2]. Mediators achieve interoperability by reconciling the dif-

ferences in the implementations of the components involved. Hence, mediators enable compositional

adaptation [3], which aims to change the behavior and the structure of a system to make it better fit its

environment. Designing and implementing mediators requires dealing with many concerns: (i) coor-

dination of the behaviors of the components so as to guarantee their correct interaction (e.g., absence of

deadlocks), (ii) data translation so as to ensure meaningful information exchange between the compo-

nents, and in the case of distributed components (iii) communication between the components so as

to address the issues inherent in their distribution across the network (e.g., concurrency and fault

tolerance).

Over the years, mediator synthesis has been the subject of a great deal of work, both theoretical and

practical. First, to understand and formalize architectural connection andmismatches, then to synthesize

mediators to solve these mismatches with an increasing shift toward runtime.While mediation has been

a long-researched topic, the advent of mobile and ubiquitous computing technology emphasizes the

need formore dynamic solutions tomediation, and compositional adaptation in general. These solutions

are not only applicable at design time but also at runtime. For example, consider one representative

application domain, that of emergency management, as illustrated by the European Programme for

the establishment of a European capacity for Earth Observation, GMES.1 GMES gives a special interest

to the support of emergency situations (e.g., forest fire) across different European countries. Indeed, each

country defines an emergency management system that encompasses multiple components that are

autonomous, designed and implemented independently, and do not obey any central control or admini-

stration. Nonetheless, there are incentives for these components to be composed and collaborate in

emergency situations. GMESmakes a strong case of the need for solutions to enable multiple, and most

likely heterogeneous, components to collaborate in order to perform the different tasks necessary for

decision making. These tasks include collecting weather information, locating the agents involved,

and monitoring the environment. In this context, the synthesis of mediators enables the dynamic

composition of heterogeneous components whose interaction was unforeseen at design time.

In this paper we present a review of current research in mediation, presented from the perspec-

tive of its underpinning fields: software architecture, middleware, formal methods, and Semantic
Web. Mediator synthesis is a complex challenge that can only be solved by appropriately combin-

ing different techniques and perspectives. These techniques include formal approaches for the

synthesis of mediators with the support of ontology-based reasoning so as to automate the synthe-

sis, together with middleware solutions to realize and execute these mediators. While these differ-

ent techniques focus on How to synthesize mediators that make components interact in order

to achieve a single property, requirements primarily focus is on Why components should be medi-

ated and for which properties. Therefore, requirements can drive the selection of the appropriate

method for synthesizing mediators. In this chapter, we present a requirements-driven approach

for managing trade-offs between the different solutions to mediation in order to choose the

appropriate one.

1Global Monitoring for Environment and Security—http://www.gmes.info/.

300 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://www.gmes.info/

This chapter is structured as follows. Section 12.2 gives an overview of the different perspectives on

mediator synthesis, which are then detailed in the following sections (12.3–12.6). Section 12.7 pro-

poses a framework that unifies the different solutions. Section 12.8 identifies the opportunities and

challenges for using requirements to drive mediation. Finally, Section 12.9 concludes the chapter.

12.2 THE DIFFERENT PERSPECTIVES ON MEDIATION
In this section we present the different approaches to mediation seen from the perspective of its un-

derpinning fields: software architecture, middleware, formal methods, and Semantic Web. Fig. 12.1

depicts, for each perspective, the specific focus and the main technique used as well as how mediators

are considered:

1. Software architecture focuses on composition: several software entities are put together to build a

system and define its structure as a whole [4]. Interaction between components is abstractly

described using software connectors. In other words, connectors model the exchange of information

between components and the coordination of their behaviors. Hence, mediators can be conveniently

represented as connectors.

2. Middleware provides an abstraction that facilitates communication and coordination between

components in distributed systems. It naturally follows that middleware plays a crucial role in the

implementation of connectors [5].

Stru
ctu

ra
l a

na
lys

is

Beh
av

iou
ra

l a
na

lys
is

Ontologies

Sof
tw

ar
e a

rc
hit

ec
tu

re
 p

er
sp

ec
tiv

e

For
m

al
m

et
ho

ds
 p

er
sp

ec
tiv

eSem
antic web perspective

M
iddleware perspectiveCom

po
sit

ion

Abs
en

ce
 o

f e
rro

rs

Distribution across the network

M
eaning of inform

ation

M
ed

iat
or

s a
s

co
nn

ec
to

rs

M
ed

iat
or

s a
s

co
nt

ro
lle

rs

M
ediators as

m
iddleware

M
ediators as

translators

Mediation

Im
plem

entation1

2

3

4

FIG. 12.1

The different perspectives on mediation.

30112.2 THE DIFFERENT PERSPECTIVES ON MEDIATION

3. Formal methods are mathematically based languages, techniques, and tools for specifying and

verifying hardware and software systems [6]. Formal methods focus on the behavior of software
systems, which they rigorously analyze in order to reveal potential inconsistencies, ambiguities,

and incompleteness. In other words, formal methods help to verify the absence of execution errors
in software systems. Once potential execution errors (a.k.a. mismatches) are detected, they can

be solved by introducing controllers that force the components to coordinate their behaviors

correctly.

4. The Semantic Web is an extension of theWeb in which information is given well-definedmeaning,
better enabling computers and people to work in cooperation [7]. Ontologies play a key role in

the Semantic Web by formally representing shared knowledge about a domain of discourse as a

set of concepts, and the relationships between these concepts [8]. Ontologies have been extensively

used to automate the reasoning about the information exchanged between software components,

especially in ubiquitous computing environments, so as to infer the translations necessary to

reconcile the differences in the syntax of this information [9].

We detail the techniques for mediation from each perspective in the following. We first adopt a soft-

ware architecture perspective to present the concepts underpinning mediator synthesis. Next, we con-

centrate on middleware for the implementation of and deployment of mediators. Then, we describe

formal solutions that analyze the behaviors of components in order to synthesize the mediator that guar-

antees that they can interact without errors. Finally, we present solutions based on ontologies so as to

represent and reason about the meaning of the information exchanged between components at runtime

and automatically synthesize mediators. Note that these perspectives are not orthogonal and some tech-

niques can be classified in more than one perspective.

12.3 THE SOFTWARE ARCHITECTURE PERSPECTIVE: MEDIATORS
AS CONNECTORS
Software architecture abstractly describes the structure of software systems in terms of components and

connectors [4]. A component encapsulates some functionality to which it restricts access via an explicit

interface [10]. To achieve its functionality, the component interacts with the environment and other

components, that is the component’s behavior. A connector regulates interactions between components

[10].

One critical issue for software architecture is the design and implementation of the connectors that

permit the various software components to work together properly. However, when composing two, or

more, software components to form a system and those components make conflicting assumptions

about their environment, architectural mismatches occur [11]. These assumptions relate to: (i) the in-

terfaces and behaviors of the components involved, (ii) the behaviors and implementations of the con-

nectors used, and (iii) the operating systems and the hardware of the devices on top of which the

components are deployed.

Mediation aims to solve architectural mismatches by reconciling the conflicting assumptions that

the components make about their environment. To solve the differences between the interfaces of com-

ponents, the mediator must translate the actions required by each of them into actions provided by the

other. Note that the mediator facilitates interaction—it is a connector—but does not provide any action

302 CHAPTER 12 THE MANY FACETS OF MEDIATION

itself since it does not encapsulate computation. To solve the differences between the behaviors of com-

ponents, the mediator must coordinate the exchange of information between these components by con-

trolling which action should be delivered to which component at what time. To solve the differences

between the behaviors and implementations of connectors, the mediator must provide a concrete so-

lution to coordinate the interaction patterns of these connectors acting as middleware, which not only

makes the application agnostic to the operating systems, but also to the middleware used to implement

other connectors.

12.3.1 CONNECTOR SYNTHESIS
It is not always possible to find an existing connector for managing interaction between heterogeneous

components and it is difficult and time consuming to design and implement a new connector from

scratch, especially if the components already exist and are implemented using different middleware

solutions [5]. Compositional approaches for connector construction facilitate the development of me-

diators by reusing existing connector instances.

Spitznagel andGarlan [12] introduce a set of transformation patterns (e.g., data translation and action

aggregation), which a developer can apply to basic connectors (e.g., RPC or data stream) in order to

construct more complex connectors. The authors use the approach to enhance the reliability of com-

ponent interactions, but state that this approach can also be used to construct mediators that solve ar-

chitectural mismatches. Each transformation pattern is given a formal definition, which allows the

verification of the properties of the resulting connectors. As developers are responsible for defining

the transformation patterns, they must specify both the necessary translations and behavioral coordina-

tion thatmust beperformedby themediator, but they can easily verify that themediator produced ensures

that the interaction between components is free from deadlocks. The approach is also equipped with a

tool that facilitates the implementation of mediators by reusing and composing the implementation of

existing connectors, assuming existing connectors were implemented using the same middleware.

Inverardi and Tivoli [13] define an approach to compute a mediator that composes a set of pre-

defined patterns in order to guarantee that the interaction of components is deadlock-free. These

patterns represent simple mechanisms that the mediator executes to solve differences between the in-

terfaces or behaviors of components and consist of: (i) renaming an action, (ii) translating one action

into a sequence of actions, (iii) translating a sequence of actions into one action, (iv) re-ordering se-

quences of actions, (v) dropping an action, and (vi) introducing a new action. This last pattern has to be

taken with reserve as it implies that the mediator is able to produce an action. The mediator either only

replays the action or it can perform extra computation; the latter case being beyond interoperability

achievement. However, the specification of the patterns to be used must still be done by the developers.

Indeed, developers specify the necessary translations based on which the approach synthesizes the

mediator that coordinates the behaviors of the components. Furthermore, the implementation of the

resulting mediator is completely left up to the developer as the mediator is generated from scratch with-

out reusing existing connector implementations.

Even though these compositional solutions facilitate the development of mediators, they are only

applicable at design time. By requiring the intervention of the developer to specify the patterns nec-

essary for the creation of mediators, they cannot cope with the increasing ubiquity and complexity of

modern software systems together with the high demand for runtime support.

30312.3 THE SOFTWARE ARCHITECTURE PERSPECTIVE: MEDIATORS AS
CONNECTORS

12.3.2 CONNECTOR SYNTHESIS IN DYNAMIC ENVIRONMENTS
Building mediators is already a difficult task when the developer provides the necessary translations. It

is even more difficult when the mediators have to be synthesized and deployed dynamically as com-

ponents are discovered and composed at runtime.

Chang et al. [14] define a framework that allows component developers to define connectors, called

healing connectors, to recover from common failures of the component. The healing connectors enable

the component to operate in environments that do not verify the assumptions made during the design

and implementation of this component. At runtime, whenever an exception rises due to the misuse of a

component, the framework deploys, on the fly, the corresponding healing connector. The framework

also maintains a log of the exceptions in order to help developers create new healing connectors.

Denaro et al. [15] apply the same approach to detect and repair disparities in different implementations

of standardWeb 2.0 APIs. The healing connectors are not defined by the developers but are included in

a centralized catalogue that inventories the common errors that may occur when the API is used.

However, the proposed solutions only react to errors during the execution of a single action and do

not consider the behaviors of the components. Hence, they solve architectural mismatches which are

due to conflicting assumptions regarding the components’ interfaces, but not due to conflicting as-

sumptions about the components’ behaviors. Furthermore, healing connectors act as translators for

the case of common misuse based on the experience of developers and are not able to deal with unfore-

seen interactions. The implicit knowledge used by the developer to specify the translator should be

modeled explicitly in order to allow computers to reason about the information exchanged by the com-

ponents and infer the translations automatically.

12.3.3 ANALYSIS
Considering mediation from a software architecture perspective allows us to define the foundational

concepts for the formal description, synthesis, and implementation of mediators. Mediators are con-

nectors that enable components to work together by translating the actions of their interfaces and co-

ordinating their behaviors. In ubiquitous computing environments, mediators must be generated on the

fly to deal with the high degree of dynamism inherent in these environments. In the following, we first

consider the middleware solutions that facilitate the implementation of mediators by compensating for

the differences at the middleware layer. Then, we present the formal solutions to synthesizing medi-

ators that coordinate the behaviors of functionally compatible components in order to guarantee their

successful interaction. Finally, we consider semantics-based solutions to infer the translations neces-

sary for meaningful exchange of information between components and enable the synthesis of medi-

ators at runtime.

12.4 THE MIDDLEWARE PERSPECTIVE: MEDIATORS AS MIDDLEWARE
Middleware makes components work together by hiding the differences in hardware and operating sys-

tems, as depicted in Fig. 12.2. Middleware facilitates communication and coordination between com-

ponents in distributed systems by defining [16]: (i) an Interface Description Language (IDL) for

specifying the interfaces of components and the associated operations, and data types, (ii) a discovery

304 CHAPTER 12 THE MANY FACETS OF MEDIATION

protocol to address and locate the components that are available in the environment, and (iii) an inter-

action protocol that coordinates the behavior of different components and enables them to collaborate.

While middleware solutions and implementations define diverse IDLs and message formats, their in-

teraction protocols follow comparably few interaction patterns, a.k.a., communication paradigms/types

[17] or coordination models/paradigms [16]. An interaction pattern defines the rules to coordinate the

behaviors of the components. In Mehta et al. connector classification [18], these interaction patterns

match with the connector types that provide communication and coordination services. The major in-

teraction patterns are: remote procedure call (RPC), distributed shared memory (DSM), and publish/

subscribe [17].

RPC represents the most common interaction pattern in distributed systems. This approach directly

and elegantly supports client/server interactions with servers offering a set of operations through a ser-

vice interface and clients calling these operations directly as if they were available locally. The inter-

action is supported by a pairwise exchange of messages from the client to the server and then from the

server back to the client, with the first message containing the operation to be executed at the server and

associated arguments and the second message containing any result of the operation. To interact

according to RPC, the client and the server must agree on the format of the messages they exchange

as well as the encoding of the data, which represent the arguments and results, enclosed in these mes-

sages. An RPC-based middleware hides the encoding together with the decoding of arguments and re-

sults as well as the passing of messages using communication modules, stubs, that permit the client and

server to use the operations as if they were local. RPC-based middleware solutions are often associated

with libraries to generate, either at compile time or runtime, the client and server stubs based on the

interface definition. The strict request-reply message exchange is unnecessary when there is no result to

return. RPC middleware solutions may also provide facilities for what are called asynchronous RPCs,

by which a client immediately continues its execution after issuing the RPC request.

While RPC allows developers to invoke operations as if they were available locally, DSM provides

developers with a familiar abstraction of reading or writing (shared) data structures as if they were in

their own local address spaces. DSM is in general less appropriate for client/server interactions, where

clients usually access server-held resources using an explicit interface (for reasons of modularity and

Application 2

Local OS 1

Application 1

Computer 1 Computer 2 Computer 3

Application 3

Computer 4

Middleware

Network

Local OS 2 Local OS 3 Local OS 4

FIG. 12.2

Middleware.

Source: Based on A. Tanenbaum, M. Van Steen, Distributed Systems: Principles and Paradigms, second ed., Prentice Hall, Upper Saddle

River, NJ, 2006.

30512.4 THE MIDDLEWARE PERSPECTIVE: MEDIATORS AS MIDDLEWARE

protection). Still, servers can provide DSM that is shared between clients. A DSM-based middleware

enables components to read and write data in the shared memory, regardless of the exact location of the

data. Nevertheless, the structure of the shared data is defined at the application layer and the middle-

ware does not provide any guarantee about when data is made available and how long it will reside in

the shared memory. In other words, the synchronization between the readers and writers also needs to

be managed at the application layer.

Many applications require the dissemination of information or items of interest from a large number

of producers to a similarly large number of consumers. Publish/Subscribe middleware solutions pro-

vide an intermediary service, a broker, that efficiently ensures that information generated by producers

is delivered to the consumers that want to receive it. In other words, publish/subscribe middleware so-

lutions (sometimes also called distributed event-based middleware) allow subscribers to register their

interest in an event, or a pattern of events, and ensure that they are asynchronously notified of events

generated by publishers. The task of the publish/subscribe middleware is to match subscriptions against

published events and ensure the correct delivery of event notifications. A given event will be delivered

to potentially many subscribers, and hence publish-subscribe is fundamentally a one-to-many interac-

tion pattern. The expressiveness of publish/subscribe middleware solutions is determined by the type of

event subscriptions they support: either subscriptions are made using specific topics (also referred to as

subjects) which the events belong to, or based on the content of the event.

Traditionally, middleware promotes the use of a single technology based on which all components

are built,which can be basedonRPC (e.g.,RMI andRPCSOAP),DSM(e.g., Linda and LIME), or Publish/

Subscribe (e.g., JMS andAMQP).However, given the diversity ofmodern software systems that need to

be dealt with, ranging from small-scale sensors to large-scale Internet applications, there is no one-size-

fits-allmiddleware capableof copingwith themall [19].As a result, newmiddleware solutionshavebeen

proposed to enable interaction across middleware and hence facilitate the implementation of mediators

between independently developed components that feature differences at both the application and mid-

dleware layers.We first present solutions based on the definition ofmiddleware that provides developers

with an abstraction which allows them to build components that are able to interact using different mid-

dleware solutions, i.e., universal middleware. We then consider solutions to directly translate messages

from one middleware to the other, i.e., middleware bridges. Finally, we consider solutions to translate
between different middleware solutions using an intermediary model or infrastructure, i.e., service buses.

12.4.1 UNIVERSAL MIDDLEWARE
Universal middleware solutions provide the developer with an abstraction that masks the differences

that may exist at the middleware layer. Solutions include polymorphic middleware such as PolyORB

[20] and reflective middleware such as ReMMoC [21].

PolyORB [20] is a middleware solution that decouples the interaction pattern used to implement the

application from the middleware used for the actual achievement of this interaction. First, PolyORB

supports several interaction patterns, called application personalities, based on which applications can
be developed. Second, PolyORB supports different communication protocols called protocol person-
alities, e.g., SOAP andGIOP. The relation between the application and protocol personalities is handled
via an intermediary protocol into which any application personality can be translated and which can be

translated into all protocol personalities. Before deploying the component, it is configured with the

306 CHAPTER 12 THE MANY FACETS OF MEDIATION

appropriate personalities. Hence, it is not possible to select the appropriate protocol personality dynam-

ically according to the running environment.

Reflective middleware for mobile computing (ReMMoC) [21] is a reflective middleware solution

that provides a WSDL-based interface to develop components. ReMMoC implements a set of plugins

to transform the primitives of the WSDL interface into calls to other middleware technologies, in par-

ticular SOAP, CORBA, and STEAM (a publish/subscribe middleware). At runtime, a component

implemented using ReMMoC can discover and interact with components implemented using different

middleware solutions by dynamically loading the necessary plugin.

An approach based on universal middleware has many flaws. First, it cannot be applied to legacy

components, as it requires at least one of the interacting components to be developed using the univer-

sal middleware. Second, the universal middleware must support any possible middleware and hence

requires continual maintenance in order to cope with the evolution of middleware solutions or the emer-

gence of new ones.

12.4.2 MIDDLEWARE BRIDGES
To deal with interoperability between existing components, the most straightforward solution is to de-

velop a middleware solution that implements direct translation between the messages of two middle-

ware solutions. The middleware bridge takes messages from one middleware in a specific format and

then marshals them to the format of the other middleware.

There exist several examples of middleware bridges: OrbixCOMet2 is a middleware bridge between

DCOM and CORBA and SOAP2CORBA3 ensures interoperability between SOAP and CORBA in

both directions. However, the implementation of middleware bridges is a complex task: developers

have to deal with a lot of details involving the format of the messages used by each middleware

and their correlation; therefore, developers must have a thorough understanding of the middleware

at hand. As a result, solutions that help developers define middleware bridges have emerged. These

solutions consist in defining a framework whereby the developer provides a declarative specification

of the message translation between middleware, based on which the actual transformations are com-

puted. z2z [22] introduces a domain-specific language to describe the message format and the com-

munication protocol of each middleware as well as the translation logic to make them work

together, and then generates the corresponding bridge. The approach has several benefits. First, it in-

creases the level of reusability as the developer can use the individual specifications of middleware to

develop different bridges. Second, the developer does not have to deal with all the message fields since

z2z is able to complete default and optional fields automatically. Finally, z2z verifies that all the re-

quired fields of a message have been treated before sending it. However, the bridge cannot be modified

at runtime.

Starlink [23] uses the domain-specific models defined by z2z to specify bridges, but it deploys and

interprets them at runtime. More specifically, Starlink uses the message specification associated with

each middleware to generate a parser, which is able to process the messages sent using this middleware

into an abstract message, and a composer, which is able to produce the appropriate middleware

2http://documentation.progress.com/output/Iona/orbix/gen3/33/html/orbixcomet33_pguide/.
3http://soap2corba.sourceforge.net/.

30712.4 THE MIDDLEWARE PERSPECTIVE: MEDIATORS AS MIDDLEWARE

http://documentation.progress.com/output/Iona/orbix/gen3/33/html/orbixcomet33_pguide/
http://soap2corba.sourceforge.net/

message out of an abstract message. In other words, parsers and composers mask the differences be-

tween middleware through the concept of abstract messages. The translation logic specifies how to

convert the abstract messages of one middleware into abstract messages of the other middleware. This

approach decouples the detailed specification of the middleware, which is used to generate the corre-

sponding parsers and composers, from the abstract specification of the translations between middle-

ware solutions.

Summing up, middleware bridges provide a transparent solution to interoperability but are imprac-

tical in the long term given the development effort necessary to implement or specify the translation

between middleware solutions. Furthermore, in the case of middleware based on different interaction

patterns, this translation may become unfeasible in all situations, for example, if one middleware is

based on asynchronous communication while the other relies on synchronous communication.

12.4.3 SERVICE BUSES
Like middleware bridges, service buses enable existing components implemented using different mid-

dleware to exchange messages transparently, but unlike middleware bridges, the translation between

messages is performed through an intermediary representation. This representation can be an abstract

proprietary protocol, as is the case with middleware buses, or a message-oriented abstraction layer, as is

the case with enterprise service buses (ESBs).

Georgantas et al. [24] define an approach where the developer specifies a set of semantic events

common to different middleware. Then, each middleware is associated with a parser that processes

the messages of this middleware to produce a semantic event, and a composer that generates a mid-

dleware message based on a semantic event. Parsers and composers of different middleware then syn-

chronize based on shared semantic events. For example, to achieve interoperability between SOAP and

CORBA, developers define the request and response events. Then, parsers and composers are created

per protocol: a SOAP parser triggers a request (respectively response) event upon the reception of a

SOAP request (respectively response) and a SOAP composer produces a SOAP request (respectively

response) out of a request event (respectively response). The same is true for CORBA parsers and com-

posers. Hence, when a SOAP request is received, the SOAP parser triggers a request event, which the

CORBA composer intercepts and transforms into a CORBA request. Once the CORBA response has

been returned, the CORBA parser triggers a response event, which the SOAP composer intercepts and

transforms into a SOAP response. However, this approach is inapplicable for middleware based on

different interaction patterns since it is also necessary to coordinate the message exchange as well

as the translation between messages. Furthermore, the approach does not provide any support for

the specification or implementation of application-level mediators.

ESBs represent the most mature and widespread solution to enable components using different mid-

dleware to interoperate, as is shown by the large number of available industrial implementations, e.g.,

Oracle Service Bus4 and IBM WebSphere ESB.5 An ESB [25] is an open standard, message-based

middleware solution that facilitates the interactions of disparate distributed applications and services.

4http://www.oracle.com/technetwork/middleware/service-bus/.
5http://www-01.ibm.com/software/integration/wsesb/.

308 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://www.oracle.com/technetwork/middleware/service-bus/
http://www-01.ibm.com/software/integration/wsesb/

ESBs generally include built-in conversion across standard middleware technologies (e.g., SOAP,

JMS) and provide a set of predefined patterns that can be used to create customized mediators.

However, ESBs takes an enterprise perspective, where interactions between components are

planned and long-lived. Hence, the solutions are typically restricted to a set of known middleware

standards, and the development effort required to extend them for new protocols or to specify mediators

is significant. They are not well suited to situations where interactions must be solved on the fly as

in ubiquitous computing environments, which involve short-lived interactions and unforeseen

compositions.

12.4.4 ANALYSIS
There exist many middleware solutions to enable components that feature differences at the middle-

ware layer to interact successfully. However, while the implementation of new middleware might be

sufficient to deal with the differences at the middleware layer, it is insufficient to deal with differences

at the application layer. First, even applications developed using the same middleware are not guar-

anteed to work together so long as there are differences in their interfaces and behaviors. This is,

for example, the case of interoperability in Web Services [26]. Even though both services and clients

use SOAP middleware, the differences between their interfaces, which include differences in the op-

eration names, input/output message names and types, the granularity of operations, and the order in

which these operations are invoked (or expected to be invoked) hamper independently developed cli-

ents and Web Services from working together. Given the countless number of potential cases where a

mediator is necessary, any static solution is doomed to fail. We need to generate mediators automat-

ically. Second, while in the case of middleware obeying the same interaction pattern, it suffices to trans-

late the messages sent using one middleware into messages expected by the other middleware, when

middleware solutions follow different interaction patterns, e.g., a shared memory and publish/

subscribe, the differences can only be solved by considering the characteristics of the applications

[27]. Hence, it is necessary to define solutions that are able to reason about the characteristics of

applications automatically in order to synthesize the mediator that reconciles the differences between

component implementations and enables them to interoperate. In the following section, we present so-

lutions that analyze the behaviors of the components and semi-automatically generate the appropriate

mediator that enables their correct interaction.

12.5 THE FORMAL METHODS PERSPECTIVE: MEDIATORS AS CONTROLLERS
Formal methods aim to relieve developers of the burden of designing or specifying mediators, with a

special focus on coordinating the behaviors of the components so as to guarantee their correct inter-

action. Correct interaction may be specified as: (i) the ability of the components to coordinate their

behaviors in order to achieve the requirements of the composed system, or (ii) the ability to preserve

the meaning of the information exchanged between the components and guarantee that the composed

system is free from deadlocks.

30912.5 THE FORMALMETHODS PERSPECTIVE: MEDIATORS AS CONTROLLERS

12.5.1 CONTROLLER SYNTHESIS USING A SPECIFICATION OF THE COMPOSED
SYSTEM
The successful interaction of components results in a composed software system that meets given re-

quirements. By enabling components to interact with each other, mediators can be seen as the missing

behavior necessary to realize a specification of the composed system Goal.

12.5.1.1 Quotient
Calvert and Lam [28] formulate mediator synthesis as the problem of finding quotient. In a similar way

to division and product in arithmetics, quotient can be regarded as the adjoint (roughly “inverse”) of

parallel composition. Given a specification for a system S, together with a component’s behavior P, the
quotient yields the behavior Q such that PkQ satisfies S. Applied to mediator synthesis, the mediator is

the quotient of the specification of the composed system Goal and the parallel composition of the com-

ponents’ behaviors. The authors assumeGoal to be deterministic and synthesizeM by first building the

set of all possible coordinations of the actions of the components’ interfaces, and then keeping only

those that satisfy Goal.
Even though the approach can, in theory, always produce a mediator if one exists, it is clear from the

algorithm that it is computationally very expensive as it requires exploring all possible traces over

the set of actions of both Goal andM. Furthermore, it assumes that the same actions are used to define

the specification of the composed system as well as the components’ behaviors.

12.5.1.2 Planning
Similarly to quotient computation, the planning-based approach defined by Bertoli et al. [29] builds the

mediator by identifying among all possible interactions with the components, only those that satisfy

Goal. Nevertheless, they optimize the search by using a heuristic in order to explore only the interac-

tions that are likely to satisfy Goal and use a planning algorithm in order to calculate the traces of the

mediator more efficiently.

12.5.1.3 Control theory
Gierds et al. [30] formulate mediator synthesis in terms of controller synthesis. Besides the compo-

nents’ behaviors and the specification of the composed system, they also require the definition of a

set of translation patterns between the actions of the components. They create a component whose be-

havior E is extracted from the specified translation patterns: E represents the behavior of a component

able to execute the translation patterns in any order. Then, they use available tools for controller syn-

thesis to generate a controllerC for the composition P1kP2kE to satisfyGoal. Finally, they compose the

behavior of the controller together with the behavior of the translation component to obtain the medi-

ator, i.e., M ¼ EkC.
Summing up, solutions to mediator synthesis based on quotient computation, planning or controller

synthesis are guaranteed to find the mediator if it exists and state its nonexistence otherwise. However,

they require the user to have an intuitive understanding of the behavior of the composed system, which

can only emerge through the correct interaction of its components. This might be a reasonable assump-

tion when developing a software system by integrating several components, but it is unreasonable to

require such understanding from regular users who only seek to interact with the services in their en-

vironment, as is the case in ubiquitous computing environments.

310 CHAPTER 12 THE MANY FACETS OF MEDIATION

12.5.2 CONTROLLER SYNTHESIS USING A PARTIAL SPECIFICATION
The solutions proposed in the following assume that a specification of the correspondence between the

actions of the components’ interfaces is available and use it to coordinate the components’ behaviors in

order to guarantee that their interaction is free from deadlocks. This correspondence defines the trans-

lations that the mediator must perform in order to reconcile the differences between the components’

interfaces. Therefore, we refer to the specification of these correspondences as partial specifications of

the mediator.

12.5.2.1 Projection
Lam [31] defines an approach for the synthesis of mediators based on the technique of projections. A
projection of a component’s behavior P, noted Proj[P] is performed by aggregating some of its states,

which induces the definition of an equivalence relation on the actions of the component’s interface.

Two actions are equivalent if they cause identical state change in Proj[P] while actions that do not

cause any state change are not represented in Proj[P]. Hence, the projection can be seen as applying

relabeling and hiding functions to P.
If one can define a useful common projection of the behaviors of the components, then a stateless

mediatorM can be synthesized. Useful means that the common projection defines a behavior to achieve

some functionality of interest. The common projection can be seen as the lowest common denominator

of the behaviors of the components. The definition of the common projection is the responsibility of the

developer. The synthesized stateless mediator simply transforms an action required by one component

into an action provided by the other component if they cause identical state change in the common

projection, and ignores the actions that do not cause any state change. However, this stateless mediator

is able to deal with only one-to-one correspondences between actions. Furthermore, no systematic ap-

proach for the definition of the common projection is proposed, it depends solely on developers and

their understanding of the components’ behaviors.

12.5.2.2 Interface mapping
Yellin and Strom [32] define a synthesis algorithm that, besides the behaviors of the components, must

be given an interface mapping S, which specifies the correspondence between the actions of the com-

ponents’ interfaces. The interface mapping is required to be complete and nonambiguous. An interface

mapping is complete if for every required action of one component, there corresponds a provided action

from the other component. It is nonambiguous if for every required action of one component, there

corresponds at most one provided action from the other component. Each correspondence in the inter-

face mapping defines an ordering constraint between the required and provided actions. The synthesis

algorithm constructs a mediator in two main phases. During the first phase, an initial process A is cre-

ated which represents all possible coordinations of components’ behaviors that verify the ordering con-

straints imposed by the interface mapping. In the second phase, any execution in A leading to a

deadlock is removed. As a result of the second phase, either A is empty, in which case the mediator

does not exist, or it is a valid mediator M.

12.5.2.3 Model checking
While interface mapping only specifies one-to-one correspondences between actions, there often exist

more elaborate correspondences relating them. In the general case, a sequence of actions of one com-

ponent may be translated into another sequence of actions of the other component. To specify complex

31112.5 THE FORMALMETHODS PERSPECTIVE: MEDIATORS AS CONTROLLERS

correspondences, Mateescu et al. [33] use an adaptation contract, which is an LTS Swhose alphabet is
a vector composed of the actions of the components’ interfaces. The authors then construct the medi-

ator by selecting among all possible executions of the composed system C only those that do not lead to

deadlocks. Instead of constructing C then removing the erroneous executions, they use on-the-fly

model checking to prune, as early as possible, the executions leading to deadlocks.

