Managing Trade-offs In
Adaptable Software
Architectures

Managing Trade-offs In
Adaptable Software
Architectures

Edited by

Ivan Mistrik
Nour Ali

Rick Kazman
John Grundy
Bradley Schmerl

fi AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ¢ SAN DIEGO

- = SAN FRANCISCO e SINGAPORE © SYDNEY ¢ TOKYO
ELSEVIER

Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, Sth Floor, Cambridge, MA 02139, United States

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material
herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-802855-1

For information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/

aa Working together
—4B8 o grow libraries in
Bockfid developing countries

www.elsevier.com ¢ www.bookaid.org

Publisher: Todd Green

Acquisition Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Production Project Manager: Priya Kumaraguruparan
Cover Designer: Maria Inés Cruz

Typeset by SPi Global, India

http://www.elsevier.com/permissions
https://www.elsevier.com/

Contributors

N. Ali
University of Brighton, Brighton, United Kingdom

M. Abdelrazek
Deakin University, Melbourne, VIC, Australia

S. Andrade
Federal Institute of Education, Science, and Technology of Bahia; Federal University of Bahia,
Salvador, Bahia, Brazil

F. Arcelli Fontana
University of Milano-Bicocca, Milan, Italy

P. Avgeriou
University of Groningen, Groningen, Netherlands

R. Bahsoon
University of Birmingham, Birmingham, United Kingdom

N. Bencomo
Aston University, Birmingham, United Kingdom

A. Bennaceur
The Open University, Milton Keynes, United Kingdom

P. Boxer

Boxer Research Limited, London, United Kingdom

J. Camara

Carnegie Mellon University, Pittsburgh, PA, United States
K. Canavera

George Mason University, Fairfax, VA, United States

R. Capilla

Rey Juan Carlos University, Madrid, Spain

C. Carrillo

Polytechnic University of Madrid, Madrid, Spain

R. de Lemos

University of Kent, United Kingdom; CISUC, University of Coimbra, Portugal
N. Esfahani

Google Inc, Mountain View, CA, United States

D. Garlan
Carnegie Mellon University, Pittsburgh, PA, United States

J. Grundy
Deakin University, Melbourne, VIC, Australia

XV

Xvi Contributors

A. Ibrahim
Deakin University, Melbourne, VIC, Australia

R. Kazman
Carnegie Mellon University, Pittsburgh, PA; University of Hawaii, Honolulu, HI, United States

R. Macedo
Federal University of Bahia, Salvador, Bahia, Brazil

S. Mahdavi-Hezavehi
University of Groningen, Groningen, Netherlands; Linnaeus University, Vaxjo, Sweden

S. Malek
University of California, Irvine, Irvine, CA, United States

I. Mistrik
Independent Software Researcher, Heidelberg, Germany

G.A. Moreno
Carnegie Mellon University, Pittsburgh, PA, United States

H.A. Miiller
University of Victoria, Victoria, BC, Canada

B. Nuseibeh
The Open University, Milton Keynes, United Kingdom; Lero—The Irish Software Research Centre,
Limerick, Ireland

0. Ozcan
Bilkent University, Ankara, Turkey

P. Potena
Fondazione Bruno Kessler, Trento, Italy

C. Raibulet
University of Milano-Bicocca, Milan, Italy

M. Salama
University of Birmingham, Birmingham, United Kingdom

B. Schmerl
Carnegie Mellon University, Pittsburgh, PA, United States

H. Sozer
Ozyegin University, Istanbul, Turkey

G. Tamura
Universidad Icesi, Cali, Colombia

B. Tekinerdogan
Wageningen University, Wageningen, The Netherlands

N.M. Villegas
Universidad Icesi, Cali, Colombia

D. Weyns
Linnaeus University, Vaxjo, Sweden

About the Editors

Ivan Mistrik is a researcher in software-intensive systems engineering. He is a computer scientist who
is interested in system and software engineering and in system and software architecture, in particular:
life cycle system/software engineering, requirements engineering, relating software requirements and
architectures, knowledge management in software development, rationale-based software develop-
ment, aligning enterprise/system/software architectures, value-based software engineering, agile
software architectures, and collaborative system/software engineering. He has more than 40 years’
experience in the field of computer systems engineering as an information systems developer, R&D
leader, SE/SA research analyst, educator in computer sciences, and ICT management consultant. In
the past 40 years, he has been primarily working at various R&D institutions in United States and
Germany and has done consulting on a variety of large international projects sponsored by the
ESA, EU, NASA, NATO, and UN. He has also taught university-level computer sciences courses
in software engineering, software architecture, distributed information systems, and human-computer
interaction. He is the author or co-author of more than 90 articles and papers in international journals,
conferences, books, and workshops. He has written a number of editorials for special issues and edited
books. He has also written over 120 technical reports and presented over 70 scientific/technical talks.
He has served in many program committees and panels of reputable international conferences and or-
ganized a number of scientific workshops. He was the lead-editor of nine books between 2006 and
2015: Rationale Management in Software Engineering, Rationale-Based Software Engineering,
Collaborative Software Engineering, Relating Software Requirements and Architecture, Aligning
Enterprise/System/Software Architectures, Agile Software Architecture, Economics-Driven Software
Architecture, Relating System Quality and Software Architecture, and Software Quality Assurance.

Nour Ali has been a Principal Lecturer at the University of Brighton since Dec. 2012. She holds a Ph.D.
in Software Engineering from the Polytechnic University of Valencia-Spain for her work in Ambients
in Aspect-Oriented Software Architecture. She is a Fellow of the UK Higher Education Academy
(HEA). Her research area encompasses service-oriented architecture, software architecture, self-
adaptation, and mobile systems. In 2014, the University of Brighton granted her a Rising Stars award
in Service Oriented Architecture Recovery and Consistency. She is currently the Principal
Investigator for the Royal Society Newton grant, “An Autonomic Architectural Approach for Health
Care Systems,” and is the Knowledge Supervisor for the Knowledge Transfer Partnership project
for migrating legacy software systems using architecture centric approach. She has also been the
Principal Investigator for an Enterprise Ireland Commercialisation Project in Architecture Recovery
and Consistency and co-investigator in several funded projects. Dr. Ali serves on the Programme
Committee for several conferences (e.g., ICWS, ICMS, and HPCC) and journals (e.g., JSS, or JIST).
She has co-chaired and co-organized several workshops such as the IEEE International Workshop on
Engineering Mobile Service Oriented Systems (EMSOS) and the IEEE Workshop on Future of
Software Engineering for/in the Cloud. She was the co-editor of the JSS Special Issue on the Future
of Software Engineering for/in the Cloud published in 2013 and has co-edited three books including
Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice, published in 2012.

Xvii

Xviii About the Editors

She is the Application Track chair for International Conference on Web Services (ICWS 2016). Her
personal website is: http://www.cem.brighton.ac.uk/staff/nal79.

John Grundy is Professor of Software Engineering and Pro-Vice Chancellor ICT Innovation and
Translation at Deakin University, Australia. Previously he was Dean of the School of Software
and Electrical Engineering and also Director of the Swinburne University Centre for Computing
and Engineering Software Systems (SUCCESS). Before coming to Swinburne, he was Head of
Department for Electrical and Computer Engineering at the University of Auckland, New Zealand.
His teaching is mostly in the area of team projects, software requirements and design, software
processes, distributed systems, and programming. His research areas include software tools and
techniques, software architecture, model-driven software engineering, visual languages, software
security engineering, service-based and component-based systems and user interfaces. He has authored
over 300 publications and supervised over 50 Ph.D. and Masters by research students. He provides
consulting work for a range of companies which have included, among many others, Data61, DST
Group, Mailguard, Thales Australia, CA Labs, XSol Ltd, Orion Health Ltd, Peace Software Ltd,
and Whitecloud Systems Ltd.

Rick Kazman is a Professor at the University of Hawaii and a Principal Researcher at the Software
Engineering Institute of Carnegie Mellon University. His primary research interests are software
architecture, design and analysis tools, software visualization, and software engineering economics.
Kazman has created several highly influential methods and tools for architecture analysis, including
the SAAM (software architecture analysis method), the ATAM (architecture tradeoff analysis method),
the CBAM (cost-benefit analysis method), and the Dali and Titan tools. He is the author of over 200
publications, and co-author of several books, including Software Architecture in Practice, Designing
Software Architectures: A Practical Approach, Evaluating Software Architectures: Methods and Case
Studies, and Ultra-Large-Scale Systems: The Software Challenge of the Future. His publications have
been cited over 16,000 times, making him one of the most cited authors in all of software engineering.

Bradley Schmerl is a Principal Systems Scientist in the Institute for Software Research at Carnegie
Mellon University, USA. He has been involved in research in self-adaptive systems for over 20 years,
starting with his Ph.D. at Flinders University in South Australia, which investigated using configuration
management techniques to manage dynamically changing systems. He was a Lecturer at Flinders
University and an Assistant Professor at Clemson University in South Carolina before joining Carnegie
Mellon in 2000. He is involved in research using software architecture models as a basis for reasoning
about self-adapting systems, including using utility theory to select appropriate strategies that balance
multiple quality and business priorities. He has co-authored over a dozen journal and conference papers
on self-adaptation, co-organized the Second Workshop on Self-Organizing Architectures in 2011,
co-edited the Special Issue on “State of the Art in Self-Adaptive Systems” of the Journal of Software
and Systems in 2012, and was program chair for the 2015 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems.

http://www.cem.brighton.ac.uk/staff/na179

Foreword by David Garlan

The idea of a system that adapts itself while it is running is as old as the notion of computation. But for
many years the complexity of creating such systems hardly justified their value. Systems typically ran
in predictable, stable environments, and their requirements and fault models were fairly well
prescribed.

But over the past couple of decades, many things have driven system designers to reconsider the prop-
osition of self-adapting software systems. Today systems must function in complex environments built out
of infrastructure, components, services, and other systems that are not under direct control of the original
system’s developers. Requirements may change. Environments change, particularly in the presence of mo-
bility. System configurations must be optimized to satisfy multiple (often conflicting) quality goals dictated
by business context. And, at the same time, the need to deploy systems with 24/7 availability has moved out
of the niche system category (telephone system, energy grid, etc.) into mainstream software.

About a decade and a half ago, people began to realize that to account for this new reality, it was
important to understand how to make systems more resilient, more malleable, and more extensible,
without compromising quality, cost of development, and cost of deployment—and, significantly, with-
out taking systems offline. Old solutions of simply throwing more system administrators at the problem
were becoming increasingly cost-prohibitive. And engineering fault tolerance and system reconfigura-
tion directly into the system was leading to unsustainable complexity.

What emerged was a blossoming of a new focus on the software engineering of self-adaptive sys-
tems that could rise to the challenges of modern contexts. Almost simultaneously there emerged new
venues for discussing such issues: the ACM Workshops on Self-Healing Systems (WOSS), the Inter-
national Conference on Autonomic Computing (ICAC), the international workshop on self-adaptive
software (IWSAS), and others. And, within the domain of commercial systems, we began to see myriad
new (albeit special-purpose) mechanisms for adaptation: automated server monitoring and repair in
Internet-based systems, adaptive performance through cloud computing platforms, and micro-services
to support rapid, and frequent, deployment of functional enhancements.

Additionally, a major advance in our thinking about such systems emerged through the recognition
that one way to address the challenges of self-adaptation was to take a control systems perspective on
the problem. Specifically, a system could be made self-adaptive by adding sensors to monitor its run-
time state, actuators to change it at runtime, and a separate reasoning mechanism to decide when it is
appropriate to adapt the system, and how best to do so. This was famously referred to (in some circles)
as the MAPE-K loop, or monitor-analyze-plan-execute using a shared base of knowledge.

This perspective (among others) helped researchers and developers consider the architectures of
self-adaptive systems as first-class areas of study. And while the overall MAPE-K control architecture
tends to encompass most such efforts, numerous new challenges emerge in order to get the details right.

Monitoring: What does it mean to have sufficient situational awareness, and what can one do when
such information is unavailable or highly uncertain? How can one sift through large volumes of
low-level system observations to derive higher-level views of system behavior and state?
Analysis: How can a system determine when adaptation is necessary? How can it identify the part of
the system that needs to be adapted? How do you prioritize the possible problems that need to
be addressed when several are detected? To what extent should the system focus on faults, and to

XixX

XX Foreword by David Garlan

what extent on homeostatic improvement? What are appropriate measures of system quality that
take into account multiple dimensions of concern (e.g., cost, performance, security, availability)?
How do you recognize “softer” problems, where the system is out of balance with respect to
competing quality attributes (e.g., sacrificing deployment cost to improve performance)?
Planning: How can one determine an appropriate adaptation strategy that considers the inherent
trade-offs between different quality dimensions that might be affected? How can one balance
the need for rapid response to critical problems, while still support longer-range system
improvement? How can one provide assurance that adaptation will make a system better, and not
worse? How can one provide guarantees about coverage of potential problems? How can one
build planning mechanisms that are proactive in anticipating problems and correcting them before
they do damage? How do you reason about uncertainty, given the fact that we may not know
precisely the state of the system, environment, or even the outcomes of repair actions?
Execution: How can you build systems so their actuation interface provides more flexibility to the
adaptive process? How can you support concurrent adaptations of the same system?

Knowledge: What kinds of information are most useful to the adaptation process? How can you
strike a balance between abstract views of the system and detailed enough information to make
informed decisions about adaptation? Can cooperating adaptive systems share knowledge to
improve the adaptation behavior of the ensemble?

In addition to these kinds of challenges, new forces in technology are raising interesting questions about
positioning adaptive systems in today’s ecosystems. For example, increasingly computing systems
must work in the context of physical devices and technologically rich environments. Such systems,
sometimes referred to as the Internet of Things or cyber-physical systems, raise the question of
how to combine what we have learned about software adaptation with more traditional disciplines
of physical control. As another example, systems today must take into account the capabilities of
the humans that interact with them. Humans may be clients of the adaptive system, but also might
be viewed as components in the overall adaptation process. Indeed, in principle humans can serve
in any of the MAPE-K roles—for example, providing contextual information to the system, assisting
with adaptation, or performing physical actions to achieve some desired result.

It is clear that much remains to be done, and what we do know today will need to evolve with the
shifting landscape of technology and its use in our world. The chapters in this book span the entire field:
from engineering of adaptive systems, to reasoning about them, to exploring their use in emerging fron-
tiers. Despite this diversity, however, across all of these chapters is a broad concern with the question of
balancing trade-offs. The moment you go down the path of adaptation, you are faced with questions
about how best to reconcile conflicting goals and requirements: of timely response with optimal repair,
of multiple system qualities that must be balanced to provide overall utility, of automated versus
human-assisted adaptation, of localized versus distributed control, of human-assisted versus stand-
alone adaptation. Balancing trade-offs thus provides a common theme underlying these chapters,
and, in fact, any serious treatment of self-adaptation. As such, this book provides both a broad perspec-
tive and deep exploration of many of these issues, serving as an excellent starting point for someone
who wants to know more about the field, as well for researchers and practitioners who want a more in-
depth examination of recent research and its potential.

David Garlan

Foreword by Nenad Medvidovic
Behold the Golden Age of Software Architecture

In the mid-to-late 1990s, I had the fortune of witnessing a great deal of activity and innovation that,
today, is sometimes referred to as the “golden age” of software architecture research. As a community,
we were trying to understand the phenomena underlying software systems’ architectures, develop ab-
stractions to capture those phenomena, construct models to embody the abstractions properly and ef-
fectively, analyze the models for interesting and important properties, and, finally, figure out how to
implement systems that would inherit all of the positive and none of the negative characteristics we
encountered along the way. This resulted in a seeming whirlwind of notations, techniques, tools, pat-
terns, styles, and reference architectures. It was an incredibly exciting and fun time if you were a soft-
ware architecture researcher. The rest, as they say, has been history.

An issue that emerged somewhat more slowly and deliberately by comparison to the above was archi-
tectural adaptation. One question was always there: Once you build the system, you will inevitably change
it, so what does that do to the architecture? That question, however, turned out to have a more compelling
counterpart: What do you have to do to and with the architecture to make it support the change in the sys-
tem? As aresult of multiple years of investigating this question, several colleagues and I came up with what
we have since named (hopefully for obvious reasons) the “figure 8” model, shown below.

Plan changes

!

Deploy change Adaptation
descriptions management

l

Enact changes and
collect observations

T

i Evolution
Architectural 4

model management

|

Maintain consistency
and system integrity

Evaluate and
monitor
observations

—> Implementation

XXi

XXii Foreword by Nenad Medvidovic

The model recognized the dichotomy and tight interconnection between the system and its architecture.
The upper portion of the diagram—adaptation management—was intended to capture the lifecycle of
adaptive software systems. The original vision was that the lifecycle may have humans in the loop or it
may be autonomous. The lower portion of the diagram—evolution management—was intended to cap-
ture the software mechanisms employed to change the system.

The objective here is not to explain the entire model; the interested reader can find more details
in the original papers that introduced the model [1,2], as well as subsequent publications that
have reflected and expounded upon it [3,4]. The important takeaway is that the approach was
architecture-based: changes were always formulated in, and reasoned over, an explicit
architectural model that resided on the implementation platform along with the implemented sys-
tem itself. Furthermore, changes to the architectural model were directly reflected in modifications
to the system’s implementation. The key to the “figure 8” was ensuring that the architectural model
and the implementation remained consistent with one another throughout the system’s life span.

The “figure 8” model was followed by and it inspired several other architecture-based software
adaptation models that shared its basic traits: the models looked at the adaptation problem at a very
high level and tried to prescribe activities and provide mechanisms for addressing the problem in a
general way. However, the details remained largely unaddressed. The models captured what and when
an engineer, or an automated agent, would have to do, and why. However, the existing models left
unspecified many details of how these activities would be accomplished. They also tended not to
specify precisely what would happen to the system’s properties as its architecture is adapted and
how trade-offs among those properties should be handled. In that sense, although these
architecture-based adaptation models are usually comprehensive in scope, targeting broad classes of
software systems and adaptation scenarios, they aimed to solve what is fundamentally the simpler por-
tion of the problem, leaving the harder portion unaddressed.

The actual details of how to adapt a system by modifying its architecture in order to accomplish
a given objective turn out to require more focused, targeted solutions because those solutions
depend on many, varying factors. The good news is that such solutions can typically be “plugged
into” the general-purpose adaptation models—a perfect symbiosis. This book aims to provide just
that: a broad cross-section of state-of-the-art solutions to the problem of #ow quality trade-offs are
managed in adaptable software architectures. The reader will find a great variety of methods,
techniques, and tools that can be adopted wholesale, adapted for different scenarios, or indeed,
plugged into one or more of the existing adaptation models. The reader may also walk away feeling
that there is still much work left to be done on this problem. If so, that will not be an inaccurate
impression. Software adaptation is a remarkably complex phenomenon and it must be and will
be studied for some time. The upside is that this is a very exciting area to work in, proving wrong
those who think that the “golden age” of software architecture has passed. So, dive in, read, learn,
and get inspired!

Nenad Medvidovic
University of Southern California
Los Angeles, CA, USA

Foreword by Nenad Medvidovic xxiii

REFERENCES

[1] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Proceedings of the
20th International Conference on Software Engineering (ICSE’98), Kyoto, Japan, April 1998.

[2] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.
Appl. 14 (3) (1999) 54-62.

[3] P. Oreizy, N. Medvidovic, R.N. Taylor, Runtime software adaptation: framework, approaches, and styles,
in: Proceedings of the 30th International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, 2008.

[4] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations, Theory, and Practice,
John Wiley & Sons, Hoboken, NJ, 2009. ISBN-10: 0470167742, ISBN-13: 978-0470167748.

http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.09983-4/rf0025

Foreword by Paris Avgeriou

The software architecture community realized from the very beginning (more than 2 decades ago) that
functionality was not the main challenge; we could get that right, sooner or later, in an incremental and
iterative manner. The real focus for researchers and the main pain point in industrial architecture prac-
tice was and still remains how to tame quality attributes. Form (architecture) does follow function, but
form has some trouble following quality.

The problem of achieving requirements for quality attributes qualifies as a “wicked problem,” and it
is a multifaceted one. First, one cannot achieve each attribute in isolation as they are often interdepen-
dent and even contradictory. Consider, for example, the conflict between performance with almost any
other quality attribute; when you try to optimize for performance, you may hurt the modifiability or
security of your system. Second, a quality attribute cannot be dealt within a single component but re-
quires system-wide measures. It would have been wonderful to have, e.g., a “reliability component”
that can be simply integrated in a system, but it does not work that way; quality needs to be ensured
across the system. Third, in contrast to functionality that can be very tangible and expressed simply yet
effectively in use cases or user stories, quality attributes are rather elusive and often expressed in a
vague way. This has been the source of frustration in innumerable discussions between development
teams and other stakeholders, that started from a simple question like “What exactly does it mean for
the system to be usable?” Finally, quality attributes are almost always implicitly derived from business
goals. The link to business goals constitutes the rationale behind quality attributes; just like the ratio-
nale behind design decisions, it can hamper system evolution if it remains implicit.

However, all is not lost. The architecture community has been diligently working on methods and tools
to tackle the aforementioned problems and help architects systematically manage quality attributes and
their trade-offs. Software patterns for architecture and design describe in detail the quality attributes in
terms of the pattern forces and further elaborate how the solution incurs both benefits and liabilities regard-
ing those quality attributes; tactics contribute in the same direction by focusing on individual qualities.
Furthermore, architecture design methods consider quality attributes as inputs and match them with can-
didate patterns and tactics in order to make rational decisions. Subsequently, architecture evaluation
methods examine multiple quality attributes and perform explicit trade-offs by looking at related design
decisions. Moreover, there are proven techniques to express quality attribute requirements in a SMART
way for example by means of low-level scenarios with a tangible input and a measurable output. Addition-
ally, there are several architecture views that frame quality attributes and modeling techniques for formal
specification and verification of qualities. Finally, there are methods that elicit the relationships between
quality attributes and business goals, as well as methods that study the explicit trade-off between the utility
gained from achieving quality attribute requirements and the corresponding cost.

But then again, just as we thought we had tamed quality attributes, the advent and proliferation of
self-adaptive systems changes the rules of the game. Self-adaptive systems are moving towards more
and more flexibility where the design space is not fixed at design time but both problems and solutions
can shift during runtime in an unplanned manner. Especially the new generation of self-adaptive sys-
tems that is currently emerging will increasingly face this core challenge: uncertainty. Our entire

XXV

XXVi Foreword by Paris Avgeriou

arsenal in the struggle towards managing quality attributes is going to be rendered obsolete as uncer-
tainty looms in a number of ways. We may not know whether the requirements for the system quality
attributes will change in the future or how they will change. We may be uncertain whether the com-
ponents and services being used will remain the same and will continue operating within the same func-
tional and quality boundaries. We cannot predict changes in the environment and other interacting
systems, or changes in the mission and goals of the overall system. We cannot ensure that new con-
figurations of the system will continue delivering the prescribed quality of service. There may be
doubts whether established and confirmed design decisions are still valid under future conditions.

Current architecture design methods can only optimize the design with respect to explicit require-
ments and trade-offs for quality attributes; introducing variability in both problem and solution space
can become extremely complicated. Similarly, architecture evaluation methods can gauge whether de-
sign decisions are sound for specific quality attributes, given that both decisions and qualities are de-
scribed in a nonambiguous manner. Software patterns and tactics describe both the problem and
solution space under a specific context and a “closed world assumption”’; they do not take into account
unforeseen changes. And what is the point of expressing quality attributes in a SMART way if the stim-
ulus changes or if the way we measure responses takes a different form? In other words, none of the
current available methods and tooling can be used as is, in the self-adaptive domain. This is why this
book is very timely in shedding some light on the intricate problem and potential solutions of managing
trade-offs of quality attributes in self-adaptive architectures.

I think this field will become increasingly important over the next years and the following directions
are particularly promising for further research:

Intertwinement of problem and solution space. While the interrelation between requirements
and architecture has long been recognized, it has remained to a large extent a “holy grail” in
practice. The different metamodels and schools of thought used for expressing problem and solution
spaces limit this interrelation while traces between them can be mostly constructed manually,
which is prohibitively expensive. However in self-adaptive architectures, we need to come up with
better traceability so that changes in the problem space can be translated more flexibly and
accurately to changes in the solution space and vice versa.

Data science to the rescue. We do not have a crystal ball to predict the future, but looking at the past
can often provide sound indications on where we are headed. Data science can contribute
enormously to this field with tools and techniques on how systems and environments evolve over
time, especially in an open source context, thereby reducing the uncertainty in the design

space. Furthermore, using theory and tools from machine learning, the knowledge base of a
self-adaptive architecture can be continuously updated to reflect the current situation from both the
problem and the solution side.

Variability management redefined. Handling uncertainty in self-adaptation can be viewed as a
variability management problem, where the sources of uncertainty are variation points, while the
different potential cases of problems and solutions are the variants. Variability management
theory and tools from software product lines or massively customizable software can be reused and
built on, to model deviations in quality attributes in self-adaptive systems as well the impact of
alternative design decisions. Emphasis needs to be given on the dependencies between the variants
which can be immensely complicated.

Foreword by Paris Avgeriou xxvii

The chapters in this book provide some initial steps towards solving these and related problems. I hope
you enjoy reading this volume as much as I did, and I would strongly encourage you to work persis-
tently on these hard problems, as this field holds both a challenging and rewarding future.

Paris Avgeriou
University of Groningen, the Netherlands

Foreword by Rogério de Lemos

Although the reasoning of software systems at the architectural level provides an effective way to
handle complexity, the emerging area of self-adaptive software systems is challenging traditional
approaches on how to develop, operate, and evolve software systems. However, at the same time that
current practices are being challenged, opportunities emerge regarding new application areas for
software system that are flexible when handling change (which may affect the system itself, its envi-
ronment, or its requirements). Associated with changes, inevitably, there are uncertainties that need to
be identified, analyzed, and handled, and this is the purposes of trade-off analysis in systems design.
In the context of self-adaptive software systems trade-off analysis is not an exclusive development-
time activity, trade-off analysis takes place also at runtime while the system is adapting itself.

Architectural-based development-time trade-off analysis is still a very much human activity, and
their techniques and practices cannot be easily automated. Even if they could be automated, one would
not be able to achieve the same level of thoroughness because of the lack of human insight, experience
and diversity. However, there are certain benefits for moving some of the trade-off analysis from
development-time to runtime, and one of these is related to the state space of uncertainties. At runtime,
the state space should be smaller than that at development-time since at development-time there is little
operational information of the actual system yet in the process of being designed. The amount of
operational information available during runtime should be exploited in order to support trade-off anal-
ysis for adapting the software system. The development-time and runtime trade-off analyses should be
complementary in order to optimize the service, and its qualities, to be delivered by the system. In order
words, there are decisions currently being made at development-time related to operational uncer-
tainties that can be deferred to runtime.

This rearrangement of trade-off analysis for handling uncertainties between development-time to
runtime raises a clear challenge: how to identify what kind of analyses should be performed at
development-time from those that should be performed at runtime. This identification, on its own,
should establish the limits of adaptation, and this in itself already involves some kind of trade-off
between adaptation and evolution. It is unquestionable that adaptation has its limits, and the decision
when to stop adapting and to start a new evolution cycle is something that should be related to runtime
limitations. An interesting feature to be considered in any self-adaptive software system should be the
system capability of decommissioning itself when is not able to adapt anymore. Whether to deploy
another redundant system, or completely stop its activities is a key decision to be made.

This book provides a timely springboard for starting a more insightful discussion on how to perform
trade-off analysis in architecture-based self-adaptive software systems. New processes for trade-off
analysis should be established, which should identify activities and decisions to be associated with
development-time and runtime. These processes should identify what should be tailored on existing
and well established practices, and identify challenges associated with the dynamic trade-off analysis
to be performed during runtime. As part of development-time trade-off analysis, decisions should be
made regarding the ability of the architecture in supporting runtime adaptation, and the easiness in
instrumenting the software in terms of probes and effectors, for example. Regarding runtime trade-
off analysis, since this has to be fully automated, some kind of decision maker should be adopted,
and the literature is reach regarding synthesis techniques. The challenge is on the analysis side in which

XXiX

XXX Foreword by Rogério de Lemos

solution boundaries need to be explored in terms of their effectiveness, quality attributes and risks, for
example. In this context, the promising solutions rely on games to be played between the controller and
the sources of change that might affect the system. A more far reaching challenge, for the sake of the
evolving software, is how to consider and incorporate into the trade-off analysis performed at
development-time, the trade-off decisions, and their associated rationale, made during runtime.

Another major challenge regarding runtime trade-offs are the decision-making criteria. If a system,
its requirements and environment are expected to change, also the criteria regulating decision making
should be dynamic. Usually these criteria are considered static, which might lead to less than optimal
decisions, in a truly dynamic environment. If that is the case, trade-off analysis tools and techniques
should be capable of updating during runtime the values of the criteria. Moreover, one should not
expect that a single technique, for example, utility functions, should be sufficient for a wide range
of applications and contexts. The area of decision making is an area in which diversity of techniques
and tools should have a positive impact since changes in the parameters of the decision-making criteria,
or the techniques and tools being used, might have a great impact upon decisions. In summary, the
runtime trade-off analysis should be itself resilient against changes that might affect the self-adaptive
software system in which it is embedded.

Rogério de Lemos
March 2016

Preface

J. Grundy, I. Mistrik, B. Schmerl, R. Kazman, N. Ali

INTRODUCTION

Self-adaptive systems are those that, unlike traditional software systems, are engineered to be adaptable
at runtime and, in fact, adapt themselves in various ways to their changing environment, users, user
requirements, and related systems. Adaptation can take many forms: adaption to new data sources
and remote services; adaption to changing network, hardware or related software systems; adaption
in the presence of uncertainty and/or unreliability of other systems; adaption to new users and user
needs; adaption of security, privacy, and trust models and implementations; adaption to improve
one or more quality of service attributes; and adaption to handle catastrophic environmental events.

Engineering software systems that adapt is hard. A fundamental premise for such systems is a soft-
ware architecture that encapsulates, and is designed for in some way, adaptation. Some architectures
support a wide variety of adaptation, while others are more limited. In either circumstance, there will be
inherent trade-offs that need to be made by the architects to achieve the necessary kinds of adaption and
the supporting software and systems infrastructure required to achieve it.

Analyzing and managing these trade-offs is also very hard. A great deal of research and practice
interest has been focused on this problem due to its increasing need in a wide variety of contexts. These
include cloud-based systems, mobile applications, security- and safety-critical systems, and the emerg-
ing Internet of Things. Our goal in this book is to collect chapters on architecting for adaptability and,
more specifically, how to manage trade-offs between functional requirements and multiple quality
requirements in adaptable software architectures. The intention of this book is to collect state-of-
the-art knowledge on:

« what it means to architect a system for adaptability;

« software architecture for self-adaptive systems;

« what trade-offs are involved and how can one balance these;

« general models of self-adaptive systems;

« architectural patterns for self-adaptive systems;

» how to intertwine business goals and software quality requirements with adaptable software
architectures;

« how quality attributes are exhibited by the architecture of the system;

» how to connect the quality of a software architecture to system architecture or other system
considerations;

» what are the major challenges of engineering adaptive software architectures;

« what techniques are required to achieve quality management in architecting for adaptability;

« the best ways to apply adaptation techniques effectively in systems such as cloud, mobile,
cyber-physical, and ultra-large-scale/internet-scale systems;

XXXi

XXXii Preface

» the approaches that can be employed to assess the value of total quality management in a software
development process, with an emphasis on adaptable software architecture; and

« case studies of successful (or unsuccessful but useful lessons learned) application of trade-offs in
designing, developing, and deploying adaptive systems.

The book is arranged into four parts. Part I reviews key concepts and models for self-adaptive software
architectures. This includes key approaches to architecting systems for adaptation; tackling uncertainty
when architecting self-adaptive systems; viewpoint modeling for dynamically modifiable software sys-
tems; and adaptive security for software systems. Part II focuses on analysis and trade-offs in self-
adaptive software systems. This includes the use of automation in terms of inference techniques to
support architecting of adaptable systems; managing trade-offs when dealing with the human element
of adaptive systems; elicitation and evaluation of discovered trade-offs when architecting such sys-
tems; analysis for self-adaptive software architectures; and adaptive architectures for scalable
software-as-a-service based systems. Part III examines the management of trade-offs for self-adaptive
software architectures. A systematic mapping study reviews the large body of work in this area to date
and formulates key contributions and research gaps. Also in this part is a requirements-driven approach
to mediation solutions. Finally, Part IV addresses the issue of quality assurance for self-adaptive soft-
ware architectures. Quality evaluation mechanisms are reviewed, compared, and contrasted.

PART I: CONCEPTS AND MODELS FOR SELF-ADAPTIVE SOFTWARE
ARCHITECTURES

Chapter 1 is by the editors and provides a review of the concepts of self-adaptive software architectures,
their history, key features, some of the key challenges in managing trade-offs, and what we see as some
of the major outstanding areas for research and practice in this domain. We first review some of the key
prior work in architecting self-adaptive systems that has been published to date. We then discuss the
body of work that has looked at the issue of managing trade-offs when designing such self-adaptive
software systems. Trade-off management at run time in particular is then discussed including many
outstanding challenges that exist in this domain. We then outline a set of research challenges that
should lead us as a community to a better vision for managing trade-offs in self-adaptive systems.

Chapter 2, by Villegas, Tamura, and Muller, provides an overview of architecting software systems
for runtime self-adaptation: concepts, models, instrumentation and challenges. In this chapter the
authors introduce practitioners, researchers, and students to foundational concepts and reference
models associated with the architecture of self-adaptive software. It also presents challenges related
to the design of software architectures that enable self-adaptation of software systems at execution
time. They first introduce a running example to illustrate the studied concepts. They then explore
the meanings of adaptation and self-adaptation as well as the differences between these two concepts.
They explain fundamental concepts for architecting self-adaptive software systems and then present a
set of reference models and architectures relevant to the engineering of self-adaptive software.
Finally they discuss major challenges regarding the architecting of complex software systems for
self-adaptation.

Chapter 3, by Hezavehi, Avgeriou, and Weyns, provides a classification of current architecture-
based approaches. In this chapter the authors review the state-of-the-art of architecture-based

Preface xxxiii

approaches tackling uncertainty in self-adaptive systems with multiple quality requirements, propose a
classification framework for this domain, and classify the current approaches according to their new
framework. To do this they conducted a systematic literature review by performing an automatic search
on 27 selected venues and books in the domain of self-adaptive systems. From detailed analysis of this
review they propose a novel classification framework for uncertainty and its sources in the domain of
architecture-based self-adaptive systems with multiple quality requirements. They map their identified
primary studies into their new framework and present the classified results. Results from this review
will help researchers to understand the current state of research regarding uncertainty in architecture-
based self-adaptive systems with multiple concerns, and identity areas for improvement in the future.

Chapter 4, adaptability viewpoint for modeling dynamically configurable software architectures, is
authored by Tekinerdogan and Sozer. In this chapter the authors introduce an “adaptability viewpoint”
that can be used for modeling dynamically configurable software architectures. They then illustrate the
use of the viewpoint for a demand-driven supply chain management system. To represent runtime
adaptability concerns more explicitly, the authors argue that an explicit dedicated architectural view
is required to model the decomposition of the architecture based on the runtime adaptability concern.
To this end they introduce a new runtime adaptability viewpoint that can be used for modeling dynam-
ically configurable software architectures. This viewpoint has been defined via domain analysis of
dynamic configurability and software architecture viewpoint modeling. The viewpoint is based on a
meta-model that defines the underlying semantics. The authors first provide a background about archi-
tecture viewpoints and then introduce their supply chain system case study as a motivating example
where runtime adaptability becomes a critical concern. They describe key related concepts and a
meta-model for their runtime adaptability viewpoint and then introduces a concrete notation and a
method for applying this viewpoint. The case study is then described by application of the viewpoint.

Chapter 5 is authored by Almorsy, Grundy, and Ibrahim, and describes a new framework for sup-
porting adaptive security for software systems. In this chapter the authors discuss the needs for adaptive
software security, and key efforts that have been made to date in this area. They then introduce a novel
runtime adaptive security engineering approach that enables adapting software security capabilities
at runtime based on new security objectives, risks/threats, and requirements, as well as newly reported
vulnerabilities. The authors then categorize the source of adaptation in terms of manual adaptation
(managed by end users), and automated adaption (automatically triggered by the supporting platform).
They describe the application of their approach to a large case study and discuss its strengths, limita-
tions, and areas for further enhancement.

PART Il: ANALYZING AND EVALUATING TRADE-OFFS IN SELF-ADAPTIVE
SOFTWARE ARCHITECTURES

Chapter 6, by Malek, Canavera, and Esfahani, describes the use of automated inference techniques to
assist with construction of adaptable software architectures. The authors state that state-of-the-art in
engineering self-adaptive software systems involves manual construction of numerous models, which
are then used at runtime for making and effecting adaptation decisions. They show that the construction
of such models is unwieldy and impractical for use by practitioners and describe an alternative
approach for engineering adaptive software that aims to alleviate the challenges of manually develop-
ing such models using inference techniques to automatically derive the models necessary for building

xxxiv Preface

an adaptive architecture. A machine-learning approach is used to automatically derive the models pre-
dicting the impact of architectural change on the system’s quality objectives. These types of models are
used to make adaptation decisions to fix problems that may arise at runtime. A data-mining approach is
then used to derive automatically the models expressing the probabilistic dependencies between the
architectural elements of the system. These types of models are used to ensure changes in the running
software do not create inconsistency, and jeopardize its functionality. The chapter discusses some
remaining research challenges and areas of future research in employing automated inference tech-
niques in the construction of adaptive architectures.

Chapter 7 focuses on evaluating trade-offs of human involvement in self-adaptive systems, and is
authored by Camara, Moreno, Garlan, Moreno, and Schmerl. In this chapter the authors we identify
various roles that can perform in cooperating with self-adaptive systems. They focus on humans as
effectors—doing tasks which are difficult or infeasible to automate—and describe how they modified
their own self-adaptive framework to involve human operators in this way. This involved choosing
suitable human models and integrating them into the existing utility trade-off decision models of
their tool. They used probabilistic modeling and quantitative verification to analyze the trade-offs
of involving humans in adaptation. They then complement their study with experiments to show how
different business preferences and modalities of human involvement may result in different outcomes.

Chapter 8, principled eliciting and evaluation of trade-offs when designing self-adaptive systems
architectures, is by Andrade and Macédo. The authors present a systematic approach for design and
analysis of self-adaptive systems architectures. This approach enables the representation of refined
knowledge as structured design spaces and relies on the use of multiobjective optimization mechanisms
to elicit and evaluate the involved quality attributes trade-offs. The authors present the key require-
ments for an automated approach for software architecture design and analysis and detail the
underlying mechanisms and technologies adopted. They describe in detail how they have used their
infrastructure to automate the design of self-adaptive systems. The authors validate their approach
for effectiveness by using particular optimization performance indicators, as well as in functional pro-
totypes of self-adaptive web servers and elastic platforms for distributed MapReduce jobs.

Chapter 9, by Kazman and Boxer, focuses on an approach for analyzing the architectures of
software-intensive ecosystem. This chapter describes the core-periphery structures of the systems par-
ticipating in software ecosystems, and approaches the analysis of their behavior from the perspective of
the market behaviors that they are expected to support. The authors propose a key driver of the “wick-
edness” of these systems’ behaviors is the accelerating pace at which an ecosystem is expected to re-
spond to new kinds of demand. This makes it necessary to extend the concept of “architecture” to
include the resultant processes of dynamic alignment. It then becomes necessary to analyze architec-
ture in a way that includes the context of use of systems. The authors propose the use of a multisided
matrix to represent the variety of forms of dynamic alignment demanded by self-adaptive systems, and
describes an extension to the architecture trade-off analysis method as a means of discovering the risks
inherent in architectural decisions made to support a software-intensive ecosystem.

Chapter 10, architectural perspective for design and analysis of scalable software as a service
architecture, is authored by Tekinerdogan and Ozcan. In this chapter the authors discuss one of the
major challenges in designing and maintaining SaaS computing systems, the design for and analysis
of scalability. To address this they propose the scalability perspective for supporting the design and
analysis of scalable SaaS architectures. They argue that in order to address quality concerns in software
architecture design, an important approach is to define architectural perspectives that include a

Preface xxxv

collection of activities, tactics, and guidelines that require consideration across a number of the archi-
tectural views. Their proposed architectural perspective can assist software architects in designing, an-
alyzing, and communicating decisions made regarding scalability as well as any trade-offs with other
concerns. They illustrate the scalability perspective on an industrial case study and discuss the lessons
learned from this application of the technique.

PART Ill: MANAGING TRADE-OFFS IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES

Chapter 11 is by Salama, Bencomo, and Bahsoon, and provides a systematic mapping study of managing
trade-offs in self-adaptive architectures. The authors conducted this systematic mapping study to identify
and analyze research related to analyzing and managing trade-offs for self-adaptive software architec-
tures. They argue that self-adaptation has been driven by the need to achieve and maintain quality
attributes in the face of continuously changing and emerging requirements, as well as the uncertain
demand at runtime. Designing architectures that exhibit a good trade-off between multiple attributes
is challenging, especially in the case of self-adaptive software systems, due to the complexity, heteroge-
neity and ultra-large scale of the modern software systems. Their study aims at collecting research work
that explicitly addresses trade-off management for self-adaptive software architectures, to obtain a com-
prehensive overview on the current state of research on this specialized area. They selected 20 primary
studies and analyzed these to classify software paradigms, quality attributes considered, and the proper-
ties that drive trade-off management. The results show constant interest in finding solutions for trade-offs
management at design-time and runtime. The authors findings call for a foundational framework in
analyzing and managing trade-offs for self-adaptive software architectures that can explicitly consider
specific multiple quality attributes, the runtime dynamics, the uncertainty of the environment and the
complex challenges of modern, ultra-large scale systems in particular software paradigms.

Chapter 12 is by Bennaceur and Nuseibeh and discusses the many facets of mediation. The authors
discuss the concept of “mediation,” which aims to enable dynamic composition of multiple compo-
nents by making them interact successfully in order to satisfy given requirements. They argue that
through dynamic composition, software systems can adapt their structure and behavior in dynamic
and heterogeneous environments such as ubiquitous computing environments. Their chapter provides
a review of existing mediation approaches and their key characteristics and limitations. The authors
claim that only a multifaceted approach that brings together and enhances the solutions of mediation
from different perspectives is viable in the long term. They then discuss how requirements can help
identify synergies and trade-offs between these approaches and drive the selection of the appropriate
mediation solution.

PART IV: QUALITY ASSURANCE IN SELF-ADAPTIVE SOFTWARE
ARCHITECTURES

Chapter 13 is authored by Raibulet, Arcelli, Capilla, and Carrillo, and provides an overview of quality
evaluation mechanisms for self-adaptive systems. In this chapter the authors aim to identify general
guidelines for the evaluation of self-adaptive systems independent of their type, application domain,

xxxvi Preface

or implementation details. Evaluation is an important concern for building and monitoring the quality
of software. The complex nature of self-adaptive systems demands continuous monitoring of their be-
havior and execution of runtime changes, which challenge the quality of their adaptations in dynamic
environments. The characteristics of self-adaptive systems demand a continuous evaluation of their
performances and improvement of the adaptation process. The authors propose a new taxonomy for
the evaluation of the quality of self-adaptive systems based on five dimensions: scope, time, mecha-
nisms, perspective, and type. They have identified the main available evaluation approaches and an-
alyzed them using their proposed taxonomy. They discuss several trade-offs concerning each
dimension in the taxonomy, trade-offs which need to be addressed during system evaluation.

Finally, Chapter 14 by Rogério de Lemosa and Pasqualina Potenac provides a discussion of iden-
tifying and handling uncertainties in the feedback control loop, a common feature of many adaptive
systems. In this chapter they discuss how uncertainty is associated to different sources (e.g., the envi-
ronment) and appears in different forms (e.g., as noise in variables or imperfections in techniques being
used). They present the MAPE-K control loop, where uncertainty is normally handled by a decision
maker at the plan stage. However, depending on the complexity of the stages of the MAPE-K control
loop, uncertainties need also to be handled at other stages. The authors claim that uncertainties should
be considered as a nonfunctional property that should be collectively handled at the different stages of
the feedback control loop. One advantage of this approach is that it leads to a more accurate estimation
of the system quality attributes since uncertainties are handled in the context where they arise, bene-
ficial for trade-off analysis. Their approach relies on the identification of internal and external sources
of uncertainty for a given stage, and promotes error propagation analysis as a method for analyzing the
propagation of uncertainties.

We hope that you enjoy this book as much as we have in editing it. We thank the anonymous
reviewers for all of their time in reviewing all of the chapters in this book. All chapters were reviewed
by at least four reviewers, and many went through two or even three rounds of revision, many quite
substantial revision. We thank the Elsevier Editorial team for their professional and very helpful ap-
proach that makes many of the chores associated with academic publishing much more bearable. And
finally we sincerely thank the authors for their research efforts, willingness to respond to extensive
feedback from the reviewers and editorial team, and without whose excellent contributions this would
not have been possible.

CHAPTER

MANAGING TRADE-OFFS IN
ADAPTABLE SOFTWARE
ARCHITECTURES

B. Schmerl*, R. Kazman*'', N. Ali*, J. Grundy?®, I. Mistrik’

Carnegie Mellon University, Pittsburgh, PA, United States” University of Hawaii, Honolulu, HI, United States’
University of Brighton, Brighton, United Kingdomi Deakin University, Melbourne, VIC, Australia®
Independent Software Researcher, Heidelberg, Germany

INTRODUCTION

As the field of software architecture enters into its third decade of formal study, it is moving from its
traditional and foundational focus on the nature of an architecture in terms of a system’s structure and
behavior, to the more general notion of software architecture as the set of design decisions made to
ensure software requirements are met. Consistent with this view is the trend towards focusing software
architecture documentation on meeting stakeholder needs and communicating how the software solu-
tion addresses their concerns. Usually, a software system is not isolated, but part of a larger system.
When making design decisions, not only is the quality of the software architecture itself important,
but the quality of the overall system also needs to be considered.

As such, software systems increasingly interact with each other and are more often part of critical
civil and business infrastructure. This means that software is increasingly required to operate for long
periods of time, in highly dynamic environments, where user demands may change, and where
systems’ interaction and business goals may evolve. Software architectures, in addition to the design
decisions that led to them, also must react and evolve to ensure old and new requirements are met, and
that the systems they represent operate reliably.

Design decisions are fundamentally about trade-offs. When deciding between architectural alter-
natives, architects need to consider how each alternative affects the functional and quality requirements
of the software being designed. Often, functional requirements can be architected in a number of ways;
the choice of architecture is made by trading off different software qualities. The architecture trade-off
analysis method (ATAM) [1,2] by the Software Engineering Institute defines a method for conducting
architectural trade-offs for classical quality attributes such as performance, availability, and modifi-
ability. However, this method works best for systems with fixed business goals, behaviors, and
bounded environments. Furthermore, the trade-offs are done manually with multiple stakeholders.

For over 15 years, there has been increasing research in the field of adaptable software
architectures—where systems are able to change their topology and behavior to adapt to changing
circumstances (e.g., changing environments and requirements). For example, in 1997, Robert

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00001-0 1
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00001-0

2 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

Laddaga [3] defined self-adaptive software as software that “evaluates its own behavior and
changes behavior when the evaluation indicates that it is not accomplishing what the software
is intended to do, or when better functionality or performance is possible.” Oreizy et al. [4] pro-
posed an architecture-based approach for the construction of self-adaptive systems that relies on
software agents, explicit representation of software components, the environment, messaging,
and event services. To be able to act autonomously, the software needs to evaluate potential ad-
aptations, taking into consideration trade-offs in new circumstances to make adaptations that are
best for meeting the system’s requirements.

There are at least two critical aspects of managing trade-offs for self-adaptive systems. First, how do
we design systems to be adaptable in the presence of other quality attributes? Through methods like
ATAM we have a reasonable understanding of how to manage design trade-offs for performance, avail-
ability, maintainability etc., but we have little idea about how to integrate the notion of adaptability in this
process. Second, how do we manage these trade-offs at runtime so that when the self-adaptive system
needs to decide on an adaptation, it can make appropriate trade-offs dynamically and autonomously?

Despite extensive research on self-adaptive systems, there are still many challenges that need to be
addressed. This book contains a set of chapters on the state of the art of managing trade-offs in self-
adaptive software systems. In this chapter, we summarize some of the prior work on this topic and lay
out a set of challenges that need to be addressed to realize a principled approach to trade-off manage-
ment in self-adaptive systems.

This chapter is organized as follows. Section 1.2 discusses prior work in architecting self-adaptive
systems. Section 1.3 discusses work in managing trade-offs when designing self-adaptive software sys-
tems. Trade-off management at runtime is discussed in Section 1.4. Finally, Section 1.5 outlines a set of
research challenges that should lead to a better vision for managing trade-offs in self-adaptive systems.

BACKGROUND

In recent years there has been a fundamental shift in software development, away from stovepipe ap-
plications that are intended to run on a small cluster of computers, to large distributed software appli-
cations that service many clients through public facing interfaces. These highly distributed systems
often run on cloud systems and implement big data analytics, meaning that software architects must
consider scale and autonomy as primary concerns in developing software. Furthermore, the use of agile
development methods and the emergence of DevOps (bringing together development and operation)
means that software must be designed with zero downtime, that is, it must run continuously. Moreover,
as the software requirements and business needs evolve, and as new, unanticipated threats and security
vulnerabilities emerge, the software itself must adapt to meet these challenges. Therefore, it is no lon-
ger feasible for many systems to architect them assuming a static set of requirements or a fixed and
known environment—systems need to restructure or reconfigure to meet this new and uncertain world.

Historically, the changes required to meet the challenges above have required human intervention in the
form of re-engineering the systems through updates, or reconfiguring the system. However, such human
intervention cannot scale because adaptations to meet new demands or threats must happen extremely
quickly, or the inherent complexity and distribution of modern systems means that the systems are too large
and complex to understand. Therefore, there is a need for software to become self-adaptive, meaning that
software must be able to autonomously change structure and/or behavior to respond to changing conditions,
and must do so reliably and without unnecessarily degrading quality of service (QoS) [5,6].

1.3 TRADE-OFFS IN ADAPTIVE SYSTEMS DESIGN 3

We can think of the design of self-adaptive systems from two perspectives. On one hand, individual
self-adaptive systems contain knowledge of the system’s goals and constraints, and adapt themselves to
maintain, as far as possible, the goals under changing conditions. On the other hand, because software
systems increasingly exist in large interconnected ecosystems, collective self-adaptive systems consist
of multiple autonomous elements that are coordinating to achieve a common set of goals. Both kinds of
adaptation have received extensive investigation.

The areas of intelligent agents [7], reflective computing [8], and control theory [9] have provided
inspiration for approaches to constructing individual adaptive systems. Furthermore, several architec-
tures and mechanisms to enable adaptation have been proposed, including the widely adopted IBM
autonomic computing approach [10]. The latter proposes an architectural pattern for self-adaptation
called the MAPE-K loop, which enumerates the activities that should be considered and coordinated
when designing autonomic systems: monitoring the system and the environment, analyzing the situ-
ation to determine if the system needs to change, planning what to do, and then executing an adaptation
on the system; all of these activities involve accessing some knowledge base of the system or part of the
system being managed, and in many cases its environment and context. This approach considers self-
adaptive systems as adding a closed control loop around the systems they manage. In the control loop, a
specific control component (e.g., the “autonomic manager” in the autonomic computing approach, or
the “meta-component” in reflective approaches) is responsible for each of these activities.

Collective adaptation requires coordinating adaptation among multiple self-adaptive systems.
Centralized approaches to this do not scale, but there is a variety of patterns for coordinating multiple
controllers and control loops that have been investigated [11,12]. A control approach to designing self-
adaptive system is only one possible approach. Although this approach is overwhelmingly favored in
existing self-adaptive systems research, other approaches using negotiation and market-oriented mech-
anisms have also been studied [7]. These approaches involve autonomic components cooperating to
adaptively converge on specific suitable configurations, possibly respecting specific global goals
[13]. In the past few years, a number of proposals have also suggested that adaptation in distributed
systems can be achieved with decentralized self-organization [14]. However, this raises the issue of
properly controlling and predicting the possible emergence of unexpected behaviors.

Research to date has primarily focused on approaches to engineering self-adaptive systems, trying
to distil generalized examples of architectures to implement self-adaptation. While these approaches
have resulted in engineering a number of successful self-adaptive systems, there has been little research
on how to decide which style of self-adaptation is suitable in what cases, how these different styles
support or inhibit other system qualities, and how to conduct trade-offs to decide the best architectural
approach in specific cases. Furthermore, there is a lack of architectural tactics that can be applied gen-
erally, in the same sense as architectural tactics for achieving other qualities (e.g., reliability, perfor-
mance) [15]. Some work [16,17] describes patterns for different domains (e.g., service-oriented
architecture and self-protection). Again, there is no discussion of how to choose these patterns in
the presence of multiple quality concerns.

TRADE-OFFS IN ADAPTIVE SYSTEMS DESIGN

Trade-offs occur in all designs of nontrivial systems, whether these systems are computational or not.
Trade-offs are inherent in the design process and resulting artifacts, arising from the properties of com-
ponents and their interactions. Trade-offs are, therefore, among the most important design decisions
that an architect has to make.

4 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

A trade-off is an architectural decision that affects two or more system properties, making at least
one property better and at least one property worse. Every system, and every system’s design, is con-
strained: by computational resources, by development time, by development team effort, and by invest-
ment dollars. And so the concerns and priorities of different groups of stakeholders cannot always be
fully met when designing the system. In such cases, the architect needs to make a decision, to value and
support one property of the system over another.

For example, the architect might decide to rush a system to market, knowing full well that it will not
easily scale. Or the architect might choose to implement ultra-high availability, using backup servers,
storage, and networks, knowing that this will unnecessarily increase the cost, or reduce the profitability,
of the system. Or the architect might choose to design and implement a very strong encryption scheme
on communications over the internet, knowing that this will negatively impact system throughput
and latency. These are all risky decisions and any of them might backfire on the architect and doom
the project. Trade-offs must, therefore, be carefully considered. And virtually every technical
trade-off—for performance, or security, or availability—must be balanced against the ubiquitous
trade-offs of cost and schedule [18] that all organizations must face.

Having to make a trade-off in your architecture design does not necessarily mean that you will be unable
to satisfy the goals of your stakeholders, but it does mean that some stakeholders will inevitably be more
satisfied than others. Your manager, for example, wants to keep costs and schedule as low as possible, while
your end users want as much performance and usability and security as possible, preferably with no down-
time ever. System administrators want systems that are easy to install, upgrade, and backup. And so forth.

A good design is one that satisfies the architectural drivers—the primary functionality, quality at-
tribute goals, architectural concerns, and constraints—of the stakeholders that the system is meant to
serve [5]. A good design does not, in most cases, need to optimize for any one of those drivers, at the
expense of the others. As Simon explained [19], designs only need to satisfice for most properties and
for most users: that is, the system designs typically only need to be “good enough,” rather than optimal.

In all software systems, trade-offs come in two possible flavors:

1. “static” or nonruntime decisions, made during the design, implementation, and evolutionary
maintenance of a system, which are relatively difficult and expensive to change, requiring extensive
development effort, and

2. “dynamic” or runtime decisions, that we can automatically make, monitor, and adapt to as the
system is executing. This is the realm of self-adaptive systems.

Trade-offs of type 1 are no different than trade-offs in nonself-adaptive systems. We make these decisions
and we live with them, or we pay the price in terms of refactoring and re-engineering costs or technical
debt [17,20]. Trade-offs of type 2 are those properties that we can manage and reason about at runtime,
such as performance, scalability, availability, security, and so forth. Such type 2 changes—adaptations—
may be necessitated because of changes in the environment (e.g., the failure of a network channel),
changes in resources (e.g., new servers coming online or being removed), or changes in user demand.

RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS

Even when adaptability is designed into a system, there may be a number of adaptations that can apply
when the software encounters a situation in which it needs to adapt. For example, adapting to address

1.4 RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS 5

low response time in a modern IT system might involve choosing between scaling up, scaling out, or
focusing service on important clients; or, reducing battery consumption in an autonomous robotics sys-
tem might involve switching to less-accurate sensing hardware and localization algorithms, or chang-
ing the mission profile of the robot to do fewer tasks. Furthermore, the choice of the best adaptation
depends on several factors, including the context in which the system resides, the future environment
that the system is likely to encounter, and the business context and goals that the system is trying to
achieve or maintain.

It may be theoretically possible to enumerate all the possible states that a system can be in and
predetermine the appropriate trade-off for each state, in which case the runtime decision is a simple
look-up that maps the current state to the best configuration. However, this approach is complicated
by various factors of uncertainty that make the state space extremely large.

First, there is considerable uncertainty involved in understanding the current context in which the
system finds itself. To overcome this, the system must sense itself and its environment, but this cannot
be done with absolute certainty. For example, self-adaptive systems usually abstract the state of the sys-
tem into runtime models (e.g., architectural models [21]), and this abstraction necessarily loses some de-
tail. Second, the environment itself needs to be monitored and abstracted, and because the environment is
typically out of the control of the system, there will be limitations in what knowledge the system can
ascertain about it. For example, if the number of requests increases, how can we discern if this is due
to an increase in the popularity of the application, or whether the system is undergoing a denial of service
attack? How do we know if this change in environment is a durable shift that must be addressed with more
permanent adaptations, or if it is temporary? How can we be sure that the adaptation we choose will have
the desired effect, or impact, on the system to address the concerns? Because of these (and other) sources
of uncertainty [22], these decisions need to be made and evaluated at runtime.

To make the appropriate choice, a self-adaptive system must, at runtime, trade-off multiple con-
cerns in this environment of uncertainty.

As many of these trade-offs involve understanding and managing the quality of the system in ad-
dition to the functionality of the system, the use of software architecture models at runtime has been
proposed and used to provide self-adaptive capabilities [4,23-25].

The use of architectural models as the central knowledge for runtime adaptation is embodied in a
framework called Rainbow [26]. The Rainbow framework uses software architectures and a reusable
infrastructure to support self-adaptation of software systems. Fig. 1.1 shows the adaptation control loop
of Rainbow. Probes are used to extract information from the target system and its environment that
update an architecture model via gauges, which abstract and aggregate this system-level information
to detect architecture-relevant events and properties. Gauges and probes together comprise the mon-
itoring aspect of the MAPE-K loop. The analysis aspect of MAPE-K is implemented in Rainbow as
architecture evaluators, which check for properties in the model, including satisfaction of constraints
and quality attributes in the model, and triggers adaptation if any violation is found. The adaptation
manager, on receiving the adaptation trigger, chooses the “best” strategy to execute, thus covering
planning in MAPE, and passes it on to the strategy executor, which executes the strategy on the target
system via effectors.

The adaptation manager may initially discover that several strategies are applicable, and so
must perform a trade-off to choose between them. The trade-off is captured by predicting the im-
pact each strategy will have on each quality attribute, and then prioritizing some qualities over
others to score the strategy. The best strategy is chosen on the basis of stakeholder utility

6 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

P e,
5 Adaptation e —————y
; Strategy o ¢ meneeer Model 9|

D:> executor " analyzer <: C]

71] O Models mane’zger % ‘ TH C
L
= s

Translation. . T e

P
I_/_/< > infrastructure

§ System API (R.esource} [Probes}
| discovery :
| n v rA |

[

FIG. 1.1

The Rainbow framework.

preferences and the current state of the system, as reflected in the architecture model. The under-
lying decision making model is based on decision theory and utility [27]; varying the utility pref-
erences allows the adaptation engineer to affect which strategy is selected. Each strategy, which is
written using the Stitch adaptation language [28], is a multi-step pattern of adaptations in which
each step evaluates a set of condition-action pairs and executes an action, namely a tactic, on the
target system with variable execution time. A tactic defines an action, packaged as a sequence of
commands (operators). It specifies conditions of applicability, expected effect and cost-benefit at-
tributes to relate its impact on the quality dimensions. Operators are basic commands provided by
the target system that implement a particular change.

As a framework, Rainbow can be customized to support self-adaptation for a wide variety of system
types. Customization points are indicated by the cut-outs on the side of the architecture layer in Fig. 1.1.
Different architectures (and architectural styles), strategies, utilities, operators, and constraints on the
system may all be defined to make Rainbow reusable in a variety of situations.

In addition to providing an engineering basis for creating self-adapting systems, Rainbow also pro-
vides a basis for their analysis. By separating concerns, and formalizing the basis for adaptive actions, it
is possible to reason about fault detection, diagnosis, and repair. For example, many of the standard
metrics associated with classical control systems can, in principle, be carried over: settling time, con-
vergence, overshoot, etc. In addition, the focus on utility as a basis for repair selection provides a formal
platform for principled understanding of the effects of repair strategies, and for reasoning about trade-
offs at runtime.

