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RECONSTRUCTING MACROECONOMICS

The authors treat macroeconomic models as composed of large numbers of micro-
units or agents of several types and explicitly discuss stochastic dynamic and com-
binatorial aspects of interactions among them. In mainstream macroeconomics,
sound microfoundations have meant incorporating sophisticated intertemporal
optimization by representative agents into models. Optimal growth theory, once
meant to be normative, is now taught as a descriptive theory in mainstream macroe-
conomic courses. In neoclassical equilibria, flexible prices led the economy to the
state of full employment, and marginal productivities are all equated. Professors
Aoki and Yoshikawa contrariwise show that such equilibria are not possible in
economies with a large number of agents of heterogeneous types. The authors
treat equilibria as statistical distributions and not as fixed points. They employ a
set of statistical dynamical tools via continuous-time Markov chains, and statisti-
cal distributions of fractions of agents by types available in the new literature of
combinatorial stochastic processes, to reconstruct macroeconomic models.

Masanao Aoki is Professor Emeritus in the Department of Economics at the Uni-
versity of California, Los Angeles. He is past President of the Society for Economic
Dynamics and Control, a Fellow of the Econometric Society, and a Fellow of the
IEEE Control Systems Society (inactive). Currently, Professor Aoki is Vice President
of the Society for Economic Science with Heterogeneous Interacting Agents and a
member of the editorial board of the Journal of Economic Interaction and Coordina-
tion. A past Associate Editor of the journal Macroeconomic Dynamics, published by
Cambridge University Press, Professor Aoki also served as Editor of the Journal of
Economic Dynamics and Control and the International Economic Review. He is the
author or editor of a dozen books, including Modeling Aggregate Behavior: Fluctua-
tions in Economics, which won the 2003 Nihon Keizai Shinbun-Center for Japanese
Economics Research Prize for best book in economics by a Japanese scholar (Cam-
bridge University Press, 2002); and New Approaches to Macroeconomic Modeling
(Cambridge University Press, 1996).

Hiroshi Yoshikawa is Professor of Economics at the University of Tokyo. He received
his Ph.D. from Yale University in 1978 and has also taught at Osaka University and
the State University of New York at Albany. Professor Yoshikawa is the author of
seven books, one of which received the Nikkei Award and another of which received
the Yoshino-Yomiuri Award, in addition to a textbook in macroeconomics and the
frequently cited Macroeconomics and the Japanese Economy (1995). He is a member
of the Council on Economic and Fiscal Policy of the Japanese government’s Cabinet
Office, and he served in 2002 as president of the Japanese Economic Association.
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Preface by Masanao Aoki

In the last ten years or so, I have devoted my research efforts to revising the com-

monly adopted frameworks for modeling and analysis by mainstream macro-

economists. Results of my initial thoughts and proposals were published in 1996,

followed by another book in 2002. In these two books I explained my proposed

methods for modeling and analyzing stochastic dynamic interactions among

economic agents of possibly many different types, and how to analyze aggregate

behavior and associated fluctuations. The two books are mostly exposition of

concepts and techniques and had only a few suggestive economic examples.

I have realized that more substantive examples are needed to convince main-

stream macroeconomists of the usefulness of my approaches. This book, jointly

written with Hiroshi Yoshikawa, integrates the methodologies and approaches

in these two earlier books with much more detailed analysis of more substantive

and substantial macroeconomic examples.

As the subtitle of the book makes clear, our approaches have two components:

(1) continuous-time Markov chains to model stochastic dynamic interactions

among agents and (2) combinations of stochastic processes and non-classical

combinatorial analysis, called combinatorial stochastic processes.1

In (1) a version of Chapman–Kolmogorov equations called master equa-

tions describes how states of the models evolve stochastically over time. In this

sense this part is devoted to applications of some of the concepts and methods

from statistical physics. In (2) some concepts and results from the combinatorial

stochastic process field are applied to describe stochastic dynamic processes of

formation of clusters or groupings of heterogeneous agents and probability dis-

tributions of cluster sizes. We show by examples that macroeconomic properties

of models emerge from the interaction of a large number of economic agents as

an interacting whole.

1 Jim Pitman of the Department of Statistics, University of California, Berkeley, has used this phrase

in his lecture notes (2002).

xv
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xvi Preface by Masanao Aoki

There are always dangers of mechanical applications or attempts to import

tools and concepts from outside economics proper without good reason. Axel

Leijonhufvud warned against these.2 We are aware of this danger and confident

that we have avoided it in this book.

For your information here is a bit of my intellectual meander to writing

this book. I remember vividly my shock when I first encountered representative

agent models at an NSF workshop.3 I was very puzzled by this representative

agent assumption that many papers were using. I kept asking myself “what about

interactions among agents?”

Acknowledgments

Preliminary versions of some of the material in this book were reported at the

annual Wehia meetings held at Genoa, Marseilles, Maastrict, Kiel, Trieste, and

Kyoto; a conference paper at the complexity conference at the University of

Salerno; a paper given at the 2005 annual meeting of the Society of Computational

Economics, Washington, DC; a conference paper at the Stern School of Business,

New York University; a conference paper at the LABORatorio Revelli Center for

Employment Studies in Torino; a workshop paper at the University of Bologna;

two Nikkei conference papers in Tokyo; seminar talks at the New School, New

York; the University of Siena; the University of Ancona; Summer School of Trento
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International Research on the Japanese Economy; and the University of Tokyo,
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visits to work on the book manuscript with my coauthor.

The initial computer simulation program for the model in Chapters 6 and
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by Vitali Kalesnic, a former research assistant of mine in the Department of

Economics, UCLA. The program was later revised and expanded by graduate

students at the University of Tokyo, Shinsuke Ikeda, Yutaka Suga, and Futoshi

Narita, under supervision of my coauthor. I thank them all for their help.

2 See M. Aoki and A. Leijonhufvud (1976), “Cybernetics and Macroeconomics: A Comment,” Econ.

Inquiry XIV, 251–258. In rereading his comments I am amazed how insightful and current his

comments and warnings are if “cybernetics” is interpreted broadly enough to include current

efforts by some econophysicists.
3 I had been contemplating changing my specialization to economics, and the late Jacob Marshak

kindly invited me to observe research in economics first-hand. I had training in physics and systems

theory but none in economics.
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Preface by Hiroshi Yoshikawa

Macroeconomics has gone astray. I suspect that many economists, or at least half

of macroeconomists who are old enough to know the “Old Macroeconomics,”

feel that way. In the past 30 years, macroeconomics has become less relevant.

The mainstream macroeconomics today begins with optimization of the

representative consumer. The real business cycle (RBC) theory is the foremost

example. The optimum growth theory once meant to be normative is now being

taught as a descriptive theory. It is the neoclassical equilibrium theory. Pref-

erences and technologies certainly move the economy. The prediction of the

neoclassical doctrine seems often right for the very long run. However, saying

that something moves eastward, and saying that it reaches the east end, are wholly

different matters. Most of the time, the real economy must move on a bumpy

road. It is misleading and wrong to analyze such problems as business cycles,

unemployment, and deflation – the subject matters of macroeconomics – with

the neoclassical equilibrium theory.

Contrary to the belief held by some economists, we need a new approach for

macroeconomics, different from the standard equilibrium theory. The purpose

of this book is to explain it. Having sound “microeconomic foundations for

macroeconomics” has been long taken as building sophisticated optimization of

an individual economic agent into a macro model. This agenda is on the wrong

track. The new approach we advance in this book is based on the methods of

statistical physics. It provides different and proper microeconomic foundations

for macroeconomics, and by so doing, it revives the old Keynesian economics.

Attempts to build “the out of the mainstream” macroeconomics in the heyday

of rational expectations and equilibrium theory have not been easy. However, I

have been privileged to receive encouragement in my pursuits from two great

economists. The late professor James Tobin, my dissertation advisor at Yale 30

years ago, had always inspired me. An important theme of this book is to provide

foundations for “stochastic macro equilibrium,” which he proposed in his AEA

presidential address. Professor Robert M. Solow has also given me a number of

constructive comments on my papers, and by so doing great encouragement.
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xviii Preface by Hiroshi Yoshikawa

This book won the UFJ Monograph Award. We are proud of it, and grateful
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ments and encouragement. We are also grateful to the Research Center for the
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of Excellence (COE) program in the Graduate School of Economics at the Uni-

versity of Tokyo, for its financial support. Messrs. Shinsuke Ikeda, Futoshi Narita,

and Yutaka Suga, graduate students at the University of Tokyo, did simulations

in Chapters 6 and 7 and gave very detailed comments on every page, often saving

us from errors. Ms. Momoko Inui provided excellent assistance. We thank them

all. Now, the book has been done. I hope that it will contribute to reconstructing

macroeconomics.
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1

Introduction: A New Approach to Macroeconomics

In his 1844 essay, “On the Influence of Consumption upon Production,” J. S. Mill

endeavored to refute the belief that, “A great demand, a brisk circulation, a rapid

consumption (three equivalent expressions) are a cause of national prosperity.” In

this book, we take up the old belief and propose that aggregate demand does matter

in the determination of total output. The argument requires a drastic turn in

macroeconomic, theory and introduces new methods. The purpose of this book

is to explain the new approach. Readers will see how new methods and concepts

broaden the scope of macroeconomics and shed new light on old problems

such as demand deficiency, inflexible prices, business cycles, and asset prices.

The idea that demand matters was, of course, established by Keynes (1936) –

indeed, macroeconomics used to be synonymous with Keynesian economics.

Alas, no more! Keynes’ principle of effective demand – that aggregate demand

determines the level of aggregate production or output – is in stark contrast to the

neoclassical doctrine that aggregate output is determined solely by supply factors

such as factor endowments and technology, and that demand is relevant only with

respect to composition of outputs. Despite its empirical attractiveness, Keynesian

economics has long been charged with lacking microeconomic foundations. The

need for microeconomic foundations meant that the optimization of agents had

to be explicitly considered in models.

Many economists have come to believe that the first principle of economics

is the optimization of economic agents such as household and firm. This prin-

ciple and the notion of equilibrium – namely equality of supply and demand –

constitute the core of the neoclassical theory. To some, this is the only respectable

economic theory on earth. For example, Lucas (1987) concluded his Yrjo

Jahnsson Lectures as follows:

The most interesting recent developments in macroeconomic theory seem to me describable

as the reincorporation of aggregative problems such as inflation and the business cycle within

the general framework of “microeconomic” theory. If these developments succeed, the term

“macroeconomic” will simply disappear from use and the modifier “micro” will become

superfluous. We will simply speak, as did Smith, Ricardo, Marshall and Warlras, of economic

1
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2 Introduction: A New Approach to Macroeconomics

theory. If we are honest, we will have to face the fact that at any given time there will be

phenomena that are well-understood from the point of view of the economic theory we have,

and other phenomena that are not. We will be tempted, I am sure, to relieve the discomfort

induced by discrepancies between theory and facts by saying that the ill-understood facts are

the province of some other, different kind of economic theory. Keynesian “macroeconomics”

was, I think, a surrender (under great duress) to this temptation. It led to the abandonment,

for a class of problems of great importance, of the use of the only “engine for the discovery

of truth” that we have in economics. Now we are once again putting this engine of Marshall’s

to work on the problems of aggregate dynamics. (Lucas, 1987, 107–108)

Thus, over the last 30 years, economics has attempted, in one way or another,

to build maximizing microeconomic agents into macroeconomic models. To

incorporate these agents into the models, the assumption of the representative

agent is usually made. These exercises lead one to neoclassical macroeconomics.

The real business cycle (RBC) theory (e.g., Kydland and Prescott, 1982) praised

by Lucas (1987) is the foremost example.

In this book, we argue that the standard approach represented by RBC is

misguided, and that a fundamentally different approach is necessary to analyze

the macroeconomy. Such an approach is based on statistical physics and combi-

natorial stochastic processes, which are commonly used in physics, biology, and

other natural sciences when one studies a system consisting of a large number of

entities. Contrary to Lucas’s assertion, we do need “some other, different kind of

economic theory” when we study the macroeconomy.

As the founders of the neoclassical economics such as Walras, Marshall, and

Pareto explicitly recognized, neoclassical theory is built on concepts and methods

imported from classical Newtonian mechanics. Interestingly, Marshall was aware

of the limitations of his method. At age 78, in the preface to the eighth edition

of hisPrinciples of Economics, he wrote:1

The Mecca of the economist lies in economic biology rather than in economic dynamics. But

biological conceptions are more complex than those of mechanics; a volume on Foundations

must therefore give a relatively large place to mechanical analogies; and frequent use is made

of the term “equilibrium,” which suggests something of statical analogy. This fact, combined

with the predominant attention paid in the present volume to the normal conditions of life

in the modern age, has suggested the notion that its central idea is “statical,” rather than

“dynamical.” But in fact it is concerned throughout with the forces that cause movement:

and its key-note is that of dynamics, rather than statistics. . . .

The main concern of economics is thus with human beings who are impelled, for good

and evil, to change and progress. Fragmentary statical hypotheses are used as temporary

auxiliaries to dynamical – or rather biological – conceptions: but the central idea of eco-

nomics, even when its Foundations alone are under discussion, must be that of living force

and movement. (Marshall, 1920, xii–xiii)

1 This idea, an emphasis of biological analogy in economics, dates back to his earlier writing (see

Marshall, 1898).
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Introduction: A New Approach to Macroeconomics 3

Marshall knew that his method, based on the assumption “other things being

equal,” is suitable for analyzing a single market but faces difficulty in the analysis

of the macroeconomy because “gradually the area of the dynamical problem

becomes larger; the area covered by provisional statical assumptions becomes

smaller” (Marshall, 1920, xiii). Marshall was much more cautious than Lucas

(1987); however, he lacked the method required to achieve his goal!

In physics, during the late nineteenth century, a fundamentally new approach

called statistical mechanics had been advanced by Maxwell, Boltzmann, Gibbs,

and others to study an entity consisting of a large number (typically 1023) of

units. Curiously, the method and concept of statistical mechanics have escaped

economists’ eyes for more than a hundred years though they perfectly fit the

purpose of studying the macroeconomy as distinguished from microeconomic

behavior.

Indeed, the macroeconomy consists of a large number of heterogeneous in-

teracting agents. For example, the number of households is of the order of 107;

the number of firms is of the order of 106. In analyzing a system composed of

such a large number of units, it is meaningless and impossible to pursue precise

behavior of each unit, because the economic constraints on each will differ, and

objectives of the units are constantly changing in an idiosyncratic way. This does

not mean that economic agents do not behave rationally or do not optimize their

objective functions. They certainly do. Their rationality may be bounded, but this

is not essential for macroeconomics. The point is that precise behavior of each

agent is irrelevant. Rather, we need to recognize that microeconomic behavior

is fundamentally stochastic, and we need to resort to proper statistical methods

to study the macroeconomy consisting of a large number of such agents. The

starting point of statistical mechanics was the recognition that it was impossible

and meaningless to pursue precise motion of an individual molecule in a gas.

Macroeconomics must be built on the same premise.

We also need to reconsider the notion of equilibrium. That microeconomic

behaviors are all accompanied by fluctuations is of fundamental importance.

Traditional economic theory abstracts from microeconomic fluctuations. Thus,

the outcome of optimization by an economic agent is given by a deterministic

“point” in some set or space. Accordingly, macro equilibrium is also given by such

a point. The Walras–Arrow–Debreu general equilibrium model is an example. In

this model, prices clear the way for aggregation of micro-equilibria of many agents

into a macro-equilibrium, because microeconomic fluctuations are assumed

away, and equilibrium is given by a deterministic point.

In contrast, the new approach leads us to a new concept of “equilibrium.”

Specifically, equilibrium is a probability distribution over a set of points, not a

single point. Most importantly for the purpose of macroeconomics, productiv-

ities across sectors/firms never equalize (Salter, 1960). In equilibrium, we have

a number of productivity levels in the economy, rather than a unique level of

productivity. We will explain this in Chapter 3. We then find that demand plays a
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crucial role in the determination of the aggregate level of production or output,

as the old Keynesian economics claims. Simply stated, high aggregate demand

mobilizes production factors to high productivity sectors and thereby raises the

level of total output. Okun (1973) made a similar point in his effort to explain

Okun’s Law. One of the goals of this book is to shed new light on Keynesian

economics from this angle.

First, however, we must explain the new approach. Typically one analyzes the

behavior of microeconomic agents in sophisticated dynamic models. Consider

the consumer in the Ramsey model. The Ramsey (1928) model was once called

the “optimum growth model” and was meant to be normative, not descriptive.

However, as the economic profession has turned macroeconomics into the neo-

classical equilibrium theory such as RBC, the Ramsey model is now taken as a

descriptive model, and is usually taught as such (Blanchard and Fischer, 1989)

The Ramsey consumer maximizes the discounted utility sum under the con-

straint of lifetime income. Suppose households in the economy are, in fact,

Ramsey consumers. However, there are a large number (107, for example) of

households in the economy, and as we pointed out earlier, both their perceived

lifetime constraints and their objectives are changing in idiosyncratic ways. For

example, some may unexpectedly experience unemployment, which changes

their constraints, while others may suffer from illness, which tilts their utility

functions. Facing new situations, 107 households are continuously revising their

best strategies.

This problem has been recognized by some. For example, Dixit and Pindyck

(1994), after advancing their model of investment, note the following challenge

for macroeconomic analysis:

In the economy as a whole, different consumers have different thresholds and different

historically determined initial positions relative to these thresholds. They are also subject

to different (idiosyncratic) shocks as well as some common (economy-wide) shocks. (Dixit

and Pindyck, 1994, 424–425)

Macroeconomic theory that deserves its name must resolve these problems.

It is useful to come back to the Ramsey model and explain the problem explic-

itly. The behavior of the Ramsey consumer who maximizes the discounted utility

sum under the lifetime income constraint can be described in the well-known

phase diagram (Figure 1.1). This analysis is routine for every macroeconomist

or even graduate student. Now, economists are so accustomed to the determin-

istic Ramsey model that they are prone to use the optimal trajectory (shown by

dotted lines in Figure 1.1) as the potential time path of consumption. This is not

the actual time path of consumption chosen, however. Because the consumer’s

preferences and constraints keep changing stochastically, the optimal path also

keeps changing. At each point in time, given the level of capital stock or assets, the

consumer chooses the optimal consumption point on the newly revised optimal

trajectory. In Figure 1.1, the optimal trajectories and the corresponding optimal
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Figure 1.1. The Behavior of a Ramsey Consumer in Stochastic Environment.
Note: The explanation of this phase diagram can be found in any advanced textbook of macroe-
conomics such as Blanchard and Fischer (1989).

consumption points (points 1, 2, and 3) at time t1, t2, and t3 are shown. The

time path of consumption in this case is a line that goes through three points 1,

2 and 3 (shown in bold in Figure 1.1). In general, reflecting incessant shocks to

both preferences and constraints, the optimal path of consumption would show

zigzags. Note that shocks to preferences and constraints that affect the optimal

consumption, as described in Figure 1.1, are basically microeconomic shocks,

though they may reflect macroeconomic shocks. We, therefore, never know what

those shocks are. Additionally, we have 107 consumers in the economy who all

face different idiosyncratic shocks. Therefore, we have 107 different zigzag paths

of consumption!

Table 1.1 shows means and standard deviations of changes in consumption

and income across 768 Japanese households. Rate of change in consumption

over half a year (April–September 1981) is on average 1.4 percent. For the same

period, the average growth rate of income is −0.9 percent. However, the standard

deviations of growth rates of consumption and income across 768 households



P1: JZZ

0521831067c01.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 24, 2006 13:34

6 Introduction: A New Approach to Macroeconomics

Table 1.1. Changes in Micro Consumption and Income:
Means and Standard Deviations across 768 Japanese

Households (April–September 1981)

Food consumption Total consumption income

(1) Means 0.028 0.014 −0.009

(2) S.D. 0.179 0.309 0.440

(3) C.V.∗ 6.400 22.100 48.900

Source: Hayashi (1986)
∗ Coefficient of variation is standard deviation divided by mean ((2)/(1)).

are 30.9 percent and 44.0 percent, respectively. Large values of the coefficient of

variation are striking. These figures show a great diversity of income and con-

sumption patterns across households. They demonstrate that the representative

consumer is imaginary. What is the bottom line? It is hopeless and meaningless

to try to pursue the exact behavior of each economic agent. At the same time, it is

wrong to associate the behavior of the macroeconomy with that of an individual

economic agent.

The standard approach (RBC) takes the opposite position, relying heavily on

the precise behavior of the representative economic agent. Prescott (1986), for

example, advocates his own RBC by saying that

Economists have long been puzzled by the observations that during peacetime industrial

market economies display recurrent, large fluctuations in output and employment over

relatively short time periods. Not uncommon are changes as large as 10 percent within

only a couple of years. These observations are considered puzzling because of the associated

movements in labor’s marginal product are small.

These observations should not be puzzling, for they are what standard economic theory

predicts. For the United States, in fact, given people’s ability and willingness to intertem-

porally and intratemporally substitute consumption and leisure and given the nature of the

changing production possibility set, it would be puzzling if the economy did not display

these large fluctuations in output and employment with little associated fluctuations in the

marginal product of labor. (Prescott, 1986, 9)

Prescott’s argument is based on the premise that macroeconomic phenomenon

can be understood in terms of the behavior of the representative agent. Many

economists take this premise for granted even if they do not entirely accept RBC.

That is why they take “micro foundations” so seriously in macroeconomics.

Some economists have explicitly criticized the standard approach based on

the representative agent. Kirman (1992), for example, in his paper “Whom or

What Does the Representative Individual Represent?” argues as follows:

There is simply no direct relation between individual and collective behavior. . . . Trying

to explain the behavior of a group by that of one individual is constraining. The sum

of the behavior of simple economically plausible individuals may generate complicated

dynamics, whereas constructing one individual whose behavior has these dynamics may lead
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Figure 1.2. The Fluctuation of the Macroeconomy

to that individual having very unnatural characteristics. . . . In particular, I will argue that

heterogeneity of agents may, in fact, help to save the standard model. . . . The way to develop

appropriate microfoundations for macroeconomics is not to be found by starting from the

study of individuals in isolation, but rests in an essential way on studying the aggregate

activity resulting from the direct interaction between different individuals. (Kirman, 1992,

117–136)

Suppose that the macroeconomy fluctuates as shown in Figure 1.2. The stan-

dard approach attempts to explain these fluctuations by constructing a microe-

conomic model that produces similar fluctuations under appropriate aggregative

shocks. It means that the behavior of the representative economic agent facing

such shocks resembles Figure 1.2. To understand the point, consider the con-

sumption of durable goods. If durability of consumables were constant, and if

the timing of purchases of such consumables were synchronized, then aggregate

consumption may be explained by the standard approach based on the represen-

tative agent. However, even in this simple example, the assumptions are actually

too unrealistic. In many cases, as Kirman (1992) argues, the requirement that

the microeconomic behavior mimics that of the macroeconomy is too harsh and

constraining. We must begin our analysis on the assumption that the behavior of

macroeconomy and that of microeconomic agent do not mutually correspond.

Summers (1991) made a similar point in his critical study of empirical

macroeconomics. He took up the influential works of Hansen and Singleton

(1982, 1983). Their works resulted in the rejection of a particular relationship
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between consumption and asset prices. Summers pointed out that although the

two authors took the estimated parameters seriously, they may have rejected

the representation of the household sector by one consumer with an additively

separable utility function and constant relative risk aversion.

Davis, Haltiwanger, and Schuh (1996), in their study of job creation and

destruction, made a similar point. On business cycles, they argue as follows:

Prevailing interpretations of business cycles stress the role of aggregate shocks and downplay

the connection between cycles and the restructuring of industries and jobs. Several aspects of

gross job flow dynamics do not fit comfortably with prevailing views. Rather, the empirical

evidence points to the need for a richer view of business cycles that highlights their connection

with the restructuring process. (p. 83) . . .

The focus on aggregate shocks leads economists to adopt a macroeconomic framework

characterized by representative producers and consumers. That is, the production side of the

economy is modeled as one firm whose economic behavior is thought to represent the average

of all firms. Likewise, the consumption side of the economy is modeled as one household

whose economic behavior represents the average of all households. This framework typically

abstracts from differences in business cycle behavior among households and sectors, and

among employers within sectors. (p. 85)

Why is the theory based on the representative agent wrong? Because micro

agents differ so much. To demonstrate these differences, Davis and colleagues

show employment growth rate distributions at (1) two-digit industry level and

at (2) plant level. They are reproduced here as Figures 1.3 and 1.4, respec-

tively. The distribution of industry-level growth rates is highly concentrated (Fig-

ure 1.3). This fits comfortably with a standard macroeconomic framework (RBC)

that is built on the representative agent and stresses aggregate shocks. However,

Figure 1.4 uncovers the enormous variance of plant-level growth rates (note Fig-

ures 1.3 and 1.4 are of the same scale). It demonstrates that the apparent high

concentration of growth rates based on aggregated data is deceptive. In reality,

there is a great variance among micro agents or units. Given these observa-

tions, Davis, Haltiwanger, and Schuh (1996) criticize the theories of representa-

tive consumers and producers and draw the conclusion that we need “a richer

view of business cycles that highlights their connection with the restructuring

process.”

Now, the major reason these criticisms have failed to change the minds of

many economists and lead them to abandon the assumption of the representa-

tive agent is, we suspect, that if it is abandoned, there is no alternative unifying

principle or method to handle such complex situations with many heterogeneous

agents. This book explains that there are, in fact, such principles and methods that

fit the purpose of macroeconomics. Generally, the fundamental method we ad-

vocate in this book is an approach based on statistical physics and combinatorial

stochastic processes.

The point that the behavior of a macro system cannot be directly inferred

from the behavior of a micro unit is common knowledge in other disciplines,

particularly in natural sciences. In physics, no one denies the law of motion
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Figure 1.3. Two-Digit Industry-Level Growth-Rate Distributions: 1978–1982.
Source: Davis S J, Haltiwanger J C, and Schuh S (1996), 88.
Note: (p90–p50) is the 90th employment percentile minus the 50th employment percentile. (p50–
p10) is the 50th employment percentile minus the 10th employment percentile.

The growth-rate distributions show the number of occurrences of each observed employment
rate weighted by each industry’s employment. The bars thus indicate the share of employment
associated with each rate.

In this figure, the growth rate (g) is measured as the change in employment divided by the
average of current and lagged employment. (Technical Appendix.)

for a micro unit; however the law does not really help our understanding of

macro system, which consists of a large number of micro units such as atoms or

molecules. In his classic lecture “What is Life?” Schrödinger (1944), a physicist and

one of the founders of the quantum mechanics, made the following observation:

. . . we know all atoms to perform all the time a completely disorderly heat motion, which,

so to speak, opposes itself to their orderly behaviour and does not allow the events that

happen between a small number of atoms to enrol themselves according to any recognizable
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Figure 1.4. Plant-Level Employment Growth-Rate Distributions: 1978 and 1982.
Source: Davis S J, Haltiwanger J C, and Schuh S (1996), 100.
Note: (p90–p50) is the 90th employment percentile minus the 50th employment percentile. (p50–
p10) is the 50th employment percentile minus the 10th employment percentile.

The growth-rate distributions show the number of occurrences of each observed em-
ployment rate weighted by each plant’s employment. The bars thus indicate the share of
employment associated with each rate.

In this figure, the growth rate (g) is measured as the change in employment divided by the
average of current and employment. (Technical Appendix.)

laws. Only in the co-operation of an enormously large number of atoms do statistical

laws begin to operate and control the behaviour of these assemblées with an accuracy in-

creasing as the number of atoms involved increases. It is in that way that the events ac-

quire truly orderly features. All the physical and chemical laws that are known to play

an important part in the life of organisms are of this statistical kind. (Schrödinger, 1944,

10, p. xii)
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Schrödinger pointed out that we must understand “life” this way, which has

proved correct. Recall the old Marshall saying that “the Mecca of the economist

lies in economic biology rather than in economic dynamics.”

The behavior of a micro unit is always subject to stochastic fluctuations,

and it is beyond our capacity to pursue its exact behavior. An individual firm

or household is like an atom. Evidence presented in Table 1.1 and Figures 1.3

and 1.4 illustrates that microeconomic behavior is very diverse. Despite such

diverse and erratic micro behavior, we can expect the orderly behavior of a

macro system consisting of a large number of micro units – the law for macro

systems is statistical. Schrödinger’s observation applies not only to physics and

chemistry but also to economics. This book explains how fruitfully an approach

based on statistical physics can be applied to macroeconomics.

The reader might think that stochastic (difference) equations are common

tools in economics, and that the stochastic terms in these equations are meant to

represent diversity of microeconomic agents. The standard method is, however,

that we first consider microeconomic behavior of the representative agent, and

then translate essentially microeconomic equations into macroeonomic equa-

tions simply by adding stochastic terms. The standard approach focuses on means

and variances of the variables of interest in such a model. RBC is a primary ex-

ample. We argue that this standard approach is invalid because macroeconomic

regularities or statistical laws which Schrödinger noted emerge not from microe-

conomic behavior of the representative agent but from stochastic interactions of

a large number of agents. Note that in the standard approach, the expected values

of the variables we focus on usually represent the assumed microeconomic be-

haviors. We need a different approach. We also note that it is often necessary to

look at sample paths and probability distributions, not just moments, of stochastic

variables to understand the behavior of the macroeconomy.

Consider the economy consisting of many different Ramsey consumers once

again. The economy is so complex that it is hopeless to describe the micro behavior

of all the consumers. Luckily, we do not need to do this to know the behavior

of the macroeconomy. At each moment in time, as a result of the Ramsey-type

optimization subject to shocks to economic constraints and utility functions,

some households increase their consumption while others lower theirs, as shown

in Figure 1.1. It is then useful to classify the types of household, and to assume

that household types change in a stochastic way. The number of types is arbitrary

as long as it is countable.

From the beginning, we resort to a stochastic approach. We can usefully

classify the types or states of microeconomic agents, and then analyze stochastic

transitions of such types or states to draw important implications for the economy

as a whole. Specifically, we can use continuous-time Markov chains or jump

Markov processes. The models have countable states and are specified by sets of

transition rates. As explained in Chapter 2, transition rates can be nonlinear

functions of state variables, called state-dependent transition rates. Models with
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Figure 1.5. Multiple Equilibria
Note: x∗, which satisfies f(x) = x, is taken as “equilibrium”; see main text.

state-dependent transition rates may produce multiple stationary states and yield

information on fluctuations about equilibria.

To get an idea of the difference between the standard approach and the one

described in this book, let us study a model with multiple stationary states. The

notion of multiple equilibria is common in economics. Suppose there are two

stable equilibria x∗
1 and x∗

3 as drawn in Figure 1.5. Economists have discussed

the selection of equilibrium in such a situation. Krugman (1991), for example,

studies this problem in his “History vs. Expectations.” In the stochastic

approach, the case of multiple equilibria in deterministic models corresponds

to the situation in which the potential has two local minima. The economy then

stochastically fluctuates between x∗
1 and x∗

3 as shown in Figure 1.6. The problem

of equilibrium selection then disappears; instead, the model provides a possible

explanation of fluctuations of the economy (Aoki, 1995). This model will be

explained in Chapter 4.

It is important to recognize that the microeconomic behavior has no resem-

blance to the macroeconomic fluctuations shown in Figure 1.6. Often, a mere

aggregation of a large number of stochastic movements of micro units produces

a certain macro fluctuation or pattern with no similarity to those of micro units.

In such a case, we cannot deduce the behavior of the macro entity from that of

the micro unit. This applies not only to natural sciences but also to economics. To

study a system consisting of a large number of units such as the macroeconomy,

we need a different approach.

To provide micro foundations for macroeconomics, one need not explicitly ana-

lyze optimizing behavior of individual agents. Instead one must use proper statistical

methods suitable for the study of the macro system consisting of a large number

of fluctuating micro units. We maintain that the so-called micro foundations for

macroeconomics are not true micro foundations, but simply misguided.
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Figure 1.6. The Fluctuation of the Macroeconomy Corresponding to “Multiple Equilibria” in
Figure 1.5

The purpose of this book is to advance and explain this new stochastic ap-

proach to macroeconomics and financial markets. Chapter 2 introduces the

reader to these mathematical methods. The basic model used throughout this

book is the jump Markov process. In the remaining sections of this chapter, we

summarize the major results of our analyses from Chapters 3 through 10.

Equilibrium as Distribution – The Role of Demand
in Macroeconomics

Chapter 3 proposes a new concept of equilibrium. We have seen that micro

behaviors of individual households and firms are very diverse. To analyze the

macroeconomy, we must explicitly consider these microeconomic fluctuations.

As a consequence, we have distribution of responses by microeconomic agents

as an equilibrium rather than a unique response by a representative agent. This,

in turn, means that we have a probability distribution, not a simple “point” for

macroeconomic equilibrium. In the standard analysis, because macroeconomic

equilibrium is represented by a point in some space or set, its evolution is de-

scribed by an ordinary differential equation. In contrast, our approach requires

a partial differential equation to describe evolution of a macroeconomic equilib-

rium over time. This is the Chapman–Kolmogorov equation or master equation,

to be explained in Chapter 2.

Chapter 3 explains that to give proper microeconomic foundations for

macroeconomics is to specify transition rates for jump Markov process.
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Specifically, we take up a simple binary choice model as an example of a macro

model, and explain that the so-called Boltzmann–Gibbs type transition rates have

sound microeconomic foundations. We also explain that the seemingly special

binary (or more generally discrete) choice models are actually consistent with

sophisticated (stochastic) dynamic optimization commonly used in economics.

We clarify the difference between the standard approach and our approach

by way of considering the well-known search model of Diamond (1982). An

important difference is that in the model with multiple equilibria, as shown in Fig-

ure 1.5, the problem of equilibrium selection does not arise in our approach.

Chapter 3 also explains why aggregate demand affects total output. The

standard approach focuses on price/wage rigidity. New Keynesian Economics

(Mankiw and Romer 1991) is a primary example of such an approach. The

explanation in this book is fundamentally different.

We begin with the observation that productivity differs across sectors/firms

in the economy. Salter (1960), Mortensen (2003), and others have long acknowl-

edged this fact. We show that productivity differential is not a puzzle, but a

necessity in the macroeconomy. Following the method of statistical physics, we

demonstrate that in equilibrium, the distribution of production factors across

sectors/firms with different productivity is of the Boltzmann–Gibbs type:

ni

N
= e− Nci

D

s∑
i=1

e− Nci
D

, i = 1, . . . , s

where ni is the amount of production factor used in sector i , N is its total

endowment, ci is the productivity coefficient in sector i , and D is the aggregate

demand. The Boltzmann–Gibbs distribution means that when the aggregate

demand, D, is high, production factors are mobilized to higher productivity.

Okun (1973) makes a similar point, saying that workers climb a “ladder” of

productivity in a “high-pressure economy.”

Our notion of equilibrium is akin to what Tobin (1972) calls “stochastic

macro-equilibrium.” He argues that

(it is) stochastic, because random intersectoral shocks keep individual labor markets in

diverse states of disequilibrium; macro-equilibrium, because the perpetual flux of particular

markets produces fairly definite aggregate outcomes (Tobin, 1972, 9).

By way of affecting the transition rates of production factors, the real aggregate

demand affects “stochastic macro-equilibrium,” and consequently, the level of

total output. We maintain that this is the proper microeconomic foundation for

Keynes’s principle of effective demand.

Uncertainty Trap, Policy Ineffectiveness, and Long Stagnation
of the Macroeconomy

History shows us that the economy can be trapped in long stagnation. In the

nineteenth century, the British economy suffered from the Great Depression
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for almost a quarter of century (1873–96). The Great Depression in the 1930s

attacked the entire world. And since the beginning of the 1990s, the Japanese

economy has stagnated for more than a decade. In every episode, various policies

were discussed and experimented with. Yet the economy did not easily revive,

and fell into a long stagnation. Certainly, in each case, there must have been

policy mistakes. Granted, it appears that once the economy is trapped in a deep

depression, the effectiveness of standard policy measures weakens.

In Chapter 4, we focus on a particular factor – uncertainty. Using a simple

binary choice model introduced in Chapter 3, we show that great uncertainty nec-

essarily weakens the effectiveness of macroeconomic policy, and that the macroe-

conomy may be stuck in “bad equilibrium.” We certainly do not recommend that

policy makers discard mainstream macroeconomics textbooks. However, in our

view, the economy once facing great uncertainty does present economists and

policy makers with real difficulties that the textbook remedies cannot easily han-

dle. We extensively use mathematical methods explained in Chapter 2. Here, we

briefly summarize the main results.

The standard analysis in macoeconomics begins with microeconomic exper-

iments on the assumption of the representative agent. Suppose, for example,

that the authority cut the interest rate. The microeconomic theory tells us that

for the representative household or firm, a lower interest rate raises the optimal

level of investment. Translating this result to macroeconomic analysis, one con-

jectures that ceteris paribus, aggregate investment would increase. This kind of

analysis, including the IS/LM analysis, gives economists and policy makers sound

guidance so long as the degree of uncertainty facing the economy is limited.

However, when the degree of uncertainty becomes significant, we must de-

part from the representative agent assumption, and seriously consider that the

macroeconomy consists of a large number of economic agents. In this case, a

stochastic approach is necessary. The combinatory aspect of the system plays a

crucial role in the analysis of any system – either physical or social – consisting of a

large number or entities. Though the standard economic analysis entirely ignores

it, we show that it has important implications for macroeconomics. Specifically,

the effectiveness of policy necessarily weakens as the degree of uncertainty rises.

One might call this problem “uncertainty trap.”

For example, once the economy is trapped into bad equilibrium as the degree

of uncertainty rises, monetary policy becomes ineffective. Many economists ar-

gue that the Bank of Japan (BOJ) facing the zero nominal interest rate bound can

still lower the real interest by generating inflationary expectations. In our model,

it would induce more economic agents to find a shift from “bear” to “bull” ad-

vantageous. When uncertainty is insignificant, it certainly helps. This is a normal

situation. However, when the combinatorial aspect cannot be ignored as the de-

gree of uncertainty rises, policies that are effective in normal circumstances may

not help.

In this way, uncertainty plays the key role. When uncertainty is insignifi-

cant, the economy fluctuates around the (unique) “natural” equilibrium, and
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policies are effective. In contrast, when the degree of uncertainty rises above a

critical level, the economy may be trapped in a “bad” equilibrium, and standard

macroeconomic policies necessarily become ineffective.

It is generally agreed that the performance of the postwar economy is better

than that in the prewar period. Baily (1978) argues that better safety nets provided

by the government in the postwar period have contributed to this outcome. Our

analysis suggests that uncertainty is indeed a serious hindrance to the macroe-

conomy, and that once the economy faces great uncertainty, then the textbook

remedies may not so readily work as we hope. Indeed, the “uncertainty trap” is

what distinguishes “depression” from normal “recession.” We apply this analysis

to the long stagnation of the Japanese economy during the 1990s, ineffectiveness

of monetary policy in particular.

Slow Dynamics of Macro System: Inflexible Prices

The standard approach such as RBC is based on the premise that the micro-

economic behavior of the optimizing agent mimics dynamics of the macroecon-

omy. In Chapter 1, we explain that this premise is wrong, and that the macro and

micro behaviors are fundamentally different.

Chapter 5 focuses on a particular aspect of the macroeconomy – the speed

of adjustment. The premise of the standard approach is that rational economic

agents must respond quickly to any change in economic environment. It is taken

for granted that this micro behavior translates into the macroeconomy. Thus,

one expects the speed of adjustment in the economy as a whole also to be fast

in normal conditions. In this way, the standard approach does not make any

distinction between the speed of adjustment of micro agent and that of the

macro economy.

Consider “prices” for example. Since the publication of Keynes’s General

Theory (1936), “inflexibile” or “rigid” prices have been always a focal point

of macroeconomics. Modigliani (1944) was one of the first economists who

coined the proposition that what distinguishes the Keynesian economics from

the neoclassical economics is the assumption of inflexible prices (to be precise,

rigid nominal wages in his case).

Many economists take inflexibility of prices as a sign of “irrationality.” Aside

from monopoly power or an institutional barrier such as regulation, healthy

market forces should make prices flexible. In Chapter 5, we will explain that

slow changes in price are a necessity in the macroeconomy. Slow dynamics is not

confined to prices. It is, in fact, a generic property of any complex macro system.

To explain the “sluggish” behavior of the macroeconomy, Chapter 5 intro-

duces the notion of “tree” and ultrametrics. The macroeconomy is composed of

many different agents or sectors. It is organized into hierarchical layers, and has

a tree structure whereby leaves of trees are basic clusters of agents. We show that

the dynamics of a large system with such a structure is necessarily sluggish. The
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macroeconomy is a typical example. We then apply this analysis to dynamics of

prices. We show that given input–output structure of the macroeconomy, there

is no mystery in sluggish behavior of prices.

In Chapter 5, we explain another reason for slow dynamics in the macro-

economy. In the standard approach, it is assumed that a rational economic agent

can swiftly find and move to his first-best or global optimum. This assumption

may hold true, as a first approximation, for a well-organized financial market.

However, in “real” economic activities, agents always face much more complex

decision-making problems. Often the problem is not given in advance. To find

the problem is, in fact, an important part of economic activity. Trial and error

becomes a source of slow dynamics. Chapter 5 formalizes this idea.

Business Cycles

Chapter 6 analyzes a stochastic model of business cycles. Fluctuations of aggregate

economic activities or business cycles have long attracted economists’ attention.

A glance at traditional literature such as Haberler (1964) reveals that all kinds of

theories had already been advanced by the end of the 1950s, and the theme of

business cycles remains prominent in macroeconomics today.

As typified by the RBC theory by Kydland and Prescott (1982), and the en-

dogenous competitive business cycle theory by Grandmont (1985), economists

often explain business cycle fluctuations as a direct outcome of the behavior of

individual agents. This approach has been the standard in mainstream economics

over the last 30 years or so. The more strongly one wishes to interpret aggregate

fluctuations as something “rational” or “optimal,” the more likely one is led to

this essentially microeconomic approach. The aim of such an approach is to

explain fluctuations as responses of the representative agent to changes in its eco-

nomic environments. The consumer’s intertemporal substitution, for example,

is a device for achieving this goal.

Lucas (1987) is a model of this approach. On the basis of the representative

agent assumption, he showed that, if aggregate consumption fluctuations of

the magnitude experienced since World War II were eliminated completely, this

would raise the level of utility by only $8.50 per person! Thus, he concludes that

“economic instability at the level we have experienced since the Second World

War is a minor problem.”2

As we have argued, however, we need a different approach in macro-

economics. We must take seriously the fact that the economy consists of a large

2 Fair (1989) in his review of Lucas (1987) points out that quite a different picture emerges when

one considers a model in which business cycles are caused by demand failures. Referring to the

1980–82 recession, he estimates that, had real GNP grown at an annual rate of 3.0 percent from

1979 on, about $560 billion more in output would have been produced in the three years. He thus

concludes that “this is a large lunch for everyone, about $2400 per person.”
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number of agents or sectors. In the real economy, perhaps agents intertemporally

maximize their respective objective functions subject to constraints. However,

their economic environments keep changing because of various idiosyncratic

shocks. Plainly, an outcome of interactions of a large number of agents facing

such incessant idiosyncratic shocks cannot be described by a response of the rep-

resentative agent. Welfare calculation based on the representative agent as done

by Lucas (1987) has no foundation.

We must explicitly consider the distribution of microeconomic behavior,

which calls for a model of stochastic processes. In a seminal work, Slutzky (1937)

proposed such a stochastic approach. Chapter 6 follows his lead to build a stochas-

tic model of fluctuations. The model in Chapter 6 is a simple quantity adjustment

model composed of a large number of sectors or agents. We use this simple model

to demonstrate two main points. First, fluctuations of the aggregate economy en-

dogenously arise as a natural outcome of the interactions of many agents/sectors.

Second, the level of the aggregate economic activity depends on the structure of

demand.

To obtain these results, we assume that productivities differ across sectors

in the economy. In the standard analysis, resources are assumed to be instan-

taneously reallocated to attain the equality of productivity across sectors. Here,

we explicitly assume that a reallocation of production factors takes time because

thresholds for a change in behavior differ across agents, and as a result differences

in productivity across sectors/firms persist. Resources are stochastically allocated

to sectors in response to excess demand or supply. For simplicity, we assume that

there is only one production factor, which we call labor. At each moment in time,

there is either excess demand or excess supply in every sector, and this gives a

signal for a reallocation of labor among sectors.

Suppose there are K sectors in the economy. We assume that sector i has

productivity coefficient, ci , which is exogenously given and fixed. To be specific,

sectors are arranged in the decreasing order of productivity (ci > c j if i < j ).

As explained in Chapter 3, given heterogeneous microeconomic objectives and

constraints, thresholds for change in strategy differ across sectors/firms. Thus,

differences in productivity among sectors persist. It takes time for productivities

to equalize among sectors. Meanwhile, responding to excess demand or supply,

the level of labor input ni in some sectors changes, and the macroeconomic

situation also changes.

The same excess demand or supply brings about a different reaction from

each sector (or firm) because each faces an idiosyncratic economic environment

or constraint. For the same reason, we do not know when the sector facing

disequilibrium “reacts.” It is stochastic. The notion of “holding time” (to be

explained in Chapter 6) models the timing of stochastic reaction. We make only a

reasonable yet weak assumption that a sector/firm facing excess demand possibly

raises its production level, and vice versa.
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When sector i changes its production level ni , it affects both the aggregate

output Y = ∑
i c i ni , and the sectoral demand pattern si Y where si is sector i ’s

demand share. In this way, the size of each sector ni and the total output Y

change stochastically over time. We can explore the behavior of the economy out

of equilibrium, or of sample paths of the model.

Despite its simplicity, the stochastic behavior of the model turns out to be

rather complex. To gain insight, we analyze a simple two-sector model. It can then

be shown that, given differences in productivity and demand shares across sectors,

aggregate fluctuations arise endogenously out of simple quantity adjustments.

Next, we consider the stationary probability distribution for the total output

or GDP in the two-sector model. It can be shown that the expected value of

aggregate economic activity depends on the pattern of demand. Specifically, the

higher the share of demand for a high productivity sector, the higher the expected

value of aggregate economic activity. Note that the level of aggregate economic

activity is indeterminate in the equilibrium of a corresponding deterministic

model because of its linearity. In a stochastic model, the higher the share of

demand for high productivity sector, the more likely it is that the sector will face

excess demand and raise its production level. Therefore, the higher the share of

demand for high productivity sector, the greater the externality generated by an

increase in the size of a sector, and consequently the higher the expected value

of total output. This result provides a new perspective to the principle of effective

demand.

We have seen that in our simple two-sector model (1) the sample path exhibits

cycles or oscillations near the equilibrium, and (2) the share of demand for the

high productivity sector is greater, the higher the expected value of aggregate

economic activity. It is extremely difficult, however, to analyze the multi-sector

model explicitly. We check the robustness of the two propositions which we

analytically derived for the two-sector model by simulation for a K sector model

(K > 2).

The simulations have confirmed the two major results obtained for the two-

sector model. Beyond that, they also demonstrate the role of allocative distur-

bances in business cycles as emphasized by Davis, Haltiwanger, and Schuh (1996).

The real business cycle theory by Kydland and Prescott (1982) and the en-

dogenous competitive business cycle theory by Grandmont (1985) are based on

the representative agent. In those models, fluctuations of the macroeconomiy

arise directly from behavior of the representative agent. However, the assump-

tions of particular values of crucial parameters or nonlinearity are arbitrary and

devoid of any empirical support. These theories allegedly have the merits of

showing that aggregate fluctuations are compatible with the Walrasian equilib-

rium. Throw out the obsession with the Walrasian equilibrium, and we realize

that there is actually no merit in basing such a theory on the assumption of a

representative agent.
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The macroeconomy consists of a large number of heterogeneous economic

agents. Aggregate fluctuations necessarily arise from interactions of these eco-

nomic agents. Because of differences in productivity across sectors, demand

plays an important role in the determination of the average level of total out-

put. Because our model is extremely simple, we believe that the results are

generic.

Labor Market Dynamics – A New Look at the Natural
Unemployment and Okun’s Law

Chapter 7 analyzes labor market dynamics by extending the simulation model

of Chapter 6. There is a large body of literature devoted to labor market dynam-

ics, including Blanchard and Diamond (1990), Mortensen (1989), and Pissarides

(2000). In the existing literature, however, unemployed workers are differentiated

at best by their reservation wages in search models, or by the length of unem-

ployment. Their job experiences, human capitals, or geographical locations are

not satisfactorily incorporated into models. Differences in job opportunities are

not satisfactorily modeled either. As a consequence, mismatches between job op-

portunities and qualifications of job seekers can not be fully analyzed in such

models.

Jump Markov process is an ideal tool to analyze these problems. In this

chapter, we analyze labor market dynamics by adding pools of laid-off workers

to the model presented in Chapter 6. We assume that there is unemployment.

To present a simple model, we ignore quits and on-the-job searches, and assume

that only the unemployed get jobs.

Signs of excess demand for good and services are used as a proxy for a

profitability signal for each sector that wants to change its size of labor force

accordingly. Firms with negative excess demand for their goods fire workers

immediately. Firms with positive excess demands wish to hire workers, post va-

cancy signs, and go into overtime. If a sector has already posted a vacancy sign,

then it hires one unit of labor and returns to normal time. Because the model

is a continuous-time Markov Chain, only one sector can fulfill its wishes. Thus,

there are asynchronous processes of firing and hiring.

Now, a vacancy may be filled from its own pool of laid-off workers, or from

pools of related industries. When a sector hires a worker it does so randomly

from a pool of workers of different clusters suitably weighted by the “ultrametric”

distance explained in Chapter 5. This feature of the model is implemented by

making clusters of different types of unemployed workers into a tree, and using

ultrametrics to measure similarities of workers in different clusters. The clusters

or sub-pools of unemployed have different probabilities of being picked. The

highest probability is for the pool of the workers who are laid off from that sector.

This corresponds to an observed fact that firms often recall laid-off workers as

they become profitable again.
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The model is similar to that in Chapter 6, but introduces unemployment and

vacancy. Using this model, we examine three important stylized facts about the la-

bor market: the natural unemployment, Okun’s law, and procyclical productivity.

First, our simulations demonstrate that the Beveridge Curve – the negative

relationship between unemployment and vacancy – depends on the level of

total output, which, in turn, depends on the patterns of demand. This means

that we cannot so clearly separate the “structural” or “natural” unemployment

from unemployment due to demand deficiency. To put it differently, the natural

unemployment cannot be so clearly defined as we commonly think.

Second, our simulations generate Okun’s law – the relationship between

changes in GDP and the unemployment rate. The value of the Okun coefficient,

3, has been a kind of puzzle because the existence of such increasing returns in

the economy as a whole is questionable. Okun (1973) argues that, in addition

to cyclical productivity change in each sector / firm, sectoral reallocation of re-

sources plays an important role in explaining Okun’s law. Our simulation analysis

demonstrates that sectoral reallocation of resources among sectors with differ-

ent productivity may indeed explain the apparent increasing returns implied by

Okun’s law.

Finally, our simulations demonstrate that the combination of productivity

dispersion and demand shifts across sectors produces highly procyclical produc-

tivity in the economy as a whole.

Demand Saturation–Creation and Economic Growth

It is a standard view that demand, if it affects output in the short run, does

not affect aggregate output in the long run. Economic growth is determined by

supply factors. Chapter 8 explains a new model of economic growth by Aoki and

Yoshikawa (2002). The model demonstrates that demand plays an essential role

even in the process of the long-run economic growth.

In the standard literature, the fundamental factor restraining economic

growth is diminishing returns to capital in production or R&D technology. Our

model suggests that “saturation of demand” is another important factor restrain-

ing growth. In the less mathematical literature and casual discussions, the idea of

“demand saturation” has been popular. Every businessperson would acknowl-

edge saturation of demand for an individual product. In fact, if you plot a time

series of production of any representative product such as steel or automobiles,

or production in any industry, against time, then with few exceptions you will

obtain an S-shaped curve.

The diffusion of such consumer durables as refrigerators, televisions, cars, and

personal computers tell us that deceleration of growth comes mainly from satu-

ration of demand rather than from diminishing returns in technology. Growth

of production of a commodity or in an individual industry is bound to slow be-

cause demand grows fast in the early stage but eventually, out of necessity, slows.



P1: JZZ

0521831067c01.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 24, 2006 13:34

22 Introduction: A New Approach to Macroeconomics

Thus, the demand for some products grows much more rapidly than the GDP,

whereas for others it grows much more slowly. Products/industries face different

income elasticities of demand. The celebrated Engel’s Law based on saturation

of demand for food is one example.

Unfortunately, the existing literature on growth abstracts largely from this

important fact that products/industries obey the law of demand saturation, and

that each product/industry experiences a typical S-shaped life cycle. This, of

course, is not to say that the appearance of new products and the disappear-

ance of old ones have not been modeled. The so-called “creative destruction”

and “quality ladder” literature (e.g., Grossman and Helpman, 1991; Aghion and

Howitt, 1992) has analyzed such phenomena in growth models. However, in this

line of research the old products disappear only through the introduction of new

products. Unless new products appear, demand for the existing products remains

the same. Therefore, it is possible for the economy to keep growing if it succeeds

in raising productivity in the production of the existing commodities.

In sharp contrast, with saturation of demand, a raise in productivity of the

“mature” products will not help to sustain economic growth. Put another way,

in the existing R&D-based growth models the economy can keep growing if, for

instance, the automobile industry keeps raising the quality of cars; whereas in

the present model it cannot, because the demand for cars will become saturated

in spite of quality improvement.

Similarly the product life cycle in the existing literature (e.g., Grossman and

Helpman, 1991) is based on a production technology life cycle, while in our

model it is based on a demand life cycle. In contrast to the “creative destruction”

that occurs in the existing literature, growth in the demand for the existing

commodities in our analysis of “saturation” necessarily slows whether or not

new commodities appear. It would be absurd to argue that the growth in the

demand for food decelerated, as Engel found, because manufactured products

appeared; nor did the demand for cars approach its ceiling because personal

computers were invented. Rather, the law of demand saturation endures.

Within the same industry, new and old products are often close substitutes, for

example black/white and color TVs, or personal computers of different vintage;

and old products gradually disappear as new ones appear. Thus, the “creative

destruction” story nicely fits the growth of an industry. The R&D race among

competing firms as it is modeled in the standard endogenous growth literature

certainly plays an important role. Technical progress described in the existing

literature concerns close substitutes, as those models explicitly state. However,

as we argued above, the same story does not necessarily hold true for different

industries. The model presented in Chapter 8 takes the logistic growth of an

individual product/industry as a “stylized fact,” and presents a formal model of

growth built on this “stylized fact.” An obvious implication of the logistic growth

of an individual product/industry is that the economy enjoys high growth if it

successfully keeps introducing new products or industries that temporarily enjoy
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a high growth in demand. In this model, innovation or “technical progress” leads

to the introduction of new commodities or sectors that enjoy a high growth in

demand, and by so doing sustains the economic growth of the economy as a

whole.

It is important to recognize that the demand-creating innovation in our

model is different from the standard total factor productivity (TFP), or an “up-

ward shift” of the production function. In the standard “quality ladder” models

and the “creative destruction” literature such as Grossman and Helpman (1991),

Caballero and Jaffe (1993), and Young (1998), innovation or technical progress

raises total factor productivity by replacing old commodities with new ones, sim-

ply because new commodities are assumed to have greater value than old ones.

Again, whereas this seems to hold true for the commodities that are basically the

same but of different vintages, it does not make much sense for wholly different

products such as cars and personal computers. Personal computers do not neces-

sarily command higher value than cars. In short, the standard literature models

the dynamics of close substitutes, while the Aoki–Yoshikawa model stresses the

importance of demand saturation and creation of wholly different products or

industries.

Innovations in the economy facing the law of demand saturation contribute

to growth in a way that is different from an “upward shift” in the production

function. That TFP does not necessarily capture the significance of technological

progress is pointed out by Gavin Wright:

The identification of ‘technological progress’ with changes in total-factor-productivity, or

with the ‘residual’ in a growth-accounting framework, is so widely practised that many

economists barely give it a passing thought, regarding the two as more-or-less synonymous

and interchangeable. . . . Even with extensive quality adjustments, TFP is not generally a

good index of technology. If a genuine change in technological potential occurs in a firm, an

industry, a sector, or a country, in any plausible model this change will affect the mobilisation

of capital and labour in whatever unit is involved. In the new equilibrium, inputs as well as

outputs will have changed; the ratio between these may convey little if any useful information

about the initiating change in technology. (Wright, 1997, 1562)

We share Wright’s concern. The economy always mobilizes resources and ac-

cumulates capital whenever it finds goods or sectors for which demand grows

rapidly. In fact, in the present model the elasticity of capital in the production

function is equal to one (the so-called AK model). Therefore, the economy grows

whenever capital accumulates. But capital accumulation is constrained by a sat-

uration of demand. Innovation creates goods/sectors for which demand grows

rapidly, elicits capital accumulation, and thereby ultimately sustains economic

growth.

Innovation or technical progress in our model creates a major new product

or industry that commands high growth of demand and thereby elicits cap-

ital accumulation and sustains economic growth. Schumpeter (1934), in his

famous book Theory of Economic Development, distinguishes five types of
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innovations: (1) the introduction of a new good, (2) the introduction of a new

production method, (3) the opening of a new market, (4) the conquest of a new

source of supply of raw materials, and (5) the new organization of industry. His

first and third types of innovations as an engine for growth seem to be most

naturally interpreted in terms of the kind of model presented in Chapter 8.

Robert Solow emphasizes the importance of the “medium-run” analysis as a

challenge to modern macroeconomics:

One major weakness in the core of macroeconomics as I have represented it is the lack of real

coupling between the short-run picture and the long-run picture. Since the long-run and

the short-run merge into one another, one feels they cannot be completely independent.

There are some obvious, perfunctory connections: every year’s realized investment gets

incorporated in the long-run model. That is obvious. A more interesting question is whether

a major episode in the growth of potential output can be driven from the demand side.

(Solow, 1997, 231–2)

In short, the integration of the Keynes principle of effective demand for the

short run and growth theory for the long run remains a central theme in macroe-

conomics. Our model to be explained in Chapter 8 may provide a constructive

step toward solving this problem.

The Types of Investors and Stock Market

Chapter 9 examines a stock market by using a jump Markov process to model

entries, exits, and switchings of trading rules by a large number of interacting

participants in the market. The combinatory aspect plays an essential role in this

model. We examine stationary distribution of clusters of agents by strategies. Po-

tentially, the number of types of investors is infinite. However, when behaviors of

market participants are positively correlated, a majority (about 92 percent) of the

market participants can be shown to belong to two large groups of agents with

two different trading rules. In other words, although market participants poten-

tially have many different strategies, two dominant trading rules spontaneously

emerge. Thus, contributions of the remaining 8 percent or so of participants can

be ignored in examining the market behavior as a whole.

Given this result, we assume that there are two types of investors, chartists and

fundamentalists. Market excess demand and price dynamics are examined in this

framework. We show that the fluctuations of stock price become greater when

chartists dominate than when fundamentalists are the majority in the market.

Furthermore, we show a possibility for power laws with the exponent close to 3 for

returns on stock. The significance of this result will be explained in Chapter 10.

Stock Prices and the Real Economy

The final chapter explores the difference between the asset market and the real

economy. The standard approach attempts to explain asset prices based on the
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assumption of the representative agent. The so-called consumption-based asset

pricing model is a primary example of such an approach. In Chapter 10, we argue

once again that the representative agent assumption is fundamentally flawed.

Drawing on the recent advancement of “econophysics” on financial markets, we

argue that in contrast to the neoclassical view, there is in fact a wedge between

financial markets and the real economy.

In the neoclassical macroeconomic theory, the following relationship between

the rate of change in consumption, C, and the return on capital, r, must hold in

equilibrium:

−
[

u′′(C) C

u′(C)

] (
Ċ

C

)
= 1

η(C)

(
Ċ

C

)
= r − δ

Here, the elasticity of intemporal substitution η is defined as

1

η(C)
= −u′′ (C) C

u′(C)
> 0.

This equation says that the rate of change in consumption over time is deter-

mined by η and the difference between the rate of return on capital, r and the

consumer’s subjective discount rate, δ. This equation, called the Euler equation, is

derived as the necessary condition of the representative consumer’s maximization

of the Ramsey utility sum.

Within this framework, many economists have attempted to explain the “ex-

cess volatility” shown by Shiller (1981) and LeRoy and Porter (1981). Using the

same representative agent model, Mehra and Prescott (1985) also presented the

“equity premium puzzle.” Their analyses all rest on the assumption that the rate

of change in consumption (the real economy) and the asset return (financial mar-

ket) are tightly linked by the above Euler equation. However, as we will explain in

Chapter 10, the probability distributions of the growth rate of real variables such

as real GDP and financial returns are fundamentally different. Specifically, it is

now well established that the probability distribution of changes in stock prices

r follows the following power law with the exponent α = 3:

P (|r | > x) ∝ x−α, α = 3.

On the other hand, the probability distribution of the growth rate of GDP, g , is

exponential:

P (g ) ∝ exp (−γ |g |) .

This fact implies that we cannot use the standard Euler equation based on the

representative agent assumption for explaining asset prices.

In Chapter 10, we use a particular type of model, a truncated Lévy flight,

and show that power laws and exponential distribution emerge depending on

parameters. Specifially, when the number of micro growth events within a period

is small, exponential distribution can emerge. Conversely, when the number of
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micro growth events within a period is large, power-law distributions can emerge.

Thus, given the model, to account for the stylized fact, we must assume that

within a given period, the number of micro growth events is relatively small in

the case of real economic activities, whereas it is large in the case of asset prices.

Here, we must take this proposition as an assumption, and leave it for further

research. However, we believe that we can reasonably argue that the frequency of

multiplicative shocks is much higher for asset prices than for real micro economic

activities. In conclusion, we have a good deal of empirical observations to reject

the standard asset price model based on the representative consumer, and at the

same time, a plausible theoretical reason to believe that the real economy and

asset markets are different creatures.

Summing Up

Throughout this book, we advance the following propositions.

1. Micro behaviors of the representative agent do not mimic the behavior of

the macroeconomy. Macroeconomic phenomena are the outcomes of in-

teractions of a large number of economic agents such as households and

firms.

2. Equilibrium in the macroeconomy is better described by a probability dis-

tribution than by a “point” in some space or set. Jump Markov process is a

powerful tool to analyze dynamics of the macroeconomy. Partial differential

equation (the Chapman–Kolmogorov equation) or master equation to be

explained in Chapter 2 describes its time evolution.

3. Productivity always differs across sectors and firms in the economy. At each

moment of time, we have a distribution of productivity across sectors or

firms. This distribution of productivity depends on the level of aggregate

demand. High aggregate demand mobilizes resources to high productivity

sectors, and thereby raises the level of total output. Aggregate demand plays

a role similar to temperature in physical system.

4. Uncertainty weakens the effectiveness of macroeconomic policies. The econ-

omy may lapse into the “uncertainty trap.” It is the presence of great uncer-

tainty that distinguishes “depression” from normal cyclical “recession.”

5. “Sticky” prices/wages are often attributed to particular behavior of micro

agents. However, such micro behaviors as menu costs are arbitrary. In fact,

without any dubious assumption on micro behavior, sticky prices/wages

generically emerge out of interactions of many agents/sectors in the economy

with complex “tree” structure.

6. Sectoral reallocations of resources generate aggregate fluctuations or busi-

ness cycles. Aggregate demand affects total output by way of mobilizing pro-

duction factors. This is the proper microeconomic foundation for Keynes’s

principle of effective demand.
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7. The Beveridge Curve – the relationship between unemployment and

vacancy – depends on demand. This means that we cannot separate the

“structural” or “natural” unemployment from unemployment due to de-

mand deficiency. It, in turn, means that we cannot so clearly define the

“natural” unemployment rate as we usually think.

8. The combination of productivity dispersion and cyclical demand shifts across

sectors produces procyclical productivity in the economy as a whole. This

naturally explains Okun’s law.

9. Demand is important not only in the short run, but also in the process

of economic growth. We argue that the crucial factor restraining economic

growth is saturation of demand. The ultimate factor generating economic

growth is demand-creating technical progress.

10. The asset market and the real economy are different creatures. Specifically,

we obtain different probability distributions for financial returns and real

economic growth, one a power law, the other an exponential. We provide an

explanation for the generic mechanism that produces the difference between

the two.
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2

The Methods: Jump Markov Process and Random

Partitions

The new approach to macroeconomics and financial markets outlined in Chap-

ter 1 requires mathematical methods and concepts that are quite different from

those commonly used in economics. This chapter introduces them to the reader.

Phenomena we can analyze using the methods explained here share one or

more of the following three features:

1. A finite but large number of micro units or agents interact.

2. Different “types” of agents are present.

3. New and unknown types of agents, products, or technologies may appear;

that is, the number of types of agents, products, or technologies may not be

fixed nor known in advance.

To analyze these phenomena, we must depart from the standard methods

of model construction and analysis in mainstream economics. Specifically, in

this book, we formulate models as continuous-time Markov chains, also known

as jump Markov processes. This approach gives us new insight, and often yields

more information on the behavior of the macroeconomy than the traditional

approach can offer.

The standard approach in “micro-founded” macroeconomics formulates

complicated intertemporal optimization problems facing the representative

agent. By so doing, it ignores interactions among nonidentical agents. Also,

it does not examine a class of problems in which several types of agents simul-

taneously attempt to solve similar but slightly different optimization problems

with slightly different sets of constraints. When these sets of constraints are not

consistent, no truly optimal solutions exist.1 In this book, we explicitly intro-

duce and deal with a group of heterogeneous agents and focus on interactions

among those belonging to different subgroups called clusters. Roughly speak-

ing, we deemphasize the role of precise optimization of an individual unit while

1 This is analogous to frustrated systems in condensed matter physics.

28
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emphasizing the importance of proper aggregation for understanding the be-

havior of the macroeconomy.

The experiences in disciplines outside economics such as physics, population

genetics, and combinatorial stochastic processes that deal with a large number of

interacting entities amply demonstrate that details of specification of optimiz-

ing microeconomic agents (units) frequently diminish as the number of agents

becomes very large. Only certain key features or parameters such as correlations

among agents matter in determining aggregate behavior. Our models, analyses,

and simulations in subsequent chapters will show that this observation or insight

holds true in economics as well.

Two Classes of Methods

The methods we use generally fall into two broad categories. One deals with

stochastic dynamics, and the other with the formation of clusters and random

combinatorial analysis.

Stochastic Dynamics. Stochastic dynamics examines behavior of the model over

time and extracts dynamic properties of stochastic models. The key method is

to solve evolution equations for probability distribution such as the Chapman–

Kolmogorov equation, or master-equation, and the Fokker–Planck equation. Sta-

tionary solutions of the master equation give us stationary or equilibrium be-

havior of the model. In some cases, we can rigorously solve the master equation.

However, in many cases, we must resort to approximation. For example, we can

use probability generating functions or use Taylor expansions to solve master

equations. Or, in certain cases, we must be satisfied only with information on

moments by solving cumulant generating functions. Fluctuations around equi-

libria are obtained by solving the associated Fokker–Planck equation.

Random Cluster Formation. The second class of methods, random cluster for-

mation, deals with combinatorial aspects of agents forming clusters. This has to

do with the sizes of configurations or state spaces. Using these methods, we can

examine the size distribution or frequency spectrum.

2.1. First Class of Methods: Stochastic Dynamics

We first introduce the notion of states, or configurations, to dynamic phenomena

under examination. To paraphrase Bellman (1961), states are sets of information

that are sufficient to determine future time evolution of probability distributions

of model configurations, given whatever information on external influences that

affects model behavior. In Markov models, states may be subsets in some Eu-

clidean spaces, or may be graphs. In some cases, states may be organized as

trees which have hierarchical layers of branches and leaves. In Chapter 5, we will
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see that trees are, in fact, extremely useful for understanding “slow” dynamics

of macro systems including the macroeconomy. Slow dynamics of prices is a

primary example.

We start our modeling by specifying how interacting agents behave at the

microeconomic level. Then we explain how clusters of agents behave by describing

their behavior in terms of aggregated state variables. Stochastic description in

terms of macroeconomic variables may involve deterministic laws and stochastic

fluctuations around them.

Here is a simple example of state. Suppose agents have binary choices, or

there are two types of agents. The two choices may be represented by 0 and 1, for

example. The state of n agents is

s = (s1, s2, . . . , sn)

where the choice by agent i is denoted by si = 1 or si = 0, i = 1, 2, . . . , n. A set

of all possible values of s is called State Space, S.

This vector s gives us a complete picture of who has chosen what. This is

the microeconomic state at a point in time. We may then proceed to investigate

the dynamic process of how agents revise their choices over time by considering

rewards and costs facing agents, and possibly externalities among agents as well.

In many cases, we need not model the collection of agents with this much

detail. For example, identities of agents who have chosen 1 may not be necessary

if we care only about the fraction of agents with choice 1. Then,
∑

i si/n is

the information we need, and not individual si . At this level of description, the

vector (n1, n2), where ni is the number of agents with choice i = 0, 1, is a state

vector. This state vector shows fractions of two types of agents.2 In such a case,

if the total number of agents n is fixed, then the scalar variable n1 or the fraction

f1 = n1/n serves as the state variable. Then, we may proceed to specify how this

“demographic” or fractional information of choices by agents evolves with time.

Jump Markov Process

We are interested in the time evolution of the states. In this book we choose the

jump Markov process as our basic stochastic process, which neatly allows us to

model dynamic economic phenomena involving agents making discrete choices

such as either raising or cutting expenditures. In general, these choices may be

subject to externality such as fashion, fads, bandwagon effects, or the state of the

macroeconomy.

As we pointed out above, in many cases, details of microeconomic behavior

of an individual agent (namely, who did what) are irrelevant in macroeconomics.

Thus, most microeconomic behavior can be well approximated by a dynamic

2 This is nothing but the empirical distribution in statistics. It is relevant to exchangeable sequences,

in which the order of appearances of 1 and 0 is not relevant.

www.ebook3000.com

http://www.ebook3000.org


P1: JZZ

0521831067c02.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:20

2.1. First Class of Methods: Stochastic Dynamics 31

discrete choice model. Some readers might think that discrete choice models are

too special with only very limited applications. That is not true. In Chapter 3,

we will explain that discrete choice models are actually consistent with dynamic

optimization commonly used in macroeconomics.

Now, we can think of groups of economic agents by associating types with the

decisions or choices. Agents change their types when their decisions or behavioral

rules are altered. In open models, agents of various types may enter or exit; the

total number of agents is not fixed. These changes are stochastic, and may occur

at any time, not necessarily at an equal time interval. In other words, agents act

asynchronously.

The stochastic behavior of agents is modeled by specifying transition rates of

continuous time (jump) Markov processes. A particular jump Markov process

is determined uniquely when we specify transition rates of a countable number

of states. After reaching a state, the process stays there for a random duration of

time called holding or sojourn time.

Here is an example for which agents face binary choices (0 or 1). We can take

the number of agents making choice 1, n, as the state variable. The state space

is then {0, 1, 2, . . . , N}, where N is the total number of agents in the model. It is

exogenously fixed for simplicity of presentation. This model may be interpreted

as a random walk, or birth–death, model in probability textbooks because n

changes at most by ±1 in a small time interval. The changes are interpreted as

one agent changing his mind, taking a step to the right or left on a line.

Using the notation q(a, b) to denote the transition rate from state a to state

b, the transition rates from state n to n ± 1 may be specified by

q(n, n + 1) = (N − n)η1

( n

N

)
, and q(n, n − 1) = nη2

( n

N

)
. (2.1)

where η1 and η2 are some positive rate functions. Generally, parameters λ

and μ are present as birth and death rates. Here, for simpler exposition, we

set λ = μ = 1.

The first equation in (2.1) specifies the transition rate of an increase in the

number of agents making choice 1 from n to n + 1 (0 ≤ n < N). It depends

naturally on the number of agents currently making choice 0, that is N − n. The

function η1( n
N

) considers the presence of externality. When η1 is an increasing

function of n/N, for example, it means that changes in economic decision from

0 to 1 are encouraged as the share of agents making choice 1 rises, and vice

versa. Similarly, the second equation specifies the transition rate for state n to

n − 1 (1 ≤ n ≤ N). In this case, one person changes the strategy from 1 to 0.

