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Preface 

This book is intended as a relatively nontechnica1 introduction to eurrent 
demographie methods. It has been several years in preparation, beginning 
from occasional class handouts I wrote to elaborate on essential points of 
demographie methodology. Its growth from scattered notes to an integrated 
text was a natural process, if a gradual one. 

The eontent of the book addresses three objectives. first, I have tried to 
avoid demographie methods that are now dated. In some ehapters, that has 
meant eoncentrating on formulas most demographers recognize. In the ehap
ters on life tables, it meant testing competing formulas on a variety of real 
and synthetie data se.ts, and dropping or relegating to footnotes those that 
were least accurate. 

Second, I have attempted to give readers a sense of the limits of different 
formulas and methods. I am a terse writer, however, and for the reader that 
means most sentences carry weight. Chapters should be read attentively, with 
careful regard to commentary as weIl as to formulas and examples. 

Finally, I have tried to make the principal methodologies of the book 
accessible, by offering explanations for formulas that are not obvious, by 
keeping examples to the forefront, and by placing relatively specialized topics 
in ehapter appendices. 

The book begins with an overview of demographie eoncepts and mea
sures, including population pyramids and the Lexis diagram, to introduce 
readers to usual population configurations. Chapter 2 reviews data adjustment 
techniques that are widely used in demography, and includes elementary for
mulas for eurve fitting, osculatory interpolation, and a selection of parametrie 
distributions whieh find applications in fertility analysis. The ehapter also 
introduces integral and derivative fittings for polynomial distributions, used 
in eonjunction with the life table. Data adjustment by direct and indirect 
standardization is treated separately in Chapter 3. 

vii 
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Chapters 4-6 focus on life table methodology. The treatment is detailed, 
since the broad applicability and flexibility of the life table make it the cen
terpiece of demography. Topics that are covered include basie formulas, mul
tiple decrement and cause elimination formulas, methods for mortality pro
jection, and multistate analysis of tables with both increments and decrements 
to the survivor population. 

The later ehapters of the book discuss fertility analysis, population pro
jections and migration, and stable population theory. In fertility analysis 
(Chapter 7), the principal fertility measures are introduced, with emphasis on 
their interrelationships and on the implications eurrent fertility levels have 
for long-term population ehange. The ehapter appendix introduces fertility 
exposure analysis, a partitioning of the time spent in various exposure states, 
whieh provides insights into the determinants of family sizes in different pop
ulations. Population projections are discussed in Chapter 8. The ehapter re
views both elementary formulas for projection and the more detailed infor
mation required for eomponent projections and projection matrices. The 
analysis introduces stable age distributions by forward projection, and the 
more limited applications of reverse and baek projection. Section 8.11 gen
eralizes projection matrices to other types of demographie problems. 

Chapter 9 focuses on migration and small-area population estimation, 
both ofwhieh introduce problems in population analysis that require a more 
heuristie treatment than is usually taken in fertility and mortality analysis. 
Mueh of the ehapter discussion focuses on methods to partly eorrect implau
sible results, a problem that ean arise even where source data are of high 
quality. 

In five areas of substantial demographie importance, my eoverage of 
methods is thinner. The first is historica1 demography, whieh is touehed upon 
only in the eontext of baekward population projection. The second area is 
methodologies for extracting information from limited or defective data, 
principally of concern to analysts working with information from the poorer 
ofthe developing nations. The third is stable population theory, introduced 
in the text as an extension of population projection but not generalized to 
most of its current applications. The fourth area is mathematica1 modeling, 
especially ofbirth processes and population heterogeneity. The models con
tribute to our understanding of individual variability, but require strong as
sumptions, and have only limited applicability at the population level. Finally, 
the book does not address linear modeling in detail, although the rapid advance 
of computer technology has brought it into widespread use. These five areas 
are diffieult to introduce competently in a short space, and are wen handled 
in other worles referenced in the text. 

The book does not have ehapter problems, with the exception of several 
short exercises on the life table in the summary to Chapter 4, plaeed there 
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because they did not fit weH in the main text. In place of formal exercises, 
problems and solutions permeate the text. They are introduced by phrases 
such as "the reader may confirm that .... " The problems are intended to be 
free of surprises, and readers should attempt them, and rework the text ex
amples, to satisfy themselves that they understand the concepts and methods 
that are addressed. 

The various examples and illustrations in the text are drawn from my 
interests. The writing has been done at the University of Texas School of 
Public Health, and the reader will recognize a public health emphasis in much 
of the book. My earlier training in sociology will also be evident. Except for 
standardization (Chapter 3), which has been supplanted by linear models in 
many of its early applications outside public health, the methods that are 
emphasized in the text are relevant to both the social sciences and health 
professions. In the presentation I have not tried to differentiate between the 
two areas. 

The book is written for readers familiar with algebra and at least not 
intimidated by logarlthms. Parts of the text also introduce matrix algebra for 
the conciseness of its notation, but the level is elementary and easily learned. 
The calculus is used to a limited extent where a point is more easily made 
with continuous than with discrete analysis. In each case the choice is deter
mined by the nature of the information to be conveyed: algebra predominates 
because most of the applications in the text are to discrete data. 

A number of people have helped to bring this book to fruition. Most 
important has been Barbara Fredieu, who put much of the manuscript on a 
word processor in the days when those were truly cumbersome. Pes and 
manageable software eventually lifted that burden, but not my indebtedness 
to her. I also need to thank Eun Sul Lee, to whom the book's emphasis on 
statistical testing is due. What merit the book has also owes much to my 
earlier training under Nathan Keyfitz, an outstanding teacher and friend. 
Two doctoral students, Yuan-Who Chen and Douglas Mains, helped correct 
typos and occasional content errors in the text. I am grateful to these and 
several other friends. I am responsible for the errors and oversights that may 
remain. 

David P. Smith 
Houston, Texas 
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CHAPTER 1 

Introduction 

1. Having been born, and bred in the City ofLondon, and having always 
observed, that most of them who constantly took in the weekly Bills ofMortality, 
made Iittle other use of thern, then to look at the foot, how the Burials increased, 
or decreased; And, among the Casualties, what had happened rare, and extraor
dinary in the Week cu"ant: so as they might take the same as a Text to talk 
upon, in the next Company; and withall, in the Plague-time, how the Siekness 
increased, or decreased, that so the Rieh might judge of the necessity of their 
removalI, and Trades-men might conjecture what doings they were Iike to have 
in their respective dealings: 

2. Now, I thought that the Wisdom of our City had certainly designed the 
laudable practice of takeing, and distributing these Accompts, for other, and 
greater uses then those above-mentioned, or at least, that some other uses might 
be made ofthem: And thereupon I casting mine Eye upan so many ofthe General 
Bills, as next came to hand, I found encouragernent /rom thern, to look out all 
the Bills I could, and (to be short) to furnish my se/f with as much matter ofthat 
kind, even as the Hall olthe Parish-Clerks could a./ford me; the which, when I 
had reduced into Tables (the Co pies whereof are here inserted) so as to have a 
view of the whole together, in order to the more ready comparing of one Year, 
Season, Parish, or other Division of the City, with another, in respect of all the 
Burials, and Christnings, and of all the Diseases, and Casualties happening in 
each of thern respectively; I did then begin, not onely to examine the Conceits, 
Opinions, and Conjectures, which upon view of afew scattered Bills I had taken 
up; but did also admit new ones, as Ifound reason, and occasionfrom my Tables. 

3. Moreover, ./inding some Truths. and not commonly-believed Opinions, 
to arise /rom my Meditations upon these neglected Papers, I proceeded jur
ther, to consider what bene./it the knowledge of the same would bring to the 
World . .. 

4. How far I have succeeded in the Premisses, 1 now offer to the World's 
censure. Who, I hope, will not expect from me, not posessing Letters, things 
demonstrated with the same certainty, wherewith Learned men determine in 
their Scholes; but will take it weil, that I should offer a new thing, and could 
forbear presuming to meddle where any of the Learned Pens have ever touched 
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be/ore, anti that J have taken the pains, and been at the charge, 0/ setting out 
those Tables, whereby all men may both co"ecl my Positions, and raise others 
0/ their own. . . 

-]OHN GRAUNT ( 1662) 

1. 1. INTRODUCTION 

Demography traces its modem origins to the second half of the 17th century, 
when John Graunt published his "Natural and political observations men
tioned in a following index, and made upon on the Bills ofMortality" ( 1662). 
Tbe bills, first compiled during the plague outbreak of 1592, recorded sex, 
approximate age, and cause of death for all decedents. His Observations are 
still a valuable introduction to the assessment of data quality and to the ep
idemiology of plague. Combining mortality statistics with limited information 
on christenings, Graunt was also able to draw a fairly comprehensive profile 
of the populations of London and England in bis time. He erred at a few 
points where wrong methods gave reasonable results, * but otherwise handled 
bis data with imaginativeness and care. Much of the later development of 
demography, better life tables in 1693, age-specific fertility rates in 1800, and 
component population projections in 1895, is anticipated in his work. His is 
also the earliest formal use of population estimation from a sampIe survey. 
Thomas Robert Malthus has received far more attention than Graunt, but in 
demography it is for contributions that were far smaller. t 

1.2. SOURCES OF DEMOGRAPHIC DATA 

Apart from the least developed countries, for whom censuses and vital 
registration systems are not a high priority, national population statistics are 

• Among bis errors, from his estimate that about 40% of infants survived to age 16, and about 
6% survived to 56, he conc1uded that 40 - 6 = 34% ofthe population would be aged 16-55. 
Tbe formula is wrong, in the Iife table 34% of deaths are at these ages, but bis answer was c10se 
enough to thc correct estimate for bis Iife table ( 41 % ) that he missed bis mistake. His analysis 
of London's recovery after plagues (see the opening quotation in Chapter 9) would also not 
satisfy modern anaIysts, as he could have done more with bis information on the age distribution 
of plaguc deaths. 

t For a perspectivc on Malthus's mastery of formal demography, thc reader should see Behar 
( 1987). Other valuable comments will be found in the collections of artic1es edited by Dupliquier 
and Grebenik ( 1983 ) and Wood ( 1986). Tbe reader should also see Wi11iam Farr (New York 
Academy ofMedicinc, 1975 (1885), pp. 12-19], whose 19th century perspective conveys a 
sensitivity to poverty missinB in Malthus and in much of the modern discussion of bis work. 
We begin Chapter 3 with a quotation from Farr. Malthus's initial Essay (1798) and Summary 
View (1830) are reprinted in Malthus (1970). A fine introduction to Graunt will be found in 
Greenwood ( 1977). 
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generated regularly nearly everywhere in the world. Their quality is not uni
formly high. Even in the United States, where reporting of births and deaths 
is virtually complete, about 10% ofbirth certificates omit information on the 
infant's father. In the U.S. census, information on family ineomes is omitted 
even more often, despite substantial efforts to assure essentially complete 
reporting. In the developing countries, as in the United States until this century, 
problems of aeeuracy and eompleteness are substantial. 

The nature of the census contributes to the difficulty of assuring its quality. 
By intent, a census is a eomplete count of the population either present (de 
facto) or residing (de jure) in a defined area on a specifie date. Locating an 
entire population is an extraordinary undertaking. In the United States we 
largely succeed, despite severe problems enumerating two groups: persons in 
the eountry illegally and those who are poor, ehronically unemployed, and 
outside the national welfare system. The former group is disproportionately 
Mexican in origin, the latter predominantly blaek and male. Because the 
blaek population is U.S. hom, and because females are more eompletely 
eounted, the omission of blaek males is largely statistically eorrectable both 
nationally and at the state level. Less can be said for the undocumented. Their 
numbers include both temporary and permanent immigrants. With cross
border traffie apparently mueh exceeding net inflows, there is little that can 
be done to fix the numbers in either group to more than the nearest million. 
We may not do that weIl. 

Despite its errors and omissions, the census is the basis for many de
mographie measures. Most measures using total population as denominators 
are not seriously eompromised by census errors; nor are estimates ofU.S.life 
expectancy, sinee population is eounted well at the ages where mortality is 
highest. For the blaek and Hispanie origin populations, partieularly at the 
working ages, data adjustment is mueh more often needed. 

The information collected in the U.S. census extends well beyond its 
constitutional mandate, for whieh age, sex, and limited information to track 
omissions would suffice. Since the 1960s, ethnicity has become an important 
component for determining compliance with civil rights legislation. More 
recently, residence and poverty information have come into use as elements 
in funding formulas for welfare and educational service programs. * The list 

• The inclusion of census data in federal funding fonnulas has put the Bureau at odds with states 
and municipalities with substantiaI blaek and Hispanie populations, who want counts adjusted 
upward. The Supreme Court, in the role of arbiter, has thus far been loathe to override Bureau 
decisions in the absence of a congressional mandate to conduct census operations differently. 
At issue is the Bureau's role as the only honest player in a political poker game: the predominant 
state and Iocal interest is in higher counts, not correct counts. On the prospect for improvement 
the reader should see Freedman and Navidi ( 1986) and Erleksen et al. (1989). Legal aspects 
of the census are discussed in Keyfitz ( 1981 b). . 



4 CHAPTER 7 

can be extended, and is supplemented by indicators included in the census 
at the behest of corporations, universities, and a variety of other data users. 
On occasion, entries have been added that are almost wholly political, as the 
1980 and 1990 Questions asking respondents about Hispanie ancestry.* 

In contrast to the census, birth and death registration in the United States 
has been virtually complete for several decades. t The documents are filed by 
service providers (that is, by professionals) in nearly all cases, which contributes 
to both completeness and accuracy. Even so, problems exist. Birth certificate 
information includes the parents' names, ages, occupations, and in some states 
education, normally provided by the mother. If she does not know, or does 
not give, the infant's father's attributes, they will not appear on the certificate. 
Other information that is indifferently reported includes the date the mother 
first received prenatal care and her number of prenatal visits. The infant's 
gestational age is more often a problem than it should be: fairly precise physical 
indicators can establish gestational age, but the remembered date of the 
mother's last menstrual period is also widely used, introducing recall error. 

Death certificates are usually completed by funeral homes, with infor
mation provided by the physician attending the death or by a coroner's office. 
Besides the decedent's age, which may be misreported by surviving family 
members, particularly for the elderly, the certificates include occupation and 
place and cause of death information. Space is included on the forms for both 
immediate and contributing causes of death. These are reviewed by nosologists, 
who translate the descriptions into International Classification of Diseases 
(ICDA) cause of death codes.* The United States also maintains aNational 

• Similar questions on Caucasian ancestry would deline nearly the whole of the b1aek population 
as white. In contrast to the confusions of Hispanie origin and descent categories, blaek self
identilication is highly consistent from census to census and has not required probing. Abrief 
history of ethnic delimiters in the eensus will be found in Petersen and Petersen (1986, pp. 
280-284). For a sympathetie view of the Bureau's elfort to identify Hispanics in 1980, see 
Choldin ( 1986), who does not, however, attempt to build a case for the quality of the result. 

t The completeness and detail of NCHS marriage and divorte tables are mueh lower, and their 
demographie applications limited. * ICDA codes are revised about every 10 years, to keep abreast of ehanges in diagnoses. In revision 
years a sampIe of death certilicates are coded using both the old and new codes to determine 
comparability. The user should consult the reviews of ehanges whenever mortality rates by 
cause of death are analyzed across revision years. References for ehanges in the seventh and 
eighth revisions and the eighth and ninth revisions are Klebba and Dolman (1975), Klebba 
and Scott (1980), and Duggar and Lewis (1987). 

Two problems in the codes require specilie wamings. First, causes of death for periods in 
which criteria were evolving shou1d be analyzed with care, sinee apparent ehanges may reßect 
revisions in codes as weil as in disease frequency. Sudden infant death syndrome and HIV
re1ated deaths are current examples. Second, some revisions do not take hold. As examples, 
over the past few revisions the hypertensive heart disease category has increased sharp1y for the 
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Death Index, which computerizes names and attributes of decedents as well 
as cause-of-death information. Among its other uses, the NDI allows tracking 
ofindividuals lost to medical studies to confirm any deaths that have occurred. 
Some matching of birth with death certificates is done federally and at the 
state level for analysis of infant mortality. 

The United States produces other censuses and surveys, of which the 
Current Population Survey is probably the best known. The CPS is completed 
monthly with a rotating sampie of 55,000 and is used for current unemploy
ment estimates and consumer outlook and spending intentions. Special topics 
are included from time to time, including marriage and divorce histories, for 
which vital statistics are not of much value. Fertility and family planning are 
surveyed about every 5 years in the National Surveys of Family Growth. 
Other federal surveys ofinterest to demographers include the National Natality 
Survey, National Fetal Mortality Survey, National Longitudinal Survey, and 
in public health the National Health Interview Survey and National Health 
and Nutrition Examination Survey. Information on methodology and findings 
for these surveys is presented in issues of Vital and Health Statistics. For the 
history of the census the reader may consult Alterman ( 1969). A compact 
introduction to the modem census, Current Population Survey, and vital 
statistics is Rives and Serow ( 1984). 

1.3. DEMOGRAPHIe TERMS AND NOTATION 

Demography begins with populations, either enumerated in censuses or 
followed from anniversaries, such as date ofbirth. The two bases are concep
tually distinct. Censuses and intercensal population estimates enumerate per
sons in age intervals. The census population age 0, for example, comprises 
all infants not yet 1 year old. The count includes both newboms and infants 
near their first birthday. By contrast, an anniversary count enumerates persons 
at milestones: at age 0 the anniversary population is all those bom during a 
specified period, only some of whom may be living or still under age 1 at a 
subsequent census. We will distinguishthe two bases as 

fim few years of the new codes, and then dropped back to its previous level as coders have paid 
it less attention. Other revisions of cardiovascular disease codes have created more confusion 
than clarification with respect to trends. For a discussion of some of these problems the reader 
may see Slater and Smith (1985). A fine general introduction to cause-of-death coding will be 
found in Benjamin ( 1968, pp. 72-91). 

A continuing difficulty is separation of immediate from under1ying causes of death. The 
number of conditions listed on death certificates tends to increase with the age of the decedent, 
and the point at which control over events is lost in a particular case may not be apparent. For 
an appreciation of this problem the reader may see Wrigley and Nam ( 1987) and Manton and 
Myers (1987). 
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N(x) = the number ofpersons surviving at xth anniversary 

nNx = the number in the age or duration interval x (1.1 ) 

to x + n at enumeration 

In other texts the reader may see Kor P used to denote populations. Subscript 
usage is also not uniform. In studies that use anniversary enumeration exclu
sively, the term Nx may replace N(x) without confusion. Analogous to Nx , 

the term Ix (or Ix) is used to denote the anniversary population in the Iife 
table, with I(x) largely restricted to works requiring calcu1us. The Iife table 
also includes an interval population analogous to our nNx, the Iife table pop
ulation nLx.· 

Where subscripts are used, a right subscript (usually a or x) will denote 
the start of the age or duration interval of concern, and a left subscript ( usually 
n) will denote the interval width, as in nNx. The reader will find texts in which 
left subscripts are omitted, usually when interval widths are 1 unit. Thus, in 
some works Nx substitutes for ,Nx to denote the population in the interval x 
to x + 1. The context will normally make clear whether Nx or equivalent 
terms are intended as anniversary or interval estimators. However, even de
mographers occasionally misread each other's work. 

In this volume, N(x) will always represent persons surviving as of the 
xth anniversary and nNx will always represent persons in the interval x to x 
+ n, as indicated in expression ( 1.1 ). In applications to national populations, 
we also adopt the convention that nNx represents the interval population at 
midyear. Other dates could be used, but the midyear population is usually a 
better estimate of the average number in the interval during the year than is 
the population at an earlier or later date. 

Births may be denoted in two ways. As the population enumerated at 
exact age 0 they can be represented by N(O), while as events occurring to 
males or females at ages x to x + n they are denoted nBx. The two terms are 
related by the equality 

.. -n 

N(O) = 2: nBx = 2: nBx 
x=o x 

• Ages are always given in the Western (Gregorian ) calendar days and years. Among other systems, 
lunar calendars, ceremonially important in China, Korea, and Japan, begin at age I (birtb) 
and add 1 year at each lunar new year. In the lunar calendar the number of months varies 
between 12 and 13, and new year and holiday dates sbift, but the calendar is precise and 
conversion to Western ages and dates is exact. 
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where Lx represents the sum ofbirths across all parental ages x [that is, from 
x = 0 to x = CI> - n, where CI> (omega) represents the oldest age to which 
anyone survives; CI) - n denotes the start of the final interval ], for parents of 
one or the other sex. In Chapters 7 and 8 we will distinguish the sex of children 
(m, f) and parents (M, F) by additional subscripts, as in "Bx , f, M, which would 
denote births of daughters to males ages x to x + n. 

Associated with births are age-specific fertility rates, which display the 
ratio of infants bom to males or females ages x to x + n during year t to the 
midyear population at one of their parents' ages, either: 

I' = B(I,I+.)/ N(I+I/2) 
"Jx,M "x,M " x,M 

( 1.2) 
I' = B(t,I+I)/ N(I+I/2) 

"J:x, F "X, F "X, F 

where the subscripts indicate that the denominators are either males or females 
and the superscripts indicate annual (t, t + 1) and midyear (t + ! ) estimates. 
Births ofboth sexes are counted in the numerator. Age-specific fertility rates 
are found by age of mother far more often than by age of father, and the user 
mayassume mothers are intended when parental subscripts are omitted from 
the numerator terms. The 1980 ASFR distribution for U.S. females is displayed 
as Fig. 2.1; rates for the period 1917-1985 are shown in Fig. 7.1. 

The reader might note that age-specific fertility rates are not a count of 
the number of males or females parenting infants. About 1 % of confinements 
and 2% of births each Year are twins, and in populations of any size the 
number of fathers is nearly always smaller than the number of mothers, 
whether or not that is acknowledged. As aggregate measures, fertility rates 
are independent of the identities of the parents. 

Deaths or events are denoted by "Dx , where the interval x to x + n is 
the age or exposure duration at occurrence. The time dimension over which 
events are measured is often implicit. In nationallife tables, both births and 
deaths are summed over single calendar years. For deaths, however, the num
ber "Dx can represent annual deaths among persons ages x to x + n, or deaths 
over the next n years among persons surviving at x. Either interpretation 
identifies "Dx as the sum tDx + tDx+l + .Dx+2 + .Dx+3 + ... + .Dx+,,-t. 
Introducing right superscripts denoting time, for n = 5 years the two quantities 
will be the period count for year t 

and the cohort count for years t through t + 4, 
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If cohort sizes and mortality rates are relatively constant, the event counts 
1Dli~+1) and 1D~t:t+a+1) will be similar, and we may be indifferent as to 
which measure is used. This point will be discussed further in connection 
with the Lexis diagram in Section 1.5. 

Age-specific death rates are estimated from annual deaths and the midyear 
population, using 

( 1.3) 

The population and event counts are usually for one sex, as U .S. male death 
rates are higher than female rates at all ages. That pattern holds in most other 
countries, and for most causes of death that occur to both sexes. 1980 ASDRs 
for the United States are graphed as Fig. 3.1. 

Age-specific migration rates are estimated like death rates, using annual 
counts of immigrants ("llt, t+ 1) and emigrants ("E~' t+1» divided by the mid
year population for the same age interval ("N~+1/2». 

Generalizing from age-specific °rates, a number of summary measures 
exploiting population, birth, and death estimates are universally recognized. 
The most widely used measures are crude rates of birth, death, migration, 
and population growth or decrease: 

CBR = ,.,B~t,t+1)/,.,N~t+1/2) 

= (Annual births)/(Midyear population) 

CDR = D(t,t+1)/ N(t+1/2) 
,., 0 ,., 0 

= (Annual deaths)/(Midyear population) 

CMR = ( lt,t+1) _ E(t,t+1»/ N(t+1/2) 
,., 0 ,., 0 ,., 0 (1.4 ) 

= (Annual immigrants - Annual emigrants)/ 

(Midyear population) 

CGR = ( B(t. t+1) _ D(t, t+1) + lt, t+1) _ E(t. t+1»/ N,(t+1/2) 
.. 0 ,., 0 .. 0 .. 0 '" 0 

= (Annual births - Annual deaths + Annual immigrants 

- Annual emigrants)/(Midyear population) 

The expressions use interval widths of n = Cd to count births, population, and 
deaths across all ages. The infinity symbol (00 ) conveys the same meaning as 
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a measure ofthe length oflife.* In most applications, the four rates are mul
tiplied by 1000 to yield integer values. In this volume, rates will usually be 
expressed per 1 person rather than per 1000 persons, since in some contexts 
the scale factors invite math errors. Crude birth and death rates for several 
populations are presented in Tables 3.1 and 7.1. The U.S. rates are about 
1!% and 1% for the CBR and CDR, respectively; the U.S. crude migration 
rate is about 1/2%. 

Leaving aside migration, which will be addressed in Chapter 9, the dif
ference between the crude birth and death rates is an approximate measure 
of annual population growth or decrease. It is not an exact measure: the 
midyear population in year t + 1 will be the midyear population in year t, 
plus midyear-to-midyear births and minus midyear-to-midyear deaths. It is 
not the midyear population adjusted by annual events. Where migration oc
curs, the same consideration applies. 

The exact measure of population change is given by the balancing equa
tion 

N(I+l) = N(') + B(I,I+l) _ D(,,'+l) + I(,,'+l) _ E(I,t+l) 
.. 0 .. 0 .. 0 .. 0 .. 0 .. 0 ( 1.5) 

where time is indexed at the exact points t, t + 1, and over the interval (t, t 
+ 1). For the rate of population increase or decrease, the terms in ( 1.5) would 
be divided by .. N~'). 

Although ( 1.4) does not estimate annual population change, its terms, 
annual events over midyear populations, may be interpreted as measures of 
the average intensity* of fertility, mortality, and migration during year t. If 
the intensities are constant over time, the approximate population change, 
omitting migration, will be found by the exponential 

N (I+ll/2) = N(t+1/2) [( B(,,'+l) _ D("t+I»/ N(I+l/2)] 
.. O,exp .. 0 exp .. o .. 0 .. 0 

( 1.6) 

The expression is applied to U.S. population projections in Section 8.2. 

• Tbe reader might note that of the crude rates, those for deaths and migration are age-specific 
rates for age intervals (0, "') or (0, 00), and may be defined either for one or both sexes. Tbe 
CBR is an age-specilic rate only when computed for children to parents of one sex. Since parents 
may be of different ages, an age-specilic fertility rate for males and females ages x to x + n 
would need to fractionally alIocate births depending on whether one or both parents were 
included in the denominator. 

t We will use age-specilic death rates NM" as measures ofthe intensity ofmortality, or mortality 
hazard, to estimate survival probabilities in Chapter 4. Tbe estimating formula is presented as 
expression (4.10). 
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Two measures, the infant mortality rate and life expectancy, are widely 
used as indicators of health status and economic level. The IMR is found as 
the number of calendar year deaths at ages under 1 divided by calendar year 
births,or 

( 1.7) 

The rate can also be estimated from all deaths at ages under 1 that occur to 
the birth cohort N(O). The cohort IMR would include infant deaths occurring 
both in the cohort's year ofbirth and in the following year. In the developed 
countries the cohort rate typically differs only marginally from the calendar 
year rate, sinee Most infant deaths occur near the time of birth. Those that 
come in the following year can be closely approximated by deaths in the base 
year among infants bom the year before. 