1.4 RUNTIME TRADE-OFFS IN SELF-ADAPTIVE SYSTEMS 7

In summary, Rainbow uses architectural models of a software system as the basis for reasoning
about whether the system is operating within an acceptable envelope. If this is not the case, Rainbow
chooses appropriate adaptation strategies to return the system to an acceptable operating range. The key
concepts of this approach are thus:

(a) the use of abstract architecture models representing the runtime structures of a system, that
make reasoning about system-wide properties tractable;

(b) detection mechanisms that identify the existence and source of problems at an
architectural level;

(c) a strategy definition language called Stitch that allows architects to define adaptations that can
be applied to a system at runtime; and

(d) ameans to choose appropriate strategies to fix problems, taking into consideration multiple quality
concerns to achieve an optimal balance among all desired properties.

In order to conduct trade-offs at runtime, Rainbow uses utility preferences and impact predictions to
choose the strategy that will have the best result according to the business goals of the system. This
approach is detailed in Refs. [28-30], and is summarized here. First, applicable strategies are chosen
based on whether they apply in the given context. For example, if the system is not under attack, then
there is no need to examine strategies that deal with attacks; or, if server resources have been depleted,
then there is no point in choosing strategies that add servers. Next, each applicable strategy is examined
to determine its predicted impact on the current state of the system. Each tactic in a strategy is assigned
an impact on each of the qualities of interest. For example, a tactic to add a server will have a positive
impact on response time but a negative impact on cost. Each strategy forms a tree of tactics guarded by
conditions and probabilities that the branch will be taken. This tree is traversed and an overall impact on
each quality is calculated as a combination of the tactics. These impacts are then assigned a value utility
based on utility functions defined for the business context, and then combined using preference weights
to determine an overall score for the strategy. The strategy with the highest score is then executed by
Rainbow.

Naturally, doing this trade-off at runtime is dependent on (a) accurate models of the state of the
system, (b) accurate models of impact, and (c) accurate quantification of utilities and preferences. Re-
cent work on Rainbow has begun to address (a) and (b). Accurate models of the system have been
addressed partially in Ref. [31], where theoretical limits on knowledge about the health states of parts
of the system that are unobservable have been determined. In Ref. [32], context sensitive and proba-
bilistic models of tactic impact, and how to modify the impact calculation using probabilistic model
checking have been defined.

Despite these advances in using trade-offs to make adaptation choices at runtime, there remain
some limitations. First, a decision is made considering only the cost and benefits, but not the risk.
A more nuanced approach to decision making might choose a less risky but less impactful strategy
over a strategy that has a high impact but might fail. Second, utility and preferences need to
be quantified, which is often hard for stakeholders to do accurately. Improving this approach
using a ranking scheme might be easier to specify and still provide good results in choosing the
most appropriate adaptation at runtime. Linking this runtime decision making to design time ra-
tionale for architecture tactics (as is discussed in Section 1.3), is also likely to be a worthwhile
advance.

8 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

CHALLENGES AND THE ROAD AHEAD

In this chapter we have reviewed the state of the art in managing trade-offs in self-adaptive systems.
While using trade-offs in designing software architectures has received a lot of investigation, incorpo-
rating adaptability as a quality attribute, and how it affects other quality attributes has received less
attention. Also, while mechanisms and formalisms for trading off quality attributes at runtime to decide
the best adaptation has emerged in the past decade, the ability to manage these trade-offs at runtime and
adapt the trade-offs has yet to gain traction.

The challenges ahead for taking an architectural perspective on adaptation, and using this as a basis
for managing this trade-off among quality attributes, can be divided into the following questions.

HOW TO ARCHITECT FOR ADAPTABILITY?

While a lot of work has been done on architecting systems for reliability, performance, etc., and the
styles, analysis, and patterns are well understood, how to architect an adaptable system is still largely
done in an a hoc manner. There has been considerable work on elaborating the design of autonomy
following the MAPE loop, but this represents only one way in which adaptability could be designed.
Software architects need principled approaches for designing for adaptability to address the concern of
modern software systems. This involves addressing the following concerns:

What are good software architectures or architecture styles for self-adaptive systems? Architec-
tural approaches to self-adaptation have been dominated by elaborations or variations of the MAPE
loop, which at its essence represents a control loop approach. However, this approach is not necessarily
the only approach, and may not be the best approach in some contexts. We need a good catalog of styles
from other communities. For example, Ref. [33] discusses a pattern-based style from the agent com-
munity as an alternative. Other approaches to self-organization that are biologically inspired might also
be applied [34]. The challenges in all these cases are what are the strengths and weaknesses of each
style, in what cases and domains do they apply, and how do they enhance or inhibit other qualities such
as performance and security?

What architectural patterns enhance adaptability? Architectural styles for adaptability are perhaps
most useful when adaptability is a primary concern. Architectural patterns (or tactics) are building
blocks that can be used to design part of a system to enhance a quality attribute. There are a number
of approaches that can be considered as patterns for implementing self-adaptation. For example hot
swapping of component, micro-rebooting, and component isolation all have requirements and rules
that must be satisfied by the components and connectors that make up the tactics. Notions such as com-
ponent isolation, quiescence, and tranquility might also be considered parts of patterns. These need to
be cataloged and examined considering the same questions as for architectural styles. Some patterns for
reliability and fault tolerance (like failing safe) also need to be examined in the context of adaptability.

How to quantify adaptability? One requirement for doing good design is being able to analyze the de-
sign to ensure that it has the properties the designer requires. For example, in the area of performance, queu-
ing theory has been useful in establishing properties such as throughput, response time, and whether there is
sufficient load; designs for real time systems can be analyzed with rate monotonic analysis to reason about
task deadlines being met. In these cases, the quality attributes can be measured quantifiably, and compared
with alternative designs. We need equivalent metrics for adaptability. There has been little work on this. In
Ref. [35] the authors develop adaptability metrics for business processes that examines a number of

1.5 CHALLENGES AND THE ROAD AHEAD 9

alternative implementations of a particular service, and how often the service is used in the business pro-
cess. Much work needs to be done to develop more comprehensive and general metrics. It may be possible
to extend methods for quantifying the resilience and reliability of systems to deal with adaptability.

ADAPTABILITY IN MODERN SYSTEMS

A key driver of self-adaptive systems described in Section 1.1 is that it is often a consequence of the
need for continuous operation. This is particularly the case in the domains of cloud computing, service-
based systems, cyber-physical systems, and ultra-large-scale systems. The main question for all of
these domains is how do we consider adaptability as a first class concern, and trade it off with other
concerns that must be met by the systems in these domains. There has been some discussion of self-
adaptation in each of these domains, and each domain has its own approach.

1.5.2.1 Cloud computing

Cloud computing is characterized by the use of remote computing to provide computing resources.
Often, the cloud is used to provide scale of computation, where services are duplicated over multiple
remote servers to provide enough resources for the software to provide service. Third party providers
“rent” resources to clients so that clients do not need to provide or manage these resources in house.
Because providing these resources has a cost, clients typically do not want to pay for more resources
than are being used. This leads many cloud providers to provide autonomous management services that
scale resource usage based on the use of the applications. This is termed elasticity, where infrastructure
resources grow and shrink with application demands. Clients have some control over the elasticity used
for their applications, to balance cost and performance.

Elasticity is a form of self-adaptation, and is usually characterized by two different tactics: scaling
up and scaling out. Scaling up is used to expand the resources (storage, CPU cores, etc.) of the machines
that are already being used by an application. Scaling out adds more machines into the pool of machines
that can be used by an application. While these are the most common forms of self-adaptation used in
cloud computing, other forms of adaptation can be applied in other contexts that use cloud computing.
For example, in big data applications, database partitioning can be changed to account for scaling as-
sociated with different types of queries.

Cloud computing providers, in giving their application customers control over some of the param-
eters of elasticity, allow them some ability to trade-off the different concerns of cost and performance to
in turn meet their own clients’ needs. They can define rules that indicate what forms of scaling should
happen when monitored conditions happen. However, this control is limited. As discussed in Ref. [36],
cloud providers need to be careful about what they can monitor to maintain the intellectual property and
privacy of the applications they are hosting. So, monitoring is typically limited so that it does not pro-
vide visibility into application-level information. This in turn limits the kinds of rules that can be writ-
ten. For example, an application developer might want to write rules that are based on the types of jobs
in various queues in their application (because different types of jobs might take different amounts of
processing). However, they might only be able to monitor and adapt to the number of jobs because the
type of job is an application-level concern.

More generally, cloud computing is divided into several levels—Infrastructure, Platform, and Soft-
ware. Each level has its own adaptation rules and trade-offs that can be conducted. For example, at the
infrastructure level a developer might be concerned with adaptations that involve the number of ma-
chines and their capacity, at the platform level a developer might be concerned with adaptations that

10 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

change partitioning in databases or thread counts in web servers, and at the software level they might be
concerned with more application-specific adaptations. However, each of these levels provides adap-
tation facilities isolated to those levels. Adaptations, and therefore trade-offs, need to be carefully co-
ordinated between the layers at deployment, but thereon run without the knowledge of what might be
happening in other levels. Thus, a key challenge is how to coordinate these layers and allow trade-offs
and information to cross these levels.

1.5.2.2 Service-based adaptation to QoS

Service-based adaptations (SBAs) are built by composing small and loosely coupled entities
called services that interact in a distributed environment. Service provider organizations usually admin-
ister services hosted on their servers or on the cloud, and can build their own services by composing
services provided by other service providers. A service-oriented architecture style has been successful
as it promises to allow systems to dynamically adapt at runtime and integrate distributed components
[19]. Adaptation of service-based applications is achievable as services can be discovered, selected,
and composed at runtime. Several approaches are based on selecting services for achieving one specific
quality. It is more complex to select services to achieve multiple qualities simultaneously as it can cre-
ate an NP-Hard problem [37]. To solve this, several approaches have proposed using artificial intel-
ligence optimization techniques: multi-agent systems for bidding candidate services to find a good
service composition focusing on cost [38], genetic algorithm based approaches [39,40] which work
fine with a scalable number of services and find nearly optimal solutions, or ant colony based ap-
proaches [41]. Approaches have used models as knowledge to self-adapt the SBA. Mostly, QoS
SBA adaptation is based on workflow models such as Business Process Models (or business specifi-
cation languages such as Business Process Execution Language) [42] or use design time variability
models along with business processes to define service compositions [18].

The above are not based on architecture at runtime solutions to adaptation. Approaches that are
architecture based are MUSIC [43] and SASSY [44]. MUSIC uses component based models and var-
iability models at design time and at runtime generate service-based models. In SASSY, structural and
behavioral architecture models are used to represent the SBA. QoS architectural patterns are stored in a
library and to adapt, adaptation patterns that define how to incorporate an architectural pattern into a
configuration to achieve QoS are followed. For example, a fault tolerance architectural pattern that
considers availability and execution time. When multiple QoS objectives need to be fulfilled a nearly
optimal solution is provided.

1.5.2.3 Cyber-physical systems
Cyber-physical systems are those systems where software concerns and physical concerns have equal
prominence. In traditional control systems, physical issues dominate, and so those are given priority
over software issues. However, as the control of different physical processes needs to be integrated and
combined with more complex software, the controls (or adaptations) that need to be exerted on the
system become more complex to manage. For example, in a smart building we might have control sys-
tems for climate control (HVAC - Heating, Ventilation, and Air Conditioning), lighting, emergency
and security, and energy consumption.

Traditionally, these would be separate control systems, but more recently there is a need for these to
be closely integrated. This need might come about, for example, if a building needs to achieve some
green or sustainable properties. In such a system, controlling the climate might affect all the other

REFERENCES 11

control systems. Thus, a key challenge is how to integrate these separate controls into ones that can
achieve more global properties—how do we bridge the different providers, expertise, regulations,
etc. that are characteristic in each domain to understand and manage the trade-offs among them to guar-
antee the global properties?

Because cyber-physical systems have an impact on physical objects in an environment, safety be-
comes a real concern. In such situations, it becomes even more important for runtime trade-offs to guar-
antee that certain safety constraints will never be violated, regardless of the trade-offs on other
dimensions. For example, in a factory handling dangerous materials, we would never want to trade
power to a device transporting the material over concerns for energy standards. While these kinds
of constraints arise in other domains, they become critical in this domain. One avenue for exploring
this might be to incorporate concerns from the fault tolerance community regarding failure modes
and effects analysis [45] and adaptations like failing safely and redundancy.

Another concern in cyber-physical systems is their need to self-adapt to the constraint resources in
the devices or their environment. For example, the battery or power of the devices change, therefore the
systems have to evaluate trade-offs to keep functioning in these conditions. Self-adaptive software ar-
chitecture approaches are emerging to aid in allowing systems to choose suitable architectural config-
urations that satisfy the resources at runtime [27,46]. A critical challenge that needs exploration is how
do we provide self-adaptation architectural approaches without negatively affecting the resources of
these cyber-physical systems?

REFERENCES

[1] P.Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and Case Studies, Addison-
Wesley, Boston, MA, 2001.

[2] R. Kazman, M.H. Klein, P.C. Clements, ATAM: a method for architecture evaluation, Technical report
CMU/SEI-2000-TR-004, 2000.

[3] R.Laddaga, Active software, in: Proceedings of the First International Workshop on Self-Adaptive Software
(IWSAS 2000), Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2000, pp. 11-26

[4] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.
S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.
14 (3) (1999) 54-62.

[5] H. Cervantes, R. Kazman, Designing Software Architectures: A Practical Approach, Addison-Wesley,
Boston, MA, 2016.

[6] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.
Adapt. Sys. 4 (2) (2009).

[7] N.R. Jennings, An agent-based approach for building complex software systems, Commun. ACM 44 (4)
(2001) 35-41.

[8] T.Wantanabe, A. Yonezawa, Reflection in an object-oriented concurrent language, in: Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, 1988, pp. 306-315.

[9] T. Abdelzaher, Y. Diao, J.L.. Hellerstein, C. Lu, X. Zhu, Introduction to control theory and its application to
computing systems, in: Performance Modeling and Engineering, Springer, New York, 2008, pp. 185-215.

[10] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41-50.
[11] M. Puviani, G. Cabri, F. Zambonelli, A taxonomy of architecture patterns for self-adaptive systems,

in: Proceedings of the International C* Conference on Computer Science & Software Engineering
(C3S2E13), Porto, Portugal, July, 2013, pp. 77-85.

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0060

12 CHAPTER 1 MANAGING TRADE-OFFS IN ADAPTABLE SOFTWARE
ARCHITECTURES

[12] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wauttke,
J. Andersson, H. Giese, K. Goeschka, On patterns for decentralized control in self-adaptive systems,
in: Software Engineering for Self-Adaptive Systems II, Lecture Notes in Computer Science, vol. 7475,
Springer, Berlin, Heidelberg, 2012, pp. 76-107.

[13] G. Andrighetto, G. Governatori, P. Noriega, L.W.N. Van der Torre, Normative multi-agent systems, Dagstuhl
Follow-Ups, vol. 4, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2013.

[14] F. Zambonelli, M. Viroli, A survey on nature-inspired metaphors for pervasive service ecosystems, Int. J.
Pervasive Comput. Commun. 7 (13) (2011) 186-204.

[15] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, third ed., Addison-Wesley Professional,
Boston, MA, 2012.

[16] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D.A. Menascé, Software adaptation patterns for service-
oriented architectures, in: Proceedings of the 25th ACM Symposium on Applied Computing, Dependable
and Adaptive Distributed Systems, Sierre, Switzerland, March 22-26, 2010.

[17] L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Identifying and quantifying architectural debts, in: Proceedings
of the International Conference on Software Engineering (ICSE) 2016, (Austin, TX), May, 2016.

[18] J. Asundi, R. Kazman, M. Klein, Using economic considerations to choose among architecture design alter-
natives, Technical report CMU/SEI-2001-TR-035, Software Engineering Institute, Carnegie Mellon Univer-
sity, 2001.

[19] H. Simon, The Sciences of the Artificial, second ed., MIT Press, Cambridge, MA, 1981.

[20] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka, A case study in locating
the architectural roots of technical debt, in: Proceedings of the International Conference on Software Engi-
neering (ICSE) 2015, Florence, Italy, May, 2015.

[21] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, Upper
Saddle River, NJ, 1996.

[22] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-adaptive software, in: Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of SEngineering
(ESEC/FSE '11), ACM, New York, NY, USA, 2011, pp. 234-244.

[23] D. Garlan, B. Schmerl, J. Chang, Using gauges for architecture-based monitoring and adaptation,
in: Proceedings of the Working Conference on Complex and Dynamic Systems Architecture, Brisbane, Aus-
tralia, 12—14 December, 2001.

[24] D. Garlan, S.-W. Cheng, B. Schmerl, Increasing system dependability through architecture-based self-repair,
in: R. de Lemos, C. Gacek, A. Romanovsky (Eds.), Architecting Dependable Systems, Springer-Verlag,
Berlin, Heidelberg, 2003.

[25] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Proceedings of
the 20th International Conference on Software Engineering (ICSE '98), IEEE Computer Society,
Washington, DC, USA, 1998, pp. 177-186.

[26] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self adapta-
tion with reusable infrastructure, Computer 37 (10) (2004) 46-54.

[27] N. Ali, C. Solis, Self-adaptation to mobile resources in service oriented architecture, in: Proceedings of the
2015 IEEE International Conference on Mobile Services (MS), New York, NY, 2015, pp. 407-414.

[28] S.-W. Cheng, D. Garlan, Stitch: a language for architecture-based self-adaptation, in: D. Weyns,
J. Andersson, S. Malek, B. Schmerl (Eds.), State of the Art in Self-Adaptive Systems, J. Syst. Softw.
85 (12) (2012) (Special Issue).

[29] S.-W. Cheng, Rainbow: cost-effective software architecture-based self-adaptation, Ph.D. Thesis, Institute for
Software Research technical report CMU-ISR-08-113, Carnegie Mellon University, Pittsburgh, PA, May 2008.

[30] B.Schmerl,J.Camara,J. Gennari, D. Garlan, P. Casanova, G.A. Moreno, T.J. Glazier, .M. Barnes, Architecture-
based self-protection: composing and reasoning about denial-of-service mitigations, in: HotSoS 2014: 2014 Sym-
posium and Bootcamp on the Science of Security, Raleigh, NC, USA, 8-9 April, 2014.

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0155

REFERENCES 13

[31] P.Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing unobserved components in self-adaptive systems,
in: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Hyderabad, India, 2-3 June, 2014.

[32] J. Camara, A. Lopes, D. Garlan, B. Schmerl, Adaptation impact and environment models for architecture-
based self-adaptive systems, in: Science of Computer Programming, 2016. http://dx.doi.org/10.1016/
j-scico.2015.12.006.

[33] J.L. Fernandez-Marquez, G. Di Marzo Serugendo, P.L. Snyder, G. Valetto, F. Zambonelli, A pattern-based
architectural style for self-organizing software systems, in: N. Suri, G. Cabri (Eds.), Adaptive, Dynamic, and
Resilient Systems, CRC Press, Boca Raton, FL, 2014.

[34] Y. Brun, Building biologically-inspired self-adapting systems, in: B.H. Cheng et al., (Eds.), Proceedings of
the Schloss Dagstuhl Seminar 08031: Software Engineering for Self-Adaptive Systems, 2008.

[35] R. Mirandola, D. Perez-Palacin, P. Scandurra, M. Brignoli, A. Zonca, Business process adaptability metrics
for QoS-based service compositions, in: Service Oriented and Cloud Computing: 4th International European
Conference (ESOCC 2015), LNCS, vol. 9306, Springer, New York, September 2015.

[36] A. Gandhi, P. Dube, A. Karve, A. Kochut, L. Zhang, Adaptive, model-driven autoscaling for cloud applica-
tions, in: Proceedings of the 11th International Conference on Autonomic Computing, June 18-20, 2014.

[37] D. Ardagna, B. Pernic, Global and local QoS constraints guarantee in web service selection, in: Proceedings
of the IEEE International Conference on Web Services (ICWS ’05), IEEE Computer Society, Washington,
DC, 2005, pp. 805-806.

[38] V. Nallur, R. Bahsoon, A decentralized self-adaptation mechanism for service-based applications in the
cloud, IEEE Trans. Softw. Eng. 39 (5) (2013) 591-612.

[39] G. Canfora, M. Di Penta, R. Esposito, M. Luisa Villani, An approach for QoS-aware service composition
based on genetic algorithms, in: Proceedings of the Conference on Genetic and Evolutionary Computation,
2005, pp. 1069-1075.

[40] H.Liu, F.Zhong, B. Ouyang, J. Wu, An approach for QoS-aware web service composition based on improved
genetic algorithm, in: Proceedings of the 2010 International Conference on Web Information Systems and
Mining (WISM), vol. 1, 23-24 October, 2010, pp. 123-128.

[41] W. Zhang, C.K. Chang, T. Feng, H.-y. Jiang, QoS-based dynamic web service composition with ant colony
optimization, in: Proceedings of the IEEE 34th Annual Computer Software and Applications Conference,
July, 2010, pp. 493-502.

[42] V. Dellini, E. Casalicchio, V. Grassi, S. Iannucci, P. Lo Presti, R. Mirandola, MOSES: a framework for QoS
driven runtime adaptation of service-oriented systems, IEEE Trans. Softw. Eng. 38 (5) (2012) 1138-1159.

[43] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Mamelli, G.A. Papadopoulos, A
development framework and methodology for self-adapting applications in ubiquitous computing environ-
ments, J. Syst. Softw. 0164-121285 (12) (2012) 2840-2859.

[44] D. Menasce, H. Gomaa, S. Malek, J.P. Sousa, SASSY: a framework for self-architecting service-oriented
systems, IEEE Softw. 28 (6) (2011) 78-85.

[45] J.B. Bowles, R.D. Bonnel, Failure mode, effects, and criticality analysis, in: Annual Reliability and Main-
tainability Symposium, Tutorial Notes, 1993, pp. 1-36.

[46] G.G. Pascual, M. Pinto, F. Fuentes, Self-adaptation of mobile systems driven by the common variability lan-
guage, Futur. Gener. Comput. Syst. 47 (2015) 127-144.

http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0160
http://dx.doi.org/10.1016/j.scico.2015.12.006
http://dx.doi.org/10.1016/j.scico.2015.12.006
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00001-0/rf0235

CHAPTER

ARCHITECTING SOFTWARE
SYSTEMS FOR RUNTIME
SELF-ADAPTATION: CONCEPTS,
MODELS, AND CHALLENGES

N.M. Villegas*, G. Tamura*, H.A. Miiller’

Universidad Icesi, Cali, Colombid" University of Victoria, Victoria, BC, Canada’

INTRODUCTION

Self-adaptive software systems modify their own structure or behavior at runtime to regulate the sat-
isfaction of functional and nonfunctional requirements that change over time, for instance when af-
fected by changes in the system’s context of execution (e.g., when facing a sudden and unusually
large increment of user requests that causes the agreed upon throughput to be violated) [1-5]. For mod-
ifying the software structure or behavior, either at a coarse- or fine-grained level, and both at design
time and runtime, most of the approaches rely on the structure or behavior determined by the software
architecture. As a result, software architecture is among the most critical enablers for both adaptation
and self-adaptation as a means to regulate requirements satisfaction, in particular of nonfunctional
ones, under changing contexts of execution.

In traditional software engineering, as summarized succinctly by the Software Engineering Institute
(SED in 2006, architecture design usually starts from a set of architecturally significant requirements
[6]. Designed as the footprint for the solution, the architecture is expected to guarantee requirements
satisfaction, without special consideration of changes in context that can violate assumptions regarding
the immutability of requirements. In contrast, from the self-adaptive software engineering point of
view, even though architects depart also from functional and nonfunctional requirements, they focus
precisely on context changes that could violate the satisfaction of these requirements at execution time,
including the expected quality attributes. For systems facing this kind of context changes, the designed
architecture must enable the software to be self-aware, that is, it must include components that enable
the system to dynamically reconfigure its own structure or behavior at runtime. This implies, among
others, to monitor its own behavior with respect to its current goals (e.g., nonfunctional requirements),
and modify its own structure based on an internal, but explicit, representation of itself.

This chapter discusses the meaning of software design-time adaptation, and runtime self-
adaptation, and their implications for the task of architecting this kind of software systems. Of course,
architecting software systems that are self-adaptive at runtime implies the understanding of the way the

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2 1 7
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2

18 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

satisfaction of nonfunctional requirements can be affected by internal and external context variables
that may not be fully characterized at design time. Once the meaning of architecting a particular system
for runtime self-adaptation is understood, architectural drivers can be identified and thus the architec-
ture of the self-adaptive system can be designed more realistically to successfully cope with changes on
requirements and context conditions happening at runtime. To achieve this, software engineers produce
architectural artifacts in the form of concrete models derived from reference models. Moreover, these
models must be operable at runtime to be used in the implementation of self-adaptation mechanisms
that reconfigure the system’s architecture or behavior, thus providing the means for self-awareness, and
realizing self-adaptation [7].

The goal of this chapter is to introduce practitioners, researchers, and students to foundational con-
cepts and reference models associated with the architecting of self-adaptive software, as well as to pre-
sent challenges related to this task. Besides contributing novel discussions about (self)adaptation, we
compile and summarize research work that has been conducted by researchers in the field, including
our own.

This chapter is organized as follows. Section 2.2 introduces the running example used in this chapter
to illustrate the studied concepts. Section 2.3 explores the meanings of adaptation and self-adaptation as
well as the differences between these two concepts, and their implications for architecting adaptive and
self-adaptive software systems. Section 2.4 explains fundamental concepts that must be understood for
architecting self-adaptive software systems. Section 2.5 presents reference models and architectures rel-
evant to the engineering of self-adaptive software. Section 2.6 discusses major challenges on architect-
ing software systems for self-adaptation. Finally, Section 2.7 summarizes and concludes the chapter.

MOTIVATION: A WEB-MASHUP APPLICATION

To illustrate the concepts and challenges on (self)adaptation analyzed in this chapter, we use a
web-mashup application as a running example. This application is built by combining existing services
of the Twitter social network platform,’ and generic weather services accessible programmatically
through REST and WSDL interfaces. It is worth noting that—without loss of generality or
complexity—it is possible to apply and analyze (self)adaptation concepts even in relatively simple
applications based on the orchestration of functionalities offered through software components and
services, such as this web mashup. In other words, the fundamental (self)adaptation problems are just
as challenging when the software complexity is reduced.

Basically, the web mashup application implements a weather-for-a-twitter-user functionality,
by composing the location service of a Twitter user (i.e., the city/country as stored in the user’s profile)
with a weather service. We can choose from different available weather information providers, such as
WebServiceX,2 Google,3 Yahoo,4 VisualWebservice,” and the US National Weather Service.’

1https://dev.tWitter.com/d()cs/api.
2http://WWW.webservicex.net/ws/WSDetails.aspx‘.’CATID: 12&WSID=56.
3http://code.google.com/p/java-weather-api.
*http://weather.yahooapis.com/forecastrss.
Shttp://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL.
6http://WWW.Weathelxgov/forecasts/xml/DWMLgen/wsdl/ndl“dX]\/[L.wsdl.

https://dev.twitter.com/docs/api
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://code.google.com/p/java-weather-api
http://weather.yahooapis.com/forecastrss
http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

2.2 MOTIVATION: A WEB-MASHUP APPLICATION 19

The web mashup is partially based on two examples available on the Internet, which provide compo-
nents for two basic functionalities:’

» Twitter: For a given user, retrieves and decodes the public profile information. This includes the
user’s registered city and country.

» Weather: Retrieves the weather conditions on a given location as a pair city-country, using the
WSDL weather information service from WebServiceX.

The core components of these two examples are reused and their required services composed as illus-
trated in Fig. 2.1. In this figure, we follow the Service-Component Architecture (SCA) specification,
which is a computing model for realizing distributed Service Oriented Architecture (SOA) applications
[8, 91

The fundamental concept of SCA is the notion of component, a gray-box software artifact with well-
defined provided interfaces (or services), required interfaces (service references), and exposed prop-
erties. Components can contain other components hierarchically (thus called composites) and can be
implemented using different programming constructs and languages. To exchange information among
them, components communicate either by wiring directly their respective interfaces, or by binding their
interfaces through communication protocols such as SOAP, RMI, JMS, or REST.

For a given user (the userId exposed property in the figure), the Twitter-Weather mashup compo-
nent (TWMashup) requests the user profile from Twitter using the twitter service. Once obtained, this
profile uses the XML Twitter profile decoder component (Decoder) to obtain the registered location as
a city-country pair. Finally, it uses this location to obtain the corresponding weather information
through the weather service.

Using this web-mashup application, the following sections introduce different requirements scenar-
ios that help analyze (self)adaptation concepts and reference models.

userld B
Twitter-Weather

http://twitter.com

twtey oW L rest:getCity(uid) Internet

Weather t-=====-=--==------3 http://www.webservicex.net#

wsdl.port(GlobalWeather/
GlobalWeatherSoap)
soap:getWeather(city)

C)Composite D Component [] Exposed > Provided > Required > Interface > Interface

property interface interface binding promotion

FIG. 2.1

The Twitter-Weather web-mashup application architecture.

7hllp://websvn.ow2.org/lisling.php‘?repname:I'rascali&palh:%ZFIags%ZFfrascali%ZF\I'rascali—I 49%2Fexamples%2Ftwitter
and http://websvn.ow2.org/listing.php?repname=\rascati&path="%2Ftags%2Ffrascati%2Ffrascati- 1.4%2Fexamples %
2Fweather.

http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=frascati&path=%2Ftags%2Ffrascati%2F%5Cfrascati-1.4%2Fexamples%2Ftwitter
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather
http://websvn.ow2.org/listing.php?repname=%5Cfrascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fexamples%2Fweather

20 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

ADAPTATION VS. SELF-ADAPTATION

This section presents an analysis of the difference between the concepts adaptation and self-adapta-
tion. This analysis is important to understand differences in engineering self-adaptive and adaptive
software.

BASIC DEFINITIONS

Even though several software engineering publications and research communities treat the terms ad-
aptation and self-adaptation as synonyms, we believe that understanding the difference between these
two concepts is key to effectively architect software systems that have to adapt to context changes at
runtime. In general, this chapter is based on the idea that adaptation takes place at (re)design time and is
performed by a software engineer in charge of maintenance tasks (i.e., software maintenance from a
traditional software engineering perspective [10]). In contrast, self-adaptation happens at runtime and
aims to minimize human intervention by making the software to perform the adaptation by itself [3, 11,
12].

According to Merriam-Webster,” adaptation, in a general sense, can be defined as (i) “the process of
changing to fit some purpose or situation,” or (ii) “the process of adjusting to environmental condi-
tions.” From a software engineering perspective, adaptation has been defined as the process of chang-
ing the system to accommodate changes in its environment [13]. It is important to note that these
definitions do not imply that the adaptation must be dynamic nor, in the case of software, must take
place at runtime. Indeed, Heineman defines the term adaptation as the manual modification of com-
ponents by software engineers [14].

Self-adaptation, in turn, has been defined by several software engineering research communities as
“the process through which a software system adjusts its own behavior in response to the perception of
the environment and the system itself” [3, 15]. This self-adaptive behavior is realized by a software
subsystem that is usually known as the controller or adaptation mechanism [12, 16], which implies that
it must happen at runtime while maximizing automation and minimizing human intervention.

Analogously, in the same way that we treat the terms adaptation and self-adaptation as different
concepts, we also establish a clear difference between the terms adaptive software and self-adaptive
software, even though the second one can be considered as a subcategory of the first one. As Laddaga
[11], we argue that any piece of software code that is relatively easy to modify can be qualified as
adaptive, recalling that adaptation is the process of adapting it, performed by a human. That is, the
implied modification requires fundamental human intervention (e.g., at the source code level) and,
as a result, recompiling and interrupting the system execution. In contrast, self-adaptive software
performs self-adaptation by evaluating its own behavior and environment and adjusting itself, at run-
time, when this evaluation indicates that the system is no longer fulfilling its functional or nonfunc-
tional requirements, without interrupting its execution. Such adjustments can happen due to
changes in requirements or in the environment, including users and system context changes. An adap-
tive software can be converted into a self-adaptive one if enabled with self-awareness capabilities.
These capabilities are instrumented for instance through an adaptation mechanism that monitors its

8hnp://WwW.merriam-webster.com.

http://www.merriam-webster.com

2.3 ADAPTATION VS. SELF-ADAPTATION 21

environment—including its own execution health and requirements, analyzes the satisfaction of re-
quirements in light of environmental situations, plans a strategy to adapt itself depending on the results
of the analysis, and implements this strategy to reconfigure itself as required. All these tasks must take
place at runtime and be supported by a knowledge base comprising information gathered at design-time
and runtime. In other words, self-adaptive software is enabled to perform self-adaptation because of its
self-aware capabilities, thus eliminating (or reducing at minimum) the need for human intervention and
execution interruption.

Having established these conceptual differences, next we illustrate the implications of architecting
software systems for adaptation (adaptive software) versus architecting software systems for self-
adaptation (self-adaptive software), using the subject system described in Section 2.2.

ARCHITECTING SOFTWARE FOR ADAPTATION AND SELF-ADAPTATION

Adaptation—and also self-adaptation—processes are triggered usually when some of the nonfunc-
tional requirements are not fulfilled by a developed software system, for instance under unexpected
circumstances of execution. This incorrect behavior can be detected and corrected by a human by
means of observing and evaluating the software requirements satisfaction, and adjusting the source
code to make the software satisfy its functional and nonfunctional requirements under the unexpected
conditions. Of course, this procedure implies the recompilation and redeployment of the application.
Dramatic consequences can result if the unexpected circumstances affect nonfunctional requirements
and demand a more drastic redesign of the system. We characterize this procedure as an adaptation
process, given that it is performed mainly by humans; it would be a self-adaptation process if the de-
tection and correction would be performed by the software itself, and with minimum human
intervention.

We examine the differences between adaptation and self-adaptation in more detail by analyzing
concrete examples of both processes, based on the motivational running example introduced in the
previous section.

2.3.2.1 Architecting for adaptation

Assume that the Twitter-Weather mashup of our case study stops reporting the weather for the cities the
Twitter users are located in. The developer detects that the weather service used in the mashup, Web-
serviceX, has been unavailable for the last day because of an infrastructure maintenance. To correct this
problem, she performs an adaptation process as follows. The developer finds the Yahoo weather service
available on the Internet, and proceeds to adapt her mashup application code. Basically, she has to de-
termine how to obtain results from the weather service, for both the current one (i.e., WebserviceX) and
the new one (i.e., Yahoo). Then, she has to modify (i.e., adapt) the code to compute the required
parameters for the new service, and process its results appropriately.

However, if the Yahoo weather service becomes also unavailable, the developer must readapt the
code again, this time to invoke the Google weather service. In order to avoid changing the weather
service invocation used in the code and recompiling it every time the service used in the code is una-
vailable, the developer could even decide to guard the service invocation on each of the three alterna-
tive weather services with a condition, checking service availability and using the one of the three that
is available, in an if-then-else chain.

22 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

2.3.2.2 Architecting for self-adaptation

In the case of architecting for self-adaptation, the problem of the possible weather service unavailabil-
ity is expected to be addressed exactly as the possibility of facing an otherwise completely unexpected
circumstance in which the system’s requirements satisfaction would be compromised. Architecting the
solution for self-adaptation means that it is the software itself, not the human (i.e., developer, system
administrator, or system operator), that must detect whenever this circumstance happens, and in re-
sponse, decide to perform an adaptation on itself to maintain requirements satisfaction, at runtime
and without interrupting its execution. Therefore, in contrast to the adaptation case, architecting the
solution for self-adaptation implies fundamentally to enable the software system to be self-aware
and self-managed, as proposed in the vision of Autonomic Computing [17]. Self-awareness implies,
beyond equipping the software system with the components that realize the system’s functional re-
quirements (i.e., target system components), to integrate it with components comprising the self-
adaptation mechanism, as depicted in the lower part of Fig. 2.2, namely:

1. Monitor: Detects events from the system’s context that may compromise the system requirements
satisfaction. For instance, detecting that the weather service of WebserviceX is unavailable.

2. Analyzer: Receives events detected by the monitor and analyze whether it is necessary to perform an
adaptation on the system itself (thus called self-adaptation). For instance, determining that WebserviceX
has been unavailable for an unacceptable amount of time, thus requiring some corrective action.

3. Planner: Synthesizes the adaptation plan. For instance, to change the WebserviceX weather service
invocation by one to the Yahoo weather service.

4. Executor: Realizes the adaptation plan in the actual software system, without interrupting its execution.

Moreover, in our example, for the self-adaptation plan synthesizer to be more maintainable and less coupled
to the particular adaptation logic of each weather service that could be used in the mashup, the next key
architectural decision is to use the Adapter design-pattern [18]. Indeed, as part of the architecting process

userld

Twitter-Weather

>
Decode| Decoder
XMLCities
9 &2 WebServiceX <l
Weather| \weatherAdapter

leatherMgr

5 Yahoo 2)" ~.
Weather| weatherAdapter

&
Self-adaptation mechanism
.éMonitor%}%Analyzer%}-é PIanner%}iéExecutor%}

C)Cumposfte Q Component [] Exposed > Provided DRequired Hlnterface > Interface

property interface interface binding promotion

http://twitter.com
rest:getCity(uid)

http://www.webservicex.net#
wsdl.port(GlobalWeather/.
GlobalWeatherSoap)

soap:getWeather(city)

Internet

http://www.google.com
rest:getWeatherinfo(city)

2> Weather 3>

Weather | grchestrator
SCAService

http://weather.yahooapis.
com/forecastrss?w=

FIG. 2.2
The Twitter-Weather architecture designed for self-adaptation.

2.3 ADAPTATION VS. SELF-ADAPTATION 23

for self-adaptation of our mashup application, we anticipate that existing weather information services,
available on the Internet, have different method signatures and thus different service interfaces to ask
for and deliver the weather information. Thus, we apply the Adapter design-pattern by introducing a generic
weather service interface, which is implemented by each of the concrete adapters (cf. the weather services
in Fig. 2.2). These concrete adapters allow the weather service invoker to be able to use any of the existing
weather services independently of their particular service interfaces and implementations (i.e., Adaptees).
Additionally, the weather orchestrator component (cf. WeatherOrchestratorin Fig. 2.2) isresponsible for
providing the generic weather service (through the interface WeatherSCAService), from the different
weather service providers. The WebServiceXWeatherAdapter component (and corresponding weather
adapters for Google and Yahoo) is responsible for translating the generic weather invocation, and respec-
tive response, to each of the particular weather providers interface specifications.

Once developed and deployed, the self-adaptation mechanism of our mashup allows the system to self-
adapt at runtime, whenever the monitor detects significant periods of the weather service unavailability.
Human intervention would be necessary only to deploy components implementing new weather service
adapters. Nevertheless, the deployment of these components can be realized transparently for the users
(i.e., without interrupting the system services execution) using extended SCA frameworks such as the
one proposed by Tamura et al. [5, 19].

2.3.2.3 Implications of self-adaptation

In the previous sections we described how to solve the problem of service unavailability using two
similar strategies (i.e., adaptation and self-adaptation) that produce very different solutions. The plain
adaptation solution involved the use of several conditional statements, which could be coded as in
Listing 2.1.

LISTING 2.1

The adaptation solution

public Weather obtainWeather () {
Weather w;

1

2

3

4 if (webservicexWeather.methodForWebServiceXisAvailable()) {
5

6

p = prepareParametersForWebServiceXWeather (...);
w = translateResult (webservicexWeather.methodToObtainWeather (p)
)

7 }

8 else if (yahooWeather.methodForYahooisAvailable()) {

9 p = prepareParametersForYahooWeather (...);

10 w = translateResult (yahooWeather.methodToObtainWeather (p));

11 }
12 else if (googleWeather.isAvailable()) {

13 p = prepareParametersForGoogleWeather (...);

14 w = translateResult (googleWeather.methodToObtainWeather (p));
15 ¥

16 A

17 return w;

18|}

24 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

In this solution, the application logic is adapted by the developer by modifying the application
source code and recompiling and redeploying it, for each time a new weather service is added. Thus,
it is possible to argue that the service availability conditions (cf. lines 4, 8, and 12) replace the func-
tionality of the self-adaptation’s monitor and analyzer components, and the service invocations them-
selves (cf. lines 6, 10, and 14) make the planner and executor components unnecessary. Naturally, as
illustrated in the code, these service invocations require the previous instructions for mapping and
translating the actual parameters to the ones required by each of the weather service providers, as well
as the following instructions for translating their responses to the expected weather information. In fact,
in Listing 2.1 we have presented the code for mapping and translating parameters and return values. A
similar, but more standardized way of invoking the different weather services results from the appli-
cation of the Adapter design pattern, which we proposed as part of the architectural decisions in the
self-adaptation strategy. However, there are fundamental differences between these two strategies:

» Adaptation time and responsibility: in the adaptation strategy, the actual adaptation of the
application code is performed at (re)design time and is realized by a human, requiring
recompilation, redeployment, and restarting of the application; in the self-adaptation strategy, the
adaptation is performed at runtime, and realized by the software itself without recompilation,
redeployment, or restarting. In the first case, the adaptation decision and responsibility is assumed
and performed by the developer, given that the software itself is not aware of its own structure
(i.e., components, services, bindings), nor of its behavior (e.g., fulfillment status of its
nonfunctional requirements), and thus, it has no possibilities to act upon or modify itself (i.e., self-
adapt). In the second case, the adaptation decision is a function completely of the software itself.

» Separation of concerns as enabler for dynamic reconfiguration: from Fig. 2.2 and Listing 2.1, it is
evident that in the self-adaptation strategy the code for performing the adaptation is clearly
separated from the code that implements the application logic, whereas in the plain adaptation one
there is no adaptation code. Monitoring components are executed in independent threads,
reporting changing-context events to the analyzer, while the application logic is executed in a
different thread of control flow. Planner and executor logic, located in different components, allow
the complete substitution of the application logic components, if needed. Thus, separation of
concerns, both between application and adaptation logic, and among the adaptation logic
components, is a critical enabler for the dynamic reconfiguration and self-adaptation of the
application components. Furthermore, intertwining all of the adaptation logic with the application
logic would render the system more challenging to maintain.

* Maintainability and policy-driven behavior: as a result of the separation of concerns, the self-
adaptation strategy not only promotes maintainability and decoupled components, but also the
policy-driven specification of behavior. For instance, the decision of changing the weather service
provider should involve the notion that web services may have an associated cost of use and
also differentiated preferences by users. Thus, changing the weather service should not depend
solely on a simple check of service unavailability, but on a set of comprehensive conditions that
could include monitoring the unavailability for a certain amount of (maximum acceptable) time, or
the observation of repeating a series of short unavailability periods in a given time frame.

» Feedback control: in terms of the process, the plain adaptation strategy can be seen as a closed loop
controlled and performed by a human. That is, the human monitors, analyzes, and determines
whether the software application code requires to be adapted. If an adaptation is required to
accomplish a given goal, the human performs the adaptation by modifying, recompiling and

2.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 25

redeploying the application code. Then, she starts the loop again, evaluating whether the

source code adaptation accomplished the desired goal. However, the resulting software in general
has no feedback control implemented in it, by definition, only conditional statements or similar
control-flow structures. In contrast, the self-adaptation mechanism of self-adaptive software
systems is by itself a closed loop, in which human intervention is eliminated or reduced to the
minimum. This mechanism permanently monitors the software application behavior, analyzes
whether an adaptation is needed, and plans and executes it in the software application components,
if required. Thus, instead of chained conditional statements guarding method invocations, the
self-adaptation strategy replaces the actual method invocations and its defining components by the
required ones, as needed, through component redeployment and service rebinding operations at
the architecture level.

Performing adaptation processes by hand to adaptive software is a challenging task. However, our goal
in this chapter is to focus on architecting self-adaptive software. From the previous sections and dis-
cussions, it should be clear that the main difference between adaptive and self-adaptive software is that
the latter is aware of its own status about the accomplishment of its goals, and is able to modify itself at
runtime, without human intervention. In the following sections, we analyze and discuss the most im-
portant aspects that architects of self-adaptive systems ought to consider.

FOUNDATIONAL CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE
SOFTWARE

This section presents foundational concepts on architecting software systems for self-adaptation.

FUNDAMENTAL DIMENSIONS OF SELF-ADAPTIVE SOFTWARE

We characterize self-adaptive software through a set of dimensions or elements that play an important
role in the architectural design of this kind of software systems. These dimensions are defined as fol-
lows [7]:

1. Self-adaptation goal: The main reason for the system to be self-adaptive. These goals can be defined
through one or more of the self-* properties defined in Autonomic Computing (e.g., self-
configuring, self-healing, self-optimizing, self-protecting, self-managing) [17], the regulation of
quality of service (QoS) properties (e.g., nonfunctional requirements), or the preservation of
functional requirements. In the context of our example (cf. Section 2.2), a self-adaptation goal is the
self-healing property, since the system is able to detect the failure associated with the service that
becomes unavailable and to recover from this situation.

2. Structure of self-adaptive software: Self-adaptive systems have two well-defined subsystems
(although sometimes indistinguishable, depending on the level of separation of concerns applied):
(i) the self-adaptation mechanism (also known as self-adaptation controller or autonomic manager)
and (ii) the managed system (also known as target system). The architecture of these two
subsystems not only must be explicitly designed and maintained, but also must coexist in a proper
manner, albeit not necessarily on the same processor. In our example, the target system corresponds
to the mashup application (cf. the Twitter-Weather composite depicted in Fig. 2.2), which is

26

CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

clearly separated from the self-adaptation controller (cf. the Self-Adaptation Mechanism
composite in the same figure).

Reference inputs: The set of values with corresponding types that are used to specify the
self-adaptation goal to be achieved and maintained in the managed system by the self-adaptation
mechanism. As presented in [7], reference inputs are specified as (a) one or more reference values
(e.g., a physically or logically measurable property); (b) some form of contract (e.g., QoS, service
level agreements (SLA), or service level objectives (SLO); (c) goal-policy-actions; (d) constraints
defining computational states (according to the particular proposed definition of state); or even
(e) functional requirements (e.g., logical expressions as invariants or assertions, regular expressions).
Measured outputs: The set of values with corresponding types that are measured in the managed
system. These measurements must be specified, monitored and compared against the reference
inputs to evaluate whether the self-adaptation goal has been achieved. Often, measured outputs are
specified through (a) continuous domains for single variables or signals; (b) logical expressions or
conditions for contract states; and (c) conditions expressing states of system malfunction. Most
common options for monitoring measured outputs are (a) measurements on physical properties
from physical devices (e.g., CPU temperature); (b) measurements on logical properties of
computational elements (e.g., request processing time in software or CPU load in hardware);
and (c) measurements on external context conditions (e.g., user location or weather conditions). For
the self-adaptive system of our case study, measure outputs are in the form of conditions expressing
states of system malfunction (e.g., service unavailability).

Computed control actions: Correspond to the means used by the self-adaptation mechanism to
affect or modify the managed system to achieve the self-adaptation goal. In general, computed
control actions can be (a) continuous signals that affect behavioral properties of the managed
system; (b) discrete operations affecting the computing infrastructure executing the managed
system (e.g., host system’s buffer allocation and resizing operations; modification of process
scheduling in the CPU); (c) discrete operations that affect the processes of the managed system
directly (e.g., processes-level service invocation, process execution operations-halt/resume, sleep/
respawn/priority modification of processes); and (d) discrete operations affecting the managed
system’s software architecture (e.g., managed system’s architecture reconfiguration operations
such as deploying/undeploying components, binding/unbinding services). The nature of these
controller outputs is related to the extent of the intrusiveness of the self-adaptation mechanism with
respect to the managed system. In our example, the self-adaptation mechanism relies on

discrete operations that affect the software architecture. Particularly, it uses service unbinding and
binding operations to connect to a new weather service after the current one becomes unavailable.
Observable adaptation properties: Correspond to characteristics that can be observed on the
self-adaptation mechanism to evaluate its quality. Properties of the self-adaptation controller are (a)
stability, (b) accuracy, (c) settling-time, (d) small-overshoot, (e) robustness, (f) termination, (g)
consistency (in the overall system structure and behavior), (h) scalability, and (i) security. For the
managed system, the identified properties result from the self-adaptation process: (a) behavioral/
functional invariants and (b) QoS conditions, such as performance (i.e., latency, throughput,
capacity); dependability (i.e., availability, reliability, maintainability, safety, confidentiality,
integrity); security (i.e., confidentiality, integrity, availability); and safety (i.e., interaction
complexity and coupling strength).

2.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 27

SELF-ADAPTATION GOALS

Adaptation goals are the main reasons for a system to be self-adaptive [7]. These goals are generally
defined in terms of the self-* properties, as defined in the Autonomic Computing vision [17], as well as
in terms of nonfunctional and functional requirements. This section presents definitions for the self-*
properties and most commonly addressed nonfunctional requirements, from the perspective of self-
adaptive software architecture design.

The purpose of self-adaptation can be characterized as the need for the continuous satisfaction of
functional requirements, and the regulation of nonfunctional requirements under changing conditions
on requirements and execution contexts [7]. The continuous satisfaction of requirements at runtime
may be affected by two main factors [20]: (i) changes in goals (i.e., requirements evolve according
to changes in business goals, for example, a renegotiation of SLAs, and changes in user preferences,
for example, when the situation of the user changes); and (ii) changes in the environment, which in-
clude changes in the system itself (e.g., unavailability caused by a service failure) and changes in the
external environment (e.g., peaks of transactions caused by seasonal events such as the Black Friday).

2.4.2.1 Self-properties as self-adaptation goals

Autonomic Computing, as envisioned by IBM [17], refers to the capability of computing systems to
manage themselves according to goals and policies defined by system administrators. The essential
purpose of Autonomic Computing is self-management, which is realized through self-adaptation, ex-
posing one or more of the following four properties that are commonly known as the self-* or self-
management properties: self-configuration, self-optimization, self-healing, and self-protection. In
the context of architecting software systems for self-adaptation, these properties can be defined as
follows:

1. Self-configuration: This property refers to the automatic configuration of the system architecture at
runtime. Self-configuration is generic in the sense that it can be used to realize any other self-*
property, or even any self-adaptation goal achievable through the automatic reconfiguration of the
system architecture (of both the structure of the managed system and of the self-adaptation
mechanism). Systems with self-configuration capabilities reconfigure themselves automatically,
based on high level policies, and reconfiguration symptoms and strategies.

2. Self-optimization: The capability of the system to continuously improve the satisfaction of
nonfunctional properties (i.e., quality attributes such as performance, or resource usage such as
power consumption, or SLA profit) through the self-configuration of the system architecture
according to changes in business goals and environmental situations.

3. Self-healing: The capability of the system to detect, diagnose and repair malfunctions by itself, at
runtime. In particular, failures originating in the software architecture can be fixed through self-
reconfiguration.

4. Self-protection: The capability of the system to protect itself against malicious attacks or intrusions,
adopting secure configurations through self-adaptation.

As we already mentioned, concerning the self-* properties, the self-adaptation goal for our web mashup
example is self-healing.

28 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

2.4.2.2 Nonfunctional requirements as self-adaptation goals

This subsection presents nonfunctional requirements that are commonly defined as self-adaptation
goals in self-adaptive software. For each nonfunctional requirement, we give its definition and a set
of related quality attributes. The following selected definitions are borrowed from the framework
for evaluating quality-driven self-adaptive software that we proposed previously [7].

1. Performance: Refers to system responsiveness, that is, the time required for the system to respond to
processing events, or inversely, the event processing rate in a time interval. Identified factors
that affect performance are latency (the time the system takes to respond to a specific event);
throughput (the number of events that can be completed in a given time interval; and capacity
(a measure of the amount of work the system can perform).

2. Dependability: Defines the level of reliance that can be placed on the services the software system
delivers. Adaptation goals associated with dependability are availability (readiness for usage);
reliability (continuity of service); maintainability (capacity to self-repair and evolve); safety (from
a dependability point of view, nonoccurrence of catastrophic consequences from an external
environment perspective); confidentiality (immune to unauthorized disclosure of information);
integrity (nonimproper alterations of the system structure, data and behavior).

3. Security: Concerns of security are defined in terms of confidentiality (protection from disclosure);
integrity (protection from unauthorized modification); and availability (protection from
destruction).

4. Safety: The level of reliance that can justifiably be placed on the software system as not generator of
accidents. Safety is concerned with the occurrence of accidents, defined in terms of external
consequences. The following two properties of critical systems can be used as indicators of system
safety: interaction complexity and coupling strength. In particular, interaction complexity is the
extent to which the behavior of one component can affect the behavior of other components.

Referred to our example, availability, as a nonfunctional requirement, is the most important
self-adaptation goal. In this case, the self-adaptation mechanism must guarantee is the readiness for
usage of the mashup application, even when some services may be unavailable at any moment of
the system execution.

SELF-ADAPTATION FUNDAMENTAL PROPERTIES

Properties inherent to self-adaptive software are qualities (or characteristics) that can be observed on
self-adaptation mechanisms. These properties, one of the main contributions of our research on self-
adaptive software, are key for evaluating the quality of self-adaptation mechanisms [7]. Therefore,
these properties should be considered when making design decisions on architecting self-adaptive
software.

1. Stability: Represents the degree in which the self-adaptation process makes the observed target
system behavior to converge toward the self-adaptation goal, and to stabilize around it. An
unstable self-adaptation process will repeat self-adaptation tasks without reaching stability.

2. Accuracy: Represents how close the observed target system behavior approximates the
self-adaptation goal, in its stable state.

2.4 CONCEPTS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 29

3. Settling time: Represents how fast the self-adaptation process makes the observed target system
behavior reach the self-adaptation goal.

4. Resource overshoot: Refers to how well the self-adaptation process performs under given
conditions in terms of the amount of resources used in excess to achieve a required settling-time,
before reaching a stable state.

5. Robustness: Applies to both the target system and the self-adaptation mechanism. From the
perspective of the target system, robustness implies that the target system must remain stable and
guarantee accuracy, short settling time, and small resource overshoot, even if its current state
differs from the expected state in some measurable way. From the perspective of the
self-adaptation mechanism, robustness refers to the capability of the self-adaptation mechanism to
operate within desired limits even under unforeseen conditions.

6. Termination: Guarantees that the execution of the self-adaptation mechanism will finish, even if
the target system does not reach the self-adaptation goal.

7. Consistency (also known as integrity): Aims at ensuring the structural and behavioral integrity
of the target system after performing a self-adaptation process. For instance, when a self-adaptation
plan is based on dynamic reconfiguration of software architecture, consistency must guarantee
sound interface bindings between component services (e.g., component and service-based
structural/behavioral compliance) and ensure that when a component is replaced dynamically by
another one, the execution will continue without affecting the function of the system.

8. Atomicity: Guarantees that the self-adaptation process is executed atomically.

9. Durability: Guarantees that the final result of the self-adaptation process endures over time (i.e.,
especially after restarting the target system).

10. Security: Ensures that not only the target system, but also the data and components shared with the
self-adaptation mechanism, are protected from disclosure (confidentiality), modification
(integrity), and destruction (availability).

SENSORS AND EFFECTORS

In Autonomic Computing, sensors and effectors constitute what has been defined as the manageability
interface. Through this interface, one or more autonomic managers manage or control the managed
resources or components. A manageability interface is composed of one or more manageability
endpoints (also known as touchpoints), whose functions are to expose the state and management
operations of the managed resource or component. An autonomic manager is a software component
that implements an intelligent control loop. This loop, which is referred to as Monitoring-Analysis-
Planning-Execution and shared Knowledge (MAPE-K) loop (cf. Section 2.5) comprises four
phases—monitoring, analysis, planning, and execution—that operate over a knowledge base.
Similarly, when architecting software systems for self-adaptation, components intended to be dy-
namically adapted at runtime must implement a self-adaptation interface composed of sensors and
effectors. The functionality of sensors is twofold. First, they allow the gathering of context information
from the environment, and second, they expose the state of the self-adaptive component to other com-
ponents or systems. Effectors expose the methods that implement the self-adaptation operations on the
component. Architectures of self-adaptive software must implement standard and interoperable self-
adaptation interfaces using specifications such as WSDL, REST, and RMI. In our example, sensors
allow the self-adaptive system to monitor the availability of the multiple weather services, whereas

30 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

effectors are part of the execution phase of the MAPE-K loop and correspond to a method that invokes a
dynamic binding reconfiguration.

UNCERTAINTY AND DYNAMIC CONTEXT

The dynamic capabilities of self-adaptive software are highly affected by the entities in the execution
environment, including system requirements and the system itself. The observable characteristics of
these entities are known as context information. According to Whittle et al. [21], the uncertainty in-
herent in self-adaptation is generated by two main sources. The first one, environmental uncertainty,
is the uncertainty due to changing environmental conditions. The second one, behavioral uncertainty,
originates from changes in software requirements or in the system behavior. Therefore, context mon-
itoring in self-adaptive software concerns not only entities external to the system, but also entities
within the boundaries of the system and system requirements.

So far, most monitoring mechanisms for supporting context-aware and self-adaptive systems have
been based on the classical definition of context [7]. This definition characterizes context as “any in-
formation that describes the situation of entities that can affect the system’s behavior” [22]. It is im-
portant to point out that this definition, given by Dey in 1999, did not consider changes in the states of
these entities while the system that is intended to be context-aware is in execution. On the contrary, in
the case of self-adaptive software, which by definition is significantly affected by uncertainty, context
is not simply the state of a predefined environment with fixed entities, but part of an interacting process
with a continuously changing and uncertain environment. Therefore, architecting software systems for
runtime self-adaptation must involve an operational definition in which context, and their requirements
monitoring, are modeled as first-class entities, in such a way that its changing states can be acquired
from the environment, manipulated along its life cycle explicitly by taking into account its dynamic
nature, and provisioned based on changes on requirements [23].

Dynamic context differs from static context in aspects related to its modeling and management.
Concerning context modeling, static context specifies, at design-time, relevant context entities, and the
interactions among them, which remain immutable at runtime. The birthday and gender of a user are
instances of static context. Therefore monitoring mechanisms based on static context keep track of entities
specified at design-time. Once the system is in execution, the addition of new entities is not supported by the
static context specification. On the contrary, dynamic context requires modeling techniques that support
changes in the specification of context entities and corresponding monitoring requirements at runtime.
For example, location, product, and service preferences are instances of highly dynamic context.

Concerning context management, monitoring strategies that keep track of static context are deter-
mined at design-time and remain fixed at runtime, whereas monitoring strategies that manage dynamic
context are required to change over time, at runtime. Dynamic context management is key to leverage
the dynamic capabilities of self-adaptive systems and manage the uncertainty that can affect their be-
havior. Furthermore, the architecture of context management infrastructures must also be reconfigured
at runtime to support changes in context monitoring requirements generated by high levels of uncer-
tainty. Coping with uncertainty is perhaps the most complex aspect of architecting software systems for
runtime adaptation. In our example, a manifestation of uncertainty is the modification of the current
self-adaptation goal of availability, by another goal of performance. In particular, to satisfy the new
goal, new sensors would have to be deployed to monitor, for example, the latency of the weather service
configured to be consumed.

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 31

REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE

In this section we analyze, from the software architecture perspective, representative reference models
that have been proposed for engineering self-adaptive software systems. A reference model is a stan-
dard decomposition of a known kind of problems into distinguishable parts or components, each having
well defined functionalities and control/data flow [24]. We start with the feedback-loop reference
model of control theory, which has been instantiated in several ways for different self-adaptive soft-
ware systems. More abstractly, it has served directly or indirectly as a foundation for defining the struc-
ture of the reference models analyzed in this section.

THE FEEDBACK LOOP MODEL OF CONTROL THEORY

In control theory, the feedback loop is a generic model designed with the goal of automatically con-
trolling the dynamic behavior of a system (thus called target system). As such, it has been used to au-
tomate a large number of processes in diverse fields of engineering [25]. More recently, it also has been
adopted as a model for self-adaptation in computing and software engineering [26, 27].

As depicted in Fig. 2.3, the feedback loop model clearly distinguishes and separates the controller
from the target system. To control the dynamic behavior of the target system, the model regularly com-
pares the measured outputs (A) of the target system behavior to the control objectives given as refer-
ence inputs (B), yielding the control error (C), and then adjusting the controlling inputs (D)
accordingly for the target system to behave as defined by the reference input. The target system’s mea-
sured output can also be affected by external disturbances (E), or even by the noise (F) caused by the
system self-adaptation. Transducers (G) translate the signals coming from sensors, as required by the
comparison element (H).