This transition rate then depends naturally on the number of agents currently

making choice 1, that is n. With η’s set to some constant, (2.1) becomes a well-

known birth–death or entry–exit process in elementary probability textbooks.

Example: Pure Death Process with Immigration. A simple example of the above

is obtained by setting the first transition rate to a positive constant, and setting the
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second transition rate in (2.1) to q(n, n − 1) = μn, where μ is some positive

constant:

q(n, n + 1) = α, and q(n, n − 1) = μn.

This transition rate, together with the initial condition n(0) = n0, defines a death

process with immigration, that is entry from outside the model. Note that “immi-

gration” from outside is, by definition, independent of n. This example will be used

later several times for illustrating other technical points in this chapter. �

Example: A Business-Cycle Model. Suppose there are N firms in the economy,

and there are K levels of production. Each agent chooses one of K levels of output,

presumably as a result of some optimization problem. Here for simpler explanation,

we keep N fixed and set K to 2; that is, the level of output is either high, denoted by

y∗, or low, denoted by y (0 < y < y∗). Call firms with high production rate type

1, and low production rate type 2. The total output of this economy, or GDP, is

Y = ny∗ + (N − n)y = N
{

y + x(y∗ − y)
}
, (2.2)

where x = n/N is the fraction of type 1 firms in the economy. There are many firms,

so x can be regarded as a real number (0 ≤ x ≤ 1). When x fluctuates between 0

and 1, so does Y between Ny and Ny∗.

The transition rates are given by (2.1). Suppose one type 2 firm decides to increase

output from y to y∗. Over a short time interval, �t, this happens with probability

q(n, n + 1)�t + o(�t) . When one type 1 firm decides to reduce output from y∗

to y, this happens with probability q(n, n − 1)�t + o(�t) in the next �t time

interval.

Transition rates in this example are called state-dependent because the factors

η1(x) and η2(x) in (2.1) represent such effects of externalities as introduced by

Diamond (1982). Chapter 3 will explain a particular type of transition rate called

the Boltzmann–Gibbs type. Then in Chapter 4, we will use this model again to

analyze the role played by uncertainty in the macroeconomy. �

Setting Up the Master Equation

Once transition rates such as (2.1) are specified, a particular jump Markov process

is defined. Its behavior over time is the dynamics for the joint probabilities of

states. Dynamic equations can be derived by accounting for the probability fluxes

into and out of a specified state over a small interval of time. To be specific,

we use the backward Chapman–Kolmogorov equation to do this accounting of

probability flows. The Chapman–Kolmogorov equation describes time evolution

of probability distribution of states.

In this book, we call this equation master equation for short. This name is

used in physics and other disciplines such as chemistry, biology, and ecology.

It is an appropriate name because everything of importance we need to know

about the dynamic behavior of models can be deduced from this equation. In

particular we can derive dynamics for the first few moments of the state variable.
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We call the dynamics for the first moment (mean) aggregate dynamics because it

roughly corresponds to macroeconomic dynamics. We also derive the dynamics

for the fluctuations of state variables about the means, that is the second moment

(variance). It is given by the Fokker–Planck equation.

In generic form, the master equation is stated as a partial differential equation

for the probability of state vector s ∈ S:

∂ P (s, t)

∂t
=

∑
s′

q(s′, s)P (s′, t) − P (s, t)
∑

s′
q(s, s′), (2.3)

where the sum is taken over all states s′ �= s, and q(s′, s) is the transition rate

from state s′ to s. The first term on the right-hand side of equation (2.3) sums up

probability flows “into” state s from all the other states whereas the second term

sums up the same probability flows “out of ” state s to others. Thus, equation

(2.3) simply says that the rate of change in probability that a state is in s, is nothing

but the difference between the inflows of the probability fluxes into state s and the

outflows. Schematically, the master equation can be written as

∂ P (s, t)

∂t
= (Inflows of Probability Fluxes into s)

− (Outflows of Probability Fluxes out of s).

Setting the left-hand side of equation (2.3) to zero yields the equation for

the stationary or equilibrium probabilities of states; by definition, a change in

probability distribution becomes zero. It is called the full balance equation in

Kelly (1979). If we require that each pair of terms is zero in (2.3), we obtain

q(s′, s)P e (s′) − q(s, s′)P e (s) = 0, (2.4)

where superscript e indicates the equilibrium probabilities. This is a special case

of full balance. It is known as the detailed balance condition. The detailed balance

condition is only a sufficient condition for the equilibrium probabilities, not a

necessary condition. When the state space is a tree, the detailed condition always

holds (see Kelly, 1979 or Aoki, 2002, 18).

Example: Pure Death Process with Immigration. Let α be the rate of immigra-

tion (innovation) and μ be exit (death). For simplicity, we assume each n agent

or unit exits independently. A straightforward probability flux accounting gives the

master equation

∂ P (n, t)

∂t
= αP (n − 1, t) + μ(n + 1)P (n + 1, t) − (α + μn)P (n, t) (2.5)

with the initial condition P (n, 0) = δn,n0
. That is, there are initially n0 units in

the model. Inflows into P (n, t) arise from an immigration in state n − 1 which is

αP (n − 1, t), and a death in state n + 1 which is μ(n + 1)P (n + 1, t). Likewise,

flows out of P (n, t) arise from an immigration and a death in state n which is
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(α + μn)P (n, t). Note that the death rate depends on population or n whereas

“immigration” is by definition independent of n.

By setting the right-hand side of (2.5) to zero, we obtain the equation for the

equilibrium distribution P e (n) for the death–immigration process:

μ(n + 1)P e (n + 1) = (α + μn)P e (n) − αP e (n − 1). (2.6)

We will later show that this equation can be solved recursively to illustrate that P e (n)

is a Poisson distribution with mean α/μ. �

Solving the Master Equation

To derive nonstationary behavior, we need to solve the master equation explicitly.

For simple cases, we can derive aggregate (mean) dynamics easily. Here, we

consider the above example of pure death process with immigration.

Example: Pure Death Process with Immigration. The expected value of n can be

directly obtained from (2.5) without the help of the probability generating function.

We multiply the master equation (2.5) by n, and sum over n = 0 to n = ∞ with

P (−1, t) = 0. Then we obtain

∞∑
n=0

n
∂ P (n, t)

∂t
=

∞∑
n=0

αnP (n − 1, t) +
∞∑

n=0

μn(n + 1)P (n + 1, t)

−
∞∑

n=0

n(α + μn)P (n, t)

= α

∞∑
n=0

(n − 1)P (n − 1, t) + α

∞∑
n=0

P (n − 1, t)

+ μ

∞∑
n=0

(n + 1)2 P (n + 1, t) − μ

∞∑
n=0

(n + 1)P (n + 1, t)

− α

∞∑
n=0

nP (n, t) − μ

∞∑
n=0

n2 P (n, t).

The first and second moments of n are, by definition,

〈n〉 =
∞∑

n=0

nP (n, t) and 〈n2〉 =
∞∑

n=0

n2 P (n, t).

Noting that P (−1, t) = 0 and

∞∑
n=0

n
∂ P (n, t)

∂t
= ∂

∂t

[ ∞∑
n=0

nP (n, t)

]
,
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we can rewrite the above equation as

d〈n〉
dt

− α〈n〉 + α + μ〈n2〉 − μ〈n〉 − α〈n〉 − μ〈n2〉 = α − μ〈n〉.
If we denote the first moment or the expected value of n, E (n) = 〈n〉, by

φ = E (n) = 〈n〉,
we have just found that it is governed by the following ordinary differential equation:

dφ

dt
= μφ. (2.7)

This equation is a simple aggregate dynamic equation. It has α/μ as the correct

asymptotic value of the mean. Note that the right-hand side of equation (2.7)

is equal to the difference of the expected rightward move, α, minus the expected

leftward move, μφ. �

We have directly derived the dynamic equation for the mean for the pure

death process with immigration. For more complicated models, however, this

straightforward method does not work so we need to use other methods. There

are at least three ways for solving the master equations for the probability distri-

butions, or for the moment expressions: (1) probability generating function, (2)

cumulant generating function, and (3) Taylor expansion.

Probability Generating Function. To gain information on the probability dis-

tribution and its moments, we can use probability generating functions.

Definition: Probability Generating Function. Given the probability that state is

in k ≥ 0 at time t, P (k, t), the probability generating function is defined as

G(z, t) =
∞∑

k=0

zk P (k, t) (2.8)

The probability generating function is useful because once we know it, we

can easily find the time evolution of moments. For example, the first moment or

means E (k) of stochastic variable k (k = 1, 2, . . . ) is defined as

E (k) =
∑
k=0

k P (k, t).

By comparison, we know that this is equal to

∂G(z, t)

∂z

∣∣∣∣
z=1

=
∑

k

kzk−1 P (k, t)
∣∣

z=1
=

∑
k

k P (k, t) = E (k).

That is, we obtain the first moment as the first derivative of the generating

function with respect to z. The problem to solve the master equation, therefore,

boils down to obtaining the generating function.
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Example: Pure Death Process with Immigration. Here, we illustrate the method

for the death immigration process. In this case, the master equation is given by

equation (2.5). Multiply both sides of (2.5) by zn and sum it over n (n = 0, 1, 2, . . . ),

and we obtain∑
n

∂zn P (n, t)

∂t
=

∑
n

αzn P (n − 1, t) +
∑

n

μ(n + 1)zn P (n + 1, t)

−
∑

n

(α + μn)zn P (n, t).

Hence, we derive the partial differential equation for G(z, t):

∂G(z, t)

∂t
= μ(1 − z)

∂G

∂z
+ α(z − 1)G, (2.9)

with the initial condition (n = n0 at time 0); that is G(z, 0) = zn0 In deriving (2.9)

we note that∑
zn P (n − 1, t) = zG,

∑
(n + 1)zn P (n + 1, t) = ∂G

∂z
,

and ∑
nzn P (n, t) = z

∂G

∂z

up to initial condition terms.

Once this partial differential equation is solved, we can recover P (k, t). An easy

way to solve (2.9) is to eliminate the second term by transforming G (z, t) as follows:

G(z, t) = eκ(z−1) H(z, t) with κ = α

μ
.

Equation (2.9) then becomes

∂ H

∂t
= μ(1 − z)

∂ H

∂z
.

This simplifies to

∂ Q

∂t
= ∂ Q

∂w

where we define

Q(w , t) = H(z(w), t) with
dz

dw
= μ(1 − z), or w = − 1

μ
ln (z − 1).

Now, the solution of this last equation is

Q(w , t) = 
(w + t)

for some differential function 
, since

∂ Q

∂t
= 
′ and

∂ Q

∂w
= 
′.
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This function is determined by the initial condition that G(z, 0) = zn0 . Substi-

tuting these back into H(z, t) and Q(w , t), we easily obtain

G(z, t) = exp

[
α

μ
(z − 1)

]
γ (z, t : α)

where γ is seen to approach 1 as t → ∞. (The reader is invited to derive the

expression for γ .) Thus, in this example, the generating function converges to the

following equation:

G(z, t) → exp

[
α

μ
(z − 1)

]
when t → ∞. (2.10)

This means that in the limit of time going to infinity, the probability of k agents

present in the model is given by the stationary distribution

P (k, t) →
e− α

μ

(
α

μ

)k

k!
. (2.11)

Equation (2.11) verifies our earlier remark that the stationary distribution obtained

from the detailed balance equation for the death–immigration process is a Poisson

process with rate α/μ.

Now, differentiate equation (2.10), and set z equal to 1, and we obtain the

following result:

d

dz

{
exp

[
α

μ
(z − 1)

]} ∣∣∣∣
z=1

= α

μ
exp

[
α

μ
(z − 1)

] ∣∣∣∣
z=1

= α

μ
. (2.12)

From equation (2.12), we know that α/μ is the asymptotic first moment, or means

for the death–immigration process. This example verifies our earlier remark that the

generating function enables us to find the expected value:

∂G(z, t)

∂z

∣∣∣∣
z=1

= E (k(t)). �

Cumulant Generating Function

Definition: Cumulant Generating Function Cumulant generating function

K (θ, t) is defined as follows:

K (θ, t) = ln G(e−θ , t)

that is, the log of the probability generating function G(z, t) with substitution

z = e−θ .

Again, we consider the pure death process with immigration.
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Example: Pure Death Process with Immigration. By using K (θ, t), we can derive

from equation (2.9) the following equation:

∂ K

∂t
= α(e−θ − 1) + μ(1 − e−θ )

∂ K

∂θ
.

See Aoki (2002, 69, 75). In this example, the first two cumulants, K1(t) and K2(t),

are the means and variance. Since K (θ, t) = K1θ + 1
2

K2θ
2 + · · · the coefficients

are such that they satisfy

K̇1(t) = α − μK1

K̇2(t) = −2μK2 + μK1 + α. (2.13)

In general, the set of ordinary differential equations for the cumulants may

not terminate at some finite stage. However, for the present example, K1 and K2

constitute a set of two ordinary differential equations that do not involve any higher

order cumulants. Setting the left-hand side of (2.13) to zero, we obtain the stationary

values

K e
1 = α

μ

and

K e
2 = μK e

1 + α

2μ
= α

μ
.

That is, both mean and variance are equal to α/μ, which is correct for the Poisson

random variable.

Taylor Expansion. Another method of solving master equations is the Taylor

expansion. This method expands a nonlinear master equation in Taylor series.

The expansion is to be done with respect to some size parameter, which is typically

the number of agents in the model. Let S be the size parameter. We use S to express

the stochastic state variable n as

n(t) = Sφ +
√

Sξ (2.14)

where variable φ is the mean of n(t)/S and ξ is a random variable with mean

zero and finite variance. Note that φ is not stochastic but a real number. Equation

(2.14) implies the following relations:

n(t) + 1 = Sφ +
√

S

(
ξ + 1√

S

)

(2.15)

n(t) − 1 = Sφ +
√

S

(
ξ − 1√

S

)

It may be more informative to rewrite (2.14) as

n

S
= φ + 1√

S
ξ.
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Equation (2.14) gives a good approximation when probability distributions,

which are the solution of the master equation, have sharp peaks. Probability

distributions with broad peaks may require special care or more terms of expan-

sion (see Van Kampen, 1992, 251 for details).

Example: The Pure Death Process with Immigration. We specify the transition

rates as

w(n, n + 1) = γ (n) and w(n, n − 1) = ρ(n).

Using these transition rates, we rewrite the master equation (2.5) as

∂ P (n, t)

∂t
= γ (n − 1)P (n − 1, t) + ρ(n + 1)P (n + 1, t)

− P (n, t){γ (n) + ρ(n)}. (2.16)

We next define

π(ξ(t), t) = P (n(t), t) (2.17)

for ξ(t) in (2.14). Then, we note that

∂ P

∂t
= ∂π

∂t
+ ∂π

∂ξ

dξ

dt
. (2.18)

We also note that given equation (2.14),

dξ

dt
=

√
S

dφ

dt
, (2.19)

holds for n fixed.

Equations (2.18) and (2.19) give us

∂ P

∂t
= ∂π

∂t
−

√
S

dφ

dt
. (2.20)

If we rewrite the time scale from t to τ by t = Sτ , equation (2.20) becomes

1

S

∂ P

∂τ
= 1

S

∂π

∂τ
− 1√

S

∂π

∂ξ

dφ

dτ
. (2.21)

On the other hand, using equations (2.15) and (2.16) and the definition of

π(ξ, t), (2.17), we obtain

1

S

∂ P

∂t
= γ

(
φ + 1√

S
ξ − 1

S

)
π

(
ξ − 1√

S
, t

)

+ρ

(
φ + 1√

S
ξ + 1

S

)
π

(
ξ + 1√

S
, t

)
− β

(
φ + 1√

S
ξ

)
π(ξ, t)

(2.22)

where

β

(
φ + 1√

S
ξ

)
:= γ

(
φ + 1√

S
ξ

)
+ ρ

(
φ + 1√

S
ξ

)
.
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Now, we expand each term of the right-hand side of equation (2.22) in the neigh-

borhood of φ to obtain

1

S

∂ P

∂t
=

[
γ (φ) + γ ′(φ)

(
1√
S
ξ − 1

S

)
+ · · ·

] [
π − ∂π

∂ξ

1√
S

+ 1

2S

∂2π

∂ξ 2
+ · · ·

]

+
[
ρ(φ) + ρ ′(φ)

(
1√
S
ξ + 1

S

)
+· · ·

][
π + ∂π

∂ξ

1√
S

+ 1

2S

∂2π

∂ξ 2
+· · ·

]

−
[
β(φ) + β ′(φ)

1√
S
ξ + · · ·

]
π. (2.23)

The right-hand sides of equations (2.21) and (2.23) must be equal. Equating the co-

efficients of − 1√
S

∂π
∂ξ

(i.e., of order 1√
S

) on the right-hand sides of these two equations,

we pull out the dynamics for the mean or the first moment of n/s , φ, as:

dφ

dτ
= −ρ(φ) + γ (φ). (2.24)

For this pure death process with immigration we have

γ (φ) = α

and

ρ(φ) = μφ.

Equation (2.24) is then identical with equation (2.7):

dφ

dτ
= −ρ(φ) + γ (φ) = α − μφ. (2.25)

Therefore, the stationary value of φ, φ̄, is equal to α
μ

, the same value that we have

derived by other two methods.

The Fokker–Planck Equation

The Fokker–Planck equation gives the dynamics of the probability density func-

tion π(ξ, t) of ξ , that is fluctuations around the mean or the first moment, φ.

Once again, we can consider the Taylor expansion of the master equation for

the pure death process with immigration, (2.23). Equating the coefficients of

order 1/
√

S on the right-hand sides of equations (2.21) and (2.23), we obtain

dynamics for the mean (24). Now, equating the terms with scale 1
S

on both sides,

we deduce the dynamics for π as

∂π

∂τ
= −γ ′(φ)

∂π

∂ξ
ξ + γ (φ)

1

2

∂2π

∂ξ 2
− γ ′(φ)π + ρ ′(φ)

∂π

∂ξ
ξ

+ ρ(φ)
1

2

∂2π

∂ξ 2
+ ρ ′(φ)π

= −b′(φ)
∂

∂ξ
(ξπ) + 1

2
β(φ)

∂2π

∂ξ 2
+ · · · (2.26)
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where we define

b(φ) = γ (φ) − ρ(φ).

We recall that

β(φ) = γ (φ) + ρ(φ).

Equation (2.26) truncated at the second partial derivatives of π is called the

Fokker–Planck equation. Recall that π is a probability density function of ξ , that is

fluctuations around the mean of n/S, φ. The Fokker–Planck equation describes

time evolution of π .

Suppose that π is stationary. Then, by setting the time derivative ∂π/∂τ to

zero in equation (2.26), we obtain

−b′ ¯(φ)
∂

∂ξ
(ξπ) + 1

2
β ¯(φ)

∂2π

∂ξ 2
= 0

where b′ and β are evaluated at the equilibrium value of φ, φ̄ . By integrating this

equation with respect to ξ we obtain

−b′ ¯(φ)ξπ + 1

2
β ¯(φ)

∂π

∂ξ
= 0.

Note that because the sum or integration of probability flux is zero, the con-

stant term after integration in the above equation becomes zero. Now integrating

the above equation once again with respect to ξ we obtain the probability density

function of ξ :

π(ξ) = const . × exp

(
b′ ¯(φ)

β(φ̄)
ξ 2

)
= const . × exp

(
− ξ 2

2σ 2

)

where

1

σ 2
= μ

2α
> 0.

Thus, the stationary density function of ξ (fluctuations around the mean φ̄)

in this example is the normal density. The variance depends on two transition

rates, μ and α, that is, the death rate and the immigration rate.

See Aoki (1996, Section 5.3, 2002, Chapter 7) for other examples of the

Taylor series expansion method.3 See also Van Kampen (1992) for details of

the Taylor series expansion of master equation and related topics. We will use the

Taylor series expansion to analyze a model of business cycles in Chapter 4.

3 We can improve the expression of π up to O(S−1) by taking more terms. See Aoki (1996, p. 123).
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Potential Representation and Multiple Equilibria

The notion of potential is extremely useful in the analysis of stochastic dynamics.

In particular, it clarifies our analysis when multiple equilibria exist for stationary

distributions. It is easy to explain this notion with a simple example.

Example: Binary Choice Model. For a binary choice process with transition rates

of equation (2.1), n/N is the state variable, where n is the agent of type 1 and N

the total number of agents. The detailed balance condition becomes the difference

equation for the equilibrium probabilities. Solving it, we obtain the expression for

this stationary probability, P e (n/N). It can be put into the form of an exponential

distribution:

P e
( n

N

)
∝ exp

{
−βNU

( n

N

)}
. (2.27)

Here, U is called the potential and is given by the sum of two distinct terms

U
( n

N

)
= − 2

N

n∑
r=1

g
( n

N

)
− 1

β
H

( n

N

)
+ O

(
ln N

N

)
, (2.28)

where the terms on the right-hand side are explained in (2.29) and (2.31). The first

term depends on g , which is defined by ηi functions in the transition rates (2.1):

η1(x)

η2(x)
= exp[2βg (x)]. (2.29)

We set n/N as x for short. With the normalization η1(x) + η2(x) = 1, we have an

explicit relation between η1(x) and g (x):

η1(x) = exp(βg (x))

exp(βg (x)) + exp(−βg (x))
. (2.30)

This is known as the Boltzmann–Gibbs distribution. In Chapter 3, we will show

that the positive parameter β introduced in expression (2.30) can be interpreted

as a measure of uncertainty in the model. The more uncertain the consequences

of particular choices by agents, the smaller the value of β. In the limit of β = 0,

η1(x) = η2(x) = 1/2.

The second term, H(x), is the Shannon entropy:

H(x) = −x ln x − (1 − x) ln(1 − x). (2.31)

This arises from the combinatorial aspects of the binary choices in the model. For N

large, we replace the sum in equation (2.28) with the integral to obtain

U (x) = −2

∫ x

g (y)dy − 1

β
H(x). (2.32)

This potential function determines the stochastic dynamics of the model. For

example, given stationary distributions, we can look for states with the highest

probabilities. These are the states at which the potential is at local minima.
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By taking the derivative with respect to x, we find that the potential is minimized

at x which satisfies

g (x) = 1

2β

d H(x)

dx
= 1

2β
ln

x

1 − x
. (2.33)

This value of x can be shown to be identical with that of the critical point(s) of

the aggregate dynamics. In other words, the critical points of the aggregate dynamics

are the points at which the potential is locally minimized.

Anything that changes the g (x) function, such as changes in perception regarding

profitabilities of alternative decisions, and government policy changes, will shift the

equilibrium positions in (2.33). Changes in the equilibia, however, also depend on

parameter value β. We can show that the smaller the value of β, the smaller the

change in the equilibrium value for a given amount of changes in g (x). This point

is elaborated in Chapter 4.

Dynamics about an Equilibrium Point

Let us continue with the above example of the binary choice model. Denote by

z = x − x∗ deviation of x from its equilibrium value, x∗. The dynamics of this

deviational variable can be expressed using the potential as

dz

dτ
= −β

{
x∗(1 − x∗)

d2U

dx2

}
z. (2.34)

The sign of the second derivative of U is positive near the minimum of the

potential. Thus, smaller values of β imply a sluggish deviational dynamics for x

to return to x∗. The greater the uncertainty about the consequences of choices for

agents, the more sluggish is a return to local equilibria. This method is applied

to the problem of policy ineffectiveness in Chapter 4.

2.2. Second Class of Methods: Random Cluster Formation

We next turn to the second class of methods. Stochastic combinatorial tools4

introduced in this section are used to show how agents form “clusters” and

how the clusters evolve over time. A cluster is a group of economic agents. It

can be a sector, an industry, or any other group of economic agents with the

same choice or same set of attributes. We examine the dynamic processes of

clusters. What dynamics emerge in the processes of formation and dissolution

of clusters comprising interacting agents? What are the stationary distributions

of fractions of agents of different types, namely, stationary distributions of the

4 We borrow from the literature of population genetics such as Ewens (1972, 1990), Watterson

(1974, 1976), Watterson and Guess (1977), and Zabell (1992), and of statistics and stochastic

processes such as Kingman (1978a, b), Arratia, Barbour, and Tavaré (1992, 2003), and Pitman

(2002).
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sizes of clusters? What are the market shares of a typical largest cluster, second

largest cluster, and so on? These are the questions we answer using the methods

of this second class.

Dynamics of cluster formation is important because a multisector approach

is often useful, even essential, in macroeconomics. In Chapter 6, we show that the

multisector stochastic model gives indeed a new perspective to our understanding

of business cycles. We will use a similar model for the analysis of labor market in

Chapter 7.

Distributions of cluster sizes matter because a few of the larger clusters, if

formed, dominate the market excess demands for goods. They would basically

determine the nature and magnitudes of fluctuations of macroeconomic vari-

ables. The Ewens Sampling Formula is a useful tool for studying such a problem.

It will be used extensively in our analysis of the financial market in Chapter 9.

Dynamics of Clustering Processes

Let us begin by considering how n agents or elements randomly form K clusters.

For ease of exposition, we call a set composed of n objects an n-set. For example,

[n] := {1, 2, . . . , n}, is an n-set. For ease of exposition, we speak of n “balls” for

agents or goods, and K “boxes” for clusters or types.

We consider how n balls are distributed in K boxes. If balls are randomly

distributed in boxes, we can find the distribution of balls by simply counting

the number of configurations of n balls in K boxes. The number of different

patterns depends crucially on whether balls and/or boxes are distinguishable. In

applications in macroeconomics, the specific identity of n balls (economic units)

usually does not matter. Labels we assign to balls are then merely for convenience

of reference. Permuting labels of balls leaves nothing of substance changed.

First, we consider the case where K boxes are distinguishable. When n indis-

tinguishable balls are distributed into K distinguishable boxes, there are(
n

n1, n2, . . . , nK

)
= n!

n1!n2! · · · nK !
(2.35)

different patterns. Here, ni is the number of balls in the i th box where n1 +
n2 + · · · + nK = n. This is the number of configurations of [n] into K labeled

clusters. The distribution is given by frequency vector, defined as

n := (n1, n2, . . . , nK ).

In this case, we obtain the probability of (n1, n2, . . . , nK ) by simply dividing

(2.35) by the total number of configurations, K n.

In most applications, clusters are not randomly distributed, but rather formed

by interactions of agents. As agents interact, new clusters form or some existing

clusters break up into smaller ones. The dynamics of such cluster formations can

be analyzed by a jump Markov process of frequency vector n. We use a frequency
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vector n as the state vector in this analysis. As in the previous section, we need

to specify a set of transition rates of the jump Markov process.

We consider simple “closed” dynamics, in which the number of agents,

namely n, and the number of boxes, K , are both fixed over time. For exam-

ple, consider the following transition rates for n:

w(n, n − ei + e j ) = f (ni , n j ), (i, j = 1, . . . , K )

where e j is a unit vector with the only nonzero component, 1, at the j -th position.

This transition rate means that one agent changes its type from i to j (or leaves

the i th sector moving into the j th sector). The right-hand side specifies that the

rates are some function of the sizes of type i and j .

Given such dynamics, we can find the stationary distribution of clusters. One

tractable way to find it is to impose the detailed balance condition. By definition,

the number of agents under the stationary distribution, n∗, does not change over

time.

Example: K -dimensional Pólya Distribution. We consider the jump Markov

process with the following transition rates:

w(n, n − ei + e j ) = ni

n

n j + θ j

n − 1 + θ
(2.36)

where θ j > 0 and θ =
K∑

j=1

θ j .

We can determine the stationary distribution of this Markov process, π(n), from

the detailed balance condition

π(n) w(n, n − ei + e j ) = π(n − ei + e j ) w(n − ei + e j , n).

This condition means that probability inflows and outflows between two states n

and n − ei + e j cancel out each other. Using this condition, we obtain the following

difference equation for π(n):

π(n) = θi + ni − 1

ni

n j + 1

θ j + n j

π(n − ei + e j ).

Then, we can derive the stationary distribution as

π(n) = n!

θ [n]

K∏
i=1

θ
[ni ]
i

ni !
, (2.37)

where [·] denotes an ascending factorial:

θ [n] = θ(θ + 1) · · · (θ + n − 1).

This stationary distribution (2.37) is known as the K-dimensional Pólya distribu-

tion. See Aoki (2002, 26), for the details.
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In some cases, new entry and/or exits of balls (agents) occur. The Markov

model can accommodate such “open” dynamics. In the economy, “something

new” often appears, and “something old” disappears. “Something new” may be

a newly invented goods, a new technology, a new behavioral pattern and so on.

One might think that there is no way to define the probability that “something

new” emerges or is discovered. In fact, we can formally analyze this problem by

using our methods. Specifically the law of succession in the statistical literature

addresses these questions as conditional probabilities of agents entering models

from outside the existing types. See Zabell (1992) for an illuminating discussion.

Here, we rely on recent works by Kingman (1993) and Pitman (2002). Their

models can be approximated as birth–immigration models in the context of

continuous time branching processes. We introduce their results into our models.

See Feng and Hoppe (1998) for the mathematical setup.

In “open” model, the number of agents and/or types, namely n and/or K ,

varies as time passes. We can set up appropriate open model by specifying tran-

sition rates. As for entry of agents, there is a difference depending on whether a

newcomer enters an existing cluster or forms a new cluster. When a newcomer

always joins an existing cluster, n is variable but K is fixed. Specifically, in this

case, consider the following transition rates:

w(n, n − ei ) = ni

n
,

w(n, n + e j ) = n j + θ j

n + θ
.

The former means that one type i agent exits from the market, and the latter

means that one j type agent enters the market. Combining these two, we can

obtain the same expression as (2.37) for the closed dynamics:

w(n, n − ei + e j ) = w(n, n − ei )w(n − ei , n + e j ) = ni

n

n j + θ j

n − 1 + θ
.

Using these transition rates, we can describe entry of one new type agent as

follows. Suppose that a newcomer at time t forms a new cluster of type h. This

means that nh = 0 holds up to time t. Substituting nh = 0 into the transition

rate of new entry, we have

w(n, n + eh) = θh

n + θ
.

Thus, the transition rate that a new type agent comes in can be derived as∑
h∈φ θh

n + θ
, (2.38)

where φ is a set of indices of empty boxes.

For the case where K is variable as well as n, we must redefine the state vector.

The frequency vector n is not a state because its dimension varies over time. As
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we discuss later, a state of this type of dynamics can be represented by a “partition

vector.” But here, without giving an exact expression for the state vector, we deal

with the dynamics by using a sequence expression along with time evolution.

Let X1, . . . , Xn, . . . be an infinite sequence of random variables taking on any

of a finite number of values, say 1, 2, . . . , K .The subscripts on X are thought of as

a time index, or the order in which samples are taken or agents enter the system.

Two sequences are such that they have the same probability if one is a

rearrangement of the other, or the probability is the function of the fre-

quency vector, n = (n1, n2, . . . , nK ). The observed frequency counts, n j =
n j (X1, X2, . . . , Xn), are sufficient statistics for the sequence, in the sense that

probabilities conditional on the frequency counts depend only on the frequency

vector;

Pr(X1, X2, . . . , Xn|n) = n1!n2! · · · nK !

n!
,

where n = ∑K
i=1 ni . Such a conditional probability is sometimes called the law

of succession. Focusing on the prior probability of Xn+1, we have Johnson’s suf-

ficientness postulate,5 that is,

Pr(Xn+1 = i |n) = f (ni , n).

Namely, the prior probability of Xn+1 depends only ni and n. Zabell (1992)

specifies the probability as

Pr(Xn+1 = i |n) = ni + α

n + K α
(2.39)

for some positive parameter α. Note that the sum of the probability from i = 1

to K is one, so there is no room for new type agents to enter the system.

Next, we consider the case with entry of a new type of agent. In this case,

we take the limit of (2.39), letting K go to infinity and α to zero in such a way

that K α goes to a positive limit θ . Then, we obtain the conditional probability

of Xn+1:

Pr(Xn+1 = i |n) = ni

n + θ
, (2.40)

for some positive parameter θ . Note that the sum of the probabilities (2.40) from

i = 1 to K is less than one, so that there is room for new type agents to enter the

system. Namely, we obtain

Pr(Xn+1 = new|n) = θ

n + θ
. (2.41)

By comparing (2.41) with (2.38), we can see the difference that arises depending

on whether K is fixed or not.

We use these probabilities for the dynamics of the sectoral economy in Chap-

ter 6. For the case where the number of sectors, denoted by K , is fixed, we use

5 so called by I. J. Good (1965) to avoid confusion with the notion of sufficient statistics.
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the expression (2.39) with α = 0 as the probability for economic agent to enter

a sector, or exit from a sector. If K is not fixed and the emergence of a new sector

is allowed, we use the expression (2.41) for the probability of emergence of a new

sector in the economy. It allows us to analyze the situation in which “something

new” appears and thus a new cluster is formed.

Partition Vector

In the previous section we studied the case where K boxes are distinguishable.

In what follows, we study the case where balls (agents) and boxes (types) are

both indistinguishable, or delabeled. In economics, firm size distribution is an

example. In this example, both capital/labor (balls) and firms (boxes) are indis-

tinguishable.

When boxes are delabeled, the only way we can count configurations of

ball distribution is to count the number of boxes containing i balls, namely, ai ,

i = 1, 2, . . . , n. We encode the partition of [n] as follows in this book.

Definition: Partition Vector The partition vector is defined by6

a = (a1, a2, . . . , an)

where the number of agents is given by

n∑
i=1

iai = n,

and the number of categories is given by

n∑
i=1

ai := Kn ≤ K .

Because the number of clusters is variable, we use the notation Kn rather than

K . The inequality Kn ≤ K means that K is now the maximum possible number

rather than the actual number of clusters. In other words, Kn is the number of

occupied boxes (i.e., with nonzero balls). Therefore, Kn is possibly less than K .

In counting the number of configurations or arrangements with partition

vector a, the argument used in deriving (2.35) applies. In addition, the subsets

(clusters) of the same size (cardinality) can be permuted among themselves

without changing configuration. So the number of configurations is given by

N(a) = n!∏n
j=1( j !)a j a j !

= n!

(1!)a1 (2!)a2 · · · (n!)an a1! · · · an!
. (2.42)

6 Kingman (1980) and Sachkov (1996) call partition vectors by different names.
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This new representation has roots in exchangeable random partitions of a set of

agents into clusters, which arise in examining clusters or subsets of agents of the

same types.

Now we can analyze the dynamics of cluster formation using the partition

vector a as the state vector. By using the partition vector a, instead of the frequency

vector n as the state vector, we can easily set up the formulation of open dynamics,

because we do not have to specify which of the K types a newcomer joins (“boxes”

are indistinguishable!). For example, we can consider the following transition

rates for a:

w(a, a + e1) = θ

n + θ
. (2.43)

This transition rate means that one new type of agent enters an empty box with

rate θ
n+θ

. Another example is

w(a, a + e j+1 − e j ) = j a j

n + θ
. (2.44)

This means that one agent enters a cluster of size j , thereby increasing the number

of clusters of size j + 1 by one, and reducing that of size j by one. The right-

hand side specifies that the rates are proportional to j a j , which counts the total

number of agents in the clusters of size j .

For an exit case where one agent leaves a cluster of size j , the number of

clusters of size j − 1 increases by one whereas that of size j decreases by one.

The transition rate can be, therefore, written as

w(a, a − e j + e j−1) = j a j

n
. (2.45)

For the case where an agent of one type of size j changes into another type of

size j , the transition rate is

w(a, a + e j+1 − 2e j + e j−1) = j a j

n

j (a j − 1)

n − 1 + θ
. (2.46)

We can make these expressions simple by defining u j := e j − e j−1, and u1 :=
e1. Then, (2.43), (2.44), (2.45), and (2.46) become

w(a, a + u1) = θ

n + θ
, (2.47)

w(a, a + u j+1) = j a j

n + θ
, (2.48)

w(a, a − u j ) = j a j

n
, (2.49)

w(a, a + u j+1 − u j ) = j a j

n

j (a j − 1)

n − 1 + θ
. (2.50)
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Given such dynamics, we can find the stationary distribution of partition

vector a, imposing the detailed balance condition.

Example: Ewens Sampling Formula. An important example is the Ewens Sam-

pling Formula. It is extensively used in population genetics. The transition rates for

the Ewens Sampling Formula are given by (2.47), (2.48), and (2.49). The detailed

balance condition is

π(a)w(a, a + u j+1) = π(a + u j+1)w(a + ui+1, a). (2.51)

Thanks to (2.48) and (2.49), (2.51) becomes

π(a)
j a j

n + θ
= π(a + u j+1)

( j + 1)(a j+1 + 1)

n + 1
. (2.52)

We can confirm that the following stationary distribution, π(a), satisfies (2.52).

π(a) = n!

θ [n]

n∏
j=1

(
θ

j

)a j 1

a j !
. (2.53)

This stationary distribution is called the Ewens Sampling Formula. It is param-

eterized by a single positive scalar parameter θ , which controls the size of clus-

ters Kn. We derive this formula via the methods of counting configurations in

Appendix 2.1.

To understand the roles of the parameter θ in the Ewens Sampling Formula,

we consider a case with n = 2 and a2 = 1. In this simple case, we have

Pr(a1 = 0, a2 = 1|n = 2) = 1

1 + θ
.

This formula shows that the probability for two agents to belong to the same

cluster increases as θ becomes smaller. Alternatively, the probability of a case

with n = 2 and a1 = 2 is

Pr(a1 = 2, a2 = 0|n = 2) = θ

1 + θ
.

In general, we can consider the case with n agents. Suppose that a j = 0,

1 ≤ j ≤ n − 1 and an = 1, that is, n agents all belong to a single cluster. The

probability of such a case is

θ(n − 1)!

θ [n]
= (n − 1)!

(θ + 1) · · · (θ + n − 1)
. (2.54)

For small values of θ , this probability is close to 1.

In contrast, suppose that a1 = n, and a j = 0 for 2 ≤ j ≤ n. The probability

is then

θn

θ [n]
= θn−1

(θ + 1) · · · (θ + n − 1)
. (2.55)



P1: JZZ

0521831067c02.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:20

2.2. Second Class of Methods: Random Cluster Formation 51

Table 2.1. Signless Stirling Numbers of the First Kind c(n, k)

n \ k 1 2 3 4 5 6 7 8 9 10

6 120 274 225 85 15 1

7 720 1764 1624 735 175 21 1

8 5040 13068 13132 6769 1960 322 28 1

9 40320 109584 118124 67284 22449 4536 546 36 1

10 362880 1026576 1172700 723680 269325 63273 9450 870 45 1
{

c(n, k) = c(n − 1, k − 1) + (n − 1)c(n − 1, k),

c(n, 1) = (n − 1)!, and c(n, n) = 1.

An approximate expression for c(n, k) is given by

c(n, k) = (n−1)!(ln(n))k−1

(k−1)! [eγ x + O( k
(ln(n))2 )] if x := k−1

ln(n) < 1. See Hwang (1995).

It is nearly zero for small values of θ . Conversely, it is close to 1 when θ is much

larger than n. In summary, given n agents, they tend to form one huge cluster of

size close to n if θ is larger than n, whereas n agents tends to form n singletons if

θ is close to zero. Therefore, the probability of the number of clusters, Kn, also

depends on θ .

We can calculate the probability that the number of clusters, Kn, is k. Let us

define qn,k as

qn,k := Pr(Kn = k | n). (2.56)

According to the transition rate (2.47), a newcomer enters a new cluster with

probability θ
n+θ

, and enters an existing cluster with probability n
n+θ

. Therefore,

we have a recursion of qn,k :

qn+1,k = n

n + θ
qn,k + θ

n + θ
qn,k−1, (2.57)

with boundary conditions (2.54) and (2.55),

qn,1 = θ(n − 1)!

θ [n]
, and qn,n = θn

θ [n]
. (2.58)

The solution to the recursion can be described as

qn,k = θ k

θ [n]
c(n, k). (2.59)

Here, c(n, k) are called signless Stirling Numbers of the first kind, which satisfy a

recursion

c(n + 1, k) = nc(n, k) + c(n, k − 1). (2.60)

It is interesting to see how this c(n, k) depends on the values of n and k. We

provide some examples of c(n, k) in Table 2.1 to illustrate that c(n, k) becomes

very large for relatively small n and k. An approximate expression of c(n, k) below

Table 2.1 can be useful in application in macroeconomics. Suppose n = 106 as

is often the case with the number of firms in the economy, then the number of
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types, k, can take 14 at most to satisfy the inequality that is necessary for the

approximation. Such number of types is sufficient to analyze macro behavior of

the market or economy. See Appendix 2.2 for details on c(n, k).

Using (2.59), we can see how many clusters are formed by agents. To calculate

the expected number of clusters conditional on the number of agents, E (Kn | n),

we can usefully apply the technique of generating functions. The generating

function for the number of clusters, Kn, is

E (s Kn | n) =
n∑

k=1

s k Pr(Kn = k | n)

=
n∑

k=1

s k θ k

θ [n]
c(n, k)

=
∑n

k=1(sθ)kc(n, k)

θ [n]

= (sθ)[n]

θ [n]
. (2.61)

For the third equality, we use the generating function of c(n, k), that is, equa-

tion (2.68) in Appendix 2.2. By differentiating (2.61) with respect to s and setting

s to 1, we have

E (Kn | n) = θ

n∑
j=1

1

θ + j − 1
. (2.62)

In this way, we can derive the expected number of clusters by generating functions.

See Appendix 2.3 for another example of application of this method.

The randomness of the number of clusters, Kn, is a key difference between our

open model and conventional macroeconomic models. In conventional macroe-

conomic models, agents are usually assumed to be identical. Even if they are

assumed to be heterogeneous, the number and/or the share of agent types are as-

sumed to be fixed over time. We maintain that these assumptions are untenable.

The methods explained here resolve of these problems.

Poisson–Dirichlet Distribution: The Distribution of Order Statistics
of Market Shares

Next, we consider shares of clusters and analyze their distribution. The distribu-

tion of shares are useful in such applications as market shares of firms, or shares

of agents by their strategy.

There are several alternatives in defining shares x j . In terms of the frequency

vector n, we can set shares x j as

x j = n j

n
, j = 1, 2, . . . , Kn.
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In this case, each cluster is distinguishable. This x j means the share of j -th type

or sector. In terms of partition vector a, we can set shares x j as

x j = j a j

n
, j = 1, 2, . . . , n.

Because clusters are not distinguishable in this case, we are interested in the

number of agents in each cluster. This x j means the share of clusters with j agents.

We can interpret this x j as the market share of firms whose size of employees is

j , for example. In either case, x j satisfies∑
j

x j = 1.

In analyzing the distribution of shares x j , we allow the number of agents, n,

and/or the number of clusters, Kn, to become infinite.

We follow Kingman(1993), and suppose that the probability density of x j is

given by

f (x1, x2, . . . , xKn
) = �(Knα)

�(α)Kn
(x1x2 · · · xKn

)α−1. (2.63)

The corresponding cumulative distribution function of the shares x j ’s is

known as the Dirichlet distribution with parameter α, often denoted by

D(x1, x2, . . . , xn; α). As Kingman (1993, Sec. 9) remarks, the Dirichlet distri-

bution is the simplest probability distribution over an n-dimensional simplex

�n. It is also the equilibrium distribution for a variety of evolutionary models

where α is small and n is large.

Order statistics of shares, x( j ), is defined by arranging and renumbering shares

in nonincreasing order as

x(1) ≥ x(2) ≥ · · · ≥ x(n).

Order statistics has a well-defined limit distribution as the number of agents, n,

goes to infinity, and α to zero in such a way that Knα approaches some positive

parameter θ . This limit distribution is called the Poisson–Dirichlet distribution

denoted by PD(θ).

Using PD(θ), we determine approximate market shares of dominant types.

For example, the sum of the shares of the first two largest clusters, x(1) + x(2), alone

may account for the majority, say 70 percent, for small values of θ . In Chapter 9,

we use these approximations to analyze the macro-behavior of financial market

in which heterogeneous agents use different strategies.

Appendix 2.1: Alternate Derivation of Ewens Sampling Formula

We can show an alternate derivation of the Ewens Sampling Formula via the

method of counting configurations. In counting the number of configurations,
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we have assumed for partition vectors that any two boxes have no difference as

long as they contain the same number of balls. However, we can differentiate

boxes even though the two boxes contain the same number of delabeled balls.

These differentiations of boxes are called “internal states,” which represent, for

example, the number of ways to place delabeled balls within a box. When each

box containing j balls can assume one of m j internal states, the number of

configurations becomes

N(a) = n!
∏n

j=1(m j )
a j∏n

j=1( j !)a j a j !
. (2.64)

For example, expression (2.42) is the case where m j = 1. Another important

example is the case where m j = ( j − 1)!. In this case, the number is given by

N(a) = n!∏n
j=1( j )a j a j !

. (2.65)

This expression is known as Cauchy’s formula, which is the number of cyclical

permutations. Because partitions of [n] can be expressed as products of cyclical

permutations, the number of configurations is given by that formula. This for-

mula can be understood by noting that a cyclical permutation of j symbols has

j equivalent ways of expressing it, and a j such permutations can be arranged in

a j ! ways, and these two considerations are independent.

To incorporate interaction of agents, we tilt the distribution by using the

nonuniform weights W(Kn) for partitions with Kn clusters, where

W(Kn) = θ Kn/θ [n]. (2.66)

Recall that Kn = ∑n
i=1 a j , and θ [n] = θ(θ + 1) · · · (θ + n − 1). The denomina-

tor θ [n] is needed to normalize the probability. This weight is the probability

of each configuration in N(a). Therefore, by multiplying (2.65) and (2.66), we

arrive at the expression

π(a) = W(Kn)N(a) = n!

θ [n]

n∏
j=1

(
θ

j

)a j 1

a j !
,

which is the Ewens Sampling Formula.

Appendix 2.2: Cluster Size Distribution and Stirling Numbers

Let c(n, k) be the number of permutation of n symbols with k cycles. Because

partitions of [n] can be described as products of cyclical permutations, we can

use this value in our analysis. It satisfies a recursion

c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1), (2.67)
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because a permutation of (n − 1) objects with k cycles (products of k cyclical

permutations) can be made into a permutation of n objects with k cycles by

inserting the nth object after any of the n − 1 objects, that is, in (n − 1) ways.

In addition the nth object can be attached as a singleton (a cycle of size 1) to

any permutations of (n − 1) objects with (k − 1) cycles. The number c(n, k) is

a signless Stirling number. Clearly c(n, k) = 1 for n = 1, 2, . . ..

Next we define

x[n] := x(x + 1) · · · (x + n − 1).

This is called a rising or ascending factorial. This expression can be written as

x[n] = x[n−1](x + n − 1)

= (n − 1)x[n−1] + x · x[n−1].

Note that this recursion has the same form as c(n, k), (2.67). Thus, we obtain a

generating function

x[n] =
n∑

k=1

c(n, k)xk . (2.68)

The falling or descending factorial is defined by

(x)n := x(x − 1) · · · (x − n + 1).

If we substitute −x for x here, we have

(−x)n = (−x)(−x − 1) · · · (−x − n + 1)

= (−1)nx(x + 1) · · · (x + n − 1)

= (−1)nx[n],

and

(−x)[n] = (−x)(−x + 1) · · · (−x + n − 1)

= (−1)nx(x − 1) · · · (x − n + 1)

= (−1)n(x)n.

Thus we see that

(x)n =
n∑

k=1

s (n, k)xk (2.69)

where

s (n, k) = (−1)n−kc(n, k).

Equation (2.69) is the generating function for s (n, k), called the Stirling number

of first kind.
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Table 2.2. Stirling Numbers of the Second Kind S(n, k)

n \ k 1 2 3 4 5 6 7 8 9 10 Bell(n)

6 1 31 90 65 15 1 203

7 1 63 301 350 140 21 1 877

8 1 127 966 1701 1050 266 28 1 4140

9 1 255 3025 7770 6951 2646 462 36 1 21147

10 1 511 9330 34105 42525 22827 5880 750 45 1 115975

{
S(n, k) = S(n − 1, k − 1) + kS(n − 1, k),

S(n, 1) = 1, and S(n, n) = 1.

Bell Numbers: Bell (n) = ∑n
k=1 S(n, k).

Because (2.69) connects a falling factorial to power of x by a triangular matrix,

we can invert it to obtain

xn =
n∑

k=1

S(n, k)(x)k .

The expression S(n, k) is called the Stirling number of second kind. It expresses

the number of partition of [n] into k clusters.

Tables 2.1 and 2.2 show the calculated numbers of Stirling numbers of the

first and second kind. We can see that those values become very large for relatively

small n and k.

Appendix 2.3: Application of Generating Function to Random
Process of the Number of Types

Let us demonstrate the situation for which both the number of agents and the

number of types, namely n and Kn, are random variables. We suppose that each

element in the partition vector a follows independent Poisson processes. We then

find the closed forms of the probability of n, and the expected value of Kn.

Let a j , j = 1, 2, . . ., be independent Poisson random variables with mean

μ j = θ
x j

j
,

for some 0 < x < 1 and positive parameter θ , that is,

Pr(a j = k) = μk
j

k!
e−μ j , k = 0, 1, . . . .

We calculate the generating function for the components of partition vector a by

E
(

s
a j

j

)
=

∑
k

s k
j Pr(a j = k) = exp{(s j − 1)μ j }.
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Because every component is independent of each other, the probability distribu-

tion of a becomes the product of those for each a j :

E

(∏
j

s
a j

j

)
= exp

{
(s j − 1)

∑
j

μ j

}
. (2.70)

Using the generating function (2.70), we can calculate the probability of the

number of existing agents, n, and the expected value of the number of existing

types, Kn.

For the probability of n, we set s j = s j for all j . Then, (2.70) becomes

E
(

s
∑

j a j

)
= E (s n) = (1 − x)−θ (1 − s x)θ .

by noting that

∏
j

exp

(
θx j

j

)
= (1 − x)−θ .

Equation (2.70) is given by (1 − x)−θ (1 − s x)θ . This can be seen by taking the

logarithm of both sides, and expanding ln(1 − x) in a power series in x. The

expression is called the Kelly–Kendall identity (Aoki (2002, 158)). The coefficient

of s n of this generating function is the probability of the number of existing agents,

n:

Pr

(
n∑

j=1

j a j = n

)
=

(−θ

n

)
x−n =

(
θ + n − 1

n

)
xn.

For the expected value of the number of existing types, Kn, we set s j = s for

all j . Then, (2.70) becomes

E
(

s
∑

a j

)
= E (s Kn ) = (1 − x)θ (1 − x)−sθ . (2.71)

By differentiating (2.71) with respect to s and setting s to 1, we have

E (Kn) = −θ ln(1 − x).

In addition, the expectation conditional on n is given by

E (s Kn | n) =
(

sθ + n − 1

n

) /(
θ + n − 1

n

)
= �(sθ + n)

�(sθ)

�(θ)

�(θ + n)
.

(2.72)

By differentiating (2.72) with respect to s and setting s to 1, we have

E (Kn | n) = θ[
(θ + n) − 
(θ)] = θ

n∑
j=1

1

θ + j
. (2.73)

where 
(·) is the digamma function.
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Equilibrium as Distribution:

The Role of Demand in Macroeconomics

We begin this chapter by reconsidering the notion of equilibrium in economics. In

the standard analysis, optimization by an economic agent is followed by supply

and demand; every economic agent or unit is always in his/her best position.

The equality of demand and supply in the market then constitutes equilibrium.

In the equilibrium, marginal utilities and productivities are equated to prices,

and as a consequence, they are all equal. Lucas (1987) describes this equilibrium

theory as the economic theory. In this framework, demand does not matter for

the determination of the level of aggregate economic activity. It is determined by

technology and factor endowments.

In the economy, micro units or economic agents certainly optimize. Some

economists stress the limits of rationality of economic agents, and advocate

“bounded rationality.” However, in our view, the problem surrounding bounded

rationality is irrelevant to macroeconomics. More fundamental are micro fluctu-

ations, uncertainty, and the limits to arbitrage in real economic activities.

In standard economic theory, which ignores microeconomic fluctuations,

the outcome of optimization by an economic agent is given by a “point” in some

set or space; typically, a point is supported by a price vector. In this chapter, we

explain that this approach is not valid because of microeconomic fluctuations.

Given the complexity of the macroeconomy, we must explicitly consider

stochastic deviations of microeconomic behavior from its mean. In Chapter 1,

we have seen that micro behaviors of individual households and firms are very

diverse. Thus, we have distribution of responses by microeconomic agents as an

equilibrium rather than a unique response by a representative agent. This means

that the no arbitrage condition for competitive market equilibrium commonly

assumed in economic theory can not be clearly defined unless the unrealistic risk

neutrality assumption is made.

In fact, Lamont and Thaler (2003) convincingly argue that even in compet-

itive financial markets such as the stock market, the Law of One Price does not

always prevail; there are significant limits to arbitrage. After reviewing several

58
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case studies on violations of the Law of One Price, they draw the following

conclusion:

What prevents arbitrageurs from enforcing the Law? . . . For many of the examples we have

discussed, markets were free and open, and selling short was not particularly costly. So, why

aren’t the arbs doing their job? The answer is that violations of the Law do not generally

create arbitrage opportunities (meaning sure profits with no risk), they just create good but

risky bets. . . . The law of one price is the basic building block of most of financial economic

theorizing. The logic of why it should hold is simple: if the same asset is selling for two

different prices simultaneously, then arbitrageurs will step in, correct the situation and make

themselves a tidy profit at the same time. The concept is so basic that Steve Ross (1987) has

written that “to make a parrot into a learned financial economist, he only needs to learn the

single word ‘arbitrage.”’ As the examples we have discussed illustrate, it may be necessary to

teach the parrot at least a few new words: “limits” and “risk” immediately come to mind and,

for the very talented parrot, perhaps “short-sale constraints.” (Lamont and Thaler, 2003,

200–201).

Economists are trained, like Ross’s parrot, to believe that no arbitrage con-

dition is essential for equilibrium. In particular, marginal utilities and products

are all equal to prices for the economy to be in equilibrium. However, even in

competitive financial markets, there are significant limits to arbitrage. The case

can be made much more strongly for the real economy. Consider the decision of

whether to build a factory for producing a specific product in a particular site.

There are no close substitutes for such an action, so arbitrage cannot be relied

upon to set its implicit price correctly. Besides, as we pointed out earlier, there

are microeconomic fluctuations. Thus, given the same objective functions and

constraints, we still have distribution of actions among agents.

Now, given a distribution of responses by microeconomic agents, we have a

probability distribution, not a point for the macroeoconomic equilibrium. In the

standard analysis, because macroeconomic equilibrium is represented as a point

in some space or set, its evolution is described by an ordinary differential equation.

In contrast, in our approach, equilibrium is a distribution, and, therefore, we

need a partial differential equation to describe evolution of a macroeconomic

equilibrium over time. This is precisely the Chapman–Kolmogorov equation, or

master equation explained in Chapter 2.

For macroeconomics, the most important implication of this new concept of

equilibrium is that productivities across sectors/firms substantially differ at each

moment. In standard macroeconomics, production factors are assumed to move

instantly across sectors/firms to keep their marginal productivities equal. The

existence of (uniform) adjustment cost modifies this statement only inessentially,

so long as the adjustment cost is common across agents, as is usually assumed.

In equilibrium marginal productivities must be equated, because if they differ,

production factors can gain by moving across sectors/firms, contradicting the

notion of equilibrium. The standard reasoning is that there should be no room

for arbitrage in equilibrium.
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We have argued that this is not the case for the real economy. The same differ-

ence in productivity actually entails different responses from different economic

agents. Because the nature and degree of uncertainty faced by each agent differs,

and adjustment costs differ across agents, there is a range of responses from eco-

nomic agents. Such microeconomic behavior can be best approximated by the

jump Markov process explained in Chapter 2.

In the first section, we first consider micro behavior in a stochastic framework.

We maintain that to provide macroeconomics with proper micro foundations is

to define transition rates in Markov models based on microeconomic behavior.

We emphasize that because of microeconomic fluctuations, equilibrium becomes

a probability distribution rather than a point. For macroeconomics, distribution

of productivity across sectors/firms is most important. This is the theme of the

second section. We will show that the distribution of productivity becomes a

particular type, namely the Boltzmann–Gibbs distribution in equilibrium. This

distribution is conditioned by the level of aggregate demand. When the aggregate

demand is high, production factors are mobilized to sectors with higher produc-

tivity. This analysis provides proper microfoundations for Keynes’s principle of

effective demand.

3.1. Microeconomic Foundations

Given intrinsic heterogeneity of economic agents, and microfluctuations in ob-

jective functions and constraints of all the microunits, the best research strategy

for us is to describe the macroeconomy as continuous-time Markov chains, that

is Markov processes with at most countable states, also called jump Markov pro-

cesses. In this approach, to provide microeconomic foundations is to specify state

space and transition rates for a jump Markov process that describe the behavior of

economic agents. In this section, we explain this in detail.

Some economists suggest that representative agent models such as the Ramsey

model can actually accommodate heterogeneous economic agents. In our view,

the “heterogeneity” in this case is extremely limited and artificial, and does not ac-

tually deserve the name of heterogeneity. Caselli and Ventura (2000), for example,

make the assumption that consumers differ only in their preferences for public

goods to show that the standard Ramsey model can accommodate such “hetero-

geneity.” If differences in preference for public goods were the only source of het-

erogeneity among consumers, then certainly the challenge for macroeconomists

would be much relieved! This is not the sort of heterogeneity we have in mind in

this book. In reality, economic agents differ in every respect, and their behaviors

are all subject to stochastic fluctuations. Thus, we need a stochastic approach

from the outset. Let us begin with a simple binary choice model as an example.

Binary Choice Model

Suppose there are N economic agents in the economy. There are two pos-

sible levels of production, “high” and “low.” This assumption simplifies our
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presentation, though theoretically, the model does not have to be binary so long

as the number of “choices” (here, the levels of production) is at most countable

for each agent. The reader might think that the binary choice model is special,

and that its scope is limited in economics. However, we will later explain that the

binary choice model actually accommodates sophisticated (stochastic) dynamic

optimization commonly used in economics. We note again that the number of

“choices” does not have to be two, but any positive integer. Given heterogeneity of

a large number of agents, and the existence of micro fluctuations of preferences

and technologies, the jump Markov process is the best approach.

Now, the “high” level of production is denoted by y∗ whereas the “low” level

by y (0 < y < y ∗). If the number of economic agents which produce at the high

level, y∗, is n (n = 0, 1, 2, . . . N), their total output in the economy or GDP is

Y = ny∗ + (N − n)y (3.1)

where Y is the state of the macroeconomy in this model, and we are interested

in the behavior of Y . We denote the share of economic agents which produce at

y∗ by x :

x = n

N
(n = 0, 1, 2, · · · , N). (3.2)

Using x,we can rewrite Y as follows:

Y = N
[
xy∗ + (1 − x)y

]
. (3.3)

Where n is large, x can be regarded as a fraction (0 � x � 1). Equation (3.3)

shows that Y and x correspond to each other. Whereas x fluctuates between

0 and 1, so does Y between Ny and Ny∗.

Changes in x are assumed to follow a jump Markov process. For a short

time �t, there are three possibilities: no economic agent changes its production

level, or one either raises or lowers its production level. The process is then

characterized by two transition rates, one from state y to y∗ and the other from

y∗ to y. Once these two transition rates are given, it is known that they uniquely

determine the stochastic process, and consequently the (stochastic) dynamics it

produces.

It is important to recognize that an economic agent’s decisions stochastically

change. Namely, some agents change their decisions even if the macroeconomic

environment remains unchanged. They are microeconomic fluctuations. We are

not able to explain why an economic agent changed his decisions because we

never observe his preferences and constraints. Luckily, we do not need to know

the reason an economic agent changed his decisions for macroeconomics; it is

simply irrelevant. All we need to know is transition rates based on the observable

macroeconomic variables.

The probability that one economic agent currently producing at the low level,

y, raises its production to high level, y∗, depends naturally on the number of
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agents producing at y, that is N(1 − x). Similarly, the transition rate from y∗ to

y depends on Nx. This is the same as a simple fact that the probability that a baby

is born at each moment in time is higher in a society with greater population.

Assume in addition that transition rates are state-dependant, that is, N(1 − x)

and Nx are modified by factors η1(x) and η2(x), respectively. Specifically, the

transition rate from y to y∗, r, is

r = λN(1 − x)η1(x), λ > 0, (3.4)

and, the transition rate from y∗ to y, �, is

� = μNxη2(x), μ > 0. (3.5)

The transition rates r and � depend not only on the number of economic

agents in each state, namely N(1 − x) and Nx, but also on η1(x) and η2(x).

The factors η1(x) and η2(x) mean that the optimal strategy taken by each agent

depends on the state of the economy, namely x or Y . For example, equation (3.4)

means that a switch of strategy by an economic agent from “bear” who finds

y as optimal, to “bull” who finds y∗ as optimal, depends on the share of bulls.

Equation (3.5) means that the same is true also for a switch of strategy from y∗ to

y. The state-dependant transition rates such as (3.4) and (3.5) mean the presence

of externality. Diamond (1982) gives an example of such externality in a search

model.

Here η1(x) and η2(x) are defined as

η1(x) = X−1eβg (x), β > 0, (3.6)

η2(x) = 1 − η1(x) = X−1e−βg (x), (3.7)

where

X = eβg (x) + e−βg (x). (3.8)

The expression X simply ensures that the sum of η1(x) and η2(x) is equal

to one, as it must be. At first sight, (3.6) and (3.7) may look arbitrary or even

odd. However, they are actually quite generic, and known as the Boltzmann–

Gibbs type transition rates. The Boltzmann–Gibbs type transition rate is, in fact,

one of the key concepts in statistical physics. In Section 3.2, we will discuss the

Boltzmann–Gibbs distribution of productivity in the macroeconomy. In what

follows, we explain how naturally (3.6) and (3.7) arise in microeconomic models

of choice under uncertainty.

Microeconomic Foundations for Transition Rates

In our approach, to provide microfoundations means to specify transition rates

of the jump Markov processes, which describe the behavior of economic agents.

In the present example, the transition rates η1(x) and η2(x) in (3.6) and (3.7)
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are of the Boltzmann–Gibbs type. They arise in many contexts. Here, we offer

two interpretations for them based on the microeconomic behavior of individual

agents. The first is based on approximate calculations of the perceived difference

of the expected utilities, or advantages of one choice over the other. The second

interpretation is based on discrete choice theory such as Anderson et al. (1993)

or McFadden (1974).

Representation of Relative Merits of Alternatives. Denote by V1(x) the ex-

pected “return” from choice 1, given that fraction x has selected choice 1. For

clarity, think of the discounted present value of benefit stream based on the as-

sumption that fraction x remains the same over some planning horizon. Define

V2(x) analogously. Note that we treat V1 and V2 as random variables. In our

example above, choice 1 is to produce at the “high” level or to be a “bull,” and

choice 2 is to produce at the “low” level or to be a “bear.” As we will explain it

shortly, V1(x) and V2(x) can be derived from (stochastic) dynamic optimization

commonly used in economics.

Let η1(x) be the probability that V1 is greater than or equal to V2:

η1(x) = Pr {V1(x) � V2(x)} . (3.9)

We omit x from the arguments of V from now on.

Assume that the difference �V = V1 − V2 is approximately distributed as a

normal random variable with mean g (x) and variance σ 2 (x) :

Pr(�V = v) = 1√
2πσ (x)

exp

[
− (v − g (x))2

2σ 2(x)

]
.

This distribution reflects microeconomic fluctuations. In the standard approach

the economic agent knows which of V1 and V2 is greater, and therefore, we do

not speak of the probability that V1 exceeds V2. We will later explain this point in

detail by using a well-known search model of Diamond (1982).

We calculate the probability that the difference is nonnegative, namely choice

1 is preferred to choice 2:

η1(x) = Pr{�V � 0} = 1

2
[1 + erf (u)] (3.10)

where the error function is defined1 by

erf (u) := 2√
π

∫ u

0

e−y2

dy.

Here, u is defined as follows:

u = g (x)√
2σ (x)

.

1 See Abramovitz and Stegun (1968) for the error function.
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Now, Ingber (1982) demonstrates that the error function can be well approx-

imated by the hyperbolic function:

erf (u) ≈ tanh(κu),

(
κ = 2√

π

)
.

The hyperbolic function tanh x is defined as

tanh x = (e x − e−x )/(e x + e−x ).

This approximation is remarkably good and useful for |u| < 1, that is when the

coefficient of variation is large. For example, for small |u|, we note that

erf (u) = κ

(
u − u3

3
+ u5

5
+ · · ·

)
,

whereas

tanh(κu) = κ

(
u − u3

2.36
+ u5

4.63
+ · · ·

)
.

Noting tanh x = (e x − e−x )/(e x + e−x ), we obtain

erf (u) ≈ eκu − e−κu

eκu + e−κu
. (3.11)

By defining β as

β =
√

2

π

(
1

σ

)
, (3.12)

we deduce from (3.10) and (3.11) the desired expression of the Boltzmann–Gibbs

type (3.6):

η1(x) = Pr{�V � 0} ≈ X−1 exp[βg (x)]

where X = eβg (x) + e−βg (x).

This offers one interpretation of β that appears in the expressions of the tran-

sition rates (3.6) and (3.7). Equation (3.12) shows that β is basically a measure of

uncertainty. For example, large variances mean large uncertainty in the expected

difference of the alternative choices. Such situations are represented by small

values of β. Conversely, small variances means more precise knowledge about

the difference in the values of two choices. It is represented by large values of β.

Given β, or the degree of uncertainty, we interpret g (x) as the conditional mean

of the “prospect” that choice 1 is better than choice 2, conditional on the fraction

x has decided on choice 1.2 These results will be extensively used in Chapter 4 to

clarify the role of uncertainty in the macroeconomy.

2 Aoki (1996, Chapters 3 and 8) shows how β arises as a Lagrange multiplier to incorporate macrosig-

nals as constraints. Parameter β is related to the elasticity of the number of microeconomic config-

urations with respect to macrosignals. Small values of β mean that the number of microeconomic

configurations responds little when macroeconomic signals change. This is in accordance with the
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Discrete Choice Theory and Extreme Value Distributions. We offer another

interpretation of the Boltzmann–Gibbs type equations (3.6) and (3.7) based on

discrete choice theory. Suppose we calculate the probability that the discounted

present value one, V1, is higher than value two, V2, associated with alternative

choices 1 and 2, respectively. Suppose further that we represent some of the

incompleteness and impreciseness of information or uncertainty about conse-

quences surrounding the value calculation by adding random terms to the present

values as

V̂ 1 = V1 + ε1 (3.13)

and

V̂ 2 = V2 + ε2.

One interpretation is that these ε’s are noises to account for inevitable fluc-

tuations in the present values. A second interpretation is to think of them as

(additional) evidence to support a particular choice. Other interpretations are

certainly possible. For example, McFadden (1974) speaks of common or commu-

nity preference and individual deviations from the common norm in the context

of utility maximization.

One quick assumption to obtain the Boltzmann–Gibbs type expression in

the case of two alternative choices is to assume that

ε = ε2 − ε1 (3.14)

is distributed according to

Pr (ε � x) = 1

1 + e−βx
, (3.15)

for some positive β. With this distribution, a large value of ε supports more

strongly the possibility that V1 > V2. Parameter β controls how much changes

in x translate into changes in probabilities. With a smaller value of β, a larger

increase in x , or more “evidence,” is needed to increase the probability that favors

choice 1. The larger the value of β is, the smaller increase in x is needed to change

the probability by a given amount.

With the probability distribution (3.15), we immediately obtain from (13)

the desired expression of the Boltzmann–Gibbs type (3.6):

P1 = Pr

(
V̂ 1 � V̂ 2

) = eβV1

eβV1 + eβV2
= eβg

eβg + e−βg
. (3.16)

Here, we define g as

g = (V1 − V2)

2
.

interpretation that when β is small, agents face large uncertainty in their choices (see Aoki, 1996,

216). A similar interpretation may be offered from the viewpoint of the hazard function (see Aoki,

2002, Section 6.2).
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When V1 and V2 in (3.13) depend on the state of the macroeconomy, x , g

becomes a function of x , g (x). To reiterate, in this framework, a larger value of

β implies a larger difference of |P1 − P2|. Namely, with a larger the value of β

(little uncertainty), one of the alternatives tends to dominate.

We have provided two microeconomic foundations for the Boltzmann–Gibbs

type transition rates, (3.6) and (3.7). Seemingly exotic transition rates (3.6)

and (3.7) of the Boltzmann–Gibbs type have, in fact, very robust and generic

microeconomic foundations. Yet, some readers might think that they hold only

for simple binary choice models, and wonder how they are related to sophisticated

dynamic optimization commonly used in economics. Transition rates such as

(3.6) and (3.7) are, in fact, consistent with dynamic optimization.

To explain how the above analysis is related to dynamic optimization, we

first give a brief discussion on value functions using a simple asset price model.

Then, we discuss a well-known search model of Diamond (1982) as an example

of general equilibrium model. The comparison between the Diamond model

and its counterpart should make it clear how our approach differs from models

based on the representative agent.

Value Function and Dynamic Optimization

In our discussion of microeconomic foundations for the Boltzmann–Gibbs type

transition rates (3.6), (3.7), and (3.8), we had the value functions V (namely,

V1 and V2 of equations (3.9) and (3.13)). Although we referred to Vi as the

“expected return from choice i ,” some readers may not be sure how Vi are related

to dynamic optimization commonly used in economics. To clarify the point, we

consider a simple asset price model as a concrete example.

The asset value V satisfies the following equation:

r V = ρ + E

(
dV

dt

)
. (3.17)

Here, the first term on the right is the flow of rewards or revenues, and the second

term is the expected capital gain. The symbol r on the left-hand side is the interest

rate, which is assumed to be constant. The sum of flow return and the capital

gains on the right-hand side must be equal to the yield or return to the asset on

the left-hand side for the asset to be willingly held.

In the finance literature, the underlying stochastic processes are usually mod-

eled by some diffusion processes. Here, the stochastic processes Xt underlying

flow income ρ are jump Markov processes. The value function with infinite

horizon with the initial state a is defined by

Va = E a

∫ ∞

0

e−r tρ(Xt )dt (3.18)
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where E a denotes the expectation with the initial condition X0 = a of a jump

Markov process {Xt} , t � 0. It is known that V = (Va : a ∈ S) is the unique

bounded solution to

(r − W ) V = ρ, (3.19)

where W is the generator matrix of the jump Markov process with transition rate

w(i, j ):

Pr(Xt+h = j |Xt = i ) = δi, j + w(i, j )h + o(h). (3.20)

That is, the matrix of transition rates, P (t) = ( pi, j (t)) satisfies the backward

equation

d P (t)

dt
= W P (t), (3.21)

with P (0) = I .

We illustrate this asset price model using a simple example with two states,

a and b, without resorting to the Ito calculus. The number of states does not

have to be two so long as it is countable. This two-state jump Markov process

is specified by the two transition rates w(a, b) and w(b, a). The former is the

transition rate from a to b, and the latter from b to a . In a small time interval

of duration �t, then, the probability of state a changes to b with probability

w(a, b) �t + o (�t). In this case, the value function over an infinite horizon is

given by

r Va = ρa + w(a, b) (Vb − Va ) (3.22)

and

r Vb = ρb + w(b, a) (Va − Vb)

where the subscripts refer to the two possible states, a and b. For example, ρa is

the flow revenue or dividend in state a . Recall that w(b, a) = −w(a, b).

Solving equations (3.22) for Va and Vb , we see that they are the weighted

averages of the two present values of the flow revenues

Va = πa

ρa

r
+ (1 − πa )

ρb

r
, (3.23)

and

Vb = (1 − πb)
ρa

r
+ πb

ρb

r
,

where the weights πa and πb are defined respectively by

πa = r + w(b, a)

r + w(a, b) + w(b, a)
,

and

πb = r + w(a, b)

r + w(a, b) + w(b, a)
.
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ρa/r is the present value of the streams ρa , and the same for ρb/r . In equa-

tion (3.23), the expression 1 − πa gives the probability that state a changes to

state b, while 1 − πb gives the probability that state b changes to state a.

Now, V does not have to be an asset value, but any value function of alterna-

tives. The point is that the outcome of any dynamic optimization, V , depends on

the initial state. States a and b in the above example correspond to x = n/N in

the binary choice model we previously considered. Suppose Va depends on two

choices of economic agent, 1 and 2, because choices 1 and 2 affect flow returns

ρ. Let us denote two possible values V1(a) and V2(a). V1(b) and V2(b) can be

defined similarly. These value functions are basically V1(x) and V2(x) in equa-

tions (3.9) and (3.13).