12.5.2.4 Semi-automated mapping generation
Nezhad et al. [34, 35] define a semi-automated approach to the synthesis of mediators which, rather than

considering that the correspondences between the actions of the components are provided, define a series

of heuristics to facilitate their computation. First, they focus on the syntax, expressed usingXML schema,

of the data embedded in the actions. They use existing XML schema matching techniques to evaluate the

degree of similarity between sequences of actions in the components’ interfaces. Then, they update this

similarity based on the first position at which the actions can appear in the behaviors of the components:

the similarity score of required and provided actions increases if they are at the same position. The last

heuristic consists in selecting the pair of actions with the highest degree of similarity according to the

matching of their XML schema and then updating the similarity scores of the other pairs of actions

according to their positions relative to the selected pair of actions. The same pair of actions is never se-

lected twice so that the heuristic is guaranteed to terminate. Once the correspondences between actions

have been computed, the behaviors of the two components are simultaneously explored in order to iden-

tify possible deadlocks. The user is presented with the deadlocks that may occur and has to figure out the

appropriate translations that may solve them. The algorithm cannot apply the mapping directly as there is

no guarantee that even the actions with the highest similarity score have the same meaning.

12.5.3 ANALYSIS
Formal methods enable a rigorous analysis of components’ behaviors in order to synthesize the mediator

that coordinates the components’ behaviors appropriately. Nevertheless, besides the description of com-

ponents’ behaviors, the synthesis of mediators using formal methods also requires the specification of a

single property of the composed systems or the correspondence between actions. The definition of the

correspondences between the actions of components’ interfacesmay be error-prone given the size and the

number of parameters of the interfaces involved. For example, the Amazon Web Service6 includes 23

operations and no less than 72 data type definitions and eBay7 contains more than 156 operations. Given

all possible combinations, methods that automatically compute these correspondences are necessary.

12.6 THE SEMANTIC WEB PERSPECTIVE: MEDIATORS AS TRANSLATORS
When the components are dynamically discovered, and interact spontaneously, as is the case in ubiq-

uitous computing environments, the correspondences between the actions of components’ interfaces

must also be elicited at runtime. To do so, the meaning of these actions and their relations must be

made explicit in order to allow their automated analysis.

6http://soap.amazon.com/schemas2/AmazonWebServices.wsdl.
7http://developer.ebay.com/webservices/latest/ebaysvc.wsdl.

312 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

Therefore, the Semantic Web [7] promotes the view that Web resources are augmented with

machine-processable metadata expressing their meaning. This vision is supported by ontologies, which

provide a machine-processable means to represent and automatically reason about the meaning of data

based on the shared understanding of the domain [36]. By relying on ontologies, Semantic Web

Services improve the discovery, composition, and mediation of Web Services.

12.6.1 SEMANTIC WEB SERVICES
Web Services are processes that expose their interfaces to the Web so that users can invoke them. Se-

mantic Web Services provide a richer and more precise way to describe the services through the use of

knowledge representation languages and ontologies. The aim is to facilitate the service discovery and

composition by exploiting knowledge explicitly encoded in the ontology rather than trying to guess the

meaning encoded in the schemas, as is the case with XML schemas for example [37]. Major efforts for

modeling and using Semantic Web Services include OWL-S [38] and WSMO [39].

OWL-S [38], which was previously named DAML-S [40], is an ontology for formally defining

Web Services. An ontology-based description of Web Services has many advantages. First, it pro-

motes the discovery of functionally compatible components through the notion of a capability. In

this sense, pioneering work by Paolucci et al. [41] defines an approach to assess functional compat-

ibility between a provided service (advertisement) and a required service (request) by comparing the

semantics of the inputs and outputs specified in their respective profiles: an advertisement matches

with a request if every input in the request profile subsumes some input in the advertisement profile,

and every output in the advertisement profile subsumes some output in the request profile. Second, it

eases the construction of composition of services by making explicit the input, output, pre- and post-

conditions of the services as well as their behaviors. Finally, and most importantly, it facilitates me-

diation by formalizing both the meaning of the input/output and the behavior of services. Vaculı́n

et al. [42] define an approach for generating mediators between functionally compatible client

and service, both of which are modeled using OWL-S. First, they extract a set of representative ex-

ecutions of the client using its process specification. For each execution, they simulate the service

process and use a planning algorithm in order to find the corresponding execution such that the client

and the service can progress simultaneously. Then, for each pair of client and service executions, they

use existing data mediators to perform the translations necessary to compensate for the differences

between their input/output.

However, OWL-S only has had a qualified success because it specifies yet another model to define

services. In addition, solutions based on process algebra and automata have proven more suitable for

modeling and analyzing the behavior of components.

WSMO [39] is another ontology for modeling SemanticWeb Services.WSMO considers mediators

as first-class concepts and provides a runtime framework, the Web Service Execution Environment

(WSMX), to specify, deploy, and execute mediators dynamically.

12.6.2 SEMANTIC MEDIATION BUS
Instead of defining yet another ontology for Web Services, SA-WSDL [43] proposes a cost-effective

solution to incorporate ontology reasoning in Web Services by augmenting service descriptions with

annotations to: (i) define the semantics of operations and data by referring to concepts in a domain

31312.6 THE SEMANTIC WEB PERSPECTIVE: MEDIATORS AS TRANSLATORS

ontology, (ii) map the data syntax to the semantic definition of the associated concept using XSLT,8

i.e., lifting, and (iii) derive the specific data structures from semantic concepts using XSLT also, i.e.,

lowering.
Even though SA-WSDLdoes not have the expressive power ofOWL-S orWSMOas it represents nei-

ther thecapabilityof servicesnor theirbehaviors, it is easier to integrate inexisting systems includingESBs.

TheAlion SemanticMediationBus [44] brings together SA-WSDLandESB.While the ESBprovides

various plugins to support different middleware interaction protocols, services are described using SA-

WSDL specifications, which enables the runtime translation of the actions of clients’ and services’ inter-

facesusing the liftingand loweringfunctions.Nevertheless, asSA-WSDLdoesnot support themodelingof

behavior, the Alion Semantic Mediation Bus focuses on action translations and does not coordinate the

behaviors of clients and services. Moreover, as the capabilities are not represented either, the discovery

of functionally compatible clients and services cannot be achieved automatically.

12.6.3 ANALYSIS
SemanticWeb technologies, and ontologies in particular, enable the precise modeling of and reasoning

about the meaning of the information exchanged between components. Semantic Web Services illus-

trate how ontologies can help to automate the discovery and composition ofWeb Services and facilitate

mediation between them. However, mediation is often based on the definition of new ontologies and

their use to infer the translations necessary to ensure the meaningful exchange of information between

components. Furthermore, while modeling the behavior of components is recognized as being essen-

tial, the logical theory behind ontologies is inappropriate for analyzing components’ behaviors. In

addition, even though initial attempts to handle differences between components at the middleware

layer are beginning to emerge through the concept of semantic mediation buses, they only deal with

translations of actions and do not manage behavioral differences between components, at either the

application or the middleware layers.

12.7 MEDIATOR SYNTHESIS AS A SERVICE
Over the years, mediation has been the subject of a great deal of work, both theoretical and practical.

Table 12.1 summarizes the solutions presented in previous sections.We can notice that although a lot of

progress has been made, none of the proposed solutions is able to synthesize and deploy mediators that

deal with both application and middleware differences and guarantee that the interaction between het-

erogeneous components is error-free.

• Software architecture solutions focus on reasoning about the composition of software components

and define the requirements for mediation but do not specify how to synthesize mediators

automatically.

• Middleware solutions facilitate the implementation of mediators but do not reconcile the

differences between components at the application layer.

8Extensible Stylesheet Language Transformations—http://www.w3.org/TR/xslt.

314 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://www.w3.org/TR/xslt

• Formal methods provide us with the foundations for coordinating the behaviors of components in

order to guarantee the absence of errors in their interactions but assume that (i) the components use

the same set of actions, (ii) a single specification of the composed system is given, or (iii) the

correspondence between their actions is provided.

• Semantic Web solutions allow us to infer the translations necessary to ensure meaningful exchange

of information between components but do not deal with the differences between components at the

middleware layer.

Table 12.1 Summary of Mediation Solutions

Pers. Approach The Main Idea Evaluation

Software

architecture

Formal reasoning

about component

interaction [11, 45]

Formal definition of component

interaction to detect architectural

mismatches

+ Formal basis for

understanding mediation

� No support for differences at

the middleware layer

� No automated generation of

mediators

Compositional

approaches for

connector

development [12, 13]

Creating mediators from existing

connector instances

Self-healing

connectors [14, 15]

Recovery from component misuse

by deploying connectors on the fly

Middleware Universal

middleware [20, 21]

Provide an abstraction that masks

the differences at the middleware

layer

+ Support differences at the

middleware layer

� Developers need to specify

or implement mediators at

the application layer
Middleware bridges

[22, 23]

Direct translation between

middleware messages

Service buses [24, 25] Dealing with different middleware

solutions via an intermediary

infrastructure

Formal

methods

Using a specification

of the composed

system [28–30]

Synthesize the mediator by

selecting from all possible

coordinations of the behaviors of

components only those that satisfy

the specification of the composed

system

+ Automated analysis and

coordination of components’

behaviors

+ Guaranteed correctness of

the interaction between

components

� Require a declarative

specification of the

correspondences between

the actions of components’

interfaces

� No support for differences at

the middleware layer

Using a partial

specification [31–33,
35]

Require the correspondences

between actions to be available,

and synthesize the mediator that

guarantees that interaction

between components is deadlock-

free

Semantic

web

Semantic Web

Services [38–40]
Defining an ontology to support the

inference of the necessary

translations of the actions required

by one component and provided by

the other

+ Automated discovery of

functionally-compatible

components

+ Automated reasoning about

the meaning of information

� Partial support for behavioral

differences

� Partial support for

middleware differences

Semantic mediation

bus [44]

Using semantic technologies

within an ESB to automate

message translation

31512.7 MEDIATOR SYNTHESIS AS A SERVICE

Therefore, we propose to unify these different solutions by considering the various roles of media-

tors. Mediators act as (i) translators by ensuring the meaningful exchange of information between

components, (ii) controllers by coordinating the behaviors of the components to ensure the absence

of errors in their interaction, and (iii) middleware by enabling the interaction of components across

the network so that each component receives the data it expects at the right moment and in the right

format. More specifically, we can use ontology-based reasoning to automate the synthesis of trans-

lators, formal methods to synthesize controllers, and middleware solutions to realize and execute

mediators. We can combine these solutions in a mix-and-match way to provide mediation as a service

(see Fig. 12.3).

The first step consists in using domain knowledge to calculate the correspondences between the

actions required by one component and those provided by the other, that is translator synthesis (see

Interface
matchings

Translator
synthesis

Controller
synthesis

Component
repository

Mediator
repository

Ontology
repository

Requirements

Bayesian matching
of service
interfaces

[48]

...

...LOTOS
[35]

MTSA
[18]

<b1, <r2> >
<a1, <d2, l2>>
<<a1, b1>, <a2, d2>>

MICS
[3]

Mediator
model

Middleware
synthesis

Starlink
[7]

PolyORB
[53] ...

ESBs
[40]

1

2

3

Semantic matching
of service
interfaces

[34]

b

r d l
a

FIG. 12.3

Mediator synthesis as a service.

316 CHAPTER 12 THE MANY FACETS OF MEDIATION

Fig. 12.3(1)). Indeed, a significant role of the mediator is to translate information available on one

side and make it suitable and relevant to the other. This translation can only be carried out if there

exists a semantic correspondence between the actions of the components, that is, interface matching.
The main idea is to use domain-specific knowledge, described within an ontology for example, in

order to select from sequences of actions of the components’ interfaces only those which retain

the meaning of the information exchanged and for which translations can automatically be computed.

Interface matchings not only specify one-to-one correspondences between the actions of components

but also many-to-many correspondences, which makes their computation very complex.

The second step is to explore the behaviors of the components in order to generate a process

that ensures that whenever one of the components chooses a sequence of actions to execute, other

components are ready to engage in a sequence of actions while there exist an interface matching

relating these sequences of actions, that is controller synthesis (see Fig. 12.3(2)). The synthesized

controller guarantees the correct interaction between the components by making them progress syn-

chronously and reach a desirable state. Note that solutions such as MICS [46] tackles more than one

role of mediators. MICS combines constraint programming and ontology reasoning to compute the

correspondences between the actions used by the components, which are then used to synthesize a

controller.

The last step entails the instantiation of the data structures expected by each component and their

delivery according to the interaction pattern defined by the middleware based on which the component

is implemented, that is middleware synthesis (see Fig. 12.3(3)). Indeed, to enable the dynamic com-

position of highly heterogeneous components, i.e., components featuring differences at both the appli-

cation and middleware layers, a mediator must be synthesized which ensures that each component

receives the data it expects at the right moment and in the right format.

12.8 REQUIREMENTS AND MEDIATION
Requirements and mediators may not seem to naturally fit together (see Fig. 12.4). On the one hand,

requirements reside primarily in the problem space whereas mediators reside primarily in the solution

space. That is, requirements reflect the understanding of the environment, the need of stakeholders and

the rationale behind the development of the proposed system. Mediator synthesis, however, focuses on

the behavior of individual components and how to enable them to interact with one another. Require-

ments are often refined by decomposing the problem into smaller ones whereas mediation aim to com-

pose heterogeneous components to make a more complex behavior emerge. On the other hand, the

increasing deployment of mobile and ubiquitous computing technology makes the boundary between

problem and solution worlds disappear. As a result, realizing requirements through the collaboration of

Requirements

Mediation

Problem world Top down

Solution world Bottom up

Why

How

Decomposition

Composition

FIG. 12.4

Requirements vs. mediation.

31712.8 REQUIREMENTS AND MEDIATION

multiple existing components is more than simply desirable, it is fast becoming a necessity. But the

remaining question is: how to bridge the gap between requirements and mediation?
Specifying requirements involves making explicit the environment properties under which these

requirements must be satisfied [47]. More specifically, Jackson and Zave’s framework for require-

ments engineering [47] makes explicit the relationship between requirements, specifications, and en-

vironment properties, which can be formalized as follows.

S, E‘R

where S denotes a system specification, E environment properties, and R requirements. Mediators are

synthesized to realize a desirable property/requirement given a set of available components in a spe-

cific environment, which can be formalized as follows.

E, M ‘R

where M denotes the synthesized mediator and we consider, without loss of generality, that the spec-

ifications of the available components are included in that of the environment.

When environment properties change (or the set of available components change) a new mediator

must be synthesized to maintain the same requirement satisfied.

Synthesize M
0
such that E

0
, M

0 ‘R

where E
0
denotes the updated environment properties and M

0
the new mediator.

However, it is not always possible to synthesize a mediator that will maintain the requirements sat-

isfied whatever are the environment properties. D’Ippolito et al. [48] propose a multitier framework

whereby a stack of mediators are synthesized to satisfy stronger requirements when making stronger

assumptions about the environment. For example, a two-level stack would be as follows.

Synthesize M1 such that

E1, M1 ‘R1,

Synthesize M2 such that

E2, M2 ‘R2,

E2 simulates E1, and

M2 simulates M1

where in the second tier, some strong assumptions about the environment are made E2 and strong guar-

antees provided R2 while weaker assumptions (E2 simulates E1) are made in the lower first tier but also

weaker guarantees are provided. Nevertheless, this approach is unable to deal with unrelated environ-

ment properties or mediators. Consider for example the case where for the same environment proper-

ties, we can synthesize mediators to achieve only one requirement at a time:

9M1 such that

E, M1 ‘R1,

9M2 such that

E, M2 ‘R2, and

∄M such that

E, M ‘R1^R2

318 CHAPTER 12 THE MANY FACETS OF MEDIATION

where R1 and R2 are two unrelated requirements.Wemust then decide which mediator to deploy, which

necessitates explicit reasoning about requirements and their relationships.

Goal modeling frameworks such as KAOS [49] or i* [50] are often used represent and reason

about the relationships between multiple requirements as well as the associated domain properties.

However, while goals, mainly expressed using linear temporal logic (LTL) [51], have been exten-

sively used in controller synthesis, it is not clear how goal modeling can be used for mediator syn-

thesis. Cavallaro et al. [52] propose to extend the KAOS goal models in order to define a

specifications of services, which are then instantiated at runtime. In this case, mediators are used

to compensate for the differences between the discovered service instance and the service specifi-

cation. Letier and Heaven [53] propose to use mediator (controller) synthesis to derive a machine

specification that satisfies one goal under some domain specifications and then compose them to

form a specification that satisfies a set of goals. Hence, combining requirement modeling and me-

diator synthesis help in dealing with multiple properties of the system composed of the multiple com-

ponents and mediator.

Yet, rather than the synthesis of a machine specification, we may use requirements analysis to

derive the appropriate specification and then implement this specification by using mediation

to make multiple components collaborate. One concrete example is that of security. Determining

the appropriate mechanisms that need to be deployed in order to protect assets from harm often

requires trading off security against other requirements such as performance or usability and consid-

ering the value of the assets, and potential threats [54]. Adaptive security (sometimes called

self-protection [55]) aims to enable systems to vary their protection in the face of changes in their

operational environment. A requirements-driven approach for adaptive security enables the analysis

and reasoning about the cost and benefit of the security controls. Salehie et al. [56] propose an

approach in which a runtime model that combines goals, threats, and assets models is used to evaluate

the cost and benefit of applying each security control (i.e., the mechanism that needs to be deployed

in order to protect assets from harm) and choosing the most appropriate one. Collaborative security

[57] uses mediation to implement the appropriate security controls by composing components’

capabilities at runtime.

12.9 SUMMARY
Ask a software architect about mediation, and she will say that it is about the development of the soft-

ware connector that enables components to interact successfully. Ask a middleware developer and she

will tell you that it is about defining a connectivity infrastructure. Ask a formal methods expert and she

will say that it is about computing a controller that enables the components to interact without errors.

Ask a Semantic Web expert and she will tell you that it is about defining an ontology that enables rea-

soning about the meaning of the information exchange. In this chapter, we reviewed the literature on

mediation from these four perspectives. We presented a multifaceted approach to mediation, which

brings together the solutions of mediation from different perspectives. We also made a case for using

requirements to help identify synergies and trade-offs between the many properties that a mediation

solution need to deliver.

31912.9 SUMMARY

ACKNOWLEDGMENTS
We acknowledge SFI grant 10/CE/I1855 and ERC Advanced grant 291652 (ASAP).

REFERENCES
[1] R. Fielding, Architectural styles and the design of network-based software architectures, Ph.D. thesis,

University of California, California, 2000.

[2] G. Wiederhold, Mediators in the architecture of future information systems, IEEE Comput. 25 (3) (1992)

38–49.
[3] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. Cheng, Composing adaptive software, IEEE Comput.

37 (7) (2004) 56–64. http://doi.ieeecomputersociety.org/10.1109/MC.2004.48.

[4] M. Shaw, Procedure calls are the assembly language of software interconnection: connectors deserve first-

class status, in: ICSE Workshop on Studies of Software Design, 1993, pp. 17–32.
[5] N. Medvidovic, E.M. Dashofy, R.N. Taylor, The role of middleware in architecture-based software devel-

opment, Int. J. Softw. Eng. Knowl. Eng. 13 (4) (2003) 367–393.
[6] E.M. Clarke, J.M. Wing, Formal methods: state of the art and future directions, ACM Comput. Surv. 28 (4)

(1996) 626–643.
[7] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sci. Am. 284 (5) (2001) 28–37.
[8] T.R. Gruber, A translation approach to portable ontology specifications, Knowl. Acquis. 5 (2) (1993)

199–220. http://dx.doi.org/10.1006/knac.1993.1008.
[9] S.A. McIlraith, T.C. Son, H. Zeng, Semantic web services, IEEE Intell. Syst. 16 (2) (2001) 46–53.

[10] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations, Theory, and Practice,

Wiley, Hoboken, NJ, 2009.

[11] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch or why it’s hard to build systems out of existing

parts, in: Proceedings of the 17th International Conference on Software Engineering, ICSE, 1995,

pp. 179–185.
[12] B. Spitznagel, D. Garlan, A compositional formalization of connector wrappers, in: Proceedings of the 25th

International Conference on Software Engineering, ICSE, 2003, pp. 374–384.
[13] P. Inverardi,M.Tivoli, Automatic synthesis ofmodular connectors via composition of protocolmediation pat-

terns, in: Proceedings of the 35th International Conference on Software Engineering, ICSE, 2013, pp. 3–12.
[14] H. Chang, L. Mariani, M. Pezzè, In-field healing of integration problems with COTS components,

in: Proceedings of the International Conference on Software Engineering, ICSE, 2009, pp. 166–176.
[15] G. Denaro, M. Pezzè, D. Tosi, Ensuring interoperable service-oriented systems through engineered self-heal-

ing, in: Proceedings of the 7th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ESEC/SIGSOFT FSE, 2009,

pp. 253–262.
[16] V. Issarny, M. Caporuscio, N. Georgantas, A perspective on the future of middleware-based software engi-

neering, in: Proceedings of the Workshop on the Future of Software Engineering, FOSE, 2007, pp. 244–258.
[17] G.F. Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed Systems: Concepts and Design, fifth,

Addison-Wesley Longman, Reading, MA, 2012.

[18] N.R. Mehta, N. Medvidovic, S. Phadke, Towards a taxonomy of software connectors, in: Proceedings of

International Conference on Software Engineering, ICSE, 2000.

[19] G. Blair, M. Paolucci, P. Grace, N. Georgantas, Interoperability incomplexdistributedsystems, in:M.Bernardo,

V. Issarny (Eds.), SFM-11: 11th International School on Formal Methods for the Design of Computer, Commu-

nication and Software Systems—Connectors for Eternal Networked Software Systems, Springer Verlag,

New York, 2011, pp. 1–26.

320 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0010
http://doi.ieeecomputersociety.org/10.1109/MC.2004.48
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0035
http://dx.doi.org/10.1006/knac.1993.1008
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0095

[20] T. Vergnaud, J. Hugues, L. Pautet, F. Kordon, PolyORB: a schizophrenic middleware to build versatile re-

liable distributed applications, in: Proceedings of the Ninth International Conference on Reliable Software

Technologies Reliable Software Technologies, Ada-Europe, 2004, pp. 106–119.
[21] P. Grace, G.S. Blair, S. Samuel, ReMMoC: a reflective middleware to support mobile client interoperability,

in: Proceedings of the OTM Confederated International Conferences CoopIS/DOA/ODBASE, 2003,

pp. 1170–1187.
[22] Y.-D. Bromberg, L. R�eveillère, J.L. Lawall, G. Muller, Automatic generation of network protocol gateways,

in: Proceedings of Middleware, 2009, pp. 21–41.
[23] Y.-D. Bromberg, P. Grace, L. R�eveillère, Starlink: runtime interoperability between heterogeneous

middleware protocols, in: International Conference on Distributed Computing Systems, ICDCS, 2011,

pp. 446–455.
[24] N. Georgantas, V. Issarny, S. Ben Mokhtar, Y.-D. Bromberg, S. Bianco, G. Thomson,

P.-G. Raverdy, A. Urbieta, R.S. Cardoso, Middleware architecture for ambient intelligence in the networked

home, in: H. Nakashima, H. Aghajan, J. Augusto (Eds.), Handbook of Ambient Intelligence and Smart

Environments, Springer, New York, 2010, pp. 1139–1169.
[25] F. Menge, Enterprise service bus, in: Proceedings of the Free and Open Source Software Conference, 2007.

[26] H.R.M. Nezhad, B. Benatallah, F. Casati, F. Toumani, Web Services Interoperability Specifications, IEEE

Comput. 39 (5) (2006) 24–32.
[27] M. Ceriotti, A.L. Murphy, G.P. Picco, Data sharing vs. message passing: synergy or incompatibility? An

implementation-driven case study, in: Proceedings of the ACM Symposium on Applied Computing,

SAC, 2008, pp. 100–107.
[28] K.L. Calvert, S.S. Lam, Deriving a protocol converter: a top-down method, in: Proceedings of the Sympo-

sium on Communications Architectures & Protocols, SIGCOMM, 1989, pp. 247–258.
[29] P. Bertoli, M. Pistore, P. Traverso, Automated composition of Web services via planning in asynchronous

domains, Artif. Intell. 174 (3-4) (2010) 316–361.
[30] C. Gierds, A.J. Mooij, K. Wolf, Reducing adapter synthesis to controller synthesis, IEEE Trans. Serv. Com-

put. 5 (1) (2012) 72–85.
[31] S.S. Lam, Protocol conversion, IEEE Trans. Softw. Eng. 14 (3) (1988) 353–362.
[32] D.M. Yellin, R.E. Strom, Protocol specifications and component adaptors, ACM Trans. Program. Lang. Syst.

19 (2) (1997) 292–333.
[33] R. Mateescu, P. Poizat, G. Sala€un, Adaptation of service protocols using process algebra and on-the-fly re-

duction techniques, IEEE Trans. Softw. Eng. 38 (4) (2012) 755–777.
[34] H.R.M. Nezhad, B. Benatallah, A. Martens, F. Curbera, F. Casati, Semi-automated adaptation of service in-

teractions, in: Proceedings of the 16th International Conference on World Wide Web, WWW, 2007,

pp. 993–1002.
[35] H.R.M. Nezhad, G.Y. Xu, B. Benatallah, Protocol-aware matching of web service interfaces for adapter de-

velopment, in: Proceedings of the 19th International Conference on World Wide Web, WWW, 2010.

[36] T. Gruber, Ontology, in: L. Liu, M.T. €Ozsu (Eds.), Encyclopedia of Database Systems, Springer, New York,

2009, pp. 1963–1965.
[37] P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches, J. Data Semant. 4 (2005) 146–171.
[38] D.L. Martin, M.H. Burstein, D.V. McDermott, S.A. McIlraith, M. Paolucci, K.P. Sycara, D.

L. McGuinness, E. Sirin, N. Srinivasan, Bringing semantics to web services with OWL-S,

in: Proceedings of the World Wide Web Conference, WWW ’07, 2007, pp. 243–277.
[39] E. Cimpian, A. Mocan,WSMX process mediation based on choreographies, in: Proceedings of Business Pro-

cess Management Workshop, 2005, pp. 130–143.
[40] M.H. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, D.V. McDermott, S.A. McIlraith, S. Narayanan,

M. Paolucci, T.R. Payne, K.P. Sycara, DAML-S: web service description for the semantic web,

in: Proceedings of International Semantic Web Conference, ISWC, 2002, pp. 348–363.

321REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0200

[41] M. Paolucci, T. Kawamura, T.R. Payne, K.P. Sycara, Semantic matching of web services capabilities,

in: Proceedings of the First International Semantic Web Conference, ISWC, 2002.

[42] R. Vaculı́n, R. Neruda, K.P. Sycara, The process mediation framework for semantic web services, IJAOSE:

Int. J. Agent-Oriented Softw. Eng. 3 (1) (2009) 27–58.
[43] J. Kopecký, T. Vitvar, C. Bournez, J. Farrell, SAWSDL: semantic annotations for WSDL and XML schema,

IEEE Internet Comput. 11 (6) (2007) 60–67.
[44] W. Zhu, Semantic mediation bus: an ontology-based runtime infrastructure for service interoperability,

in: Proceedings of the 16th International on Enterprise Distributed Object Computing Conference Work-

shops, EDOCW, 2012, pp. 140–145.
[45] R. Allen, D. Garlan, A formal basis for architectural connection, ACM Trans. Softw. Eng. Methodol. 6 (3)

(1997) 213–249.
[46] A. Bennaceur, V. Issarny, Automated Synthesis of Mediators to Support Component Interoperability, IEEE

Trans. Softw. Eng. 41 (3) (2015) 221–240. http://dx.doi.org/10.1109/TSE.2014.2364844.
[47] M. Jackson, P. Zave, Deriving specifications from requirements: an example, in: Proceedings of the 17th

International Conference on Software Engineering, ICSE, 1995, pp. 15–24.
[48] N. D’Ippolito, V.A. Braberman, J. Kramer, J. Magee, D. Sykes, S. Uchitel, Hope for the best, prepare for the

worst: multi-tier control for adaptive systems, in: Proceedings of the 36th International Conference on Soft-

ware Engineering, ICSE, 2014, pp. 688–699.
[49] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software Specifi-

cations, Wiley, Hoboken, NJ, 2009.

[50] E.S.K. Yu, Towards modeling and reasoning support for early-phase requirements engineering,

in: Proceedings of the Third IEEE International Symposium on Requirements Engineering, RE, 1997,

pp. 226–235.
[51] A. Pnueli, The temporal logic of programs, in: Proceedings of the 18th Annual Symposium on Foundations of

Computer Science, 1977, pp. 46–57. http://dx.doi.org/10.1109/SFCS.1977.32.
[52] L. Cavallaro, P. Sawyer, D. Sykes, N. Bencomo, V. Issarny, Satisfying requirements for pervasive service

compositions, in: Proceedings of the Seventh Workshop on Models@run.time, 2012, pp. 17–22.
[53] E. Letier, W. Heaven, Requirements modelling by synthesis of deontic input-output automata,

in: Proceedings of the 35th International Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18–26, 2013, 2013, pp. 592–601. http://dl.acm.org/citation.cfm?id¼2486866.

[54] C.B. Haley, R.C. Laney, J.D. Moffett, B. Nuseibeh, Security requirements engineering: a framework for rep-

resentation and analysis, IEEE Trans. Softw. Eng. 34 (1) (2008) 133–153.
[55] E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, TAAS: ACM

Trans. Auton. Adapt. Syst. 8 (4) (2014).

[56] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, B. Nuseibeh, Requirements-driven adaptive security: protect-

ing variable assets at runtime, in: Proceedings of the 20th IEEE International Requirements Engineering Con-

ference, RE, 2012, pp. 111–120.
[57] A. Bennaceur, A.K. Bandara, M. Jackson, W. Liu, L. Montrieux, T.T. Tun, Y. Yu, B. Nuseibeh, Require-

ments-driven mediation for collaborative security, in: Proceedings of the Ninth International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, 2014, pp. 37–42.

322 CHAPTER 12 THE MANY FACETS OF MEDIATION

http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0225
http://dx.doi.org/10.1109/TSE.2014.2364844
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0250
http://dx.doi.org/10.1109/SFCS.1977.32
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0260
http://dl.acm.org/citation.cfm?id=2486866
http://dl.acm.org/citation.cfm?id=2486866
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00012-5/rf0285

CHAPTER

AN OVERVIEW ON QUALITY
EVALUATION OF SELF-ADAPTIVE
SYSTEMS

13
C. Raibulet*, F. Arcelli Fontana*, R. Capilla†, C. Carrillo‡

University of Milano-Bicocca, Milan, Italy* Rey Juan Carlos University, Madrid, Spain† Polytechnic University

of Madrid, Madrid, Spain‡

13.1 INTRODUCTION
As software systems are becoming more complex and configurable, self-properties (i.e., self-adaptive,

self-management, self-healing, self-optimization, self-protection) have attracted the attention of soft-

ware engineers to provide adequate validation and verification mechanisms in order to ensure the qual-

ity of adaptation [1,2]. In this light, the software engineering discipline has established in time several

mechanisms and standards to evaluate the quality of systems from architecture design to implemented

solutions. Qualities and Quality in Use are described by the ISO/IEC 25010/2011 standard1 to provide a

consistent terminology to measure and evaluate software product quality. Software quality can be mea-

sured at various levels and stages of the software development process, from architecture to code, and it

is particularly suited for software-intensive systems. As the evaluation of the quality properties differ in

architecture and code and even when the system is running, various evaluation methods and techniques

may be used. For instance, the software architecture field has proposed and used a number of quality

attribute evaluation methods [3] to evaluate the quality of the architecture in the early stages of the

design process; or, a wide range of metrics have been proposed for a qualitative or quantitative eval-

uation of software.