To compute the controlling inputs, the representative mechanism in control theory is the system
transfer function, a mathematical model built upon the physical properties and characteristics of the
target system. For instance, depending on these characteristics, in classic control the transfer function
can be built with proportional, derivative and integral (PID) terms. The parameters in a PID controller
have special significance given that there exist precise and sophisticated methods for tuning their
values in a specific controller.

Noise Disturbance
input input

(B) ©) (2) (F) (E)l (A)
Reference (H) Control Control Measured
input error input output
Controller _> Target system >
Transduced
output
Transducer <

(G)

FIG. 2.3

Block diagram of a general feedback control system.
Source: Modified from J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury, Feedback Control of Computing Systems, Wiley, Chichester,
2004.

32 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

THE MAPE-K MODEL

Even though the application of control theory and its feedback-loop model to industrial processes is
well understood, it requires to be adapted for its application to the control of software systems. First,
the system’s transfer function, which represents the target system’s behavior model, is defined in terms
of continuous mathematics. Second, this theory relies on measurements taken from, and actions per-
formed into, physical, self-contained and self-performing artifacts, that is, on variables in the
continuous-time domain (e.g., sensors, gauges and valves/actuators for temperature, pressure and other
variables). In contrast, models for software systems are usually built using discrete formalisms, given
that they are composed of intangible artifacts with discrete-time behavior and not always well char-
acterized properties. Moreover, to fully exploit the possibilities of software self-adaptation from the
software architecture perspective, the output of the self-adaptation mechanism must be based on some
kind of discrete operations rather than on controlling signals to be transduced by electro-mechanical
devices. For instance, it would be more appropriate for this output to be a plan of ordered instructions to
be instrumented by the software actuators on the target software components.

Inspired by the human autonomous nervous system, IBM researchers adapted the feedback-loop
model to define the autonomic element as a building block for developing self-managing and self-
adaptive software systems. They synthesized this adaptation in the form of the so-called MAPE-K loop
model, as depicted in Fig. 2.4. The purpose of this model is to develop autonomous controlling mech-
anisms to regulate the satisfaction of dynamic requirements, specifically in software systems [17, 26,
28].

In Fig. 2.5 we illustrate our interpretation of the MAPE-K loop, mapped from the general feedback-
loop block diagram. To autonomously regulate the satisfaction of the system requirements (cf. refer-
ence control inputs in the figure), which vary with context changes, a Monitor gathers information from
the internal and the external contexts. This information, in the form of control symptoms, is analyzed by

Change
request

Analysis Planning

Symptoms

Knowledge

base
FIG. 2.4

The MAPE-K loop.

Source: Based on J.0. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41-50.

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 33

Context
Control Control disturbances
error actions

Reference

control input Instrumen-

) 1 >
>»| P >»| Executor m
control A 1 ¢ ¢ Managed
A
-

Analyzer

Knowledge manager system

Symptoms | software

External Monitor
context data Measured control data

FIG. 2.5
The MAPE-K loop as adapted from the feedback loop.

Source: From G. Tamura, QoS-CARE: a reliable system for preserving QoS contracts through dynamic reconfiguration, PhD Thesis,

University of Lille 1—Science and Technology and University of Los Andes, May 2012.

the Analyzer, which compares them to the reference control input, yielding a control error. Based on
this difference, the P1anner element computes control actions to be instrumented by the Executor in
the managed software system. A Knowledge Manager manages relevant information, such as adaptation
policies, thresholds, and rules, shared with the other MAPE-K loop elements. The measured control
data can also be affected by context disturbances caused, for instance, by the system adaptation itself
[20, 26].

The concrete responsibilities for each of the MAPE-K loop elements are as follows:

1. Monitor: Monitoring elements are responsible for sensing changes in both, the managed
application’s internal variables corresponding to QoS properties (e.g., measured QoS data), and also
the external context (i.e., measured from outside the managed application). Based on these changes,
monitors must notify relevant context events to the analyzer. Relevant context events are those
derivable from system requirements (e.g., from QoS contracts).

2. Analyzer: The analyzer, based on the high-level requirements to fulfill, and the context events
notified by monitors, determines whether a system adaptation must be triggered. This would occur, for
instance, when the notified events signal changes that (may) violate the reference control inputs.
Context analyzers can be based on either, multi-event or single-event pattern matchers, as
discussed in [29]. Multi-event matchers produce complex events based on single events that
accumulate over time. These single events are produced by single-event matchers, which identify
partial matches in the flow of the monitored events.

3. Planner: Once notified with a reconfiguration event from the context analyzer, the planner selects a
strategy to fulfill the new requirements, using the accumulated knowledge in the shared
Knowledge Manager. By applying the selected strategy, the planner computes the necessary control
actions to be instrumented in the managed software system. An important difference between the
feedback and the MAPE-K loops is that, in the former, the control actions are continuous signals for
physical actuators (e.g., resistors and motors), whereas in the latter, they are sequences of discrete
operations (thus called reconfiguration plans). These discrete operations are then interpreted by the
executor.

4. Executor: Upon reception of a reconfiguration plan, the executor interprets each of the operations
specified in the plan and effects them in the managed software system. This implies to translate
or adequate the reconfiguration actions to the ones implemented by the particular runtime component
platform that executes the managed software system.

34 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

5. (Reconfiguration) Knowledge Manager: The reconfiguration knowledge manager makes explicit the
relevant knowledge about the managed software application configuration, and how to perform its
reconfiguration at runtime. In a feedback loop, the controller encodes fundamental knowledge
about the properties of the physical plant or target system to control in the system transfer function.
Based on this mathematical model of the target system, and its response to context disturbances,
control properties such as short settling-time, stability, accuracy, and small resource-overshoot can
be guaranteed on a controller [25, 26]. In contrast to physical systems, built from materials with
well known standard properties such as conductance, capacitance, and heat conduction, software
systems are developed with software components with no standardized properties. Thus, in the case of
the MAPE-K loop (i.e., in the software systems domain), the knowledge manager, provided by the
adaptation designer, must supply the lack of information about the properties of the managed software
application, in order to make adequate decisions for its adaptation.

Referring to our case study, using the MAPE-K model to design the architecture produces the solution
already explained in Section 2.3.2.2, and illustrated in Fig. 2.2. The monitor regularly checks the avail-
ability of the currently selected weather service provider (e.g., WebserviceX). When it accumulates ev-
idence of service unavailability, notifies the analyzer with the respective information. If this evidence
justifies changing the provider, the analyzer notifies the planner about this need. The planner, depend-
ing on the reported information and the availability of the other two providers (e.g., Yahoo and Google
weather), generates a reconfiguration (i.e., adaptation) plan to solve the unavailability problem. This
plan basically must link the interface of the required “weatherMgr” service of the “WeatherOrchestra-
tor” component, unlink it from the provided “weather” service of the “WebserviceXWeatherAdapter,”
and linking it to the provided “weather” service of the selected provider (i.e., “Google WeatherAdapter”
or “YahooWeatherAdapter”).

KRAMER AND MAGEE’S SELF-MANAGEMENT REFERENCE MODEL

Inspired by the reference architecture defined by the artificial intelligence and robotics community
[30], Kramer and Magee proposed a three-layer reference model for self-managed systems. Each of
the layers has defined responsibilities at different abstraction levels. These responsibilities correspond
to: goal management, change management, and component control, being executed in independent
threads of control [31, 32], as depicted in Fig. 2.6.

The component control layer is responsible for implementing the functionalities of a feedback loop
to control the operational-level actions the system has to accomplish, such as a particular task or func-
tion. These functionalities would include, for instance, self-tuning algorithms, and the capability of
identifying situations for which the current configuration of components is not designed to deal with.
In this latter case, this layer reports this situation to higher layers.

The change management layer has the responsibility of handling decentralized configuration man-
agement, identifying inconsistencies in the system (i.e., component configuration) state, and reestab-
lishing a satisfactory stable state. It also reacts to events reported by the component-control layer, for
instance by executing plans that set new control behaviors in that layer in response to new objectives.
These new objectives could have been introduced by the layer above. The change management layer
can introduce new components to the layer below, as well as modify component interconnections and
parameters of operation. However, all of the actions in this layer are prespecified in adaptation plans. If
it detects a situation for which a plan does not exist, it must ask the higher layer for such a plan. A

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 35

Goal

management | e | | G” |

T Change plans
|

|
Plan request +

management
9 * Change actions
|

I
Status +
Component
control { C1 H C2]
FIG. 2.6

The three-layer reference architecture for self-management.
Source: From J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the 2007 Workshop on the Future
of Software Engineering (FOSE 2007), IEEE Computer Society, 2007, pp. 259-268.

similar situation occurs when a new goal is required for the system, which implies the higher layer to
introduce new plans into this layer.

Finally, the goal management layer is responsible for the global planning to achieve high-level
goals. This layer produces plans required by lower layers by considering the current component con-
figuration state, and the specification of the (possibly new) high-level goal. Changes in the environ-
ment, such as context conditions not considered in the current reconfiguration plans would involve
reconsideration of planning in this layer.

This reference model can be applied in our case study as follows. The component control layer can be
implemented exactly as described in the MAPE-K model section (cf. final part of Section 2.5.2). That is,
this layer is comprised of a MAPE-K loop that solves the system unavailability by reconfiguring (i.e.,
adapting) the weather service. This is achieved by unlinking this service from the unavailable one (e.g.,
the one from WebserviceX), and then relinking it to one that is available, among the ones registered in the
reconfiguration subsystem (e.g., the ones from Google and Yahoo). However, if both of these are also
unavailable, the component control layer notifies the change management layer about this situation. In
response, this layer could introduce two new software components and two new reconfiguration rules
into the component control layer. The new components provide the functionalities for consuming the
weather services from VisualWebservice,” and the US National Weather Service,'” for instance. The
new reconfiguration rules would allow the component control layer to make use of the new registered
weather services. Finally, the user could specify a new goal for the system, for instance requiring not only
high availability but also lowest response time, among the registered weather services. To satisfy this
new goal, the management layer should generate new software components and reconfiguration rules for
the layers below. Some of the new software components would monitor the new context variables of
interest, namely those measuring the response time of the registered weather services. Other software
components would implement the new logic for choosing the weather service that satisfies the new

9hllp://www.visualwebservicc.com/wsdl/wsf.cdyne.com/Wealhcr.asmx%BFWSDL.
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl.

http://www.visualwebservice.com/wsdl/wsf.cdyne.com/Weather.asmx%3FWSDL
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

36 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

established conditions. The new reconfiguration rules would allow the layers below to make use of the
new software components. However, the model does not specify how it would use these new components
when their functionality affects or replaces directly the behavior of the model’s own feedback loop el-
ements, in this case, the monitor and analyzer of the component control layer.

THE pynamico REFERENCE MODEL

Dynamic Adaptive, Monitoring and Control Objectives model (Dynamico) is a reference model in-
spired by classic control theory that explicitly addresses: (i) the achievement of self-adaptation goals
and their usage as the reference control objectives; (ii) the separation of control concerns by decoupling
the different feedback loops required to satisfy the reference objectives as context changes; and (iii) the
specification of context management as an independent control function to preserve the contextual rel-
evance with respect to internal and external context changes.

The model is composed of three types of feedback loops, as depicted in the high level view that
presents Fig. 2.7. Each of these feedback loops manages each of the three levels of dynamics that char-
acterize highly context-dependent self-adaptation: (i) the control objectives feedback loop (CO-FL) (cf.
CO-FL in the figure), (ii) the target system adaptation feedback loop (A-FL) (cf. A-FL in the ﬁgure),' !
and (iii) the dynamic monitoring feedback loop (M-FL) (cf. M-FL in the figure). As a reference model,
DYNAMICO provides guidelines for designing the software architecture of self-adaptive software that is
highly sensitive to changes in context situations and self-adaptation goals. Thus, the model is tailored

Reference control Legend:
objectives (e.g., SLAs) —> Control/data flow
CO-FL C] Feedback loop abstraction

Objectives feedback loop

A-FL
Adaptation feedback loop
_/
(B) (A) T(C) (D)
[m-FL

A

Monitoring feedback loop

Sensed
context
information
FIG. 2.7

The three levels of dynamics in a context-driven self-adaptive software systems..
Source: From N.M. Villegas, G. Tamura, H.A. Miiller, L. Duchien, R. Casallas, DYNAMICO: A Reference Model for Governing Control
Objectives and Context Relevance in Self-Adaptive Software Systems, vol. 7475 of LNCS, Springer, Berlin, 2013, pp. 265-293.

"Based on the analysis of the differences between the concepts of self-adaptation and adaptation (cf. Section 2.3), this feed-
back loop is associated with self-adaptation and not with adaptation.

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 37

for architecting self-adaptive systems prone to be adapted not only in their structure, but also in their
monitoring infrastructure, as a result of adaptations in their control objectives. In this sense, this ref-
erence model emphasizes the need for checking if these three levels of dynamics have to be addressed
in the architectural design. Moreover, it defines the elements and functionalities, as well as the control
and data interactions to be implemented, not only among the three types of feedback loops, but also
among the internal elements of each feedback loop. The reference model characterizes the interactions
among the three types of feedback loops in such a way that the model can be applied partially, that is,
omitting any of its feedback loops, targeting self-adaptive systems where supporting changes in any of
the three levels of dynamics is a crucial requirement.

The separation of concerns among the three levels of dynamics made explicit by DYNAMICO is par-
ticularly crucial for cases in which the self-adaptation goals are modified significantly. For instance,
referring to our case study, changing the objective of high-availability to high-performance requires the
self-adaptation of not only the managed system, but also the monitoring infrastructure, to preserve the
relevance of the self-adaptation mechanism with respect to the modified control objectives. However,
the automatic reconfiguration of the monitoring infrastructure is impractical having the context
manager (i.e., including the monitoring infrastructure) tightly coupled to the self-adaptation mecha-
nism. Similarly, the explicit control of changes in self-adaptation goals (i.e., control objectives)
requires separate instrumentation. Fig. 2.8 depicts a detailed view of the feedback loops for the three
levels of dynamics presented in Fig. 2.7. These feedback loops are explained in the following sections.

2.5.4.1 The control objectives feedback loop (CO-FL)

The CO-FL (cf. CO-FL in Fig. 2.8) addresses the first level of dynamics specified by bynamico. It gov-
erns changes in control objectives (e.g., SLAs) with the collaboration of the A-FL and the M-FL. We
define requirements and self-adaptation properties as system variables to be controlled. We refer to
these variables as control objectives and self-adaptation goals interchangeably. Moreover, control ob-
jectives are subject to change by user-level (re)negotiations at runtime and therefore must be addressed
in a consistent and synchronized way by the self-adaptation mechanism (i.e., A-FL) and the context
manager (i.e., M-FL). For example, as with the Kramer and Magee scenario defined for our case study
(cf. final part of Section 2.5.3), the user could introduce the response time in the CO-FL, thus requiring
not only high availability but also lowest response time, among the registered weather services. There-
fore, the context monitors must keep track of a new context variable, the response time of the registered
weather services. Both availability and response time must be managed explicitly as the control ob-
jectives for the adaptive system. Thus, both reference inputs, the A-FL reference control input and
the M-FL reference context input, are derived automatically from control objectives and fed into
the corresponding feedback loops, as illustrated by interaction (A) in Fig. 2.8.

2.5.4.2 The adaptation feedback loop (A-FL)

The A-FL, the second level of dynamics, regulates the target system requirements satisfaction and the
preservation of self-adaptation properties. Recalling our self-adaptation scenario (cf. Section 2.2), the
system availability represent a nonfunctional requirement. Due to changing objectives, the satisfaction
of this requirement and the one introduced in the CO-FL (cf. Section 2.5.4.1) depend on the adaptive
capabilities of the mashup application. For example, under the initial goal, the system reconfigures
itself to change the weather service provider. After the control objective modification, the response
time of the registered weather service providers becomes a new context variable to be monitored. Thus,
according to the available services and their current response times, the A-FL will trigger the adaptation

User level
negotiations | DYNAMICO reference model
| Reference control |
objectives I
| Context — |
symptoms Obiecti Obiecti Objectives controller
—_ jectives jectives
CO-F [monitor | Control | analyzer [Control I
objectives objectives |
| symptoms diferences Control objectives outputs |
| n
| Reference AdipEatlon |
Control control input - Control s I
I System adaptation |~ I I
Adaptation | SYMPIOMS [Aaptation controller input et |
| monitor I < —
@ analyzer |~ ol | Planner || Executor system I
A-FL A Preprocessed A error Measured control |
system output System control output I
| preprocessing
|
I Adaptati
Context aptation
| symptoms © noise)| !
| Clailire! Context adaptation (Clatire! | 1 I
| Context Context | S% controller Context |
Reference | monitor analyzer Planner ||Executor manager |
| |t | Conrdl [Planner] [Exeautor]
M-FL input Measured control |
- Preprocessed internal output |
| and external context Context control output
preprocessing - |
| (B) Sensed internal
| context |
_________________________)
Sensed external
context (environment)
FIG. 2.8

The pynamico reference model with a detailed view of the controllers for the three abstract levels of dynamics
presented in Fig. 2.7.
Source: From N.M. Villegas, G. Tamura, H.A. Miiller, L. Duchien, R. Casallas, DYNAMICO: A Reference Model for Governing Control
Objectives and Context Relevance in Self-Adaptive Software Systems, vol. 7475 of LNCS, Springer, Berlin, 2013, pp. 265-293.

of the system by relinking the weather service to the one being available and with better response time.
For this, the A-FL gathers measurements from the target system and registered weather services
through context monitors provided by the M-FL (cf. Label (C) in Fig. 2.8).

2.5.4.3 The context monitoring feedback loop (M-FL)

The M-FL in Fig. 2.8 represents a dynamic context manager, the third level of dynamics specified by
pyNamMico. The reference context inputs correspond to the context monitoring requirements and are de-
rived from the CO-FL reference control objectives. In our case study the reference control objectives
are defined as nonfunctional requirements. Thus, the context monitoring requirements are derived from
the metrics and conditions defined for these requirements and, as a result, monitors for measuring the
response time of the registered weather services would be deployed in the managed system. The con-
text analyzer decides about the adaptation of the monitoring strategy. The context adaptation controller

2.5 REFERENCE MODELS FOR ARCHITECTING SELF-ADAPTIVE SOFTWARE 39

is responsible for defining and triggering the execution of the adaptation plan to adjust the context man-

ager (i.e., the target system of the M-FL).

In summary, referring to our case study and compared to the Kramer and Magee’s reference model,
pYNamICO’s CO-FL and A-FL supply the functionalities of the three layers of their model. Nonetheless,
the M-FL in pynamico solves effectively the problem of incorporating the functionalities of the new
monitoring components in the model’s feedback loop. That is, the feedback loops of Kramer and
Magee’s reference model are designed to adapt the managed system structure and behavior, but not

its own adaptation logic.

THE AUTONOMIC COMPUTING REFERENCE ARCHITECTURE (ACRA)

The ACRA, depicted in Fig. 2.9, provides a reference architecture to organize and orchestrate self-
adaptive (i.e., autonomic) systems using autonomic elements, where an autonomic element is basically
an implementation of the MAPE-K model. ACRA was proposed as the foundation for realizing the
Autonomic Computing vision [28]. In this vision, ACRA-based autonomic systems are defined as a
multiple-layer hierarchy of MAPE-K elements, which correspond to orchestrating managers and re-

source managers, controlling managed resources.

Orchestrating managers

—)

—)

Resource managers

A 4

|d
)/

~

Manual managers

¢

$82Jn0s abpajmouy|

\\‘]
I~
\,]

Managed resources)
-

—)

Y
N

—

FIG. 2.9

The autonomic computing reference architecture (ACRA).

Source: Based on IBM Corporation, An architectural blueprint for autonomic computing, tech. rep., IBM Corporation, 2006.

40 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

ACRA differs from the previously analyzed models in two important ways. First, those models are
based either on a single MAPE-K loop element or on a three-layer structure of MAPE-K loop elements,
whereas ACRA is based on a multiple-layer hierarchy in which each layer adds autonomic control over
the layers below it. Second, each layer on each of the three-layered models has specific responsibilities
of control, whereas ACRA defines mainly generic responsibilities of orchestration and resource man-
agement for its multiple layers.

Referring to our case study, the ACRA model is applied very differently compared to the byNamico
and Kramer and Magee models. Starting with the lowest layer, ACRA would define the weather ser-
vices as managed resources. For each of the registered weather services in the reconfiguration mech-
anism, it would dedicate a MAPE-K loop, to control it as a managed resource, even though they are
external services. In the layer above, ACRA would specify the “resource managers” to control the
weather services. Then, the orchestrating managers would be responsible for coordinating not only
the multiple feedback loops execution and interactions, but also the information exchange among them.
The purposes of each of the layers in ACRA, as applied to our case study, could be similar to those of
Kramer and Magee’s reference model.

Yet another scheme for controlling self-adaptation of software systems has been proposed by dis-
tributing and then combining the MAPE-K loop elements in different machines. Examples of these
decentralized architectural variants are the proposals by Vromant et al. [33] and Weyns et al. [34]. Fur-
thermore, even though the MAPE-K and feedback loops have been recognized as fundamental design
elements for self-adaptation, their visibility is usually hidden in the related approaches. In many cases,
the self-adaptation mechanisms are intertwined with the managed applications, rendering them as hard
to reuse and manipulate, and more importantly, as unanalyzable and uncomparable in their inherent
properties [7, 27, 32, 35]. To alleviate this problem, Miiller et al. advocate to make feedback loops
explicit and highly visible as first class entities in self-adaptive architectures [27]. Thus, when studying
the architecture of an existing self-adaptive system, the feedback architectures discussed in this section
are easily recognized and characterized by experienced software engineers.

MAJOR ARCHITECTURAL CHALLENGES IN SELF-ADAPTATION

Architectural challenges concern the design of both the target system as well as the self-adaptation
mechanisms.

1. Concerning visibility of control: Making control loops explicit requires, beyond the consolidation
of architecture knowledge in the form of different MAPE configurations as patterns, practical
interface definitions (signatures and APIs), message formats, and protocols. Making control
explicit and exposing self-adaptive properties are important aspects to assure self-adaptation
mechanisms [12, 27].

2. Concerning separation of concerns: Recalling the byNamico reference model presented in
Section 2.5.4, the separation of concerns between the monitoring process, the self-adaptation
controller, and the management of control objectives (self-adaptation goals) is still an open
challenge. This challenge is crucial for governing the consistency between self-adaptation
mechanisms and control objectives, while preserving the relevance of context monitoring of the
self-adaptation mechanism [20].

REFERENCES 41

3. Concerning distribution and decentralization: In complex self-adaptive software (i.e., systems
composed of several feedback loops with multiple interactions among them), distribution and
decentralization are considered important architectural drivers. Distribution is used to deal with
issues such as latency, concurrency, and partial failures. Decentralization is important to
guarantee robust execution in situations where partial failures can occur. According to [12, 36], a
number of interesting challenges exist regarding self-adaptive control schemes, including:

(1) Pattern applicability: In what circumstances and for what systems are the different patterns of
control applicable? Which quality attribute requirements hinder or encourage which patterns? What
styles and domains of software are more easily managed with which patterns? (ii) Pattern
completeness: What is the complete set of patterns that could be applied to self-adaptation? (iii)
QoS analysis: For decentralized approaches, what techniques can we use to guarantee system-wide
quality goals? What are the coordination schemes that can enable guaranteeing these qualities?

4. Concerning the process of architecting the system: (i) Reference architectures for self-adaptive
systems that address issues such as structural arrangements of control loops (e.g., sequential,
parallel, hierarchical, decentralized), interactions among control loops, data flow around the control
loops, tolerances, trade-offs, sampling rates, stability and convergence conditions, hysteresis
specifications, context uncertainty [3], and the preservation of self-adaptation properties on both the
target system and the self-adaptation mechanism [7]; (ii) patterns that characterize control-loop
schemes and elements, along with associated obligations; and (iii) development of reference
models and architectures, as well as further validation of existing ones in industrial settings.

SUMMARY

This chapter began with an analysis of the difference between the terms adaptation and self-adaptation,
and then presented foundational concepts and reference models that facilitate the architectural design
of self-adaptive software. Furthermore, the chapter presented a list of research challenges. This chapter
is useful for students, researchers and practitioners to acquire a general understanding on the engineer-
ing of self-adaptive software systems, in particular of its architectural design.

REFERENCES

[1] R. Laddaga, Guest editor’s introduction: creating robust software through self-adaptation, IEEE Intell. Syst.
14 (3) (1999) 26-29.

[2] R.Laddaga, Active software, in: Proceedings of the First International Workshop on Self-Adaptive Software,
IWSAS 2000, Springer-Verlag, New York, NY, 2000, pp. 11-26.

[3] B.H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. Miiller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive systems: a research roadmap,
Springer-Verlag, Berlin, 2009, pp. 1-26.

[4] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.
Adapt. Syst. 4 (14) (2009) 1-14:42.

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0025

42 CHAPTER 2 ARCHITECTING SOFTWARE FOR SELF-ADAPTATION

[5] G.Tamura, R. Casallas, A. Cleve, L. Duchien, QoS contract preservation through dynamic reconfiguration: a
formal semantics approach, Sci. Comput. Program. 94 (3) (2014) 307-332.

[6] L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, R. Sangwan, Comparison of requirements specifica-
tion methods from a software architecture perspective, tech. rep, 2006.

[71 N.M. Villegas, H.A. Miiller, G. Tamura, L. Duchien, R. Casallas, A framework for evaluating quality-driven
self-adaptive software systems, in: Proceedings of the Sixth International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS 2011), ACM, New York, NY, 2011, pp. 80-89.

[8] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, et al., Service component architecture, assembly
model specification, tech. rep, Open Service Oriented Architecture Collaboration, 2007.

[9] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: state of the art and re-
search challenges, Computer 40 (2007) 38—45.

[10] P. Bourque, R.E. Fairley (Eds.), Guide to the software engineering body of knowledge—SWEBOK v3.0,
2014th ed, IEEE CS, ashington, DC, 2014.

[11] R. Laddaga, Active software, Self-Adaptive Software, Springer, Berlin, 2001, pp. 11-26.

[12] R. de Lemos, H. Giese, H.A. Miiller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N.
M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cikic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K.M. Goschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer,
A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,
C. Prehofer, W. Schafer, R. Schlichting, D.B. Smith, J.P. Sousa, L. Tahvildari, K. Wong, J. Wuttke,
Software engineering for self-adaptive systems: a second research roadmap, 7475, Springer, Berlin,
2013, pp. 1-32.

[13] N. Subramanian, L. Chung, Software architecture adaptability: an NFR approach, in: Proceedings of the
Fourth International Workshop on Principles of Software Evolution, IWPSE ’01, ACM, New York, NY,
2001, pp. 52-61.

[14] G.T. Heineman, Adaptation and software architecture, in: Proceedings of the Third International Workshop
on Software Architecture, ISAW 98, ACM, New York, NY, 1998, pp. 61-64.

[15] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.
14 (3) (1999) 54-62.

[16] Y. Brun, G.D.M. Serugendo, C. Gacek, HM. Giese, H. Kienle, M. Litoiu, H.A. Miiller, M. Pezze,
M. Shaw, Engineering self-adaptive systems through feedback loops, 5525 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2009, pp. 48-70.

[17] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41-50.

[18] E.Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented software,
Addison-Wesley Longman Publishing, Boston, MA, 1995.

[19] G. Tamura, QoS-CARE: a reliable system for preserving QoS contracts through dynamic reconfiguration,
PhD Thesis, University of Lille 1—Science and Technology and University of Los Andes, May 2012.

[20] N.M. Villegas, G. Tamura, H.A. Miiller, L. Duchien, R. Casallas, DYNAMICO: a reference model for gov-
erning control objectives and context relevance in self-adaptive software systems, 7475 of LNCS, Springer,
Berlin, 2013, pp. 265-293.

[21] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, J.-M. Bruel, RELAX: a language to address uncertainty in
self-adaptive systems requirement, Requir. Eng. 15 (2) (2010) 177-196.

[22] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a better understanding of
context and context-awareness, in: Proceedings of the First International Symposium on Handheld and Ubig-
uitous Computing (HUC 1999), 1707 of LNCS, Springer, Berlin, 1999, pp. 304-307.

[23] N.M. Villegas, H.A. Miiller, Managing dynamic context to optimize smart interactions and services,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 289-318.

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0110

REFERENCES 43

[24] L. Bass, P. Clements, R. Kazman, Software architecture in practice, Addison-Wesley, Reading, MA, 2003.

[25] K. Ogata, Modern control engineering, third edition, Prentice Hall, Upper Saddle River, NJ, 1996.

[26] J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury, Feedback control of computing systems, John Wiley &
Sons, Chichester, 2004.

[27] H. Miiller, M. Pezze, M. Shaw, Visibility of control in adaptive systems, in: Proceedings of the Second In-
ternational Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS 2008), 2008, pp. 23-26.

[28] I.B.M. Corporation, An architectural blueprint for autonomic computing, IBM Corporation, 2006.

[29] D.C. Luckham, The power of events: an introduction to complex event processing in distributed enterprise
systems, Addison-Wesley Longman Publishing, Boston, MA, 2001.

[30] E. Gat, On three-layer architectures, MIT/AAAI Palo Alto, CA, 1998, pp. 1-26.

[31] J. Kramer, J. Magee, Dynamic structure in software architectures, SEN 21 (6) (1996) 3—14.

[32] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the 2007 Work-
shop on the Future of Software Engineering (FOSE 2007), IEEE Computer Society, 2007, pp. 259-268.

[33] P. Vromant, D. Weyns, S. Malek, J. Andersson, On interacting control loops in self-adaptive systems,
in: Proceedings of the Sixth International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2011), ACM, New York, NY, 2011, pp. 202-207.

[34] D. Weyns, S. Malek, J. Andersson, On decentralized self-adaptation: lessons from the trenches and chal-
lenges for the future, in: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS 2010), ACM, New York, NY, 2010, pp. 84-93.

[35] H.A. Miiller, H.M. Kienle, U. Stege, Autonomic computing: now you see it, now you don’t—design and
evolution of autonomic software systems, 5413 Lecture Notes in Computer Science, Springer, Berlin,
2009, pp. 32-54.

[36] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese,
K.M. Goschka, On patterns for decentralized control in self-adaptive systems, Software Engineering for Self-
Adaptive Systems—II, Springer, Berlin, 2013, pp. 76-107.

http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00002-2/rf0175

CHAPTER

A CLASSIFICATION FRAMEWORK
OF UNCERTAINTY IN
ARCHITECTURE-BASED
SELF-ADAPTIVE SYSTEMS WITH
MULTIPLE QUALITY
REQUIREMENTS

S. Mahdavi-Hezavehi*'", P. Avgeriou*, D. Weyns'
University of Groningen, Groningen, Netherlands™ Linnaeus University, Vaxjo, Sweden"

INTRODUCTION

Software systems are subject to continuous changes due to new requirements and the dynamics of the
system context. Engineering such complex systems is often difficult as the available knowledge at de-
sign time is not adequate to anticipate all the runtime conditions. Missing or inaccurate knowledge may
be due to different types of uncertainty such as vagueness regarding the availability of resources, op-
erating conditions that the system will encounter at runtime, or the emergence of new requirements
while the system is operating. We define uncertainty in a software system as the circumstances in which
the system’s behavior deviates from expectations due to dynamicity and unpredictability of a variety of
factors existing in software systems.

One way to deal with this uncertainty is to design systems that adapt themselves during runtime,
when the knowledge is accessible. Self-adaptive systems are capable of autonomously modifying their
runtime behavior to deal with dynamic system context, and changing or new system requirements in
order to provide dependable, and recoverable systems [1]. In this research, we focus on architecture-
based approaches ([2,3,34]), which are widely used to support self-adaptation. Architecture-based self-
adaptive systems achieve this capability by means of using reflective software architecture models. In
order to manage a system, an architecture-based self-adaptive system is equipped with adaptation soft-
ware that uses models of the system, its environment, and goals when monitoring the running system, to
detect problems, identify solutions, and apply adaptation actions to modify the system.

However, incorporating self-adaptation into a system may lead to further uncertainty in its own
right: defective adaptation actions or unforeseen consequences of adaptation on the system can result

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00003-4 45
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00003-4

46 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

in unexpected system behavior. This is further aggravated in the case of self-adaptive systems that need
simultaneously to fulfill multiple quality requirements without interrupting the system’s normal func-
tions, and deal with a growing number of both adaptation scenarios and requirements trade-offs [4].
This implies that the system should be able to prioritize the adaptation actions, choose the optimal ad-
aptation scenarios, adapt the system, and presumably handle the positive or negative chain of effects
caused by the adaptation of certain requirements. However, when the number of system quality require-
ments increases, so does the number of adaptation alternatives. Therefore, the decision making, as well
as the handling of requirements trade-offs becomes more complex. If the problem is not handled prop-
erly, over time uncertainty provokes inconsistency in certain subsystems, and the accumulated incon-
sistencies may result in unforeseen circumstances, and possibly in unexpected system behavior.

Over the past years, numerous approaches have been proposed to quantify and mitigate existing
uncertainty in self-adaptive systems. However, the concept of uncertainty and its different types
and categories are hardly ever studied in the domain of architecture-based self-adaptive systems with
multiple quality requirements. As a result, identification, investigation, and consequently selection of
suitable approaches for tackling uncertainty in this domain may be problematic. To alleviate this prob-
lem, in this paper we present a framework to classify existing uncertainty concepts for architecture-
based solutions in self-adaptive systems with multiple quality requirements. To create the framework,
we systematically review all the papers that propose approaches to deal with uncertainty and its
sources. Subsequently, we study these approaches according to the proposed classification framework
in order to facilitate their potential comparison and selection. This classification framework may fur-
ther be used to propose new solutions tackling the uncertainty problem more efficiently in the future.

This paper is organized as follows: in Section 3.1 we present background and related work. In
Section 3.2 we introduce our research questions, discuss both the search strategy, and data extraction
method. In Section 3.3 we present the results of the study, and extensively answer the research ques-
tions. In Section 3.4 we discuss the results of the study including main findings, limitations of the study,
and threats to validity. Finally, Section 3.5 concludes the paper.

BACKGROUND

In this section, we present a brief description for self-adaptive systems, architecture-based self-adap-
tation, architecture-based self-adaptive systems with multiple quality requirements, and uncertainty in
architecture-based self-adaptive systems.

3.1.1.1 Self-adaptive systems

Self-adaptive systems are capable of modifying their runtime behavior in order to achieve system
objectives. Unpredictable circumstances such as changes in the system’s environment, system faults,
new requirements, and changes in the priority of requirements are some of the reasons for triggering
adaptation actions in a self-adaptive system. To deal with these uncertainties, a self-adaptive system
continuously monitors itself, gathers data, and analyzes them to decide if adaption is required.
The challenging aspect of designing and implementing a self-adaptive system is that not only must
the system apply changes at runtime, but also fulfill the system requirements up to a satisfying level.
Engineering such systems is often difficult as the available knowledge at design time is not adequate to
anticipate all the runtime conditions. Therefore, designers often prefer to deal with this uncertainty at
runtime, when more knowledge is available.

3.1 INTRODUCTION 47

3.1.1.2 Architecture-based self-adaptation

Architecture-based self-adaptation [3] is one well recognized approach that deals with uncertainties by
supporting modifiable runtime system behavior. The essential functions of architecture-based self-
adaptation are defined in the MAPE-K (i.e., monitor, analyze, plan, execute, and knowledge compo-
nent) reference model [5]. By complying with the concept of separation of concerns (i.e., separation of
domain specific concerns from adaptation concerns), the MAPE-K model supports reusability and
manages the complexity of constructing self-adaptive systems. This makes the MAPE-K model a suit-
able reference for designing feedback loops and developing self-adaptive systems [6]. One well-known
architecture-based self-adaptive framework is Rainbow [2]. Rainbow uses an abstract architectural
model to monitor software system runtime specifications, evaluates the model for constraint violations,
and if required, performs global or module-level adaptations. Calinescu et al. [7] present a quality of
service management framework for self-adaptive services-based systems, which augments the system
architecture with the MAPE-K loop functionalities. In their framework, the high-level quality of ser-
vice requirements are translated into probabilistic temporal logic formulae which are used to identify
and enforce the optimal system configuration while taking into account the quality dependencies.
Moreover, utility theory can be used [4,8] to dynamically compute trade-offs (i.e., priority of quality
attributes over one another) between conflicting interests, in order to select the best adaptation strategy
that balances multiple quality requirements in the self-adaptive system.

3.1.1.3 Architecture-based self-adaptive systems with multiple quality requirements
Similar to any other software system, architecture-based self-adaptive systems should fulfill a variety
of quality attributes in order to support a desired runtime system behavior and user experience. To de-
sign and develop such self-adapting systems, it is important to analyze the tradeoffs between multiple
quality attributes at runtime, and ensure a certain quality level after adaptation actions. This means that
not only requirements with higher priorities, which define the system’s goal, should be met; but also
quality attributes of the system should be fulfilled at an acceptable level. After all, a systems’ overall
quality is a desired combination of several runtime and design time requirements. However, when the
number of adaptation dimensions increases, representing the choices for adaptation, and updating and
maintaining trade-offs becomes problematic [4]. Therefore, the majority of current architecture-based
self-adaptive systems approaches do not address trade-offs analysis explicitly, and specifically the neg-
ative impacts of the applied adaptation method on multiple quality attributes, which deteriorates sys-
tems’ overall quality in complex software systems. A recent survey [9] summarizes the state of the art
in architecture-based adaptation in general, and handling multiple requirements in particular.

3.1.1.4 Uncertainty in architecture-based self-adaptive systems

Uncertainty in an architecture-based self-adaptive system, or self-adaptive systems in general, can be
studied from a number of different perspectives. The first and foremost genre of uncertainty is the dyna-
micity and unpredictability of a variety of factors existing in software systems. In fact, this type of un-
certainty justifies the need for design and development of self-adaptive systems. An architecture-based
self-adaptive system should be able to investigate a solution space, choose the optimal adaptation ac-
tion, and adapt the system while fulfilling quality requirement of the system in a specified satisfying
level. However, in a system with multiple objectives and quality goals the decision making process
for selecting the optimal adaptation action is quite complex; which leads us to the second genre of un-
certainty in architecture-based self-adaptive systems: consequences of self-adaptation in a software

48 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

system. Incorporating a self-adaptation capability into a software system may produce even more com-
plexity and undesirable effects in the system. Not only the self-adaptive system should deal with a grow-
ing solution space for adaptation, but it also needs to handle possible negative effects of adaptation on
the system. Adversely affecting quality requirements of the system, noise in sensing and imperfect ap-
plication of adaptation actions are examples of uncertainties which are aftermaths of self-adaptation in a
system. Lastly, the concept of uncertainty itself and its characteristics are vaguely described and inter-
changeably used to refer to a variety of notions in domain of architecture-based self-adaptive systems
with multiple quality requirements; this poses more ambiguity to the topic of uncertainty in this domain.

RELATED WORK

During the past decade, several studies have been conducted to address uncertainty issue in different
phases of software systems life cycle. Rotmans et al. [10] attempt to harmonize the uncertainty termi-
nology by proposing a conceptual framework (i.e., uncertainty matrix which considers uncertainty from
three different dimensions: location, level of uncertainty, and nature of uncertainty), which helps to iden-
tify and characterize uncertainty in model-based decision support activities. Although the uncertainty
matrix presented in that paper can be used as a guideline in the domain of self-adaptive systems as well;
we found it difficult to use their detailed taxonomies and definitions of uncertainty dimensions, as it is
mainly applicable to the field of model-based decision support. Following the same theme of uncertainty
dimensions (i.e., location, level, and nature of uncertainty) [1 1] present a taxonomy for uncertainty in the
modeling of self-adaptive systems. In their work, they also provide an extensive list of examples for
sources of uncertainty, which is extracted from the literature. Nonetheless, the authors do not manage
to provide descriptions for the sources of uncertainty. In Ref. [12], the authors present terminology
and a topology of uncertainty and explore the role of uncertainty at different stages of a water manage-
ment modeling process. However, their terminology is substantially inspired by the work of Rotmans
et al. [10], and their field of research is remarkably different from our domain of interest; which makes
it difficult to apply their work in the domain of self-adaptive systems. In Ref. [13], the author argues that
in today’s software systems uncertainty should be considered as a first-class concern throughout the
whole system life cycle, and discusses a number of sources of uncertainty affecting software systems.
What we think is missing in this work is the mapping of these sources of uncertainty into the previously
discussed dimensions and taxonomies of uncertainty in the literature. Esfahani and Malek [14] mostly
focus on sources of uncertainty, and present an extensive list of sources with examples. Moreover, they
investigate uncertainty characteristics (reducibility versus irreducibility, variability versus lack of knowl-
edge, and spectrum of uncertainty), and sources of uncertainty characteristics in their work; however the
connection between these characteristics and dimensions of uncertainty is unclear. Lastly, Ramirez et al.
[15] provide a definition and taxonomy for uncertainty in dynamically adaptive systems. The presented
taxonomy describes common sources of uncertainty and their effect on requirements, design and runtime
phases of dynamically adaptive systems. The main focus of this paper is sources of uncertainty as well.

Investigating the current state of research regarding uncertainty in software systems, and identify-
ing gaps and inconsistencies in the literature, motivated us to conduct an exhaustive review of the topic
in domain of architecture-based self-adaptive systems with multiple quality requirements. We argue
that it is crucial to systematically study and grasp current approaches, investigate different dimensions
of uncertainty to precisely comprehend the problem statement (i.e., uncertainty definition, dimensions,
sources, etc.), and to identify issues which need to be resolved in order to propose approaches that can

3.2 STUDY DESIGN 49

be tailored and reused in a variety of systems. The classification framework we present aims to provide
a consistent and comprehensive overview of uncertainty and its specifications in domain of
architecture-based self-adaptive systems with multiple quality requirements.

STUDY DESIGN

In this study, we aim at identifying, exploring, and classifying the state of the art on architecture-based
methods handling uncertainty in self-adaptive systems with multiple quality requirements. Therefore,
we perform a systematic literature review [16] to collect and investigate existing architecture-based
methods, and to answer a set of predefined research questions. The first step of conducting a systematic
literature review is to create a protocol,' in which all the steps and details of the study are specified. In
this section, we report parts of the protocol and its execution: we present our research questions, a ge-
neric overview of the process and the search strategy which we use to search through selected databases,
inclusion and exclusion criteria for filtering the collected papers, data extraction procedure, and the data
synthesis method we used to answer the research questions and propose the classification framework.

RESEARCH QUESTIONS

We pose the following research questions to investigate the current architecture-based approaches
tackling uncertainty in self-adaptive systems with multiple quality requirements.

(1) What are the current architecture-based approaches tackling uncertainty in self-adaptive systems
with multiple requirements?

(2) What are the different uncertainty dimensions which are explored by these approaches?
(a) What are the options for these uncertainty dimensions?

(3) What sources of uncertainties are addressed by these approaches?

(4) How are the current approaches classified according to the proposed uncertainty classification
framework?

By answering research question 1, we get an overview of current architecture-based approaches tack-
ling uncertainty. “Architecture-based” implies that the approach presented in the study should provide
architectural solutions (e.g., architectural models) to handle and reason about the dynamic behavior of
the system. To be more specific, the software system that is subject of adaption (i.e., the managed sys-
tem) should be equipped with adaptation software that uses architectural models of the system, its en-
vironment, and goals when monitoring the running system and adapt the managed system at runtime
when needed. In particular, it should be possible to map the components of the adaptation software to
MAPE-k functionalities. With multiple requirements, we refer both to approaches that handle more
than one adaptation concern (e.g., adapt for reliability and security) and approaches that consider a
single adaptation concern (e.g., reliability) but also the effects on one or more other concerns (e.g.,
performance overhead). The answer to this research question will be a list of current studies, related
venues and books in which they have been published, year of publication, and authors’ names.

!The protocol is available at: http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf.

http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf

50 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Research question 2 aims to identify and investigate possible dimensions for uncertainty. Dimen-
sions refer to different aspects of uncertainty in self-adaptive systems with multiple quality require-
ments. For instance, we are interested in figuring out whether or not locations (e.g., environment,
the managed system, components of the adaptation software) in which the uncertainty manifests itself
are a commonly discussed subject, or if phases of systems life cycle in which the existence of uncer-
tainty is acknowledged, etc. are discussed in the selected papers or not. The answer to this research
question will help us to derive the most significant and common aspects of uncertainty in this domain.

Research question 2.a aims to understand the dimensions of uncertainty resulting from answering
the previous research question, on a more concrete level. By answering this research question, we come
up with a list of common categories and options for each of the aforementioned dimensions. For in-
stance, we intend to come up with a list of possible locations in which the uncertainty appears in a self-
adaptive system, or identify in which particular phases of systems life cycle the existence of uncertainty
is acknowledged or the problem is tackled.

The source of uncertainty is one of the most important dimensions of uncertainty, Therefore, we
investigate it in more depth in research question 3. By answering this research question, we aim to
identify and list common sources of uncertainty, from which the uncertainty originates. Sources of
uncertainty refer to a variety of circumstances, which affect and deviate system behavior from expected
behavior in the future. For example, changes in the environment or system requirements are considered
as sources of uncertainty. The list of sources of uncertainty will be a separate part of the final classi-
fication framework. Answers to research questions 2 and 3 help to compose the classification frame-
work, which is the main contribution of this study.

Finally, we pose research question 4 to indicate how the proposed uncertainty classification frame-
work can be used to study and classify current approaches tackling uncertainty in the domain of self-
adaptive systems with multiple quality requirements. Essentially, we investigate the usefulness of the
proposed classification framework by analyzing selected primary studies and mapping them to the
framework.

To sum up, by answering the aforementioned research questions, we aim to present an overview of
existing architecture-based approaches tackling uncertainty in self-adaptive systems with multiple re-
quirements. In addition, we strive to identify common dimensions, characteristics of those dimensions,
and sources, which are treated in the literature, and propose a comprehensible classification framework
for uncertainty in self-adaptive systems with multiple quality requirements. Finally, we use the pro-
posed framework as the basis for further analysis of extracted data from the selected papers to present
a statistical overview of the current research in this domain.

SEARCH STRATEGY

In this section, we present the main steps we performed in order to identify, filter, and include all the
relevant papers in our study. An extended and more detailed description of our search strategy can be
found in the protocol.

3.2.2.1 Search scope and automatic search

The scope of the search is defined in two dimensions: publication period and venues. In terms of pub-
lication period, we limited the search to papers published over the period Jan. 1, 2000 to Jul. 20, 2014.
We chose this start date because the development of successful self-adaptive software hardly goes back
to a decade ago; after the advent of autonomic computing [17]. Note that even though some major

3.2 STUDY DESIGN 51

venues on self-adaptive systems started to emerge after 2005 (e.g., International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems), we chose to start the search in the year
2000 to avoid missing any studies published in other venues.

Since the number of published papers in this domain is over several thousand, manual search was not
a feasible approach to search databases [18]. Therefore, we used the automatic search method to search
through selected venues. By automatic search we mean search performed by executing search strings on
search engines of electronic data sources (i.e., IEEE Xplorer, ACM digital library, SpringerLink, and
ScienceDirect). An advantage of automatic search is that it supports easy replication of the study.

One of the main challenges of performing an automatic search to find relevant studies in the domain
of self-adaptive systems was a lack of standard, well-defined terminology in this domain. Due to this
problem, and to avoid missing any relevant paper in the automatic search, we decided to use a more
generic search string and include a wider number of papers in the initial results. We used the research
questions and a stepwise strategy to obtain the search terms; the strategy is as follows:

(1) Derive main terms from the research questions and the topics being researched.

(2) If applicable, identify and include alternative spellings and synonyms for the terms.

(3) When database allows, use “advance” or “expert” search option to insert the complete search
string.
(a) Otherwise, use Boolean “or” to incorporate alternative spellings and synonyms, and use

Boolean “and” to link the major terms.

(4) Pilot different meaningful combinations of search terms.

(5) Check the pilot results with the “quasi-gold” standard which is a set of manually derived primary
studies from a given set of studies (see below for further explanation).

(6) Organized discussions between researchers to adjust the search terms, if necessary.

As a result, the following terms were used to formulate the search string:

Self, Dynamic, Autonomic, Manage, Management, Configure, Configuration, Configuring, Adapt,
Adaptive, Adaptation, Monitor, Monitoring, Heal, Healing, Architecture, Architectural.

The search string consists of three parts based on the combination of key terms: Self AND Adap-
tation AND Architecture. The alternate terms listed above are used to create the main search string.
This is done by connecting these keywords through logical OR as follow:

(self OR dynamic OR autonomic) AND (manage OR management OR configure OR configuration
OR configuring OR adapt OR adaptive OR adaptation OR monitor OR monitoring OR analyze OR
analysis OR plan OR planning OR heal OR healing OR optimize OR optimizing OR optimization
OR protect OR protecting) AND (architecture OR architectural)

Although manual search is not feasible for databases where the number of published papers can be
enormous, we still incorporated a manual search (i.e., “quasi-gold” standard [19]) into the search pro-
cess to make sure that the search string works properly. To establish the “quasi-gold” standard, we
manually searched three different venues. To perform the manual search, we looked into papers’ titles,
keywords, abstracts, introductions, and conclusions. The manually selected papers were cross-checked
with the results of automatic search to ensure that all the relevant papers are found during the automatic
search. This means that papers found for “quasi-gold” standard should be a subset of automatic results.
This step (i.e., creating “quasi-gold” standard) ensures validity of the created search string.

52 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

In total, we have selected and included 51 papers derived from 27 different venues and books. To be
more specific, the venues include 13 different conferences, 4 workshops, 7 journals, and 3 books.

3.2.2.2 Overview of search process
We adopted a four-phased search process to search the selected venues and books, filter results, and
collect relevant papers. The different steps of the process are shown in Fig. 3.1.

Manual search of selected Results in “ :
s : ,, Set of papers known as “quasi-
venues to obtain “quasi-gold 5
gold” standard
standard
Manual search
phase I
Search title, No Yes

Search the whole
» paper using search
string

keywords, and ¢ .~ Search engine allows
‘ abstract using | i
‘ search sting |

Automatic search
phase

A 4

Filtering of results, merging Should be subset of
results of different data sources
and removing duplicates

\ 4

Set of 7453 potentially relevant
papers

Filtering phase i

Apply inclusion and exclusion
criteria

i 288 papers

Filtering based on full text, and
data extraction

Data collection i
phase
Set of 51 papers and extracted
data

FIG. 3.1
Search process.

3.2 STUDY DESIGN 53

In the first phase (i.e., manual search), we manually searched three selected venues (see Table 3.18)
to create the “quasi-gold” standard. The final set of papers from this phase should be cross checked with
the automatic results in the filtering phase. In the next phase (i.e., automatic search), we performed the
automatic search of selected venues (see Table 3.19). Depending on the search engines’ capabilities,
different search strategies were picked. If the search engine allowed, we used the search string to search
the full paper; otherwise, titles, abstracts and keywords were searched. In the filtering phase, we filtered
the results based on titles, abstracts, keywords, introductions, and conclusions, and also removed the
duplicate papers.

We ended up having 7453 potentially relevant papers, which then were compared with the “quasi-
gold” standard. Since the “quasi-gold” standard papers were a subset of potentially relevant papers, we
proceeded to the next step and started filtering the papers based on inclusion and exclusion criteria. At
this point, we started reading the whole papers as it was not possible to filter some of the papers only
based on abstract, introduction, and conclusion. Therefore, for certain papers we also started extracting
and collecting data simultaneously. Finally, we included 51 papers as our primary studies, and finished
the data extraction for all of the papers.

3.2.2.3 Refining the search results
We used the following inclusion and exclusion criteria to filter our extracted set of papers.

3.2.2.3.1 Inclusion criteria
To be selected, a paper needed to cover all the following inclusion criteria:

(1) The study should be in the domain of self-adaptive systems.

(2) The method presented to manage systems adaptability should be architecture-based. This implies
that the study should provide architectural solutions (e.g., architectural models) to handle and
reason about the dynamic behavior of the system. In other words, it should be possible to map
components of the systems adaptation logic to MAPE-k functionalities.

(3) The study should tackle multiple quality requirements, either as a goal of adaptation or as a
consequence of applying a self-adaptation method.

3.2.2.3.2 Exclusion criteria
A paper was excluded if it fulfilled one of the following exclusion criteria:

(1) Study is editorial, position paper, abstract, keynote, opinion, tutorial summary, panel discussion, or
technical report. A paper that is not a peer-reviewed scientific paper may not be of acceptable
quality or may not provide reasonable amount of information.

(2) The study in not written in English.

DATA EXTRACTION

We used our selected primary studies to collect data and answer the research questions. Our data ex-
traction approach was semistructured. We created initial uncertainty dimensions and source classifi-
cation schemas (see Tables 3.1 and 3.2) based on the literature, namely the work by Perez-palacin et al.
[11], Refsgaard et al. [12], Rotmans et al. [10], David Garlan [13], Esfahani and Male [14], and

54 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Table 3.1 Uncertainty Dimensions Initial Classification Schema

Uncertainty

Dimension Dimension Descriptions

Location [10] “Itis an identification of where uncertainty manifests itself within the whole model complex.”

Nature [10] “Specifies whether the uncertainty is due to the imperfection of our knowledge, or is due to the
inherent variability of the phenomena being described.”

Level/spectrum “Indicates where the uncertainty manifests itself along the spectrum between deterministic

([10,14]) knowledge and total ignorance.”

Sources [14] “Factors challenge the confidence with which the adaptation decisions are made.” Refers to a
variety of uncertainties originating from system models, adaptation actions, systems goals,
and executing environment

Table 3.2 Sources of Uncertainty Initial Classification Schema

Uncertainty Source Descriptions

Model Refers to a variety of uncertainties originating from system models

Goals Refers to a variety of uncertainties originating from system’s goal-related complications
Environment Refers to a variety of uncertainties originating from environmental circumstances

Ramirez et al. [15]. Our intent was to extend and complete both the dimension and source classifica-
tions schemas based on data we extract from the primary studies.

We also recorded comments to capture additional observations about certain papers or data fields;
the comments were used to solve any disagreements among researchers, if necessary.

DATA ITEMS

Table 3.3 lists the data fields we used to extract useful data from the primary studies in order to answer
our research questions (RQ). Descriptions of the data fields are provided in Tables 3.1 and 3.2.

Table 3.3 Data Form Used for Data Extractions

Item ID Data Field Purpose
F1 Author(s) name RQ1
F2 Title RQ1
F3 Publication year RQ1
F4 Venue RQ1
F5 Location RQ2
F6 Nature RQ2
F7 Level/spectrum RQ2
F8 Emerging time RQ2
F9 Sources RQ3

3.3 RESULTS 55

QUALITY ASSESSMENT OF SELECTED PAPERS

We use a quality assessment (QA) method to assess the quality of all the selected papers that were
included in this review. We adopted the quality assessment mechanism (i.e., definitions and quality
assessment questions) used by Dyba and Dingsayr [20] as follows:

(1) Quality of reporting: Papers’ rationale, aim, and context should be clarified.
(a) QAI: Do the authors clarify the aims and objectives of the paper, and is there a clear rationale
for why the study is undertaken?
(b) QAZ2: Is there an adequate description of the context in which the research was carried out?
(2) Rigor: A thorough and appropriate approach is applied to key research methods in the paper.
(a) QA3: Is there an adequate justification and clear description for the research design?
(3) Credibility: The papers’ findings are well presented and meaningful.
(a) QA4: Has sufficient data been presented to support the finding, are the findings are stated clearly?
(b) QAS: Do the researcher examine their own potential bias and influence during the formulation
of research questions and evaluation of results?
(c) QA6: Do the authors discuss the credibility and limitations of their findings?

The quality assessment mechanism of Dyba and Dingseyr covers also relevance (i.e., explores the
value of the paper for the related community) of papers. However, in this systematic review we have
only included papers published in high quality venues that are relevant to our domain of interest, thus
further investigation of usefulness of the papers for the community is unnecessary.

To assess the quality of the papers, each paper is evaluated against the abovementioned quality as-
sessment questions. Answers to each of the questions can be either “yes,” “to some extend” or “no,” and
then numerical values are assigned to the answers (1 =*yes,” 0=‘no,” and 0.5 ="to some extent”).
The final quality score for each primary paper is calculated by summing up the scores for all the ques-
tions. The results of quality assessment are used in the synthesis phase to support the validity of in-
cluded papers in this review. The scores assigned to the selected papers are presented in Section 3.3.1.

RESULTS

In this section, we present a basic analysis of our results through various tables and charts, and then
answer the research questions.

QUALITY OF SELECTED PAPERS

Our list of venues (Table 3.19) for automatic search includes the list of venues searched by Weyns et al.
[9]. In that systematic literature review, the authors included a list of high quality primary studies in the
domain of self-adaptive systems, software architectures, and software engineering. Furthermore, to
broaden the search scope and extend the list of venues, we used Microsoft Academic Search’ to find more
relevant venues in the domains of self-adaptive systems and software architecture, and included them in
the study. However, to verify the quality of selected papers furthermore, we assessed all the papers based

Zhttp://academic.research.microsoft.com/.

http://academic.research.microsoft.com/

56 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

6 s38 510,513,
< $15, 516,

523,524, $8,59, 518)
S

$5,521,

537,544,
4 547

68, 519 /\
3 2,57,
1 512, 540,

$45

$26, 539,
$43, 549

$32,533,
$34,536

51,53, 54,56,
511,514,517,
527,531,542,
548, 550, $51

Quality assessment scores

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of papers

FIG. 3.2
Quality assessment of selected papers.

on the method described in Section 3.2.5. In Fig. 3.2, we indicate all the selected papers and their
associated quality assessment scores. Bubbles located between scores 4 and 4.5 contain papers with an
average quality, those located between scores 5 to 6 contain papers with a higher quality, and the rest
of the papers were of a lower quality of reporting. The results suggest that the selected papers for this
study are of relatively high quality: 18 papers are located score 4 or 4.5, and 22 papers score from 5 to 6.

3.3.2 RQ1: WHAT ARE THE CURRENT ARCHITECTURE-BASED APPROACHES
TACKLING UNCERTAINTY IN SELF-ADAPTIVE SYSTEMS WITH MULTIPLE
REQUIREMENTS?

In this study, we included 51 papers in total (see Table 3.17 for complete list of papers). Fig. 3.3 shows
the number of included papers per venue with publication numbers equal or higher than two. Software
Engineering for Adaptive and Self-Managing Systems conference (SEAMS) and Software Engineering

16

14
14
¢ 12
a
s 10
§ 8 6 6
g 6 5
E 4
2 4
2 l
0
ICSE ESEC/FSE SEAMS JSS SESAS &Il
Venues

FIG. 3.3
Number of published papers per venue.

3.3 RESULTS 57

16

14

12

10

Number of papers

N B O

|~
2
| KN K
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Publication year

o

FIG. 3.4
Number of published papers per year.

for Self-Adaptive Systems (SESAS) volumes I and II have the most number of selected papers with 14
publications and 6 papers respectively.

From Fig. 3.4, we can see that most of the studies started to appear around 2009; suggesting that
architecture-based approaches tackling uncertainty in self-adaptive systems with multiple quality re-
quirements were not widely studied before the year 2008. Since architecture-based approaches have
been used in the domain of self-adaptive system even before 2009, we speculate that uncertainty in
self-adaptive systems with multiple quality requirements has been understudied before the year 2009.

3.3.3 RQ2: WHAT ARE THE DIFFERENT UNCERTAINTY DIMENSIONS WHICH ARE
EXPLORED BY THESE APPROACHES?

We used the initial classification schema of uncertainty dimensions (see Table 3.1) to extract data from
the selected papers, and then gradually extended that initial classification schema to create our frame-
work. Table 3.4 presents a list of significant dimensions we found in the literature, descriptions of the
dimensions, and possible options for each of the dimensions.

As indicated in Table 3.4, we found five different noteworthy dimensions of uncertainty (i.e.,
location, nature, level, emerging time, and sources). This implies that current architecture-based
approaches in the domain of self-adaptive systems with multiple quality requirements examine uncer-
tainty from five distinct perspectives. The fact that these dimensions were extracted from the literature
suggests that any effective solution tackling uncertainty should at least address these dimensions in
order to thoroughly explore underlying uncertainty in self-adaptive systems, and afterwards, propose
solutions to tackle uncertainty.

Notice that the primary dimensions descriptions listed in Table 3.1 were refined into those pre-
sented in Table 3.4. Although undertaking the systematic review did not change the core of the def-
initions presented in the primary classification schema, it did help to refine the definitions in order to be
further applicable in the domain of architecture-based self-adaptive systems and to fit into the final
classification framework.