It should be clear by now that value functions V1(x) and V2(x) in equa-

tions (3.9) and (3.13), and accordingly, the Boltzmann–Gibbs type transition

rates (3.6), (3.7), and (3.8) in the binary choice model, are consistent with stan-

dard dynamic optimization. Put another way, the apparently very simple binary

choice model actually accommodates sophisticated dynamic optimization under

uncertainty.

In Chapter 4, we will explore the dynamics of the binary choice model, and

make clear the role of uncertainty in the macroeconomy. Here, we clarify the

difference between the standard approach and ours further. Specifically, to see

how the difference arises in macroeconomic (or general equilibrium) models,

we next consider a well-known search model of Diamond (1982).

Diamond Search Model

The Diamond model is a simple barter model with identical risk-neutral agents

where trade is coordinated by a stochastic matching process. In this model, there

are two types of agents: employed and unemployed. Let k be the number of

employed, and n be the total number of agents. The fraction of the employed,

k/n , or equivalently k, is used as the state variable by holding n fixed.

Each of the n − k unemployed persons independently encounters a produc-

tion opportunity that appears at the rate of a�t in a small time interval �t. If

the opportunity is accepted, it yields the unit output at the cost c . The cost c

is a nonnegative random number with a known distribution function G . There

is a reservation or threshold cost c∗(k), to be determined endogenously. Above

the reservation cost c∗, the opportunity is rejected as being too costly. When the

opportunity is accepted, the person’s status changes from being unemployed to

being employed.

Each of k employed persons independently encounters a trading opportunity

at the rate b(k/n) per unit time. It is natural to assume that for each individual,

the arrival of a potential partner is a Poisson process with arrival rate b(k/n)

since k/n is the fraction of the population searching for a trading partner. When

an employed person encounters a trading opportunity, he forms a pair with
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another randomly selected employed person, the pair trade, each member of the

pair consumes the output of the partner to receive instantaneous utility v , and

their status changes from being employed to being unemployed. See Diamond

(1982) for more explanations for these assumptions.

Production opportunities arrive to the unemployed at the rate a as a Poisson

process. If undertaken, each production opportunity yields a unit of output

with cost c . Only production with cost c∗ or less will be undertaken. Thus,

the transition rate from k to k + 1 is given by (n − k)a G(c∗) where c∗ is the

reservation cost in the sense that only production with cost c � c∗ is undertaken.

Because this reservation cost is a choice variable and depends on k/n, we will

write it as c∗ (k/n), or as c∗ (k) for short.

For an employed agent, trading opportunities arrive as a Poisson process at

the rate β (k/n). This arrival rate (the matching rate) depends naturally on the

number (or the fraction) of counterparts, that is employed persons k (or k/n).

When employed agents meet, they trade, exchange, and charge their status to the

unemployed. As a consequence, the number of employed decreases by 2, from

k to k − 2. Thus, the transition rate from state k to k − 2 is equal to the arrival

rate of trading opportunities, β(k/n).

The Chapman–Kolmogorov equation or the master equation at time t for

the probability of employed being k, P(k, t), is

∂ P (k, t)

∂t
= rk−1 P (k − 1, t) + lk+2 P (k + 2, t) − (rk + lk) P (k, t) (3.24)

where lk is the transition rate for the leftward move from state k, andrk is that of the

rightward move. This is essentially the birth–death equation we have explained

in Chapter 2. The only difference arises from the fact that the leftward move

involves a step of two units, not a single unit, because a matched pair of agents –

that is, two agents – change their status. As explained above, the transition rate

for the rightward move is

rk = (n − k)aG
(
c∗ (k/n)

) = n (1 − k/n) aG
(
c∗ (k/n)

)
(3.25)

while that for the leftward move rate is

lk = k

2
b

(
k

2

)
. (3.26)

Equation (3.24) corresponds to equation (3.3) in Diamond (1982), here repro-

duced as equation (D.3):

ė = a (1 − e) G(c∗) − eb (e) . (D.3)

In equation (D.3), e is the fraction of the population employed in the trading

process or simply the “employed,” and equal to k/n in our model.

Now, the reader must note the difference between equation (3.24) and equa-

tion (D.3). The Diamond model has two types of agents; the employed and the
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unemployed. However, in each group, there is only the representative agent. In

other words, there are the representative employed, and the representative un-

employed. There are no microeconomic fluctuations within each group. That is

why the fraction of the employed e is given as a real number, and the evolution

of e is described by an ordinary differential equation, namely equation (D.3).

In contrast, in our model, because of microeconomic fluctuations, the frac-

tion e at each time is not determined. All we have is the probability that the

fraction of the employed is e or k/n, that is P (k, t). To describe the evolution

of this probability distribution, we need a partial differential equation. This is

nothing but the Chapman–Kolmogorov equation or the master equation, equa-

tion (3.24).

The Diamond model explicitly considers dynamic optimization of agents.

Lifetime utility is the present discounted value of instantaneous utility, V . Because

trade and production take place at discrete times ti , lifetime utility satisfies

V =
∞∑

i=1

e−r ti Vti
. (3.27)

Here, r is the discount rate. Individuals are assumed to maximize the expected

value of lifetime utility with respect to the times of work (or the arrival of pro-

duction opportunity) and consumption (or matching). In this model, the only

decision to make is which production opportunities to undertake, or in other

words, the determination of the reservation cost, c∗.

Diamond considers a simple dynamic programming problem with the ex-

pected present discounted value of lifetime utility for employed and unemployed,

We and Wu, respectively. Then, the discount rate r times Wi (i = e, u) equals the

sum of the flow of instantaneous utility and the expected capital gain from a

change in status, namely either We – Wu or Wu – We . Therefore, we have

r We = b(y − We + Wu)

and (D.5)

r Wu = a

∫ c∗

0

(We − Wu − c)dG(c).

These two equations are equations (D.5) in Diamond (1982) which we reproduce

as equations (D.5) above. Here y is instantaneous utility of consumption (or the

arrival of trading opportunity).

An unemployed person accepts any opportunity that raises expected utility.

Thus, we have the reservation cost

c∗ = We − Wu = by + a
∫ c∗

0
cdG

r + b + aG (c∗)
. (3.28)

Because b depends on the level of “aggregate demand” e , the reservation cost c∗

depends on e , too.
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Figure 3.1. Multiple Equilibria in the Diamond (1982) Model.

For the steady state, the right-hand side of equation (D.3) is zero. Namely,

the steady state satisfies the following equation:

a(1 − e)G(c∗) = eb(e). (3.29)

The share of employed e and the reservation cost c∗ in steady state are, therefore,

simultaneously determined by two equations, (3.28) and (3.29). In general, it

is possible that we have multiple equilibria. Figure 3.1 reproduces a figure in

Diamond (1982). The figure shows two equilibria; one is a “good” and the other

a “bad” equilibrium.

The analysis in our model is parallel to Diamond’s. We have already explained

that the dynamic equation in the Diamond model, equation (D.3) which is

an ordinary differential equation, corresponds to our Chapman–Kolmogorov

equation which is the partial differential equation (3.24). In what follows, we show

that the value functions and optimization (the determination of the reservation

cost) in our analysis are also parallel to Diamond’s.

Let We (k, t) be the present discounted value of the lifetime utility of an

employed person in state k at time t. Similarly let Wu(k, t) be that of an un-

employed person when the state is k. Because k is a random variable, we take

the expectation of these random value functions after we derive the stationary

distribution of k. We drop t from the argument of the value functions because

dynamic programming involves an infinite horizon, and the problem is time-

homogeneous.

Denote the discount rate by r . Value functions depend on the fraction k/n

rather than on k directly. For shorter notation, however, we denote them simply

by We (k) and Wu(k) for the employed and unemployed when the number of the
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employed is k. For an employed agent, we obtain

r We (k) = b

(
k

n

)
[v + Wu(k − 2) − We (k)]

+ (n − k) aG
(
c∗ (k)

)
[We (k + 1) − We (k)]

+k − 2

2
b

(
k

n

)
[We (k − 2) − We (k)] (3.30)

for k between 3 and n – 1. Similarly, for an unemployed agent,3 we obtain

r Wu (k) = a

∫ c∗(k)

0

[We (k + 1) − Wu(k) − z]dG(z)

+ (n − k − 1)aG(c∗(k)) [Wu(k + 1) − Wu(k)]

+ k

2
b

(
k

n

)
[Wu(k − 2) − Wu(k)] (3.31)

for k = 2, 3, . . . , n − 1.4 Equations (3.21) and (3.22) are parallel to Diamond’s

equations (D.5). The determination of the reservation cost, given these value

functions, is analyzed by Aoki and Shirai (2000).

Our model and Diamond’s are obviously quite similar, but there is actu-

ally a fundamental difference between the two. The apparent similarity must

not hide this fundamental difference. The difference arises from the existence

of microeconomic fluctuations in our approach. Diamond’s model is a search

model; that is, individual agent faces uncertainty and his behavior is stochas-

tic. However, because the number of agents is assumed to be infinite, micro-

economic fluctuations are assumed away in the limit. The seemingly innocuous

continuum assumption, in effect, brings the representative agent into the model.

As we pointed out earlier, in the Diamond model, there is the representative agent

in each of two states (unemployment and employment). There are no micro-

economic fluctuations; there are the employed and the unemployed. That is why

the behavior of the macroeconomy can be described by deterministic equations

in the Diamond model. Specifically, the share of employed e and the reservation

cost c∗ in steady state are simultaneously determined by two equations (3.19)

and (3.20). Figure 3.1 shows two equilibria.

In the standard analysis like Diamond’s, the important problem of equilibrium

selection then arises; that is, which equilibrium, “good” or “bad” in Figure 3.1,

is to be chosen. Krugman (1991) discusses this problem of equilibrium selection

in his article “History vs. Expectations.” History and expectations may play an

3 The probability intensity for the transition from state k to state k + 1 is (n − k)aG∗(c). Note that

(n – k – 1)aG∗ is the intensity for the event that one of other unemployed agents become employed

while he remains unemployed. The intensity for him to become employed is aG∗. The transition

from k to k + 1 is simply the sum of these two possibilities.
4 There are boundary conditions, but we do not use them, so they are not mentioned here.
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important role in such framework, but any sophisticated analysis on this issue

cannot escape arbitrariness.

In contrast, in our approach, the problem of equilibrium selection does not

arise. In this respect, our approach is fundamentally different from the standard

approach of Diamond. Because of microeconomic fluctuations, we have a prob-

ability distribution which has two peaks rather than two points as shown in Fig-

ure 3.1. The economy keeps fluctuating with each of “good” and “bad” states

having some positive probability. With the help of the potential function, the

point is fully explained in Chapter 4.

In economics, it is often assumed that economic agents are represented by a

continuum such as [0, 1]. For some purposes, it may be an innocuous assumption,

or it may useful. However, we must be aware that a continuum assumption

necessarily assumes away microeconomic fluctuations. We maintain that for the

purpose of macroeconomics, it is not a valid assumption.

In summary, the comparison of the Diamond model and our approach makes

clear the following points.

1. Value functions that determine transition rates are consistent with standard

(stochastic) dynamic optimization.

2. In the standard approach, such as the Diamond model, microeconomic fluc-

tuations are assumed away. As a consequence, the macroeconomic equilib-

rium is given by a point, that is, a real number. In the Diamond model, it

is the share of employed, e . In contrast, in our approach, because of micro-

economic fluctuations, we have a probability distribution as macroeconomic

equilibrium. Evolution of macroequilibrium as a probability distribution is

described by a partial differential equation instead of an ordinary differential

equation – the Champan–Kolmogorov equation or the master equation. The

fraction e is a random variable with positive variance around the mean.

3. As a consequence, even if we have multiple “equilibria” (more precisely, multi-

ple basins of attraction of the potential function), the problem of equilibrium

selection does not arise.

In the next section, we will explain the important implications of our ap-

proach for macroeconomics. In particular, we will shed new light on the role of

aggregate demand and by so doing, clarify the meaning of Keynes’s principle of

effective demand.

3.2. Equilibrium in the Macroeconomy

We have seen that because of intrinsic heterogeneity of economic agents and the

existence of microeconomic fluctuations, in general, we have equilibrium as a

distribution, not as a point in the macroeconomy. In this section, we focus on

distribution of productivity.
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Differences in productivity remain in the economy at all times. In the standard

reasoning, differences in productivity are taken as a sign of disequilibrium. They

simply contradict equilibrium. This section explains that differences in produc-

tivity do not actually contradict equilibrium conditions, but rather it is a necessity

that we have a distribution of productivity in equilibrium.

The equality of productivities across sectors/firms is the fundamental reason

demand does not matter in determining the aggregate output. Demand affects

only the composition of outputs. Conversely, the existence of underemployment,

which is equivalent to inequality of the value marginal products across sectors,

means that total output (GDP) can be increased by changing demand.

Suppose that there are n sectors in the economy, and that the amount of

labor necessary to produce one unit of product in sector i is ai . Labor is the only

input. Taking the good in the least productive sector as a numeraire with pi as

the relative price of the i th good, we can arrange sectors in such a way that

p1

a1

>
p2

a2

> · · · >
1

an

. (3.32)

Obviously, this order does not depend on the choice of numeraire. pi /ai is the

value marginal product of labor in terms of good n; sector 1 is the most productive

sector, sector 2 the second-most productive sector, and so on. One could interpret

sector n as being the lowest productivity sector such as “household production

(housework),” unemployment (job search) and “nonlabor force” status (leisure).

Labor in each sector sums to a given total labor:

n∑
i=1

L i = L .

Given the demand for the product of the i th sector Di , total output in the

economy as a whole or GDP is

Y =
n−1∑
i=1

pi Di +

[
L −

n−1∑
i=1

ai Di

]

an

=
(

L

an

)
+

n−1∑
i=1

[
pi −

(
ai

an

)]
Di . (3.33)

In the neoclassical equilibrium, the value marginal product is equated across

sectors:

p1

a1

= p2

a2

= · · · = 1

an

.

Therefore, we obtain

Y = L

an

. (3.34)
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Total output is independent of demand, and depends solely on the endowment

of the production factor, L , and technology, ai .

However, when productivity differs across sectors, that is, when inequality

(3.32) holds, an increase in Di raises Y . Even a shift of demand increases Y . In

short, Y depends on demand. In this case, we say that there is underemployment

in the economy.

It is important to recognize that (involuntary) unemployment is merely a

particular form of underemployment, and that underemployment, defined as

differences in the productivity of production factors, is more important than

unemployment for the proposition that demand affects total output. Not only in

the textbook Keynesian model, but also in many recent models where demand

plays a role in the determination of total output, underemployment – or equiv-

alently the inequality of productivity across sectors – is assumed. For example, a

combination of increasing returns and imperfect competition often leads us to

the conclusion that demand matters (Matsuyama, 1995). However, such a com-

bination is only a sufficient condition for underemployment.5 The structures of

the models in which demand plays a role are arbitrary, and therefore giving this

or that example is of little significance.

For demand to play an essential role in the determination of aggregate output,

the inequality of productivity across sectors/activities, or underemployment, is

the generic condition. Why and how does the inequality of productivity persist?

One might think that differences in productivity across sectors imply unexploited

profit opportunities, and therefore that they contradict equilibrium. However,

heterogeneous economic agents actually have different thresholds for a change in

their strategies. In the previous section, we explained how uncertainty produces

such heterogeneous responses among economic agents. As Lamont and Thaler

(2003) pointed out, differences in productivity across sectors/firms do not actu-

ally mean the existence of unexploited profit opportunities, or opportunities for

arbitrage, but merely “good but risky bets.”

The kind of view we are advancing here is not foreign to labor economists, at

least to some of them. Mortensen (2003), for example, documents wage disper-

sion observed for most economies, and summarizes his explanation as follows:

Why are similar workers paid differently? Why do some jobs pay more than others? I have

argued that wage dispersion of this kind reflects differences in employer productivity. More

productive employers offer higher pay to attract and retain more workers. Workers flow from

5 In the model of Matsuyama (1995), for example, two technologies are assumed. One is constant

returns to scale in the production of “leisure,” the other in the production of the “consumption

goods” enjoys increasing returns. In his model, GDP includes not only the consumption goods,

but also leisure. The government expenditure G affects GDP because the government’s propensity

to spend on the consumption goods is higher than that of households. Thus, an increase in G tilts

demand towards the sector that enjoys high productivity. Increasing returns are, however, essential

for “involuntary unemployment” (see Weitzman, 1982).
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less to more productive employers in response to these pay differences, and both workers

and employers invest search and recruiting efforts in that reallocation process. Exogenous

turnover and job destruction on the one hand, and search friction on the other, prevent

the labor market from ever attaining a state in which all workers are employed by the

most productive firms. Instead, a continuous process of reallocation of workers from less to

more productive employers interrupted by transitions to nonemployment induced by job

destruction and other reasons for labor turnover generates a steady-state allocation of labor

across firms of differing productivity. Of course, the assertion that wage dispersion is the

consequence of productivity dispersion begs another question: What is the explanation for

productivity dispersion?

To this question, Mortensen’s explanation is as follows:

Relative demand and productive efficiency of individual firms are continually shocked by

events. The shocks are the consequence of changes in tastes, changes in regulations, and

changes induced by globalization among others. Another important source of persistent

productivity differences across firms is the process of adopting technical innovation. We

know that the diffusion of new and more efficient methods is a slow, drawn-out affair.

Experimentation is required to implement new methods. Many innovations are embodied

in equipment and forms of human capital that are necessarily long-lived. Learning how and

where to apply any new innovation takes time and may well be highly firm specific. Since

old technologies are not immediately replaced by the new for all of these reasons, productive

efficiency varies considerably across firms at any point in time. (Mortensen, 2003, 129–130)

Technical progress is certainly an important source of productivity dispersion.

Remember that Schumpeter (1934), emphasizing the role played by innovations,

went so far to argue that without productivity differentials – the source of “excess

profits” – the interest rate would have to become zero! Salter (1960) in his careful

study on productivity and technical change also made the following remark:

The real problems arise because this continuous change in techniques is allied to a slow

adjustment process caused by durable capital equipment. In such circumstances the flow

of new techniques outstrips the ability of the system to adjust, and a gap appears between

potential technical change and actual technical change. This distinction may be most con-

veniently described by means of an empirical example. [Table 3.1] sets out two measures of

labour productivity in the United States blast-furnace industry for selected years between

1911 and 1926.

The first column records the output per man-hour of modern plants constructed at each

date; it approximates to what will be termed ‘best practice’ labour productivity since it relates

to the most up-to-date techniques available at each date. The second column records the

average performance of the industry, the conventional output per man-hour estimate. In this

industry, average labour productivity is only approximately half best-practice productivity.

If all plants were up to best-practice standards known and in use, labour productivity would

have doubled immediately. In fact, a decade and a half elapsed before this occurred, and in

the meantime the potential provided by best-practice productivity had more than doubled.

This is not an isolated example; all the available evidence, some of which is presented in latter

chapters, points to the crucial importance of this delay in the utilization of new techniques.

(Salter, 1960, 6–7)
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Table 3.1. Best and Average Practice Labour
Productivity in the United States Blast-Furnace

Industry, Selected Years from 1911 to 1926 (Salter, 1960)

Gross tons of pig-iron produced per man-hour

Year Best-practice plants Industry average

1911 0.313 0.140

1917 0.326 0.150

1919 0.328 0.140

1921 0.428 0.178

1923 0.462 0.213

1925 0.512 0.285

1926 0.573 0.296

Source: U.S. Bureau of Labor Statistics, The Productivity of

Labor In Merchant Furnaces (Bulletin no. 474, December 1928).

Mortensen’s (2003) argument cited earlier clearly echoes Schumpeter (1934) and

Salter (1960). We cannot suppose that all the economic agents and production

factors move instantaneously to the sector with the highest productivity. We

must describe their behavior by the transition rates in the jump Markov process.

Consequently, at each moment in time we have a range of productivity levels.

Aggregate demand affects the aggregate output because it affects the transition

rates of production factors across sectors/firms with different productivities.

It is important to recognize that productivity depends not only on technology

but also on changes in “the utilization rates” of production factors. The utilization

rate of production factor, in turn, depends on demand. John Stuart Mill noticed

this over 150 years ago:

When we have thus seen accurately what really constitues capital, it becomes obvious, that

of the capital of a country, there is at all times a very large proportion lying idle. The annual

produce of a country is never any thing approaching in magnitude to what it might be if all

the resources devoted to reproduction, if all the capital, in short, of the country, were in full

employment.

If every commodity on an average remained unsold for a length of time equal to that

required for its production, it is obvious that, at any one time, no more than half the

productive capital of the country would be really performing the functions of capital. . . .

From the considerations which we have now adduced, it is obvious what is meant by

such phrases as a brisk demand, and a rapid circulation. There is a brisk demand and a

rapid circulation, when goods, generally speaking, are sold as fast as they can be produced.

There is slackness, on the contrary, and stagnation, when goods, which have been produced,

remain for a long time unsold. In the former case, the capital which has been locked up in

production is disengaged as soon as the production is completed; and can be immediately

employed in further production. In the latter case, a large portion of the productive capital

of the country is lying in temporary inactivity.
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From what has been already said, it is obvious, that periods of “brisk demand” are also

the periods of greatest production: the national capital is never called into full employment

but at those periods.6

We must expect a distribution of productivity in equilibrium. Under employ-

ment defined above is, therefore, not a sign of disequilibrium but rather a state of

equilibrium.

Distribution of Productivity in Equilibrium –
The Boltzmann – Gibbs Distribution

Given differences in productivity across sectors, we face the following important

questions: What would a distribution of productivity in the economy be? And

how would it depend on the aggregate demand? To answer these questions, we

can follow the general procedure of statistical physics. In our view, this statistical

procedure is nothing but the proper microfoundations for macroeconomics.

In what follows, we show the equilibrium distribution is expected to be the

Boltzmann – Gibbs distribution.7

Suppose that an economy consists of S sectors with size ni , i = 1, . . . , S.

Here, ni is the amount of production factor used in sector i . The endowment of

production factor in the economy as a whole, N, is exogenously given. That is,

we have the following resource constraint:

S∑
i=1

ni = N. (3.35)

Note that N is akin to population rather than the labor force because it includes

people who are engaged in “household production” or enjoying leisure. The

output of sector i , Yi , is

Yi = ci ni , (i = 1, . . . , S). (3.36)

Here, ci is sector i ’s productivity, and is given. Productivity differs across sectors.

Without loss of generality, we can assume

c1 < c2 < . . . < cs .

6 In spite of this statement, Mill (1844) did not regard the state of “full employment” desirable, for

the following reason. “This, however, is no reason for desiring such times; it is not desirable that the

whole capital of the country should be in full employment. For the calculations of producers and

traders being of necessity imperfect, there are always some commodities which are more or less in

excess, as there are always some which are in deficiency. If therefore the whole truth were known,

there would always be some classes of producers contracting, not extending, their operations. If all

are endeavoring to extending them, it is a certain proof that some general delusion is afloat. The

commonest cause of such delusion is some general, or very extensive, rise of prices (whether caused

by speculation or by the currency) which persuades all dealers that they are growing rich.”(67)

Here, Mill sounds like Hayek, Friedman, and Lucas!
7 The point was first made by Yoshikawa (2003). See also Boltzmann entropy in Aoki (1996, Sec.

3.2.2).
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The total output in the economy as a whole, or GDP, Y is then

Y =
S∑

i=1

Yi =
S∑

i=1

ci ni . (3.37)

We assume that Y is equal to the aggregate demand, D, which is exogenously

given:

Y = D. (3.38)

From (3.37) and (3.38), we obtain

S∑
i=1

ci ni = D (3.39)

as another constraint. Here, D is exogenously given.

We are interested in the distribution of production factors across sec-

tors, namely n = (n1, . . . , ns ) or n/N = (n1/N, . . . , ns /N). Now, there are

N!/
∏s

i=1 ni ! ways or configurations for dividing N into size ni , (i = 1, . . . , s ).

Assuming equiprobable configurations, we obtain

P (n) =

S∏
i=1

ni !

N!
. (3.40)

The fundamental assumption of statistical physics is that the state, or n =
(n1, . . . , ns ), associated with the highest probability P (n) is actually realized

in equilibrium. The idea is similar to the method of maximum likelihood in

statistics. It turns out that the equilibrium distribution is the Boltzmann–Gibbs

distribution:

ni

N
= e− Nci

D

s∑
i=1

e− Nci
D

.

To show it, we must maximize probability (3.40) under two constraints, (3.35)

and (3.39), with respect to n. For this purpose, we approximate the logarithm of

P (n) using the Stirling formula, log x! ∼= x log x − x :

log
S∏

i=1

ni ! ∼=
s∑

i=1

ni (log ni − 1). (3.41)

Because N! is a constant, we can ignore it for the purpose of maximization. Using

(3.41), we set up the Lagrangean form:

L =
S∑

i=1

ni (log ni − 1) + λ
(

N −
∑

ni

)
+ μ

(
D −

∑
i

c i ni

)
. (3.42)



P1: JZZ

0521831067c03.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:20

80 Equilibrium as Distribution: The Role of Demand in Macroeconomics

By maximizing L with respect to ni , we obtain

0 = ∂L

∂ni

= log ni − λ − μci , (i = 1, . . . , S) (3.43)

or equivalently

ni = e−λ−μci (i = 1, . . . , S). (3.44)

Summing (3.44) over i , we obtain

N =
s∑

i=1

ni = e−λ f (μ) (3.45)

where

f (μ) =
s∑

i=1

e−μci . (3.46)

From (3.44) and (3.46), we obtain

ni

N
= e−μci

f (μ)
. (3.47)

This function f (μ) is called the partition function in physics. Multiplying (3.44)

by ci and summing over i , and noting (3.39) and (3.46), we obtain

Y = ∑
ci ni = e−λ

∑
i c i e

−μci

= −e−λ f ′ (μ) . (3.48)

Note that

f ′ (μ) = −
∑

i
c i e

−μci .

From (3.45) and (3.48), we obtain

Y

N
= − f ′ (μ)

f (μ)
= − d

dμ
log f (μ). (3.49)

Integrating (3.49), we obtain

log f (μ) = − Y

N
μ + A (3.50)

where the constant of integration A is

A = log f (0) = log S. (3.51)

Thus, we can express the partition function as

f (μ) = Se−(Y/N)μ = Se−(D/N)μ. (3.52)
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From (3.46) and (3.48), we define the average productivity c by

c =
∑

i

ni

N
ci

= Y

N
(3.53)

= − f ′ (μ)

f (μ)
.

Now, suppose we measure ci in units of θ as

ci = iθ, i = 1, . . . , S. (3.54)

That is, θ > 0 is the basic unit in measuring productivity such as one dollar per

hour, or if you like, one cent per minute.

Then

f (μ) =
S∑

i=1

e−iθ μ (3.55)

∼= e−θ μ

1 − e−θ μ

when S 	 1.

Then, from (3.53), we can derive the following relation:

c = − f ′ (μ)

f (μ)
= θ

1 − e−θ μ
∼= 1

μ
. (3.56)

The right-hand side of (3.56) can be obtained when we take a limit of

θ/
(
1 − e−θμ

)
as θ approaches zero. Thus, we can interpret the Lagrangean mul-

tiplier μ as the inverse of the average productivity:

μ = 1

c
= N

Y
. (3.57)

Hence, from (3.46), (3.47), and (3.56), we finally obtain

ni

N
= e−μci∑

e−μci
= e− Nci

Y∑
e− Nci

Y

. (3.58)

Because Y = D, (3.58) can be rewritten as

ni

N
= e− Nci

D

s∑
i=1

e− Nci
D

, i = 1, . . . , s . (3.59)

Recall that the state vector n∗ = (n∗
1, . . . , n∗

s ) given by (3.59) is associated with

the maximum probability P (n) under macro constraints (3.35) and (3.39). It is

called the Boltzmann–Gibbs distribution.
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Figure 3.2. Distribution of Production Factors across Sectors with Different Productivity: The
Boltzmann–Gibbs Distribution.
Note : c1 < c2 < c3 < . . . , ci ∝ 0.1 + 0.9 × i/S,

S = 104, N = 108, Dlow = 104, Dhigh = Dlow × 1.5,

ni

N
= e−Nci

/D∑S
i=1 e−Nci

/D

When D rises, the Boltzmann–Gibbs distribution becomes flatter. An exam-

ple given in Figure 3.2 shows it clearly. In this example, when D is low, the share

of production factor in the lowest productivity sector (sector 1) is about five

times as high as that in the highest productivity sector (sector 10,000). When D

is high, the ratio declines from five to less than three, causing a flatter curve. Note

that aggregate demand D corresponds to temperature in physics.

To be precise, aggregate demand relative to factor endowment, namely D/N,

corresponds to temperature. For D itself is what physicists call an extensive (i.e.,

scale-dependent) variable whereas temperature is an intensive (i.e., scale-free)

variable; D/N is intensive variable. High aggregate demand relative to factor en-

dowment corresponds to high temperature, and vice versa. When the aggregate

demand is high, production factors are mobilized to sectors/firms with higher

productivity. Okun (1973) makes a similar point, saying that workers climb a

“ladder” of productivity in a “high pressure economy.” Here, we have provided

a rigorous foundation for Okun’s verbal argument.
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The Old Keynesian Cross

The analysis in this section provides proper microfoundations for Keynes’s princi-

ple of effective demand. Most economists take for granted that factor endowments

are exogenous because they are physically given, and that they determine the to-

tal output. Keynes pointed out that factor endowments, if physically given, are

not actually the fundamental determinant of total output because the utilization

rates of those production factors are endogenous. The fundamental determinant

is the aggregate demand rather than factor endowment.

Dispersions of utilization rates and differences in technology across

firms/sectors entail distribution of productivity in equilibrium. The analysis par-

allel to that in statistical physics suggests that contrary to economists’ erroneous

belief in the “no arbitrage condition,” it is actually impossible to obtain the unique

marginal productivity in the economy as a whole. We have shown that the equi-

librium distribution of productivity is expected to be the Boltzmann–Gibbs dis-

tribution. Just like temperature in physics, the aggregate demand determines the

distribution of production factors across sectors with different productivity, and

thereby the level of total output. This is the foundation of Keynes’s principle of

effective demand.

The present argument is akin to what Tobin (1972) calls “stochastic macro-

equilibrium.” He argues that

[it is] stochastic, because random intersectoral shocks keep individual labor markets in

diverse states of disequilibrium; macro-equilibrium, because the perpetual flux of particular

markets produces fairly definite aggregate outcomes. (Tobin, 1972, 9)

The concept of equilibrium distribution of productivity is similar to what

Tobin called “a theory of stochastic macro-equilibrium.”8 By way of affecting

the transition rates of production factors, the aggregate demand conditions

“stochastic macro-equilibrium,” and consequently, determines the level of total

output.

The important question is what determines the aggregate demand, D in

equation (3.59). This is, of course, what Keynes’s General Theory is all about.

Consumption function, multiplier, and so on are analytical tools for resolving

this problem. Here, we can usefully recall the textbook old Keynesian analysis

as shown in Figure 3.3. Exogenous demand, D0 in the figure, determines the

level of aggregate demand, D as D0/(1 − c) which corresponds to D in equation

(3.59). D is equal to total output. Behind this old Keynesian cross, D affects

the transition rates of production factors, and the distribution of productivity

in stochastic macro-equilibrium. The textbook Keynesian cross and the IS-LM

model are admittedly primitive. Though primitive, Blanchard and Fischer (1989)

8 See also Iwai (2001). He studies the dynamics of profits in the industry.
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Figure 3.3. The Keynessian Cross – The Determination of Aggregate Output.

after a long excursion into the neoclassical paradigm acknowledge that they are

“useful models.” The old Keynesian model is useful because it is on the right

track.

Differences in Productivity – A Glance at Data

Before we leave this chapter, we briefly examine actual differences in productivity

in the economy. The Japanese Ministry of Labor used to compile the country’s

labor productivity statistics. These give us good information on physical labor

productivity for the same production process in various firms in each industry.

Figure 3.4 shows the distribution of labor productivity and wages across firms

in the steel industry for 1971. We note that, given a small price dispersion for

the same product, the physical labor productivity shown in Figure 3.4 would

reasonably correspond to value productivity, and to the extent that production

function can be approximated by the Cobb–Douglas type, average productivity

shown in the figure corresponds to marginal productivity. We can see that the dis-

persion of productivity is much greater than that of wages which is documented

by Mortensen (2003) and others. The productivity of the most efficient firm is

more than 15 times that of the least efficient firm.

This is the dispersion of productivity across firms in the same industry. A

similar dispersion is observed across industries. It is well known that higher
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Figure 3.4. Distribution of Labor Productivity and Wages across Firms in the Japanese Steel
Industry, 1971.
Source: Japanese Ministry of Labour, Survey of Labour Productivity, 1971.

physical productivity tends to be offset by lower relative price, and therefore that

the dispersion of value productivity becomes smaller than that of physical pro-

ductivity. Yoshikawa (1990), in fact, shows that high productivity growth of the

Japanese export sector lowered the prices during the 1970s and 80s, and that

it eventually brought about an appreciation of the yen. And yet, differences in

value productivity across industries remain, or sometimes even widen, over time.

Figure 3.5 shows the indices of the relative value productivity for the Japanese

manufacturing industries (1978 = 100). If there were no productivity disper-

sion, the indices would be 100. One might naturally expect random fluctuations

around 100, but in fact the dispersion appears cumulative: the value productivity

of the electric machinery industry, for example, become 40 percent higher than

the average obtaining during the period of 1978–97.
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Figure 3.5. Differences in Productivity across Industries, 1975–2000.
Note: Value labor productivity for each industry shown in the figure is the product of the index of
physical labor productivity compiled by the Japan Productivity Bureau and the Wholesale Price
Index (WPI) compiled by the Bank of Japan (1978 = 100).

In summary, there is always a sizable dispersion of value productivity across

firms and industries. This confirms Salter’s (1960) early findings. Historically,

the most significant productivity difference lay between agriculture and mod-

ern manufacturing industry in the early stages of development of most coun-

tries (Lewis, 1954; Ohkawa and Rosovsky, 1973). Productivity difference is not

confined to developing economies. In the modern well-developed economy, we

also must have a distribution of productivity in equilibrium. Aggregate demand
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affects the transition rates of production factor, a distribution of productivity,

and consequently the level of total output.

3.3. Concluding Remarks

The problem of demand has been analyzed time and again in the context of

Keynesian economics. The research efforts in the past two decades were sum-

marized by Mankiw and Romer (1991) under the heading of “New Keynesian

Economics.” Unfortunately, New Keynesian Economics is, in our view, funda-

mentally misguided for two reasons.

First, most works of New Keynesian Economics take the aggregate demand

as synonymous with nominal money supply: see, for example, Blanchard and

Kiyotaki, 1987; Mankiw, 1985; and other works collected in Mankiw and Romer,

1991. It is not surprising to find Mankiw and Romer (1991, 3) saying that “much

of new Keynesian economics could also be called new monetarist economics.”

In this framework, “demand” or nominal money supply affects real output so

long as the nominal price is rigid. Thus, in this approach the primary agenda is

to explain the rigidity or inflexibility of nominal price/wage in concurrence with

“rationality” of economic agents. This is in accordance with that textbook cliché

that Keynesian economics makes sense only when prices are rigid.

Effective demand in Keynes (1936) is, however, real. Long ago, Fisher (1933)

pointed out that flexibility of price was not necessarily good for real demand.

This was amply demonstrated by events that occurred during the long stagnation

of the Japanese economy during the 1990s. The Bank of Japan, politicians, and

economists all talked in unison about “fears of deflation.” Nobody dared to argue

that swifter price declines could have cured the economy. Here, once again we

emphasize the importance of real demand, and cite Tobin:

The central Keynesian proposition is not nominal price rigidity but the principle of effective

demand (Keynes, 1936, Ch. 3). In the absence of instantaneous and complete market clearing,

output and employment are frequently constrained by aggregate demand. In these excess-

supply regimes, agents’ demands are limited by their inability to sell as much as they would

like at prevailing prices. Any failure of price adjustments to keep markets cleared opens the

door for quantities to determine quantities, for example real national income to determine

consumption demand, as described in Keynes’ multiplier calculus. . . .

In Keynesian business cycle theory, the shocks generating fluctuations are generally

shifts in real aggregate demand for goods and services, notably in capital investment. Keynes

would be appalled to see his cycle model described as one in which “fluctuations in output

arise largely from fluctuations in nominal aggregate demand” (Ball, Mankiw, and Romer,

1988, 2). The difference is important. (Tobin, 1993)

We have shown that real aggregate demand determinates total output by way of

affecting a distribution of productivity in the economy.
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The second reason New Keynesian Economics is misguided is methodologi-

cal. To provide sound “microeconomic foundations,” it analyzes microeconomic

behavior in great detail. We have already argued that this is wrong. In the macroe-

conomy, we have a distribution of productivity in equilibrium, and this distri-

bution is conditioned by real aggregate demand. We have shown that the dis-

tribution of productivity is the Boltzmann–Gibbs type in equilibrium. This is

the proper microeconomic foundations for the Keynes’s principle of effective

demand.
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4

Uncertainty Trap: Policy Ineffectiveness and Long

Stagnation of the Macroeconomy

History shows us that the economy can be trapped in long stagnation. In the

nineteenth century, the British economy suffered from the Great Depression

for almost a quarter of century (1873–96). The Great Depression in the 1930s

attacked the whole world. And since the beginning of the 1990s, the Japanese

economy has stagnated for more than a decade.

In every episode, various policies were discussed and tried. Yet the economy

did not revive, falling into long stagnation. Certainly, in each case, there must

have been policy mistakes. Granted, it appears that once the economy is trapped

into a deep depression, the effectiveness of standard policy measures weakens.

Irving Fisher (1933), for example, in relation to his famous debt-deflation theory

made the following argument.1

There may be equilibrium which, though stable, is so delicately poised that, after departure

from it beyond certain limits, instability ensues, just as, at first, a stick may bend under

strain, ready all the time to bend back, until a certain point is reached, when it breaks. This

simile probably applies when a debtor gets “broke,” or when the breaking of many debtors

constitutes a “crash,” after which there is no coming back to the original equilibrium. To

take another simile, such a disaster is somewhat like the “capsizing” of a ship which, under

ordinary conditions, is always near stable equilibrium but which, after being tipped beyond

a certain angle, a tendency to depart further from it. (p. 339)

In this chapter, we focus on uncertainty. Using the simple theoretical model

presented in Chapter 3, we show that mounting uncertainty necessarily weakens

the effectiveness of macroeconomic policy. We certainly do not recommend pol-

icy makers to throw the mainstream macroeconomics textbooks away. However,

in our view, the economy once facing great uncertainty does present economists

and policy makers with real difficulties the textbook remedies cannot easily

handle.

1 Tobin (1975) presented a model in which the macroeconomy is locally stable, but is globally

unstable.

89
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Uncertainty is, of course, not new to economists. However, a new approach is

necessary to make clear the real importance of uncertainty for the macroeconomy.

To understand its importance, we must depart from the standard assumption of

the representative agent, and once again take seriously the fact that the macroe-

conomy consists of a large number of heterogenous agents. We have already

explained this point in the previous chapters. In what follows, we will show that

the kind of approach we are advancing in this book sheds new light on the impor-

tance of uncertainty in the macroeconomy. The first section presents our model.

The second section demonstrates the importance of uncertainty as a hindrance

to macroeconomic policy. Finally, as a case study, the third section discusses the

problems Japan faced in her long stagnation during the 1990s. Amid the stagna-

tion, official short-term interest rates in Japan had fallen to zero; conventional

monetary policy became impotent. Facing this unprecedented situation, many

economists proposed alternative policies including inflation targeting. We crit-

ically examine these policy proposals, and conclude that they cannot solve the

real difficulty uncertainty creates. Indeed, we suggest that whether the economy is

caught in such “uncertainty trap” distinguishes “depression” from normal cyclical

“recession.” Finally, the fourth section offers brief concluding remarks.

4.1. The Model

The model we use is the binary choice model presented in Chapter 3. For con-

venience, we quickly summarize the model as follows. It is highly abstract, but

is still useful in understanding policy ineffectiveness and long stagnation of the

macroeconomy.

Suppose that there are N economic agents in the economy. There are K

possible levels of production. Each agent, as a result of respective optimization,

chooses one of K levels. To demonstrate our point, without loss of generality,

we can assume that K is just two, with levels “high” and “low.” This assumption

simplifies our presentation, though theoretically, the model does not have to be

binary so long as K is finite. In Chapter 3, we show that the apparently restrictive

binary choice model is actually consistent with standard dynamic optimization.

The “high” level of production is denoted by y∗, and the “low” level by y

(0 < y < y∗). If the number of economic agents that produce at the high level,

y∗, is n (n = 1, . . . N), then total output in the economy or GDP is

Y = ny∗ + (N − n)y. (4.1)

We denote the share of economic agents which produce at y∗ by x :

x = n

N
(n = 1, . . . , N). (4.2)

Using x , we can rewrite Y as follows:

Y = N[xy∗ + (1 − x)y]. (4.3)
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When N is large, x can be regarded as a continuous fraction (0 ≤ x ≤ 1). Equa-

tion (4.3) shows that Y and x correspond to each other. While x fluctuates

between 0 and 1, so does Y between Ny and Ny∗.

Changes in x are assumed to follow a jump Markov process. For a short

time �t, there are three possibilities; no economic agent changes its production

level, or one either raises or lowers its production level. The process is then

characterized by two transition rates, one from state y to y∗ and the other from

y∗ to y. Once these two transition rates are given, they determine the model, and

accordingly the (stochastic) dynamics it produces.

The probability that one economic agent producing at the low level y raises

its production to a high level y∗ depends naturally on the number of agents

currently producing at y, that is N(1 − x). Similary, the transition rate from y∗

to y depends on Nx .

Transition rates are additionally assumed to be state-dependent in that

N(1 − x) and Nx are modified by η1(x) and η2(x), respectively. Specifically,

the transition rate from y to y∗, r , is

r = N(1 − x)η1(x). (4.4)

And the transition rate from y∗ to y, l , is given by

l = Nxη2(x). (4.5)

The transition rates r and l thus depend not only on the number of economic

agents in each state, but also on η1(x) and η2(x). The factors η1(x) and η2(x)

mean that the optimal strategy taken by each agent depends on the state of the

economy, x or Y . Alternatively, η means the presence of externality in agents’

behavior. For example, equation (4.4) means that a switch of strategy by an

economic agent from “bear” who finds y as optimal, to “bull” who finds y∗ as

optimal, depends on the share of bulls. Equation (4.5) means that the same is

true for a switch of strategy from y∗ to y. Here, η1(x) and η2(x) are defined as

η1(x) = X−1eβg (x) (β > 0) (4.6)

η2(x) = 1 − η1(x) = X−1e−βg (x) (4.7)

X = eβg (x) + e−βg (x). (4.8)

The expression X in (4.8) simply makes sure that the sum of η1(x) and η2(x)

is equal to one as it must be. The above equations are quite generic, and called

the Boltzmann–Gibbs type. In the first section of Chapter 3, we explained how

naturally equations (4.6) and (4.7) arise in microeconomic models of choice

under uncertainty. We also explained that they are consistent with standard

intertemporal maximization.

The function g (x) in (4.6) indicates how advantageous a switch of strategy

from bear to bull is. The greater g (x) is, the more advantageous a switch from

bear to bull is, and vice versa. We assume that g (x) becomes zero at x̄ . Note that
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Figure 4.1. g (x) Function.

at x̄ , η1(x̄) and η2(x̄) are both 1/2, and, therefore, that a switch from y and y∗

and one from y∗ to y are equally probable.

Obviously, the g (x) function plays an important role. In fact, g (x) describes

economic behavior. Thus, we can make various assumptions on g (x). The simplest

assumption is that g (x) has a unique stable critical value x̄ as shown in Figure 4.1.

In this case, when the share of bulls exceeds x̄ , more agents become cautious and

find turning to bear advantageous.

Different assumptions are possible, of course. For example, we can assume

that g (x) has three critical values, say A, B, C as shown in Figure 4.2. In Figure 4.2,

point B is a stable critical value whereas points A and C are unstable ones. If the

share of bulls x is located between A and B , there is a (stochastic) tendency for

x to approach B . However, if x exceeds C , more agents tend to turn to bull. The

bandwagon effect is self-enforcing. In this sense, C is an unstable critical point.

Similarly, if x becomes smaller than A, more agents tend to turn to bear. Again,

A is an unstable critical point.

Note that most standard comparative static analyses in macroeconomics can

be interpreted as shifts of the g (x) function in our present analysis. We know

that in comparative static analysis, we must focus on stable equilibrium. For the

same reason, we focus on a stable critical value of the g (x) function. Thus, for

simplicity, let us assume for the moment a unique stable critical value for g (x)

as in Figure 4.1.

Take the IS/LM analysis as an example of standard comparative static analysis

in macroeonomics. Suppose that a deteriorated expected profitability made the

IS curve shift down. As a consequence, GDP or Y declines. This situation corre-

sponds to the case where given x , more economic agents are likely now to find
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Figure 4.2. Three Critical Values.

advantageous to switch from bull to bear, namely the g (x) function shifts down

to the left as shown in Figure 4.3 (A). The stable critical point moves to the left

accordingly. Next, suppose that the authority lowered the interest rate to fight

against this recession. The LM curve moves downward to the right, leading Y to

rise. This now corresponds to the case where, thanks to the expansionary mone-

tary policy or lower interest rates, given x again, economic agents find it more ad-

vantageous to switch from bear to bull. The g (x) function shifts up to the right as

shown in Figure 4.3 (B). The economy returns from x̄2 to x̄1, that is, recovers from

recession. In this way, a shift of g (x) function in the present model corresponds

to the standard comparative static analysis in a simple deterministic model.

Now, in the present stochastic framework, we have another important pa-

rameter in transition rates, namely β. The first section of Chapter 3 shows that

β in equations (4.6) and (4.7) is a parameter that indicates the degree of uncer-

tainty facing economic agents. Suppose, for example, that the payoff facing an

agent is normally distributed. Then β is simply the inverse of its variance. Thus,

when the degree of uncertainty rises, β declines, and vice versa. In the limiting

case where β becomes zero, regardless of g (x), both η1(x) and η2(x) become 1/2.

In this case, uncertainty is so great that economic decisions become equivalent

to tossing a coin.

The Master Equation

Let us return to the model. The share of bulls, x , changes stochastically, and so does

GDP (recall equaion (4.3)). Specifically, it follows the jump Markov process with

two transition rates (4.4) and (4.5). We will analyze the dynamics of this model.
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Figure 4.3. Shifts of the g (x) Function.
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The master equation or the Chapman–Kolmogorov equation is given by

∂ P (n, t)

∂t
= N

(
x + 1

N

)
η2

(
x + 1

N

)
P (n + 1, t)

+ N

(
1 − x + 1

N

)
η1

(
x − 1

N

)
P (n − 1, t)

− [Nxη2(x) + N(1 − x)η1(x)]P (n, t). (4.9)

Here, P (n, t) is the probability that the number of “bulls” or agents who

produce at the “high” level, y∗, is n at time t. Note the following relations:

x = n

N
, x + 1

N
= n + 1

N
and x − 1

N
= n − 1

N
.

We analyze the master equation by the method of Taylor expansion explained

in Chapter 2. First, we decompose a stochastic variable x (the share of bulls) into

two components:

xt = φt + ξt√
N

. (4.10)

Here, φt is the mean of xt , E (xt), and, therefore, is not stochastic but is just a

real number. The second component ξt is the stochastic deviation of xt from its

mean φt . By construction, the mean of ξt is zero. Note that both φt and ξt depend

on time, and also that ξ is divided by
√

N to normalize its standard deviation.

Using φ and ξ , we can rewrite P (n, t) as follows:

P (n, t) = P (Nx, t) = P (Nφ +
√

Nξ, t) = π(ξ, t). (4.11)

This relation defines the density function of a stochastic variable ξ at time t,

π(ξ, t). Then, by definition, we have

∂ P (n, t)

∂t
= ∂π

∂t
+ ∂π

∂ξ

dξt

dt
. (4.12)

Now, at each moment of time, a realized value of x is given (dx/dt = 0) so

that we have the following relation:

dφt

dt
= − 1√

N

dξt

dt
. (4.13)

Thus, substituting dξt/dt out in equation (4.12), we obtain

∂ P (n, t)

∂t
= ∂π

∂t
−

√
N

dφt

dt

(
∂π

∂ξ

)
. (4.14)

Next, we rewrite the right-hand side of the master equation (4.9) using φ

and ξ , and expand it around the expected value of x, φ by the Taylor series with
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respect to 1/
√

N up to the quadratic term (namely, 1/N):

∂ P (n, t)

∂t
= N

(
φ + ξ√

N
+ 1

N

) [
η2(φ) + η′

2(φ)

(
ξ√
N

+ 1

N

)]

×
[
π(ξ, t) + ∂π

∂ξ

(
1√
N

)
+ 1

2

∂2π

∂ξ 2

(
1

N

)]

+ N

(
1 − φ − ξ√

N
+ 1

N

) [
η1(φ) + η′

1(φ)

(
ξ√
N

− 1

N

)]

×
[
π(ξ, t) − ∂π

∂ξ

(
1√
N

)
+ 1

2

∂2π

∂ξ 2

(
1

N

)]

−
[

N

(
φ + ξ√

N

) (
η2(φ) + η′

2(φ)
ξ√
N

)

+N

(
1 − φ − ξ√

N

) (
η1(φ) + η′

1(φ)
ξ√
N

)]
π(ξ, t). (4.15)

In this calculation, we used the following fact. When the number of bulls,

n = Nx = Nφ + √
Nξ , increases from n to n + 1, the fluctuation or change

of the stochastic variable ξ must be 1/
√

N, because in that case, n increases

by
√

Nξ = √
N × ( 1√

N
) = 1. Similarly, when the number of bulls is n − 1, the

deviation of ξt is −1/
√

N. Note that we hold φ constant, and consider the

deviation of ξt from its mean zero.

Now, look at the right-hand side of equation (4.15) as a power se-

ries of N: The maximum term is N
1
2 , and other terms of lower order are

N0, N− 1
2 , N−1, N− 3

2 , . . . The term of the highest order, namely the term with√
N, turns out to be as follows:

√
N[φη2(φ) − (1 − φ)η1(φ)]

(
∂π

∂ξ

)
. (4.16)

We compare this term to the right-hand side of equation (4.14). For the

respective terms involving
√

N in equations (4.14) and (4.15) to be identical, the

following relation must hold:

dφt

dt
= φ̇t = φtη2(φt) − (1 − φt)η1(φt ). (4.17)

The ordinary differential equation (4.17) determines the dynamics of the ex-

pected value of x , namely φ. Note that φ is not stochastic, and that its dynamics

obeys an ordinary differential equation.
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4.2. Uncertainty and Policy Ineffectiveness

We can understand the dynamics of the expected value of the share of bulls, φ,

and accordingly GDP or Y by studying equation (4.17). The critical point of

equation (4.17) is given by

η1(φ)

η2(φ)
= φ

1 − φ
. (4.18)

From equations (4.6) and (4.7), this equation is equivalent to

2βg (φ) = log
( φ

1 − φ

)
. (4.19)

The steady state φ satisfies equation (4.19). Recall the important fact that β

in (4.19) indicates the degree of uncertainty facing economic agents. Specifically,

when the degree of uncertainty rises, β declines, and vice versa. We then ob-

serve that when there is little uncertainty, namely β is very large, we can ignore

the right-hand side of equation (4.19), and equation (4.19) becomes equivalent

to

g (φ) = 0. (4.20)

Thus, when there is little uncertainty (large β), the expected value of x , φ, is

equal to the zero of the g (x) function in steady state. That is, φ is equal to φ∗

which satisfies

g (φ∗) = 0 (4.21)

in steady state. If g (x) looks like the one shown in Figure 4.1, then φ∗ is equal to

the unique stable equilibrium x̄ in Figure 4.1.

In this case, x changes stochastically, but spends most of the time in the

neighborhood of φ∗. Accordingly, GDP fluctuates stochastically but spends most

of the time in the neighborhood of

Y = N[φ∗y∗ + (1 − φ∗)y]. (4.22)

As we explained above with respect to g (x) function, the standard compar-

ative static analyses hold without any problem in this case. If policy makers find

the current average level of Y too low, for example, then they can raise fiscal ex-

penditures or lower the interest rate. These policies would shift the g (x) function

upward to the right as shown in Figure 4.3 (B). The expected value of Y would

increase since in the present case of low uncertainty (large β), it is basically

determined by the zero of the g (x) function (equation (4.21)).

When the degree of uncertainty rises, or equivalently β becomes small, the

story gets much more complicated. Specifically, when the degree of uncertainty is

high, (1) multiple equilibria may emerge, and (2) the response of the economy to

any policy action necessarily becomes small. Standard macroeconomic policies

face serious difficulties.
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At this stage, it is useful to introduce the potential function. It is given by

U (x) = −2

∫ x

g (y)dy − 1

β
H(x). (4.23)

The function g (y) and β are the same as the ones in equations (4.6) and (4.7),

and H(x) is the Shannon entropy defined as follows:

H(x) = −x ln x − (1 − x) ln(1 − x). (4.24)

This entropy term is crucial to our subsequent argument. Recall that each

of N economic agents faces a binary choice of being either a bull or a bear.

H(x) is nothing but the logarithm of the binominal coefficient NCn, namely the

number of cases where n out of N agents are bulls. Using the Stirling formula

that log N! ∼= N(log N − 1), we obtain

log NCn = log
( N!

(N − n)!n!

)

= N
[
−

( n

N

)
log

( n

N

)
−

(
1 − n

N

)
log

(
1 − n

N

)]

= N H(x). (4.25)

The function H(x) expresses the combinatorial aspect of our problem in

which a large number of economic agents stochastically make binary choices. It

is this combinatorial aspect that the standard macroeconomics entirely ignores, and

yet that plays a crucial role in the analysis of any system, either physical or social,

consisting of a large number of entities.

Let us keep this in mind, and go back to the analysis of the expected value of the

share of bulls, φ. We have seen above that the steady state expected value of x, φ∗,
satisfies equation (4.19). Thus, noting

d H(x)

dx
= log

(
1 − x

x

)

we can easily see that locally stable steady states of equation (4.17) are local

minima of the potential function (4.23):

U ′(φ) = −2g (φ) − 1

β
H ′(φ) = −2g (φ) + 1

β
log

( φ

1 − φ

)
= 0. (4.26)

When β is large (little uncertainty), U ′(φ) = 0 is basically equivalent to

g (φ) = 0. Therefore, as long as the g (x) function has a unique zero, the standard

textbook results hold. When β is small, however, the expected value of x , φ, is

not the zero of g (φ), but is determined by both g (φ) and H ′(φ)/β.
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Figure 4.4. The Shape of the Potential Function and Fluctuations of the Economy.

Multiple Equilibria

The significant uncertainty (small β) creates various problems. First, even

if g (φ) = 0 has a unique stable root, U ′(φ) = 0 may have multiple stable

roots. Figure 4.4 (A) shows the case of the unique local minimum while Fig-

ure 4.4 (B) shows the case of two local minima. Aoki (1995, 1996, Chap-

ter 5) presents a numerical example. In that example, the shape of g (x) looks



P1: JZZ

0521831067c04.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:21

100 Uncertainty Trap

Figure 4.5. Simulation Result for the Case where the Potential Function Has Two Local Minima.
Source: Aoki, 1996. Note: In this simulation, y = x − 1 is measured horizontally.
In the text, the share of bulls, x, is between 0 and 1, but in this histogram y is between −1 and 1.

like the one in Figure 4.2, and it generates two stable roots for the following

equation:

U ′(x) = −2g (x) + 1

β
log

(
x

1 − x

)
= 0.

That is, the potential function U (x) has two local minima as shown in Figure 4.4

(B). Figure 4.5 shows histograms of the values of x after 20 transitions in this

simulation with 500 replications. With two stable equilibria, we clearly see a

bimodal histogram with two well-defined peaks.

The dynamics just discussed is actually that mentioned as an example of

multiple equilibria in Chapter 1 (see Figure 1.3). We stated there that unlike in

deterministic models, we do not face the problem of equilibrium selection in

the stochastic approach. The economy stochastically fluctuates, spending most

of time in the neighborhood of two minima of the potential function. The simu-

lation result shown in Figure 4.5 indeed demonstrates it very clearly. In passing,

we can show that the mean passage time, t∗, for the economy to change from one

equilibrium (say point a in Figure 4.6) to the other (point c in the same figure),

depends on “the height of the barrier” between two minima in the potential

function U (x):

t∗ ≈ eβN(U (b)−U (a)).

Figure 4.6 shows two cases. In Figure 4.6 (A), when the economy passes from

a to c , it must cross the high barrier (large U (b) − U (a)). Thus, the mean
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Figure 4.6. The Potential Function with Two Local Minima.

passage time from a to c , namely t∗
ac , is long. In contrast, since U (b) − U (c) is

small, the mean passage time from c to a , t∗
ca is short. Therefore, in this case, we

have “asymmetric cycles.” Using this model, Aoki (1998) explains “asymmetric

business cycles” observed by Neftci (1984). Figure 4.6 (B) shows another pos-

sibility in which both U (b) − U (a) and U (b) − U (c) are equally small. In this
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case, the economy passes from a to c , and from c to a , both with the relatively

short mean passage time.

In summary, suppose the g (x) function that describes economic behavior

has a unique stable equilibrium. When uncertainty is negligible (β is large), the

potential function has a unique minimum as shown in Figure 4.4 (A). How-

ever, when uncertainty becomes significant (β is small), we cannot ignore the

combinatorial aspect of the problem. Specifically, we must consider the Shannon

entropy, H(x) defined by equation (4.24). It is the combination of economic be-

havior (g (x) function) and uncertainty (small β) that generates multiple minima

for the potential function, and accordingly multiple equilibria in the economy. In

the stochastic model, if we have multiple equilibria, we do not face the problem

of equilibrium selection. Rather, the economy fluctuates stochastically between

equilibria as Figures 4.5 and 4.6 show. In this sense, one might say that uncertainty

can be a source of fluctuations of the macroeconomy.

The Effectiveness of Policy

Uncertainty also affects significantly the effectiveness of macroeconomic policies.

To demonstrate, let us assume once again that g (x) function has a unique stable

equilibrium as shown in Figure 4.1. And, for the sake of clarity, consider the case

where the real interest rate was reduced. This is equivalent to an upward shift

of the g (x) function as shown in Figure 4.3 (B). In the IS/LM model, we draw

the conclusion that interest-elastic expenditures such as investment increase, and

GDP or Y rises in the new equilibrium. What happens in the present model? The

answer depends on the degree of uncertainty, β.

“Policy” is a change in g (x) function in our model. Thus, we change function

g (x) in transtion rates (4.6) and (4.7) to

g (x) + h(x) (4.27)

where

h(x) > 0, h′(x) ∼= 0.

With this change in g (x) function, φ∗ which satisfies equation (4.26) or U ′(φ∗) =
0, changes toφ∗ + δφ. Becauseφ∗ + δφ is also a root of equation (4.26), it satisfies

−2[g (φ∗ + δφ) + h(φ∗ + δφ)] + 1

β
log

(
φ∗ + δφ

1 − φ∗ − δφ

)
= 0. (4.28)

Taking the Taylor expansion of equation (4.28) to the first order, we obtain

−2
[
g (φ∗)+ g ′(φ∗)δφ + h(φ)∗]+ 1

β

[
log

(
φ∗

1 − φ∗

)
+

(
1

φ∗(1 − φ∗)

)
δφ

]
=0.

(4.29)
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Because φ∗ satisfies equation (4.26), this equation boils down to

−2g ′(φ∗)δφ − 2h(φ∗) + 1

β

(
1

φ∗(1 − φ∗)

)
δφ = 0.

This is solved out for δφ as

δφ = 2h(φ∗)

1

β

(
1

φ∗(1 − φ∗)

)
− 2g ′(φ∗)

> 0. (4.30)

Here we used the assumptions h′(x) = 0 (no particular bias in policy) and

g ′(φ∗) < 0 (φ is a stable equilibrium).

It is natural that δφ becomes larger when a change in g (x), h(φ∗), is greater.

Thus, equation (4.30) can be perhaps better rewritten as

E = δφ

h(φ∗)
= 2

1

β

(
1

φ∗(1 − φ∗)

)
− 2g ′(φ∗)

> 0. (4.31)

E defined as δφ/h(φ∗) in (4.31) gives an increase in φ relative to a shift of the g (x)

function. It corresponds to the notion of a multiplier in deterministic models. E

in equation (4.31), therefore, indicates the effectiveness of macroeconomic policy

in our model.

In an expansionary policy, δφ is positive, that is φ∗ rises. However, the extent

of an increase in φ∗ depends crucially on β or uncertainty. When uncertainty

is negligible, β is so large that δφ/h(φ∗) or E approaches its maximum value

−1/g ′(φ∗) > 0. On the other hand, as the degree of uncertainty rises (β declines),

E gets smaller approaching zero. This result is quite generic. When uncertainty

rises, the effectiveness of macroeconomic policies which affect agents’ economic

incentives necessarily weakens. In the limit, the economy facing infinite uncer-

tainty is trapped in a state in which no economic policy works or, in fact, no

economic decision makes sense in that it is no different from tossing a coin.

The result obtained here has broad implications for elasticity, a most im-

portant concept in economics. Elasticity expresses the responsiveness of agents’

actions to a particular change in economic environment. It is theoretically derived

from the optimizing behavior of the representative economic agent. Consider de-

mand for apples as a simple example. Demand for apples is a function of the price

of an apple. It is derived from the consumer’s utility maximization. Under “nor-

mal” assumptions, we would obtain demand function for apples as a decreasing

function of price. That is, when the price of an apple went down, ceteris paribus,

people purchase more apples. In our model, a change in economic environment

facing agents is expressed as a shift of the function g (x) in transition rates.

Now, we can reinterpret the binary-choice model we have analyzed. Choosing

y∗ may be interpreted as “buying an apple.” And choosing y is now “not buying

an apple.” Note that the assumption of binary choice is not necessary, but made

only for simplification. As long as the number of states is countable, the model
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works. Thus, we can think of a model of expenditures on apples by generalizing

the present binary choice model. In the binary choice framework, the number

of apples purchased corresponds to the share of “bulls,” x .

Suppose then that the price of apples went down. More people buy apples

and/or people buy more apples. In any case, the standard analysis takes it for

granted that individual elasticity derived theoretically from the microeconomic

analysis of the representative agent can translate itself into elasticity in the econ-

omy as a whole. The case we consider now corresponds to an upward shift of

function g (x) in transition rates (4.6) and (4.7). And price elasticity corresponds

to E defined as δφ/h(φ∗) in (4.31). Because standard analysis ignores uncer-

tainty and the combinatorial aspect, elasticity becomes the value of E when β is

infinite. That is, elasticity in standard analysis, E ∗, corresponds to

E ∗ = − 1

g ′(φ∗)
(4.32)

in the present model. However, as we explained earlier, when uncertainty is

significant, we cannot ignore the combinatorial aspect of the problem, namely

the Shannon entropy H(x). Specifically, elasticity becomes E in (4.31), not E ∗

in (4.32). In general, E in (4.31) is smaller (in absolute value) than E ∗ in (4.32).

Thus, we obtain the following proposition.

Proposition: When the degree of uncertainty rises, elasticity E necessarily dimin-

ishes (in absolute value). In the limit (β → 0), it approaches zero.

As a corollary, we obtain an important implication for macroeconomic

policies.

Proposition: When the degree of uncertainty rises, the effectiveness of macroe-

conomic policy necessarily weakens. In the limit (β → 0), macroeconomic policy

becomes completely ineffective.

In this sense, we can say that when the degree of uncertainty is extremely

high, the economy is caught in an “uncertainty trap.”

4.3. The Japanese Economy during the 1990s – A Case Study

To see the relevance of the above proposition, we consider the Japanese economy

during the 1990s as a case study. Arguably, Japan was caught by an “uncertainty

trap” at a time during the period.

In the buoyant 1980s when some even suggested “Japan as Number One,” who

would have imagined such gloomy 1990s? As it turned out, amid the worldwide

IT revolution, Japan suffered from the decade-long stagnation during the 1990s.

After a series of recessions, the interest rate had fallen to zero by the late 1990s.
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Facing this unprecedented absolute lower bound for the interest rate, the Bank of

Japan (BOJ) apparently lost the most important policy instrument. At the same

time, the economy lapsed into deflation – Irving Fisher’s curse! Quite naturally,

central bankers, policy makers, and economists all began to search for possible

policy measures at the zero interest rate bound. Inflation targeting was one of

the major proposals. In this section, we first briefly survey the Japanese economy

during the 1990s. Then we critically examine inflation targeting in relation to

uncertainty. This case study should make clear the limits of the standard analysis

in macroeconomics.

The Economy

After the asset price bubbles bursted, the Japanese economy officially entered

recession in 1991. At first, it appeared as a normal cyclical downturn, but was

actually only the beginning of the decade-long stagnation. The average growth

rate of Japan during 1992–99 was a mere 1.0 percent. During the same period,

the U.S. economy enjoyed the 3 percent growth hailing the New Economy. Even

the European Union (EU), suffering from high unemployment, outperformed

Japan. The important question is why the Japanese economy was trapped in such

a long stagnation.

Table 4.1 shows the record of the Japanese economy during the period. A sen-

sible way to get an overview of the Japanese economy during the 1990s is to look

at the demand-decompositon of the growth rate of real GDP. Table 4.1 presents

contributions of demand components such as consumption, investment, and

exports to growth of GDP. The contribution is defined as the growth rate of each

demand component, for example investment, times its share in real GDP. By

construction, the figures sum to the growth rate of GDP.

Table 4.1 shows that fixed investment is the most important factor to account

for cyclical fluctuations during the period, namely the 1992–93 recession, the

1994–96 recovery, and the 1997–98 recession.2 In fact, investment is the most

important explanatory variable for the Japanese business cycles throughout the

postwar period (see Yoshikawa, 1995). This stylized fact applies to the 1990s.

When the growth rate fell from 3.8 percent to 0.3 percent during 1991–93, for

example, the contribution of investment fell from 1.2 percent to −1.9 percent,

accounting for nearly 90 percent of a fall in the growth rate. Similarly, when

growth accelerated from 0.3 percent to 5.1 percent during 1993–96, the contri-

bution of investment rose from −1.9 percent to 1.8 percent, again accounting for

80 percent of the recovery. Thus, to explain the long stagnation of the Japanese

2 The recession which started in May 1997 officially ended in January 1999. According to the gov-

ernment, the Japanese economy subsequently entered the expansionary phase during February

1999–October 2000. Then another recession started in November 2000 which ended in January

2002.
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economy during the 1990s, we must explain why fixed investment was depressed

so much,3 and why it did not respond to low interest rates.

In addition to fixed investment, depressed consumption is notable. For 1998,

we even observe an unprecedented decline in consumption. Contrary to common

belief, however, a fall in asset prices had relatively little effect on consumption.

One might expect that the negative wealth effects depressed consumption after

the bubble burst in the early 1990s. Altogether, during the bubble period of 1986–

90, households enjoyed almost 1,200 trillion yen worth of capital gains on their

assets (200 trillion yen on stock, and 1000 trillion yen on land), but subsequently

suffered from the 400 trillion yen worth of capital losses during 1990–92. The

analysis of consumption by type of household reveals that capital losses on stock

did exert negative wealth effects on consumption of aged retirees and a portion

of the self-employed who were major stock owners. The share of these types of

households, however, is only 12 percent.

The major capital gains and subsequent losses accrued on land. As one would

expect, most land is indivisibly related to housing. Therefore, to the extent that

housing service and other consumables are weak substitutes, and land and hous-

ing are indivisible, it is not irrational that sizable capital gains and losses on land

allowed most households to keep their houses and their consumption intact.

Capital gains and losses on stock and land affected household consumption only

marginally. Bayoumi (1999) using VARs finds that the effects of land prices on

output largely disappears once bank lending is added as an explanatory variable,

and concludes that the “pure” wealth effects were quite limited.

Among the factors to explain unprecedentedly depressed consumption is

job insecurity. It is well known that the unemployment rate in Japan had been

very low by international standards. During the 1980s when the unemployment

rate reached 10 percent in many EU countries, it remained 2 percent in Japan.

The unemployment rate had been traditionally low in Japan for several reasons.

Thanks to bonus payments and the synchronized economy-wide wage settle-

ments called the Shunto (Spring Offense), wages in Japan were believed to be

more flexible than in other countries.4 Besides, the necessary adjustment of la-

bor was once done through changes in working hours per worker rather than

changes in the number of workers. On the supply side, cyclical fluctuations in

the labor force participation rate were large; in recessions, the “marginal” (typ-

ically female) workers who had lost jobs often got out of the labor force rather

than remain in the labor force and keep searching for jobs. These factors once

3 For the 1991–94 recession, we must refer to normal stock adjustment after the long boom during

the bubble period. And for the 1997–98 recession, the credit crunch played the major role. However,

we need to explain why investment stagnated for such a long period on average. When demand

grows, investment also grows. And if demand stagnates, so does investment. We must, therefore,

explain the long stagnation of demand. An answer to this question will be given in Chapter 8,

which discusses economic growth.
4 Taylor (1989), for example, emphasizes the role of Shunto for wage flexibility in Japan.
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kept the unemployment rate from rising.5 Even during the 1992–94 recession,

the unemployment rate, though rising, did not reach 3 percent.

The long stagnation during the 1990s, however, had thoroughly changed

the structure of the Japanese labor market. Most important, with the slogan

of “restructuring,” firms were now ready to discharge workers. The number of

involuntary job losers had more than tripled between 1992 and 1999. In 1999,

the unemployment rate in Japan finally became higher than the U.S. counterpart;

nobody had expected that would ever happen.

In the autumn of 1997, big financial institutions such as the Hokkaido

Takushoku Bank and the Yamaichi Security went into bankruptcy. These events

made an unmistakable announcement that the celebrated lifetime employment

in Japan was over. Understandably, job insecurity depressed consumption.6 In

1998, consumption actually fell. In summary, households faced an unprecedented

rise in uncertainty which depressed consumption during the late 1990s.

From another angle, McKinnon and Ohno (1997) attribute the stagnation of

the Japanese economy to the appreciation of the yen.7 However, the appreciation

of the yen from 240 per dollar (1985) to 120 (1988) was actually caused by

high productivity growth in the Japanese export sector, and broadly followed the

purchasing power parity (PPP) with respect to tradables (see Yoshikawa, 1990).

Thus, it is not plausible to regard the appreciation of the yen as the major cause

for the long stagnation of the Japanese economy. In fact, as shown in Table 4.1,

exports had been the most stable component of GDP throughout the 1990s except

for 1998 when the Asian financial crisis rather than the appreciation of the yen

hindered exports.

5 For details, see Yoshikawa (1995), Chapter 5.
6 Nakagawa (1999) demonstrates that uncertainly surrounding the public pension system also de-

pressed consumption.
7 McKinnon and Ohno (1997) advanced the argument that what they called “fears of ever higher

yen” was the fundamental cause of the long stagnation of the Japanese economy, and that the

introduction of the adjustable peg was the key solution. Their argument rests on the premise that

fluctuations of the exchange rates was the basic cause of the troubles. They even attribute the fall in

the growth rate in the early 1970s to the end of the Bretton Woods system and the introduction of

flexible exchange rates. However, at least for the Japanese economy, the contribution of net exports,

which are naturally most significantly affected by exchange rates, to growth was much higher in

the 1970s and 80s when exchange rates were flexible than in the 1950s and 60s when the exchange

rate was fixed (Yoshikawa, 1995, Chapter 2).

McKinnon and Ohno emphasize a possibility of misalignments (deviations from the PPP) un-

der the flexible exchange rate regime. The misalignment does occur. However, for the Japanese

economy, the most important misalignment was the overvaluation of the dollar or the underval-

uation of the yen under the Reagan Administration in the 1980s. This misalignment is, therefore,

not consistent with “fears of ever higher yen.”