As of 1985 the U.S. IMR was about 10 per 1000. That is, about 1% of 
infants die in their first year oflife. The rate is higher in the black population 
than in the white population, for reasons largely associated with lower birth 
weights, and is higher among boys than among girls at almost every birth 
weight. The rates are like those of other developed countries, and far below 
the 15% infant mortality that the United States suffered in 1900, and that is 
still suffered in 1990 in some of the world's poorest nations. 

The life expectancy at age x, ex or Ix, is the mean number of years of 
life remaining to individuals at the xth birthday.* It is usually found as a 
synthetic estimate, from the population and deaths occurring in a particular 
year. In human populations the median lifetime, or the age by which half of 
infants bom will have died, is slightly older due to the high concentration of 
deaths near the end of life. The U.S. life expectancy was about 72 years at 
birth for males in 1985 and 79 for females. It is about 5 years lower for both 
sexes in the black population. In 1900, and some of the poorest nations in 
the 19805, life expectance was about 45 years for both sexes. 

A widely used variant of the age-specific death rate is the Pearl Index 
(Pearl, 1933), introduced historically as an estimate of fecundability, and 
more recently to measure contraceptive effectiveness. The index divides events 
(pregnancies in the risk population) over a fixed period by total exposure 
time during the same period. That is, 

,Mo, Pearl = ,DoI,No ( 1.8) 

• In somc tcxts, both eIl and I" arc uacd, with tbc former intcrprctcd as a curtate II/e expectancy, 
or Iife expectancy omit1ing fractional ycars, and thc Iattcrtakcn to bc thc oomplete Iife expcctancy. 
Wc will use eIl to reprcscnt thc complere life cxpcctancy. 
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where ,Do represents events and ,No is exposure time in the interval (0, t). 
The measure is analogous to the age-specific death rate at ages 0 to t, with 
the substitution of exposure time in the interval for the conventional midyear 
population. In the limiting case, as t - 00, the measure resembles a crude 
death rate. 

As a measure of fecundability, and in many of its other applications, the 
Index is biased due to sampie heterogeneity: if risk varies across individuals, 
events to those at highest risk will concentrate disproportionately in early 
intervals and events to those at lower risk in later intervals. In consequence, 
as the observation time lengthens, the rate at which new events accrue sIows 
and the Index decreases. Formally, for x > 0, the Pearl Indexes for the intervals 
o to t, 0 to t + x, and x to t + x become: 

An example ofthe Index is given by TrosseU and Menken (1980), who 
use it to measure pregnancy rates among lUD users in the 1973 National 
Survey of Family Growth, and find after 12 and 24 months of observation: 

12MO = 12DO/12NO = 18/7865 = 0.00229 

Erosion of value over time is not a desirable property for indexes, and 
limits the use of the Pearl Index to comparisons between sampies with equal 
exposure durations. For the crude death rate we do not have the equivalent 
option of setting age distributions to be equal between populations, which 
makes it also a poor comparative measure. (In the case of the CDR, the 
critical problem is the heterogeneity of mortality by age, evident in the pro
nounced concentration of mortality very late in life. The age heterogeneity 
results in much lower death rates for younger than for older populations with 
similar life expectancies.) 

1.4. THE POPULA TION PYRAMID 

Differences in population age distributions around the world are marked, 
and crude birth and death rates are not easily understood without an appre
ciation of the impact that age structure has on them. An easy way to display 
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CHAPTER 1 

Figure 1.1. U.S. 1980 population pyramid and 1980 life table population. 

age distributions is the population pyramid. The pyramid is a histogram, with 
age measured on the ordinate (vertical axis) and population size on the abscissa 
(horizontal axis), usually with males in the left quadrant and females in the 
right. Figure 1.1 displays the U.S. 1980 population pyramid, using percentages 
by age as the measure of size. The source data for the pyramid are displayed 
in Table 1.1. 

Superimposed on the pyramid is the U.S. 1980 life table, which displays 
the population age and sex distribution (the life table term nLx, introduced 
in Chapter 4) as it would appear if the number of annual births had been 
constant over time, if mortaIity rates remained at 1980 levels, and if no mi
gration occurred.· 

• For the superposition we have scaled births in the male and female life tables to the ratio 
1.05:1, about the same ratio as in U.S. births, and set the tota1life table population to equal 
the actual population. The Iife table estimates satisfY the equality k( 1.0STO• M + TO• F) = "No, 
where To is the 1980 NCHS lire table population, introduced in Chapter 4. These conventions 
were adopted to bring dift'erences between the actual and lire table populations into sharp focus. 
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Teble 1.1. U.S. July 1 1980 Total Population by Age 
and Sex. Source: Hollmann (1989) 

Ages Males Females Total 

0-4 8,417,000 8,040,000 16,458,000 
5-9 8,495,000 8,114,000 16,609,000 

10-14 9,314,000 8,923,000 18,236,000 
15-19 10,776,000 10,382,000 21,159,000 
20-24 10,882,000 10,702,000 21,584,000 
25-29 9,897,000 9,906,000 19,804,000 
30-34 8,845,000 8,977,000 17,822,000 
35-39 6,964,000 7,160,000 14,124,000 
40-44 5,756,000 5,988,000 11 ,744,000 
45-49 5,376,000 5,677,000 11,054,000 
50-54 5,619,000 6,080,000 11 ,700,000 
55-59 5,480,000 6,136,000 11 ,616,000 
60-64 4,700,000 5,466,000 10,145,000 
65-69 3,919,000 4,894,000 8,812,000 
70-74 2,873,000 3,968,000 6,841 ,000 
75-79 1,862,000 2,966,000 4,828,000 
80-84 1,026,000 1,928,000 2,954,000 
85+ 688,000 1,582,000 2,269,000 

0-14 26,226,000 25,077,000 51,303,000 
15-44 53,120,000 53,115,000 106,237,000 
15-64 74,295,000 76,454,000 150,750,000 
65+ 10,366,000 15,338,000 25,704,000 

Total 110,888,000 116,869,000 227,757,000 
Median age 28.8 31.3 30.0 

Examining the population pyramid, the reader will recognize the bulge 
centered at age 20 as the postwar baby boom population. Births and fertility 
rates increased by nearly two-thirds from about 1940 to 1960 and declined 
as precipitously from 1960 to 1980 (from 2.6 million births in 1940 to 4.3 
million in 1960 and 3.6 million in 1980; the corresponding total fertility rates 
were 2.3, 3.7, and 1.8 children). At older ages, some effect ofWorld War 11 
and Korean War mortality is apparent in the ratio of males to females, but 
U.S. losses were low in proportion to the total population and are spread 
across several age cohorts. At these and older ages, a more striking pattern is 
the difference between the actual and life table populations: the observed 
population represents survivors from aperiod of lower annual births and 
higher mortality than we currently experience. At the oldest ages, females 
greatly outnumber males in both the observed and life table distributions. 
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One of the most widely used summary measures developed from the 
population pyramid is the dependency ratio, defined as the ratio of the pop
ulation under 15 and 65 and over to the population ages 15-64: 

( 1.9) 

For the United States, the ratio is D = (51,303,000 + 25,704,000 )/150, 750,000 
= 0.51. In many developing countries, where family sizes are 2-3 times as 
large as in the United States, the ratio reaches about 1.0. IfU.S. family sizes 
remain near their present level (about 2 children per family), the ratio will 
rise to 0.61 in 2025, when the peak baby boom cohorts reach age 65.* 

A better measure of dependency is the size ofthe nonworking population 
relative to the working population. The U.S. 1980 labor force numbered 109 
miI1ion out of a total population of 228 miI1ion, yielding a ratio of0.48 ignoring 
unemployment. At 1980 labor force participation rates, the labor force would 
number about 139 million in 2025 out of a total population of 301 million, 
reducing the ratio to 0.46. The change is smaller than the change in the 
dependency ratio since part of the population over 65 is employed. 

Besides dependency ratios, the pyramid draws attention to a remarkable 
pattern in U.S. historica1 mortality. The ratio of male to female births has 
been fairly constant over time at about 105 to 100, and we would expect 
deaths to be in the same ratio, but for most of the 20th century annual male 
deaths have outnumbered female deaths in the ratio 110-130 to 100. The 
result has been a gradual increase in the proportion of the total population 
that is female, from about 49% during 1900-1930 and about 50% at the end 
ofWorld War 11 to 51!% in 1980. Three factors contributed to the changes: 
increasing Iife expectancies, past population growth, and the concentration 
of mortality at the older ages. From 1900 to 1980, male Iife expectancy in
creased from about 46 years to 70 years, and female Iife expectancy from 
about 48 years to 77 years, with increasing concentration of mortality at the 
oldest ages. The widening female lead and mortality concentration have meant 
that annual female deaths have centered on cohorts older, and because of 
population growth, smaller than the cohorts contributing to male deaths. We 
may contrast 1940, when the median ages of males and females dying were 
65 and 69 years, respectively, with 1980, when the median ages were 70 and 
76 years. The medians correspond to 1875 and 1871 male and female birth 
cohorts in 1940, and to 1910 and 1904 birth cohorts in 1980. Birth cohort 
sizes became more uniform between 1910 and 1940, and with the narrowing 
of the male-female Iife expectancy differential that began about 1980, the 
death ratios will reverse for two or three decades after 1990. 

• The projection is from the Bureau ofthe Census Middle Series (Spencer, 1984). 
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The changing U .S. age distributions and death ratios underscore the 
complexity of demographie processes, and may reinforce for the reader the 
hazards of comparing demographie measures across populations whose age 
structures differ. Anticipating part of the discussion of Chapters 3 and 8, in 
Fig. 1.2 we display the 1980 age distributions ofthe United States, Mexico, 
and the Soviet Union, the latter dramatically influenced by collapsing birth 
rates during both world wars and the brutal disruption accompanying collec
tivization in the 1930s. The mortality ofthe three periods, perhaps 50 million 
persons, affects the whole of the age structure at ages above 35. Mexico's 
pattern is one ofincreasing rates of population growth for most ofthe century, 
followed by decreasing fertility rates and stabilizing numbers ofbirths during 
the 1970s. We display a 1960 pyramid for Mexico, scaled to the 1980 pop
ulation size, to clarify the change nowoccurring. (The 1960 pyramid is nearer 
that ofthe United States in 1900 or 1910, when American birth rates were 
also high, than to either Mexico or the United States in 1980.) The reader 
may note that the 1980 population ofMexico at ages 20 and above comprises 
survivors of the 1960 population at ages 0 and above, and is therefore similar 
in shape and area to the 1960 pyramid. The actual population change over 
the 20-year period was from 40 million persons to 75 million. Disaggregating 
the change, about one-sixth of those alive in 1960 had died by 1980, but a 
number greater than the 1960 total population was added at ages under 20. 
Table 3.1 displays 1980 crude birth and death rates for the three countries. 

Pyramids might also be constructed for subpopulations, such as urban 
or rural populations, ethnic groups, native and foreign-born populations, mi
grant populations, and students, the labor force, or retirees. These groups can 
also be differentiated on a single pyramid, as can different marital status cat
egories. Life table populations (nLx) can be similarly disaggregated, to show 
the distribution patterns as they would appear with constant birth and mor
tality rates. 

Construction of the pyramids is straightforward, since they are no more 
than graphie displays ofpopulation numbers (nNx.F' "Nx•M ) or proportions 
("Nx• F I ",No, "Nx• MI ",No). The two points at which comments are appropriate 
are with respect to infancy, where the interval widths in Fig. 1.1 are 1 year 
and 4 years, and ages 85+, where we have collapsed ages 85-89,90-94,95-
99, and 100+ into a 5-year block. 

At the youngest ages the proportions in the age intervals are not indicated 
on the scale. To preserve the appearance of the 5-year interval distribution, 
the proportion at age 0 is multiplied by 5 and the proportion ages 1 through 
4 by 5 I 4. Without the scale adjustment, the base would be about one-fourth 
as wide for infants age 0 as for children 1 through 4, and four-fifths as wide 
for children 1 through 4 as for older age groups. Visually, we would find the 
numbers of infants and small children difficult to relate to the numbers at 
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older ages. Besides ages under 5, scales are also adjusted in pyramids that 
contain both 5-year and IO-year age intervals. By convention, usually only 
the principal scale used in the pyramid is indicated. 

1.5. THE LEXIS DIAGRAM 

The distinction between N(x), the population surviving at xth birthday 
or anniversary, and nNx, the population in the interval x to x + n, is brought 
out in the Lexis diagram, Fig. 1.3, introduced in 1875. On the Lexis diagram, 
ages are followed along one axis (here, the vertica1 axis) and time on the other 
(horizontal). Lifelines are represented by diagonals, ofwhich five are illus
trated: individual a, dying in year t at age x + 1; individual ß, dying in year 
t + 1 at age x + I; 'Y, dying in year t at age x; 8, dying after year t + n at an 
age beyond x + n; and e, dying at age x in year t + 1. (As Fig. 1.3 is drawn, 
we would need to extend the Iifelines downward and to the left to locate the 
dates of the individuals' births if x represents an age greater than about 
2 years.) 

On the Lexis diagram, N(x) is the population surviving at xth birthday, 
and comprises aIIlifelines crossing af. ,Nx is the population that would be 
enumerated in a midyear census, and comprises the Iifelines crossing gh. 
(The n year population nNx comprises lifelines crossing gi.) The two popu
lations N(x) and ,Nx only partly overlap: in a midyear census only survivors 
in the subset ag of af would be age x at enumeration. The subset gf would 
still be age x - I. At a point later in the year the overlap would be greater; 
earlier in the year it would be less. 

Deaths, ,Dx or nDx, are recorded differently for N(x) and ,Nx or nNx. 
For the cohort N(x), deaths between ages x and x + n occur in the parallelo
gram ajkf, bounded by age x (af ) and x + n (jk). Annual deaths at the same 
ages fall in the rectangle acdl. The reader should note that the areas and ages 
spanned by the rectangle (deaths at ages x to x + n in year t) and parallelogram 
(deaths at ages x to x + n in the cohort af) are the same. The equivalence 
should suggest that the two nDx counts will be similar if rates of mortality 
and population sizes are relatively constant in the two periods. That is, count
ing deaths to one age cohort over several years is essentially equivalent to 
counting deaths to several age cohorts over one year, provided that cohort 
sizes and event rates are close to each other. 

In the diagram we have forced period and cohort equivalence by dis
playing two deaths (ß, 'Y) to the cohort, one in year t and one in year t + I, 
and two (a, 'Y) in the year t count, one ( 'Y) to the cohort N(x) and the other 
to the older cohort N(x + 1). If the figure were for a real population, the 
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density of lifelines (the amount of time that is lived) in acdf and ajkf would 
also be expected to be similar. 

We may use the Lexis diagram to introduce an important substitution 
of period for cohort data in national vital statistics. If we set age x = 0, in
dividuals ß, 'Y, and ~, whose lifelines originate in af, represent the birth cohort 
for year t. The cohort infant mortality rate [expression ( 1.7)] will be found 
as deaths in aelf divided by births af: for the example, IDol N(O) = 'Y I(ß, 'Y, 
~) = 0.33. Since aelf extends into year t + 1, however, the rate is not deter
minable until the start of year t + 2, when alt surviving infants will have 
reached their first birthday. To estimate the calendar year IMR, events in 
abe, representing year t deaths at ages under 1 to infants born in year t - 1, 
are substituted for events in fel. 

Since about half of infant deaths in the United States occur in the first 
7 days oflife and 65% are within the first month, the impact ofthe substitution 
of abe for fel is small, affecting about 12!% of infant deaths. This proportion 
is the separation Jactor for infant deaths. The reader may see Shryock and 
Siegel ( 1971, pp. 411-415) for its calculation. At older ages, where the dis
tribution of deaths is more nearly linear, separation factors are close to 1/2. 
They are closely related to the life table term "ax [expression (4.28)] which 
represents the mean age at death of persons dying in the interval x to x + n. 

1.6. MEASUREMENT PRECISION 

Most of the calculations that are presented in this book are to five sig
nificant digits. That would seem an easy convention to follow in every case, 
but it is not. American demographers are habituated to rates per 1000 POP
ulation for crude birth and death measures and for age-specific birth rates; to 
rates per 10,000 for age-specific death rates; and to rates per 100,000 for life 
table measures and age-specific death rates for rare causes of death. 

With at least these three sets of conventions, we easily lose track of the 
number of significant digits we can fairly claim and the number we need. 
Even in the U.S. National Center for Health Statistics (NCHS) life tables, 
mortality probabilities (nl/x) are printed to one less digit than the cumulative 
survival estimates (Ix) constructed from them. Nor can demographers use 
published NCHS age-specific death rates (nMx), which have no better than 
two or three digit precision at most ages, to construct life tables. Unfortunately, 
students try. 

In this volume we will continue with the conventions for numbers of 
significant digits that are most widely used, except where readers require ad
ditional digits to duplicate text examples. For formulas that are commonly 
written to use either source data (e.g., the age-specific death rate nDxl nNx) or 
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an intermediate estimator (,.Mx = ,.Dxl,.Nx), we will usually display the 
expression in its source information form. 

For readers who have not confronted measures of indifferent precision, 
it may be useful to indicate what is meant by the number of significant digits 
that are claimed. Tbe rule to follow in all cases is to count as significant only 
digits coming after leading zeros. As examples, the numbers 1000, 10.00, and 
0.01000 have four significant digits, while 1.0 and 0.010 have two. To see the 
distinction between these terms, the reader may establish the range each num
ber is bounded by. Tbe first number lies within the range 999.5-1000.5, the 
second within 9.995 and 10.005, and so forth. Precision is lost as we operate 
on the numbers: the quotient of 10.00/1000 lies between 9.995/1000.5 and 
10.0051999.5, or between 0.()O9990 and 0.01001. It may be fixed at 0.0100 
which has better than three significant digits but not four. 

Unfortunately, demography does not strictly adhere to the limits of its 
data. In nationallife tables we estimate survivors to the nearest 1 1 100,000, 
even when denominators would permit estimation to the nearest 1 or 10 
million. Because it is a familiar base, we claim the same precision when our 
data are from sampie surveys that may have counted fewer than 100,000 
persons at all ages combined and no more than a few thousand in any single 
interval. Tbe convention is too weil established to be easily overtumed. It is 
not a problem where confidence intervals or significance tests are used, since 
they are estimates of the precision achievable at the given sampie size. If such 
measures are not available, the reader will need to be cautious in the amount 
of precision he or she ascribes to life table estimates. 

1.7. SUMMARY 

Demography has its modem origins in the English Bills ofMortality and 
the systems of vital statistics that followed, and in the development of censuses 
ofreasonable completeness and accuracy. Tbese sources provide estimates of 
deaths for periods and cohorts (,.Dx ), and the base populations [N(x), ,.Nx1 
in which they occur. 

Relationships between populations and events are brought out graphically 
in the Lexis diagram, which follows individuals from birth across age and 
time to death, and in the population pyramid, which displays the population 
age and ~x structure at a single time point. Tbe Lexis diagram is of greater 
technical interest, since it clarifies distinctions between cohort and period 
information. 80th are widely used, period information in current NCHS life 
tables, which summarize survival experience during a single calendar year, 
and cohort information in many historical analyses and in medical studies. 
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In applications of demographie methods, the user needs to keep data 
sources, quality, and interpretation in mind. Besides data errors, confusion 
sometimes arises both by the use of nonstandard notation, and by nonstandard 
uses of standard notation. This is not a problem that will be resolved, sinee 
the variety of problems that are amenable to demographie analysis is wide 
and many have parallels in other fields, whieh lend their own notation to 
demographie analysis. The reader needs to be attentive to these differences. 

A problem that is often more critical is the widespread use of measures, 
particularly the age-specifie death rate ("Mx ), that are too aggressively rounded 
in published sources to be useful in further applications. Rounded to only 
one or two significant digits, death rates will not yield either standardized 
measures (Chapter 3) or Iife tables (Chapter 4) of usable quality, but that is 
how they are normally presented in NCHS tables. The reader will avoid many 
difficulties by using source data in plaee of derived estimates wherever the 
precision of the derived measures is low. Por the same reasons, the reader 
should not round intermediate terms to fewer significant digits than are ex
pected in his or her final result. 



CHAPTER 2 

General Data Adjustment 
When aseries ov quantitys proceed by a regular law, ther is no difficulty in 

interpolating between each ajacent two ov thern any number ov terms with any 
desired degree ovaccuracy. The methods to be adopted for this purpos hav been 
described in varios original and reprinted papers containd in the Jurnl ov the 
Institute ov Actuarys. . .. We sometimes, however, hav to interpolate between 
quantitys which do not accuratly folio any law. For instance, we may hav ca!
culated premiums for every quinquennial age, and wish to obtain the premiums 
for the intermediat ages by interpolation. In this case, it wil somtimes happen 
that the ordinary formulas ov interpolation do not giv satisfactory results, unles 
we take a very large number ov differences, and then the amount ov labor is 
offen more than the result is worth.ln my paper On the Value ov Anuitys payabl 
balf-yearly, quarterly, etc., I indicated briejly a method ov interpolation which 
I tho't miht be employd with advantage in such cases (xiii, 322), and it is now 
my intention to work out the formulas resulting /rom that method, and giv a 
practical ilustration ov their use. 

- THOMAS B. SPRAGUE ( 1881 ) 

2. 1. INTRODUCTION 

In many situations, researchers are confronted with data distributions that 
display substantial irregularity due to sampie sizes being small or responses 
being concentrated at preferred values. Or a data set may be coded using 
groupings different from those the researcher would prefer. In such cases, data 
may need to be smoothed (graduated) or regrouped before they can be used. 
Regrouping is also needed when data sets with different interval categories 
are to be merged, and when categories need to be expanded, as from 5-year 
to I-year intervals. 

A number of methodologies exist for handling these situations. All have 
limitations of two types. First, they do not correct for directional biases in the 
source data. If persons round their ages to preferred numbers (ages ending in 

23 
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the digits 0, 2, and 5, for example), data smoothing can remove much of the 
resulting distortion. If they overstate their ages, or both round and overstate 
them, data smoothing will not set the data right. 

A second limitation of the methods is that a1l necessarily work by pa
rameterization, or curve fitting by mathematical formulas. A linear curve will 
give different results than a cubic or higher-order fitting to the same data set. 
Each sampies a different range of the source data and uses its own set of 
weights for data adjustment. Cubic fittings, for example, use information from 
four intervals and fifth-order polynomials sampie slightly differently from six. 
lethe information provided by outlying intervals is irrelevant to the adjustment 
of the interval of interest, nothing may be gained by their inclusion in the 
fitting expression. Thus, in a fitting that graduates mortality in the age interval 
0-4 to mortality at single year ages, little of value will be realized by formulas 
that sampie from ages 10-14 or 15-19: even the interval 5-9 may be of 
limited help sinee mortality experience in the first year of life is unlike that 
at any later age. By contrast, after age 25 or 30 mortality patterns stabilize 
enough that sampling from several 5-year age intervals may improve the qual
ity of interpolated or graduated estimates. That is also true for fittings to 
fertility distributions, whose curvature over 5-year age intervals is too sharp 
for satisfactory interpolation by two-point (linear) formulas. 

2.2. DATA INTERPOLATION 

Interpolation is the estimation of an intermediate value for aseries of 
points nl, n2, n3, ..• , with ordinates g(nd, g(n2), g(n3), .••. For the linear 
estimator the ordinate g( nl + a) is found as 

(2.1 ) 

If nl + a is the interval midpoint, (2.1) reduces to the simpler form 

The general formula applies for all values a, including those for which nl + a 
falls outside the range (ni, n2). 

For two-point fittings, an alternative to (2.1) is the exponential 
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Again, if nt + a is the interval midpoint, the expression simplifies, becoming 

To find intermediate points for aseries ofvalues g(nt), g(n2), g(n3), 
... , we fit the distribution piecewise, using first nt. g(nt> and n2, g(n2) to 
find g(nt + a), then n2, g(n2) and n3, g(n3) to find g(n2 + a), and so forth. 

Most readers will find the expressions intuitive. Formally, (2.1 ) is found 
by solving the linear equations 

Rearranging the equations, we have 

Substituting these values into g(nt + a) = at + a2(nt + a) yields (2.1). The 
reader can confirm the correctness of (2.2), by solving the expression g( n) 
= ataq given the points nt and n2 and the ordinates g(nt> and g(n2). 

Besides intelJ)Olation of intermediate values, expressions (2.1 ) and (2.2) 
are widely used in population projections. For the simplest case, in which 
equidistant time points nt and n2 = nt + t are used to project the population 
at nt + a = nt + 2t, the expressions reduce to: 

An example is given in Section 8.2. 
The fitting of higher-order polynomials is more complex and is Most 

easilyapproached through matrix algebra, introduced in Appendix 2A.l. The 
methodology will be less important to Most readers than the fitting expressions. 
We present several below, beginning with polynomial expressions for midpoint 
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estimates. We then introduce revised expressions when the value to be fitted 
is the integral or derivative ofthe polynomial. All ofthe expressions presented 
will assume equidistant source points n, 2n, 3n, • •.• Readers who follow the 
mechanics of the formulas will be able to use them to find coefficients for 
arbitrarily spaced points and to set boundary restrictions on the estimates. 

For interpolation of midpoint values given equally spaced observations, 
we replace the generalized notation g(1Io), g(nl), g(n2), g(n3), ... by the 
simpler go, gn, g2,,, g3n, ...• For the linear, cubic, and fifth-order polynomials, 
and the exponential, the fittings through points on either side ofthe midpoint 
g(1/2)n have the forms 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

The reader should note that each function essentially finds g( 1/2)n as the average 
of go and gn, with the cubic and fifth-order expressions incorporating some 
information on the distribution shape from outlying points. 

The formula differences may be made clearer by an example. In Table 
2.1 we display U.S. 1980 age-specific fertility rates for women in 5-year age 
intervals, together with fittings to midinterval values for the three polynomials 
given above.· At ages 15-19 and 40-44 we show both the ca1culated rates 
and, for the cubic and fifth-order distributions, revised rates that incorporate 
the residuals generated at younger and older ages by the expressions. 