58

CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Uncertainty
Dimension

Location

Nature

Level/
spectrum

Emerging
time

Sources

Description

Refers to the locale, where uncertainty
manifests itself within the whole system

Specifies whether the uncertainty is due to
the imperfection of available knowledge,

or is due to the inherent variability of the
phenomena being described

Indicates the position of uncertainty along
the spectrum between deterministic
knowledge and total ignorance

Refers to time when the existence of
uncertainty is acknowledged or
uncertainty is appeared during the life
cycle of the system.

Refers to a variety of circumstances
affecting the adaptation decision, which
eventually deviate system’s performance
from expected behavior

Options

Environment

Model

Adaptation
functions

Goals

Managed
system

Resources

Epistemic

Variability

Statistical
uncertainty

Scenario
uncertainty

Runtime

Design time

Table 3.4 Classification Framework for Dimensions of Uncertainty and Its Options

Descriptions

Refers to execution context and
humans interacting with, or affecting
the system

Refers to a variety of conceptual
models representing the system

Refers to functionalities performed as
part of MAPE-K model

Refers to specification, modeling and
alteration of system goals

Refers to the application specific
system, which is being monitored and
adapted

Refers to a variety of essential factors
and components which are required
by the self-adaptive system in order to
operate normally

The uncertainty is due to the
imperfection of our knowledge,
which may be reduced by more
research and empirical efforts

The uncertainty is due to inherent
variability in the system complex
including randomness of nature,
human behavior, and technological
surprises

Statistical uncertainty refers to
deterministic knowledge in the
uncertainty spectrum and is any
uncertainty that can be described
adequately in statistical terms.

A scenario is a plausible description
of how the system and or its driving
forces may develop in the future.
Scenarios do not forecast what will
happen in the future; rather they
indicate what might happen.

Refers to the uncertainties appearing
after systems deployment, which also
includes system evolution over time.
Refers to the uncertainties
manifesting themselves during any
software development phases carried
out before system deployment.

See Table 3.5

3.3 RESULTS 59

3.3.3.1 RQ2.a: What Are the Options for These Uncertainty Dimensions?

In Table 3.4, we also provide detailed descriptions for each of the options listed for uncertainty dimen-
sions. Furthermore, we expanded the options list by adding new options (i.e., managed system, and
sources) to the primary schema. By providing a full list of options and their descriptions, this table
can be used as a guideline for researchers to avoid any ambiguity while addressing dimensions options
in their work.

We note that the dimension “level of uncertainty” may also include recognized ignorance (i.e., ac-
knowledging uncertainty, but not proposing any remedy), and total ignorance (i.e., completely ignoring
the existence of uncertainty) as options. However, these two options do not apply for any of the primary
studies: all the studies acknowledge the existence of uncertainty and propose solutions to handle it.

RQ3: WHAT SOURCES OF UNCERTAINTIES ARE ADDRESSED BY THESE
APPROACHES?

Finally, to answer this research question, we used the initial classification schema for sources of uncer-
tainty (see Table 3.2) for data extraction and created an extended list of sources of uncertainty. In
Table 3.5 we present the extended list, along with the descriptions for the options and examples from
literature. The sources of uncertainty refer to a variety of circumstances from which the uncertainty
originates. Furthermore, we added one more column, “classes of uncertainty”, which is only used for
grouping purposes: sources of uncertainties with similar origins are grouped in the same class of uncer-
tainty. This helps making a long list of sources of uncertainty easier to analyze in the next section.

In this table, specific examples from the literature are provided to help with the comprehensibility of
sources.

RQ4: HOW ARE THE CURRENT APPROACHES CLASSIFIED ACCORDING TO THE
PROPOSED UNCERTAINTY CLASSIFICATION FRAMEWORK?

From 51 selected papers, 12 papers discuss one class of uncertainty. Environment is the most-addressed
class of uncertainty, and adaptation functions is the least (see Table 3.6).

The rest of the papers (39 out of 51) discuss multiple classes of uncertainty. A variety of combi-
nations of classes of uncertainty are discussed in the literature; “Environment, Goal, and Adaptation
functions” is the most addressed set of classes of uncertainty, for details see Table 3.7.

From Tables 3.6 and 3.7, we can conclude that the majority of existing studies (39 papers) explore
different classes of uncertainty, and do not focus on proposing solutions to tackle certain class of un-
certainty and its sources. We can also observe that “Environment” and “Goal” seems to be the most
important classes of uncertainty, and the majority of researchers are interested in tackling uncertainties
emanating from environmental circumstances and self-adaptive system’s goal related complications.

Regarding the nature of uncertainty (see Table 3.8), 35 papers (68.6%) discuss uncertainty due to
variability, and only two papers tackle uncertainty due to lack of knowledge (i.e., epistemic). Although
14 papers address both variability and lack of knowledge as the nature of uncertainty in self-adaptive
systems; variability seems to be the main source from which uncertainty originates, as 35 primary stud-
ies” main focus is only variability.

60 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Class of
Source of
Uncertainty

Model
uncertainty

Adaptation
functions
uncertainty

Options (for
Sources of
uncertainty)

Abstraction

Incompleteness

Model drift

Different
sources of
information

Complex
models

Variability

space of
adaptation

Sensing

Effecting

Automatic
learning

Decentralization

Table 3.5 Sources of Uncertainty

Description

Uncertainty caused by omitting
certain details and information from
models for the sake of simplicity

Uncertainty caused by parts (of
models, mechanisms, etc.) that are
knowingly missing because of a lack
of (current) knowledge

Uncertainty caused by a discrepancy
between the state of models and the
represented phenomena

Uncertainty caused by differences
between the representations of
information provided by different
sources of information. Uncertainty
may be due to different
representations of the same
information, or result of having
different sources of information, or
both

Uncertainty caused by complexity of
runtime models representing
managed sub systems

Uncertainty caused by the size of the
variability space that the adaption
functions need to handle. This type
of uncertainty arises from striving to
capture the whole complex
relationship of the system with its
changing environment in a few
architectural configurations which is
inherently difficult and generates the
risk of overlooking important
environmental states [4]
Uncertainty caused by sensors which
are inherently imperfect
Uncertainty caused by effectors of
which the effects may not be
completely deterministic
Uncertainty caused by machine
learning techniques of which the
effects may not be completely
predictable.

Uncertainty due to decision making
by different entities of which the

Example

Simplifying assumptions [14]

Model structural uncertainty [11]

Violation of requirements in
models [21]

Granularity of models [22]

Complex architectural models
[23]

Being unable to foresee all
possible environment states as
well as all the system
configurations in the future [24]

Noise in sensing [14]

Futures parameter value [14]

Modeling techniques [22]

Decentralized control in a traffic
jams monitoring system [25]

Continued

3.3 RESULTS 61

Table 3.5 Sources of Uncertainty—cont’d

Class of
Source of
Uncertainty

Goals
uncertainty

Environment
uncertainty

Resources
uncertainty

Managed
system
uncertainty

Options (for
Sources of
uncertainty)

Changes in
adaptation
mechanisms

Fault
localization and
identification
Goal
dependencies

Future goal
changes

Future new
goals

Goal
specification

Outdated goals

Execution
context

Human in the
loop

Multiple
ownership

New resources

Changing
resources
System
complexity and
changes

Description

effects may not be completely
predictable

Uncertainty due to required
dynamicity of adaptation
infrastructure to maintain its
relevance with respect to the
changing adaptation goals [26]
Uncertainty caused by inaccurate
localization and identification of
faults in the managed system

Dependencies between goals, in
particular quality goals, may not be
captured in a deterministic manner,
which causes uncertainty
Uncertainty due to potential changes
of goals that could not be completely
anticipated

Uncertainty due to the potential
introduction of new goals that could
not be completely anticipated
Uncertainty due to lack of
deterministic specifications of
quality goals

Uncertainty caused by overlooking
outdated goals

Uncertainty caused by the inherent
unpredictability of execution
contexts

Uncertainty caused by the inherent
unpredictability of human behavior
Uncertainty caused by lack of proper
information sharing, conflicting
goals, and decision making policies
by multiple entities that own parts of
the system

Uncertainty caused by availability of
new resources in the system
Uncertainty caused by dynamicity of
resources in the system

Uncertainty caused by complexity
and dynamicity of nature of the
managed system

Example

Additional monitoring
infrastructure [26]

Identifying and ranking faulty
component [27]

Conflict resolution between
competing quality attributes [28]

Rapid evolution [13]

Rapid evolution [13]

Quality goals priorities changes
[29]

Addressing goals which are
irrelevant to the system [30]
Mobility [13]

Objectives [14]

Uncertain execution time and
failure rate of a component
operated by a third-party
organization [31]

Availability of new services in the
system [32]
Resources mobility [33]

Complex systems and complex
architectural models [23]

62 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Table 3.6 List of Papers Discussing Single Class of Uncertainty

Class of Uncertainty

Environment

Goal

Model

Adaptation functions

Number of Papers

4

3
3
2

Study Numbers

S20, S34, S37, S38
S4, 829, S41

S11, S16, S23

S5, S14

Table 3.7 List of Papers Discussing Combinations of Classes of Uncertainty

Number of
Classes of Uncertainty Papers Study Numbers
Environment, goal, adaptation functions 9 S8, S9, S25, S31, S32, S43, S44, S45,
S49
Environment, goal 8 S7, S15, S18, S33, S46, S47, S51
Environment, adaptation functions 3 S17, S42, S50
Environment, model, adaptation functions 3 S13, S12, S19
Environment, model 2 S3, S24
Environment, goal, adaptation function, model 2 S26, S10
Environment, goal, managed system 2 S27, S36
Environment, goal, model 2 S30, S40
Adaptation function, model, goal 1 S48
Goal, adaptation function 1 S39
Environment, resources 1 S2
Environment, resources, adaptation functions 1 S21
Environment, goal, resources 1 S1
Environment, adaptation functions, goal, managed 1 S35
system
Environment, adaptation functions, goal, resources 1 S22
Environment, model, managed system 1 S6
Goal, adaptation function, resources 1 S28
Table 3.8 List of Papers and Nature of Uncertainty
Number of

Nature Papers Study Numbers
Variability 35 S1,S2, 54, S5, 86,57, S8, S9, S10, S14, S15,S16,S17,S18, S19, S20, S21, S22,

S25, 528,529, S31, S34, S36, S37, S38, S39, S40, S41, S43, S45, S47, S48, S49,

S51
Variability, 14 S3, S11, S12, S13, S24, S26, S27, S30, S32, S33, S35, S42, S46, S50
epistemic
Epistemic 2 S23, S44

3.3 RESULTS 63

Table 3.9 List of Papers and Level of Uncertainty
Number of
Level Papers Study Numbers
Scenario 28 S1, S3, S4, S6, S8, S10, S11, S15, S16, S17, S18, S19, S20, S22, S23, S24, S25,
S29, S31, S32, S35, S36, S37, S40, S44, S48, S50, S51
Scenario, 12 S5, S7, S21, S27, S30, S33, S34, S38, S39, S46, S47, S49
statistical
Statistical 7 S9, S12, S13, S14, S26, S42, S43
Not 4 S2, S28, S41, S45
specified

Regarding the level of uncertainty (see Table 3.9), most of the primary studies (i.e., 28 papers) ex-
plore uncertainty at the scenario level, 7 papers use only statistical methods to investigate uncertainty,
and 12 papers use a combination of both scenarios and statistical methods. Investigating uncertainty at
the scenario level is easier to understand, it helps to anticipate potential system behavior in presence of
uncertainty, and estimates how the quality requirements may be affected; on the downside it lacks rig-
orous analysis of system state. Statistical methods, however, can use runtime knowledge to accurately
calculate system status in presence of uncertainty, and also enable finding the best adaptation option
with the least side effects on quality requirements. Therefore, we envision that using a combination of
both scenario and statistical levels will be the most advantageous option for handling multiple quality
requirements.

Regarding emerging time, Table 3.10 indicates that most of the existing approaches (i.e., 36 papers)
postpone the treatment of uncertainty to the runtime phase. This is not surprising as researchers are
mostly interested to study requirements trade-offs at runtime. In 13 papers, uncertainty is treated in
both design and runtime. One common way of dealing with uncertainty in these approaches is to ac-
knowledge the existing uncertainty and anticipate probable solutions at design time, but tackle the un-
certainty in the runtime phase when more knowledge is available. Finally, we found two papers in
which uncertainty is explored and tackled only at design time.

Regarding the sources of uncertainty, we note that in some cases there might be an overlap between
two or more of the listed sources (e.g., human in the loop, and multiple ownership) definitions; in these
cases, we have assigned the primary studies to the most relevant sources. In some cases it is not clear

Table 3.10 List of Papers and the Uncertainty Treatment Time

Emerging Number of

Time Papers Study Numbers

Runtime 36 S1, S2, S4, S5, S8, S10, S14, S16, S17, S19, S20, S21, S23, S25, S26, S27, S28,
$29, 530, S31, S32, S33, S34, S35, S37, S38, S39, S41, S42, S43, S45, S46, S47,
548, S49, S51

Runtime, 13 S6, 87, S9, S11, S12, S13, S15, S18, S22, S24, S36, S44, S50

design time

Design time 2 S3, S40

64 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

from the paper which source is the most relevant one; in these cases we list the source as hybrid and
indicate which multiple sources are applicable. Furthermore listing papers under certain types of
sources does not necessarily indicate that the paper provides a solution to tackle uncertainty originating
from those particular sources. It means that the paper discusses uncertainty due to those sources; how-
ever, it may or may not propose solutions to resolve uncertainty emerging from one or multiple of those
sources.

The most common types of sources of uncertainty in the literature are environmental sources
(addressed in 38 papers). From Table 3.11, we see that execution context and human in the loop
are respectively the most and the least common sources of uncertainty from the environment uncer-
tainty class. This is not a surprise since the most commonly addressed nature of uncertainty is variabil-
ity, and variability normally occurs in the execution context of the self-adaptive systems.

Although S6, S18, and S44 address uncertainty originating from environmental sources as well, we
could not decide to which source they should be assigned. Therefore, we recoded sources discussed in
S6 and S18 as hybrid sources, as they both can be considered uncertainty originating from system and/
or environment. Regarding S44, the environmental fact causing the uncertainty is considered as “com-
plexity,” despite the rest of the papers which explore the uncertainty due to the dynamicity of the
environment.

Table 3.12 lists sources from the goal uncertainty class. Addressed by twelve papers, future goal
changes seem to be the most studied goal-related uncertainty in the literature. This suggests that re-
searchers are mainly concerned with the ability of the self-adaptive system to handle its current goals
and the potential changes in the future; adding new goals to the system (i.e., future new goals) does not
seem to be as important. In Table 3.12 we also list different sets of sources that we found in the liter-
ature; however, the numbers of papers addressing these sets of sources are rather low.

Both S39 and S40 address the sources achieving stakeholder’s objectives and meeting quality of
service which can be considered a form of goal uncertainty class. However, we did not assign them
to any of our listed sources as it was unclear which sources would be the most relevant. What we
noticed from the analysis of goal uncertainty sources is that, although all the included primary studies
somehow deal with multiple quality requirements, the trade-off analysis gained little attention in the
literature. From 51 selected primary studies, only 8 paper address goal dependencies. In addition, the
potential negative impact of self-adaptation on systems quality requirements is not explicitly explored
as sources of uncertainty.

Table 3.11 List of Papers Addressing Environment Uncertainty Sources

Types of Environment Number of

Uncertainty Source Papers Study Numbers

Execution context 30 S1,S3,S7,S8, 89, S11, S13,S17, S19, S20, S24, S25, S26, S27, S30,
S31, 32,533, S34, S35, S36, S37, S38, S40, S42, S43, S45, S46, S47,
S51

Execution context, human 4 S2, S10, S22, S50

in the loop

Human in the loop 1 S21

3.3 RESULTS 65

Table 3.12 List of Papers Addressing Goal Uncertainty Sources
Types of Goals Uncertainty Number of
Source Papers
Future goal changes 12

Goal dependency

Future new goals

Future goal changes, future new 2

goals

Goal dependency, future new goals 1

Goal dependency, future goal 1

changes

Goal specification, goal 1
dependency

Future goal changes, outdated 1

goals

Study Numbers

S7,S10, S18, 822, S26, S27, S28, S30, S31, S32, S33,
S36

S15, S41, S43, S44, S46, S47, S49, S51
S1, S4, S8
S38, S45

S9
S25

S13

S29

Table 3.13 indicates sources of uncertainty from adaptation functions class. The most commonly
discussed (i.e., addressed by 10 papers) source is variability of solution space. This shows that the cur-
rent focus of research is mainly on providing assurances for applying the best adaptation actions in a
system. Self-adaptive systems should be capable of exploring the solution space, and selecting the best
solution to adapt the systems with minimum negative side effect on other systems functionalities and
quality aspects. Interestingly, the next most common source is fault localization and identification in a
system. This suggests that although the most significant source of uncertainty is the selection of most

Types of Adaptation Functions Uncertainty
Source

Variability of solution space

Fault localization and identification
Decentralization

Variability of solution space, fault localization and
identification

Changes in adaptation mechanisms
Variability of solution space, decentralization
Sensing

Decentralization, multiple ownership

Adaptation action’s effects

Table 3.13 List of Papers Addressing Adaptation Function Uncertainty Sources

Number of

Papers Study Numbers

10 S9, S13, S15, S25, S26, S39, S42, S43,
S44, S48

5 S10, S17, S21, S22, S28

4 S1, S19, S32, S45

3 S5, S8, S14

2 S31, S35

1 S11

1 S12

1 S49

1 S50

66 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

suitable approach for adaptations, in many cases the problem itself, which triggers the need for adap-
tation, is not identified properly and therefore causes more uncertainty in the system. Sensing and ad-
aptation actions affects are the least common sources from this class of uncertainty. Note that although
investigation of adaptation action effects is a major part of resolving the uncertainty due to variability
of solution space, and also is a key factor in exploring adaptation effects on quality requirements and
handling trade-offs, it has only been explicitly addressed in one paper. These results again confirm the
lack of sufficient research on quality requirements trade-off analysis.

Table 3.14 presents sources from the model uncertainty class. Our results indicate that uncertainty
due to differences in sources of information is the most commonly addressed source in this class. How-
ever, we could not find any source which is explored in a significantly higher number of papers; all of
the sources from model uncertainty class are discussed in almost equal (low) number of papers.

Table 3.15 presents sources of uncertainty from the resources class. Four papers address changing
resources as the origin of uncertainty in self-adaptive system, and one paper deals with newly arrived
resources as an uncertainty sources.

Finally, four papers (i.e., S6, S27, S35, and S36) state that sources of uncertainty may be due to
systems’ circumstances. Complexity in the system is considered as the source of uncertainty in S6,
and S27, while systems changes are considered as the sources of uncertainty in S35, and S36.

DISCUSSION

In this section, we first present a discussion about sources of uncertainty, and then list the main findings
derived from our results and provide implications for researchers.

Table 3.14 List of Papers Addressing Model Uncertainty Sources

Types of Model Uncertainty Source Number of Papers Study Numbers
Different sources of information 3 S3, S16, S19
Model drift 2 S7, S20
Incompleteness 3 S11, S12, S48
Abstraction 2 S23, S26
Incompleteness, abstraction 2 S24, S30
Erroneous models 1 5S40

Complex models 1 S6

Table 3.15 List of Papers Addressing Resource Uncertainty Sources

Types of Resource Uncertainty Source Number of Papers Study Numbers
Changing resources 4 S2, S21, S22, S28,
New resources 1 S1

3.4 DISCUSSION 67

ANALYSIS OF DERIVED SOURCES OF UNCERTAINTY BASED ON UNCERTAINTY
DIMENSIONS

One of the major goals of this study was to deliver a comprehensive and well-organized list of com-
monly addressed sources of uncertainty in self-adaptive systems with multiple quality requirements.
Therefore, we believe it is also essential to analyze the derived sources of uncertainty and investigate
how each one of these sources is handled. In the following, we explore the sources of uncertainty (see
Table 3.5) based on emerging time, level, and nature dimensions. Note that although we performed the
same analysis for all classes of sources listed in Table 3.5, we have omitted results of minor
significance.

3.4.1.1 Environment uncertainty

From 35 papers (see Table 3.11) that addressed sources of uncertainty originating from environment,
10 papers (i.e., S1, S8, S10, S17, S19, S20, S25, S31, S37, and S51) deal with uncertainty at scenario
level, due to variability in the context, at runtime. This indicates that variability in the execution context
and human behavior are the most common sources of uncertainty, and are mainly handled at runtime. It
also shows that researchers mostly use scenarios to understand systems behavior at runtime and resolve
the uncertainty. This is an interesting finding as it suggests that statistical methods may be used at run-
time to benefit from available knowledge, and study the solutions space to improve the decision making
process in self-adaptive systems.

3.4.1.2 Goals uncertainty

From 29 papers (see Table 3.12), in which sources of uncertainty originate from goals, eight papers
(i.e., S1, S4, S8, S10, S25, S29, S31, and S51) deal with uncertainty due to variability of goals. In these
papers, researchers use scenarios to explore how variability may affect the system goals, and deal with
the goal uncertainty at runtime. Furthermore, we found that four papers (i.e., S18, S15, S22, and S36)
deal with this type of uncertainty both at design and runtime. This indicates that only in a small number
of papers (i.e., four papers) researchers manage to touch the issue of goals uncertainty at design time,
and in most cases it is postponed to runtime. Despite the fact that more knowledge about system’s status
is accessible at runtime, statistical solutions are not commonly used to propose rather accurate solutions
for handling goals uncertainty at self-adaptive systems with multiple quality requirements. However, a
remarkable number of papers (i.e., S7, S27, S30, S33, S38, S46, S47, and S49) use a combination of
statistical methods and scenarios to deal with goals uncertainty.

3.4.1.3 Adaptation functions uncertainty

Following the same pattern we found in previous sections, from 28 papers (see Table 3.12) in which
adaptation functions uncertainty sources are addressed, 11 papers (i.e., S1, S8, S10, S17, S19, S25, S31,
S32, S35, S48, S49) deal with this class of uncertainty due to variability issues, at scenario level, and
at runtime. Interestingly, we found four papers (i.e., S14, S26, S42, and S43) in which statistical
methods are used at runtime to deal with adaptation functions uncertainty sources with both variability
and epistemic natures. This indicates that although statistical methods are rarely used at runtime, they
are favored methods when dealing with adaptation functions uncertainty; specifically, uncertainty due
to variability of solution space and fault localization at runtime. Uncertainty due to variability of the
solution space is in fact one of the main challenges which needs to be handled when dealing with

68 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

multiple requirements in self-adaptive systems. The system should be able to manage (i.e., identify,
investigate) an increasing number of possible scenarios for adaptation, and predict their effects on qual-
ity attributes and select the best adaptation actions. Therefore, it is very crucial to design a self-adaptive
system in a way that it collects the most relevant data at a given time and use the right tools to predict
the system’s behavior in order to handle the quality attributes trade-offs.

3.4.1.4 Model uncertainty
From 14 papers, in which model uncertainty is addressed, six papers (i.e., S3, S11, S12, S24, S26, and
S30) deal with model uncertainty sources due to both variability and lack of knowledge (i.e., episte-
mic). This is interesting because we have only found 14 papers investigating uncertainty due to
combination of both variability and lack of knowledge, and in nearly half of them source of uncertainty
is related to models. This shows that lack of knowledge greatly affects credibility of models, and
generates uncertainty in self-adaptive systems with multiple quality requirements. From these six
papers, three of them (i.e., S11, S12, and S24) deal with uncertainty at both design and runtime,
two papers at runtime (i.e., S26, S30), and one paper (i.e., S3) at design time.

It might be interesting for researchers to find methods to use runtime knowledge to constantly adjust
and update models. Updated and accurate models are better representatives of the actual self-adaptive
systems and ultimately improve the decision making process and trade-off analysis.

MAIN FINDINGS AND IMPLICATIONS FOR RESEARCHERS

The following paragraphs elaborate on the main findings, while the end of each paragraph provides
implications for researchers in terms of future directions.

3.4.2.1 Model uncertainty is investigated in both design and runtime

We found that among those approaches which deal with both design time and runtime phases of the
system’s life cycle, model uncertainty is the most commonly addressed class of uncertainty (see
Tables 3.10 and 3.14). From 51 studies, 13 papers (i.e., S6, S7, S9, S11, S12, S13, S15, S18, S22,
S24, S36, S44, S50) consider uncertainty in both design and runtime phases, and 5 of these 13 studies
(i.e., S6, S7, S11, S13, S24) investigate different types of model uncertainty. This indicates that, al-
though many researchers are focusing on models at runtime to tackle the uncertainty issue, dealing
with this particular type of uncertainty (i.e., model uncertainty) is not completely postponed to runtime.
In other words, researchers strive to use the available knowledge at design time and probably anticipate
system behavior in the future in order to be able to start dealing with model uncertainty as soon as
possible (i.e., design time). Although our results cannot prove the efficiency of this way of combining
both design and runtime solutions in dealing with model uncertainty, it confirms its popularity.

3.4.2.2 Uncertainty is often explored at scenario level regardless of emerging time

Our results show that most of the current studies (i.e., 17 papers) deal with uncertainty at scenario level
(see Table 3.16) at runtime. Researchers frequently try to understand the current state, foresee future
behavior of the system, and demonstrate system state during and after application of uncertainty rem-
edy only through scenarios. Surprisingly, approaches expanding through both design time and runtime
phases also lack statistical methods. This means that despite the availability of knowledge at runtime,
most of these approaches do not consider using statistical methods to reassess their assumptions

3.4 DISCUSSION 69

Table 3.16 Emerging Time Versus Level of Uncertainty

Level
Emerging Time Scenario Statistical Both
Runtime 17 papers 4 papers 11 papers
Both 9 papers 3 papers 1 paper
Design time 2 papers None None

regarding systems’ runtime state in face of uncertainty. Most of the current approaches simply study
uncertainty at scenario level (i.e., showcase the behavior of system in the future) through examples, and
do not provide rigorous techniques (e.g., probabilistic methods) to support these scenarios. It may be
interesting for researchers to further explore incorporating runtime information into statistical methods
to mathematically strengthen their anticipations of system behavior.

3.4.2.3 Uncertainty starting to get acknowledged in both design and runtime

Our results indicate that over a decade ago, researchers were focused on solving uncertainty related
issues mainly at runtime. This means that both identification of uncertainty and tackling the uncertainty
were postponed to the runtime phase. However, around the year 2009 (see Fig. 3.5) researchers started
to acknowledge the uncertainty in design time as well. In order to deal with uncertainty in a more struc-
tured manner, we propose that researchers investigate whether certain sources of uncertainty can be
handled specifically in design or runtime.

3.4.2.4 Current approaches mainly focus on tackling uncertainty due to variability through
approaches in both design and runtime

Variability may emerge in system requirements, execution environment, or may be a result of dyna-
micity of self-adaptive systems solutions space. Our results indicate that the main focus of current
research is on the variability issues rather than problems originating from lack of knowledge in

5
3 3
2
1 1 [
2009 2010 2011 2012 2013 2014
Publication years

N

Number of papers
w

[y

o

FIG. 3.5
Number of papers acknowledging uncertainty in design time per year.

70 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

self-adaptive systems (see Tables 3.8 and 3.10). Therefore, more investigation is required to distinguish
the differences in characteristics of variability in different circumstances, and possibly propose tailored
solutions capable of dealing better with uncertainty due to variability.

3.4.2.5 Most commonly addressed source of uncertainty is dynamicity of environment
Not surprisingly, changes in the environment are considered as the main reason behind uncertainty in
self-adaptive systems (see Table 3.11). This is because at the design time, engineers can not anticipate
the potential changes in the environment in the future as it is out of their control, and most of the de-
cision making process should be postponed to runtime when more information is available.

3.4.2.6 Future goal changes is the second most important uncertainty source

From the selected primary studies, we can see that researchers consider changes of system goals as one
of the main sources of uncertainty in self-adaptive systems. However, studies rarely explore details of
these changes and how changes in one or two goals affects other goals of the system (i.e., requirements
trade-offs) explicitly. Therefore, the first step toward handling the requirements trade-offs may be the
thorough monitoring of the requirements; this means that adequate data on how the systems’ require-
ments, intentionally or unintentionally, are affected by the adaptation actions (or human’s intervene)
should constantly be collected, and then the data should properly be analyzed in order to make the best
decision and fulfill the requirements at a desired level.

LIMITATIONS OF THE REVIEW AND THREATS TO VALIDITY

In this section, we discuss the limitations and risks that may have potentially affected the validity of the
systematic literature review and represent solutions we used to mitigate these threads.

3.4.3.1 Bias

The pilot search indicates that, it is not always easy to extract relevant information from the primary
studies. Therefore, there may be some bias and inaccuracy in the extracted data and creation of the
classification framework. This is especially prominent for establishing the sources of uncertainty clas-
sification due to existing overlap of certain sources definitions. To mitigate this, we included a list of
examples from the literature to clarify the sources and help the reader to better comprehend them.
Moreover, we had discussions among researchers and asked experts to judge the accuracy of data when
the researchers could not reach a consensus on certain extracted data occasionally.

3.4.3.2 Domain of study

One of the main risks of performing a systematic literature review in the domain of self-adaptive systems
is lack of a common terminology. This problem emanates from the fact that research in this field is to a
large extend still in an exploratory phase. The lack of consensus on the key terms in the field implies that
in the searching phase, we may not cover all the relevant studies on architecture-based self-adaptation [9].
To mitigate the risk, we used a generic search string containing all the mostly used terms, and we avoided
a much narrowed search string to prevent missing papers in the automatic search. In addition, we estab-
lished “quasi-gold” standard to investigate the trustworthiness of the created search string. Furthermore,
we had a look at the references of the selected primary studies to figure out if we have missed any
well-known paper due to the fact that they are out of the search scope. If applicable (i.e., if they match
the search scope), we included them in our final set of selected primary studies.

3.5 CONCLUSION AND FUTURE WORK 71

CONCLUSION AND FUTURE WORK

We conducted a systematic literature review to survey the current state of research regarding uncer-
tainty in architecture-based self-adaptive systems with multiple quality requirements. Our results pre-
sent a classification framework for concept of uncertainty and its different types and categories, and
sources of uncertainty in this domain. Furthermore, we investigate the usefulness of the proposed clas-
sification framework by analyzing the selected primary studies, and mapping them to the framework.
Our work may be interesting for researchers in field of self-adaptive systems as it offers an overview of
the existing research and open areas for future work.

Analysis of the selected primary studies suggests that although researchers consider changes of sys-
tem goals as one of the main sources of uncertainty in architecture-based self-adaptive systems with
multiple quality requirements, studies rarely explore details of these changes explicitly and often over-
look how changes in one or two of the goals may affect other goals of the system (i.e., requirements
trade-offs).

Our results also indicate that uncertainty in architecture-based self-adaptive systems with multiple
quality requirements is often explored at scenario level regardless of emerging time of the uncertainty.
This means that despite the availability of sufficient knowledge at runtime, most existing approaches
do not consider using statistical methods to reassess their assumptions regarding systems’ runtime state
in face of uncertainty, or incorporate runtime information into statistical methods to mathematically
strengthen their anticipations of system behavior in the future. This implies that statistical methods
can further be used to more efficiently handle quality requirements and their trade-offs in
architecture-based self-adaptive systems tackling uncertainty.

For our future work, we plan to particularly focus on uncertainty and its potential influences on
quality attributes. To be more specific, we plan to identify types of requirements for which uncertainty
in architecture-based self-adaptive systems is more relevant, and investigate the relationship between
uncertainty and quality requirements tradeoffs.

Another direction for future work is to focus on proposing methods that are designed to handle a
specific class of uncertainty (i.e., uncertainty originating from certain sources) and its sources rather
than covering a variety of classes and their sources to a limited degree. Different sources of uncertainty
assigned to one class are more likely to overlap, and therefore, focusing on a specific class of uncer-
tainty may result in proposing more structured and efficient methods dealing with multiple sources of
uncertainty and their potential interplay.

APPENDIX
Table 3.17 Primary Studies Included in the Review
Study # | Title Authors Year | Venues
1 Architecture-driven self-adaptation and G. Edwards, J. Garcia, H. Tajalli, D. 2009 | ICSE
self-management in robotics systems Popescu, N. Medvidovic, G. Sukhatme,
and B. Petrus
2 Self-adaptation for everyday systems S. Hallsteinsen, E. Stav, and J. Floch 2004 | SIGSOFT

Continued

72

CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Study #
3

10

11

12

13
14

15

16

17

18

19
20
21

22

Title

Adapt cases: extending use cases for
adaptive systems

A case study in software adaptation
Diagnosing architectural run-time failures

Adaptation and abstract runtime models
Dealing with nonfunctional requirements
for adaptive systems via dynamic
software product-lines

A case study in goal-driven architectural
adaptation

Designing search based adaptive systems:
a quantitative approach

Rainbow: architecture-based self-
adaptation with reusable infrastructure
Models at runtime to support the iterative
and continuous design of autonomic
reasoners

Context-aware reconfiguration of
autonomic managers in real-time control
applications

Taming uncertainty in self-adaptive
software

Architecture-based run-time fault
diagnosis

Requirements and architectural
approaches to adaptive software systems:
a comparative study

An architecture for coordinating multiple
self-management systems

Robust, secure, self-adaptive and resilient
messaging middleware for business
critical systems

A development framework and
methodology for self-adapting
applications in ubiquitous computing
environments

Architecting self-aware software systems

High-quality specification of self-
adaptive software systems

Implementing adaptive performance
management in server applications

A framework for distributed management
of dynamic self-adaptation in
heterogeneous environments

Table 3.17 Primary Studies Included in the Review—cont’d

Authors

M. Luckey, B. Nagel, C. Gerth, and
G. Engels

G. Valetto and G. Kaiser

P. Casanova, D. Garlan, B. Schmerl,
and R. Abreu

T. Vogel and H. Giese
C. Ghezzi and A. Sharifloo

W. Heaven, D. Sykes, J. Magee, and
J. Kramer

P. Zoghi, M. Shtern, and M. Litoiu
D. Garlan, S.-W. Cheng, A.-C. Huang,

B. Schmerl, and P. Steenkiste
F. Chauvel, N. Ferry, and B. Morin

R. Anthony, M. Pelc, W. Byrski

N. Esfahani, E. Kouroshfar, and S. Malek
P. Casanova, B. Schmerl, D. Garlan,
and R. Abreu

K. Angelopoulos, V.E. Souza, and

J. Silva Pimentel

D. Garlan, B. Schmerl, and P. Steenkiste
H. Abie, R.M. Savola, and I. Dattani

S. Hallsteinsena, K. Geihsb, N. Paspallisc,
F. Eliassend, G. Horna, J. Lorenzoe,

A. Mamellif, and G.A. Papadopoulosc
F. Faniyi, P. Lewis R. Bahsoon,

and X. Yao

M. Luckey and G. Engels

Y. Liu and I. Gorton

M. Zouari, M. Segarra, and F. André

Year
2011

2002
2013

2010

2013

2009

2014

2004

2013

2010

2011

2011

2013

2004

2009

2012

2014

2013

2007

2010

Venues
SEAMS

WOSS
SEAMS

SEAMS

LNCS

LNCS

SEAMS

IC

IC

ICAC

SIGSOFT

LNCS

SEAMS

WICSA

Ccw

JSS

WICSA

SEAMS

SEAMS

ICCIT

Continued

3.5 CONCLUSION AND FUTURE WORK

73

Table 3.17 Primary Studies Included in the Review—cont’d

Study #
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Title

A language for feedback loops in self-
adaptive systems: executable runtime
megamodels

Learning revised models for planning in
adaptive systems

gocc: a configuration compiler for self-
adaptive systems using goal-oriented
requirements

A learning-based approach for
engineering feature-oriented self-
adaptive software systems

Towards run-time adaptation of test cases
for self-adaptive systems in the face of
uncertainty

Model-based adaptation for self-healing
systems

Improving context-awareness in self-
adaptation using the DYNAMICO
reference model

FUSION: a framework for engineering
self-tuning self-adaptive software
systems

DYNAMICO: a reference model for
governing control objectives and context
relevance in self-adaptive software
systems

On decentralized self-adaptation: lessons
from the trenches and challenges for the
future

Improving architecture-based Self-
adaptation through Resource Prediction
Evolving an adaptive industrial software
system to use architecture-based self-
adaptation

Towards practical runtime verification
and validation of self-adaptive software
systems

Model-driven engineering of self-
adaptive software with EUREMA
Achieving dynamic adaptation via
management and interpretation of runtime
models

Towards self-adaptation for dependable
service-oriented systems

Authors
T. Vogel and H. Giese

Sykes, D. Corapi, J. Magee, J. Kramer,
Russo, and K. Inoue

> O

H. Nakagawa

A. Elkhodary

E. Fredericks, B. DeVries, and B. Cheng

D. Garlan and B. Schmerl

G. Tamura, N. Villegas, H. Miiller,
L. Duchien, and L. Seinturier

A. Elkhodary, N. Esfahani, and S. Malek

N. Villegas, G. Tamura, H. Miiller,
L. Duchien, and R. Casallas

D. Weyns, S. Malek, and J. Andersson

S. Cheng, V. Poladian, D. Garlan,
B. Schmerl

J. Camara, P. Correia, R. de Lemos,
D. Garlan, P. Gomes, B. Schmerl,
R. Ventura, and J. Camara

G. Tamura, N. Villegas, H. Miiller,
J. Sousa, B. Becker, G. Karsai, S.
Mankovskii, M. Pezzeé, W. Schifer,
L. Tahvildari, and K. Wong

T. Vogel and H. Giese

M. Amoui, M. Derakhshanmanesh,
J. Ebert, and L. Tahvildari

V. Cardellini, E. Casalicchio, V. Grassi,
F. Lo Presti, and R. Mirandola

Year
2012

2013

2011

2010

2014

2002

2013

2010

2013

2010

2009

2013

2013

2014

2012

2009

Venues

SEAMS

ICSE

SEAMS

SIGSOFT

SEAMS

WOSS

SEAMS

SIGSOFT

LNCS

ICSE

LNCS

SEAMS

LNCS

TAAS

JSS

LNCS

Continued

74

CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

Study #
39

40
41

42

43

44
45
46
47

48

49

50

51

Title

Architecture-based self-adaptation in the
presence of multiple objectives
QUAASY: QUality Assurance of
Adaptive SYstems

Using CVL to support self-adaptation of
fault-tolerant service compositions
Online model-based adaptation for
optimizing performance and
dependability

On the relationships between QoS and
software adaptability at the architectural
level

Quality attribute tradeoff through
adaptive architectures at runtime
Towards automated deployment of
distributed adaptation systems

A self-optimizing run-time architecture
for configurable dependability of services
Model-driven assessment of QoS-aware
self-adaptation

Evaluation of resilience in self-adaptive
systems using probabilistic model-
checking

Managing nonfunctional uncertainty via
model-driven adaptivity

Coupling software architecture and
human architecture for collaboration-
aware system adaptation

Qos-driven runtime adaptation of service
oriented architectures

Table 3.17 Primary Studies Included in the Review—cont’d

Authors
S. Cheng, D. Garlan, and B. Schmerl

M. Luckey, C. Gerth, C. Soltenborn,
and G. Engels

A. Nascimento, C. Rubira, and F. Castor

K. Joshi, M. Hiltunen, R. Schlichting,
W. Sanders, and A. Agbaria A

D. Perez-Palacin, R. Mirandola,
and J. Merseguer

J. Yang, G. Huang, W. Zhu, X. Cui,

and H. Mei

M. Zouari and I. Rodriguez

M. Tichy and H. Giese

V. Grassi, R. Mirandola, and E. Randazzo
J. Camara and R. De Lemos

C. Ghezzi, L. Pinto, P. Spoletini,
and G. Tamburrelli

C. Dorn and R. Taylor

V. Cardellini, E. Casalicchio, V. Grassi,
F. Lo Presti, and R. Mirandola

Year
2006

2011

2013

2004

2014

2009

2013

2004

2009

2012

2013

2013

2009

Venues
SEAMS

ICAC

SASO

SIGSOFT

JSS

JSS

LNCS

LNCS

LNCS

SEAMS

ICSE

ICSE

SIGSOFT

Venues

International Conference on Software Engineering

Software Engineering for Adaptive and Self-managing
Systems Transactions on Autonomous and Adaptive Systems

Table 3.18 List of Manually Searched Venues to Create the “Quasi-Gold” Standard

REFERENCES 75

Table 3.19 List of Automatically Searched Venues and Books

Conference proceedings and International Conference on Software Engineering (ICSE)

symposiums IEEE Conference on Computer and Information Technology (IEEECIT)
IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO)
European Conference on Software Architecture (ECSA)

International Conference on Autonomic Computing (ICAC)
International Conference on Software Maintenance (CSM)

International Conference on Adaptive and Self-adaptive Systems and
Applications (ADAPTIVE)

Working IEEE/IFIP Conference on Software Architecture (WICSA)
International Conference of Automated Software Engineering (ASE)
International Symposium on Architecting Critical Systems (ISARCS)
International Symposium on Software Testing and Analysis (ISSTA)
International Symposium on Foundations of Software Engineering (FSE)

International Symposium on Software Engineering for Adaptive & Self-
Managing Systems (SEAMS)

Workshops Workshop on Self-Healing Systems (WOSS)
Workshop on Architecting Dependable Systems (WADS)

Workshop on Design and Evolution of Autonomic Application Software
(DEAS)

Models at runtime (MRT)

Journals/transactions ACM Transactions on Autonomous and Adaptive Systems (TAAS)
IEEE Transactions on Computers (TC)

Journal of Systems and Software (JSS)

Transactions on Software Engineering and Methodology (TOSEM)
Transactions on Software Engineering (TSE)

Information & Software Technology (INFSOF)

Software and Systems Modeling (SoSyM)

Book chapters/lecture notes/ Software Engineering for Self-Adaptive Systems (SefSAS)
special issues Software Engineering for Self-Adaptive Systems II (SefSAS)

ACM Special Interest Group on Software Engineering (SIGSOFT)
Assurance for Self-Adaptive Systems (ASAS)

REFERENCES

[1] R.de Lemos, H. Giese, H.A. Miiller, M. Shaw, J. Andersson, M. Litoiu, J. Wuttke, Software engineering for
self-adaptive systems: a second research roadmap, in: R. de Lemos, H. Giese, H.A. Miiller, M. Shaw (Eds.),
Software Engineering for Self-Adaptive Systems II, Springer, Berlin, Heidelberg, 2013, pp. 1-32. Retrieved
from, http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1.

[2] D. Garlan, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation with reusable infrastruc-
ture, in: IEEE Proceedings of International Conference on Autonomic Computing, 2004, pp. 276277,
http://dx.doi.org/10.1109/ICAC.2004.1301377.

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1109/ICAC.2004.1301377

76 CHAPTER 3 ARCHITECTURE-BASED SELF-ADAPTIVE SYSTEMS

[3] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution. in: Proceedings of
the 20th International Conference on Software Engineering, 1998, pp. 177-186, http://dx.doi.org/10.1109/
ICSE.1998.671114.

[4] S.-W. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation in the presence of multiple objec-
tives. in: ACM Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing
Systems, 2006, pp. 2-8, http://dx.doi.org/10.1145/1137677.1137679.

[5] Autonomic Computing, W. Paper, T. Edition, An architectural blueprint for autonomic computing. /BM
White Paper. June 2005.

[6] D. Weyns, S. Malek, J. Andersson, FORMS: unifying reference model for formal specification of distributed
self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7 (1) (2012) 1-61, http://dx.doi.org/10.1145/
2168260.2168268.

[7] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli, Dynamic QoS management and
optimization in service-based systems, IEEE Trans. Softw. Eng. 37 (3) (2011) 387—409.

[8] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, Utility functions in autonomic systems, in: IEEE Proceedings
of International Conference on Autonomic Computing, 2004, pp. 70-77, http://dx.doi.org/10.1109/
ICAC.2004.1301349.

[9] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-adaptation: a systematic literature re-
view, Software Architecture, (2013). Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-
39031-9_22.

[10] W.E. Walker, P. Harremoés, J. Rotmans, J.P. van der Sluijs, M.B. van Asselt, P. Janssen, M.P. Krayer von
Krauss, Defining uncertainty: a conceptual basis for uncertainty management in model-based decision
support, Integrated assessment 4 (1) (2003) 5-17.

[11] D. Perez-Palacin, R. Mirandola, Uncertainties in the modeling of self-adaptive systems: a taxonomy and an
example of availability evaluation, In Proceedings of the 5th ACM/SPEC international conference on Per-
formance engineering (2014) 3—-14. ACM.

[12] J.C. Refsgaard, J.P. van der Sluijs, A.L. Hajberg, P.A. Vanrolleghem, Uncertainty in the environmental
modelling process—a framework and guidance. Environ. Model. Softw. 22 (11) (2007) 1543-1556,
http://dx.doi.org/10.1016/j.envsoft.2007.02.004.

[13] D. Garlan, Software engineering in an uncertain world. in: Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research—FoSER’10, 2010, p. 125, http://dx.doi.org/10.1145/1882362.1882389.

[14] N.Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H.A. Miiller,
M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Springer, Berlin, Heidelberg, 2013,
pp- 214-238. Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9.

[15] AJ. Ramirez, A.C. Jensen, B.H.C. Cheng, A taxonomy of uncertainty for dynamically adaptive systems.
in: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012,
http://dx.doi.org/10.1109/SEAMS.2012.6224396.

[16] B.Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering,
(2007). Retrieved from, http://www.citeulike.org/group/14013/article/7874938.

[17] J.O. Kephart, D.M. Chess, The vision of autonomic computing, J. Chem. Theory Comput. 36 (1) (2003)
41-50, http://dx.doi.org/10.1109/MC.2003.1160055.

[18] M.S. Ali, M. Ali Babar, L. Chen, K.-J. Stol, A systematic review of comparative evidence of aspect-oriented
programming, Inf. Softw. Technol. 52 (9) (2010) 871-887. Retrieved from, http://www.sciencedirect.com/
science/article/pii/S0950584910000819.

[19] H. Zhang, M. Ali Babar, On Searching Relevant Studies in Software Engineering, British Informatics
Society, Keele, 2010. Retrieved from, http://ulir.ul.ie/handle/10344/730.

[20] T. Dyba, T. Dingseyr, Empirical studies of agile software development: a systematic review. Inf. Softw.
Technol. 50 (9—-10) (2008) 833-859, http://dx.doi.org/10.1016/j.infsof.2008.01.006.

http://dx.doi.org/10.1109/ICSE.1998.671114
http://dx.doi.org/10.1109/ICSE.1998.671114
http://dx.doi.org/10.1145/1137677.1137679
http://dx.doi.org/10.1145/2168260.2168268
http://dx.doi.org/10.1145/2168260.2168268
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0035
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0055
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.1145/1882362.1882389
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1109/SEAMS.2012.6224396
http://www.citeulike.org/group/14013/article/7874938
http://dx.doi.org/10.1109/MC.2003.1160055
http://www.sciencedirect.com/science/article/pii/S0950584910000819
http://www.sciencedirect.com/science/article/pii/S0950584910000819
http://ulir.ul.ie/handle/10344/730
http://dx.doi.org/10.1016/j.infsof.2008.01.006

REFERENCES 77

[21] C. Ghezzi, A.M. Sharifloo, Dealing with non-functional requirements for adaptive systems via dynamic soft-
ware product-lines, in: R. de Lemos, H. Giese, H.A. Miiller, M. Shaw (Eds.), Software Engineering for Self-
Adaptive Systems II, Springer, Berlin, Heidelberg, 2013, pp. 191-213. Retrieved from, http://link.springer.
com/chapter/10.1007/978-3-642-35813-5_8.

[22] L. Cheung, L. Golubchik, N. Medvidovic, G. Sukhatme, Identifying and addressing uncertainty in architec-
ture-level software reliability modeling, in: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International (2007) 1-6. IEEE.

[23] T. Vogel, H. Giese, Adaptation and abstract runtime models, in: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems—SEAMS ’10, ACM Press, New York, NY,
2010, pp. 3948, http://dx.doi.org/10.1145/1808984.1808989.

[24] F. Chauvel, N. Ferry, B. Morin, N. Bencomo, R.B. France, S. Gotz, B. Rumpe (Eds.), Models@Runtime to
Support the Iterative and Continuous Design of Autonomic Reasonersvol. 1079, 2013, pp. 26-38. Retrieved
from, http://ceur-ws.org/Vol-1079/mrt13_submission_20.pdf.

[25] D.Weyns, S. Malek, J. Andersson, On decentralized self-adaptation: lessons from the trenches and challenges
for the future, in: Proceedings—International Conference on Software Engineering, Department of Computer
Science, Katholieke Universiteit Leuven, Leuven, 2010, pp. 84-93. Retrieved from, http://www.scopus.com/
inward/record.url?eid=2-s2.0- 77954577834 &partner]D=40&md5=1f389¢0a603761b96aa46db6bf06e287.

[26] N.M. Villegas, G. Tamura, H.A. Miiller, L. Duchien, R. Casallas, DYNAMICO: a reference model for gov-
erning control objectives and context relevance in self-adaptive software systems, in: R. de Lemos, H. Giese,
H.A. Miiller, M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Springer, Berlin,
Heidelberg, 2013, pp. 265-293. Retrieved from, http://link.springer.com/chapter/10.1007/978-3-642-
35813-5_11.

[27] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing Architectural Run-Time Failures, (2013).
pp. 103-112. Retrieved from, http://dl.acm.org/citation.cfm?id=2487336.2487354.

[28] P. Zoghi, M. Shtern, M. Litoiu, Designing search based adaptive systems: a quantitative approach.
in: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ACM, 2014, pp. 7-16, http://dx.doi.org/10.1145/2593929.2593935.

[29] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-adaptive software, in: Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineer-
ing, ACM, 2011, pp. 234-244, http://dx.doi.org/10.1145/2025113.2025147.

[30] G. Tamura, N.M. Villegas, H.A. Muller, L. Duchien, L. Seinturier, Improving context-awareness in self-
adaptation using the DYNAMICO reference model. in: ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), 2013. http://dx.doi.org/10.1109/SEAMS.2013.6595502.

[31] C. Ghezzi, L.S. Pinto, P. Spoletini, G. Tamburrelli, Managing non-functional uncertainty via model-driven
adaptivity. in: 35th International Conference on Software Engineering (ICSE), 2013. http://dx.doi.org/
10.1109/ICSE.2013.6606549.

[32] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic, G. Sukhatme, B. Petrus, Architecture-driven
self- adaptation and self-management in robotics systems. in: ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 09, 2009. http://dx.doi.org/10.1109/
SEAMS.2009.5069083.

[33] S. Hallsteinsen, E. Stav, J. Floch, Self-adaptation for everyday systems. in: Proceedings of the 1st ACM
SIGSOFT Workshop on Self-Managed Systems, ACM, 2004, pp. 69-74, http://dx.doi.org/10.1145/
1075405.1075419.

[34] J. Kramer, J. Magee, Self-managed systems: an architectural challenge. In Future of Software Engineering,
(2007). FOSE’07, pp. 259-268. IEEE.

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf0110
http://dx.doi.org/10.1145/1808984.1808989
http://ceur-ws.org/Vol-1079/mrt13_submission_20.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://www.scopus.com/inward/record.url?eid=2-s2.0-%2077954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://dl.acm.org/citation.cfm?id=2487336.2487354
http://dl.acm.org/citation.cfm?id=2487336.2487354
http://dx.doi.org/10.1145/2593929.2593935
http://dx.doi.org/10.1145/2025113.2025147
http://dx.doi.org/10.1109/SEAMS.2013.6595502
http://dx.doi.org/10.1109/ICSE.2013.6606549
http://dx.doi.org/10.1109/ICSE.2013.6606549
http://dx.doi.org/10.1109/SEAMS.2009.5069083
http://dx.doi.org/10.1109/SEAMS.2009.5069083
http://dx.doi.org/10.1145/1075405.1075419
http://dx.doi.org/10.1145/1075405.1075419
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf9000
http://refhub.elsevier.com/B978-0-12-802855-1.00003-4/rf9000

CHAPTER

AN ARCHITECTURE VIEWPOINT
FOR MODELING DYNAMICALLY
CONFIGURABLE SOFTWARE
SYSTEMS

B. Tekinerdogan*, H. Sozer’
Wageningen University, Wageningen, The Netherlands" Ozyegin University, Istanbul, Turkey*

INTRODUCTION

Dynamic system configurability defines the ability to modify and extend a system while it is running.
This is an important requirement for an increasing number of software-intensive systems in which it is
not possible or economically feasible to stop the complete system and modify it to meet new require-
ments. Dynamic configurability is not only important during operation of the system but can also be
useful during development time. In fact, many systems are now being developed in an incremental
manner in which dynamic configurability is also useful during the incremental integration of the com-
ponents in the system.

Dynamic software architectures support reconfigurations of their structures during execution and as
such aid system evolution. A current practice to model software architectures is usually based on ar-
chitecture views to separate the concerns and as such support the modeling, understanding, commu-
nication, and analysis of the software architecture for different stakeholders. An architecture view
is a representation of a set of system elements and relations associated with them to support a particular
concern [14]. Architectural views conform to viewpoints that represent the conventions for construct-
ing and using a view. Given the complexity of applications where necessary new viewpoints have been
defined to address new concerns. In this paper we focus on dynamic configurability in software archi-
tecture. Considering the existing viewpoint approaches we can observe that the modeling of dynamic
configurability is not explicitly considered. This seems to be the case for quality concerns in general.
The ISO/IEC 42010 [2] standard intentionally does not define particular viewpoints to address the dif-
ferent concerns. In the Views and Beyond (V&B) approach, quality concerns appear to be implicit in
the different views and specific viewpoints have to be introduced to represent quality concerns [3—6].
Software architecture analysis approaches have been introduced [7] to analyze the software architec-
ture and provide guidelines for adapting it with respect to the quality concern. However, the difficulty
here is that these approaches usually apply a separate quality model, such as Markov models, queuing
networks or process algebra, to analyze the quality properties. Although these models represent precise

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00004-6 79
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00004-6

80 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

calculations they do not depict the decomposition of the architecture and an additional translation from
the evaluation of the quality model needs to be performed [8].

To represent runtime adaptability concerns more explicitly, preferably an explicit dedicated ar-
chitectural view is required to model the decomposition of the architecture based on the runtime
adaptability concern. In this context, we introduce the runtime adaptability viewpoint that can be
used for modeling dynamically configurable software architectures. The viewpoint has been de-
fined after a domain analysis to both dynamic configurability and software architecture viewpoint
modeling. The viewpoint is based on a metamodel that defines the underlying semantics. Further
we provide the necessary notation for supporting software architects in modeling dynamic config-
urability concerns of software architectures. We illustrate the viewpoint for a demand-driven sup-
ply chain management (DDSCM) system in which the dynamic configurability plays an important
aspect.

The remainder of this paper is organized as follows. Section 4.2 provides background information
regarding architecture viewpoints. Section 4.3 introduces the case study as a motivating example where
runtime adaptability becomes a relevant concern. Section 4.4 presents the related concepts and a meta-
model for runtime adaptability viewpoint. Section 4.5 introduces a concrete notation and a method for
applying this viewpoint. Section 4.6 describes the application of the viewpoint for the case study.
Section 4.7 presents the related work and finally Section 4.8 provides the conclusions.

ARCHITECTURE VIEWPOINTS

Software architecture is an abstract representation that serves various purposes including the under-
standing of the system, communication among the stakeholders, guideline for supporting the life cycle
activities, support for organizational concerns such as work allocation, budget planning and develop-
ment structure of the software development project [9].

In practice, software architecture is modeled and documented using architecture views, which are
basically representations of a system for particular concerns. In the literature, initially a fixed set of
viewpoints have been proposed to document the architecture [10—13]. Because of the different con-
cerns that need to be addressed for different systems, the current trend recognizes that the set of views
should not be fixed but multiple viewpoints might be introduced instead. The ISO/IEC 42010 stan-
dard [2] indicates in an abstract sense that an architecture description consists of a set of views, each
of which conforms to a viewpoint realizing the various concerns of the stakeholders. The V&B ap-
proach as proposed by Clements et al. is another multiview approach [14] that proposes the notion of
architectural style similar to the notion of architectural viewpoint. For addressing the general con-
cerns, we shall use the viewpoints in the V&B approach [14]. In this approach, typically the notions
of view category and style are used to define viewpoints. Hereby, three different view categories are
identified:

* Module view category that is used for documenting a system’s principal units of implementation

» Component and connector (C&C) category that is used for documenting the system’s units of
execution

» Deployment view category that is used to document the relationships between a system’s software
and its development and execution environments

4.3 CASE STUDY: DDSCM SYSTEMS 81

Specializes
View category 4—1 Style

A A

Example of

‘ Instantiates

Module C&C Allocation
view category view category view category

View

FIG. 4.1
Relations among view category, style, and view in the V&B approach.

Although the V&B approach has defined a predefined set of architectural styles it is also possible to
define new styles for particular concerns. Views are instantiations of styles. The relations between view
category, style and view is depicted in Fig. 4.1.

To define new viewpoints, the guidelines and templates of the recommended standard for architec-
ture description can be adopted [2].

CASE STUDY: DDSCM SYSTEMS

A supply chain is defined as a system consisting of organizations, people, activities, information, and
resources involved in moving a product or service from supplier to customer. Supply chain activities
transform natural resources, raw materials, and components into a finished product that is delivered to
the end customer [15]. Due to the increased global competition many companies are forced to improve
their efficiency of the supply chain using systematic supply chain management (SCM) approaches. A
conceptual model for SCM is shown in Fig. 4.2.

The underlying idea for SCM is based on the observation that practically every product that reaches
an end user represents the cumulative effort of multiple organizations defining the supply chain. SCM,
as such, is the active management of supply chain activities to maximize customer value and achieve a
sustainable competitive advantage [15]. SCM activities typically include the management of the flow
of materials, information, and finances in a process from supplier to manufacturer to wholesaler to re-
tailer to consumer. Further, SCM involves coordinating and integrating these flows both within and
among companies. To provide an effective SCM it is important to develop the appropriate software
architecture for it [16—19].

In SCM, we can identify different entities that require input, process this input, and deliver this to
the next entity. The overall supply chain network consists of organizations moving a product or service
from supplier to customer. Currently, an increasing number of organizations focus on so-called
DDSCMs [17]. The main motivation for DDSCM is to manage and optimize the material and infor-
mation flow that propagates up the supply chain from the source of demand to the suppliers. Usually
customer demand is rarely stable and likewise businesses must forecast demand to properly position
inventory and other resources.

82 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Suppliers Manufacturers Distribution Centers Warehouses Customers

FIG. 4.2
A conceptual model of supply chain management.

To meet the requirements for DDSCMs, the corresponding software system and likewise the archi-
tecture must be dynamically adaptable. We can identify the following important components in a SCM
system:

s Enterprise resource planning (ERP) systems—providing services for purchase management,
production management, and sales management, in particular for manufacturers and trading

companies

» Warehouse management systems (WMS)—providing services for logistics, in particular for
wholesalers

e Transport management systems (TMS)—providing services for transport booking, planning, and
monitoring

The deployment architecture for a general SCM system is presented in Fig. 4.3. The architecture fol-
lows the guidelines of the so-called supply-chain operations reference model which is a process ref-
erence model for SCM [15]. The architecture consists of five different node types: supplier,
manufacturer, distributor, warehouse, and retailer. Note that each node has three similar components
including report engine, message conversion engine, and data communication engine. Further each
node has also its’ specific type of components. Finally, a manufacturer node is connected to an
ERP system, a distributor to a TMS, and a warehouse to a WMS. To model DDSCMs, the components
and nodes need to be dynamically configurable. This means that for example, a supplier node can be
replaced by another supplied node, or a copy of the report engine can be transferred to the other nodes
etc. In the following section, we introduce a metamodel for runtime adaptability viewpoint to capture
such dynamic configuration capabilities.

4.4 METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT 83

Supplier Retailer
fa] fal g a
Purchase Supplier Sales Customer
management services management service
] Message © a Message &
Report quet Report query =
pgﬂ i(:\e % conversion B conversion
. engine engine
[3] o
Data communication Data communication
engine engine

. -

Manufacturer Distributor Warehouse
o a Distribution” G] | 5] G
Production Resource istribution | |\ o nd trace nventory | opock visibility
management availability management management

Message &
conversion conversion conversion
engine engine engine

a a a
Data communication Data communication Data communication
engine engine engine

ERP T™S WMS

Message & Message &

a
Report query
engine

a
Report query
engine

a
Report query
engine

FIG. 4.3

General deployment view for supply chain management system.

METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT

In Fig. 4.4 we show the conceptual model for architectural view modeling. In fact, the conceptual model
is based on the ISO/IEC recommended standard for architectural description [2] but it enhances the stan-
dard to explicitly depict quality concerns and defines their relation to architectural views. The left part of
the figure shows basically the definition of the architectural drivers. A system has one or more stake-
holders who have interest in the system with respect to one or more concerns. Concerns can be functional
or quality related. The right part of the figure focuses on the architectural views for the different concerns.
Each system has an architecture, which is described by an architectural description. The architectural
description consists of a set of views that correspond to their viewpoints. Viewpoints aim to address
the stakeholder’s concerns. Functional concerns will define the dominant decomposition along architec-
tural units that are mainly functional in nature. On the other hand, quality concerns will define the dom-
inant decomposition of the architecture along architectural units that explicitly represent quality
concerns. Runtime adaptability is a specific quality concern that is addressed by runtime adaptability
view. Run-adaptability is not directly considered in the other viewpoints.

To define the foundation for the runtime adaptability viewpoint we have performed a domain anal-
ysis regarding architectural frameworks introduced for dynamic configurability. These frameworks
employ different adaptation mechanisms. We have reviewed these mechanisms and we focus on

84 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

System
has has
Architecture
y1.r described by
Stakeholder \
selects Architectural
has description
1 - organized by
Y 1" addressed has 1.* 1.7
by . .]
Concerns » Viewpoint | . i forms View
% A
Functional Quality Runtime
concern conchern adaptability view
Runtime addressed by
adaptability

FIG. 4.4

Conceptual model for architectural views and the relation of runtime adaptability.

Based on IEEE Standard: ISO/IEC 42010:2007 Recommended practice for architectural description of software-intensive systems (ISO/
IEC 42010), July 2007.

the adaptation capabilities that they can provide. For providing adaptability, one also needs to decide on
the type of adaptation mechanism. However, we decided not to integrate this in the viewpoint because
we aim to provide a generic viewpoint in which we address only what can be adapted. We did not wish
to fix the mechanisms. The viewpoint is agnostic to the adaptation mechanisms and as such could be
used together with existing adaptation frameworks. However, our approach allows the extension of the

viewpoint to include also the mechanisms for adaptation.

Existing frameworks assume either a component-based architecture [20-25] or service-oriented
architecture (SOA) [26]. So, reconfigured architectural elements are components, connectors, or ser-
vices. We have observed that the majority of the existing approaches mainly focus on the C&C view
to depict the runtime structure and reason about dynamic adaptation [20-23,25,27]. Hence, the pro-
posed viewpoint mainly relies on the C&C viewpoint as defined by the V&B approach [14]. The
following figure depicts a metamodel of the viewpoint as described in this approach (Fig. 4.5).

In the C&C viewpoint, there are two basic types of elements: component types that represent prin-
cipal processing units and data stores, and connector types that represent interaction mechanisms. Each
of these elements has two properties: a name that suggests its functionality, and a type that determines
the general functionality and constraints for the element. Every component has one or more ports.
These ports have names that suggest the corresponding interface of the component. On the other hand,
every connector has two or more roles. These roles have names that suggest the interacting parties.

There is an attachment relation defined between a port and one or more roles.

4.4 METAMODEL FOR RUNTIME ADAPTABILITY VIEWPOINT 85

Component has Port
name 1 1..* | name
type
1
attachment
1.*%
Connector has Role
name 1 2..* [name
type

FIG. 4.5
A metamodel of the C&C viewpoint as described by V&B approach [14].

As stated in the V&B approach many C&C styles allow C&Cs to be created or destroyed as the
system is running. For example, in client-server based systems new server instances might be created
as the number of client requests increases. In a peer-to-peer system, new components may dynamically
join or leave the peer-to-peer network. In principle, any C&C style supports the dynamic creation and
destruction of elements.

In addition to the C&C views, allocation views [14] are also highly relevant for runtime adaptabil-
ity. These views document a mapping between software elements and nonsoftware elements in the con-
text of the system [14]. In particular, deployment views constitute a type of allocation view, which
describes a mapping between software elements and hardware elements in the computing platform.
These views conform to the deployment style and they are relevant for dynamic reconfiguration be-
cause the allocation of software elements can be dynamic. Three types of dynamic relations are defined
for deployment views in the V&B approach [14]: (1) migrates-to: a software element can move from
one processor to another processor, (2) copy-migrates-to: a software element can be copied to another
processor and different copies can execute on different processors at the same time, (3) execution-
migrates-to: a software element can be copied to another processor, where only one of the copies
can be executed at a time. The corresponding metamodel is depicted in Fig. 4.6. Migration relations
are mainly triggered by changing application profiles and operational context for supporting quality
concerns such as performance, availability, reliability, and security [14]. For example, performance
improvements can be achieved by deploying some components together when the frequency of inter-
communication is increased. Some components can be migrated for isolating them from the other com-
ponents to improve reliability [4] or security. Resource utilization and hardware faults can also trigger a
migration.

To support the viewpoint for runtime adaptability and dynamic configurability we have integrated
the metamodels of Figs. 4.5 and 4.6 as shown in Fig. 4.7.

Dynamic configurability is facilitated in three ways (1) adaptation of elements by change of mode,
state, parameters [20,28,29], (2) replacement of elements [22,23,26] leading to a structural change
[28,29], (3) migration of elements to different nodes. In general, formal specifications for dynamic
software architectures utilize the second one; they define reconfigurations as a series of C&C

86 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Node Software element
name 15" 1 | name
type deployed | tYPe
2..% 2.%
1 connects 1 | maps
Communication path Migrates relation
type trigger
Migrates-to Copy-migrates-to Exec-migrates-to

FIG. 4.6
A metamodel of the deployment style as described by V&B approach.

addition/removal operations [30]. To differentiate between elements that can be subject to configur-
ability, we have introduced adaptable components and adaptable connectors. Such a distinction is also
being made in existing frameworks [22]. In some of the existing approaches, communication is as-
sumed to be asynchronous and architectural elements are assumed to be stateless and independent
[26]. However, in some other approaches, architectural elements can be interdependent and they
can be stateful [22,23]. This makes a difference because adaptable components that are stateful provide
means for loading and storing state information [22,25]. In principle, connectors can also involve rich
semantics [14] just like components. For this reason, we also distinguished between stateful and state-
less connectors in our viewpoint as depicted in the metamodel.

RUNTIME ADAPTABILITY VIEWPOINT

Once we have identified the important concepts regarding runtime adaptability and defined the meta-
model we can define the corresponding viewpoint. Defining a new architectural viewpoint implies
writing a viewpoint guide. This is similar to the notion of style guide as defined in Ref. [14]. The view-
point guide includes the vocabulary of the architectural element and relation types, and describes the
rules for how that vocabulary can be used. The adaptability viewpoint guide that we have defined is
shown in Table 4.1. Hereby, we focus on capturing the adaptability capabilities of the managed system
[31], rather than the adaptation mechanism involved [32]. The viewpoint guide for dynamic configur-
ability is largely the same as for the viewpoints that address functional concerns. The important dif-
ference here is that the architectural elements now are used to explicitly represent dynamic

4.5 RUNTIME ADAPTABILITY VIEWPOINT 87

replaces

E :
1 Component Port

has
name 1 1.*|name
type
7 1
Adaptable component
replaces
setMode()
Node Software element
name 1.* 1 |name Ir attachment
type type N stateful t
1 deployed eful componen!
setMode() s
2.% 2.% ToadStatel]
1 | connects 1| maps storeState
Communication path Migrates relation
type trigger replaces
1.
1 Connector has Role
name 1 2.*[name
type
Migrates-to Copy-migrates-to Exec-migrates-to ?
Adaptable connector

setMode()

i

Stateful connector

loadState()
storeState()

FIG. 4.7
A metamodel of the viewpoint for dynamic configurability.

configurability properties in the software architecture. These properties are aligned with the introduced
metamodel.

Note that the viewpoint provides two complementary ways in terms of notation. The first option is
to use visual representations of different element types. These representations are created by minor
alterations (like a stereotype definition) of the commonly used representations [14].

The second option is to represent relations by mapping the involved elements with each other in a
table, which provides another overview of these relations. There are three such tables to represent (1)
relations among C&Cs, (2) relations between C&Cs and nodes, and (3) relations among nodes.

The first table includes the set of C&Cs both in the rows and the columns. The cells on the diagonal
are used for marking possible adaptations of the corresponding C&C with symbol A. If a C&C can be
replaced by another C&C, the corresponding cell is marked with the symbol R. If there is also a state
transfer during replacement, the symbol RS is used instead. A C&C can be replaced with a replica in a
different state. In this case, again the RS symbol is marked in the corresponding cell on the diagonal.

88 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Viewpoint Element

Name

Element types

Relation types

Properties of elements

Properties of relations

Topology constraints

Notation

Table 4.1 Runtime Adaptability Viewpoint

Description

Runtime adaptability viewpoint:
C&C viewpoint U deployment style

* Adaptable component (AC): represents a component that can be adapted
Stateful component (SC): represents an AC that keeps state information to be
considered when replaced by another component

Adaptable connector (ACN): represents a connector that can be adapted
Stateful connector (SCN): represents an ACN that keeps state information

to be considered when replaced by another connector

Adaptable node (AN): represents a processing element that can be tuned

at runtime

The other types as they are defined for the C&C viewpoint and deployment
style

Replaces relation as defined by the metamodel

Migrates relations as defined by the metamodel

The other types as they are defined for the C&C viewpoint and deployment
style

Mode: the active mode among the possible set of modes that can be activated by runtime
adaptation

Mode: the active mode among the possible set of modes that can be activated by runtime
adaptation

Same as the C&C viewpoint and deployment style

<<AC>>

<<SC>>

Node
<<AN>>

Communication path << type>>

Deployed to

Migrates-to
Copy-migrates-to~ ---------------- >
Exec-migrates-to

Replaces [state]

Continued

4.5 RUNTIME ADAPTABILITY VIEWPOINT 89

Table 4.1 Runtime Adaptability Viewpoint—cont’d
Viewpoint Element Description
Mapping Type Cell
Table Marking
C&C to Adapted A
C&C Replaces R
Replaces /w State RS
C&C to Deployed-to D
Node Migrates-to M
Copy-migrates-to CM
Exec -migrates-to EM
Node to Adapted A
Node Replaces R
Relation to other views/ Same as the C&C viewpoint and deployment style
viewpoints

The second table includes the set of C&Cs in the rows and the set of nodes in the columns. Symbols
in the cells define where each C&C is initially deployed, and where it can be potentially migrated.
There is symbol for each migration type as defined by the metamodel.

The third table includes the set of nodes both in the rows and the columns. The cells on the diagonal
are used for marking possible adaptations of the corresponding node with symbol A. If a node can be
replaced by another node, then the corresponding cell is marked with the symbol R.

In the following subsection, we introduce a method for applying this viewpoint. Then, in the fol-
lowing section, we shall provide an example application of the viewpoint in the context of the SCM
case study.

METHOD FOR APPLYING THE ADAPTABILITY VIEWPOINT

So far, we have defined the runtime adaptability viewpoint that can be used to define runtime adapt-
ability views for particular applications. In this section we provide the method for applying the view-
point as shown in Fig. 4.8. The method starts with defining the C&C view as well as the deployment
view. Based on these provided two views, the nodes, the components, and the connectors will be an-
alyzed and their characteristics will be identified with respect to the requirements for runtime adapt-
ability. The characterization will be based on the possible properties as defined in the metamodel and
viewpoint. As such, components will be, for example, characterized as regular component, adaptable
component, or stateful component. After the characterization of the separate elements the relations will
be considered including the node-to-node, C&C-to-node, and C&C-to-C&C relations. These will be
again defined based on the relations defined in the viewpoint. Subsequently, the runtime adaptability
view will be defined that meets the characterization of the architectural elements and the identified
adaptability relations. The presented view is evaluated and if needed necessary iterations will be
carried out.

|
90 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Define C&C view

\J
Define deployment
view
N &

rd

components

Characterize Characterize
nodes connectors

l

[Characterize

Identif - '
entlty Identify C&C to Identify C&C to
node-to-node ’ i
7 node relations C&C relations
relations 9 -
4

Define the runtime
adaptability view

[requires
¢ AN enhancement]
[oK]
/X(\
FIG. 4.8

Method for applying runtime adaptability viewpoint

CASE STUDY—ADAPTABILITY VIEW OF THE SCM SOFTWARE

ARCHITECTURE
We have applied the runtime adaptability viewpoint for documenting possible runtime adaptations that
can take place in the SCM software architecture. Fig. 4.9 depicts some of these adaptations.

4.6 CASE STUDY—ADAPTABILITY VIEW OF THE SCM SYSTEM 91

AM: Alternative MD:.Main
manufacturer distributor
/I\ + state \\ TTM: {‘ TTM-S:
SE N © A Track < S. Track
: \ and trace and trace
<<SC>> %:‘ \\ manager manager
DS S
PM: Production \\ T ST R
manager \\ : ///7\\\ \\T/\\\\\\
\ —— I i\ ~Yy EED:
\ - ! Extended
MM: Main \ | AD:Asia I ED: Europe | &+ * Europe
\ . p | . N
manufacturer \| distributor | J, distributor A distributor
= \ N] //7 //
S \ N | 74 oz
e \ \ | ’ o
\\\\\ \\ | // s
e N4 s W: Warehouse
\ =~ |7 s
; RE: Report F-tr--—-- > <<AC>> F |
engine IM: Inventory
ERP manager

FIG. 4.9
Adaptability view for part of the SCM software architecture.

Hereby, eight nodes are shown. Two of them (MM and AM) are dedicated for manufacturing pro-
cess. Four of them (MD, AD, ED, EED) are dealing with distribution. One node (W) is used for storage,
and another one (ERP) is keeping the overall management system and related components. Different
types of runtime adaptability relations can be seen here. For instance, we can see that TTM-S compo-
nent can replace TTM component. Tracking and tracing functionalities can change depending on the
goods that are distributed in a SCM system. TTM provides only the basic functionalities. TTM-S is
used for sensitive products like food and medicine that has to be tracked with respect to many attributes
such as shelf life, temperature, etc.

It can be observed in the figure that the view quickly gets cluttered with many relations depicted to
represent different types of runtime adaptations. As a complementary notation, table-based views can
be used to capture runtime adaptability options for the overall SCM software architecture. This ap-
proach leads to more readable and scalable documentation for systems that involve a high number
of adaptation relations.

In the following, we document runtime adaptability for the same system with three tables that con-
form to the viewpoint notation listed in Table 4.1. Tables 4.2—4.4 list runtime adaptability relations
between C&Cs and nodes, among C&Cs, and among nodes, respectively.

Table 4.2 shows runtime adaptability relations among C&Cs. Here, we can see that IM is an adapt-
able component. TTM-S can replace TTM. We can also see that PM can be replaced with a replica of
itself in a different state.

Table 4.3 defines runtime adaptability relations between C&Cs and nodes. Hereby, C&Cs are listed
in the rows and nodes are listed in the columns. The cells marked with D show the initial deployment of
C&Cs: PM on MM, TTM and TTM-S on MD, IM on W, and RE on ERP. We see that PM can migrate to

92 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Table 4.2 Runtime Adaptability Relations Among C&Cs
C&C
C&C PM TTM TTM-S RE IM

PM RS
TT™M
TTM-S R
RE
M A

Table 4.3 Runtime Adaptability Relations Between C&Cs and Nodes

Node
C&C MM AM MD AD ED EED w ERP
PM D M
TTM D CM CM CM
TTM-S D CM CM CM
RE CM CM CM CM CM CM CM D
M D

Table 4.4 Runtime Adaptability Relations Among Nodes
Node
Node MM AM MD AD ED EED w ERP

MM
AM RS
MD
AD
ED

EED R

ERP

AM. On the other hand, a copy of RE can migrate to all the nodes except ERP. We also see that copies
of TTM and TTM-S can migrate to the nodes AD, ED, and EED.

Table 4.4 shows runtime adaptability relations among nodes. There are two such relations. First,
EED can replace ED. Second, AM can replace MM. State information must also be transferred for this
replacement.

We have adopted tables since the visual representation is less scalable. For large cases, the table
representations will also have limitations. For this, we might need additional tool support.

4.7 RELATED WORK 93

RELATED WORK

In this paper we have defined a viewpoint for modeling dynamically configurable software architec-
tures. The viewpoint has been defined based on a domain analysis of the existing runtime adaptability
mechanisms. The introduced abstractions can be extended if needed and more refined viewpoints can
be defined. However, it should be noted that an architectural view represents the gross level abstraction
of the system and likewise should preferably not include implementation details. In the following, pro-
vide areview of related studies in two different categories: (i) modeling of quality concerns in software
architecture including adaptability, and (ii) architectural modeling techniques and frameworks intro-
duced for supporting runtime adaptability.

QUALITY CONCERNS IN SOFTWARE ARCHITECTURE MODELING

Separating quality concerns at the architecture design modeling phases has been also addressed earlier
with the notion of so-called attribute-based architectural style (ABAS). ABAS refers to prepackaged
units of architectural design and analysis. The purpose of ABAS is to enhance precise reasoning about
architectural design which is achieved by explicitly associating a reasoning framework with an archi-
tectural style. The reasoning framework shows how to reason about the design decisions comprised by
the style. The reasoning frameworks are based on quality attribute-specific models, which exist in the
various quality attribute communities. ABASs are quality attribute specific and consider only one qual-
ity attribute at a time. Our work could be compared to the idea presented in ABAS, that is, define the
architectural model for particular quality concerns. The difference is that we focus on the notion of
architectural viewpoint. We do not provide a reasoning framework but this could be a complementary
and useful elaboration on our work as well as the other viewpoint approaches in general.

Aspect-oriented software development (AOSD) [1,33] promotes the separation of crosscutting con-
cerns principle [34-36] to increase modularity. Hereby, crosscutting concerns are separately repre-
sented as first-class abstractions (aspects) and woven into the base code. In our approach we have
applied the separation of concerns principle to separate the views for quality concerns. Similar to cross-
cutting concerns in AOSD, quality concerns seem to crosscut the elements in the functional views. By
separating these quality concerns and providing explicit abstractions in the viewpoints, we have sup-
ported an enhanced description of the architecture.

Architectural perspectives [37] are a collection of activities, tactics, and guidelines to modify a set
of existing views to document and analyze quality properties. Architectural perspectives as such are
basically guidelines that work on multiple views together. An analysis of the architectural perspectives
and our approach shows that the crosscutting nature of quality concerns can be both observed within an
architectural view and across architectural views. Both approaches focus on providing a solution to the
crosscutting problem. We have chosen for providing separate architectural viewpoints for quality con-
cerns. It might be interesting to look at integrating the guidelines provided by the architectural per-
spectives and the definition/usage of the viewpoints developed by our approach. In that sense the
approaches can also be considered as complimentary to each other.

Architectural tactics [38] aim at identifying architectural decisions related to a quality attribute re-
quirement and composing these into an architecture design. Defining explicit viewpoints for quality
concerns can help to model and reason about the application of architectural tactics.

94 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

Several software architecture analysis approaches have been introduced for addressing quality
properties. They usually perform either static analysis of formal architectural models or they apply
a set of scenario-based architecture analysis methods [7]. The goal of these approaches is to assess
whether or not a given architecture design satisfies desired concerns including quality requirements.
The main aim of the viewpoint definitions in our approach, on the other hand, is to communicate and
support the architectural design with respect to quality concerns. As such our work can directly support
the architectural analysis to select feasible design alternatives.

ARCHITECTURAL APPROACHES FOR RUNTIME ADAPTABILITY

Oreizy et al. [25] discuss the use of existing architectural styles to represent dynamically adaptable
software architectures. In particular, they describe how runtime changes can be facilitated by the
Weaves and C2 architectural styles. However, they do not propose a dedicated view for dynamic ad-
aptation. Many existing frameworks like PLASMA [21] and Rainbow [20] mainly focus on the C&C
view to depict the runtime structure and reason about dynamic adaptation. Contract-based adaptive
software architecture [22] is a framework that facilitates dynamic adaptation by dynamic recomposi-
tion of components. They define the adaptable class/component concept for replaceable components.
They also introduce a handle class/component that is inspired from the bridge pattern. This provides a
layer of transparency between the application code and the dynamic replacement process. It is assumed
that adaptable components provide a means for loading and storing state. They propose the specifica-
tion of adaptation policy of the application in a so-called application contract. However, they do not
also propose a model or view for the representation of the overall architecture.

Self-architecting software systems [26] is a framework for dynamic service-oriented systems. It is
based on functionally equivalent services, which can be replaced based on their desired properties, for
example, QoS levels. It employs basic elements of SOAs. The list of services is registered to a service
directory. These services are discovered and selected based on so-called service activity schemas that
express system requirements. They employ an extension of XADL and finite state models to represent
the software architecture. A software adaptation pattern is specified as a list of steps to be performed for
adaptation. However, they do not propose a view for explicitly representing the dynamic adaptation.
There is a coordinator component for each client. Communication is asynchronous. Services are state-
less and independent.

Rainbow [20] is a framework that supports architecture-based adaptation. It introduces a language
for specifying adaptation techniques as first-class adaptation concepts. The basic idea is that the ad-
aptation strategies depend on the architectural style of the target system. It augments the notion of style
with operators that define style-specific reconfiguration options.

The K-component model [23] was introduced to support dynamic adaptation. Dynamic reconfi-
guration of software architecture is modeled as graph transformations. These adaptation models are
specified as adaptation contracts, separate from the implementation. Types of supported dynamic
reconfigurations are limited to C&C replacement.

According to a survey on formal specification of dynamic software architectures [30], three ap-
proaches stand out: graph-based; process algebra; and logic-based description languages. These ap-
proaches provide a formal basis for the description of types of changes, rules for selection of
changes and their application. Four phases are identified for dynamic architectural changes: change
initiation, selection of architectural transformation; implementation of transformation; assessment

REFERENCES 95

of architecture after transformation. Basic changes are listed as C&C addition and removal. These basic
changes can be composed by sequencing, choice, and iteration.

Dynamic software product lines (DSPL) [39] extend conventional product line approaches to sup-
port runtime variability. Therefore, they are considered as a systematic approach for developing adap-
tive systems [39]. However, existing DSPL approaches mainly focus on extensions of feature models
and orthogonal variability diagrams [40] for modeling and documentation. Extensions of the architec-
tural models have not been considered for creating a dedicated view for runtime adaptability.

4.8 CONCLUSION

Dynamic software architectures support reconfigurations of their structures during execution and as
such aid system evolution useful during the incremental integration of the components in the system.
In this paper we have addressed the problem of dynamic configurability from the modeling perspective.
In this context we have proposed an architecture viewpoint for runtime adaptability. The viewpoint has
been defined based on a well-defined metamodel that includes the concepts related to component-based
runtime structure, architecture deployment, and runtime adaptability. Unlike existing general purpose
architecture viewpoints, the proposed viewpoint can support the architect in modeling the concerns for
runtime adaptability and as such support the communication among stakeholders and the analysis of the
architecture. We have illustrated the viewpoint for a DDSCM. In our future work, we shall investigate
the trade-off of runtime adaptability with time performance and scalability, and also study the integra-
tion of the various different viewpoints with the runtime adaptability viewpoint that we have proposed.

REFERENCES

[1] R.Chitchyan, A.Rashid, P. Sawyer, J. Bakker, M.P. Alarcon, A. Garcia, B. Tekinerdogan, S. Clarke, A. Jackson,
Survey of aspect-oriented analysis and design, in: R. Chitchyan, A. Rashid (Eds.), AOSD-Europe Project De-
liverable No. AOSD-Europe-ULANC-9, 2005.

[2] ISO/IEC 42010:2007 Recommended practice for architectural description of software-intensive systems
(ISO/IEC 42010), July 2007.

[3] H. Sozer, B. Tekinerdogan, Introducing recovery style for modeling and analyzing system recovery,
in: Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture, 2008, pp. 167-176.

[4] H. Sozer, B. Tekinerdogan, M. Aksit, FLORA: a framework for decomposing software architecture to intro-
duce local recovery, J. Softw. Pract. Exp. 39 (10) (2009) 869-889.

[5] B.Tekinerdogan, H. Sozer, Defining architectural viewpoints for quality concerns, in: Proceedings of the 5th
European Conference on Software Architecture, 2011, pp. 26-34.

[6] B. Tekinerdogan, H. Sozer, Variability viewpoint for introducing variability in software architecture view-
points, in: Proceedings of the 2nd International Workshop on Variability in Software Architecture, 2012,
pp. 163-166.

[7]1 L. Dobrica, E. Niemela, A survey on software architecture analysis methods, IEEE Trans. Softw. Eng. 28 (7)
(2002) 638-654.

[8] H. Boudali, H. Sozer, M. Stoelinga, Architectural availability analysis of software decomposition for local
recovery, in: Proceedings of the 3rd International Conference on Secure Software Integration and Reliability
Improvement, 2009, pp. 14-22.

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0040

96 CHAPTER 4 DYNAMIC CONFIGURATION VIEWPOINT

[9] B. Tekinerdogan, Software architecture, in: T. Gonzalez, J.L. Diaz-Herrera (Eds.), Computer Science Hand-
book, second ed., Computer Science and Software Engineering, vol. I, Taylor and Francis, London, 2014.

[10] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture, Addison-Wesley, New York, NJ, 2009.

[11] P. Kruchten, The 4+ 1 view model of architecture, IEEE Softw. 12 (6) (1995) 42-50.

[12] P. Kruchten, The Rational Unified Process: An Introduction, second ed., Addison-Wesley, Boston, MA,
2000.

[13] A.J. Lattanze, Architecting Software Intensive Systems: A Practitioner’s Guide, CRC Press, Taylor & Francis
Group, Boca Raton, FL, 2009.

[14] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Stafford,
Documenting Software Architectures: Views and Beyond, second ed., Addison-Wesley, Boston, 2010.

[15] R.G. Poluha, Application of the SCOR Model in Supply Chain Management, Cambria Press, Amherst, NY,
2007.

[16] B. Chaibdraa, J. Miiller, Multiagent Based Supply Chain Management, Springer, New York, NY, 2006.

[17] K. Kumar, Technology for supporting supply chain management: introduction, Commun. ACM 44 (6) (2001)
58-61.

[18] J.Li, L. Yuan, J. Guo, Business integrated architecture for dynamic supply chain management with web ser-
vice, in: Proceedings of the International Conference on New Trends in Information and Service Science,
2009, pp. 356-361.

[19] V. Misra, M.I. Khan, U.K. Singh, Supply chain management systems: architecture, design, vision, J. Strateg.
Innov. Sustain. 6 (4) (2010) 102—-108.

[20] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-
adaptation with reusable infrastructure, IEEE Comput. 37 (10) (2004) 46-54.

[21] H. Tajalli, J. Garcia, G. Edwards, N. Medvidovic, PLASMA: a plan-based layered architecture for software
model-driven adaptation, in: Proceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2010, pp. 467-476.

[22] A. Mukhija, M. Glinz, Runtime adaptation of applications through dynamic recomposition of components,
in: Proceedings of the 18th International Conference on Architecture of Computing Systems Conference on
Systems Aspects in Organic and Pervasive Computing, 2005, pp. 124-138.

[23] J. Dowling, V. Cahill, The K-component architecture meta-model for self-adaptive software, in: Proceedings
of the Third International Conference on Metalevel Architectures and Separation of Crosscutting Concerns,
2001, pp. 81-88.

[24] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: Proceedings of the Future of Soft-
ware Engineering, 2007, pp. 259-268.

[25] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst.
14 (3) (1999) 54-62.

[26] D. Menascé, H. Gomaa, S. Malek, J. Sousa, SASSY: a framework for self-architecting service-oriented sys-
tems, IEEE Softw. 28 (6) (2011) 78-85.

[27] D. Garlan, J.M. Barnes, B.R. Schmerl, O. Celiku, Evolution styles: foundations and tool support for software
architecture evolution, in: Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture
(WICSA’09), 2009, pp. 131-140.

[28] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. Cheng, Composing adaptive software, IEEE Comput.
37 (7) (2004) 56-64.

[29] N.M. Villegas, H.A. Miiller, G. Tamura, L. Duchien, R. Casallas, A framework for evaluating quality-driven
self-adaptive software systems, in: Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2011, pp. 80-89.

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0145

REFERENCES 97

[30] J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger, A survey of self-management in dynamic software
architecture specifications, in: Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems,
2004, pp. 28-33.

[31] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41-50.

[32] S. Kell, A survey of practical software adaptation techniques, J. Univers. Comput. Sci. 14 (13) (2008)
2110-2157.

[33] T. Elrad, R. Fillman, A. Bader, Aspect-oriented programming, Commun. ACM 44 (10) (2001) 29-32.

[34] E.W. Dijkstra, On the role of scientific thought, in: E.W. Dijkstra (Ed.), Selected Writings on Computing: A
Personal Perspective, Springer-Verlag, New York, NY, 1982, pp. 60—66.

[35] J. Bakker, B. Tekinerdogan, M. Aksit, Characterization of early aspects approaches, in: Workshop on Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, Held in Conjunction With
AOSD Conference, 2005.

[36] M. Aksit, B. Tekinerdogan, L. Bergmans, The six concerns for separation of concerns, in: Proceedings of
Workshop on Advanced Separation of Concerns, European Conference on Object-Oriented Programming,
Budapest, Hungary, 2003.

[37] N.Rozanski, E. Woods, Software Systems Architecture—Working With Stakeholders Using Viewpoints and
Perspectives, Addison-Wesley, Boston, 2005.

[38] F. Bachmann, L. Bass, M. Klein, Architectural tactics: a step toward methodical architectural design, Tech-
nical report CMU/SEI-2003-TR-004, Carnegie Mellon University, Pittsburgh, PA, 2003.

[39] M. Hinchey, S. Park, K. Schmid, Building dynamic software product lines, IEEE Comput. 45 (10) (2012)
22-26.

[40] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortes, M. Hinchey, An overview of dynamic software product line
architectures and techniques: observations from research and industry, J. Syst. Softw. 91 (2014) 3-23.

[41] M. Klein, R. Kazman, L. Bass, S.J. Carriere, M. Barbacci, H. Lipson, Attribute-based architectural styles,
in: Proceedings of the First Working IFIP Conference on Software Architecture, San Antonio, TX, February,
1999.

http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00004-6/rf0205

CHAPTER

ADAPTIVE SECURITY FOR
SOFTWARE SYSTEMS

M. Abdelrazek, J. Grundy, A. Ibrahim
Deakin University, Melbourne, VIC, Australia

INTRODUCTION

Enterprise security objectives, reported risks and threats, and vulnerabilities are the main sources of soft-
ware security requirements. During the software development lifecycle, software vendors iteratively
refine these high-level security needs into software security requirements and mechanisms to be used.
Many software security engineering efforts [1] have been developed to help software vendors in captur-
ing, modeling, refining, and engineering these security requirements into their software systems at design
time or ultimately at deployment time. These design-time security engineering efforts are very important
not only in engineering users’ security requirements into software, but also in engineering secure sys-
tems—that is, taking into consideration secure software development best practices in architecting, de-
signing, coding, and testing the underling software.

However, security has never been a one-time process. Enterprise security objectives, risks and threats
(e.g., execute arbitrary scripts and breach confidential data, elevate malicious user privileges, take the
system down), and vulnerabilities change over time due to new business goals, changes in software op-
erational IT environment (e.g., new deployment or operational environment—Cloud/SOA/etc.), and the
continuously changing threat landscape. This usually requires changing software security capabilities to
meet these new requirements. In addition, mitigating new reported vulnerabilities is usually done man-
ually, and sometimes by modifying application source code and deploying new patches. These modifi-
cations are usually translated into new software change requests sent to software vendors to effect these
new requirements. However, this usually takes a long time to fix [2]. As shown in Fig. 5.1, time greatly
lags between vulnerability detection and patching. This means that a software service remains vulnerable
to security breaches exploiting such vulnerabilities. The possibility of vulnerability exploitation in-
creases dramatically in cloud computing, given the public accessibility of the cloud services and the shar-
ing of services with multiple tenants. Thus, in such deployment models there is an increasing need for an
online, automated vulnerability patching approach that can stop such vulnerabilities once reported.

In this chapter, we introduce a new adaptive security engineering approach meant to address the
following key challenges:

1. What are the key security aspects we should capture?
2. How can we model such security requirements taking into consideration that these requirements
will change overtime?

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00005-8 99
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00005-8

100 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

Avg time (days)

Improper authorization | 358

Improper authentication I 160
CSRF mmm 17
SQLI I 138
XSS I 92

= Avg time (days)

0 50 100 150 200
FIG. 5.1
Average time to fix security vulnerabilities (in days) [2].

3. How can we detect new security vulnerabilities in a running system?
4. How can we automate the realization/enforcement of the new security requirements and virtual
patching of reported vulnerabilities at runtime?

Our work is based on externalizing the security engineering practices so that we can update software
security capabilities at runtime, on the fly, to realize new requirements, mitigate new reported vulner-
abilities, or automated adaptation actions. All the security requirements modeling and refinement
activities are done externally, and are easy to change at runtime.

MOTIVATION

Consider SwinSoft, an imaginary software company building a large web-based enterprise resources
planning (ERP) system, called “Galactic.” Galactic provides customer management, order manage-
ment, and employee management modules. Please see Fig. 5.9 for a detailed description model of
Galactic including features, architecture, classes, and deployment details. SwinSoft targets different
markets in different countries for Galactic. However, such markets, domains and likely customers have
different regulations and information security standards that must be satisfied. Galactic must integrate
with diverse customers’ existing security solutions and other application security. Moreover, SwinSoft
has found that customers’ security requirements that Galactic must meet may change dramatically
over time.

A customer, Swinburne University now wants to purchase a new ERP solution in order to improve
its internal enterprise management processes. Swinburne has special security requirements because it is
ISO27001 certified. Its enterprise security architects conduct periodic risk assessment that may require
reconfiguring the deployed applications’ security to block newly discovered threats. Swinburne also
wants to have its ERP system security flexible enough as it is planning to integrate its new ERP system
with its partners. This implies that the Galactic application’s security will change over time after its
deployment.

At the same time, another potential SwinSoft customer, SwinMarket, a big brand supermarket
chain, has decided to purchase Galactic. SwinMarket also has a need for highly customizable security
options on different system features that Galactic must satisfy. SwinMarket expects security solutions
deployed in its application operational environment to change over time. Galactic must be able to be

5.3 SECURITY ENGINEERING STATE-OF-THE-ART 101

updated quickly to adjust to these as well as any emergent security threats. A delay in patching newly
discovered vulnerabilities means a loss of money.

An analysis of this scenario identifies many challenges including: security requirements differ from
one customer to another; each customer’s security requirements may change over time based on current
operational environment security and business objectives; Galactic system security must be integrated
with customers’ deployed security controls in order to achieve coherent security operational environ-
ment; and new security vulnerabilities may be discovered in the Galactic system at any time. Using
traditional security engineering techniques would require SwinSoft to conduct a lot of system main-
tenance iterations to deliver system patches that block vulnerabilities and adapt the system to every new
customer needs.

A better security engineering approach that addresses these challenges should: enable each cus-
tomer to specify and enforce their security requirements based on their current security needs; security
should be applied to any arbitrary system component/entity; no predefined/hardcoded secure points or
capabilities, usually built at design time; security specification should be supported at different levels
of abstraction based on software customers’ experience, scale, and engineers’ capabilities. Integration
of security controls with system entities should be supported at different levels of abstraction, from the
system as one unit to a specific system method. The security engineering approach should ease the
integration with third-party security controls. System and security specifications should be reconfigur-
able at runtime.

SECURITY ENGINEERING STATE-OF-THE-ART

Existing security engineering efforts focus on capturing and enforcing security requirements at design
time, security retrofitting (maintenance), and adaptive security engineering. On the other hand, most
industrial efforts focus on delivering security platforms to help software developers in implementing
their security requirements using readymade standard security algorithms and mechanisms. Some
of the key limitations we found in these efforts include: (i) these efforts focus mainly on design-time
security engineering—that is, how to capture and enforce security requirements during software
development phase; (ii) limited support to dynamic and adaptive security and require design-time
preparation. Fabian et al. [1] introduce a detailed survey of the existing security engineering efforts
but did not highlight limitations of these approaches. We discuss key efforts in these areas.

DESIGN-TIME SECURITY ENGINEERING

Software security engineering aims to develop secure systems that remain dependable in the face of
attacks [3]. Security engineering activities include: identifying security objectives that systems should
satisfy; identifying security risks that threaten system operation; elicitation of security requirements
that should be enforced on the system to achieve the expected security level; developing security ar-
chitectures and designs that deliver the security requirements and integrates with the operational
environment; and developing, deploying, and enforcing the developed or purchased security controls.
Below, we summarize the key efforts in the security engineering area.

102 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

5.3.1.1 Early-stage security engineering

The early-stage security engineering approaches focus mainly on security requirements engineering
including security requirements elicitation, capturing, modeling, analyzing, and validation at design
time from the specified security objectives or security risks. Below we discuss some of the key existing
security requirements engineering efforts.

Knowledge acquisition in automated specification (KAoS) [4] is a goal-oriented requirements en-
gineering approach. KAoS uses formal methods for models analysis [5]. KAoS was extended to capture
security requirements [6] in terms of obstacles to stakeholders’ goals. Obstacles are defined in terms of
conditions that when satisfied will prevent certain goals from being achieved. This is helpful in under-
standing the system goals in details but it results in coupling security goals with system goals.

Secure i* [7,8] introduces a methodology based on the i* (agent-oriented requirements modeling)
framework to address security and privacy requirements. The secure i* focuses on identifying security
requirements through analyzing relationships between users, attackers, and agents of both parties. This
analysis process has seven steps organized in three phases of security analysis as follows: (i) attacker
analysis focuses on identifying potential system abusers and malicious intents; (ii) dependency vulner-
ability analysis helps in detecting vulnerabilities according to the organizational relationships among
stakeholders; (iii) countermeasure analysis focus on addressing and mitigating the vulnerabilities and
threats identified in previous steps.

Secure TROPOS [9—11] is an extension of the TROPOS requirements engineering approach that is
based on the goal-oriented requirements engineering paradigm. TROPOS was initially developed for
agent-oriented security engineering. TROPOS introduces a set of models to capture the system actors
(actors’ model) and their corresponding goals (goal model: hard goals represent the actor functional
requirements and soft-goals represent the actor nonfunctional requirements). These goals are itera-
tively decomposed into subgoals until these subgoals are refined into tasks, plans, and resources. Se-
cure TROPOS is used to capture security requirements during the software requirements analysis.
Secure TROPOS was appended with new notations. These included: (i) security constraints: restriction
related to certain security issue like: privacy, integrity...etc.; (ii) security dependency: this adds con-
straints for the dependencies that may exist between actors to achieve their own goals and defines what
each one expects from the other about the security of supplied or required goals; and (iii) security
entities: are extensions of the TROPOS notations of entities like goals, tasks, and resources as follows:
secure goal: means that the actor has some soft-goal related to security (no details on how to achieve)
this goal will be achieved through a secure task; secure task: is a task that represents a particular way of
satisfying a secure goal; secure resource: is an informational entity that’s related to the security of the
system; and secure capability: means the capability of an actor to achieve a secure goal.

Misuse cases [12,13] capture use cases that the system should allow side by side with the use cases
that the system should not allow which may harm the system or the stakeholders operations or security.
The misuse cases focus on the interactions between the system and malicious users. This helps in de-
veloping the system expecting security threats and drives the development of security use cases.

5.3.1.2 Later-stage security engineering

Efforts in this area focus on how to map security requirements (identified in the previous stage) on
system design entities at design time and how to help in generating secure and security code specified.
Below we summarize the key efforts in this area organized according to the approach used or the un-
derlying software system architecture and technology used.

5.3 SECURITY ENGINEERING STATE-OF-THE-ART 103

UMLsec [14-16] is one of the first model-driven security engineering efforts. UMLsec extends
UML specification with a UML profile that provides stereotypes to be used in annotating system design
elements with security intentions and requirements. UMLsec provides a comprehensive UML profile
but it was developed mainly for use during the design phase. Moreover, UMLsec contains stereotypes
for predefined security requirements (such as secrecy, secure dependency, critical, fair-exchange, no
upflow, no downflow, guarded entity) to help in security analysis and security generation. UMLsec is
supported with a formalized security analysis mechanism that takes the system models with the spec-
ified security annotations and performs model checking. UMLsec [17] has recently got a simplified
extension to help in secure code generation.

SecureUML [18] provides UML-based language for modeling role-based access control (RBAC)
policies and authorization constraints of the model-driven engineering (MDE) approaches. This ap-
proach is still tightly coupled with system design models. SecureUML defines a set of vocabulary that
represents RBAC concepts such as roles, role permissions, and user-assigned roles.

Satoh et al. [19] provides end-to-end security through the adoption of model-driven security using
the UML2.0 service profile. Security analysts add security intents (representing security patterns) as
stereotypes for the UML service model. Then, this is used to guide the generation of the security
policies. It also works on securing service composition using pattern-based by introducing rules to
define the relationships among services using patterns. Shiroma et al. [20] introduce a security engi-
neering approach merging model-driven security engineering with patterns-based security. The
proposed approach works on system class diagrams as input along with the required security patterns.
It uses model transformation techniques (mainly ATL—atlas transformation language) to update
the system class diagrams with the suitable security patterns applied. This process can be repeated
many times during the modeling phase. One point to be noticed is that the developers need to be aware
of the order of security patterns to be applied (i.e., authentication then authorization, then...).

Delessy et al. [21] introduce a theoretical framework to align security patterns with modeling of
Service-Oriented Architecture SOA systems. The approach is based on a security patterns map divided
into two groups: (i) abstraction patterns that deliver security for SOA without any implementation
dependencies and (ii) realization patterns that deliver security solutions for web services’ implemen-
tation. It appends metamodels for the security patterns on the abstract and concrete levels of models.
Thus, architects become able to develop their SOA models (platform independent) including security
patterns attribute. Then generate the concrete models (platform dependent web services) including the
realization security patterns. Similar work introduced by Schnjakin et al. [22] to use security patterns in
capturing security requirements and then enforce these requirements using predefined security patterns.

Hafner et al. [23] introduce the concept of security-as-a-service (SeAAS) where a set of key security
controls are grouped and delivered as a service to be used by different web-based applications and ser-
vices. It is based on outsourcing security tasks to be done by the SeAAS component. Security services
are registered with SeAAS and then it becomes available for consumers and customers to access when-
ever needed. A key problem of the SeAAS is that it introduces a single point of failure and a bottleneck
in the network. Moreover, it did not provide any interface where third-party security controls can im-
plement to support integration with the SeAAS component. The SECTET project [24] focuses on the
business-to-business collaborations (such as workflows) where security needs to be incorporated be-
tween both parties. The solution was to model security requirements (mainly RBAC policies) at high
level and merged with the business requirements using SECTET-PL [25]. These modeled security

104 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

requirements are then used to automate the generation of implementation and configuration of the re-
alization security services using WS-security as the target applications are assumed to be SOA-
oriented.

We have also determined different industrial security platforms that have been developed to help
software engineers realizing security requirements through a set of provided security functions and
mechanisms that the software engineers can select from. Microsoft has introduced more advanced
extensible security model—Windows Identity Foundation [26] to enable service providers delivering
applications with extensible security. It requires service providers to use and implement certain inter-
faces in system implementation. The Java Spring framework has a security framework—Acegi [27].
It implements a set of security controls for identity management, authentication, and authorization.
However, these platforms require developers’ involvement in writing integration code between their
applications and such security platforms. The resultant software systems are tightly coupled with these
platforms’ capabilities and mechanisms. Moreover, using different third-party security controls
requires updating system source code to add necessary integration code.

SECURITY RETROFITTING

Although a lot of security engineering approaches and techniques do exist as we discussed in the last
section, the efforts introduced in the area of security reengineering and retrofitting are relatively lim-
ited. This comes, based on our understanding, from the assumption that security should not be consid-
ered as an afterthought and should be considered from the early system development phases. Thus,
research and industry efforts focus mainly on how to help software and security engineers in capturing
and documenting security in system design artifacts and how to enforce using MDE approaches. Se-
curity maintenance is implicitly supported throughout updating design-time system or security models.
In the real world, system delivery plans are dominated by developing business features that should be
delivered. This leads to systems that miss customers expected or required security capabilities. These
existing legacy systems lack models (either system or security or both) that could be used to conduct the
reengineering process. The maintenance or reengineering of such systems is hardly supported by exist-
ing security (re)engineering approaches.

Research efforts in the security retrofitting area focus on how to update software systems in order
to extend their security capabilities or mitigate security issues. Abdulkarim et al. [28] discussed the lim-
itations and drawbacks of applying the security retrofitting techniques including cost and time problems,
technicality problems, issues related to the software architecture and design security flaws. Hafiz and
Johnson [29,30] propose a security on demand approach, which is based on a developed catalog of se-
curity-oriented program transformations to extend or retrofit system security with new security patterns
that have been proved to be effective and efficient in mitigating specific system-security vulnerabilities.
These program transformations include adding policy enforcement point, single access point, authen-
tication enforcer, perimeter filter, decorated filter and more. A key problem with this approach is that it
depends on predefined transformations that are hard to extend especially by software engineers.

Ganapathy et al. [31,32] propose an approach to retrofit legacy systems with authorization security
policies. They used concept analysis techniques (locating system entities using certain signatures) to
find fingerprints of security-sensitive operations performed by system under analysis. Fingerprints are
defined in terms of data structures (such as window, client, input, Event, Font) that we would like to
secure their access and the set of APIs that represent the security-sensitive operations. The results

5.3 SECURITY ENGINEERING STATE-OF-THE-ART 105

represent a set of candidate join-points where we can operate the well-known “reference monitor” au-
thorization mechanism.

Ganapathy et al. [33] present a practical tool to inject security features that defend against low-level
software attacks into system binaries. The authors focus on cases where the system source code is not
available to system customers. The proposed approach focuses on handling buffer overflow related
attacks for both memory heap and stack.

Welch and Stroud [34] introduce a security reengineering approach based on java reflection con-
cept. Their security reengineering approach is based on introducing three metaobjects that are respon-
sible for authentication, authorization, and communication confidentiality. These metaobjects are
weaved with the system objects using java reflection. However, this approach focuses only on adding
predefined types of security attributes and do not address modifying systems to block reported security
vulnerabilities.

ADAPTIVE APPLICATION SECURITY

Several research efforts target to enable systems to adapt their security capabilities at runtime. Elkhodary
and Whittle [35] survey adaptive security systems. Extensible security infrastructure [36] is a framework
that enables systems to support adaptive authorization enforcement through updating in memory autho-
rization policy objects with new low-level C code policies. It requires developing wrappers for every
system resource that catch calls to such resource and check authorization policies. Strata Security
API [37] where systems are hosted on a strata virtual machine which enables interception of system
execution at instruction level based on user security policies. The framework does not support securing
distributed systems and it focuses on low-level policies specified in C code.

The SERENITY project [38-40] enables provisioning of appropriate security and dependability
mechanisms for ambient intelligence systems at runtime. The SERENITY framework supports: def-
inition of security requirements in order to enable a requirements-driven selection of appropriate
security mechanisms within integration schemes at runtime; provide mechanisms for monitoring
security at runtime and dynamically react to threats, breaches of security, or context changes; and
integrating security solutions, monitoring, and reaction mechanisms in a common framework. SEREN-
ITY attributes are specified on system components at design time. At runtime, the framework links
serenity-aware systems to the appropriate security and dependability patterns. SERENITY does not
support dynamic or runtime adaptation for new unanticipated security requirements neither adding
security to system entities that was not secured before and become critical points.

Morin et al. [41] propose a security-driven and model-based dynamic adaptation approach to adapt
applications’ enforced access control policies in accordance to changes in application context—that is,
applying context-aware access control policies. Engineers define security policies that take into con-
sideration context information. Whenever the system context changes, the proposed approach updates
the system architecture to enforce the suitable security policies. The key limitation of this work is that it
focuses mainly on access control policies and requires design-time preparation of the software.

Mouelhi and others [41] introduce a model-driven security engineering approach to specify and
enforce system access control policies at design time based on aspect-oriented programming
(AOP)-static weaving. These adaptive approaches require design-time preparation (to manually write
integration code or to use specific platform or architecture). They also support only limited security

106 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

objectives, such as access control. Unanticipated security requirements are not supported. No valida-
tion that the target system (after adaptation) correctly enforces security as specified.

Yuan et al. [42] introduce a more comprehensive survey of efforts in the area of self-protecting
software systems. They have also outlined the key research gaps in the existing techniques. This in-
cludes: (i) lack of comprehensive self-protecting systems either from the monitoring, planning, exe-
cution perspective, or from the software stack perspective—that is, host, network, and software; (ii)
lack of an integrated solution that supports both design-time and runtime security, (iii) support of more
security adaptation patterns. Our approach focus is the first problem, which is to extend a given soft-
ware system with necessary security monitors (using user-defined metrics and properties), security
analysis (using formalized vulnerability signatures), planning (using models for manual adaptation
and rules for automated adaptation), and execution (using AOP). Furthermore, we generate a set of
integration test cases to verify that the specified adaptations (realized by security controls’ integration
with the software system) are functioning as expected. The big picture of our approach is available in
Ref. [43]. In this chapter we focus mainly on how adaptation can be specified (manually/automatically)
and how such adaptations can be realized.

RUNTIME SECURITY ADAPTATION

We identified two potential types of security adaptation: manual adaptation: usually triggered manu-
ally by security engineers/administrators based on change in security goals, security threats, and risks;
and automated adaptation: triggered automatically based on specified adaptation rules fired when a
certain metric exceeds a user-defined threshold, a property is violated, or a new vulnerability was
reported.

Our approach, outlined in Fig. 5.2, is based on externalizing the software security capabilities from
the software so that we can easily change such security capabilities without the need to change the
software itself. At the same time being able to integrate (inject) such new capabilities within the soft-
ware at any arbitrary system entity. This is abstracted to end users by a set of domain-specific visual

objectives risks/threats vulnerabilities

l l l

Security ‘ Security Security

Security Security
gy Security engineering at runtime ;
monitoring «—» «— adaptation
Security adaptor rules

I

System wrapper

Software systems

FIG. 5.2
Block diagram of our adaptive security approach.

5.4 RUNTIME SECURITY ADAPTATION 107

languages (DSVLs) at different levels of abstraction to help them describe their security needs, soft-
ware details, and mapping security to system entities at the right level of abstraction for different stake-
holders. This helps in speeding up the software change time to ad hoc security needs. The security
vulnerability analysis is based on formalized signatures that describe bad code smells we need to look
for in a given system. The same idea is used in the security monitoring component. All these inputs
(requirements for adaptation) are realized/executed using the same execution component (MDSE@R,
security engineering at runtime).

5.4.1 SUPPORTING MANUAL ADAPTATION USING MDSE@R

The MDSE @R approach [44,45] targets externalizing all security engineering activities so we can de-
fine and change system security at any time, while being able to integrate these new security capabil-
ities on the system at runtime. MDSE @R is based on two key concepts: (i) MDE, using DSVL models
at different levels of abstraction to describe system and security details; and (ii) AOP, which enables
dynamic runtime weaving of interceptors and system code based on configuration files that specify the
required security point-cuts in the system. Fig. 5.3 shows an overview of how to apply MDSE@R in
engineering security for a given system at runtime, as discussed here.

Build system-description model (SDM): A detailed SDM (Fig. 5.3(1), see Fig. 5.9 for an example)
made up of a set of models delivered by the system provider. This describes various details of the target
software application. Our SDMs include: system features (using use case diagrams), system architec-
ture (using component diagrams), system classes’ model (using class diagrams), system behavior
model (using sequence diagrams), system deployment (using deployment diagrams), and system con-
text (using component diagrams). We have selected these models as they cover all system perspectives
that may be required in order to specify system security. The use of many of these submodels is op-
tional. It depends on how many of the system details the system provider exposes to their customers and
how many details customers’ security engineers will need in enforcing the required security on the
target system. Security engineers may be interested in specifying security on system entities (using

» @
wSyStem engineer Security engineerw

Security services Develo
System description models < Security specification models

1
g
1
1
1
1
1

=
H

. 5 - :

Live system- lalee security

interceptors specification
document document

ecurity service

Security enforcement point

System containerf§]

FIG. 5.3
Security engineering at runtime.

108 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

system components and/or classes models), on system status (using system behavior model), on system
hosts (using system deployment model), or external system interactions (using system context model).
Moreover, system customers can specify security on coarse-grained level (using system component
model), or on fine-grained level (using system class models). The SDMs can be synchronized with
the running system instance using models @runtime synchronization techniques [25,26], or manually
by the system provider. Some of such system-description information can be reverse-engineered, if not
available, from the target system (Fig. 5.3(2)).

Build security specification model (SSM): A set of models developed and managed by security en-
gineers (Fig. 5.3(3)) to specify the security needs that must be satisfied in the target system. They in-
clude a set of submodels that capture the details required during the security engineering process
including: security goals and objectives, security risks and threats, security requirements, security ar-
chitecture for the operational environment, and security controls to be enforced. These models deliver
different levels of abstractions and enable separation of concerns between customer stakeholders in-
cluding business owners, security analysts, security architects and implementers. The key mandatory
model in the SSMs set is a security controls model. This is required in generating interceptors and se-
curity aspect code.

System-security models weaving: A many-to-many mapping between the SDMs and SSMs is de-
veloped by the customer security engineers (Fig. 5.3(4)). One or more security concepts (security ob-
jective, security requirement, and/or security control) is mapped to one or more system model entities
(system-level, feature-level, component-level, class-level, and/or method-level entities). Mapping a
security concept on a higher level system entity implies a delegation to the underlying levels. Whenever
a security specification is mapped to a system feature, this implies that the same security specification is
mapped on the feature related components, classes, and methods.

The few steps discussed so far helps in addressing the planning phase in security adaption. New
security requirements (objectives, risks, etc.) can easily be reflected on the SSM described earlier.
The next steps related to enforcing (executing) the specified security, and are automated by MDSE@R
without any involvement from the security or system engineers. Whenever a mapping is defined or
updated between a SSM and a SDM, the underlying MDSE@R framework propagates such changes
as follows:

Update Live System Interceptors’ Document (Fig. 5.3(5))—this maintains a list of point-cuts where
security controls should be weaved/integrated with the target software application entry points. This
document is updated based on the modeled security specifications and the corresponding system
entities where security should be applied. Update a Live Security Specification Document (Fig. 5.3
(6))—this maintains a list of security controls to be applied at every point-cut defined in the system
interceptors’ document. Update the system container (Fig. 5.3(7))—this is responsible for injecting
interceptors defined in the system interceptors’ document into the target system at runtime using dy-
namic weaving AOP. Any call to a method, with a matching in the interceptors’ document, will be
intercepted and delegated to a central security enforcement point. Test current system security
(Fig. 5.3(8))—this validates that the target system is currently enforcing the specified security levels.
The security-testing component makes sure that the intended security is correctly integrated with
the target application at runtime. MDSE @R generates and fires a set of security integration test cases.
This is done before MDSE@R gives confirmation to security engineers that required security is now
enforced. Security enforcement point (Fig. 5.3(9))—this acts as a bridge between the target system
(system container) and the security controls that deliver the required security. The security enforcement

5.4 RUNTIME SECURITY ADAPTATION 109

point uses the live security specification document to determine, and initiate, security control to be
enforced on a given, intercepted, request. Security services (Fig. 5.3(10)) are the application security
controls (deployed in the system operational environment) that are integrated with the security enforce-
ment point. This enables the security enforcement point to communicate with these services via APIs
implemented by each service.

Thus, MDSE@R covers manually adaptation scenarios. A given set of security objectives and re-
quirements are reflected on the SSM, and MDSE @R will make sure to automatically inject (or may be
leave out) these security requirements as needed. For legacy systems, this might seem infeasible, but
we have used static aspect oriented to modify system binaries and add calls to our security
enforcement point.

AUTOMATED ADAPTATION USING VULNERABILITY ANALYSIS AND MITIGATION

Another key trigger for security adaption is the discovery of a new vulnerability in the software. In our
approach [46-48], we assume that this requires automated adaptation of the enforced security to (vir-
tually) patch the reported security until the software vendor develops a real patch. In this section we
discuss how we can do the vulnerability analysis, and then using a set of rules to come up with nec-
essary adaptation actions to block such vulnerability. Fig. 5.4 summarizes the interactions between the
vulnerability analysis component, security mitigation component, and the software. Our vulnerability
analysis approach depends on a formalized vulnerability definition schema that covers many concepts
of software security weaknesses (flaws) such as vulnerability signature—what are the key things in the
software when found, it means that the system suffers from such vulnerability, and mitigation actions—
what adaptation we need to apply to patch the vulnerability.

Formalizing vulnerability signatures helps automating the vulnerability analysis process. Ideally, a
formal vulnerability signature should be specified on an abstract level far from the source code and
programming language details, enabling locating of possible vulnerability instances in different pro-
grams written in different programming languages. We use Object Constraint Language (OCL) as a
well-known, extensible, and formal language to specify semantic rather than syntactical signatures
of security weaknesses. To support specifying and validating OCL-based vulnerabilities’ signatures,
we have developed a system-description metamodel, shown in Fig. 5.5. This model is inspired from

Vulnerabilities

> Software <
Reported
Vulnerability analysis ——vulnerabilities > Vulnerability mitigation
A A

Vulnerability definition schema

Signatures Mitigations

FIG. 5.4
Automated vulnerability analysis and mitigation.

CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

110

‘l]apowielsll uonduosap 24emyos

GG "9ld

Buungisndutpoypi o
Sungiuioduodpoqi gy

BungiApogiyL 4

jugsuondeax3

fupouzndng

ged

€8Q04U00

.:. 5
iéa..oi-%%o&

uasinding V

Buus:ageuendu] 0 V

wendn |V

Eﬁ._..ménauaw
?_ﬁim_.i;@

Jungdoo

E@...%Bg
§me§.§

JunSIRauLBSsY

WL}

Bays ouepajaien o

™

[EuEpa)

e

EleqsseD

_ asepaaudio)

A

Busiwaajitid o@

Ly E@a.as:a
Jatoduoneagay

#scoasoueagm

»twsssusﬁw»

U]

buasiadh 1490 99

Buaagiauenpalgo gy

JupsLogeepag

unslqoman

JUaLoduIoaAssed EB&m

Eam“_&sﬁou
Eﬁ%&g
quﬁ,m

3&53&

LOISSIUISUAL

N

Rbay o0y
Buag: H0gy

abeios

5.4 RUNTIME SECURITY ADAPTATION 111

our analysis of the nature of the existing security vulnerabilities. It captures the main entities in any
object-oriented program and relationships between them including components, classes, instances, in-
puts, input sources, output, output targets, methods, method bodies, statements, for example, if-else
statements, loops, new objects, etc. Each entity has a set of attributes such as method name, accessi-
bility, variable name, variable type, method call name. This model helps conducting semantic analysis
of the specified vulnerability signatures. Table 5.1 shows examples of vulnerability signatures spec-
ified in OCL and using our SDM.

SOL Injection - SOLI: Any method statement “S” of type “Methodlnvocation” where the callee
function is “ExecuteQuery” and one of the parameters passed to it, is assigned to “identifier”
coming from one of the input sources. Taint analysis “IsTainted’ can be defined as an OCL function
that adds every variable assigned to a user input parameter to a suspected list.

Cross-Site Scripting - XSS signature: Any method statement “S” of type assignment statement
where left part is of type “output target” for example, text, label, grid, etc. and right part uses input
from the input sources or tainted identifier as just discussed.

Authentication bypass: Any public method that has statement “S” of type “MethodInvocation”
where the callee method is marked as Authentication function while this method call can be skipped
using user input as part of the bypassing condition.

Improper authorization: Any public method that has statement “S” that uses input data X without
being sanitized, authorized.

5.4.2.1 OCL-based vulnerability analyzer

Given that vulnerability signatures become now formally specified using OCL, the static vulnerability
analysis component simply traverses the given program looking for code snippets with matches to the
given vulnerabilities’ signatures.

Table 5.1 Example Vulnerability Signatures
Vulnerability Vulnerability Signature

SQLI Context Method Inv SQLICheck:

self.Statements->exists(S | S.StatementType = ‘MethodInvocation’ and S.MethodName =
‘ExecuteSQL’ and S.Parameters.exists(P | self.IsTainted(P.ParameterName) = true)

XSS Context Method Inv SQLICheck:

self.Exists(S | S.StatementType = ‘Assignment’ and S.RightPart.Contains(InputSource) and
S.LeftPart.Contains(OutputTarget))

Authentication Context Method Inv SQLICheck:
bypass self.IsPublic == true and self->Exists(S | S.StatementType = ‘MethodInvocation’ and S.
IsAuthenitcationFn
== true and S.Parent == IFElseStmt and S.Parent.Condition.Contains(InputSource))
Improper Context Method Inv SQLICheck:
authorization self.IsPublic == true and self.Contains(S| S.Exists(X| X.StatementType = ‘InputSource’ and

X.IsSanitized
= false or X.IsAuthorized == False)

112 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

Program L oCL Platform
representation 1 functions profile
""" v v
Program | AST L] Signature-based static Weakness
source signature locator signatures
...... (OCL)
Program Vulnerability list

representation

FIG. 5.6
OCL-based vulnerability analysis.