Nowadays, many modern systems exploit context and ubiquitous properties to adapt their behavior

when context changes. In other cases, systems exhibit self-adaptive capabilities to provide autonomous

behavior where a runtime manager executes adaptation policies and algorithms based on the informa-

tion sensed from the environment. Consequently, stringent quality requirements like performance and

optimization are expected to be implemented in the architecture and software of such systems. From the

perspective of self-adaptive systems that demand a continuous evolution of the adaptation capabilities

and that aim to ensure the quality of the performed runtime reconfiguration tasks, there is a clear need to

monitor and evaluate the quality of the adaptations and modified behavior. Consequently, this dynamic

1Systems and software engineering—Systems and software Quality Requirements and Evaluation (SQuaRE)—System and

software quality models.

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00013-7

Copyright # 2017 Elsevier Inc. All rights reserved.
325

http://dx.doi.org/10.1016/B978-0-12-802855-1.00013-7

evolution of self-adaptations must be supported by an evaluation of the quality of the adaptations and

the success of the runtime changes.

The evaluation and continuous monitoring driving the evolution of self-adaptive systems is difficult

as specific metrics are needed to measure the quality of the adaptations accordingly to the variety of

self-adaptive systems and runtime needs. Moreover, often it is necessary to evaluate at design time the

degree of adaptivity of the self-adaptive system’s architecture and self-adaptive properties. Further, it

seems necessary to count and identify which concrete metrics provide good evaluation indicators that

software engineers may use to test the adequacy of a particular adaptivity mechanism or solution and

also, to avoid mismatch problems between architecture and code. While evaluating adaptivity at design

time concerns more the specific architectural solution that supports adaptation and self-adaptation in a

software system, the evaluation of self-adaptive properties at runtime is closely related to metrics

aimed to provide qualitative and quantitative evaluation of the software.

In this chapter we aim to identify general guidelines for the evaluation of self-adaptive systems

independent of their type, application domain, or implementation details. To achieve this objective,

we propose a taxonomy for the evaluation of the quality of self-adaptive systems based on five dimen-

sions: scope, time, mechanisms, perspective, and type. Further, we identify and describe briefly the

main available evaluation approaches and analyze them based on the proposed taxonomy. We describe

the evaluation approaches in a common and uniform way in order to be able to easily compare them

based on their commonalities and differences. We also discuss several trade-offs concerning each di-

mension in the proposed taxonomy, trade-offs which should be addressed during the evaluation.

The remainder of this chapter is organized as follows. Section 13.2 describes different points of

view to categorize the evaluation of self-adaptive systems and proposes a taxonomy based on five di-

mensions. In Section 13.3, we describe three evaluation approaches which are based on quality attri-

butes, while in Section 13.4, three evaluation approaches which are based on software metrics.

Sections 13.3 and 13.4 end with the analysis of the presented approaches and the related findings.

In Section 13.5, we address various trade-offs in the evaluation of self-adaptive systems based on

the five dimensions of the taxonomy introduced in Section 13.2. Finally, in Section 13.6 we draw

the conclusions and future work.

13.2 EVALUATION OF SELF-ADAPTIVE SYSTEMS
The evaluation approaches for self-adaptive systems proposed so far in the scientific literature may be

analyzed from various points of view. Assuming any self-adaptive system is composed of a managed

system (which implements the system’s functionality) and a managing system (the controller, which

implements the self-adaptive functionality), such as Fig. 13.1 shows, we categorize the evaluation ap-

proaches for self-adaptive systems in the following two main groups based on their scope:

FIG. 13.1

The managed and managing systems in self-adaptive systems.

326 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

1. Evaluation of the managing system: The first group concerns the evaluation of the quality of the

self-adaptive mechanisms (i.e., the managing part or the controller). This group focuses on self-

adaptive mechanisms and on the performance that must be addressed in the early stages of the

development process. In this category, the quality of the design influences significantly the

overall quality and performance of the self-adaptive system.

2. Evaluation of the managed system: The second group pertains to the evaluation of the qualities

of a self-adaptive system (i.e., the managed system), often focused on the performance achieved

through self-adaptivity. It concerns those quality issues that are measured at runtime during the

execution of a system.

Furthermore, the evaluation mechanisms of self-adaptive systems may rely on:

(i) quality attributes, used to evaluate the quality of a system or part of it, with special focus on those

quality properties meaningful for self-adaptive systems (e.g., performance, optimization); and

(ii) software metrics, used to evaluate the quality of the adaptation from a local (e.g., adaptivity of a

service or agent) or global perspective (e.g., time for adaptation, decentralization degree).

While quality attributes are used for the evaluation of the self-adaptive architecture and system in the

early stages of the development process, software metrics provide valuable measures to estimate how

good the system performs the runtime adaptations. Metrics are particularly useful for continuous mon-

itoring and evolution of self-adaptive systems. Therefore, we believe there are two important stages

where adaptivity and the adaptation mechanisms used can and should be evaluated, that is:

(i) at design time during the development of the system when the adaption mechanism is selected; and

(ii) at runtime when the system is in fully operationally mode and the quality of adaptations must be

continuously monitored.

Moreover, we state that the evaluation mechanismsmay interest the entire system (i.e., global scope) or
a subset of it (i.e., local scope), as the objectives of the adaptations may be different in terms of goal

and scope.

Last, the evaluation of self-adaptive systems may have qualitative or quantitative results. Quality
attributes offer usually qualitative information about a system. Software metrics may provide both

qualitative and quantitative feedback about a system.

The criteria discussed in this section are summarized in Fig. 13.2 in a form of an essential taxonomy

for the evaluation of self-adaptive systems. We consider these criteria as key aspects for the evaluation

of any kind of self-adaptive system in any application domain. They help software engineers to identify

the objectives of the evaluation and the mechanisms necessary to perform the evaluation, as well as to

guide the interpretation of the results.

13.2.1 PRESENTATION OF THE AVAILABLE EVALUATION APPROACHES
In this chapter we provide an overview of several approaches for the evaluation of self-adaptive sys-

tems available in the scientific literature. We have grouped them based on the evaluation mechanisms

they use: quality attributes and software metrics. We have chosen this criterion because it matches best

the description of each approach with the presentation provided by its authors and because it enables us

to describe each approach only once. The other four criteria do not allow us to easily divide the

32713.2 EVALUATION OF SELF-ADAPTIVE SYSTEMS

considered approaches in disjoint groups. Further, we describe the approaches belonging to each group

through the main elements of the taxonomy proposed in this section.

13.2.2 SELECTION OF THE AVAILABLE EVALUATION APPROACHES
The selection of the evaluation approaches described in this chapter considers the following premises.

Our objective in this chapter is to offer general, but well defined guidelines for the evaluation of self-

adaptive systems by inspiring us from the available evaluation approaches. Hence, we tried to identify

the available evaluation approaches for self-adaptive systems and to capture their commonalities

and differences. This step is hardly achievable through a systematic mapping or review [4] due to

the keywords which should be searched (e.g., evaluation, adaptivity, quality, metric) and which are

present in many papers and thus provide mostly false positives. As observed also by Brun [5] most

of the studies on self-adaptivity are published in specialized venues on self-adaptivity (e.g., ACM

Transactions on Autonomous and Adaptive Systems, Software Engineering for Adaptive and Self-

Managing Systems) rather than on general software engineering venues (e.g., Transactions on Software

Engineering, International Conference on Software Engineering). Therefore, we have investigated all

the papers published in the specialized venues to identify those dealing with the evaluation of self-

adaptive systems in general independently of the application domain or case study. In this way we have

identified four primary studies: three using quality attributes and one using metrics as evaluation

mechanisms. Further, we have added two journal papers, which have been published in other venues

not focused on adaptivity, but on software engineering in general.

FIG.13.2

A taxonomy for the evaluation of self-adaptive systems.

328 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

13.3 EVALUATION BASED ON QUALITY ATTRIBUTES
This section presents three evaluation approaches based on quality attributes. McCann and Huebscher

[6] focus on the evaluation issues in autonomic computing. Neti andM€uller [7] propose the use of qual-
ity attributes for the evaluation of self-healing systems. Villegas et al. [8] exploit quality attributes for

the evaluation of self-adaptive systems.

Each approach is presented through a brief description which aims to capture the aspects proposed

in Fig. 13.2. Further, the description of each approach is summarized in a table which indicates: what is

evaluated, i.e., the quality attributes considered in the evaluation, the objectives of the evaluation, i.e.,

what is expected from the evaluation, the evaluation perspective, the evaluation time, and the evalu-

ation scope (mentioned in Fig. 13.2). The section ends with the findings concerning the described

approaches where we summarize the case study considered by the authors of each approach to validate

their proposal, the tool support for the evaluation, and the evaluation type (mentioned in Fig. 13.2).

13.3.1 EVALUATION IN AUTONOMIC SYSTEMS
McCann and Huebscher [6] propose nine perspectives (called metrics by the authors) for the evaluation

issues in autonomic computing: quality of service, cost, granularity/flexibility, failure avoidance

(robustness), degree of autonomy, adaptivity, time to adapt and reaction time, sensitivity, and stabili-

zation (see Table 13.1). The objectives of these perspectives are the evaluation of the autonomicity of

software systems by focusing on their performances. This paper provides only hints on how these per-

spectives may be measured and only some metrics examples which may be used to measure these

aspects (see column Metrics in Table 13.1). Further, there are perspectives which cannot be measured

immediately, but statistically in time (e.g., people costs in terms of system administration and main-

tenance). The authors mention that the metrics to be actually applied to a system depend strongly on the

application domain, the adaptation goals, and design choices.

These nine perspectives have been identified after the analysis of various self-adaptive solutions,

which have been divided in three groups: multi-agent based systems, architecture design-based

autonomic systems, and hot swapping components. McCann and Huebscher have tried to identify

the commonalities among the analyzed systems and to provide evaluation basis independent of a

specific solution or application domain. However, McCann and Huebscher do not describe further

the application of the identified perspectives on an actual case study. In Section 13.6, the authors men-

tion that they evaluated Kendra architecture considering some of the quality attributes described in

their paper. The evaluation has been a qualitative one with no concrete quantifiable results. No further

details are presented; hence we cannot consider this evaluation as a well-described case study. Further-

more, no tool support for the evaluation of self-adaptive systems using these perspectives is mentioned.

From Table 13.1, it results that McCann and Huebscher identify meaningful high-level perspectives

for the evaluation of autonomic system. The authors do not mention if these perspectives represent

a minimum or complete list. Further, they fail in providing a set of metrics for the evaluation and

comparison between autonomic systems. Quality of services, granularity/flexibility, and adaptivity

are three perspectives which concern the performances of the managed system. Failure avoidance/

robustness, degree of autonomy, and sensitivity concern the self-adaptive mechanisms implemented

by a system. The remaining three perspectives involve both the managed system and the self-adaptive

mechanisms. Furthermore, all the proposed perspectives are presented by the authors as runtime

32913.3 EVALUATION BASED ON QUALITY ATTRIBUTES

Table 13.1 Quality Evaluation in Autonomic Systems

What Is
Evaluated Objective Metrics

Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Quality of

service

The degree to which the system reaches its goals

(e.g., performance improvement, user

experience improvement)

Data delivery turn-around

time over cost

Global

Local

Runtime Managed

system

Cost The ability to reach a goal

The amount of communication, actions

performed, and cost of actions to perform a goal

Cost per performance

Added functionality

achievable otherwise not

achievable in a

nonautonomic system

Cost of extra hardware for

the controller

Resource consumption

(e.g., battery power in

ubiquitous systems)

Global

Local

Runtime

Design

Managed

system

Managing

system

Granularity/

flexibility

The granularity of autonomicity (fine-grained

vs. coarse-grained components)

Unbinding, loading,

rebinding a component

Global Runtime

Design

Managed

system

Failure

avoidance/

robustness

The ability to cope with failures Predictability of failures

Mean time before failure

Global Runtime Managing

system

Degree of

autonomy

The ability to be autonomous (e.g., including the

ability to learn)

Degree of proactivity Global Runtime Managing

system

Adaptivity The ability to change something (a parameter, a

component) in a system

Time needed to change

something

Local Runtime Managed

system

Time to

adapt/

reaction

time

The reconfiguration and adaptation ability of a

system

Time to adapt is the time needed to adapt to a

change in the environment (between the

identification of a change need and the

adaptation performed)

Reaction time includes the change occurred in

the environment and the time to adapt

Time to adapt/reaction

time

Global Runtime Managed

system

Managing

system

Sensitivity The ability to fit with the environment (the

ability to notice changes in the environment)

Variations in the

environment (e.g.,

bandwidth)

Global Runtime Managing

system

Stabilization The time needed by a system to learn its

environment and stabilize its operations

Time taken for the system

to learn its environment

and stabilize its operations

Global Runtime Managed

system

Managing

system

3
3
0

C
H
A
P
T
E
R
1
3

Q
U
A
L
IT
Y
E
V
A
L
U
A
T
IO
N

O
F
S
E
L
F
-A
D
A
P
T
IV
E
S
Y
S
T
E
M
S

aspects which are measured during the execution of a system. However, several aspects such as cost or

granularity/flexibility may be considered also during the design time (e.g., development cost or number

of fine-grained or coarse-grained elements).

13.3.2 QUALITY-DRIVEN EVALUATION OF SELF-HEALING SYSTEMS
Neti and M€uller [7] propose a subset of traditional quality attributes and a subset of new quality attri-

butes called autonomic-specific quality attributes for self-healing systems focusing on their adaptivity

capabilities over long periods of time. Traditional quality attributes based on ISO 9126 exploited in this

approach concern maintainability (including modifiability and extensibility) and reliability (including

fault-tolerance and robustness). Also availability and survivability are mentioned in the paper, but no

further details are presented. Autonomic-specific quality attributes are: support for detecting anoma-

lous system behavior, support for failure diagnosis, support for simulation of expected and predicted

behavior, support for differencing between expected and actual behavior, and support for testing of

correct behavior (see Table 13.2).

Neti and M€uller use a self-managing Java server as a case study for the validation of their proposal.

In this case study, the authors consider the following quality attributes: modifiability, support for

detecting anomalous system behavior, and support for failure diagnosis. No tool support is mentioned

by the authors for the evaluation of these quality attributes.

From Table 13.2 it results that maybe self-adaptive systems need specific quality attributes for their

evaluation in addition to the quality attributes defined for traditional software systems. Almost all the

quality attributes have a global scope and are exploited to evaluate a system at runtime, during its ex-

ecution. As stated by [6], the quality attributes are balanced and concern both the managing and the

managed systems. Note that no metrics are indicated for the evaluation of self-healing systems by Neti

and M€uller.

13.3.3 QUALITY-DRIVEN EVALUATION OF SELF-ADAPTIVE SYSTEMS
Villegas et al. [8] propose a quality-driven framework for the evaluation of self-adaptive systems. First,

the authors identify a set of analysis dimensions which characterize self-adaptive systems: adaptation

goal, reference inputs, measured outputs, computed control actions, system structure, observable ad-

aptation properties, proposed evaluation, and identified metrics. These dimensions have been used to

analyze several existing self-adaptive systems. Further, the authors propose four quality attributes

which reflect the adaptation goals of self-adaptive systems: performance, dependability, security,

and safety. These quality attributes are associated to the adaptation properties of self-adaptive systems.

An adaptation property indicates a quality (or characteristic) that is particular to an adaptation approach

or mechanism. Adaptation properties for the managing system include: stability, accuracy, settling-

time, small-overshot, robustness, termination, consistence, scalability, and security. Adaptation prop-

erties for the managed system include behavioral/functional invariants and quality of service (i.e.,

performance, dependability, security, and safety). Like in the approach provided by McCann and

Huebscher, Villegas et al. analyze 16 research solutions for self-adaptive systems in order to identify

the quality attributes meaningful for the evaluation of self-adaptive systems. This approach does not

describe the application of the identified quality attributes on an actual case study. Neither does it men-

tion tool support for the evaluation of self-adaptive systems through these perspectives.

33113.3 EVALUATION BASED ON QUALITY ATTRIBUTES

Table 13.3 summarizes the information concerning the evaluation framework. From the description

of the approach it does not result whether the identified quality attributes form a minimum or complete

set of aspects to be considered for the evaluation of self-adaptive systems. Examples of metrics for the

evaluation of the quality attributes are also indicated by the authors. However, they fail in providing a

complete set of metrics for the evaluation and comparison among autonomic systems. All the quality

Table 13.2 Quality Criteria for the Evaluation of Self-Healing Systems

What Is Evaluated Objective Metrics
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Maintainability Defined through

modifiability and

extensibility

N/A Global Design Managed

system

Managing

system

Reliability Defined through fault-

tolerance and

robustness

N/A Global Runtime Managed

system

Support for detecting

anomalous behavior

Depends on

awareness,

observability, and

coupling

The ability to monitor,

recognize, and address

anomalies

N/A Global Runtime Managing

system

Support for failure

diagnosis

Depends on

complexity

The ability to locate

the source of failure,

system degradation or

changes

N/A Global Runtime Managing

system

Support for simulation

of expected or

predicted behavior

Depends on

awareness,

correctness,

completeness,

consistency, and

complexity

The ability to

accurately model the

system and obtain the

expected behavior

N/A Global Runtime Managed

system

Managing

system

Support for

differencing between

expected and actual

behavior

Depends on the

support for simulation

of expected or

predicted behavior

The ability to detect if

the actual behavior

differs from its

expected behavior

N/A Global Runtime Managed

system

Managing

system

Support for testing of

correct behavior

Depends on testability

The ability to test and

verify that autonomic

elements behave

correctly

N/A Local Runtime Managing

system

332 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

attributes are exploited at runtime and concern both the managing and the managed parts of a self-

adaptive system.

Geihs [9] exploits the quality-driven framework proposed by Villegas et al. to evaluate three self-

adaptive systems from different application domains: ubiquitous computing, autonomous mobile ro-

bots, and service-oriented software. He reports that the role of the four proposed quality attributes is not

obvious in the evaluation of self-adaptive systems as the adaptation properties should be directly

mapped on meaningful metrics, and the use of quality attributes may be avoided. He also states that

the framework does not capture the control aspects of the self-adaptive mechanisms (i.e., centralized

vs. decentralized adaptation control), which play an important role in the self-adaptive systems [1].

13.3.4 FINDINGS
From our analysis and observations of the quality attributes evaluation approaches for the three types of

self-adaptive systems we summarize the following findings. The quality attributes in the “What is eval-

uated” column of Tables 13.1–13.3 occur just once. Hence, the sets of the quality attributes proposed in
the three approaches seem to be totally disjoint. This conclusion may be due to several facts. First, the

approaches consider a different granularity of the target systems: autonomic, self-healing, and self-

adaptive. While self-healing is considered a property of autonomic computing, self-adaptivity has a

more general meaning and may be mapped on one or more properties of autonomic computing.

Second, there is little agreement in the scientific literature on what should be evaluated in self-

adaptive systems, and specifically which quality attributes are meaningful for their evaluation. Further-

more, [7] addresses the evaluation of a specific subset of self-adaptive systems (i.e., self-healing

Table 13.3 Quality-Driven Evaluation of Self-Adaptive Systems

What Is
Evaluated Objective Metrics

Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Performance Characterizes the

timeliness of services

delivered by the system

Responsiveness

Latency

Throughput

Capacity

Global Runtime Managed

system

Managing

system

Dependability Defines the level of

reliance on the services

provided by a system

Availability

Reliability

Maintainability

Safety

Confidentiality

Integrity

Global Runtime Managed

system

Managing

system

Security Defines the level of

security of the system

Confidentiality

Integrity

Availability

Global Runtime Managed

system

Managing

system

Safety Defines the level of

reliance of the system

Interaction

complexity

Coupling

strength

Global Runtime Managed

system

Managing

system

33313.3 EVALUATION BASED ON QUALITY ATTRIBUTES

systems), while [8] addresses the evaluation of self-adaptive system in general, but they have nothing in

common (even if they have one author in common). We expected the quality attributes proposed in [7]

(or at least part of them) to be a subset of the quality attributes proposed in [8].

Third, another explanation of this difference among the three approaches may be due to the termi-

nology used for their description. From a deeper analysis it results that quality of service, time to adapt,

and reaction time in Table 13.1 have a similar meaning to performance in Table 13.3. In addition, fail-

ure avoidance/robustness in Table 13.1 may be mapped on autonomic-specific quality attributes

(introduced by Neti and M€uller) in Table 13.2 and on dependability in Table 13.3. Alternatively,

reliability in Table 13.2 may be mapped on dependability and safety in Table 13.3. Hence, common-

alities do exist among the three approaches, even if they have some subtle differences. The works

described in [6,8] are the results of the analysis of various self-adaptive solutions available in various

application domains. Reference [7] has been inspired by the work presented in [10].

From the point of view of the evaluation scope we notice that all the three approaches consider both

the managed and the managing parts of a self-adaptive system. This confirms the hypothesis that in a

self-adaptive system both parts are fundamental to ensure its quality. Further, we observe that the eval-

uation time of most of the quality attribute is runtime, i.e., 19 out of 20 quality attributes in the three

tables are evaluated at runtime, 1 out of 20 at design time, and 2 out of 20 at design time and runtime.

The evaluation perspective ismostly global, i.e., 18 out of 20 quality attributes have a global perspective,

2 out of 20 a local perspective, and 2 out of 20 may have a local and a global perspective. Table 13.4

summarizes three aspects of these evaluation approaches: case studies onwhich each approach has been

applied by the authors, tool support provided by the authors of the approach, and evaluation computation

type on a real example.

We remark that only [8] has been applied on a case study (i.e., a self-managed Java server) by their

authors. However, the authors provide minimal details on how quality attributes have been exploited

and further analyzed and interpreted. As noticed in Section 13.3.1 McCann and Huebscher [6] men-

tioned that they applied the identified quality attributes to the Kendra architecture, without providing

any detail. Hence, we do not consider it as a case study. We also observed none of the approaches has

associated a tool which may hamper the evaluation part.

13.4 EVALUATION BASED ON SOFTWARE METRICS
This section presents three evaluation approaches based on software metrics. Reinecke et al. [11]

propose a methodology for the definition of one metric, which can be exploited at runtime to measure

the benefits of adaptivity. This metric focuses on the behavioral advantages obtained through

Table 13.4 Summary of the Quality Attribute Based Approaches Considering Their Actual

Application

Approach Case Study Tool Support Evaluation Type

McCann and Huebscher [6] N/A N/A N/A

Neti and M€uller [7] A self-managing Java server N/A Qualitative

Villegas et al. [8] N/A N/A N/A

334 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

self-adaptivity. Kaddoum et al. [12] introduce a set of criteria and software metrics for the evaluation

of the self-adaptive systems and their development effort. These metrics focus both on the design and

the execution issues in self-adaptive systems. Perez-Palacin et al. [13] introduce software metrics for

the evaluation of the adaptability at the architectural level at design time.

Each approach is presented through a brief description which aims to capture the aspects proposed

in Fig. 13.2. Further, the description of each approach is summarized in a table which indicates: the

name of the metrics, a brief definition for each metric, the computation formula for each metric,

the possible range of values, and meaningful observations. The last three columns of each table indicate

the evaluation perspective, time, and scope (mentioned in Fig. 13.2).

There are other evaluation approaches based on software metrics in the scientific literature that are

not detailed in this section because they have a narrow scope rather than a general purpose. Among

these approaches we cite: [14], which evaluates the effectiveness of the Rainbow framework for

the development of self-adaptive systems; [15], which identifies the metrics for the performance

evaluation in server applications; [16], which focuses on hypermedia systems; [17], which evaluates

the complexity of the interaction between users and a self-adaptive system; [18], which introduces

three indexes of adaptability at the architectural level. The indexes proposed in [18] are the main

inspiration for the software metrics defined in [13] and described in Section 13.4.3.

13.4.1 EVALUATING THE ADAPTIVITY OF COMPUTING SYSTEMS
Reinecke et al. [11] propose a framework and a methodology for the definition of an adaptivity metric

(see Table 13.5) through which it is possible to compare systems with respect to their adaptivity. The

adaptivity metric is independent of the specifics of the adaptive system, is focused on the behavior of

the adaptive system, and provides a quantitative evaluation of the system’s adaptivity.

The recipe for defining an adaptive metric consists of the following four steps. First, it is required to

identify the system under analysis, its execution environment, and the tasks performed by the adaptive

system useful for its clients. Second, it is required to define one or more performance metrics (M) for

the tasks implemented by the adaptive system. These performance metrics reflect the usefulness of the

adaptive system and they must be measurable by the clients of the adaptive system. Third, it is required

to define a payoff metric (P), which captures the usefulness of the adaptive system in a real-valued

scalar normalized [0, 1] (i.e., 0¼worse case, 1¼optimal case). Last, it is required to execute the system

and compute the payoff metric and the adaptivity metric.

The authors of the adaptivity metric validate the last through a case study concerning a Web Ser-

vices Reliable Messaging system, which provides reliable message transports in Web-Services-based

service-oriented architectures. The authors have implemented a custom test-bed for this case study. The

performance metrics considered in this case study are: the effective transmission time, the unnecessary

resource consumption, and savings. No general-purpose tool is provided for the computation of the

adaptivity metric, due to the fact that the performance metrics may be different from case study to case

study or may be the same for all the case studies which should be compared among them. Note that the

proposed metrics are focused on the managed system. Finally, Reinecke et al. mention (without extend-

ing the idea) that the quality of the self-adaptive mechanisms (i.e., of the controller) may be evaluated

through the Stability, Accuracy, Settling time, and Overshoot (SASO) properties, as sustained also by

Villegas et al. Reinecke et al. [11] compare their solution for adaptivity evaluation with architectural or

qualitative based approaches. Essentially, the authors sustain that the last approaches do not enable a

33513.4 EVALUATION BASED ON SOFTWARE METRICS

Table 13.5 The Adaptivity Metric

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Adaptivity

metric

Measures

how close the

benefit

accumulated

by a system

is to that of

the optimal

system

Ad¼
X

i
Δi+

X
i
Pi

X
i
Pi

where:

Δi denotes the benefit of a
positive decision of the adaptive

system at the ith iteration:

Δi¼ Pi+Pi�1

2
P is a payoff metric computed as

follows during the ith trial:

P :M1�M2�…�Mn ! 0, 1½ �

Ad 2 Q 0, 1½ � The

adaptation

process is

considered as

a sequence of

trials

It is supposed

that the

adaptive

system has

several

iterations in

time during

which it may

take positive,

neutral, or

negative

decisions

(when the

observable

performances

of the

adaptive

systems

decrease)

Global Runtime Managed

system

3
3
6

C
H
A
P
T
E
R
1
3

Q
U
A
L
IT
Y
E
V
A
L
U
A
T
IO
N

O
F
S
E
L
F
-A
D
A
P
T
IV
E
S
Y
S
T
E
M
S

straightforward comparison between self-adaptive systems. In addition, it is difficult to measure archi-

tectural aspects, which are not easily observable in a system, being hidden or spread in the entire

system.

13.4.2 CRITERIA AND METRICS FOR EVALUATING SELF-ADAPTIVE SYSTEMS
Kaddoum et al. propose 31 metrics (see Table 13.6) based on a set of criteria grouped in four categories

(methodological, architectural, intrinsic, runtime) [12]. These metrics and criteria may be used in the

description, design, and evaluation of self-adaptive systems. The authors focus on various aspects of

the design and execution of self-adaptive systems. They sustain that the proposed evaluation metrics

and criteria enable the analysis of the quality of the self-adaptive systems, of the development effort,

and of the advantages obtained through self-adaptivity. Attention is given to performance, as well as to

homeostasis and robustness issues. These metrics and criteria represent a joint evolution of the work

described in [19,20].

The proposed criteria are grouped in four categories: methodological, architectural, intrinsic, and

runtime.Themethodological categoryofmetrics concerns thedevelopment approaches for self-adaptive

systems at a high level of abstraction. The first 3 metrics in Table 13.6 belong to this category. The

architectural related metrics focus on the connection between the managing and the managed systems,

and on the growth of the overall system due to the self-adaptive mechanisms. The next 7 metrics in

Table 13.6 belong to this category. The intrinsic category captures the complexity of the self-adaptive

process. The next 9metrics inTable 13.6 belong to this category.The authors propose 12 runtimemetrics

focusedmainly on the performance aspects and resource usage. For eachmetric inTable 13.6we indicate

in the Definition column its category.

Kaddoum et al. consider that usually self-adaptive systems exploit autonomous entities, called

agents, to implement the managing system. The global self-adaptive behavior emerges from the local

behaviors of the agents and their interactions. Considering agents, the authors capture also the central-

ized and/or distributed control aspects of the managing system. Further, the metrics introduced by

Kaddoum et al. address both endogenous changes, triggered by the entities inside the system, and

exogenous changes, triggered by the entities external to the system.

The authors have identified the evaluation criteria and metrics by analyzing several self-adaptive

approaches available in the scientific literature. Further, they have investigated the applicability and

usability of the proposed metrics on five systems: a web-based client-server and a videoconferencing

system proposed by [21], DAMASCOP [22], an adaptive image server [23], and AHA! [24]. The

authors list the metrics which are meaningful for the evaluation of each of these systems, without ac-

tually computing them. There is no tool made available by the authors to compute the defined metrics.

Kaddoum et al. propose also several hints on how to exploit the proposed criteria and metrics for the

comparison among several self-adaptive solutions. The authors sustain that it is very useful to perform

both a comparison among several self-adaptive systems by considering several criteria and metrics,

as well as a comparison among several self-adaptive systems by considering a single criterion and/

or metric at a time.

For a multi-criteria comparison, Kaddoum et al. advice to choose a subset of the proposed metrics,

compute them for the systems under analysis, and compare the results considering all the dimensions/

objectives/metrics together. To have a complete view of the measured aspects, Kaddoum et al. propose

33713.4 EVALUATION BASED ON SOFTWARE METRICS

Table 13.6 Criteria and Software Metrics for the Evaluation of Self-Adaptive Systems

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Adaptivity Agent

Identification

Index (AAII)

Methodological.

Identifies the

adaptive

functionalities of

a system

N/A N/A Adaptivity is

achieved

through

autonomous

agents, hence

the

identification

of the adaptive

functionalities

is translated

into the

identification

of the

autonomous

agents

Global Design Managed

system

Adaptivity

Distribution

Index (ADI)

Methodological.

Indicates the

distribution of

the adaptive

elements on the

physical nodes of

an adaptive

system

N/A N/A Provides

information on

the additional

effort that must

be done to

deploy an

adaptive

system

Global Design Managed

system

Genericity Index

(GI)

Methodological.

Indicates the

genericity of an

approach for the

development of

an adaptive

system

N/A N/A Indicates the

effort to adapt

an approach to

an actual self-

adaptive case

study

Global Design Managed

system

Separation of

Concerns Index

(SCI)

Architectural.

Indicates the

degree of

dependence

between the

managing and

the managed

systems

SCI¼ Nr of adaptive elements

Nr of functional elem dependent on adaptivity

SCI2Q Informs about

the mean

utilization of

the potential

components

for each

service

Global Design Managed

system

Managing

system

Adaptivity

Pattern Index

(API)

Architectural.

Indicates the

separation of

concerns

between the four

steps of the

MAPE loop at

the architectural

level

API¼Nrof adaptive conceptual elements API2N If API is 0 then

the managing

system is

totally

integrated with

the managed

system

If API is 4 then

the managing

system

implements

the four steps

of MAPE

Global Design Managing

system

Minimum

Adaptivity

Growth (MAG)

Architectural.