Finally, they argue that responding to the appreciation of the yen, the Bank of Japan initially

eases money, but is, in the medium run, prone to tighten money to produce deflation. This simply

contradicts the facts. The Bank of Japan provides easy money responding to the yen appreciation

not only in the short run but also in the medium run.
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In conclusion, the key variables for understanding the long stagnation are

corporate investment, and to lesser extent, consumption. We now focus on

investment.

Monetary Policy and Investment

Monetary policy is often said to be responsible for the asset price bubbles during

the late 1980s, and the subsequent long stagnation during the 1990s. According

to this view, during the 80s, low interest rates produced the asset price bubbles,

and high land prices, in turn, allowed the liquidity constrained firms to make

excessive investment by way of an increase in the collateral values. For the same

reason, but now in the opposite direction, the collapse of the asset market entailed

the stagnation of investment during the 1990s.

Though the “standard” view contains a bit of truth, it does not actually stand

up to careful analyses. There are a number of studies that demonstrate a signifi-

cant relationship between real variables such as investment and real GDP on the

one hand, and asset prices, land prices in particular, on the other. Because asset

prices and GDP went up and down in tandem, these findings are not surprising.

The problem is interpretation of causality. Most of such analyses interpret their

findings as indicating that changes in asset prices affected investment of finan-

cially constrained firms by way of changes in their collateral values. Ogawa and

Suzuki (1998), for example, find land prices significant in their investment func-

tions, and conclude that financial constraints were significant. Bayoumi (1999)

also finds in his vector autoregressions (VARs) that land price changes were an

important factor behind the rise in the output gap over the bubble period and

the subsequent decline.8

However, this is not exactly what happened in Japan during the late 1980s

and 90s. During the bubble period, it was believed (falsely, in retrospect) that

land-intensive sectors such as holiday resorts and office spaces in Tokyo would

command high profits in the near future. These (false) expectations made land

prices explode, and at the same time induced firms to make land-intensive in-

vestment. Firms purchased land with money borrowed from banks, and banks,

based on their expectations of higher land prices in the future, often allowed

more than 100 percent (!) collateral values for land which firms just purchased.

Therefore, theoretically, firms could borrow money from banks without any col-

lateral in advance to purchase land. This is different from the standard story

explained above, according to which an increase in the price of land which firms

had owned in advance made it possible for the liquidity constrained firms to

borrow more money to make investment. In fact, the ultimate cause of both a

rise in land prices and an extraordinary surge in land-intensive investment was

false expectations on future profitability of holiday resorts and office spaces in

8 Kiyotaki and Moore (1997) offer a theoretical model that suggests that kind of interpretation.
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Table 4.2. Interest Rates (percent)

(1) (2) (3) (4) (5)

Call rate 10-Year Long Term Private

government lending premium risk premium:

bonds rate (2)−(1) (3)−(2)

1990 7.4 6.8 8.1 −0.6 1.3

1991 7.5 5.8 6.9 −1.7 1.1

1992 4.7 4.8 5.5 0.1 0.7

1993 3.1 3.5 3.5 0.4 0.0

1994 2.2 4.6 4.9 2.4 0.3

1995 1.2 2.9 2.6 1.7 −0.3

1996 0.5 2.8 2.5 2.3 −0.3

1997 0.5 2.0 2.3 1.5 0.3

1998 0.3 1.0 2.2 0.7 1.2

1999 0.03 1.8 2.3 1.8 0.5

Tokyo. Based on such false expectations, the g (x) function shifted to the right

meaning that more firms became “bulls” in our model.

After the bubbles burst, the asset prices collapsed, and at the same time

investment also fell. However, it is once again not self-evident that this fact

suggests that a fall in the asset prices cut investment by way of a fall in the

firms’ collateral values. For example, investment of large firms and small firms

fell during the 1992–94 recession roughly in the same magnitudes. Large firms

do not finance their investment by borrowing from banks but rather by is-

suing bonds, and new equities in capital market. They are not financially

constrained, and, therefore, the collateral story does not hold true for large

firms at the outset. And yet, small firms and large firms cut their investment.

Thus, the popular collateral story is doubtful; Meltzer (2001) and Hayashi and

Prescott (2002) also express skeptical views against the significance of financial

constraints.

Whatever the reasons, investment stagnated. Monetary policy responded to

the stagnation of the economy. Table 4.2 shows the record of monetary policy

during the period. The BOJ cut the discount rate from 6.0 percent to 5.5 percent

in July 1991. Through five successive cuts within a year, it had fallen to 3.25 per-

cent by July 1992.

Despite the further cuts in the interest rates during 1993–94, the economy

hardly revived. The annual growth rate of money supply (M2 + CD) which was

12 percent in 1990, had fallen to zero by 1992. Because a sharp decline in bank

lending was responsible for this fall in money growth, the problem was why this

sharp decline in bank lending occurred. Bayoumi (1999) interprets his finding

that bank lending is more important than land price itself in explaining output

gap as supporting the financial disintermediation hypotheses. He argues that
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“undercapitalized banks responded to falling asset prices and other balance sheet

pressures by restraining lending to maintain capital adequacy standards.” Some

Japanese economists also suggested the same, and argued that the credit crunch

was responsible for the weak investment. However, as shown in Table 4.2, dur-

ing 1991–93, the interest rates kept declining. If the credit crunch occurred the

interest rate would have risen. Thus, it appears that the major cause of a sharp

decline in bank lending during 1991–93 was a downward shift of demand curve

(a fall in demand for bank lending) rather than an upward shift of supply curve

(the credit crunch or a cut in supply of bank lending). Indeed, responding to suc-

cessive cuts in the call rate, the diffusion index of “Lending Attitude of Financial

Institutions” of the BOJ Tankan (Short-term Economic Survey of Corporations)

improved during 1992–95 (Figure 4.7). Gibson (1995) also concludes that al-

though a firm’s investment is sensitive to the financial health of its main bank,

the effect of the problems in the banking sector on aggregate investment during

1991–92 was small. The private risk premium, defined as the difference between

the long lending rate and the ten-year government bond rate, also declined dur-

ing the period (Column (5) of Table 4.2). In summary, the effects of a fall in land

prices and consequent bad loans on bank lending were not significant during the

1992/94 recession. By looking at bank-level data, Woo (1999) draws the same

conclusion.

Meanwhile, a fall in stock prices created a serious problem for the Japanese

banks to meet the BIS capital adequacy standards. The new legislation in April

1996 allowed the authority to step in a bank likely to fail to meet the BIS re-

quirement. This new policy regime was to start in April 1998. In March 1997, the

Ministry of Finance (MOF) made clear the new capital adequacy requirements.

Unfortunately, this basically correct policy action was taken at the worst timing.

Desperate to raise the capital/asset ratio within a short period of time, banks

squeezed their assets by cutting lendings. In the autumn, the bankruptcy of big

financial institutions such as the Yamaichi Security and the Hokkaido Takushoku

Bank triggered the real credit crunch. Figure 4.7 shows that the Tankan DI of

lending attitude of banks abruptly worsened during this period despite of the

BOJ’s efforts to ease money. Note that the Tankan DI of lending attitude of banks

normally deteriorates at the time of tight money whereas it improves at the time

of easy money.

What was the impact of this credit crunch? Motonishi and Yoshikawa (1999)

assess the macroeconomic magnitude of the credit crunch by estimating invest-

ment functions separately for large/small firms in both the manufacturing/non-

manufacturing sectors. The explanatory variables are from the BOJ’s Tankan,

which has the diffusion indices for business conditions and for credit constraints

facing firms as shown in Figure 4.7. As one might expect, they find that credit

constraints are not significant for investment of large firms, but are significant

for small firms, particularly in the nonmanufacturing sector. They conclude that
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Figure 4.7. Lending Attitude of Financial Institutions.
Source: Bank of Japan,“Tankan short-term Economic Survey of Enterprises in Japan.”

the credit crunch, by way of depressing investment of financially constrained

firms, lowered the growth rate of real GDP by 1.3 percent during 1997–98.9

We maintain that the credit crunch not only depressed investment of finan-

cially constrained firms but also significantly raised the degree of uncertainty

in the economy as a whole. Arguably, the economy was now caught in “uncer-

tainty trap”; β became very low. Amid the credit crunch, the BOJ was forced to

lower interest rates further. The call rate became 0.3 percent in 1998, and finally

0.03 percent in 1999. With transaction costs, 0.03 percent effectively means zero

interest rate, the absolute minimum for nominal interest rate.

Liquidity Trap and Inflation Targeting

At the zero interest rate bound, the BOJ apparently lost the instrument for tradi-

tional monetary policy. The “liquidity trap” (Keynes, 1936)10 was once considered

a mere theoretical possibility. However, amid the long stagnation, Japan literally

faced this problem. When the short-term policy rate is at zero, the conventional

means of effecting monetary ease is no longer feasible. Economists then started

discussing how monetary policy could possibly affect the economy with zero

interest rate. Krugman (1998) was one of the first economists who proposed an

alternative policy. His model lays the basis for subsequent theoretical refinements

9 Their analysis takes into account only fixed investment, but two thirds of bank lendings is for

running costs and inventory investment rather than fixed investment. We can, therefore, reasonably

argue that, at the minimum, the credit crunch accounts for one half of the – 2.5 percent growth of

real GDP in 1998, the worst record in the postwar Japan.
10 The concept of the “liquidity trap” was advanced by Keynes (1936) in his General Theory. However,

the term “liquidity trap” is not his. It is found neither in General Theory, nor in the index for his

30-Volume Collected Works! Instead, the term “liquidity trap” can be found in Robertson (1940)

“Mr. Keynes and the Rate of Interest,” which is based on his lectures delivered at the London School

of Economics in 1939.
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and debates. We examine his analysis in detail because it represents the standard

approach in macroeconomics; specifically, it ignores the effects of uncertainty,

β, on the economy.

In Krugman’s model, the representative consumer (!) maximizes the dis-

counted utility sum:

V = 1

1 − ρ

∞∑
t=1

C
1−ρ
t Dt . (4.33)

Here, the inverse of ρ is the elasticity of intertemporal substitution of con-

sumption, Ct , and D is the discount factor (0 < D < 1). With the cash-in-

advance assumption, the following inequality must hold in each period:

P C ≤ M (4.34)

where M is the stock of money, and P is the price level.

The assumption is made that all the periods beginning with the second on-

ward are in equilibrium. In equilibrium, both output, Y and C are equal to Y ∗,
the exogenously given “full-employment” GDP. Money supply is M∗. Thus the

price level in equilibrium, P ∗, is determined by

P ∗ = M∗/Y ∗. (4.35)

As a result of the consumer’s utility maximization, the interest rate i∗ is equal to

(1 − D)/D.

On this assumption of stationary equilibrium, all the periods beginning with

the second onward are conveniently condensed into the future, and the model

boils down to the two-period model with the “present” (no asterisk) and the “fu-

ture” (with asterisk). As we have seen, the “future” is “normal” in that C ∗ is equal

to Y ∗ and the interest rate is positive. We must also note that the simple quantity

equation (4.35) holds so that in the future, the price level P ∗ is proportionately

determined by the money supply M∗.

The consumer’s utility maximization leads us to the Euler equation:(
C

C ∗

)−ρ

= D(1 + i)

(
P

P ∗

)
. (4.36)

Since we have C = Y and C ∗ = Y ∗, we can rewrite (36) as follows:

1 + i =
(

1

D

) (
P ∗

P

) (
Y ∗

Y

)ρ

. (4.37)

Introduce the following definitions:

δ = (1 − D)/D (The subjective discount rate)

� = (P ∗ − P )/P (Inflation)

g = (Y ∗ − Y )/Y (Growth rate),
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and we obtain

i = δ + � + ρg . (4.38)

The real interest rate r is

r = i − � = δ + ρg . (4.39)

When the present economy is not caught in the liquidity trap (i > 0), the

quantity equation holds:

M = P Y. (4.40)

In this case, given the future Y ∗, P ∗, M∗, and the present M, two equations (4.37)

and (4.40) determine the state of the present economy. When the price level P

and the nominal interest rate i are freely determined, the full employment is

possible. In this case, Y is equal to Y f . Here, Y f is the full employment Y in the

current period. It may be different from Y ∗.

When the nominal interest rate i becomes zero, the story gets complicated.

First of all, the cash-in-advance constraints (4.34) no longer hold as equality;

only the strict inequality constraint holds:

P C = P Y < M. (4.41)

The crucial link between the price level P and money supply M is broken.

However, the Euler equation (4.37) still holds. Thus, in the case of the liquidity

trap (i = 0), the price level is equal to

P =
(

P ∗

D

) (
Y ∗

Y

)ρ

. (4.42)

This equation shows that even if the economy is caught in the liquidity trap (i =
0), flexible prices can still bring about the full employment (Y = Y f ). Specifically,

for Y to be equal to the full employment GDP, Y f , the price level must be equal

to P f :

P f =
(

P ∗

D

) (
Y ∗

Y f

)ρ

.

The trouble occurs when the current P is sticky. Suppose that P is equal to

the exogenously given level, P̄ , which is different from P f . Then, from (4.42)

we know that Y is equal to

Y =
(

P ∗

P̄ D

) 1
ρ

Y ∗.

In general, Y determined this way may be smaller than Y f :

Y < Y f .



P1: JZZ

0521831067c04.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:21

4.3. The Japanese Economy during the 1990s – A Case Study 115

Because the link between M and P is broken in the liquidity trap (inequality

(4.41)), an increase in M does not help. However, the future economy is not

caught in the liquidity trap! And there the quantity equation nicely holds (equa-

tion (4.35)). Thus, all the BOJ must do is just to persuade the public that M∗ will

increase enough to raise P ∗ up to P ∗∗ so as to achieve Y f in the current period.

The level of future money supply M∗∗ that can achieve P ∗∗ is given by

M∗∗ = P̄ DY ∗(1−ρ)Y
ρ

f .

Note that the point of this policy is for central bank (the BOJ) to credibly

commit to looser monetary policy in the future. As Krugman (1998) puts it,

the central bank must “credibly promise to be irresponsible.” Surely, toward this

goal, the BOJ would have to increase the current money supply, M. It is necessary

because an increase in money supply at present can be a strong message, if not the

only message, that the BOJ will keep increasing money supply M∗ in the future.

In the Krugman model, the future is not caught in the liquidity trap, and the

quantity equation nicely holds. Thus, an increase in M∗ in the future is bound to

raise P ∗ if the public really believes that M∗ will increase. The expected inflation

created this way can get the economy out of liquidity trap by way of lowering the

real interest rate.

This is the theoretical basis for Krugman’s proposal of inflation targeting.

Following Krugman’s lead, many economists made similar but slightly different

policy recommendations. An array of proposals include announcing a price-

level target path, reducing long-term interest rates via commitment to keep the

short rate zero for a substantial periods in the future, depreciating the currency

by foreign exchange interventions, introducing negative interest on currency

(Gessell’s solution), and finally, a policy of combining a price level target path,

a currency depreciation and a crawling peg and an exit strategy that makes up

Svensson’s (2003) “Foolproof Way” to escape from liquidity trap.

These are all different policies, of course. However, none of them including the

original Krugman model considers uncertainty and the combinatorial aspect we

explained in the previous section. For our purpose here, the technical differences

of various theoretical models and policy recommendations are secondary; all the

proposed policies boil down to a shift of the g (x) function in our analysis in

the second section. Therefore, it is enough to consider the efficacy of Krugman’s

policy recommendation.

In the Krugman’s model, inflationary expectations by way of reducing real

interest rate stimulate demand. Here, demand is assumed to be interest elas-

tic, of course. However, interest elasticity depends on the degree of uncertainty.

Our analysis in the second section has shown that greater uncertainty makes the

interest elasticity small.11 All the policy recommendations for overcoming the

11 Dixit and Pindyck (1994) convincingly argue that uncertainty by way of increasing the option value

lowers the interest elasticity of irreversible investment. Specifically, they show that a reduction in
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liquidity trap and deflation rests on the premise that interest elasticity is high.

For example, in Krugman’s model, the Euler equation (4.36) gives us 1/ρ as the

interest elasticity of expenditures. Many economists believe this kind of analysis

provides sound microeconomic foundations for macroeconomic policy recom-

mendations. However, it does not actually provide us with any foundations to

the extent that the analysis abstracts itself from uncertainty. And the most diffi-

cult problem the economy faces in the liquidity trap and deflation is uncertainty.

Uncertainty makes the interest elasticity small.

Indeed, in the Japanese economy during the 1990s, particularly after the

credit crunch in 1997–98, a major problem facing monetary policy was low in-

terest elasticity of demand. Based on the interest elasticity for the U.S. economy,

Krugman suggests that to fill the 5 percent GDP gap, the 3–3.75 percent inflation-

ary expectations would be enough. However, with low interest elasticity which

appears to have held for the Japanese economy during the 1990s, the necessary

expected inflation would have been easily become as high as 30 percent!

Beyond that, in Krugman’s model, the “future” is not in a liquidity trap, and

the simple quantity theory of money is assumed to hold in the future; price

is proportional to money supply in the future. Thus, in theory it is easy for

the central bank to generate the expected inflation despite the absence of the

current actual inflation. The only thing the central bank must do is to persuade

the public now to believe that money supply will increase enough to generate

inflation in the future. However, in reality, the most important factor determining

the expected inflation is the current actual inflation. Whatever the policy actions

of the central bank, who would believe in inflation so easily in the economy

actually facing deflation? As long as we believe in the Phillips curve wisdom,

namely the story that only high pressure in the real economy produces inflation,

then we are likely to be caught by the Catch 22 in our effort to cure recession by

generating inflationary expectations.12

A large increase in the supply of money coupled with inflation targeting was

such a popular solution to the problems facing the Japanese economy around the

the real interest rate makes the future more important to the present, but this increases not only

the present value of the stream of profits, but also the value of waiting (the ability to reduce or

avoid the prospect of future losses). The net effect is weak and sometimes even ambiguous. In other

words, greater uncertainty lowers the interest elasticity. Their analysis pertains to the behavior of

individual firm or consumer. Our analysis is for the economy as a whole.
12 Blanchard (2000, 190–93) states that “the Phillips curve wisdom remains largely true in modern

treatments of the determination of prices, wages, and output: If output is above its natural level,

then we are likely to see inflation increase.” And yet, he is very optimistic in that the BOJ can easily

generate inflationary expectations to lower the real interest rate; “All that is needed is to convince

markets that money growth will be cumulatively higher over the next 10 years by 20 percent.” He

notes that monetary policy affects long-term interest rates “mostly – entirely? – through its effects

on expectations,” and continues that “the only thing specific to Japan today is that emphasis is not

on changes in future expected nominal interest rates, but on the expected future price level. This

is not an essential difference.” There is an essential difference in the role of expectations in the

determination of prices in goods and financial markets, however.
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year 2000. Proponents were, among others, Krugman (1998), Bernanke (2000),

Blanchard (2000), Rogoff (2002), Eggertsson and Woodford (2003), Bernanke,

Reinhart, and Sack (2004), and Auerbach and Obstfeld (2005).

In some circumstances, inflation targeting may be indeed a useful framework

to conduct monetary policy. A number of central banks have already adopted

inflation targeting which, in some cases, is said to be instrumental in reducing

inflation (see Bernanke and Woodford, 2005). Having acknowledged that, we

question the efficacy of inflation targeting as a remedy for deflation in the liquidity

trapped economy. The point is that in the liquidity trapped economy such as

Japan during the late 1990s, the fundamental problem may not have been really

deflation and the zero interest rate per se, but great uncertainty. We have shown

that such uncertainty reduces (interest) elasticity, theoretically to zero in the

limit. This makes all the policy proposals in the existing literature for generating

inflationary expectations ineffective.

Not only ineffective, such policies may well contribute toward mounting

uncertainty. That is, central bank “credibly promising to be irresponsible” may

confuse the public, and actually prolong the uncertainty trap rather than rescuing

the economy from the liquidity trap. King (2004) makes an important point that

in some circumstances, expectations of monetary decisions within a given policy

regime may be less important than expectations of changes in the regime itself,

and, therefore, ordinary policy may not work.13 Our analysis has shown that the

“Enemy Number One” in the uncertainty trap is not deflation or zero interest rate

per se, but low (interest) elasticity and the ensuing policy ineffectiveness. Despite

all the technical sophistications, the policy proposals for generating inflation-

ary expectations miss the essential point. The apparently impeccable inflation

targeting will not work in the economy facing great uncertainty. This demon-

strates the limits of standard macroeconomic analysis, which abstracts itself from

uncertainty and the combinatorial problem arising in the macroeconomy.

Some Suggestive Evidence

Before we conclude this chapter, we provide some evidence to suggest that the

degree of uncertainty has, in fact, risen in the Japanese economy during the

1990s. We have already referred to job insecurity facing households. Deflation

was also a wholly new experience to both households and firms. Arguably, the

13 As an example of such a case, King (2004) shows that interest rate policy did not work to defend

exchange rates under the target zone regime in Brazil (1998–99) and the U.K. (1992).

In the literature on target zones for exchange rates, it is assumed that raising interest rates is a

successful method for supporting the exchange rate because of uncovered interest parity. But this

ignores the possibility that raising interest rates to defend a fixed-exchange-rate regime will simply

call into question the durability of the regime itself and raise the probability that the peg or target

zone will be abandoned. In such circumstances an increase in interest rates may lead to a fall in the

exchange rate (King, 2004, 6).
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Figure 4.8. CV of Growth Rate of GDP for Japan and United States.
Note: CV= Standard deviation / Mean of quarterly GDP growth rates over the past 5 years.

credit crunch in 1997–98 pushed the economy into uncertainty trap. Having

noted that such factors largely contributed to mounting uncertainty, we present

some quantitative evidence.

GDP is, of course, the most important macroeconomic variable, and is ex-

pected to significantly affect the economic perception of agents. We measure the

degree of uncertainty using the GDP growth rates. Figure 4.8 shows the coeffi-

cient of variation (standard deviation divided by mean) of the quarterly GDP

growth rates for 5 years (20 quarters). For the sake of comparison, we also show

it for the United States. We observe that the coefficient of variation has, in fact,

risen extraordinarily in Japan during the 1990s, especially in the latter half.

We also estimate AR(2) for quarterly GDP by applying the rolling regression.

Uncertainty is now measured by the standard error of regressions (SER). Specif-

ically, we estimate the following equation for the sample period (1961:1–2001:1)

� ln Yt = α0 + α1� ln Yt−1 + α2� ln Yt−2 + ut,

where Yt is real GDP (quarterly, seasonally adjusted). Figure 4.9 shows the rolling

SER divided by the mean. Again, a glance at Figure 4.9 reveals that SER/Mean

has risen extraordinarily in Japan during the 1990s.

Note that in Chapter 3, we show that the inverse ofβ in the model corresponds

to the variance of the variable in question. Figures 4.8 and 4.9 suggest that the

degree of uncertainty has, in fact, risen in the Japanese economy. Finally, we also

note the fact that the amount of cash held by the public had doubled from 35

trillion yen in 1994 to 70 trillion yen by 2001. Even the bank deposits were not

taken as safe. It indicates extreme risk perceived by the public, and is consistent

with Figures 4.8 and 4.9.
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Figure 4.9. SER/Mean of GDP Growth Rate for Japan and United States.
Note: SER = Standard Error of Regression of AR(2) (estimated over the past 5 years) of real GDP
growth rate.

4.4. Concluding Remarks

The standard analysis in macroeconomics begins with micreconomic experiment

on the assumption of the representative agent. Suppose, for example, that the

authority cut the interest rate, or that facing the liquidity trap, it succeeded in gen-

erating inflationary expectations. In both cases, the real interest rate is reduced.

For the representative household or firm, a lower real interest rate would raise the

optimal level of investment and some other expenditures. Translating this result

to macroeconomic analysis, the standard analysis concludes that ceteris paribus,

aggregate demand increases. This kind of analysis is taken by most economists

and policy makers as giving sound guidance to macroeconomic policies.

This holds true so long as the degree of uncertainty facing the economy

is low. However, when the degree of uncertainty becomes significant, we must

depart from the representative agent assumption, and seriously consider that the

macroeconomy consists of a large number of economic agents. In this case, a

stochastic approach is necessary. The combinatorial aspect of the system plays

a crucial role in the analysis of any system, either physical or social, consisting

of a large number of entities. The standard economic analysis entirely ignores

it. In this chapter, we have shown that it has, in fact, important implications

for macroeconomics. Specifically, the effectiveness of policy necessarily weakens

as the degree of uncertainty rises. We can call this problem uncertainty trap.

Whether or not the economy is caught in such uncertainty trap distinguishes a

“depression” from a normal cyclical “recession.”

Once the economy falls into this uncertainty trap, textbook macroeconomic

policies including monetary policy, which correspond to a change in the g (x)

function in the model, become ineffective. We considered Japan’s long stagnation

during the 1990s as a case study. Many economists argued that the BOJ facing
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the zero nominal interest rate can still lower the real interest by generating in-

flationary expectations (Krugman, 1998; Bernanke, 2000; Blanchard, 2000). In

our model, their proposed policies change the g (x) function, and induce more

economic agents to find a shift from “bear” to “bull” advantageous. When un-

certainty is insignificant, or the minimum of the potential function is almost

equivalent to the zero of the g (x) function, this certainly helps. It is a normal sit-

uation. However, when the degree of uncertainty rises, the combinatorial aspect

cannot be ignored, and policies that are effective in normal circumstances do not

help. We have provided some suggestive evidences indicating that the degree of

uncertainty has, in fact, risen in Japan during the 1990s.

Tobin (1975), in his article “Keynesian models of recession and depression,”

suggests that “the system might be stable for small deviations from its equilibrium

but unstable for large shocks.” The same point was also made by Fisher (1933).

In our analysis, uncertainty plays the key role. When uncertainty is insignifi-

cant, the economy fluctuates around the (unique) “natural” equilibrium, and

macroeconomic policies are effective. However, when the degree of uncertainty

rises above a critical level, the economy may be trapped, and standard policies

become ineffective.
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Slow Dynamics of Macro System: No Mystery

of Inflexible Prices

The standard approach such as RBC is based on the premise that the micro-

economic behavior of the optimizing agent mimics dynamics of the macroecon-

omy. In Chapter 1, we explain that this premise is incorrect, and that the macro

and micro behaviors are fundamentally different.

In this chapter, we focus on a particular aspect of the macroeconomy, namely

the speed of adjustment. The premise of the standard approach is that rational

economic agents must respond quickly to any change in economic environment.

And it is taken for granted that this micro behavior should translate itself into the

macroeconomy. Thus, one expects that the speed of adjustment in the economy

as a whole is also fast in normal conditions. In this way, the standard approach

does not make any distinction between the speed of adjustment of micro agents

and that of the macroeconomy.

Let us take up prices as an example. Since the publication of Keynes’s Gen-

eral Theory (1936), “inflexibile” or “rigid” prices have been always a focal point

of macroeconomics. Modigliani (1944), one of the first economists, coined the

proposition that what distinguishes Keynesian economics from neoclassical eco-

nomics is the assumption of inflexible prices (to be precise, rigid nominal wages

in his case).

Many economists take inflexibility of prices as a sign of irrationality. Aside

from monopoly power or institutional barriers such as regulations, healthy mar-

ket forces should make prices flexible. In this chapter, we will explain that slow

changes in prices are a necessity in the macroeconomy. Slow dynamics is not

confined to prices. It is, in fact, a generic property of any complex macro system.

To explain why the behavior of the macroeconomy is “sluggish,” this chap-

ter first introduces the notion of “tree” and ultrametrics. The macroeconomy is

composed of many agents or sectors of different types. It is organized into hier-

archical layers, and has a tree structure in which leaves of trees are basic clusters

of agents. We show in Section 5.1 that the dynamics of a large system which has

such a structure is necessarily sluggish. The macroeconomy is a typical example.

121
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In Section 5.2, we apply the analysis explained in Section 5.1 to the dynamics

of prices. We show that given input–output structure of the macroeconomy, there

is no mystery in sluggish behavior of prices.

In Section 5.3, we give another explanatian why slow dynamics arises in the

macroeconomy. In the standard approach, it is taken for granted that a rational

economic agent can swiftly find and move to his first-best or global optimum. This

assumption may hold true, as a first approximation, for a well-organized financial

market. That there should be no room for arbitrage in efficient market is a cliché.

As we explained in Chapter 3, even in such well-organized financial markets, there

may be always a room for “arbitrage.” Whatever the case for financial markets,

in “real” economic activities, agents always face much more complex decision-

making problems. Often the problem is not given in advance. To identify the

problem is, in fact, an important part of economic activity. Trials and errors then

become a source of slow dynamics. Section 5.3 formalizes this idea.

5.1. Tree Models for Spillover of Exogenous Shocks

In a large system, it is usually the case that exogenous disturbances are initially

confined to a sector or cluster, and then gradually propagate throughout the

system. This holds true not only for micro shocks, but also for what are normally

taken as macro shocks. For example, changes in money supply or oil price are

expected to have significant effects on the economy as a whole. However, the initial

impacts may be confined to a small number of sectors. Eventually those shocks

affect the economy as a whole. In this section, we analyze how the probabilities

of such disturbances propagate over time. We also discuss the notion of average

distance travelled by disturbances throughout the system over time. For these

purposes, we can usefully introduce the notion of a tree structure into our model.

Although we routinely analyze multisector models, we always treat sectors or

clusters all on equal footing. That is, we do not usually introduce any notion of

similarity, correlations, or distances between sectors or clusters. Typically, sectors

or industries are simply indexed by i (i = 1, . . . , n). This tacitly assumes that the

distance between any two sectors is the same.1 To our knowledge, no model with

a formal notion of distances among different groups of agents/sectors apparently

exists.

For some purposes, it is actually reasonable to introduce the notion of distance

between sectors or clusters. For example, one might argue that machinery indus-

try is closer to the iron/steel industry than to agriculture. Leontief ’s input–output

analysis formalizes this idea in a particular way. Magnitudes and speeds with

which disturbances originating in one sector spread through the macroeconomy

1 In some models, agents are assumed to be located at sites of regularly spaced lattices. In such

models, agents in nearest lattice sites are assumed to interact in a very crude analogy with Ising

models in the ferromagnetics literature in physics.
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need be analyzed on such a notion of distance between clusters or sectors. A tree

model provides an appropriate measure of distance between sectors or clusters.

Before we explain the tree model, we briefly examine a traditional measure of

strength of relationship between two variables, namely correlation. The correla-

tion, though popular, is not transitive. This fact has been known in the numerical

taxonomy literature. Feigelman and Ioffe (1991), for example, have a simple ex-

ample of three patterns: A = (1, 1, 1, 1), B = (1, 1, −1, 1), and C = (1, 1, 1, −1).

Calculating correlations by ρ = (1/4)
∑

i xi yi where x ’s and y’s are the compo-

nents of the patterns above, we see that ρA,B = ρA,C = 1/2 but ρB,C = 0. To

avoid this intransitivity of correlation as a measure of similarity of patterns, we

use the notion of ultrametric or tree distance as a measure of distance between

sectors or clusters of agents.

Definition (Ultrametric Distance): Ultrametric distance denoted as d(i, j ) sat-

isfies the following conditions:

1. d(i, j ) ≥ 0 for any i, j, and d(i, j ) = 0 only if i = j.

2. d(i, j ) = d( j,i).

3. d(i, j ) ≤ maxk{d(i,k), d( j, k)}.

The concept of ultrametrics has been used in the literature of mathematics,

numerical taxonomy, and physics, especially in spin glass models. For these,

see Schikhof (1984), or Mézard, Parisi, and Virasoro (1986), among others.

Aoki (1996) has several elementary economic applications of the notion of

ultrametrics.

We introduce ultrametric or tree distance into the jump Markov process.

Specifically, we make transition rates between clusters or states depend on ultra-

metric distance between these clusters; the transition rate from state i to state j

is small when the ultrametric distance between states i and j is large. We demon-

strate that such hierarchical structure of clusters or states necessarily produces

slow adjustment. Furthermore, we make transition rates between clusters not

only functions of ultrametric distances, but also functions of what we call eco-

nomic temperature. As the economic temperature cools, transition rates become

smaller from a cluster to another at the same ultrametric distance. In Chapter

4, we have already shown that the aggregate demand plays the role of economic

temperature.

Trees

We use upside-down trees to represent hierarchical structures. Figure 5.1 is a

simple tree model with two levels or layers, and four clusters or leaves at the

bottom. An upside-down tree is commonly used in which the root is on top and

the leaves at the bottom of the hierarchy as shown. At the bottom of a tree we
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1                4  32

Figure 5.1. Two-level tree.

have leaves, where each leaf represents a state, an agent, or a cluster of agents

(sites). It could also be the price of a particular good, as the case may be. The

number of the leaves that share a common node of a tree is denoted by m. There

are m1 nodes on level 1 of the tree; they share the top node or the root of a tree.

There are then m2 nodes which branch out from a level 1 node at level two, and

so on. In general we have n levels in a tree. Altogether the number of agents,

states or sites is N = m1m2 · · · mn. Agents in the same cluster are alike in some

sense. They may be producers of some close substitutes or in the same industry.

Or they may represent a group of agents who have a similar reaction function

given a disturbance of some kind. The interpretation of cluster, state, or site is

flexible.

Without loss of generality, we can assume that an exogenous shock is initially

applied at site 1 at time zero. This shock is then transmitted to site i at time t

with probability �i (t). The initial condition is �1(0) = 1, and �i (0) = 0, i �= 1.

We can then calculate the time which it takes for �i (i �= 1) to be affected by the

initial shock to Site 1, �1.

We can also use another measure to gauge the speed with which disturbances

travel through the tree. We define the average distance travelled by the disturbance

by time t,

〈d(t)〉 =
∑

i

d(i, 1)�i (t)

where d(i, 1) is the ultrametric distance between site i and site 1, to be defined

shortly. 〈d(t)〉 indicates how far the disturbances have spread on the average

through the model.
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1 2 3  4

Figure 5.2. One-level tree.

Ultrametric Dynamics of Spillover Probabilities

We are now ready to explain dynamics of propagation of shocks on ultrametric

trees. To make our point clear, we compare a simple two-level tree model (Fig-

ure 5.1) to the simplest one-level tree model (Figure 5.2). Both models have four

sites, which correspond to the number of industries or agents. The difference is

that one has two levels whereas the other has only one level.

In the one-level model shown in Figure 5.2, all the sites are symmetric. This

one-level model corresponds to the standard model where industries or agents

are indexed simply by i (i = 1, . . . , n) with equal distance. In contrast, in the

two-level tree model shown in Figure 5.1, four sites are classified into two broad

groups. In this case, site 1 is closer to site 2 which belongs to the same group than

sites 3 and 4 which belong to a different group.

The dynamics of the tree model is described by the master equation explained

in Chapter 2. The probability that shocks are being felt at site i at time t, �i (t),

changes over time as the difference of the influx and outflux of probabilities.

Denote the transition rate between site i and j by w(i, j ). We assume

w(i, j ) = w( j, i) for all i and j. (5.1)

The master equation that describes the dynamics of the probabilities is

d�i (t)

dt
= Ii (t) − Oi (t). (5.2)

Here, the influx to site i , Ii (t) is

Ii (t) =
∑
j �=i

� j (t)w( j, i). (5.3)

Similarly, the outflow from site i , Oi (t), is

Oi (t) = �i (t)
∑
j �=i

w(i, j ). (5.4)

For the examples shown in Figures 5.1 and 5.2, we have

I1(t) = �2(t)w(2, 1) + �3(t)w(3, 1) + �4(t)w(4, 1), (5.5)
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and

O1(t) = �1(t)[w(1, 2) + w(1, 3) + w(1, 4)]. (5.6)

Now, the transition rate w(i, j ) is assumed to depend on two things. One is

the ultrametric distance between two sites, and the other is a positive parameter

Te called economic temperature. Because the ultrametric distance defined on the

tree in the abstract is based on some sense of distance between different sectors

in the economy, it is natural to assume that the transition rates w(i, j ) depend

inversely on the ultrametric distance between sectors i and j . For example, we

would expect that technical progress in IC will more directly affect TVs or cameras

than food. Then in this example of propagation of new technology, the distance

between IC and TV is shorter than that between IC and food. In addition to

the ultrametric distance between sectors i and j , all transition rates also depend

on the economic temperature. Lower temperature uniformly reduces transition

rates, and vice versa.

Two-level Tree. We first consider the two-level tree shown in Figure 5.1. The

ultrametric distance d(i, j ) is defined as the number of levels required to “climb

up” to reach a common node when one travels from site i to site j . Thus, in the

case shown in Figure 5.1, we have the following ultrametric distances:

d(1, 2) = d(3, 4) = 1

and

d(1, 3) = d(1, 4) = d(2, 3) = d(2, 4) = 2.

Because the transition rates w(i, j ) depends inversely on the ultrametric distance

d(i, j ), we can assume

w(1, 2) = w(3, 4) = q < 1,

and

w(1, 3) = w(1, 4) = q 2 < q .

where

q = e−1/Te < 1 and q 2 = e−2/Te .

Here, Te is economic temperature. Lower Te uniformly reduces all the tran-

sition rates. In Chapter 4, we explained that Te is positively related to the degree

of uncertainty in the economy. Note that because the distance between sites 1

and 2 is smaller than that between sites 1 and 3, we set w(1, 2) = q as larger than

w(1, 3) = q 2.

In this two-level tree model, the probability vector �(t) consists of probabil-

ities at the four leaves:

�(t) = [�1(t), �2(t), �3(t), �4(t)]′.
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The master equation is

d�(t)

dt
= W�(t), (5.7)

with

W =
[

W1 W2

W2 W1

]
.

Here, W1 and W2 are defined as

W1 =
[−(q + 2q 2) q

q −(q + 2q 2)

]
and W2 = q 2e2e ′

2

where

e2 = (1, 1)′.

This matrix W has eigenvalues 0, λ1 = −4q 2 < 0, and double repeated

eigenvalue λ2 = −2(q + q 2) < 0, with eigenvectors u0 = (1, 1, 1, 1)′, u1 =
(1, 1, −1, −1)′, u2 = (1, −1, 0, 0)′, and u′

2 = (0, 0, 1, −1)′, respectively.

Note that the magnitude of λ1 is less than that of λ2 because q is less than

one. The speed of dynamics associated with eigenvalue λ1 is faster than that as-

sociated with eigenvalue λ2. It represents the escape rate of probability from site

1 to site 2.

More explicitly, we have the solution of the master equation corresponding

to the initial condition �1(0) = 1, or the condition that an exogenous shock

initially occurs at site 1:

�(t) = 2−2u0 + 2−1eλ2t u2 + 2−2eλ1tu1. (5.8)

This equation is equivalent to

�1(t) = 1

4
+

(
1

4

)
eλ1t +

(
1

2

)
eλ2t,

�2(t) = 1

4
+

(
1

4

)
eλ1t −

(
1

2

)
eλ2t,

�3(t) = �4(t) = 1

4
−

(
1

4

)
eλ1t . (5.9)

Noting that e−4 = .02 and e−5 = 0.007, we see that after time t1 = 4/2(q +
q 2) ≈ 2/q , the term exp(λ2t) vanishes. After time t2 = 1/q 2 (t2 > t1), the term

exp(λ1t) also vanishes. It means that after time t2, all four probabilities have

approximately reached the equilibrium value of 1/4 per site. Note that after time

t1 the initial shock to site 1 spills over to site 2, while site 3 and 4 are approximately

still nearly untouched. After time t2 the initial shock has spread over all four sites

equally. In the two-level tree model, to reach the stationary state requires the length

of time of order t2 = 1/q 2.
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The average distance travelled by the initial shock 〈d(t)〉 also summarizes the

speed of spill-over.

〈d(t)〉 =
∑
j �=1

d(1, j )� j (t)

= �2(t) + 2[�3(t) + �4(t)]

= 1

4
+

(
1

4

)
eλ1t −

(
1

2

)
eλ2t + 4

[
1

4
−

(
1

4

)
eλ1t

]

= 5

4
−

(
3

4

)
eλ1t −

(
1

2

)
eλ2t . (5.10)

Note that 〈d(0)〉 = 0 and 〈d(∞)〉 = 5/4. The speed of spillover as measured

by the average distance traveled by the initial shock 〈d(t)〉, namely the speed

with which 〈d(t)〉 approaches its asymptotic value 5/4, is governed by dynamics

associated with the eigenvalues of the master equation, or equation (5.7).

One-level Tree. Next, we consider the one-level tree shown in Figure 5.2. In this

case, the master equation for the probability vector �(t) consists of probabilities

at the four leaves

d�(t)

dt
= W�(t), (5.11)

with

W =
[

W1 W2

W2 W1

]
.

Here, W1 and W2 are defined as

W1 =
(−3q q

q −3q

)
and W2 = qe2e ′

2

where

e2 = (1, 1)′.

This matrix W has eigenvalue 0 with eigenvector (1, 1, 1, 1)′, and triple repeated

eigenvalue −4q < 0 with three independent eigenvectors (1, 1, −1, −1)′,
(1, −1, 0, 0)′, and (0, 0, 1, −1)′.

The probabilities evolve with time according to

�1(t) = 1

4
+

(
3

4

)
e−4qt, (5.12)

and

�2(t) = �3(t) = �4(t) =
(

1

4

)
−

(
1

4

)
e−4qt . (5.13)
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Approximately after a time span of 1/q , the probabilities are all about 1/4.2 It takes

about this time span for the initial shock to propagate to all the sectors. Hence,

this is the time lag for the shock initiated at sector 1 to spread probabilistically

to all the other sectors. In the case of prices, this is the time required for the

economy-wide price index to fully reflect the price shock which originates in one

of its sectors.

The average distance traveled by the initial disturbance 〈d(t)〉 is as follows:

〈d(t)〉 =
∑
j �=1

d(1, j )� j (t) = �2(t) + �3(t) + �4(t) = 3

4
−

(
3

4

)
e−4qt .

(5.14)

Note that 〈d(0)〉 = 0, and 〈d(∞)〉 = 3/4. Comparing this 〈d(∞)〉 = 3/4 for the

one-level tree with 〈d(∞)〉 = 5/4 for the two-level tree, we can formally show

that the distance traveled is less with the one-level tree than with the two-level

tree as we should expect.

To compare dynamic behavior of two models, one the two-level tree model

shown in Figure 5.1, and the other the one-level tree model shown in Figure

5.2, we can aggregate the tree by defining a two-dimensional state vector with

components

S1(t) = �1(t) + �2(t), (5.15)

and

S2(t) = �3(t) + �4(t), (5.16)

by defining

Q(t) = S�(t), (5.17)

where the aggregation matrix S is given by

S =
[

1 1 0 0

0 0 1 1

]
.

The master equation for this aggregated vector Q(t) is

d Q

dt
= V Q(t) (5.18)

where V is given by

V = SWS ′(S S ′)−1.

V has eigenvalues 0 and −4q 2.

The vector Q(t) has two components 0.5 + 0.5e−4q 2t , and 0.5 − 0.5e−4q 2t .

To summarize, dynamics of Figure 5.2 is much simpler. It has eigenvalues 0

and −4q . We can similarly aggregate the first two sites and the second two sites

2 Note that e−4 = 0.018.
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separately to produce a two node tree. The eigenvalue are still 0 and −4q . In

other words, after the lapse of time of the order 1/q , the system of Figure 5.2

has approximately reached its equilibrium state, whereas that in Figure 5.1 has

not. Recall that in the two-level tree model, it requires the length of time of order

1/q 2 which is larger than 1/q to reach the stationary state. That is to say, the

two-level dynamics is more sluggish than that of the one-level tree of Figure 5.2.

Thus, we have established the following proposition.

Proposition: The two-level tree dynamics is more sluggish than the one-level tree

dynamics even if they have the same number of sites.

This fact remains true when the one-level tree of N sites is compared with the K

level tree with N = 2K . We can also group l of N sites into one cluster, and the

remaining N − l sites into another. The eigenvalues are 0 and −Nq , repeated

N − 1 times, while those of K level tree are 0 and −(2q)K .

Generally, we can show that the larger the number of levels of tree, the slower

the process of disturbance propagation becomes. Ogielski and Stein (1985),

among several others, have shown that in the limit of the number of hierar-

chy going to infinity, the response becomes power law, not exponential, decay.

Power Laws

The one-level dynamics corresponds to the standard model in which firms,

agents, or sectors are symmetrically treated, typically indexed only by i (i =
1, . . . , n). By construction, it implicitly assumes the fastest adjustment. The im-

plication of the above proposition is that even if the number of firms, agents, or

sectors is the same, once we allow the tree structure, dynamics necessarily become

slower than otherwise. We maintain that tree structure is not an exception but

generic in the economy, and, therefore, that slow dynamics is its generic prop-

erty. There is actually a close relationship between tree dynamics and power law

which is so universally found not only in nature but also in social and economic

phenomena.

In Chapter 10, we will explain that power laws play the central role for un-

derstanding financial markets. Here, we briefly explain that power laws also have

important implications for the speed of adjustment in dynamics which is the

major theme of this chapter. To see the point, we take up a standard equation of

motion in physics as an example. Specifically, we consider the following equation

of motion with friction:

d2x(t)

dt2
+ μ

(
dx(t)

dt

)
= −U ′(x) (μ > 0). (5.19)

Here, x(t) stands for the position, and the second term on the left-hand side

stands for friction which is proportional to velocity dx/dt. On the right-hand

side is force which is equal to the first derivative of the potential function U (x).
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We assume that the potential function U (x) is smooth, and that it has a

minimum at point zero, x = 0. By expanding U (x) around zero, we obtain

U (x) = U (0) + U ′(0)x + U ′′(0)

2
x2 + U ′′′(0)

6
x3 + o(x4). (5.20)

When friction μ is large, we can ignore acceleration dx2/dt2. Consequently, we

can approximate (5.19) by

dx

dt
= −U ′(x)

μ
. (5.21)

We consider motion around the stationary point, x = 0. Note that because zero

is the minimum of U (x), U ′(0) = 0. Thus, if U ′′(0) �= 0, we obtain

dx

dt
= −U ′(x)

μ
= −ax.

(
a = U ′′(0)

μ
> 0

)
(5.22)

In this case, we have

x(t) = x0e−at . (5.23)

The adjustment of x toward its stationary point, x = 0, is exponential.

However, if U ′′(0) = 0, instead of (5.22), we obtain

dx

dt
= −U ′(x)

μ
= −bx2

(
b = −U ′′′(0)

2μ

)
. (5.24)

In this case, we have

x(t) = 1

bt + 1
x0

∼ 1

t
. (5.25)

That is, in this case, we obtain a power law. Compared to the exponential adjust-

ment e−at , the power-law adjustment, 1/t is much slower. Compare e−t with 1/t,

for example. For t = 10, e−10 ∼= 4.5 × 10−5 whereas 1/10 = 10−1. For t = 100,

e−100 ∼= 3.7 × 10−44 whereas 1/100 = 10−2. We observe that the exponential ad-

justment e−t much more quickly approaches the stationary state, namely zero

than the power-law adjustment 1/t. In general, under power laws, the speed of

adjustment is much slower than in the exponential case. Note that the exponential

case is routinely assumed in the standard model in economics.

By way of comparing the two-level tree model with the one-level tree model,

we have previously shown that the two-level dynamics is more sluggish than that

of the one-level tree. As we noted it, there is actually a close relationship between

dynamics of hierarchical trees and power-law behavior.
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For example, Ogielski and Stein (1985) derive the expression for the proba-

blity at site 1, �1(t), as

�1(t) = 2−K + 1

2
exp[RK +1t/(1 − R)]

×
K −1∑
m=0

exp[−m ln 2 − {(2 − R)/(1 − R)}Rm+1t]

where R = exp(−βm) for a positive parameter β, m = 0, . . . K . Here, K is the

number of levels of the hierarchy or tree. By letting K → ∞, the sum is converted

into an expression which involves the incomplete gamma function. The result is

�1(t) = ln 2

β
[K (2 − K /(1 − K )]− ln 2/β t− ln 2/βγ

(
ln 2

ln β
,

t R(2 − R)

1 − R

)
.

Here, R = e−β , and γ ( , ) is an incomplete gamma function explained in Ap-

pendix 5.1 to this chapter. As t → ∞, we have an asymptotic expression

�1(t) ∼= t− ln 2/ ln γ , (5.26)

up to order O(e−t/t). That is, �1(t) propagates not exponentially as we obtained

for the one and two level tree models, but following a power law.

As for the 〈d(t)〉, they show that

〈d(t)〉 ∼= ln t

ln β
. (5.27)

The initial shock to the probability at site 1 decays slowly obeying a power

law, and the exogenous shock initiated at site one spreads to other sites with the

expected distance of ln t/ln β.

Appendix 5.2 offers two additional examples for further illustration.

Economic Temperature

We have seen the relation between the tree structure of the economy and slow

dynamics. Before leaving this section, we propose a notion of economic tempera-

ture. We often say that economic activities “heat up” or “cool down.” Economic

temperature formalizes this idea.3

Economic activities heat up as agents increase their economic activities by

intensifying levels of existing economic transactions, or establishing new links

between agents. In terms of hierarchical tree schematics, it means that we intro-

duce more sites and/or more levels are added to hierarchical trees. Conversely,

3 There is, of course, no precise notion of “temperature” for nonthermal systems especially for

macroeconomics despite a section in Sornette (2000, Sec. 7.4).
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when economic activities slow down, intensities of existing activities reduce, or

some of the existing links between agents are used less frequently or even broken.

One way to formalize these effects is to introduce a parameter that raises or

lowers the transition rates. Specifically, we can define the transition rate between

two sites, i and j as

w(i, j ) = exp

[−d(i, j )

Te

]
. (5.28)

Then, an increase in Te uniformly raises w(i, j ) while a decease in Te reduces

w(i, j ).

In our present tree models, as economic temperature gets lower, 〈d(t)〉 be-

comes smaller, and the decay of �1(t) also becomes slower with time. In addition

to the increase in the hierarchy of the model, uncertainty also reduces the eco-

nomic temperature (see Chapter 4). As we argued in Chapter 3, aggregate demand

(relative to factor endowment) plays the role of temperature in economics.

5.2. Inflexible Prices

One of the most intriguing problems in macroeconomics is to explain why prices

are not fully flexible. It is a cliché among economists that if prices are fully flexible,

changes in nominal expenditures, or changes in money in particular, will bring

about only parallel changes in prices leaving all the real variables unchanged. New

Keynesian Economics took up this challenge. Mankiw and Romer (1991) wrote

New Keynesian economics arose in the 1980s in response to this theoretical crisis of the

1970s. Much research during the past decade was devoted to providing rigorous microe-

conomic foundations for the central elements of Keynesian economics. Because wage and

price rigidities are often viewed as central to Keynesian economics, much effort was aimed

at showing how these rigidities arise from the microeconomics of wage and price setting.

(Mankiw and Romer, 1991, 1)

Economists have proposed various explanations of why prices are not fully

flexible. A popular argument is that it is to the economic agents’ advantage not

to change prices and wages so frequently. That is, changes in prices/wages incur

significant costs (“menu costs”) to economic agents. The “menu cost” model

(e.g., Mankiw, 1985; Blanchard and Kiyotaki, 1987) is an example of such an

approach.The “efficiency wage” model surveyed by Yellen (1984) and Katz (1986)

is another.

Our approach is different. We attribute the slow dynamics of prices to the

structure of the macroeconomy, not to a particular micro-behavior of economic

agents. In this respect, it shares the spirit with Taylor (1979, 1980) who emphasizes

the role of staggered wage setting in the multisector economy as the source of

slow wage/price dynamics. However, the Taylor model has some problems. For

example, based on his model, Taylor (1989) argues that a flexibility of nominal
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Table 5.1. Comparison of prewar and postwar Japan: prices, wages, and
output, 1905–1938 and 1966–1985

(1) (2) (3) (4) (5)

Mean S.D. Coefficient 1st-order 2nd-order

(%) (%) of variation autocorrelation autocorrelation

((2)/(1))

1905–38

Nominal price 2.2 12.0 5.45 0.45 −0.01

Nominal wages 4.9 9.8 2.00 0.64 0.30

Real wages 2.4 6.3 2.63 0.39 −0.12

Industrial

production 6.8 6.9 1.01 −0.04 −0.15

1966–85

Nominal price 4.1 7.3 1.78 0.28 −0.16

Nominal wages 10.7 5.6 0.52 0.76 0.54

Real wages 4.4 3.6 0.82 0.56 0.50

Industrial

production 6.6 7.1 1.08 0.33 −0.00

Source: Prewar data are taken from Ohkawa et al. (1974–90). Postwar figures are from the Ministry

of Labour, Maitsuki Rodo Tokei Chosa Geppo (Labour Statistics Monthly), the Bank of Japan, and

MITI.

wages accounts for the much smaller size of the fluctuations in real output in Japan

compared with United States. According to Taylor, a flexibility of nominal wages,

in turn, can be attributed to synchronized union bargaining, called Shunto in

Japan. Taylor’s (1989) sample period is 1972–86. During this period, the variance

of real GDP is much smaller in Japan than in the United States as Taylor found

it. However, for the 1955–70 period, the variance of real GDP is much greater in

Japan than in the United States. The synchronized wage bargaining, Shunto, began

in 1955, and had been there throughout the 1955–70 period. Thus, the Taylor

(1989) thesis that a flexibility of nominal wages attributable to synchronized

wage bargaining makes variability of real GDP small in Japan does not actually

quite stand up to the historical record.

There is another problem. Table 5.1 shows that in Japan, wages were much

more flexible in the prewar period when the synchronized wage bargaining did

not exist than in the postwar period when the Shunto was born.4 Thus, we must

conclude that the celebrated Taylor model somehow misses the essential point

in explaining inflexible wages/prices. Here, we explore a different explanation.

4 Kalecki (1939, 1954), Hicks (1965, 1989) and Okun (1981) proposed the two-sector approach to

prices: namely, the modern economy consists of two sectors, one “auction markets” and the other

“customer markets.” In the former, prices are flexible whereas in the latter prices are rigid. Our

way to explain why prices/wages became more flexible in the postwar period than in the prewar

era would be to show that the share of “customer markets” rose after the Second World War. Hicks

(1989) advances this view.
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In the Taylor model as well as in virtually all the other multisector models, the

distance between a pair of two sectors is assumed to be the same; that is, sectors

are symmetric. We focus on the fact that sectors are not symmetric or that the

distance differs across sectors. Based on this fact, we show that price dynamics is

necessarily slow. Using the model of tree dynamics explained in Section 5.1, we

will show that “prices” in the macroeconomy necessarily change slowly.

For simplicity, we consider an example that is parallel to the tree model we

analyzed in the previous section. Suppose that the economy consists of four

sectors. The number of firms (or price makers) in each sector is N/4; the total

number of firms in the economy is N. The sizes of firms are all equal. The average

price of the ith sector is Pi (i = 1, . . . , 4). We define the aggregate price index

P as

P = 1

4

4∑
i=1

Pi . (5.29)

Suppose that responding to an exogenous shock, all the firms in sector 1

raised their prices by δ at time zero. Thus, P1 increases by δ at time zero. This is

an exogenous and permanent shock to P1. We consider a change in the aggregate

price index P over time. The transmission of the disturbance to sector 1, δ,

to firms in other sectors, say sector j ( j = 2, 3, 4), depends on the “distance”

between sector 1 and sector j . For example, it is very hard, almost impossible

for a steel maker to raise its price even if a subway fare increased. The same steel

maker would raise its price when the price of iron increased. There are millions of

price makers in the economy, all connected but with different “distances.” Thus,

the speed of transmission of a disturbance from one sector or price maker to

another differs depending on a particular pair. In the present analysis, we assume

that the economy has such tree structures as described in Figures 5.1 and 5.2. We

assume furthermore that the transmission of a shock among sectors is a jump

Markov process, and that the transition rate w(i, j ) from sector i to sector j

depends inversely on the “tree distance” between sectors i and j . We compare

the two-level tree (Figure 5.1) and the one-level tree (Figure 5.2) as we did in the

previous section.

To analyze this dynamics, we define N̂i (t) as the number of firms that have

raised their prices by δ in sector i . In this analysis, we assume that a firm either

raises its price by δ, or keeps it unchanged; once a firm raises its price by δ, it

keeps the price. N̂i (t) changes stochastically. By assumption, the initial values of

N̂i (t) are as follows

N̂1(0) = N

4
, N̂2(0) = N̂3(0) = N̂4(0) = 0. (5.30)

We next define �i (t) as

�i (t) = N̂i (t)

N̂(t)
(5.31)
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where

N̂(t) =
4∑

i=1

N̂i (t).

�i (t) is the share of the ith sector in firms which have raised their prices. Namely,

it is the conditional probability that given N̂(t), a firm that has raised its price

belongs to sector i .

We can then employ the same master equation as equation (5.7) in section

5.1 to analyze the dynamics of �(t):

d�(t)

dt
= W�(t) �(0) = (1, 0, 0, 0)′. (5.32)

Here, �(t) is [�1(t), �2(t), �3(t), �4(t)]′, and W is the matrix of transition

rates.

On the assumption that the sizes of firms are all equal, we know that the

expected value of the cumulative change in the aggregate price index up to time

t, �P (t) is as follows:

�P (t) = 1

N

4∑
i=1

N̂i (t)δ

= 1

N

4∑
i=1

N̂(t)�i (t)δ

= 1

4

4∑
i=1

(
�i (t)

�1(t)

)
δ. (5.33)

The last equality in (5.33) comes from

�1(t) = N̂1(t)

N̂(t)
= N

4

(
1

N̂(t)

)
.

Note that N̂1(t) is N/4 for any t. Equation (5.33) shows that the dynamics of

�P (t) is determined by the dynamics of �i (t). The initial value of �P , �P (0),

is by assumption

�P (0) = N1(0)δ

N
= δ

4
.

�P (t) approaches δ as �i (t), i = 1, 2, 3, 4 approaches 1/4. The master equation

of �(t), namely equation (5.32), depends on the structure of tree. We consider

the two-level tree model first, and then the one-level tree model.

The four sectors are related to each other with such a tree structure as shown

in Figure 5.1. In this case, the transition rate from i to j , wi j , satisfies the following

condition:

w12 = q > w13 = w14 = q 2 (0 < q < 1). (5.34)
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To reiterate equation (5.9), the expressions for �′s are as follows:

�1(t) = 1

4

(
1 + e−4q 2t + 2e−2(q+q 2)t

)

�2(t) = 1

4

(
1 + e−4q 2t − 2e−2(q+q 2)t

)

�3(t) = 1

4

(
1 − e−4q 2t

)

�4(t) = 1

4

(
1 − e−4q 2t

)
. (5.35)

We will compare this result with the one-level tree case. The one-level tree

case is simple with the unique transition rate w = q . In this case, we obtain

�1(t) = 1

4

(
1 + 3e−4qt

)

�2(t) = �3(t) = �4(t) = 1

4

(
1 − e−4qt

)
. (5.36)

Comparing (5.35) and (5.36), we can conclude that the aggregate price dynamics

is more sluggish in the two-level tree model than in the one-level tree model.

The four-sector model we have analyzed is a particular example. However,

using the analysis explained in the previous section, we can actually show that

the larger the number of a levels of a tree is, the slower the dynamics of the

aggregate price index P becomes. Figure 5.3 shows the simulation results. In the

simulations, the size of price shock δ is assumed to be one. The cumulative change

in aggregate price index �P (t), therefore, asymptotically approaches one. The

transition rate parameter q is assumed to be e−1 ∼= 0.37. Figure 5.3(A) compares

the one-level tree and the two-level tree models with four sectors. Figure 5.3(B)

compares the one-level through four-level tree models with 16 sectors. We can

observe that the larger the number of levels of a tree is, the slower the change in

aggregate price index becomes.

We believe that this result is significant because the tree structure is robust

and generic in the macroeconomy. Distances between sectors and price makers

all differ in terms of the speed of transmission of shock. And remember, there are

actually millions of price makers. The number of the levels of the tree must be,

therefore, much larger than two, most likely of greater order. The slow dynamics

of the aggregate price necessarily follows.

There is no reason for us to expect that economic agents keep their prices for

a fixed interval. They change their prices when they want to. Bils and Klenow

(2004) carefully analyze the frequency of price changes for 350 categories of goods

and services, and have found frequent price changes, with half of prices lasting

less than 4.3 months. On this finding, they reject the popular Calvo–Taylor sticky

price models.
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Figure 5.3. Dynamics of Aggregate Price Index in (A) 4 sectors, (B) 16 sectors.
Note: The size of price shock δ = 1 and the transition rate parameter q = e−1.

It does not actually make much sense to talk about flexibility or inflexibility

at the micro level. To change prices is an economic behavior presumably based

on some sort of optimization. However, for macroeconomics, the behavior of

aggregate price index is more important than individual prices. And for the
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purpose of macroeconomics, changes in individual prices are stochastic. Our

analysis shows that given the tree structure of the economy, the dynamics of the

aggregate price index necessarily becomes sluggish. We believe that it provides

better microeconomic foundations for explaining “inflexible” prices at the macro

level than the analyses in the existing literature.

5.3. “Flat Landscape” Problems and Slow Dynamics

We have shown in the previous section that the tree structure of the economy

necessarily produces slow dynamics. This result does not depend on specific

assumptions of model, and, therefore, is generic. Before we conclude this chap-

ter, we explain that there is actually yet another reason we should expect slow

dynamics in the macroeconomy.

The standard analysis in economics takes it for granted that agents know the

global shape of objective functions and constraints. In reality, agents have only

local knowledge, and must improve their performances by gradually adjusting

some of their decision variables. In doing so, they face complicated and often

difficult combinatorial optimization problems. In fact, often the problem is not

given in advance. To find problems is an important part of economic activities.

This is true particularly in real economic activities as distinguished from financial

transactions.

In these circumstances, agents who find themselves in a local optimum are

not sure if there are other basins corresponding to better local optima, or the

global optimum. They may also face nonunique choices because their objec-

tives or criteria may be multivalued. These problems are sources for generating

microeconomic fluctuations, which we take as essential for understanding the

macroeconomy (see Chapter 3). At the same time, they cause slow dynamics in

the macroeconomy.

The Metropolis Algorithm

Flat landscape problems are one example for which agents cannot find directions

of motion to improve their suboptimal decisions. This may be caused by opti-

mization being too complex with complicated cost surfaces; this case is called

“rugged landscapes.” The term “landscape” comes from the shape of the po-

tential function which economic agents must minimize for optimization. “Flat

landscape,” therefore, means that the potential function is flat.

Suppose agents conduct exploratory moves, and evaluate the results with

the algorithm proposed by Metropolis et al. (1953).5 In the Metropolis method,

the move is accepted with probability one if it results in lower cost. In order

to move possibly from a local minimum to a better local or global minimum,

5 See Ripley (1987) for exposition of the method.
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the move is accepted with probability exp(−β�c) even when the cost increases

by �c > 0, where β is some positive parameter. A trial move, then, is accepted

with probability min{1, exp(−β�c)}. This algorithm recognizes a possibility

that even if a move results in increased cost, the direction of the move may be

correct in a more global search scheme; namely, there is a positive probability that

leaving the basin associated with the current position, agent eventually reaches

a new basin with lower cost.

When an economic agent is confident of the direction of the move, he is

ready to choose the move to this direction with high probability. This is the case

for situations in which the value of β is small, or the economic temperature is

high. On the other hand, if the agent is uncertain whether the move improves

his condition or not, this move will be chosen with a small probability. That is,

when β is large under great uncertainty or the economic temperature is low, the

agent becomes more timid in his moves than otherwise.

In Chapter 4, we showed that the effectiveness of macroeconomic policies,

in fact, diminishes as the degree of uncertainty rises. It is important to note that

the parameter β may become very large when the macroeconomy is in deep

depression. In fact, one may argue that what distinguishes deep depression from

normal cyclical recession is the abnormally high degree of uncertainty. With a

very large value of β, any move not resulting in immediate cost reduction is

rejected with high probability. This results in agents not revising their current

operating modes almost with probability one. This will prolong the depression.

Put differently, adjustment paths out of the current state are rarely taken, or

become inaccessible once the economy faces great uncertainty (very large β).

Model

We will explain how the flat landscape problem is related to slow dynamics.

Toward this goal, we construct a random walk model with endogenous birth

rates and an absorbing state. In this model, many agents randomly search for the

same optimal solution.

Suppose that agents face “rugged” cost or utility surfaces that are full of local

minima (see Figure 5.4). Agents are not sure whether the minima are the true

global minimum or they are stuck in some local minimum. They do not know

which directions, if any, they should move to improve their performances. They

cannot usefully resort to the steepest descent or some gradient procedures to

take account of a possiblity that they need to overcome some barriers to leave the

current basin of attraction in order to move to another one with smaller costs.

Here, we assume that they employ the Metropolis method explained above. We

can analyze this model using the jump Markov process.

Suppose there are K + 1 “boxes” (clusters, categories, or types). Each agent

is in one of the boxes. The (K + 1)th box is the absorbing state in that once
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Cost

U

X0

Figure 5.4. Rugged Cost Surface.
Note: The minimum of the U function corresponds to the best state.

economic agents pop into this box, they never leave it. It represents the first best

or the global optimum. Other K boxes represent local optima. If an agent is in

one of these K boxes, there is a possibility that he will move to another box.

In this model, the global optimum corresponds to a situation in which all K

boxes are empty, that is, there is no more room for change. All the agents have

reached the absorbing state or the base state. The presence of agents in any of K

boxes indicates that not all the agents have achieved their optimal positions. At

a given time, we pick an agent at random out of K boxes uniformly, and place it

in another box (including (K + 1)th box) at random. If there are k agents in one

of K non-first best boxes, one agent is chosen out of this box with probability

k/N. Here, N is the total number of agents in all the boxes excluding (K + 1)th

box. The chosen agent exits or departs from the box he is in, and will go to one

of the remaining boxes with probability 1/K . Call the box he goes to the arrival

box; the arrival box is different from the departure box. The configuration of the

model is

C = (n1, n2, . . . , nd , . . . , na , . . . nk).

Here, nd and na are the number of agents in the departure (d) and the arrival

(a) boxes, respectively. Omitting the unchanged ni s
′

we can summarize C as

C = (nd , na ).
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Let us define the Boltzmann entropy of the configuration, S(nd , na ). Then its

difference is

�S = S(nd − 1, na + 1) − S(nd , na ) (5.37)

when one agent departs box d and goes to box a . We use the Metropolis algorithm

explained previously. Its acceptance rate of (nd , na ) → (nd − 1, na + 1) is a

function of �S:

w (nd − 1, na + 1, | nd , na ) = min
(
1, e−�S

)
where �S is defined by

�S = −β, when nd = 1, na �= 0,

�S = β, when nd �= 1, na = 0, (5.38)

and

�S = 0 otherwise.

In other words, the entropy changes only when the number of empty boxes

changes. When the number of types of unsuccessful agents increases by one

(na = 0, nd �= 1), the entropy S increases by β. On the other hand, when the

number of empty boxes increases by one, (na �= 0, nd = 1), S decreases by β;

Recall that the global optimum corresponds to the state where all the K boxes

are empty.

To treat the simplest case, we focus on one of the boxes, called box 1. We

denote the number of agents in it by n1(t), and the probability that n1(t) = k, as

pk(t):

pk(t) = Pr (n1(t) = k) . (5.39)

This and related models have been analyzed by several physicists. We follow

Godrèche and Luck (1997). We write the master equation for pk as

dpk

dt
=

(
k + 1

λ(t)

)
pk+1 + pk−1 −

[
1 + k

λ(t)

]
pk, k ≥ 2,

dp1

dt
= 2

λ(t)
p2 + μ(t)p0(t) − 2p1(t), (5.40)

and

dp0(t)

dt
= p1(t) − μ(t)p0(t).

Here, λ(t) and μ(t) are defined as follows:

1/λ(t) = 1 + (e−β − 1)p0(t),
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and

μ(t) = e−β + (1 − e−β)p1(t).

See Godrèche, Bouchaud, and Mézard (1995) for more information on this

model.

We easily verify that these p’s sum to one, and the mean of k is
∑

k kpk(t) =
N/K : = ρ. We take ρ to be 1 for simplicity.

This set of equations can be used to calculate the generating function

F (z, t) =
∑

k

pk(t)zk, (5.41)

with the initial condition assumed to be F (z, 0) = z, that is p1(0) = 1 and all

other p’s are zero.

This generating function satisfies the partial differential equation

∂ F

∂t
= (z − 1)F (z, t) − z − 1

λ(t)

∂ F

∂z
− (z − 1)Y (t), (5.42)

where Y (t) = (1 − e−β)p0(t) = 1 − 1/λ(t). See Aoki (2002, 70) for deriving the

partial differential equation for the generating function. See also Aoki (2002, App.

A.1) for solving the partial differential equation by the method of characteristic

curves. The sollution is obtained by solving

dt

1
= dz

(z − 1)/λ(t)
= d F

(z − 1)(F − Y )
. (5.43)

When β = 0, which corresponds to a high level of economic activities and

a well-behaved cost curve, the equations is especially simple, because λ(t) =
μ(t) = 1. We obtain

F (z, t) = {1 + (z − 1)e−t} exp{(z − 1)(1 − e−t}. (5.44)

From (5.44), we finally obtain

p0(t) = (1 − e−t ) exp(e−t − 1) = −1

e
+ 1

2e
e−2t + · · · . (5.45)

Equation (5.45) shows that p0(t) approaches the equilibrium value with time

constant 1/2.

Godrèch and Luck (1997) show that for β large , the time constant becomes

eβ/β2, a much larger number, indicating a sluggish approach to the equilibrium.

5.4. Concluding Remarks

In this chapter, we have shown that given the tree structure of the macroeconomy,

the speed of adjustment necessarily becomes sluggish. This basic result applies

to prices. There is no mystery of inflexible prices.
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It is a cliché among economists that if prices are fully flexible, changes in

nominal expenditures, or changes in money in particular, will bring about only

parallel changes in prices leaving all the real variables unchanged. The analysis

presented in this chapter demonstrates that such swift changes in prices are, in

fact, impossible. Having said that, before we conclude this chapter, we note that

rigid prices are not so crucial as is commonly believed for the validity of Keynesian

economics. Keynes himself refuted this idea in General Theory. Fisher (1933) also

regarded deflation not as the savior of, but the menace to, the macroeconomy.

As Tobin (1993) puts it, “the central Keynesian proposition is not nominal price

rigidity but the principle of effective demand.” (Keynes, 1936, Chapter 3)

Table 5.1 shows the means, standard deviations, coefficients of variation, and

autocorrelation of the nominal prices, nominal wages, real wages, and produc-

tion indices in the prewar (1905–38) and postwar (1966–85) periods. As the

coefficients of variation clearly show, both nominal and real wages were three

to four times more flexible in prewar than in postwar Japan. A comparison of

the autocorrelation coefficients shows that the persistence of real wages also in-

creased during the postwar period. Nevertheless, the coefficients of variation of

the production index are almost the same for both sample periods.6 This result

leads us to question the widely accepted, yet not fully substantiated proposition

that rigid prices are the most important factor leading to output fluctuations.

In Chapter 6, we will explore the sources of aggregate fluctuations under the

assumption of constant price.

Appendix 5.1. Incomplete Gamma Function

The incomplete gamma function is defined by

γ (a, x): =
∫ x

0

ta−1e−t dt.

It goes to the usual gamma function 
(a) as x goes to infinity.

It has a series expansion

γ (a, x) = e−x xa
∞∑

k=0


(a)


(a + k + 1)
xk .

See Numerical Recipies in C: The Art of Scientific Computation, Cambridge

University Press, or Abramovitz and Stegun (1968, 260).

6 A glance at the autocorrelation coefficient of the first degree, however, shows that the persistence

of changes in the production index increased slightly after World War II. This point remains a

subject for further investigation.
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acb

v

U+V

Figure 5.5. Potential Function with Two Basins of Attraction

Appendix 5.2. Examples of Ultrametric Dynamics

Two-State Example

To simplify notation we combine Te with β and redefine β/Te as β. So β gets

large when Te becomes small. We consider an example composed of two states,

a, b with the transition rates

w(a, b) = exp(−βV),

and

w(b, a) = exp[−β(U + V)],

where β is a positive parameter. See Figure 5.5. (For the moment ignore

state c .)

Probabilities Pa (t) and Pb(t) are governed by the master equation

d Pa

dt
= Pbw(b, a) − Pa w(a, b).

Substituting Pb = 1 − Pa out in the above, we rewrite it as

d Pa

dt
= −γ (Pa − �a ), (5.46)

where

γ = w(a, b) + w(b, a),

and

�a = w(b, a)

γ
= 1

1 + eβU
.
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Suppose that the system is initially in state a , that is, Pa (0) = 1. Then, the

solution of the master equation gives the expression

Pa (t) = e−γ t + �a (1 − e−γ t ).