The architecture of our formal and scalable static vulnerability analysis component, as shown in
Fig. 5.6, is based on our formalized vulnerability signature concept.

Program source code: We should have source code or binaries (dlls, exes—de-compilation is used
to reverse engineer source code) of the application to be analyzed.

Abstract program representation: Source code is transformed into an abstract syntax tree

(AST) representation. This abstracts language-specific source code details away from specific
language constructs. Extracting source code AST requires using different language parsers
(currently support C++, VB.Net, and C#). Then, we perform more abstract transforming from AST
to SDM that conforms to the model.

OCL functions: Represent a library of predefined functions that can be used in specifying
vulnerability signatures and in identifying matches to these signatures. This includes control flow,
data flow, string patterns, program taint analysis, etc.

Signature locator: This is the main component in our vulnerability analysis tool. It receives the
abstract service/application model and outputs the list of discovered vulnerabilities in the given
system along with their locations in code. At analysis time, it loads the platform (C#, VB, PHP)
profile based on the details of the program under analysis. Then, it loads the existing weaknesses
defined in the weaknesses’ signatures database, based on the target program platform/language.
The signature locator transforms these signatures into C# methods that check different program
entities based on the specified vulnerability signature. We use Application Vulnerability
Description Language to represent the identified vulnerabilities in XML format to support
interoperability with existing vulnerability databases such as National Vulnerabilities Database.

5.4.2.2 Vulnerability mitigation

Discovered application/service security vulnerabilities can be mitigated in different approaches includ-
ing: modifying application source code to block the identified problems (patches); however, this so-
lution will be hard to approach in public accessible software systems—for example, cloud systems—as
it may take long time to deliver patched version. A quick solution is to use Web application firewall
(WAF) to filter requests/responses that exploit such vulnerabilities; however, WAF has many limita-
tions including it does not help in output validation, cryptography storage, and mitigating improper
authorization.

5.4 RUNTIME SECURITY ADAPTATION 113

Our approach supports integrating different security controls including identity management, au-
thentication controls, authorization controls, input validation, output encoding, WAF, cryptography
controls, etc. In our approach, each vulnerability mitigation action specifies a security control type/
family to be used in mitigating the related vulnerability, its required configurations, and applica-
tion/service entity where the security control will be integrated with (hosting service—webserver or
operating system, components, classes, and methods). Thus, a reported SQLI vulnerability in a method
(M) that belongs to component (C) can be mitigated by adding input sanitization control (Z) on com-
ponent (C) that removes SQL keyword from every single request to the method (M). In Table 5.2, we
show examples of mitigation actions for some of the known security vulnerabilities. These actions
should be specified in XML and included as a part of the formalized vulnerability definition.

5.4.2.3 Vulnerability mitigation component

The analysis component outputs a list of the discovered vulnerabilities in the software system (Fig. 5.7
(1)). Each entry in this list has a service/application vulnerable entity (method, class, or component)
along with the list of discovered vulnerabilities in this entity. Given this list of vulnerabilities, the se-
curity vulnerability mitigation manager queries the vulnerability definition schema database (Fig. 5.7
(2)) to retrieve the appropriate actions to be taken in order to mitigate each of such reported vulner-
abilities. Examples of the retrieved actions are shown in Table 5.2. Using these two lists (vulnerable
software entities and mitigation actions), the vulnerability mitigation manager (Fig. 5.7(3)) decides the
patching level (component level, class level, or method level) using, for example, HttpModules, object

Table 5.2 Example Vulnerability Mitigation Rules/Actions
Vulnerability Security Control Entity Level
SQLI Input sanitization Method level
XSS Input encoding Component level
Authentication bypass WAF Component level
Improper authorization Authorization Method level
‘ OCL-based vulnerability ‘ ‘ Vulnerability definition ‘
analysis component schema
@ Discovered|vulnerabilities Mitigation|actions ())
’ © Vulnerability mitigation manager ‘

Application

0 document document

g

Q.

o

2

=

i<l

3 N2 :
§ H 0 Security kernel H

N2 !
Application interceptors Security specification i

| @ Security services |

FIG. 5.7
Vulnerability mitigation component.

114 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

interceptor using dependency injection, or method-level interception using dynamic weaving AOP re-
spectively. The rest of the steps to enforce the right security control at the right place are as described in
the MDSE@R section.

USAGE EXAMPLE

To demonstrate the capabilities of our new MDSE@R security engineering approach we revisit our
example discussed in Section 5.2, the ERP system “Galactic” developed by SwinSoft and procured
by Swinburne and SwinMarket. The two customers using the Galactic ERP system have their own dis-
tinct security requirements to be enforced on each of their Galactic ERP application instances. We il-
lustrate this security engineering scenario using screen dumps from our prototype tool.

TASK 1—MODEL GALACTIC SYSTEM DESCRIPTION—ONE-TIME TASK

This task is done during or after the system is developed. SwinSoft decides the level of application
details to provide to its customers in the Galactic system model. Fig. 5.8 shows that SwinSoft provides
its customers with description of system features including customer, employee, and order manage-
ment features (Fig. 5.8B), system architecture including presentation, business logic layer, and data ac-
cess layer (Fig. 5.8C), system classes including CustomerBLL, OrderBLL, EmployeeBLL (Fig. 5.8D),
and system deployment including web tier, application tier, and data tier (Fig. 5.8E). SwinSoft uses
the provided UML profile (Fig. 5.8A) to specify the dependences and relations between system fea-
tures and components, and components and their classes. Fig. 5.8 A shows the UML profile we built to
extend UML with security properties (what security controls/requirements/objectives) are mapped to a
given system entity; and to store the traceability information between different system artifacts—for
example, system features to realization components, components to classes, etc.

TASK 2—MODEL SWINBURNE SECURITY NEEDS

This step is conducted by Swinburne and SwinMarket security engineers during their repetitive security
management process. In our scenario, Swinburne security engineers document Swinburne security ob-
jectives that must be satisfied by Galactic system. This is done using a high-level security-objectives
model (Fig. 5.9A). This model can be revisited at any time to incorporate changing Swinburne security
objectives. Security engineers refine these security objectives in terms of security requirements that
must be enforced on the Galactic system, developing a security requirements model. This model keeps
track of the detailed security requirements and their link back to the high-level security objectives
(Fig. 5.9B). This example shows user authentication requirements to be enforced on the Galactic ap-
plication and its hosting server.

Swinburne security engineers next develop a detailed security architecture including other existing
IT systems. This security architecture (Fig. 5.9C) identifies the different security zones (Big Boxes) that
cover Swinburne network and the allocation of IT systems, including Galactic, as either one unit or in
terms of system components according to the Galactic deployment model. The security architecture also
shows the security services, security mechanisms and standards that should be deployed. Swinburne
security engineers finally specify the security controls (i.e., the real implementations) for the security

5.5 USAGE EXAMPLE

115

GalacticFeatureModel) = GalacticArchitectureModel }
Properties
(2] erthacus Contspis 2] Customersws Component
Presentation Layer < R
\ 224 1S
] 9]) Name. Customersws
+ Customers.aspx +Orders.asp. GalacticSystemDescriptionM:
ST Architecture Concept
Managemer
Configuration Fie C:\SaaSData\Galactic\DataA:
i & 2] ¥ 2] Deployment Path C:\SaaSData\Galactic\Bin\Da
<inclytle> "
e jiEinomes 2l s Node Type Application Server
Platform =
CusfomerBalance Adde Provider SwinSoft
) RelatedFeatures CustomerManagement
i
‘ 7
— DeleteCustomer = o =
]) «drhitecture Concepts] (2) wdrchitecture Concepts g
Businesslogiclayer DataAccessayer
Web Tier /
_____ & &
& g] & g] + CustomerW.. gl +Ordersws ... £]
User Intertace Layer + BusinessCla S +Curencyo
(ASP.Net Pages) Application Tier
A \~*§$m Logic <profile name=" a =" Security Profile "
rityConcepts " HdisplayName ="Security Concepts">
(2] «Class Diagran\ Co. 2l EmployeeBLL brityObjectives "| displayName =" Security Objectives ">
Data Tier il Employpl | ® Attributes d] al Ll & Syl >
, ustomert mploy® " " —n i “
Attributes. = Operations LirityControls. d|splayName Security Controls “>
= Operations * + AddEmployee()
+ AddCustomer() Employeebll \ 1 Getemployecsyom
+ Get 1] \+ " " i "
+ GetCustomers() neept = Concept ">
EmploYgenll /| *
\ \ CustomerBLL | 1 ath " =" D Path “>
OrdereLL | * SalarpLL | 1 e 5 File “>
y ile e
g A oharypiL " o s
orderplL | ® Attrib @ Attrbu
| & Operation = Operati
b + GetOrders] + GetDeplrtmentTota sDiagramConcept [displayName ="Class Diagram Concept">
+ GatOrdarsByQigtom. +GetEmpjoyeeSalary() | |irityClassFn " disglayName =" IsSecurityClassOrFn ">
(D) + GetOrdersByTotal + GetTotdsalaries() s = D FnviE .

(E)

Swin key
Mgmt

Swin

Elevate
privileges
using LDAP

Swinburne

Inject.

Query Inject.

et
gains access to

Portal using SQL

‘\ Availgbility

transmitted in

x passworfl

length

r Max password
length

|

Min password
length

Integrity

.

<

Confidentiality <—

Data
Encryption

" (©©)

plain text

Manager Service

Authorization
Service

‘ ‘ Application Server
H—»l
7 \
A Balancer Database Server
using CSRF ‘ ‘ >
LO)]
« disclose data Access Federated

3 >
>
Identity Service
Lo

S

to

x

Antivirus
Service

FIG. 5.8 AND 5.9

Examples of Galactic software definition model (upper panel) and examples of Swinburne security specification

model (lower panel).

116 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

services modeled in the security architecture model (Fig. 5.9D). This includes SwinIPS Host Intrusion
Prevention System, LDAP access control, and SwinAntivirus. These are used to realize the security
requirements and security architecture as previously specified. Each SSM maintains traceability infor-
mation to parent models’ entities. In Fig. 5.9D, we specify that LDAP “realizes” the AuthenticateUser
requirement. Whenever MDSE @R finds a system entity with a mapped security requirement Authen-
ticateUser it adds LDAP as its realization control, that is, an LDAP authentication check is run before
the entity is used, for example, before a method or web service is called or module loaded.

TASK 3—SYSTEM-SECURITY WEAVING

After developing the system SDMs—done by SwinSoft, and the security SSMs—done by Swinburne
security engineers, the Swinburne security engineers map security attributes (in terms of objectives,
requirements, and controls) to Galactic system specification details (in terms of features, components,
classes). This is achieved by drag and drop of security attributes to system features in our toolset. Any
system feature, structure, or behavior can dynamically and at runtime reflect different levels of security
based on the currently mapped security attributes on it.

Fig. 5.9E shows a sample of the security objectives, requirements, and controls mapped to Cus-
tomerBLL class. In this example the security engineer has specified that the AuthenticateUser secu-
rity requirement should be enforced on the CustomerBLL class (1). Such a requirement is achieved
using LDAP control (3). Moreover, they have specified Forms-based authentication on the GetCus-
tomers method (2). This means that a request to a method in the CustomerBLL class will be authen-
ticated by the caller’s Windows identity, but a request to the GetCustomers method will be
authenticated with a Forms-based identity. MDSE@R uses security attributes mapped to system en-
tities to generate the full set of methods’ call interceptors and entities’ required security controls, as
shown in Fig. 5.13.

TASK 4—GALACTIC SECURITY TESTING

Once security has been specified and interceptors and configurations are generated, MDSE@R makes
sure that the system is correctly enforcing security as specified. MDSE@R generates and fires a set of
required security integration test cases. Our test case generator uses the system interceptors and security
specification documents to generate a set of test cases for each method listed in the interception doc-
ument. The generated test case contains a set of security assertions (one for each security property spec-
ified on a given system entry). During the firing phase, the security enforcement point is instrumented
with logging transactions to reflect the calling method, called security control, and the returned values.
Security engineers should check the security test cases execution log, as shown in Fig. 5.10, to make
sure that no errors introduced during the security integration with Galactic entities. Fig. 5.11 shows a
sample run of Galactic after weaving Forms-based authentication control when calling
GetCustomers method.

SwinMarket security engineers go through the same process as Swinburne did when specifying
their security requirements. However, SwinMarket specifies their requirements, context, security con-
trols, and IT applications. This results in quite different generated security enforcement controls.

Both Swinburne and SwinMarket security engineers can modify the security specifications while
their Galactic applications are in use. MDSE @R framework updates interceptors in the target systems
and enforces changes to the security specification for each system as required. For example, the

5.5 USAGE EXAMPLE 117

Test Case Mame Message

Authenticationtesting . Authentication control “forms-based authentication”is plugged-in

Authorizationtesting | Authorization contral is not plugged-in

FIG. 5.10

Sample test cases firing log.

LoG IN |

| Get Customer Data |

Keep me logged in

‘Logln‘

FIG. 5.11

Account Information swinburne Swin-First Swin-FirstAddress 1234567
swinburne Swin-Second SecondAddress 7654321

Username:

bob swinburne Swin-Third ThirdAddress 1237654

Password:

1500
400
360

Please enter your username an(Tenant e G me C = CustomerPhone C lance

Testing Galactic with injected form-based authentication.

Swinburne Galactic security model can be updated with a Shibboleth single sign-on security authen-
tication component. The updated interceptors and security specification are applied to the running Ga-
lactic deployment, which then enforces this authentication protocol instead of the Forms approach

as above.

5.5.5 TASK 5—GALACTIC CONTINUOUS VULNERABILITY ANALYSIS AND

MITIGATION

We have applied the vulnerability analysis tool on Galactic ERP system (and many other applications),
and using the mitigation actions, summarized in Table 5.2. Table 5.3 shows the number of reported
vulnerability instances grouped by vulnerability type. We applied the vulnerability analysis

Table 5.3 Number of Reported Vulnerabilities

SQLI XSS Authentication Bypass
TP FP FN TP FP FN TP FP FN
2 0 0 3 1 1 4 0 0

Improper Authorization

TP
2

FP
1

FN
0

TP, true positives; FP, false positives; FN, false negative.

118 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

incrementally—that is, SQLI analysis, then XSS, and so on. For each of these reported vulnerabilities,
we have checked that the proper security control(s) was integrated successfully as specified in the ac-
tions table, Table 5.2, and that the reported vulnerability is no longer exploitable.

DISCUSSION

Our approach is based on promoting security engineering from design time to runtime by externalizing
security engineering activities including capturing objectives, requirements controls, and realization
from the target system implementation. This permits both security to be enforced and critical points
to secure to evolve at runtime (supporting adaptive security at runtime). Using a common security
interface helps integrating different security controls without a need to develop new system-security
control connectors. Moreover, a key benefit reaped from MDSE@R approach is to the support model-
based security management. Enterprise-wide security requirements, architecture and controls are main-
tained and enforced through a centralized SSM instead of low-level scattered configurations and code
that lack consistency and are difficult to modify. Thus any update to the enterprise security model will
be reflected on all IT systems that use our security engineering platform. This is another key issue in
environments where multiple applications must enforce the same security requirements. Having one
place to manage security reduces the probability of errors, delays, and inconsistencies. Moreover,
automating the propagation of security changes to underlying systems simplifies the enterprise security
management process.

One may argue that MDSE@R may lead to a more vulnerable system as we did not consider se-
curity engineering during design time. Our argument is that at design time we need to think more about
building secure systems. However, given that we continue to discover a lot of vulnerabilities in systems
even those with design-time security consideration, we have supported our approach with both contin-
uous vulnerability analysis and mitigation. The vulnerability analysis component is based on formal
vulnerability definition schema that includes vulnerability signature and mitigation actions. Using ab-
stract representation instead of source code helps to generalize/abstract our analysis from programming
language and platform details. It also helps to make the approach more scalable for larger applications.

AOP is always suspected as a source of potential security attacks [49] given that a malicious user
might be able to plug vulnerable aspect code that can alter the innovation parameter, redirect the
request or discard it completely. Moreover, using AOP to integrate security aspects as a cross cutting
concern is also questionable given that these security aspects could lead to inconsistent update of sys-
tem properties. However, the authors did not stop using AOP to develop their permission model, they
have suggested a set of recommendations when using AOP such as dealing woven code, define appro-
priate language extension, and analyze weaver components for potential flaws. To avoid such issues,
we disable the write permission on the interceptor document and security handlers. Thus only our plat-
form will have write access to these documents.

Security adaptation of existing software systems: The security engineering of existing services
(extending system-security capabilities) has three possible scenarios: (i) systems that already
have their SDMs, we can use MDSE@R directly to specify and enforce security at runtime; (ii)
systems without SDMs, we reverse engineer parts of system models (specifically the class diagram)
using MDSE@R. Then we can use MDSE@R to engineer required system security. Finally,

5.6 DISCUSSION 119

systems with built-in security, in this case we can use MDSE@R to add new security capabilities

only. MDSE cannot help modifying or disabling existing security. We have built another tool

(re-aspects) to leave out existing built-in security methods and partial code using modified AOP

techniques.

Security and performance trade-off: The selection of the level of details to apply security on

depends on the criticality of the system. In some situations like web applications, we may intercept

calls to the presentation layer only (webserver) while considering the other layers secured by default

(not publicly accessible). In other cases, such as integration with a certain web service or using

third-party component, we may need to have security enforced at the method level (for certain

methods only). Security and performance trade-off is another dilemma to consider. The more
security validations and checks the more resources required. MDSE @R enables adding security
only whenever needed. Thus, when we believe that the system operational environment we can
reduce the security controls required which improves system performance and vice versa. So the
trade-off between performance and security is now at the hand of system/security admins.

Hybrid vulnerability analysis: From our experience in developing signatures of the OWASP Top 10

vulnerabilities (most frequently reported vulnerabilities) we determined that:

1. the accuracy of our vulnerability analysis depends heavily on the accuracy of the specified
vulnerability signatures;

2. itis better to use dynamic analysis tools with certain vulnerabilities, such as cross site reference
forgery, because these vulnerabilities can be handled by the web server. This means static
analysis may result in high FP, if used;

3. some vulnerabilities can be easily identified and located by static analysis such as SQLI and
XSS vulnerabilities; and

4. some vulnerabilities such as DOM-based SQL and XSS vulnerabilities need a collaborating
static and dynamic analysis to locate them.

We believe that combining static and dynamic analysis is needed to increase the precision and recall
rates. Static analysis approaches usually result in high false positives as they work on source code
level—that is, the vulnerability may be addressed on the component or the application level. Employ-
ing dynamic vulnerability analysis can solve this problem. However, dynamic vulnerability analysis
approaches cannot help locating specific code snippets where vulnerabilities exist. Moreover, they
do not help testing code coverage by generating all possible test cases.

Virtual patching trade-off: From our experiments in the mitigation actions and security controls
integrations, we found that although the use of WAFs is a straightforward solution, it is not always
feasible to use WAF to block all discovered vulnerabilities. The selection of the entity level to apply
security controls on (application, component, method, etc.) impacts the application performance—
that is, instead of securing only vulnerable methods, we intercept and secure (add more calls) the
whole component requests. A key point that worth mentioning is that the administration of security
controls should be managed by the service/cloud provider admins. We focus on integrating controls
within vulnerable entities. Our vulnerability mitigation component works online without a need for
manual integration with the applications/services under its management. The overhead added by the
mitigation action can be easily saved if the service developers worked out a new service patch. In
this case, the vulnerability analysis component will not report such vulnerability. Thus, the
mitigation component will not inject security controls.

120 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

Pros & cons: The key benefits of our adaptation approach are: (i) we support both manual security
adaptation and rule-based adaptation. Most of the existing efforts either focus on engineering
systems to support adaptiveness with either intensive development required, or limiting the
approach to specific security properties—for example, access control; (ii) our approach also takes
into consideration different sources of adaptation including: new security requirements, current
system status (using security monitors), and/or reported security vulnerabilities. Most of the
existing efforts consider only one source: either new security requirements or monitored system
status but not reported vulnerabilities; and (iii) we adopt security externalization and MDE
techniques, which make it easier to change system-security capabilities whenever needed and at
system, component, and method levels based on user experience and needs. The security model
itself can be shared between different systems. Thus, an enterprise security model can be easily
managed.

CHAPTER SUMMARY

In this chapter we discussed our adaptive security engineering approach, which enable adapting soft-
ware security capabilities at runtime based on the new security objectives, risks/threats, requirements
as well as the newly reported vulnerabilities. We categorize the source of adaptation in terms of manual
adaptation (managed by end users), and automated adaption (automatically triggered by the platform).
The platform makes use of the formal vulnerability definition schema, the formal signature-based se-
curity analysis, externalization of security engineering using AOP, and MDE techniques.

APPENDIX
PLATFORM IMPLEMENTATION

The architecture of our approach is aggregate of two key components: the security engineering at run-
time (MDSE@R) and the security vulnerability analysis. Both of them are end-user oriented—that is,
both depend on end-user specifications in terms of security objectives, requirements, controls, prop-
erties, vulnerabilities, and mitigation action. Both components are discussed below in more details.

MDSE@R: MODEL-DRIVEN SECURITY ENGINEERING AT RUNTIME

The architecture of the MDSE@R platform is shown in Fig. 5.12. It consists of a system-description
modeling tool (1), a security specification modeling tool (2), a repository for the system and security
models (3), a library of registered security controls and extensible security patterns that can be used by
security engineers in enforcing their security needs (4), a system container that manages system exe-
cution and intercepts requests and function calls for system entry points at runtime (5), and a security
test case generator (6) that is used to test the integration of configured application with required security
controls.

The system-description modeler (1) was developed as an extension of Microsoft VS 2010 modeler
with an UML profile to enable system engineers modeling their systems’ details with different perspec-
tives including system features, components, deployment, and classes. The UML profile defines

APPENDIX 121

System
[Component 1] g Component 2 r] [Component 3
cls1 | cls2 I Mthl| Mth2
System [container
App Complonent Class Method ValidAated
lepel leyel leyel leyel reqliest
v

[Security enforcement point é
b System description modeler } [Security specification modeler d

Authentication)
Models repository

“Authorization Encrypt

l/p validation Logging
Security controls
—

e Security test casesgenerator J

FIG. 5.12
MDSE@R architecture.

stereotypes and attributes to maintain the track back and foreword relations between entities from dif-
ferent models. Moreover, a set of security attributes to maintain the security concepts (objectives, re-
quirements, and controls) mapped to system entities. The minimum level of details expected from the
system provider is the system deployment model. MDSE @R uses this model to reverse engineer sys-
tem classes using .Net Reflections.

The security specification modeler tool (2) is a VS 2010 plug-in. It enables application customers,
represented by their security engineers, to specify the security attributes and capabilities that must
be enforced on the system and/or its operational environment. The security modeler delivers a set
of security DSVLs. The security-objectives DSVL captures customer’s security objectives and the re-
lationships between them. Each objective has a criticality level and the defense strategy to be followed:
preventive, detective, or recovery. The Security requirements DSVL captures customer’s security
requirements and relationships between requirements including composition and referencing relations.
The Security Architecture DSVL captures security architectures and designs of the customer opera-
tional environment in terms of security zones and security level for each zone; security objectives,
requirements, and controls to be enforced in each layer; components and systems to be hosted in each
layer; security services, mechanisms, and standards to be deployed in each layer or referenced from
other layers. The security controls DSVL captures details of security controls that are registered
and deployed in the customer environment and relationships between these and the security require-
ments they cover. The system models, security models, interception documents, and security specifi-
cation documents are maintained under one repository (3). We use Visual Studio T4 Templates and

122 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

code generation language to generate these documents from the software and SSMs and mapping be-
tween both sets of models. T4 templates are a mixture of text blocks and control logic that can generate
a text file. The control logic is written as program code in C#.

The security controls database is a library of available and registered security patterns and controls.
It can be extended by the system providers or by a third-party security provider. Security controls im-
plement certain APIs as defined by the security enforcement point in order to be able to integrate with
target security control systems. Having a single enforcement point with a predefined interface for each
security control category enables security providers to integrate with systems without having to rede-
velop adopters for every system. We adopted the OWASP Enterprise Security API library as a part of
MDSE@R security controls database.

To support runtime security enforcement, MDSE@R uses a combined interceptor and AOP ap-
proach. Whenever a client or application component makes request to any system component method,
this request is intercepted by the system container. The system container supports wrapping of both new
developments and existing systems. For new development, SwinSoft system engineers should use the
Unity application block delivered by Microsoft PnP team to intercept calls to registered classes. This is
a NET-based implementation of the dependency injection design pattern. It supports dynamic runtime
injection of interception points on methods, attributes, and class constructors. For existing systems we
adopted Yiihaw AOP for C#, where we can modify application binaries (dll and exe files) to add se-
curity aspects at any arbitrary method (in our implementation we add a call to our security
enforcement point).

The security test case generator (6) uses the NUnit testing framework to partially automate security
controls and system integration testing. We developed a test case generator library that generates a set
of security test cases for authentication, authorization, input validation, and cryptography for every
enforcement point defined in the interceptors’ document. MDSE @R uses NUnit library to fire the gen-
erated test cases and notifies security engineers via test case execution result logs. At runtime, when-
ever a request for a system resource is received (7), the system container checks for the requested
method in the live interceptors’ document. If a matching found, the system delegates this request with
the given parameters to the default interception handler—security enforcement point (8).

The security enforcement point (9) is a class library that we developed to act as the default inter-
ception handler and the mediator between the system and the security controls. Whenever a request for
a target application operation is received, it checks the system-security specification document to en-
force the particular system-security controls required. It then invokes such security controls through
APIs published in the security control database (4). The security enforcement point validates a request
via the appropriate security control(s) configured and specified, for example, imposes authentication,
authorization, encryption, or decryption of message contents. The validated request is then propagated
to the method for execution (10).

Both system and security modeling tools are based on VS 2010 Modeling SDK that enables devel-
oping DSVLs integrated with VS IDE. To develop each DSVL, we developed a metamodel for the DSL
domain and specified the corresponding shapes that visualize each domain model concept. Then we
specified the mapping between the domain concepts’ attributes and the shape compartments. Finally
we developed code generation templates that generate the system live interceptors’ document and the
security specification document from the system and security models. Our modeling tools use a repos-
itory to maintain models developed either by the system engineers or by the security engineers. It also
maintains the system live interceptors’ document and security specification document. Examples of

APPENDIX 123

public IMethodReturn Invoke (IMethodInvocation input, GetNextHandlerDelegate getNext) {
EntitySecurity entity = LoadMethodSecurityAttributes(...);
if (entity ==null | | entity.HasSecurityRequirements() == false) {
return getNext().Invoke(input, getNext);

}
//logging Before Caly’ "**
this.source.Traceln <extensiontype="Interception" />
[lrboclfa At <register type="PresentationLayer.CustomerBLL, PresentationLayer ">

<systemlevel>
<Entitylevel>1</Entityle

<interception>
<policy name="PolicyCustomersBLL">

e <matchingRule name="MatchingRuleCustomersBLL"
<componentlevel> Type="MemberNameMatchingRule">

<objectname> <constructor>

<paramname="nameToMatch" value="GetCustomers" />

<classlevel> <paramname="nameToMatch" value="GetCustomerByName" />
<objectname>

cee <callHandler name="callhandlerCustBLL"t
<methodlevel> Type="SecurityKernel.SecurityCallHandler, SecurityKernel">

< ObjectName> GetCustomers </ObjectName>
<Authentication_Method>Forms</Authentication_Method>
<Authorization_Method>RBAC_Impersonate</Authorization_Method>

FIG. 5.13

Examples of MDSE@R weaved system interceptors and security specification files.

these documents are shown in Fig. 5.13. Examples of MDSE@R weaved system interceptors and se-
curity specification files. This example shows a sample of the Galactic interceptors’ document gener-
ated from the specified security-system mapping. It informs the system container to intercept
GetCustomers and GetCustomerByName methods (1); a sample of Swinburne security specification
file defining the security controls to be enforced on every intercepted point (2); and a sample of the
security enforcement point API that injects the necessary security control calls before and after appli-
cation code is run (3).

VULNERABILITY ANALYSIS AND MITIGATION

We developed a GUI, as shown in Fig. 5.14, to assist security experts in capturing vulnerability
signatures’ in OCL. This provides vulnerability signature editing, validity checking, and testing these
signatures’ specifications on simple target applications. We use an existing OCL parser to parse and
validate signatures against our system-description metamodel. Once validated, the vulnerability signa-
ture is stored in our weakness signatures database. To parse the given program source code and generate
a system abstract model, we use NReFactory .NET parser Library, which parses source code and gen-
erates its corresponding AST (it supports VB.Net and C#. We are currently working on parsers for PHP
and Java). Applications without source code—that is, only binaries are available—are decompiled
using ILSPY. This is currently supported for C# and VB.NET. We developed a class library to

124 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

i Signature Locator 8 [=] 3|
Fle Edt Andyss Hep

System / Security Model or Source Code i ility /

[2l [package ProgiamAnalysis
public class LoginPage : Page icontext Method inv SQLInjection

public int Loguser(string username, string password) self statements->select(S | S StatementType = 'MethodCall and S.StatementClass
{ [='SQl Command" and S P: xists(P | Get 25(P Name)))
lendpackage

if (! AuthenticateUser(
Request Params["username’],
Request Params|["password"]

)
{
if(Request Params{"username”] == "User")
| Response.Redirect("“\AccessDenies. aspx’);

}

else

string CustomerlD =™ =
Load Torget | Parse Ccode Parse Patiem Generste Sgnatue Code Test
| Show G Regster A Dynamc Wetrc
Extract System Model Apply Static Analysis Aoply Dynamic Analysis Aoply Re-aspect
" E
tart Location(Line 53. Col 34) Un (collection with 4 elements)
e o rgoecaon '

ypeStatoment. derthered
B Exccad ey

jae. 9 UsngDeclartion
5 NamespaceDeclaraion Name=PresentationLayer

FIG. 5.14
Snapshot of the vulnerability analysis tool.

transform the generated AST into a more abstract (summarized) representation that conforms to our
SDM. Our signature locator has an OCL translator that translates a given OCL signature into a corre-
sponding C# class with a signature matching method that checks the passed in system entity looking for
matches to specified signatures. The OCL functions library maintains a set of functions that extend the
system-description metamodel entities capabilities and can be used during the vulnerability analysis
phase. This includes control-flow analysis, data-flow analysis, and tainted-data analysis. These func-
tions can be extended with further analysis functions based on future vulnerability analysis needs. The
OCL to C# transformer performs a transformation for these functions as well as new OCL signatures
once defined. Program slicing and taint analysis techniques (core techniques in program and security
analysis area) can be easily captured in OCL. Platforms’ profiles are specified in XML documents that
contain information about specific platforms’ details. It is used to set the context of the signature locator
according to the software.

REFERENCES

[1] B. Fabian, S. Giirses, M. Heisel, T. Santen, H. Schmidt, A comparison of security requirements engineering
methods, Requir. Eng. 15 (2010) 7-40.

[2] R. Barnett, WAF virtual patching challenge: securing WebGoat with ModSecurity, (2009).

[3] R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems, John Wiley and
Sons, New York, NY, 2001.

[4] A.Dardenne, A.v. Lamsweerde, S. Fickas, Goal-directed requirements acquisition, in: Selected Papers of the
Sixth International Workshop on Software Specification and Design, 1993.

[5] H.S.F. Al-Subaie, T.S.E. Maibaum, Evaluating the effectiveness of a goal-oriented requirements engineering
method, in: Proceedings of the Fourth International Workshop on Comparative Evaluation in Requirements
Engineering (CERE’06—RE’06 Workshop), 2006.

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0030

REFERENCES 125

[6] A.Lamsweerde, S. Brohez, et al., System goals to intruder anti-goals: attack generation and resolution for
security requirements engineering, in: Proceedings of the RE’03 Workshop on Requirements for High As-
surance Systems, Monterey, 2003, pp. 49-56.

[7] L. Liu, E. Yu, J. Mylopoulos, Secure j*: engineering secure software systems through social analysis, Int.
J. Softw. Inform. 3 (2009) 89-120.

[8] L. Liu, E. Yu, J. Mylopoulos, Security and privacy requirements analysis within a social setting,
in: Proceedings of the 11th IEEE International Requirements Engineering Conference, 2003.

[9] H. Mouratidis, P. Giorgini, Secure Tropos: a security-oriented extension of the Tropos methodology, Int.
J. Softw. Eng. Knowl. Eng. 17 (2007) 285-309.

[10] H. Mouratidis, J. Jurjens, From goal-driven security requirements engineering to secure design, Int. J. Intell.
Syst. 25 (2010) 813-840.

[11] R. Matulevicius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, N. Genon, Adapting secure tropos for
security risk management in the early phases of information systems development, in: Proceedings of the
20th International Conference on Advanced Information Systems Engineering, 2008, pp. 541-555.

[12] G. Sindre, A. Opdahl, Eliciting security requirements with misuse cases, Requir. Eng. 10 (2005) 34-44.

[13] D.G. Firesmith, Security use cases, J. Object Technol. 2 (3) (2003) 53-64.

[14] J. Jurjens, Towards development of secure systems using UMLsec, in: Fundamental Approaches to Software
Engineering, vol. 2029, Springer, Berlin, Heidelberg, 2001, pp. 187-200.

[15] J. Jurjens, J. Schreck, Y. Yu, Automated analysis of permission-based security using UMLsec,
in: Proceedings of the 11th International Conference on Fundamental Approaches to Software Engineering,
2008, pp. 292-295.

[16] J.Jurjens, UMLsec: extending UML for secure systems development, in: Proceedings of the Sth International
Conference on the Unified Modeling Language, 2002.

[17] L. Montrieux, J. Jurjens, C.B. Haley, Y. Yu, P.-Y. Schobbens, H. Toussaint, Tool support for code generation
from a UMLsec property, in: Proceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering, Antwerp, Belgium, 2010.

[18] T.Lodderstedt, D. Basin, J. Doser, SecureUML: a UML-based modeling language for model-driven security,
in: Proceedings of the 5th International Conference on the Unified Modeling Language, Dresden, Germany,
2002, pp. 426-441.

[19] F. Satoh, Y. Nakamura, N.K. Mukhi, M. Tatsubori, K. Ono, Methodology and tools for end-to-end SOA se-
curity configurations, in: IEEE Congress on Services—Part I, 2008, pp. 307-314.

[20] Y. Shiroma, H. Washizaki, Y. Fukazawa, A. Kubo, Model-driven security patterns application based on de-
pendences among patterns, in: Proceedings of the International Conference on Availability, Reliability, and
Security, Krakow, 2010, pp. 555-559.

[21] N.A. Delessy, E.B. Fernandez, A pattern-driven security process for SOA applications, in: Proceedings of the
Third International Conference on Availability, Reliability and Security, 2008, pp. 416-421.

[22] M. Schnjakin, M. Menzel, C. Meinel, A pattern-driven security advisor for service-oriented architectures,
in: Proceedings of the 2009 ACM Workshop on Secure Web Services, Chicago, Illinois, USA, 2009.

[23] M. Hafner, M. Memon, R. Breu, SeAAS—a reference architecture for security services in SOA, J. Univers.
Comput. Sci. 15 (2009) 2916-2936.

[24] M. Alam, Model driven security engineering for the realization of dynamic security requirements in collab-
orative systems, in: T. Kiihne (Ed.), Models in Software Engineering, vol. 4364, Springer, Berlin, 2007,
pp. 278-287.

[25] M. Alam, R. Breu, M. Hafner, Modeling permissions in a (U/X)ML world, in: Proceedings of the First In-
ternational Conference on Availability, Reliability and Security, 2006, 8 pp.

[26] V. Bertocci, Programming Windows Identity Foundation, Microsoft Press, Redmond, WA, 2010.

[27] L. Peng, Y. Zhao-Lin, Analysis and extension of authentication and authorization of Acegi security frame-
work on spring, Comput. Eng. Des. (6) (2007) 1313-1316.

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0140

|
126 CHAPTER 5 ADAPTIVE SECURITY FOR SOFTWARE SYSTEMS

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]
(39]

[40]

[41]
(42]
[43]

[44]

[45]

[46]

L.A. Abdulkarim, Z. Lukszo, Information security implementation difficulties in critical infrastructures:
smart metering case, in: Proceedings of the International Conference on Networking, Sensing and Control,
2010, pp. 715-720.

M. Hafiz, R.E. Johnson, Improving perimeter security with security-oriented program transformations,
in: ICSE Workshop on Software Engineering for Secure Systems, 2009, pp. 61-67.

M. Hafiz, R.E. Johnson, Security-oriented program transformations, in: Proceedings of the 5th Annual Work-
shop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence
Challenges and Strategies, Oak Ridge, Tennessee, 2009.

V. Ganapathy, D. King, T. Jaeger, S. Jha, Mining security-sensitive operations in legacy code using concept
analysis, in: Proceedings of the 29th International Conference on Software Engineering, 2007.

P. O’Sullivan, K. Anand, A. Kothan, M. Smithson, R. Barua, A.D. Keromytis, Retrofitting security in COTS
software with binary rewriting, in: Proceedings of the 26th IFIP International Information Security Confer-
ence (SEC), Lucerne, Switzerland, 2011.

V. Ganapathy, T. Jaeger, S. Jha, Retrofitting legacy code for authorization policy enforcement,
in: Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006, pp. 15-229.

LS. Welch, R.J. Stroud, Re-engineering security as a crosscutting concern, Comput. J. 46 (2003) 578-589.
A. Elkhodary, J. Whittle, A survey of approaches to adaptive application security, in: Proceedings of the 2007
International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS *07),
2007, pp. 1-16.

B. Hashii, S. Malabarba, R. Pandey, et al., Supporting reconfigurable security policies for mobile programs,
in: Proceedings of the 9th International World Wide Web Conference on Computer Networks, Amsterdam,
The Netherlands, 2000, pp. 77-93.

K. Scott, N. Kumar, S. Velusamy, et al., Retargetable and reconfigurable software dynamic translation,
in: Proceedings of the International Symposium on Code Generation and Optimization, San Francisco,
California, 2003.

F. Sanchez-Cid, A. Mana, SERENITY pattern-based software development life-cycle, in: 19th International
Workshop on Database and Expert Systems Application, 2008, pp. 305-309.

F. Sanchez-Cid, A. Mana, Patterns for automated management of security and dependability solutions,
in: Proceedings of the 18th International Conference on Database and Expert Systems Applications, 2007.
A. Benameur, S. Fenet, A. Saidane, S.K. Sinha, A pattern-based general security framework: an eBusiness
case study, in: Proceedings of the 11th IEEE International Conference on High Performance Computing and
Communications, 2009, pp. 339-346.

B. Morin, T. Mouelhi, F. Fleurey, Security-driven model-based dynamic adaptation, in: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 2010.

E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACM Trans. Auton.
Adapt. Syst. 8 (2014) 17.

M. Almorsy, A. Ibrahim, J. Grundy, Adaptive security management in SaaS applications, in: S. Nepal,
M. Pathan (Eds.), Security, Privacy and Trust in Cloud Systems, Springer, Berlin, 2014, pp. 73—102.

M. Almorsy, J. Grundy, A.S. Ibrahim, MDSE@R: model-driven security engineering at runtime,
in: Proceedings of the 4th International Symposium on Cyberspace Safety and Security, Melbourne, Australia,
2012.

M. Almorsy, J. Grundy, SecDSVL: a domain-specific visual language to support enterprise security model-
ling, in: 2014 Australian Conference on Software Engineering, Sydney, 2014.

M. Almorsy, J. Grundy, A.S. Ibrahim, Supporting automated vulnerability analysis using formalized vulner-
ability signatures, in: Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, Essen, Germany, 2012.

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0235

REFERENCES 127

[47] M. Almorsy, J. Grundy, A.S. Ibrahim, Automated software architecture security risk analysis using formal-
ized signatures, in: Proceedings of the 36th International Conference of Software Engineering, San Francisco,
2013, pp. 300-309.

[48] M. Almorsy, J. Grundy, A. Ibrahim, VAM-aaS: online cloud services security vulnerability analysis and
mitigation-as-a-service, in: X.S. Wang, I. Cruz, A. Delis, G. Huang (Eds.), Web Information Systems Engi-
neering—WISE 2012, Springer, Berlin, 2012, pp. 411-425.

[49] B.D. Win, F. Piessens, W. Joosen, How secure is AOP and what can we do about it? in: Proceedings of the
2006 International Workshop on Software Engineering for Secure Systems, Shanghai, China, 2006.

http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00005-8/rf0250

CHAPTER

AUTOMATED INFERENCE
TECHNIQUES TO ASSIST WITH
THE CONSTRUCTION OF
SELF-ADAPTIVE SOFTWARE

S. Malek*, K. Canavera’, N. Esfahani’
University of California, Irvine, Irvine, CA, United States” George Mason University, Fairfax, VA, United States'
Google Inc, Mountain View, CA, United States*

INTRODUCTION

As software engineers have developed new techniques to address the complexity associated with the
construction of modern-day software systems, an equally pressing need has risen for mechanisms that
automate and simplify the management of those systems after they are deployed, that is, during run-
time. It is estimated that one-half of a company’s total IT budget is spent on managing and trouble-
shooting its IT infrastructure [1,2]. According to Ganek [3], vice president of IBM Corporation’s
Software Group, “the spiraling cost of managing the increasingly complex computing systems is be-
coming a significant inhibitor that threatens to undermine the future growth and societal benefits of
information technology.”

To mitigate the difficulty of managing ever increasingly complex software, approaches that enable
substantially higher levels of automation have become appealing. A vision of autonomic computing
[4] promoting the development of self-adaptive software has started to emerge. A self-adaptive soft-
ware is capable of automatically modifying its behavior at runtime to achieve certain functional or
quality of service objectives [5,6]. This vision, however, has remained largely elusive. The overarch-
ing problem is that enabling a software system to manage automatically itself at runtime tends to ex-
acerbate the complexity of constructing the software in the first place [5,7]. This has been the key
obstacle that has hindered adoption of self-adaptation capabilities in real world products. This chapter
aims to explore and, at least partially, answer the following question: What automated techniques and
tools could be developed to assist the developers with construction of dependable self-adaptive
software?

More specifically, there are three issues with the existing approaches that heavily contribute to the
problem outlined above and form the focus of this project: (1) Manually intensive: Existing techniques

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00006-X 1 3 1
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00006-X

132 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

place a heavy burden on the engineer to manually construct numerous models (e.g., queuing network
models, Markov models), which are used at runtime to assess the impact of adaptation choices on the
system’s quality objectives (e.g., response time, availability). This is a daunting task, especially when
one considers the complexity of today’s software systems, and the fact that most practitioners are not
adept at those modeling languages. (2) Fragile: The manually constructed models make the manage-
ment logic fragile to any change in the running software that was not account for in their construction.
This challenges the engineer with yet another daunting task of thinking about all possible runtime con-
ditions prior to system deployment. (3) Inefficient: the manually constructed models are often static and
coarse-grained, and thus do not provide the level of detail that is necessary for efficient decision-
making and fast adaptation of the system.

In our research over the past few years [8—12], we have tackled the complexity of engineering self-
adaptive software by pursuing an alternative approach. The premise guiding our research is that any
technique aimed at alleviating the complexity of runtime management at the expense of exacerbating
the complexity of developing the software in the first place is not a plausible solution. The resulting
solution heavily draws on inference techniques, such as machine learning [13] and data mining [14], to
derive automatically the models necessary for building a self-adaptive software system. In particular,
our work so far has followed two complementary thrusts: (1) A machine learning approach for goal
management: we have used machine learning techniques to automatically derive the models predicting
the impact of adaptation actions (i.e., enabling a particular capability at runtime, such as caching or
authentication) on the system’s quality objectives (e.g., response time, availability) [9,11]. These types
of models are used to make management decisions to fix problems that may arise at runtime and
achieve the system’s objectives, that is, goals. (2) A data mining approach for change management:
we have used data mining techniques to derive automatically the models expressing the probabilistic
dependencies between the components in the system [8,10,12]. These types of models are used to en-
sure changes in the running software do not create inconsistency, and jeopardize the system’s
functionality.

In this chapter, we provide an overview of several challenges with the state-of-the-art, outline an
inference-based approach for engineering adaptive software that aims to address these challenges,
specific elements of which have appeared in several disjointed publications [8—12], and elaborate
on the areas of future research. The contributions of an inference-based approach are threefold.
(1) Automatic derivation of the models for runtime management of applications significantly reduces
the manual engineering effort. (2) The ability to automatically adjust and fine-tune the runtime
models to emerging patterns of behavior makes self-adaptive software developed in this manner re-
silient to unexpected changes that may occur at runtime. (3) The highly detailed and dynamic models
learned using the proposed approach improve the efficiency of both making decisions and effecting
changes.

The remainder of this chapter is organized as follows. Section 6.2 describes a running example
that is used for illustration of challenges as well as explanation of the approach. Section 6.3 demon-
strates the challenges of engineering self-adaptive software, particularly with respect to the manual
construction of models for goal management and change management. Section 6.4 provides an over-
view of the overarching approach devised in our research. Sections 6.5 and 6.6 describe our auto-
mated inference techniques for goal management and change management, respectively. Finally,
Sections 6.7 provides an overview of the related work, and Section 6.8 wraps up the chapter with
the concluding remarks.

6.2 MOTIVATING APPLICATION 133

MOTIVATING APPLICATION

Two major paradigm shifts are increasingly defining the future of computing. Self-management capa-
bilities are sought after in both of these paradigms. First is the migration of software to mobile, per-
vasive, and cyber-physical settings. Since these environments are known to be highly dynamic and
unpredictable, it is difficult to determine the best configuration for the software prior to its deployment,
forcing some of those decisions to be made at runtime. Second, software is increasingly provisioned
from parts that are developed, maintained, and operated by independent parties, that is, service-orien-
tation. Here, no single stakeholder oversees and controls all parts, which may change over time. Yet, by
assembling the whole, one commits to achieve a certain goal, formalized in a contract that defines a
service-level agreement. The software in these paradigms is expected to operate under changing sit-
uations and conditions, and the only way that can be achieved is to employ dependable self-
management capabilities.

For the purpose of motivating and describing the research, we use a service-oriented software,
called travel reservation system (TRS), but note that the principles and techniques developed as part
of this project will be applicable in other domains as well. TRS is a web-based portal for preparing and
making travel reservations. TRS relies on several internal and external services. Fig. 6.1 shows only a
small subset of its architecture for illustration purposes. The actual software developed by an external
organization is significantly larger than what is depicted here. TRS needs to be self-adaptive to deal
with unexpected situations, such as failure of services in meeting their advertised service-level agree-
ments. To that end, TRS may choose from numerous runtime solutions at its disposal, such as swap
service providers that do not meet their service-level agreements, enable caching to improve perfor-
mance during a traffic spike, change authentication protocol to thwart a security attack. The adaptation
logic of TRS also needs to balance trade-offs, for example, improving security may degrade response
time. The approach described in this chapter tackles the complexity of enabling a system such as TRS to
become self-adaptive.

Travel Agent
agent discovery
Channely ' Query “‘;"':"Discover
request I itinerary
Authenticate Cache
Request = "™ Look up
access
Log ,\Store | Business
tier
) Quote
T request
GUI

FIG. 6.1
Subset of travel reservation system’s software architecture. The bold path indicates the get price quote scenario.

134 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

SHORTCOMINGS WITH THE STATE-OF-THE-ART

Two seminal frameworks have highly influenced the way self-adaptive software systems are concep-
tualized. First is MAPE-K from IBM [4], which advocates an architecture consisting of four types of
components that operate on the managed system and provide monitoring, analysis, planning, and ex-
ecution (MAPE) capabilities. MAPE components share various models using what is known as know!-
edgebase, resulting in MAPE-K. Second framework is the so-called three-layer architecture [6], where
the three layers provide separation of concern as follows: (1) goal management at the top is responsible
for ensuring the managed application satisfies its quality objectives, such as response time and avail-
ability, by developing new configurations. (2) Change management below that is responsible for
executing the steps necessary to “safely” transition the software system to a new configuration. (3)
Component control at the bottom provides the low-level facilities, such as (un)binding software mod-
ules in the runtime environment.

Our approach targets the challenges of realizing models that comprise the MAPE-K’s knowledge-
base. Moreover, in our research so far, we have focused on goal management and change management
layers, mainly because those currently pose the greatest challenge. There are numerous existing plat-
forms (middleware solutions) [15—19] for realizing component control capabilities that could benefit
from the concepts described here. The remainder of this section provides an overview of the state-of-
the-art in goal management and change management, in particular their shortcomings, which motivate
this research.

GOAL MANAGEMENT

Most existing approaches (e.g., [20,21]) to goal management leverage manually constructed analytical
models. These models are used together with the monitored data to predict the impact of adaptation
choices on system’s quality objectives, that is, goals. For instance, queuing network models [22]
and hidden Markov models [23] have been used extensively for assessing the system’s performance
and reliability properties, respectively. When there are several quality attributes of interest, a utility
function representing the desirable trade-offs is also used [24,25]. The output from goal management
is a new configuration for the software, often in the form of a new software architecture [26].
There are three issues with the existing approaches:

Manually intensive—they place a heavy burden on the engineers to construct manually analytical
models, especially when one considers the complexity of today’s software systems. These models
often need to be customized to the unique characteristics of each application, and provide little
opportunity for reuse. Further exacerbating the situation is the fact that practitioners are not adept at
those modeling languages (e.g., queuing networks, Markov chains).

Fragile—any analytical model inevitably relies on some simplifying assumptions by the virtue
of being an abstract representation of a system or its environment. For instance, in the construction
of a queuing network model, an engineer may make some assumptions as to the main sources
of delay in the system. If any of those assumptions are not borne out or become invalidated due to
some unexpected events or conditions, the analysis, and hence the adaptation decisions become
Inaccurate.

6.3 SHORTCOMINGS WITH THE STATE-OF-THE-ART

135

Inefficient—most formulations of goal management problem that aim to optimize the system’s
quality objectives by finding the best configuration are NP-complete (e.g., [20,21]). That is, at the
state-of-the-art, it is not possible to prune the search space without trading off optimality. Referring
to TRS example of Fig. 6.1, let us assume that Cache, Authenticate, and Log are all optional
components that could be installed at runtime. Given a response time problem and a queuing
network model of the system, there is no mechanism to find the best configuration by discriminating
among the pOptional components _ 93 _ g architectures, other than evaluating all. The state-of-the-art is
brute force exploration of the configuration space, and takes a long time to solve in any sizable

system with many adaptation choices.

CHANGE MANAGEMENT

In the change management literature [27], transaction is defined as an exchange of information be-
tween two components by which the state of a component is affected. A dependent transaction is a
transaction whose completion depends on the completion of consequent transactions. It is commonly
accepted that to ensure a component remains in a consistent state during/after adaptation, it should not
be changed in the middle of a (dependent) transaction. Fig. 6.2 shows the transactions comprising the
get price quote scenario of TRS. Here, T4 is an independent transaction, while T'1 is a dependent trans-
action. Consider a situation in which Business Tier component is replaced after sending request e2, but
before receiving response ¢2’. Since the newly installed component does not have the same state as the

tier

GUI I—Busmess Authenticate

Travel
ent

E R —

A

awiy

T4 | _@

o |

Y
suonoesuel} ajonb aosud jeg

—@

Legend
e Request event @ Response event

Transaction T

FIG. 6.2

Dependent transactions comprising TRS’s get price quote scenario.

136 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

old one, it may not be able to handle €2’ and initiate T4, resulting in an inconsistency, and potentially
the system’s failure.

Even if the component is stateless, inconsistency problems may arise. Consider a stateless compres-
sion component that compresses and decompresses data using two interfaces that are reverse of one
another. Replacing this component with one that uses a different type of compression algorithm in
the middle of a transaction could break the system’s functionality, since the decompression cannot
be performed on data that was compressed using the old component. By the same reasoning, state trans-
fer in the case of stateful components is not sufficient to address inconsistency due to adaptation. More-
over, it breaks the black-box treatment of components—the premise underlying this line of research is
to avoid placing restrictions or making changes to the internal logic of components [27,28].

The state-of-the-art for safe adaptation of system is quiescence [27]. A component is in quiescence
and can be adapted if (1) it is inactivated, meaning it is not participating in any transaction, and (2) all
of the components that may initiate transactions requiring services of that component are passivated.
A component is passive if it continues to receive and process transactions, but does not initiate any
new transactions. At runtime, the decision about which part of the system should be passivated to
replace a component is made using a component dependency model, such as that showed in
Fig. 6.1. For instance, to change the Authenticate component, the Business Tier and GUI components
need to be passivated, since those are the components that may initiate a transaction on the Authen-
ticate component.

Interestingly, a similar set of issues as that facing goal management can be observed here as well:

Manually intensive—quiescence requires the engineer to develop manually not only models of the
component dependencies, but also the logic necessary for controlling the internal behavior of
components, that is, for passivating them. This problem is exacerbated in emerging systems where
the dependencies become known at runtime, such as service-oriented software, as well as systems
where the component’s implementation is not available, such as systems composed of commercial-
off-the-shelf components.

Fragile—component dependency models, such as Fig. 6.1, are tightly coupled with the
application logic. As the system evolves, the internal logic of components may change, leading to
inaccurate dependency models, which if used for making changes may break the system’s
consistency.

Inefficient—quiescence is known to be very disruptive [28]. This is particularly true for changing
a component that is depended upon by many others, as they all have to be passivated. In the
worst case, updating a component that all other component may indirectly initiate a transaction on
is equivalent to stopping the entire system. Thus, quiescence has the potential of significantly
slowing down the system.

OVERVIEW OF INFERENCE-BASED TECHNIQUES

Our research aims to address the shortcomings outlined in the previous section by fundamentally
changing the way self-adaptive software is designed and developed. Our objective is to do away
with manually intensive processes by providing the techniques and tools that can empower a
software system to learn automatically how to manage itself. A byproduct of this automation is that

6.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT 137

fragility and inefficiency issues can also be dealt with. We have followed a two-pronged research
agenda as follows:

1. Learning-based approach for goal management: We have developed a novel method of
automatically deriving the models necessary for reasoning about adaptation choices using machine
learning techniques. The result of learning is a set of relationships between the adaptation
alternatives in the system and the quality attributes of interest (e.g., response time, availability).
The novelty with respect to existing approaches is that the models used for making adaptation
decisions are generated automatically, minimizing the required manual effort. The same process
used to derive the initial models can be used to adjust them to emerging events and conditions at
runtime. Moreover, using the learned models, it is possible to prune the search space significantly
without compromising the quality of decisions.

2. Mining-based approach for change management: We have developed an approach for mining the
execution history of a software system to derive a set of rules expressing the probabilistic
relationships between occurrences of transactions in the system. Given a set of transactions
currently running in the system, these rules can be used to predict the probability with which a
component can be changed at a point in time without jeopardizing the system’s functionality,
while minimizing the interruptions. Finally, by continuously monitoring the transactions and the
accuracy of predictions, the approach provides the means to adjust the rules as new patterns of
interaction emerge.

The following two sections describe the two facets of this research agenda in more detail. Interested
reader may find additional details in our prior publications on these topics [8—12].

LEARNING-BASED APPROACH FOR GOAL MANAGEMENT

The objective of learning in goal management is to derive a model that can quantify the impact of the
adaptation alternatives on the quality attributes of interest (e.g., response time, availability). The ad-
aptation alternatives correspond to variation points in the software that could be exercised at runtime.
Each variation point is what we call a feature, a concept that we have borrowed from software product
line engineering [29-31], except here we propose to use features as units of adaptation. We refer to the
quality attributes monitored from the running system as metrics. Here, we assume one of the existing
technologies (e.g., [32—-34]) is used to measure and collect the required metrics from the running soft-
ware system.

Fig. 6.3A shows a feature model representing the variability in a subset of TRS. Here, there are four
features in the system and one common core. The features in the example use two kinds of relation-
ships: dependency and mutual exclusion. Feature modeling supports several other types of relationships
(see [35]) that are also supported in our approach, but elided for brevity. The use of feature as an ab-
straction makes the approach independent of a particular adaptation methodology. For example, fea-
tures may correspond to configuration parameters that are stored in configuration files (Fig. 6.3B),
aspects that are dynamically weaved to the running system (Fig. 6.3C), or modification of the system’s
software architecture at well-defined variation points (Fig. 6.3D).

As depicted in Fig. 6.4, and further described in the following section, the approach consists of two
cycles.

138 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

<<core>>
Travel reservation system "?e(/”
Ss
= ives>> TRe uires i
alternative q . | F3: Caching

F4: Per-Session auth. <<group>>
Travel agent auth. -
<<default>> F4: Evidence

(A) F3: Per-Request auth. Deplo generation

|

|

|

|

| =

: Software
|

|

|

7 i Dynamic - architecture
Running Conflfg“:rsatlon Running AOP Running
system system system
(B) (©) (D)

FIG. 6.3

(A) Feature model of TRS. Features may map to (B) parameters in a configuration file, (C) aspects that are (un)
weaved with the running system, and (D) parts of the architecture providing the corresponding capabilities.

Learning cycle

._base
[0bserve]—>[Induce]
\

" S

etrics Q (P Features
Running system Dy
N configuration 1 Dy |

e Running system >
configuration n

Execution environment

Adaptation cycle

[Analyze] [Effect]

\. J

FIG. 6.4

Overview of the learning-based approach for making adaptation decisions.

6.5.1 LEARNING CYCLE

The learning cycle starts prior to system’s deployment, and continues as needed throughout its oper-
ation. Prior to deployment, a benchmark or simulation environment is used to execute the software
system in different feature combinations, and collect metrics (e.g., response time) from the running
system. The metrics collected from benchmarks are used to induce a preliminary model that can predict

6.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT 139

the system’s behavior under different configurations. The relationships identified through learning
could be represented as functions that quantify the impact of features on metrics. In other words, fea-
tures are independent variables, while metrics are dependent.

Modern machine learning techniques, such as support vector machine (SVM) [36], are capable of
identifying the interactions among the independent variables, that is, features. A feature interaction
occurs when the effect of two or more features being enabled is different from the sum of their indi-
vidual effects.

The following steps comprising the learning cycle are executed for each benchmarked configura-
tion (see Fig. 6.4). Based on the metrics collected from the running system, observe normalizes the data
in preparation for learning, and induce learns the properties associated with a particular system vari-
ation and stores that in the knowledgebase, such that informed adaptation decisions can be made at
runtime.

Based on the collected observations, the induce activity constructs a function that estimates the im-
pact of making a feature selection on the metrics. Induce executes two steps to obtain these functions.
The first step is a significance test that determines the features with the most significant impact on each
metric. This allows for substantial reduction in the number of independent variables that learning needs
to consider for each metric. After the significance test, the learning algorithm is employed, which given
the normalized observations, derives the functions relating the impact of features on metrics. In an ex-
periment in which we applied SVMs regression [36] to data obtained from TRS, we were able to derive
the following function estimating the impact of features on the system’s response time, indicated as G:

G =1.553F —0.673F,+0.709F3 +0.163FF3 —0.843

Here each feature is assigned a coefficient that is effective only when the feature is enabled (i.e., it is set
to “17). The function estimates the impact of features on the system’s response time. The learned func-
tions are stored in the knowledge base for use in the adaptation cycle.

A similar process could be applied at runtime to fine-tune the models to conditions and events that
may change the system’s behavior. We keep track of the prediction errors by collecting the gap be-
tween predicted and actual impact of adaptations on the metrics. Once the prediction error reaches a
certain threshold, it is taken as an indicator that new patterns of behavior are emerging, and the models
are adjusted by initiating a new round of learning (induce activity in Fig. 6.4) using the collected data.

ADAPTATION CYCLE

As depicted in Fig. 6.4, the adaptation cycle uses the automatically inferred models to satisfy the qual-
ity objectives by executing the following three activities:

« Based on the metrics collected from the running system, Analyze calculates the achieved quality
attributes to determine if a quality objective is violated.

» In case of a violation, Plan is invoked to search for a new configuration that restores the system’s
quality objectives. The search problem could be formulated in different ways. One possibility is
to find a feature selection that satisfies all quality objectives, while a more sophisticated approach
is to optimize (minimize/maximize) the quality objectives. When optimizing, utility functions
representing the user preferences with respect to trade-offs among the quality objectives may be used
[24,37].