Indicates the

minimum

number of

elements needed

to make a system

adaptive

independently of

the number of

functionalities it

provides

MAG¼Minnr of elements for adaptivity MAG2N Expresses the

fixed growth

of the

managing

system at the

architectural

level

Global Design Managing

system

Adaptivity

Growth per

Functionality

(AGF)

Architectural.

Indicates the

number of

elements for the

ith adaptive

functionality

AGF¼Nr of elements for the ith functionality AGF2N Indicates the

variable

growth for

introducing

adaptivity per

functionality at

the

architectural

level

Global Design Managing

system

Overall

Adaptivity

Growth (OAG)

Architectural.

Indicates the

architectural

growth in

number of

elements needed

by adaptivity

OAG¼MAG+
Xn

i¼1

AGFi
OAG2N Global Design Managing

system

Continued

Table 13.6 Criteria and Software Metrics for the Evaluation of Self-Adaptive Systems—cont’d

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Average

Adaptivity

Growth

(AvgAG)

Architectural.

Indicates the

average growth

per functionality

at the

architectural

level due to

adaptivity

AvgAGF¼OAG

n

AvgAGF2Q Global Design Managing

system

Growth of

Architectural

Elements (GAE)

Architectural.

Indicates the

percentage

growth at the

architectural

level due to

adaptivity

GAE¼ OAG

Nrof functional elements
�100

GAE2Q Global Design Managing

system

Domain Factors

Influencing

Adaptivity

(DFIA)

Intrinsic.

Indicates the

number of

domain specific

factors taken in

input by the

managing

system

DFIA ¼ Nr of input domain factors

in the adaptive logic

DFIA2N Higher is this

value, stronger

is the influence

of the

application

domain or

contextual

aspects on the

managing

system

Global Design Managing

system

System Factors

Influencing

Adaptivity

(SFIA)

Intrinsic.

Indicates the

number of

domain specific

factors taken in

input by the

managing

SFIA ¼ Nrof input system factors in

the adaptive logic

SFIA2N Higher is this

value, stronger

is the

dependence

between the

managed and

managing

systems

Global Design Managing

system

Factors

Influencing

Adaptivity (FIA)

Intrinsic.

Indicates the

total number of

factors

influencing

adaptivity

FIA¼DFIA+ SFIA FIA2N Global Design Managing

system

Local

Computational

Complexity

(LCC)

Intrinsic.

Analyzes the

local algorithm

of each agent in

terms of

computational

power

N/A N/A Local Design Managing

system

Decentralization

Degree (DD)

Intrinsic.

Indicates the

deciding step of

the adaptivity

DD¼ Control distribution between agents N/A Indicates how

the decision

process is

distributed

among agents

and how many

agents are

involved in

Global Design Managing

system

Action Locality

Index (ALI)

Intrinsic. Studies

the strategies of

the agents

concerning the

information and

needs

ALI¼Repercussions of local action

on the rest of the system

N/A Global Design Managing

system

Agent Number

Influence (ANI)

Intrinsic.

Indicates how

efficiency

increases or

decreases

depending on the

number of agents

ANI¼Efficiency of the systemwith n agents

Efficiency of the systemwith p agents

ANI2Q p can be higher
or less than n

Global Design Managing

system

Automated

Administration

Tasks (AAT)

Intrinsic.

Indicates the

percentage of the

automated

administration

AAT¼Nrof automated admin tasks

Nr of total admin tasks

AAT2Q Global Design Managing

system

Continued

Table 13.6 Criteria and Software Metrics for the Evaluation of Self-Adaptive Systems—cont’d

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

tasks achieved

through

adaptivity with

respect to the

total number of

administration

tasks required by

the system

Average User

Interaction per

Functionality

(AvgUIF)

Intrinsic.

Indicates the

average number

of interactions

users should

perform to

require a

functionality

AvgUIF¼
Xn

i¼0
Nr of interactions for the ith functionality

n

AvgUIF2Q n is the total

number of

functionalities

offered by the

system

Global Design Managed

system

Latency

(Latency)

Runtime.

Indicates the

variation of the

response time in

the presence of

self-adaptivity

with respect to

no adaptivity

mechanisms

Latency¼
Response time in a self�adaptive situation

Response time in a nominal situation

Latency2Q It may be

computed as:

number of

atomic

operations, the

computing

time, or the

number of

steps needed

by agents to

reach a

solution

Global Runtime Managing

system

Working vs.

Adaptivity Time

(WAT)

Runtime.

Indicates the

time spent for

adaptivity with

respect to the

time spent for

working

WAT¼ Working time

Adaptivity time

WAT2Q If less than 1, a

lot of time is

spent for

adaptivity

Global Runtime Managed

system

Managing

system

Communication

Load (CL)

Runtime.

Indicates the

communication

load among

agents for

adaptivity needs

CL¼
Communication load in self� adaptive situation

Communication load in a nominal situation

CL2Q It can be

measured

through the

amount of

exchanged

messages

among the

agents

Global Runtime Managed

system

Managing

system

Quality of

Response (QoR)

Runtime.

Indicates the

variation of the

quality of

response in the

presence of self-

adaptivity with

respect to the

nominal

conditions for

the same

functionality

QoR¼
Quality of response in a self�adaptive situation

Quality of response in a nominal situation

QoR2Q The quality of

the response

refers to the

functional

adequacy of

the system

Global Runtime Managed

system

Managing

system

Non

Determinism

(ND)

Runtime.

Indicates the

differences

between the

obtained solution

for the same

scenario in

distributed

asynchronous

agent systems

ND ¼Distance between different solutions N/A Provides

information

about the

stability of a

system

Global Runtime Managed

system

Managing

system

Progress

(Progress)

Runtime.

Indicates how

progressively a

complete

solution

exploiting self-

adaptive

properties is

reached

Progress¼ Percentage of a goal reached at each step Progress2Q Measures the

activity in time

of a system

Global Runtime Managed

system

Managing

system

Continued

Table 13.6 Criteria and Software Metrics for the Evaluation of Self-Adaptive Systems—cont’d

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

CPU

Performance

(CPUP)

Runtime.

Indicates the

variation of the

CPU

performances for

when self-

adaptivity is

performed with

respect to the

CPU

performances in

nominal

conditions

CPUP¼
CPUperformance in a self�adaptive situation

CPUperformance in a nominal situation

CPUP2Q Global Runtime Managed

system

Managing

system

Storage

Dimension

Growth (SDG)

Runtime.

Indicates the

physical growth

due to the

presence of the

self-adaptive

mechanisms

N/A N/A Self-

adaptation

mechanisms

include agents

and their link

to the managed

system

Global Design

Runtime

Managing

system

Storage

Dimension of the

Agent (SDA)

Runtime.

Indicates the

physical storage

growth to store

the agents

N/A N/A Global Design

Runtime

Managing

system

Storage

Dimension of the

Connections

between

Adaptive and

Functional Parts

(SDCAF)

Runtime.

Indicates the

physical storage

growth due to the

link and

communication

between the

managing and

managed

systems

N/A N/A Global Design

Runtime

Managed

system

Managing

system

Robustness

Index (RI)

Runtime.

Indicates the

ability of a

system to

maintain a stable

behavior under

perturbations

N/A N/A To measure RI

it may be

observed if the

system

maintains a

functional

adequacy

during

perturbations,

or reaches a

state closed to

a previous one,

or the changes

between the

perturbation

state and the

stable state are

minimal

Global Runtime Managed

system

Managing

system

Time for

Adaptation (TA)

Runtime.

Indicates the

number of steps

needed by the

agents to return

to a nominal

functioning of

the system

TA = Time to return to a nominal

behavior after a perturbation

TA2Q It can be

measured for

each agent or

for the system

as a whole

Global Runtime Managed

system

Managing

system

the use of a radar view, as a meaningful way to analyze the self-adaptive systems. The most suitable

self-adaptive system is the one closest of the center of the radar.

For a single-criterion comparison, Kaddoum et al. introduce several typical archetypal behaviors

and hints on how to interpret them. The authors sustain that each criterion considered separately

may provide valuable information for the comparison of self-adaptive systems.

13.4.3 SOFTWARE ADAPTABILITY AT THE ARCHITECTURAL LEVEL
Perez-Palacin et al. [13] propose a set of five metrics for the evaluation of adaptivity at the architectural

level in component-based systems. The metrics are used by software architects during the design phase

to evaluate the adaptability of a software system. In particular, four of the metrics are focused on

the adaptability characteristics of the services of the architecture and one on the adaptability of the

architecture as a whole (see Table 13.7).

The authors of these metrics provide also a tool called SOLAR (SOftware quaLities and Adaptabil-

ity Relationships) to compute the proposed metrics. Further, they validate the metrics and the tool on a

Web application implementing the enrolment of students for an academic year in university.

13.4.4 FINDINGS
As in the case of quality attributes based evaluation approaches, also from the description of these three

metric-based approaches it results that the proposed sets of metrics are disjoint. However, there may

be established links among the three approaches. For example, for the computation of the adaptivity

metric [11], the performance metrics introduced in [12] may be exploited. Further, the architectural

metrics defined in [13] may be compared to the metrics belonging to the architectural criteria in

[12]. For example, the level of system adaptability (LSA) metric [13] may have as correspondence

the overall adaptivity growth (OAG) metric in [13]. The two sets of architectural metrics may be

merged together into a single one.

The metrics proposed by the three approaches capture various aspects which may be evaluated in

self-adaptive systems:

– Reference [11] focuses on the performances of a self-adaptive system, hence on the behavioral

advantages obtained from the self-adaptivity;

– Reference [12] focuses on the design issues in self-adaptive systems (methodological, architectural,

and intrinsic criteria), as well as on the execution issues (performance criteria); and

– Reference [13] focuses on architectural aspects addressed at design time of self-adaptive systems.

From these various evaluation aspects, we can remark that there are metrics which are meaningful

for the software engineers who are interested both in the design and in the execution of self-adaptive

systems, and there are metrics which are meaningful for the users (i.e., final users of a system or

software engineers who want to integrate a self-adaptive system into another one that they develop)

of self-adaptive systems (i.e., runtime metrics). For example, for a software engineer it is fundamental

to know whether the self-adaptive mechanisms are based on a centralized or decentralized control, and

on a local or distributed solution. These aspects may be ignored by a final user, who may be interested

in the quality of response or in the communication load.

346 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

Table 13.7 Metrics at the Architectural Level

Name Definition Formula Values Observations
Evaluation
Perspective

Evaluation
Time

Evaluation
Scope

Absolute

adaptability

of a service

(AAS)

Measures the number

of different

alternatives in terms

of used components

for providing a given

service

AAS¼ [Cij j AAS2Nn Quantifies how much

adaptable a service is

by counting the

different alternatives

to execute a service,

where the service

adaptability grows

according to the

number of components

able to provide it

Local Design Managed

system

Relative

adaptability

of a service

(RAS)

Measures the number

of used components

that provide a given

service with respect

to the number of

components actually

offering such service

AAS¼ [Cij j
Cij j

RAS2Qn Describes how each

service stresses its

adaptability choices.

Informs how much

more adaptable the

service could be

Local Design Managed

system

Mean of

absolute

adaptability

of services

(MAAS)

Measures the mean

number of used

components per

service

MAAS¼
Xn

i¼1
AASi

n

MAAS2Q Offers insights into the

mean size and effort

needed to manage each

service

Local Design Managed

system

Mean of

relative

adaptability

of services

(MRAS)

Represents the mean

of RAS MRAS¼
Xn

i¼1
RASi

n

MRAS2Q Informs about the

mean utilization of the

potential components

for each service

Local Design Managed

system

Level of

system

adaptability

(LSA)

Measures the number

of components in the

systemwith respect to

the number of

components that the

most adaptable

architecture would

use

LSA¼
Xn

i¼1
AASiXn

i¼1
Cij j

LSA2Q 0, 1½ � A value of 1means that

the system uses all the

components for each

service, hence

adaptability is to the

maximum

Global Design Managed

system

3
4
7

1
3
.4

E
V
A
L
U
A
T
IO
N

B
A
S
E
D
O
N

S
O
F
T
W
A
R
E
M
E
T
R
IC
S

The metrics proposed in [12] have been defined after having analyzed several approaches for

self-adaptive systems and captured what may be meaningful for the evaluation of adaptive systems.

Reference [11] started with the idea of having one metric for the evaluation and comparison of

self-adaptive systems, while [13] explores adaptability and its influence on other quality attributes.

From the point of view of the evaluation scope, we notice that two (i.e., [13] and [11]) out of the

three presented approaches focus on the managed part of a self-adaptive system. Together they define

six metrics for the managed part. We suppose there is a greater interest in measuring the benefits

obtained through self-adaptive mechanisms than measuring the performance of the self-adaptive

mechanisms themselves. The approach presented in [12] proposes 17 metrics for the managing part,

3 metrics for the managed part, and 11 metrics for both parts. Here, the balance goes in favor of the

managing part of a self-adaptive system. Further, we observe that [11] focuses entirely on runtime

evaluation (i.e., 1 metric), while [25] on design time evaluation (i.e., 5 metrics). Totally, in this

section we have presented 24 metrics concerning design time evaluation, 13 metrics concerning

runtime evaluation, and 3 for both design and runtime evaluation. The evaluation perspective is

mainly global, i.e., 32 out of 37 metrics presented in the three approaches have a global perspective

while 5 provide a local perspective.

Table 13.8 summarizes three aspects of these evaluation approaches: case studies on which each

approach has been applied by the authors, tool support provided by the authors for the computation

of metrics, and evaluation computation performed on a real example.

From Table 13.8, we remark that all the presented approaches have been applied to one or more

case studies to outline their applicability and usability. Perez-Palacin et al. propose their tool called

SOLAR for the computation of metrics. Further, the authors provide qualitative results for the eval-

uation of the analyzed case study. Reinecke et al. mention the use of an ad-hoc tool for the compu-

tation of the adaptivity metric. They compute a quantitative evaluation of the analyzed case study.

Kaddoum et al. do not mention any tool support. They indicate which may be the metrics meaningful

for the evaluation of five case studies described in the scientific literature, without actually computing

the metrics.

Table 13.8 Summary of the Metrics based Approaches Considering Their Actual Application/

Applicability

Approach Case Study Tool Support
Evaluation
Type

Reinecke et al. [11] Web services reliable messaging

system

Ad hoc tool, custom test-

bed

Quantitative

Kaddoum et al. [12] Web client-server

Videoconference

DAMASCOPE

Adaptive image server

AHA!

N/A Qualitative

Perez-Palacin et al.

[13]

Web application for university

enrolment

SOLAR Qualitative

348 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

13.5 TRADE-OFFS IN EVALUATION OF SELF-ADAPTIVE SYSTEMS
Maybe the best example to introduce trade-offs is the well-known axiom used in software systems

engineering: Better, cheaper, faster—pick any two! Essentially, it says that only two of these three is-

sues can be achieved contemporaneously. This axiom is cited also by Taylor et al. in [25] adapted as

Functionality-scalability-performance—pick any two! when addressing the deployment challenges,

mentioning that the software architect’s job is to find a solution which minimizes the unhappiness

of the users in exploiting the deployed system. We would further personalize this axiom for self-

adaptive system as following: Adaptivity-performance-cost—pick any two! and reading it as achieving
adaptivity and performance has a cost.

From the previous sections of this chapter, it results that various trade-offs should be addressed in

the evaluation of self-adaptive systems:

– Evaluation of the managing part or of the managed part? A hint on addressing this trade-off is

mainly based on who is interested in the evaluation: software engineers are interested primarily

in the managing part or in both of them, while the final users are interested in the managed part.

Furthermore, a good result of the evaluation of the managing part leads to the expectation of a

good result also for the evaluation of the managed part.

– Evaluation at design time or at runtime? A hint on addressing this trade-off is based on whether

we are interested more the in quality of the design or in the quality of the obtained functionality.

Usually, it is desired that both qualities are addressed. This trade-off is closely related to the first

one on evaluating the self-adaptive mechanisms or the self-adaptive system.

– Quality attributes or software metrics? A hint on addressing this trade-off is similar to the first

one being based on who is interested in the evaluation: software engineers are interested in using

all the available evaluation mechanisms in order to have an as complete as possible evaluation of

a system, while final users are usually focused on part of the system’s features. Another possible

solution to this trade-off is given by Geihs [9] who prefers metrics (see the last paragraph of

Section 13.3.3).

– Local or global evaluation? A hint on addressing this trade-off is based on the objective of the

evaluation and on the mechanisms chosen for the evaluation. There are objectives concerning part

of a system and there are objectives concerning the entire system. Similarly, there are evaluation

mechanisms having a local perspective and there are evaluation mechanisms having a global

perspective.

– Qualitative or quantitative evaluation? A hint on addressing this trade-off is based on the following

hypothesis: if an evaluation is needed in the early stages of the system’s development, a qualitative

evaluation (i.e., exploiting quality attributes) is appropriate; if an evaluation is needed after the

system has been developed or during its execution (i.e., exploiting software metrics), then a qua-

ntitative evaluation should be adopted. Further, when comparing two or more self-adaptive solu-

tions, the objective is to identify the best one; it is of secondary importance to evaluate how much

better is one solution with respect to the others.

– Self-adaptivity or other quality attributes? Perez-Palacin et al. [13] discusses the trade-off between

the adaptability of a system and its availability quality attribute. The result is that “any architecture

that satisfies the availability needs adaptation.” There are quality attributes which go hand-in-hand

with self-adaptivity (as availability [13], robustness and fault tolerance [6], dependability and safety

34913.5 TRADE-OFFS IN EVALUATION OF SELF-ADAPTIVE SYSTEMS

[13]) having compatible objectives. Also there are quality attributes which lead to conflicts with self-

adaptivity (i.e., cost, performance (i.e., time to adapt and reaction time [6], working vs. adaptivity

time, communication load, OAG, quality of response, and computational complexity [12])).

To summarize, self-adaptivity is a complex issue to address. Its evaluation seems even harder. The

evaluation can be done from various points of view and through various mechanisms. Hence, to achieve

a meaningful result from the evaluation it is important to identify which is the objective of the

evaluation and which is the appropriate mechanism through which to achieve this objective.

13.6 CONCLUSIONS AND FURTHER WORK
In this chapter, we have investigated the quality evaluation of self-adaptive systems. We have summa-

rized the available approaches in the evaluation of self-adaptive systems and identified the similarities

and the differences among them in order to extract general, common, and well-defined guidelines for

the evaluation of self-adaptive systems. Therefore, we have proposed several categorization criteria of

the evaluation approaches from various points of view. These criteria should be seen as the main as-

pects which should be considered both during the development and evaluation of self-adaptive systems.

Furthermore, we have described the evaluation approaches in a common and uniformway in order to be

able the analyze them. The results of this analysis may be summarized as follows. Each evaluation

provides meaningful mechanisms for investigating self-adaptive systems. On the other hand none

of them is complete and none manages to capture all the facets and related issues of self-adaptivity.

Hence, further refinement of the available solutions is needed and probably novel evaluation mecha-

nisms specific to self-adaptive issues should be defined.

The presentation of case studies on which the evaluation approaches have been applied by their

authors plays a fundamental role in understanding both the approach, as well as its usefulness. The

same importance is also held by the reports on the application of an approach by other researchers

and their feedback (see [9]).

We must note that even if several papers motivate their approach with the need to compare various

self-adaptive solutions, just [12] considers more than one case study and proposes a radar view and sev-

eral archetypical behaviors (and hints on how to interpret them) for the comparison of self-adaptive sys-

tems. The other approaches which consider a case study have the objective just to apply their approach.

We stress the importance to have a tool support for the evaluation of self-adaptive systems, as well

as the importance to have evaluation mechanisms computable through tool support. A tool support

enables the application and the diffusion of the approach by providing an example on how to compute

an evaluation mechanism and a way to actually compute it and to obtain a result. Furthermore, it would

be easier to compare both the self-adaptive systems and to compare the tools that support the evaluation

of self-adaptive systems. Half of the presented approaches do not have any tool support. In addition

they do not provide an example of how to calculate the evaluation mechanism and hence who wants

to use the proposed evaluation mechanisms may have difficulties to understand them or may not

interpret them properly.

The trade-offs mentioned in Section 13.5 are inspired by the taxonomy presented in Section 13.2.

The main hint which results from the presented trade-offs is that evaluation should consider the

350 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

objective of the evaluation, the perspective of whom performs the evaluation, and the available mech-

anisms which may be used for the evaluation.

The work in this chapter represents a first step in the definition of a taxonomy for the evaluation of

self-adaptive systems as well as in the identification of new and enhanced approaches for the evaluation

of self-adaptive systems. Another taxonomy for self-protecting systems is available in [26]. This

taxonomy considers also the approach quality. The two taxonomies may be merged and may represent

a starting point for a more general taxonomy concerning self-adaptive systems. Further work will also

concern the application of the identified taxonomy to several case studies in various application

domains (e.g., the case studies presented during SEAMS 2015 in the Artifacts session (see website

http://www.disim.univaq.it/seams2015/ or the exemplars available at the “Software Engineering for

Self-Adaptive Systems” website https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars).

Another future work concerns the metrics for the evaluation of self-adaptive systems. Reinecke

et al. [11] reflect that a metric should have at least the following three main characteristics to be

considered a good metric: (1) comparability, i.e., the metric allows the comparison between systems

(including the comparison of the values computed through the metric); (2) intuitive interpretation, i.e.,

the metric provides intuitive notions of the system under analysis (including what does it measure and

how the result can be interpreted); and (3) simple and efficient computation, i.e., the metric should be

computed with little effort, otherwise it will not be used in practice. Based on these assumptions, a

future work will analyze the goodness of the metrics proposed for the evaluation of self-adaptivity.

In Ref. [27], the author mentions that besides quality attributes and software metrics, also patterns,

antipatterns, and architecture and code smells may provide meaningful information on the quality

of self-adaptive systems. Hence, we plan to investigate also the possibility to add other evaluation

mechanisms which are used in software engineering for quality evaluation.

REFERENCES
[1] B.H.C. Cheng, R. de Lemos, P. Inverardi, J. Magee, Software Engineering for Self-Adaptive Systems, LNCS,

Vol. 5525, Springer, Berlin, 2009.

[2] R. de Lemos, H. Giese, H.A.Muller,M. Shaw, in: Software Engineering for Self-Adaptive Systems II, LNCS,

Vol. 7475, Springer, Berlin, 2013.

[3] P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and Case Studies, Addison-

Wesley, Boston, MA, 2002.

[4] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, S.G. Linkman, Systematic literature reviews in

software engineering—a systematic literature review, Inf. Softw. Technol. 51 (1) (2009) 7–15.
[5] Y. Brun, Improving impact of self-adaptation and self-management research through evaluation methodol-

ogy, in: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing

Systems, ACM, New York, 2010, pp. 1–9.
[6] J.A. McCann, M. Huebscher, Evaluation issues in autonomic computing, in: Grid and Cooperative Comput-

ing—GCC 2004 Workshops, 2004, pp. 597–608.
[7] S. Neti, H. M€uller, Quality criteria and analysis framework for self-healing systems, in: ICSE Workshop on

Software Engineering for Adaptive and Self-Management Systems, 2007.

[8] N.M. Villegas, H. M€uller, G. Tamura, L. Duchien, R. Casallas, A framework for evaluating quality-driven

self-adaptive software systems, in: 6th International Symposium on Software Engineering for Adaptive and

Self-Management Systems, 2011, pp. 80–89.

351REFERENCES

http://www.disim.univaq.it/seams2015/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0045

[9] K. Geihs, Self-adaptivity from different application perspectives: requirements, realizations, reflections,

in: R. de Lemos et al., (Eds.), Self-Adaptive Systems, LNCS, Vol. 7475, Springer, Berlin, 2013, pp. 376–392.
[10] M.J. Hawthorne, D.E. Perry, Architectural styles for adaptable self-healing dependable systems,

in: Proceedings of IEEE/ACM International Conference on Software Engineering (ICSE 2005), St. Louis,

Missouri, USA, 2005.

[11] P. Reinecke, K. Wolter, A. Van Moorsel, Evaluating the adaptivity of computing systems, Perform. Eval.

67 (2010) 676–693.
[12] E. Kaddoum, C. Raibulet, J.P. Georg�e, G. Picard, M.P. Gleizes, Criteria for the evaluation of self-* systems,

in: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, 2010, pp. 29–38.
[13] D. Perez-Palacin, R. Mirandola, J. Merseguer, On the relationship between QoS and software adaptability at

the architectural level, J. Syst. Softw. 87 (2014) 1–17.
[14] S.W. Cheng, D. Garlan, B. Schmerl, Evaluating the effectiveness of the rainbow self-adaptive system,

in: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, 2009, pp. 132–141.
[15] Y. Liu, I. Gorton, Implementing adaptive performance management in server applications, in: ICSE

Workshop on Software Engineering for Adaptive and Self-Management Systems, 2007.

[16] H. Sadat, A. Ghorbani, On the evaluation of adaptive web systems, in: Proceedings of the Workshop on

Web-Based Support Systems, 2004, pp. 127–136.
[17] S. Weibelzahl, Evaluation of adaptive systems, in: M. Bauer, P.J. Gmytrasiewicz, & J. Vassileva (Eds.), User

Modeling 2001, Proceedings of the Eighth International Conference, UM2001, Lecture Notes in Artificial

Intelligence LNAI 2109, Springer-Verlag, Berlin, 2001, pp. 292–294.
[18] N. Subramanian, L. Chung, Metrics for adaptability, J. Appl. Technol. Div. (1999) 95–108.
[19] E. Kaddoum, M.P. Gleizes, J.P. George, G. Picard, Characterizing and evaluating problem solving self-*

systems, in: Proceedings of the ADAPTIVE 2009 Conference, IEEE Press, 2009.

[20] C. Raibulet, L. Masciadri, Evaluation of dynamic adaptivity through metrics: an achievable target? in: Joint

IEEE/IFIP Conference on Software Architecture 2009 & European Conference on Software Architecture,

2009, pp. 341–344.
[21] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation

with reusable infrastructure, IEEE Comput. 37 (10) (2004) 46–54.
[22] G. Clair, E. Kaddoum, M.P. Gleizes, G. Picard, Self-regulation in self-organizing multi-agent systems for

adaptive and intelligent manufacturing control, in: IEEE International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), IEEE Computer Society, Venice, Italy, 2008.

[23] I. Gorton, Y. Liu, N. Trivedi, An extensible and lightweight architecture for adaptive server applications,

Softw. Pract. Exp. J. 8 (8) (2008) 853–883.
[24] P. De Bra, A. Aerts, B. Berden, B. de Lange, B. Rousseau, T. Santic, D. Smits, N. Stash, Aha! the adaptive

hypermedia architecture, in: HYPERTEXT ’03: Proceedings of the Fourteenth ACM Conference on

Hypertext and Hypermedia, New York, NY, USA, 2003, pp. 81–84.
[25] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations, Theory, and Practice, John

Wiley & Sons, New York, 2010.

[26] E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACMTrans. Auton.

Adapt. Syst. 8 (4) (2014).

[27] C. Raibulet, Hints on quality evaluation of self-systems, in: 8th IEEE International Conference on

Self-Adaptive and Self-Organizing Systems, London, UK, September 8–12, 2014.

352 CHAPTER 13 QUALITY EVALUATION OF SELF-ADAPTIVE SYSTEMS

http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00013-7/rf0140

CHAPTER

IDENTIFYING AND HANDLING
UNCERTAINTIES IN THE
FEEDBACK CONTROL LOOP

14
R.de Lemos*,†, P. Potena{

University of Kent, United Kingdom* CISUC, University of Coimbra, Portugal†

Fondazione Bruno Kessler, Trento, Italy{

14.1 INTRODUCTION
The key role of the feedback control loop in self-adaptive software systems, like the MAPE-K control

loop [1], is to handle changes and uncertainties related to the target system, its goals, and its environ-

ment. The MAPE-K control loop, in particular, is characterized by multiple stages, which themselves

can equally be a source of different types of uncertainties. Examples of uncertainties that might emerge

at a particular stage: (i) users often find it difficult to accurately express quality preferences [2],

(ii) distinct techniques can be used at a particular stage [3], or (iii) the analytical models used for asses-

sing the system’s quality attributes may simplify, by definition, assumptions that may not hold at

runtime [4].

In view of these examples, there is the need for considering uncertainty as a first-class concept for

improving the quality, or sometimes, even the correctness of adaptation decisions [4–6].
There have been several contributions in the literature typically focused on identifying and handling

uncertainties in self-adaptive software systems. Examples of these contributions are related to: (i) show

how uncertainty may impact the system’s ability to satisfy its objectives [7], (ii) show how uncertainty

may affect the definition and evaluation of software models [8, 9], (iii) specify the behavior of

dynamically adaptive systems [10], (iv) express the uncertainty associated with the satisfaction of

non-functional requirements given a set of design decisions [11], or (v) support the development and

execution of self-adaptive software that handles uncertainty, while satisfying certain non-functional

requirements (e.g., response time and the faulty behavior) [12]. Therefore, the identification and han-

dling of uncertainties have been recognized as key factors for enabling systems to make accurate

trade-off analysis related to both functional and non-functional requirements.

Although several approaches for identifying and handling uncertainties have been introduced in the

last few years, they typically address uncertainties at the Plan stage of the MAPE-K control loop [7]

without: (i) considering the different stages of a feedback control loop as a source of uncertainty that

could be characterized as non-negligible, or (ii) providing support for collectively handle uncertainties

related to the whole feedback control loop, which might be influenced by the dependencies between the

stages.

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00014-9

Copyright # 2017 Elsevier Inc. All rights reserved.
353

http://dx.doi.org/10.1016/B978-0-12-802855-1.00014-9

The line taken in this chapter is that there is a need to identify and handle uncertainties locally at the

different stages of the feedback control loop. This is essential because at any given stage there are un-

certainties related to, for example, goals and inputs to the stage, techniques being used, and assump-

tions being made. There are several reasons for motivating this approach: (i) if uncertainty is not

explicitly captured at a given stage, it might cease to exist or transformed when data is transferred be-

tween the stages of the control loop, (ii) if uncertainty is not considered locally at a given stage, the

context for that uncertainty might be lost at the loop level, and (iii) if uncertainty is not identified and

handled separately at the different stages of the control loop, there is the potential for the curse of di-

mensionality because of the high number of dimensions that need to be considered (i.e., the goal in

decision making is to have fewer dimensions so smaller is the hypothesis space, which allows to obtain

faster and more effective decision makers). However, the identification and handling of uncertainty

cannot be done in isolation just at the stage level. There are dependencies between the stages of the

MAPE-K control loop that need to be taken into account. Hence the motivation for defining an ap-

proach in which uncertainty and its propagation are considered in the context of the whole feedback

control loop.

As a contribution, this chapter presents an approach that promotes (i) the identification and handling

of uncertainty at the different stages of the feedback control loop, and (ii) the analysis of uncertainty

propagation between the stages of the loop. The ultimate goal of the proposed approach is to obtain

more accurate estimations for the system quality attributes, which are fundamental for the process

of decision making. Trade-offs are the core of decision making when evaluating multiple alternatives

for selecting one that best fulfils the goals of a stakeholder. In software development, the analysis of

trade-offs, between the quality attributes describing different alternatives, has been essentially a

development-time activity. However, with the event of self-adaptive software systems there has been

a shift towards trade-off analysis at runtime in which decisions are made without any human interfer-

ence. This cannot be achieved by just using ever more sophisticated techniques since important aspects

regarding uncertainty propagation in the feedback control loop may not be captured, hence the contri-

bution of this position chapter.

The rest of the chapter is organized as follows. In Section 14.2, we motivate the need for identifying

and handling uncertainty in a coherent way along all the stages of the feedback control loop.