The original and interpolated rates are graphed in Fig. 2.1. It is not evident 
from the table and figure, but of the interpolated estimates those for the cubic 
and fifth-order polynomial are nearer the values found from l-year rates than 
are the linear estimates. Substituted for the original age-specific fertility rates, 
both also yield very close approximations to the roots ofthe renewal equation, 
introduced in Chapters 7 and 8. 

• The example will be used for population projection in Chapter 8. 
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TBble 2.1. V.S. 1980 Female Age-Specific Fertility Rates and 
Interpolated Estimates 

Interpolated estimates 6 

Female Cubic 5th order 
population Births· ASFR Linear 

Ages sN. sB. ,fx est. Est. Adj. Est. Adj. Ages 

()...4 

0.0006 2.5-7.4 
5-9 

-0.0034 -0.0039 7.5-12.4 
10-14 

0.0270 0.0232 0.0198 0.0217 0.0184 12.5-17.4 
15-19 10,412,715 562,330 0.0540 

0.0845 0.0881 0.0881 0.0888 0.0888 17.5-22.4 
20-24 10,655,473 1,226,200 0.1151 

0.1140 0.1210 0.1210 0.1225 0.1225 22.5-27.4 
25-29 9,815,812 1,108,291 0.1129 

0.0874 0.0899 0.0899 0.0900 0.0900 27.5-32.4 
30-34 8,884,124 550,354 0.0619 

0.0409 0.0386 0.0386 0.0378 0.0378 32.5-37.4 
35-39 7,103,793 140,793 0.0198 

0.0119 0.0096 0.0096 0.0093 0.0093 37.5-42.4 
40-44 5,961,198 24,290 0.0041 

0.0020 0.0011 0.0008 0.0012 0.0011 42.5-47.4 
45-49 

-0.0003 -0.0002 47.5-52.4 
50-54 

0.0001 52.5-57.4 

• Births at ages 10-14 are inc1uded with births at 15-19, and births at 45-49 are inc1uded with births at 40-44. 
6 For the cubic and 5th-order fittings, the residua1s at ages under 15 and over 45 rnay be inc1uded in the terms 

for 124-174 and 424-474. respectively. The adjustments correspond to the end-point estimators: 
g(l/2)o, __ .... od = (1/2)g. - (I/J6)g20 
g,I/2)o, ....... _- = (1/2)go - (1/16)g_. 
g,I/2)o,'''-'-- = (128/256)g. - (22/256)g20 + (3/256)gllt 
g,I/2)o,"'-'_- = (128/256)go - (22/256)g~. + (3j256)g_20 

2.3. OSCULA TORY INTERPOLA TION 

Besides recentering distributions, researchers sometimes need to inter
polate from 5- or IO-year age or rate distributions to single year estimates. 
That is commonly done using tables of Sprague (1881) and Beers (1945) 
multipliers,· which are the coefficients of fourth-order polynomial splines 

• Beers coefficients were used by the National Center for Health Statistics to graduate U.S. 1980 
age and 1979-1981 mortality distributions from 5-year to single year intervals for constructing 
decenniallife tables (NCHS, 1985, 1987). 
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Figure 2.1. U.S. 1980 female age-specific fertility rates and interpolated estimates: (a) 1 and 5 
year ages, (b) 1inear interpolation, (c) cubic interpolation, and (d) fifth-order interpolation. Source: 
National Center for Health Statistics ( 1984-1985). 
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satisfying the condition that the first and second derivatives (the tangent and 
radius of curvature) at an interval endpoint x will be equal for fittings passing 
through x - n and those passing through x + n. [The term osculatory (Ukiss
ing") is used for fittings meeting these conditions]. Sprague and Beers coef
ficients also have the property that the interpolated 1-year terms add to the 
interval total.· 

Sprague coefficients are displayed in Table 2.2 for graduation from 5-
year to single year ages. t Five age intervals are used for all except the end
point fittings. At the end points the distribution is fitted to four intervals, 
since only some data sets (as in the example of Table 2.1 ) allow values to be 
imputed outside the distribution range for use with central panel multipliers. 
The reader should note that the column coefficients for the age interval to be 
fitted sum to 1.0, and that coefficients of other columns sum to 0, which 
establishes that the interpolated estimates will correctly sum to the 5-year 
estimate. Summing across, all row totals equal 0.2. (The coefficients should 
be multiplied by 5 when they are used to graduate rates sinee, unlike ages, 5-
year rates average rather than sum 1-year rates.) 

Beers coefficients are shown in Table 2.3. The Beers multipliers are like 
Sprague multipliers in that the interpolated estimates sum to the 5-year total. 
They produee a smoother fitting at distribution end points by minimizing 
residuals, but unlike the Sprague coefficients, they produce different and in
consistent estimates for fifths and for tenths of intervals. The coefficients fit 
distribution end points using five age intervals, as against four for Sprague 
coefficients, which increases their dependence on more distant information 
for those intervals. Except for these distinctions the two sets of multipliers 
are close. 

The reader can use Table 2.2 or 2.3 to estimate single year age-specific 
fertility rates from the 5-year rates of Table 2.1. He or she will find that for 
Table 2.2 the peak of the fertility distribution will be 

t/24, SIJI'8IUC 2nd panel = 5( -0.0176 X 0.0540 + 0.1408 X 0.1151 

+ 0.0912 X 0.1129 - 0.0144 X 0.0619) = 0.1233 

t/24, SPI'IIue central panel = 5(0.0016 X 0.0 - 0.0240 X 0.0540 + 0.1504 

X 0.1151 + 0.0848 X 0.1129 - 0.0128 X 0.0619) = 0.1240 

• For a more complete discussion of interpolation the reader is referred to Greville ( 1944 ), Shryock 
and Seigel ( 1971, pp. 681-691 ), and Keyfitz ( 1 977b, pp. 223-245). An accessible introduction 
to polynomial splines is given in McNiel et al. ( 1977). 

t Other coefficients are used for interpolating between point values, such as the Iife table population 
Ix surviving at exact age x, or life expect8ncy ex at x; and for subdividing intervals into halves 
or tenths. For these the reader should see Shryock and Siegel (1971, pp. 876-877). 
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Tsble 2.2. Sprague Multipliers for Graduating from 5-Year Ages to Single Years" 

First panel (Example: ages 0-4) 

First age Next age Nextage Next age 
(0-4) (5-9) (10-14) (15-19) 

First year (0) 0.3616 -0.2768 0.1488 -0.0336 
Second year (1) 0.2640 -0.0960 0.0400 -0.0080 
Third year (2) 0.1840 0.0400 -0.0320 0.0080 
Fourth year (3) 0.1200 0.1360 -0.0720 0.0160 
Fifth year (4) 0.0704 0.1968 -0.0848 0.0176 

Second panel (Example: ages 5-9) 

First age Secondage Next age Nextage 
(0-4) (5-9) (10-14) (15-19) 

First year (5) 0.0336 0.2272 -0.0752 0.0144 
Secondyear(6) 0.0080 0.2320 -0.0480 0.0080 
Third year (7) -0.0080 0.2160 -0.0080 0.0000 
Fourth year (8) -0.0160 0.1840 0.0400 -0.0080 
Fifth year (9) -0.0176 0.1408 0.0912 -0.0144 

Central panels (Example: ages 10-14) 

First age Next age Cent. age Next age Nextage 
(0-4) (5-9) (10-14) (15-19) (20-24) 

First year (10) -0.0128 0.0848 0.1504 -0.0240 0.0016 
Second year (11) -0.0016 0.0144 0.2224 -0.0416 0.0064 
Third year (12) 0.0064 -0.0336 0.2544 -0.0336 0.0064 
Fourth year (13) 0.0064 -0.0416 0.2224 0.0144 -0.0016 
Fifth year (14) 0.0016 -0.0240 0.1504 0.0848 -0.0128 

Second to last panel tIansposes second panel 
Last panel transposes tirst panel 

• Coefficients should be multiplied by S rar graduating from S-year to I-year rate&. 

dis. Sprague central panel = 5( -0.0128 X 0.0540 + 0.0848 X 0.1151 + 0.1504 

X 0.1129 - 0.0240 X 0.0619 + 0.0016 X 0.0198) = 0.1230 

At these and most other ages the estimates are in close agreement with 1980 
l-year fertility tables. We note that since the fertility distribution progresses 
smoothly from sfo = sfs = sfio = 0 to sfis = 0.0540 and sh.o = 0.1151, either 
tirst panel or central panel coeflicients might be appropriate for graduation 
between ages 15 and 20, and either second or central panel coeflicients might 
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rable 2.3. Beers Multipliers ror Graduating from 5-Year Ages to Single Years G 

First panel (Example: ages 0-4) 

First age Next age Nextage Next age Next age 
(0-4) (5-9) (10-14) (15-19) (20-24) 

First year (0) 0.3333 -0.1636 -0.0210 0.0796 -0.0283 
Second year (1) 0.2595 -0.0780 0.0130 0.0100 -0.0045 
Third year (2) 0.1924 0.0064 0.0184 -0.0256 0.0084 
Fourth year (3) 0.1329 0.0844 0.0054 -0.0356 0.0129 
Fifth year (4) 0.0819 0.1508 -0.0158 -0.0284 0.0115 

Second panel (Example: ages 5-9) 

First age Second age Next age Next age Next age 
(0-4) (5-9) (10-14) (15-19) (20-24) 

First year (5) 0.0404 0.2000 -0.0344 -0.0128 0.0168 
Second year (6) 0.0093 0.2268 -0.0402 0.0028 0.0013 
Third year (7) -0.0108 0.2272 -0.0248 0.0112 -0.0028 
Fourth year (8) -0.0198 0.1992 0.0172 0.0072 -0.0038 
Fifth year (9) -0.0191 0.1468 0.0822 -0.0084 -0.0015 

Central panels (Example: ages 10-14) 

First age Next age Cent. age Next age Next age 
(0-4) (5-9) (10-14) (15-19) (20-24) 

First year (10) -0.0117 0.0804 0.1570 -0.0284 0.0027 
Second year (11) -0.0020 0.0160 0.2200 -0.0400 0.0060 
Third year (12) 0.0050 -0.0280 0.2460 -0.0280 0.0050 
Fourth year (13) 0.0060 -0.0400 0.2200 0.0160 -0.0020 
Fifth year (14) 0.0027 -0.0284 0.1570 0.0804 -0.0117 

Second to last panel transposes second panel 
Last panel transposes fust panel 

• Coefficients should be multiplied by 5 for graduating from S-year to I-year rates. 

be appropriate between ages 20 and 25. The differences are brought out in 
Fig. 2.2, which displays both all panel and central panel fittings. 

Sprague and Beers coefficients are most often used to estimate single year 
ages or single year deaths from the numbers in 5-year age intervals, where 
the single year data are unavailable or of poor quality due to heaping on 
preferred digits. The graduated estimates will typica11y be low at ages 0-2, 
where censuses also suffer serious omissions, but will usually be satisfactory 
at older ages. The researcher should also be aware that the graduated estimates 
will smooth real irregularities in the source data (laffe, 1960, pp. 94-96), 
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Figure 2.2. U.S. 1980 l-year female age-specific fertility rates and Sprague estimates from 5-
year rates: (a) all panels and (b) centraI panel only. 
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and that for some types of distributions, including mortality probabilities 
,.Qx, interpolated or graduated estimates may be systematically biased 
(Pollard, 1979). 

2.4. DATA SMOOTHING 

Where single year values are available but of indifferent quality due to 
small sampie sizes or data heaping, graduation can be used for adjusting the 
source estimates. The data are first grouped into 5-year intervals, chosen so 
that values displaying marked heaping are toward the middle of each interval 
rather than at its end points. (For example, if ages ending in 0 and 5 are 
favored, as is common where dates ofbirth are poorly remembered, grouping 
in intervals 3-7, 8-12, 13-17, ... will produce smoother-fitted l-year estimates 
than grouping in intervals 0-4,5-9, 10-14, .... By centering at distribution 
peaks, depleted adjacent ages are brought within the interval.) The adjusted 
estimates should be graphed with the original data, with careful attention to 
points at which irregularities in the source distribution reflect real historical 
events and should not be smoothed. Judgment is an invaluable asset. 

Smoothing is also widely accomplished by the use of moving averages. 
Given values g-n, go, and gn, a simple moving average estimator for go will 
be 

go, linear = (g-n + go + gn)/3 (2.4 ) 

Using 5-year age intervals, the ratio gO/gO,linear = 3sNx/(sNx- s + sNx 
+ sNx+s) is taken as an index of the smoothness of census age distributions. 
If numbers are constant or decline linearly by age, the indexes will equal 1.0; 
with population growth, the indexes will be slightly lower. For uneven age 
distributions, the indexes will fluctuate irregularly with age.* 

In a different context, the formula is used to average deaths for the 3 
years centered on each census year. The averages are divided by the census 
population to construct morta1ity rates for U.S. decenniallife tables. 

• Tbe index is sometimes called an Age Accuracy Index (Shryock and Siegel (1971, pp. 218-
2 t 9)] but the tide is a misnomer. Tbe index measures accuracy of agc reporting only to thc 
cxtent that the irregularities it identifies are not present in the true ase distribution. 
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More aggressive data smoothing is aehieved by Grabill's weighted moving 
average of Sprague coefficients (Shryock and Siegel, 1971, pp. 702, 878), 
given by··t 

gO. Grabill = 0.4390go + 0.2641 (g-n + gn) + 0.0164(g-2n + g2n) (2.5) 

Where heaping is suspected, various measures can be used to gauge its 
extent both before and after adjustment. A particularly useful indicator because 
of its low bias is Myers' ( 1940) blended method, whieh tests preferences for 
all digits. Beginning with age 10, for eaeh terminal digit i the method constructs 
thesum 

9 

M=~Mi 
i-O 

(2.6) 

In the absence of age heaping, the ratio Mi / M will be approximately 0.1 for 
eaeh i. Any substantial divergence suggests that digit preference (Mi> 0.1) 
or digit avoidance (Mi< 0.1 ) is occurring. 

The weightings on the terms .NIO+i are symmetrie. At age 10 we have 
Mo = 1 (INIO ) + 1O(IN20 + IN30 + IN40 + ... ). Ifwe were to begin at age 9, 
weights would be M 9 = M_1 = 0(.N9 ) + 1O(.N.9 + .N29 + IN39 + ... ). 

• I have found the fonnula valuable for age smoothing where distributions are erratic due to small 
sampie sizes, but caution that in smoothing age distributions it increases the proportions in the 
oldest age intervals and may be biasing with respect to morta1ity rates and related measures at 
those &ges. 

t For interval splitting, or for smoothing distributions so as to preserve the source total for two 
adjacent values gx, gx+. the resean:her can also use the Carrier-Farrag (1959; Shryock and 
Siegel, 1971, pp. 223-224) ratio fonnula 

Ix+. = (gx + gx+.)/ {I + [(gx-2If + gx-.)/(gx+2If + gx+lIt») 1/4} 

The fonnula assigns equal values to Ix and Ix+. when (&-2If + gx-.) = (gx+2If + gx+lIt)· 
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These are the same weights as at age 19, where we have M9 = lO(INI9 ) 
+ 1O(IN29 + IN39 + IN49 + ... ). Between its extreme values the formula 
achieves approximate balance by increasing the weighting on its first term 
INIO+1 to compensate for the successively smaller population sizes generated 
by its second term, lO(IN20+I + IN30+1 + IN40+1 + ... ), as the age indexes 
increase. 

For human population distributions, where mortality concentrates at the 
oldest ages, the expression is marginally biased. An example is given in Table 
2.4, using 1980 midyear U.S. population estimates and the U.S. 1980 life 
table population. For the life table, which should not display digit preferences, 
the coefficients increase systematica1ly from Mol M to M9 IM. The pattern is 

Table 2.4. U .S. 1980 Population and 1979-1981 Life Table "Lx Distribution, and 
Myers' Blended Estimates ofDigit Preference. Sourees: Miller (1983), 

National Center for Health Statistics (1984, Vol. 2, Sect. 6) 

Age .Nx .Lx Age .Nx .Lx Age .Nx .Lx Age .Nx .Lx 

10 3714 98,324 30 3742 96,350 50 2340 91,196 70 1532 66,927 
11 3616 98,304 31 3670 96,221 51 2307 90,631 71 1448 64,772 
12 3531 98,282 32 3645 96,089 52 2344 90,017 72 1377 62,515 
13 3622 98,252 33 3886 95,954 53 2341 89,351 73 1278 60,159 
14 3746 98,208 34 2884 95,814 54 2357 88,631 74 1210 57,709 
15 3993 98,147 35 2922 95,666 55 2381 87,856 75 1128 55,170 
16 4172 98,069 36 2906 95,509 56 2341 87,022 76 1043 52,546 
17 4228 97,976 37 2064 95,341 57 2312 86,125 77 963 49,840 
18 4257 97,871 38 2663 95,162 58 2321 85,159 78 886 47,058 
19 4479 97,758 39 2573 94,968 59 2266 84,120 79 813 44,204 

M yen' coefficients 

MiM 
Digit 

(I) .Nx .Lx 

20 4429 97,639 40 2493 94,757 60 2177 83,033 0 0.0995 0.0962 
21 4367 97,513 41 2396 94,527 61 2089 81,805 1 0.0990 0.0972 
22 4324 97,383 42 2349 94,277 62 2017 80,523 2 0.0997 0.0981 
23 4306 97,250 43 2260 94,003 63 1943 79,154 3 0.1017 0.0990 
24 4187 97,118 44 2255 93,703 64 1910 77,696 4 0.0971 0.0998 
25 4155 96,987 45 2220 93,374 65 1807 76,146 5 0.0990 0.1006 
26 4052 96,858 46 2166 93,014 66 1898 74,502 6 0.1009 0.1013 
27 3967 96,730 47 2203 92,620 67 1827 72,762 7 0.0974 0.1020 
28 3758 96,604 48 2179 92,188 68 1766 70,922 8 0.1013 0.1026 
29 3834 96,477 49 2281 91,714 69 1690 68,977 9 0.1044 0.1031 
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characteristic of rectangular distributions, where mortality is concentrated in 
one or a few ages at the end of life. The 1980 U.S. age distribution has a 
similar but less marked pattern, and does not display heaping at ages where 
it has historica1ly been present: ages ending in Oand 5, and to a lesser extent, 
2 and 8 (Shryock and Siegel, 1971, p. 208). 

Because of residual bias in Myers' coefficients, where the method iden
tifies modest age heaping the researcher should exercise caution in attributing 
the heaping to method bias or digit preference, or to true irregularities in the 
age distribution. The researeher can more confidently interpret large deviations 
as evidence of heaping. 

2.5. INTEGRAL AND DERIVATIVE FITTINGS 

Besides interpolation and graduation, polynomial fittings are used to 
estimate integrals and derivatives for the life table terms Ix (life table survivors 
at exact age or duration x) and nLx (persons in the age interval x to x + n). 
The nLx distribution, which is used to estimate life expectancies, is found as 
the integral of Ix between x and x + n. 

Following our earlier formulas, we will restrict the integral and derivative 
estimators to fittings from equally spaced observations go, gn, g2no g3n, ... , 
which will be considered point observations. We define the integrals f; g(a) 
X da, f;n g(a) da, fi: g(a) da, ... , to be the corresponding interval obser
vations nGO, nGn, nG2n, ... , representing the areas between the g values. 

For the linear, cubic, and fifth-order polynomials and the exponential 
introduced earlier, the integral estimators will be: 

nGO. cubic = n[(l3/24)(go + gn) - (l/24)(g-n + g2n)) 

nGO. Sth order = n[(802/ 1440)(go + gn) - (93/ 1440)(g-n + g2n) 

+ (11/ 1440)(g-2n + g3n)) 

(2.7a) 

(2.Th) 

(2.7c) 

(2.7d) 

The derivative estimators for the three polynomials and the exponential are: 

go. linear = (nG-n + nGo)/(2n) (2.8a) 

go. cubic = [(7/12)(nG-n + nGO) - (l/12)(nG-2n + nGn))/n (2.8b) 
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go, Sth order = [(37/60)(nG-n + nGO) - (8/60)(nG-2n + nGn) 
(2.8e) 

+ (1/60)(nG-3n + nG2n)]/n 

(2.8d) 

The reader will find applications ofthese formulas as expressions (4.15), 
( 4.16), and (6.4).· Like the expressions for interpolation and graduation, 
the formulas may provide fair rather than ideal representations of source data. 
We also caution that the integral and derivative functions are not symmetrie: 
if one first computes integrals and then derivatives, with rare exceptions the 
derivatives will be smoothed estimates ofthe initial data. In most applications 
the fifth-order polynomial best reconstructs its source data, followed by 
the eubie. 

2.6. OTHER DATA ADJUSTMENT METHODS 

Several techniques for data adjustment are presented in later ehapters, 
in the eontexts in whieh they are most often used. Standardization, used in 
many contexts, is the subject of Chapter 3. Two other techniques that are 
widely used are distribution smoothing by fittings to model tables (used for 
ages at marriage, fertility distributions, and life table nPx and Ix terms), and 
parametrie approximations (for fertility distributions and Iife table nPx terms). 
In the former category are the Coale et al. (1983) model life tables, Coale 
and MeNiel ( 1972) age at marriage tables, Lesthaeghe and Page ( 1980) model 
amenorrhea and breastfeeding tables, and Coale and Trossell ( 1974) model 
fertility schedules. Logit fitting of observed survival probabilities to life tables, 
due to Brass (Brass and Coale, 1968, pp. 127-135; Brass, 1975, pp. 85-105), 
is introduced in Section 6.3. 

Among parametrie functions, the normal, gamma, and beta distributions 
are used to approximate fertility distributions and distributions of susceptibility 

• Expressions (2.8a) and (2.8b) are also used by Jordan (1975, pp. 18, 33) to estimate the force 
of mortality "" from life table survivors I" at age x. The estimators are 

"'" u .... = (lllx)dldx I" = (.d,,_. + .d,,)/(2/,,) = (/,,_. -1"+1)/(2/,,) 

#Ix ........ = [7(.dx -. + .dx } - (.d"-2 + .d,,+.))/(l2/,,) 

= [8(/,,-. -1"+1) - (/"-2 -1"+2)]/(12/,,) 
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to various types of risk, partieularly· in mathematical modeling. The normal 
distribution has the ordinates 

r( x) = R exp[ -(x - 1')2 /2u2]!( u&) (2.9) 

where R is a scale factor (in Table 2.1 it would be the total fertility rate). The 
normal distribution is symmetrie about its mean I' and is unbounded between 
-<X> and 00. An alternative distribution that can also be fitted using the dis
tribution mean and variance is the Pearson Type III (gamma) distribution, 

(2.10) 

where as before R is a scale factor, and r(k) is the gamma function. For 
integer values of k, r(k) = (k - 1)1 = (k - l)(k - 2)· •• (1). For nonintegers 
we may use Stirling's approximation *: 

r(k) ~ V211'k kk-l e-k[l + 1 /(12k) + 1/(288k2 ) 

- 139/(51,840k3 ) - 571/(2,488,320k4 )] 

The eonstants c and kare found from the distribution mean (I') and variance 
(u2 or 1'2) as 

Tbe distribution is defined over tbe range (0, (0) and is skewed toward tbe 
right. We may shift the origin from 0 to a using three moments, for which 
wehave: 

(2.11 ) 

• For k < 3 the expression is accurate to five or fewer significant digits. To improve accuracy the 
reader may substitute the equivalent terms r(k + 1 )/k or r(k + 2)/[k(k + 1)] for r(k). 
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Applications of both functions to fertility distributions will be found in 
Keyfitz (1977b, pp. 140-149) and Wicksell (1931, pp. 149-157). The dis
tribution is used to model susceptibility to mortality risks in Manton and 
Sta1lard (1984), in their analysis of survival probabilities in heterogeneous 
populations. 

Among distributions with both lower and upper bounds, the Pearson 
Type I (beta), wbich takes values in the range (al> a2), is used occasionally 
to approximate fertility distributions (Mitra and Romaniuk, 1973), and is 
used in Potter and Parker ( 1964) and Sheps and Menken ( 1973) to model 
the distribution of fecundability. The Type I distribution has ordinates 

r(x) = Rr(b. + b2)(x - a.)bl -·(a2 - x)~-· / 
(2.12) 

[r(b.)r(b2)(a2 - a.)bl+~-.] 

For the moment fitting we set (Smith and Keyfitz, 1977, pp. 315-316)* 

Sheps and Menken (1973, pp. 97-101) introduce an iterative maximum like
lihood fitting to the Type I distribution that has better theoretical properties 
than the moment fitting. The bigher moments in particular are very sensitive 
to values the distribution takes at its extremes. 

• Ifthe constant terms in expressions (2.10)-(2.12) are luge, the expressions may need to be 
expanded and multiplications baIanced apinst divisions to prevent computer over- or underflows. 
For example, the expression ck/r(k) can be evaluated as [c/(k - 1 )][c/(k - 2)]ck-2/ 
r(k - 2). 
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Table 2.5. U.S. 1980 Fertility Rates and Moment Fittings to the Normal, 
Pearson Type I, and Pearson Type III Distributions 12 

Fitted estimates 
ASFR 

Ages Ix Normal Type I Type III 

a, 13.026 0 -2.2572 
a2 52.159 
b, 3.1469 
b2 6.3348 
C 0.80299 0.87266 
k 20.889 24.671 

0-4 0.0000 0.0000 0.0000 
5-9 0.0009 0.0000 0.0001 

10-14 0.0000 0.0088 0.0018 0.0047 0.0051 
15-19 0.0540 0.0437 0.0541 0.0470 0.0468 
20-24 0.1151 0.1044 0.1150 0.1164 0.1153 
25-29 0.1129 0.1209 0.1081 0.1151 0.1156 
30-34 0.0619 0.0679 0.0624 0.0598 0.0604 
35-39 0.0198 0.0185 0.0222 0.0194 0.0194 
40-44 0.0041 0.0024 0.0040 0.0044 0.0043 
45-49 0.0000 0.0002 0.0002 0.0008 0.0007 
50-54 0.0000 0.0001 0.0001 

• Distribution moments: 
I' = 26.014 
1'2 = r = 32.397 
Pl = 74.248 
,.. = 2878.9 

Table 2.5 displays U.S. 1980 fertility rates estimated by moment fittings 
to expressions (2.9)-(2.12). For the fittings we require the integrals nlx,fitted 

= f:+n r(a) da, whieh can be approximated by computer or programmable 
caleulator. In place ofthe exact integrals, the user can also substitute the eubie 
or fifth-order integral approximations of expression (2.7). 

2.7. SUMMARY 

Interpolation and graduation of intermediate values between data points 
are valuable in many demographie applications. For small data sets, or when 
digit preferences limit data quality, common graduation formulas may provide 
enough smoothing to improve overall distribution quality. In cases where two 
or more data sets are to be compared, the techniques may be needed to a1ign 
age or attribute distributions that are differently grouped in source documents. 
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For other distributions, and particularly in the construction of Iife tables 
(Chapters 4-6), we may need to fit an integral or derivative of a fitted curve 
to a data set to estimate quantities that cannot be found or approximated 
more directly. 