140 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

» Given a new configuration, Effect determines the adaptation steps to place the system in that
configuration. An adaptation step is to enable, disable, or swap a feature. The steps have to abide by
the feature constraints (i.e., dependency, mutual exclusion). As discussed in Section 6.6, each
adaptation step at this layer itself is realized as a set of changes in the running software by the
change management layer.

An important contribution of our approach is that the adaptation cycle can use the learned models to
prune the search space significantly, without compromising quality (accuracy) of decisions. Learned
models provide two opportunities to generate dynamically an optimization problem tailored to the sit-
uations that may arise at runtime:

1. Given a violated quality objective, the learned model is used to eliminate all of the features with
no significant impact on that objective. We call the set of features that may affect a given objective
as significant features. They represent our decision variables.

2. Significant features may affect other quality objectives, the set of which we call the conflicting
objectives. To detect the conflicts, again the learned models are used, except this time backtracked.
For each significant feature, the other objectives that the feature affects are found.

Therefore, the learned models allow us to focus the decision on a subset of the system’s features and
objectives. This is in contrast to the state-of-the-art, where manually constructed models do not provide
a convenient mechanism for discriminating among the features and objectives. By representing each
feature as a binary decision variable, this problem could be formulated as a linear-programming prob-
lem [38], which when solved using a constraint solver provisions the optimal solution. Interested reader
can find the detailed formulation of this problem as a linear-programming problem in our prior pub-
lication [9,11].

EXPERIMENTAL RESULTS

We have shown the feasibility of some of the key facets of the approach in a controlled execution of
TRS [9,11]. These experiments were performed on an instance of TRS consisting of 78 features and
8 quality objectives to understand better the characteristics of the learning cycle. We used SVM [36] to
induce a model predicting the impact of adaptations on the system’s response time. We also developed
a queuing network model, which assumes that workload and service demand parameters follow an ex-
ponential distribution. We chose queuing network, since it is a commonly used approach in the liter-
ature [39] for assessing a system’s response time. Fig. 6.5 shows the results under two different
scenarios:

Similar context—here the system is evaluated in a setting that is comparable to that used during
the training. As shown in Fig. 6.5A, both approaches achieve good level of accuracy under
expected execution conditions, which serves as preliminary evidence that through machine
learning it is possible to learn complex interaction between the system’s features and its quality
attributes.

Unexpected situation with emerging pattern—here the system faces an unexpected change,
which results in a new behavioral pattern (i.e., change in the impact of features on metrics). In this
scenario, we simulated occurrence of an unexpected behavior by manually injecting a database
index failure, in which the index of a database table used by the Business Tier component fails,

6.5 LEARNING-BASED APPROACH FOR GOAL MANAGEMENT 141

Prediction error (%)

(A)

150

100

50 -

Prediction error (%)

(B) Time

+ Online learning * Queuing network A Learning initiation

FIG. 6.5

Accuracy of learning: (A) similar context, (B) emerging pattern caused by a database index failure.

and forces a full table scan. Fig. 6.5B shows that as a result of the index failure, a new pattern of
behavior emerges, and both online learning and queuing network approaches perform poorly at the
beginning. However, online learning gradually adjusts the models to the new behavior in two
rounds of learning. As a result, the error rate drops from an average of 54% to less than 5%, at which
point the system reaches an acceptable threshold and no additional learning is performed. In
contrast, the prediction error of queuing network model remains on average at 80%, since the model
presumes the existence of a table index, that is, service demand of the queue representing the
database in the model has become inaccurate.

We also conducted experiments involving the adaptation cycle. The results have been very promising.
We compared the decisions made using the learned models against state-of-the-art, that is, manually
constructed queuing network models. In both cases, we used commercially available linear-
programming solvers [38]. Fig. 6.6 shows that the proposed approach achieves significant speed-
ups over the state-of-the-art in the nine experiments. This is attributed to the fact that learned models
allow the adaptation cycle to prune the search space significantly, by eliminating insignificant features
and irrelevant objectives (recall Section 6.5.2). At the same time, although the pruning allowed for only
a small subset of each system to be optimized, the quality of solutions developed using the proposed
approach were on average within 3% of those resulting from optimizing the entire system.

142 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

@ 50.00

@ 40.00

£ ° ® g

g 30.00 ® [] []

£ 20.00 ®

o 10.00

X

w000

1 2 3 4 5 6 7 8 9

® State-of-the-art | 26.08 | 17.89 | 21.52 | 34.94 | 33.56 | 39.50 | 36.42 | 26.11 | 25.96
A Learning-driven| 0.22| 0.15| 022 | 022| 022| 022| 022| 022| 022

FIG. 6.6

Execution time in making decisions.

NOTEWORTHY RESEARCH CHALLENGES AND RISKS

While our experiments indicate that a learning-based approach is indeed feasible, there are several
topics of special importance that need further investigation.

6.5.4.1 Extraneous and confounding variables

Two important risks to knowledge inferred through machine learning are extraneous and confounding
variables [40]. Extraneous variables are factors other than features that may also bear an effect on the
behavior of the system. An example of an extraneous variable alluded to earlier is the system’s work-
load, which may impact some of the system’s quality attributes, such as response time. A confounding
variable is a special type of an extraneous variable that correlates positively or negatively with both
dependent and independent variables. Unlike extraneous variables that introduce an error in the model,
a confounding variable could result in identifying incorrect relationships. There are several possible
approaches to deal with such problems. One technique is to include factors other than features
(e.g., workload) that may influence the behavior of the software in the learning process as additional
independent variables. Additionally, there are several known techniques [4 1] for testing the causality of
the learned models that deserve further research.

6.5.4.2 Overhead of monitoring and learning

Another issue is the computational complexity of learning. Note that the use of feature-oriented adap-
tation model pioneered in our prior work [9,42] already offers two opportunities for tackling this issue:
(1) Learning operates on feature selection space, which is significantly smaller than the traditional
architectural configuration space. The features encode the engineer’s domain knowledge of the adap-
tation choices that are practical in a given application, and thus significantly reduce the number of
independent variables. (2) By using the feature relationships (e.g., mutual exclusions, dependencies),
one could further reduce the feature selection space to a subset that is valid with respect to those con-
straints. Yet, learning in systems with very large number of features and many contextual parameters
could become prohibitively expensive. One possible solution is to develop a significance test that
would occur at the outset of learning. The test determines whether a feature in isolation has an impact
on each metric. This allows for substantial reduction in the number of independent variables, and per-
formance gains, but potentially at the expense of slight degradation in the accuracy of learned models.

6.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT 143

Another related issue is determining how much data needs to be collected for machine learning to
produce accurate models of the system’s behavior. For that purpose, the learning accuracy threshold
provided by most modern machine learning algorithms provides a good starting point.

6.5.4.3 Adaptation in the presence of uncertainty
The quality of adaptation decisions depends on the accuracy of an inferred model. When there are un-
anticipated changes, our approach is forced to make some decisions using the inaccurate models. An
important issue is whether the decisions made during this period of time could exacerbate the violated
objectives. Here, again, the feature-oriented adaptation paradigm provides us with an opportunity to
address this issue. Our experience shows that while an inferred model may fail to predict accurately
the magnitude of impact on metrics, it gets the general direction of impact (i.e., positive vs. negative)
correctly. For instance, the fact that cache feature improves the system’s response time, regardless of
any other factor, is a property that is learned. Hence, even in the presence of inaccurate models, the
approach will make decisions that are good, but not necessarily optimal, until the knowledgebase is
refined.

Another potential avenue of future research is to investigate opportunistic self-training as a way of
detecting emerging behaviors before adaptation decisions are made—for instance, a self-training pro-
cess that takes place using a shadow clone of the running system during periods of low utilization.

6.5.4.4 Structure of learned model

In some cases, using functions to model the impact of features on metrics is not feasible. For instance, in
the case of discrete metrics, classification-based techniques [40] are more suitable, as they can effi-
ciently represent such relationships in the form of decision trees [43]. To that end, suitability of various
machine learning techniques to different types of quality objectives should be explored. A few notable
examples include SVMs [36], neural networks [44], decision trees [43], CART [45], MARSplines [46],
etc. A follow on issue that would need to be investigated is how to make decisions using models derived
from different learning techniques.

MINING-BASED APPROACH FOR CHANGE MANAGEMENT

Once goal management finds a new feature selection, change management is invoked to put it into
effect. As depicted in Fig. 6.3, there are many ways of conceptualizing features, but regardless, at
the change management layer, changes in features manifest themselves in terms of changes to the soft-
ware components comprising the running software. For clarity, in this section, we assume the solution
selected by the goal management layer has already mapped to a set of software components that need to
be changed.

According to quiescence, to ensure safe adaptation, a component should not be adapted in the mid-
dle of a dependent transaction. It achieves this by first passivating (halting) all components that may
initiate a transaction on the component that is being adapted. However, as you may recall from
Section 6.3.2, the existing approach has three issues: (1) manually intensive, requiring the engineer
to model the component dependencies, (2) fragile, since when the software evolves, the models become
inaccurate representation of dependencies, and (3) inefficient, due to the severe disruptions caused by
passivation.

144 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

We have developed an alternative approach that alleviates these shortcomings [8,10]. We assume
the events intended for the component that is being adapted can be buffered during the change, and
delivered afterward. The key insight is that the quiescence constraint that a component can only be
adapted when it is not participating in a dependent transaction is overly constraining, since there
are also certain times within the execution of a transaction that a component can be safely adapted.
More specifically, a component can be safely adapted unless it has already participated in a dependent
transaction that will require services of that component again to complete. For instance, Authenticate
component in Fig. 6.2 can be safely adapted either prior to e2 or after €2’ without the need to wait for the
top-level transaction (TLT) T'1 to complete. As another example, Business Tier component can be
safely adapted either prior to el or after e1”, but not in between, since it participates twice in the trans-
action T1.

The research challenge then is developing a detailed model of the system’s transactions, such as
Fig. 6.2, that would allow us to make such refined decisions about when components can be safely
changed. At first blush, it may seem that simply tagging events comprising the dependent transactions
(i.e., establishing sessions) would solve this problem, but that breaks the black-box treatment of com-
ponents. We have developed an approach that learns the details of dependent transactions by mining the
execution history of a software system. The result of mining is a set of rules expressing the probabilistic
relationships between occurrences of transactions, and consequently involvement of corresponding
components in servicing those transactions. Given a set of transactions currently running in the system,
these rules can be used to predict the probability with which a component can be safely changed at any
point in time. Finally, by continuously monitoring the transactions and the accuracy of predictions, the
approach provides the means to adjust the rules as new patterns of interaction emerge.

MINING FOR RUNTIME DEPENDENCIES

Fig. 6.7 shows the steps comprising our approach. Mining operates on an event log of the system, which
contains the events and the time at which they occur in the system. Similar to prior research [27,28], we
assume events, which mark the beginning and end of transactions, can be observed in a running soft-
ware system. For instance, looking at Fig. 6.2, it is reasonable to assume the GUI component can
determine the beginning and end of dependent transaction 71 in terms of request el and response
el’. What is missing is the ability to infer automatically the causal relationship among the transactions
that happen in between, and whether those transactions are initiated in response to 71, given that there
may be multiple concurrently running dependent transactions at any point in time.

As shown in Fig. 6.7, the first step is to construct baskets. A basket is a set of events that occur close
together in time. A new basket is formed for each transaction if its beginning, end, or both do not fall
within the beginning and end of another transaction. In reference to Fig. 6.2, a new basket would be
created for T'1, as its beginning and end (determined by el and e1”) do not fall within any other trans-
actions. As such, a basket is created for each “top-level” transaction, but not the transactions that those
TLTs initiate. All transactions beginning and ending within the time frame of a basket are added to that
basket. In the example of Fig. 6.2, all three transactions 72, T3, and T4 are added to T'1 basket, repre-
sented as by ={T1,T2,73,T4}.

Using this process, an entire segment of a software system’s event log can be transformed into a set
of baskets representing the occurrence of transactions together in time. Several data mining ap-
proaches, such as apriori [47], Eclat [48], and FP-growth [49], can then be used to process baskets

6.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT 145

Association rules

Derive

Usage
predictions Usage
prediction

registry

Usage
probabilities;

Prediction
error

Check
prediction
accuracy

Update
predictions

Software system

FIG. 6.7
Overview of mining-based approach for change management.

constructed in this way to derive a set of transaction association rules (TARs). TARs are probabilistic
rules for predicting the occurrence of transactions. A TAR is a rule of the form A — B:p. It states that the
occurrence of transaction set A implies the occurrence of transaction set B with probability p. As shown
in Fig. 6.7, TARs derived in this way are stored in the rule base for use during system’s adaptation at
runtime.

Given a sufficiently large usage history, the approach compensates for concurrently running trans-
actions. Consider the scenario in which a user is performing the TLT 71 as shown in Fig. 6.2, when a
second user initiates another TLT T5 overlapping partially in time with 71 and itself initiating a trans-
action 76 that falls wholly within the beginning and end times of both 71 and T5. The proposed
approach will include 76 in both b7, and b7s baskets. However, since transactions 76 and 75 are truly
independent, the false placement of 76 in by, is a random event that is not likely to occur in a signif-
icantly large number of baskets, and thus safely ignored by modern data mining algorithms.

USING THE MINED DEPENDENCIES

As shown in Fig. 6.7, a usage prediction registry for every component in the system is maintained. This
registry stores the probability that the component will imminently be used as a result of transactions
running in the system. When an event (indicating the beginning or end of a transaction) occurs, the
update predictions activity consults the rule base for any TARs that are satisfied. A TAR is satisfied
if all of the transactions on its left-hand side have been initiated and currently running. If so, it is
expected that the transactions predicted by the rule (i.e., right-hand side) will occur with a probability
p. Those predictions are used to update the registries for components that handle those transactions.
However, since a value may already be present in the registry, the probability p cannot simply be
placed in there. Instead, three cases must be considered and appropriate update mechanisms would
need to be developed: (1) Independent: The new TAR is independent of the TARs that are already

146 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

affecting the registry, that is, no transactions on the left-hand sides of the TARs are shared. (2) Depen-
dent: The new TAR is dependent on the TARs that are already affecting the registry, that is, the left-
hand side of the new TAR is a superset of the left-hand side of the previous TARSs. (3) Overlapping: The
left-hand side of the new TAR shares some transactions with the left-hand side of the previous TARs.

Each registry keeps track of the TARs that combine to create the overall usage probability of a com-
ponent at any point in time. When an event signifies the termination of a transaction, the usage pre-
diction registry also has to be updated. Thereby, the probability values in usage prediction registries
change as events that begin and end transactions are observed.

The usage probability of a component together with the recent history of its participation in running
transactions are taken to determine the time for enacting the changes. In one extreme, a component that
has already participated in a running transaction, and irrespective of its usage probability in future, is
not changed until the transaction ends. This approach provides safety guarantee, even if the mined rules
are inaccurate. Alternatively, to achieve faster adaptation, but at the expense of slightly higher risk, the
component may be adapted if its usage probability reaches either zero or less than an acceptable thresh-
old. As mentioned earlier, since a new transaction requiring the services of the component may start
while it is being changed, the events intended for the component would have to be buffered, and de-
livered after it is replaced. Therefore, even if a component has not participated in any running trans-
action, and thus there is no risk of inconsistency, the usage probability may still be taken into
consideration to minimize the interruptions. Compared to quiescence, the proposed approach reduces
interruptions, as it does not require passivation of any part of the system, and allows for changes to
occur in the middle of transactions.

Over time, changes that occur in the software system may render the TARs in the rule base incom-
plete or inaccurate. For instance, components may be updated with new or modified functionality that
alter their interaction patterns. As shown in Fig. 6.7, the check prediction accuracy activity denotes the
process of monitoring the accuracy of usage predictions at runtime. When the predictions become in-
accurate, it initiates a new round of data mining-based on the recently collected event log.

EXPERIMENTAL RESULTS

We have developed a prototype of the approach using an implementation of Apriori provided in WEKA
[50]. We performed extensive experimentation on runtime adaptation of an emergency response soft-
ware system, the details of which can be found in our publications [8,10,12]. To evaluate the approach,
we used several versions of the emergency response system with different concurrency levels. We used
a baseline version of the system with a single user. We then repeated the evaluations on higher con-
currency systems to evaluate the susceptibility of the approach to concurrency errors. The 80 and 137
experiments were simulated by using hyperactive dummy users, as the system never naturally reached
that level of concurrency error. We intentionally use very low confidence and support thresholds. We
chose confidence value of 0.05 and support threshold of 0.045.

Table 6.1 shows what percentage of all recorded transactions where actually erroneous duplicates
caused by concurrency, as well as the average number of these erroneously recorded transactions per
TLT. As expected, with increased concurrency, the number of erroneously recorded transactions
grows. Each experiment had roughly eight true transactions per TLT. The effectiveness of our rule
pruning heuristics can also be observed from Table 6.1.

6.6 MINING-BASED APPROACH FOR CHANGE MANAGEMENT 147

of Users

1

10
28
40
80
137

of TLT Observed

500
1628
2787
3330

11,920
3543

Rate (%)

0.00
1.69
4.51
10.94
36.32
60.77

Concurrency Errors

Per Itemset

0.00
0.13
0.35
0.92
4.19
11.26

Table 6.1 Experimental Systems Used in Evaluation, and Effects of TAR Pruning Heuristics

Initial

38,582
34,050
38,248
38,460
35,168
31,442

of TAR
Remain

1683
2190
2331
1758
3126
3143

The quality of differentiating active and inactive components can be viewed with a receiver oper-
ating characteristic (ROC) curve, often used to evaluate a binary classifier, as shown in Fig. 6.8. In this
experiment, we change the usage probability threshold, which indicates the likelihood of the compo-
nent being used before the currently active transactions end. In essence, the threshold indicates the level
of inaccuracy the user may be willing to tolerate with respect to the adaptation of the system’s com-
ponents. The ROC curve, thus, depicts the change in the ratio of true positive (TP) to false positive (FP)
as different thresholds are chosen.

It can be seen how the TP and FP rates respond by moving the threshold. The ROC curve shows that
the approach does an incredible job of achieving TPs despite changes in the threshold. The comparison
of the different experiments also shows the effect of concurrency on the approach. With many users in
the system, there are many more observations that allow the approach to predict usage of a component,

FIG. 6.8

0.9
0.8
0.7
0.6
0.5H

0.4

True positive rate

0.3

e e o

0.2

0.1

L]

Perfect classification
Random guess

1 user

10 users

28 users

40 users

= = =80 users
= 137 users

01 02 0.3 0.4 05 0.6 0.7 08 09 1

False positive rate

ROC curve for determining safe adaptation of components under different levels of concurrency.

148 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

when the component is actually used. Therefore, as concurrency increases, the approach keeps the high
quality in differentiating active and inactive components. However, when we approach 137 users, the
concurrency error rate is roughly 60% and active components are constantly used until the transactions
they participate in subside, making it more difficult to identify situations in which the components can
be adapted. In such extreme scenarios, a passive approach, such as the one advocated in our research,
needs to fall back on an active approach, such as quiescence, that forces some of the components to halt
execution.

NOTEWORTHY RESEARCH CHALLENGES AND RISKS

In spite of the promising results that have shown the feasibility of a mining-based approach for the
construction of change management capabilities, as outlined in our prior publications [8,10,12], several
challenging issues remain. We provide an overview of these topics to frame a future research agenda
for the community.

6.6.4.1 Long-living transactions and high workload

As described in Section 6.6.1, given sufficiently large number of baskets, mining can account for the
anomalies caused by concurrency. However, there are two extreme cases that challenge the mining
approach: (1) When there are long-living TLTs that are always running in the system, resulting in many
wrong baskets. (2) When the system has an exceptionally high workload, resulting in many TLTs over-
lapping in time, and thus increasing the possibility of placing events in wrong baskets. One plausible
approach to mitigate these challenges is to use known measurement techniques [51] for evaluating the
entropy and variance of data (i.e., baskets), which would allow us to detect baskets that are problematic
to be treated differently.

6.6.4.2 Overhead of mining and updating predictions

Another issue of importance is the overhead of mining, in particular at runtime. Since due to changes in
the system, it is likely that only a subset of TARs become inaccurate, it would be important to develop a
partial mining approach, where the event log is pruned to include only the information that is relevant
for updating the affected TARs. Another source of overhead is the computational complexity of updat-
ing the usage prediction registries for components. One possible approach to reduce this overhead is to
adopt a just-in-time policy, where only when it is decided to update a component, the usage predictions
are calculated. Future research also needs to devise and employ efficient data structures, such as spe-
cialized hash tables and map-reduce functions, for achieving fast update of registries.

6.6.4.3 Transaction coverage and other forms of mining

The accuracy of mined rules depends on the availability of a sufficiently large usage history of the
software, exercising the interactions among the system’s component. Such data could either be col-
lected through benchmark of the system or its previous deployments. However, determining how much
data is needed to allow for generation of accurate rules is challenging. The notion of component inter-
action coverage metric [52] provides a good starting point in addressing this issue. Another interesting
avenue of research is emerging forms of mining, such as the use of data stream mining [53], which
allows the mining to be performed incrementally and based on the real-time stream of monitoring data.

6.8 CONCLUSION 149

RELATED WORK

Over the past decade, many frameworks and technologies intended to support the construction of self-
adaptive systems have been developed (see recent surveys [5—7,54-56]). In Section 6.3, we described
the shortcomings with the most relevant research. Here we outline other related work.

Numerous approaches [4,6,15,16,19] have advocated the use of software architectures in the con-
struction of self-adaptive software. IBM’s autonomic computing architecture [4] advocates hierarchies
of feedback-control loop (i.e., MAPE-K discussed in Section 6.3). Oreizy et al. present the architecture-
based approach to runtime adaptation and evolution management in their seminal work [19]. Garlan
et al. describe the Rainbow framework [15], a style-based approach for developing reusable self-
adaptive systems. Georgiadis et al. [16] propose a decentralized adaptation approach, where each
self-organizing component manages its own adaptation with respect to the overall system goal. These
works form the foundation of our research, manifested by the key role of architecture in the proposed
approach.

Several models of adaptation other than architecture-based have also been proposed, such as para-
metric [57,58], component-based [17], aspect-oriented [59,60], and feature-oriented [61-63]. The
work outlined in this chapter have also used feature-orientation as a method of modeling the dynamic
variability in software, but unlike these approaches we propose to use learning to identify the impact of
features on quality objectives.

Automated inference techniques have been applied extensively in the construction of adaptive soft-
ware (e.g., [64-70]), but not in the context of self-adaptive software. The distinction between adaptive
and self-adaptive software lies in the feedback-control loop. An adaptive software has an external
feedback-control loop, that is, between the software and the domain (environment) in which it is
deployed. For instance, a robotic software system is often adaptive; based on the data collected from
the environment, it reasons and reacts accordingly. On the other hand, a self-adaptive software has an
internal feedback-control loop, that is, between the management subsystem (meta-level logic) and the
managed subsystem (application logic).

Providing assurances in effecting runtime changes is a topic that has been studied extensively in the
past (e.g., [17,28,71-73]). Most relevant is tranquility [28], which also aims to reduce the interruptions
caused by quiescence. However, unlike the proposed research, tranquility is specific to a proprietary
middleware, called Draco, and makes an unrealistic assumption that not only components can provide
a list of transactions they have already participated in the past, but also transactions they will participate
in future. This is an issue that we have overcome through data mining techniques.

CONCLUSION

Self-adaptive software systems rely on several types of models to reason about the adaptation of the
software at runtime. The majority of existing literature and approaches targeted at the engineering of
adaptive software systems require manual development of models for use at runtime. Manual devel-
opment of models, however, is a time-consuming, laborious task. In addition, keeping manually con-
structed models in sync with the changing software system at runtime, and in a timely fashion, is a
challenge. Finally, since it is difficult to build manually models that capture the fine-grained behavior

150 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

of the managed software system, reasoning about adaptation decisions using such models introduces
further uncertainty in the autonomic management of software.

In this chapter, we first illustrated the shortcomings of manually constructed models, in light of the
prior research, and with respect to two exemplary self-adaptation concerns occurring at the goal man-
agement and change management layers. We further provided an overview of a body of recent research
that has attempted to address these challenges through automated means of inferring the models.
Namely, we provided an overview of two complementary thrusts of research: (1) A machine learning
approach to automatically derive the models predicting the impact of architectural change (i.e.,
enabling a particular capability at runtime, such as caching or authentication) on the system’s quality
objectives (e.g., response time, availability). These types of models are used to make adaptation de-
cisions to fix problems that may arise at runtime. (2) A data mining approach to derive automatically
the models expressing the probabilistic dependencies between the architectural elements (components)
of the system. Finally, we described a set of research challenges that we have come across in our own
experiences of employing automated inference techniques for the construction of self-adaptive soft-
ware, which we hope to frame future research directions for the community of researchers.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of Ahmed Elkhodary in the development of our learning-based
approach for goal management. This work was supported in part by awards CCF-1252644 from the National
Science Foundation, D11AP00282 from the Defense Advanced Research Projects Agency, W911NF-09-1-0273
from the Army Research Office, HSHQDC-14-C-B0040 from the Department of Homeland Security, and
FA95501610030 from the Air Force Office of Scientific Research.

REFERENCES

[1] D.A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,

M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft, Recovery-oriented com-

puting (ROC): motivation, definition, techniques, and case studies, U.C. Berkeley computer science technical

report, UCB//CSD-02-1175, University of California, Berkeley, CA, 2002.

Yankee Group Report. How much is an hour of downtime worth to you? Must-Know Business Continuity

Strategies, Yankee Group, Boston, MA, 2002, pp. 178—187.

[3] A.G. Ganek, T.A. Corbi, The dawning of the autonomic computing era, IBM Syst. J. 42 (1) (2003) 5-18.

[4] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (2003) 41-50.

[5] B. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,

G. Karsai, HM. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. Miiller, S. Park, M. Shaw,

M. Tichy, M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive systems: a research roadmap,

in: Software Engineering for Self-Adaptive Systems, LNCS Hot TopicsSpringer, Berlin, 2009, pp. 1-26.

J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: International Conference on Soft-

ware Engineering, Vancouver, Canada, May, 2007.

[7]1 R. De Lemos, H. Giese, H.A. MiiLler, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K.M. Goeschka, A. Gorla,
V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek, S. Mankovskii,

[2

—

[6

—

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040

REFERENCES 151

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer, W. Schifer, R. Schlichting,
B. Schmerl, D.B. Smith, J.P. Sousa, G. Tamura, L. Tahvildari, N.M. Villegas, T. Vogel,
D. Weyns, K. Wong, J. Wuttke, Software engineering for self-adaptive systems: a second research roadmap,
in: Dagstuhl Seminar Proceedings, Number 10431, 1862-4405Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Wadern, 2011.

[8] K.R. Canavera, N. Esfahani, S. Malek, Mining the execution history of a software system to infer the best
time for its adaptation, in: 20th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2012), Cary, North Carolina, November, 2012.

[9] A. Elkhodary, N. Esfahani, S. Malek, FUSION: a framework for engineering self-tuning self-adaptive soft-
ware systems, in: 18th ACM SIGSOFT International Symposium on the Foundations of Software Engineer-
ing (FSE 2010), Santa Fe, NM, November, 2010.

[10] N. Esfahani, E. Yuan, K.R. Canavera, S. Malek, Inferring software component interaction dependencies for
adaptation support, ACM Trans. Auton. Adapt. Syst. 10 (4) (2016).

[11] N. Esfahani, A. Elkhodary, S. Malek, A learning-based framework for engineering feature-oriented self-
adaptive software systems, IEEE Trans. Softw. Eng. 39 (11) (2013) 1467-1493.

[12] E. Yuan, N. Esfahani, S. Malek, Automated mining of software component interactions for self-adaptation,
in: 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2014), Hyderabad, India, June, 2014.

[13] E. Alpaydin, in: Introduction to Machine Learning, Adaptive Computation and Machine Learning, MIT
Press, Cambridge, MA, 2004.

[14] P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-Wesley, Boston, MA, 2006.

[15] G. Garlan, et al., Rainbow: architecture-based self-adaptation with reusable infrastructure, IEEE Comput.
37 (2004) 46-54.

[16] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architectures for distributed systems,
in: Workshop on Self-healing Systems, Charleston, SC, November, 2002.

[17] H. Gomaa, M. Hussein, Software reconfiguration patterns for dynamic evolution of software architectures,
in: Working IEEE/IFIP Conference on Software Architecture, 2004.

[18] S.Malek, M. Mikic-Rakic, N. Medvidovic, A style-aware architectural middleware for resource-constrained
distributed systems, IEEE Trans. Softw. Eng. 31 (5) (2005) 256-272.

[19] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: International
Conference on Software Engineering, Kyoto, Japan, April, 1998.

[20] M. Bennani, D. Menasce, Resource allocation for autonomic data centers using analytic performance models,
in: IEEE International Conference on Autonomic Computing, Seattle, WA, June, 2005.

[21] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola, Qos-driven runtime adaptation of service
oriented architectures, in: 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE ‘09), Amsterdam,
The Netherlands, August, 2009.

[22] G. Gross, C.M. Harris, Fundamentals of Queuing Theory, second ed., John Wiley & Sons, New York, NY,
1985.

[23] L.R. Rabiner, A tutorial on hidden Markov models, Proc. IEEE 77 (1989) 257-286.

[24] R. Das, I. Whalley, J.O. Kephart, Utility-based collaboration among autonomous agents for resource alloca-
tion in data centers, in: Sth International Joint Conference on Autonomous Agents and Multiagent Systems,
Hakodate, Japan, 2006.

[25] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, Utility functions in autonomic systems, in: International Con-
ference on Autonomic Computing (ICAC 2004), New York, NY, USA, May, 2004.

[26] R.N. Taylor, N. Medvidovic, E. Dashofy, Software Architecture Foundations, Theory, and Practice, John
Wiley & Sons, Hoboken, NJ, 2008.

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0135

152 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

[27] J. Kramer, J. Magee, The evolving philosophers problem: dynamic change management, IEEE Trans. Softw.
Eng. 16 (1990) 1293-1306.

[28] Y. Vandewoude, P. Ebraert, Y. Berbers, T. D’Hondt, Tranquility: a low disruptive alternative to quiescence
for ensuring safe dynamic updates, IEEE Trans. Softw. Eng. 33 (2007) 856-868.

[29] D. Batory, Feature models, grammars, and propositional formulas, in: 9th International Conference on Soft-
ware Product Lines, Rennes, France, September, 2005.

[30] P. Clements, L. Northrop, in: Software Product Lines: Practices and Patterns, SEI Series in Software Engi-
neeringAddison-Wesley, Boston, MA, 2001.

[31] S. Trujillo, D. Batory, O. Diaz, Feature oriented model driven development: a case study for portlets, in: 29th
International Conference on Software Engineering, Minneapolis, MN, 2007.

[32] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, J.A. Subhlok, Resource query interface for
network-aware applications, Clust. Comput. 2 (1999) 139-151. Baltzer.

[33] A. Mos, J. Murphy, COMPAS: adaptive performance monitoring of component-based systems,
in: Workshop on Remote Analysis and Measurement of Software System (RAMSS), Edinburgh, Scotland,
May, 2004.

[34] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, M. Thompson, A monitoring sensor management
system for grid environments, in: IEEE International Symposium on High Performance Distributed Comput-
ing, Pittsburgh, PA, August, 2000.

[35] K.Kang, S. Cohen, et al., Feature-oriented domain analysis (FODA) feasibility study, Technical report CMU/
SEI-90-TR-21, Software Engineering Institute, Pittsburgh, PA, 1990.

[36] A.J. Smola, B. Scholkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004) 199-222.

[37] J.O. Kephart, R. Das, Achieving self-management via utility function, IEEE Internet Comput. 11 (1) (2007)
40-48.

[38] L.A. Wolsey, Integer Programming, John Wiley & Sons, New York, 1998.

[39] C. Ghezzi, G. Tamburrelli, Predicting performance properties for open systems with KAMI, in: International
Conference on Quality of Software Architecture, June, 2009.

[40] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, John Wiley & Sons, Hoboken,
NJ, 2003.

[41] J. Pearl, Causality: Models, Reasoning and Inference, Cambridge University Press, Cambridge, 2000.

[42] A. Elkhodary, S. Malek, N. Esfahani, On the role of features in analyzing the architecture of self-adaptive
software systems, in: 4th International Workshop on Models at Runtime, Denver, Colorado, October, 2009.

[43] Y. Yuan, M.J. Shaw, Induction of fuzzy decision trees, Fuzzy Sets Syst. 69 (2) (1995) 125-139.

[44] D. Kriesel, A Brief Introduction to Neural Networks, University of Bonn/Epsilon, Bonn, 2005.

[45] J. Gehrke, Classification and regression trees (C&RT), Encyclopedia of Data Warehousing and Mining,
2008, 192-195.

[46] J.H. Friedman, Multivariate adaptive regression splines, Ann. Stat. 19 (1) (1991) 1-67.

[47] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: 20th International
Conference on Very Large Data Bases (VLDB), Santiago, Chile, September, 1994, pp. 487-499.

[48] M.J.Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng. 12 (3) (2000) 372-390.

[49] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation, Data Min. Knowl.
Disc. 8 (1) (2004) 53-87.

[50] WEKA 3: Data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka.

[51] S.Farzi, A.B. Dastjerdi, Data quality measurement using data mining, Int. J. Comput. Theor. Eng. 2 (1) 2010
115-118.

[52] A.W. Williams, R.L. Probert, A measure for component interaction test coverage, in: ACS/IEEE Interna-
tional Conference on Computer Systems and Applications (AICCSA 2001), Beirut, Lebanon, June, 2001.

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0180
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0185
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0195
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0210
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0220
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0225
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0235
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0245
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0250
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0250
http://www.cs.waikato.ac.nz/ml/weka
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0260
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0260

REFERENCES 153

[53] M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, ACM SIGMOD Rec. 0163-5808,
34 (1) (2005) 18-26.

[54] J. Andersson, R. De Lemos, S. Malek, D. Weyns, Modeling dimensions of self-adaptive software systems,
Lecture Notes on Computer Science Hot Topics, in: B.H.C. Cheng, R. De Lemos, H. Giese, P. Inverardi,
J. Magee (Eds.), Software Engineering for Self-Adaptive Systems, Springer, New York, 2009.

[55] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Modeling dimensions of self-adaptive software systems,
in: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for Self-
Adaptive Systems, Lecture Notes on Computer Science Hot Topics, Springer, Berlin, 2009.

[56] J. Andersson, R. De Lemos, S. Malek, D. Weyns, Reflecting on self-adaptive software systems, in: ICSE
2009 Workshop on Software Engineering for Adaptive and Self-Managing Systems, Vancouver, Canada,
May, 2009.

[57] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton.
Adapt. Syst 4 (2) (2009) 1-42.

[58] D. Menasce, M. Bennani, H. Ruan, On the use of online analytic performance models in self-managing and
self-organizing computer systems, in: Self-Star Properties in Complex Information Systems, 3460 Springer,
New York, 2005.

[59] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K. Seamons, Adaptive trust negotiation and access control,
in: ACM Symposium on Access Control Models and Technologies, 2005, pp. 139-146.

[60] B. Morin, O. Barais, G. Nain, J.-M. Jzquel, Taming dynamically adaptive systems with models and aspects,
in: 31st International Conference on Software Engineering, Vancouver, Canada, May, 2009.

[61] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jzquel, A. Solberg, V. Dehlen, G. Blair, An aspect-oriented and
model-driven approach for managing dynamic variability, in: ACM/IEEE 11th International Conference
on Model Driven Engineering Languages and Systems, Toulouse, France, October, 2008.

[62] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines, IEEE Comput. 41 (4)
(2008) 93-95.

[63] J. Lee, K. Kang, A feature-oriented approach to developing dynamically reconfigurable products in product-
line engineering, in: Software Product Lines Conference, August, 2006.

[64] P. Trinidad, A. Ruiz-Cortes, J.P. Na, Mapping feature models onto component models to build dynamic soft-
ware product lines, in: International Workshop on Dynamic Software Product Line, 2007.

[65] J.C. Georgas, R.N. Taylor, Towards a knowledge-based approach to architectural adaptation management,
in: Workshop on Self-Healing Systems, Newport Beach, CA, October, 2004.

[66] D. Kim, S. Park, Reinforcement learning-based dynamic adaptation planning method for architecture-based
self-managed software, in: International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, Vancouver, Canada, May, 2009.

[67] K. Rieck, P. Laskov, Language models for detection of unknown attacks in network traffic, J. Comput. Virol.
2 (4) (2007) 243-256.

[68] M. Sabhnani, G. Serpen, Application of machine learning algorithms to KDD intrusion detection dataset
within misuse detection context, in: International Conference on Machine Learning: Models, Technologies
and Applications, 2003, pp. 209-215.

[69] D. Sykes, et al., From goals to components: a combined approach to self-management, in: International
Workshop on Software Engineering for Adaptive and Self-Managing Systems, Leipzig, Germany, May,
2008.

[70] G. Tesauro, N.K. Jong, R. Das, M.N. Bennani, A hybrid reinforcement learning approach to autonomic
resource allocation, in: International Conference on Autonomic Computing, Washington, DC, June, 2006.

[71] G. Tesauro, Reinforcement learning in autonomic computing: a manifesto and case studies, IEEE Internet
Comput. 11 (1) (2007) 22-30.

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0265
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0315
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0315
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0320
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0325
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0325
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0330
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0335
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0340
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0345
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0350
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0355
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0355

154 CHAPTER 6 AUTOMATED INFERENCE TECHNIQUES

[72] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D.A. Menasce, Software adaptation patterns for service-
oriented architectures, in: 25th ACM Symposium on Applied Computing (SAC 2010), Dependable and
Adaptive Distributed Systems track, Sierre, Switzerland, March, 2010.

[73] A.J. Ramirez, D.B. Knoester, B.H.C. Cheng, P.K. McKinley, Applying genetic algorithms to decision mak-
ing in autonomic computing systems, in: International Conference on Autonomic Computing, 2009,
pp. 97-106.

[74] J. Zhang, B.H.C. Cheng, Model-based development of dynamically adaptive software, in: International Con-
ference on Software Engineering (ICSE), Shanghai, China, May, 2006.

[75] N.Esfahani, S. Malek, J.P. Sousa, H. Gomaa, D.A. Menasce, A modeling language for activity-oriented com-
position of service-oriented software systems, in: ACM/IEEE 12th International Conference on Model
Driven Engineering Languages and Systems (MODELS 09), Denver, Colorado, October, 2009.

http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0360
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0365
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0370
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0370
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375
http://refhub.elsevier.com/B978-0-12-802855-1.00006-X/rf0375

CHAPTER

EVALUATING TRADE-OFFS
OF HUMAN INVOLVEMENT
IN SELF-ADAPTIVE SYSTEMS

J. Camara*, D. Garlan*, G.A. Moreno*, B. Schmerl*
Carnegie Mellon University, Pittsburgh, PA, United States”

INTRODUCTION

Modern society increasingly relies upon software-intensive systems to support a wide range of tasks
in multiple application domains, such as energy, transportation, and communications. Despite the
critical nature of many of these systems, it is increasingly difficult to obtain guarantees about their
ability to provide service that can justifiably be trusted in the presence of changes in their environment
(e.g., resource availability), or within the system itself (e.g., faults). The growing complexity of these
systems and the high degree of uncertainty in the environment in which they operate are two of the main
factors that contribute to their lack of predictability.

Early attempts to address this situation involved human oversight, which is expensive and has often
been considered unreliable due to the fact that humans are liable to err and have difficulty in reacting in
a timely manner when situations that demand changes to the system at run time arise. In contrast,
approaches developed over the last decade in the area of self-adaptive systems [1-3] advocate for
the full automation of mechanisms to adapt the structure and behavior of a system at runtime to over-
come some of the limitations associated with human oversight. Self-adaptive approaches often rely on
closed-loop control, eliminating the human factor from the solution.

Although fully automated adaptation has proven successful in a variety of application domains, this
class of approach may be suboptimal in some situations (e.g., when information required for decision-
making is difficult to capture and/or analyze), or may simply be insufficient to effect changes in the
system (e.g., when adaptations involve physical changes that cannot be automated).

Among self-adaptive approaches, one of the most successful paradigms to date is MAPE-K, which
includes activities to monitor and analyze a software system and its environment, and if the situation
demands it, plan and execute adaptations. MAPE-K systems rely on a knowledge base that can include
models of a system’s environment, goals, and architecture [3, 4]. The different activities in the MAPE-
K loop can benefit from human involvement in a variety of ways:

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00007-1 1 55
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00007-1

156 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

* Monitoring can receive information from humans (acting as sophisticated sensors) that would
otherwise be difficult to automatically monitor (e.g., operators can indicate whether there is an
ongoing anomaly based on context information that is not captured by the models included in the
knowledge base).

* Analysis and planning can incorporate into the decision-making process input (e.g.,
recommendations, validation) from application domain experts who have additional insight about
the best way of adapting the system.

» Execution can employ humans as system-level effectors to execute adaptations when changes to the
system cannot be fully automated, or as a fallback mechanism.

Despite the benefits that involving humans in adaptation can bring, it is worth noticing that their
behavior is influenced by factors external to the system that affect their effectiveness at carrying
out different tasks, such as fatigue, or training level. These factors need to be carefully considered
if we want to enable systems to discriminate situations in which human involvement is preferable over
fully automated adaptations.

Analyzing the trade-offs of involving humans in adaptation demands new approaches to support
systematic reasoning about the way in which the behavior of human participants affects the outcome
of adaptations. In this chapter, we describe a formal framework to analyze trade-offs in self-adaptation
at two levels: (i) reasoning about business concerns in the context of other (potentially conflicting)
business properties; and (ii) reasoning about the effectiveness of automated vs. human-driven
adaptations with respect to a set of business concerns and preferences.

The core of the framework consists of an extended version of a language to express adaptation
models with elements that capture some of the main factors affecting human behavior. Moreover,
we show how adaptation models expressed in this language can be encoded as stochastic multiplayer
games (SMGs), a formalism amenable to automated verification that can be employed to analyze
human-system-environment interactions.

We explore the topics discussed in this chapter using an extension of the Stitch language [5] employed by
the Rainbow framework for self-adaptation [4] with elements inspired from opportunity-willingness-
capability (OWC) models employed in cyber-human systems (CHS) [6] that capture major factors that
influence human-system interactions. We illustrate our approach in the domain of security, employing
as a motivating scenario the mitigation of denial of service (DoS) attacks in Znn.com, a simple news site
system that has been extensively used to assess different research advances in self-adaptive systems.

In the remainder of this chapter, Section 7.2 describes the example that we employ to illustrate our
approach, and Section 7.3 discusses related work. Section 7.4 provides an overview of trade-off anal-
ysis in self-adaptation as embodied in Stitch. Next, Section 7.5 describes our human model and its in-
tegration in adaptation models described using Stitch. Section 7.6 describes probabilistic modeling and
analysis of adaptation models including humans in the loop. Finally, Section 7.7 concludes the chapter,
indicating research avenues to explore in future work.

MOTIVATING SCENARIO

Before detailing the formal framework to reason about trade-offs of human involvement in adaptation,
we introduce an example that will be used to illustrate the approach.

mailto:Znn.com

7.2 MOTIVATING SCENARIO 157

FIG. 7.1

/nn.com system architecture.

Znn.com [7] is a case study portraying a representative scenario for the application of self-
adaptation in software systems embodying the typical infrastructure for a news website. It has a
three-tier architecture consisting of a set of servers that provide contents from back-end databases
to clients via front-end presentation logic (Fig. 7.1). The system uses a load balancer to balance requests
across a pool of replicated servers, the size of which can be adjusted according to service demand. A set
of clients makes stateless requests, and the servers deliver the requested contents.

From time to time, Znn.com can experience spikes in requests that it cannot serve adequately, even
at maximum pool size. These spikes can result either from legitimate client traffic caused by a popular
event (slashdot effect), or by DoS attacks in which malicious clients try to overwhelm system capacity
in order to render system services unavailable.

SYSTEM OBJECTIVES

Regarding Znn.com’s objectives, users of the system are concerned with experiencing service without
any disruptions, whereas the organization is interested in minimizing the cost of operating the infra-
structure (including not incurring additional operating costs derived from DoS attacks). For users,
service disruption can be mapped to specific run time conditions such as (i) experienced response time
for legitimate clients, and (ii) user annoyance, often related to disruptive side effects of defensive tac-
tics. For the organization, we map cost to the specific resources being operated in the infrastructure at
runtime (e.g., number of active servers). Moreover, in addition to keeping costs below budget, the
organization is also interested in minimizing the fraction of that cost that corresponds to resources con-
sumed by malicious clients. Hence, we identify minimizing the presence of malicious clients as an
additional objective.

In short, we identify four quality objectives for Znn.com: legitimate client response time (R), user
annoyance (A), cost (C), and client maliciousness (M).

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

158 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

ADAPTATION MECHANISMS

When response time becomes too high due to spikes in requests, the system can employ two general
approaches for dealing with the situation: absorb excess traffic or suppress it. While the former ap-
proach is better suited to situations in which legitimate user traffic has increased due to a popular event,
the latter is indicated for dealing with DoS attacks.

Znn.com can absorb excess traffic employing the tactics: (i) adding capacity, which commissions a
new replicated web server to share the load; and (ii) reducing service, which reduces the level of service
to text only (Znn.com has two fidelity levels: high, which includes full multimedia content; and text
only, which does not provide any multimedia content). These tactics are fully automated, and are good
at improving the performance of the system without increasing the annoyance to legitimate users.
However, employing these tactics comes at a price, since they do not deal with reducing the cost
derived from resources consumed by potentially malicious clients, and they can even result in an
increment of the cost of operating the system (in the case of adding capacity).

Alternatively, Znn.com can eliminate excess traffic by enacting the tactics: (i) blackholing, which
adds the IP addresses of clients that are deemed to be attacking the system to a blacklist that blocks their
requests; and (ii) throttling, which limits the rate of requests accepted from potentially malicious
clients. Eliminating excess traffic from potentially malicious clients is an approach that to be effective
requires accurately identifying the attackers. Znn.com relies upon the judgment of a human operator to
enact these tactics. In general, well-trained operators will be effective at eliminating traffic from ma-
licious clients, but poorly trained operators can increase user annoyance if they cause service disruption
to legitimate clients due to mistakes in malicious client identification.

RELATED WORK

Deciding whether humans should be involved in the execution of adaptation is no easy task, since their
behavior and the outcome of their actions can be affected by transient factors such as changing levels of
attention and load, fixed attributes (e.g., level of expertise in carrying out a particular task), or even
their physical context (e.g., access to different locations, timing issues). These factors constitute an
additional source of uncertainty affecting the self-adaptive system (classified by Esfahani and Malek
as uncertainty due to human in the loop [8]) that needs to be managed if we want to answer the fol-
lowing questions:

Q1: How can the outcome of adaptation be predicted if human actors are involved in its execution?
Q2: How can it be determined whether human actors should be involved in adaptation?

While answering Q1 calls for employing models of human characteristics sufficient for representing
the probabilistic nature of human behavior and its interaction with the system, Q2 also demands
exploring mechanisms suitable to compare candidate solutions that might include human-system
collaborations, as well as fully automated adaptations.

Some existing approaches in self-adaptation that automatically generate adaptation plans at run
time are able to propose candidate solutions by analyzing trade-offs among different qualities [9],
consider uncertainty when tuning the operation of the system (e.g., by dynamically adjusting param-
eters [10, 11]), or fall back to a graceful degradation of the system by relaxing constraints in system
requirements [12]. However, despite their consideration of uncertainty as a first-order element, most of

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

7.3 RELATED WORK 159

these approaches do not systematically consider the trade-offs of alternative solutions in the context of
multiple quality concerns. Hence, these approaches are not natural candidates for analyzing the trade-
offs of involving humans in adaptation in a context-sensitive manner.

Other approaches in self-adaptation that rely on selection of adaptation strategies defined by a de-
signer at development time [4, 13] are also able to rank candidate solutions by analyzing trade-offs
among different quality concerns. Moreover, these approaches are sometimes able to deal with some
aspects of uncertainty and timing [4]. These proposals are limited to ranking and selecting fully auto-
mated adaptations, since the knowledge models they employ are unable to capture the multiple facets of
uncertainty derived from human behavior that affect the outcome of adaptations.

While the aforementioned approaches focus on fully automated adaptations, Dorn and Taylor [14]
introduce a framework that enables a system adaptation manager to reason about the effects of
software-level changes on human interactions and vice versa by mapping a model of what they describe
as human architecture (described in a language called hADL) to a model of the system’s architecture
updated at runtime. This approach focuses on the collaboration topology and is able to compare
collaboration-(un)aware adaptations in order to select the best course of action, although it does not
explicitly consider uncertainty derived from human behavior as a major factor affecting the outcome
of adaptations.

Outside of the scope of self-adaptive systems, some approaches in the business process modeling
domain include some aspects of human involvement, providing constructs for describing human ac-
tivities in business processes and their dependencies [15, 16]. These languages primarily target
service-oriented architectures and have limited support for other common architectural styles.

Eskins and Sanders [6] introduce a definition of a Cyber-Human Systems (CHS) and the Opportunity-
Willingness-Capability (OWC) ontology for classifying CHS elements with respect to system tasks. This
approach provides a structured and quantitative means of analyzing cyber security problems whose out-
comes are influenced by human-system interactions, reflecting the probabilistic nature of human behavior.

If we contrast questions Q1 and Q2 with the characteristics of the related approaches described in
this section, we can list a set of requirements that a suitable approach to our problem should satisfy:
R1: The approach must include a value system that enables candidate solution trade-off analysis,

allowing context-sensitive adaptation.
R2: The approach must be able to consider uncertainty as a primary factor that affects the effectiveness
of tasks or adaptations.
R3: The approach must consider timing delays that capture the notion of task or adaptation latency.
R4: The approach must be able to represent and enable the analysis of human participant behavior.
R5: The approach must provide support for a variety of architectural styles.

Although the approaches described in this section partially satisfy these requirements (see Table 7.1),
in this chapter we describe an approach that combines the strengths of the Rainbow framework for self-
adaptation [4] and the OWC ontology described in [6]. On the one hand, Rainbow includes a value
system based on utility to rank candidate adaptations, explicit time delays to observe the effects of
adaptation actions executed on the target system, and it is able to account for uncertainty in the selec-
tion of adaptive actions. On the other hand, OWC models provide the concepts required to capture
human factors that can influence adaptation, some of which are of a probabilistic nature.

In previous work [17], we presented an analysis technique based on model checking of SMGs
to quantify the potential benefits of employing different types of algorithms for self-adaptation.

160 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

Table 7.1 Requirements Satisfied by Related Approaches
Area Approach R1 R2 R3 R4 RS
Self-adaptive systems Sykes et al. [9] v v
Calinescu et al. [10] v v
Epifani et al. [11] v v
Cheng et al. [4] v v v v
Oreizy et al. [13] v v
Dorn and Taylor [14] v v v
Business process BPMN [16] v v
modeling WSBPEL4People [15] v v
Cyber-human systems Eskins and Sanders [6] v v

Specifically, we showed how the technique enables the comparison of alternatives that consider tactic
latency information for proactive adaptation with those that are not latency-aware. The work in [18]
places this analysis technique in the context of human-in-the-loop adaptation, extending SMG models
with elements that encode an extended version of Stitch adaptation models with OWC constructs. That
work focuses on a simple scenario, does not explore trade-off analysis with respect to multiple quality
concerns, and involved two versions (automated and human) of the same adaptation tactic. In this chap-
ter, we extend our study to consider trade-off analysis at two different levels: (i) discriminating cases in
which the involvement of human actors in execution leads to an improvement in system qualities, pro-
viding the basis to combine human-based and automated adaptations; and (ii) deciding about human
involvement in a context-sensitive manner, selecting different adaptations for different preferences
over business concerns. Moreover, we explore human involvement in self-adaptation in the domain
of self-protecting systems, illustrating our approach in a richer adaptation scenario (a comprehensive
description is provided in [19]), both in terms of tactics and dimensions of concern.

ANALYZING TRADE-OFFS IN SELF-ADAPTATION

In this section, we show how elevating the reasoning to an architectural level can provide a principled
basis for analyzing the trade-offs among potentially conflicting business objectives. To illustrate this
point, we first introduce the main concepts behind the Stitch language for self-adaptation, which will be
used as the vehicle to explore the questions discussed in the remainder of this chapter.

ADAPTATION MODEL

Although many proposals rely on closed-loop control exploit architectural models for adaptation [4, 13,
20], in this chapter we use some of the high-level concepts in Stitch [5] as a reference framework to
illustrate our approach. Stitch is the language employed by the Rainbow framework [4] to describe
automated repairs based on an architectural description of the underlying target system. Rainbow
has among its distinct features an explicit architecture model of the target system, a collection of ad-
aptation tactics, and utility preferences to guide adaptation.

7.4 ANALYZING TRADE-OFFS IN SELF-ADAPTATION 161

We assume a model of adaptation that represents adaptation knowledge employing the following
high-level concepts': (i) tactics, or primitive actions that correspond to a single step of adaptation;
(ii) strategies, which encapsulate an adaptation process, where each step is the conditional execution
of a tactic; and (iii) utility profile, which drives the selection of strategies at runtime based on a set of
utility functions and preferences.

7.4.1.1 Tactic

A tactic is a primitive action that corresponds to a single step of adaptation. Tactics require three parts
to be specified: (1) the condition, which specifies when a tactic is applicable; (2) the action, which
defines the script for making changes to the system; and (3) the effect, which specifies the expected
effect that the tactic will have.

Listing 7.1 shows an example tactic for activating a set of servers in Znn.com. Line 3 specifies the
applicability condition, which says that the tactic may be executed if (i) there is a client experiencing a
response above the maximum acceptable threshold (predicate cHiRespTime defined in line 1), and (ii)
there are enough servers available to activate. Lines 47 specify the action, which is to select a set of
servers among those currently inactive (line 5), and enable them (line 6). Line 8 states that the intended
effect of the tactic is achieved only if all clients experience a response time below the maximum
acceptable threshold.

Tactics have an associated cost/benefit impact on the different dimensions of concern in the system.
Table 7.2 shows the impact on different properties of the tactics employed in Znn.com, as well as an
indication of how the tactic affects the utility for every particular dimension of concern (the number of
upward or downward arrows is directly proportional to the magnitude of utility increments and dec-
rements, respectively).2 While all tactics reduce the response time experienced by legitimate clients,

LISTING 7.1

Tactic for activating a server in Znn.com

1 define boolean cHiRespTime = exists c:T.ClientT in M.components |
c.experRespTime>M.MAX_RESPTIME;

2 tactic enlistServers (int n) {

3 condition { cHiRespTime && set.Size(s : T.ServerT in M.components | Is.isArchEnabled)>=n;}
4 action {

5 set servers = Set.randomSubset(Model.findServices(T.ServerT), n);

6 for (T.ServerT freeSvr : servers) { M.enableServer (freeSvr, true); }

T}

8 effect { !cHiRespTime; }

9}

'We use a simplified version of Stitch [5] to illustrate the main ideas in this chapter.

To obtain the impact on the different quality dimensions of tactics in practice, the approach relies on expert knowledge or
field data about similar existing systems, although nothing prevents the use of machine learning techniques to obtain that
information. In this chapter we consider fixed cost/benefit impacts for illustration purposes, although Stitch also supports
the specification of sophisticated impact models that are context-sensitive, and can capture probabilistic aspects in the out-
come of tactic executions [21].

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

162 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

Table 7.2 Tactic Cost/Benefit on Qualities and Impact on Utility Dimensions

Response Time (R) Malicious Clients (M) Cost (C) User Annoyance (A)

AAvg. Resp. Time AMal. Clients ACost AU.

Tactic (ms) AUg (%) AUym (usd/nh) AUc | Annoyance (%) | AUy
enlistServers —1000 7 0 = +1.0 111 0 =
lowerFidelity —500 N 0 = —0.1 1 0 =
blackholeAttacker —1000 T —100 T 0 = +50 1
throttleSuspicious —500 N 0 = 0 = +25 l

some of them (e.g., enlistServers and blackholeAttacker) cause a more drastic reduction, resulting in
higher utility gains in that particular dimension. Regarding the presence of malicious clients, tactic
blackholeAttacker is the most effective, whereas other tactics (e.g., enlistServers) do not have any im-
pact. With respect to cost, tactic enlistServers increases the operating cost and reduces utility in this
dimension, since it employs additional resources to absorb incoming traffic. Finally, tactics blackho-
leAttacker and throttleSuspicious impact negatively on user annoyance, since there is a risk that incor-
rect detection of malicious clients will lead to annoying a fraction of legitimate clients by blackholing
or throttling them.

7.4.1.2 Strategy
A strategy encapsulates an adaptation process, where each step is the conditional execution of a tactic.
Strategies are characterized in Stitch as a tree of condition-action-delay decision nodes, where delays
correspond to a time window for observing tactic effects. System feedback (through the dynamically
updated architectural model of the system) is used to determine the next tactic at every step during
strategy execution.

Listing 7.2 shows the Stitch code for a simple adaptation strategy in Znn.com that deals with de-
graded performance by activating additional servers and reducing the fidelity of the contents served’:
line 1 specifies the applicability condition that needs to be satisfied for the strategy to be eligible for
execution (in this case, predicate cHiRespTime indicates that there are clients experiencing a response
time above the acceptable threshold). In the body of the strategy, node t0 (line 2) executes tactic enlist-
Servers if the guard cHiRespTime evaluates to true. To account for the delay in observing the outcome of
tactic execution in the system (settling time), tO specifies a time window of 30 s, after which, if the tactic’s
intended effect (as defined in the tactic script—Listing 7.1, line 8) is observed, successful tactic comple-
tion (keyword success, line 3) leads to the end of strategy execution in normal conditions through node t1
(keyword done). Otherwise, if the intended tactic effect is not observed after the delay window expires

3Although strategies can be complex decision trees involving multiple executions of multiple tactics with different orderings,
we provide here a simple example for illustration purposes.

mailto:Znn.com

7.4 ANALYZING TRADE-OFFS IN SELF-ADAPTATION 163

LISTING 7.2

Strategy for absorbing excess traffic.

1 strategy Outgun [cHiRespTime] {

2 t0: (cHiRespTime) —> enlistServers(1) @[30000 /+msx /] {
3 tl: (success) —> done;

4 t2: (fail) —> lowerFidelity() @[2000 /+ms=/] {

5 t2a: (success) —> done;

6 t2b: (fail) —> TNULL;

7 }

8

9

}
}

(keyword fail, line 4), the strategy attempts to reduce response time by executing the tactic lowerFidelity
and waiting 2 s to observe its effect, exiting through node t2a if the tactic succeeds. If the intended
effect of lowerFidelity is not observed, the strategy exits with an error status via node t2b (line 6).

7.4.1.3 Utility profile

In Stitch, the selection of strategies at run time is driven by utility functions and preferences, which are
sensitive to the context of use and able to consider trade-offs among multiple potentially conflicting
objectives. The different qualities of concern are characterized as utility functions that map architec-
tural properties capturing quality attributes to utility values.

Utility functions are defined by an explicit set of value pairs (with intermediate points linearly in-
terpolated). Table 7.3 summarizes the utility functions for Znn.com. Function Ug maps low response
times (up to 100 ms) to maximum utility, whereas values above 2000 ms are highly penalized (utility
below 0.25), and response times above 4000 ms provide no utility. In this case, utility and mapped
property values across all quality dimensions are inversely proportional, although this is not necessarily
true in general.

Utility preferences capture business preferences over the quality dimensions, assigning a weight to
each of them. We consider two scenarios in Znn.com, whose priority concerns are summarized in
Table 7.4.

Table 7.3 Ultility Functions for Znn.com

Ur Um Uc Ua
0:1.00 0:1.00 0:1.00 0:1.00
100:1.00 5:1.00 1:0.90 100:0.00
200:0.99 20:0.80 2:0.30

500:0.90 50:0.40 3:0.10

1000:0.75 70:0.00

1500:0.50

2000:0.25

4000:0.00

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

164 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

Table 7.4 Ultility Preferences for Znn.com Scenarios

Scenario Priority Wug wu,, Wy WU,
1 Minimizing number of malicious clients 0.15 0.6 0.1 0.15
2 Optimizing good client experience 0.3 0.3 0.1 0.3

ADAPTATION STRATEGY SELECTION

A situation that demands adaptation can generally be addressed in different ways by executing alter-
native adaptation strategies, many of which may be applicable under the same run time conditions (e.g.,
excess traffic under high workload can be either absorbed or eliminated). Since different strategies im-
pact run time quality attributes in various ways, there is a need to choose a strategy that will result in the
best outcome with respect to achieving the system’s desired quality objectives.