Substituting this into (A5.2B), we rewrite the master equation as

d Pa (t)

dt
= −γ (1 − �a )e−γ t = − exp(−βV − γ t). (5.47)

Suppose we want to change the probability Pa (t) as quickly as possible, and

manipulate β/Te , which we rename β for short, to maximize the right-hand side

of this differential equation, or equivalently minimize the exponent with respect

to β:

V + ∂γ

∂β
t = 0.

This leads to the expression

t = − V

∂γ

∂β

∼= eβV .

In other words, even when we change β to maximize the speed of adjustment

by β ∼= ln t/V , we have

Pa (t) = e−γ t + �a (1 − e−γ t ) ∼= e−βU ∼= t−V/U .

This shows that the probability that the system is in state a reaches the equi-

librium value �a = 1/(1 + eβU ) ∼= e−βU at the speed not of an exponential

function but that of a power law, that is extremely sluggishly.

Three-State Example

We next examine the same shape as in the previous example by introducing

another state and consider a three-state model, with state {a, c , b}, where state

a is a local minimum, b is global minimum, and c is a local maximum. The

dynamics has a mode with a long time constant.

The transition rates are

w(a, c) = exp(−βV),

w(c , a) = w(c , b) = 1

2
,

and

w(b, c) = exp[−β(V + U )].
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By substituting out Pc = 1 − Pa − Pb , the master equation is

d Pa

dt
= 1

2
−

[
1

2
+ e−βV

]
Pa − 1

2
Pb,

and

d Pb

dt
= 1

2
−

[
1

2
+ e−β(U+V)

]
Pb − 1

2
Pa .

The stationary probabilities are

�a = 1

1 + eβU + 2e−βV
∼= 1

1 + eβU
∼= e−βU ,

and

�b = 1

1 + 2e−2β(U+V) + e−βU
∼= 1

1 + e−βU
∼= 1 − e−βU .

Solving the differential equations with the initial condition Pa (0) = 1, we

obtain

Pa (t) = 1

λ1 − λ2

[
λ1 + 1

2
+ e−β(U+V)

2

]
eλ1t

+ 1

λ2 − λ1

[
λ2 + 1

2
+ e−β(U+V)

]
e−λ2t,

where λi , i = 1, 2 are the roots of the characteristic equation, where

λ1
∼= −1

2
[e−βV + e−β(U+V)] ∼= −1

2
e−βV ,

and

λ2
∼= −1 − 1

2
[e−βV + e−β(U+V)] ∼= −1 − 1

2
e−βV .

In this example λ1 becomes very small, that is, one of the two time constants

associated with this eigenvalue becomes large, and the dynamic mode associated

with this eigenvalue is very sluggish, as economic temperature becomes low.
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6

Business Cycles: An Endogenous Stochastic Approach

6.1. Introduction

Business cycles, or fluctuations of aggregate economic activities, have long at-

tracted economists’ attention. A glance at Haberler (1964) reveals that all kinds

of theories had already been advanced by the end of the 1950s.

Some theories consider monetary factors, such as changes in money supply,

the fundamental factor causing business cycles whereas others consider real fac-

tors, such as technical progress, fundamental. Some theories emphasize the role

played by exogenous shocks. The famous theory of Jevons (1884), for example,

singled out sun spots as the ultimate factor, and traced the chain of causation

from sun spots to weather conditions, weather conditions to harvests, and fi-

nally from harvests to general business conditions. In contrast, other theorists

purged exogenous factors, and constructed models in which endogenous cycles

are generated. Goodwin’s (1951) model of the nonlinear accelerator is a primary

example of such models, Kaldor (1940) is another. More recently, Grandmont

(1985) offers another example in which persistent deterministic cycles appear in

a purely endogenous fashion without any exogenous shocks. Endogenous cycles

produced in these models all rest on the particular nonlinearity of behavior of

the representative agent.

Earlier, following the lead of Frisch (1933), Samuelson (1939) demonstrated

that the second-order ordinary linear difference equation based on the multiplier

and accelerator could generate cycles. Introducing the “ceiling” and the “floor”

into such a model, Hicks (1950) ingeniously got around “explosions,” and showed

that the model could account for a dazzling variety of cycles. Given such an ample

accumulation of theories, one might be fed up with theory of business cycles!

Yet, even now, new theories keep cropping up. The RBC theory by Kydland

and Prescott (1982) is arguably the most influential current theory among the

mainstream economists.

As typified by the RBC, a natural research strategy to study business cycles is

to explain fluctuations as a direct outcome of the behavior of individual agents.

148
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The more strongly one wishes to interpret aggregate fluctuations as something

rational or optimal, the more likely one is led to this essentially microeconomic

approach. The mission of this approach is to explain fluctuations as responses of

individual agents to changes in their economic environments. The consumer’s

intertemporal substitution, for example, is a device to achieve this goal. This

holds true not only for the Kydland–Prescott RBC model but also for endoge-

nous competitive models of business cycles such as that of Grandmont (1985).

The basically microeconomic approach has been standard in the mainstream

economics in the last 20 years or so.

In Chapter 1, we have explained that the common knowledge in science is

that we cannot understand the behavior of macro system by direct inferences

from the behavior of micro unit. Plainly, the RBC is in stark contrast to such

common knowledge. Business cycles are macro phenomena. We need a different

approach.

An alternative approach is based on the fact that the economy consists of

a large number of interacting agents or sectors. The population of a large in-

dustrialized economy, for example, consists of the order of 108 agents. Even if

agents intertemporally maximize their respective objective functions, their envi-

ronments or constraints all differ, and are always subject to idiosyncratic shocks.

The point has been fully explained in Chapters 1 and 3.

The alternative approach which we advance in this chapter is based on the

premise that an outcome of interactions of a large number of agents facing

such incessant idiosyncratic shocks cannot be described by a response of the

representative agent, and calls for a model of stochastic processes. In a seminal

work, Slutzky (1937) proposed such a stochastic approach. He asked himself the

following question.

Suppose we are inclined to believe in the reality of the strict periodicity of a business cycle,

such, for example, as the eight-year period postulated by Moore. Then we should encounter

another difficulty. Wherein lies the source of the regularity? What is the mechanism of

causality which, decade after decade, reproduces the same sinusoidal wave which rises and

falls on the surface of the social ocean with the regularity of day and night? It is natural that

even now, as centuries ago, the eyes of the investigators are raised to the celestial luminaries

searching in them for an explanation of human affairs. One can dauntlessly admit one’s

right to make bold hypotheses, but still should not one try to find out other ways? What

means of explanation, however, would be left to us if we decided to give up the hypothesis

of the superposition of regular waves complicated only by purely random components? The

presence of waves of definite orders, the long waves embracing decades, shorter cycles from

approximately five to ten years in length, and finally the very short waves, will always remain

a fact begging for explanation. The approximate regularity of the periods is sometimes so

distinctly apparent that it, also, cannot be passed by without notice. Thus, in short, the

undulatory character of the processes and the approximate regularity of the waves are the two

facts for which we shall try to find a possible source in random causes combining themselves

in their common effect. (Slutzky, 1937, 20)
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Slutzky then demonstrated that the summation of random variables produces

sinusoidal fluctuations.

In the modern literature of probability, Feller explains the idea similar to

Slutzky as the Arc Sine Law for random walks and coin tossing (Feller, 1968, Vol. I,

Ch. III). Consider the following random walk:

Si − Si−1 = εi = ±1 (i = 1, 2, . . . , So = 0) (6.1)

with the respective probability one half.

The unconditional mean of this process is zero so that one is prone to expect

that a realization or a sample path is likely to be always “close” to zero, very

often crossing the zero line and spending about a half time in each of two sides

of (namely, “above” and “below”) the zero line. This natural intuition turns

out to be wrong. The sample path property is quite different from the property of

moments. The Arc Sine Law which is concerned with sample paths shows in a

striking fashion that the fraction of time spent on the positive side is much more

likely to be close to zero or to one than to the “normal” or “expected” value 1/2.

An implication is that the simple random walk is most likely to produce “cycles”

meaning that a fairly long “good time” (above the line) is followed by a fairly long

“bad time” (below the line), alternately. Figure 6.1 reproduces Feller’s Figure 5

(1968, 84) which records a sample path of 10,000 tosses of an ideal coin for the

above random walk.

The strength of Slutzky’s approach is its robustness; the weakness of his

approach is that the model is devoid of any economic interpretation. Sharing

Slutzky’s spirit, we build a stochastic model of aggregate fluctuations which has

good economic interpretation. We have three main objectives. First, we demon-

strate that fluctuations of the aggregate economy arise as an outcome of interac-

tions of many agents/sectors in a simple model. Second, we show that the level of

the aggregate economic activity depends on demand. In the standard neoclassical

equilibrium, where the marginal products of production factors such as labor

are equal in all activities and sectors, demand determines only the composition

of goods and services to be produced, but not the level of the aggregate economic

activity. As we have explained in Chapter 3, the existence of productivity differ-

entials across sectors leaves demand to play the central role in the determination

of the aggregate output. We demonstrate this proposition in a stochastic dynamic

model. Third, we show the importance of “allocative disturbances” in business

cycles. Our model is a stochastic multisector model, and, therefore, fits perfectly

the purpose of studying the role of allocative disturbances.

There are two ways for demand to affect the aggregate level of economic activ-

ities. One is externality associated with demand which might produce multiple

equilibria such as in Diamond (1982). The other is differences in productivity

across sectors/activities. In Chapter 3, we have shown that we generically have

distribution of production factors across sectors with different productivity in
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equilibrium. Given this observation, we assume in the subsequent analysis that

productivities differ across sectors in the economy.

Although studies of macroeconomy with many agents are not new, dynamic

behavior in disequilibrium has not been satisfactorily analyzed. The traditional

general equilibrium model focuses on price adjustment with the help of the

artificial auctioneer. However, as Clower (1965) and Leijonhufvud (1968) pointed

out a long time ago, quantity adjustment might be actually much faster than price

adjustment in the real economy.

Before we proceed, it is interesting to compare the behaviors of price and

quantity. Figure 6.2 shows frequency distributions of monthly rates of change

in price and quantity for the Japanese manufacturing industry and transport

machinery industry. Note that the scales of the figures are the same for both

price and quantity. Plainly, in both cases, the variance of distribution is much

larger for quantity than for price. This means that changes in quantity are, in

fact, greater than those in price as suggested by Clower and Leijonhufvud. Their

insight spawned a vast literature of the so-called “Non-Walrasian” or “disequilib-

rium” analysis such as Benassy (1975) and Malinvaud (1977). In these models,

as Leijonhufvud (1968) puts it, quantities determine quantities. However, the

models are static primarily because their purpose is to show the existence of

non-Walrasian quantity-constrained equilibrium. Our model shares the spirit

of the “Non-Walrasian” approach, but is dynamic to analyze fluctuations of the

quantity-constrained economy.

Toward this goal, we consider a very simple quantity adjustment model with

a large number of sectors or agents. We assume that sectors have different pro-

ductivities. Resources are stochastically allocated to sectors in response to excess

demands or supplies of the sectors. We show that the total output of such an

economy fluctuates, and that the average level of aggregate production (or GDP)

depends on demand.

In the main part of the analysis, we keep the number of sectors fixed. Then, we

allow the number of sectors to grow in a stochastic way. There we use a method

analogous to that of the Ewens sampling formula which is explained in Chapter 2.

6.2. The Model

Suppose that there are K sectors in the economy. We keep the value of K fixed for

now. We later briefly consider the case where K is variable. Sectors adjust their

outputs by changing the level of input in response to the excess demand or supply

of their goods. We model the state of this economy as usual as a continous-time

Markov chain or a jump Markov process. We use the notion of holding time to

select the sector which adjusts first. See Chapter 2 on holding time.

We assume that productivity differs across firms and sectors. In Chapter 3,

we have already explained in detail that productivity dispersion is a necessity

in the macroeconomy. In this model, we assume that sector i has productivity
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Figure 6.2. Frequency Distributions of Rate of Changes in Price and Quantity (A) Manufacturing
Industry, (B) Transport Machinery 1987 (Jan.)–2000(Jan.)
Notes: Price is wholesale price index (WPI)(1995 = 100); quantity is the index of industrial
production (IIP)(1995 = 100). Rate of change is to the same month in preceding year.

coefficient ci (i = 1, . . . , K ), which is exogenously given and fixed. Assume, for

convenience, that sectors are arranged in decreasing order in productivity:

c1 > c2 > · · · > c K .

Sector i uses Ni units of factor of production. It is a nonnegative integer-

valued random variable. We call a particular realization of Ni as the “size” of the

sector, and denote it by ni . When the size of sector i is ni , i = 1, 2, . . . , K , the
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Figure 6.2. Continued.

output of sector i is ci ni , and the total output (GDP) of this economy, Y , is

Y (t) :=
K∑

i=1

ci ni (t). (6.2)

Demand for the output of sector i is assumed to be si Y (t), where si > 0 is

the share of sector i :

K∑
i=1

si = 1.
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The demand shares si are exogeously given and fixed. The excess demand for

goods of sector i , fi (t), is then defined as

fi (t) := si Y (t) − ci ni (t). (6.3)

Denote the set of sectors with positive excess demand by

I+ = {i ; fi > 0},
and similarly, the set of sectors with negative excess demand (namely, excess

supply) by1

I− = { j ; f j ≤ 0}.
To shorten notation, summations over these subsets are denoted as

∑
+ and

∑
−.

Denote by n+ the sum of ni ’s in the set I+. That is, we write

n+ :=
∑

+ ni ,

where the subscript + is short for the set I+. Similarly, we define n− as

n− :=
∑

− n j ,

for the sum over the sectors with negative excess demand. By definition, we have

n = n+ + n−. Note that n is not fixed, but endogenously changes.

Sectors with nonzero excess demand attempt to reduce the amount of excess

demand by adjusting their size, namely ni up or down, depending on the signs of

the excess demand. Without loss of generality, we can assume that ni (t) changes

by one unit. Thus, the transition rates are such that

P (Ni (t + h) = ni + 1|Ni (t) = ni ) = γi h + o(h) for i ∈ I+

and

P (Nj (t + h) = n j − 1|Nj (t) = n j ) = ρ j h + o(h), for j ∈ I−. (6.4)

The transition rates, γ and ρ, of the jump Markov process will be specified

shortly.

The assumptions made here mean that a sector/firm gets ready either to raise

or lower the level of its production depending on the sign of excess demand for its

product. We can interpret the amount of input used in sector i , ni , either as the

number of workers and machines or as the level of utilization of such production

factors in sector i . In the latter interpretation, sector i holds L i units of capacity

of production factor as given, and ni can change within the limits of 0 and L i ,

(ni = 1, 2, . . . , L i ). ni / L i is the capacity utilization rate in this case. Recall that

n = ∑
i ni is not fixed, but endogenously changes.

1 To be definite we include sectors with zero excess demands as well.
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Transition Rates

We assume that γ ’s and ρ’s depend on the total size of the economy, n, and the

size of each sector ni :

γi = γi (ni , n),

and

ρ j = ρ(n j , n).

There are good theoretical reasons for γi to depend only on ni and n, and similarly

for ρ j . See Zabell (1992) for further references on the statistical reasons for this

specification.2

The model can allow for the case where the number of sectors K is not fixed,

but stochastically increases. We will discuss it later. Here, to accommodate this

general case, we specify the entry rate, that is, the rate of size increase, as follows:

γi (ni , n) = α + ni

K α + n
.

When the number of sectors K is fixed, α is zero. In this case, γi reduces to ni/n:

γi (ni , n) = ni

n
.

Similarly, we specify the exit rate, namely, the rate of size decrease by

ρ j (n j , n) = n j

n
.

When γi is the same as the fraction ni/n, (α = 0), it is equal to the probability

for exit, ρ j . Then, time histories of ni are nearly those of near fair coin tosses. We

have K such coin tosses available at each jump. The sector that jumps determines

which coin toss is selected from these K coins.

For the moment, we set α = 0, and discuss the economy with fixed numbers

of sectors.

Holding Time

Now, which sector/firm actually changes the level of production depends on the

holding times of the sectors. We assume that the probability of the time it takes

for sector i to adjust its size, either up or down, Ti , is exponentially distributed:

P (Ti > t) = exp(−bi t),

2 This is an example of applying W. E. Johnson’s sufficientness postulate. We have discussed spec-

ifications of entry and exit probabilities in Aoki (2002). See also Costantini and Garibaldi (1979,

1989), who give clear discussions on reasons for these specifications. As explained clearly by Zabell

(1992), there is a long history of statisticians who have discussed this type of problems.
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Here, bi is either γi or ρ j depending on the sign of the excess demand; thus, the

holding times are essentially determined by the transition rates specified above.

This time is called sojourn time or holding time in the probability literature. We

assume that the random variables T ’s of the sectors with nonzero excess demand

are independent.

The sector with the highest probability that it adjusts first is the one with the

shortest holding time. And conversely, the sector with the longest holding time

has the lowest probability that it adjusts first. With such probabilities, the sector

which actually adjusts the level of its input is randomly chosen. We call it the

active sector. Variables of the active sector are denoted with subscript a .

Let T∗ be the minimum of all the holding times of the sectors with nonzero

excess demands. Lawler (1995) shows that the probability that the upward jump

occurs in sector a is as follows:

P (Ta = T∗) = γa

γ+ + ρ−
for a ∈ I+

where γ+ = ∑
+ γi , and ρ− = ∑

− ρ j . Similarly, the probability that the down-

ward jump occurs in sector a is given by

P (Ta = T∗) = ρa

γ+ + ρ−
for a ∈ I−.

See Lawler (1995, 56) or Aoki (1996, Sec. 4.2). Here, γi and ρ j are the transition

rates explained previously.

Output and Excess Demand

After a change in the size of a sector, the total output of the economy changes to

Y (t + h) = Y (t) + sgn{ fa (t)}ca , (6.5)

where a is the active sector that jumped first by the time t + h.3 sgn (x) indicates

the sign of x.

After the jump, the active sector’s excess demand changes to

fa (t + h) = fa (t) − ca (1 − sa )sgn{ fa (t)}. (6.6)

Other nonjumping sectors have the excess demand changed to

fi (t + h) = fi (t) + sgn{ fa (t)}si ca , for i �= a. (6.7)

These two equations show the effects of an increase of size in one sector. An

increase in output in sector a by ca raises GDP by the same amount. In this case,

3 For the sake of simplicity we may think of the skeleton Markov chain, in which the directions

of jump are chosen appropriately but the holding times themselves are replaced by a fixed unit

time interval. Limiting behaviors of the original and the skeletal version are known to be the same

under certain technical conditions. They hold for this particular example we are analyzing here.

See Cinlar (1975).
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sector a experiences an increase in its demand only by sa ca which is smaller than

ca , while at the same time, all other sectors experience increases of their demands

by si ca , i �= a . Equation (6.7) shows a source of externality for this model. Note

that the index sets I+ and I− also change in general.

Defining

�Y (t) := Y (t + h) − Y (t),

and

� fi (t) := fi (t + h) − fi (t),

we rewrite equations (6.5) through (6.7) as

�Y (t) = sgn{ fa (t)}ca ,

and

� fa (t) = −(1 − sa )�Y (t),

and

� fi (t) = si�Y (t) for i �= a.

6.3. Stationary Equilibrium

When excess demands of all sectors are zero, no sector changes its output and,

therefore, the total output or Y also remains unchanged. For convenience, we call

this state stationary equilibrium. Before we analyze the dynamics of this model,

we study the property of this stationary equilibrium.

By solving K equations of zero excess demand fi = 0, i = 1, 2, . . . , K , we

obtain the equilibrium values (denoted by superscript e) of the fractions of

sector sizes, ne
i /ne for i = 1, . . . , K , and also the ratio of the total output to the

total number of production factors, Y e/ne . This Y e/ne can be interpreted as the

average productivity in the economy as a whole.

Specifically, in stationary equilibrium, we obtain the following set of zero

excess demand conditions:

si Y
e = ci n

e
i , i = 1, 2, . . . , K

or

ne
i =

(
si

c i

)
Y e .

Summing ne
i over i , we obtain

ne =
K∑

i=1

ne
i =

K∑
i=1

(
si

c i

)
Y e .
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The above two equations give us

ne
i

ne
= si/ci∑

si/ci

(i = 1, . . . , K ). (6.8)

Thus, the fraction is uniquely determined; it depends on the ratios of demand

share to productivity coefficient, si/ci . Similarly, we can obtain the relation be-

tween Y and n in stationary equilibrium as

Y e = ne∑
i si/ci

. (6.9)

Because of the linearity of the model, the levels of Y and n are indeterminate

in stationary equilibrium. We can easily understand this result if we recall the

fact that in terms of the textbook Keynesian 45-degree line analysis, the present

model corresponds to the case where the demand schedule coincides with the

45-degree line; because
∑

si = 1, both the average and marginal propensities to

expend are one. Thus, in the present model, only the average productivity Y/n

can be determined in stationary equilibrium:

Y e

ne
= 1∑

i si/ci

. (6.10)

The level of Y is indeterminate. The dynamic behavior of the model is quite

different, however. In what follows, we study dynamics.

6.4. Two-Sector Model

The model explained in the second section is simple. Despite its simplicity, the

dynamics produced in this model is actually very complex. Perhaps surprisingly,

it is extremely difficult to analyze it in its full generality. To gain insight, we

analyze a simple two-sector model in this section.

In the two-sector model, we have s2 = 1 − s1. This model is characterized by

two parameters s1 and c2/c1. (If you wish, c1 may be set to one with a suitable

choice of unit to measure n1.)

Equation (6.9) shows that

ne
2

ne
1

=

(
s2

c2

)
(

s1

c1

) .

This, in turn, means that the sign of (s2/s1) − (c2/c1) determines the relative

sizes of the two sectors in equilibrium. Because two sectors are symmetric, it

does not matter for dynamics whether ne
1 is larger than ne

2. For definiteness, we

describe the model behavior assuming that this sign is positive, that is ne
2 ≥ ne

1.

The other case may be examined simply by switching the subscripts.
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Figure 6.3. Dynamics in the Two-Sector Model.

We suppress time arguments. Consider the nonnegative quadrant of the plane

for n1 and n2, with the horizontal axis labelled by n1, and the vertical by n2. We

divide this quadrant into six regions denoted by Rk , k = 1, 2, . . . , 6 (see Figure

6.3). They are bounded by ni ≥ 0 (i = 1, 2), and five other straight lines with a

common slope β:

β =
(

c1

c2

) (
1 − s1

s1

)
. (6.11)

This slope is larger than 1 under our assumptions of parameter values. The

intercepts of the five lines are β, 1, 0, −1, and −β. In Figure 6.3, these five lines

are denoted by L 1, L 2, . . . , L 5, respectively. Line 3 cuts the n1 axis at 0, Line 4 at

1/β, and Line 5 at 1.

In different regions, either the signs of the excess demands, or those after

size changes by sector 1 or 2, are different. To see it, we first note that in the

two-sector model, f1 + f2 = 0 holds, and, therefore, that we need consider the

sign of only f1. Let us denote by f 1
i (±) the value of the excess demand of fi

after a change of n1 by ±1, and by f 2
i (±) the excess demand of fi after a change

in n2 by ±1, respectively. We then note that f 1
1 (±) + f 1

2 (±) = 0, and similarly,

f 2
1 (±) + f 2

2 (±) = 0 hold. Recall that only an increase in n1 is possible when

f1 > 0 in sector 1. Similarly, with f2 < 0, f 2
1 (+) does not make sense.
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Table 6.1. Dynamics of Two-Sector Model

Region f1 f 1
1 (+) f 1

1 (−) f 2
1 (+) f 2

1 (−)

R1 + + ∗ ∗ +
R2 + − ∗ ∗ +
R3 + − ∗ ∗ −
R4 − ∗ + + ∗
R5 − ∗ + − ∗
R6 − ∗ − − ∗

Note: See the text and Figure 6.1 for regions R1 through R6. The table shows

the signs of f1, f 1
1 (+), and so on. The symbol “∗” means “no entry,” that is,

logically impossible combinations.

Now, we note, for example, that in R1, R2, and R3 which are above L 3, f1 > 0.

Hence f2 < 0 in these regions. After a change in n1 by +1,

f 1
1 (+) = s1c2[n2 − β(n1 + 1)] > 0,

above L 1, and so on. Table 6.1 summarizes signs of the excess demand, and shows

how the sign changes by a change in ni in sector 1 and 2. The five columns from

the left to right list signs of f1, f 1
1 (+), f 1

1 (−), f 2
1 (+) and f 2

1 (−) in that order.

The probability of a size increase in sector 2 is larger than that of a size

descrease in sector 2 when

γ1(n1, n2) ≤ ρ2(n1, n2).

This inequality holds when n1 < n2.

When state (n1, n2) is in R1, consecutive jumps in sector 1 will bring the

state to the boundary L 1 by increasing n1, and necessarily make the state enter

R2. This is so because f1 continues to be positive after jumps in R1. Similarly,

consecutive jumps in sector 2 from a state in R1 also eventually bring the state

to the same boundary by decreasing n2. For that matter, we can calculate the

various combinations of jumps in sector 1 and sector 2 to bring the state to the

boundary, L 1. We thus see that either way, the state leaves R1 with probability

one. From a state in R2, consecutive decreases in n2 make the state enter R3. Since

dynamics is symmetric with respect to the equilibrium state represented by L 3,

the state originating in R6 eventually enters R4 with probability one. Thus, we

focus on R3 and R4 in what follows.

We examine the excess demand sign patterns in R3 and R4 which border

on Line 3. Without loss of generality, we can assume that sector 1 faces excess

demand; in other words, we consider region R3. Then, we have

f1 = s1

κ
ne − c1n1, (6.12)

where κ is defined as

κ =
(

s1

c1

)
+

(
s2

c2

)
. (6.13)
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Recall equation (6.10), which shows that the inverse of κ is the average produc-

tivity Y/n in stationary equilibrium.

In sector 1, n changes from n1 to n1 + 1. Thus, the change in excess demand

in sector 1, � f1, is

� f1 = s1c1 − c1 = −c1(1 − s1) < 0.

which is negative in sign. Similarly, when n changes from n1 to n1 + 1 in sector

1, the change in excess demand in sector 2, � f2 is

� f2 = c1s2 > 0

which is positive.

Therefore, when n increases in sector 1 facing excess demand, either excess

demand in sector 1 or excess supply in sector 2 diminishes. In the same fashion,

we can show that if n2 changes, either excess supply in sector 2 or excess demand

in sector 1 diminishes. Because the horizontal distance between L 2 and L 3 (or

L 4 and L 3) is 1/β which is less than one, after a unit change in n the state in

region R3 or R4 necessarily crosses the border L 3. Thus, we obtain oscillations

around L 3 in regions R3 and R4. Figure 6.4 shows a typical sample path.

sample path
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Figure 6.4. Convergence and Fluctuation around L3.
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The Expected Value of GDP

We next derive the stationary probability distribution for the sizes of two sectors,

namely (n1, n2), and the expected value of Y or GDP. The general discussion of

dynamics is conducted via the master (Chapman–Kolmogorov) equation (see

the Appendix to this chapter). Here, we explain the derivation of the stationary

probability distribution near the equilibrium states represented by L 3. Given the

stationary probability distribution, we can calculate the expected value of Y .

Our goal is to demonstrate that the expected value of Y depends on demand.

Specifically, we show that the sign of the derivative of the expected value of Y with

respect to s1 is positive near the equilibrium (equation (6.9)) in our two-sector

model.

Toward this goal, we must first find the stationary probability distribution

near L 3. Take the initial state b which is on or just below L 3. (b ∈ R4). Note that

because b is in R4, sector 2 faces excess demand whereas sector 1 faces excess

supply. Let n(b)

n(b) = (n1(b), n2(b))

be the state. We define two adjacent positions e and c as follows (see Figure 6.5):

n1(e) = n1(b) + 1, n2(e) = n2(b) + 1,

(n
2
/n)/(n+1)

n1/(n+1)

n2/n

n1/n

(n1–1)/(n –1)

(n1+1)/(n+2)

(n2–1)/(n –2)n
2
/(n –1)

(n = n1 + n2)

e

b

c

ω(b,e)=[n2/n] × [n1/(n+1)]
ω(e,b)=[(n1+1)/(n+2)] × [(n

2
+1)/(n+1)]

L3

Figure 6.5. Transition Rates and Dynamics Around L3.
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and

n1(c) = n1(b) − 1, n2(c) = n2(b) − 1.

By the detailed balance conditions between states e and b, and those between

b and c , we derive the relations for the stationary probabilities π as

π (n(e))

π (n(b))
= n1(b)

n1(b) + 1

n2(b)

n2(b) + 1

n + 2

n
, (6.14)

and

π (n(c))

π (n(b))
= n1(b)

n1(b) − 1

n2(b)

n2(b) − 1

n − 2

n
. (6.15)

where

n := n1(b) + n2(b),

By repeating the process of expressing the ratios of probabilities, we obtain4

π(n1(b) + k, n2(b) + k)

π (n(b))
=

(
n1(b)

n1(b) + k

)2 n + 2k

n
for k = 1, 2, . . . ,

(6.16)

where we use n2 = βn1 on or near L 3.

Similarly, we obtain

π (n1(b) − l , n2(b) − l)

π (n(b))
=

(
n1(b)

n1(b) − l

)2 n − 2l

n
, for l = 1, 2, . . . , l̄ − 1,

(6.17)

where l̄ is the largest positive integer such that n − 2l̄ ≥ 0. Without loss of gen-

erality, we treat it as an integer. Noting that

n = (1 + β)n1,

we can rewrite equations (6.16) and (6.17) as

π(n1(b) + k, n2(b) + k)

π (n(b))
= γ −μk (6.18)

and

π (n1(b) − l , n2(b) − l)

π (n(b))
= γ μl (6.19)

where γ and μ are defined as follows:

γ = exp(2/n1(b)),

4 In (16), we assume that k can go to infinity. Actually, there is an upper bound for k which is

β/(β − 1). Here, we implicitly assume that β is close to one. The definition of β is given by (6.11).
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and

μ = β

(1 + β)
.

From now on we write b for n1(b) because there is no ambiguity.

The stationary distribution is then

π(b + k) = Aγ −μk, for k = 1, 2, . . . , (6.20)

and

π(b − l) = Aγ μl , for l = 1, 2, . . . , l̄ − 1 (6.21)

where A is the normalizing constant defined by

A−1 =
l̄−1∑

0

γ μl +
∞∑

k=1

γ −μk = γ μl̄

(γ μ − 1)
. (6.22)

This is equivalent to

A = γ μ − 1

γ μl̄
. (6.23)

Now, the expected value of Y , E (Y ) is

E (Y ) = E (c1n1 + c2n2) = (c1 + c2β)E (n1). (6.24)

We can obtain E (n1) using the stationary distribution derived above, namely

(6.20) and (6.21).

E (n1) = A

[ ∞∑
k=1

(b + k)γ −μk +
l̄−1∑
k=0

(b − l)γ μl

]

= b + A

[ ∞∑
k=0

kγ −μk −
l̄−1∑
l=0

lγ μl

] (6.25)

We calculate (6.24) by means of the generating function

G(z) =
∞∑

k=1

(γ −μz)k −
l̄−1∑
l=0

(γ μz)l =
[

z

γ μ − z

]
−

[
1 − (γ μz)l̄

1 − γ μz

]
. (6.26)

We can easily see that

G ′(1) =
∞∑

k=1

kγ −μk −
x−1∑
l=0

lγ μl . (6.27)

By a direct calculation, we obtain

G ′(1) = 1

(γ μ − 1)2

[
l̄γ μl̄ (1 − γ −μ) + γ μγ μl̄

]
. (6.28)
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Noting

l̄ = (1 + β)n1

2

and (6.23), we obtain from (6.25), (6.27), and (6.28), E (n1) as

E (n1) = b + AG ′(1) = 1

1 − γ −μ
− b

2
(β − 1). (6.29)

For the value of β = 1, this is clearly positive. We can show that E (n1) is

positive if 1 ≤ β < β∗ where β∗ is defined as

β∗ =
(

2

b

) [
1

1 − γ −μ

]
+ 1.

We assume that this condition is satisfied.

Take the derivative of E (Y ) with respect to s1, and we obtain

d E (Y )

ds1

= d E (Y )

dβ

dβ

ds1

. (6.30)

We note that

dβ

ds1

= −
(

c1

c2

) (
1

s 2
1

)
< 0. (6.31)

Hence, E (Y ) increases with a small increase in s1 if and only if

d E (Y )

dβ
< 0.

To show this inequality, we write d E (Y )/dβ as follows:

d E (Y )

dβ
= [−B1(β)c1 − B2(β)c2](γ μ − 1)−2 (6.32)

with

B1(β) = 2

b

1 + β2

(1 + β)2
+ o(1/b),

and

B2(β) = 2

b

2β2(β − 1)

(1 + β)2
+ o(1/b).

Clearly, both B1(β) and B2(β) are positive. Thus, we have shown the following

inequality:

d E (Y )

dβ
< 0 (6.33)

for all β ≥ 1. Given (6.30), two inequalities (6.31) and (6.33) mean that

d E (Y )/ds1 is positive. This establishes the following proposition.



P1: JZZ

0521831067c06.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:40

6.5. Simulation 167

Proposition: The expected value of Y increases as the demand share for sector 1

goes up in the range of 1 ≤ β < β∗. Namely, the higher the share of demand for

goods and services produced in high productivity sector is, the higher the expected

value of GDP becomes.

Note that as shown in the third section, because of the linearity of the model,

the level of GDP is indeterminate in stationary equilibrium. This result of inde-

terminacy in stationary equilibrium is analogous to the case where the aggregate

demand schedule coincides with the 45-degree line in the textbook Keynesian

model. Remarkably, this inderminancy of GDP in the deterministic framework

does not carry over once the stochastic dynamics in disequilibrium is explicitly

considered. The reason is as follows. Suppose that GDP increased by one. How

much increase in GDP would this unit increase in Y induce for the next period?

It depends on the sectoral demand shares. In the stochastic dynamics, the higher

the share of demand for goods/services produced in high productivity sector is,

the higher the expected value of an increase in GDP would be. As a result, we

obtain the higher expected value of GDP in such a case.

Before we leave this section, we note that if we change the linear production

function with fixed coefficient ci to a concave function ci n
γ

i , with 0 < γ ≤ 1,

the pattern of the sign changes of excess demands in response to changes in ni

remains unchanged in the two-sector model; we only need to replace β by β1/γ .

For example, the inequality n2 > β(n1 + 1) is replaced with (n2)γ > β(n1 + 1)γ ,

which is equivalent to n2 > (β1/γ )(n1 + 1).

The regions R1 through R6 are analogously defined in Figure 6.3 by lines L 1

through L 5 with slope β1/γ . Arguments for deriving the stationary distribution

go through with β replaced by β1/γ . Because the above Proposition holds for all

values of β, it also holds for economies with ci n
γ

i , i = 1, 2, . . . , K .

6.5. Simulation

Though it is very simple, the model explained in the second section turns out

to be very complex. Luckily, we could obtain an interesting result for the two-

sector model. We cannot draw analytical results for the general K sector case,

however. In what follows, we resort to simulation analysis for studying the case

with K > 2.

In the simulations, we set the number of sectors equal to ten, namely K = 10.

Then, we keep fixed the order of productivities as

c j = (10 − j + 1)/10, j = 1, . . . , 10.

In other words, we have c1 = 1 through c10 = 1/10 at equal intervals; Sector 1

has the highest productivity while sector 10 has the lowest productivity.
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We consider four different patterns for the sectoral demand shares,

si (i = 1, . . . , 10).

Demand Pattern 1 or D1 has s = (5, 3, 2, 1, 1, 1, 1, 1, 1, 1)/17

Demand Pattern 2 or D2 has s = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1)/15

Demand Pattern 3 or D3 has s = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2)/15

Demand Pattern 4 or D4 has s = (1, 1, 1, 1, 1, 1, 1, 2, 3, 5)/17

Because the si ’s are the sectoral demand shares, they sum up to one,
∑10

i=1 si = 1.

D1 has high demand shares for high productivity sectors; to be specific, the

share of the demand for the top two high-productivity sectors are almost one

half of the total demand share. D4 is just the mirror image of D1; demand is

tilted toward low productivity sectors. D2 and D3 are in between, the profiles of

the demand shares are flatter than D1 and D4. The sum of the demand shares

of the five high productivity sectors in D1, D2, D3, and D4 are 0.71, 0.67, 0.33,

and 0.29, respectively.

For each case, we tried 400 runs. In every run, we set the initial values of ni (i =
1, . . . , 10) equal to 100, which means that the initial value of Y = ∑10

i=1 ci ni =∑10
i=1

(
i

10

)
100 is 550. With this initial condition, simulation is done up to 7000

periods. In every case, Y first tends to keep declining, and after these transient

periods, enters the closed set of the Markov process; see Feller (1968, XV.4 and 8)

for the notions of closed sets and transient states of Markov process. In the closed

set, Y fluctuates without any declining trend. We disregard the transient phase,

and focus on the closed set for our study of business cycles. Our simulations have

produced several interesting results.

Aggregate Fluctuations

First, our simulations demonstrate that the model explained in the second section

generates aggregate fluctuations. Figure 6.6 shows a sample path of Y for demand

pattern 1, or D1, together with its average over 400 runs as a smooth bold line,

and two standard deviations (S.D.) as two dotted lines. Figure 6.6(A) shows the

initial transient phase as well as the closed set. In the case of D1, the model settles

down in the closed set in period 906 which is shown as T = 906 in the figure.

Figure 6.6(B) shows fluctuations of Y enlarged for a subset of periods between

2000 and 5000.

Plainly, Y fluctuates. The important point is that simple sectoral interactions

described in section 2 generate these aggregate fluctuations of Y . We can recall

Feller’s Arc Sine Law for coin tossing. Our model and simulations demonstrate

that simple sectoral interactions described in the second section generically pro-

duce the processes similar to coin tossings, and, therefore, aggregate fluctuations.

Note, however, the crucial difference between our model and coin tossings or
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random walks. In coin tossings, stochastic disturbances are exogenous. In our

model, sectoral interactions are endogenous.

Now, in the case of D1 shown in Figure 6.6, the mean of Y is 448.9 while

its standard deviation (S.D.) is 9.30; S.D. is 2.1% of the mean of Y . This is a

reasonable value for the amplitude of fluctuations of GDP. In Figures 6.7, 6.8,

and 6.9, we show sample paths for D2, D3, and D4, respectively. In every case,

we observe fluctuations of Y .

Demand, GDP, and Employment

In the fourth section, we show that the expected value of GDP increases as the

demand for the high productivity sector increases. This proposition has been

shown analytically for the two-sector model. What about for multisector model?

Our simulations answer this question.

Figure 6.10 shows the time profiles of Y averaged over 400 runs for D1, D2, D3,

and D4, respectively. The average levels of GDP, Ȳ , are 448.9, 363.4, 339.1, and

229.8, respectively (Table 6.2) . Thus, the simulation results for multisector model

bear out the proposition analytically obtained for the two-sector model. The

higher the shares of demand for high productivity sectors are, the higher the expected

value of GDP becomes. This results is remarkable because, as explained in the third

section, the level of Y is indeterminate in deterministic stationary equilibrium.

However, this indeterminancy of GDP in the deterministic framework does not

carry over in the stochastic model. In the stochastic model, the clear relationship

between the pattern of demand and the expected value of Y emerges.

We have also studied the effects of temporary demand shocks on aggregate

output. To be specific, we put positive temporary aggregate demand shock into

the model (the D1 case) for the periods during 3001 and 3010. The size of the

shock is one tenth of Y . It affects all the sectors equally, and thus, it is aggregate

demand shock. The result is shown in Figure 6.11. The remarkable point is

that temporary demand shock raises the level of aggregate output permanently

although its effect is much smaller than the size of the initial temporary shock;

the size of temporal demand shock is 10% of Y which is roughly 46 whereas

Table 6.2. Simulation Results – Statistics of Monte Carlo Simulation

Demand pattern D1 D2 D3 D4

(1) Mean of Y 448.9 363.4 339.1 229.8

(2) S.D. of Y 9.30 9.45 9.67 9.23

(2) / (1) 0.02 0.03 0.03 0.04

Total Number of Employment, n 971 866 1178 1117

κ(= ∑
si /ci ) 2.16 2.38 3.47 4.86

Note: (2) S.D. of Y is the average standard deviation of 400 sample paths in the steady

state (T = 2000 – 7000)
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(A) The Entire Sample Period (1–7000)

(B) The Enlarged Sub-Sample Period (2000–5000)

Figure 6.6. Fluctuations of Aggregate Output in Case D1.
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Figure 6.7. Fluctuations of Aggregate Output in Case D2.
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Figure 6.8. Fluctuations of Aggregate Output in Case D3.
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Figure 6.9. Fluctuations of Aggregate Output in Case D4.

the size of permanent effect is about 4 which is less than 1% of Y . This exercise

demonstrates once again that the level of aggregate output depends crucially on

demand in our stochastic model.

So much for the level of GDP. Now, it is important to recognize that the

levels of GDP and employment are different matters. Table 6.2 shows the total

employment n = ∑
i ni for D1, D2, D3, and D4. Note that the total employment

n is not fixed but endogenous. We observe that the order of n is not the same as

that of Y . Comparing D1 with D4, we observe that total employment n is higher

for D4 than for D1. Similarly, total employment is higher for D3 than for D2.

When the shares of demand for high productivity sectors are high, an increase

in output is expected to be higher than otherwise because ci is greater than c j

(i < j ). Thus, we obtain the proposition in section 4 and the simulation results

for the expected value of Y . However, given demand, high productivity sectors

need less employment than low productivity sectors do precisely because those

sectors have high productivities. In this sense, in terms of employment, there

is always a bias toward low productivity sectors. Figures 6.12, 6.13, 6.14, and

6.15 show employment by sector for D1, D2, D3, and D4, respectively. Low

productivity sectors produce greater employment than high productivity sectors.

This is precisely what we should expect from the Boltzmann–Gibbs distribution
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Figure 6.10. The Effects of Demand on the Level of Aggregate Output: Comparison of D1, D2,
D3, and D4.

explained in Chapter 3 (see Figure 3.2). And, in fact, the expected value of total

employment is higher when demand is tilted toward low productivity sectors.

We can determine how employment should be distributed across sectors. In

our model, the share of employment in each sector ni/n in stationary equilibrium

is given by equation (6.8). And equation (6.10) shows that the total employment

n is given by

n =
(

K∑
i=1

(
si

c i

))
Y = κY (i = 1, . . . , K ). (6.34)

Thus, ceteris paribus (namely, given Y ), the total employment n depends posi-

tively on a crucial parameterκ which is the sum of si/ci (i = 1, . . . , K ). However,

Y is actually not fixed, but depends on si/ci . It is, therefore, ambiguous how the

total employment depends on si/ci . Table 6.2 shows this important parameter,

κ for D1, D2, D3, and D4. It turns out that the total employment n is greater

in D4 than in D1. Before we proceed to the next simulation, we note once again

that despite of this pattern of employment which we have just discussed, the
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Figure 6.11. The Effect of Temporary Demand Shocks on Aggregate Output.

expected value of Y always becomes higher when demand is tilted toward high

productivity sectors than otherwise.

Allocative Disturbances

Davis, Haltiwanger, and Schuh (1996) draw our attention to the possible im-

portance of “allocative disturbances” as distinguished from aggregate shocks in

business cycles.

In recent years, some economists have begun developing theories to explain the magni-

tude and cyclical behavior of job and worker flows and their connection to aggregate fluc-

tuations. These theories start from the premise that the economy is subject to a continuous

stream of allocative shocks – shocks that cause idiosyncratic variation in profitability among

job sites and worker–job matches. The continuous stream of allocative shocks generates the

large-scale job and worker reallocation activity observed in the data. (p.104) . . .

However, despite the wide diffusion of ideas related to theories of search and reallocation

in the economics literature, most analysis of business cycles and aggregate fluctuations

ignores or downplays the role of allocative shocks and reallocation frictions. In our view,

greater attention to the reallocation process will lead to a firmer understanding of the driving
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Figure 6.12. Sectoral Distribution of Employment for D1.

forces behind aggregate fluctuations, the mechanisms through which aggregate shocks affect

the economy, and the social and economic costs of business cycles. (Davis, Haltiwanger, and

Schuh, 1996, 105)

To see the effects of allocative disturbances on aggregate output, we have done

two simulations in which the pattern of demand suddenly changes (1) from

D1 to D4, and (2) from D4 to D1. The sudden changes in demand pattern

cause variation in profitability among sectors, and make reallocation of resources

necessary. Note that the propensity to expend in the economy as a whole remains

unchanged, namely one, and, therefore, that the changes in demand pattern

are allocative disturbances. In case (1), the demand pattern changes away from

high productivity sectors toward low productivity sectors. And in case (2), we

examine the effects of the change to the opposite. What are the consequences of

these allocative disturbances on aggregate economic activity, or Y ?

The results are shown in Figure 6.16. In both cases, Y responds negatively

to allocative disturbances, and declines. After a fairly long periods, Y bottoms

out, and starts rising but never reaches the level prior to the shocks. It is very

interesting to observe that this result holds true not only for case (1) but also

for case (2). Recall that the expected value of Y is higher for D1 than for D4.

We might expect, therefore, that the effect of the demand pattern changes on Y
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Figure 6.13. Sectoral Distribution of Employment for D2.

is negative when the change is from D1 to D4 (Case (1)) whereas it is positive

when from D4 to D1 (Case (2)). It turns out that in both cases, the effects of the

allocative disturbances on Y are negative.

The reason is as follows. In general, when the demand pattern changes sud-

denly, profitability among sectors changes; some sectors expand whereas others

shrink. These responses are stochastic, and the balance between two opposite

forces determines the aggregate outcome. When the demand pattern changes

from D4 to D1, the negative effects of declines in low productivity sectors dom-

inate the positive effects in high productivity sectors. Thus, a decline in Y in the

economy as a whole ensues.

We can formally explore the consequences of allocative disturbances in the

two-sector model. It clarifies the reason for a rather unexpected consequence of

a change in the demand pattern toward high productivity sectors (from D4 to

D1) on the equilibrium level of GDP.

Suppose that in phase 1, a higher demand is placed on the low productivity

sector than on the high productivity sector. This leaves the size of the low pro-

ductivity sector large to meet the demand. Then, the pattern switches. In phase 2,

the demand on the low productivity sector is reduced, while that on the high

productivity sector increases. Under certain conditions, the effects of reduction

in the size of the low productivity sector on Y dominate those of an increase
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Figure 6.14. Sectoral Distribution of Employment for D3.

in output by the high productivity sector that now faces a higher demand. We

should note that an active sector is more likely to come from the low productivity

sector with negative excess demand than from the high productivity sector.

Let productivity coefficients be c1 = 1, and c2 = c < 1. In phase 1 of this

thought experiment, the initial demand pattern is s1 = σ and s2 = 1 − σ with

σ < 1
2
, that is, sector 2 (the low productivity sector) has higher demand share.

In the stationary state in which excess demand is zero in both sectors, f1 =
s1Y − c1n1 = 0 and f2 = s2Y − c2n2 = 0 hold. We assume that the equilibrium

size of sector 2 is larger than that of sector 1, that is,

n1

n2

=
(

s1

c1

)
Y(

s2

c2

)
Y

= σ

1 − σ
c < 1. (6.35)

Now, suppose that the demand pattern is revised, s ′
1 = 1 − σ and s ′

2 = σ where

“ ′ ” is used to denote this second phase of the thought experiment. Denoting the

new equilibrium sizes of the sectors by n′
1 and n′

2, we obtain

n′
1

n′
2

= 1 − σ

σ
c . (6.36)
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Figure 6.15. Sectoral Distribution of Employment for D4.

From (6.35) and (6.36), we know that the total outputs in stationary equilibrium

prior to and after the change, Y and Y ′ are respectively as follows:

Y = c1n1 + c2n2 = n2

(
c + n1

n2

)
= n2

(
c

1 − σ

)
(6.37)

Y ′ = c1n′
1 + c2n′

2 = n′
2

(
c + n′

1

n′
2

)
= n′

2

( c

σ

)
. (6.38)

Hence

Y ′

Y
= 1 − σ

σ

n′
2

n2

< 1 (6.39)

if

n′
2

n2

<
σ

1 − σ
< 1. (6.40)

and conversely. In other words, if the reduction of the size of sector 2 satisfies

inequality (6.40), then GDP is less in phase 2 than in phase 1 despite of the fact

that the demand share for high productivity sector increased.
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Figure 6.16. The Effects of Changes in Demand Pattern.

Example: The computer simulation with 10 sectors with demand pattern

[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]/15 correspond to the two-sector model with demand pat-

tern
(

1
3
, 2

3

)
, that is, σ = 1

3
. Then (6.40) becomes

n′
2

n2

<
1

2

that is, when the size of sector 2 shrinks by more than a half of the original size in

equilibrium, GDP becomes less in phase 2 than in phase 1. �

Probability of Sector Size Changes. To calculate the probability of this change in

sector sizes, it is convenient to use the binary tree of the birth-and-death process

of this example. The death rate is defined by

μn = n2

n
with n = n1 + n2

and the birth rate is defined by

λn = n1

n
.

Initially, from (6.35), we have μn > λn. μn is the probability that an active sector

is chosen from sector 2, hence sector 2 shrinks by one unit. Similarly, when an
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active sector is in sector 1 then the sector 1 grows by one. See Figure 6.3, which

shows the associated skeletal Markov chains.

Emergence of New Sectors

So far, we have fixed the number of sectors, K . Our model can actually accom-

modate the case where the number of sectors K stochastically increases. In what

follows, we briefly consider the case where new sectors randomly emerge.

We previously noted that in this general case, the rate of size increase is

specified as follows:

γi (ni , n) = α + ni

K α + n
. (6.41)

When the number of sectors K is fixed, α is zero. Note that the rate of size decrease

remains the same as

ρ j (ni/n) = n j /n.

Now, if α is much smaller than K , then

γi ≈ ni/(θ + n) (6.42)

where we set

θ := K α. (6.43)

Then, we have5

γi (ni , n) ≈ n

θ + n

ni

n
. (6.44)

A new sector emerges with probability θ/(θ + n) in this general case. So long

as θ is kept constant, the above expression implies that the choices of K and α do

not matter, provided α is much smaller than K . γi is the rate of size increase in

sector with positive excess demand ( fi > 0). On the other hand, in the present

case, new sectors emerge at the rate proportional to θ/(θ + n+). This transition

rate may be justified as a limiting case in which parameter α goes to zero while

K α approaches a positive value θ .

In this extended model, the assumption is either that (1) one of the sec-

tors with positive excess demand increases its size by one with probability

(α + n+
a )/(K+α + n+) where K+ denotes the number of sectors with positive

excess demand, and n+ is the total size of such sectors, or that (2) a new sector

emerges with rate proportional to (K+ − 1)α/(K+α + n+). We let α go to zero,

and assume that K+α approaches a common positive value for the sake of sim-

plicity. We have a model in which either one of the existing sectors with positive

5 There is an obvious interpretation of this approximate expression in terms of the Ewens sampling

formula (Ewens, 1972).
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Figure 6.17. Fluctuations of Aggregate Output in Growth Case at θ = 1.

excess demand increases size by one, or a new sector emerges.6 That is, equation

(6.5) must now read that the conditional change in Y (t + h) given Y (t) consist

of two terms; the one conditional in the event of the new sector appearing, which

occurs with probability θ/(θ + n+), and the second one conditional in the event

that no new sector appears.

In the simulations, we assume that a new sector when it emerges inherits

characteristics, that is c and s , of the most productive sector. That is, the produc-

tivity coefficient of the newly born sector is always 1. As for the demand shares, we

assume D1, and that each time when the new sector is born, s ’s are renormalized

so that they sum to one. These assumptions are merely for convenience. Other

schemes are, of course, possible.

Figures 6.17 and 6.18 show sample paths of total output, Y for θ = 1, and

θ = 3, respectively. As the value of θ is increased, the new sectors are borne more

frequently. In this generalized model in which the number of sectors randomly

increases, as one might expect, the level of Y tends to rise accompanied by

fluctuations. That is, we observe growth and fluctuations. The emergence of new

6 We could assume that K+α converges to θ+ which may change each epoch. This would lead to a

slight modification of the Ewens sampling formula.
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Figure 6.18. Fluctuations of Aggregate Output in Growth Case at θ = 3.

sectors is, in fact, the key factor for economic growth. We will elaborate this idea

in Chapter 8.

6.6. Discussion

Our model has established three propositions. First of all, simple reallocation of

resources among sectors – an increase in production in sectors facing excess de-

mand and a decrease in production in sectors facing excess supply – endogenously

produces quite complex “cycles” of the macroeconomy.

Second, given productivity differentials, the higher the shares of demand for

high productivity sectors are, the higher the expected level of GDP becomes.

Because our model is linear, and the propensity to expend out of total income

is one, the level of GDP is indeterminate in static equilibrium. This result is not

surprising if we recall that the model corresponds to the case where the aggregate

demand schedule coincides with the 45-degree line in the textbook Keynesian

model. However, this indeterminacy of GDP in deterministic framework does

not carry over in stochastic dynamics. We have shown that the expected value of

the level of GDP depends on demand.
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Third, “allocative” disturbances as distinguished from macro shocks affect

the level of aggregate output, and, therefore, play an important role in business

cycles.

As we saw in the first section, Slutzky (1937) demonstrated that simple sum-

mation of random variables produced sinusoidal cycles. He mentioned two pos-

sibilities for research on business cycles. One is to pursue deterministic equations,

and then add random noises to them afterwards. The other is a “purely stochas-

tic approach” so to speak. His own approach was the latter. Our model follows

the lead of Slutzky, but has a crucial difference. In Slutzky’s model, stochastic

disturbances are exogenous. In our model, sectoral interactions are endogenous.

A stochastic element lies in the fact that we never know which sector/agent “acts”

in a particular moment. This problem is handled by the notion of holding time

in our model. Thus, our model is stochastic, and at the same time endoge-

nous. It is based on a simple but arguably generic assumption that production

in sectors facing excess demand expands whereas that in sectors facing excess

supply shrinks, both in an appropriately defined stochastic manner. In what

follows, we explain the significance of “endogenous stochastic approach” such

as ours.

As Slutzky pointed out, one approach in business cycle research is to pursue

deterministic equations, though no economist denies the role played by stochas-

tic disturbances. It is actually natural for economists to pursue deterministic

equations because these equations are the ones which are meant to describe

economic behaviors. No wonder, almost all the mainstream theories and models

of business cycles take this approach. However, such an approach has a serious

weakness.

Let us begin with linear difference equations. With complex characteristic

roots, they can produce cycles. Samuelson (1939) showed that simple interac-

tions between the Keynesian multiplier and the acceleration principle can be

expressed in terms of a linear second-order difference equation. Depending on

parameter values such as the marginal propensity to consume and the accelera-

tion coefficient, the model can produce cycles. However, except for a very special

set of parameters – such a set is, in fact, of measure zero in the space of parame-

ters – cycles, if they are present, either diminish or explode over time. Thus, such

models cannot be regarded as a self-contained theory of business cycles. That is

why Hicks (1950) introduced “ceiling” and “floor” into the model based on a

linear difference equation. In his own words, his model is based on the following

assumptions:

1. I assume that the investment and saving coefficients are such – and they are distributed

in time such a way – that an upward displacement from the equilibrium path will tend

to cause a movement away from equilibrium. The divergent movement may not set

in immediately; it may be considerably lagged. It may itself have a cyclic character, so

that it shows itself in the form of explosive cycles; or it may take the simple (and more
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explosive) form of a direct movement away from equilibrium without fluctuation. This

is what would happen in the absence of constraints. But I assume

2. that there is a direct restraint upon upward expansion in the form of a scarcity of

employable resources. Thus it is impossible for output to expand without limit.

3. There is no such direct limit on contraction. But the working of the accelerator on the

downswing is different from its working on the upswing; this difference in mechanism,

thought it does not provide a direct check, provides an indirect check which is practically

certain, sooner or later, to be effective. (Hicks, 1950, 95)

Hicks is not really concerned whether characteristic roots are complex or real.

He assumes an unstable difference equation in any case, and at the same time,

introduces ceiling and floor into such a model. The problem of this approach is

obviously ceiling and floor. For example, Hicks defines ceiling as the state in which

“a direct restraint on upward expansion” is present “in the form of a scarcity of em-

ployable resources.” It would be fine if all the peaks of business cycles were brought

about by the limit on resources such as labor. In reality, however, the economy

often reaches a peak facing a downturn even though there is still ample stock

of unused resources and production factors. For example, consider the case in

which the economy went into recession because of a fall in exports despite of

high unemployment. Such a case is not exceptional. It is, therefore, doubtful that

the economy reaches peaks and troughs at ceilings and floors. Hicks’ ceiling and

floor, though ingenious, do not provide a generic and robust apparatus for the

theory of business cycles.

On theories and models based on the representative agent such as Kydland and

Prescott (1982) and Grandmont (1985), we have already pointed out their funda-

mental problem. Those models and theories require particular micro parameter

values to produce their own favorite cycles. However, there is actually no justifica-

tion for translating micro parameters characterizing behaviors of the representa-

tive agent into macro equations. In Chapter 1, we observed that such an attempt

often faces difficulties in interpreting parameter values obtained in empirical

studies.

After all, can we really trust fairly stable particular parameter values in ac-

counting for macro phenomena called business cycles? Our answer is negative.

And we suspect that is why Slutzky (1937) advanced a “purely stochastic ap-

proach.” Black (1987) echoes Slutzky.

Thus the source of the ups and downs in business and employment can be taken to be uncer-

tainty about the future. Investment decisions must be made with only limited information,

and as more information comes in, the values of those investments will fluctuate. Since that

is the source of the fluctuations, business will go up and down in a generally random way.

The cycles that seem to be there when we look at charts of business fluctuations will be

mostly optical illusions. (Black, 1987, 81)

To regard business fluctuations as “mostly optical illusions” is too extreme

a view. We do not deny that certain nonstochastic mechanisms always work in
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the economy generating and amplifying cycles. Hicks (1950, 136) goes far to say

that “in the real theory it is the accelerator which is ultimately responsible for

producing the cycle.” We certainly recognize the importance of the accelerator.

The monetary factor that our present analysis does not consider, no doubt, plays

an important role in business cycles. Chapter 4 has shown that uncertainty can

be a block to the recovery.

Having said that, we suggest the proposition that the fundamental mechanism

generating “cycles” in the economy is stochastic with endogenously determined

distribution functions. Note that this endogeneity of noise-generating mecha-

nisms distinguishes our endogenous stochastic approach from the run-of-the mill

“econometric” approach, that is the approach that adds exogenous noises to de-

terministic equations. “Cycles” necessarily emerge in the macroeconomy out of

stochastic interactions of a large number of agents with countless motives and

environments. The strength of the stochastic approach is that it does not require

any particular parameter values nor ceiling and floor to account for cycles. Our

model has demonstrated that cycles are, in fact, endogenously generated on the

following arguably generic simple assumptions:

1. Productivity differs across sectors.

2. Sectors facing excess demand expand while sectors facing excess supply

shrink.

3. A change in the level of production in one sector, by way of changing GDP,

affects demand in all the sectors in an asymmetiric way.

We believe that such sectoral interactions are a fundamental cause for aggregate

fluctuations.

Using our simple model, we have established another important proposition.

Given productivity differential across sectors/firms, the higher the demand shares

of high productivity sectors are, the higher the expected value of GDP becomes.

This proposition provides a foundation for the Keynes’s principle of effective

demand.

Chapter 3 shows that we should expect distribution of productivity across

sectors, not a unique level, in equilibrium. Our model is built on this assumption.

To appreciate the importance of this assumption in the Keynesian approach, it is

useful to recall the textbook Keynesian theory. When aggregate demand increases,

total output rises, and the unemployment of labor diminishes. The unemployed

are engaged in job search, and their efforts are usually not counted as a part of

GDP. If all the unemployment were “natural,” however, their “marginal products”

in job search, if they were properly measured in markets, would be equal to the

marginal product of labor in ordinary production. Thus, in that case, a change

in status of worker from unemployment to employment would not change, on

the margin, total “output” in the economy. There is no room for the Keynesian

theory in such a case.
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In Chapter 3, we have shown that the generic assumption for demand to

play an important role in the determination of total output is that productivity

differs across sectors/activities. For the textbook Keynesian theory, the crucial

assumption is that productivity of the unemployed is lower than that of workers

engaged in production. In the ordinary Keynesian theory, therefore, an increase

in aggregate demand, in effect, mobilizes production factors such as labor to high

productivity sectors/activities (“ordinary production” in the textbook explana-

tion). Our analysis demonstrates that in a stochastic dynamic model, the average

level of total output depends, in fact, on demand. Note that higher aggregate

demand in ordinary Keynesian models corresponds to higher demand shares of

high productivity sectors in our model.

Keynes’s principle of effective demand tells us only what the level of eco-

nomic activity would be. As Hicks (1950, p. 1) complained, “Keynes did not

show us, and did not attempt to show us, save by a few hints, why it is that

in the past the level of activity has fluctuated according to so definite a pat-

tern.” Our model endogenously produces stochastic cycles. And in this model,

the expected value of total output depends on demand in the way explained

above.

Finally, we have shown by simulations that allocative disturbances affect the

level of aggregate economic activity. Specifically, sudden changes in the pattern

of demand are likely to lower GDP in our simulations. Allocative disturbances

can be a distress to the macroeconomy. Bernstein (1987), indeed based on his

detailed historical study of the American Great Depression during the 1930s, has

drawn the following conclusion.

I want to suggest in this study that the difficulty experienced by the American economy in

the 1930s was an outgrowth of secular trends in development. By the 1920s, the economy

had entered an era characterized by the emergence of dramatically new demand patterns

and investment opportunities. These patterns and opportunities foreshadowed and indeed

encouraged a shift in the composition of national output. But such a qualitative transforma-

tion created impediments to the recovery process in the thirties. These impediments derived

from the difficulty of altering technology and labor skills to meet demands for new invest-

ment and consumer goods at a time of severe financial instability. In this sense, long-term

growth mechanisms played a major role in the cyclical problems of the interwar period.

(Bernstein, 1987, 20)

The role of allocative disturbances awaits further study. The jump Markov process

is an extremely useful framework for exploring such a problem.

Appendix 6.1: Dynamics of the Two-Sector Model

In this chapter, we presented a two-sector model. This appendix offers more on

dynamics of this model.
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Master Equation

The general master equation in R1 is given by7

d P (n1, n2)

dt
= w1(n1 − 1, n1)P (n1 − 1, n2) + w(n2 + 1, n2)P (n1, n2 + 1)

−P (n1, n2)[w1(n1, n1 + 1) + w2(n2, n2 − 1)].

Along a path with consecutive size increases in sector 1, n2 is held fixed, and the

master equation simplifies to

d X(n1; n2)

dt
= w1(n1 − 1, n1)X(n1 − 1; n2) − X(n1; n2)w1(n1, n1 + 1).

Along a path of consecutive decrease in sector 2, a similar equation holds.

We can solve these equations subject to the boundary condition on L 1, possibly

using the generating function method.

By writing P (n+, n−) = P+(n+)P−(n−) we can separate variables

d P+(n+)

dt
= w+(n+ − 1, n+)P+(n+ − 1) − w+(n+, n+ + 1)P+(n+),

and an analogous equation for P−.

Two-Sector Dynamics

We have shown that states enter in R1 ∪ R2, then they remain in these regions.

More precisely, from a state in R3, we have

d

dt
P (n1, n2; t) = P (n1, n2 − 1)w2(n2 − 1, n2) + P (n1 + 1, n2)w1(n1 + 1, n2)

−P (n1, n2)[w1(n1, n1 + 1) + w2(n2, n2 − 1)],

where we have abbreviated the expressions for the transition rates by suppressing

the arguments which do not change. We use subscripts to indicate the arguments

that do change.

From a state in R4, we have an analogous equation in which subscripts 1 and

2 are interchanged.

The detailed balance condition in either regions takes the form

π1(m1 + 1)w1(m1 + 1, m1) = π1(m1)w1(m1, m1 + 1),

and

π2(m2 − 1)w2(m2 − 1, m2) = π2(m2)w2(m2, m2 − 1).

7 We may separate variables into P (n1, n2) = X(n1; n)Y (n2 : n). Note that the transition rates also

depend on n = n1 + n2, which we do not carry explicitly as arguments in them.
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The arguments m’s are related to n’s within ±1.

These equations imply the corresponding equation for the sum n = n1 + n2:

d

dt
P (n, t) = P (n + 1, t)w(n + 1, n) + P (n − 1)w(n − 1, n)

−P (n, t)[w(n, n + 1) + w(n, n − 1)],

and the corresponding detailed balance condition

π(n + 1)w(n + 1, n) = π(n)w(n, n + 1).

We look for the expression for the equilibrium probabilities in these two

regions by solving these two algebraic equations. The total units in the economy

is the sum of all units in the K sectors, n := ∑K
i=1 ni . In principle we can write

the master equation for the vector (n+, n−). However, in our model, the general

expression does not seem to be analytically tractable. There are some special cases

we can discuss analytically; see for example, in Case 3 introduced above.

In caclulating the total output of the economy, these considerations show

that the output is like the cumulative sum in possibly biased coin tosses, with

the additional complication that the probability of head or tail may change over

time. In the case where γi ≈ ρ j , the time profile of output is nearly that of a

fair coin tossing. Some approximate arcsine laws may prevail. That is, there are

long swings on which shorter oscillations are superimposed. These seem to be

observed in some of our simulation runs to be discussed shortly below.

A jump at sector a occurs with probability

sgn{ fa (t)} + 1

2

γa

γ+ + ρ−
+ 1 − sgn{ fa}

2

ρa

γ+ + ρ−
.

The mean of Y (t + h) conditional on Y (t) is

E {Y (t + h)|Y (t)} − Y (t)

= 1

γ+ + ρ−

∑
i

c i

2

[
ni

θ + n
(1 + sgn{ fi }) − ni

n
(1 − sgn{ fi })

]

= 1

γ+ + ρ−

{∑
+

ci ni

θ + n
−

∑
−

c j n j

n

}
. (6.45)

The sign of the right-hand side in the above expression determines if the

output is expecte to grow or decay after a jump in a sector size. In the next section

we solve for the equilibrium fractions ni/n. Then, we can put this condition in

terms of
∑

+ si .
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Most Likely Path and Stationary Probability Distributions
in Region R3 ∪ R4

In regions R3 U R4 in Figure 6.3, in the intersection of area above the line n1 = n2,

and L 3, the probability for an increase in size in sector 1 is (α + n1)/(2α + n),

and that of a size decrease in sector 2 is n2/n. Assume that α is neglibibly small

compared with n. Then the event in which sector 2 shrinks in size is more prob-

able than sector 1 growth. Therefore, using the maximum likelihood approach,

starting from an initial state n1(0), n2(0), n1(t) = n1(0), but n2 decreases in size

until it hits or enter R3 by hitting or crossing L 3, or entering R4. Then, again

the most likely behavior is for oscillation of states between n∗
2 and n∗

2 + 1, where

n∗
2 = βn1(0) + 1.
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7

Labor Market: A New Look at the Natural

Unemployment and Okun’s Law

Unemployment is one of the most important problems in economics. Macroeco-

nomics as a discipline was born through economists’ efforts to better understand

unemployment. Despite piles of works on the subject, it is still a matter of dis-

pute. Some economists see unemployment as nothing but a particular type of

rational economic activity, namely job search. Others take it as a sign of waste

of the most important production factor; it costs both the unemployed and the

economy as a whole.

This chapter explains that the approach we propose gives us a new perspective

on the labor market and unemployment. It follows the tradition of search theory,

but differs from the existing literature in one important respect. As explained in

Chapter 3, our model is based on the notion of stochastic equilibrium which is

conditioned by aggregate demand. In this chapter, extending the model in Chap-

ter 6, we show that unemployment due to demand deficiency and “structural”

unemployment cannot be so clearly separated as one might think. This suggests

that the natural unemployment may not be defined clearly independent of the

level of aggregate demand.

We also show that Okun’s law, which puzzles many, can be quite naturally

explained. In our analysis, the notion of equilibrium as distribution plays the

central role. The equilibrium distribution is conditioned by aggregate demand.

7.1. Background

There are different approaches to labor market and unemployment. Let us begin

with the assumption that the labor market were a single homogeneous market.

Then we can apply the standard demand/supply framework. In Figure 7.1, the

quantity of labor is measured horizontally while real wages are measured verti-

cally. Plainly, in this framework, unemployment is caused by too high real wages.

This was, in fact, Pigou’s (1927, 1945) explanation of high unemployment in

190
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Real
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        0                                                              Labor

Figure 7.1. Unemployment due to Too High Real Wages.

Britain after World War I.1 The same idea revived after the first oil shock in

1973/74 when the unemployment rate steadily rose worldwide, particularly in

European countries. Malinvaud (1982) called this unemployment due to too

high real wages classical unemployment. Bruno and Sachs (1985) also attributed

a significant part of unemployment in OECD countries to maladjustment of real

wages.

The logic behind classical unemployment appears impeccable at first sight.

However, to say that real wages are too high presumes that somehow real wages

are exogenous. In reality they are, of course, not. As Keynes (1936) emphasized,

individual workers and firms do not negotiate about real wages but nominal

wages. Beyond that, many firms are not price takers but price setters. Put another

way, firms face demand constraints, or a downward-sloping individual demand

curve. Suppose that such a monopolistically competitive firm determines its

price, given nominal wages and aggregate demand. In this case, both real wages

and employment are endogenously determined conditional on exogenous nom-

inal wages and aggregate demand. Now, employment so determined may fall

1 Despite his own theoretical explanation, Pigou (1927) was cautious enough to refrain from rec-

ommending a cut in wages as a policy to cure unemployment. He was rather optimistic having

thought that capital accumulation would eventually raise demand for labor (that is, make demand

curve shift up), and diminish unemployment. He overlooked the problem of demand deficiency.

Thus, he had to have his anticipation betrayed by history, and his theory attacked by Keynes (1936).
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short of labor supply, and unemployment ensues if nominal wages are too high

or aggregate demand is too low (see Solow, 1986). This is the old Keynesian story,

of course.

There is a different approach. It emphasizes the fact that the labor market

is not a well-organized market, but consists of many segmented markets. The

market is segmented in terms of location, industry, worker’s skills, and so on.

Having incomplete information, both workers and firms must make decisions

under uncertainty in such markets. Adjustment in segmented markets must be

frictional. Mismatch produces unemployment.

This approach also has a long tradition. On the publication of Pigou’s paper,

Clay (1928) criticized Pigou’s explanation, and attributed high unemployment to

slow sectoral adjustments while anticipating an eventual return to the “natural”

rate of unemployment. In the General Theory, Keynes (1936) also mentioned

the kind of unemployment which Clay focused on, and called it “frictional”

unemployment.

This postulate (the second postulate of the classical theory) is compatible with what may

be called ‘frictional’ unemployment. For a realistic interpretation of it legitimately allows

for various inexactnesses of adjustment which stand in the way of continuous full employ-

ment: for example, unemployment due to a temporary want of balance between the relative

quantities of specialized resources as a result of miscalculation or intermittent demand: or

to time-lags consequent on unforeseen changes; or to the fact that the change -over from

one employment to another cannot be effected without a certain delay, so that there will

always exist in a non-static society a proportion of resources unemployed ‘between jobs’.

(Keynes, 1936, 6)

Granted frictional unemployment, Keynes took it as relatively minor, and

argued that the core of the matter was “involuntary unemployment” caused by

aggregate demand deficiency. His theory of effective demand is meant to explain

how the deficiency of aggregate demand arises causing failure to achieve “full

employment.” He went on to argue that appropriate fiscal and monetary poli-

cies can mitigate the problem of high unemployment by maintaining aggregate

demand.

The concept similar to frictional unemployment revives time and again.

Solow (1964), for example, calls it the “structural unemployment thesis.” He

criticizes the then popular view that “the economy suffers primarily from ‘struc-

tural’ unemployment that will not yield to – and would indeed frustrate – the

standard recipe of expansionary fiscal and monetary policy.”