Section 14.3 provides a brief overview of the methodology for identifying and handling uncertainty

in the MAPE-K control loop. Section 14.4, using a case study of a smartphone application, we identify

sources of uncertainty associated with the different stages of the feedback control loop. Related work is

described in Section 14.5. Finally, Section 14.6 presents the conclusions, and provides indicative future

work in the form of challenges.

14.2 MOTIVATION
This section motivates the need to consider the identification and handling of uncertainties in a staged

way, rather than in a single stage, because depending on the feedback loop, its stages might be complex

enough that would justify decisions to be made incrementally.

First, we present the stages of the feedback loop in which uncertainty should be identified and

handled, next, we introduce some basic concepts regarding uncertainty, and finally, we provide some

examples regarding the propagation of uncertainty in a feedback loop.

354 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

14.2.1 FEEDBACK LOOP
In this chapter, we adopt as a feedback control loop, the MAPE-K control loop [1], as shown in

Fig. 14.1. In this diagram, the main feedback control loop, which embodies the stages of the

MAPE-K loop, observes (via probes) and adapts (via effectors) a target system. TheMonitor stage en-
ables to obtain the state of the target system and its environment. The Analyze stage analyzes the state of
the target system and its environment in order, first, to decide whether adaptation should be triggered

(Solution Domain), and second, to identify the appropriate courses of action in case adaptation is re-

quired (Problem Domain). The Plan stage, first, selects amongst alternative courses of action those that

are the most appropriate (Decision Maker), and second, generates the plans that will realize the selected
course of action (Plan Synthesis). The Execute stage executes the plans that deploy the course of action
for adapting the system. Finally,Knowledge represents any information related to the perceived state of

the target system and environment that enables the provision of self-adaptation. Overall, the MAPE-K

loop is appealing due to its simplicity and extendable nature.

In the MAPE-K loop, depending on the diversity of the activities performed at each of the stages,

several specific control loops (to be referred as meta-loops) can be attached to each of the stages of the
MAPE-K loop, as shown in Fig. 14.1. This allows to enforce separation of concerns depending on what

System

Target system

Environment

Controller

Monitor Execute

Analyse
(problem
domain)

Analyse
(solution
domain)

Plan
(decision

maker)

Plan
(plan

synthesis)

Knowedge
(models)

Resilience evaluation
Integration self-test

Regression self-test

Dynamic decision net.
Nash equilibrium

Utility function
Threat detection

Reliability estimation
Self-diagnosis

Model checking
AI planner

Full monitoring
Dynamic monitoring

Pro-active monitoring

Script engine
Rules engine

Dynamic workflow gen.

Workflow man. system

FIG. 14.1

Modified version of the MAPE-K control loop for autonomic computing.

Modified from J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.

35514.2 MOTIVATION

and how should be achieved for a particular stage. For example, for the Monitor stage, different mon-

itoring techniques, like active and proactive, can be used in the different parts of the target system, and

each of these might need to be independently self-managed. The same applies to the Analyze (Solution

Domain) stage in which specific feedback loops can be associated with the different types of tests, like

integration or regression testing, that need to be performed on a particular architectural configuration.

In parallel with testing, one could also envisage another feedback loop in which probabilistic model

checking is used to analyze whether an architectural configuration is able to satisfy the system prop-

erties. The individual outcomes of these meta-loops would be fed into the respective stage of the main

MAPE-K loop, and the collective outcome from the meta-loops could be used as evidence for support-

ing the decisions associated with a given stage.

As an example of a meta-loop, we could associate with the Analyze (Problem Domain) stage a

meta-loop responsible for self-diagnosis [13]. Diagnosis is responsible for the localization of faults,

which is usually linked to the decision of whether to trigger adaptation. Although diagnosis is usually

associated with the Monitor and Analyze stages of the main feedback control loop, its management

for the sake of autonomy could be allocated to a meta-loop. In terms of a new meta-loop for self-

diagnosis, the Monitor stage would collect data related to architectural configuration, and the opera-

tional state of the architectural elements. The Analyze (Problem Domain) stage would localize the

faulty components, forward this information to the main feedback control loop, and evaluate whether

the confidence levels, or accuracy [14], are within acceptable threshold. In case the confidence level

is below an acceptable threshold, adaptation of self-diagnosis should be triggered. The identification

of alternative diagnosis techniques and/or the level and type of monitoring should be the responsibility

of Analyze (Solution Domain) stage. The Plan (Decision Maker) stage would select the best config-

uration regarding techniques and monitoring probes to be deployed, and Plan (Plan Synthesis) stage

would generate the plan for deploying a new diagnosis. Finally, when processing the plan, the Execute

stage of the meta-loop would notify the Monitor stage of the main loop about the new monitoring

settings.

14.2.2 UNCERTAINTY
Uncertainty means different things for the different fields of scientific research. In this chapter, we

define uncertainty as “any deviation from the unachievable ideal of completely deterministic knowl-
edge of the relevant system” [15]. Uncertainty usually takes two views [7, 9]. First, aleatory, or sto-
chastic uncertainty, which is associated with the natural variability of physical processes. Second,

epistemic, or state-of-knowledge uncertainty, which is associated with the uncertainties in knowledge

of these processes. A feedback control loop is basically designed to reduce the effects of uncertainty

[16]. These can be related to either imperfections in the models and techniques being used, or distur-

bances and noise associated with the variables of those models and techniques, which are examples of

epistemic and aleatory uncertainty, respectively.

The sources of uncertainty, associated with a stage of the MAPE-K loop can either be internal or

external to the stage. Internal sources are associated with the lack or insufficiency of information, and

they are related to internal factors that the stage might exert partial control. Internal sources are asso-

ciated with epistemic type of uncertainties. External sources arise from the environment of a particular

stage, and they are related to external factors that the stage has no control. External sources are asso-

ciated with both epistemic and aleatory type of uncertainties.

356 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

Sources of uncertainty might impact the stages of a feedback control loop either explicitly or im-

plicitly. Explicit impact of uncertainty occurs when the uncertainty source is clearly expressed or ob-

servable. Implicit impact of uncertainty occurs when the uncertainty source is implied though not

directly expressed, it might be inherent in the nature of the interactions amongst the stages of the

control loop.

The flow of the impact that uncertainty sources might have on a stage of a feedback control loop can

either be downstream or upstream. The downstream flow of the impact follows the usual direction in the

processing of theMAPE-K loop stages: initial stages of the feedback loop might affect later stages. The

upstream flow of the impact follows the counter-direction in the processing of the MAPE-K loop

stages: later stages of the feedback loop might affect initial stages.

14.2.3 UNCERTAINTY PROPAGATION IN THE MAPE-K LOOP
In order to demonstrate the impact of the uncertainty propagation in the MAPE-K loop, we present in

the following, based on the diagram of Fig. 14.2, some illustrative cases.

Internal uncertainties, associated with a particular stage of the MAPE-K feedback control loop, can

be propagated to the other stages of the loop. These uncertainties are usually of epistemic nature, and

are related to types of techniques used and the parameters of those techniques. In the context of this

chapter, the focus is the Analyze (Problem Domain) stage whose outcome is related to the decision of

whether to adapt or not.

Regarding the propagation of external uncertainties, there are several variants amongst the stages of

the MAPE-K loop, for example: explicit and implicit upstream propagation, and explicit downstream

propagation. The downstreampropagation of uncertainties follows the normal flowof theMAPE-K loop

stages. As an example, depending how uncertainties are handled at the Monitor stage, these may prop-

agate to theAnalyze (ProblemDomain) and affect decisions to bemade at this stage. The key distinction

between explicit and implicit upstream propagation is the fact that in implicit propagation, techniques

associated with a particular stage might not be aware of changes elsewhere that may affect their

Monitor Execute
Analyze

(problem
domain)

Analyze
(solution
domain)

Plan
(decision

maker)

Plan
(plan

synthesis)

Target system

Feedback control loop flow

External/implicit/upstream
External/explicit/downstream

External/explicit/upstream
Key:

External/explicit/upstream

FIG. 14.2

Examples of uncertainty propagation in the MAPE-K loop.

35714.2 MOTIVATION

processing. An example for this case is shown in Fig. 14.2 in which the Plan might change the con-

figuration of the target system in such a way that indirectly affects Analyze (Problem Domain). For in-

stance, the new configuration may contain a software component from which less monitoring data is

available. Concerning the explicit propagation, there is a direct relation between the changes that occur

elsewhere in the MAPE-K loop and the uncertainties associated with a particular stage. For example, in

the diagram of Fig. 14.2, the deployment of a plan might imply changes in the monitoring settings for a

particular configuration,which thenmight affect the uncertainties related toAnalyze (ProblemDomain).

Similarly, the Plan stagemay not be able to identify a configuration that can be deployed considering the

goals of the system, andwhat it does is to change those goals. For instance, the threshold associated with

the trigger of adaptation might need to be lowered if a deployment cannot be found.

Uncertainties associated with the different stages of a feedback control loop need to be handled in

order to optimize the quality of the services delivered by the system. In terms of the MAPE-K loop,

uncertainties that are associated with its different stages are predominately handled at the Plan stage by

the decision maker. However, regarding the MAPE-K loops with more complex configurations [17],

such as the one presented above, the uncertainty associated with a given stage needs to be identified and

handled at that stage of the feedback loop. The current perspective on software engineering for self-

adaptive systems lacks this notion of staged decisions as a manner in which the feedback control loop

handles uncertainty. Hence, the challenge being put forward in this chapter is the identification and

handling of uncertainty as a function of the stages of the feedback control loop.

In summary, the motivation for dealing with uncertainty in a staged way in the MAPE-K loop is its

similarity compared with error propagation in software architectures. Although individual components

may work correctly, when these are placed in an architectural configuration, components may fail due

to dependencies and relationships with the other components of the configuration [18]. The claim being

made regarding uncertainties in a feedback control loop is that, although uncertainty needs to be iden-

tified and handled at each stage of the control loop, there is also the need to deal with uncertainty in a

collective way because of the explicit and implicit dependencies between the different stages of the

control loop.

14.3 METHODOLOGY
Uncertainty is embedded in every facet of adaptation, and the goal of this work is to show how to iden-

tify and handle uncertainties in order to mitigate the impact of its propagation in a feedback control

loop, like the MAPE-K loop. First we need to identify, in the context of a particular stage of the

MAPE-K loop, the sources of uncertainty that may affect the stage. Then, according to the uncertainties

and the needs of the stage, techniques need to be identified for handling uncertainty. Even if uncertainty

is handled in a staged way, we need to consider the propagation of uncertainty. In the context of a feed-

back control loop, uncertainty propagation refers to the way in which the uncertainty associated with

other stages of the feedback loop might impact the uncertainty of a given stage. The proposition being

made in this chapter is to use error propagation techniques as an inspiration for analyzing uncertainty

propagation in the MAPE-K loop.1

1Although uncertainty propagation and error propagation are used interchangeably in the scientific literature, the interpre-

tation taken in this chapter for error propagation is that from fault tolerance [19].

358 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

14.3.1 IDENTIFYING SOURCES OF UNCERTAINTY
In order to identify the potential sources of uncertainty in the MAPE-K loop, we have used Structured

Analysis for Requirements Definition (SADT) [20] for describing the stages of the MAPE-K loop in

terms of their properties: input and output data, control data, and mechanisms. Based on these prop-

erties, the identification of uncertainties aims to localize the sources of uncertainty affecting a given

stage, which can either be internal or external. Internal sources of uncertainty are associated with those

properties that the stage has some control, like mechanisms. Examples of mechanisms are the tech-

niques being used by a stage. On the other hand, external sources are associated with those properties

that the stage has no control, such as, input and control data. The control data, for example, may refer to

goals (refinement/transformation of the goals associated with the system), constraints and assumptions

associated with the stage. Finally, the handling of uncertainties aims to manipulate those properties that

can be controlled by the stage. Decision making is one of the tools to handle uncertainty in which the

sources of uncertainty are transformed by the decisions (i.e., the consequence of decisions may either

be propagated or uncertainty mitigated).

For exemplifying how uncertainties can be identified and handled at a given stage of the MAPE-K

loop, in the following, we refer once again to the self-diagnosis meta-loop previously described, and in

particular, to the Analyze (Problem Domain) stage of that meta-loop. As input data, we identify the

monitoring data related to the architectural configuration of the target system, such as, the operational

state of its architectural elements, and the environment of the target system. For control data, there is

the expected quality (confidence levels/accuracy) of the diagnosis, and constraints related to time and

resources. As mechanisms, we identify the technique(s) that can be used to perform diagnosis. Finally,

for output data, we expect to obtain a list of potential faulty components with confidence levels.

Regarding the identification of uncertainties, for instances, external sources are associated with the

quality of the monitoring data, which might be associated with missing data, or not enough data, or

erroneous data, etc. On the other hand, internal sources are associated with the parameters of the

diagnosis algorithm being used, or the algorithm being employed.

14.3.2 HANDLING UNCERTAINTY
Concerning the handling of uncertainties, and taking as an example self-diagnosis, uncertainties could

be mitigated by: changing the algorithm being used in case assumptions cease to hold, changing

the parameters of the algorithm, or employing Monte Carlo simulations to the external sources of

uncertainty. In the context of the self-diagnosis meta-loop example, another measure for handling un-

certainty would be for the self-diagnosis to request the Monitor stage of the main loop to change its

monitoring settings, in order for the self-diagnosis to receive more detailed information about the state

of the target system. Another technique for handling uncertainties is that of decision making in which

uncertainties are transformed. As already mentioned, the basis of decision making regarding software

systems at the architectural level is the trade-off analysis of alternative architectural configurations in

terms of their quality attributes—the decision takes place usually at the Plan stage of the MAPE-K

control loop. In this case, the inputs to the decision making are the quality attributes, and their confi-

dence levels, associated with the alternative architectural configurations, including the operational sta-

tus of their components and connectors. Uncertainties associated with the quality attributes might lead

to the decisions that might undermine the proper operation of the system. For example, if self-diagnosis

35914.3 METHODOLOGY

identifies the wrong faulty component with a false degree of confidence, this might not trigger adap-

tation that would reconfigure the system in order to fix the fault localized by the self-diagnosis.

14.3.3 ANALYZING PROPAGATION OF UNCERTAINTY
Associated with each of the stages of MAPE-K loop, there are propagated uncertainties that need to be

handled in order to optimize the quality of the services delivered by the system. Uncertainty propa-
gation refers to the effects that property uncertainties of other stages might have upon the properties

of a given stage. A method for analyzing uncertainty propagation between the stages of a feedback

control loop that can be exploited is that of analysis of error propagation 2 between software compo-

nents [21], which has been proven to be influential for the estimation of system reliability. The same

rationale can be applied to uncertainty propagation through the stages of the MAPE-K loop: external

sources of uncertainty can affect the processing of a given stage to the point that the outcome of the

stage might reflect how uncertainty is handled at that stage. More specifically, error propagation prob-

ability [21] from componentCompA to componentCompB, that are tied through the connectorConnX, is
defined by the function Prob([CompB](x)6¼[CompB](x

0)jx6¼x0), where [CompB] denotes the function of
component CompB, and x is an element of the connector ConnX from CompA to CompB. This property
expresses the probability that a component may propagate an erroneous message (uncertainty) when it

receives as input an erroneous message (uncertainty).

Similarly, if we consider the stages of a feedback control loop to be like software components (and,

thus, their associated decision making process like the function of a component), the uncertainty

propagation probability from stage StageA to stage StageB may also be rooted on the function Prob
([StageB](x) 6¼[StageB](x

0)jx 6¼x0), where x is an uncertainty source of input data received from stage

StageA to stage StageB. In other words, this function may be used for expressing the ability of the stage

StageB to mitigate uncertainty received form StageA; therefore, it may give an assessment of the robust-

ness of the decisions made by StageB with regard to the uncertainty propagated from the stage StageA.
In fact, the propagation of uncertainty in a feedback control loop refers to the way in which the uncer-

tainty associated with other stages of the feedback loop might impact the uncertainty of a given stage.

In this chapter, the propagation of uncertainty is described in the context of the stages of the

MAPE-K control loop, however uncertainties associated with properties of the target system and its

environment should also be taken into account depending on what theMonitor is able to observe. These

sources of uncertainty should also have an impact on the runtime trade-offs analysis of the decision

making not only in terms of the values of the quality attributes, but also on how the trade-off analysis

is performed. For example, depending on the level of uncertainty associated with an environmental

property, a different technique for trade-off analysis might need to be deployed.

14.4 CASE STUDY: IDENTIFICATION OF UNCERTAINTIES
In this section, we demonstrate the process of identifying sources of uncertainty in theMAPE-K loop in

the context of a case study.

2Error propagation in fault tolerance refers to the successive process of transforming an error into other errors in a given

component or between components, until they are either mitigated or possibly affecting the system output [19].

360 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

14.4.1 SMARTPHONE APPLICATION
In the following, we describe an example (inspired by [22]) that we devised for illustrating how accu-

rate analysis of uncertainty propagation may influence the estimation of system reliability. In this ex-

ample, a smartphone user requires the latest news from a service provider (here called Multimedia

Service). The news includes text and topical videos available in MPEG2 format. Fig. 14.3A illustrates

the software architecture of the system, essentially describing dependencies between components of

the system.

It is a client/server system, where the Client is connected via wireless network to the Multimedia

Service. The Transcoding component adapts the video content for the smartphone format. The Com-

pression component adapts the news content to the wireless link. The Merging component integrates

the text with the video stream for the limited smartphone display. The Locations Database and the

Translation components, are used, respectively, for (i) collecting information about the localization

of the cells used for user location, and (ii) adapting the text of the smartphone format for showing

a user location map.

We consider three services that the system is able to provide. The first service, S1, provides news in
textual format, the second one, S2, provides news with both textual and video content, and the third

service, S3, provides a user location map. Fig. 14.3B schematically depicts the hardware architecture

of the deployment platform.

14.4.2 IDENTIFYING SOURCES OF UNCERTAINTY
For the purpose of the exercise, the goal of the feedback control loop is to control the architectural

configuration of the software, and its deployment, in order to maintain the system reliability above

a certain threshold (e.g., R � 0.99). In the following, for each of the stages of the MAPE-K loop,

we identify the properties associated with each of the stages, and from these properties, we identify

potential sources of uncertainty that may affect the stage.

Monitor stage
This stage monitors the system software architecture, and its deployment on hardware nodes.

Compression—C7

Transcoding—C4

Translation—C5

Multimedia service—C2 Merging—C6Client—C1

Locations
database—C3

Node 3

(B)(A)

Node 1

Link 1

Link 2

Link 3

Link 4

Node 2

FIG. 14.3

Smartphone application example. (A) Software architecture. (B) Hardware architecture.

36114.4 CASE STUDY: IDENTIFICATION OF UNCERTAINTIES

Properties
As input data, probes will monitor the operational state of the software components, the hardware nodes

and their links, and collect information regarding component invocations. For control data, there is the

expected quality (confidence levels/accuracy) of the monitoring data, and constraints related to time

and resources. As mechanisms, we identify the technique(s) that can be used to monitoring (e.g., dy-

namic or static). Finally, as output data, monitoring data (e.g., software component invocations) is

obtained from probes or gauges to be used by the other stages of the MAPE-K loop.

Sources of uncertainty
One possible external source of uncertainty is associated with the data coming from the probes, whose

quality depends on the quality of the probes. Another possible source is associated with the monitoring

settings, these can be changed during runtime, which might affect the selection of probes to be used.

Internal sources of uncertainty are related to the techniques employed for managing the monitoring

(e.g., static, dynamic, or proactive).

Analyze (Problem Domain) stage
This stage estimates the reliability of the deployed software architecture to decide whether adaptation

should be triggered.

Properties
As input data, we identify the monitoring data related to the architectural configuration of the target

system (e.g., the operational state of its architectural elements), and the environment of the system (e.g.,

operational state of the hardware nodes). The control data is related to the reliability estimation thresh-

old (e.g., R � 0.99) that if violated should trigger adaptation. The mechanisms are related to the tech-

nique(s) that can be used to estimate reliability. The output data is the trigger that starts adaptation, and

to which a confidence level is associated.

Sources of uncertainty
External sources of uncertainty are associated with the quality of the monitoring data (e.g., missing

data, not enough data, erroneous data, etc.). On the other hand, internal sources of uncertainty are

associated with the differences in the technique being used to estimate reliability, and the inaccuracies

(e.g., due to simplifying assumptions) that may affect the parameters of those techniques.

Analyze (Solution Domain) stage
This stage identifies a set of alternative system configurations that are able to satisfied the specified

reliability constraint. These system configurations consist of alternative software architecture config-

urations and their deployment into hardware nodes.

Properties
The input data comprises a set of available architectural elements and hardware nodes, monitoring data

related to the architectural configuration of the target system, and monitoring data related to the en-

vironment of the system. The control data specifies the expected quality (confidence levels/accuracy)

of the reliability estimation. The mechanisms are related to the technique(s) that can be used to estimate

362 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

reliability. Finally, the output data will consist of a list of alternative system configurations, with their

respective reliability estimations and confidence levels.

Sources of uncertainty
External sources of uncertainty are associated with the quality of the monitoring data (e.g., missing

data, not enough data, erroneous data, etc.), and model drift (i.e., accuracy of the models representing

the system configuration). Internal sources of uncertainty, similar to the previous case, are associated

with the different techniques being used to estimate reliability, and the inaccuracies (e.g., due to

simplifying assumptions) that may affect the parameters of those techniques.

Synthesis (Decision Maker) stage
This stage selects the best system configuration depending on the reliability estimation and confidence

levels associatedwith eachof the configurations, plus anyother criteria (e.g., cost or other non-functional

requirement) that might influence the selection.

Properties
The input data consists of a list of alternative systemconfigurationswith their respective attributes for the

decision making, including their estimated reliability with confidence levels, and any other data related

to the target system or the environment that might affect the decision making. The control data are the

criteria for selecting the best system configuration, which are related to the system non-functional

requirements. The mechanisms are related to the technique(s) that can be used for decision making.

Finally, the output data will consist of a single system configuration that will be deployed.

Sources of uncertainty
External sources of uncertainty are associated with the quality of the monitoring data related to the

attributes that would be used in the decision making. Internal sources of uncertainty are associated with

the differences in the technique being used for decisionmaking, and the inaccuracies that may affect the

parameters of those techniques.

Synthesis (Plan Synthesis) stage
This stage generates the plan that will manage the deployment of the selected system configuration.

Properties
The input data comprises the selected system configuration that will be deployed, the operational data

regarding availability of software components and hardware nodes, and the actual availability of re-

sources. The control data is related to the system and component constraints that need to be enforced

while deploying the system, which might involve its reconfiguration. The mechanisms are techniques

to be used in the generation of the plans, and different techniques might generate different plans. The

output data is a plan responsible for deploying the selected system configuration.

Sources of uncertainty
The operational data regarding availability of software components and hardware nodes are the main

external sources of uncertainty. Internal sources of uncertainty are associated with the different tech-

niques employed for generating the plans, and how those techniques are parameterized.

36314.4 CASE STUDY: IDENTIFICATION OF UNCERTAINTIES

Execute
This stage is essentially responsible for executing the plan in order to deploy the new system

configuration.

Properties
As input data, this stage receives the plan that would manage the deployment of the system configu-

ration, i.e., reconfigure the software architecture and deployment of architectural elements into the

hardware nodes. The control data is related to system constraints regarding time for deployment.

The mechanisms are associated with the engines responsible for the execution of the plans, such as,

workflow management systems. The output data are the commands sent to the effectors for modifying

the configuration of the target system.

Sources of uncertainty
The external sources of uncertainty are associated, for example, with the ability of the effectors in car-

rying out the modifications, and whether software components and hardware nodes remain available

during reconfiguration.

14.5 RELATED WORK
It has been claimed that the identification of uncertainty sources is fundamental for obtaining correct

adaptation decisions, and trustworthy assessment of the quality of the deployed software [4]. It has been

recognized the importance of control theory principles to reason effectively about uncertainty of self-

adaptive systems [6]. It has also been recognized that uncertainty can only be controlled by making it

explicit [5], and by considering it as a first-class concept. However, in practice, the staged handling of

uncertainty is usually implicit, such as, in the self-optimization to reduce energy consumption

(e.g., [23]), and in performance-tuning and resource-provisioning scenarios (e.g., [24]).

A quite extensive list of uncertainty sources has been identified for self-adaptive systems (see, e.g.,

[7–9]). Since not all sources of uncertainty have similar characteristics, this requires the usage of

the different techniques for identifying and handling uncertainties [7]. There are several approaches

that cater for both types of uncertainty (i.e., classical distinction between epistemic and aleatory

uncertainty) [9, 25, 26], as there are approaches that are able to handle specific sources of uncertainty

(i.e., problem-state identification, the strategy selection, and strategy success or failure [4]).

Handling uncertainty in the feedback control loop also requires coordination since the loop itself

might be also a source of uncertainty [7]. Moreover, this coordination might not be restricted to the

typical four stages of the MAPE-K loop since simple MAPE-K loops may not be appropriate to deal

with more complex adaptations [27], where MAPE-K loops can incorporate different kinds of coor-

dination [28]. Other approaches for handling uncertainty, instead of focusing on the stages of the

MAPE-K loop, have proposed runtime modeling techniques for updating the knowledge data of a con-

trol loop, together with an error handling loop on the top of the main loop [8].

There are several contributions in the context of self-adaptive software systems on decision making

under uncertainty. Bayesian decision theory has been proposed for capturing the uncertainty associated

with the satisfaction of non-functional requirements (NFRs) given a set of design alternatives [11].

Moreover, the exploration of early architectural decisions is also supported by using fuzzy

364 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

mathematical methods [29], Monte Carlo simulation [30], and game theoretic approaches [31]. Regard-

ing the latter contribution, the outcome of handling uncertainties in a staged way could be fed into a

decision maker that would be responsible for performing runtime trade-off analysis for satisfying the

system requirements and optimize the quality of services under some cost constraints, for example.

These, and other contributions, have mainly focused on analyzing the impact of uncertainties related

to input parameters when evaluating architectural alternatives, without considering the joint analysis of

sources of uncertainty and their propagation.

Several methods have been introduced to estimate the propagation of the uncertainty on the quality

of a system (e.g., [32, 33]). These methods typically address propagation of uncertainties associated

with input parameters of architecture-based software quality models, without explicitly considering

the propagation of the uncertainty through the architectural elements (e.g., components or services).

Examples of such methods include, the analysis of the propagation of parameter uncertainties (e.g.,

components reliabilities) regarding reliability estimation [32], and the analysis of model-based perfor-

mance of software architectures under uncertainty of input parameters (e.g., workload, operational

profile, and resource demand of services) [33].

14.6 CONCLUSIONS
The claim being made in this chapter is that, in self-adaptive software systems, depending on the feed-

back control loop, uncertainty should be handled according to the complexity of the control loop

(whether it is connected with other control loops) and its stages (the number of features associated with

a given stage). In simple control loops, just like the traditional four stages of the MAPE-K control loop,

uncertainty can be handled in a single place, like the Plan stage. However, in more complex feedback

control loops, which might embody complex stages, which on their own might consist of several feed-

back control loops (i.e., meta-loops), there is a need to identify and handled uncertainty at the different

stages of the feedback control loop.

The ideas presented in this chapter, to the best of our knowledge, are a first attempt to investigate the

propagation of uncertainty in feedback control loops. For that, we have proposed a method for iden-

tifying uncertainties at the stage level, and put forward error propagation analysis as a method for an-

alyzing the propagation of uncertainties in a MAPE-K control loop. The goal of such approach is to

maximize the utility of the services to be delivered by the system, which can be achieved, during run-

time, by architectural trade-off analysis of the system quality attributes at any stage of the MAPE-K

control loop.

In terms of future work, there are several open challenges, and in the following, we identify three of

these challenges. First, considering that self-adaptive systems can change themselves, one should ex-

pect that sources of uncertainty to change during runtime, and this requires dynamic mechanisms that

continuously monitors uncertainty sources, and finds solutions to better handle them. Moreover, the

identification of sources of uncertainty, either explicit or implicit, is still an analytical human-based

activity, and finding automated tools for this activity is a major challenge. Second, uncertainties

associated with each quality attribute should be handled in a specific way, which requires a wide of

techniques that need to be made available at runtime. The challenge here is to provide the appropriate

support for controller to select autonomously the appropriate technique depending on the identified

uncertainty. Finally, the third challenge is related to the ability of the controller to self-manage the

36514.6 CONCLUSIONS

orchestration of the activities related to the identification and handling of uncertainties. This should be

a runtime activity supported by a wide range of techniques and oracles that should be able to identify

where in the feedback control loop trade-off analysis take place, analyze their role and impact, and find

ways of improving decision making by providing more accurate quality attributes.

REFERENCES
[1] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.
[2] B. Chen, X. Peng, Y. Yu, W. Zhao, Uncertainty handling in goal-driven self-optimization—limiting the neg-

ative effect on adaptation, J. Syst. Softw. 90 (2014) 114–127.
[3] I. Gonzalez-Herrera, J. Bourcier, E. Daubert,W. Rudametkin, O. Barais, F. Fouquet, J.-M. Jezequel, Scapegoat:

an adaptive monitoring framework for component-based systems, in: Proceedings of the 2014 IEEE/IFIP Con-

ference on Software Architecture (WICSA), 2014, pp. 67–76.
[4] S. Cheng, D. Garlan, Handling uncertainty in autonomic systems, in: Proceedings of the ASE 2007 Interna-

tional Workshop on Living With Uncertainty, Atlanta, GA, 2007.

[5] M. Autili, V. Cortellessa, D. Di Ruscio, P. Inverardi, P. Pelliccione, M. Tivoli, Eagle: engineering software in

the ubiquitous globe by leveraging uncertainty, in: Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11, ACM, New York,

NY, 2011, pp. 488–491.
[6] Y.Brun,G.MarzoSerugendo,C.Gacek,H.Giese,H.Kienle,M.Litoiu,H.M€uller,M.Pezzè,M.Shaw,Engineering

self-adaptive systems through feedback loops, in: Software Engineering for Self-Adaptive Systems, Springer-

Verlag, Berlin, Heidelberg, 2009, pp. 48–70.
[7] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: Software Engineering for Self-

Adaptive Systems II, vol. 7475 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,

2013, pp. 214–238.
[8] H. Giese, N. Bencomo, L. Pasquale, A. Ramirez, P. Inverardi, S. W€atzoldt, S. Clarke, Living with uncertainty

in the age of runtimemodels, in: B. Cheng, U. Amann, N. Bencomo, R. France (Eds.), Models@run.time, vol.

8378 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2014, pp. 47–100.
[9] D. Perez-Palacin, R. Mirandola, Uncertainties in the modeling of self-adaptive systems: a taxonomy and an

example of availability evaluation, in: Proceedings of the Fifth ACM/SPEC International Conference on Per-

formance Engineering, ICPE 14, ACM, New York, NY, 2014, pp. 3–14.
[10] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, J. Bruel, RELAX: a language to address uncertainty in

self-adaptive systems requirement, Requir. Eng. 15 (2) (2010) 177–196.
[11] N. Bencomo, A. Belaggoun, V. Issarny, Dynamic decision networks for decision-making in self-adaptive

systems: a case study, in: Proceedings of the Eighth International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, SEAMS ’13, IEEE Press, 2013, pp. 113–122.
[12] C. Ghezzi, L.S. Pinto, P. Spoletini, G. Tamburrelli, Managing non-functional uncertainty via model-driven

adaptivity, in: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, IEEE

Press, Piscataway, NJ, 2013, pp. 33–42.
[13] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing architectural run-time failures, in: Proceedings of

the Eighth International Symposium on Software Engineering for Adaptive and Self-Managing Systems,

SEAMS 2013, IEEE Press, Piscataway, NJ, 2013, pp. 103–112.
[14] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing unobserved components in self-adaptive systems,

in: Proceedings of the Ninth International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2014, ACM, New York, NY, 2014, pp. 75–84.
[15] W.Walker, P. Harremoes, J. Rotmans, J. van der Sluijs, M. van Asselt, P. Janssen, M.K. von Krauss, Defining

uncertainty: a conceptual basis for uncertainty management in model-based decision support, Integr. Assess.