To enable decision-making for selecting strategies we use the utility functions and preferences in-
troduced in the previous section. By evaluating all applicable strategies against the different quality
objectives, we obtain an aggregate expected utility value for each strategy by using the specified utility
preferences. The strategy selected for execution by the adaptation manager is the one that maximizes
expected utility.

The aggregated impact on utility of a strategy is obtained by: (i) computing the aggregate impact of
the strategy on the system’s state, (ii) merging aggregated strategy impact with current system state to
obtain the expected state after strategy execution, (iii) mapping expected state to utilities, and (iv) com-
bining all utilities using utility preferences.

As an example of how the utility of a strategy is calculated, let us assume that the adaptation cycle is
triggered in system state [1500, 90, 2, 0], indicating response time, percentage of malicious clients, op-
erating cost, and user annoyance level, respectively. We focus on the evaluation of strategy Outgun.

To obtain the aggregate impact on system state of a strategy, we need to estimate the likelihood of
selecting different tactics at run time due to the uncertainty in their selection and outcome within the
strategy tree. To this end, Rainbow uses a stochastic model of a strategy, assigning a probability of
selection to every branch in the tree.” Fig. 7.2 shows how the aggregate impact on state is computed
from the leaves to the root of the strategy tree: the aggregate impact of each node is computed by adding
the aggregate impact of its children, reduced by the probability of their respective branches, with the
cost-benefit attribute vector of the tactic in the node (if any). In the example, the impact contributed by
nodes t0 and t2 correspond to the cost-benefit vectors of the associated tactics, whereas leaf nodes make
no changes to the system and therefore have no impact.

Once the aggregate impact of the strategy is computed, it is merged with the current system state to
obtain the expected system state after strategy execution:

[1500,90,2,0]+[-1250,0, +0.95,0] =[250,90,2.95,0]
Next, we map the expected conditions to the utility space:

[Ur(250), Up(90), Ug(2.95),Ua(0)] = [0.975,0,0.11,1.0]

4By default, probabilities are divided equally among the branches, although they can be progressively adjusted in accordance
with information collected from system executions.

mailto:Znn.com

7.5 ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION

[-1250,0,+0.95.0,0]

enlistServers()
[-1000,0,+1.0,0]

/
0.5

¥

0.5

\

lowerFidelity() done
[-500,0,-0.1,0] [0,0,0,0]
0.5 0.5
done fail
[0,0,0,0] [0,0,0,0]

FIG. 7.2

165

Calculation for aggregate impact of strategy Outgun. Grayed out tuples adjacent to tree branches indicate
aggregate impact corresponding to the child subtree (including adjustments due to branch probabilities).

And finally, all utilities are combined into a single utility value by making use of the utility preferences.
Hence, if we assume that we are in Scenario 2, the aggregate utility for strategy Outgun would be:

0.975%x0.3+0%0.3+0.11%0.1+1.0x0.3=0.6035

Utility scores are computed similarly for all strategies. In this case, strategies Eliminate and Outgun
score 0.81 and 0.6, respectively, thus Eliminate would be selected.

ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION

In the previous section, we described a language to express adaptation models that can be analyzed to
evaluate trade-offs among different concerns in self-adaptation. In this section, we first present a can-
didate model for quantifying how human involvement in adaptation can affect business objectives. This
model is inspired by the OWC ontology described in [6]. Next, we describe how the concepts behind
Stitch and the proposed OWC model can be combined to capture descriptions of adaptations that in-
volve collaborations among the system and its human participants. This extension enables the evalu-
ation of trade-offs of involving humans in adaptation with respect to a given set of concerns and

preferences expressed in a utility profile.

166 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

HUMAN MODEL

Attributes of human actors that might affect interactions with the system are captured in a model in-
spired by an OWC ontology described in the context of CHSs [6]. The OWC ontology provides a struc-
tured way of defining and grouping human model elements for different (adaptation) tasks that can be
refined to incorporate other models, enabling fine-grained reasoning about certain aspects of humans
interacting with the system. OWC models extend the description of the underlying system’s architec-
ture, and can incorporate multiple human actor types (e.g., human actor roles specialized in different
tasks), each of which can have multiple instances (e.g., operators with different levels of training in a
particular task). Attributes of human actor types fall into three categories:

7.5.1.1 Opportunity

Opportunity captures the applicability conditions of the adaptation tactics that can be executed by hu-
man actors on the target system as constraints imposed on the human actor (e.g., by the physical con-
text—is there an operator physically located on site?).

Example 7.1. We consider a tactic to have a human operator manually select malicious clients to
blackhole (blackholeAttacker) in a DoS attack scenario. Opportunity elements are QEPackholeAttacker
{L,B}, where L represents the operator’s location, and B tells us whether the operator is busy doing
something else:

e L.state € {operator on location (ONL), operator off location (OFFL)}.
* B.state € {operator busy (OB), operator not busy (ONB)}.

Using QEPackholeAttacker 1 gpportunity function for the tactic f,,PackheleAtacker — (f, stqte == ONL) A
(B.state == ONB) can be used to constrain its applicability only to situations in which there is an
operator on location who is not busy (e.g., in a meeting).

7.5.1.2 Willingness

Willingness captures transient factors that might affect the disposition of the operator to carry out a
particular task (e.g., load, stamina, stress). Continuing with our example, willingness elements in
the case of the blackholeAttacker tactic can be defined as WEPackholeAttacker _ 6\ wwhere S.state €
[0,10] represents the operator’s stress level. A willingness function mapping willingness elements
to a probability of tactic completion can be defined as fiPlacknoleAttacker — .. (S state), with

prw :S—[0,1].

7.5.1.3 Capability

Capability captures the likelihood that the human participant will successfully carry out a particular
task, which is determined by relatively stable attributes of the human actor, such as training level.
In our example, we define capability elements as CEPackholeAttacker — (T} “\where T represents the
operator’s level of training (e.g., T.state € [0,1]). We define a capability function that maps training
level to a probability of successful tactic performance as f PackholeAtlacker — . (T state), with
pre: T —[0,1]. This models the fact that better trained operators are more effective at eliminating
malicious users and less likely to blackhole legitimate clients, resulting in better reductions in the
percentage of malicious clients with little or no increase in user annoyance.

7.5 ANALYZING TRADE-OFFS OF INVOLVING HUMANS IN ADAPTATION 167

7.5.2 INTEGRATING HUMAN AND ADAPTATION MODELS

Incorporation of OWC elements for adaptation execution in Stitch affects the specification of different
elements in adaptation tactics and strategies.

7.5.2.1 Tactics

In tactics involving humans, constraints that affect the applicability of a tactic can be derived either
from the human model (opportunity elements), or properties of the architecture itself (e.g., are there
any available servers to activate?). In general, applicability conditions of these tactics will be a com-
bination of both. In Listing 7.3, the condition block of tactic blackholeAttacker (line 4) combines
opportunity elements from the human model (operator on location and not busy—predicate ONLNB,
defined in line 1), with a predicate defined over the properties of the architecture (legitimate clients are
experiencing a high response time—cHiRespTime).

The action block of these tactics can execute automated operations, as in the case of tactic enlistServers
(Listing 7.1), and also notify human actors to perform a task. The action block of tactic blackholeAttacker
(Listing 7.3, lines 5 and 6) first selects an available operator (line 5), and next it notifies the selected operator
that she has to blackhole potentially malicious clients via a text message (line 6).

7.5.2.2 Strategies

Tactics, both fully automated ones and those involving humans, can be combined to achieve better
outcomes in adaptation strategies. Listing 7.4 shows strategy Eliminate for eliminating excess traffic
from potentially malicious clients first by notifying an operator (via tactic blackholeAttacker, line 5)

LISTING 7.3

Tactic for blackholing malicious clients via human operator.

1 define boolean ONLNB=exists o:operatorT in M.participants | o.onLocation && lo.busy;

tactic blackholeAttacker(){
condition {ONLNB && cHiRespTime;}
action {ao=Set.RandomSubSet({select o:operatorT in M.participants | o.onLocation && lo.busy},1);
notify(ao, " Blackhole_potentially_malicious_clients”); }
effect {!cHiRespTime;}
}

0~ U WN

LISTING 7.4

Strategy to eliminate excess traffic inZnn.com

1 define boolean unhandledMalicious=exists c:T.ClientT in M.components | c.maliciousness>M.MAL_THR && !c.isBlackHoled;
2 define boolean unhandledSuspicious=exists c:T.ClientT in M.components | c.maliciousness > M.SUS_THR and !c.isThrottled;
3 ..
4 strategy Eliminate [unhandledMalicious || unhandledSuspicious] {
5 t0: (unHandledMalicious) —> blackholeAttacker () ©[300000] {
6 t0a: (success) —> done;
7 t0b: (unHandledSuspicious) —> throttleSuspicious () @[300000] {
8 tla: (success) —> done;
tlb: (default) —> fail; }

©

10
11}

mailto:Znn.com

168 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

to manually block traffic from malicious clients. If the assigned time window of 5 min expires and the
intended effect of the tactic (IcHiRespTime, Listing 7.3) is not observed, the strategy notifies an
operator to execute the throttleSuspicious tactic as a fallback, throttling suspicious clients (line 7).

REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION

When defining a collection of adaptation strategies and their associated utility profile, we need to
guarantee not only that the system will carry out reasonable choices under all possible circumstances,
but also that the effect of those choices combined with the behavior of human participants will have a
reasonable impact on business concerns. To provide such guarantees, we use a formal model based on
an abstraction of the extended Stitch profile for human-in-the-loop adaptation presented in
Section 7.5.1 that enables us to reason about: (i) the choices made by the adaptation manager for
adaptation strategy selection, and (ii) the impact of the execution of selected adaptation strategies
on the target system.

Our modeling approach for human-in-the-loop adaptation consists of describing an SMG in which
we consider that one of the players is the adaptive system (including both automated adaptation mech-
anisms and human actors) and the other is the environment within which the system operates. The goal
of the system player is to maximize accrued utility during the system’s execution (encoded formally as
a reward structure), while we consider the environment to be an antagonistic player that tries to min-
imize that same reward. SMG analysis enables the quantification of the maximum utility reward that
the system player is able to guarantee in the most adverse conditions of the environment ((i.e., a worst-
case scenario).

In the remainder of this section, we first introduce some background on model checking SMGs, the
formal technique that we use to formally reason about human involvement in adaptation. Next, we
provide a description of our Znn.com model implemented in the probabilistic model-checker
PRISM-games [22], as well as the analysis and results that we obtained for human-in-the-loop adap-
tation analysis.

MODEL CHECKING STOCHASTIC MULTIPLAYER GAMES

Automatic verification techniques for probabilistic systems such as probabilistic model checking pro-
vide a means to model and analyze systems that exhibit stochastic behavior, effectively enabling rea-
soning quantitatively about probability and reward-based properties (e.g., about the system’s use of
resources, or time).

Competitive behavior may also appear in (stochastic) systems when some component cannot be
controlled, and could behave according to different or even conflicting goals with respect to other com-
ponents in the system. In such situations a natural fit is modeling a system as a game between different
players, adopting a game-theoretic perspective. Automatic verification techniques have been success-
fully used in this context, for instance for the analysis of security [23] or communication protocols [24].

Our approach to analyzing human involvement in adaptation builds upon a recent technique for
modeling and analyzing SMGs [25]. In this approach, systems are modeled as turn-based SMGs, mean-
ing that in each state of the model, only one player can choose between several actions, the outcome of

mailto:Znn.com

7.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION 169

which can be probabilistic. Players can either cooperate to achieve the same goal, or compete to achieve
their own goals.

The approach includes a logic called rPATL for expressing quantitative properties of SMGs, which
extends the probabilistic logic PATL [26]. PATL is itself an extension of ATL [27], a logic extensively
used in multiplayer games and multiagent systems to reason about the ability of a set of players to
collectively achieve a particular goal. Properties written in rPATL can state that a coalition of players
has a strategy”’ which can ensure that either the probability of an event’s occurrence, or an expected
reward measure, meets some threshold.

rPATL is a branching-time temporal logic that incorporates the coalition operator ((C)) of ATL,
and the reward operator R} from [28] to reason about goals related to rewards. An extended version of
the rPATL reward operator ((C))R’, . _,[F* ¢|° enables the quantification of the maximum accrued
rewards. An example of a property employing the reward maximization operator is ((phone))Rime_,[F
empty_battery], meaning “the value of the maximum operation time that a cell phone can guarantee
before its battery is fully discharged, independently of the behavior of its environment.”

Reasoning about strategies is a fundamental aspect of model checking SMGs, which enables check-
ing for the existence of a strategy that is able to optimize an objective expressed as a property including
an extended version of the rPATL reward operator. The checking of such properties also supports strat-
egy synthesis, enabling us to obtain the corresponding optimal strategy. An SMG strategy resolves the
choices in each state, selecting actions for a player based on the current state and a set of memory
elements.’

FORMAL MODEL

Our game is played in turns by two players that are respectively in control of the behavior of the en-
vironment (env) and the Znn.com system, including human actors (sys), who are assumed to share
goals with the system. The SMG model consists of the following parts.

7.6.2.1 Player definition

Listing 7.5 illustrates player definition in the SMG. Player env is in control of all the (asynchronous)
actions that the environment can take (defined in the environment module), while system player sys
controls all the actions that belong to the human actor and the target system, whose behavior is specified
in the processes ha_system, as well as Outgun and Eliminate (adaptation strategies for absorbing and
eliminating excess traffic, respectively). Moreover, the system player controls the synchronization of
actions between adaptation strategies and the target system, thus modeling the triggering of adaptation
tactics. Global variable turn (line 4) is used to explicitly encode alternating turns between the system
and environment players.

5The term strategy employed in the context of SMGs refers to a game strategy (referred to also as policy or adversary) as
defined in [25], and should not be confused with Stitch adaptation strategies.

The variants of F*¢ used for reward measurement in which the parameter x € {0, co,c} indicate that, when ¢ is not reached,
the reward is zero, infinite or equal to the cumulated reward along the whole path, respectively.

7See [25] for more details on SMG strategy synthesis.

mailto:Znn.com

170 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

LISTING 7.5

Player definition for the Znn.com SMG.

1 player sys ha_system, Eliminate, Outgun, [blackholeAttacker], [throttleSuspicious], [enlistServers],
[lowerFidelity] endplayer

player env environment endplayer

const ENVT=0; const SYST=1,

global turn:[ENVT..SYST] init ENVT;

EE)

LISTING 7.6

Environment module.

const MAX_TIME; // Exercution time frame [0,MAX_TIME]
module environment

t:[0..MAX_TIME] init 0;

[] (turn=ENVT) & (t<MAX_TIME) —> (t'=t+1) & (turn'=SYST);
endmodule

SN

7.6.2.2 Environment

The environment process (Listing 7.6) controls the evolution of variables in the execution context that
are out of the system’s control. For the sake of simplicity, we assume in our model a simple behavior of
the environment that only keeps track of time, although additional behavior controlling other elements
(e.g., network delay) can be encoded (please refer to [17] for further details illustrating the modeling of
adversarial environment behavior in turn-based SMGs).

7.6.2.3 Human model

Listing 7.7 shows the encoding of the OWC elements corresponding to an operator in the Znn.com
system. Opportunity elements (line 2) indicate whether the operator is on location and/or busy. These
predicates are used to guard the execution of tactics blackholeAttacker and throttleSuspicious in the
model (Listing 7.8, line 19). The willingness function of the operator (line 6) is inversely proportional
to her stress level, declared in line 5. The capability function (line 9) corresponds to the training level of
the operator in this case.

LISTING 7.7

Human actor model encoding for a Znn.com operator.

// Opportunity elements

global op_onLocation:bool init true, op_busy: bool init false;

// Willingness elements and function

const MAX_STRESS_LEVEL, INIT_STRESS_LEVEL;

global op_stressLevel: [0..MAX_STRESS_LEVEL] init INIT_STRESS_LEVEL;
formula op_f_.w=(MAX_STRESS_LEVEL —op_stressLevel) / MAX_STRESS_LEVEL;
// Capability elements and function

const double op_trainingLevel;

formula op_f_c= op-trainingLevel;

// Combined WC probability for tactic BlackholeAttacker

formula ba_wc_prob = op_f_c * op_f_w;

-
H O © o N® G W N

=

mailto:Znn.com
mailto:Znn.com
mailto:Znn.com

7.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION 171

LISTING 7.8

Target system extended with human actors module.

// EnlistServer Tactic cost/benefit attribute vector functions

formula es_f_ort = rt—1000 >=0 ? (rt—1000<=MAX_RT? rt—1000 : MAX_RT) : 0;

formula es_f_as=as<MAX_SERVERS 7 as+1:as;

// BlackholeAttacker Tactic cost/benefit attribute vector functions

formula ba_f_rt = rt—1000 >=0 ? (rt—1000<=MAX_RT? rt—1000 : MAX_RT) : 0;

formula ba_f_-mc = ba_wc_probxmc > 0 ? (ba_wc_probsxmc < 1007 floor(ba_wc_probxmc) : 100) : 0;

formula ba_f_ua = ua+(1—ba_wc_prob)*50 >=0 ? (ua+(1—ba_wc_prob)+50<=100?
floor(ua+(1—ba_wc_prob)*50) : 100) : 0;

B I N

o

9 formula cost=as * cost_per_server;

0 ..

11 module ha_system

12 rt: [0..MAX_RT] init init_rt; // Response time

13 as : [0..MAX_SERVERS] init init_as; // Active servers

14 mc : [0..100] init init-mc; // Malicious clients

15 ua : [0..100] init init_ua; // level of annoyance

16 cnt_es :[0..MAX_TIME] init 0;

17 cnt_ba :[0..MAX_TIME] init 0;

18 // Tactic triggers

19 [blackholeAttacker] (turn=SYST) & (op-onLocation) & (lop_busy) & (mc>0) & (cnt-ba=0) —>
(ent_ba'=1) & (op-busy'=true);

20 [enlistServers] (turn=SYST) & (as< MAX_SERVERS) & (cnt_es=0) —> (cnt_es'=1) & (turn'=ENVT);

21 // Tactic latency counter update

22 [] (turn=SYST) & (cnt_ba>0) & (cnt_ba<ba_latency) —> (cnt_ba’=cnt_ba+1) & (turn’=ENVT);

23 [] (turn=SYST) & (cnt_es>0) & (cnt-es<es_latency) —> (cnt.es'=cnt_es+1) & (turn’=ENVT);

24 // Tactic completion (after latency period expires)

25 [] (turn=SYST) & (cnt_ba=ba_latency) —> (cnt_ba'=0) & (rt'=ba_f_p) & (mc'=ba_f_mc) &
(ua'=ba_f_ua) & (op-busy'=false) & (turn’=ENVT);

26 [] (turn=SYST) & (cnt_es=es_latency) —> (rt'=es_f_rt) & (cnt_es'=cnt_es+1) & (as'=es_f.as) &
(cnt_es’=0) & (turn’=ENVT);

27 // Do nothing

28 [] (turn=SYST) & (cnt.es=0) & ... & (cnt_ba=0) —> (turn’=ENVT);

29 endmodule

7.6.2.4 System

The combined behavior of the target system and human actors is described in module ha_system
(Listing 7.8). The module incorporates a collection of variables encoding the different system qualities
of concern, as well as the aspects relevant to the applicability conditions of tactics (e.g., values of pred-
icates used in the condition block of a tactic). Lines 12—17 illustrate how the different variables are
initialized:

* rt, as, mc, and ua encode the response time, number of active servers, percentage of malicious
clients, and level of user annoyance in the system, respectively.

» cnt_es and cnt_ba are counters used to keep track of the latency of tactics enlistServers and
blackholeAttacker, respectively.”

The model also includes commands that specify the effect of executing the different tactics as updates
on its variables. In particular, there are three commands per tactic in the module. We focus on tactic
blackholeAttacker to illustrate how tactic execution is modeled:

8We do not describe the code corresponding to tactics lowerFidelity and throttleSuspicious in Listing 7.8 for the sake of clarity.

172 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

e Tactic trigger (line 19): Triggers tactic execution when: (i) an operator is on location and not busy,
(ii) the estimated percentage of malicious clients is above zero, and (iii) the latency counter for the
tactic is zero, meaning that the tactic is not being executed. As a consequence, the operator is
flagged as busy and the latency counter is activated (cnt_ba'=1).

e Tactic latency counter update (line 22): If the tactic counter is active, but still has not reached the
tactic’s latency value, the counter is incremented in one unit.

e Tactic completion (line 25): When the tactic’s latency counter expires, the command updates
variables rt, mc, and ua according to the encoding of the impact of the tactics on the different quality
dimensions (lines 5-7), which are affected by the probability ba_wc_prob (determined by the
willingness and capability elements defined in Listing 7.7). The latency counter is reset, and the
busy status of the operator is set to false.

The encoding used for the enlistServers tactic (lines 20, 23, and 26) follows the same structure, but
without any OWC elements encoded in the guards or updates of the commands.

Every command in the module includes a predicate in the guard to ensure that the command is triggered
only during the system player’s turn (turn=SYST), and an additional predicate in the post state that yields
the turn to the environment player (turn’=ENVT). Moreover, an additional command (line 28) lets the pro-
cess progress without any variable updates when none of the latency periods for the tactics are active. Note
that in our model, we assume sequential execution of tactics (in accordance with Stitch semantics).

7.6.2.5 Adaptation logic

Modules Eliminate and Outgun model the adaptation logic placed in the controller, according to the
description of their respective Stitch strategies described in Listings 7.4 and 7.2. Each of the commands
corresponds to a tactic that can be executed in the target system via synchronization on shared action
names with trigger commands in the ha_system module (Listing 7.8, lines 19-20).

Module Eliminate (Listing 7.9) models the strategy to eliminate excess traffic with the help of a
human operator. The command on line 3 encodes the triggering of tactic blackholeAttacker,” which
sets the value of the timestamp variable ba_trigger_t that indicates at which time point the tactic
was triggered. This variable is used on the guard of the command encoding the execution of

LISTING 7.9

Eliminate and Outgun adaptation strategy modules.

module Eliminate

ba_trigger_t:[0..MAX_TIME] init 0;

[blackholeAttacker] (turn=SYST) —> (ba_trigger_t'=t);

[throttleSuspicious] (turn=SYST) & (t=ba_trigger_t+ba_settling) & (ba_fail) —> true;
endmodule

module Outgun

es_trigger_t:[0..MAX_TIME] init 0;

[enlistServers] (turn=SYST) —> (es_trigger_t'=t);

[lowerFidelity] (turn=SYST) & (t=es_trigger_t+es_settling) & (es_fail) —> true;
endmodule

[S I I B T R

[

“We abstract away predicates unhandledMalicious and unhandledSuspicious (Listing 7.4, lines 4, 5), which we assume to be
true in the scenarios encoded in our model.

7.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION 173

throttleSuspicious (line 4) to determine whether the settling time for observation of the previous tactic’s
effect has already expired. If this is the case, and the blackholing of malicious clients by the human
operator is not successful (ba_fail), the command executes, triggering the throttleSuspicious tactic, con-
sistently with the Stitch code in Listing 7.4, line 4.

Module Outgun (Listing 7.9, line 7) follows a similar PRISM encoding that models the automatic
strategy to absorb excess traffic in Znn.com.

7.6.2.6 Utility profile

Utility functions and preferences are encoded using formulas and reward structures that enable the
quantification of the utility of a given game state. Formulas compute utility on the different dimensions
of concern, and reward structures weigh them against each other by using the utility preferences of a
given scenario.

Listing 7.10 illustrates in lines 1-5 the encoding of utility functions using a formula for linear in-
terpolation based on the points defined for utility function Uy, in the second column of Table 7.3. Lines
7—-10 show how a reward structure can be defined to compute a single utility value for any state by using
the utility preferences defined for a particular scenario.

7.6.3 ANALYSIS

SMG models of human-in-the-loop adaptation can be exploited to determine: (i) the expected outcome
of human involvement in adaptation, and (ii) the conditions under which such involvement improves
over fully automated adaptation. To analyze these two aspects of human involvement, we use rPATL
specifications that include reward-specific operators aimed at checking quantitative properties over
SMG models. Specifically, our technique enables us to statically analyze a particular region of the state
space, which first has to be discretized to check rPATL properties. Obtaining the results of the analysis
for each state in the discrete set requires an independent run of the model checker in which model pa-
rameters are instantiated with variable values corresponding to that state.

7.6.3.1 Strategy utility
The expected utility value of an adaptation strategy (potentially including nonautomated tactics) is
quantified by checking the reachability reward property:

Uman 2 ((sys))RISY_,[F° t=MAX_TIME].

max—

LISTING 7.10

Utility reward structure for Znn.com DoS scenarios.

1 formula uM = (mc>=0 & mc <=57 1:0)

2 +(mc>5 & mc <=207 14(0.80—1)*((mc—5)/(20—5)):0)

3 +(mec>20 & mc <=50?7 0.80+(0.40—0.80)*((mc—20)/(50—20)):0)
4 +(me>50 & mc <=70?7 0.40+(0.00—0.40)*((mc—50)/(70—50)):0)
5 +(mec>70 7 0:0);
6

7

8

9

.r.e;wards "rGU”
scenario=1 : 0.15%xuR +0.6xuM +0.1xuC +0.15x%uA;

endrewards

=

C

mailto:Znn.com
mailto:Znn.com

174 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

The property obtains the maximum accrued utility value (i.e., corresponding to reward rGU—Listing
7.10) that the system player can achieve until the end of execution (t=MAX_TIME).

Fig. 7.3A depicts strategy utility analysis results for the different adaptation strategies in a DoS
scenario in which the priority is to eliminate malicious clients (Scenario 1 in Table 7.4). In the figure,
a discretized region of the state space is projected over the dimensions that correspond to the training
level of a human actor, and the percentage of malicious clients (with values in the range [0,1] and
[0,100], respectively). Each point in the mesh represents the maximum accrued utility that the system
can achieve on the model instanced for a time frame of 15 min. The initial state of the scenario cor-
responds to O stress level of the operator, a response time is 2000 ms, 0% of user annoyance, and 2
active servers. Tactic cost/benefit values and the utility profile employed are those described in
Section 7.4, whereas the latency value employed for tactics blackholeAttacker and throttleSuspicious
is 5 min (this latency models the time that the human operator takes to decide which clients have to
be blackholed or throttled). Time delays to observe the effect of tactic executions in the different strat-
egies are those indicated in the Stitch code shown in Listings 7.4 and 7.2, respectively.

In the top left of Fig. 7.3, the plot shows that the utility obtained by the strategy Outgun in this
scenario is not affected by the level of training of the human operator because the tactics employed

Avg. u

Outgun) = 11.43 Avg. u Eliminate) = 12.88

mau mau (

Accrued utility
Accrued utility

40
Malicioys cuen?o . 80 100
(®) 00

m s, = outgun (49.78%)
o5, = eliminate (50.22%)

T T T T T T
1+ = m 0o 0o o o o o o o o -
" W 0 0O O 0O O O O O O
" W 0 0O OO0 O 0o O O O
" m W 0O O O O O O O O
08 m m m 0O 0O 0O 0O O O 0o O -
" m m 0O O O O O O O O
o) " m m 0O O O O O O O O
> " m m 0O O O O O O O O
® 06 m m m O OO O O O O O - 20
o " m m m O O O O O O O
£ " m m W O O O O O O O N
c " m m W O O O O O O O =
s 04 m m m ®m ®m 0O 0O O O O O o =
— " = m ®E ®mE 0O OO0CO m >
= " E E E E E O OOOMNR B 3 10
" E E E E R OO0 N N 2
02 " m m m ®E ®E OO ® ®H ®H - g 1
" E E E E E E ON NN <
" E E E E E E N N NN
" @ E E E E E E E N N 0 N
Of = = @ @ ® ®© ®©E ®E ®E ®E ® - 0 X ©
| | | | | |
0 20 40 60 80 100 40 4o 0 <&
A0 Malicios o 80 100
(B) Malicious clients (%) (©) eNts (%)

FIG. 7.3

Results for Scenario 1 (minimizing number of malicious clients): (A) outgun (top left) and eliminate (top right)
strategy utility, (B) strategy selection (bottom left), and (C) combined utility (bottom right).

7.6 REASONING ABOUT HUMAN-IN-THE-LOOP ADAPTATION 175

by the strategy are fully automated. Moreover, the utility that can be obtained decreases progressively
with increasing levels of malicious clients. This is consistent with the fact that strategy Outgun employs
only tactics that try to improve user experience without dealing with malicious users (e.g., adding new
servers), and in Scenario 1, the main contribution to utility results from low levels of malicious clients.

The top right of Fig. 7.3 depicts the utility obtained by strategy Eliminate. In contrast with strategy
Outgun, the plot shows how increasing levels of training yield better results. When the percentage of
malicious clients is low, the impact of training on utility is negligible because there are few or no ma-
licious clients to deal with. However, the outcome of the execution of tactics blackholeAttacker and
throttleSuspicious in situations with increasing levels of malicious clients can vary significantly
depending on the level of training of the human operator, who has to judge which clients will be af-
fected by the tactics. Poorly trained operators may erroneously apply countermeasures to legitimate
clients, being less efficient at reducing the percentage of malicious clients while increasing the level
of annoyance in legitimate clients when blackholing or throttling.

Fig. 7.4 shows the results for Scenario 2, in which the top priority is optimizing the experience of
legitimate clients, independently of the level of malicious clients making use of system resources.

Avg. u__ (Outgun) = 15.04 Avg. u__ (Eliminate) = 12.86

mau mau

20 20

Accrued utility
=
Accrued utility
-
o

% S
20 .
40 &
. 60 0 A
Malicioyg clients (%)80 1000 <<
(A)
m s; = outgun (80.09%)
o s;= eliminate (19.91%) Mg (sr) = 15.36
T T T T T T 9+ Umau (1)
1+ m m m m m 0O O O O O O -
m = m m ®m O O O O O O
m = m m ®m O O O O O O
" = E B E OO O O O O
08 m m m m m ®m O O O O O -
" = m m ®m ®E O O O O O
ko m = m m ®mE ®E O O O O O
4 " = m m mE ®E E O O O O
© 06 " m m m m N N O O ®m m
= " = E E E E E O N E N 20
c " m E B E E N E N HN N >
= " = E B E E E E N HN N =
=04 m = = = = B ®F N B ®H N =
o " = E B E E E E N HN N
= "= E E E E E E E N EHE N B 10}
" § E §E E R E E N H N 2
02 "= = @ @ ®E ®E E E E EHE H 5 1
" § E §E E R E E N H N 8
" m E B E E E E N HN N <
" = E B E E E E N HN N N
Of " = = = ® ® ® B ®HB ®H N - 0] ©
| | | | | | 0 20
0 20 40 60 80 100 y 40 60 5o AP
alici . \
(B) Malicious clients (%) (®)] ICious cligngg (%) 100" X

FIG. 7.4

Results for Scenario 2 (optimizing experience of legitimate clients): (A) outgun (top left) and eliminate (top right)
strategy utility, (B) strategy selection (bottom left), and (C) combined utility (bottom right).

176 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

The top left plot of the figure shows how strategy Outgun still experiences a reduction in the utility with
increasing levels of malicious users (similarly to Scenario 1). However, in this scenario the reduction in
utility is less pronounced than in Scenario 1 because in this case the main contribution to utility results
from optimizing legitimate client experience, and efficiency at reducing the percentage of malicious
clients is not as relevant.

7.6.3.2 Strategy selection

Given a repertoire of adaptation strategies S, we can analyze their expected outcome in a given situ-
ation by computing their expected accrued utility according to the procedure described above. Based on
this information, the different strategies can be ranked to select the one that maximizes the expected
outcome in terms of utility. Hence the selected strategy s; can be determined according to:

sp2arg max Upmau ()

where up,,,(5) is the value of property u,,, (maximum accrued utility, cf. Section 7.6.3.1) evaluated ina
model instantiated with the adaptation logic of strategy s.

Fig. 7.3B shows the results of the analysis of strategy selection in Scenario 1. The states in which
human involvement via strategy Eliminate is chosen (50.22% of states) are represented in white,
whereas states in which the automated strategy Outgun is selected (49.78%) are colored in black.
The figure shows how progressively higher levels of malicious clients make human involvement pref-
erable even when the level of training of the operator is limited (0.3-0.4) because, even under these
conditions, Eliminate is still better at improving utility than Outgun. This is explained by the fact that
the top priority in Scenario 1 is minimizing the number of malicious clients, and Outgun does not em-
ploy any tactics for dealing with them. However, it is worth noting that when the training level is very
low, the improvement on user experience provided by Outgun can outweigh the moderate improvement
in utility provided by inefficient executions of Eliminate (even if the percentage of malicious clients is
high). This situation can be observed in the area in which training levels are below 0.4 and the percent-
age of malicious clients are in the range 80—100%.

Fig. 7.3C shows the combined accrued utility mesh that results from the selection process (i.e.,
every point in the mesh is computed as #m,,(s1)). The average improvement is 16.3% over the Outgun
strategy, and 5.6% over Eliminate. Note that the minimum accrued utility never goes below the achiev-
able utility level of the automatic approach, over which improvements are made in the areas in which
the strategy involving human actors is selected.

Fig. 7.4B shows the results of the analysis of strategy selection in Scenario 2. In this case, the plot shows
how Outgun is selected in more than 80% of the states. This represents a remarkable increment in
the selection of the automated strategy with respect to Scenario 1, which is explained by the different
priorities that exist in Scenario 2 (improving legitimate client experience, independently of the percentage
of malicious clients). Indeed, it can be observed that the selection of Eliminate in this scenario is justified
only in the area in which both the percentage of malicious clients and the training level of the operator
are high.

Fig. 7.4C shows the combined accrued utility mesh in Scenario 2. In this case, the improvement in
utility obtained by the combined approach with respect to the individual strategies is not too far from
those in Scenario 1, but transposed (the improvement over Outgun is 2%, and 16.2% for Eliminate).

7.7 CONCLUSION 177

This is motivated by the better alignment of the priorities in Scenario 2 and the target of strategy Outgun
(improving client experience), whereas the priorities of Scenario 1 are better aligned with the target of
Eliminate (dealing with malicious clients).

CONCLUSION

In this chapter, we have described an approach that employs formal reasoning to analyze trade-offs in
self-adaptation at two different levels: (i) reasoning about business concerns in the context of other
(potentially conflicting) business properties; and (ii) reasoning about the effectiveness of automated
versus human-driven adaptations with respect to the different business concerns.

We have focused on human involvement in the execution stage of MAPE-K systems, in which
human actors adopt the role of system-level effectors. We have shown how to incorporate concepts
from CHS that model the probabilistic aspects of human behavior into a language tailored to describe
runtime adaptation (Stitch) that supports systems described in a variety of architectural styles, as well
as the specification of timing delays and probabilistic outcomes in adaptation tasks. We have also
shown how such specifications can be encoded into SMG models amenable to analysis via model
checking. We illustrated our approach in the context of Znn.com, a benchmark system in the self-
adaptive systems community that embodies the typical infrastructure of a dynamically scalable
web infrastructure. Our results showed that our approach can: (i) discriminate cases in which the
involvement of human actors in execution leads to an improvement of system utility, providing
the basis to combine human-based and automated adaptations; and (ii) decide about human involve-
ment in a context-sensitive manner, selecting different adaptations for different preferences over
business concerns.

Concerning future work, our current models assume that actors and system are working in coop-
eration to achieve goals. In fact, the interaction may be more subtle than that; Eskins and Sanders
point out that humans may have their own motivations that run counter to policy [6]. To capture this
possibility, we plan on extending the encoding of SMGs to model human actors as separate players.
In particular, we intend to assess the impact on the application of our technique across different do-
mains of various degrees of separation between the goals of human actors and those of the system. To
this end, we shall explore different scenarios that include models of operators with different incen-
tives, such as economic compensation models (e.g., per-task payments vs. fixed income), or oper-
ators with different goals who have to make use of shared platforms and resources. Moreover, we
shall extend our approach to formally model and analyze human involvement in other stages of
MAPE-K, studying how to best represent human-controlled tactic selection, and human-assisted
knowledge acquisition.

In this chapter, we have described our approach on a simple OWC model that maps attributes of
human operators to simple values for illustrative purposes. However, pragmatic solutions across dif-
ferent application domains might entail different instances of human models based on more nuanced
representations of human operators [29, 30]. An additional future direction of research involves
considering alternative models of human operators employed in different application domains, and
exploring their use in the context of self-adaptive systems involving humans.

mailto:Znn.com

|
178 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

ACKNOWLEDGMENTS

This work was supported in part by awards N0O00141310401 and N0O00141310171 from the Office of Naval Re-
search, CNS—-0834701 from the National Science Foundation, the National Security Agency, and in collaboration
with the Software Engineering Institute, a federally funded research and development center operated by Carnegie
Mellon University. The views and conclusions contained herein are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the Office of Naval Research, the Soft-
ware Engineering Institute, or the U.S. Government.

REFERENCES

(1]

(2]

(3]
(4]

(3]
(6]

(71
(8]

(91

(10]

(11]

B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N.Bencomo, Y. Brun,
B. Cukic, G.D.M. Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. Miiller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive systems: a research roadmap,
in: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for
Self-Adaptive Systems [Outcome of a Dagstuhl Seminar], Volume 5525 of Lecture Notes in Computer
Science, Springer, Berlin, 2009, pp. 1-26.

M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees, models, and applications, ACM
Comput. Surv. 40 (3) (2008) 1-28.

J.0. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput. 36 (1) (2003) 41-50.

D. Garlan, S.-W. Cheng, A. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation
with reusable infrastructure, IEEE Comput. 37 (10) (2004) 46-54.

S.-W. Cheng, D. Garlan, Stitch: a language for architecture-based self-adaptation, J. Syst. Softw. 85 (12)
(2012) 2860-2875.

D. Eskins, W.H. Sanders, The multiple-asymmetric-utility system model: a framework for modeling cyber-
human systems, in: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011,
Aachen, Germany, September 5-8, 2011, IEEE Computer Society, 2011, pp. 233-242.

S. Cheng, Evaluating the effectiveness of the rainbow self-adaptive system, in: ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2009, pp. 132-141.

N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H. Muller,
M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Volume 7475 of Lecture Notes in Com-
puter Science, Springer, New York, 2013, pp. 214-238.

D. Sykes, W. Heaven, J. Magee, J. Kramer, Exploiting non-functional preferences in architectural adaptation
for self-managed systems, in: S.Y. Shin, S. Ossowski, M. Schumacher, M.J. Palakal, C. Hung (Eds.), Pro-
ceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26,
2010, ACM, 2010, pp. 431-438.

R. Calinescu, M.Z. Kwiatkowska, Using quantitative analysis to implement autonomic IT systems, in: J.
M. Atlee, P. Inverardi (Eds.), Proceedings of the 31st International Conference on Software Engineering,
ICSE 2009, May 16-24, 2009, Vancouver, Canada, IEEE, 2009, pp. 100-110.

I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by run-time parameter adaptation, in: J.
M. Atlee, P. Inverardi (Eds.), Proceedings of the 31st International Conference on Software Engineering,
ICSE 2009, May 16-24, 2009, Vancouver, Canada, IEEE, 2009, pp. 111-121.

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0060

REFERENCES 179

[12] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, J. Bruel, RELAX: a language to address uncertainty in
self-adaptive systems requirement, Requir. Eng. 15 (2) (2010) 177-196.

[13] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
A. Wolf, An architecture-based approach to self-adaptive software, IEEE Intell. Syst. Appl. 14 (3) (1999)
54-62.

[14] C.Dorn, R.N. Taylor, Coupling software architecture and human architecture for collaboration-aware system
adaptation, in: D. Notkin, B.H.C. Cheng, K. Pohl (Eds.), Proceedings of the 35th International Conference on
Software Engineering, ICSE *13, San Francisco, CA, USA, May 18-26, 2013, IEEE/ACM, 2013, pp. 53-62.

[15] L. Clement, D. Konig, V. Mehta, R. Mueller, R. Rangaswamy, M. Rowley, 1. Trickovic, WS-BPEL extension
for people BPEL4People, 2010. http://docs.oasis-open.org/bpeld4people/bpeldpeople-1.1.html.

[16] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, On the suitability of BPMN for
business process modelling, in: S. Dustdar, J.L. Fiadeiro, A.P. Sheth (Eds.), Proceedings of the Fourth
International Conference on Business Process Management, BPM 2006, Vienna, Austria, September 57,
2006 Volume 4102 of Lecture Notes in Computer Science, Springer, Berlin, 2006, pp. 161-176.

[17] J. Camara, G.A. Moreno, D. Garlan, Stochastic game analysis and latency awareness for proactive
self-adaptation, in: G. Engels, N. Bencomo (Eds.), Proceedings of the Ninth International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, Hyderabad, India, June
2-3, 2014, ACM, 2014, pp. 155-164.

[18] J. Camara, G.A. Moreno, D. Garlan, Reasoning about human participation in self-adaptive systems,
in: P. Inverardi, B.R. Schmerl (Eds.), Proceedings of the 10th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, IEEE, 2015, pp. 146-156.

[19] B.R.Schmerl,J.Camara,J. Gennari, D. Garlan, P. Casanova, G.A. Moreno, T.J. Glazier, J.M. Barnes, Architecture-
based self-protection: composing and reasoning about denial-of-service mitigations, in: L.A. Williams, D.
M. Nicol, M.P. Singh (Eds.), Proceedings of the 2014 Symposium and Bootcamp on the Science of Security, Hot-
SoS 2014, Raleigh, NC, USA, April 08-09, 2014, ACM, 2014, p. 2.

[20] J. Kramer, J. Magee, Self-Managed Systems: An Architectural Challenge, in: L.C. Briand, A.L. Wolf (Eds.),
International Conference on Software Engineering, ISCE 2007, Workshop on the Future of Software
Engineering, FOSE 2007, May 23-25, 2007, 2007, pp. 259-268.

[21] J. Camara, A. Lopes, D. Garlan, B. Schmerl, Impact models for architecture-based self-adaptative systems,
in: Proceedings of the 11th International Symposium on Formal Aspects of Component Software, FACS
2014, Bertinoro, Italy, September 10-12, 2014, Volume 8997 of Lecture Notes in Computer Science,
Springer, Berlin, 2014, pp. 89-107.

[22] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, A. Simaitis, PRISM-games: a model checker for stochastic
multi-player games, in: N. Piterman, S.A. Smolka (Eds.), Proceedings of the 19th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013, Volume 7795 of Lecture Notes in Computer Science, Springer, Berlin, 2013, pp. 185-191.

[23] S. Kremer, J. Raskin, A game-based verification of non-repudiation and fair exchange protocols, in: K.
G. Larsen, M. Nielsen (Eds.), Proceedings of the 12th International Conference on Concurrency Theory,
CONCUR 2001, Aalborg, Denmark, August 20-25, 2001, Volume 2154 of Lecture Notes in Computer
Science, Springer, Berlin, 2001, pp. 551-565.

[24] W.V.D. Hoek, M. Wooldridge, Model checking cooperation, knowledge, and time—a case study, Res. Econ.
(2003) 200-203.

[25] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, A. Simaitis, Automatic verification of competitive sto-
chastic systems, Formal Methods Syst. Des. 43 (1) (2013) 61-92.

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0075
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0130
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0130

180 CHAPTER 7 EVALUATING TRADE-OFFS OF HUMAN INVOLVEMENT

[26]

(27]
(28]

[29]

(30]

T. Chen, J. Lu, Probabilistic alternating-time temporal logic and model checking algorithm, in: J. Lei (Ed.),
Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD
2007, August 24-27, 2007, Haikou, Hainan, China, vol. 2, IEEE Computer Society, 2007, pp. 35-39.

R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672-713.
V. Forejt, M.Z. Kwiatkowska, G. Norman, D. Parker, Automated Verification Techniques for Probabilistic
Systems, in: M. Bernardo, V. Issarny (Eds.), Formal Methods for Eternal Networked Software
Systems—11th International School on Formal Methods for the Design of Computer, Communication
and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011, Advanced Lectures, Volume 6659
of Lecture Notes in Computer Science, Springer, Berlin, 2011, pp. 53-113.

J. Rasmussen, Mental models and the control of action in complex environments, in: D. Ackermann,
M.J. Tauber (Eds.), Mental Models and Human-Computer Interaction 1 [Selected Papers of the Sixth Inter-
disciplinary Workshop in Informatics and Psychology, Scharding, Austria, June 1987], North-Holland, 1990,
pp. 41-69.

J. Rasmussen, The role of hierarchical knowledge representation in decisionmaking and system management,
IEEE Trans. Syst. Man Cybernet. 15 (2) (1985) 234-243.

http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0155
http://refhub.elsevier.com/B978-0-12-802855-1.00007-1/rf0155

CHAPTER

PRINCIPLED ELICITING AND
EVALUATION OF TRADE-OFFS
WHEN DESIGNING SELF-ADAPTIVE
SYSTEMS ARCHITECTURES

S. Andrade*'’, R. Macedo’
Federal Institute of Education, Science, and Technology of Bahia, Salvador, Bahia, Brazil®
Federal University of Bahia, Salvador, Bahia, Brazil'

INTRODUCTION

Over the past few years, advances in areas such as virtualization, big data storage, and high perfor-
mance computer networks have changed the way we develop modern software-intensive distributed
systems [1-3]. Requirements for scalability, fault tolerance, and adaptability—to mention just a
few—become substantially more critical in scenarios such as cloud computing environments [4],
cyber-physical systems [5], QoS-aware web services [6], and applications for mobile devices [7]. In
such scenarios, operational environments and workloads highly uncertain and dynamic introduce a
number of shortcomings in those architectures that commit to nonadaptive solutions, taken in the early
stages of software design. As a consequence, the delivered service easily degrades when conditions
deviate from those assumed in design-time.

Moving one or more activities of the software development process—previously undertaken off-
line by designers and developers—to runtime allows for endowing software systems with self-
management or self-adaptation capabilities [8—10]. Such activities—now undertaken online solely
by the system itself or assisted by the operator—require the adoption of some infrastructure for system
and environment monitoring, reasoning about the needs for adaptation, generation of effective adap-
tation plans, and enacting of adaptation changes in the running system.

Over the past years, several mechanisms for enabling self-adaptation have been proposed by dif-
ferent research communities, including the use of graph grammars [1 1], machine learning [12], control
theory [13, 14], intelligent agents [15], event-condition-action rules [16, 17], and models at runtime
[18]. As a consequence, being informed about all alternative candidate architectures, making judicious
decisions about trade-offs, and performing early rigorous analysis of quality attributes are still quite
challenging tasks, even for skilled architects.

This chapter presents an approach for principled eliciting and evaluation of trade-offs when design-
ing software architectures. Such an approach provides the underpinnings for the systematic

Managing Trade-offs in Adaptable Software Architectures. http://dx.doi.org/10.1016/B978-0-12-802855-1.00008-3 1 8 1
Copyright © 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-802855-1.00008-3

182 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

representation of refined design knowledge in terms of well-structured design spaces [19], as well as for
the use of multiobjective optimization techniques [20] as a rigorous mechanism to reveal and analyze
design trade-offs. For that purpose, we developed a new modeling language—named DuSE [21]—
which provides the constructs for describing well-structured design spaces for a given domain appli-
cation. Such design space entails the domain’s prominent architectural concerns, possible solutions for
each concern, and associated architecture evaluation metrics.

A design space—when instantiated for a given problem from the application domain—yields an
application-specific design space: a potentially huge search space containing all possible candidate ar-
chitectures for such a problem. For those application domains where effective architectures are the
result of subtle and ingenious combinations of architectural tactics, finding out such solutions by man-
ual exploration of design spaces is quite unlikely. Therefore, the adoption of multiobjective optimiza-
tion may leverage the eliciting of those candidate architectures which exhibit optimal trade-offs in the
fulfillment of conflicting quality attributes.

The aforementioned infrastructure was conceived, designed, and implemented to be domain-
independent and, therefore, amenable to be reused to capture refined design knowledge across different
application domains. Such an infrastructure was instantiated in order to create SA:DuSE [22]—a
specific design space aimed at capturing the most prominent architectural concerns when
designing self-adaptive systems based on control-theoretical feedback loops [14]. SA:DuSE enables
the automated design of architectures that adopt different solutions for five design dimensions: control
cardinality, control law, control tuning, control adaptation, and interloop interaction. Each candidate
architecture—representing a particular combination of solutions for the cited dimensions—is evaluated
regarding four domain-specific quality attributes: average settling time, average overshoot, control
robustness, and control overhead.

Our approach has been validated regarding three different aspects, all of them evaluated in two rep-
resentative self-adaptive scenarios: an adaptive web server and an elastic platform for distributed
MapReduce jobs. First, we investigated to which extent SA:DuSE effectively captures the expected
trade-offs when designing feedback control loops for such scenarios. To achieve this, we evaluated
the optimality and diversity of results from a single optimization run by using the hypervolume per-
formance indicator. We also undertook statistical tests to find out the minimum number of iterations
required to produce sufficiently optimal solutions. Second, we investigated with which accuracy the
values of average settling time and average overshoot—predicted by SA:DuSE—are actually observed
in real prototypes of three candidate architectures in each scenario. Such candidates were implemented
on top of Apache httpd web server (for the adaptive web server scenario) and Apache Hadoop (for the
elastic platform for distributed MapReduce jobs scenario). Finally, we undertook a quasi-experiment
that investigated whether our approach improves the design self-adaptive systems architectures in
terms of architectural complexity and control effectiveness, when compared to a traditional architec-
ture design process.

The remainder of this chapter is organized as follows. Section 8.2 presents the most prominent re-
quirements for an automated approach for software architecture design and analysis. Section 8.3 pre-
sents our approach, detailing the rationale which guided its inception, the underlying mechanisms and
technologies adopted, and how we have used such an infrastructure to automate the design of self-
adaptive systems architectures. Section 8.5 discuss the evaluation activities we have undertaken in
order to assess the proposed approach. Finally, Section 8.6 presents the conclusions and draws the
venues for future investigation.

8.2 REQUIREMENTS FOR AUTOMATED ARCHITECTURE DESIGN AND 183
ANALYSIS

REQUIREMENTS FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

Although software architectures undergo continuous evolution in diverse stages of a software develop-
ment process, their primary inception occurs in early stages of design, as by-product of a software archi-
tecture design process [23]. Fig. 8.1 depicts the usual stages defined in a software architecture design
process. In the requirement analysis stage, major functional and nonfunctional requirements are elicited
and then verified for any architecturally significant impact. Such requirements are passed as input for
the decision making stage, where the well-orchestrated use of distilled design knowledge enables the
judicious choice of those architectural tactics that yields a candidate architecture that effectively fulfill
the desired quality attributes. The candidate architecture is then analyzed—regarding distinct
quality attributes—and a new design cycle is undertaken if results show that further improvements
may be achieved.

The aforementioned architecture design process may be instantiated in different ways. It may im-
plement very agile cycles or a more bureaucratic approach; the analysis stage may include only manual
inspections/reviews or be assisted by evaluation tools; and qualitative and/or quantitative aspects may
be taken into account during analysis activities. Our approach aims at automating such a process by
providing the underlying infrastructure for: (i) the systematic capture of refined design knowl-
edge—supporting, therefore, the use of well-structure design spaces in the decision making stage;
and (ii) a more rigorous approach for trade-off eliciting and analysis—by adopting multiobjective op-
timization mechanisms in the architecture analysis stage.

Under such perspective, we identified a set of six requirements that should be addressed by an au-
tomated process for architecture design and analysis, described as follows.

R1: Design knowledge should be systematically represented in a well-structured design space. Such a
requirement enables the automatic design of architectures implementing any combination of
architectural tactics defined for a given application domain. That helps ensuring that all candidate

Yes

System requirements and project context

Is the architecture
acceptable?

Requirement
analysis

Architecturally significant aspects

Analysis results

’ Decision making }— Candidalte arcr:itectural % Architectural analysis
elements

FIG. 8.1

Usual stages defined in a software architecture design process. Architecturally significant requirements—yielded
in the Requirements Analysis stage—are passed as inputs to the decision making stage. Refined architectural
knowledge is then applied in order to produce a given candidate architecture (decision making stage’s output).
Such a candidate is analyzed regarding the fulfillment of different quality attributes in the Architectural Analysis
stage. The process repeats until an acceptable candidate architecture is obtained.

184 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

architectures—including those subtle and ingenious—will be taken into account during the
decision making stage.

R2: Impacts of architectural tactics on quality attributes should be quantitatively measurable by
accurate evaluation models. While the use of qualitative analysis enables a more thorough
investigation about amorphous aspects like design rationale, fully automated design processes
must rely on a set of evaluation models which quantitatively inform how good is a candidate
architecture in the achievement of the desired quality attributes.

R3: Alternative architectures regarding a particular trade-off should be amenable to rigorous eliciting
and evaluation. In general, architectural decisions are strategically taken in order to induce desired
properties in the final solution. When such properties are conflicting, different candidate
architectures provide different balances in the fulfillment of such quality attributes. Having such
trade-offs explicitly identified and rigorously evaluated is mandatory if we are to prospect
principled processes for software design and analysis.

R4: The adopted architectural modeling notation should be rigorous enough to support the automated
process. The decision making stage must produce models described in a notation/language that
fulfill the minimum requirements of ambiguity and accuracy in order to support the automatic
analysis activities adopted in the process.

R5: Mechanisms for feeding analysis results back to the upcoming cycle should be adopted. As in
nonautomated architecture design processes, candidate architectures are expected to be evolved
until the minimum requirements for the quality attributes at hand are sufficiently fulfilled.

R6: The automated architecture design and analysis approach should be domain-independent. We
expect such an approach be amenable to be adopted in a range of application domains. While some
particular domains may require some uncommon model manipulations, we believe a set of
common architectural changes (e.g., addition/removal of a component/connector and change of an
element’s property) is likely to support the automatic design of architectures for a broad class of
application domains.

As for the self-adaptive systems domain in particular, it is worth mentioning that automated approaches for
architecture design and analysis may play two different roles. First, as an off-line mechanism to come up
with effective architectures—as in any other application domain to which a systematic design space is
available. Second, as an online infrastructure responsible for continuously finding out an effective new
architecture (adaptation) given the new conditions observed in the environment and in the system itself.
The work we present in this chapter focuses on the first role aforementioned. A number of new requirements
should be introduced when focusing on the second role, such as constraints regarding the temporal predict-
ability of adaptations and the detection of those system states in which adaptation can be safely enacted.

THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND
ANALYSIS

DuSE is an automated software architecture design process—proposed by us and initially described in
[21, 22]—which provides the underpinnings for the systematic representation of refined architecture
design knowledge for a given application domain. Furthermore, is enables the use of rigorous multi-
objective optimization mechanisms to elicit and evaluate the involved trade-offs when designing ar-
chitectures for a particular system of such a domain.

8.3 THE DuSE APPROACH FOR AUTOMATED ARCHITECTURE DESIGN AND 185
ANALYSIS

THE RATIONALE

During the DuSE inception, a number of underlying new and existing technologies and mechanisms
have been selected and integrated in order to effectively fulfill the aforementioned requirements for
automated architecture design and analysis approaches. Such decisions are described below, along with
the reasons for their adoption and the requirements addressed by each decision.

D1: Use of models as underlying technology for systematizing the representation of design
knowledge. Since we wanted our approach to be automatic, the forging of new architectures was
supported by a machine-consumable representation of the possible architectural tactics (design
space)—described in a model that captures the prominent design dimensions and solutions for a
given domain application at hand. To support this, we designed a new modeling language—also
named DuSE—which provides all the constructs required to define a design space for a given
application domain. Such a decision addresses requirements R1 and R4, as it supports the well-
structured representation of design spaces in a modeling notation (meta object facility—MOF and
unified modeling language—UML) which is rigorous enough to achieve the approach’s goals.

D2: Use of meta-models as enabling mechanism for domain-independence. The generic architecture
optimization engine we devised performs all its operations based on constructs from the meta-model
level of the language used when creating the design space model. That allows for reusing the
whole architecture optimization infrastructure across a range of application domains, varying
only the particular design space guiding the process. The DuSE language is described in MOF
[24] and all generated candidate architectures are described in UML [25]. We decided to base
our approach in MOF and UML languages because of their wide use in industry and high
expressiveness when modeling software architectures. Such decision addresses requirement R6.

D3: Use of a posteriori preference articulation to reveal architectural trade-offs. Multiobjective
optimization problems in which two or more objectives are potentially conflicting may be
addressed by a priori or a posteriori approaches. In a priori approaches, a preference vector is
defined in advance to indicate the weights that will govern the fulfillment of the multiple
objectives. The problem is then reduced to a single objective one where different weights yield
solutions exhibiting varying trade-offs when meeting the objectives. However, finding out an
optimal solution depends highly on the adopted weight vector, often set up subjectively, based on
previous experience and, therefore, amenable to bias. In our work, we rely on a posteriori
preference articulation, where the output of an optimization run is a set of equally optimal
architectures (named Pareto-front [20]), differing only at which objective is favored. Such
decision addresses requirement R3 and sets the stage for addressing requirement R2.

D4: Use of highly scalable optimization mechanisms, even at the cost of nonguaranteed optimality. It’s
commonly agreed that, for some intricate application domains, the set of all architectural tactics
available for use in the design stage is potentially huge. Manually evaluating all possible
combinations of tactics in order to come up with an effective architecture for a problem at
hand is obviously unlikely. On the other hand, we believe the most outstanding architectures
may result from subtle and nonnaive combinations, which abide in regions of such huge design
space hardly found by manual exploration. Our approach adopts multiobjective evolutionary
optimization mechanisms in order to cope with huge design spaces without incurring in
exponentially large search times. Even though that implies in nonguaranteed optimality, we
believe that finding out near-optimal architectures in a reasonable time already constitutes
valuable results. Such decision addresses requirement RS.

186 CHAPTER 8 DESIGNING SELF-ADAPTIVE SYSTEMS ARCHITECTURES

THE APPROACH

DuSE aims at supporting the automated design of software architectures by systematically representing
refined design knowledge for a given application domain and adopting multiobjective optimization
mechanisms to enable the principled eliciting and evaluation of design trade-offs. Although such an
approach has been initially conceived to support the design of self-adaptive systems, the decisions men-
tioned in Section 8.3.1 make it amenable to use in any application domain for which a design space has
been created. The domain-independent operation of our approach is described as follows.

In order to make DuSE domain-independent, we designed a generic meta-modeling infrastructure
which provides the means for specifying a new design space for an application domain of interest. Such
a design space entails the architectural changes that represent all possible tactics implementing alter-
native solutions for a set of design concerns considered prominent in the application domain. Further-
more, a design space specifies a set of quality attributes and its corresponding evaluation metrics. Each
candidate architecture—a valid combination of tactics for each design concern—may then be evaluated
regarding the different quality attributes present in the design space.

Since such design spaces may easily span a huge number of candidate architectures, we use multi-
objective optimization mechanisms to automatically reveal those candidates that represent (near-)
optimal trade-offs between the involved quality attributes. The whole optimization mechanism we pro-
pose operates at the meta-modeling level of the design space representation and it is, therefore, ame-
nable to be used across a range of application domains.

Fig. 8.2 describes the design workflow we propose. Qualified architects use distilled design knowl-
edge to specify: (i) a domain-specific UML profile; (ii) the most prevalent design dimensions and their
corresponding alternative solutions in such a domain; and (iii) the quality metrics which evaluate can-
didate architectures regarding desired attributes. These tasks are performed once per application do-
main, at the design space inception stage (Fig. 8.2A).

Henceforth—in the design space usage stage (Fig. 8.2B)—the domain-specific design space (DuSE
instance) and UML profile can be used by (novice) architects either to manually explore redesign al-
ternatives for a given initial system or to hand over such task to the multiobjective optimization engine
provided by DuSE.

A concrete design space and its quality attributes are specified by using a modeling language—also
named DuSE—we have designed for such a purpose. A supporting UML profile is also defined for the
application domain at hand, enabling the annotations that drive the automated design process. A design
space (e.g., for the application domain of distributed and concurrent systems) is defined as a set of
ndesign dimensions representing specific design concerns in such a domain (e.g., concurrency strategy,
caching algorithm, and event dispatching model).

Definition 8.1. A design space is atuple ds = (DD,OM,P), where DD is a nonempty totally ordered
set of design dimensions, QM is a nonempty totally ordered set of quality metrics, and P is the accom-
panying UML profile for such an design space.

Each design dimension holds a set of variation points, which represent alternative solutions for such a
concern (e.g., leader-followers or half-sync/half-async; for the concurrency strategy dimension).

Definition 8.2. A design dimension is a tuple dd = (V P, targetElementsExp), where V P is a none-
mpty totally ordered set of variation points and rargetElementsExp is an object constraint language
(OCL) expression which returns—when evaluated on an initial UML architectural model M—the
elem