In the realm of economic theory, some thirty years after the publication of the

General Theory, in the debate on the Phillips curve, Friedman (1968) attacked

the Keynesian theory. By so doing, he launched the notion of natural rate of

unemployment. His definition:

The “natural rate of unemployment,” in other words, is the level that would be ground out

by the Walrasian system of general equilibrium equations, provided there is imbedded in
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them the actual structural characteristics of the labor and commodity markets, including

market imperfections, stochastic variability in demands and supplies, the cost of gathering

information about job vacancies and labor availabilities, the costs of mobility, and so on.

The natural unemployment so defined is obviously akin to Keynes’s frictional

unemployment. It is “ground out by the Walrasian System of general equilibrium

equations.” So stated in words, it is ambiguous. Efforts to clarify and make precise

the notion of the natural rate of unemployment soon produced the vast literature

on the search theory.

The notion of the natural rate of unemployment is based on the premise that

the labor market is not a single well-organized market as depicted in Figure 7.1,

but consists of many segmented markets. No economist denies the importance

of this fact surrounding labor market. Even a simple fact such as the coexistence

of unemployment and vacancy, the Beveridge curve, cannot be explained without

resorting to heterogeneity of the labor market. The search theory is a theoretical

framework to analyze dynamics and the nature of equilibrium in such labor

market. The papers in Phelps (1970) are seminal contributions. More recently,

a large body of literature on labor market, both theoretical and empirical, such

as Mortensen (1989), Blanchard and Diamond (1990), Davis, Haltiwanger, and

Schuh (1996), and Pissarides (2000), all emphasize market segmentation and

incomplete information.

Opposite to Keynes, search theorists tend to regard the natural or frictional

unemployment as the major component of unemployment. However, most of

them admit that the actual unemployment rate often deviates from the natural

rate though the reason for that may not be demand deficiency as Keynesians

believe. Monetarism, both Mark I (Friedman, 1968) and Mark II (Lucas, 1972),

for example, attributes changes in the unemployment rate to unexpected price

changes which in turn are to be caused by unanticipated changes in money sup-

ply. Whatever the reason for cyclical changes, we have two components in the

unemployment rate, one natural and the other cyclical. Thus, it is extremely

important to determine how much of observed increases in unemployment

are frictional or structural, on the one hand, and cyclical or Keynesian on the

other.

Some economists attribute a major part of changes in the unemployment

rate to changes in the natural rate of unemployment. Lilien (1982), for example,

argues that about half of the postwar fluctuations of the U.S. unemployment rate

can be accounted for by changes in the natural rate, which are in turn caused by

sectoral shifts in labor demand. He proposes the following measure of sectoral

shifts.

σt =
[ n∑

i=1

eit

et

(� log eit − � log et)
2

] 1
2

, (7.1)
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Figure 7.2. Growth of Demand and Employment.

where eit stands for employment in sector i at time t and et represents total

employment in the economy as a whole. Thus,σ measures the variance of changes

in employment across sectors. Lilien shows that the unemployment rate is highly

correlated with σ , and then interprets this result as supporting the thesis that

sectoral shifts in labor demand have significantly raised the unemployment rate.

Abraham and Katz (1986), however, point out a serious flaw in Lilien’s in-

terpretation. The point of their criticism is that a possible negative correlation

between aggregate demand and σ may have spuriously produced the observed

correlation between the unemployment rate and σ . For example, suppose there

are two sectors in the economy. Changes in employment in the two sectors cor-

respond, respectively, to changes in aggregate demand as drawn in Figure 7.2. In

sector 1, the growth rate of employment on trend �log e∗
1 , which obtains when

the growth of aggregate demand �log y is equal to its natural growth �log y∗, is

high, while the cyclical elasticity of growth of employment is small; the line is flat-

ter. The opposite holds in sector 2. One might realistically interpret sectors 1 and 2

as services and manufacturing industry, respectively. Under this assumption, two

situations A and B in the figure demonstrate that σ measured by the distance

between the two lines increases when the growth of aggregate demand declines

and vice versa. Therefore, even if the unemployment rate is determined basically

by aggregate demand as traditional Keynesian theory indicates, we would still

find a positive correlation between Lilien’s σ and the unemployment rate.

To sort out two alternative interpretations, Abraham and Katz calculate the

correlation between σ and a measure of job offers. Under Lilien’s thesis,σ must be
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positively correlated not only with the unemployment rate but also the measure

of job offers. It turns out that σ is negatively correlated with the measure of

job offers. This is what one expects under the Keynesian story. Under Lilien’s

thesis, the Beveridge curve must frequently shift up and down. The Abraham–

Katz finding, however, implies that movements along the stable Beveridge curve

dominate.2

Beveridge (1944) indeed defined employment as full if unemployment is no

more numerous than vacancies. According to this definition, the critical level for

full employment is the point of intersection of the Beveridge (or the U − V) curve

and the 45-degree line on the unemployment/vacancy plane. In summary, the

movement along a particular Beveridge curve produces a change in the cyclical

or Keynesian unemployment. On the other hand, when the Beveridge curve

shifts up (northeast) or down (southwest), a change in the natural or frictional

unemployment ensues. This is the sort of argument Solow (1964) made to reject

the significance of structural unemployment in the United States. Using the same

theoretical apparatus, Abraham and Katz also conclude that for the postwar U.S.

economy, cyclical or Keynesian unemployment accounts for the major part of

actual changes in unemployment.

The separation of the natural or frictional unemployment on the one hand,

and unemployment due to demand deficiency on the other, appears conceptually

clear-cut to the extent that the Beveridge curve does not depend on demand but

only on structural factors such as segmentation of labor market and imperfection

of information. However, in this chapter, extending the model in Chapter 6,

we demonstrate that the Beveridge curve itself actually depends on demand.

It means that we cannot so clearly separate the natural unemployment from

unemployment due to demand deficiency as is commonly thought.

We also discuss Okun’s law in this chapter. Okun’s law (Okun, 1962) is a

stable empirical relation between changes in the unemployment rate u and the

growth rate of GDP, �Y/Y :

�Y

Y
= γ − α(u − u∗) (α > 0). (7.2)

It means that one percent decrease (increase) in the unemployment rate brings

about α percent increase (decrease) in the growth rate of GDP. The value of α

varies from country to country and from period to period (see Hamada and

Kurosaka, 1984). However, for the United States, α is about 3, and is very stable

2 Hosios (1994), however, points out a theoretical possibility that sectoral disturbances as well as

aggregate demand shocks cause a negative correlation between unemployment and vacancy, that

is movements along the Beveridge curve. He argues that a job opening involves a commitment of

physical capital which is fixed in the short run, and, therefore, that a demand dispersion shock that

increases the number of searching workers will increase unemployment and decrease vacancies.

We need to explicitly analyze a multisector stochastic model like the one presented in this chapter.
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as Okun (1962) first found for this coefficient. To obtain the value greater than

one, say 3, we need a sort of increasing returns in labor in the economy as a whole.

To the extent that the presence of such strong increasing returns is questionable,

Okun’s law is a puzzle. We show that Okun’s law can be very naturally explained

as a macroeconomic relation in our stochastic framework.

7.2. The Model

In Chapter 6, using a simple model, we have demonstrated that the level of

aggregate output (to be precise its expected value) depends on demand. It is

a multisector stochastic model. Thus, this model fits well the purpose of ana-

lyzing possible interactions of the natural or frictional unemployment on the

one hand, and unemployment due to demand deficiency on the other. Toward

this goal, we must extend the model by introducing unemployment and job

vacancy.

In the standard search theoretical literature, it is a common assumption

that sectors are symmetric in that the distance between any pair of sectors (or

islands) is the same. In reality, segmented labor markets are not symmetric in that

the distances between various sectors all differ. For example, a worker who left

industry or job A may be able to find a new job in industry B much easier than a

worker who has worked in industry C, if industry or job A is “closer” to B than to C.

Therefore, it is extremely important for full understanding of the labor market to

introduce some notion of “distance” between different sectors. For this purpose,

we introduce “ultrametric distance” based on the “tree” structure explained in

Chapter 5. Chapter 5 shows that the tree structure, in fact, has the fundamental

importance for understanding dynamic behavior of the macroeconomy.

Specifically, we treat clusters of different types of unemployed workers as

forming a tree structure, and use ultrametric distance to measure similarities of

workers in different clusters. When a sector hires a worker it does so randomly

from a pool of unemployment composed of different clusters that are suitably

weighted by the ultrametric distances. To discuss the Beveridge curve, we also

introduce job vacancy into the model. Otherwise, the model in this chapter is

basically the same as that analyzed in Chapter 6.

Total Output and Excess Demand

We consider an economy composed of K sectors. Sector i employs ni workers, i =
1, . . . , K . We make the same assumption as in Chapter 6 that productivities differ

across sectors. Production is then characterized by different labor coefficients

ci (i = 1, . . . , K ). However, unlike in Chapter 6, here we assume that each sector

is in one of two statuses; either in “normal time” or in “overtime.” That is, each

sector has two capacity utilization regimes (vi = 0, 1).
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In normal time, which is indicated by variable vi = 0, ni workers produce

output

Yi = ci ni , (7.3)

for i = 1, 2, . . . , K .

In overtime indicated by variable vi = 1, ni workers produce output equal

to

Yi = ci (ni + 1). (7.4)

Each sector can change not only ni , but also vi . The firm adjusts its level of

production by changing hours of work as well as the number of workers. The

labor productivity in sector with vi = 1 is

Yi

ni

= ci (ni + 1)

ni

= ci + ci

ni

> ci (7.5)

and, therefore, is higher than that in sector with vi = 0 which is simply ci . This

assumption is based on possible underutilization of labor. Okun (1973) explains

this phenomenon as follows:

The empirical finding becomes comprehensible once it is recognized that, for a substantial

period of time, much of labor input is essentially a fixed cost, reflecting contractual com-

mitments, indivisibilities or complementarity with capital, transaction costs of hiring and

firing, and the value of skills that workers have acquired on the job. Thus, in periods of

recession or slack, the amount of labor kept on the payroll is greater than the amount tech-

nologically required to produce the prevailing depressed level of output. Given the initial

presence of such on-the-job underemployment, when demand strengthens, output can be

expanded without a commensurate expansion in labor input and a spurt of productivity

results. But fixity of labor can explain only a temporary – if perhaps quite lengthy – bonus

of productivity from higher output and employment. (Okun, 1973, 212)

The total output (GDP) is given by the sum of all sectors

Y =
K∑

i=1

Yi . (7.6)

Demand for good i is given by si Y . Here, si is the share of the total output Y

which falls on goods produced by sector i :∑
i

si = 1.

Therefore, each sector has the excess demand defined by

fi = si Y − Yi . i = 1, 2, . . . , K . (7.7)

Changes in Y due to changes in any one of the sectors affect the excess demands

of all sectors. Changes in the pattern of s ’s also affect the excess demands of all

sectors, of course.
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We model the time evolution of this economy as a continous-time Markov

chain, as in Chapter 6. At each point in time, each sector belongs to one of

two subgroups; one composed of sectors with positive excess demands for their

products, and the other with negative excess demands. We denote the sets of

sectors with positive and negative excess demands by I+ = {i : fi ≥ 0}, and

I− = {i : fi < 0}, respectively. For convenience, we call these two groups as

profitable and unprofitable sectors, respectively. Profitable sectors wish to expand

their production. Unprofitable sectors contract their production.

At the same time, each sector is in either overtime (vi = 1) or normal time

(vi = 0) status. Altogether, then, each sector belongs to one of four subgroups:

(I+, vi = 1), (I+, vi = 0), (I−, vi = 1), (I−, vi = 0).

As is well known for continuous-time models such as the Poisson process,

at any given time, only one sector adjusts its production. This is not a special

assumption, but a generic property of continuous-time stochastic process. Also,

without loss of generality, we can assume a sector adjusts its production up or

down by one unit of labor. The sector that has the shortest holding or sojourn

time is the sector that jumps first. And only the sector that jumps first succeeds

in implementing the desired adjustment. See Chapter 6 for the notion of holding

or sojourn time of a continuous-time Markov chain. We call this sector that acts

or jumps first as the active sector. Variables of the active sector are denoted with

subscript a .

State of Each Sector

Sectors adjust their outputs by hiring or firing workers in response to the signs

of excess demands. We assume that there are always enough unemployed; the

bottleneck does not occur. To increase output, the active sector hires a worker

from the pool of the unemployed who were earlier laid off by various sectors. In

our model, there is no quitting on the part of workers.

For the active sector, not all the unemployed are homogeneous. Namely, for

the active sector that tries to hire a worker, it matters in which sector the worker

had a job before entering the pool of unemployment. In other words, the past job

experiences of the unemployed matter. This is why we introduce a tree structure.

Each sector has a state vector which has three components: (1) the number

of employed, ni , (2) the number of workers in the pool of unemployed who are

laid off by sector i ,ui , and finally, (3) a binary variable vi e (overtime or normal).

The state of a sector changes according to the following rules.

1. vi = 1 means that sector i is in overtime status producing ci (ni + 1) output

with ni workers. Each sector in overtime status posts one vacancy sign. When

one of the sectors in overtime status becomes active with positive excess

demand, then, it actually hires one additional unit of labor and cancels the

overtime sign. Thus in that case, na changes to na + 1, and va changes from 1
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to 0. When this sector hires the unemployed in its own unemployment pool,

ua changes to ua − 1. Otherwise, u j changes to u j − 1 ( j �= a). In that case,

ua remains unchanged.

2. When a sector in overtime becomes active with negative excess demand,

then it cancels the overtime and returns to normal time. The vacancy sign is

removed; only va changes from 1 to 0.

3. When vi = 0, sector i is in normal time producing ci ni output with ni work-

ers. When one of these sectors in normal time becomes active with positive

excess demand, then it posts one vacancy sign and va changes from 0 to 1. At

the same time, the level of production is raised from the normal level ci ni to

the overtime level ci (ni + 1).

4. If the sector with vi = 0 facing negative excess demand becomes active, it

fires one unit of labor. In this case, na becomes na − 1. At the same time, ua

increases to ua + 1.

We implicitly assume that the adjustment of the level of production is swifter

by way of firm’s changing overtime/normal status (namely hours worked) than

by changing the number of workers. To summarize:

1. When fa > 0 and va = 1, namely, when the sector had a previously posted

vacancy sign, then sector a now hires one worker (na becomes na + 1),

and cancels the vacancy sign, that is, resets va to zero. The number of the

unemployed changes from ui to ui − 1 in some sector i .

2. When fa < 0 and va = 1 , va changes from 1 to 0.

3. When fa > 0 and va = 0, that is, sector a has not previously posted a vacancy

sign, then, it now posts a vacancy sign, that is, sets va to 1. At the same time,

the sector increases its production with existing number na of workers by

going into overutilization state. Namely, Yi changes from ci ni to ci (ni + 1).

4. When fa < 0 and va = 0 , na is reduced by one while ua is increased by one;

that is one worker is immediately laid off.

The transition path may be stated, for example, as from z to z′, where

z = (na , ua , va = 0) → z′(na , ua , va = 1). This transition corresponds to case

3 above where the sector in the normal status facing excess demand posts a

vacancy sign, and enters the overtime status. Similarly, the transition from

z = (na , ua , va = 1) to z′ = (na + 1, ua − 1, va = 0) corresponds to case 1

where the active sector hires a worker. In this example, sector a hires a worker

from its own unemployment pool. That is why na increases to na + 1 while at the

same time, ua decreases to ua − 1. If sector a hires a worker from the unemploy-

ment pools of other sectors u j ( j �= a), then we obtain z = (na , ua , va = 1) →
z′ = (na + 1, ua , va = 0) and for some j �= a , z = (

n j , u j , v j

) → z′ =(
n j , u j − 1, v j

)
. In both cases, the output of the active sector changes to

Y ′
a = Ya + ca . These examples should illlustrate the transitions of state of each

sector in this model.
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Unemployment Pools

In our model, job creation and destruction occur by way of changes in demand

for labor. To make our analysis simple, we ignore on-the-job searches and quits.

Namely, we assume that only the unemployed get jobs, and also that only laid-off

workers get unemployed.

In this model, sectors are differentiated with respect to distance between each

other. These distances reflect such factors as geographical differences, differences

in technology, and educational qualifications. Workers in different sectors are

different in job experiences and human capital. Now, the distance between sec-

tors i and j affects the probability that a worker laid off by sector i gets employed

by sector j . This arguably realistic assumption can be modeled on the concept of

ultrametric distance explained in Chapter 5. Specifically, the stochastic process of

filling a vacancy of sector i by an unemployed worker from the pool of sector j de-

pends on the ultrametric distance between the two sectors of the economy, d(i, j ).

Transition of the active sector depends on the sign of the excess demand, fa

as indicated earlier. When the sector in the normal status (va = 0) faces excess

supply ( fa < 0), the laid-off worker by definition enters the unemployment pool

of sector a , causing the pool to change from ua to ua + 1.

Hiring a worker occurs only with fa > 0, and va = 1. Here, we explain how

the active sector employs one additional unit of labor. It does not necessarily hire a

new worker from its own pool of unemployment. We must distinguish ua , which

denotes the size of sector a ’s laid-off workers, from the total pool of unemployed

from which sector a randomly hires one unit of labor. This pool is composed of

ua and other pools of laid-off workers from sector j , u j (j �= a) suitably weighted

by ultrametric distance. We denote the latter by ũa . Then ua + ũa is the total size

of the pool of the unemployed for sector a , Ua .

The separate sub-pools are organized as a hierarchical tree with ultrametric

distance. The unemployed in different unemployment pools have different prob-

abilities of being picked by sector a . The highest probability is for the pool of the

workers who are laid off from that sector. Its size is ua . This assumption accords

well with the empirical observation that firms often recall laid-off workers first

as they become profitable again. The pools of laid-off workers from other sectors

are arranged in increasing order of the ultrametric distance from the pool of

size ũa .

We illustrate this notion and its use in the case of K = 3 with the following

ultrametric distances (See Figure 7.3):

d(1, 2) = d(2, 1) = 1 and d(1, 3) = d(2, 3) = 2.

In this case, for sector 1, ũ1 is defined as follows:

ũ1 = u2

[1 + d(1, 2)]
+ u3

[1 + d(1, 3)]
= u2

2
+ u3

3
.
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1 2 3

Figure 7.3. An Example of Tree Structure of Three Sectors.

Similarly, we can define ũ2 and ũ3 as follows:

ũ2 = u1

[1 + d(1, 2)]
+ u3

[1 + d(2, 3)]
= u1

2
+ u3

3
.

ũ3 = u1

[1 + d(1, 3)]
+ u2

[1 + d(2, 3)]
= u1 + u2

3

Suppose sector 1 (with v = 1) jumps, and hires a worker. In this case, the

conditional probability that a vacancy in sector 1, v1, is filled with a worker from

its own pool of unemployed is P (u1 is reduced by one | sector 1 jumps):

P = u1

U1

= u1

u1 + ũ1

= u1

u1 + u2
2 + u3

3

.

Similarly v1 is reduced by one from pool of unemployed of sector 2 with proba-

bility, P (u2 is reduced by one | sector 1 jumps):

P = u2/[1 + d(1, 2)]

U1

=
u2
2

u1 + u2
2 + u3

3

.

In the example shown in Figure 7.3, if the size of unemployment pool is the same

in all the sectors, namely u1 = u2 = u3, then a vacancy in sector 1 will be filled

with a worker from its own laid-off pool with probability 6/11, from u2 with

probability 3/11, and from u3 with probability 2/11. On the same assumption, a

vacancy in sector 3 will be filled from u1 with probability 1/5, from u2 also with

probability 1/5, and from u3 with probability 3/5.
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In this economy, unemployment U

U =
K∑

i=1

ui

and vacancy V

V =
K∑

i=1

vi

coexist. The relation between U and V is the Beveridge Curve.

Continuum of Equilibria. Before we turn to simulations of this model, we con-

sider the stationary equilibrium. The equilibrium states of this model are such

that all sectors are in normal time, and have zero excess demand, that is,

si Ye = ci n
e
i , i = 1, 2, . . . , K , (7.8)

where subscript e of Y , and superscript e to ni denote equilibrium values.

Denote the total equilibrium employment by

L e =
K∑

i=1

ne
i . (7.9)

Then, we have

L e =
(

K∑
i=1

si

c i

)
Ye = κYe , (7.10)

where

κ =
K∑

i=1

si

c i

. (7.11)

This equation is the relation between the equilibrium level of GDP and that of

employment. Because both Y e and L e can take arbitrary values, this model has

a continuum of equilibria. As explained in Chapter 6, this indeterminacy of the

levels of total output and employment in stationary equilibrium is not surprising.

The stationary state in this model corresponds to the case where the aggregate

demand schedule coincides with the 45-degree line in the textbook Keynesian

model; the “propensity to expend” is one.

7.3. Simulation

The model explained in Section 7.2 is much more complex than that analyzed

in Chapter 6 for studying business cycles. It has unemployment and vacancy.
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Changes in unemployment in segmented markets are modeled on the concept of

ultrametric (tree) distances between sectors. The model is nonlinear and possibly

possesses multiple equilibria. Thus, we must use simulations to deduce impor-

tant properties of the model. We are particularly interested in two relations in

the macroeconomy: (1) the relationship between unemployment (U ) and va-

cancy (V) in the economy as a whole, namely the Beveridge Curve, and (2) the

relationship between changes in the growth rate of GDP and the unemployment

rate, namely Okun’s law.

In this simulation, the number of sectors K is set to be 8. Productivity differs

across sectors. Specifically, we set ci = (9 − i)/8 for i = 1, . . . , 8. Namely, we

have c1 = 1 and c8 = 1/8 = 0.225 with equally spaced decrease, in between.

Thus, the vector of productivity, C is given by

C =
[

1,
7

8
, . . . ,

1

8

]
.

As in Chapter 6, we are interested in the effects of different demand patterns

on the outcomes in the labor market. Two different demand patterns have been

tried.

Case D1: The demand share vector is s = [6, 5, 4, 3, 2, 2, 2, 2]/26. The

top-four high productivity sectors share 70 percent of aggregate demand.

Case D2: s = [2, 2, 2, 2, 3, 4, 5, 6]/26. Opposite to Case 1, the demand

share of the top-four high productivity sectors is only 30 percent. The low

productivity sectors share 70 percent of aggregate demand.

Given these basic demand patterns, in our simulations, we actually let the

demand share vector depend on the level of aggregate output, Y . Specifically,

we assume that the demand shares s vary depending on the level of Y in the

following way:

si (t) = si (τ ) + Ki

500
[Y (t) − Y (τ )] for t > τ = 1500. (7.12)

Here, Ki is defined as

Ki = (4.5 − i)/8 for t > τ = 1500 (i = 1, 2, . . . 8)

= 0 for 1 ≤ t ≤ τ.
(7.13)

Up to time τ = 1500, Ki = 0, and s is simply constant demand share vector

defined above. As we will see shortly, the Markov chain enters the closed set

by τ = 1500. We focus on the period after the Markov chain enters the closed

set, namely t > 1500. Equation (7.12) means that when the level of output is

high (Y (t) > Y (τ )), the demand shares for high productivity sectors (sector 1

through 4) rise whereas those for low productivity sectors (sectors 5 through 8)

decline.3 The extent of an increase (decrease) in s is greatest for sector 1 (sector 8).

3 Given equation (7.12), κ defined by (7.11) actually becomes variable because si varies over time.
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Conversely, when the level of Y is low (Y (t) < Y (τ )), the demand shares for low

(high) productivity sectors rise (decline). Note that si (t)’s defined by (7.12) sum

to one.

Okun (1973) makes the following observation:

One important part of the productivity dividend seems to be associated with shifts of

resources toward sectors of higher than average productivity. That portion does not pose

the analytical mysteries associated with persistently increasing returns to labor within an

industry.

The difference between a high-pressure and a low-pressure economy is not simply a

proportionate addition of output and employment across all industries and sectors. The

exact distribution of the increments would depend on the source of the added aggregate

demand, which might be expansionary monetary policy that would particularly stimulate

construction and durable goods; or a wartime military buildup that added especially to

the federal sector; or tax cuts and increases in transfer payments that boosted consumer

goods industries by an extra margin. Despite these possible differences, history reveals a

distinct pattern of resource shifts associated with higher utilization; in particular, the sectoral

pattern characteristics of a high-pressure economy is favorable to aggregate productivity.

(Okun, 1973, 214)

It turns out that in our simulations, this assumption (equation (7.12)) is crucial

for producing the reasonable value of the Okun coefficient.

As for the ultrametric distance between two segmented labor markets which

was explained earlier, we assume the following symmetric matrix D:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 2 3 3 3 3

1 0 2 2 3 3 3 3

2 2 0 1 3 3 3 3

2 2 1 0 3 3 3 3

3 3 3 3 0 1 2 2

3 3 3 3 1 0 2 2

3 3 3 3 2 2 0 1

3 3 3 3 2 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, (i, j ) element represents the distance between sector i and j . Because the

axioms of ultrametric distance,

(I) d(i, j ) = d( j, i)

(II) d(i, j ) ≤ max
k

(d(i, k), d(k, j )) ,

are invariant with respect to any positive multiplication, we enlarge the distance

by multiplying 10 to emphasize the segmentation of labor market.

The initial conditions are as follows. The labor force in each sector is initially

set equal to 100 (the total size of labor force, N, is 800), and the number of

employed workers in each sector is 75. Thus, the total size of initial employment
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B

t
Yav B

t
Yav

Figure 7.4. Beveridge Curve for D1.
Notes: Both the unemployment rate (U ) and the vacancy rate (V ) are the moving averages(MA)
of 200 and 500 leads and lags for U and V, respectively.
Two Beveridge curves shown in the figure corresponds to different average levels of Y, one
Yav = 221 (t = 5301–6100) and the other Y = 230 (t = 3001–3800).
For two sample periods, V = B + 50/U is fitted; Estimated B is also shown in the figure.

is 600 whereas the number of unemployed is 200.4 The length of simulation is

7000. For each case, we did 400 simulations, and report the average.

Output Y initially keeps declining in the same way as it does in the simulations

in Chapter 6. Eventually, the level of Y settles, and afterward its growth rate

fluctuates around zero with ±0.02. Thus, we define the “convergence time” τ as

the first time that the growth rate of Y exceeds zero. We obtain τ = 353 for Case

D1, and τ = 805 for Case D2. That is, the convergence is much faster in Case D1

where the demand shares are high for high productivity sectors than in Case D2.

Here, the word “convergence” is used in the sense that the Markov chain enters

the closed set of states from which the model does not escape.5 We take τ = 1500

by which the Markov chain has entered the closed set in both D1 and D2 cases.

4 The initial unemployment rate is 25 percent. Though this figure may appear too high, in the present

model, it turns out to be necessary to keep the unemployment pool from extinction, and to run

simulations without serious stacks.
5 See Feller (1968, XV. 4 and 8) for the notions of “closed sets” and “transient states” of the Markov

process.
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B

t
Yav
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Figure 7.5. Beveridge Curve for D2.
Notes: Both the unemployment rate (U) amd the vacancy rate (V) are the moving averages (MA)
of 200 and 500 leads and lags for U and V, respectively.
Two Beveridge curves shown in the figure correspond to different average levels of Y , one Yav =
176 (t = 6001–6800) and the other Yav = 185 (t = 2201−3000). For two sample periods, V =
B + 50/U is fitted; Estimated B is also shown in the figure.

The simulations done on these assumptions have produced very interesting

results. First is the Beveridge Curve. The raw plots of unemployment rate U and

the vacancy rate V exhibit a rather nebulous figure in both cases D1 and D2.

However, they consistently show that the relationship between U and V depends

on the average level of Y . In other words, the Beveridge Curve shifts up or down

when Y goes down or up, respectively. To demonstrate this, we first take moving

averages of U and V , and then fit the following curve:

V = B + 50

U
. (7.14)

The constant term B in (14) is a parameter to indicate the position of the rect-

angular Beveridge Curves on the U–V plane. Figures 7.4 and 7.5 show two rep-

resentative Beveridge Curves for D1 and D2 Cases, respectively. Each Beveridge

Curve corresponds to the average level of Y for that sample period. Both figures

show that when Y is high, B is small, and vice versa. That is, when Y declines

(goes up), the Beveridge Curve shifts outward (downward).
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Table 7.1. Simulation Results

Case D1 Case D2

Demand Pattern∗ [6,5,4,3,2,2,2,2]/26 [2,2,2,2,3,4,5,6]/26

Demand Share for top 4 sectors 69 31

Average Level of GDP 227 181

Convergence time (τ ) 353 805

Number of Employed Workers 509 668

κ e = ∑
i s e

i /ci 2.2 3.5

−�Y/�U = 1/[κ ′(Y e )Y e + κ(Y e )] 3.2 0.5

Okun Coefficient (α) 11.3 2.1

∗ Demand share vector is actually not constant but dependent on the level of aggregate output

Y. See equation (7.12):

si (t) = si (τ ) + Ki

500
[Yi (t) − Yi (τ )] for t > τ = 1500.

At this stage, it is convenient to summarize the results of our simulations (see

Table 7.1). The average level of total output Y after convergence depends clearly

on the pattern of demand. In Case 1, it is 227 whereas in Case 2, it is 181. The

higher the demand shares of high productivity sectors are, the higher the average

level of aggregate output is. This confirms the result obtained in Chapter 6.

Figures 7.6 and 7.7 show the average number of employed workers in each

sector for Case D1 and Case D2, respectively. In both cases, sector 8 with the lowest

productivity hires the largest number of workers; because of its low productivity,

sector 8 needs a large number of workers to meet its demand. We can also observe

that the total number of employed workers is larger in Case D2 (668) than in

Case D1 (509). Note that the level of total output Y is higher in Case 1 than in

Case 2.

Equation (7.10) shows the total employment is equal to κY . Thus, κ , defined

by equation (7.11) as the sum of the ratios of demand share to productivity

coefficient in all the sectors, plays the central role for determining the level of

total employment. Table 7.1 shows κ for D1 and D2. κ is 3.5 for D2, and is higher

than 2.2 for D1. Accordingly, total employment is higher for D2 than for D1.

Our simulations have also produced Okun’s law. First, we explain how we

can estimate the Okun coefficient α :

�Y

Y
= γ − α(u − u∗).

We assume that economy fluctuates about its equilibrium state, and refer to

the relation

�Y

Ye

= −α
�U

N
(7.15)
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Figure 7.6. Sectoral Distribution of Employment for D1.

Figure 7.7. Sectoral Distribution of Employment for D2.

208
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Table 7.2. Simulation Results

Case D1 Case D2

Demand Pattern∗ [6,5,4,3,2,2,2,2]/26 [2,2,2,2,3,4,5,6]/26

Demand Share for top 4 sectors 69 31

Average Level of GDP 237 176

Convergence time (τ ) 353 810

Number of Employed Workers 506 647

κ e = ∑
i s e

i /ci 2.2 3.7

−�Y/�U = 1/[κ ′(Y e )Y e + κ(Y e )] 0.8 1.6

Okun Coefficient (α) 2.9 1.6

∗ Demand share vector depends on the level of aggregate output Y . In this simulation, the

denominator of the adjustment term is 1000, rather than 500:

si (t) = si (τ ) + Ki

1000
[Yi (t) − Yi (τ )] for t > τ = 1500.

as Okun’s law. We can then rewrite (7.15) as

α =
(

− �Ye

�Ue

) (
N

Ye

)
=

(
− �Ye

�Ue

) (
N

L e

)
κ. (7.16)

Note that in equilibrium, Ye and L e are related by the following relation (equa-

tion (7.10)):

L e

Ye

=
K∑

i=1

si

c i

= κ. (7.17)

Differentiating equation (7.17), we obtain

−�Ue = �L e = κ ′ (Ye ) Ye�Ye + κ (Ye ) �Ye . (7.18)

Equation (7.18) is equivalent to

− �Ye

�Ue

= 1

κ ′ (Ye ) Ye + κ (Ye )
. (7.19)

Thus, from (7.16) and (7.19), we can obtain α as follows:

α = κ

κ ′ (Ye ) Ye + κ (Ye )

(
800

L e

)
. (7.20)

Using equation (7.12), we can obtain κ and κ ′ evaluated at the equilibrium level

of Ye . Table 7.1 shows that the obtained Okun coefficient α is 11.3 for Case D1

while 2.1 for Case D2. We have also conducted simulations in which demand

shares are fixed, not depending on the level of Y ; namely, vectors of demand share

are just D1 and D2. It turns out that on this assumption, the Okun coefficient

becomes much smaller than the ones shown in Table 7.1.

In Table 7.2, we also report the results obtained in the simulations in which the

sensitivity of demand shares to the level of Y is small. Specifically, instead of (7.12),
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we assume

si (t) = si (t) + Ki

1000
[Y (t) − Y (τ )] for t > τ = 1500. (7.12)

Under this assumption, α is 2.9 for D1, and 1.6 for D2 (see Table 7.2 for details).

The same assumption that the shares of demand depend on the level of

aggregate output Y (equation (7.12)) also produces a high correlation between

productivity (Y/L ) and the aggregate output (Y ). Figure 7.8 shows Y/L and Y .

The correlation is 0.99. We will later explain that the point is very important in

the controversy surrounding the RBC theory.

We can summarize the qualitative results obtained from these simulations as

follows:

1. Larger shares of demand on more productive sectors result in the higher

average value of GDP. The major conclusion in Chapter 6 is borne out by the

extended model in this chapter.

2. The relation between unemployment U and vacancy V , the Beveridge Curve,

depends on demand.

3. The coefficient relating the unemployment rate to the growth rate of GDP is

much larger than one as Okun’s law claims.

4. The correlation between productivity and aggregate output is positive, pos-

sibly very high.

5. The economy reaches equilibrium faster when larger shares of demand fall on

more productive sectors. This means that demand affects not only the level

of GDP in equilibrium, but also the adjustment speed toward equilibrium.

7.4. Discussion

Economists have long recognized that the labor market is really segmented het-

erogeneous markets. A stochastic approach is powerful for analyzing dynamics

in such markets. It is not an accident that search theory, a stochastic approach,

has flourished in the analysis of the labor market.

One of the major insights of stochastic approach is that macro relationship

or equation is not a direct reflection of micro behavior of the representative

economic agent. This is precisely the spirit of this book. An early example of such

an approach is an attempt to explain the Phillips curve by way of aggregation of

stochastic microeconomic behaviors (Lipsey, 1960, Tobin, 1972). Tobin (1972),

for example, makes the following remark:

It is an essential feature of the theory that economy-wide relations among employment,

wages, and prices are aggregations of diverse outcomes in heterogeneous markets. The myth

of macroeconomics is that relations among aggregates are enlarged analogues of relations

among corresponding variables for individual households, firms, industries, markets. The

myth is a harmless and useful simplification in many contexts, but sometimes it misses the

essence of the phenomenon. (Tobin, 1972, 9)
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Using a stochastic dynamic model, we have demonstrated that two important

economy-wide relations – the Beveridge Curve and Okun’s law – are indeed the

outcomes of “aggregations of diverse outcomes in heterogeneous markets.” The

Beveridge Curve is closely related to the notion of the natural unemployment. In

what follows, we discuss the implications of our analysis.

Natural Unemployment

If the labor market were a single homogeneous market as illustrated in Figure 7.1,

depending on the level of real wages, either unemployment or vacancy exists, but

not both of them at the same time. However, in the real labor market, we observe

the coexistence of unemployment and vacancy. The relationship between the two

is negative. It is called the Beveridge Curve.

Obviously, the Beveridge Curve is borne out of complex interactions of work-

ers and firms in heterogeneous markets. “The actual structural characteristics of

the labor and commodity markets,” which Friedman (1968) argues generate the

“natural unemployment,” produce the Beveridge Curve.

It is usually taken that the position of the Beveridge Curve on the U –V plane

is determined solely by those “structural” characteristics of the labor market,

and is independent of aggregate demand. Then it becomes a very useful device

to separate the natural unemployment from unemployment caused by demand

deficiency. Beveridge (1944) defined employment as “full” if unemployment is no

more numerous than vacancies. The critical level of unemployment is the point

of intersection of the Beveridge Curve and the 45 degree line on the U/V plane.

Movements along a given Beveridge Curve bring about changes in unemployment

due to demand deficiency while keeping the natural unemployment unchanged.

On the other hand, shifts of the Beveridge Curve either to the northeast or to the

origin on the U –V plane change the level of the natural unemployment rate. In

section 1, we reviewed some of the important empirical analyses based on this

idea.

Our simulation results, however, indicate a pitfall for this standard approach

for, in general, the Beveridge Curve depends on aggregate demand. Specifically, as

the average level of aggregate output goes up, the Beveridge Curve shifts down

to the origin, and vice versa. Figure 7.9 shows the Beveridge Curve for Japan

(1980–2000). It is interesting to see that Japan’s Beveridge Curve shifts northeast

as the economy suffers from the long stagnation during the 1990s.

Why does the Beveridge Curve depend on aggregate demand in our model?

The reason is that we have a distribution of productivities in the economy. As

explained in Chapter 6, demand affects the level of total output. At the same

time, it affects the relationship between vacancy and unemployment.

This result has an extremely important implication. It means that we cannot

so clearly separate “structural” unemployment from “cyclical” unemployment

due to demand deficiency. It, in turn, means that the notion of “natural” rate
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Figure 7.9. Beveridge Curve for Japan from 1980 to 2000.

of unemployment is not well defined. The “natural” unemployment determined

solely by “structural” factors makes sense only in the unrealistic imaginary econ-

omy where productivities are equal in all the sectors and activities, and demand

does not affect the level of total output. As we explained it in Chapter 3, the

distribution of production factors among sectors with different productivities

depends crucially on aggregate demand. This means that the natural unemploy-

ment cannot be defined independent of aggregate demand.

Okun’s Law

Okun’s law (Okun, 1962) is an empirical relationship between changes in GDP,

Y , and the unemployment rate u:

�Y

Y
= γ − α(u − u∗). (7.21)

Okun’s (1962) original work found that u∗ is 4 percent, and α is about 3 for

the U.S. economy. Subsequent works have also found that α is about 3. This

coefficient is so stable for the United States that the relationship has come to be

called Okun’s law. This particular number, three, does not universally apply to
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all the economies, however. Hamada and Kurosaka (1984), for example, report

that the Okun coefficient is 13.2 for Japan (1974–82).6

The Okun coefficient α is much larger than what one should expect in the

the standard neoclassical framework. Take, for example, the Cobb–Douglas pro-

duction function with capital K and labor L . Then, GDP is given by

Y = K 1−α Lα (7.22)

with α about 0.7. The total workforce N = L + U is given where L and U are the

numbers of employed and unemployed, respectively. When N is given, we have

�U = −�L . We assume that �K is negligible in the short run. The production

function then implies that

�Y

Y
= α

(
�L

L

)
(7.23)

in the short run. This is roughly equal to

�Y

Y
= −α

�U

N
. (7.24)

Namely, a decrease in the unemployment rate by 1 percent entails only α

percent increase in the growth rate of Y . Thus, the Okun coefficient α which is

equal to the labor elasticity of the Cobb–Douglas production function, should

be smaller than one, say 0.6 or 0.7. To obtain the number 3, as in Okun’s law, we

need “increasing marginal product of labor.”

To explain Okun’s law that the 1 percent decrease (or increase) in unemploy-

ment (or employment) raises the growth rate of GDP by α percent with α being

much larger than one, we need some sort of increasing returns in the economy as

a whole. It is very important to recognize that aggregate increasing returns do not

necessarily mean increasing return technology in individual firm or sector. Given

distribution of productivities across sectors (or firms), changes in the pattern

of demand (si in our model) produce all kinds of returns, either increasing or

decreasing, in the economy as a whole.

Okun (1973) himself argues that one need to resort to the following factors

in explaining the Okun coefficient which is much larger than one:

I stressed then that unemployment was merely the tip of the iceberg that forms in a cold

economy. The difference between unemployment rates of 5 percent and 4 percent extends far

beyond the creation of jobs for 1 percent of the labor force. The submerged part of the iceberg

includes (a) additional jobs for people who do not actively seek work in a slack labor market

but nonetheless take jobs when they become available; (b) a longer workweek reflecting less

part-time and more overtime employment; and (c) extra productivity – more output per

6 Hamada and Kurosaka (1984) attribute such a high value of the Okun coefficient as 13 for Japan

to several factors: the elastic response in the female participation ratio, flexible working hours, the

slow adjustment in employment, and to changes in industrial structures.
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manhour – from fuller and more efficient use of labor and capital. In light of the findings of

other researchers on various aspects of the output-employment relationship, I shall qualify

and modify, but basically reaffirm, the three-to-one relationship that I initially estimated

between percentage increments in real gross national product (GNP) and percentage-point

reductions in the unemployment rate. (Okun, 1973, 207–208)

A decline in the unemployment rate by 1 percent actually raises labor input by

more than one percent. For the U.S. economy during the 1960s, Okun (1973)

offers the following estimates:

In light of these other studies, I would now estimate the additional labor input associated

with a reduction in unemployment from 5 to 4 percent as follows:

Component Percent

Jobs for the unemployed 1.05

Lengthened workweek 0.40

Increased labor force paricipation 0.65

——

Total addition to labor input 2.10

(Okun, 1973, 211)

These estimates imply that the remaining 1 percent increase in output must

come from productivity gains associated with a decline in the unemployment

rate by 1 percent. Extra productivity need not arise in individual firm or factory.

Okun indeed emphasizes the importance of sectoral shifts.

I now believe that an important part of the process involves a downgrading of labor in a slack

economy – high-quality workers avoiding unemployment by accepting low-quality and less

productive jobs. The focus of this paper is on the upgrading of jobs associated with a high-

pressure economy. Shifts in the composition of output and employment toward sectors and

industries of higher productivity boost aggregate productivity as unemployment declines.

Thus the movement to full employment draws on a reserve army of the underemployed

as well as of the unemployed. In the main empirical study of this paper, I shall report new

evidence concerning the upgrading of workers into more productive jobs in a high-pressure

economy. (Okun, 1973, 208)

This is precisely the point we have made by means of simulations. Our anal-

ysis in this chapter emphasizes the importance of sectoral shifts of resources in

generating productivity gains in the economy as a whole. In our first set of sim-

ulations reported in Table 7.1, we could obtain the Okun coefficient which is

much larger than one, depending on the configurations of demand shares and

productivity coefficients; 11.3 for Case D1 and 2.1 for Case D2. In the second set

of simulations reported in Table 7.2, the Okun coefficient α is 2.9 for Case D1

and 1.6 for Case D2; they are quite close to 3. Note that in either case, we assume

linear production functions for all sectors in our model so that in this respect,

one might expect α close to 1. That the Okun coefficient is much larger than one

must, therefore, come from sectoral interactions. It, in turn, means that Okun’s
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Figure 7.10. Total Factor Productivity.
Source: Mankiw (1989).

law is a macroeconomic phenomenon which arises from aggregations of diverse

stochastic outcomes in heterogeneous markets.

Procyclical Productivity

It is a well-established fact that productivity changes procyclically. Figure 7.10

shows changes in TFP (Total Factor Productivity or the Solow Residuals) and

output growth for the United States. Measured productivity is highly cyclical.

The interpretation of procyclical productivity changes is a matter of great

dispute. RBC theorists take the observed procyclical productivity at face value

(Kydland and Prescott, 1982; Prescott, 1986): Procyclical technological distur-

bances (or fluctuations in the production function) are indeed the major source of

business cycle fluctuations. Critics such as Summers (1986) and Mankiw (1989),

on the other hand, argue that observed cyclical productivity merely reflects labor

hoarding and other “off the production function” behavior. According to this

view, productivity appears to fall in a recession because firms keep unnecessary

and underutilized labor. In a boom, the hoarded labor is mobilized entailing an

increase in output without an accompanying large increase in measured labor

input.

Basu (1996) performed an ingenious test to investigate the relative impor-

tance of cyclical fluctuations in labor and capital utilization, increasing returns
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to scale, and technology shocks (i.e., fluctuations in the production function)

as explanations for procyclical productivity. The test is based on the idea that

firms may extract unmeasured services from their own capital stocks or hoarded

workers, but that in order to produce greater output, they need more materials

that do not involve unmeasured efforts or utilizations. His conclusion is that

cyclical factor utilization is important, returns to scale are about constant, and

technology shocks are small and have low correlation with either output or hours

growth. Specifically, “controlling for cyclical utilization reduces the variance of

technology shocks by almost 60 percent, their correlation with output growth by

75 percent, and their correlation with hours growth by 85 percent” (Basu, 1996,

749).

Procyclical productivity certainly arises from underutilization of production

factors at an individual firm or a production unit. However, given productivity

dispersion in the economy, it also arises from mobility of resources across sectors

or firms. Our simulation (Figure 7.8) demonstrates that the combination of pro-

ductivity dispersion and cyclical demand shifts across sectors, in fact, produces

highly procyclical productivity in the economy as a whole. This is precisely the

point Okun (1973, 208) emphasized in his explanation of Okun’s law.
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8

Demand Saturation–Creation and Economic Growth

In Chapters 3 and 6, we have shown that demand affects the level of total output.

As the old Keynesian economics claims, demand is relevant. However, the claim

is normally taken to be relevant only for the short run. The long run is the realm

of the neoclassical economics, whereby economic growth is determined solely

by supply factors. In this chapter, we challenge this standard neoclassical view,

and argue that demand actually plays a central role in the process of economic

growth.

8.1. Introduction

In the standard literature, the fundamental factor restraining economic growth is

diminishing returns to capital in production or R&D technology. In this chapter,

we present a model suggesting that “saturation of demand” is another important

factor restraining growth.

In the less mathematical literature and casual discussions, the idea of demand

saturation has been popular. Every businessman would acknowledge saturation

of demand for an individual product. In fact, plot a time series of production of

any representative product such as steel and automobiles, or production in any

industry, against year, and, with few exceptions, one obtains a S-shaped curve.

Figure 8.1, from Rostow (1978), demonstrates this stylized fact. The experiences

of diffusion of such consumer durables as refrigerators, television sets, cars,

and personal computers tell us that deceleration of growth comes mainly from

saturation of demand rather than diminishing returns in technology. Growth of

production of a commodity or in an individual industry is bound to slow down

because demand grows fast at the early stage but eventually, necessarily slows

down. Thus the demand for some products grows much more rapidly than the

GDP, while the demand for others grows much more slowly. Products/industries

face different income elasticities of demand. The celebrated Engel’s Law, based

on saturation of demand for food, is an example.

218
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I.P. : Industrial production Steel : Steel

Elec. : Electricity
M.V.Pro. : motor vehicles

R.R. : Railroad mileage
Iron : Production of iron
Cot : raw cotton consumption

Figure 8.1. Aggregate and Sectoral Growth Patterns Illustrated: British Industrial Production
and Six Major Sectors, 1700–1972.
Source: Rostow, W. W., The World Economy: History and Prospect, Austin: University of Texas
Press, 1978, p. 107.

Keynes (1936) was well aware of the danger of demand saturation. His princi-

ple of effective demand is, after all, nothing but a reflection of the law of demand

saturation. In the General Theory, saying that gold is a special commodity, he

argues as follows:

In the second place the result, namely, the increased stock of gold, does not, as in other cases,

have the effect of diminishing its marginal utility. Since the value of a house depends on its

utility, every house which is built serves to diminish the prospective rents obtainable from

further house-building and therefore lessens the attraction of further similar investment

unless the rate of interest is falling pari passu. But the fruits of gold-mining do not suffer

from this disadvantage, and a check can only come through a rise of the wage-unit in

terms of gold, which is not likely to occur unless and until employment is substantially

better. . . .

Ancient Egypt was doubly fortunate, and doubtless owed to this its fabled wealth,

in that it possessed two activities, namely, pyramid-building as well as the search for the

precious metals, the fruits of which, since they could not serve the needs of man by being

consumed, did not stale with abundance. The Middle Ages built cathedrals and sang dirges.

Two pyramids, two masses for the dead, are twice as good as one; but not so two railways from

London to York. Thus we are so sensible, have schooled ourselves to so close a semblance

of prudent financiers, taking careful thought before we add to the ‘financial’ burdens of

posterity by building them houses to live in, that we have no such easy escape from the

sufferings of unemployment. (Keynes, 1936, 130–131)

Unfortunately, the existing literature on growth abstracts largely from this

important fact that products/industries obey the law of demand saturation and
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that each product/industry experiences a typical S-shaped life cycle.1 This, of

course, is not to say that the appearance of new products and the disappearance

of old ones have not been modeled. In the so-called “creative destruction” and the

“quality ladder” literature, Grossman and Helpman (1991), Aghion and Howitt

(1992), and Caballero and Jaffe (1993) have analyzed such phenomena in growth

models. However, in this line of research, the old products disappear only through

the introduction of new products. Unless new products appear, demand for the

existing products remains the same. Therefore, it is possible for the economy

to keep growing if it succeeds in raising productivity in the production of the

existing commodities.2

In sharp contrast, with saturation of demand as we assume it here, to raise

productivity in production of the “mature” products does not help in sustaining

economic growth. To put it another way, in the existing R&D-based growth

models, the economy can keep growing, if, for example, the automobile industry

keeps raising the quality of cars, whereas in our model, it can’t because demand

for cars saturates in spite of quality improvement.

Likewise, the product life cycle in the existing literature (e.g., Grossman and

Helpman, 1991) is based on a production technology or production geography

life cycle whereas our model is based on a demand life cycle. In contrast to the

“creative destruction” that occurs in the existing literature, growth of demand for

the existing commodities in our analysis of “saturation” necessarily slows downs

whether or not new commodities appear. It would be absurd to argue that the

growth of demand for food decelerated, as Engel found, because manufactured

products appeared. The demand for cars did not approach its ceiling because

personal computers were invented. Rather the law of demand saturation works

for an individual commodity.

Within the same industry, new and old products are often close substitutes

like black/white and color TVs or personal computers of different vintage, and old

products gradually disappear as new ones appear. Thus, the “creative destruction”

story nicely fits the growth of an industry. The R&D race among competing

firms as it is modeled in the standard endogenous growth literature certainly

plays an important role. Technical progress taken up in the existing literature

concerns close substitutes, as those models explicitly state. However, as we argued

above, the same story does not necessarily hold true for different industries.

1 The volume entitled Escaping Satiation edited by Witt (2001) collects interesting papers on

“demand-led economic growth.” However, in our view, they have not succeeded in advancing

any coherent analytical framework.
2 This point trivially applies to the case where the quality improvement occurs in the production

of intermediate goods. It also applies to the case where the creative destruction or the quality

improvement occurs in the production of final consumables. See, for example, equation (21) of

Caballero and Jaffe (1993). If the number of commodities remains constant (Ṅ = 0), the growth

rate of the economy is still positive, which is equal to η̂, the growth rate of labor productivity in

the production of the existing commodities.
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Arguably, demand saturation is more relevant for the growth of the economy as a

whole. In this chapter, we explore the growth model based on demand saturation

and innovations which create new demand. To repeat, in the standard creative

destruction, quality ladder, or product variety models, the economy can sustain

growth if productivity in the population of existing products keeps rising, while

in our demand saturation model, it cannot.

We consider the logistic growth of an individual product/industry a stylized

fact, and present a formal model of growth built on this stylized fact. An obvious

implication of the logistic growth of an individual product/industry is that the

economy enjoys high growth if it successfully keeps introducing new products

or industries which temporarily enjoy high growth of demand. In our model,

innovation or technical progress bears new commodities or sectors which enjoy

high growth of demand, and, by so doing, sustains the economic growth of the

economy as a whole.

The demand-creating innovation in our model is different from the standard

total factor productivity (TFP), or an upward shift of the production function.

In the standard quality ladder models and the creative destruction literature of

Grossman and Helpan (1991), Caballero and Jaffe (1993), and Young (1998),

innovation or technical progress raises total factor productivity by way of re-

placing old commodities with new ones simply because new commodities are

assumed to have higher value than old ones. Again, whereas this seems to hold

true for the commodities that are basically the same but of different vintages, the

same story does not make much sense for wholly different products such as cars

and personal computers. Personal computers do not necessarily command higher

value added than cars. In short, the standard literature models the dynamics of

close substitutes whereas our model stresses the importance of demand satura-

tion and creation of wholly different products or industries for which demand

grows transitionally.

The difference between the standard models and our model of demand

saturation most clearly shows up in the transitory dynamics. In the standard

R&D-based growth models, the efficiency of R&D determines the transitory

dynamics, whereas in our model, the pattern of demand saturation is the de-

terminant. As a model of demand constrained growth, our model follows the

long line of post-Keynesian literature (e.g., Kaldor, 1957; Robinson, 1962). In the

post-Keynesian tradition, income distribution between capital and labor plays a

central role in determining aggregate demand. In contrast, our analysis focuses

on saturation of demand for an individual good/sector as a factor to generate

demand constraints facing the economy. We discuss the transitory dynamics in

Section 8.3.

Innovations in the economy facing the law of demand saturation contribute

to growth in a different way than an upward shift of the production function

does. That TFP does not necessarily capture the significance of technological

progress is pointed out by Wright (1997).
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The identification of ‘technological progress’ with changes in total-factor-productivity, or

with the ‘residual’ in a growth-accounting framework, is so widely practised that many

economists barely give it a passing thought, regarding the two as more-or-less synonymous

and interchangeable. . . . Even with extensive quality adjustments, TFP is not generally a

good index of technology. If a genuine change in technological potential occurs in a firm, an

industry, a sector, or a country, in any plausible model this change will affect the mobilisation

of capital and labour in whatever unit is involved. In the new equilibrium, inputs as well as

outputs will have changed; the ratio between these may convey little if any useful information

about the initiating change in technology. (Wright. 1997, 1562)

We share Wright’s concern. The economy always mobilize resources and accumu-

lates capital whenever it finds goods or sectors for which demand grows rapidly.

In fact, in our model, the elasticity of capital in the production function is equal

to one (the so-called AK model). Therefore, the economy grows whenever capital

accumulates. But capital accumulation is constrained by saturation of demand.

Innovation creates goods/sectors for which demand grows fast, elicits capital

accumulation, and thereby ultimately sustains economic growth.

To substantiate this argument, in Section 8.2, we present a model that incor-

porates the basic idea that demand for an individual good or sector necessarily

faces saturation and thus its growth eventually slows down. We begin with de-

mand for an individual product rather than preferences because the former is

more directly related to the stylized fact than the latter. Section 8.3 studies growth

of the economy as a whole. Out of the steady state, “vigor of demand” and sat-

uration determine growth whereas the ultimate factor for sustaining economic

growth in the steady state is the creation of new products/industries. Under the

standard Poisson assumption, successive creation of new products/industries

sustains steady-state growth. However, we demonstrate that under the alterna-

tive Polya urn assumption that the success probability of innovation gets smaller

as time goes by, the growth rate of the economy must decelerate and go asymp-

totically down to zero. This is the same result as that obtained in the standard

R&D-based TFP models (e.g., Jones, 1995; Jones and Williams, 1998; Segerstrom,

1998; Young, 1998), though the rate of innovation is a decreasing function of

time rather than a function of the R&D capital stock, as is assumed in the existing

literature. Section 8.4 provides microeconomic foundations for investment and

consumption. For consumption that follows the logistic growth, we present two

different microeconomic foundations: the Ramsey model with the representa-

tive consumer, and a model with diffusion of goods among different households.

The two models suggest different interpretations of saturation of demand. Finally,

Section 8.5 offers some concluding discussion.

8.2. The Model

We study an economy in which heterogeneous final goods and an intermediate

good are produced. In this section, we take demand for each final product as
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given, and concentrate on production. We will later consider the firm’s behavior

which determines investment and also the consumer’s behavior which determines

consumption in Section 8.4. Let us begin with final goods.

Final Goods

Final goods are produced with an intermediate good as the only input. Production

of all the final goods requires the same intermediate good X . The production

function is also common.

yk = AXk (0 < A < 1). (8.1)

We assume perfect competition. Therefore, zero profits ensue:

Pk(t)yk(t) = PX (t)Xk(t). (8.2)

HerePk(t) is the price of the kth final product, and PX (t) the price of intermediate

good. Because of the common linear production function (8.1), the zero profit

condition (8.39) is equivalent to

Pk(t)A = PX (t). (8.3)

Thus we can adjust the units of final products in such a way to make all the prices

of final goods one. Then

PX = A < 1.

The output of each final good is equal to its demand Dk(t) no matter how

the latter is determined:

yk(t) = Dk(t). (8.4)

In this section, we take a S-shaped life cycle of demand for each product/industry

as a stylized fact. To make our analysis tractable, assume that Dk(t) follows the

logistic curve:

D(t) = μD0

[δD0 + (μ − δD0)e−μt ]
. (8.5)

Because the mechanism is the same for all the products or sectors, for the mo-

ment, we drop k and write Dk(t) as D(t). We will explore microeconomic foun-

dations for the logistic growth of demand in Section 8.4. D0 in (8.42) is the

initial value of D(t). Starting with D0 smaller than μ/δ, D(t) initially increases

almost exponentially, but its growth eventually decelerates, and approaching its

ceiling μ/δ, the growth rate declines asymptotically to zero. A typical shape

of the logistic growth is illustrated and compared with exponential growth in

Figure 8.2.
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Figure 8.2. The Logistic Curve.

Though exponential growth is often taken for granted by economists, there

is actually ample evidence to show that no individual product or industry grows

exponentially. Rather demand for or production of a product or an industry

typically grows according to the logistic curve. In fact, an eminent mathematician

Montroll (1978) goes so far as to suggest that almost all the social phenomena,

except in their relatively brief abnormal times, obey the logistic growth. Figure 8.1

above demonstrates this well-known fact of life in our economy.

Growth and saturation of an individual product/sector are here characterized

by two parameters μand δ. They would depend not only on preferences but also

on creation of new models and close substitutes of higher quality in the production

of the same commodity. For example, TV set growth would have certainly reached

its ceiling much earlier if there had been only black/white TVs; the emergence

of color TVs and small models pushed up the ceiling. We maintain, however,

that such technical progress cannot overcome the law of demand saturation in

the end.3 In fact, based on his careful study of the U.S. patent data, Schmookler

(1966) even argues that technical progress in one industry is itself very strongly

conditioned on the prospects of demand in that industry.

3 Kuznets (1953), for example, argues that

In the industrialized countries of the world, the cumulative effect of technical progress in a number

of important industries has brought about a situation where further progress of similar scope

cannot be reasonably expected. The industries that have matured technologically account for a

progressively increasing ratio of the total production of the economy. Their maturity does imply

that economic effects of further improvements will necessarily be more limited than in the past.

(281)

Based on the American experiences, McLaughlin and Watkins (1939) share this kind of pessimism.
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Following the logistic growth of demand, production yk(t) also satisfies equa-

tion (8.5). So far, we have focused on a final good. The number of final products

is not given, however. Rather at every moment a new product or sector may

arise. The emergence of an utterly new final good or a new sector is the result of

innovations. Before we explain it, we turn to production of intermediate goods

taking the number of final goods N as if it were constant.

Intermediate Good

To keep our model as simple as possible, we assume that there is only one kind

of intermediate good X , and that X is produced by using capital K alone:

X = a K . (8.6)

Here X is the sum of intermediate goods used in production of final goods:

X =
N∑

k=1

Xk .

The capacity utilization a is determined by the firm together with capital accu-

mulation. We will discuss the firm behavior in section 8.4. For the moment, we

can imagine that a is constant, which is true in the steady state.

We note that the production function (8.6) has a unitary elasticity of capital,

and therefore that as long as capital accumulates, X grows without limit. And

given the common production function for final goods (8.1), whenever X grows,

production of final goods can also grow. However, X is intermediate good, and as

seen previously, the growth of demand for each final good decelerates and declines

eventually to zero. In this model, the factor that limits capital accumulation and

thereby growth is not diminishing returns on capital but declining growth of

demand. We consider how the profit-maximizing firm determines the capital

accumulation and the capacity utilization in section 8.4.

Emergence of New Final Goods or Industries

So far we have taken the number of final goods as if it were constant. In fact, new

final goods and/or industries emerge as a result of innovations. We can flexibly

interpret final goods as sectors or industries if we wish.

Much effort has been made to explicitly analyze R&D activities and inventions

in growth models. In fact, the achievement of the endogenous growth theory is

to have combined growth models with models of R&D activities. However, as

we pointed out above, technical progress in the existing literature basically con-

cerns quality improvement in the production of close substitutes. Therefore, it

more closely applies to an industry than to the economy as a whole. We maintain

that such technical progress “pushes up the ceiling” of demand for the existing
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products, but cannot overcome the law of demand saturation in the end. Inno-

vations in this model, in contrast, bear wholly new products/sectors/industries

for which demand grows fast. Such innovations would depend not only on

profit-motivated R&D but also on basic research. In any case, our primary in-

terest is not in microeconomic foundations for R&D activities but in the way in

which technical progress or innovation affects the economy.4

Specifically we assume that an invention of a new final good or an emergence

of a new sector stems stochastically from learning in the process of production

of the existing products. To be specific, we assume that the probability that a new

final good is invented or a new industry emerges between t and t + �t is λN�t

where N is the number of existing final goods (λ > 0). Because an invention or

new sector is a branch off from an existing good or sector, the rate of success

probability is proportional to the number of existing final goods/sector N. The

more products or sectors in the economy, the more likely a new product or sector

emerges. λ is a parameter that represents the strength of innovations or more

precisely the probability that a new good or industry emerges in the existing

process of production. Innovations are thus accidental, but depend on the prior

“knowledge” and experiences which stem from the existing production.

Given this assumption, Q(N, t) the probability that the number of final goods

at time t, N(t) is equal to N, satisfies the following equation.

d Q

dt
= −λN Q(N, t) + λ(N − 1)Q(N − 1, t). (8.7)

Without loss of generality , we can assume that the initial number of final goods

is one:

Q(N, 0) = δ(N − 1),

where the symbol δ(.) denotes Dirac’s delta function. The Appendix shows that

the solution of this equation under this initial condition is

Q(N, t) = e−λt (1 − e−λt)N−1. (8.8)

The probability that there are N goods at time t and the N + 1-th good

emerges between t and t + �t is then given by

λN Q(N, t)�t = λNe−λt
(
1 − e−λt

)N−1
�t. (8.9)

At time t, the production of final good which emerged at τ (τ < t), yτ (t),

has grown to

yτ (t) = μ

δ + (μ − δ)e−μ(t−τ )
(8.10)

4 Thus, the present analysis following Arrow (1962) and Stokey (1988) abstracts from profit maxi-

mization in R&D.



P1: JZZ

0521831067c08.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:22

8.3. Growth of the Macroeconomy 227

Figure 8.3. Saturation of Demand and Emergence of New Final Goods of Industries.
Note: τi is the date of birth of the ith Good/Industry.

because the growth of yτ (t) obeys the logistic curve. Again, without loss of

generality we can assume the initial production of newly invented good D0 to be

1 in equation (8.5). Before we provide microfoundations for consumption and

investment, we consider the growth of the economy as a whole.

8.3. Growth of the Macroeconomy

In this section, we will analyze the growth of the macroeconomy given the logistic

growth of individual final good (Equation (8.10)).

The Basic Result

The aggregate value added or GDP of this economy is stochastic, but in what

follows, we will focus on its expected value and denote it by Y (t). Y (t) is simply the

sum of production of all the final goods. Because profits in the final good sectors

are zero by the assumption of perfect competition, the aggregate value added is

equal to the value added (profit) produced by capital K in the intermediate good

sector, PX X(t), which is equal to
∑

k AXk = ∑
k yk = Y (t).

Figure 8.3 illustrates this model economy. Each sector once it emerged grows

logistically. New sectors emerge stochastically, and the aggregate value added or

GDP is simply the sum of outputs of all the then existing sectors.
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From equations (8.45) and (8.10), we know that the expected value of GDP

of this economy is given by

Y (t) =
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1 yτ (t)dτ + μ

(δ + (μ − δ)e−μt )

=
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1 μ

[δ + (μ − δ)e−μ(t−τ )]
dτ

+ μ

(δ + (μ − δ)e−μt ).
(8.11)

The second term of the right-hand side is simply the output of the first sector at

time t, y0(t). Using

λNe−λτ (1 − e−λτ )N−1 = d

dτ
(1 − e−λτ )N

and
∞∑

N=1

(1 − e−λτ )N = eλτ − 1

we obtain

Y (t) =
∫ t

0

[
d

dτ
(eλτ − 1)

]
μ

[δ + (μ − δ)e−μ(t−τ )]
dτ + μ

(δ + (μ − δ)e−μt)

= λ

∫ t

0

eλτμ

[δ + (μ − δ)e−μ(t−τ )]
dτ + μ

(δ + (μ − δ)e−μt)

= λ

∫ t

0

eλ(t−u)μ

[δ + (μ − δ)e−μu]
du + μ

(δ + (μ − δ)e−μt)
. (8.12)

From (8.12), the growth rate of the expected value of GDP, gt , becomes

gt = Ẏ (t)

Y (t)
= λ +

(
f (t)

Y (t)

) ( ˙f (t)

f (t)

)

where f (t) is the logistic equation:

f (t) = μ

(δ + (μ − δ)e−μt)
.

It is easy to show that gt satisfies

ġ t = (gt − λ)[2(μ − δ)e−μt f (t) − μ − gt] (8.13)

with the initial value g0:

g0 = Ẏ (t)

Y (t)
|t=0 = λ + μ − δ.
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Also, since e−μt f (t) approaches zero, we can establish that the growth rate of

GDP asymptotically approaches λ.

lim
t→∞ gt = lim

t→∞
Ẏ (t)

Y (t)
= λ.

Thus, we have established the following proposition.

Proposition: The rate of economic growth is ultimately determined by the power

of demand-creating innovations, λ.

The growth rate of the economy is initially higher than λ by μ − δ, but it even-

tually goes down to λ. In this model, μ and δ have level effects while the ultimate

growth rate is determined by λ. The exact time path depends, of course, on all

the parameters μ, δ, and λ.

It is important to recognize that not only the steady-state growth, but also

the out-of-steady-state growth, is generated by the successive emergence of new

products/industries. The growth of older industries keeps declining, whereas

newer products/industries enjoy high growth. How high depends on μ and δ.

From the perspective of this model, it is easy to understand that historians

have identified the leading or key industries in the process of economic growth.

The best known example would be perhaps Rostow (1960, 261–62) who argues

that

The most cursory examination of the growth patterns of different economies, viewed against

a background of general historical information, reveals two simple facts:

1. Growth-rates in the various sectors of the economy differ widely over any given period

of time;

2. In some meaningful sense, over-all growth appears to be based, at certain periods, on

the direct and indirect consequence of extremely rapid growth in certain particular key

sectors.

Vigor of the leading sectors depends on μ and δ in the model. For the sake

of illustration, we show a simulation result (Table 8.1 and Figure 8.4). In this

example, we assume thatλ, μ, and δ are 0.03, 0.12, and 0.02, respectively. Table 8.1

and Figure 8.4 show both the growth rate of GDP and the average growth rate

defined as �t
τ=1 gτ /t for each period (year). For the first ten years, the growth

rate of the economy is higher than 9 percent. In year 20, it is still 5.7 percent. By

year 40 the growth rate has slowed to 3.2 percent which is close to the assumed

asymptotic rate 3 percent. The average growth rate, of course, decelerates much

more slowly than the growth rate itself. The average growth rate for the first

thirty years, for example, is 7.5 percent, although the growth rate in the year 30 is

3.9 percent. This example demonstrates that depending on μ and δ, the economy
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Table 8.1. A simulation result (λ = 0.03, μ = 0.12, δ = 0.02)

Growth Average growth Growth Average growth

Time GDP rate (%) rate (%) Time GDP rate (%) rate (%)

0 1.00 51 18.82 3.0 5.8

1 1.14 12.8 12.8 52 19.40 3.0 5.7

2 1.28 12.3 12.5 53 20.00 3.0 5.7

3 1.45 11.8 12.3 54 20.62 3.0 5.6

4 1.62 11.4 12.1 55 21.25 3.0 5.6

5 1.81 11.0 11.9 56 21.90 3.0 5.5

6 2.01 10.6 11.6 57 22.57 3.0 5.5

7 2.23 10.2 11.4 58 23.26 3.0 5.4

8 2.46 9.8 11.2 59 23.98 3.0 5.4

9 2.70 9.4 11.0 60 24.71 3.0 5.3

10 2.95 9.0 10.8 61 25.46 3.0 5.3

11 3.22 8.7 10.6 62 26.24 3.0 5.3

12 3.50 8.3 10.4 63 27.04 3.0 5.2

13 3.79 7.9 10.2 64 27.87 3.0 5.2

14 4.09 7.6 10.1 65 28.72 3.0 5.2

15 4.39 7.2 9.9 66 29.59 3.0 5.1

16 4.71 6.9 9.7 67 30.50 3.0 5.1

17 5.03 6.6 9.5 68 31.43 3.0 5.1

18 5.35 6.3 9.3 69 32.38 3.0 5.0

19 5.68 6.0 9.1 70 33.37 3.0 5.0

20 6.01 5.7 9.0 71 34.39 3.0 5.0

21 6.35 5.4 8.8 72 35.44 3.0 5.0

22 6.69 5.2 8.6 73 36.52 3.0 4.9

23 7.03 5.0 8.5 74 37.63 3.0 4.9

24 7.37 4.8 8.3 75 38.78 3.0 4.9

25 7.72 4.6 8.2 76 39.96 3.0 4.9

26 8.07 4.4 8.0 77 41.17 3.0 4.8

27 8.42 4.2 7.9 78 42.43 3.0 4.8

28 8.77 4.1 7.8 79 43.72 3.0 4.8

29 9.13 4.0 7.6 80 45.05 3.0 4.8

30 9.48 3.9 7.5 81 46.42 3.0 4.7

31 9.85 3.8 7.4 82 47.84 3.0 4.7

32 10.21 3.7 7.3 83 49.30 3.0 4.7

33 10.59 3.6 7.2 84 50.80 3.0 4.7

34 10.96 3.5 7.0 85 52.34 3.0 4.7

35 11.35 3.4 6.9 86 53.94 3.0 4.6

36 11.74 3.4 6.8 87 55.58 3.0 4.6

37 12.14 3.3 6.7 88 57.27 3.0 4.6

38 12.54 3.3 6.7 89 59.02 3.0 4.6

39 12.96 3.2 6.6 90 60.82 3.0 4.6

40 13.38 3.2 6.5 91 62.67 3.0 4.5

41 13.81 3.2 6.4 92 64.58 3.0 4.5

42 14.26 3.2 6.3 93 66.54 3.0 4.5

43 14.71 3.1 6.3 94 68.57 3.0 4.5

44 15.18 3.1 6.2 95 70.66 3.0 4.5

45 15.66 3.1 6.1 96 72.81 3.0 4.5

46 16.15 3.1 6.0 97 75.03 3.0 4.5

47 16.66 3.1 6.0 98 77.31 3.0 4.4

48 17.18 3.1 5.9 99 79.67 3.0 4.4

49 17.71 3.1 5.9 100 82.09 3.0 4.4

50 18.26 3.1 5.8
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Figure 8.4. A simulation result (λ = 0.03, μ = 0.12, δ = 0.02).

can sustain a much higher growth rate than the equilibrium rate for a very long

period. The transitionary dynamics is determined by the pattern of demand

saturation.

Everyone knows that no economy grows at 10 percent indefinitely. Some

economies, however, actually experienced 10 percent growth for a decade, and

this decade-long high growth is often crucial for their growth experiences. Japan,

for example, experienced 10 percent growth for a decade and a half, from

1955 through 1970. The era of high economic growth had transformed a semi-

traditional economy into a modern industrial nation. We will later explain Japan’s

experience as a case study. The point is that we cannot dismiss “out of steady

state” merely as transitory, but must attach equal importance to it as to the steady

state.

The out-of-steady-state growth path illustrated in Figure 8.4 is qualitatively

similar to that obtained in the old Solow (1956) model and also in the more recent

R&D-based growth models such as Jones (1995), Young (1998), and Segerstrom

(1998). Namely, the growth rate decelerates over time. The mechanism is funda-

mentally different, however. In the Solow model, diminishing returns to capital in

ordinary production is the factor which brings about slower growth. In the R&D-

based models, diminishing returns in R&D leads to slower growth. In contrast, in

the present model the deceleration of the out-of-steady-state growth rate comes

from saturation of demand. To be specific, as equation (8.13) shows, the out-of-

steady-state growth path depends on μ and δ, which determine how vigorous

the growth of demand is, or, conversely, how soon demand reaches its saturation.