4 (1) (2003) 5–17.

366 CHAPTER 14 UNCERTAINTIES IN FEEDBACK CONTROL LOOP

http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0080

[16] K.J. Astr€om, B. Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA, 1995.

[17] C.E. da Silva, R. de Lemos, Dynamic management of integration testing for self-adaptive systems, in: LADC

Workshop on Dependable in Adaptive and Self-Managing Systems (WDAS), Rio de Janeiro, RJ, Brazil,

2013, pp. 3–10.
[18] K. Wallnau, J.A. Stafford, Dispelling the myth of component evaluation, in: Building Reliable Component-

Based Software Systems, vol. 8, Artech House, Inc., Norwood, MA, 2002.

[19] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable and secure

computing, IEEE Trans. Dependable Secure Comput. 1 (1) (2004) 11–33.
[20] D.T. Ross, K.E. Schoman, Structured analysis for requirements definition, IEEE Trans. Softw. Eng. 3 (1)

(1977) 6–15.
[21] W. Abdelmoez, D. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H. Ammar, B. Yu, A. Mili, Error

propagation in software architectures, in: Proceedings of the International Symposium on Software Metrics,

2004, pp. 384–393.
[22] M.Alrifai, T. Risse, Combining global optimizationwith local selection for efficient QoS-aware service com-

position, in: Proceedings of the of the 18th International Conference onWorldWideWeb,WWW ’09, ACM,

New York, NY, 2009, pp. 881–890.
[23] R. Druilhe, M. Anne, J. Pulou, L. Duchien, L. Seinturier, Components mobility for energy efficiency of dig-

ital home, in: Proceedings of the 16th International ACM Sigsoft Symposium on Component-Based Software

Engineering, CBSE ’13, ACM, New York, NY, 2013, pp. 153–158.
[24] M. Litoiu, M. Mihaescu, D. Ionescu, B. Solomon, Scalable adaptive web services, in: Proceedings of the

International Workshop on Systems Development in SOA Environments, SDSOA ’08, ACM, New York,

NY, 2008, pp. 47–52.
[25] X. Chen, E.-J. Park, D. Xiu, A flexible numerical approach for quantification of epistemic uncertainty,

J. Comput. Phys. 240 (2013) 211–224.
[26] J.C. Helton, J.D. Johnson, W.L. Oberkampf, C. Sallaberry, Representation of analysis results involving ale-

atory and epistemic uncertainty, Int. J. Gen. Syst. 39 (2010) 605–646.
[27] P. Vromant, D. Weyns, S. Malek, J. Andersson, On interacting control loops in self-adaptive systems,

in: Proceedings of the Sixth International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS ’11, ACM, New York, NY, 2011, pp. 202–207.
[28] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese,

K. Gschka, On patterns for decentralized control in self-adaptive systems, in: Software Engineering for Self-

Adaptive Systems II, vol. 7475 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013,

pp. 76–107.
[29] N. Esfahani, S. Malek, K. Razavi, Guidearch: guiding the exploration of architectural solution space under

uncertainty, in: Proceedings of the 2013 International Conference on Software Engineering, ICSE’13, IEEE

Press, Piscataway, NJ, 2013, pp. 43–52.
[30] E. Letier, D. Stefan, E.T. Barr, Uncertainty, risk, and information value in software requirements and archi-

tecture, in: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, ACM,

New York, NY, 2014, pp. 883–894.
[31] S. Merad, R. de Lemos, T. Anderson, A game theoretic solution for the optimal selection of services,

in: V. Cardellini, E. Casalicchio, K.R.L.J.C. Branco, J.C. Estrella, F.J. Monaco (Eds.), Performance and

Dependability in Service Computing: Concepts, Techniques and Research Directions, IGI Global,

Hershey, PA, 2012, pp. 172–188.
[32] K. Goseva-Popstojanova, S. Kamavaram, Assessing uncertainty in reliability of component-based software

systems, in: Proceedings of the 14th International Symposium on Software Reliability Engineering, ISSRE,

2003, pp. 307–320.
[33] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, L. Grunske, Model-based performance analysis of soft-

ware architectures under uncertainty, in: Proceedings of the Ninth International ACM Sigsoft Conference on

Quality of Software Architectures, ACM, New York, NY, 2013, pp. 69–78.

367REFERENCES

http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00014-9/rf0170

CHAPTER

GLOSSARY

Adaptation consistency A property of adaptive software that characterizes whether dynamic changes to the soft-

ware can cause it to fail.

Adaptation disruption Transient unavailability of the managed software due to its adaptation.

Adaptive autonomy Adaptable level of automation that typically depends on changes in environmental

conditions.

Adaptive security An adaptation technique that enables systems to vary their protection in the face of changes in

their operational environment.

Adaptive software A software system that is easy to modify through human intervention.

Architecting for self-adaptation Designing the software architecture of a system to provide it with the capabil-

ities to detect changes in its relevant context, and in response, decide to perform an adaptation on itself to

maintain requirements satisfaction, at runtime and without interrupting its execution.

Architectural framework A coherent set of architecture viewpoints for supporting architecture modeling.

Architectural views Models of a software system architecture, each of which documents a system from the per-

spective of a particular concern.

Architecture perspective Approach including a collection of activities, tactics, and guidelines that require con-

sideration across a number of the architectural views to address quality concerns.

Architecture view A representation of one or more structural aspects of an architecture that illustrates how the

architecture addresses one or more concerns held by one or more of its stakeholders.

Architecture viewpoint A collection of templates and guidelines that represent the conventions for constructing

and using a view.

Architecture-based self-adaptation A reflective approach that uses architectural models to reason about the be-

havior of the system and adapts it at runtime to achieve particular goals.

Automated security adaptation Automatic adaption of the system security configuration and/or capabilities to

mitigate reported vulnerabilities or changes of system usage patterns, which most probably indicate that the

system is under attack.

Component-based adaptation A method of adapting a software system in terms of changes applied to its com-

ponents at runtime.

Component-level dependent transaction A transaction whose completion depends on the completion of conse-

quent transactions.

Component-level transaction Exchange of information between two components by which the state of a com-

ponent is affected.

Compositional adaptation An adaptation technique that aims to change the behavior and the structure of a sys-

tem in order to make it better fit its environment.

Controller An intermediary software entity that coordinates the behaviors of components to ensure their correct

interaction.

Decision making The process of evaluating multiple alternatives for selecting one that best fulfils the goals of a

stakeholder.

Dynamic configuration Modification of a software system, while it is running (often used interchangeably with

the term “runtime configuration”).

Dynamic reconfiguration The capability of a software system tomodify its architecture at runtime, without inter-

rupting its execution and without or little human intervention.

Ecosystem A community of managerially and operationally independent organizations interacting with each

other and with their environment.

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.09985-8

Copyright # 2017 Elsevier Inc. All rights reserved.
369

http://dx.doi.org/10.1016/B978-0-12-802855-1.09985-8

Error propagation In dependability refers to the successive process of transforming an error into other errors in a

given component or between components.

Evaluation of self-adaptivity Concerns the evaluation of both the managing part and the managed part of the

system. The evaluation of self-adaptivity considers the quality of the self-adaptive mechanisms and the

quality of the system’s functionalities exploiting self-adaptivity. Evaluation is performed at design time and at

runtime.

Feature-oriented adaptation Amethod of adapting a software system in terms of changes applied to its features

at runtime.

Feedback control loop A tool that enables a system to regulate its behavior in order to meet a desired output.

Human-in-the-loop Model that requires human interaction.

Inference-based self-adaptation An approach for engineering self-adaptive software, where the management

logic is learned from observations collected from the managed software.

Interoperability Interoperability characterizes the extent to which two software components from different man-

ufacturers, which are functionally compatible, can be made to work together correctly by reconciling the dif-

ferences in their interfaces and behaviors.

Long-living software Cost-efficiently maintained and evolved software that is capable to endure and preserve its

function over an extended period of time.

Mediator An intermediary software entity that enables heterogeneous components to interact despite disparities

in their data and/or behavioral models by performing the necessary coordination and translations while keeping

them loosely-coupled.

Metropolis model A set of principles for creating and sustaining peer-produced ULS systems.

Multi-objective optimization “The task of finding one or more optimum solutions when an optimization problem

involves more than one objective function.”

Multi-sidedness A modeling approach that represents the ways that multiple stakeholders within a socio-

technical ecosystem interact with each other.

Quality attributes Evaluating the quality of a system or part of it by focusing on the properties meaningful for

self-adaptive systems.

Quality requirements The requirements which a system should fulfill in order to satisfy the quality of the soft-

ware system.

Runtime adaptability A quality attribute related to the capability of a software system to be adapted at runtime

according to the changing usage context and constraints.

Runtime configuration Configuration of a software system, possibly by itself, while the system is actually being

executed at the operational phase (often used interchangeably with the term “dynamic configuration”).

Scalability The ability of a system, network, or process to handle a growing amount of work in a capable manner

or its ability to be enlarged to accommodate that growth.

Scalability perspective Architecture perspective for supporting the design and analysis of scalable systems.

Search-based software engineering A research field that approaches software engineering activities (such as

design, testing, refactoring, evolution, and others) as optimization problems.

Security analysis The process of analyzing a given system and identify potential security flaws and/

or bugs. Security analysis usually has three key tasks threat analysis, attack analysis, and vulnerability

analysis.

Security engineering The process of capturing system security requirements, designing system security model,

implementing necessary security controls and capabilities, and verifying that the system meets specified se-

curity requirements.

Self-adaptation The ability of a system to monitor and modify its runtime behavior in order to achieve particular

goals.

370 GLOSSARY

Self-adaptive architecture Architecture which automatically configures its components in a way that is compat-

ible with an overall architectural specification while interacting in response to the system goals.

Self-adaptive software A software system that adjusts its behavior at runtime, as automatic as possible, in re-

sponse to internal and external stimuli.

Self-adaptive software systems Systems that are able to modify their behavior and/or structure in response

changes that occur to the system itself, its environment, or even its goals.

Self-adaptive system A system able to perform changes on itself by itself during its execution as a consequence of

changes occurred inside the system or in its execution environment.

Self-adaptivity The property of systems to react to varying context conditions and to modify their behavior

autonomously.

Self-awareness A capability aiming for more efficient self-adaption, by making the computation node aware of

their internal and external states over dimensions related to goals, time, goals, and interactions.

Socio-technical ecosystem An ecosystem combining complementary technological and social systems.

Software adaptability The extent to which a software system can be adapted.

Software architecture “The fundamental organization of a system, embodied in its components, their relation-

ships to each other and the environment, and the principles governing its design and evolution.”

Software architecture modeling The process of documenting a software system architecture with a set of models

that are specified by conforming to a possibly formal language and notation.

Softwaremodeling The act of creatingmodels for representing all sort of software related aspects such as require-

ments, structure, behavior, deployment, and evolution.

Software-intensive ecosystem An ecosystem in which the behaviors of the participating organizations are depen-

dent on software.

Systematic mapping study Amethodological mean to analyze systematically a research topic, in order to provide

an overview of the research area, analyze the quality and type of research conducted, and identify the gaps and

research opportunities in this area.

Trade-offs Balance achieved among multiple desirable, but potentially incompatible system qualities.

Ultra-large-scale (ULS) system A system of unprecedented scale used by a wide variety of stakeholders with

conflicting needs, evolving continuously, and constructed from heterogeneous parts.

Uncertainties “Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant

system”.

Uncertainty (1) Dynamic and unpredictable circumstances that can be handled by self-adaptation; (2) the poten-

tial consequences of incorporating self-adaptation in a software system.

Uncertainty dimensions Aspects to identify and characterize uncertainty for a self-adaptive system.

Uncertainty propagation In a feedback control loop, this can be defined as the effects on a stage by the uncer-

tainty of one of its properties.

User-driven security adaptation Security engineers can reconfigure or modify the implemented security model

to mitigate or prevent a new security risk or realize a new security objective.

Vulnerability analysis The process of analyzing a given system code or binaries to identify existing security bugs

such as SQL Injection, Cross-Site Scripting, Improper Authorization, etc. Vulnerability analysis can be con-

ducted using static analysis techniques and/or dynamic analysis techniques.

Vulnerability mitigation The process of patching the system to block or fix a reported security bug. The miti-

gation could be done manual or automatic.

371GLOSSARY

Author Index

Note: Page numbers followed by “f ” indicate figures, and “t” indicate tables.

A
Abatlevi, C., 239–240
Abdelmoez, W., 360

Abdelzaher, T., 3

Abdulkarim, L.A., 104

Abmann, U., 249

Abowd, G.D., 30, 234

Abreu, R., 7, 60–61t, 356
Ackermann, D., 177

Acton, T., 250, 280

Adler, B., 223–225
Aerts, A., 337

Agarwal, S., 190–191
Aghajan, H., 308, 315t

Agrawal, D., 237–238
Agrawal, R., 144–145
Ahmad, T., 47, 55–56, 70, 279
Akşit, M., 79–80, 85, 93, 230–231, 242
Alam, M., 103–104, 107–108
Alarcon, M.P., 79–80, 93, 230–231, 238, 242
Aleti, A., 365

Ali Babar, M., 51

Ali, M.S., 51

Ali, N., 1–11
Ali, R., 258, 319

Allen, R., 302, 315t

Almorsy, M., 99–124
Alonso, E., 250, 280

Alpaydın, E., 132

Alrifai, M., 361

Alrobai, A., 258

Al-Subaie, H.S.F., 102

Alur, R., 169

Amann, U., 353, 364

America, P., 183

Amin, A., 212

Ammar, H., 360

Anand, K., 104–105
Anderson, R., 101

Anderson, T., 364–365
Anderson, W.B., 212

Andersson, J., 3, 5–7, 17, 20, 40–41, 45, 47, 60–61t, 131, 149,
155, 191–192, 249, 251–252, 279–280, 364

Andrade, S.S., 181–200
Andrighetto, G., 3

Anne, M., 364

Arcelli Fontana, F., 325–351
Ardagna, D., 10

Ardini, A., 258

Assis, M.R.M., 250, 280

Astr€om, K.J., 356

Asundi, J., 4, 10, 220

Atlee, J.M., 158–159, 160t
Atmanspacher, H., 205

Augusto, J., 308, 315t

Autili, M., 364

Avgeriou, P., 45–71, 252–253, 277
Avizienis, A., 358, 360

B
Babar, M.A., 234

Babu, S., 191–192
Bachmann, F., 80–81, 84–87, 85f, 93, 224, 226–227, 236–240,
242

Baclawski, K., 181

Bader, A., 93

Bahsoon, R., 10, 249–283
Bai, X., 224–225, 230–231, 236–237, 239–240
Bailey, J., 328

Bakker, J., 79–80, 93, 230–231, 238, 242
Baldwin, C.Y., 205–207, 211, 220
Bandara, A.K., 319

Bansode, P., 234–235
Barais, O., 149, 353

Barbacci, M., 207, 241–242, 249–250, 277
Barber, S., 234–235
Baresi, L., 20, 40–41, 131, 149, 191, 251–252, 280
Barnes, J.M., 7, 84, 159–160
Barnett, R., 99, 100f

Barr, E.T., 364–365
Barua, R., 104–105
Basin, D., 103

Bass, L., 3, 17, 31, 80–81, 84–87, 85f, 93, 205, 220, 224,
226–227, 230–231, 234, 236–242

Batory, D., 137

Becker, B., 17, 20, 40–41, 131, 149, 155, 191–192, 249,
251–252, 279–280

Becker, S., 236, 241

Beisiegel, M., 19

Belaggoun, A., 281, 353, 364–365
Ben Mokhtar, S., 308, 315t

373

Benameur, A., 105

Benatallah, B., 309, 312, 315t

Bencomo, N., 17, 20, 30, 40–41, 60–61t, 131, 149, 155,
158–160, 170, 191, 249–283, 319, 353, 364–365

Bengtsson, P., 207

Bennaceur, A., 299–319
Bennani, M.N., 134, 149

Berbers, Y., 136, 144, 149

Berden, B., 337

Bergey, J., 17

Bergmans, L., 93, 230–231, 242
Bernardo, M., 169, 306

Berners-Lee, T., 302, 313

Bertalanffy, L.v., 205

Bertocci, V., 104, 107–108
Bertoli, P., 310, 315t

Bianco, S., 308, 315t

Bilir, S., 239–240
Bingfei, W., 239

Bisdikian, C., 181

Bittencourt, L.F., 250, 280

Blair, G.S., 149, 304–307, 315t
Blair, L., 249, 277

Blohm, H., 19

Bondi, A., 223

Bonnel, R.D., 11

Booz, D., 19

Bosch, J., 95, 207

Boudali, H., 79–80
Bourcier, J., 353

Bournez, C., 313–314
Bourque, P., 20

Bowles, J.B., 11

Boxer, P.J., 203–220
Braberman, V.A., 318–319
Bradbury, J.S., 85–86, 94–95, 279
Branco, K.R.L.J.C., 364–365
Breivolda, H.P., 279

Brereton, O.P., 249–250, 252, 277
Brereton, P., 249–250, 252, 254, 277, 328
Breu, R., 103–104, 107–108
Briand, L.C., 160

Brignoli, M., 8–9
Brinkkemper, S., 203–204, 206–207
Broadwell, P., 131

Brohez, S., 102

Bromberg, Y.-D., 307–308, 315t
Brosig, F., 279–280
Brown, A., 131

Brown, P.J., 30

Brueckner, S.A., 181

Bruel, J.-M., 30, 158–159, 353

Brun, Y., 8, 17, 20, 40–41, 131, 149, 155, 191, 249, 251–252,
273, 279–281, 328, 353, 364

Budgen, D., 249–250, 252, 254, 277, 328
Burstein, M.H., 313, 315t

Buyya, R., 181, 250, 280

C
Cabri, G., 3, 8

Cahill, V., 84–86, 94
Cai, Y., 3–4
Calero, C., 258–259
Calheiros, R.N., 250, 280

Calinescu, R., 47, 158–159, 160t
Calvert, K.L., 310, 315t

Cámara, J., 7, 159–162, 170
Canavera, K.R., 131–150
Candea, G., 131

Canfora, G., 10

Cao, J., 237

Capilla, R., 95, 325–351
Caporuscio, M., 304–305
Cardellini, V., 134, 364–365
Cardoso, R.S., 308, 315t

Carraro, G., 224–225
Carriere, S.J., 241–242
Carrillo, C., 325–351
Carver, J., 279

Casalicchio, E., 10, 134, 364–365
Casallas, R., 17–18, 23, 25–30, 32–33, 40–41, 60–61t, 85–86,
329, 331, 333–334, 334t

Casanova, P., 7, 60–61t, 159–160, 356
Casati, F., 309, 312

Cavallaro, L., 319

Celiku, O., 84

Ceriotti, M., 309

Cervantes, H., 2, 4

Cetina, C., 250, 280

Chaibdraa, B., 81

Chandra, A., 251–252, 269, 282
Chang, C.K., 10

Chang, H., 304, 315t

Chang, J., 5

Charters, S., 49

Chase, J.S., 191–192
Chauvel, F., 60–61t
Chen, B., 353

Chen, H.-M., 205, 207

Chen, L., 51

Chen, M., 131

Chen, T., 168–169
Chen, X., 364

374 Author Index

Cheng, B.H.C., 8, 17, 20, 30, 41, 48, 53–54, 85–86, 131, 149,
155, 158–159, 160t, 249, 251–252, 273, 279–281, 300, 325,
333, 353, 364

Cheng, S.-W., 5–7, 45–47, 60–61t, 84–86, 94, 155–157,
159–161, 160t, 181, 335, 337, 353, 364

Chess, D.M., 3, 22, 25, 27, 32, 50–51, 86–87, 131, 134, 149,
155–156, 181, 279–280, 353, 355

Cheung, L., 60–61t
Chitchyan, R., 79–80, 93, 230–231, 238, 242
Chong, F., 224–225
Chourasia, A., 215

Chung, L., 20, 335

Churchman, C.W., 205

Cikic, B., 20, 40–41
Cimpian, E., 313, 315t

Clair, G., 337

Clarke, E.M., 302

Clarke, S., 79–80, 93, 230–231, 238, 242, 353, 364
Clement, L., 159, 160t

Clements, P.C., 1, 3, 17, 31, 80–81, 84–87, 85f, 137, 207, 224,
226–227, 230–231, 234, 242, 249–250, 277, 325

Cleve, A., 23

Clohessy, T., 250, 280

Cohen, B., 210, 212–213
Cohen, S., 137

Cohendet, P., 212

Colfer, L., 206–207
Colman, A.W., 191–192
Conti, M., 181

Corbi, T.A., 131

Cordy, J.R., 85–86, 94–95, 279
Corporation, I.B.M., 32, 39

Cortellessa, V., 364–365
Coulouris, G.F., 304–305
Councill, W.T., 236

Coyle, L., 203

Crnkovic, I., 249

Crnkovicb, I., 279

Crowley, B., 137

Cruz, I., 109

Cukic, B., 17, 20, 41, 131, 149, 155, 191, 249, 251–252,
279–280

Curbera, F., 312

Cutler, J., 131

D
D’Ippolito, N., 318–319
da Silva, C.E., 358

Dardenne, A., 102

Das, R., 47, 134, 139, 149

Das, S.K., 181, 237–238

Dashofy, E.M., 134, 251, 301–303, 348–349
Dastjerdi, A.B., 148

Daubert, E., 353

Davies, N., 30

De Bra, P., 337

de Araújo Macêdo, R.J., 181–182, 184, 196–197
de Lange, B., 337

de Lemos, R., 5, 20, 40–41, 45, 48, 53–54, 54t, 60–61t, 131, 149,
155, 158, 191–192, 251, 273, 281, 325, 333, 349–350,
353–366

Deb, K., 181–182, 185, 189–191, 198–199
Deelman, E., 215

Dehlen, V., 149

Delessy, N.A., 103

Delis, A., 109

Dellini, V., 10

Denaro, G., 304, 315t

Desmarais, R., 20, 40–41, 131, 149, 191, 251–252, 280
Dey, A.K., 30

D’Hondt, T., 136, 144, 149

Di Marzo Serugendo, G., 8, 131, 149, 251, 273, 281

Di Penta, M., 10

Di Ruscio, D., 364

Diao, Y., 3, 31–34, 181–182, 191–192
Diaz, O., 137

Dı́az-Herrera, J.L., 80

Dijkstra, E.W., 93

Dingel, J., 85–86, 94–95, 279
Dingsøyr, T., 55, 254
Dobrica, L., 79–80, 94, 234, 242
Doerr, J., 281

Doğru, A., 223–225
Dollimore, J., 304–305
Dorn, C., 159, 160t

Doser, J., 103

Dowling, J., 84–86, 94
Drira, K., 279

Druilhe, R., 364

Dube, P., 9

Duboc, L., 231–233, 240
Dubois, E., 102

Duchien, L., 17–18, 23, 25–30, 32–33, 40–41, 60–61t, 85–86,
329, 331, 333–334, 334t, 364

Dumas, M., 159, 160t

Dustdar, S., 17, 19–20, 40–41, 131, 149, 155, 159, 160t, 191,
249, 251–252, 279–280

Dybå, T., 55, 254

E
Ebraert, P., 136, 144, 149

Eder, K., 249

Edwards, G., 60–61t, 84, 94

375Author Index

Edwards, M., 19

Eikerling, H., 236, 241

El Abbadi, A., 237–238
Elettronica, D., 48, 53–54, 60–61t
Eliassen, F., 10

Elkhodary, A.M., 105, 132, 137, 140–142, 181
Elmore, A.J., 237–238
Elrad, T., 93

Emery, F.E., 205

Engels, G., 20, 40–41, 131, 149, 159–160, 170, 191, 251–252,
280

Engstrom, E., 252

Enriquez, P., 131

Epifani, I., 158–159, 160t
Eracar, Y.A., 181

Esfahani, N., 5, 48, 53–54, 54t, 60–61t, 106, 131–150, 158, 181,
279, 319, 351, 353, 356, 364–365

Eskins, D., 156, 159, 160t, 165–166, 177
Esposito, R., 10

Estrella, J.C., 364–365
Euzenat, J., 313

Evans, A., 280

F
Fabian, B., 99, 101

Fairbank, M., 250, 280

Fairley, R.E., 20

Falessi, D., 207

Fang, S., 224–225, 238
Faniyi, F., 251–252, 269, 280–282
Farre, C., 234–235
Farrell, J., 313–314
Farzi, S., 148

Febrero, F., 258

Fedak, V., 4

Feitosa, D., 277

Feldt, R., 249–250, 252–254, 259–261
Felizardo, K.R., 277

Femmer, H., 259

Fenet, S., 105

Feng, Q., 3–4
Feng, T., 10

Fernandez, E.B., 103

Fernandez-Marquez, J.L., 8

Ferry, N., 60–61t
Fiadeiro, J.L., 159, 160t

Fickas, S., 102

Fillman, R., 93

Finkelstein, A., 17, 20, 41, 131, 149, 155, 203–204, 206–207,
249–252, 279–280

Firesmith, D.G., 102

Fleurey, F., 105–106, 149

Floch, J., 60–61t
Fons, J., 250, 280

Forejt, V., 168–169
Fouquet, F., 353

Fox, A., 131

France, R.B., 60–61t, 249, 353, 364
Franch, X., 259

Friedman, J.H., 143

Fuentes, F., 11

Fukazawa, Y., 103

G
Gaber, M., 148

Gacek, C., 5, 17, 20, 41, 131, 149, 155, 249, 251–252, 273,
279–281, 353, 364

Gagliardi, M., 207

Galster, M., 252–253, 277
Gamma, E., 22–23
Ganapathy, V., 104–105
Gandhi, A., 9

Ganek, A.G., 131

Gao, J., 224–225, 230–231, 236–237, 239–240
Garcia, A., 79–80, 93, 230–231, 238, 242
Garcia, J., 60–61t, 84, 94
Garcia, S., 212

Garg, A., 207

Garlan, D., 5–7, 45–48, 53–54, 60–61t, 80–81, 84–87, 85f, 94,
155–156, 159–162, 160t, 170, 181, 226–227, 249, 251, 280,
302–303, 315t, 335, 337, 353, 356, 364

Garlan, G., 134, 149

Gat, E., 34

Gehrke, J., 143

Geihs, K., 10, 17, 20, 40–41, 131, 149, 155, 191, 249, 251–252,
279–280, 333, 349–350

Gennari, J., 7, 159–160
Genon, N., 102

Georgantas, N., 304–306, 308, 315t
Georgas, J.C., 149

Georg�e, J.P., 334–335, 337, 346, 348–350, 348t
Georgiadis, I., 134, 149, 251

Ghezzi, C., 60–61t, 140–141, 158–159, 160t, 181, 353
Ghorbani, A., 335

Gierds, C., 310, 315t

Giese, H.M., 3, 17, 20, 40–41, 45, 48, 53–54, 54t, 60–61t, 131,
149, 155, 158, 181, 191–192, 249, 251–252, 273, 279–281,
325, 353, 364

Gil, Y., 215

Giner, P., 250, 280

Giorgini, P., 102

Glazier, T.J., 7, 159–160
Gleizes, M.P., 334–335, 337, 346, 348–350, 348t
Glette, K., 251–252, 269, 282

376 Author Index

Glinz, M., 84–86, 94
Goeschka, K.M., 3, 131, 149

Gogolla, M., 249

Golubchik, L., 60–61t
Gomaa, H., 3, 10, 84–86, 94, 134, 149
Gonzalez, T., 80

Gonzalez-Herrera, I., 353

Goodenough, J.B., 223

Gorla, A., 20, 40–41, 131, 149, 191, 251–252, 280
Gorlick, M.M., 1–2, 5, 20, 84–86, 94, 159–160, 160t, 251,
280

Gorton, I., 335, 337

G€oschka, K.M., 20, 40–41, 191–192, 251–252, 280
Goseva-Popstojanova, K., 365

G€otz, S., 60–61t, 249
Governatori, G., 3

Grace, P., 306–308, 315t
Gradetsky, N., 360

Grassi, V., 3, 10, 17, 20, 40–41, 131, 134, 149, 155, 191–192,
249, 251–252, 279–280, 364

Gross, G., 134

Gross, T., 137

Gruber, T.R., 302, 313

Grundy, J., 1–11, 99–124
Grunske, L., 47, 249, 365

Gschka, K., 364

Gunnalan, R., 360

Gunter, D., 137

Guo, J., 81

G€urses, S., 99, 101

H
Hafiz, M., 104

Hafner, M., 103–104, 107–108
Haley, C.B., 103, 319

Hallsteinsen, S., 10, 60–61t, 149
Han, J., 144–145, 191–192
Hanssen, G., 254

Happe, J., 249

Harman, M., 281

Harremoes, P., 356

Harris, C.M., 134

Harrod, W., 181

Hashii, B., 105

Hashimoto, K., 3, 149

Hassan, S., 280

Hawthorne, M.J., 334

Hazas, M., 249, 277

Haziyev, S., 4

Heaven, W., 158–159, 160t, 319
Hebig, R., 191–192
Heimbigner, D., 1–2, 5, 20, 84–86, 94

Heimhigner, D., 159–160, 160t, 251, 280
Heineman, G.T., 20, 236

Heisel, M., 99, 101

Hellerstein, J.L., 3, 31–34, 181–182, 191–192
Helm, R., 22–23
Helton, J.C., 364

Hendler, J., 302, 313

Henzinger, T.A., 169

Heroux, M.A., 181

Heymans, P., 102

Hinchey, M., 95, 149

Hobbs, J.R., 313, 315t

Hoek, Ad, 251

Hoek, W.V.D., 168

Hofmeister, C., 80–81, 183
Højberg, A.L., 48, 53–54
Holding, M., 137

Hong, N., 239

Hongbo, F., 250, 280

Hopkins, R., 212

Horn, G., 10

Hosseini, M., 258

Huang, A.-C., 5, 84–86, 94, 155–156, 159–160, 160t, 337
Huang, G., 109

Huang, Y., 224–225, 236–237, 240
Huber, N., 279–280
Huebscher, M.C., 155, 181, 280–281, 329, 331, 334,
334t, 349

Hugues, J., 306–307, 315t
Hung, C., 158–159, 160t
Hurley, O., 19

Hussein, M., 134, 149

I
Iannucci, S., 10

Ibrahim, A.S., 99–124
Iftikhar, M.U., 191–192, 279
Iglesia, DGdl, 279

Ikram, N., 259

Immonen, A., 279

Inverardi, P., 17, 20, 40–41, 131, 149, 155, 158–160, 160t, 191,
249, 251–252, 273, 279–281, 303, 315t, 325, 333, 353, 364

Ionescu, D., 364

Issarny, V., 169, 281, 304–306, 308, 315t, 317, 319, 353,
364–365

Ivers, J., 80–81, 84–87, 85f, 226–227

J
Jackson, A., 79–80, 93, 230–231, 238, 242
Jackson, M., 318–319
Jaeger, T., 104–105
Jansen, S., 203–204, 206–207

377Author Index

Janssen, P., 48, 53–54, 356
Jeffrey, R., 234

Jenkins, K., 212

Jennings, N.R., 3

Jensen, A.C., 48, 53–54
Jezequel, J.-M., 249, 353

Jha, S., 104–105
Jiang, H.-y., 10

Jiang, L., 237

Jie, L., 250, 280

Johnson, G., 1–2, 5, 20, 84–86, 94, 159–160, 160t,
251, 280

Johnson, J.D., 364

Johnson, R.E., 22–23, 104
Jong, N.K., 149

Joosen, W., 118–119
J€urjens, J., 102–103
Jzquel, J.-M., 149

K
Kaddoum, E., 334–335, 337, 346, 348–350, 348t
Kalyanmoy, D., 181–182, 185, 189, 198–199
Kamavaram, S., 365