None ofthe techniques we introduce are intended to remove directional 
biases in source data, and none can be assumed to improve on the quality of 
the source information with certainty. When irregularities in the source data 
are real and not artifacts of small sampie sizes or reporting errors, adjustments 
may yield poorer estimates than those from which the researcher began. Errors 
may also be introduced when data are smoothed more aggressively than the 
problems in the source data will justify. The researcher's knowledge of the 
data set to which the techniques are to be applied, and his or her judgment 
as to the amount of adjustment that is warranted, are essential whenever 
corrections are attempted. 

Judgment also enters in the use of ancillary information in data adjust
ment, and in adjustment by inspection. Tbe reader should be aware that in 
competent hands both options are highly respected. Many problems arise 
with historical data and with conteinporary data of uncertain quality for which 
formula adjustments are of no real help. As an example, comparisons of 
populations by age across several censuses may suggest systematic biases ( one 
that is almost universal is the undemumeration of infants) that are not weil 
addressed by general formulas. Or comparisons may suggest that one or more 
censuses in aseries are of a different standard of quality than others. Family 
reconstruction and backward population projections, both important tools 
in historical demography, may require judgment at many points. The same 
is true for extraction of fertility and mortality estimation for recent periods 
from data on surviving family members in a single census. 

For developing countries, wbere a variety of data problems arise, a number 
of techniques have been developed that have broad applicability. For these 
the reader may see Brass and Coale (1968), Brass (1971, 1975), Carrier and 
Hobcraft (1971), Arthur and Stoto (1983), and United Nations (1983, 
1988a,b). We will comment on some ofthese in later chapters, and on other 
data adjustment techniques. Those we will emphasize include standardization 
(Chapter 3), data fitting to reference tables (Chapter 6), and parametric ap
proximations (Chapter 4 and Appendix 7 A.l ). 

APPENDIX 2A. ,. MATRIX ALGEBRA OF 
DISTRIBUTION FITTING 

The polynomials introduced in Section 2.2 were for fittings wbere data 
points are equally spaced, but the procedure is far more general. We will 
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illustrate it using matrix algebra.· For simplicity, we define the point to be 
fitted to be nj = O. We seek the ordinate g(nj), given the series nh, nj, nk. n/, 
nm , nn, •.• , and ordinates g(nh), g(nt), g(nk), g(n/), g(nm ), g(nn), .•.. For 
a cubic fitting to g(n) = al + a2n + a3n2 + a4n3, we will require any four of 
the data points: we will use nh, nj, nk. and n/, and will solve the simultaneous 
equations: 

In matrix format the equations become 

[1 
nh n~ n~ 
nt nf nl 
nk n~ nl 
n/ n1 nl 

M a = 

g(nh) 
g(nj) 
g(nk) 
g(n/) 

I(n) 

(2A.l) 

(2A.2) 

where each term ofl(n) is the product sum ofthe corresponding row ofM 
and the column vector a, as displayed in the four equations. 

The matrix expression is solved for the coefticients a by multiplying both 
sides by M-I , the inverse of M, to yield M-Ig(n) = R. Denoting the coeffi
cients ofthe inverse by iij, we have 

r i l2 i 13 

i"j 
g(nh) 

[~j 121 i 22 i 23 124 g(nt) 
(2A.3) i 31 i 32 i 33 i 34 g(nk) = 

i 41 i 42 i 43 i44 g(n/) 

M-I I(n) a 

Hence, for a, we would have 

a, = illg(nh) + i'2g(n;) + i 13g(nk) + i'4g(n/) 

• For readers not familiar with matrices, good general introductions are Searle ( 1966), Namboodiri 
(1984), and Caswell (1989, pp. 280-295). 
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The inversion is tedious by hand calculation, as the algebra is that required 
for solving the simultaneous equations, but besides computers a number of 
programmable caleulators include matrix inversion routines. We may also 
reduce the complexity ofthe solution by centering the unknown value g(nj) 
at g( 0) and sca1ing other points nk to integer or half-integer values. 

As an example, we will repeat the eubie fitting for the fertility estimates 
ofTable 2.1, but revise the source points by replacing g,. with g3,. in (2.3b). 
Wehave: 

(2A.4) 

Setting n = 1 and relocating the origin from ! n to 0, (2A.4) takes the simpler 
form 

(2A.S) 

For the eubie, we require the solution to 

At the point x = 0, the expression reduces to 

(2A.6) 

Equating (2A.S) and (2A.6), for gO,cubic we find 

(2A.7) 

The solution we seek is the estimate of al found by inverting expression 
(2A.2). As we have formulated the problem, the coefficients aj correspond 
to the terms i I} of the matrix inverse (2A.3). Thus, for the example we find: 

M= 

-5/32 
-7/48 

7/24 
-1/12 

15/16 
-3/8 
-5/12 

1/6 

5/16 
17/24 
1/12 

-1/6 

-3/32 
-3/16 

1/24 
1/12 
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Applying (2A.3 ), the estimator for go, cubic becomes 

= -(5/32)g-1.s + (l5/16)g-o.s + (5/16)g1.s - (3/32)g2.s (2A.S) 

Rewriting the estimator in the generalized notation of age-specific fertility 
rates, it becomes 

nlx+(I/2)n, cubic = (-5/32 )nlx-n + (15/16 )nlx 
(2A.9) 

The reader might note that the sum of the coefficients (the first row of 
M -I) is 1.0, and therefore that the complete set of interpolated fertility rates 
will sum to the TFR, like the source and interpolated rates in Table 2.1. He 
or she can also confirm that for the data ofTable 2.1, the expression estimates 
s122.s from dis, 5120' SI30, and 5h5 as 5122.5 = 0.1170. The estimate is oflower 
quality than the estimate in Table 2.1 (0.1233) found from sfts, 5120, 5125, 
and sho, but illustrates the flexibility ofpolynomial interpolation. 

The reader might also confirm that the coefficients ofthe cubic introduced 
in Section 2.2 can be found from the first row of the inverse of the matrix 
(or other matrices whose principal terms are multiples of - 3, -1, 1, 3): 

Suppose now that the problem is to estimate the integral of a polynomial 
expression, we will use the cubic, between two points. From calculus, the 
cubic g(n) = al + a2n + a3n2 + a4n3, has as its integral between k l and k2 

(2A.1O) 

As before, the coefficients a are found from (2A.l)-(2A.3), in matrix form 
Ma = g(o'). From the matrix inverse M-1g(0) = a we will have 
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a4 = i4.g(nh) + i42g(n/) + i43g(nk) + i44g(nt) 

On substituting these values into (2A.I 0 ), the integral becomes 

k2-k.Gk. = [i ll (k2 - k.) + i2.(k~ - kt>/2 + i3.(k~ - kn/3 

+ i4.(k~ - k1)/4]g(nh) + [idk2 - k.) + i22(k~ - kn/2 

+ idk~ - kn/3 + i42(k~ - k1>/4]g(ntl + [i 13(k2 - k.) 

+ i23(k~ - kn/2 + i33(k~ - kn/3 + i43(k~ - k1)/4]g(nk) 

+ [i.4(k2 - k.) + i24(k~ - kn/2 + i34(k~ - kl)/3 

+ i44(k~ - kn/4]g(nt) = a.g(nh) + a2g(ntl 

+ a3g(nk) + a4g(nt) 

CHAPTER 2 

(2A.11 ) 

The reader can confirm that for the simplest case, in which alt intervals 
kj - k/ = n and we are fitting k2-k• Gk• = "Go from g-", go, g", g2", the terms 
in k. vanish (since k. = 0) and the a coefficients become a. = a4 = -n/24, 
and a2 = a3 = 13n/24. These coefficients are found from the inverse ofthe 
matrix M, after solving (2A.II ). The reader can show that for n = I, the 
matrix M to be inverted will be 

Estimation of polynomial derivatives is similar to estimation of integrals. 
We illustrate as before with the cubic g(n) = a. + a2n + a3n2 + a4n3, and 
its integral between k. and k2 [expression (2A.1O)], 

k2-k.Gk. = a.(k2 - k.) + a2(k~ - ktl/2 + a3(k~ - kl)/3 + a4(k~ - k1)/4 

Given the integrals kl-k. Gk., ~-k3 Gk3 , k,;-k, Gk" k.-k7 Gk7 , the coefficients a 
are found from M-·G(k) = a, where M has the entries 
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For the simplest case, in which all intervals kj - k l = n, and we are fitting 
go from "G-2,,, "G_", "Go, "G", the reader will find that al = a4 = -1/( 12n), 
and a2 = a3 = 7/( 12n). The solution is analogous to (2A.6)-(2A.8), in 
requiring only the first row of the matrix inverse M -I. For n = 1, and with 
k l = -2, k2 = k3 = -1, k4 = ks = 0, 14, = k7 = 1, k8 = 2, the matrix M 
becomes 

-3/2 7/3 
-1/2 1/3 

1/2 1/3 
3/2 7/3 

-15/4] -1/4 
1/4 

15/4 
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Standardized Rates 

Method for comparing Local with Standard Death-rates.-We have no 
means 01 ascertaining what the rate 01 mortality would be among men Iiving in 
the most lavourable sanitary conditions; otherwise observations lor a term 01 
years on a considerable number 01 such persons would supply a standard rate 
with which other rates could be compared. 

In the absence 01 such a standard, the districts 01 England in which the 
mortality rate did not exceed 17 annual deaths in 1,000 Iiving, have been selected 
as the basis 01 a new life table which will shortly be published, as the nearest 
approximation we can obtain to a table representing the human race in the 
normal state. 

The 5th column in the annexed table shows the rates olmortaIity at 12 
different ages in the districts 01 England which we call,lor the sake 01 distinction, 
healthy. The sanitary conditions are ojlen dejective, but the dejects are counter
balanced; so that the districts being much less unhealthy than the average, may 
be so designated. 

It will be observed that ifthe population (2.373.983) be multiplied by 17, 
and the product be divided by 1,000, the resulting number (40,358) will represent 
the annual deaths that would take place in London if mortality were at the rate 
0117 in 1,000 annual/y. The actual rate 01 mortality in those districts was 17.72 
in 1,000 males, and 17.33 in l,ooolemales. 

But the population experienced very different rates 01 mortality at different 
ages, and the proportional numbers Iiving in London at the various periods 01 
/ife is not the same as it is in the country districts, which send out emigrants. 
London is supported partly by immigrants and partly by births. It has hence an 
excessive number olpeople in the prime ollife. Accordingly, it islound that with 
the population as it was distributed in 1851 the annual deaths in London would 
not exceed 36,179, or the annual mortality would be 15 in 1,000 ifthe rates 01 
mortality at each 01 the 12 periods ollife were the same as those prevailing in 
the healthy districts . ... 

It is shown in the table that, on an average, 57,582 persons died in London 
annual/y during thefive years 1849-53, whereas the deaths should not. at rates 
01 mortality then prevailing in certain districts 01 England, have exceeded 

49 



50 CHAPTER 3 

METHOD for comparing the RATES ofMORTALITY in the HEALTHY DISTRIcrs 
of ENGLAND, with the Rates prevailing in other Districts; LoNDON given 

as an example 

LoNDON 

Average Annual 
Dcaths which 

A vcrap: AnnuaJ wouldhave 
Population Rate of Average AnnuaJ occurred if the 
estimated Average AnnuaJ MortaJity MortaJjty in MortaJity had 

tothe Dcaths in the in thc HcaJthy Ileen the same 
middleof 5 Years 5 Years Districts as in HcaJthy 

AGES 1851 1849-53 1849-53 (1849-53) Districts 
1 2 3 4 5 6 

MALES 

0- 147,390 12,156 0.08247 0.04348 6367 
5- 121,977 1,274 0.01045 0.00674 817 

10- 107,745 569 0.00528 0.00384 412 
15- 208,028 1,669 0.00802 0.00691 1432 
25- 195,983 2,178 0.01111 0.00818 1596 
35- 145,165 2,504 0.01725 0.00928 1341 
45- 96,559 2,542 0.02632 0.01273 1223 
55- 54,479 2,396 0.04398 0.02294 1243 
65- 26,514 2,299 0.08670 0.05486 1446 
75- 7,387 1,294 0.17522 0.12817 942 
85- 794 272 0.34247 0.28350 225 
95 and 

upwards- 48 19 0.40047 0.40000 19 

AU Ages- 1,112,069 29,172 0.02623 '"0.01534 17,063 

FEMALES 

0- 147,969 10,635 0.07187 0.03720 5473 
S- 123,082 1,220 0.00991 0.00702 859 

10- 109,701 540 0.00492 0.00480 524 
15- 248,763 1,619 0.00651 0.00765 1896 
25- 233,846 2,213 0.00947 0.00894 2082 
35- 165,265 2,345 0.01419 0.00998 1642 
45- 113,007 2,241 0.01983 0.01192 1338 
55- 69,308 2,460 0.03549 0.02162 1487 
65- 36,496 2,645 0.07247 0.04992 1809 
75- 12,582 1,936 0.15384 0.11866 1483 
85- 1,793 514 0.28685 0.26711 477 
95 and 

upwards- 102 42 0.41611 0.45000 46 

AU ages- 1,261,914 28,410 0.02251 '"O.01S15 19,116 

Persons 2,373,983 57,582 0.02425 '"0.01524 36,179 

• This is the rate of mortaJity that would prevail in the healthy districts at all ages if the distribution of the ages 
were the same as they were in London in 185 I. 
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36,179; consequently 21,403 unnatural deaths took place every year in London. 
It will be the office 0/ the Boards 0/ Works to reduce this dread/ul sacrifice 0/ 
lile to the lowest point, and thus to deserve weil 0/ their country. 

In Liverpool, by the same method, it is/ound that 6,4181ives were lost in 
the year 1857, in excess o/the deaths at the healthy rates. In Manchester the 
sickness and mortality are also excessive. 

-WILLIAM FARR (1857) 

3. 1. INTRODUCTION 

A problem common to many summary measures is that they confuse the 
effects of target variables with the effects of other variables they were not 
intended to express. Among demographie measures, confounding effects are 
especially strongly feIt in erude death rates. Since most human deaths occur 
in old age, the CDR is typica11y higher in populations with relatively high 
proportions of elderly than in populations with younger age structures, even 
when life expectancy is substantially better in the older populations. In fertility 
analysis, crude birth rates are mueh less sensitive to age distributions, and 
consequently can be more safely used as summary measures. As an illustration, 
Table 3.1 shows the proportions in various age categories and selected sum
mary measures for several national populations about 1980 (see also Ta
ble 7.1). 

The closeness in proportions at the reproductive ages in the seven eoun
tries shown is striking and virtually assures that the ratios of births to total 

Table 3. 1. Population Characteristics for China, the USSR, the United States, 
Mexico, ltaly, France, and Zaire, e. 1980. Sourees: United Nations (1989), and 

United Nations Demographie Yearbooks and Population Reference Bureau 
World Population Data Sheets (Various Years) 

Proportion 
Crude Crude Total 

0-14 15-44 45-64 65+ birth death fert. Life 
Country Population Male Female rate rate rate exp. 

China 1,000,000,000 0.33 0.24 0.23 0.15 0.05 0.022 0.007 2.8 65 
USSR 250,000,000 0.24 0.24 0.24 0.18 0.10 0.018 0.010 2.3 65 
USA 225,000,000 0.22 0.23 0.24 0.19 0.12 0.016 0.009 1.9 75 
Mexico 75,000,000 0.46 0.21 0.21 0.09 0.03 0.032 0.006 4.8 65 
Italy 55,000,000 0.21 0.21 0.21 0.23 0.14 0.0 II 0.010 1.7 70 
France 55,000,000 0.22 0.22 0.21 0.22 0.13 0.015 o.oto 2.0 75 
Zaire 25,000,000 0.46 0.20 0.21 0.10 0.03 0.046 0.019 6.1 45 
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Figure 3.1. U.S. 1980 age-specific death rates. Source: NCHS (1984-1985). 

100 

population will correlate reasonably weil with family sizes. At ages over 45 
and over 65, where mortality is most heavily concentrated (Fig. 3.1), the 
populations differ much more sharply. As a result, the ratios of deaths to 
population correlate poorly with life expectancies. 

One possibility for improving the comparability of mortality rates is to 
weight the underlying age distributions to be similar to each other. In direct 
standardization that is what is done: the proportion of the population in each 
age or attribute group is set equal to the proportion in a reference population, 
and deaths are rescaled to match. The resulting death rates will be comparable 
to death rates for other populations fitted to the same reference age distribution. 

Besides deaths, two directly standardized rates, the total fertility rate and 
the gross reproduction rate, are used in fertility analysis. To construct the 
TFR, age-specific fertility rates for one sex, we will specify females, are summed 
over the fertile ages, a procedure that is equivalent to standardizing on a 
population of 1 (or 1000) persons at each single year of age. The sum is an 
estimate of the completed family size. The GRR is similar, except that at 
each age the ASFR is multiplied by the proportion ofbirths that are female, 
about 0.49, to estimate the number of daughters bom. 

Direct standardization has other applications that go much beyond com
parisons ofbirth and death rates. Many surveys are constructed using different 
sampIe weights for population subgroups, usually to increase the sampie size 
for populations that are small. The sampIe is weighted-standardized-for 
tables that are intended to be representative of the whole population. 
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Index numbers, risk scores, and psychometrie and sociometric scales are 
also standardized measures if they are created by applying weights to the 
values of component variables to produce a summary number. Like stan
dardized death rates, but unlike survey weights or the TFR, the scores typically 
lack intuitive meaning and depend for their use on acceptance by the research 
community. 

3.2. DIRECT STANDARDIZA TION 

For direct standardization we begin with two populations .,No, i having 
"Nx , i persons and "Dx , i annual deaths in the age interval x to x + n, and 
.,No,} having "Nx ,} persons and "Dx ,} deaths in (x, x + n). The complete age 
distribution is represented by (O, Ca) ), Ca) ( omega) being the oldest age to which 
anyone survives. We will specify population j to be a reference population 
and will refer to i as a source population. 

The two populations will have the crude death rates [expression ( 1.4 )]: 

CDRi = .,Do, i I., No, i = L "Dx, i/ L "Nx,i = L "Mx, i {"Nx, il.,No, i) 
x x x 

CDR,; = .,Do,J/ .,No,} 

where "Mx = "Dxl "Nx is the age-specific death rate at ages x to x + n [expres
sion (1.3)]. 

At the age-specific death rates of population i, deaths at ages x to x + n 
in the reference population (j) would number: 

"Dx.i. at pop i ASDR = "Nx.i{"Dx. i / "Nx. l ) 

Repeating the ca1culation for other age intervals and summing the expected 
deaths will give total deaths expected in populationj at the population i rates. 
Dividing tbis total by the number in population j yields the directly stan
dardized death rate: 

DSDRpopirates,pop}ages = ~ "Dx,},atpopiAsDR / .,No,} 

= L {"Dx,;/ "Nx, i ) ("Nx,J/ .,No,}) (3.1) 
x 

= L "Mx,i{"Nx.l.,No,}) 
x 

In the expression, Lx represents the sum of the terms on the right over all 
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age intervals.ltalics are used to identify the population taken as the reference, 
which for the DSDR is always the population whose age or attribute distri
bution is used.· 

Table 3.2 provides the data for standardizing deaths for Mexico on the 
age distribution ofthe United States as the reference population. (For purposes 
of illustration, only four age intervals are used. In real applications, l-year, 
5-year,or IO-year age categories would be used, giving a targer number of 
intervals and more accurate standardized rates.) Tbe DSDR for Mexico found 
from the table, 0.0114, may be compared with other directly standardized 
rates that also use the United States as the reference population, and with the 
U.S. CDR since the latter also has the U.S. population as its base. Tbe DSDR 
is not comparable to any of the other crude death rates in Table 3.1. 

We interpret the DSDR to mean that if Mexico had an age distribution 
like that ofthe United States, its CDR would be 0.0114, as compared to the 
U.S. rate ofO.0088. Before making that conclusion, however, we should check 
the individual age-specific death rates for the two populations to determine 
whether the pattern is consistent. Ifwe found that Mexico's age-specific death 
rates were higher than those of the United States at some ages but lower at 
others, we might decide that the standardized rate does not provide an adequate 
picture of the differences between the populations. Table 3.3 shows the age
specific death rates for the two populations. For this example they are con
sistent with the DSDR difference. 

Table 3.3 also displays the U.S. DSDR standardized on Mexico's age 
distribution. The new DSDR can be compared with the Mexican CDR, which 
also has the Mexican age distribution as its base. Tbe difference in the two 
sets of standardized rates, 0.0114 and 0.0088 using the United States as a 
reference, but 0.0062 and 0.0038 using Mexico as a reference, will suggest 
the importance of the choice of reference populations. Tbe United States, 
with more than twice the proportion of elderly that Mexico has, gives stan
dardized rates that are also about twice the level of rates standardized on 
Mexico's age distribution. Other choices of reference populations would give 
other values. Because standardized rates are simply index numbers used to 
represent mortality, there are no formal roles for selecting a "best" reference 
population from among the many possibilities the user might have. Some 
informal guidelines will be suggested later. 

The range of standardized death rates is not limitless, whatever reference 
population may be selected. Like the CDR, the DSDR is a weighted average 
of the age-specific death rates of the source population. Hence, it is bounded: 

• We note for the reader that unless nMx.1 terms are available to a high degree of precision, the 
DSDR should be estimated using nDx.1 / nN".I' 
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Tsble 3.2. Illustration ofthe Calculation ofDirectly Standardized Death Rates, 
United States and Mexico c. 1980 

Source population 
(Mexico) Reference population (United States) 

Persons Deaths Persons Deaths Expected deaths 
,.Nx,_ "Dx,,,,,",,,,, ,.Nx,iadex "Dx,ladex 

"DX.iadex,at __ 

Ages (1) (2) (3) (4) (3) X (2)/( 1) 

0-14 34,640,000 151,900 51,300,000 64,400 225,000 
15-44 30,900,000 87,800 105,200,000 157,700 298,900 
45-64 7,020,000 78,550 44,500,000 425,300 497,900 
65+ 2,440,000 149,150 25,500,000 1,341,800 1,558,700 
Total 75,000,000 467,400 226,500,000 1,989,200 2,580,500 

CDR..,...,.(Ma) = 467,400/75,000,000 = 0.0062 
CDR..c(US) = 1,989,200/226,500,000 = 0.0088 

DSDR... ... _ .. _ = 2,580,500/226,500,000 = 0.0114 

standardizing the Mexican data ofTables 3.2 and 3.3 on anyage distribution 
will give a DSDR between 0.0028 and 0.0611, while standardizing the U.S. 
data on any age distribution will give a DSDR between 0.00 13 and 0.0526. 
(If we had used more age intervals in the examples, the range between the 
lowest and highest age-specific death rates would be wider.) Within the limits 
of the source population ASDRs, the level of the DSDR will depend in sub
stantial measure on the age distribution of the reference population. 

Tsble 3.3. U.S. and Mexican Age-Specific 
Death Rates, c. 1980 

Ages Mexico United States 
,.N,J"Dx ,.N,J"Dx 

0-14 0.0044 0.0013 
15-44 0.0028 0.0015 
45-64 0.0112 0.0096 
65+ 0.0611 0.0526 
CDR 0.0062 0.0088 

DSDRM .. _ US _ 0.0114 
DSDRus_Mex_ 0.0038 
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3.3. INDIREeT STANDARDIZA TION 

When total deaths and the age distribution of a population are known 
but deaths are not available by age, or when the population size is small and 
age-specific death rates ßuctuate sharply across ages, indirect standardization 
can be used for population comparisons. To standardize indirect1y, with pop
ulation j taken as the reference as before, we first calculate a DSDR using the 
rates of population j and the age distribution of i (recall that we used the rates 
of i and age distribution of j when we standardized direct1y). That is, we first 
find 

x 

We emphasize that the reference population for the DSDR used in in
direct standardization is population i, as indicated by the subscripted italics, 
and not j. Population j will become the reference after two additional steps. 
For now, in (3.2) we have estimated a DSDR that displays the overall death 
rate population i would have at the age-specific rates of population j. 

Dividing the CDR for population i by the DSDR in (3.2) yields a scale 
faetor, the standardized mortality ratio, that is greater than I when the source 
population crude death rate CDR1 is bigher than it would be at the age
specific death rates of population j, and is less than I when CDR1 is lower 
than it would be at population j rates. Formally: 

SMR1 = CDRI/DSDRratesJ, ogt!s I (3.3) 

To compiete the indirectly standardized death rate, the SMR is multiplied 
by the reference population CDR, here CDRjo to scale it to the same approx
imate magnitude. We have: 

(3.4 ) 
= CDRj ( CDRj /DSDRrates J, ages ;) 

By adjusting the reference CDR upward or downward in proportion to 
the change in the source population CDR after substitution of the reference 
age-specific rates, the ISDR operates as a substitute for the direct application 
of population i rates to population j ages in the directly standardized rate 
DSDRrates/,08esJ' It does not use population i age-specific death rates, but 
expioits the SMR as a summary measure of their overall level relative to the 
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death rates ofthe reference population. For two critical cases it agrees exactly 
with the DSDR: if the age distributions of populations i and j are the same, 
the ISDR equals CDRj (because DSDRratesj,agesj = CDRj ); while ifthe two 
populations have the same age-specific death rates it will equal CDRjo the 
reference CDR (because DSDRratesj, agesi = CDRi ). These are the same values 
the DSDR would take in the two cases. 

More generally, the ISDR will substitute for the DSDR when either the 
two population age distributions are similar or their age-specific death rates 
follow the same pattern. It is a poorer measure when the patterns of the age
specific rates differ sharply, and when both the age distributions and mortality 
patterns differ. These are cases for which the DSDR may also be an inappro
priate measure of population differences. (The quality of the measures can 
be checked by examining age-specific death rates for both populations if they 
are available.) 

Having calculated DSDRs for the United States and Mexico, the ISDRs 
require little additional effort. The ISDR for Mexico using the United States 
as the reference population is 

ISDRus rales, Mex aaes. us CDR = CDRus(CDRMex/DSDRus rates, Mex ages) 

= (0.0088)(0.0062)/(0.0038) = 0.0144 

and for the United States using Mexico as the reference population we have 

ISDRMex rates, US aaes. Mex CDR = CDRMex(CDRus/DSDRMex rates, us ages) 

= (0.0062 )(0.0088 )/(0.0114) = 0.0048 

For this example the ISDRs are about 25% above the DSDRs for which 
they would substitute (0.0144 versus 0.0114 and 0.0048 versus 0.0038, re
spectively), but both convey the correct impression ofhigher Mexican than 
U.S. mortality rates. Looking again at Table 3.3, the two countries will be 
seen to share a common pattern of low death rates at young ages and much 
higher rates at older ages. That is a universal human pattern and aDows us to 
use ISDRs for comparisons of mortality differences in national populations 
with some confidence. 