When δ is very small, and, therefore, the ceiling of demand is very high, the pace
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of deceleration can be slow. This out-of-steady note-state growth is basically

constrained by demand. In this sense, the present model follows the long tradi-

tion of post-Keynesian literature mentioned in Section 8.1.

An Extension: The Non-Poisson Polya Urn Model

In the model above, we assumed that a new good or sector emerged as a branch

off in the production of N existing goods and that it followed the Poisson birth

process with the parameter λN. Under this assumption, the long-run growth

rate is sustained by the rate of innovation λ.

In the standard R&D-based growth models, Jones (1995), Jones and Williams

(1998), Segerstrom (1998), and Young (1998), among others, showed that if R&D

was subject to diminishing returns due, for example, to congestion in research, the

“finishing out” effect, and increasing difficulty, then the growth rate decelerated

to zero in the steady state unless some exogenous factor such as population

growth sustained it.

We will examine a similar problem in our model. In the existing literature

mentioned above, all of which use the Poisson model, the Poisson parameter,

which is λ in our model, is the success probability of R&D, and, therefore, the

birth rate is naturally taken as a function of the stock of R&D, which corresponds

to N in our model. The deceleration of the long-run growth rate occurs when

the birth rate λ = f (N) shows diminishing returns, namely when f (N) / N is

a decreasing function of N.

In our basic model, the birth of a new goods/sector is a branch off from the

production of N existing goods. Therefore, we assumed that the birth rate was

λN. However, we model the emergence of wholly new goods/industries rather

than close substitutes to the existing goods. It is not directly linked to R&D but

is strongly conditioned on the advancement of basic scientific knowledge. One

might like to assume, therefore, that if opportunities for innovations narrow

over time, the probability of the emergence of new goods/sectors be a decreasing

function of time rather than N. Specifically, in place of the Poisson distribution,

we assume that the probability that a new good or sector emerges at τ , pτ , is

pτ = ω

ω + τ
(ω > 0, τ = 1, 2, . . .)

This probability decreases in τ , and declines asymptotically to zero. This kind

of model, often called Polya-like urns, is extensively used in population genetics

(e.g., Hoppe, 1984). The existing literature in economics all rely on the Poisson

distribution, and, to our knowledge, this non-Poisson model is new.

Now, we assume that a new good is invented exogenously with pτ rather than

as a branch off from the existing goods, namely, that pτ is independent of the

number of existing goods. In this case, when we denote the probability that there
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are N goods at τ by Q(N, τ ) as we did previously, then Q(N, τ ) satisfies

Q(N, τ + 1) = (1 − pτ )Q(N, τ ) + pτ Q(N − 1, τ )

=
(

τ

ω + τ

)
Q(N, τ )+

(
ω

ω + τ

)
Q(N − 1, τ ) for τ = 1, 2, . . .

with the following boundary conditions:

Q(1, τ ) =
(

1

ω + 1

) (
2

ω + 2

)
· · ·

(
τ − 1

ω + τ − 1

)

and

Q(τ, τ ) = ωτ

ω(ω + 1)(ω + 2) · · · (ω + τ − 1)
= ωτ

[ω]τ

where [ω]τ is defined by the equation.

The solution of this equation is

Q(k, τ ) = c(k, τ )ωk

[ω]τ

where c(k, τ ) is the absolute value of the Sterling number of the first kind; see Aoki

(1997, 279) or Abramovitz/Stegun (1968, 825). Using the generating function

[x]k =
k∑

j=0

c(k, j )x j

we obtain the expected value of GDP, Y (t), as

Y (t) =
t∑

	=1

	∑
j=1

c(	 − 1, j − 1)ω j−1

[ω]	−1

(
ω

ω + 	

)
y(t − 	)

=
t∑

	=1

(
ω

ω + 	

)
y(t − 	).

Here y(t − 	) is the production of the final good which emerged at time 	.

Note that y(t − 	) follows the logistic curve, and therefore, that its growth rate

eventually declines to zero.

For simplicity, take ω as an integer. Then we have

t∑
	=1

(
ω

ω + 	

)
= ω

[
ω+t∑
m=1

1

m
−

ω∑
m=1

1

m

]
∼= log

[
ω + t

ω

]
.

Therefore we have shown that in the present case, GDP grows drawing the loga-

rithmic curve.

Y (t) ∼ log(t + ω)

The growth rate of the economy is 1/ t + 1/ (t log(t + ω)) and goes asymptotically

down to zero.
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Thus, the result similar to Jones (1995), Young (1998), and Segerstrom (1998)

holds in our model. If the opportunities for innovations diminish over time,

the long-run growth is not sustained. Note that in the existing literature, λ

is a (possibly) decreasing function of N whereas in the present analysis, λ is

independent of N and is a decreasing function of time.

8.4. Foundations for the Logistic Growth of Demand

Having found the growth rate of GDP, we next turn to the general equilib-

rium of this model. We have already explained production of both final goods

and an intermediate good. In what follows, we first consider the firm behav-

ior which determines investment in the intermediate good sector, and then the

consumer behavior which determines consumption/saving. The consumer be-

havior must be consistent with growth of income or GDP (equation (8.13)) and

the logistic growth of demand for an individual final good. Also saving must

be equal to investment; final goods are not only consumed but also used for

investment.

In this model, consumption leads to the logistic growth of individual final

goods. We suggest two different models, one the standard Ramsey model with

the representative consumer and the other with diffusion of final goods among

different households. Because the model of investment is common, we begin

with the firm’s investment.

The Firm’s Investment Decisions

The intermediate good is produced by the representative firm using capital K (see

equation (8.6)). The firm is constrained by demand, and the capacity utilization

rate a is variable. Capital accumulates so as to maximize the value of this firm

(industry). Profit of this firm, which stems from selling intermediate goods to

firms producing final goods, is PX X .

Gross investment I requires finished goods as an input. For simplicity, we

assume that final goods are perfect substitutes for increasing K . I consists of two

parts, one the net investment inclusive of the standard adjustment costs, and the

other the depreciation, which depends positively on the capacity utilization rate

(a in equation (8.6)) of the existing capital stock K . Specifically, we assume:

I = ϕ(z)K + d(a)K (8.14)

with z = K̇
/

K .

ϕ(z) satisfies

ϕ′(z) > 0 for z = K̇ /K > 0, ϕ′(z) < 0 for z < 0,

ϕ′′(z) > 0 for any z, and ϕ(0) = 0, ϕ′(0) = 1. (8.15)
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We assume the convex adjustment cost for negative z to rule out disaccumulation

of capital. Depreciation d(a) is also a convex function of the capacity utilization

rate (Smith, 1969):

d ′(a) > 0, d ′′(a) > 0, and d(0) = 0. (8.16)

The value of this firm S is then given by

St =
∫ ∞

t

[PX Xτ − Iτ ] exp

(
−

∫ τ

t

ρu du

)
dτ

=
∫ ∞

t

[PX Xτ − ϕ(Zτ )Kτ − d(aτ )Kτ ] exp

(
−

∫ τ

t

ρu du

)
dτ . (8.17)

We note that St satisfies

ρt = Ṡt

St

+ PX Xt − It

St

(8.18)

and observe that ρ is the rate of return on stock of this firm or the interest

rate. The stock of this firm is owned by the consumer (or consumers). It will be

explained shortly.

The firm is constrained by demand X . Because capital stock K is also given,

the capacity utilization rate a = X/K is given at each moment in time. The firm

maximizes its present value with respect to investment. If the pace of capital

accumulation is short of the growth rate of sales, the capacity utilization rate

rises, and so does depreciation. On the other hand, when the firm raises the rate

of capital accumulation, it incurs higher adjustment costs. The firm must balance

the two so as to maximize its present value. This decision depends crucially on

the growth rate of demand g = Ẋ/X facing the firm.

A change in the capacity utilization rate a = X/K must by definition satisfy

the following equation:

ȧt = (gt − zt ) at . (8.19)

It can be shown that the optimal capital accumulation z and capacity utilization

rate a must satisfy (8.19) and (8.20):

żt =
(

1

ϕ′′(z)

) [
(ρ − z)ϕ′(z) + ϕ(z) − r (a)

]
(8.20)

where

r (a) = d ′(a) a − d(a), r ′(a) > 0. (8.21)

r (a) measures a marginal increase in the firm’s value when the rate of capital

accumulation z rises by way of lowering the capacity utilization, and accordingly

depreciation. r (a) is, therefore, the profit rate on capital K in this model. Given

capital stock K , the profit rate r is an increasing function of the firm’s demand
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z z = 0 

g a = 0 

0 â a 

˙

˙

Figure 8.5. The Determination of Capital Accumulation z and Capacity Utilization Rate a.
Note: â is defined by ρ = d ′′(â) − d(â).

X . The rule for the optimal capital accumulation (equation (8.20)) is basically

equivalent to the one in Uzawa (1969).

This optimal path can be most clearly seen with the help of Figure 8.5 when

g is constant as in the steady state. The capital accumulation z approaches the

growth rate of sales g from above when the initial capacity utilization is higher

than its equilibrium level a∗ which satisfies r (a∗) = (ρ − g )ϕ′(g ) + ϕ(g ), and

vice versa. When g becomes higher, so does the long-run profit r (a∗), and higher

r (a∗) induces higher capital accumulation. The firm’s prospects for demand ba-

sically determine investment. Investment also depends negatively on the interest

rate ρ.

So much for the investment of the demand-constrained firm. In what follows,

we will consider the consumer behavior which determines consumption/saving.

We will present two alternative stories, one the Ramsey model and the other a

model of diffusion of consumption goods among different households.
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The Consumer’s Consumption/Saving Decisions

The Ramsey Model. In the neoclassical approach, the queen of the economy is

the consumer. Demand for final goods must be, therefore, consistent with the

consumer’s utility maximization. In what follows, we demonstrate that demand

for final goods which obeys the logistic equation is in fact consistent with the

intertemporal utility maximization of the Ramsey consumer with a particular

utility function.

For convenience, we consider the representative consumer’s utility maximiza-

tion at time 0. At time 0, there is only one final good as is assumed in Section 8.3.

This assumption is made for simplicity. The assumption that there are n goods

(n > 0) at time 0 merely deprives our presentation of its simplicity without giving

us any additional insight.

Starting with one final good at time 0, new goods keep emerging. The prob-

ability that there are N goods at time t and the N+ 1-th good emerges during

t and t + �t is given by (8.13). Thus as of time 0, the consumer faces uncer-

tainty concerning the timing of the emergence of new goods. We assume that the

consumer maximizes the expected utility U :

U =
∫ ∞

0

{∫ t

0

∞∑
N=1

[λNe−λτ (1 − e−λτ )N−1ut
τ (C N+1(t))] dτ + ut

0(C1(t))

}
e−θ t dt

(8.22)

where θ is the subjective discount rate and C j (t) is the consumption of the j -th

good. In (8.22), the expected value is taken with respect to the probability of the

emergence of new goods. A similar assumption is made in Aghion and Howitt

(1992).

To obtain the logistic demand function, we assume that the utility coming

from consumption of a certain final good at time t depends not only on t but also

on τ (τ < t ), the time when this final good emerged. To be specific, we assume

that the utility function ut
τ (C N(t)) is common for all the C N(t) (N = 1, 2, · · · )

and is

ut
τ (C N(t)) =

[
μ

(δ + (μ − δ)e−μ(t−τ ))

]
log(C N(t)). (8.23)

The logistic growth of demand (8.14) characterized by two parameters μ and

δ translates itself into the utility function (8.23). It is actually more accurate to

say that μ and δ, which characterize the time-dependent utility function, lead

us to the logistic growth of demand for an individual final good. The logistic

part of utility function (8.23) implies that the (marginal) utility coming from

consumption of a particular final good depends crucially on how long a time
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has passed since this final good first emerged. Though it monotonically increases

over time, its growth rate eventually decelerates and is bound to approach zero.

The consumer owns the stock (capital) of the intermediate good industry,

St , which earns the rate of return ρt . Thus his/her budget constraint is

Ṡt = ρt St −
∞∑

i=1

Ci (t). (8.24)

The consumer maximizes (8.22) subject to (8.24) and S0. Introducing the

costate variable (shadow price of capital stock) ν(t)e−θ t , we obtain the necessary

conditions for optimality as follows:

C1(t) =
(

1

ν(t)

) [
μ

δ + (μ − δ)e−μt

]
(8.25)

C N+1(t) =
∫ t

0

λNe−λτ (1 − e−λτ )N−1

(
1

ν(t)

) [
μ

δ + (μ − δ)e−μ(t−τ )

]
dτ

for N � 1 (8.26)

ν̇(t)

ν(t)
= θ − ρt (8.27)

and

lim
t→∞ ν(t)e−θ t S(t) = 0. (8.28)

Because S(t) grows asymptotically at the rate of g (t) and ν(t) satisfies (8.27), the

transversality condition (8.28) is equivalent to

lim
t→∞ exp

{
−

∫ t

0

(ρτ − gτ )dτ

}
= 0. (8.29)

Condition (8.29) is satisfied when the optimal solution (8.20) exists for invest-

ment decisions.

From (8.25) and (8.26), we obtain

C(t) =
∞∑
j=1

C j (t) =
(

1

ν(t)

) {
μ

δ + (μ − δ)e−μt

+
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1

[
μ

δ + (μ − δ)e−μ(t−τ )

]
dτ

}
(8.30)

for total consumption C(t) at time t. Thanks to (8.11), we can rewrite (8.30) as

C(t) = Y (t)

v(t)
. (8.31)

1/ν(t)is simply the average propensity to consume.



P1: JZZ

0521831067c08.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:22

8.4. Foundations for the Logistic Growth of Demand 239

Given (8.27), equation (8.31) is equivalent to

θ − gt + Ċ(t)

C(t)
= ρt (8.32)

Equation (8.32) is nothing but the Euler equation or the Keynes/Ramsey rule.

It requires that for optimality, the marginal rate of substitution defined by the

left-hand side of equation (8.32) must be equal to the interest rate ρ. The optimal

saving decisions satisfy (8.32).

As we have already seen, the optimal investment decisions satisfy (8.20).

Note that both the optimal saving and investment decisions, (8.32) and (8.20),

depend on the time paths of the growth rate of Y , gt , and the interest rate ρt .

The interest rate ρt , the growth rate of capital zt , and the capacity utilization at

are simultaneously determined by (8.19), (8.20), and (8.32) in such a way that

gt satisfies (8.13) in Section 8.3.

The goods market equilibrium, namely

Y = C + I =
∑

i

Ci + φ(z)K + d(a)K , (8.33)

is, as usual, assured by the appropriate change in the interest rate. Formally,

the time path of this equilibrium interest rate ρ can be found by considering

the “command economy” corresponding to the market economy. Maximize the

consumer’s utility (8.22) under the constraint (8.19) and (8.33). The time path

of Yt is given by (8.13) and sets a constraint for this problem. Call the Lagrange

multiplier for the goods market equilibrium constraint (8.33) ωt e
−θ t . Then

ρt = θ −
( ·

ω

ω

)

is the equilibrium interest rate.

In this model, the capacity utilization rate a, and accordingly, the profit rate

r (a) = d ′(a)a − d(a) are endogenously determined. The higher the growth rate

determined by δ,μ andλ, the higher the profit rate r . This can be seen most clearly

for the steady state. In the steady state, Ċ/C is g , and the interest rate ρ becomes

equal to the consumer’s discount rate θ . The relation between the growth rate

g and the profit rate r in this case is shown in Figure 8.6. When the strength of

innovations to create new sectors/goods λ gets higher, the steady-state growth

rate becomes higher. Higher investment is induced by higher profit which is in

turn generated by the higher capacity utilization rate.

To equilibriate the goods market, higher investment (or a shift up of the

investment function) generated by high growth of demand brings about a high

interest rate. The high interest rate in turn makes the consumer find high growth

of consumption desirable (the Euler equation). It accordingly generates high

saving which must be equal to investment in equilibrium. The ultimate factor

to determine the growth rate is the vigor of demand characterized by three

parameters μ, δ and λ.
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Figure 8.6. The Determination of the Profit Rate r Corresponding to the Steady State Growth
Rate λ.
Note: The relation between g and r is given by r = (θ – g )φ′(g ) + φ(g ). Thus r ∗ = (θ −
λ)φ′(λ) + φ(λ).

In standard growth models, such as Romer (1990), Grossman and Helpman

(1991), Aghion and Howitt (1992), and Jones (1995), the rate of innovation raises

the long-run growth rate of the economy by increasing TFP. In the present model,

the rate of innovation λ raises the growth rate of the economy by increasing aggre-

gate demand. Technical progress elicits investment of the demand-constrained

firm both by increasing the number of goods produced over time, and transi-

tionally, by reducing the average age of products in the market, favoring products

on faster growth segments of their demand life cycles.

Diffusion of Final Goods among Different Households. The Ramsey model

is the most standard approach in macroeconomics. However, as argued in

Chapter 1, it is a bad idea to use the Ramsey model as a descriptive model. The

main theme of this book is that the model built on the representative agent is

not a good framework for analyzing the macroeconomy. This basic idea applies

to the present case. In many economies, for many periods in history, a declining

growth of demand for a particular product has been closely related to diffusion

of the product among different households. Some households own the product
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Figure 8.7. Diffusion of Consumer Durables. Source: W. Michael Fox and Forbes magazine Bill
Gates [1999].

whereas others do not. It is particularly true for such consumer durables as

televisions, refrigerators, cars, and personal computers. For these consumer

durables, it makes more sense to analyze their growth in a model with different

households than in a model with the representative consumer. Diffusion of

consumer goods among households, in fact, plays an important role in the

logistic growth.5 Bill Gates notes this fact (Figure 8.7; Gates, 1999, 118). In this

section, we consider such a model.

Suppose there are M households in the economy. Without loss of gener-

ality, we can assume that M is equal to μ/δ. Households are indexed by i

(i = 1, 2, . . . , M = μ/δ). We define fi N(t) functions:

fi N(t) = 1 if household i purchases the N th product at time t.

fi N(t) = 0 if household i does not purchase the Nth product at time t.

We assume that the number of households which consume the N th product

at time t, mN(t), follows a birth and death process with the birth rate μ and the

death rate δmN . Note the following relation:

M∑
i=1

fi N(t) = mN(t). (8.34)

5 Yoshikawa (1995) explains the high growth of the Japanese economy during the 1950s and 60s

emphasizing diffusion of consumer durables. We will briefly explain it later.
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This process leads us to the logistic equation for the expected value of mN(t),

m̂N(t). Thus if the N-th product emerged at τ , m̂N(t) satisfies the following

equation:

m̂N(t) = μ

(δ + (μ − δ)e−μ(t−τ ))
for each N . (8.35)

The (expected) diffusion rate or the percentage of households which consume

the Nth product is m̂N(t)/M.

For simplicity we assume that a household purchases 1 − s unit of any final

product if it consumes this product. s is the saving rate. As in Solow (1956), the

present analysis abstracts from the determination of s . The saving rate is assumed

to be common for all the households (i = 1, 2, . . . , M), and depends positively

on the interest rate ρt . It also depends on time t. Note that the consumption of a

final good by each household is constant. This assumption seems to hold, as an

approximation, for many consumer durables.

Then, with the expected income of household i , Ii (t), the budget constraint

for household i at time t becomes

Ii (t) =
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1(1 − s ) fi N+1(t)dτ

+ (1 − s ) fi1(t) + s Ii (t)

=
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1 fi N+1(t)dτ + fi1(t). (8.36)

Thanks to (8.34) and (8.35), incomes of all the households (8.36) sum up to

GDP, Y (t):

M∑
i=1

Ii (t) =
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1
M∑

i=1

fi N+1(t)dτ +
M∑

i=1

fi1(t)

=
∞∑

N=1

∫ t

0

λNe−λτ (1 − e−λτ )N−1 μ

(δ + (μ − δ)e−μ(t−τ ))
dτ

+ μ

(δ + (μ − δ)e−μt)

= Y (t).

The goods market equilibrium is then

s (ρt ) = ϕ (zt) Kt + d (at) Kt

Yt

= ϕ (zt) + d (at)

at

. (8.37)

Just as in the Ramsey model, the interest rate ρt , the growth rate of capital zt ,

and the capacity utilization rate at are simultaneously determined by equations
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(8.19), (8.20), and (8.37) in such a way that gt satisfies equation (8.13) in

Section 8.3. In the steady state, we obtain

s (ρ∗) = ϕ(λ) + d(a)∗

a∗

and

ϕ′(λ) = r (a∗) − ϕ(λ)

ρ∗ − λ
.

The steady-state growth rate is λ. The steady-state values of the interest rate

ρ∗ and capacity utilization rate a∗ are different from those of the Ramsey model.

The effects of an increase in λ on the equilibrium interest rate and the capacity

utilization rate are, however, qualitatively the same as in the Ramsey model

provided that the interest elasticity of the saving rate is high enough.

In the Ramsey model with the representative consumer, the S-shaped growth

of each product derives directly from the assumption (8.23) that the marginal

utility coming from consumption of a particular final good depends on how long

a time has passed since the good first emerged. In the second model, a household

is assumed to purchase a given unit of each product. The S-shaped growth derives

from diffusion of each product among different households. In both cases, growth

of demand induces capital accumulation by the demand-constrained firm, and

thereby economic growth. Growth, on the other hand, creates higher income

which makes more households able to purchase goods. Equation (8.36) defines

income distribution which generates diffusion of final goods among households.

Because the amount of a final good which each household purchases is bounded,

growth of production of an individual good necessarily decelerates parallel to

diffusion of the good among households. Creation of wholly new goods/sectors

is the ultimate factor to sustain growth in such an economy. In the next section,

we will explain that diffusion of consumer durables played a very important role

in Japan’s postwar economic growth.

8.5. Discussion

In the standard literature, the fundamental factor restraining economic growth is

diminishing returns to capital in production or R&D technology. We presented a

model in which the factor restraining growth was saturation of demand. Our anal-

ysis began with a common observation that for individual products/industries,

there was a history of logistic development with initial acceleration and eventual

retardation of growth. Taking this as a stylized fact, we presented a formal model

of growth consistent with this important fact.

This model provides new perspectives to several important problems ad-

dressed by the economics of growth. The first new perspective pertains to

out-of-steady-state dynamics. Despite the controversy surrounding conditional
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convergence, for many economies, and for advanced economies in particular, we

observe the eventual deceleration of growth rates. In the Solow model, diminish-

ing returns to capital in production is the factor to bring about slower growth.

In the R&D-based models, it is diminishing returns in R&D. Thus, in both ap-

proaches, diminishing returns in technology is the factor that brings about a

slowing of economic growth. In contrast, in our model, saturation of demand

(μ and δ) is the factor that leads the economy to slower growth.

The second new perspective relates to the nature of technical progress or

innovations. In the standard analysis, technical progress brings about higher

value added given the same level of inputs. It is basically equivalent to an upward

shift of the production function. The so called product variety, quality ladder,

or creative destruction model (e.g., Grossman and Helpman, 1991; Caballero

and Jaffe, 1993) using the Dixit/Stiglitz production/utility function, successfully

endogenizes this kind of technical progress. Empirically, technical progress has

been measured by growth accounting as TFP (total factor productivity).

In the model presented here, the aggregate production function is Y = AK .

Because A is constant, there is no TFP growth; for the economy to grow, capital

must accumulate. However, saturation of demand constrains capital accumula-

tion and leads the economy to deceleration of growth. Innovation or technical

progress in this model creates a major new product or industry which commands

high growth of demand and thereby elicits capital accumulation and so sustains

economic growth. In his famous book, Schumpeter (1934) distinguishes five

types of innovations: (1) the introduction of a new good, (2) the introduction of

a new production method, (3) the opening of a new market, (4) the conquest of a

new source of supply of raw materials, and (5) the new organization of industry.

His first and third types of innovations as an engine for growth seem to be most

naturally interpreted in terms of the kind of model presented here.

The distinction between the conventional TFP and demand-creating techni-

cal progress is not only theoretically important but is also empirically relevant.

Young (1995), for example, in his careful study of growth accounting, demon-

strates that TFP growth in the newly industrializing countries (NICs) of East

Asia (e.g., Hong Kong, Singapore, South Korea, and Taiwan) is not extraordi-

narily high, but actually comparable to those in other countries. The very high

average growth rate (8–10%) of East Asian NICs for such a long period as 25

years must be, therefore, explained by extraordinary injection of capital and labor

rather than extraordinary TFP growth. These facts have become widely known

throughout the world via Krugman’s (1994) famous article “The Myth of Asia’s

Miracle.”

The basic question remains: Why did the economy grow so fast in these

countries? The analysis of this paper suggests that in these countries, new sectors

that command high growth of demand vigourously emerged (high μ/δ and λ).

TFP growth may not be extraordinarily high, but it does not necessarily mean

there is an absence of demand-creating innovations. Young, in fact, reports that
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in East Asian NIEs the industrial structure has drastically changed. A change

in the industrial structure in the course of economic growth is likely to reflect

demand-creating innovations which are conceptually different from TFP. To the

extent that exports happen to have commanded high growth (i.e., high μ/δ), we

can easily understand that the high growth of East Asian NIEs often looked to be

export-led. Nelson and Pack (1999) make a similar argument emphasizing the

importance of productive assimilation for the success of Asian NIEs. Productive

assimilation is related to λ in our model.6

To repeat, our analysis shows that technical progress has a different aspect

from the conventional TFP represents, namely demand creation, and that it is

demand creation that sustains economic growth. It may shed light not only on

“the Asian Miracle” but also on the high growth of the American economy during

the 1990s in which, despite remarkable progress in information technology (IT),

TFP growth was not so high as one might expect at least until the late 1990s

(Gordon, 1999). Advancement of information technology may not only increase

productivity on the supply side, but also create new markets and mediate demand-

led growth.

Demand-creating technical progress is most likely to entail changes in in-

dustrial structure. Yoshikawa and Matsumoto (2001) indeed demonstrate that

changes in industrial structure and economic growth are positively related for

Japan. To see this, we need a measure of changes in industrial structure, of course.

Suppose the economy consists of n sectors, and that the share of the i th sector

at time t is w t
i . Then our measure of changes in industrial structure from t1 to

t2, σ , is

σ =

√
n∑

i=1

(
w t2

i − w t1

i

)2

T
where T = t2 − t1.

The shares of industries wi sum to one, and, therefore, a vector of sectoral

shares in a certain period can be represented by a point on the n − 1 dimensional

simplex. This measure σ is nothing but a distance between two points on this

simplex. σ so defined rises when some industries declined, and, therefore, is

not necessarily positively correlated with the growth rate. However, to the extent

that changes in industrial structure are brought about by innovations and births

of growing sectors, the positive correlation between σ and the growth rate is

expected. Figure 8.8 shows σ and the growth rate of real GDP ρ for Japan. Here

σ is calculated by rolling for the ten year period, namely for 1955–65, 1956–66,

and so on up to 1988–98. The correlation of σ with the growth rate is 0.84. A

piece of evidence shown in Figure 8.8 suggests that changes in industrial structure

6 Nelson and Pack (1999) discuss only the general importance of productive assimilation. From

the perspective of the present paper, Asian NIEs could grow rapidly because they succeeded in

productive assimilation in those sectors where growth of demand was very high.
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Figure 8.8. σ (Measure of Changes in Industrial Structure) (Ten-Year Case) andρ, (GDP Average
Growth Rate), Japan.
Note: see text for definitions of ρ and σ.

accompany growth. And given the law of demand saturation, it, in turn, suggests

the importance of demand-creating innovations.

Our model also provides different policy implications than the standard

R&D-based growth models. The standard literature amply demonstrates the

importance of R&D. However, these models ignore differences in the age of

products/industries. In our model, R&D in the mature product/industry does

not promote economic growth not because efficiency in R&D diminished but

primarily because demand approached saturation. Any policy to promote growth

must seriously consider the age of the product or the prospect of demand.

The ultimate factor in sustaining growth λ which creates wholly new prod-

ucts/industries would depend, not only on profit-motivated R&D, but also heav-

ily on basic scientific research. In fact, λ is not necessarily confined to supply-

side factors. Growth and saturation of demand often parallel diffusion among

different households, as we discussed in the second model in Section 4.2. Thus

appropriate income distribution policy which triggers diffusion of major product

can be taken as a demand-creating innovation. This point may be important

for growth of developing countries. It was certainly important in the postwar

Japanese growth during the 1950s and 60s.

We have argued that even the long-run growth is strongly conditioned by

demand. However, we can not expect that there is any general answer to the

question of how growth is conditioned by demand. The process of growth is
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historical, and therefore, to gain insight into the pattern of growth, historical

case study is necessary (Rostow, 1960). Drawing on Yoshikawa (1995), we shall

briefly explain the rapid economic growth of the Japanese economy during the

1950s and 60s, and how economic growth was conditioned by demand in this

particular episode.

The Postwar Japanese Experience: A Case Study

The Japanese economy enjoyed an average of 10 percent growth for almost two

decades beginning in the mid-1950s. Several factors are believed to have con-

tributed to this growth. The abundance of importable foreign technology is often

mentioned as one such factor. However, it is not obvious that the stock of available

foreign technology was much greater in the 1950s and 1960s than in the 1920s

and 1930s, or for that matter in the nineteenth century. One might plausibly

expect that such a stock was greatest when Japan opened its doors to the West in

the late nineteenth century. Yet the growth rate during the 1950s and 1960s was

much higher than that in the prewar period.

A sharp decline in natural resource costs is also often mentioned. Technical

progress in marine transportation is believed to have contributed to this effect.

A sharp decline in marine transport costs in the postwar era has made natural

resources commodities, rather than part of the “factor endowment” of individ-

ual countries. This has naturally given leverage to the resource-poor Japanese

economy. Total factor productivity in the industry, in fact, grew at the annual

rate of 10 percent in the postwar era as against 2–3 percent in the prewar period.

Wright (1990) suggests that the origin of U.S. industrial success during 1879–

1940 lay in the country’s resource abundance. It should not be surprising, then,

that resource-poor Japan benefited greatly from the postwar changes which made

natural resources easily tradable commodities.

Granted that these factors are very important, we suggest that (1) internal

migration and accompanying household formation, and (2) diffusion of con-

sumer durables, namely “catch up of demand,” played a particularly important

role in the process of rapid economic growth.

Recall that the Japanese economy in the 1950s and 1960s was a two-sector

economy consisting of a rural agricultural sector and an urban manufacturing

sector. In 1950, nearly half of the country’s total labor force was still engaged

in agriculture. Population continuously flowed from the former sector into the

latter in the process of economic growth (Figure 8.9). The dual structure of the

economy enabled the manufacturing sector to hire enough labor at a level of real

wages that, determined in the agricultural sector by “disguised” unemployment,

were lower than the marginal product in the industrial sector. Growth of the

manufacturing sector therefore entailed high profits rather than an increase in

real wages. The high profits, in turn, were supposed to induce high investment.

All this is, of course, what Lewis (1954) describes as a typical process of

growth in an underdeveloped dual economy. Indeed, the Lewisian model has
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Figure 8.9. Population Flow (1955–80) into and out of Tokyo, Osaka, and Nagoya Metopolitan
Area.
Source: Annual Report on Internal Migration, Statistical Bureau, Management and Coordination
Agency.

been successfully applied to the century-long development of the Japanese econ-

omy by a number of economists (see Ohkawa and Rosovsky, 1973; Minami, 1968;

Inada, Sekiguchi, and Shoda, 1992). In the Lewisian model, however, population

flow between two sectors is taken to be solely a result of the growth of the mod-

ern manufacturing sector. Minami (1968) and others demonstrate that internal

migration was in fact quite sensitive to the growth of the manufacturing sector;

More people left rural agricultural areas for urban industrial cities in booms and

vice versa. Yearly fluctuations in population flow was therefore a result of indus-

trial growth. In the Lewisian model, the key factor behind this industrial growth

is low real wages made possible by the existence of disguised unemployment

in the agricultural sector. In contrast to the Lewisian model, in the case of the

postwar Japanese economic growth (1955–70), population flow between the two

sectors was in fact the major factor in generating high demand for products of

the industrial sector. In our view, population flow was a cause as well as a result

of economic growth.

According to the Lewisian theory, population is supposed to flow continu-

ously from the rural agricultural sector to the urban industrial sector, as actually

happened in Japan. Among Asian developing countries, however, this Lewisian

population flow occurred to a substantial extent only in a few NIEs.7 The basic

problem of the theory is that the growth of a modern industrial sector is sus-

tained by high profits, which are guaranteed by repressed real wages, whereas

demand for products is assumed to emerge automatically as production grows.

7 The Lewisian population flow has been now happening in China since the late 1990s.
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Figure 8.10. Growth Rate of Households and Population, 1956–90.
Note: The figure for 1970 is an outlier; Okinawa prefecture was returned to Japan by the United
States in 1970.

In reality, demand does not emerge automatically. Demand is precisely the factor

that divides prewar and postwar Japan.

The postwar Japanese growth during the period 1955–70 was led by domestic

demand. For example, the contribution of net export to growth was on average

–0.2 percent for the high-growth period.8 In the process of domestic demand-led

growth, population flow and household formation played a crucial role. Because

of the large-scale population flows, household formation dramatically accelerated

during the period of high economic growth, 1955–70 (Figure 8.10). We underline

the fact that in this period the growth rate of households forms a hump shape at a

high-level parallel to the growth of real GDP, while the growth rate of population

was quite stable at a much lower level of about 1 percent. Population growth or

the growth of the labor force, which plays such an important role in the standard

growth theory, has little explanatory power for the high growth of the Japanese

economy during the 1950s and 60s.

As one might expect, traditional three-generation-merged households hardly

increased during this period. Instead, the “core” households consisting of a

8 This is reflected in another fact that Japan’s current account was basically in balance during the

1950s and 60s.
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married couple, possibly with unmarried children, and/or an unmarried adult,

dramatically increased, particularly in urban industrial areas. Where three gen-

erations of family members kept a traditional single household in rural villages,

they needed only one of each consumer durable such as refrigerator, television set,

washing machine, and car. But when young people giving up agriculture left their

rural villages for urban industrial areas, they formed new, separate households.

This additional household formation necessarily generated additional demand

for houses, consumer durables and electricity. In this way, population flow sus-

tained high domestic demand in the period of high economic growth, 1955–70.

Along with the creation of a large number of households, the high-growth

period also saw the diffusion process of newly available consumer durables; Here,

we can usefully recall S-shaped curves in Figure 8.3. Now, the diffusion of con-

sumer durables was facilitated by a steady decline in prices of those products on

the one hand, and an increase in income on the other. Electric washing machines,

for example, first appeared in the Japanese market in 1949. At the time, a machine

cost �54,000 while the average annual labor income was about �50,000. Under-

standably, only 20 machines per month were sold! By 1955, however, only six

years later, the price of a washing machine had fallen to �20,000 while the average

annual income had risen to above �200,000. By then, about a third of house-

holds could afford to own a washing machine. The same story holds for other

consumer durables. Because urban cities led this diffusion process, urbanization

not only created new households but also sustained high demand for consumer

durables. This is precisely the story that the second diffusion model, not the Ram-

sey model, tells us. By the end of the 1960, however, most of the then-available

consumer durables were facing a saturation of the Japanese domestic market.

This whole process of domestic-demand-led high economic growth (1955–

70) is schematically summarized in Figure 8.11. Channels 1 and 2 in the diagram

are easily recognized: capital accumulation in the industrial sector, raising labor

demand, brings about population flow from rural agricultural areas to urban

cities. In addition to these well-recognized channels, we must emphasize the

oft-neglected and yet very important fact that such population flow in turn,

with its creation of new households and raising demand for consumer durables

and electricity, ultimately sustained profitability of investment in manufactur-

ing industry (channels 3, 4, 5). We must stress that the role of newly available

consumer durables was not confined to a demand for those products themselves.

Through an input–output interrelationship, they augmented demand for inter-

mediate goods such as steel and electricity, and accordingly high investment in

those sectors.

In this virtuous circle for high economic growth, low real wages were not

as instrumental as Lewis (1954) emphasized. Rather, it was growth in domestic

demand that sustained profitability of investment. And to such growth a steady

rise in real wages, rather than low repressed wages, is a contributing factor. In

fact, in the prewar period, except for 1920–21 and 1929-30, real wages saw little

increase, while in the postwar period they enjoyed steady growth. A steady rise in
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real wages sustained effective demand for the postwar Japanese economy because

the key product was consumer durables which, not yet being internationally

competitive, had to find a domestic market.

The domestic-demand-led virtuous circle for economic growth based on

the Lewisian dual structure is not unique to the postwar Japanese economy.

Kindleberger (1967, 1989), for example, discusses the postwar growth of the

European economy in a Lewisian model. In any case, in the Japanese economy

during 1955–70, population flows and the consequent household formation, by

diffusing newly available consumer durables, continuously stimulated economy-

wide investment demand.

The situation changed dramatically around 1970. By then the pool of the

so-called disguisedly unemployed in the agricultural sector had been largely

exhausted. Therefore, the population flow from the rural sector and the associated

urban household formation both sharply decelerated. At the same time, the then

available consumer durables saw saturation in the domestic market. For these

reasons, the domestic-demand-led virtuous circle for high economy growth was

broken. We believe that this structural change occurred around 1970, a few years

in advance of the first oil embargo in 1973.

Some economists such as Bruno and Sachs (1985) attribute a fall in the rate

of economic growth in the 1970s ultimately to the oil shock in 1973. However,

they cannot explain why the second oil shock, which occurred in 1979, did not

bring about a similar fall in the rate of economic growth; the average growth

rates of real GDP for 1973–80 and 1981–90 were 4.1 percent and 4.2 percent,

respectively. During the first oil crisis (1973–74) the oil price quadrupled, while

in the second oil crisis (1979–80) it only doubled; so it might be argued that the

first oil crisis hit the Japanese economy harder than the second one. But transfer

payments to OPEC necessitated by an increase in the oil price, when seen as

relative to GDP, were actually comparable during two oil crises: 3.8 percent and

4.1 percent, respectively. The supply-side analyses that attribute a fall in the rate

of economic growth to the first oil crisis are therefore inconsistent with the fact

that the second oil crisis did not entail a similar fall in the growth rate. Nor can

they explain why the growth rate of the oil-importing South Korean economy

fell so sharply during the second oil crisis while the effect of the first oil crisis was

relatively small there, just the opposite of the Japanese case. Yoshikawa (1995,

Chapter 4) shows that demand is, in fact, an indispensable part of any reasonable

explanation of the oil crises in the 1970s.

We do not mean to argue that the oil crisis did not affect the supply side of

the Japanese economy at all, but we do maintain that a permanent fall in the

rate of economic growth beginning in the early 1970s was caused by a domestic

structural change, as explained earlier, rather than by the first oil crisis. In this

way, demand played a central role in the high economic growth of the Japanese

economy and its end. We believe that this story of the Japanese economy can be

easily understood by the growth model explained in this chapter. At the same

time, the postwar Japanese experience shows that economic growth is a historical
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phenomenon in that no model can encompass whole history; in particular how

demand conditions economic growth must be studied case by case. �
The relation between demand and growth is an unresolved problem. For

example, Solow (1997) emphasizes the importance of “the medium-run” analysis

as a challenge to modern macroeconomics:

One major weakness in the core of macroeconomics as I have represented it is the lack of real

coupling between the short-run picture and the long-run picture. Since the long-run and

the short-run merge into one another, one feels they cannot be completely independent.

There are some obvious, perfunctory connections: every year’s realized investment gets

incorporated in the long-run model. That is obvious. A more interesting question is whether

a major episode in the growth of potential output can be driven from the demand side.

(Solow, 1997, 231–232)

That is, the integration of the Keynes’s principle of effective demand for the short

run and growth theory for the long run remains a central theme in macroeco-

nomics. Our model may provide a constructive step toward solving this problem.

Finally, in the model presented here, to make our analysis tractable, we in-

evitably made an unrealistic assumption that μ, δ, and λ were constant. We hope

that the assumption is justified for the purpose of studying economic growth.

However, in the short/medium run, μ, δ, and λ would all fluctuate. Giving the μ,

δ, and λ shocks to the model economy, as is done in the standard RBC literature,

one would be able to generate fluctuations of the growth rate. Such simulation

exercises with demand shocks might generate a more realistic explanation of

short-run fluctuations than those based on TFP shocks.

Appendix 8.1

Equation (8.7) in the text can be solved in the following way. First we define the

generating function G(z, t) as

G(z, t) =
∞∑

n=N0

zn Q(n, t).

Multiplying (8.7) by zn, and taking its sum over n = N0, N0 + 1, . . . , we obtain

the partial differential equation:

∂G(z, t)

∂t
= λz(z − 1)

∂(G, t)

∂z
(8.38)

with the initial condition

G(z, 0) = zN0 . (8.39)

To solve this partial differential equation, we introduce the artificial variable

called s for which the following ordinary differential equations hold.

dt

ds
= 1 (8.40)

dz

ds
= −λz(z − 1). (8.41)



P1: JZZ

0521831067c08.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 1:22

254 Demand Saturation–Creation and Economic Growth

With the initial condition (s , t) = (0, 0), (8.40) can be solved immediately to give

t = s .

Similarly, with the initial condition (s , z) = (0, m), (8.41) can be solved to give

λs = log

(
z

z − 1

) (
m − 1

m

)
. (8.42)

Since s = t, from (8.42) we obtain

m = e−λt z

[1 − (1 − e−λt )z].
(8.43)

On the other hand, from (8.38), (8.40) and (8.41) we know that G(z(s ), t(s ))

satisfies

dG

ds
= ∂G

∂z
· dz

ds
+ ∂G

∂t
· dt

ds

= −λz(z − 1)
∂G

∂z
+ ∂G

∂t
= 0,

and therefore that G as a function of s is constant. Since z is m when s is zero,

from (8.39) we find that this constant is mN0 . Using (8.43), we see that G(z, t) is

G(z, t) = e−λN0t zN0

[1 − (1 − e−λt )z]N0 .
(8.44)

The denominator of (8.44) can be expanded as

1

[1 − (1 − e−λt )z]N0
=

∞∑
	=0

(−N0

	

)
(−1)	(1 − e−λt)	z	

=
∞∑

	=0

(
N0+	−1

	

)
(1 − e−λt )	z	.

Thus

G(z, t) =
∞∑

	=N0

(
	 − 1

	 − N0

)
e−λN0t(1 − e−λt)	−N0 z	. (8.45)

The probability that the number of final goods at t is N, Q(N, t) is the coefficient

of zN of this generating function (8.45), and is given by

Q(N, t) =
(

N − 1

N − N0

)
e−λN0t (1 − e−λt )N−N0 .

Without loss of generality, we can take N0 as 1. Then Q(N, t) becomes

Q(N, t) = e−λt (1 − e−λt)N−1.

This is equation (8.8) in the main text, and is called the negative binominal

distribution.
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9

The Types of Investors and Volatility in Financial

Markets: Analyzing Clusters of Heterogeneous Agents

Thoughtout this book, we have focused on the real economy. The methods

explained in Chapter 2 are extremely useful, not only for analyzing the real

economy, but for analyzing financial markets. In this chapter, we analyze the

combinatorial problem that is so crucial in a market with many heterogeneous

investors. It has important implications for volatility in the financial market.

9.1. Introduction

We have repeated time and again that the behavior of macroeconomic variables

emerges as an outcome of aggregation of micro behavior of a large number of

interacting agents. Financial markets are no exception. In fact, there has been

a veritable explosion of empirical and simulation studies of financial markets –

prices, returns, or volumes of transactions – based on the explicit assumption of

heterogeneous investors (see Gopikrishnan et al., 1998; Lux and Marchesi, 1999;

Mantegna and Stanley, 1994; Takayasu and Sato, 1997). Reported simulation

studies of financial markets by multiagent models apparently mimic well many,

if not all aspects of the actual behavior of asset returns (see Lux and Marchesi,

1999).

Investors in the markets employ various strategies or trading rules. For con-

venience, we identify investors with the strategies or the rules they employ, and

say that investors of the same type form a group or cluster. Clusters evolve over

time as agents switch their decision rules or behavioral patterns in response to

changing economic environments. They also change as agents enter or exit. It is

impossible to say in advance how many clusters will be present at any given time.

We can only sample some numbers of agents and count the number of different

strategies being used at a particular time. There can be, in principle, infintely

many potential strategies. For example, random combinations of two basic al-

gorithms in different proportions produce different strategies, because they will

have different expected performance and variances or risk characteristics. In such

a case, there are infinitely many strategies.

255
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Moreover, new decision or trading rules will be continuously invented over

time. Knowing the types of agents present in market is analogous to or formally

identical with the so-called sampling of species problem faced by statisticians

concerned with the evolution of biological species (see Zabell, 1992). The purpose

of this chapter is to apply such mathematical theory to the interactive agent

problem in financial markets. We first describe a jump Markov process to examine

the distribution of the sizes of clusters of agents by strategy types.

To analyze the behavior of such markets, we consider order statistics of shares

by types. That is, we derive distributions of the sizes of the clusters in non-

increasing order. If the size distributions are such that most probabilities are

concentrated on the first few order statistics, we can reasonably concentrate on

the first several largest clusters or groupings of agents. Examining a few such

large clusters will give us the approximate behavior of markets as a whole. This

is especially true when agents/investors are positively correlated.

We are interested in situations in which a few of the large fractions of the types

of agents, whatever the types may be, dominate and approximately determine

the market excess demand for the stocks. The joint distribution for the largest

r clusters of the agents classified by their trading rules is derived. It is used to

characterize the market excess demand, and the price movements. In our analysis,

r is taken to be two.1 We then show in a model in which there are two types of

investors, one “fundamentalist” and the other “chartist,” the distribution of stock

prices becomes a power law.

9.2. Cluster Formation in Financial Markets

In this section, we first explain the mathematical method which is outlined in

Section 2.2 of Chapter 2. Using this method, we demonstrate that under certain

conditions, a relatively small number, say two or three, of types of agents emerge

by way of their stochastic interactions.

Distribution of Agent Types

We have two alternative characterizations of state of the market. We begin with the

more familiar of the two. It is the empirical distribution mentioned in Chapter 2.

The other is based on the partition vector introduced in Section 2.2. Here, we give

an example of jump Markov process which naturally leads to the second method.

Suppose there are a large number, K , of agents who participate in a mar-

ket. For the moment suppose that the value of K is known. Then, the vec-

tor n = (n1, n2, . . . , nK ) describes how n agents are distributed over K types,

1 Our approach provides a stochastic generalization of a deterministic model of share market such

as Day and Huang (1990). Their model is deterministic and discrete-time with two types of agents

of fixed number, namely one of each.
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n = n1 + n2 + · · · + nK . In this section we use this vector as the state vector. We

use jump Markov processes as our model. Jump Markov processes are uniquely

determined by transition rates.

We assume an open model in which the total number of agents (investors) n

is not fixed, but can vary over time2; that is, we assume that the total number of

agents of all types is random by allowing entries and exits, in addition to changes

of types of agents (changes in strategies employed by existing agents).

In our open model, we need to specify entry rates, exit rates and rates of type

changes. The transition rate

w(n, n + ek) = ck(nk + hk), (9.1)

specifies entry rate to the market by agents of type k, for nk ≥ 0, where ek is the

vector with unit element in the kth position and zero elsewhere. In this speci-

fication of the entry transition rate, the term cknk stands for attractiveness of a

large group, such as network externality which makes it easier for others to join

the cluster or group. The other term, ckhk , represents new entry to the market

which is independent of cluster size, and is similar to the immigration term in

the literature of birth-and-death-with-immigration models.

The second transition rate is that of the exit or departure from the market by

type j agents:

w(n, n − e j ) = d j n j , (9.2)

for n j ≥ 1. Finally, the transition rate of changing types by agents from type j

to type k, that is, switching of trading rules from j to k by agents, is

w(n, n − e j + ek) = λ j kd j n j ck(nk + hk). ( j, k = 1, 2, . . . K ) (9.3)

We assume that d j ≥ c j > 0, and h j > 0, and

λ j k = λk j for all j, k pairs.

The jump Markov process specified this way has the steady state or stationary

distribution

π(n) =
K∏

j=1

π j (n j ), (9.4)

where

π j (n j ) = (1 − g j )
−h j

(−h j

n j

)
(−g j )

n j

2 There is an important reason for this assumption. One feature of the actual financial markets, that

is not apparently adequately modeled in most existing simulation models, is volatility. Volatility of

prices (returns) tends to decrease and become too small in a closed model as the total number of

agents is increased. One reason for this perplexing result seems to be the use of a closed model in the

simulations, that is, the assumption that the total number of agents, n, is held fixed in conducting

a simulation.
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and

g j = c j /d j .

These expressions are derived straightforwardly by applying the detailed bal-

ance conditions to the transition rates (see Chapter 2 for further explanation).

Unfortunately, the model in this form ignores the possibility of correlation in

agent behavior.3 To allow for that, we proceed to a method for deriving the size

distribution of strategy clusters.

Size Distribution of Strategy Clusters

To consider correlation among agents (investors), we now introduce the second

state vector, called the partition vector explained in Chapter 2. It is defined as

a = (a1, a2, . . . , an)

where ak is the number of types or clusters with exactly k agents. Consequently we

have an inequality

n∑
i=1

ai = Kn ≤ K . (9.5)

Here, Kn is the number of groups or clusters formed by n agents. We also have

the following equality:

n∑
i=1

iai = n. (9.6)

This is an accounting identity.4

To further simplify our presentation, let us suppose that h j = h and g j = g

for all j . Because there are a j of the n’s which equal j , it follows that

π(n) =
(−K h

n

)−1 K∏
j=1

(−h

j

)a j

. (9.7)

Now let K become very large to allow for the possibility of an indefinite num-

ber of types. To keep the mean finite we keep h very small, while the product K h

approaches a positive constant θ . We note that the negative binomial expression(−h

j

)a j

3 Lack of correlation among agent behavior are assumed in other economic models. For example,

Sutton (1997) noted this in connection with Gibrat’s law.
4 The partition vector is originally introduced by Kingman under a different name. We use the name

introduced by Zabell because it is appropriate in our applications. The set of agents is partitioned

into subsets, each of which is composed of agents of the same type. What we call clusters correspond

to the exchangeable random partitions in Kingman (1978a, b).



P1: JzG

0521831067c09.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 21, 2006 12:18

9.2. Cluster Formation in Financial Markets 259

approaches (h/j )a j (−1) j a j as h becomes smaller. Suppose Kn = k < K . Then,

there are

K !

a1!a2! · · · an!(K − k)!

many ways of realizing the a vector. Hence

π(a) =
(−θ

n

)
(−1)n K !

a1!a2! · · · an!(K − k)!

∏
j

(
h

j

)a j

. (9.8)

Noting that K !/(K − k)! × hk approaches θ k in the limit of K becoming infinite,

and h approaching 0 while keeping K h at θ

θ = K h, (9.9)

we arrive at the probability distribution known as the Ewens distribution, or Ewens

sampling formula:5

πn(a) = n!

θ [n]

n∏
j=1

(
θ

j

)a j 1

a j !
, (9.10)

where

θ [n] := θ(θ + 1) · · · (θ + n − 1). (9.11)

This is called an ascending factorial of θ introduced in Chapter 2. We next

examine some of its properties following Watterson (1976).

Number of Clusters and Value of θ

The Ewens sampling formula has a single positive-valued parameter θ . Its value

influences the number of clusters formed by the agents. Smaller values of θ tends

to produce a few large clusters, while larger values produce a large number of

clusters of smaller sizes.

To obtain quickly some intuitive understanding of the effects of the value of

θ on the cluster size distributions, take n = 2 and a2 = 1. All other a ’s are zero.

Then

π2(a1 = 0, a2 = 1) = 1

1 + θ
. (9.12)

This shows that two randomly chosen agents are of the same type with high

probability when θ is small, and with small probability when θ is large.

5 This distribution is very well known in the genetics literature; see Ewens (1972), Kingman (1978a,

b), or Johnson, Kotz, and Balakrishnan (1997).

This distribution has been investigated by Arratia, Barbour, and Tavaré (1992), or Hoppe

(1987) among several others. Kingman (1980) states that this distribution arises in many applica-

tions. There are other ways of deriving this distribution. See Costantini and Garibaldi (1999).
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Two extreme situations also reveal connections between the value of θ and

the number of clusters. One is the probability of n agents forming a single cluster,

given by

πn(a j = 0, 1 ≤ j ≤ n − 1, an = 1) = (n − 1)!

(θ + 1)(θ + 2) · · · (θ + n − 1)
.

(9.13)

The other is the probability that n agents form n singletons given by

πn(a1 = n, a j = 0, j �= 1) = θn−1

(θ + 1)(θ + 2) · · · (θ + n − 1)
. (9.14)

With θ much smaller than one, the former probability is approximately equal to

1, whereas the latter is approximately equal to zero. When θ is much larger than

n, the latter probability is close to 1.

Recall the definition of the ascending factorials in (9.11). From (9.11), Hoppe

(1987) has shown that the probability of n agents forming k clusters is given by

Pr(Kn = k) = 1

θ [n]
c(n, k)θ k (9.15)

where c(n, k) are the polynomial coefficients6 in the expansion of θ [n]:

θ [n] =
n∑
1

c(n, k)θ k . (9.16)

We can use this formula to verify that the expected number of types increases

with θ . As θ goes to infinity, the expected number of types approaches n, namely,

total fragmentation of agents in the sample by types. For small values of θ , Ewens

has shown that the mean number of clusters formed by n agents is

E (Kn) =
n−1∑
j=0

θ

θ + n − j
≈ 1 + θ[log(n − 1) + γ ] (9.17)

where γ = .577 is Euler’s constant.

Fractions

The expected value of a j is given by

E (a j ) =
∑
w(n)

a j πn(a) = θ

j

n!

(n − j )!

θ [n− j ]

θ [n]
, (9.18)

6 These are known as the signless Stirling numbers of the first kind. Stirling numbers are discussed

in van Lint and Wilson (1992, p. 104) for example. This number is the number of permutations

of n symbols with exactly k cycles. In Hoppe, his urn model of the Ewens distribution makes the

occurence of this number natural.
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where

w(n) := {a :
∑

j

j a j = n}. (9.19)

A quick way to see this is to recognize that the multiplication of πn by a j is

equivalent to changing the partition vector from a to a′ where the j th component

is changed from a j to a j − 1 and the sum
∑

iai = n is changed to
∑

ia ′
i =

n − j, because a ′
i = ai , i �= j , but a ′

j = a j − 1. We can evaluate the effects of

increasing correlations or mutual dependence on the size of Ea j , by taking the

partial derivative of it with respect to θ : as θ increases, E a j for j much smaller

than n increases linearly in θ .

Watterson (1976) shows how to calculate the variance and covariances by

using the relation

E {a j (a j − 1)} =
(

θ

j

)2 n!

(n − 2 j )!

θ [n−2 j ]

θ [n]
(9.20)

and for i �= j

E {ai a j } = θ2

i j

n!

(n − i − j )!

θ [n−i− j ]

θ [n]
. (9.21)

A characteristic of this distribution is that the standard deviations of ai ’s are

of the same order of magnitude as the means.

The Expected Share of the Largest Fraction

We define xi as

xi = ni

n
(i = 1, . . . , K ).

By definition, we have

K∑
i=1

xi = 1. (9.22)

We relabel x ’s with x(i) in decreasing order of size:

x(1) ≥ x(2) ≥ · · · ≥ x(K ).

Note that x(i)
′ s are stochastic variables. We follow Watterson (1976), and

Watterson and Guess (1977) to sketch how the probability density function of

the largest order statistics of x ’s, namely x(1), is derived.7 Following an entirely

analogous procedure, we can calculate the joint probability density for r order

statistics of the fractions.

7 See Arratia, Barbour, and Tavaré (2003) for rigorous derivation.
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Start with a finite K . Without loss of generality, we can assume that xK is

x(1), namely that the share of the K th type of agents is largest. Thus,

0 ≤ xi ≤ xK = 1 − x1 − · · · − xK −1 for i = 1, . . . , K − 1.

Then, we have

E (x(1)) = K

∫
· · ·

∫
xK φ(x1, . . . , xK )dx1dx2 · · · dxK −1

= K

∫
. . .

∫
(1 − x1 − x2 − · · · − xK −1)φ(x1, . . . , xK )

× dx1dx2 · · · dxK −1.

(9.23)

where φ is the joint density function of xs , and is the symmetric Dirichlet dis-

tribution8 with parameter ε, that is

φ(x1, x2, . . . , xK ) = �(K ε)

(�(ε))K

K∏
i=1

xε−1
i . (9.24)

We show how E
(
x(1)

)
is calculated in Appendix 2.

The order statistics of the fractions, x(1) ≥ x(2) ≥ · · · , are important in mar-

kets with highly correlated agents. With θ smaller than 1, the sum of two or

three largest fractions can be shown to be nearly one. See Table III of Watterson

and Guess (1977) where numerical values of the expected values of the largest

fraction is tabulated for different values of θ .9 For example, with θ = .3, .4, and

.5, the expected values of the largest fraction are E (x(1)) = .84, .79, and .76,

respectively. They obtained these numbers numerically.

The marginal probabilty density of the share of the largest fraction x(1) = x is

f (x) = θx−1(1 − x)θ−1 (1/2 < x ≤ 1). (9.25)

When x(1) is not greater than 1/2, the expression is more complex:

f (x) = �(θ + 1)eγ θ xθ−2g (x−1 − 1) (0 ≤ x ≤ 1/2), (9.26)

where g (·) is the density of the random variable and characterized in

terms of its Laplace transform. See Appendix 9.1 for the expression

of g (·).

See Appendix 9.1 for the joint probability density for the first r largest frac-

tions. The expression for r = 2 is used in Section 9.3. For a mathematically more

8 The appearance of Dirichlet distributions here may seem arbitrary. Actually there is a deep math-

ematical relation between the exchangeable random partitions introduced by Kingman (1978a,

b) and its representation using the Dirichlet measures, see Zabell (1992). We do not stop here to

explain these but go directly to calculate the expected size of the largest fraction goverened by the

Dirichlet distribution. Also see Kingman (1993).
9 See also the table in Griffiths (2004). The entries in his table is calculated by using the Poisson–

Dirichlet distribution. We do not discuss this distribution here, however.
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streamlined exposition using Poisson–Dirichlet processes, see Griffiths (2004)

or Pitman (2002).

Two Largest Fractions

We can also obtain the lower bound for E (x(2)). Let E (x) and E (y) be the

expected values of the two laragest fractions, x = x(1) and y = x(2). Watterson

(1976) shows that

E (y) ≥ θ E (x)B1/2(0, θ + 1) ≈ θ E (x)(log 2 − θ/2) (9.27)

where B1/2 is an incomplete beta function, see Abramovitz and Stegun (1968,

26.5). Using this formula, E (x(2)) ≈ .16 with θ = .4, hence E (x(1)) + E (x(2)) ≈
.95. Similarly, we have E (x(1) + x(2)) = .97, and .92 for θ = .3, and .5, respec-

tively. We may therefore think of θ about 0.4. With θ = .4, the expected numbers

of clusters are E (K10) = 2.1, E (K100) = 3.0, E (K1000) = 4.0, E (K105 ) = 5.8,

and E (K107 ) = 7.7. These figures indicate that there are several small fractions

in addition to the two large ones when the number of participants are n ≥ 100.

Watterson also has bounds for other moments of x = x(1) and y = x(2) with

k and l nonnegative integers

E (xk yl ) ≥ Gθ2�(θ)eγ θ B1/2(k, l + θ) (9.28)

with

G = E (x)/θ�(θ)eγ θ .

Here, B1/2(a, b) is the incomplete beta function. The inequality comes from

approximation he used to evaluate some integrals. Abramovitz and Stegun have

some series expansions for the incomplete beta functions. Unfortunately the

bounds are not sharp enough to give precise bounds on the variances of x . If we

use y ≈ .95 − x , then

E (xy)/E (x) = θ B1/2(1, 1 + θ) ≈ [θ/(1 + θ)]

[
1 −

(
1

2

)1+θ
]

, (9.29)

may be used to estimate the coefficient of variation√
var(x(1))/E (x(1)) ≈ .21. (9.30)

In other words, the standard deviation of the largest fraction is about 1/5 of

its mean. See Watterson (1976) and Watterson and Guess (1977) for more precise

calculation procedures.

The above analysis can be summarized as follows.

Proposition: If n is large, some small number of configurations account for the

majority of possible patterns. That is, a relatively small number of clusters or groups

are most likely to be realized or observed.
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This feature has been noticed in other disciplines as well; Mekjian (1991)

compares genetic and physics examples. The proposition justifies studying mar-

kets with a small number of strategy clusters. In what follows, we focus on the

two largest fractions.

9.3. Market Volatility

As we pointed out earlier, in many of existing simulation studies using closed

models, the volatility of prices (returns) tends to become too small when the

total number of agents (investors) is large. Thus, models with exogenously fixed

number of investors often face difficulty in explaining volatility. Here, we show

that our model has nonvanishing volatility even if the number of participants

goes to infinity.

Market Excess Demand

We first derive an approximate expression for the market excess demands with two

large fractions x = x(1) and y = x(2). We have shown above that about 95 per-

cent of the total market participants belong to the two largest subgroups of

agents by types. With two largest clusters, there are two regimes; one with a

cluster of investors with strategy 1 is the largest share, and the other with a

cluster of investors using strategy 2 being the largest. These two alternate as-

signments contribute to sudden changes of volatility when the strategies are

switched.

For convenience, we use the same individual excess demand functions as

in Day and Huang (1990). The investors who follows strategy 1 has the excess

demand

d1(P ) = (u − P )h(P ) (9.31)

while investors with strategy 2 has the excess demand

d2(P ) = −(u − P ). (9.32)

Here, we have

h(P ) = [(P − m)(M − P )]−1/2. (9.33)

This specification corresponds to the case where a = b = 1 in Day and Huang

(1990). We can set u = (M + m)/2 without loss of generality. In the language

of Day and Huang, investors with strategy 1 are the fundamentalists, and those

with strategy 2 chartists. We note that the two excess demands are of opposite

sign, that, the two types of agents are on the opposite side of the market.

Let P denote the stock price, and let dx (P ) denote individual excess demand

of the type that happens to be the largest fraction x . Similarly for dy(P ). Note
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that x and y are fractions of the investors in the larger and smaller clusters,

respectively. We have two regimes, then.

Regime 1: A cluster of investors with strategy 1 has the largest share. Namely,

fundamentalists dominate in the market.

Regime 2: A cluster of investors with strategy 2 has the largest share. Namely,

chartists dominate in the market.

Market Equilibrium

The market excess demand, D, is then given by summing over individual excess

demands

D(P )

n
= xdx (P ) + ydy(P ). (9.34)

Because we have two regimes, equation (9.34) actually takes the following form:

D(P )

n
=

{
x [(u − P )h(P )] + y [−(u − P )] for Regime 1

x [−(u − P )] + y [(u − P )h(P )] for Regime 2.

We set the right-hand side of this equation to zero to define the equilibrium

prices at which the zero market excess demand is realized.

We first consider Regime 1 where the investors in the largest cluster are using

strategy 1. In Regime 1, when the inequality

(M − m)

2
>

(
x

y

)
(9.35)

holds, there are three prices at which the market excess demand becomes zero.

One is

P = u, (9.36)

and, the other two are given by the roots of

h(P ) = y

x
, (9.37)

or

−P 2 + 2u P − Mm =
(

x

y

)2

. (9.38)

Denote them by P ∗ and P∗, where

P∗ < u < P ∗. (9.39)
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We call P ∗ and P∗ high and low equilibrium prices, respectively. These equilib-

rium prices depend on x and y, as shown below.

If

(M − m)

2
<

x

y
,

then P = u is the only price which produces the zero excess demand. To be

definite, in what follows, we assume that (M − m)/2 is sufficiently large so that

inequality (9.35) holds, and the three equilibrium prices exist.

In Regime 2 where the investors in the largest cluster are using strategy 2,

there are also three equilibirum prices if inequality (9.35) holds with y/x replac-

ing x/y.10 We examine the case with three equilibrium prices in both regimes;

Namely, we assume that (M − m)/2 is larger than both x/y and y/x .

Noting that

P ∗ = u +
√

(M − m)2/4 − (x/y)2 for Regime 1

and

P ∗ = u +
√

(M − m)2/4 − (y/x)2 for Regime 2,

the two equilibrium prices P ∗ and P∗ are further apart in Regime 2 than in

Regime 1:

m < P∗(2) < P∗(1) < u < P ∗(1) < P ∗(2) < M. (9.40)

Here, P ∗(2) denotes the high equilibrium price under Regime 2, and so on. These

inequalities establish the following proposition.

Proposition: The range of equilibrium prices is wider in Regime 2 than in Regime 1.

In this sense, the fluctuations of stock price become greater when chartists dominate

than when fundamentalists dominate in the market.

We can easily show that of these three critical points, only P = u is locally

unstable. The derivative of the market excess demand with respect to P is

D′(P )

n
= y −

(
M − m

2

)2

h(P )3x (9.41)

in Regime 1. In particular, for P = u we obtain

D′(u)

n
= − 2

M − m
x + y, (9.42)

for Regime 1. This is positive, and less than 1, when M − m is sufficiently large.

Thus, the equilibrium price P = u is locally unstable.

10 Thus, if y/x ≤ (M − m)/2 ≤ x/y, then Regime 1 has a unique P = u, but in Regime 2 there are

three critical points.
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The difference equation is locally stable at the other two equilibrium prices

because the following inequalities:

D′(P ∗) = −x(u − P ∗)2h(P ∗)3 < 0 (9.43)

and

D′(P∗) = −x(u − P∗)2h(P∗)3 < 0 (9.44)

hold again for sufficiently large M − m.

Power Laws for the Distribution of Prices

In Chapter 5, we explain that Power Laws are an extremely important concept

for understanding behavior of macro systems. Indeed, power laws play a crucial

role in understanding financial markets. We will explain it in Chapter 10. Here,

we discuss large changes in market prices and returns in heuristic term (see also

Sornette, 1998; Takayasu and Sato, 1997, among others).

We fix the time interval	and write the difference equation for market price as

Pt+	 = Pt + κ D(Pt, ξt)

n
(9.45)

where κ = c	 is an adjustment constant, and ξt stands for the two-dimensional

vector with components xt and yt , that is,

ξt = (xt, yt ).

Let ρt be the price difference Pt − Pt−	 for some small 	:

ρt = Pt − Pt−	. (9.46)

Then, the price difference is governed by the difference equation

ρt+	 = Atρt + Bt (9.47)

with

At = 1 + κ D′(Pt−	, ξt−	)

n
. (9.48)

Here, prime indicates partial derivative with respect to P . We define Bt as

Bt = κ Dξ (Pt−	, ξt−	)(ξt − ξt−	)

n
(9.49)

where the subscript ξ indicate the gradient vector with respect to x and y.

In the present case, (At, Bt) is not i.i.d. (independently and identically dis-

tributed) but is ergodic stationary so that we can appeal to Brandt (1986) to
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analyze the above system.11 Brandt demonstrates that under certain technical

conditons, a stationary distribution exists for

ρ∞ = A∞ρ∞ + B∞. (9.50)

Furthermore, the probability distribution of ρ∞ is shown to be as follows:

ρ∞ ∼
∞∑
j=0

{( −1∏
i=− j

Ai

)
B− j−1

}
.

Because a pair of A∞ and B∞ are independent ofρ∞, we can apply the Kesten–

Goldie Theorem to be explained in Chapter 10. It establishes that a stationary

probability distribution of ρ∞ is a power law; that is, we obtain

Pr(|ρ∞| > z) = C z−γ (9.51)

with some constants C and γ under some technical conditions. The index γ of

the power distribution is determined by

E
(

A
γ
t

) = 1. (9.52)

We will explain this condition, a part of the Kesten–Goldie Theorem, in

greater detail in Chapter 10. It determines γ by12

γ = 1 + 2

κ

E (−D′/n)

E (D′2/n2)
(9.53)

where

E (−D′)
E (D′2)

= 
E (x) − E (y)


2 E (x2) − 2E (xy)
 + E (y2)

≈ 
 − .18

.18(
 + 2/3)2 − (4/3)
 − .35
(9.54)

with


 = E

{(
M − m

2

)2

[h(Pt )]3

}
. (9.55)

In Chapter 10, we will see that growing evidence now amply demonstrates

that changes in asset prices obey the power distribution with the exponent close

to 3. Thus, it is extremely important to check whether γ in (9.53) can be close

to 3.

11 Because (At , Bt ) is not i.i.d. (Bt is serially correlated), we cannot apply the theorem due to Kesten

(1973), Vervaat (1979), Letac (1986), Goldie (1991), or de Haan et al. (1989) to the above system

In Chapter 10, we will explain this theorem.
12 With a large 
, we have an approximate expression of γ :

γ ≈ 1 + 10/κ
.

Recall that κ measures the adjustment speed of the price dynamics. Faster adjustment, other things

being equal, will give smaller γ values.
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Toward this goal, we first note that E (D′2/n2) is positive. Therefore, if

E (−D′n) is positive, γ is greater than one. Now, if we evaluate the expected value

of D′ in the neighborhood of stable equilibrium prices, P ∗ and P∗, E (−D′/n)

is positive; recall two inequalities (9.43) and (9.44). Thus, we conclude that γ is

greater than one.

An interesting question is whether γ is greater or smaller in Regime 1 than

in Regime 2. First, we can show

E (−D
′
/n)|Regime1 > E (−D

′
/n)|Regime2. (9.56)

Furthermore, if 
 defined by (9.55) is less than one; that is, if


 < 1 (9.57)

holds, then we obtain

E (D
′2/n2) |Regime1 < E (D

′2/n2) |Regime2 . (9.58)

From (9.53), (9.56), (9.58), we conclude that under condition (9.57), γ is greater

in Regime 1 than in Regime 2. In summary, we have obtained the following

proposition.

Proposition: The model with two types of investors, “fundamentalists” and

“chartists,” produces a power distribution of changes in stock price. The exponent γ

is greater than one. It is greater in Regime 1 where fundamentalists dominate in the

market than in Regime 2 where chartists dominate.

A great anomalous change in price has a smaller probability when the exponent

of the power distribution γ is greater. Note that the probability density function

corresponding to (9.51), f (x), is proportional to x−(γ+1). Thus, the above propo-

sition makes sense. When chartists dominate in the market, stock prices become

more “unstable” than otherwise. In other words, an anomalous change in price

like a “crash” has higher probability when chartists dominate in the market.

9.4. Concluding Remark

In this chapter, we used an open model formalized as a jump Markov process

to theoretically examine a multiagent model of financial markets. First, we have

shown that when investor behaviors are positively correlated, that is, when the

parameter θ in the Ewens distribution takes on a small positive value, two largest

clusters to which most agents belong are likely to emerge.

Is there any justification for expecting that behaviors of the investors are

positively correlated? Keynes (1936) gave an emphatic answer YES to this question

by resorting to an ingenious metaphor:

Or, to change the metaphor slightly, professional investment may be likened to those news-

paper competitions in which the competitors have to pick out the six prettiest faces from a

hundred photographs, the prize being awarded to the competitor whose choice most nearly
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corresponds to the average preferences of the competitors as a whole; so that each competi-

tor has to pick, not those faces which he himself finds prettiest, but those which he thinks

likeliest to catch the fancy of the other competitors, all of whom are looking at the problem

from the same point of view. (Keynes, 1936, 156)

We have analyzed a model in which there are two types of investors, “funda-

mentalists” and “chartists.” The model produces a power distribution of changes

in stock price with the exponent greater than one. This is a significant result. Its

level of significance is explained in Chapter 10.

Appendix 9.1: Joint Probability Density for r Largest Fractions

In Section 9.2, we have shown how the probability density function of the largest

order statistics of x ’s , x(1) is derived (r = 1). In this appendix, we will derive

the joint probability density for the largest r fractions on the K -dimensional

simplex, x(1) ≥ x(2) ≥ · · · ≥ x(r ). Here, xi , i = 1, 2, . . . , K are the fractions.

Denote the Dirichlet probability density on the K dimensional simplex by

φ(x1, x2, . . . , xk) = D(ε, K ). Then, the probability density for the first r order

statistics is given by

f (x1, x2, . . . , xr ) = K (K − 1)(K − 2) · · · (K − r + 1)

×
∫

φ(x1, x2, . . . , xk)dxr+1 · · · dxK −1,

where 1 ≥ x1 ≥ x2 · · · ≥ xr > 0, and where we subsitute xK = 1 − x1 − · · · −
xK −1. Carrying out the integral

f (x1, . . . , xr ) = K !