Kang, K., 137, 149

Kantardzic, M., 142–143
Karimi, A., 192

Karsai, G., 17, 20, 40–41, 131, 149, 155, 191, 249, 251–252,
279–280

Karve, A., 9

Kasten, E.P., 85–86, 300
Kawamura, T., 313

Kazman, R., 1–11, 31, 203–220, 224, 227, 230–231, 234,
241–242, 249–250, 277, 280–281, 325

Kehua, S., 250, 280

Kell, S., 86–87
Kephart, J.O., 3, 22, 25, 27, 32, 47, 50–51, 86–87, 131, 134, 139,
149, 155–156, 181, 279–280, 353, 355

Keromytis, A.D., 104–105
Khalil, M., 254

Khan, M.I., 81, 238

Kiciman, E., 131

Kienle, H.M., 17, 20, 40–41, 131, 149, 155, 249, 251–252, 273,
279–281, 353, 364

Kim, D., 149

Kim, M., 3, 149

Kindberg, T., 304–305
King, D., 104–105
Kirwan, P., 207, 220

Kitchenham, B.A., 49, 249–250, 252–254, 277, 328
Klein, J., 250, 280

Klein, M.H., 1, 4, 10, 93, 207, 220, 224, 227, 236–242, 249–250,
277, 325

Knoester, D.B., 149

Knowles, B., 249, 277

Kochut, A., 9

Kokar, M.M., 181

Konig, D., 159, 160t

Kopecký, J., 313–314
Kordon, F., 306–307, 315t
Kothan, A., 104–105
Kounev, S., 279–280
Kouroshfar, E., 5, 60–61t
Koziolek, A., 249, 279–280
Koziolek, H., 249, 279

Kramer, J., 17, 20, 34, 40–41, 84, 131, 134–136, 144, 149, 155,
158–160, 160t, 191, 249, 251–252, 279–280, 318–319

Krayer von Krauss, M.P., 48, 53–54
Kremer, S., 168

Kriesel, D., 143

Krishnaswamy, S., 148

Kruchten, P., 80–81, 183
Kubo, A., 103

K€uhne, T., 103–104
Kumar, K., 81

Kumar, M., 181

Kumar, N., 105

Kumar, V., 132

Kunz, T., 181

Kupferman, O., 169

Kuzniarz, L., 252

Kwiatkowska, M.Z., 47, 158–159, 160t, 168–169

L
Laddaga, R., 1–2, 17, 20–21
Lam, S.S., 310–311, 315t
Lamsweerde, A.v., 102

Landau, I., 192

Landwehr, C., 358, 360

Laney, R.C., 319

Laprie, J.-C., 358, 360

Larsen, K.G., 168

Larsson, M., 279

Laskov, P., 149

Lassila, O., 302, 313, 315t

Lassing, N., 207

Lattanze, A.J., 80–81
Lawall, J.L., 307, 315t

Lazaroiu, G.C., 250, 280

Lee, J., 137, 149

Lehrig, S., 236, 241

Lei, J., 169

Lei, L., 239

Leithead, T., 149

378 Author Index

Lemos, Rd, 17, 20, 41, 249, 251–252, 279–280
Letier, E., 231–233, 240, 250, 319, 364–365
Lewis, G., 250, 280

Lewis, P., 251–252, 269, 281–282
Leymann, F., 19

Li, J., 81

Li, P., 237

Li, Z., 252–253
Liang, P., 252–253
Lim, H.C., 191–192
Linkman, S.G., 328

Lipson, H., 241–242
Litoiu, M., 17, 20, 40–41, 45, 60–61t, 131, 149, 155, 191–192,
249, 251–252, 273, 279–281, 353, 364

Little, R., 80–81, 84–87, 85f, 226–227
Liu, H., 10

Liu, L., 102, 313

Liu, W., 319

Liu, Y., 335, 337

Lo Presti, F., 134

Lo Presti, P., 10

Lodderstedt, T., 103

Longo, M., 250, 280

Lopes, A., 7, 20, 40–41, 131, 149, 161–162, 191, 251–252, 280
Lorenzo, J., 10

Lowekamp, B., 137

Lozano, R., 192

Lu, C., 3

Lu, J., 169

Luckham, D.C., 33

Luisa Villani, M., 10

Lukszo, Z., 104

M
M’Saad, M., 192

MacCormack, J., 205–206, 220
Macedo, R., 181–200
Magee, J., 17, 20, 34, 40–41, 84, 131, 134–136, 144, 149, 155,
158–160, 160t, 191, 249, 251–252, 273, 279–281, 318–319,
325, 333

Mahdavi-Hezavehi, S., 45–71
Maibaum, T.S.E., 102

Maiden, N., 252, 259

Malabarba, S., 105

Malek, S., 3, 5–7, 10, 17, 20, 40–41, 47–48, 53–54, 54t, 60–61t,
84–86, 94, 106, 131–150, 155, 158, 181, 191–192, 249,
251–252, 279–280, 319, 351, 353, 356, 364–365

Mamelli, A., 10

Mana, A., 105

Mankovskii, S., 20, 40–41, 131, 149, 191, 251–252, 280
Mao, R., 144–145

Mariani, L., 304, 315t

Martens, A., 312

Martin, D.L., 313, 315t

Marzo Serugendo, G., 17, 20, 41, 249, 251–252, 279–280, 353,
364

Masciadri, L., 337

Mateescu, R., 311–312, 315t
Mattsson, M., 249–250, 252–254, 259–261
Matulevičius, R., 102

Mayer, N., 102

McCann, J.A., 155, 181, 280–281, 329, 331, 334, 334t, 349
McDermott, D.V., 313, 315t

McGuinness, D.L., 313, 315t

McIlraith, S.A., 302, 313, 315t

McKinley, P.K., 85–86, 149, 300
Mead, N., 252, 259

Medvidovic, N., 1–2, 5, 20, 45, 47, 60–61t, 84–86, 94, 134, 149,
159–160, 160t, 251, 280, 301–305, 348–349

Meedeniya, I., 365

Mehta, N.R., 304–305
Mehta, V., 159, 160t

Meier, J.D., 234–235
Meinel, C., 103

Member, S., 47

Memon, M., 103–104
Menasc�e, D.A., 3, 10, 84–86, 94, 134, 149
Menge, F., 308–309, 315t
Menzel, M., 103

Merad, S., 364–365
Merseguer, J., 334–335, 346, 348–349, 348t
Merson, P., 17, 80–81, 84–87, 85f, 226–227
Merzbacher, M., 131

Metzger, A., 181

Meyarivan, T., 190–191
Mihaescu, M., 364

Mikic-Rakic, M., 134

Milano, P., 48, 53–54, 60–61t
Mili, A., 360

Miller, E.J., 205

Miller, N., 137

Mirandola, R., 3, 8–10, 17, 20, 40–41, 47, 131, 134, 149, 155,
158–159, 160t, 191–192, 249, 251–252, 279–280, 334–335,
346, 348–349, 348t, 353, 356, 364

Misra, V., 81

Mistrik, I., 1–11, 281
Mo, R., 3–4
Mocan, A., 313, 315t

Moffett, J.D., 319

Monaco, F.J., 364–365
Montrieux, L., 103, 319

Monzon, A., 250, 280

Mooij, A.J., 310, 315t

379Author Index

Moore, M., 207

Moraga, M.A., 258

Moreno, G.A., 7, 159–160, 170, 205, 220
Morgan, L., 250, 280

Morin, B., 60–61t, 105–106, 149, 249
Morris, E., 250, 280

Mos, A., 137

Mouelhi, T., 105–106
Mouratidis, H., 102

Mtayer, D.L., 181

Mueller, R., 159, 160t

Mujtaba, S., 249–250, 252–254, 259–261
Mukhi, N.K., 103

Mukhija, A., 84–86, 94
Muller, G., 307, 315t

M€uller, H.A., 17–41, 45, 48, 53–54, 54t, 60–61t, 85–86, 131,
149, 155, 158, 191–192, 249, 251–252, 273, 279–281, 325,
329, 331, 333–334, 334t, 353, 364

M€uller, J.P., 81, 181

Murphy, A.L., 309

Murphy, J., 137

Mylopoulos, J., 20, 40–41, 102, 131, 149, 191–192, 251–252,
280

N
Na, J.P., 149

Nain, G., 149

Nakagawa, E.Y., 277

Nakamura, Y., 103

Nakashima, H., 308, 315t

Nallur, V., 10

Narayanan, S., 313, 315t

Nassar, D., 360

National Energy Technology Laboratory, 205

Nepal, S., 106

Neruda, R., 313

Neti, S., 329, 331, 333–334, 334t
Neuman, C., 149

Nezhad, H.R.M., 309, 312, 315t

Ni, L.M., 181

Nicol, D.M., 159–160
Nielsen, M., 168

Niemela, E., 79–80, 94, 234, 242, 279
Nierstrasz, O., 20, 40–41, 131, 149, 191, 251–252, 280
Nitto, E.D., 181

Nord, R., 80–81, 84–87, 85f, 183, 220, 226–227, 249–250, 277
Noriega, P., 3

Norman, G., 169

Northrop, L.M., 137, 181, 203

Notkin, D., 159, 160t

Nuseibeh, B., 299–319

O
O’Sullivan, P., 104–105
Obbink, H., 183

Oberkampf, W.L., 364

O’Brien, L., 249–250, 277
Ockerbloom, J., 302, 315t

Ogata, K., 31, 34

Omoronyia, I., 319

Ono, K., 103

Opdahl, A., 102, 281

Oppenheimer, D., 131

Oreizy, P., 1–2, 5, 20, 45, 47, 84–86, 94, 134, 149, 159–160,
160t, 251, 280

Ossowski, S., 158–159, 160t
Ouyang, B., 10

Ozcan, O., 223–243
Ozkaya, I., 17
€Ozsu, M.T., 313
€Ozt€urk, K., 223–225

P
Palakal, M.J., 158–159, 160t
Pandey, R., 105

Paolucci, M., 306, 313, 315t

Papadopoulos, G.A., 10

Papazoglou, M.P., 19, 181

Parekh, S.S., 31–34, 181–182, 191–192
Park, E.-J., 364

Park, S., 17, 20, 41, 95, 131, 149, 155, 249, 251–252, 279–280
Parker, D., 168–169
Parsons, S., 251–252, 269, 282
Parunak, H.V.D., 181

Pascual, G.G., 11

Paspallis, N., 10

Pasquale, L., 319, 353, 364

Passarella, A., 181

Pathan, M., 106

Patikirikorala, T., 191–192
Pattabhiraman, P., 230–231, 239
Patterson, D.A., 131

Pautet, L., 306–307, 315t
Payne, T.R., 313, 315t

Pearl, J., 142

Pei, J., 144–145
Pelechano, V., 250, 280

Pelliccione, P., 249, 364

Peng, L., 104, 123–124
Peng, X., 353

Penzenstadler, B., 259

Perez-Palacin, D., 8–9, 48, 53–54, 60–61t, 334–335, 346,
348–349, 348t, 353, 356, 364

380 Author Index

Perini, A., 249

Pernic, B., 10

Perry, D.E., 334

Petcu, D., 250, 280

Petersen, K., 249–250, 252–254, 259–261
Petriu, D., 249

Petrus, B., 60–61t
Pezzè, M., 20, 31, 40–41, 131, 149, 191–192, 251–252, 273,
280–281, 304, 315t, 353, 364

Phadke, S., 304–305
Phalp, K., 258

Picard, G., 334–335, 337, 346, 348–350, 348t
Picco, G.P., 309

Piessens, F., 118–119
Pinto, L.S., 60–61t, 353
Pinto, M., 11

Pistore, M., 310, 315t

Piterman, N., 168

Place, P., 250, 280

Pnueli, A., 319

Podelko, A., 232, 240

Pohl, K., 159, 160t, 181

Poizat, P., 311–312, 315t
Poluha, R.G., 81–82
Popescu, D., 60–61t
Potena, P., 353–366
Prahalad, C.K., 211

Pratap, A., 190–191
Prehofer, C., 3, 20, 40–41, 131, 149, 191–192, 251–252, 280,
364

Probert, R.L., 148

Pulou, J., 364

Puviani, M., 3

Q
Qi, G., 239

Quilici, A., 1–2, 5, 20, 84–86, 94, 159–160, 160t, 251, 280
Qureshi, N., 249, 259

R
Rabiner, L.R., 134

Raibulet, C., 325–351, 348t
Ramaswamy, V., 211

Ramirez, A.J., 48, 53–54, 149, 353, 364
Ran, A., 183

Randell, B., 358, 360

Rangaswamy, R., 159, 160t

Rashid, A., 79–80, 93, 230–231, 238, 242
Raskin, J., 168

Rasmussen, J., 177

Raturi, A., 259

Raverdy, P.-G., 308, 315t

Razavi, K., 364–365
Rea, D., 234–235
Refsgaard, J.C., 48, 53–54
Reinecke, P., 334–337, 346, 348, 348t, 351
Reussner, R., 249

R�eveillère, L., 307–308, 315t
Rice, A.K., 205

Richardson, D., 259

Rieck, K., 149

Rijsenbrij, D., 207

Risse, T., 361

Rittel, H., 204

Robinson, E., 251–252, 269, 282
Rodero-Merino, L., 181

Rolland, C., 252, 259

Romanovsky, A., 5

Romer, H., 205

Roscia, M., 250, 280

Rosenblum, D.S., 1–2, 5, 20, 84–86, 94, 159–160, 160t,
231–233, 240, 251, 280

Ross, D.T., 359

Rotmans, J., 48, 53–54, 356
Rousseau, B., 337

Roussos, G., 181

Rowley, M., 159, 160t

Rozanski, N., 93, 224, 227, 229–232, 237, 240, 242
Ruan, H., 149

Rudametkin, W., 353

Ruiz-Cortes, A., 95, 149

Rumpe, B., 60–61t, 249
Runeson, P., 252

Rusnak, J., 205–206, 220
Russell, N., 159, 160t

Ryutov, T., 149

S
Sabhnani, M., 149

Sadat, H., 335

Sadjadi, S.M., 85–86, 300
Saidane, A., 105

Salama, M., 249–283
Sala€un, G., 311–312, 315t
Salehie, M., 2, 17, 149, 181, 281, 319

Sallaberry, C., 364

Samuel, S., 306–307, 315t
Sanchez-Cid, F., 105

Sanders, W.H., 156, 159, 160t, 165–166, 177
Sangwan, R., 17

Santen, T., 99, 101

Santic, T., 337

Sarkar, V., 181

Sassenburg, H., 207, 220

381Author Index

Sastry, N., 131

Satoh, F., 103

Sawyer, P., 30, 79–80, 93, 158–159, 230–231, 238, 242, 250,
319, 353

Scandurra, P., 8–9
Sch€afer, W., 20, 40–41, 131, 149, 191, 251–252, 280
Schlichting, R.D., 20, 40–41, 131, 149, 191, 251–252, 280
Schmerl, B.R., 1–11, 20, 40–41, 45–47, 60–61t, 84–86, 94, 131,
149, 155–156, 159–162, 160t, 181, 191–192, 251–252, 280,
335, 337, 356, 364

Schmid, K., 95, 149

Schmidt, H., 99, 101

Schneider, D., 249

Schnjakin, M., 103

Schobbens, P.-Y., 103

Sch€olkopf, B., 139–141, 143
Schoman, K.E., 359

Schreck, J., 103

Schuitema, W., 252–253, 277
Schumacher, M., 158–159, 160t
Scott, K., 105

Seamons, K., 149

Seinturier, L., 60–61t, 364
Serpen, G., 149

Serugendo, G.D.M., 20, 155

Shahri, A., 258

Shao, Q., 237, 239

Shapochka, A., 4

Sharifloo, A.M., 60–61t
Shaw,M.J., 5, 17, 20, 31, 40–41, 45, 48, 53–54, 54t, 60–61t, 131,
143, 149, 155, 158, 181–182, 191–192, 249, 251–252, 273,
279–281, 301–302, 325, 353, 364

Shereshevsky, M., 360

Sheth, A.P., 159, 160t

Shin, S.Y., 158–159, 160t
Shiroma, Y., 103

Shtern, M., 60–61t
Shvaiko, P., 313

Simaitis, A., 168–169
Simanta, S., 250, 280

Simon, H., 4, 10

Sindre, G., 102

Singh, M.P., 159–160
Singh, U.K., 81

Sinha, S.K., 105

Sirin, E., 313, 315t

Smith, D.B., 20, 40–41, 131, 149, 191, 250–252, 280
Smith, M., 30

Smithson, M., 104–105
Smits, D., 337

Smola, A.J., 139–141, 143
Smolka, S.A., 168

Snavely, A.E., 181

Snyder, P.L., 8

S€oderlund, J., 191–192
Solberg, A., 149

Solis, C., 5–6, 11
Solomon, B., 364

Son, T.C., 302

Soni, D., 80–81
Sousa, J.P., 10, 20, 40–41, 84–86, 94, 131, 149, 191
Sousa, P.J., 251–252, 280
Sowa, J.F., 212

S€ozer, H., 79–95, 242
Spitznagel, B., 303, 315t

Spoletini, P., 60–61t, 353
Srikant, R., 144–145
Srinivasan, N., 313, 315t

Stafford, J.A., 80–81, 84–87, 85f, 226–227, 249, 358
Stash, N., 337

Stav, E., 60–61t
Steenkiste, P., 5, 45, 47, 84–86, 94, 137, 155–156, 159–160,
160t, 337

Stefan, D., 364–365
Stege, U., 40

Steggles, P., 30

Steinbach, M., 132

Stevanetic, S., 277

Stevens, S.S., 188

Stoelinga, M., 79–80
Stol, K.-J., 51

Strom, R.E., 311, 315t

Stroud, R.J., 105

Subhlok, J.A., 137

Subramanian, N., 20, 335

Subraya, B.M., 234–235
Sukhatme, G., 60–61t
Sun, X., 239

Suri, N., 8

Sutherland, D., 137

Sycara, K.P., 313, 315t

Sykes, D., 149, 158–159, 160t, 318–319
Szyperski, C., 236

T
Tahvildari, L., 2, 17, 20, 40–41, 131, 149, 181, 191, 251–252,
280–281

Tajalli, H., 60–61t, 84, 94
Tamburrelli, G., 47, 60–61t, 140–141, 158–159, 160t, 353
Tamura, G., 17–41, 60–61t, 85–86, 131, 149, 191, 251–252, 280,
329, 331, 333–334, 334t

Tan, P., 132

Tarvainen, P., 207

382 Author Index

Tatsubori, M., 103

Tauber, M.J., 177

Taylor, R.N., 1–2, 5, 20, 45, 47, 84–86, 94, 134, 149, 159–160,
160t, 251, 280, 301–303, 348–349

Tekinerdogan, B., 79–95, 223–243
ter Hofstede, A.H.M., 159, 160t

Tesauro, G., 47, 134, 149

Tetzlaff, W., 131

Thompson, M., 137

Thomson, G., 308, 315t

Tichy, M., 17, 20, 41, 131, 149, 155, 249, 251–252,
279–280

Tierney, B., 137

Tilbury, D.M., 31–34, 181–182, 191–192
Tivoli, M., 17, 20, 41, 131, 149, 155, 249, 251–252, 279–280,
303, 315t, 364

Tofan, D., 252–253, 277
Tolosana-Calasanz, R., 250, 280

Tomayko, J., 249–250, 277
Tong, Q., 224–225, 238
Toosi, A.N., 250, 280

Torresen, J., 251–252, 269, 282
Tosi, D., 304, 315t

Toumani, F., 309

Toussaint, H., 103

Trapp, M., 249

Traupman, J., 131

Traverso, P., 19, 310, 315t

Treuhaft, N., 131

Trickovic, I., 159, 160t

Trinidad, P., 95, 149

Trist, E.L., 205

Trivedi, N., 337

Trollmann, F., 249

Tr€oster, G., 181

Trubiani, C., 365

Trujillo, S., 137

Tsai, W.T., 224–225, 230–231, 236–237, 239–240
Tsudik, G., 181

Tun, T.T., 319

Turner, M., 249–250, 252, 254, 328

U
Uchitel, S., 318–319
Urbieta, A., 308, 315t

Usman, M., 259

V
Vaculı́n, R., 313

Vakkalanka, S., 252

Valetto, G., 8

van Asselt, M.B.A., 48, 53–54, 356
van der Aalst, W.M.P., 159, 160t

van der Sluijs, J.P., 48, 53–54, 356
Van der Torre, L.W.N., 3

van Hoorn, A., 279–280
van Lamsweerde, A., 319

Van Moorsel, A., 334–337, 346, 348, 348t, 351
van Vliet, H., 207

Vandewoude, Y., 136, 144, 149

Vanrolleghem, P.A., 48, 53–54
Vaquero, L.M., 181

Velusamy, S., 105

Vergnaud, T., 306–307, 315t
Verhulst, M., 205

Villegas, N.M., 17–41, 60–61t, 85–86, 131, 149, 191, 249,
251–252, 280, 329, 331, 333–334, 334t

Viroli, M., 3

Vitvar, T., 313–314
Vliet, Hv, 250, 280

Vlissides, J., 22–23
Vogel, T., 20, 40–41, 60–61t, 131, 149, 181, 191, 251–252, 280
von Krauss, M.K., 356

Vromant, P., 40, 364

W
Walach, H., 205

Walker, G., 205

Walker, S., 249, 277

Walker, W., 356

Wallnau, K., 358

Walsh, W.E., 47, 134

Wang, L., 191–192
Wang, X.S., 109

Wantanabe, T., 3

Washizaki, H., 103

W€atzoldt, S., 353, 364

Webber, M., 204

Weibelzahl, S., 335

Weinstock, C.B., 223

Welch, I.S., 105

Wermelinger, M., 85–86, 94–95, 279
Weyns, D., 3, 5–7, 17, 20, 40–41, 45–71, 60–61t, 131, 149, 155,
181, 191–192, 249, 251–252, 279–280, 364

Whalley, I., 134, 139

Whittle, J., 17, 20, 30, 41, 105, 131, 149, 155, 158–159,
249–252, 279–280, 353

Wicks, T., 231–233, 240
Wiederhold, G., 300

Wieringa, R., 252, 259

Williams, A.W., 148

Williams, B., 279

383Author Index

Williams, L.A., 159–160
Win, B.D., 118–119
Wing, J.M., 302

Wittenmark, B., 356

Wohed, P., 159, 160t

Wolf, A.L., 1–2, 5, 20, 84–86, 94, 159–160, 160t, 251, 280
Wolf, K., 310, 315t

Wolsey, L.A., 140–141
Wolter, K., 334–337, 346, 348, 348t, 351
Wolter, R., 224–225
Wong, K., 20, 40–41, 131, 149, 191, 251–252, 280
Wood, W., 207

Woods, E., 93, 224, 227, 229–232, 237, 240, 242
Wooldridge, M., 168

Wrage, L., 250, 280

Wu, J., 10

Wuttke, J., 3, 20, 40–41, 45, 131, 149, 191–192, 251–252, 280,
364

X
Xiao, L., 3–4
Xin, Y., 251–252, 269, 281–282
Xiu, D., 364

Xu, G.Y., 312, 315t

Y
Yellin, D.M., 311, 315t

Yin, Y., 144–145
Yonezawa, A., 3

Yu, B., 360

Yu, E.S.K., 102, 319

Yu, Y., 103, 319, 353

Yuan, E., 106, 132, 137, 144, 146, 148, 279, 319, 351

Yuan, L., 81

Yuan, Y., 143

Yuanyuan, D., 239

Z
Zachman, J.A., 212

Zaki, M.J., 144–145
Zambonelli, F., 3, 8, 181

Zaslavsky, A., 148

Zave, P., 318

Zdun, U., 277

Zeng, H., 302

Zhang, H., 51

Zhang, J., 149

Zhang, L., 9

Zhang, W., 10

Zhang, Y., 281

Zhao, W., 353

Zhao-Lin, Y., 104, 123–124
Zhong, F., 10

Zhou, L., 149

Zhu, L., 234

Zhu, Q., 237

Zhu, W., 314, 315t

Zhu, X., 3

Zoghi, P., 60–61t
Zonca, A., 8–9

384 Author Index

Subject Index

Note: Page numbers followed by “f ” indicate figures, “t” indicate tables, “b” indicate boxes, and “ge” indicate glossary terms.

A
ABAS. See Attribute-based architectural style (ABAS)

Acegi, 104

ACM Transactions on Autonomous and Adaptive

Systems, 256

ACM Transactions on Software Engineering and

Methodology, 256

Adaptability

architectural patterns, 8

MAPE loop, 8

in modern systems

cloud computing, 9–10
cyber-physical systems, 10–11
service-based adaptations, 10

queuing theory, 8–9
Adaptable system, architect for, 8–9
Adaptation, 21

consistency, 369ge

definition, 20–21
disruption, 369ge

feedback control, 24

maintainability and policy-driven behavior, 24

separation of concerns, for dynamic reconfiguration, 24

time and responsibility, 24

weather service invocation, 21

Adaptation feedback loop (A-FL), 37–38
Adaptation function uncertainty sources, 65–68, 65t
Adaptive autonomy, 369ge

Adaptive security, 369ge. See also Automated security

adaptation; Runtime security adaptation

Adaptive software, 369ge

Adaptive web server, 182

Alion Semantic Mediation Bus, 314

AOSD. See Aspect-oriented software development (AOSD)

Application personalities, 306–307
Application specific design space, 309

Architecture-based self-adaptive systems, 369ge

data extraction approach, 53–54
data items, 54

description, 47

limitations and risks, 70

with multiple quality requirements, 47, 56–57
quality assessment mechanism

credibility, 55

quality of reporting, 55

rigor, 55

reflective software architecture models, 45

research questions, 49–50
search strategy

automatic search method, 51

exclusion criteria, 53

four-phased search process, 52–53
inclusion criteria, 53

publication period, 50–51
“quasi-gold” standard, 51, 53

search scope, 50–52
search strings, 51

venues, 50–51
uncertainty, 47–48
classes, 59, 62t

level of uncertainty, 63, 63t, 68–69, 69t
nature, 59, 62t

treatment, 63, 63t

variability issues, 69–70
Architecture tradeoff analysis method (ATAM), 1, 207, 249

Aspect-oriented programming (AOP)-static weaving, 105–106,
118–119

Aspect-oriented software development (AOSD), 93, 242

Attribute-based architectural style (ABAS), 93,

241–242
Automated inference techniques

learning-based approach for goal management

adaptation cycle, 139–140
emerging pattern caused by database index failure, 140,

141f

experimental results, 140–141
learning cycle, 138–139
objective, 137

research challenges and risks, 142–143
similar context, 140, 141f

mining-based approach for change management

experimental results, 146–148
research challenges and risks, 148

runtime dependencies, 144–145, 145f
using mined dependencies, 145–146

Automated security adaptation, 369ge

description, 106

vulnerability analysis and mitigation, 109

abstract program representation, 112

authentication bypass, 111

improper authorization, 111

Object Constraint Language, 109–111, 110f

385

Automated security adaptation (Continued)

OCL-based vulnerability analyzer, 111–112
OCL functions, 112

program source code, 112

signature locator, 112

SQLI, 111

vulnerability mitigation rules/actions, 113–114, 113t
Web application firewall, 112

XSS signature, 111

Automatic verification techniques, 168

Autonomic computing, 3, 27, 29, 329

Autonomic computing reference architecture (ACRA), 39–40
Autonomic manager, 29

Availability and resilience perspective, 227

B
blackholeAttacker, 161–162

C
Caching, 238

Candidate vector, 310

C&C viewpoint

component type, 84

connector type, 84

metamodel, 84, 85f

Change management

dependent transaction, 135–136
issues, 136

layer for self-managed systems, 34–35
mining-based approach for

experimental results, 146–148
research challenges and risks, 148

runtime dependencies, 144–145, 145f
using mined dependencies, 145–146

transaction, 135–136
Classes of uncertainty, 59, 62t

Cloud hotel management system (CHMS), 228

Collective self-adaptive systems, 3

Component-based adaptation, 369ge

Component-based architecture, 236

Component control layer, for self-managed systems, 34

Component-level dependent transaction, 369ge

Component-level transaction, 369ge

Compositional adaptation, 300, 369ge

Concurrency viewpoint, 227

Connectors

analysis, 304

dynamic environments, 304

synthesis, 303

Context-driven self-adaptive software systems, 36–37, 36f
Context information, 30

Context monitoring feedback loop (M-FL), 38–39

Context viewpoint, 227

Contract-based adaptive software architecture, 94

Controllers, 369ge

analysis, 312

partial specification

interface mapping, 311

model checking, 311–312
projection, 311

semi-automated mapping generation, 312

specification of composed system

control theory, 310

planning, 310

quotient, 310

Control objectives feedback loop (CO-FL), 37

Control theory, 310

Core-periphery structures, 205–207
Cost benefit analysis method (CBAM), 249

CustomerBLL class, 116

Cyber-physical systems, 10–11

D
DAMASCOP, 337

Database partitioning, 238

Data extraction approach, 53–54
Data providers (DPs), 215

Demand-driven supply chain management (DDSCM) system.

See also Supply chain management (SCM)

deployment architecture, 82, 83f

motivation, 81

requirements, 82

Dependent transaction, 135–136
Deployment viewpoint, 227

Design-time security engineering

early-stage, 102

later-stage, 102–104
Development viewpoint, 227

Distributed shared memory (DSM), 304–305
Domain-specific UML profile, 186

Domain-specific visual languages (DSVLs), 106–107
Draco, 149

DuSE approach, for automated architecture design and analysis

architectural change, 187

architectural decision space, 188

architectural objective space, 188

candidate vector and architecture, 188

description, 184

design dimension, 186–187
design dimension instance, 187

design space, 186

application specific, 188

inception stage, 186

usage stage, 186

386 Subject Index

design workflow, 186, 187f

quality metric, 188

technologies and mechanisms, 185–186
tool support, 189–191
variation point, 187

DYNAMICO reference model

adaptation feedback loop, 37–38
context monitoring feedback loop, 38–39
controllers, 37, 38f

control objectives feedback loop, 37

feedback loops, 36–37
Dynamic provisioning, 238

Dynamic reconfiguration, 369ge

Dynamic runtime trade-offs management, 280

Dynamic software product lines (DSPL), 95

Dynamic software system configurability, 369ge

definition, 79

runtime adaptability, 80

among C&Cs, 91, 92t

among nodes, 92, 92t

architectural view modeling, 83, 84f

C&Cs vs. nodes, 91–92, 92t
component-based architecture, 84

and dynamic configurability, 85–86, 87f
method for applying, 89, 90f

service-oriented architecture, 84

viewpoint, 86–89, 88–89t

E
Early-stage security engineering approach, 102

Ecosystem, 369ge. See also Software-intensive ecosystems

ElasticCluster component, 315

Elasticity, 9

enlistServers, 161–162
Enterprise resource planning (ERP) system, 82, 100

Enterprise service buses (ESBs), 308

Environment uncertainty sources, 64, 64t, 67

European Conference on Software Architecture (ECSA), 256

Extensible security infrastructure, 105

F
Feature-oriented adaptation, 370ge

Feedback control loop, 370ge

error propagation, 370ge

feedback loop, 355–356
MAPE-K control loop, 353

methodology

propagation of uncertainty analysis, 360

sources of uncertainty, 359

uncertainty handling, 359–360
nonfunctional requirements, 364–365
smartphone application, 361

sources of uncertainty identification

decision maker stage, 363

execute, 364

monitor stage, 361–362
plan synthesis stage, 363

problem domain stage, 362

solution domain stage, 362–363
trade-offs, 354

uncertainty, 353, 356–357
uncertainty propagation, 357–358

Feedback loop model of control theory, 31

Formal and scalable static vulnerability analysis

component, 112

Functional viewpoint, 227

G
Galactic

definition model, 100, 115f

with injected form-based authentication, 116, 117f

security testing, 116–117
Swinburne security objectives, 114

vulnerability analysis and mitigation, 117–118
Goal management

issues, 134–135
layer, for self-managed systems, 35

learning-based approach for

adaptation cycle, 139–140
emerging pattern caused by database index failure, 140,

141f

experimental results, 140–141
learning cycle, 138–139
objective, 137

research challenges and risks, 142–143
similar context, 140, 141f

Goal-oriented requirements engineering (GORE), 232–233
Goals uncertainty sources, 64, 65t, 67

Graph-based approach, 94–95
Grid-based high performance computing architecture, 215, 216f

H
Healing connectors, 304

Hot swapping components, 329

Human-in-the-loop adaptation, 370ge

formal model, 169–173
model checking stochastic multiplayer games, 168–169.