3.4. REFERENCE DISTRIBUTIONS 

The choice of reference populations for rate standardization is a matter 
of judgment. In occasional cases, as in the example of total fertility rates, 
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which are interpretable as measures of family size, a particular reference dis
tribution will find universal acceptance. Most often, however, the selection 
of a reference distribution is left to the researcher. 

Some choices suggest themselves easily. If the researcher is extending a 
published data series or working with a related series, the reference population 
used for the published series may serve well. More generally, defining poor 
choices of reference populations is easier than defining ideal choices. Popu
lations to be avoided include any with irregular age distributions, or that have 
relatively few persons at the ages at which rate differences areexpected to be 
pronounced. In both cases the user risks understressing key differences or 
overstressing minor ones, without a clear awareness of what has occurred. It 
is also important that the reference population include about the same age 
range as the populations to be standardized: in direct standardization, unused 
ages are treated as ages·ofzero mortality. 

A common convention when no reference population clearly suggests 
itself and when the age distributions of the populations to be compared are 
reasonably smooth is to construct a reference distribution by averaging their 
proportions at each age. Because the reference population is intermediate 
to the two populations in form, the standardized death rates will be nearer 
their crude rates than would be true for more arbitrary· reference choices. 
That is an advantage for readers who are at least somewhat familiar with 
the crude rates. (For the example of Table 3.2, U.S. and Mexican DSDRs 
standardized on an intermediate population with 34.2% under age 15, 
44.1% at ages 15-44, 14.3% at ages 45-64, and 7.4% at ages 65+ would 
be DSDRUS rate8,lmmedlatltages = 0.0063 and DSDRMexrates,intermediateages 

= 0.0089. Since both DSDRs are standardized on the same age distribution, 
they may be compared with each other. Neither should be compared with 
the U.S. or Mexican CDR, since the age distributions ofboth countries differ 
from the reference age distribution.) 

Notice that standardization on an intermediate distribution is equivalent 
to averaging each CDR with the DSDR standardized on the age distribution 
of the other population. For the example, 

DSDRus ratel, Intermediate ages = !(CDRus + DSDRus ratel, Mex aglts) 

DSDRMex ratel, intermediate agltS = !(CDRMex + DSDRMex rates, US ages) 

The relationship also allows the user to construct rates standardized on either 
population from rates standardized on the intermediate age distribution. 

Our comments on the choice of reference populations apply to directly 
standardized rates more than to indirectly standardized rates. For the latter, 
the smoothness of the reference age-specific death rate distribution is also 
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important, since it is used in constructing the denominator of the ISDR. It 
is also important that the pattern of the age-specific death rates be similar in 
the two populations insofar as they are both known. In standardizing indirectly 
we essentially impute the pattern ofthe reference rates to the source population. 
Finally, since the ISDR multiplies the standard.ized mortality ratio by the 
reference CDR, it is also critica1 that the two populations be enumerated over 
roughly the same age range. A reference CDR spanning a much broader or 
narrower age range than was required for the DSDR may produce ISDRs 
that are largely uninterpretable. 

None ofthese restrictions should appear onerous to the reader. Essentially 
what we seek in a reference population are an age distribution and a rate 
distribution that enhance the comparability of the populations without im
posing objectionable or nonrelevant features of their own. 

3.5. DECOMPOSITION OF DIFFERENCES 
BETWEEN CRUDE RATES 

A means of decomposing two crude rates to measure the relative im
portance of age ditferences versus rate ditferences that exploits DSDRs was 
introduced by Kitagawa in 1955 (Kitagawa, 1955, 1964). She suggested re
writing the ditference of the two rates (for populations i and j) as: 

CDR1 - CDRj = Age etfect + Rate etfect - Interaction etfect 

Emphasizing population i, its age effect is the ditference between its CDR 
and the DSDR with population j ages and population i age-specific death 
rates. That is: 

Age etfect; = CDR1 - DSDRrates I. ages j 

= ~ [("Nx. 1 / ",No. 1 )"Mx. 1 - ("Nx.l ",No. j)"Mx. ; ] (3.5) 
x 

= ~ [("Nx. ;/",No.;) - ("Nx,j/.,No.j»)"Mx• 1 
x 

The expression measures the change in the death rate when the age distribution 
of population j is substituted for the age distribution of population i, keeping 
the age-specific death rates the same. 

The rate effect for i is the ditference between the CDR of population i 
and the DSDR with population i ages and population j age-specific death 
rates. That is: 
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Rate effectl = CDRj - DSDRrates j, agn j 

= L [("Nx, ;/ .. NO,/)"Mx, 1 - ("Nx, ;/ .. No,I)"Mx,j] (3.6) 
x 

= L ("Nx, ;/ .. No, 1)("Mx, 1 - "Mx,j) 
x 

The expression measures the change in the death rate when the rate distribution 
of population j is substituted for the rate distribution of population i, keeping 
the age distribution the same. 

These two effects do not add to the difference of the crude death rates, 
but actually represent the cmde death rate of population i counted twice (it 
is the first term of the age effect and of the rate effect ), minus two standardized 
death rates. To correct the equality we need to subtract out an interaction 
term that contains both crude death rates (CDR1 is present twice, in both the 
rate effect and age effect terms, CDRj is omitted ) and the two standardized 
rates already present. The necessary expression is 

Interaction = CDR1 + CDRj - DSDRrates I, ages j - DSDRrates j, ages j 

x x 

(3.7) 

x x 

= L [("Nx, ;/ .. No, I) - ("Nx,j/ .. No,j)]("Mx, 1 - "Mx,j) 
x 

The interaction effect is thus the difference between the crude and standardized 
rates, or the product of the difference in the population and difference in 
the death rate at each age. 

An important limitation of decomposition is that the separation of age 
and rate effects is specific to the population of emphasis, whose CDR enters 
into both the age and rate formulas. If the two populations are switched, the 
age and rate effects change. For the United States and Mexico, the two sets 
of effects are: 

For the United States as population 01 emphasis: 

Age effect = CDRus - DSDRus ratet, Mex agn 

= 0.0088 - 0.0038 = 0.0050 
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Rate effect = CDRus - DSDRMex rates, us ogn 

= 0.0088 - 0.0114 = -0.0026 

Interaction = CDRus + CDRMex - DSDRus rates, Mv: oges 

- DSDRMex rates, US ogn 

= 0.0088 + 0.0062 - 0.0038 - 0.0114 = -0.0002 

CDRus - CDRMex = Age effect + Rate effect - Interaction 

0.0088 - 0.0062 = 0.0050 + (-0.0026) - (-0.0002) = 0.0026 

For Mexico as population 0/ emphasis: 

Age effect = CDRMex - DSDRMex rates, us oges 

= 0.0062 - 0.0114 = -0.0052 

Rate effect = CDRMex - DSDRus rates, Mv: ogn 

= 0.0062 - 0.0038 = 0.0024 

Interaction = CDRMex + CDRus - DSDRMex rates, us ogn 

- DSDRus rates, Mv: oges 

= 0.0062 + 0.0088 - 0.0114 - 0.0038 = -0.0002 

CDRMex - CDRus = Age effect + Rate effect - Interaction 

0.0062 - 0.0088 = -0.0052 + 0.0024 - ( -0.0002) = -0.0026 

For the example the age and rate effects are similar using either the 
United States or Mexico as the population of emphasis. The age effects are 
particularly pronounced, as we should expect from the difference in age dis
tributions seen in Table 3.1. Rate effects are also strong, at about the same 
level as the overall difference in the two crude rates. The interaction term 
is small by comparison, which usually means that there is a consistent pat-
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tem of differences in the age distributions and rate distributions for the two 
countries. 

The signs of the age and rate effect terms require comment With the 
United States as the population of emphasis, the age term is positive and the 
rate term negative: if there were no differences in the death rates of the two 
populations, the U.S. CDR would be higher than Mexico's by 0.0050 (we 
would have CDRus - CDRMex = Age effect only = 0.(05), while if there 
were no differences in the age distributions, the U.S. CDR would be lower 
than Mexico's by 0.0026 (we would have CDRus - CDRMex = Rate effect 
only = -0.(026). The same conc1usions would follow if Mexico were the 
population of emphasis. The signs of the age and rate terms are reversed, but 
that is because CDRMex - CDRus is opposite in sign from CDRus - CDRMex • 

The decomposition can also be performed using the ISDR to substitute 
for one of the DSDRs: either 

ISDRpop I rates, pop j ... pop I CDR for DSDRpop j rales, pop I ages 

or 

ISDRpop j rates, pop I ... pop j CDR for DSDRpop i rales, pop j ages 

With the substitution the interaction term will differ, as will either the age or 
rate effect term, leaving the other unchanged. The quality of the revised es
timates will depend on the appropriateness of the computed ISDR. 

Finally, we may note that the emde birth rate and many other measures 
can be decomposed into age, rate, and interaction effects, or decomposed 
using other relevant compositional attributes, such as residence or education. 
For CBR differences, rate effects normally predominate over age effects, but 
other decompositions are sometimes of interest. 

3.6. STA TlSTlCAL TESTS FOR DIFFERENCES 
BE7WEEN RA TES * 

Most of the statistical tests that are used in demography derive from the 
variance of the probability of dying in an age interval and the variance in the 
number of deaths that occur. Assuming that deaths nDx are binomially dis
tributed, they will have the probability of occurrence nllx = nDxl N(x), where 
N(x) is the sampie size at exact age x to which the deaths occur. The variance 
of nllx will be: 

• See also Section 4.8, which introduces variances and statistical tests for life table tenns. 
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Var("qx) = "Px "Qx/ N(x) 

= ([N(x) - "Dx)/N(x)}["Dx/N(x»)/N(x) (3.8) 

The probability of dying can be interpreted as a weighted estimate of the 
number of deaths that occur, with the weight taken as 1/N(x). Using the 
rule that the varianee of a weighted quantity is the weight squared times the 
varianee ofthe quantity, Var("Qx) is related to Var("Dx) by 

For the varianee of "Dx we therefore have 

Var("Dx) = [N(x) - "Dxl"Dx/ N(x) = "Px "Dx (3.9) 

Like the probability of dying "Qx, the age-specific death rate "Mx = "Dx/ 
"Nx is a weighted estimate of deaths. Its varianee will be (Chiang, 1961) 

The CDR is a weighted sum ofthe age-specific death rates, and its varianee 
can be found using the rule that the varianee of a sum or difference is the 
sum of the varianees of the component terms. That is, sinee 

x 

for the varianee of the CDR we should have 

x 

= ~ {"Nx/",No)2"px "Dx/"Ni (3.11 ) 
x 

x 

More simply, 

Var(CDR) = ~ Var("Dx)/",NÖ (3.12) 
x 
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In cases where the ages at death are unknown, the variance of the CDR 
cannot be estimated with confidence. As an approximation, the rate may be 
interpreted as a mortality probability, in whieh case we would have from our 
original estimate for Var(,.qx): 

Var(CDR) ~ CDR( 1 - CDR)/ .. No (3.13) 

This estimate will normally be somewhat high. For human populations the 
combination ofvery low death rates at most ages with high death rates toward 
the end of life reduces variances relative to those of homogeneous sampies. 

Variances of directly standardized rates are slightly more complex than 
(3.11) since the weights are taken from the age distributions ofthe reference 
population while the variance terms Var(nMx) are those ofthe source pop
ulation. That is (Keyfitz, 1966), setting population j as the reference, 

Var(DSDRrates ;, ages j) = L (nNx, j/",No, j)2npx, 1 nDx, dnN ;, 1 (3.14) 
x 

If the age-specifie death rates for the source population are known, the 
varianee of the ISDR can be estimated from the variance of its CDR as 

The expression is derived by interpreting the ISDR as a weighted estimate of 
the CDR, with the weight 

W = CDRj/DSDRratesi, age8 1 

Since the number of deaths in the reference population is immaterial to the 
ca1eulation of the ISDR, the variance of the weight term is O. 

Variances can also be computed for age and rate effects, whieh represent 
differences between erude and standardized rates. Given populations i and j, 
the rate effect for i can be written, from (3.6), 

x x 

The two age-specifie death rates nMx,; and nMx, i are independent, and we 
apply the rule that the variance of a sum or difference is the sum of the 
variances of the component terms to find 

Var(rate effectl ) = Var(CDR;) + Var(DSDRratesJ, ages I) (3.16) 
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The expression reduces to Var( CDR1 ) ifj is a reference population of arbitrary 
size, since in that event we may set Var("Mx,j) = O. 

From (3.5) the age effect for population i can be expressed as 

Age effect; = L [("Nx, ;/ ",No, I) - ("Nx,J/ ",No, j))"Mx. ; 
x 

The bracketed term in the expression is the difference of two age weightings, 
and is therefore also a weight. Following the rule that the variance of a weighted 
quantity is the weight squared times the variance ofthe quantity, we will have 

V ar( Age effectl ) 

= L [("Nx, ;/",No,;) - ("Nx,J/",No. j)]2 Var("Mx.;) 
x 

= L [("Nx. ;/",No. 1)2 + ("Nx,J/",No. j)2 
x 

(3.17) 

= Var(CDR1) + Var(DSDRrates I, agesj) 

- 2 L ("Nx, ;/.,No, ;)("Nx,j/",No,j)Var("Mx.;) 
x 

The reader can use the examples of expressions (3.16) and (3.17) to find 
the variance ofthe interaction term (3.7). The expression reduces to Var( Age 
effect; ) if j is a reference population of arbitrary size. 

Significance tests of differences between crude and standardized rates can 
be constructed using the Z scores [see also expression ( 4.54 )] *: 

(3.18) 

Besides rate differences, Z tests can also be used to measure the significance 
of age, rate, and interaction effects from rate decompositions, since each term 
is constructed as a difference of crude and directly standardized rates. 

• Statistical tests can also be perfonned on differences between the tags ofthe various rates, where 
Var(lnX) = Var(X)/X. For the properties oflog rates see Breslow and Day (1987, pp. 48-
79). 
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A more robust test of the significance of rate differences between two 
populations is the D statistic, very similar to the Mantel-Haenszel or gener
alized Wilcoxon test for differences between nPx distributions (see Section 
4.8.2). Tbe test is a chi square with one degree of freedom. Apart from the 
final age interval, which is sometimes included despite being open-ended, ages 
for which the variance of nPx is 0 in both populations do not contribute to 
the test. D is found from the nNx and nDx series as 

L {[{nNx. I + !nDx. i }(nNx. i + !nDx. i) 
x (3.19) 

The test is a summation of 2 X 2 chi square tests for differences at individual 
ages, with the substitution 

a b nNx. i - ! nDx. i 

C d nNx.i - !nDx.i 

The term nNx - ! nDx is an estimate of the population at ages x to x + n 
surviving to the end of the year, given that nNx persons were surviving at 
midyear and total deaths during the year numbered nDx. Tbe initial population 
(the marginal sum a + b) is estimated as nNx + ! nDx, and comprises the 
midyear population and persons who died prior to midyear.* In a, b, c, d 
notation the test becomes 

• Deaths are distributed toward the beginning ofthe interval at ages 0 and 1-4. For those intervals 
the D statistic is estimated using, in a, b notation: 
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D = [ ~ (ad - bc)/wx r / 
(3.20) 

L [(a + b)(c + d)(a + c)(b + d)/(a + b + c + d - 1 )]/wi 
x 

Weights Wx may be set equal to 1 for a sampIe size weighted test related 
to the generalized Wilcoxon nPx distribution test, or to 1 /(nNx, j + ! nDx, j 

+ nNx,l + ! nDx,l) for a uniformly weighted test analogous to the Mantel
Haenszel nPx test. Depending on the weights selected, the test may favor dif
ferences in age-specific death rates at most or relatively few ages. Z tests of 
differences in age-specific death rates should be computed for the entire age 
range to determine whether the D statistic is reasonably representative of the 
age-specific patterns. A point of caution in using the test is that it is sensitive 
to the number of intervals used and to the concentration of differences into 
a few intervals. 

Tbe reader should note that if the D test is performed using an arbitrary 
reference population, the reference population should be assigned the same 
sampIe size and age distribution as the source population. By that convention, 
the test will indicate ~hether the source population event rates and reference 
rates are statistically distinguishable from each other, without the result being 
contaminated by structural differences in the two sampIes. For any other 
reference population size or age distribution, the significance level of the test 
will necessarily reflect the distinct characteristics of the two population struc
tures, a compromise that is inappropriate when the reference population is 
purely one of convenience. 

The reader might also note that for differences between national popu
lations, it is rarely necessary to compute statistical significance levels, since 
large population sizes assure that most differences whicb are of any interest 
will be statistically significant. In the example ofTable 3.4, a 1/10,000 sampIe 
ofthe data ofTable 3.2 is used to avoid wbolly trivializing the application of 
statistical tests to the data. 

To estimate variances for the ASDRs and standardized rates, we require 
tbe life table survival probabilities nPx, which we may approximate linearly 
as (see Section 4.3): 

(3.21 ) 

For the United States at ages 0-14 we will have: nPx = 1 - 61 (5130/15 + 3) 
= 0.98261. Other nPx terms are shown in Table 3.5. 

Note in Table 3.5 that the survival probability is 0 at ages 65+ in both 
populations, as no one survives indefinitely. Because it is 0, however, the 
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Teble 3.4. Mexican and U.S. Populations and Deaths, 1/10,000 Sampie, c. 1980 

Mexico United States 

Persons Deaths ASDR Persons Deatbs ASDR 
Ages "N" "D" ,.M" "N" "D" ,.M" 

0-14 3464 15 0.0043 5,130 6 0.0012 
15-44 3090 9 0.0029 10,520 16 0.0015 
45-64 702 8 0.0114 4,450 43 0.0097 
65+ 244 15 0.0615 2,550 134 0.0525 
Total 7500 47 0.0063 22,650 199 0.0088 

interval contributes nothing to the sampie variance and is essentially lost to 
the analysis. Introducing additional age intervals after age 65 would reduce 
the loss, since it is only the final interval that is not used. 

Using Tables 3.4 and 3.5, for the varlances of the Mexican and U.S. 
sampie CDRs we have: 

x 

Var(CDRMex ) = [(0.93709 x 15) + (0.91628 X 9) + (0.79540 X 8) 

+ (0.00000 X 15)]/15002 = 0.00000050962 

Var(CDRus) = [(0.98261 X 6) + (0.95539 X 16) + (0.82377 X 43) 

+ (0.00000 X 134»/22,6502 = 0.00000011033 

Teble 3.5. Life Table Survival Probabilities 
for Mexico and the United States 

Ages Mexico U.S . 
• P" .P" 

0-14 0.93709 0.98261 
15-44 0.91628 0.95539 
45-64 0.79540 0.82377 
65+ 0.00000 0.00000 
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Since both age and rate effects contribute to the difference of the CDRs, 
we would learn little from a Z test for the significance of their difference 
except to confirm that Mexico's CDR is lower. We would be more interested 
in knowing whether the rate effect is significant, for which we need the variance 
of one or both DSDRs. The two variances are 

Var(DSDRratea i. agesj) = ~ (nNx.l .. No.j)2nPx. i nDx. ;/nN~. i 
x 

Var(DSDRMex rates, us ages) = [0.227 2(0.93709 X 15)/34642 ] 

+ [0.464 2(0.91628 X 9)/30902 ] + [0.196 2(0.79540 X 8)/102 2 ] 

+ [0.113 2(0.00000 X 15)/2442 ] = 0.00000074235 

Var(DSDRus rates, Mex ages) = [0.462 2(0.98261 X 6)/5130 2 ] 

+ [0.4122(0.95539 X 16)/10,5202 ] + [0.0942(0.82377 X 43)/44502 ] 

+ [0.032 2(0.00000 X 134)/25502 ] = 0.000000087068 

The rate effect using the United States as the source population is CDRus 
- DSDRMex rates, us ages = 0.0088 - 0.0114 = -0.0026. It has the variance 

Var(Rate effect) = Var(CDRus) + Var(DSDRMex rates, us ages) 

= 0.00000011033 + 0.00000074235 = 0.00000085268 

Using (3.18), Z = -2.8 and is significant at about the 0.002 level. The 
effect is equally significant using Mexico as the source population, despite the 
difference in age weightings for the two reference populations. 

Besides Z statistics, we might also construct confidence intervals for the 
rate effect. The rate difference has the standard error [Var(Rate effect)] 1/2 

= SE(Rate effect) = 0.00000085268 1/ 2 = 0.000923. The 95% confidence 
interval for the rate effect will therefore be -0.0026 ± 1.96 X 0.000923 
= -0.0044 to -0.0008. 

For the D test, we construct a, b, c, d tables [expression (3.20)] for ages 
below 65. From our formulas, we have: 
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For OUf data the quantities are: 

Ages: 0-14 15-44 45-64 

a b 3456.5 15 3,085.5 9 698.0 8 
= 

c d 5127.0 6 10,512.0 16 4428.5 43 

Setting the sampie weights Wx = 1, for D we have: 

D = [ ~ (ad - bc)/wx r / 
~ [(a + b)(c + d)(a + c)(b + d)/(a + b + c + d - l)]/w~ 
x 

= [(3456.5 X 6 - 5127.0 X 15) + ... F/ 

[(3456.5 + 15)(5127.0 + 6)(3456.5 + 5127.0)(15 + 6)/ 

(3456.5 + 15 + 5127.0 + 6 - 1) + ... ] = 8.479 

For a chi square of 8.264 with one degree of freedom, the probability is 0.004. 
Tbe significance level is similar to that for the rate effect. 

3.7. ALTERNATIVES Ta STANDARDIZATlON 

Several generalizations ofKitagawa's decomposition will be found in the 
literature, ineluding hierarchica1 decompositions [Cho and Retherford ( 1973), 
Kim and Strobino ( 1984)] and purging methods [Oog and E1iason ( 1988), 
Liao ( 1989), Xie ( 1989)] that remove part of the effect interaction that limits 
the precision of(3.5)-(3.7). Besides these methods, several other techniques 
for analyzing survival differences exist. 

One appmach that is both simple and widely applicable for human mor
tality distributions is Schoen's ( 1970) geometrie mean of the age-specific death 
rates: 

( )
llk 

M Schoen = I} "Mx I"Mx>O (3.22) 



STANDARDIZED RATES 71 

where k represents the number of age-specifie death rates included in the 
expression. The restriction ( I ) limits the multiplication to death rates that are 
notO. 

For the data of Table 3.3, Schoen's estimators are 

Mus = [(0.0013)(0.0015)(0.0096)(0.0526)]1/4 = 0.0056 

MMex = [(0.0044)(0.0028)(0.0112)(0.0611)]1/4 = 0.0096 

The estimators are more representative of mortality differences when age 
intervals of equal width are used, a restriction that is less important for stan
dardized rates. At the same time, they are less sensitive than standardized 
rates to the ehoice ofthe final age interval (e.g., ages 75+ or ages 85+). For 
significance testing and for populations that are differentiated on multiple 
eharacteristics, Schoen's M can also be estimated using loglinear models, for 
whieh the reader should see Teaehman (1977). 

The most widely used alternative to standardization is the life table, whieh 
displays probabilities of surviving from birth to various ages and the mean 
and median lifetime. The estimates are functions of age-specifie death rates, 
but are independent of the actual age distributions. For the sampie of Table 
3.4 the life table produces the life expectancy estimates at birth eo. us = 75.5 
years, eo. Mex = 68.0 years. The difference is significant at the 0.001 level 
(2 = 3.2). 

Linear modeling is also widely used as an alternative to standardization 
because of the flexibility it offers in handling multiple variables (Althauser 
and Wigler, 1972; Breslowand Day, 1975; Page, 1977; Little and Pullum, 
1979). It does not handle all problems weil. We would rarely use a model 
of the form nMx,l = a + bnMx. i to test for a significant difference in age
specifie mortality rates between two populations for example, since the rates 
do not change linearly with age and those for one population are not typically 
in fixed ratios to those for another. Additional terms would improve model 
quality, but for the example either standardized rates or life table measures 
would serve at least as weil. As more variables are entered, and for attributes 
other than mortality, the attractiveness of linear models becomes greater. 

3.8. SUMMARY 

Standardization is a technique for caleulating summary demographie 
measures that adjusts for the distorting effects of compositional differences 
between souree populations. Age differences are most commonly adjusted, 
but sex, education, residence, or other eharacteristics may also be relevant. 
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In direct standardization the composition-specitie rates of eaeh source pop
ulation are applied to a reference distribution, yielding summary measures 
that reflect the reference eompositional structure. Using age as the compo
sitional variable, we have using j as the reference population: 

DSDRrates i. ages j = ~ {"Dx • i / "Nx • I )("Nx • JI.,No• j) 
x 

The quality of the DSDR will depend on relevant compositional variables 
being selected, and on tbere being a consistent pattern of differences in the 
source population rates. 

In indirect standardization, the composition-specitie rates of the source 
populations, whieh may be unknown, are replaced with the specitie rates of 
the reference population, ereating a direct1y standardized rate eomplementary 
to the usual DSDR. Dividing tbe summary rate for the source population by 
the standardized rate produces a standardized mortaIity ratio, whieh is used 
to scale the reference erude death rate upward or downwani. We have: 

Like the DSDR, the quality ofthe ISDR will depend on relevant compositional 
variables being selected, and on there being a consistent pattern of differences 
in the source population rates. For the ISDR it is also important that the 
source and reference populations have similar rate patterns. 

Besides direct comparisons, the DSDR can be used to decompose dif
ferences between the source population summary rates into rate effects and 
eompositional effects, relative to the source compositional distributions. Both 
effects can exist even in source rates that are identical. Their principal value 
is as indicators of the relative importance of the two types of effects for the 
populations being compared. 

Statistical tests exist for differences between summary and standardized 
rates. These derive from the variances of the event rates in the source popu
lations, weighted by the source or reference compositional distribution. Be
cause of the weighting, they are specitie for the distributions being used: sig
niticance levels will be higher if ages are emphasized at whieh survival rates 
in the source populations are most distinct, and lower if ages are emphasized 
at whieh the populations are most similar. 

For an introduction to medical applications of standardized rates and 
related measures, with additional statistical tests, the reader should see Breslow 
and Day (1987). 