(K − r )!

�(K ε)

�(ε)K
(x1 · · · xr )ε−1x

(K −r )ε−1
R I,

where

I =
∫

· · ·
∫ K −1∏

r+1

yε−1
j [1 − a − xr (yr+1 + · · · + yK −1)]ε−1dyr−1 · · · dyK −1,

where the integration is carried out in area A:

A = {0 ≤ y j ≤ 1, r + 1 ≤ j ≤ K − 1; (1 − a − xr )/xr

≤ yr+1 + · · · + yK −1 ≤ (1 − a)/xr }
where a: = x1 + x2 + · · · + xr .

As in the case of the largest fraction, introduce random variable Z with the

density function g K −r−1 which is the (K − r − 1)-fold convolution of the density

εyε−1
j , j = r + 1, . . . , K − 1.

The integral is approximately given by

I = ε−(K −r )

xr

g K −r−1

(
1 − a

xr

)
.



P1: JzG

0521831067c09.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 21, 2006 12:18

Appendix 9.1 271

Letting K ε approach θ , while K goes to infinity and ε to zero, we note that

K (K − 1) · · · (K − r + 1) approaches K r , and

�(ε)K =
[
�(1 + ε)

ε

]K

which approaches ε−K e−γ θ , where we use the fact

�(1 + ε) ≈ 1 − γ ε,

where γ is Euler’s constant, γ = .5772 · · · .

Combining them, we arrive at

f (x1, x2, . . . , xr ) = θ r eγ θ�(θ)xθ−1
r g

(
1 − a

xr

)
(x1x2 · · · xr )−1,

in the range 1 ≥ x1 ≥ · · · ≥ xr > 0, and
∑r

1 xi ≤ 1.

We know from our result for the largest fraction that f (x1) = θx−1
1 (1 −

x1)θ−1 for x1 between 1/2 and 1, that is

�(1 + θ)eγ θ g

(
1 − x1

x1

)
= θ

(
1 − x1

x1

)θ−1

,

for x1 between 1/2 and 1.

To obtain the expression for the density in the range 0 ≤ x ≤ 1/2, we fol-

low Watterson (1976) and differentiate the Laplace transform for the random

variable Z:

E (e−s Z ) = exp

[
θ

∫ 1

0

(e−s z − 1)z−1dz

]

with respect to s . Recall that this transform is derived in connection with the

largest fraction. Then, divide the result by −θ to see

(1/θ)

∫ ∞

0

e−s z zgθ (z)dz =
∫ ∞

0

I(0,1](y)e−s ydy

∫ ∞

0

e−s z gθ (z)dz.

The right-hand side is the product of two Laplace transforms. Hence the inte-

grand of the left-hand side is the convolution of the uniform function on the

unit interval and gθ :

(1/θ)zgθ (z) =
∫ z

z−1

gθ (y)dy.

Setting z to 1, we obtain

gθ (1) = e−γ θ/�(θ).

Differentiating the integral equation with respect to z, we derive the differential

equation which determines the function recursively

zg ′
θ (z) + (1 − θ)gθ (z) = −θgθ (z − 1),
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where z ≥ 0. In the range z ∈ [0, 1), this integro-differential equation yields the

result we obtained above. In the next range z ∈ [1, 2) we have

gθ (z) = zθ−1

[
gθ (1) − θ

∫ z

1

gθ (u − 1)u−θ du

]
.

Changing the variable of integration to v = 1/u, we note that the integration

above becomes
∫ 1

1/z

v−1(1 − v)θ−1dv .

The joint density for the first two largest fractions is given by

f
(2)
θ (x, y) = eγ θ θ2�(θ)yθ−1

x y
gθ

(
1 − x − y

y

)
= θ2

xy
(1 − x − y)θ−1.

This expression is valid for the range 0 < y < x < 1, 0 < x + y < 1, and x +
2y > 1, that is y > (1 − x)/2.

We know that

g (z) = zθ−1

�(θ)eγ θ
,

for z between 0 and 1. For other values of z, we have a recursion

zg (z)

θ
=

∫ z

z−1

g (y)dy;

see Watterson and Guess (1977). Alternatively, we have

g (z) = zθ−1

[
g (n)n1−θ − θ

∫ z

n

g (y − 1)y−θ dy

]
,

in the range n ≤ z < n + 1. This can be verified by direct subsitution into the

differential equation for gθ .

With the joint probability densities for the largest 2 or 3 fractions in the

case of a large number of correlated agents in a market, we are in a position

to approximately obtain the macroeconomic behavior of the market prices and

quantities.

Appendix 9.2: The Calculation of the Expected Share
of the Largest Fraction

We change variables from x ’s to y’s:

yi = xi/(1 − x1 − x2 − · · · − xK −1) ≤ 1.
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Noting that

1 − x1 − · · · − xK −1 =
(

1 +
K −1∑
j=1

y j

)−1

,

and that the Jacobian is

∂(x1 . . . xK −1)

∂(y1 . . . yK −1)
=

(
1 +

K −1∑
j=1

y j

)−K

= (1 + ZK −1)−K

where

ZK −1 =
K −1∑
j=1

y j

we rewrite

E (x(1)) = K �(K ε)

(�(ε))K

∫
· · ·

∫ K −1∏
j=1

yε−1
j (1 + ZK −1)−1−K εdy1. · · · dyK −1.

The range of integration is over the cube, 0 ≤ y j ≤ 1, j = 1, . . . , K − 1. By

multiplying the numerator and denominator by εK −1, we can rewrite this

integral as

E
(
x(1)

) = K �(K ε)

(�(ε))K

(
1

εK −1

)

×
∫

. . .

∫ K −1∏
j=1

(
εyε−1

j

)
(1 + ZK −1)−1−K ε dy1 . . . dyK −1.

To calculate this expected value, E
(
x(1)

)
, we first give the Laplace transform

of ZK −1 on the assumption that y’s are i.i.d.:

E (e−s ZK −1 ) = {E (e−s Y1 )}K −1 =
{∫ 1

0

e−s yεyε−1dy

}K −1

.

Write the integrand as

εe−s y yε−1 = ε{yε−1 + (e−s y − 1)yε−1}.
And consider the following limit.

E (e−s ZK −1 ) → exp

{
θ

∫ 1

0

(e−s y − 1)y−1dy

}
as K → ∞, ε → 0, K ε → θ.

Denote by Z the limiting random variable of ZK −1. Then

E (x(1)) = eγ θ�(θ + 1)E {(1 + Z)−1−θ }.
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In deriving this expression we used the fact that �(K ε) → �(θ), �(ε) =
�(1 + ε)/ε, and �(1 + ε) ≈ �(1) + �′(1)ε = 1 − γ ε, where γ = −�′(1) is

Euler’s constant. See Abramovitz and Stegun (1968, 5.1.1 and 5.1.11).

By definition

�(1 + θ) =
∫ ∞

0

xθ e−x dx,

and we note that

�(θ + 1)(1 + Z)−1−θ =
∫ ∞

0

s θ e−(1+Z)s ds .

Taking expectation with respect to Z, we finally obtain

E (x(1)) = eγ θ

∫ ∞

0

s θ e−s E (e−s Z )ds =
∫ ∞

0

e−s e−θ E 1(s )ds .

Here, we use the relation

E (e−s Z ) = exp{−γ θ − θ ln s − θ E 1(s )},
and define E 1(s ) as

E 1(s ) =
∫ ∞

s

e−x x−1dx = −γ − ln s −
∞∑

n=1

(−s )n

nn!

= −γ − ln s −
∫ 1

0

(
e−s y − 1

y

)
dy.
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Stock Prices and the Real Economy:

Power-Law versus Exponential Distributions

This final chapter explores the relationship between stock prices and the real

economy. The standard approach – the so-called consumption-based asset pric-

ing model – attempts to explain it based on the assumption of the representative

agent. In this chapter, we argue once again that the representative agent assump-

tion is fundamentally flawed. Drawing on the recent advancement of “econo-

physics” on financial markets,1 we argue that in contrast to the neoclassical view,

there is in fact a wedge between financial markets, the stock prices in particular,

and the real economy.

10.1. Introduction

Stock prices depend necessarily on the real economy. Their “correct” prices or

the fundamental values are the discounted present values of a stream of future

dividends/profits. Because business activities, profits in particular, are signifi-

cantly affected by the state of the real economy, the stock prices are also affected

by the real economy. More precisely, in the standard neoclassical theory, stock

prices are simultaneously determined with all the supplies and demands in gen-

eral equilibrium (Diamond, 1967). Thus, like production and consumption, the

stock prices depend ultimately on preferences and technologies.

However, there is a long tradition in economics which questions whether the

stock prices are really determined in the way stated above. Many believe that

“bubbles” are possible in the market. And whether or not they are “rational,”

extraordinary changes in the stock prices (either up or down) by themselves

may do harm to the real economy They are not a mere mirror image of the

real economy. In history, depressions were often accompanied by falls in the

stock prices. As early as the nineteenth century, economists were talking about

“financial crises.” More recently, Minsky (1957, 1975) highlighted the importance

of stock prices in the macroeconomy, and advanced the “financial accelerator”

1 See Mantegna and Stanley (2000) for the introduction to econophysics.

275
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thesis. It was revived in the 1990s, and bore a vast literature. Today, most central

banks closely monitor asset prices in the conduct of monetary policy.

The crucial problem is whether the stock prices are always equal to their

fundamental values. Shiller (1981) in his seminal work performed the ingenious

“variance-bound tests” on this issue, and drew the following conclusion:

We have seen that measures of stock price volatility over the past century appear to be far too

high – five to thirteen times too high – to be attributed to new information about future real

dividends if uncertainty about future dividends is measured by the sample standard devia-

tions of real dividends around their long-run exponential growth path. (Shiller, 1981, 433)

Naturally, Shiller’s seminal work2 spawned the debate over alleged excess

volatility of stock price. Rather than accepting that stock prices are too volatile to

be consistent with the standard theory, a majority of economists have attempted

to reconcile the alleged volatility with efficiency or “rationality” of market.

One way to explain volatility of stock prices is to allow significant changes

in the discount rate or the required return on stocks. In fact, in the neoclassical

macroeconomic theory, the following relationship between the rate of change in

consumption, C , and the return on capital, r , must hold in equilibrium (see, for

example, Blanchard and Fischer, 1989):

−
[

u′′(C)C

u′(C)

] (
Ċ

C

)
= 1

η(C)

(
Ċ

C

)
= r − δ. (10.1)

Here, the elasticity of intertemporal substitution η is defined as

1

η(C )
= −u′′(C)C

u′(C)
> 0.

In general, η depends on the level of consumption, C . Equation (10.1) says that

the rate of change in consumption over time is determined by η and the dif-

ference between the rate of return on capital, r , and the consumer’s subjective

discount rate, δ. This equation, called the Euler equation, is derived as the nec-

essary condition of the representative consumer’s maximization of the Ramsey

utility sum.

The return on capital, r , in equation (10.1) is the return on capital equity or

stocks, which consists of the expected capital gains/losses and dividends. Thus,

according to the neoclassical macroeconomics, the return on stocks must be

consistent with the rate of change in consumption over time in such a way that

equation (10.1) holds.

Now, the results of the tests of Shiller (1981) and LeRoy and Porter (1981) im-

ply that the volatility of stock prices must come from the volatility of the discount

2 The variance bound test for the volatility of stock prices was also performed by LeRoy and Porter

(1981).
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rate or the return on capital, r , rather than that of dividends. And yet, consump-

tion C is not volatile. If anything, it is less volatile than dividends or profits. Thus,

given equation (10.1), the volatility of stock prices or their rate of return r must

be explained ultimately by sizable fluctuations of the elasticity of intertemporal

substitution η which depends on consumption. Consequently, on the represen-

tative agent assumption, researchers focus on the “shape” of the utility function

in accounting for the volatility of stock prices (Grossman and Shiller, 1981). It

is not an easy task, however, to reconcile the theory with the observed data if we

make a simple assumption for the elasticity of intertemproral substitution, η; η

must change a lot despite of the fact that changes in consumption are small.

A slightly different assumption favored by theorists in this game is that the

utility, and therefore, this elasticity η depend not on the current level of con-

sumption Ct but on its deviation from the “habit” level, Ĉt , namely, Ct − Ĉt . By

assumption, the habit Ĉt changes much more slowly than consumption Ct itself

so that at each moment in time, Ĉt is almost constant. The trick of this alternative

assumption is that although Ct does not fall close to zero, Ct − Ĉt can do so as

to make the elasticity of intertemporal substitution η, now redefined as

1

η
= −u′′(C − Ĉ)(C − Ĉ)

u′(C − Ĉ)
> 0, (10.2)

quite volatile. Campbell and Cochrane (1999) is a primary example of such an

approach. Though ingenious, the assumption is not entirely persuasive. Why

does the consumer’s utility become minimal when the level of consumption is

equal to the habit level even if it is extremely high? In any case, this is the kind of

end point we are led to as long as we keep the representative agent assumption

in accounting for the volatility of stock prices.

Meanwhile, Mehra and Prescott (1985), using the representative agent model,

present another problem for asset prices. They considered a simple stochastic

Arrow–Debreu model. The model has two assets, one the equity share for which

dividends are stochastic, and the other the riskless security. Again, on the repre-

sentative agent assumption, the “shape” of the utility function and the volatility

of consumption play the central role for prices of or returns on two assets. For

the reasonable values of η, which may be more appropriately called the relative

risk aversion in this stochastic model, and the U.S. historical standard deviation

of consumption growth, Mehra and Prescott calculated the theoretical values of

the returns on two assets. The risk premium, namely the difference between the

return on the equity share and the return on the riskless security implied by their

model, turns out to be mere 0.4 percent. In fact, the actual risk premium for

U.S. stocks (the Standard and Poor’s 500 Index, 1889–1978) against short-term

securities such as the Treasury Bills, is 6 percent. Thus, the standard model with

the representative consumer fails to account for such a high risk premium that is

actually observed. Mehra and Prescott posed this result as a puzzle. Since then,
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a number of authors have attempted to explain this puzzle (e.g., Campbell and

Cochrane, 1999).

The “puzzles” we have seen are, of course, puzzles conditional on the assump-

tion of the representative agent. Indeed, Deaton (1992) laughs away the so-called

“puzzles” as follows:

There is something seriously amiss with the model, sufficiently so that it is quite unsafe to

make any inference about intertemporal substitution from representative agent models. . . .

The main puzzle is not why these representative agent models do not account for the

evidence, but why anyone ever thought that they might, given the absurdity of the aggregation

assumptions that they require. While not all of the data can necessarily be reconciled with

the microeconomic theory, many of the puzzles evaporate once the representative agent is

discarded. (Deaton, 1992, 67, 70)

We second Deaton’s criticism. Having said that, here, we note that the stan-

dard analyses all focus on the variance or the second moment of asset prices or

returns (see e.g., Cechetti, Lam, and Mark, 2000, and the literature cited therein).

As we will see shortly, a number of empirical studies actually demonstrate that

the variance or standard deviation may not be a good measure of risk. Kiyono

et al. (2006), in fact, demonstrates that the probability density function of the

U.S stock returns is non-Gaussian for the period including the Black Monday in

October, 1987. We must, therefore, consider probability distributions, not just

moments. In what follows, we will critically examine the consumption-based

asset pricing model, and argue that financial markets, stock prices in particular,

and the real economy are, in fact, different creatures.

10.2. The Power-Law Behavior of Stock Prices and Returns

Toward this goal, we must begin with the story of the power-law probability

distribution. It may appear too technical at first, but is essential for our under-

standing of the workings of financial markets on one hand, and the real economy

on the other. Although economists routinely adopt the normal or the Gaussian

distribution, it turns out that it is actually not so generic as they believe. Specif-

ically, the power law plays a central role for understanding financial markets.3

Despite its fundamental importance, the power law is relatively unknown among

mainstream economists. We first give its definition.

Definition (Power-Law Distribution): A stochastic variable x is said to obey a

power-law distribution when it is characterized by a probability density function

p(x) with power-law tails:

p(x) ∝ x−(1+α) (α > 0).

3 See Chapters 4 and 6 of Sornette (2000), and Mandelbrot and Hudson (2004) for the introduction

of power-law distributions.
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Normal Distribution

To appreciate the importance of the power-law distribution, we need to compare

it with the normal distribution. The probability density function of the standard

normal distribution φ(x) is well known:

φ(x) = 1√
2π

exp

(
− x2

2

)
.

Economists, like scientists in other disciplines, have long believed that the

normal distribution is the norm, the deviation from which serves only for cu-

riosity of mathematicians. There are several justifications for this belief. The most

important one is, of course, the central limit theorem. The random walk model

is another.

A version of the central limit theorem states as follows.

The Central Limit Theorem: Suppose that xi is an identically and indepen-

dently distributed (i.i.d.) random variable with mean zero and a finite variance

σ 2. Then the probability density function fn(s ) of the (normalized) sum of xi ,

sn = ∑n
i=1 xi/[σ

√
n], converges to a normal distribution with unit variance, as n

becomes large:

fn(s ) → φ(s ) = 1√
2π

exp

(
− s 2

2

)
when n → ∞.

See any textbook on probability such as Feller (1968) for technical details.

The point is that the theorem allows any distribution for xi , as long as the second

moment exists.

The normal distribution can be also seen as a limit of the random walk model.

Consider a random walk model on a one-dimensional lattice. Starting from the

origin, a “ball” moves to the right by one with probability one-half, and to the

left by one with probability one-half. The position of the ball after N moves is

then

n − (N − n) = 2n − N (n = 0, . . . , N)

where n is the number of moves to the right. Thus, the position of the ball

corresponds to n.

The probability that the number of moves to the right is n after N moves,

P (N, n), is then

P (N, n) =
(

N

n

) (
1

2

)n (
1

2

)N−n

=
(

N

n

) (
1

2

)N

= N!

(N − n)!n!

(
1

2

)N

.

Just as we obtained the Boltzmann–Gibbs distribution in Chapter 3, we take the

logarithm of P (N, n) and use the Stirling formula

log x! ∼= x log x − x.
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Then, we obtain

log P (N, n) = (N − n) log

(
N

N − n

)
+ n log

(
N

n

)
− N log 2.

Define x , which is the deviation of n from N/2, as follows:

n = N

(
1

2
+ x

) (
−1

2
≤ x ≤ 1

2

)
.

And we obtain

log P (N, n) = −N

(
1

2
− x

)
log(1 − 2x) − N

(
1

2
+ x

)
log(1 + 2x).

Using the expansion

log(1 + α) = α − α2

2
+ o(α3)

we obtain

P (N, n) = exp{−2Nx2} where x = 1

N

(
n − N

2

)
.

Because P (N, n) is a probability density function, its sum (integral) must be

one. Define y as

y = n − N

2
= Nx.

With y, we have

P (N, n) ∼ exp

(
−2y2

N

)
y ∈ (−∞, ∞).

Using the well-known formula∫ ∞

−∞
e−αx2

dx =
√

π

α

and noting α = 2/N in our case, we finally obtain the density function for the

normal distribution:

P (N, n) =
√

2

Nπ
exp

(
−2y2

N

)
dy where y = n − N

2
.

Thus, to the extent that the random walk model is generic, the normal distribution

is the norm. In passing, we note that the standard deviation of P (N, n), σ is

σ =
√

N

2
.

In other words, the standard deviation (fluctuation) of the random walk σ is

proportional to the square root of the step size,
√

N. Because the step size is
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expected to be proportional to the length of time, t, σ is also proportional to the

square root of time,
√

t.

The central limit theorem, and the fact that the normal distribution can be

seen as the limit of a random walk, are well known. These facts suggest strongly

that the normal distribution is very generic; we should expect the normal distri-

bution everywhere in nature. However, it turns out that the normal distribution

may not be so generic as we might believe. A crucial assumption of the central

limit theorem is that the probability distribution of xi has the finite variance.

What happens if the variance or the second moment does not exist?

Power Laws and Lévy Flight

The normal distribution actually belongs to a group of distributions called a stable

distribution. A stable distribution is a specific type of distribution encountered in

the sum of n i.i.d. random variables with the property that it does not change its

functional form for different values of n. It is known that the normal distribution

is the only stable distribution having all its moments finite. Now, there exists

a limit theorem stating that, under certain conditions, the probability density

function (pdf) of a sum of n i.i.d . random variables xi converges in probability

to a stable distribution. Note that the central limit theorem is a special case of

this more general limit theorem. When the pdf of xi has a finite variance, it

becomes the usual central limit theorem. The limit distribution is the normal

distribution. On the other hand, when the variance or the second moment does

not exist (namely, it becomes infinite) for the underlying stochastic process, a

sum of n i.i.d. random variables converges to a distribution with power-law tails

which is also a member of the group of stable distribution.

The random walk which leads us to the normal distribution has been regarded

as a very generic model with wide applications. However, it is also restrictive in the

sense that the length of a jump of a “ball” is constant. Generally, we can consider

a random walk with the following probability distribution of the lengths of a

jump of a ball:

±a with probability C

±λa with probability C/M
...

... (a > 0, C > 0, λ > 1, M > 1)

±λ j a with probability C/M j

...
...

In this generalized random walk model, a ball can fly to any point

on a one-dimensional lattice with power-law probabilities: a small jump is

more likely than a big jump. This is a one-dimensional example of a Lévy
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flight .4 Now, this generalized random walk, or a Lévy flight, is much “wilder” than

the ordinary random walk model, and can lead us to power-law distributions

rather than to the normal distribution.5

In summary, a stable distribution is more general than the normal distribution.

In this group of probability distributions we have strong contenders to the normal

distribution, namely power-law distributions.

In addition to the kind of limit distribution, we must also take into account

the speed of convergence. The problem can be best illustrated by an example.

Consider the truncated Lévy flight defined by the following distribution:

P (x) =
0 for 0 < m < x

c PL (x) for −m ≤ x ≤ m

0 for x < −m

where PL (x) is the symmetric Lévy flight. Unlike the Lévy flight, in which the

length of a jump is unbounded, the truncated Lévy flight has a limit (m > 0) on

the length of a jump. Since the truncated Lévy flight has a finite variance, the

probability distribution of the sum of n random variables form this distribution,

P (Sn) converges to the normal distribution. The question is how quickly P (Sn)

will converge. Obviously, when n is small, the Lévy flight well approximates

P (Sn). Thus, there exists a crossover value of n, n∗ such that

For n 
 n∗, P (Sn) ∼ The Lévy Flight

For n � n∗, P (Sn) ∼ The Normal Distribution

This example illustrates the point that in general, the kind of probability dis-

tribution we obtain in practical applications depends on n (see section 8.4 of

Mantegna and Stanley, 2000 for further details).

In fact, more and more evidence has been gathered to the effect that natu-

ral phenomena are characterized by power-law distributions (see, for example,

Sornette, 2000). In economics, empirical size distributions of many variables of

interest have been actually known for long to obey a power-law distribution.

For example, Pareto (1896) found that the distribution of income y was of the

following form:

N(y > x) ∼ x−( 3
2 )

where N(y > x) is the number of people having income x or greater than x . The

Pareto distribution is nothing but a particular form of power-law distribution

(see Chatterjee et al., 2005 for recent studies on this theme).

More recently, electronic trading in financial markets has enabled us to use

rich high-frequency data with the average time delay between two records being

4 The model is not restricted to a one-dimensional model. Mandelbrot (1983) coined the term “Lévy

flight” for the generalization of random walks in continuous space.
5 The reader can usefully refer to Figure 4.7 of Sornette (2000, 93) to appreciate the point that Lévy

flight is much “wilder” than the ordinary random walk. For Lévy flights and power laws, see also

Chapter 4 of Paul and Baschnagel (1999).
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P

x

x

p x
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x

x

Figure 10.1. Tail comparison of Standard Normal Distribution and Power Law (α = 1).

Notes: The Normal Distribution N(x) = 1√
2π

exp
(
− x2

2

)
; Power-Law Distribution f (x) =

x−(1+α) (0 < α < 2).

as short as a few seconds. By now, a number of empirical analyses based on such

data have amply demonstrated that most financial variables such as changes in

stock price or foreign exchange rates are, in fact, characterized by power-law

distributions, not by the normal distribution.

What is the significance of these results? The significant difference between

the normal and power-law distributions shows up in the tails of distributions as

shown in Figure 10.1. Under power laws, large deviations from the mean have

much larger probability (dubbed fat tails) than under the normal distribution.

Put it another way, given the normal distribution, some of the big earthquakes

which actually occurred would not have reasonably occurred whereas they are

quite possible under power laws. Likewise, under the normal distribution, drops

in stock price like the October 1987 crash would have insignificant probability

whereas under power laws, the probability becomes significant. Power laws have,

therefore, important implications for our understanding of financial markets.

Asset Prices

Growing evidence dating back to Mandelbrot (1963) now amply demonstrates

that changes in asset prices do not obey the normal distribution but the power

law. For our present purpose, it is enough to cite Gabaix et al. (2003).
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Stylized Fact 1: The probability distribution of changes in stock prices r is the

following power law with the exponent α = 3:

P (|r | > x) ∝ x−α, α = 3 (10.3)

where r is defined as follows:

rt = log Pt − log Pt−	t .

The probability density function, f (r ) corresponding to (10.3) is

f (r ) ∝ x−(α+1) = x−4, (10.4)

that is, in terms of density function f (r ), r obeys the power law with the exponent

α + 1 = 4.

See also Mandelbrot (1997) and Mantegna and Stanley (2000) for the above

stylized fact.

That exponent α is about 3 is the standard result. The value of the exponent

has far-reaching implications. First of all, when the exponent of the power-

law density function is 3, the variance or the second moment does not exist. In

general, suppose a random variable X has a power-law density f (x) in the range

1 ≤ x ≤ ∞ with exponent μ + 1:

f (x) = x−(μ+1) (1 ≤ x ≤ ∞).

The nth moment Mn of X is then defined as

Mn =
∫ ∞

1

xn f (x)dx =
∫ ∞

1

x−(μ+1−n)dx.

Thus, the nth moment of X, Mn exists if and only if

μ + 1 − n > 1 or μ > n.

In other words, the nth moment of the random variable X does not exist for

μ ≤ n.

Though it appears that the second moment or variance does exist for financial

returns (see Chapter 9 of Mantegna and Stanley, 2000), it is still a matter of

dispute. If the variance does not exist, the standard theory of asset prices faces

a serious problem because it rests on the basic assumption that the distribution

of returns is normal (Gaussian), and that risk can be measured by the variance

or standard deviation of the rate of return; (see Mandelbrot and Hudson, 2004

for very readable and forceful criticism of the standard theory of asset prices and

finance).

Whether or not the second moment exists, compared to the normal distribu-

tion, power-law distributions have fat tails meaning that large deviations from

the mean have the significant probabilities (Figure 10.1). Mandelbrot, a founder

of new approach, contrasts two broad classes of probability distributions, one

the “mild,” the other the “wild.” The normal distribution belongs to the “mild”
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one whereas power-law distributions are “wild.” To appreciate the point, follow-

ing Sornette (2000), we can think of the distribution of height. The probability

that someone has twice your height is virtually zero because the distribution of

height is normal, and “mild.” In contrast, in the case of the distribution of wealth

which Pareto (1896) first explored, there is a nonvanishing fraction of the pop-

ulation twice, ten times, or even 100 times as wealthy as you are. The reason is

that unlike height, wealth is distributed under the power law. “Wild” probability

distributions are, in fact, found to well approximate the size frequency distribu-

tions of a wide range of natural phenomena such as earthquakes, hurricanes, and

floods. And now, changes in stock prices have been found to obey a power-law

distribution. Dismissing the “equity premium puzzle” mentioned earlier, Man-

delbrot draws the important implication for power-law distributions for risk as

follows:

Why is it that stocks, according to the averages, generally reward investors so richly? The

data say that, over the long stretch of the twentieth century, stocks provided a massive

“premium” return over that of supposedly safer investments, such as U.S. Treasury Bills.

Inflation-adjusted estimates of that premium vary, depending on the dates you examine,

between 4.1 percent and 8.4 percent. Conventional theory calls this impossible. Only two

things, the theory says, could so inflate stock prices: Either the market is so risky that people

will not invest otherwise, or people merely fear it is too risky and so will not invest otherwise.

Now, when studying this, economists typically measure the real market risk by its volatility –

quantified by their old friend, the bell-curve standard deviation. . . . But these papers miss

the point. They assume that the “average” stock-market profit means something to a real per-

son; in fact, it is the extremes of profit or loss that matter most. Just one out-of-the-average

year of losing more than a third of capital – as happened with many stocks in 2002 –

would justifiably scare even the boldest investors away for a long while. The prob-

lem also assumes wrongly that the bell curve is a realistic yardstick for measuring the

risk. As I have said often, real prices gyrate much more wildly than the Gaussian stan-

dard assume. In this light, there is no puzzle to the equity premium. Real investors

know better than the economists. They instinctively realize that the market is very, very

risky, riskier than the standard models say. So, to compensate them for taking that risk,

they naturally demand and often get a higher return. (Mandelbrot and Hudson, 2004,

230–231)

At this stage, we return to the standard consumption-based theory of as-

set pricing, namely equation (10.1). According to the basic equation of the

consumption-based asset pricing model, the equity return r and the rate of

change in consumption must be closely related. Now, the standard empirical

analyses which attempt to reconcile the neoclassical theory with the observed

data all focus on the moments of the relevant variables. However, given the styl-

ized fact that equity returns obey the power law for which the second moment may

not even exist, the standard approach is highly questionable. The valid approach

is to compare the probability distributions – not just the moments – of consumption

growth and the stock prices or returns, namely the left-hand and the right-hand

sides of the Euler equation (equation (10.1)).
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Growth of Real Variables

The return on equity obeys the power-law distribution with exponent α = 3 (the

stylized fact 1 above). What about the rate of change in consumption? Changes

in consumption and aggregate income or GDP are similar. Canning et al. (1998)

shows that the distribution of the growth rates of GDP, g , is exponential.

P (g ) ∼ exp(−γ | g |). (10.5)

Stanley et al. (1996), analyzing all U.S. publicly traded manufacturing companies

within the years 1975–91 (taken from the Compustat database), drew the con-

clusion that the distribution of the growth rates of companies is also exponential.

Stylized Fact 2: The probability distributions of growth rates of real variables such

as GDP, consumption, and the size of firm are exponential. They are fundamentally

different from the probability distributions of the asset prices or returns which are

power laws.

This fact implies that the standard Euler equation (equation (10.1)) based on

the representative agent assumption for explaining asset prices is fundamentally

flawed.

It is important then to identify and compare the underlying mechanisms

which generate power-law distributions for the returns of financial assets on one

hand, and exponential distributions for the real economic activities such as the

growth of real GDP on the other. Before we proceed to this interesting problem,

in the next section, we first show that the standard (not necessarily consumption

based) asset pricing model has also a fundamental problem.

10.3. The Problem with the Standard Asset Pricing Model

In this analysis, multiplicative process plays an essential role.

Definition (Multiplicative Process): Yt is said to follow a multiplicative process

when it satisfies the following stochastic difference equation:

Yt = Mt Yt−1 + Qt (t = 1, 2, . . . ) (10.6)

where {Mt, Qt} is a pair of i.i.d. real-valued random variables.

For the relation between multiplicative process and power laws, the following

theorem (attributed to Kesten, 1973; Goldie, 1991) is fundamental.

Theorem (Kesten–Goldie): Consider the multiplicative process defined by equa-

tion (10.6).

A. If

E [log(|Mt |)] < 0 (t = 1, 2, . . . ) (10.7)



P1: KXF

0521831067c10.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 14:45

10.3. The Problem with the Standard Asset Pricing Model 287

holds, then Yt converges in distribution, and has a unique limiting distribution.

B. If in addition to (10.7), Qt/(1 − Mt) is nondegenerate,6 and there exists some

α > 0 such that:

0 < E [|Qt |α] < ∞, (10.8)

E [|Mt |α] = 1 (10.9)

and

E
[|Mt |α ln+ |Mt |

]
< ∞, (10.10)

then the tails of the limiting distribution are asymptotic to a power law, that is,

they obey a power law of the type

P (|Yt | > x) ≈ c · x−α. �

Note that as we will see shortly, equation (10.9) gives the power exponent α

of the distribution of Yt . Using this theorem, we first explain Lux and Sornette’s

(2002) analysis of “rational bubbles.” It turns out that beyond bubbles, this

analysis actually makes clear the fundamental difficulty faced by the standard

model of asset prices.

Model of “Rational Bubbles”

Blanchard (1979), and Blanchard and Watson (1982) present the model of ra-

tional bubbles. In this model, the “bubbles” Bt is assumed to follow an explosive

path with probability π(0 < π < 1), while collapse to zero with probability

1 − π . To allow for the start of a new bubble after the collapse, an i.i.d. stochastic

disturbance εt is added. Thus, Bt follows the following process:

Bt = at Bt−1 + εt (10.11)

where

at = a > 1 with probability π

and

at = 0 with probability 1 − π.

Therefore, {at} is also i.i.d. Because {at, Bt} is a pair of i.i.d. random variables,

Bt is a multiplicative process.

Rational expectations require Bt to satisfy

Bt = βE [Bt+1|
t ] (0 < β < 1) (10.12)

6 Here, “nondegenerate” means that Qt is not a constant times (1 − Mt ), and the notation ln x+
denotes max (0, log x).
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where 
t is the information set available to investors at time t, and β is the

discount factor. It is easy to show that because of equation (10.12), the follow-

ing condition must hold for the multiplicative process determined by equation

(10.11):

a = 1

πβ
> 1. (10.13)

The rate of “bubble explosion” is determined by π and β in such a way that

equation (10.13) holds.

Now, we apply the Kesten–Goldie theorem to this model. Because Bt satisfies

the conditions which the theorem requires, the tails of the limiting distribution

of Bt follow a power-law:

Prob (Bt > x) ∝ x−α

Using equation (10.9), we can determine the power exponent α of this distribu-

tion. In the present case, equation (10.9) reads as follows:

E
[
aα

t

] = πaα = 1. (10.14)

This is equivalent to

α = log (1/π)

log a
. (10.15)

Using (10.13), we can rewrite (10.15) as

α = log (1/π)

log (1/π) + log (1/β)
< 1.

The Blanchard–Watson model of “rational bubbles,” therefore, leads us to the

power-law distribution of stock prices with the power exponent which is less than

one. However, as we have seen in the previous section, it is well established that the

probability distribution of stock prices and their returns7 follows the power laws

with the exponent close to 3 (see equation (10.4)). Thus, using the Kesten–Goldie

theorem, Lux and Sornette (2002) have shown that the Blanchard–Watson model

of rational bubbles fails in accurately characterizing the behavior of stock prices.

Difficulty Faced by the Standard Model

More broadly, Sornette’s (2002) analysis implies that the standard (not neces-

sarily consumption–based) asset pricing model also faces the same fundamental

7 The difference between stock prices themselves and their rates of change is inessential in that

distributions of both variables are basically the same (see Lux and Sornette, 2002).
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difficulty.8 According to the standard model, the price of stock, Pt satisfies the

following relation:

Pt+1 = at Pt − Dt . (10.16)

Here, the dividend Dt is equal to

Dt = eg tdt (10.17)

where dt satisfies

0 < E (dt) = d < ∞. (10.18)

The term eg t reflects the growth of the firm or the economy. Rational expectations

require that

E (Pt+1) − Pt

Pt

+ E (Dt)

Pt

= r. (10.19)

Here, r is the rate of return on stock or the discount rate. Equation (10.19) is

equivalent to

E (Pt+1) = (1 + r )Pt − E (Dt) . (10.20)

Comparing (10.20) with (10.16), we see that

E (at ) = 1 + r = β−1 > 1 (10.21)

where β is the discount factor:

β = 1

1 + r
∼= e−r . (10.22)

Now, equations (10.17) and (10.18) imply that condition (10.8) of the Kesten–

Goldie Theorem is not satisfied: E [| − Dt |α] = dαeαg t diverges as t goes to

infinity. Thus, we cannot apply the theorem to equation (10.16) for Pt . To get

around this problem, we follow Sornette (2002), and divide both sides of equation

(10.16) by eg t to obtain

P̂ t+1 = e−g at P̂t − e−g dt (10.23)

where

P̂t = e−g t Pt . (10.24)

Equation (10.23) satisfies the conditions for the Kesten–Goldie Theorem.

We note that except for a constant term, g , the rates of change in Pt and P̂t are

basically equal:

P̂t+1 − P̂t

P̂t

= Pt+1 − Pt

Pt

− g (10.25)

8 Sornette (2002) considers the problem of “bubbles.” In our view, his analysis applies more usefully

to the fundamental valuation formula.



P1: KXF

0521831067c10.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 14:45

290 Stock Prices and the Real Economy

and, therefore, that the probability distributions of P̂t and Pt are the same. Thanks

to the theorem, the distributions of Pt and P̂t are power laws. Using equation

(10.9), we can find the power exponent α :

E
[(

e−g at

)α] = 1 (10.26)

Sornette (2002) considers the case where multiplicative factor at follows the

log-normal distribution such that

E [log at] = log a0 (10.27)

with variance σ 2. Then

E
[(

e−g at

)α] = exp

[
−gα + α log a0 + α2

(
σ 2

2

)]
. (10.28)

Substituting (10.28) into (10.26), we obtain

α = 2 (g − log a0)

σ 2
. (10.29)

In the case of the log-normal distribution,

E (at) = a0e
σ2

2 (10.30)

holds. From (10.21), (10.22), and (10.30), we obtain

er = a0e
σ2

2 . (10.31)

This equation is equivalent to

σ 2

2
= r − log a0. (10.32)

We substitute (32) into (29) to obtain

α = g − log a0

r − log a0

= 1 + g − r

r − log a0

. (10.33)

Thus, we can conclude that as long as r is greater than g , the power exponent α

of the probability distribution of stock returns is less than one. Note that unless

the discount rate r is greater than the growth rate of dividends g , the standard

valuation formula does not make sense.

Proposition: The standard (not necessarily consumption-based) asset pricing

model leads us to the result that the probability distribution of stock prices or returns

is a power law with the exponent α less than one. This contradicts the stylized fact

that α is about 3.

In this way, the standard theory of asset prices faces a serious difficulty. In

fact, by detailed study of microscopic fluctuations in prices on the London Stock
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Exchange, Farmer et al. (2004) demonstrate that large price changes occur when

there are gaps in the occupied price levels in the order book.9 It suggests that

in a market where participants place many small orders uniformly across prices,

such large price fluctuations as we actually observe would not happen. In other

words, differences in opinion as indicated by gaps in placed prices play the crucial

role in causing large price fluctuations. Thus, any theory of asset prices built on

the representative agent assumption is fundamentally flawed.

Farmer et al. (2004) has also found that the probability distributions of the

stocks which are more lightly traded (or have lower event rates) tend to display

fatter tails, with more extreme risks than otherwise. This finding poses another

difficulty to the representative agent model. At this stage, we can usefully recall

that the model we analyzed in Chapter 9 with two different types of investors,

“fundamentalists” and “chartists,” has produced a power-law distribution of

changes in stock price with the exponent greater than one.

We need a theory that starts from stochastic microeconomic behaviors.

Within such a theoretical framework, we can compare financial markets with

the real economy. The stylized fact is that stock prices and returns obey the

power law with the exponent close to 3, whereas the probability distribution of

real variables such as GDP and consumption is exponential.

10.4. Underlying Mechanism: A Truncated Lévy Flight Model

We now come back to the fundamental problem, what is the underlying mech-

anism that generates power-law distributions for returns of financial assets and

exponential distributions for real economic variables such as growth rate of real

GDP.

As we explained in Section 10.2, the random walk the leads us to the normal

(or Gaussian) distribution. Unlike the standard random walk, the truncated Lévy

flight, explained earlier, depending on parameters, can generate a wide class of

probability distributions including power laws and exponential distributions. In

what follows, we will consider a particular model of truncated Lévy flight which

nests both power laws and exponential distributions. The model is an adapted

or modified version of Huang and Solomon (2001).

The Real Economy

We first consider a model of the real economy. The economy consists of N sectors

or units. For the sake of expositional convenience, we call the variable of interest

“consumption.” It may be “production,” and in that case, the aggregate variable

is GDP. N sectors or units may be interpreted either as N types of consumers,

9 Farmer et al. (2004) documentents that even for actively traded stocks, the number of occupied

price levels on either “sell” or “buy” side of the book at any given time is typically only 30.
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or as N types of consumption goods. Interpretation of the model can be very

flexible.

The aggregate consumption at time t, C(t), is nothing but the sum of the

individual consumptions:

C(t) = c1(t) + · · · + c N(t). (10.34)

Here, ci (t) is the consumption of type i good or the i th consumer’s consumption.

The argument t stands for calendar or real time. We interpret the period from t

to t + 1 as one month, one quarter or one year as the case maybe.

We are interested in the growth rate of the aggregate consumption C(t) over

[t, t + 1]. We define r (t) as

r (t) = C(t + 1) − C(t)

C (t)
. (10.35)

Our goal is to derive the probability distribution of r .

The growth of aggregate (or macro) consumption arises from the aggrega-

tion of growths of the N individual (or micro) consumptions. We think of this

micro growth in the form of a (large) number of elementary events. The number

of elementary events within a period (namely over [t, t + 1]) is τ . One elemen-

tary event is that a sector, sector i , say, being randomly chosen from the set

{1, 2, . . . , N} between t and t + 1, experiences growth of consumption. We use

the term “sector,” but it can be any micro unit such as agent, individual or firm. A

sector may be chosen either uniformly with probability 1/N or with some other

probabilities possibly dependent on the size of the sector. If sector i is chosen,

ci (t) grows by a random factor λ:

c ′
i (t) = λci (t). (10.36)

Here, c ′
i (t) is defined as ci immediately after the elementary growth. At this event,

no other sector ( j 
= i) experiences growth.

For simpler exposition, we assume that

λ = 1 + g , for ∀ i, t (10.37)

where

g = ±γ (0 < γ < 1).

Note that this is a particular type of multiplicative process for ci . As we mention

later, the probability distribution of λ does not matter at all.

It is extremely important to keep in mind the difference between t and τ . One

is the calendar time, t, and the other is τ , the number of elementary (micro) events

within a given period of time. When there are a total of τ such elementary events

undergone by some or all of the N sectors, each sector is most likely to experience

more than one elementary events on the average. We denote the resultant growth

rate of aggregate consumption as r (t; τ ). That is, r (t; τ ) is the growth rate of C(t)
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between t and t + 1 when the number of elementary micro events during the

period is τ . Although τ is a random number, we use its expected value and denote

it by τ .

With τ random selections out of N sectors in one period, we can write the

rate of growth of aggregate consumption as

r (t; τ ) =
∑
i,k

gi,k, (k = 1, . . . τ ) (10.38)

where

gi,k = (ci,k+1 − ci,k)

C
= ±γ ci (t; k)

C
. (10.39)

Here, gi,k indicates the kth elementary growth that has occurred to ci (t). The

total change that defines the growth rate of aggregate consumption C(t) is the

sum of these elementary growths that occured to c1, . . . , c N . The total number

of the elementary events that have occurred is equal to τ .

In this model, the size of a jump of a micro unit is constant (equation (10.37)).

Thus, the micro behavior is described by the ordinary random walk. However,

such micro growths occur τ times within a period. As a consequence, the growth

of aggregate consumption C (t) follows the truncated Lévy flight explained in

Section 10.2. It is a “truncated” Lévy flight because τ is finite.

We make an important assumption that there is a lower bound constraint to

the elementary micro growth process. That is, the sector size after an elementary

(micro) growth must be above the minimum, cmin(t) defined by

cmin(t) = qcav(t), (0 < q < 1) (10.40)

where

cav(t) = C(t)

N
. (10.41)

Here, q is the fraction of the average consumption that serves as the lower bound

to all of c ’s. Thus, we actually obtain c ′
i (t) not as (10.36) but as

c ′
i (t) = max {λci (t), cmin(t)} = max {(1 ± γ )ci (t), qcav (t)} . (10.42)

By scaling ci by cav(t) we define the fraction yi (t):

yi (t) = ci (t)

cav(t)
.

It satisfies the normalization condition that the average of the fractions is 1:

ȳ = 1

N

∑
i

yi (t) = 1. (10.43)

By changing variables into

Yi = log yi , (10.44)
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we observe that the basic dynamics defined by (10.42) becomes a kind of random

walk with varying step sizes, that is, a truncated Lévy flight explained earlier with

a lower reflecting barrier:

Y ′
i (t) = Yi (t) + log λ. (10.45)

Here again, the prime indicates the value after one elementary event, not the

calender time derivative.

The master equation is

P (Y ′(t)) − P (Y (t)) = 1

N

[∫
d F (λ)P (Y − log λ, t) − P (Y, t)

]
(10.46)

where F is the probability distribution for λ.10 Each sector is assumed to be

selected with equal probability 1/N, here. It is shown by Choquet (1960), and

Choquet and Deny (1960), and Levy and Solomon (1996) that the asymptotic

stationary distribution of Y , P (Y ) defined by∫ N

q

d F (μ)P (Y − μ)dμ = �P (Y ) (� is a constant) (10.47)

is exponential. That is, we obtain

P (Y ) ∝ e−αY . (10.48)

Because Y is defined as log y (equation (10.44) above), we have the probability

density function of y as

p(y) = K y−1−α. (10.49)

This constant K is determined by the fact p(y) is the probability density that

integrates to 1: ∫
p(y)dy = 1. (10.50)

At the same time, the normalization noted earlier requires that the mean of y is

1 (equation (10.43)): ∫
yp(y)dy = 1. (10.51)

From (10.50) and (10.51), we can derive an implicit relation between q , α

and N (See Malcai, Biham, and Solomon, 1999);

N =
(

α − 1

α

) [
(q/N)α − 1

(q/N)α − (q/N)

]
. (10.52)

10 In our present model, λ = 1 ± γ (equation (10.37)). Thus, λ is assumed to take only two values.

More generally, if a probability density function f (λ) exists for λ, then d F (λ) in (10.46) should

be replaced by f (λ)dλ.
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This equation is solved approximately as

α ≈ 1

1 − q
, (10.53)

when N >> e1/q .

Denote by R(r ; τ ) the cumulative distribution function of r , that is, the

probability that the growth rate is less than or equal to r with τ elementary

growths. We also define

R̄(r ; τ ) = 1 − R(r ; τ ). (10.54)

For τ = 1, we define

S̄(r ) = R(r, 1) (10.55)

and

S̄(r ) = 1 − S(r ). (10.56)

Note that the distribution function S refers to one elementary change to only

one of the N sectors.

From the asymptotic solution of the master equation, we obtain

S̄(r ) ∼
(

r

rmin

)−α

(10.57)

where

rmin = γ cmin

C
= γ qcav

C
= γ q

(
C

N

) (
1

C

)
= γ q

N
. (10.58)

There are many ways how the growth rate of aggregate consumption, r is

realized.11 The same aggregate growth rate, r , may be due either to a small

number of elementary micro growths with large step size such as r/2 and r/3, or

to a large number of small micro growths each with small step size. This makes

a difference to the emerging probability distribution of r .

Exponential Distribution

In what follows, we will derive an exponential distribution for the aggregate

growth rate r , under the condition that the number of micro events τ does not

exceed a critical level, τ̄ , which is defined shortly. It is simpler to explain this by

way of a concrete example.

Suppose there are 2k events out of τ with magnitude γ /2 rates each, and

that the rest of τ (that is τ − 2k) steps make almost zero net contribution to the

11 A positive r and a negative r can be treated in almost identical ways. We focus on positive r .
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aggregate growth. In this case, the aggregate growth rate r is achieved by way of

r = 2k
(γ

2

)
= kγ. (k = 1, 2, . . .) (10.59)

The probability that the aggregate growth rate is equal to or greater than kγ

with τ elementary events is given by

R̄(r = kγ, 2k) =
(

τ

2k

) [
S̄

(γ

2

)]2k ∼= τ 2k
[

S̄
(γ

2

)]2k

. (10.60)

Here, we have used the fact that the number of combinations of taking 2k out of

τ , that is τ C2k = τ (τ − 1) . . . (τ − 2k + 1)/(2k)! can be approximated by τ 2k .

We know from (10.57) and (10.58)

[
S̄

(γ

2

)]2

=
(

N

2q

)−α

. (10.61)

Thus, we can rewrite the above probability (10.60) as

R̄(r = kγ, 2k) =
[(

N

2q

)2α 1

τ 2

]− r
γ

. (10.62)

If we define

τ̄ =
(

N

2q

)α

, (10.63)

we can rewrite equation (10.62) more compactly as follows:

R̄(r = kγ, 2k) =
[
τ̄ 2

τ 2

]− r
γ

. (10.64)

When τ < τ̄ is satisfied, then this probability distribution is exponential. It is

given by

R̄(r = γ k, 2k) = exp

[
−

(
logA

γ

)
r

]
(10.65)

where

A =
(

τ̄

τ

)2

.

Its density function is of the form

f (r ) = −d R̄(r, 2k)

dr
= log A

γ
exp

[
−

(
lnA

γ

)
r

]
. (10.66)
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0 τ τ
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Figure 10.2. Exponential distribution for the real economy.
Note: See Huang and Solomon (2001) for further details of this diagram.

We note that the peak value of this density is

f (0) = log A

γ
(10.67)

The probability of the rate r being achieved as r = bk × γ /b, (b = 1, 2, . . .)

can be calculated similarly. No substantial changes are involved.

Thus, we have established the following proposition.

Proposition: To obtain an exponential distribution for the growth rate of aggregate

consumption, the number of elementary events within a given calender time period,

τ , cannot exceed a critical level τ̄ . This maximum number τ̄ is given by

τ̄ (b) ∼= (N/bq)α

for some small positive integer b. The probability density function of r is then the

following exponential distribution:

f (r, b) ∝ exp

[
− b

γ
log

(
τ̄

τ

)
r

]
. (10.68)

The probability distribution of r depends on parameters. In particular, it depends

crucially on τ and γ . Figure 10.2 shows the region where we obtain exponential

distribution in terms of τ and γ . For τ < τ̄ , and r larger than γ , we obtain the

exponential distribution of r . Note that in our example, r is kγ (equation (10.59)

(k = 1, 2, . . . ) and, therefore, is necessarily greater than γ . γ is the growth rate

of “elementary events” (equation (10.37)) so that we can conceptually take it as

small as we wish.

The implication of this proposition is that to obtain an exponential distribu-

tion for the growth rate of aggregate real variables as we actually do, the number

of micro growths within a short period of time τ must be sufficiently “small.”
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Financial Returns

In this section, we study a similar model of financial returns, and characterize

the case where power law distribution holds. There are N agents or assets each

with financial resources or wealth, wi (t):

W(t) = w1(t) + · · · + w N(t). (10.69)

As in the real-sector model, one of N sectors (or stocks) are randomly selected

for an elementary event, that is, a micro change. This random selection could be

uniform with probability 1/N, or could be modified to favor large sectors (or

investors). There are τ such micro or elementary events within a unit interval of

time.

When sector i is selected, it undergoes the change

w ′
i (t) = (1 + g )wi (t) (10.70)

where

g = ±γ.

Again, w ′
i (t) indicates the value of wi immediately after the elementary growth

in the ith asset or agent’s wealth. It is not the time derivative of wi (t).

The rate of return on financial assets or wealth over a calender period from

t to t + 1, r (t), is defined, analogously to the rate of growth of consumption, by

r (t) = W(t + 1) − W(t)

W(t)
. (10.71)

We are interested in the case where the probability distribution of r becomes a

power-law distribution. When there are τ elementary events during [t, t + 1], r

is denoted by r (t, τ ). By definition, r (t, τ ) is as follows:

r (t, τ ) :=
∑
i,k

fi,k (10.72)

where

fi,k = ±γ wi (t; k)

W(t)
.

As in the real sector model, we obtain

S̄(r ) = 1 − R(r ; 1) ∼
(

r

rmin

)−α

(10.73)

where

rmin = γ wmin

W
= γ qwav

W
= γ q W

W N
= γ q

N
.

Equation (10.73) corresponds to (10.57) for the real economy.
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Figure 10.3. Power-Law distribution (α > 2) for the financial markets.

Again, the probability distribution of r depends on parameters, τ and γ .

Huang and Solomon (2001) demonstrate that depending on parameters, a power-

law distribution emerges. The region in which power laws with the exponentα close

to 3 emerge12 in the financial model is shadowed in Figure 10.3. The boundaries

of the region are determined by two curves on the τ − r plane.

One is

r = γ
[τ

τ̄

]1/α

(10.74)

where

τ̄ =
(

N

2q

)α

. (10.75)

The other curve is defined by

r = γ

√
τ

τ̄
. (10.76)

Equation (10.74) can be derived as follows. For a given aggregate growth rate

r , we compare two cases. In case one, r is attained by two elementary growths,

each of which has the size of r/2, whereas in case two, r is attained by just one

elementary growth. We consider the condition that the former is more likely than

12 Huang and Solomon (2001) demonstrate by their simulations that the exponent α becomes close

to 3.
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the latter, that is

τ C2

(
S̄

(r

2

))2

> τ S̄(r ). (10.77)

Here, τ C2 is the combination of taking two elementary events with net contri-

bution to r out of τ events, and S̄(r ) is

S̄(r ) = R̄(r, 1) =
(

r

rmin

)−α

=
(

r N

qγ

)−α

. (10.78)

Recall that S̄(r ) is the probability that at least r growth rate is attained by one

elementary event. By substituting (10.78) into (10.77), and approximating τ C2 �
τ 2, we can rewrite the above inequality (10.77) as

r < r̄ ≡ 2q

N
γ τ

1
α . (10.79)

In this region, power-law distributions are less likely to hold because the effects

of the initial power law for a single step, S̄(r ), on the distribution of r weakens.

Recall that the inequality (10.77) means that r is more likely to be obtained by

two steps than a single step. In other words, power laws emerge in the region

whose boundary is

r = 2q

N
γ τ

1
α . (10.80)

With τ̄ defined by (10.75), equation (10.80) can be rewritten as equation (10.74).

Likewise, we can derive the other boundary, equation (10.76) (see Huang

and Solomon, 2001 for details). Here, we focus on the region13 where τ > τ̄ and

r > γ hold. Recall that we obtain the exponential distribution when τ < τ̄ and

r > γ hold (for the real economy).

As for power laws, we can also derive them by way of using Langevin equation.

This alternative approach is explained in Appendix 10.1. The merit of the Huang–

Solomon model is that it nests both power laws and exponential distributions.

We can summarize the results of our analysis as follows.

Proposition: In a truncated Lévy flight model in which the aggregate growth rate,

r is composed of a number of micro or elementary growths within a unit interval

of time, the probability distribution of r depends crucially on the number of such

micro events, τ . Specifically, when τ is smaller than a critical value τ̄ , the exponential

distribution emerges while we can obtain power laws with the exponent α close to 3

for τ > τ̄ . To the extent that the number of micro growths within a period is small in

the real economy whereas it is large in financial markets, we can explain the stylized

13 We note that as τ becomes much larger than τ̄ , the probability distribution eventually approaches

the Gaussian distribution via intermediate Lévy like distributions (see Huang and Solomon, 2001).
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fact that we observe the exponential distribution for “real” growth whereas power

laws with the exponent α close to 3 for financial returns.

10.5. Concluding Remarks on Real and Financial Markets

People often think or perhaps feel that real and financial markets are different.

It rarely happens that our salaries and wages are doubled within a relatively

short period of time, say a year. In contrast, we know that, if not very often, the

price of a stock can double in a year. This difference is formally reflected in two

different probability distributions; one is exponential distribution for the growth

rate of real variable such as GDP or consumption, while the other is power-law

distribution for asset prices and returns.

We began with the observation that a particular type of multiplicative pro-

cess, the truncated Lévy flight, nests a broad range of growth processes including

real and financial activities. The preceding analysis has shown that within this

framework, the crucial parameter is the number of elementary micro growth

events within a given period, say a month (τ in the model). When the number

of micro growth events within a period is small, an exponential distribution can

emerge. Conversely, when the number of micro growth events within a period is

large, then power-law distributions can emerge.

Thus, given the present model, to account for the stylized fact that we have

exponential distributions for the growth rate of real GDP whereas power-law

distributions for asset prices and returns, we must assume that within a given

period, the number of micro growth events is relatively small in the case of real

economic activities whereas it is large in the case of asset prices. Here, we must

take this proposition as an assumption, and leave it for further research. We

maintain that this is a plausible assumption, though. Note that what matters is

not additive disturbance but multiplicative disturbance. We believe that we can

reasonably argue that the frequency of multiplicative shocks is much higher for

asset prices than for real micro economic activities.

Think of it this way. In your “real” life, the costs of transportation and food

today is more or less the same as yesterday, and will be about the same tomor-

row. In contrast, in stock market, you must be always aware of the presence of

“multiplicative shocks.” Our analysis shows that the frequency of multiplicative

shocks is a crucial determinant of different probability distributions of aggre-

gate growth rate; one exponential distribution for the real economy, and the

other power laws for financial returns. In any case, it is an important research

agenda to ascertain this proposition. For the moment, we conclude that we have

a good deal of empirical observation to reject the standard asset price model

based on the representative consumer, and at the same time, a plausible theo-

retical reason to believe that the real economy and asset markets are different

creatures.



P1: KXF

0521831067c10.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 14:45

302 Stock Prices and the Real Economy

Appendix 10.1: Power Laws Derived from the Langevin Equation

In this appendix, we sketch an alternative approach based on the Langevin equa-

tions. This approach is known to be equivalent to the Fokker–Planck equation,

and describes the stationary distributions of returns. This approach is not so

helpful to our understanding the mechanisms generating financial returns and

real economic activities as the one in the main text, but is theoretically clear cut.

We follow Richmond and Solomon (2001).

Let φ(t) be the instantaneous return of some financial asset. We assume that

its dynamics is given by the Langevin equation:

dφ(t)

dt
= F (φ(t)) + G(φ(t))η(t),

where η is a mean zero and finite variance noise:

E (η(t)) = 0, and E [η(t)η(t ′)] = 2Dδ(t − t ′).

Richmond has shown that the probability distribution of φ satisfies the gen-

eralized Fokker–Planck equation14

∂ P

∂t
= D

∂

∂φ

[
G

(
∂(G P )

∂φ

)]
− ∂

∂φ
(F P ).

He shows that this equation has the steady-state solution

P (φ) = 1

Z|G(φ)| exp(−�(φ))

where Z is the normalization constant, and

�(φ) = − 1

D

∫ φ F

G 2
dφ.

For a simple example, suppose that

G(φ) = φ + ε,

and

F (φ) = −J φ,

with J > 0. Then, by taking ε −→ 0, we obtain

P (φ) = 1

Z
|φ|−1−J /D .

With a cubic

F (φ) = −J φ + bφ2 − cφ3,

14 See Aoki (2002, Sec. 8.7) or Honerkamp (1998, chapter 6), for example.
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there is a correction term exp(2bφ − cφ2)/D. Thus in regions where the expo-

nential correction is nearly 1, we have an approximate power law.

Next, partially following Solomon and Richmond (2001), we apply this basic

tool in developing a financial model with N agents with resources wi (t), i =
1, 2, . . . , N.

The aggregate asset is

W(t) =
∑

j

b j w j

where ∑
b j = 1.

We focus on the fraction

xi (t) = w j (t)

W(t)
.

Its Langevin equation is

dxi (t) = dwi (t)

W(t)
− wi (t)du

W2(t)

= (εi (t)σi − a)xi (t) + ai

where

a =
∑

i

bi ai (t).

We assume that the evolution of financial asset of type i agents is given by

dwi (t) = εi (t)σi wi (t) + ai W(t), i = 1, 2, . . . , N.

We take without loss of generality that the mean of ε is 0 and variance 1.

The Langevin equation becomes

dxi (t) = εσi xi (t) − axi (t).

From the formula developed above of Richmond, the steady-state solution is

P (xi ) = 1

(σi xi )2
exp

(
2

∫
[−axi + ai ]

(σi xi )2
dxi

)
.

In the range where 2ai/xiσ
2
i << 1, this distribution is approximately a power

law:

In other words, we have

P (xi ) ≈ x−1−αi , (10.81)

where

αi = 1 + 2a/σ 2
i .
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Appendix 10.2: Examples of Power Laws in Clusters

In the main text, we have considered a truncated Lévy flight model in which

a power law distribution is generated. In that model, lower bounds or lower

reflective boundaries play the essential role for generating power laws. There are

different models. This appendix assembles such models in which power laws are

generated without the assumption of lower bounds.

1. Large Deviations and Power Laws

For i.i.d., Poisson random variables Xi , i =1, 2, . . . , the sum possesses a power-

law relation. Let Sn = X1 + · · · + Xn. By the Markov or Chernoff inequality

Pr(Sn/n > a) = Pr(eθ Sn ≥ enaθ ): = e−nI (a),

where θ is nonnegative, and

I (a): = sup[θa − log M(θ)],

where M(θ) = E (eθ X1 ).

When x is Poisson distributed with mean λ, then M(θ) = exp[λ(eθ − 1)],

and I (a) = a log(a/λ) − (a − λ). We have a power-law relationship

Pr(Sn/n > a) ≈ a−na .

2. Yule Process

In a Yule process a cluster starts with a single agent. New agents arrive as a linear

birth process with rate λ. These agents are all of the same type. Let N(t) be the

number of agents at time t. Its probability generating function is

G(z, t) =
∞∑

i=0

pi zi = [ze−λt/(1 − z + ze−λt )]n0,

where pi is the probability that N(t) = i , and n0 is the initial number of agents,

which is set to 1. (See Cox and Miller, 1965 for example.) From this generating

function we retrieve

pn(t) = e−λt(1 − e−λt )n−1.

Aldous (2001) has an example which modifies this basic Yule process model

by assuming that new types of agents appear within each cluster at a constant

rate μ, so that the number of types grows exponentially. The number of agents

in a randomly chosen cluster is given by

p(n) =
∫ ∞

0

μe−μt e−λt (1 − e−λt)n−1dt.
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Changing variable from t to x = e−λt , we recognize this integral to be that

of a beta integral, hence

p(n) = �(1 + ρ−1)

ρ

�(n)

�(n + 1 + ρ−1)
≈ n1 − ρ−1,

with ρ = λ/μ.

3. Birth–Death process with second-order balanced rates

A model related to this arises in the birth-death process when their rates are

λi−1

μi

= 1 − a

i
+O (1/ i 2) = [1 + a/ i]−1 +O (1/ i 2),

where λi−1 is the birth rate in a cluster of size i − 1, and μi is the death rate of

a cluster of size i . This assumption says that clusters of small sizes have higher

death rates than larger clusters.

Let μ be the entry rate of a singleton. We can write down the master equation

for this model and look for stationary solutions by means of the detailed balance

condition. We also assume that the maximum size is N.

The last of the master equation is then

dpN(t)

dt
= λN−1 pN−1(t) − μN pN(t).

The total number of clusters is given by

FN =
N∑

i=1

pi (t)

and the fraction of clusters of size i is

ai (N) = pi

FN,

where pi is the stationary state value of pi (t) as t goes to infinity.

It is straightforward to verify that

ai (N)
i∏

j=2

(1 + a/j )−1 ≈ i−a .

This is the power law for this model. See Karev, Wolf, Rzhetsky, Berezovskaya,

and Koonin (2002).

4. Yule–Simon Model

A Ewens distribution yields a Zipf distribution and not a more a general power

law, because the expected number of clusters of size i in the presence of n agents
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in the model, E (ai (n)), is given by

zi (n) := E (ai (n)) = θ

i

(
1 − i

n

)θ−1

≈ θ

i
.

See Aoki (2002, 156). The Ewens model has the entry rate of new type θ/

[θ + n] which depends on n.

Costantini, Donadio, Garibaldi, and Viarengo (2005) has introduced an entry

rate which is independent of n in their reformulation of Yule (1924) and Simon

(1955).

Let u be the probability of starting a new cluster by an entrant. Then, 1 − u

is the probability of a new entrant joining one of the existing clusters.

Denoting the expected value of ai (n) by zi (n) as above, we have, recalling

that an entry into a cluster with n changes the number of clusters of i and i − 1,

zi (n + 1) − zi (n) = (1 − u)[(i − 1)zi−1(n) − i zi (n)]/n,

and

zi (n + 1) − zi (n) = u − (1 − u)z1(n)/n.

We focus on a stationary relation of these recursive relations

z∗
i (n + 1)

n + 1
= z∗

i (n)

n
.

We derive the relation

z∗
i (n) =

(
i − 1

ρi

)
z∗

i−1(n),

where ρ = 1/(1 − u).

The stationary solution has the Yule distribution

fi = z∗
i (n)

nu
= ρB(i, ρ + 1), i = 1, 2, . . . .

The fraction sums to one and we have

fi ≈ i−1−ρ.

5. The Chinese Restaurant Process and Its Variants

Dubins and Pitman proposed a construction for cluster formation which is

known as the Chinese restaurant process. A restaurant has an infinite num-

ber of tables and each table can seat an infinite number of customers (agents).

The first agent sits at a table. Call it table 1, or cluster 1. After n agents have been

seated, there are kn occupied tables, with n = n1 + · · · + nkn
. This is the random

partition of n into kn subsets. The next customer either sits at one of the already

occupied tables with equal probability, or starts a new table.
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There is a one-parameter version and a two-parameter version. In the two-

parameter version the probability of starting a new table is (θ + knα)/(θ + n),

and the probability of sitting at a table with ni guests already seated is (ni −
α)/(n + θ). In the one parameter version α = 0, and θ is some positive number.

See Aoki (2006) for an important qualitative difference between models with

α > 0 and those with α = 0.

Agents i and j are of the same type, that is, they belong to the same partitioned

subset of [n]: = {1, 2, . . . , n}, if seated at the same table.

Pitman (2002) has shown that the sequence x1, x2, . . . defined as the fraction

of the partitioned subsets divided by n converges to the Poisson–Dirichlet distri-

bution as n goes to infinity, denoted by P D(α, θ). The k th term of the sequence

is given by Dk

∏k−1
j=1(1 − D j ), where D j is distributed as B(1 − α, θ + jα).

Durrett and Schweinsberg (2005) modified this process by assuming that the

(n + 1)st cluster (table) is started with a constant probability r .

Generally, they prove that the cluster size distribution is given by power laws.
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Choquet, G. (1960) “Le Théorème de Représentation Intégrale dans les Ensembles Convexes

Compacts,” (French) Ann. Inst. Fasrier Grenoble, Vol. 10, 333–344.

Choquet, G., and J. Deny (1960) “Sur léquation de convolution μ = μ∗σ ,” C. R. Acad. Sci.

Paris, 1 Math. Vol. 250, 799–801.

Cinlar, E. (1975) Introduction to Stochastic Processes, Englewood Cliffs, NJ: Prentice-

Hall.

Clay, H. (1928) “Unemployment and Wage Rates,” Economic Journal, Vol. 38, No. 149,

1–15.

Clower, R. (1965) “The Keynesian Counterrevolution: A Theoretical Appraisal,” in F. Hahn

and F. Brechling (eds.), The Theory of Interest Rates, London: Macmillan.

Costantini, D. et al. “Herding and Clustering: Ewens vs Simon-Yule Models,” Physica A,

forthcoming.

Costantini, D., and U. Garibaldi (1979) “A Probabilistic Foundation of Elementary Particle

Statistics. Part I,” Studies in History and Philosophy of Modern Physics, Vol. 28, Issue 4,

483–506.

(1989) “Classical and Quantum Statistics as Finite Random Processes,” Foundations

of Physics, 19, 743–754.

(1999) “A Finitary Characterization of the Ewens Sampling Formula,” Mimeo, Univ.

Bologna, Depart. Statistics.

, S. Donadio, U. Garibaldi, and P. Viarengo (2005) “Herding and Clustering: Ewens

vs. Simon–Yule models,” Physica A: Statistical Mechanics and Its Applications, Vol. 355,

224–231.



P1: JZZ

0521831067ref.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 14:47

312 References

Costello, D. (1993) “A Cross-Country, Cross-Industry Comparison of Productivity Growth,”

Journal of Political Economy, Vol. 101, 207–222.

Cox, D. R., and H. D. Miller (1965) The Theory of Stochastic Processes, London: Chapman &

Hall.

Davis, S. J. (1987) “Allocative Disturbances and Specific Capital in Real Business Cycles

Theories,” American Economic Review, Vol. 77, 326–332.

, J. C. Haltiwanger, and S. Schuh (1996) Job Creation and Destruction, Cambridge,

MA: MIT Press.

Day, R., and W. Huang (1990) “Bulls, Bears and Market Sheep,” J. Econ. Behavior Organiza-

tion, Vol. 14, 299–330.

Deaton, A. (1992) Understanding Consumption, Oxford: Oxford University Press.

de Haan, L., S. I. Resnick, H. Rootzén, and C. de Vries (1989) “Extremal Behavior of Solutions

to a Stochastic Difference Equation with Applications to Arch Processes,” Stoch. Proc.

Appli. Vol. 32, 213–24.

Derrida, U. B. (1981) “Random-Energy Model: An Exactly Solvable Model of Disordered

Systems,” Physical Review B: Condensed Matter, Vol. 24, 5, 2613–2626.

Diamond, P. (1967) “The Role of a Stock Market in a General Equilibrium Model with

Technological Uncertainty,” American Economic Review, Vol. 57, No. 4, 759–776.

(1982) “Aggregate Demand Management in Search Equilibrium,”Journal of Political

Economy, Vol. 90, 881–894.

(1990) (ed.), Growth, Productivity, Employments, Cambridge, MA: MIT. Press.

Dixit, A. K., and R. S. Pindyck (1994) Investment under Uncertainty, Princeton, NJ: Princeton

University Press.

Durrett, R., and J. Schweinsberg (2005) “Power Laws for Family Sizes in a Duplication

Model,” arXiv:math.Pr/0406216 v3.

Eggertsson, G. B., and M. Woodford (2003) “The Zero Bound on Interest Rates and Op-

timal Monetary Policy,” Brookings Papers on Economic Activity, Washington, DC: The

Brookings Institution, 139–233.

Ewens, W. J. (1972) “The Sampling Theory of Selectively Neutral Alleles,” Theoretical Pop-

ulation Biology, Vol. 3, 87–112.

(1990) “Population Genetic Theory – The Past and the Future,” S. Lessard (ed.),

Mathematical and Stochastic Developments of Evolutionary Theory, London: Kluwer

Academic Pub.

Fagnart, J-F., O. Licandro, and F. Portier (1999) “Firm Heterogeneity, Capacity Utilization

and the Business Cycle,” Rev. Econ. Dynamics, 2, 433–455.

Farmer J. D., L. Gillemot, F. Lillo, S. Mike, and A. Sen (2004) “What Really Causes Large

Price Changes?” Quantitative Finance, Vol. 4, 383–397.

Fair, R. C. (1989) Book Review of R. E. Lucas, Models of Business Cycles, London and New

York: Blackwell, Journal of Economic Literature, Vol. 27, 104–105.

Feigelman, M. V., and L. B. Ioffe (1991) “Hierarchical Organization of Memory,” in Models

of Neural Networks, edited by E. Domany et al., Berlin: Springer-Verlag.

Feller, W. (1957) An Introduction to Probability Theory and Its Applications, Vol. I, New York:

Wiley.

Feng, S. and J. Hoppe (1998) “Limiting Behavior of Some Combinational Structures in

Population Genetics,” C.R. Mathematics Academy Science, Vol. 20–3, 65–70.

Fisher, I. (1933) “The Debt Deflation Theory of Great Depressions,” Econometrica, Vol. 1,

337–357.

Frisch, R. (1933) “Propagation Problems and Impulse Problems in Dynamic Economics,”

in Economic Essays in Honour of Gustav Cassel, London: George Allen and Unwin, 172.



P1: JZZ

0521831067ref.tex CUFX031/Aoki.cls 0 521 83106 7 printer: cupusbw August 27, 2006 14:47

References 313

Friedman, M. (1968) “The Role of Monetary Policy,” American Economic Review, Vol. 58,

No. 1, 1–17.

Gabaix, X., P. Gopikrishnan, V. Plerou, and H. E. Stanley (2003) “A Theory of Power-Law

Distriburions in Financial Market Fluctuations,” Nature, Vol. 423, 267–270.

Gates, B. (1999) Business@The Speed of Thought, New York: Warner Books.

Gibson, M. (1995) “Can Bank Health Affect Investment? Evidence from Japan,” Journal of

Business, 281–308.
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