See also Stochastic multiplayer games (SMGs))

Human involvement, in self-adaptive systems, 158–160
adaptation strategies, 167–168
adaptation tactics, 167

attributes of human actors, 166

MAPE-K loop activities, 155–156
OWC models, 166

387Subject Index

Human involvement, in self-adaptive systems (Continued)

Znn.com

adding capacity and reducing service, 158

blackholing and throttling, 158

objectives, 157

Stitch code, 162–163
system architecture, 157, 157f

tactic cost/benefit, 161–162, 162t
tactic for server activation, 161, 161b

utility functions, 163, 163t

utility preferences, 163

Human system interaction model. See Opportunity-willingness-

capability (OWC) models

Hybrid vulnerability analysis, 119

Hypervolume performance indicator, 182, 198–199

I
IBM autonomic computing approach, 3

IEEE International Conference on Self-Adaptive and Self-

Organizing Systems (SASO), 256

IEEE Transactions on Software Engineering, 256

Individual self-adaptive systems, 3

Inference-based self-adaptation, 136–137, 370ge
Information and Software Technology, 256

Information viewpoint, 227

Infrastructure level, in cloud computing, 9–10
Interface Description Language (IDL), 304–305
Interface matching, 316–317
International ACM SIGSOFT Conference on the Quality of

Software Architectures (QoSA), 256

International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), 256

Interoperability, 214, 300, 370ge

Interpreter Console, 311–312
iPhone ecosystems, 203–204

J
Journal of Software and Systems, 256

K
K-component model, 94

Key-value stores (KVS), 238

Knowledge acquisition in automated specification (KAoS), 102

Kramer and Magee’s self-management reference model, 34–36

L
Late-stage security engineering approach, 102–104
Learning-based approach, for goal management

adaptation cycle, 139–140
emerging pattern caused by database index failure, 140, 141f

experimental results, 140–141

learning cycle, 138–139
objective, 137

research challenges and risks

computational complexity, 142

confounding variables, 142

extraneous variables, 142

learning accuracy threshold, 143

opportunistic self-training, 143

structure of learned model, 143

similar context, 140, 141f

Level of system adaptability (LSA) metric, 346

Level of uncertainty, 63, 63t, 68–69, 69t
Linear temporal logic (LTL), 319

Load balancing, 239

Logic-based description languages, 94–95
Long-living software, 250, 370ge

M
Manual security adaptation, 106

Mapping, 108

MapReduce jobs, 182

Mediation solutions

ASP.NET, 299–300
connectors

analysis, 304

dynamic environments, 304

synthesis, 303

controllers

analysis, 312

partial specification, 311–312
specification of composed system, 310

GMES, 300

middleware

analysis, 309

bridges, 307–308
service buses, 308–309
universal, 306–307

ontology-based reasoning, 300

perspectives, 301–302
requirements, 317–319
requirements-driven approach, 300

RESTful Web services, 299–300
service, 314–317
SOAP-based clients, 299–300
translators

analysis, 314

semantic mediation bus, 313–314
semantic Web Services, 313

Mediator, 300, 370ge. See also Connectors

Meta object facility (MOF), 185

Metropolis model, 205–207, 370ge
Microsoft Academic Search, 55–56

388 Subject Index

Microsoft ecosystems, 203–204
Middleware

analysis, 309

bridges, 307–308
service buses, 308–309
universal, 306–307

Misuse cases, 102

Model checking stochastic multiplayer games

automatic verification techniques, 168

rPATL, 169

Model-driven security engineering at runtime (MDSE@R)

architecture, 120, 121f

interceptor and AOP approach, 122

security controls database, 122

security enforcement point, 108–109, 122
security engineering at runtime, 107, 107f

security services, 108–109
security specification model, 108

security specification modeler tool, 121–122
security test case generator, 122

system-description model, 107–108, 120–121
system-security models, 108

test current system security, 108–109
update a live security specification document, 108–109
update live system interceptors’ document, 108–109
update the system container, 108–109
weaved system interceptors and security specification files,

122–123, 123f
Model Inspector, 311–312
Model uncertainty sources, 66, 66t, 68

design time and runtime phases, 68

Monitoring-Analysis-Planning-Execution and shared

Knowledge (MAPE-K) loop, 3, 29–30
and ACRA, 39–40
control loopFeedback control loop)

feedback loop, 32–33, 33f
responsibilities, 33–34
schematic illustration, 32, 32f

Multi-agent based systems, 329

Multimedia Service, 361

Multi-objective optimization, 274, 370ge

Multiple-input multiple-output (MIMO) approaches, 313

Multisided ATAM, 212–215
Multi-sidedness, 370ge

MUSIC, 10

N
Nature of uncertainty, 59, 62t

ndesign dimensions, 306–307
NodeManager component, 315

NReFactory .NET parser Library, 123–124

O
Object constraint language (OCL), 307

Object constraint language (OCL)-based vulnerability analyzer,

309–312
Operational viewpoint, 227

Opportunity-willingness-capability (OWC) models, 156, 166

OrbixCOMet, 307

Overall adaptivity growth (OAG) metric, 346

OWL-S, 313

P
Parallel processing, 240

Patterns-based security, 103

Platform level, in cloud computing, 9–10
PolyORB, 306–307
postConditionExp, 308

Process algebra, 94–95
Property Editor, 311–312
Protocol personalities, 306–307
Publish/Subscribe middleware solutions, 306

Q
Quality attributes, 47, 137, 183, 370ge

autonomic systems, 329–331
self-adaptive systems, 331–333
self-healing systems, 331

Quality-attribute scenario, 207

Quality concerns, in software architecture modeling, 93–94
Quality evaluation, in self-adaptive systems

continuous monitoring, 326

dimensions, 326

evaluation approach

design time, 327

managed and managing systems, 326–327, 326f
presentation, 327–328
quality attributes, 327

runtime, 327

selection, 328

software metrics, 327

quality attributes

autonomic systems, 329–331
self-adaptive systems, 331–333
self-healing systems, 331

software metrics

adaptivity of computing systems, 335–337
architectural level, 346

findings, 346–348
self-adaptive systems, 337–346

trade-offs, 349–350
Quality metric, 310

Quality of Service and Fault Tolerance (QoS & FT), 242

389Subject Index

Quality of service (QoS) SBA adaptation, 10

Quality requirements, 47, 56–57, 370ge

R
Rainbow framework, 5–6, 6f, 47, 94
concepts, 7

Stitch adaptation language, 5–6
utility preferences and impact predictions, 7

Reasoning, for human-in-the-loop adaptation. See Human-in-

the-loop adaptation

Reflective middleware for mobile computing (ReMMoC), 307

Reflective software architecture models, 45

Remote procedure call (RPC), 304–305
Replication, 239

Resource providers (RPs), 215

Resource uncertainty sources, 66, 66t

RESTful Web services, 299–300
Role-based access control (RBAC), 103

Room Management module, 228

rPATL, 169

Runtime adaptability, 80, 370ge

among C&Cs, 91, 92t

among nodes, 92, 92t

architectural view modeling, 83, 84f

C&Cs vs. nodes, 91–92, 92t
component-based architecture, 84

and dynamic configurability, 85–86, 87f
method for applying, 89, 90f

service-oriented architecture, 84

viewpoint, 86–89, 88–89t
Runtime configuration, 370ge

Runtime security adaptation

automated adaptation, 106, 109–114
manual adaptation, 106–109

Runtime trade-offs, in self-adaptive systems, 4–7

S
SA:DuSE, 182

SASSY, 10

SA-WSDL, 313–314
Scalability, 370ge

analyze scalability model, 234–235
capture scalability requirements

GORE, 232–233
hardware resource requirements specification, 232

response time requirements specification, 232

SWEBOK, 232–233
throughput requirements specification, 232

workload requirements specification, 231

cloud computing approach, 223

cloud hotel management system, 228

concerns, 230–231
create scalability model, 233–234
and performance perspective, 227

problems, 240

requirements, 235–236
rework architecture

caching, 238

component-based architecture, 236

database partitioning, 238

distributing processing in time, 240

dynamic provisioning, 238

key-value stores, 238

load balancing, 239

parallel processing, 240

replication, 239

scale-out, 237

scale-up, 237

service-oriented architecture, 236

virtualization, 239

workload, 237

scalability perspective, 224

service architecture

application and business service layer, 225

application architecture, 225–226
data access layer, 225

data storage layer, 225

distribution layer, 225

SaaS reference architecture, 224–225, 301f
supporting service layer, 225

software architecture perspective, 226–228
Scaling out tactics, 9

Scaling up tactics, 9

Search-based software engineering, 370ge

SECTET project, 103–104
Secure i*, 102

Secure TROPOS, 102

SecureUML, 103

Security adaptation of existing software systems, 118

Security analysis, 370ge

Security and performance trade-off, 119

Security-as-a-service (SeAAS), 103–104
Security-driven and model-based dynamic adaptation

approach, 105

Security engineering, 370ge

activities, 101

average time to fix security vulnerabilities, 99, 100f

design-time, 101–104
security retrofitting, 104–105

Security perspective, 227

Security reengineering approach, 105

Security retrofitting techniques, 104–105
Self-adaptation, 349, 370–371ge. See also Adaptation

390 Subject Index

adaptation time and responsibility, 24

Adapter design-pattern, 22–23
architectural challenges, 40–41
behavioral uncertainty, 30

definition, 20–21
dynamic context, 30

environmental uncertainty, 30

evaluation of, 370ge

feedback control, 24

goals, 27

dependability, 28

fundamental properties, 28–29
nonfunctional requirements, 28

performance, 28

security and safety, 28

self-configuration, 27

self-healing, 27

self-optimization, 27

self-protection, 27

sensors and effectors, 29–30
maintainability and policy-driven behavior, 24

separation of concerns, for dynamic reconfiguration, 24

static context, 30

Twitter-Weather architecture design, 22–23, 22f
Self-adaptive software, 131

architecture styles for, 8

autonomic computing reference architecture, 39–40
computed control actions, 26

definition, 1–2
DYNAMICO reference model

adaptation feedback loop, 37–38
context monitoring feedback loop, 38–39
controllers, 37, 38f

control objectives feedback loop, 37

feedback loops, 36–37
feedback loop model of control theory, 31

Kramer and Magee’s self-management reference model,

34–36
MAPE-K model

feedback loop, 32–33, 33f
responsibilities, 33–34
schematic illustration, 32, 32f

measured outputs, 26

observable adaptation properties, 26

reference inputs, 26

research, 3

runtime trade-offs, 4–7
self-adaptation goal, 25

structure, 25

Self-adaptive software architectures, 371ge

background, 251–252
challenges and research directions, 279–282

results and discussions

limitations, 277–279
mechanisms, 274–277
publication types, 266–269
quality attributes, 273–274
self-* properties, 269–270
software paradigms, 270–272
studies, 262–264
types of research and contribution, 265–266

software sustainability, 250

surveys, 279

systematic mapping

analysis and mapping, 254, 261–262
data extraction and classification, 254, 259–260
definition, 252

planning, 253

research gaps and trends, 252

search execution, 253, 257–258
selection of primary studies, 254, 258–259
systematic literature review, 252

systematic mapping planning, 254–257
Self-adaptive software systems, 46, 371ge.

See also Architecture-based self-adaptive systems

Self-adaptive systems architectures, 369ge

adaptive web server, 182

application-specific design space, 182

architectural framework, 369ge

architectural tactics, 93

architecture design-based autonomic systems, 329

automated architecture design and analysis

DuSE approach, 184–191
requirements, 183–184

change, 308–309
control-theoretical feedback loops, 182

decision space, 310

design and analysis automation, 191–196
distributed MapReduce jobs, 182

environment monitoring, 181

evaluation, 196–199
hypervolume performance indicator, 182

MapReduce jobs, 182

multiobjective optimization techniques, 181–182
objective space, 310

perspective, 369ge

perspectives, 93

QoS-aware web services, 181

requirements, 183–184
SA:DuSE, 182

self management/self-adaptation capabilities, 181

viewpoint, 369ge

views, 369ge

well-structured design spaces, 181–182

391Subject Index

Self-architecting software systems, 94

Self-awareness, 22, 269, 282, 371ge

Self-aware trade-offs management, 282

Self-healing systems, 331

Self-managing Java server, 331

Self-* properties, 269–270
Semantic mediation bus, 313–314
Semantic Web Services, 313

Semi-automated mapping generation, 312

SERENITY project, 105

Service-based adaptations (SBAs), 10

Service-Component Architecture (SCA) specification, 19

Service-oriented architecture (SOA), 19, 236

Simultaneous multiple trade-offs management, 281

Single-input single-output (SISO) approaches, 313

Slashdot effect, 157

Smart Grid, 205

Smartphone, 361

SMGs. See Stochastic multiplayer games (SMGs)

SOAP-based clients, 299–300
SOA systems, 103

Socio-technical ecosystem, 371ge

Software adaptability, 371ge. See also Software metrics

Software and System Modelling, 256

Software architecture, 80–81, 371ge
Software Engineering Book of Knowledge (SWEBOK),

232–233
Software-intensive ecosystems, 371ge

architecture analysis

ATAM, 207

cloud computing platforms, 208

Facebook’s location features, 208

multisided interactions, 209–210
quality-attribute scenario, 207

voice-over-IP connections, 208

complementarity analysis, 205

extending architectural analysis

eliciting models of multisidedness, 211–212
Google maps, 211

multisided ATAM, 212–215
UK National Healthcare System, 210

unmanned aerial vehicles, 211

indirect scenarios, 216–217
iPhone, 203–204
metropolis model and core-periphery structures, 205–207
Microsoft, 203–204
multisided matrix, 219

performance, 217–219
sociotechnical ecosystems, 220

technological and social systems, 220

ultra-large-scale characteristics, 203

wickedness, 204–205
Software level, in cloud computing, 9–10

Software metrics

adaptivity of computing systems, 335–337
architectural level, 346

findings, 346–348
self-adaptive systems, 337–346

Software modeling, 371ge

Software Qualities And Adaptability Relationships

(SOLAR), 346

Stability, Accuracy, Settling time, and Overshoot (SASO)

properties, 335–337
Stitch adaptation language, 5–6
Stitch language for self-adaptation

adaptation model

strategy, 162–163
tactics, 161–162
utility profile, 163

Outgun strategy, 164–165, 165f
Rainbow framework, 160

Stochastic multiplayer games (SMGs), 156

Eliminate and Outgun adaptation strategy modules, 172–173
environment process, 170, 170b

human actor model, 170, 170b

model checking, 168–169
player definition, 169, 170b

strategy selection, 176–177
strategy utility analysis, 173–176
target system extended with human actors module, 171–172,

171b

utility profile, 173

Structured Analysis for Requirements Definition (SADT), 359

Supply chain, definition, 81

Supply chain management (SCM)

activities, 81

conceptual model, 81, 82f

software architecture, adaptability view of, 90–92
Swinburne security needs, 114–116
SwinMarket, 100–101, 114, 116–117
SwinSoft, 100–101, 114, 116, 122
Systematic literature review (SLR), 252

Systematic mapping, 371ge

aim, 252

analysis, 261–262
analysis and mapping, 254

data extraction and classification, 254, 290–292
contribution type, 259–260
research type, 259

definition, 252

limitations, 277–279
planning, 253

research gaps and trends, 252

search execution, 253, 257–258
selection of primary studies, 254, 258–259
systematic literature review, 252

392 Subject Index

systematic mapping planning

research questions, 254

search sources, 254–256
search string, 256

selection criteria, 256–257
System-description model (SDM), 107–108

T
Tactic, 5–6
targetElementsExp, 186

TeraGrid, 215

Trade-offs, 371ge

Trade-offs, in adaptive systems design

cost and schedule, 4

description, 3–4
dynamic/runtime decisions, 4

good design, 4

limitations, 7

static/nonruntime decisions, 4

Transaction, 135–136
Transaction association rules (TARs), 144–146
Translators

analysis, 314

semantic mediation bus, 313–314
semantic Web Services, 313

Transport management systems (TMS), 82

Travel reservation system (TRS)

feature model, 137, 138f

get price quote scenario, 135–136
subset of software architecture, 133, 133f

Treatment of uncertainty, 63, 63t

Twitter-Weather web-mashup application architecture, 19, 19f

U
Ultra-large-scale (ULS) system, 371ge

UMLsec, 103

UML2.0 service profile, 103

Uncertainty, 371ge

classes of, 59, 62t

level of uncertainty, 63, 63t

vs. emerging time, 68–69, 69t
nature of, 59, 62t

propagation, 371ge

treatment, 63, 63t

Uncertainty dimensions, 371ge

classification framework for, 57, 58t

options for, 59

and sources, 53–54, 54t, 59, 60–61t
Uncertainty identification

decision maker stage, 363

execute, 364

monitor stage, 361–362

plan synthesis stage, 363

problem domain stage, 362

solution domain stage, 362–363
Unified modeling language (UML), 185

Universal middleware, 306–307
User-driven security adaptation, 371ge

V
Variation point, 308

V&B approach. See Views and Beyond (V&B) approach

Viewpoint guide, 86–87
Views and Beyond (V&B) approach, 79–81
C&C viewpointC&C viewpoint)

component and connector category, 80

copy-migrates-to, 85

deployment view category, 80

execution-migrates-to, 85

migrates-to, 85

module view category, 80

view category, style, and view relations, 81, 81f

Virtualization, 239

Virtual patching trade-off, 119

Voice-over-IP (VoIP) connections, 208

Vulnerability analysis and mitigation, 109, 123–124, 371ge
abstract program representation, 112

authentication bypass, 111

improper authorization, 111

Object Constraint Language, 109–111, 110f
OCL-based vulnerability analyzer, 111–112
OCL functions, 112

program source code, 112

signature locator, 112

SQLI, 111

vulnerability mitigation rules/actions, 113–114, 113t
Web application firewall, 112

XSS signature, 111

W
Warehouse management systems (WMS), 82

Web application firewall (WAF), 112, 119

Web mashup application, 18–19
Web Service Execution Environment (WSMX), 313

Web-Services-based service-oriented architectures, 335–337
Web Services Reliable Messaging system, 335–337
WebServiceXWeatherAdapter component, 22–23
Windows Identity Foundation, 104

Working IEEE/IFIP Conference on Software Architecture

(WICSA), 256

WSMO, 313

393Subject Index

Z
Znn.com

adding capacity and reducing service, 158

blackholing and throttling, 158

objectives, 157

Stitch code, 162–163
system architecture, 157, 157f

tactic cost/benefit, 161–162, 162t
tactic for server activation, 161, 161b

utility preferences, 163

394 Subject Index

	Title Page
	Copyright
	Contributors
	About the Editors
	Foreword by David Garlan
	Foreword by Nenad Medvidovic Behold the Golden Age of Software Architecture
	References

	Foreword by Paris Avgeriou
	Foreword by Rogério de Lemos
	Preface
	Introduction
	Part I: Concepts and Models for Self-Adaptive Software Architectures
	Part II: Analyzing and Evaluating Trade-offs in Self-Adaptive Software Architectures
	Part III: Managing Trade-offs in Self-Adaptive Software Architectures
	Part IV: Quality Assurance in Self-Adaptive Software Architectures

	Managing Trade-Offs in Adaptable Software Architectures
	Introduction
	Background
	Trade-Offs in Adaptive Systems Design
	Runtime Trade-Offs in Self-Adaptive Systems
	Challenges and the Road Ahead
	How to Architect for Adaptability?
	Adaptability in Modern Systems
	Cloud computing
	Service-based adaptation to QoS
	Cyber-physical systems

	References

	Architecting Software Systems for Runtime Self-Adaptation: Concepts, Models, and Challenges
	Introduction
	Motivation: A Web-Mashup Application
	Adaptation vs. Self-Adaptation
	Basic Definitions
	Architecting Software for Adaptation and Self-Adaptation
	Architecting for adaptation
	Architecting for self-adaptation
	Implications of self-adaptation

	Foundational Concepts for Architecting Self-Adaptive Software
	Fundamental Dimensions of Self-Adaptive Software
	Self-Adaptation Goals
	Self-properties as self-adaptation goals
	Nonfunctional requirements as self-adaptation goals

	Self-Adaptation Fundamental Properties
	Sensors and Effectors
	Uncertainty and Dynamic Context

	Reference Models for Architecting Self-Adaptive Software
	The Feedback Loop Model of Control Theory
	The MAPE-K Model
	Kramer and Magees Self-Management Reference Model
	The DYNAMICO Reference Model
	The control objectives feedback loop CO-FL
	The adaptation feedback loop A-FL
	The context monitoring feedback loop M-FL

	The Autonomic Computing Reference Architecture ACRA

	Major Architectural Challenges in Self-Adaptation
	Summary
	References

	A Classification Framework of Uncertainty in Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements
	Introduction
	Background
	Self-adaptive systems
	Architecture-based self-adaptation
	Architecture-based self-adaptive systems with multiple quality requirements
	Uncertainty in architecture-based self-adaptive systems

	Related Work

	Study Design
	Research Questions
	Search Strategy
	Search scope and automatic search
	Overview of search process
	Refining the search results
	Inclusion criteria
	Exclusion criteria

	Data Extraction
	Data Items
	Quality Assessment of Selected Papers

	Results
	Quality of Selected Papers
	RQ1: What Are the Current Architecture-Based Approaches Tackling Uncertainty in Self-Adaptive Systems With Multipl...
	RQ2: What Are the Different Uncertainty Dimensions Which Are Explored by These Approaches?
	RQ2.a: What Are the Options for These Uncertainty Dimensions?

	RQ3: What Sources of Uncertainties Are Addressed by These Approaches?
	RQ4: How Are the Current Approaches Classified According to the Proposed Uncertainty Classification Framework?

	Discussion
	Analysis of Derived Sources of Uncertainty Based on Uncertainty Dimensions
	Environment uncertainty
	Goals uncertainty
	Adaptation functions uncertainty
	Model uncertainty

	Main Findings and Implications for Researchers
	Model uncertainty is investigated in both design and runtime
	Uncertainty is often explored at scenario level regardless of emerging time
	Uncertainty starting to get acknowledged in both design and runtime
	Current approaches mainly focus on tackling uncertainty due to variability through approaches in both design and...
	Most commonly addressed source of uncertainty is dynamicity of environment
	Future goal changes is the second most important uncertainty source

	Limitations of the Review and Threats to Validity
	Bias
	Domain of study

	Conclusion and Future Work
	Appendix

	References

	An Architecture Viewpoint for Modeling Dynamically Configurable Software Systems
	Introduction
	Architecture Viewpoints
	Case Study: DDSCM Systems
	Metamodel for Runtime Adaptability Viewpoint
	Runtime Adaptability Viewpoint
	Method for Applying the Adaptability Viewpoint

	Case Study-Adaptability View of the SCM Software Architecture
	Related Work
	Quality Concerns in Software Architecture Modeling
	Architectural Approaches for Runtime Adaptability

	Conclusion
	References

	Adaptive Security for Software Systems
	Introduction
	Motivation
	Security Engineering State-of-the-Art
	Design-Time Security Engineering
	Early-stage security engineering
	Later-stage security engineering

	Security Retrofitting
	Adaptive Application Security

	Runtime Security Adaptation
	Supporting Manual Adaptation Using MDSER
	Automated Adaptation Using Vulnerability Analysis and Mitigation
	OCL-based vulnerability analyzer
	Vulnerability mitigation
	Vulnerability mitigation component

	Usage Example
	Task 1-Model Galactic System Description-One-Time Task
	Task 2-Model Swinburne Security Needs
	Task 3-System-Security Weaving
	Task 4-Galactic Security Testing
	Task 5-Galactic Continuous Vulnerability Analysis and Mitigation

	Discussion
	Chapter Summary
	Appendix
	Platform Implementation
	MDSE@R: Model-Driven Security Engineering at Runtime
	Vulnerability Analysis and Mitigation

	References

	Automated Inference Techniques to Assist With the Construction of Self-Adaptive Software
	Introduction
	Motivating Application
	Shortcomings With the State-of-the-Art
	Goal Management
	Change Management

	Overview of Inference-Based Techniques
	Learning-Based Approach for Goal Management
	Learning Cycle
	Adaptation Cycle
	Experimental Results
	Noteworthy Research Challenges and Risks
	Extraneous and confounding variables
	Overhead of monitoring and learning
	Adaptation in the presence of uncertainty
	Structure of learned model

	Mining-Based Approach for Change Management
	Mining for Runtime Dependencies
	Using the Mined Dependencies
	Experimental Results
	Noteworthy Research Challenges and Risks
	Long-living transactions and high workload
	Overhead of mining and updating predictions
	Transaction coverage and other forms of mining

	Related Work
	Conclusion
	References

	Evaluating Trade-Offs of Human Involvement in Self-Adaptive Systems
	Introduction
	Motivating Scenario
	System Objectives
	Adaptation Mechanisms

	Related Work
	Analyzing Trade-Offs in Self-Adaptation
	Adaptation Model
	Tactic
	Strategy
	Utility profile

	Adaptation Strategy Selection

	Analyzing Trade-Offs of Involving Humans in Adaptation
	Human Model
	Opportunity
	Willingness
	Capability

	Integrating Human and Adaptation Models
	Tactics
	Strategies

	Reasoning About Human-in-the-Loop Adaptation
	Model Checking Stochastic Multiplayer Games
	Formal Model
	Player definition
	Environment
	Human model
	System
	Adaptation logic
	Utility profile

	Analysis
	Strategy utility
	Strategy selection

	Conclusion
	References

	Principled Eliciting and Evaluation of Trade-Offs When Designing Self-Adaptive Systems Architectures
	Introduction
	Requirements for Automated Architecture Design and Analysis
	The DuSE Approach for Automated Architecture Design and Analysis
	The Rationale
	The Approach
	Tool Support

	Automating the Design and Analysis of Self-Adaptive Systems Architectures
	Running Examples

	Evaluation
	Conclusions and Future Work
	References

	Analyzing the Architectures of Software-Intensive Ecosystems
	Introduction
	The Challenge of ``Wickedness´´
	Analyzing Complementarity Within Ecosystems

	The Metropolis Model and Core-Periphery Structures
	The Challenge to Architecture Analysis
	Multisided Interactions

	Extending Architectural Analysis
	Eliciting Models of Multisidedness
	Multisided ATAM

	An Example Analysis
	Example Indirect Scenarios
	Performing the Analysis
	Discussion

	Conclusions/Future Research
	References

	Architectural Perspective for Design and Analysis of Scalable Software as a Service Architectures
	Introduction
	Software as a Service Architecture
	Software Architecture Perspective
	Case Study
	Software Architecture Perspective for Scalability
	Concerns
	Activities for Applying Scalability Perspective
	Capture scalability requirements
	Create scalability model
	Analyze scalability model
	Assess against requirements
	Rework architecture

	Problems and Pitfalls
	Checklist

	Related Work
	Conclusion
	References

	Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping Study
	Introduction
	Background
	Systematic Mapping Protocol
	Systematic Mapping Process
	Step 1: Systematic Mapping Planning
	Research questions
	Search strategy
	Search sources
	Search string

	Selection criteria

	Step 2: Search Execution
	Step 3: Selection of Primary Studies
	Step 4: Data Extraction and Classification
	Research type
	Contribution type

	Step 5: Analysis and Mapping

	Results and Discussions
	RQ1. What Are the Studies That Explicitly Addressed Trade-offs Management for Self-Adaptive Software Architectures?
	RQ2. What Are the Types of Research and Contribution Presented in These Studies?
	RQ3. What Are the Publication Types of These Studies, and Their Chronological Distribution? Which Research Groups...
	RQ4. Which Self-* Properties Have Driven Trade-offs Management for Self-Adaptive Software Architectures?
	RQ5. Which Software Paradigms Have Been Considered in Architectures Trade-offs Management?
	RQ6. Which Quality Attributes Are Investigated in Trade-offs Management?
	RQ7. Which Mechanisms Were Used to Manage Trade-offs for Self-Adaptive Software Architectures? What Is the Time D...
	Limitations of the Study

	Related Surveys
	Challenges and Research Directions
	Conclusions and Future Work
	Primary Studies
	Classification and Data Extraction of Primary Studies
	References

	The Many Facets of Mediation: A Requirements-Driven Approach for Trading Off Mediation Solutions
	Introduction
	The Different Perspectives on Mediation
	The Software Architecture Perspective: Mediators as Connectors
	Connector Synthesis
	Connector Synthesis in Dynamic Environments
	Analysis

	The Middleware Perspective: Mediators as Middleware
	Universal Middleware
	Middleware Bridges
	Service Buses
	Analysis

	The Formal Methods Perspective: Mediators as Controllers
	Controller Synthesis Using a Specification of the Composed System
	Quotient
	Planning
	Control theory

	Controller Synthesis Using a Partial Specification
	Projection
	Interface mapping
	Model checking
	Semi-automated mapping generation

	Analysis

	The Semantic Web Perspective: Mediators as Translators
	Semantic Web Services
	Semantic Mediation Bus
	Analysis

	Mediator Synthesis as a Service
	Requirements and Mediation
	Summary
	Acknowledgments
	References

	An Overview on Quality Evaluation of Self-Adaptive Systems
	Introduction
	Evaluation of Self-Adaptive Systems
	Presentation of the Available Evaluation Approaches
	Selection of the Available Evaluation Approaches

	Evaluation Based on Quality Attributes
	Evaluation in Autonomic Systems
	Quality-Driven Evaluation of Self-Healing Systems
	Quality-Driven Evaluation of Self-Adaptive Systems
	Findings

	Evaluation Based on Software Metrics
	Evaluating the Adaptivity of Computing Systems
	Criteria and Metrics for Evaluating Self-Adaptive Systems
	Software Adaptability at the Architectural Level
	Findings

	Trade-offs in Evaluation of Self-Adaptive Systems
	Conclusions and Further Work
	References

	Identifying and Handling Uncertainties in the Feedback Control Loop
	Introduction
	Motivation
	Feedback Loop
	Uncertainty
	Uncertainty Propagation in the MAPE-K Loop

	Methodology
	Identifying Sources of Uncertainty
	Handling Uncertainty
	Analyzing Propagation of Uncertainty

	Case Study: Identification of Uncertainties
	Smartphone Application
	Identifying Sources of Uncertainty
	Monitor stage
	Properties
	Sources of uncertainty

	Analyze Problem Domain stage
	Properties
	Sources of uncertainty

	Analyze Solution Domain stage
	Properties
	Sources of uncertainty

	Synthesis Decision Maker stage
	Properties
	Sources of uncertainty

	Synthesis Plan Synthesis stage
	Properties
	Sources of uncertainty

	Execute
	Properties
	Sources of uncertainty

	Related Work
	Conclusions
	References

	Glossary
	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