CHAPTER 4 

The life Table I 
Whereas we have/ound that 0/100 quick conceptions about 36 o/them die 

be/ore they be six years old, and that perhaps but one surviveth 76, we, having 
seven decades between six and 76, we sought six mean proportional numbers 
between 64, the remainder Iiving at six years, and the one which survives 76, 
and/md that the numbers/ollowing are practica/ly near enough to the truth;Jor 
men do not die in exact proportions, nor in /ractions: /rom whence arises the 
Table /ollowing: 

Viz. 0/100 there dies The/ourth 6 
within the first six years 36 Thenext 4 

The next ten years, or decade 24 Thenext 3 
The second decade 15 Thenext 2 
The third decade 9 Thenext 1 

From whence it /ollows, that 0/ the said 100 conceived there remains a/ive at six 
years end 64 

At sixteen years end 40 At fifly-six 6 
At twenty-six 25 At sixty-six 3 
At thirty-six 16 At seventy-six 1 
At/orty-six 10 At eighty 0 

-JOHN GRAUNT ( 1662) 

4. 1. INTRODUCTION 

The life table shows the proportion of a population or sampie who survive at 
specific durations after exposure to an event risk. We might want, for example, 
the proportion ofwomen who marry byage 25 (0.65 for U.S. females bom 
in 1940-49) or the proportion expected to survive to their 85th birthday (0.19 
for males and 0.39 for females at U.S. 1985 mortality rates). The measures 
are probabilistic, and can be compared across populations and over time 
without the adjustments for compositional differences that many crude rates 

73 
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require. Tbe probabilities can also be used to estimate mean survival times
life expectancies-that compactly summarize survival experience. 

The key to the life table is estimation of the survival probability nPx and 
its complement, the mortality probability "Qx = 1 - nPx, between two age or 
time points. (As before, the measurement interval is from x to x + n, the 
right subscript indicating the initial point and the left subscript the interval 
width.) To find the probability, we require two pieces of information: an 
estimate of the population at risk of the terminating event in the interval 
(x, x + n), and an estimate ofthe number ofterminations taking place. 

Tbe source data for the life table may take different forms, allowing a 
variety of estimating formulas to be used. We introduce formulas associated 
with sampie surveys first, in Section 4.2, followed by estimators from census 
and vital statistics information in Section 4.3. Tbe remaining terms of the 
life table are introduced in Section 4.4. Tbese are followed in Section 4.5 by 
specialized formulas for nationallife tables that improve the accuracy of es
timates for infancy and old age. We next introduce virtuallife tables, which 
produce what are essentially life table survival estimates by simple techniques. 
The chapter concludes with variance formulas and statistical tests for life 
table terms. 

The chapter has five appendices. The first discusses data coding for life 
tables from survey data, and the adjustment of interval units to reflect the 
level of precision in the source information. Appendix 4A.2 introduces two
census life tables, which form a subset of the virtuallife tables in Section 4.7. 
Appendix 4A.3 elaborates on the text presentation of nPx estimators with 
censorship. Appendix 4A.4 outlines the derivation of maximum likelihood 
survival estimators. Finally, in Appendix 4A.5 we review sampie size esti
mation for the life table. 

4.2. 1- AND n-YEAR SURVIVAL PROBABIUTIES FROM 
POPULA TlON SURVEYS AND EVENT HISTORIES 

4.2. 1. Nonparametric Estimators 

In a survey or panel study, the risk status of members of a population 
can usually be measured from a specific point, either a birthday or other 
anniversary, or the time at which the initial event occurred that put each 
individual at risk. For general mortality, birthdays are particularly useful 
starting points because deaths are remembered by the decedent's age and the 
date of death; for many medical studies the initial point will be the date a 
particular diagnosis was made or a course of treatment was begun. 

Beginning with an initial sampie N(O) of persons entering a study, or 
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the sampIe N(x) of persons at risk at their xth birthday or anniversary, the 
survival probability to time 1 or x + n is estimated by the proportion still 
surviving as ofthat point, either N(l)/N(O) or N(x + n)/N(x). Formally, 
for a sampIe that is uncensored in the interval [that is, a sampIe N(x) for 
which the survival status of all individuals is known at the beginning of the 
interval (x) and at its end (x + n)): 

"Px, unadjusted = N(x + n)/N(x) 

"qx, ulUllljusted = [N(x) - N(x + n)]/N(x) (4.1) 

= "Dx/ N(x) = 1 - "Px, unadjusted 

The unadjusted estimator is only used if no observations are censored 
in the interval. Where individuals have entered or been lost between x and 
x + n, or their status at x + n has not been ascertained, as occurs when the 
interval is interrupted by study cuto1r, the survival probability will require 
additional terms that allow downward adjustment of the sampIe and event 
counts to retlect the actual observation times for the sampIe. 

It is important that the reader understand how interval censorship arises. 
Left interval-censorship occurs when individuals enter observation at a point 
within an interval and therefore are exposed to the event risk for less than 
the full interval duration. The most common case is when intervals are de
limited by birth dates but persons may enter the study at other times. In that 
circumstance, the individual is observed for the partial interval between entry 
and next birthday: ifthe next birthday is x + 1, the initial observation is from 
a point after x to the point x + 1, and will be less than the full 365 days 
between birthdays. More rarely, individuals may be recruited into a follow
up study at a point between anniversaries as replacements for others who 
have left.· 

Right interval-censorship occurs when an individualleaves observation 
at a time <?ther than an interval end point. Paralleling the earlier example, a 
person may be observed at x, the start of an interval, but leave the study 
before x + 1. The reason may be that the study cutoff point finds some 

• As distinct from interval censorship, sampie censorship occurs whenever individuals enter ob
servation after the start of risk (Ieft sample-censorship) or leave observation prior to event 
occurrence (right sample-censorship). Tbe censorship need not occur in every intervaI, but 
must occur in at least some: a sampie is considered uncensored only if a11 individuals are 
foUowed from the start of risk to a point beyond event occurrence, with no individuals leaving 
observation who are still at risk. Tbe treatment of intervaI censorship in survivaI estimation is 
discussed in Sections 4.2.1 and 4.2.2. In Section 4.2.3 we consider biases that arise when survivaI 
probabilities differ ror uncensored and interval-censored sampies. 
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individuals between anniversaries, or that individuals have been lost or dis
missed during the interval. 

Where interval censorship arises, the researcher may choose to disregard 
the partial interval and initiate observation atx + 1 (or atx + n, ifthe interval 
width is n), ormay use a IPx or "Px formula that allows the partial interval 
to be included for the limited information it contains. 

The simplest option is to estimate "Px from observations not censored 
in the interval, using the anniversary or curtate sam pie (CS) estimator: 

"Px, curtale sampIe = 1 - (,.Dx - "Dr.c, x - "DRc, x)l 

(4.2) 

= 1 - ("Dx - "Dc, x}/[N(x) - Ndx» 

where Nu;(x) represents all observations left-censored in the interval (those 
individuals observed from a point after x to the point x + n), and NRdx) 
represents all observations right-censored in the interval (individuals observed 
from x to a point before x + n). The terms " Du;, x and ,,~c, x are subsets of 
Nu;(x) and NRdx), respectively, comprising all individuals observed for only 
part of the interval who experience the terminating event during the time 
they are observed. The expression is generalized by setting Ndx) = Nu;(x) 
+ NRdx), and "Dc,x = "Du;, x + "DRC,x' 

The reader should find expressions ( 4.1) and (4.2) intuitive. Both estimate 
the probability ofthe event from the proportion ofthe sampie who experience 
it in the interval. Expression (4.2) is used for intervals in which part of the 
sampie is interval-censored. It deletes the partly observed subset, since the 
subset does not provide complete information on the event probability. 

Where part of a sampie is right-censored, (4.2) generalizes to (4.1) if 
interval widths n are allowed to vary such that a single individual is censored 
or terminates at each interval end point. In this case, the number of intervals 
in the table will be the same as the initial sampie size N(O). Bach "jPX term 
will be 1.0 or [N(x) - 1]1 N(x), depending on whether the individual changing 
status at the interval end point x + nj is censored or terminated. Survival 
probabilities ,,~x satisfying this condition are product limit (PL) estimators 
(Böhmer, 1912; Kaplan and Meier, 1958). They extract all ofthe information 
to be had from the source data, but are rarely used where sampie sizes are 
large enough to generate ties between censorship and termination at some 
durations x + nj. 

Both the unadjusted ("Px) and product limit (,,~x) estimators (4.1) and 
the curtate sampie estimator ( 4.2) are maximum likelihood estimators (see 
Appendilr 1A.4) and are Fisher consistent: if the probability of censorship is 
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Table 4. 1. Survival Status of Breast Cancer Patients First Seen 
between 1956 and 1961. One-Year Intervals.a 

Source: Drolette (1975) 

Total Right-censored 
Start of 
interval Number Number 

(x) at risk Events at risk Events 

0 350 74 0 0 
1 276 48 45 1 
2 184 31 50 0 
3 103 10 36 1 
4 58 4 28 0 

• Depending on measurement precision, the interva1 indexes used in Iife tables may or may not 
correspond closely to the exact interva1 values shown. For a discussion ofthis point see Appendix 
4A.I. 
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independent of the event risk, sampies drawn from a population with the 
interval survival probability 8 have the expected survival rates E [nPx, unadjustedl 

= 8 and E [nPx,curtatesampiel = 8. 
Tables 4.1 and 4.2 illustrate calculation of survival probabilities by 

expressions (4.1) and (4.2), with a data set from Drolette (1975). In the 
initial interval, nPx, uDadjusted [expression (4.1) I is used as none ofthe 350 cases 
entering the study were observed for less than 1 year. In the second and later 
intervals, substantial numbers of cases are right-censored by arrival at the 
study cutoff point and the curtate sampie estimator nPx, CUrtate sampIe [expression 
(4.2) I is used. 

4.2.2. Parametric Estimators 

A number of expressionsare available that include the incomplete ex
perience of the censored sampies NLC(x) + NRdx) in estimating nPx. The 
procedures begin by finding the proportion of censored cases in the interval 
who survive to their points of censorship, which we may call nPx, partial. For 
right interval-censored observations· these proportions are: 

nPx, light partial = 1 - nDRC, xl NRdx) (4.3) 

To relate nPx, light partial to nPx, the survival distribution needs to be pa
rameterized (that is, assigned a mathematical form). In the simplest case, we 
approximate the number of survivors Ix at duration x by the linear function 

• Left interval censorship is less often encountered and is discussed in Appendix 4A.3. 
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Table 4.2. Estimated Proportion of Table 4.1 
Sampie Surviving Each Interval, 

Using es "Px Estimator 

.P ... onodjulted = 1 - .D .. / N(x) 
"P ... _.mpte = 1 - (.D .. - .Dc ... )/[N(x) - Nc<x)] 

,Po.uftodjUlled = 1 - 74/350 = 0.7886 
,P,. __ .... = 1 - (48 - 1)/(276 - 45) = 0.7965 
,P2._ ........ = 1 - (31 - 0)/(184 - 50) = 0.7687 
'Pl ....... te.mple = 1 - (10 - 1)/(103 - 36) = 0.8657 
,P4, ... .-ampie = 1 - (4 - 0)/(58 - 28) = 0.8667 

CHAPTER 4 

Ix = a + bx. When survival is linear, deaths in the unobserved part of any 
censored interval will equal deaths in the observed part. For the right interval
censored nPx estimator, we therefore have: 

In the expression nPx is estimated by doubling the number of events n~C. x 

in the partial interval to approximate events in the complete interval. No 
adjustment is needed in the denominator, since the new deaths imputed to 
the numerator will be to individuals already counted in NRdx) as survivors 
at censorship. 

To estimate nPx using botb the censored and uncensored observations, 
we may add the numerators and denominators ofthe curtate sampie estimator 
(4.2) and the estimator under censorship (4.4). Since known events in the 
censored sampie number "DRC• x, and since the observation times for the 
censored sampie are about halfthose for the uncensored sampie, by convention 
we assign the censored observations one-half the weight of uncensored ob
servations. [Formally, we combine (4.2) with the second form of(4.4).] By 
that convention, for a linear nPx estimator incorporating right interval-censored 
observations we would have: 

{[N(x) - NRdx)) + !NRc(x)} 

= 1 - nDx/[N(x) - !NRdx)] 

This expression may take negative values when a high proportion of the 
censored sampie NRdx) are terminators. To recognize the estimate range, 
the expression may be written: 
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"Px.linear = greatero!{O, 1 - "Dx/[N(x) - iNRdx)]} (4.5) 

By (4.5), "Px.linearis set equal to Owhen "Dx> [N(x) - i NRdx)] , sincethe 
right-hand expression then becomes negative. 

Tbe linear estimator is most appropriate for distributions in whicb mor
tality worsens gradually over time. To see that, notice that for equal numbers 
of events in tbe observed and unobserved parts of the right-censored interval 
tbe event probabilities will be "DRC.xl NRdx) and "DRC.xl [NRdx) 
- ,,~c. x], respectively. Tbe sampie size is smaller in the unobserved part of 
the interval due to the subtraction from NRd x) of deaths occurring in the 
observed part. As a result, the event probability is greater and the survival 
probability lower. 

A formula that is more widely used than (4.5), because it does not require 
knowledge of events occurring in the censored interval [the subset ,,~C,x 
belonging to NRdx)], is the byperbolic (or .. actuarial") formula. • For sampies 
with right interval-censorship in (x, x + n) the expression is: 

"Px. hyperbolic = 1 - "Dxl {N(x) - i [NRdx) - "DRc, x]} 
(4.6) 

= 1 - "Dx/[N(x) - i "WRC• x] 

In the expression, the term NRdx) - ,,~c,x = "WRc,x represents withdrawals, 
comprising individuals censored in tbe interval wbo were surviving at last 
contact. Tbe quantity "WRC,x will be known even wben "DRC.x cannot be 
separated from "Dx • Tbe reader can confirm that the expression is found by 
adding the numerators and denominators of the curtate sampie estimator 
( 4.2) and the right interval-censored hyperbolic estimator: 

"Px. RC hyperbolic = 1 - "DRC• xl {"DRC, x + i [NRdx) - "DRC. x]} 
(4.7) 

= 1 - "DRC. xl("DRC. x + i "WRC• x) 

In contrast to the linear estimator, tbe byperbolic imputes a bigher prob
ability of survival to the unobserved part of tbe interval than to tbe observed 
part. It is tbus best suited for sampies in whicb the survival probability is 

• The earliest use ofthe fonnula I have found is AnseU (1874), a1thougb it may be older. Among 
modem works, Berkson and Gage (1950) provide an illustration ofits computation for medica1 
follow-up studies. The reader should also see lain and Sivin ( 1977) and Birnbaum ( 1979) for 
critiques of the method. 



80 

Tsble 4.3. Proportion of Table 4.1 Sampie 
Surviving Bach Interval, Using linear 

and Hyperbolic "p" Estimators 

.Po.",,",,- = I - .Do/N(O) = I - 74/350 = 0.7886 
J1x,_ '" 1- "D,,/[N(x) - iN.dx») 

.P •• a- = 1- 48/(276 - 45/2)" 0.8107 

.P2.- = I - 31/(184 - SO/2) = 0.8050 

.P3,- = 1- 10/(103 - 36/2) = 0.8824 .P,,_ = 1- 4/(58 - 28/2) = 0.9091 

J1x,..,.,....... = I - "D,,/{N(x) - HNIlc(x) - Ac.,,]} 
.P •. ~ = I - 48/[276 - i(45 - I») = 0.8110 
.P2. ___ = 1- 31/[184 - 1(50 - 0») '" 0.8050 
.P" ....... = I - 10/[103 - 1(36 - I») = 0.8830 
.P4,~ = I - 4/[58 - 1(28 - 0)] = 0.9091 

CHAPTER 4 

improving over time. Of necessity, it is also used when interval-censored and 
uncensored events cannot be separated.· 

Table 4.3 displays survival probabilities under ,.Px.1III8II,justed and the two 
parametric estimators in this section, for the data of Table 4.1. Tbe reader 
might also examine Appendix 4A.3 and Table 4A.9 for survival under ex
ponential estimators. My own preference is for the nonparametric es estimator 
[,.px. curtatc sampIe, expression ( 4.2)], largely through Iack of conviction that much 
is gained from the scraps of information censored observations provide. 

4.2.3. Bias 

Tbe reader might notice that the parametric survival estimates in Table 
4.3, and the additional estimates for the same data set in Table 4A.9, are 
above the curtate sampie estimates of Table 4.2. Tbe comparison suggests 
that survival probabilities are greater for the censored sampie in each interval 

• Uncertainty as to whether events are interval-censored occurs a1m0llt exclusively in human 
morta1ity studies when the study sampIes are compromised by 10IlIIeS to follow-up. In the presence 
of ull!lCheduled loIses, it beoomes possible that at 1east some potential witbdrawals are interdicted 
by death, and tberefore that at least some deaths lIIISiped to uncenaorecl interYaIs ("D" - "Dac.,,) 
might reasonably be consideml to belolll to the censored subset ("Dac.,,). The actuariaI accepts 
interval-censored events, but assips those and uncensored observations equal weight. which 
makes the number censored immateriaI to the estimation of "P", 

There is Iess to recommend the actuarial when no losses to follow-up occur or when the 
terminatilll event is not death. In these cases, events in the interva1are Q/ways distinguishable 
as belonailll to the censored or uncensored sampie and the raean:ber can apply jucJament as 
to the most appropriate estimatilll formula. 
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than for the uncensored sampie. The reader may confirm that this is the case 
by contrasting the proportion ofterminators in each uncensored interval sam
pIe in Table 4.1 with the proportion ofterminators in each censored sampie. 
Interval 1, for example, includes 45 persons but only a single event in the 
censored sampie, as compared with 276 - 45 = 231 persons and 48 - 1 = 47 
events in the uncensored sampie. In a data set as large as this, consistently 
higher or lower survival in interval-censored sampies implies biases in the 
design or implementation of entry or cutoff decisions. A test for censorship 
bias (more precisely, for consistency between the curtate and partial "Px es
timators) using the D statistic will be introduced in Section 4.8 [expression 
(4.55); aversion ofthe test was presented as expression (3.19)].* 

Censorship biases can arise through oversights in study design in several 
ways. First, it is critical that decisions respecting the start and duration of 
observation on the individuals in the sampie precede sampie selection, and 
not be subject to negotiation between the investigator and individual study 
participants. If study entry or cutoff points are subject to manipulation by 
participants, durations of observation at censorship become confounding 
variables in the analysis. (Tbe data ofTable 4.1 may have been compromised 
by release from observation of persons whose cancers were in remission and 
whose interest in the study had waned. In this case, the losses would contribute 
to underestimation ofthe survival probability.) In the same category as con
founding effects are losses to follow-up and investigator-instigated dismissals 
of participants. The bias does not arise in retrospective studies, since the 
information they contain is historical and observation times are not subject 
to negotiation or compromised by sampie losses. 

Other biases exist that do not show up as differences between survival in 
censored and uncensored sampIes. Fundamental problems are created by 
selectivity biases that result from refusals to participate in the study, and from 
the withholding of information by participants. Other problems arise when 
there is uncertainty as to the start of risk or time of event occurrence. Medical 
studies, for example, may follow the progress of an illness from the date of 
diagnosis unless the date of onset ofthe disease is known fairly preciseIy. As 
an outcome, the occurrence of pregnancies may not be reported until the 
second or third trimester, when they are evident. (When reporting may be 
delayed, durations of observation on individuals not reporting an event as of 
the cutoff date need to be reduced in some measure to preclude misclassifi-

• Chiang (1968, pp. 287-288), Mode (Mode et aJ .• 1977), and others have suggested that un
scheduled withdrawals be made a subset of the event category nDx, and that cause-eliminated 
rates (Section 5.4) be used to estimate survival probabilities as they would appear jf no lasses 
occurred. The approach assumes that withdrawaIs are uncorrelated with survivaI, and it would 
not be used jf the D statjstic jndicated that unscheduled withdrawaIs selected for survivaI status. 
For an application ofthe formula to the data ofTable 4.1, see Section 5.4. 
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cations. There are no formal decision roles for the amount of adjustment the 
cutoff points might require.) 

The survival estimates of the next section, found from midyear popu
lations and annual deaths or other events, become biased when the quality 
of age or event information is low, or when one data source is substantially 
more complete than the other. If the data are for national populations, the 
researcher usually has access to independent commentary on data quality. 
For smaller data sets, as for survey and follow-up data, the investigator must 
be on guard for suspect results. 

4.3. 1- AND n-YEAR SURVIVAL PROBABIUTIES FROM 
MIDYEAR POPULA TION ESTIMATES 
AND ANNUAL DEATHS 

In most national life tables estimation of survival probabilities begins 
with information on the midyear population by age and on annual deaths 
rather than information from sampie surveys. The population and vital sta
tistics information do not provide survival probabilities directly, but are used 
to constroct age-specific death rates: 

The ASDR is not the probability of an individual dying in the course of 
the year, since the midyear population in an age interval, nNx, is not a count 
ofthe persons initially at risk ofdying, N(x). For n > 1 year, nNx includes 
persons at more than one age, and for all intervals n it excludes those who 
die in the tirst half of the year, before the population enumeration.· 

If the midyear population is a reasonable estimate of the population at 
risk except for its omission of January-June deaths, we should be able to 
reconstruct the population initially at risk by adding a fraction of the annual 
deaths to the midyear count. At most ages the corrections will be about half 
ofannual deaths, giving the estimate (Milne, 1815, pp. 97-1(0): 

• Tbe reader might note that the omission of deaths would not be corrected by an enumeration 
on January I or December 31, as the January and December populations are also not the 
population surviving as of exact age x. Moreover, a January count would exclude any births 
that occurred during the year, and both January and December counts may err with respect to 
net migration. The counts might thereforc be either larger or sma1Ier than the midyear estimate. 

For these reasons, except for the lasses duc to mortality, a midyear enumeration is more 
ollen representative ofthe average population size than either end point. In effect, it is balanced 
with respect to the left and right interval-censorship produced through &ging across interval 
categories and through migration. 



THE UFE TABLE I 83 

N(x>W- = lNx + i lDx 

where lNx represents the midyear population and 1 Dx represents annual deaths. 
As before, we define N(x) to be the population at risk at exact age x. 

When wider age intervals are used for the population and death counts, 
we require a slightly revised formula for N(x): 

(4.8) 

Tbe formula estimates N(x), the population at exact age x, by adjusting from 
the complete interval population "Nx to the population at the centraI age in 
the intervaI, about "Nxl n for an interval of n years, and adding deaths in the 
first half of the intervaI, at most ages about half of total deaths. 

Table 4.4 displays the U.S. 1980 census population at ages 0-84 and 
85+, and U.S. 1980 deaths from vital statistics. In column 5 ofthe table the 
population surviving as of the start of each interval (at xth birthday) is esti
mated by expression (4.8). As a check on the expression, in column 6 we 
show the mean annual number of U.S. births .. Bo during the period each 
cohort was bom. At the younger ages the estimated population surviving at 
age x exceeds U.S. births x years earlier because of immigration, but both 
at younger and at older ages the correspondence is adequate to suggest that 
N(x) is reasonably approximated from the intervaI population and deaths 
using(4.8). 

Having found the approximate population at risk at the beginning of 
each age interval and knowing the number of deaths in the intervaI, the prob
ability of surviving to the start of the next interval is found as the proportion 
of the risk population not dying, or 

Table4.4. V.S. 1980 Population, Annual Deaths, and Estimated Survivors 
at xth Birthday 

Census Risk Original birth 
Int. population Deaths population a cohort 

Ages n nNx nDx N(x>U- .. 0 0 

0-4 5 16,348,300 53,713 3,296,500 3,116,000 
5-14 10 34,942,100 10,689 3,499,600 3,485,000 

15-24 10 42,486,800 49,027 4,273,200 4,195,000 
25-44 20 62,716,500 108,658 3,190,200 3,160,000 
45-64 20 44,502,600 425,338 2,437,800 2,770,000 
65-74 10 15,580,600 466,621 1,791,400 2,760,000 
75-84 10 7,728,800 517,257 1,031,500 2,510,000 
85+ 2,240,100 357,970 357,970 

• N(x)._ = .N"I" + i .D" at ages 0-84. At ages 85+ we set N(x) equal to .D" since tbete lIJe no survivors 
beyond tbe intervaI. 
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for single years ofage. The probability ofsurviving n years will be·: 

,.Px, linear = 1 - ,.Dx/ N(x) = 1 - ,.Dx/(,.Nx/n + ! ,.Dx) 

Since the expressions allow negative survival probabilities if deaths at 
ages x and above exceed the estimated population alive at the xth birthday, 
we generalize the survival probability as: 

,.Px. linear = 1 - ,.Dx / N(x) 
(4.9) 

= greater 0/ {O, 1 - ,.Dx/(,.Nx/n + ! ,.Dx)} 

Formally, ,.Px, linear becomes 0 in (4.9) when nDx > 2(,.Nx/n). In words, the 
proportion surviving the complete interval is set at 0 if more than half die by 
midinterval. 

The approximation, N(x) = nNxln + ! ,.Dx, is not satisfactory for infancy 
and early ehildhood, where most of the deaths that occur come before the 
interval midpoint, or for the final age interval, whieh has no survivors. Con
ventions for these ages are given in Section 4.5. 

Besides the linear formula, the reader will sometimes see the exponential 
estimator (Gompertz, 1825; Farr, 1864, pp. xxili-xxiv): 

(4.10) 

The exponential is widely used in epidemiologie studies where age-specifie 
death rates (incidence densities) can be calculated, but is less accurate for the 
complete life table than the linear formula. The lower accuracy occurs because 
the exponential assumes a constant mortality risk in the interval, while the 
linear formula assumes gradually worsening mortality. After early ehildhood 
human mortality worsens slowly with age, at a rate close to that of the linear 
expression. t 

Table 4.5 displays the caleulation of the U.S. 1980 life table nPx terms 
by the linear and exponential formulas. (We inelude ,Po estimates for com-

• Tbe numerator and denominator of tbis expression are sometimes divided by the population 
nN" to produce an alternate form oftbe expression: nP"._ = 1 - nM,,/(1/n + inM,,). We 
caution that because of rounding of tbe nM" terms to only two or three significant digits in 
most published sources, the expression may yield poor NP" estimates. 

t U.S. decenniallife tables use the linear formula at Most single year ages. For the complete 
methodology underlying tbe NCHS 1979-1981life tables, the reader may consult NCHS ( 1987). 
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Table 4.5. Linear and Exponential "p" Estimates 
for the Data of Table 4.4 

,Po. H_ = 1 - ,Do/(,No/5 + ! ,Do) 
= 1 - 53,713/(16,348,300/5 + 0.5 x 53,713) = 0.98371 

loP,. H_ = 1 - loD,/(loN',/1O + 1 IoD,) 
= 1 - 10,689/(34,942,100/10 + 0.5 x 10,689) = 0.99695 

IOP"._ = 1 - loD"/(loN',,/1O + 1 IoD,,) 
= 1 - 49,027/(42,486,800/10 + 0.5 x 49,027) = 0.98853 

2OPz5._ = 1 - :zoD2,/GoNlS/20 + l:zoDlS) 
= 1 - 108,658/(62,716,500/20 + 0.5 x 108,658) = 0.96594 

2OP4'.ti_ = 0.82552 
IOP6'._ = 0.73952 
IOP7,. _ = 0.49854 

,Po.OlIP = e-'sDoIsNo = e-5('3.713116.348,300) = 0.98371 
IOP, ... P = e-lo,oD,!,oN, = e-IO (IO.6I9f34.M2,IOO) = 0.99695 
IOP". 0lIP = e-IO,oD,sI,oN" = e- IO (49,Cl27142,4I6.1OO) = 0.98853 
2OP2'.0lIP = e-:zo",D2SfaN2S = e-2O(10I,6'.,62,716,500) = 0.96594 
2OP4'. 0lIP = 0.8260 1 
IOP6'.0lIP = 0.74120 
IOP7,.OlIP = 0.51209 
..-a,P., = 0 
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pleteness, but will introduce better estimating formulas for these ages in Section 
4.5.) Comparing the estimates, they will be seen to be very dose at ages under 
65, where mortality is low. They begin to diverge after about age 45, from 
which point the linear estimates would be preferred. 

For the final age category, ages 85+, we have set .,-ssPss = ooPss = 0, 
since no one survives forever.* A higher terminal age category, such as 90+ 
or 95+, would also be appropriate for the contemporary United States, as 
about one-fourth of infants will live to age 85 at current mortality rates. 

In Table 4.6 we draw together Iife tables derived using N(x) and using 
"Nx , by introducing tbe conversions from one population base to the other. 
To estimate N(x) from deatbs and the survival probability we use: 

(4.11 ) 

• We use both w (omega) and 00 (infinity) to represent tbe oldest age to whicb anyone survives. 
Tbe tenns ",Pt (ages f to 00) and --JPt (ages f to w, the intervaI width is w - f) will both 
denote tbe survival probability ror the final age intervaI, a1ways O. Note that we use w - f 
but not 00 - f, since 00 - f= 00. 
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TBble4.6. N(x) and nN" Estimates for the Data of Table 4.1 

Start of Curtate estimator Linear estimator 
interval 

(x) NP" ND,,- NDc,,, N(x) .N" .P" .D" N(x) .N" 

0 0.1886 14 350 313.0 0.1886 14 350.0 313.0 
1 0.1965 41 231 201.5 0.8101 48 253.5 229.5 
2 0.1681 31 134 118.5 0.8050 31 159.0 143.5 
3 0.8651 9 61 62.5 0.8824 10 85.0 80.0 
4 0.8661 4 30 28.0 0.9091 4 44.0 42.0 

Since "qx. unadjUlled = ,.Dx / N(x), the expression can be interpreted as an esti
mator for N(x) in the absence of censorship, or more broadly, as an estimator 
equivalent to the unadjusted estimator for sampIes that merge censored and 
uncensored observations. [Table 4.4 displays N(x) values for the 1980 V.S. 
population. After completing Section 4.5 the reader can use ( 4.11) to confirm 
that N( 1) = 3,557,400.] 

The sampIe sizes N(x) of Table 4.6 are the denominators of (4.2) and 
( 4.5). For ,.Nx we have used ( 4.8), rearranged as 

,.Nx• curtate sampIe = n[N(x) - !(,.Dx - ,.De• x)] 

ror the es estimator (4.2), and as 

,.Nx• linear = n[N(x) - ! ,.Dx ] 

for the linear estimator ( 4.5).· 
The reader will note that both N(x) and ,.Nx are substantially larger for 

the linear estimator than ror the eurtate sampIe estimator, owing to the high 
proportion of observations that are censored in each interval. 

Table 4.7 describes types of data sets that might be analyzed by the various 
life tabte formulas, and also hints at how broadly the concepts of"population" 
and "death" can be interpreted. The uses span all major demographie events. 

• Under the actuarial [expression (4.6)] .N" is not a linear function of N(x) and ND". A c10ser 
approximation is provided by tbe exponentia1 estimator: 

For .D" > 0 tbe estimator is found by rewriting (4.10). 
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They have in common that the event itself occurs only once. Ordinary inci
dence and prevalence rates are more convenient for transitions that may be 
repeated, such as transitions between health and illness, marital states, mi
gration histories, and cumulative childbearlng. Life tables are also not often 
used to reconstruct observable population characteristics, such as age distri
butions, or distributions by marital status or family size. Innumerable pop
ulations can share the same life table; and therefore to reproduce a particular 
one will require information beyond what the table contains. 

4.4. COMPLET/NG THE L/FE TAßLE 

The variety of "Px formulas available to the researcher results in part 
from differences in the nature of the source data used for the tables, and in 
part reflects assumptions external to the data itself. Fewer assumptions are 
needed for the remainder of the life table, and the reader who is comfortable 
with the logic underlying "Px estimates should have no difficulty. 

Having found "Px, the next step is to estimate the number of survivors 
Ix from birth or from the onset of risk to age or duration x. The computation 
begins with selection of a radix 10 , interpreted as the number of births that 
begin the life table (most often 10 is 1 or 100,000). Ix is found as 10 times the 
product ofthe individual survival terms "Pa for ages under x. In demographie 
notation: 

x-" 

Ix = 10 ("PoX"P"X"P2n)· •• ("Px-,,) = 10 11 "Pa = Ix-" "Px-" (4.12) 
a-O 

The product expression n "Pa represents the product of all "Pa terms 
from a = 0 to a = x - n. The use of the product comes from the fact that 
the chance of surviving to a given age must equal the chance of surviving to 
the youngest age ("Po) times the conditional probability ("p,,) of surviving to 
the next age after surviving to the first age, and so forth. It is not necessary 
that all intervals be of the same width: for product limit tables the intervals 
break at each event or point of censorship. Nationallife tables are constructed 
for single years ofage ("complete" life tables) or using ages 0, 1-4,5-9, 10-
14, ... , 75-79, 80-84 ("abridged" life tables). The final category is usuaIly 
75+ or 85+, although for developed countries higher terminal ages are in
creasingly needed. Life tables for other events or other types of populations 
would use other intervals. 

We interpret Ix as the number of survivors to age or anniversary x, similar 
to the quantity N(x) for real populations except that N(x) may be independent 
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Table 4.7. Examples of Events Measured Using Life Tables 

Type of event 

Mortality 
Probability of surviving from age 

x to x + n, life expectancy 
Probability of surviving at various 

durations from onset or 
diagnosis of a life-threatening 
disease 

Infant mortality rate 

Morbidity 
Rate of spread of an epidemie 

Rate of recovery from accident or 
disease 

Duration of hospital stays 

Births and associated events 
Proportion ofwomen reaching ith 

parity between ages x and 
x + n, cumulative proportion 
reaehing ith parity by age x 

Interbirth interYals, proportion of 
women stopping childbearing 
at parity i 

Duration of lactation 

Data requirements 

Central population (~N,,) from census, Deaths 
(.D .. ) from vital statistics 

Survivors at x yean after onset or diagnosis 
[N(x)] from a survey, Deaths in next n years 
(.D .. ) from same source 

Births [N(O)] from vital statistics, Deaths (IDo) 
from same source; or births [N(O)] and 
deaths (IDo) from a survey 

Initial population [N(O)] from census or survey, 
estimated as exposed population less 
diagnosed cases, Events (~D,,) from vital 
statistics or surveys. [Tbe subscript x 
represents the time since start of epidemie, 
but both population and events may also be 
broken down by age groups. Since the 
population is normally far !arger than the 
number of cases, the simple incidence (.D,,) 
is also a good measure ofthe epidemie's 
spread 

Persons not yet recovered as of duration x from 
initial event [N(x)] from survey. Recoveries 
between x and x + n (.D,,) from same source 

Persons still in hospital as of duration x from 
admission [N(x)) from hospital records, 
Discharges (.D,,) from same source 

Women at parities less than i as of age x [N(x)], 
Births (.D,,) at ith parity between ages x and 
x + n, both from surveys; or Women at 
parities less than i at central ages (.N,,) from 
census, Births (.D,,) at parity i from vital 
statistics. [Rates may also be calculated for 
males, and can be calculated by duration of 
marriage or cohabitation from surveys] 

Women with no further births as of duration x 
from previous delivery [N(x)], Births (~D,,) 
occurring between x and x + n, both from 
surveys 

Women lactating at duration x since ehildbirth 
[N(x)) from a survey, Number stopping 
breastfeeding between x and x + n (~D,,) 
from same source 

Con/imur/ on lIex/ ~ 
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Table 4. 7. Continued 

Type of event 

Duration of contraceptive use. 
contraceptive failure rate 

Marriage and divon:e 
Proportion marrying between ages 

x and x + n, cumulative 
proportion married by age x 

Proportion of marriages ending in 
divorce or wieJowhood 

Labor force 
Age at first entry into Iabor force 

Job promotion rates, job changes 

Migration patterns 
Proportion of population 

changing residenee over n 
years, proportion who have 
nevermoved 

Data requirements 

Persons continuing contraception at duration x 
sinee first use [N(x)], Terminations or 
pregnancies (,.Dx) from x to x + n, both 
from surveys 

Persons never married as of xth birthday [N(x)] 
from a survey, Flrst marriages (.Dx ) from 
samesource 

Persons in marriage [N(x») as of duration x 
sinee wedding or cohabitation, Dissolutions 
(,.Dx) from ages x to x + n from same source 

Persons never in labor force as of xth birthday 
[N(x»), Entrants into Iabor force (.Dx), both 
from surveys 

Persons in same job at duration x from start of 
employment [N(x»), Persons promoted or 
changingjobs over next n years (.Dx), both 
from surveys 

Persons [N(x») in location i at time x, Number 
moving (.Dx ) by x + n, both from surveys; 
or Persons bom in location i [N(x») from 
vital statistics or CCDSUS. Retrospectively, 
persons in location i at time x by duration 
sinee birth or arrival. Movers (.Dx) or 
nonmovers [N(x») from Iater censuses. 
[Distinctions may be Made between first-time 
and repeat migrants, or between migration 
destinations. Intermediate moves in the 
interval x to x + n are usually ignored in 
favor of simple origin-destination patterns.) 

ofsurvivors at nearby ages N(x - n), N(x + n), while at all ages I,,:<!: Ix+,.. 
(In real populations eacb cobort represents a different year's births and eacb 
may experience slightly different mortality rates. The life tabte follows the 
fixed cobort /0, whicb changes onty as it is gradually depleted by deaths.) 

After finding I" we calculate ,.d", representing Jife tabte deaths in the 
interval x to x + n. Since I" represents survivors at x and 1,,+,. represents 
survivors at x + n, interva1 deaths should number: 

(4.13) 
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Tbe ,.dx tenn is analogous to deaths ,.Dx in real populations, just as Ix is 
analogous to N(x). 

We define the life table population to be uncensored, or the subtraction 
in (4.13) would not always bold. Expression (4.1) is also for uncensored 
observations. We make use ofthat fact and the correspondence of ,.dx to ,.Dx 

and Ix to N(x) to equate 

,.Px. ull8djustcd = 1 - ,.Dxl N(x) 

with the life table survival probability: 

(4.14) 

To find the probability of surviving from age x to x + n from a census 
population ,.Nx and annual deaths ,.Dx• in (4.8) we made use of the linear 
approximation [expression ( 4.8)] 

Tbe expression can also be used to estimate a census or interval population 
,.Nx for ages x to x + n from N(x) and ,.Dx • and to find the life tab1e population 
,.Lx equivalent to the census population ,.Nx • We bave*: 

,.Nx• linear = n[N(x) - I,.Dx1 

(4.15) 

For the exponential survival distribution ( 4.1 0). the life table population 
ages x to x + n will be [expression (2. 7d)]: 

• Formally, "L" is the population or time lived in the interval x 10 x + n: 

Ir individuals arc riaht-censorcd at random times during the intervaJ. their survivaI probability 
10 censorsbip is given by "P" ......... = "L,,/(nl,,). The equivalencc betwml right interval
censored obIervatioDs and the interval population arises from the fact tbat both represent survivors 
observed at ... betwml x and x + n, as also does "N". In "P" ....... the number surviving 
is converted 10 the proportion surviving. Ir no mortality occurrcd, the Dumber surviving would 
benlJe• 
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{o 
"Lx• exponcntilll = 

[n(lx - Ix+,,)]/(ln/x -lnlx+,,) 

Ilx+" = 0 
(4.16) 

Ilx+" > 0 

The exponential is undefined at Ix+" = 0, and in (4.16) we have arbitrarily 
set "Lx • exponentilll to 0 where that occurs. For the interval, either (4.15) or 
another "Lx estimator can be substituted for ( 4.16) provided that the interval 
width n is known. 

The "Lx term has two interpretations. It is the population that would be 
found in the age interval x to x + n if annual births numbered 10 and the 
survival rates were those given by the nPx series, and it is a measure of person
time lived in the interval by the Ix individuals alive at its start. The interpre
tation of "Lx as a population is brougbt out in Fig. 1.1, which superimposes 
the U.S. 1980 "Lx distribution over the 1980 population. 

From the correspondence of "Lx to "Nx and "dx to "Dx, we can construct 
a life table age-specific death rate equivalent to the population ASDR, 

The life table ASDR is 

(4.17) 

For Most populations the actual and life table ASDRs will be virtuaI1y identica1 
since the life table is constructed directly from the population and event counts 
at each age. The actual and life table ASDRs will also be near "qx/ n at Most 
ages, since "qx and "mx differ in the ratio of their denominators, Ix and "Lx. 
At ages oflow mortality "Lx !:!! nix. 

Interpreting the "Lx series as a population age distribution, we may also 
construct survival estimates across age intervals, by the formula 

"SX+(I/2)n = "Lx+,,/ "Lx (4.18) 

The survival terms "SX+(I/2)" are distinct from the "Px terms from which the 
life table is constructed. Whereas "Px survives individuals from exact age x to 
exact age x + n, "Sx+(I/2)n survives the population initially ages x to x + n 
into the next age interval, x + n to x + 2n. The survival probability rougbly 
corresponds to survival from the interval midpoint x + in to the point 
x + 1 in. It is used principally for population projections, where an observed 
population "Ni') at time t is projected forward n years to become "Ni'::) at 
time t + n. 
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For an initial population of 10 = 1 or 100,000, nLx also represents the 
amount of time lived in the interval x to x + n. If no mortality occurs, the 
amount of person-time lived in an interval of n years will be nix; with low 
mortality, the time lived will be near nix; at ages where almost no one survives, 
nLx will be near O. 

As a measure oftime lived in an interval, nLx is the basis for an important 
life table summary indicator, the mean future lifetime or life expectancy (ex), 
defined as: 

( 4.19) 

The summation La nLa represents the sum of all nLa terms from a = x to 
a = w - n. The final interval, nL.,-n, terminates at w, the oldest age to which 
anyone survives. Hence, (4.19) is the ratio of persons ages x and above in 
the life table to persons reaching age x, or time Iived after age x per survivor 
at x. The expression only sometimes holds in real populations. Fluctuations 
in actual births and deaths over time disturb both the numerator and denom
inator ofthe equivalent real population estimator, 

(4.20) 

To facilitate calculation of ex , the term Tx is commonly included in life 
tables. Tx is the sum of the population ages x and older: 

(4.21) 
a=x 

To represents the complete life table population. It can be used to calculate 
the life table crude birth rate or death rate, which are both lotTo. Note also 
that eo = To/Io: in the life table the crude birth and death rates are simply 
the inverse ofthe life expectancy. (The 1980 U.S.life eXpectancy of74 implies 
that 1 /14 of the population, or 1.4% should die and be replaced by new 
entrants each year. The actual 1980 birth rate was 1.6% and the death 
rate 0.9%.) 

For some distributions the life expectancy ex cannot be estimated, either 
because the life table spans only part of the survival distribution or because 
no satisfactory estimate of _ fL" the time lived in the final age or duration 
interval, is available. In that event, in place of ex the partial life expectancy 
to age f may be used. The partiallife expectancy is given by: 
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f-n 
!-xex = L nLa Ilx = (Tx - Tf)/Ix (4.22) 

A measure that combines death rates and life expectancies is population 
entropy, or the rate at whieh lives are lost relative to life expectancy, approx
imately: 

x x 

The expression sums the product of deaths in eaeh interval times the midin
tervallife expectancy, and divides the result by the estimate as it would appear 
if all deaths occurred at the single age eo. (Where all deaths occur at age eo 
entropy = 0; it rises to 1.0 in life tables with a constant survival probability 
p independent of age. See Fig. 6A.l.) 

Entropy is most often seen in an incomplete form as Years 01 Potential 
Life Lost (Centers for Disease Control, 1986) which multiplies the observed 
number of deaths for one or more causes at eaeh age by the life expectaney 
at the middle ofthe age interval (or by the partiallife expectaney to age 65, 
for estimates of years of potential working life lost). The sum aeross all ages 
becomes a erude estimator of the overall cost in lives of the causes of death 
of interest, either 

YPLLj = L "Dx• j ex +( 1/2)11 
x 

or, for the working ages, 

YPWLj = L "Dx• J 6S-[x+(1/2),,)ex +(1/2)" 
xs6S-" 

(4.24) 

( 4.25) 

In the expression, j denotes the selected cause or causes of death. [The reader 
should note that the measure is approximate, since the life expectancy that 
is used incorporates the effects of cause j deaths at ages x + n and above. 
Substitution of cause-eliminated life expectancies ex+( 1/2)11. -j for ex+( 1/2)11 would 
better estimate the cost in lives associated with cause j. See Sec
tion 5.4.] 

In some worles the linear "Px formula ( 4.9) is generalized by substituting 
( 1 - nax/ n )"Dx for i "Dx in the denominator, using nax to represent the mean 
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number of years lived in the interval x to x + n by those who die in it.· (If 
the mean lifetime is "ax years, the proportion dying in the tirst half of the 
interval is 1 - "ax/n.) With the change we have 

N(x) = [,.Nxln + (1 - ,.oxln),.Dx] 
(4.26) 

(4.27) 

Since ,.Lx is the number ofyears lived by all persons in the interval and 
nlx+,. is the number lived by the survivors, the number ofyears lived by those 
dying will be ,.Lx - nlx+,.. Dividing this quantity by the number who die, ,.dx , 

we find that 

(4.28) 

and that 

(4.29) 

Although ( 4.29) suggests that the "ax terms may be used to estimate "Lx in 
place of (4.15), the "ax terms do not follow a simple pattern from one age 
group to another, probably because of tbe beterogeneity in causes of death. 
As a result, "ax terms are usually calculated after ,.Lx, using (4.28).t 

Figure 4.1 illustrates the principallife table terms using the 1980 U.S. 
life table. 

Of the formulas we have introduced, we emphasize that those for ,.Px 
using (4.5), (4.6), (4.9), and (4.10), and those for ,.Lx using (4.15) and 
( 4.16) incorporate simple linear or exponential approximations and are often 
replaced by other estimating formulas. Formulas (4.l2H4.14), (4.17), 
( 4.19 )-( 4.22), ( 4.28), and ( 4.29) detine relationships among life table terms. 

Table 4.8 illustrates the calculation ofthe life table using ,.Px,curtatesample 

... Fonnally, 1 - "a,,/n also represents the life tahle separation!actor, identifying the proportion 
of deatbs at ages x through x + n - 1 that occur in the calendar year ofthe birthday, ifbirthdays 
are distributed unifonnly during tbe year. The complement, "a,,/n, is the proportion occurring 
in the subsequent year. Separation factors are discussed brießy in Section 1.5. 

t An exception is Schoen (1978; 1988, pp. 13-15), who finds"a" by a quadratic fitting to the 
.M" distribution. Scboen's method yields .P" estimates that are less precise than Keyfitz
Frauenthal estimates (Section 6.2) but competitive with other fonnulas. 
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Figure 4.1. V.S. 1980 lire table, with selected demographie tenns. Source: National Center ror 
Health Statistics ( 1985). 

frorn Table 4.1 and estirnating the life table population nLx linearly, using 
nLx.linear = n(lx + Ix+n)/2. Beginning frorn nPx, and setting the radix ofthe 
table to 10 = 10,000, we have: 

11 = 10 lPo = 10,000 X 0.7886 = 7886 

/2 = /1 IPI = 7886 X 0.7965 = 6281 

Is = 14 IP4 = 4180 X 0.8667 = 3623 

Ido = 10 -11 = 10,000 - 7886 = 2114 

Idl = 11 -12 = 7886 - 6281 = 1605 

ILo = (1)(10 + 11)/2 = (10,000 + 7886)/2 = 8943 
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Tsble 4.8. Life Table for Breast Cancer Patients First Seen between 1956 and 
1961, Using nP..,.curtaleoampie and ..L..,.Ii_'" Source: Drolette (1975) 

Uncensored Probability of Number Deaths 
survival from a1ive between Population Partial 

Int. Number xtox+ 1 atx xandx+l agex life exp. 
(x) at risk Events .Px Ix .dx .Lx ,-xex 

0 350 74 0.7886 10,000 2114 8943 3.00 
1 231 47 0.7965 7,886 1605 7083 2.67 
2 134 31 0.7687 6,281 1453 5554 2.22 
3 67 9 0.8657 4,828 648 4504 1.74 
4 30 4 0.8667 4,180 557 3901 0.93 
5 26 3,623 

Formulas 
,.p ... __ ......... = 1 - (.Dx - .Dc.x)/[N(x) - Nc<x» 

x-. 
Ix = 10 II ,.p. = Ix-. ,.px-• 

....0 

.dx = Ix - Ix+ • 
• L ... u- = n(lx + 1x+.)/2 

/-. / /-xex = ~ .L. I" = (Tx - T/)/Ix 
.·x 

«Tbe radix 10 = 10,000 is used to allow four-digit precision as an aid to readers working the example. A more 
appropriate choice would have Ileen 10 = 1000 given the small initial sampIe size. 

ILI = (1 )(11 + 12)/2 = (7886 + 6281 )/2 = 7083 

IL4 = (1)(14 + 15)/2 = (4180 + 3623)/2 = 3901 

Since the Iife table stops before all individuals have died, the complete 
life expectancy for the cancer sampIe cannot be calculated, but we can find 
years lived during the first 5 years after diagnosis. We have: 

= (8943 + 7083 + ... + 3901 )/10,000 = 3.00 

= (7083 + 5554 + ... + 3901 )/7886 = 2.67 
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These terms show the number ofyears lived from each anniversary to duration 
5.0. For the complete life expectancy ex we would add ",-sLsI Ix (or ooLsI Ix) 
to each ofthe s-xex terms. 

4.5. AGES 0-4 AND 85+ IN HUMAN MORTAUTY TABLES 

While the approximation "Px = 1 - "Dxl("Nxln + ! "Dx} is satisfactory 
at most ages, deaths in the first years of life are concentrated toward the 
beginning of the intervals and require special conventions. At age 0 about 
90% of deaths occur in the first half of the interval, with a mean age at death 
of ,00 = 0.125 year,* and therefore for N(O} we have: 

(4.30) 

This expression will not be highly accurate unless the midyear population 
,No is estimated from vital statistics, as very small children are usually un
dercounted in censuses. If vital statistics are well reported, a simpler and 
better estimate for N(O) is the birth count itself: 

N(O} = ",Bo 

Using births to estimate N(O), the probability ofsurviving from birth to age 
1 is given by: 

,Po = greater 0/ {O, 1 - ,Dol ",Bo} (4.31 ) 

The estimate omits some deaths to infants bom during the year, but includes 
about as many deaths to infants bom the previous year. Owing to the partial 
independence of the numerator and denominator of ( 4.31 ), for rare data sets 

• Tbe mean age at death for infants dying in their fim year oflife increases with increasing infant 
morta1ity. Preston et al. ( 1972) suggest the approximate relationship 
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.Do may exceed .. Bo, requiring the upward correction of .Po to O. In that 
event, the birth and death sampies should be redrawn from a single cohort. * 

For • La we also require information on the distribution of deaths in the 
interval. Using the estimate • Clo = 0.125 year for the mean age at death among 
infants dying in their first year of life, we have from (4.29): 

(4.32) 

At ages 1-4 about 60% of deaths occur in the first 2 years ofthe interval, 
with a mean age at death of2.6 (from which 4a. = 1.6 years), and we may 
estimate N( 1) as: 

(4.33) 

For 4P. and 4L. we have 

(4.34) 

(4.35) 

The correction to (4.34) for negative nPx values foDows from the correction 
on (4.9). 

At the upper end of the life table, .,-ssPss or «>PSS is 0 as no one survives 
indefinitely. For «>Lss it is customary to invert (4.17), giving «>Lss = «>dss / 
«>mss. If the observed age-specific death rate «>Mss is substituted for the life 
table death rate «>mss, we then have 

«>Pss = 0 ( 4.36) 

(4.37) 

• Where information for infants and small children is Iimited, ~Px terms can be estimated from 
the ratios of surviving children to children ever bom for women at successively older ages. The 
methodology is due to Brass (Brass and Coale, 1968, pp. 104-122; Brass, 1975, pp. 50-59; 
Trussell, 1975). 
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Tbe expression imputes the same ratio of deaths to population in the life 
table as in the observed population. Since Iss = co dss , life expectancy at ages 
above 85 (coLss/ Iss) can be estimated as co Nss / coDss by the formula. In other 
words, the life expectancy at 85 is the inverse of the proportion of individuals 
85 and over who die during the year: 

(4.38) 

4.6. THE U.S. 1980 LlFE TABLE 

Using these formulas for infancy and old age, and the earlier formulas 
for intermediate ages, the U.S. 1980 life table is completed in Table 4.9. 
Appendix 6A.2 reproduces 1980 U.S. population estimates and deaths and 
the National Center for Health Statistics 1980 life table. Tbe method of.e5-
timation used by NCHS is more complex than the linear model we have 
introduced, but the difference in life expectancies in the two tables, about 1 / 
2 year at age 0, is due more to the wide age groupings in Table 4.9 than to 
the choice of formulas.* We also note for the reader that the NCHS 1979-
81 decennial life table, completed after the 1980 life table, has somewhat 
higher life expectancies (about 0.2 year at birth for the white population and 
0.5 year for the black population). The decennial table is constructed by 
graduating the midyear 1980 population (Miller, 1984) and 1979-1981 deaths 
from 5-year to single year ages using Beers multipliers (Section 2.3). After 
graduating the source data, the survival probabilities IPx are estimated linear1y, 
except in infancy and at the oldest ages. 

From Table 4.9b we may estimate botb entropy, the relative loss of Iife 
from early deaths, and years ofpotentiallife lost. We have [expression (4.23)] 

• For U.S.life tables between censuses, the National Center for Health Statistics (NCHS) estimates 
.Px terms from a census year reference series that uses single year ages and deaths in the census 
year and one year each side of the census to find .Mx • -Px. and "qx' For later years it sets; 

.f~-) = "q';,""") I.M~-) 

.pJ:) = 1 - .M~') ,J~-) = 1 - "q~-) (.M~') I.M';,-» 

Tbe expression adjusts .Px terms each year in proportion to changes in annual age-specific death 
rates nM •• which both simplifies table construction and helps to maintain consistency in the 
tables from year to year. Tbe life table .Lx terms are found by ( 4.29) using ,.ox values from the 
same reference table. The method is due to Greville ( 1947). For 1979-1981 decenniallife tables 
the reader may see NCHS (1985). Tbe methodology is presented in NCHS (1987). 
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Hlinear = L ndx ex+(J/2)n / (10 eO) 
x 

= HI266(73.5 + 73.5) + 252(73.5 + 69.7) + ... 

CHAPTER 4 

+ 28,533(6.3 + 0))/(100,000 X 73.5) = 0.18 

wherewe haveestimated ex+(J/2)nas !(ex + ex+n). Tbe lowvalue for Hsuggests 
that our current life table is close to one in which an mortality occurs at age 
73.5, our life expectancy at birth. For the actual years ofpotentiallife lost we 
find 

YPLLj = L nDx, 1 eX+(1/2)n 
x 

= 45,526(73.5 + 73.5)/2 + 8187(73.5 + 69.7)/2 

+ ... + 357,970(6.3 + 0)/2 = 33,900,000 

or about 17 years for each of the 2 million persons dying during the year 
if we accept ess as fixed. Tbe reader might note that substituting terms in 
nDx for ndx in (4.23) yields the approximate value Hunear ~ 33,900,000 / 
(1,990,000 X 73.5) = 0.23. Because of the coneentration of deaths at the 
oldest ages, the nDx distribution is currently relatively c10se to the life table 
ndx distribution. Tbat is not true ofthe age distributions nNx and nLx: using 
(4.20) in piaee of( 4.19) gives the life expectancy eo ~ 226,545,800 /3,596,100 
= 63.0 years. 

Several of the relationships between life table terms that were noted earlier 
are brought out in Tables 4.9 and 4.10. Comparing first the population (nMx) 

and life table (nmx) death rates ofTable 4.10, we find them to be virtually the 
same owing to the c10seness with which the life table follows its source data. 

Comparing the nMx series of Table 4.10 with the "qx series of Table 4.9 
and "fIx/ n in Table 4.10, nqx is seen to be about n times nMx. Tbe relationship 
is expected, sinee nMx is the death rate for members of the age interval for 
one Year and "qx is the probability that death occurs over the n years the 
interval spans. Tbe quantities diverge at the older ages because nMx has a 
lower bound (0) but no upper bound (annual deaths may exceed the number 
of survivors at midyear, in which case nMx > 1.0) while "qx must Iie in the 
range 0 to 1. (Tbe reader might also note from the tables that mortality is 
substantially higher in infancy than at ages 1-39. Combining the sexes, the 
agc at which adult mortality passed infant mortality was near 80 in 1900, 
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when infant mortality was over 15%, and about 40 in 1985, when infant 
mortality was 1.1 %. At ages 80-84 the death rate is now about 8.4% per year, 
about half the 1900 level.) 

Table 4.10 also compares the Ix series with "Lx/n, representing the life 
table population at about age x + ! n. The absence of a pattern in the "Lx 
series ofTable 4.9 will be seen to be due to the shifting interval width$ that 
were used: after adjustment to single year ages it is always the case that 
Ix ~ ("Lx/n) ~ Ix+". In the ex column, note that life expectancy always falls 
by less than n years between any age x and x + n, and may increase. Each 
death in the interval (x, x + n) contributes a short lifetime (ntlx:S: n years) 
to ex, with the consequence that ex is less than (ex+" + n). The exact equality 
is 

(4.39) 

The U.S. life table is a synthetic life table, as are other life tables con
structed from period data. It describes mortality experience for the calendar 
period, but with distortions wherever the current mortaIity of a cohort reßects 
past experiences peculiar to itself. The 1980 life table, for example, displays 
current mortality associated with past and present smoking behavior, and is 
not representative of survival probabilities as they will appear in cohorts with 
other smoking patterns, even if no other changes in mortality occur. 

The table is approximate for another reason. For Most causes of death, 
susceptibility differs among individuals for both biological and behavioral 
reasons. Most nationalllfe tables are computed separately by sex, and those 
in the United States by ethnicity, because of the identifiability of gender and 

Table4.10. Comparisons among Population and Life Table Estimators 

Approx. 
Life proportion Number Approx. 

Age-specific table dyill8each a1ive no. age 
Ages Census death rate ASDR year atx x+ i" 

(x,x+ ,,- 1) " population Deaths ,.M" .m" .11,,/" /" .L,,/" 

Births: 3,596,100 45,526 0.01280 0.01280 0.01266 100,000 98,892 
0 1 3,556,300 
1-4 4 12,814,600 8,187 0.00064 0.00064 0.00064 98,734 98,583 
5-14 10 34,942,100 10,689 0.00031 0.00031 0.00031 98,482 98,332 

15-24 10 42,486,800 49,027 0.00115 0.00115 0.00115 98,181 97,618 
25-44 20 62,716,500 108,658 0.00173 0.00173 0.00170 97,055 95,402 
45-64 20 44,502,600 425,338 0.00956 0.00956 0.00872 93,749 85,571 
65-74 10 15,580,600 466,621 0.02995 0.02995 0.02605 77,392 67,313 
75-84 10 7,728,800 517,257 0.06693 0.06693 0.05015 57,233 42,883 
85+ 2,240,100 357,970 0.15980 0.15980 28,533 
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ethnie groups and the sharpness oftheir survival differentials (Table 6A.2). 
Tbe distinctions are aspects of population beterogeneity, introduood in Section 
1.3 in connection with fecundability, and explored in worb by Vaupel and 
Yashin (1985; Vaupel, 1986) and Manton and Stallard (1984). (Tbe limi
tations imposed by period analysis and population heterogeneity are common 
to all nationallife tables, and are not severe. Tbe reader should be aware that 
they exist, and that they may influence the interpretability of fine differences 
between Iife tables for national populations and over time.) 

4.7. V/RTUAL L/FE TABLES 

Tbe correspondence between real populations aild events [N(x), "Nx , 

"Dx ] and the life table population and events (Ix, "Lx , "dx ) will sometimes 
pennit direct estimation ofthe life table terms from population terms. Expres
sion (4.38) is an example. Tbe expression, e,= tlJN'/tlJD" estimates life ex
pectancy at the final age f in the life table as the population ages fand above 
divided by annual deaths at ages fand above. In the final interval of the life 
table ,,= co d" bence ( 4.38) is the real population equivalent to the ordinary 
life expectancy (4.19), whicb for tbe final age interval will be e, = coL,/" 
= tlJL'/co d,. 

Since real populations experience changing numben ofbirths over time 
and cbanging survival rates, the use of coN,/«>D, to estimate «>L,/«>d, in 
(4.38) is not necessarily satisfactory. Ifthe final age interval is very old, how
ever, the changes in population size with age due to current mortality (in the 
United States, 10% per year at age 85) are substantia1ly greater than changes 
due to past birth and death rates. As a result, late in life the population age 
distribution comes c10se to a life table distribution.· 

Other types of distributions may be c10se to their life table equivalents 
at nearly all ages or durations, in which case ( 4.38) generalizes to the virtual 
life expectancy estimator (introduced earlier as expression (4.20)]: 

• For populations in which age exageration is suspected in the oldest intervall, Horiuchi and 
CoaIe ( 1982) sugest the approximation 

where r( f +) represents the annual rate of increase of the population aaes f aud above. The 
expression is derived by regression fitting to a Gompertz ( 1825) curve representing mortality 
at agesf +, with alIowance for different rates ofpopulation increase (r). The age f is selected 
to be younser than the ages at which exaggeration is a problem, to avoid bias in .. D ,/ .. N ,. 

On the problem of age misstatement late in Iife, the reacler shouId see Rosenwaike ( 1979, 
1981 ), Rosenwaike and Logue ( 1983), and CoaIe and Kisker (1986, 1990). A valuable comment 
on centenarians in the Soviet Union will be found in Bennett and Garson (1983). 



THE UFE TAßLE I 105 
00 

eo, j, virtuaI = L nNx, j/ N(O) = 00 No, JI N(O) (4.40) 
x=O 

The estimator finds the life expectancy for the attribute jas the number with 
the attribute divided by the initial risk population. 

Expression ( 4.40) has been used by Mosley et al. ( 1982) and Ferry and 
Smith ( 1983) to estimate the mean duration ofbreastfeeding from the number 
of mothers breastfeeding at a given time 00 No,} divided by annual births N( 0) 
or infants ever breastfed N*( 0). The expression is applied to U.S. data from 
the 1976 National Survey of Family Growth in Table 4.11. The estimate 
denominators (annual births, or annual birtbs of infants ever breastfed) are 
derived from 1974-1975 births because interviews took place over a number 
ofweeks in 1976. Using ordinary life tables, the means for the 1974-1976 
birth sampIe are 1.8 and 5.5 months, for all births and for children ever 
breastfed, respectively. 

When cohort sizes ßuctuate across age or duration intervals, the radix 
N(O) in (4.40) is replaced by Nx(O), the radix forthexth cohort. Alternatively, 
to remove the effects of different cohort sizes, for nNx,J/ Nx< 0) we may sub
stitute nNx,J/(nNx/n) = nnNx,J/nNx, where nNx is the population ages x to 
x + n and nNx,j is the subset sharing the attribute j. In the alternate form, 
the expression equates Nx(O) with <nNx/n), in effect disregarding mortality 
between 0 and the xth interval. With the change, the virtuallife expectancy 
becomes: 

00 

eo, j, virtual = n L nNx, j/ nNx 
x=O 

Table 4.11. U.S. 1974-1976 Births and Children 
Breastfed, 1976 National Survey of Family Growth 

Year Births Infants ever breastfed 

1974-1975 
Total 1719.0 559.0 
Mean 859.5 279.5 

1976 (part) 301.0 115.0 

Infants breastfed at survey: 138.0 

Fonnulas 
eO.J,virtuol = .. No,J/N(O) = 138/859.5 = 0.16 year, or 1.9 months 
eO·,J.virtuol = .. No,J/N"(O) = 138/279.5 = 0.49 year, or 5.9 months 

(4.41 ) 
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Table 4. 12. Proportion of Women 15-44 Remaining Single and Life Table Mean 
Ase at Marriage 4500. Source: Glick and Norton (1976) 

Ages 

0-4 
5-9 

10-14 

Number of women 
.N" 

15-19 10,275 
20-24 9,276 
25-29 8,334 
30-34 6,906 
35-39 5,870 
40-44 5,805 
Proportion single at age 45: 

1.000 
1.000 
1.000 
0.839 
0.376 
0.128 
0.069 
0.045 
0.042 
0.040 

45Oo./=- (5(1.000 + 1.000 + ... + 0.045 + 0.042) - 45 (0.040)]/(1 - 0.040) == 21.6 

Expression ( 4.41 ) is related to the ordinary life expectancy ( 4.19) by the 
substitution of n"Nx,i/ "Nx for "Lx, where 10 = I. Because "Lxl n approximates 
the life table population surviving at the midpoint of the interval, IX +(I/2)n' 

for 10 = I we also have: 

110 = 1.0 (4.42) 

In words, the proportion in an age or duration interval x to x + n who have 
attribute j may be taken to represent the life tabte population with the attribute, 
or the proportion with the attribute who survive at the midpoint of the 
interval.* 

An important distinction between (4.42) and the ordinary life table terms 
Ix and "Lx is that each ofthe virtuallife table terms reßects the experience of 
a different sampIe "Nx , and is independent of earlier terms. As a result, it is 
possible that Ix+1I, virtuaI ~ Ix, virtuaI and that "Lx+rr, virtuaI ~ "Lx. Ylrtual' The con
ditions Ix+" > Ix and "Lx+" > "Lx are anomalous, since they imply the interval 
survival probability "Px > 1. Although usually a nuisance, anomalous "Px 
values are of practical interest in two-census /i/e tab/es (Appendix 4A.2), 
where "Px. virtuaI estimates serve as measures of intercensal popuJation migration 
and census quality. 

• Tbe relationsbip 1"+(1/2)11 = .L,,/n is elUlCt for .L"._, expression (4.15). 
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If an attribute is shared by only some of the population, in place of the 
life expectancy eo.} we may substitute ßlo.Jo the mean age at event occurrence 
among individuals experiencing the event by age f: 

(4.43) 

[1 - ~(f)IN(f)] 

The expression removes the proportion of the population, lj- = ~(f) I N(f), 
not experiencing the event by age ffrom nLx and 10 • It was introduced by 
Hajnal (1947), who used proportions ofwomen 15-49 who were ever married 
to estimate the mean age at marriage. Hajnal used a cutoff age of f = 50 to 
limit analysis to marrlages during the childbearing years. 

Table 4.12 uses Hajnal's expression to estimate the mean age at first 
marriage for U .S. women married by age 45. For the proportion single at 45, 
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Figure 4.2. Proportion of women 15-44 ever married, and life table proportion married 
(I -Ix), June 1975 Current Population Survey. Source: Glick and Norton (1976). 
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Nj(45)/N(45), we have substituted the proportion single at ages 45-49. In 
Fig. 4.2 the proportions ever married by age are graphed with the life table 
proportions 1 -Ix. The value ofHajnal's formula will be apparent from the 
closeness of the two series. 

4.8. STATISTICAL ANALYSIS OF THE LlFE TAßLE 

The data ofTables 4.13 and 4.14 are a subsample ofthe Current Pop
ulation Survey for June 1975 and fairly closely approximate a simple random 
sampIe owing to the large number of sampIe areas ( 461 ) from which the data 
were drawn. Deaths reported in the vital statistics also constitute a random 
sampIe drawn from a superpopulation of deaths that occur over many years 
and deaths that might occur. In comparing marriage rates for different cohorts 
or nationallife tables for different years, there are clear advantages to knowing 
something about the magnitude of sampling variability that influences them. 
Especially when sampie sizes are small, it is easy to be misled in the absence 
of robust statistical tests. 

4.8. 1. VBriBnces of Life TBble Terms 

The life table derives from deaths or events "Dx in observed populations 
N(x) or "Nx. If events are binomially distributed,· with each event in the 
interval x to x + n having the fixed occurrence probability "Qx, then the 
expected number of events at ages x to x + n in a sampIe of size N(x) will 
be "Dx = N(x)"Qx. The variance of "Dx will be given by 

(4.44) 

The sampIe probabilities "Qx = "Dxl N(x) are interpretable as weighted 
estimates of "Dx , with weights 1 I N(x). Applying the rule that the variance 
of a weighted estimate is the square of the weight times the variance of the 
unweighted estimate, we have for Var("Qx) and Var("px) 

or, substituting "Dxl"Qx for N(x), 

(4.46) 

• The reader should also see Brillinger ( 1986), ror variance estimation using the Poisson distri
bution. 
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Table 4.13. Age at First Marriage Life Table for U.S. Female Cohorts 1925-29 
and 1950-54. Sourees: Glick (1972), Glick and Norton (1976) 

Life table 
Observed 

Cumulative 
Population proportion 

single at Marriages Proportion Proportion 
Age interval start of during marrying remaining Remaining 

(years) interval interval in interval single single Marrying 
xtox+n n N(x) nDx nqx nPx Ix 10 - Ix 

a. 1925-29 cohort 

0-14.5 14! 6046 26 0.004 0.996 1.000 0.000 
14.5-15.5 1 6020 101 0.017 0.983 0.996 0.004 
15.5-16.5 1 5919 213 0.036 0.964 0.979 0.021 
16.5-17.5 1 5706 381 0.067 0.923 0.944 0.056 
17.5-18.5 1 5325 598 0.112 0.888 0.881 0.119 
18.5-19.5 1 4727 684 0.145 0.855 0.782 0.218 
19.5-20.5 1 4043 734 0.182 0.818 0.669 0.331 
20.5-21.5 1 3309 758 0.229 0.771 0.547 0.453 
21.5-22.5 1 2551 552 0.216 0.784 0.422 0.578 
22.5-23.5 1 1999 411 0.206 0.794 0.331 0.669 
23.5-24.5 1 1588 295 0.186 0.814 0.263 0.737 
24.5-29.5 5 1293 696 0.538 0.462 0.214 0.786 
29.5-34.5 5 597 237 0.397 0.603 0.099 0.901 
34.5-39.5 5 360 67 0.186 0.814 0.060 0.940 
39.5-44.5 5 293 33 0.113 0.887 0.048 0.952 

44.5+ 263 0.043 0.957 

b. 1950-54 cohort 

0-14.5 14! 9276 22 0.002 0.998 1.000 0.000 
14.5-15.5 1 9254 101 0.011 0.989 0.998 0.002 
15.5-16.5 1 9153 231 0.025 0.975 0.987 0.013 
16.5-17.5 1 8922 528 0.059 0.941 0.962 0.038 
17.5-18.5 1 8394 884 0.105 0.895 0.905 0.095 
18.5-19.5 1 7510 1175 0.156 0.844 0.810 0.190 
19.5-20.5 1 6335 1132 0.179 0.821 0.683 0.317 

20.5+ 5203 0.561 0.439 

These expressions will be used to estimate the variances of Ix and ex, 
both of which are functions of "Px (Ix is the product of the "Pa terms from 
duration a = 0 to a = x - n, while ex is a function of "Pa from a = x to 
a = w, the end oflife). 

The variance estimates given by ( 4.46) hold with minor changes for both 
the nonparametrie and parametric "Px estimators introduced in this chap-
ter. The complete series of estimators and their variances are presented in 
Table 4.15. 
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Table4.14. Standard Errors and 95% Confidence Intervals (1.96 SE) 
for the Data of Table 4.13b 

Proportion marrying in interval Cumulative proportion marrying 
Start 
ofage Prop. Stnd. Confidence Prop. Stnd. Confidence 

interval marrying error interval marrying error interval 
x .qx SE (.qx) .qx ± 1.96 SE 1 -Ix SE (Ix) (l - Ix) ± 1.96 SE 

0.0 0.00237 0.00051 0.00137-0.00337 0.00000 0.00000 0.00000-0.00000 
14.5 0.01091 0.00108 0.00879-0.01303 0.00237 0.00051 0.00137-0.00337 
15.5 0.02524 0.00164 0.02203-0.02845 0.01326 0.00119 0.01093-0.01559 
16.5 0.05918 0.00250 0.05428-0.06408 0.03816 0.00199 0.03426-0.04206 
17.5 0.10531 0.00335 0.09874-0.11188 0.09508 0.00305 0.08910-0.10106 
18.5 0.15646 0.00419 0.14825-0.16467 0.19038 0.00408 0.18238-0.19838 
19.5 0.17869 0.00481 0.16926-0.18812 0.31705 0.00483 0.30758-0.32652 
20.5 0.43909 0.00515 0.42900-0.44918 

The variance of the age-specific death rate "Mx = "Dxl "Nx is also found 
by interpreting the term as a weighted estimate of "Dx , with the weight 1/ 
"Nx • From (4.44): 

(4.47) 

When mortality is 10w, "Mx ~ "Qx/n, implying that Var("Mx ) ~ (1/n 2 ) 

X Var("Qx)' Readers may confirm this approximate equality by substituting 
nN(x) for "Nx and "Qx/n for "Mx in (4.47). Both "Mx and "Qx and their 
variances gradually diverge as mortality becomes high. The reader might note, 
incidentally, that although "Nx is about n times as large as N(x) the coefficients 
ofvariation ofthe survival probabilities (4.46) and (4.47), SE ("Mx}/"Mx 
and SE ("Qx)/ "Qx, are of similar magnitudes. The advantage ofthe larger sampie 
size "Nx in (4.47) is lost in the estimation of the n-year survival probability 
"Px from a single year death count "Dx or death rate "Mx. The use of expression 
(4.47) is largely restricted to analysis of standardized rates, introduced in 
Chapter 3. 

The variance of Ix in the absence of censorship is found by setting 
10 = 1 and equating Ix with xPo. Whence, 

110 = 1.0 (4.48) 

More commonly, Ix is found as the product of an nPx series with censorship 
occurring in some intervals. Its variance is given by (Greenwood, 1926) 
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x-" 
Var(lx) = I~ ~ Var("Pa)/"P: (4.49) 

a-O 

The expression is derived by writing Ix as a weighted estimate of "Pa' 
That is, Ix = (lxl"Pa)"Pa' Its variance is then (lxl"Pa)2 Var(IIPa), contributed 
by "Pa' Summing across"pa terms for all ages younger than X yields (4.49). • 
[The expression and those that follow omit covariance terms CoV(lIo~) that 
arise under some sampIe designs (Chiang, 1967; Lawless, 1982, pp. 59-64).] 

Using (4.45) to estimate Var("px), expression (4.49) becomes 

X-lI 

Var(lx) = n ~ "qall"Pa N(a» (4.50) 
a-O 

X-lI 

= I~ ~ "q:I("Pa "Da) (4.51 ) 
0-0 

The reader is referred to Table 4.15 for Var("px) terms for (4.49) appropriate 
to specialized "Px formulas. 

The variance oflife expectancy (ex) is given by (Wilson, 1938; Chiang, 
1960)t 

• Expression (4.49) can bc derived as an expansion of ( 4.48) ror sampies with no c:ensorsbip 
prior to x. Setting 10 = I and making the substitutions I" = N(x)/N(O).IxIN(O) = N(x)/ 
N(O)2 = I!lN(x) and I -I" = (N(O) - N(x)]/N(O) we have: 

Var(l,,) = I .. (I - 1 .. )/ N(O) 

= In/N(x)J(N(O) - N(x))/N(x) 

= IW/N(x) - I/N(O)] 

= IW/N(n) - I/N(O) + I/N(2n) - I/N(n) + I/N(3n) - I/N(2n) + ... ] 
= IHI/[N(O),J1o] - I/N(O) + I/IN(n)"p.] - I/N(n) + I/ 

(N(2n).J12,,] - I/ N(2n) + ... } 

= I~ {"tlo/IN(O),J1o) + ..tI./IN(n).p.] + ..tI2n/IN(2n)nJ12,,] + ... } 

= I~ ~ .P • ..tI1I/IN(a).p~] = I~ ~ Var(.p.)/.P~ 
• • 

t For the life table crude death rate CDRa = I/ eo. Chiana ( 1961 ) sugests mvriting the CDRa 
as (I/ei)eo. which provides the approximate variance 

Var(CDRa) = (l/e3)Var(eo) 
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.,-n 
Var(ex ) = (l/lx)2 ~ I~[ea+n + n - "aa]2 Var<nPa) (4.52) 

The expression exploits the relationship of ex to ex+n given in (4.39) 

a. rrPx 

T8ble 4. 15. Variance Formulas for Selected 
Life Table Estimatorsa 

(4.1) rrPx. uJlOlljuted = I - .Dx/N(x) 
Var = rrPx .qx/N(x) = .Px .q~/.Dx 

(4.2) rrPx.curtate_pIe = I - (.Dx - .Dc.x)/[N(x) - Nc(x)] 
Var = rrPx .qx/[N(x) - Nc(x») = rrPx .qM.Dx - .Dc.x) 

(4.5) rrPx.ü_ = I - .Dx/[N(x) - ! NRdx» 
Var = .pxnqx/lN(x) - ! NRdx») = .pxnq~/.Dx 

(4.6) rrPx.byporbolic = I - .Dx/[N(x) -1.WRc.xl 
Var = rrPx .qx/[N(x) - I.WRc,x] = rrPXftq~/.Dx 

(4.9) rrPx, Uaear = I - .Dx/(.Nx/n + I.Dx) 
Var = rrPx .qx/(.Nx/n + I.Dx) = .Px .q~/.Dx 

(4.10) rrPx.e._1ioI = exp[-n.Dxl.Nx] 
Var = nPx .q~/.Dx 

(4.27) nPx._. = I - n.Dx/I.Nx + (n - .ax).Dx) 
Var = nrrPx .qx/[.Nx + (n - .ax).Dx] = rrPx .qV.Dx 

nPx. NCIIS = I - .Mx/(.q~..r) I.Mlr..r)] 
Var = .pxnq~/.Dx 

(4A.2) JPx+(lll)n. u __ = .NlltR/.MI 
Var = JPx+(IIl)lf Jqx+(IIl)lf/I.NWn) 

(5.1) rrPx,J, In- = I - .qx(.Dx.J!.Dx) 
Var = rrPx.J .qx.J/N(x) = rrPx,J .q'iJ/.Dx.J 

(5.16) rrPx.J, 0tmIIe = .p;Dx,J/.Dx 

Var = rrPx,J,Ore .q~,J,o",/.Dx,J 

b. Other lire table terms 
(3.10) .Mx Var = .Mx nPx/.Nx 

x-. 
(4.12) Ix Var = ~ (lx/rrP.)2Var (rrP.) .-0 
(4.19) ex Var = (1/lx)2 ~ I;[e.+. + n - .a.]ZVar(rrP.) .-x 
(4.43) xao, YIrtuaI Var = xaJ..x - xao)/(r xNo) 

• These variance cstimates are approximate. Thc readcr should also sec LitteU (1952), 
Gail (1975), Elandt-Johnson and Johnson (1980, pp. 128, 171), and Chilllll (1985, 
pp. 193-243) ror othcr formulas. 
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Using this relationship the variance of ex is a function ofthe variance of nPx, 

weighted by ex+n + n - nQx, and ofthe variance of ,,(Jx (trivially). It depends 
as well on life expectancy at higher ages by the presence of ex+n• The contri
bution at the later ages is weighted both by ea+n + n - ,,(Ja and by lai Ix = a-xPx' 

[Compare (4.52) with Var (Ix) in (4.49), which is a function ofthe same 
form but sums over nPa value at ages below x.] At most ages (4.52) can be 
slightly simplified by the substitution "aa = n12. 

We note for the reader that the variance of ex can also be written 

(4.53) 

When mortality is largely confined to old age, as in human populations, at 
younger ages nPx ~ 1 and Ix ~ Ix+n with the result that the variances of ex and 
ex+n will also be approximately equal. The concentration of mortality in old 
age also im.plies that at the younger ages, differences in life expectancy between 
populations will also be relatively constant. This combination of relatively 
constant life expectancy differences and constant variances suggests that the 
significance level of a difference in life expectancy between two populations 
will be largely independent of the age at which the test is made, at least to 
middle life. The property does not hold for nonhuman populations. 

Table 4.14 displays standard errors SE (nQx) and SE (1 -Ix) for the 1950-
1954 female birth cohort age at first marriage life table (Table 4.13). All are 
small, the largest being SE (IQI9.S) = 0.005. It will be seen from (4.48) and 
(4.50) that Var(nQx) terms vary inversely with sampie sizes, and SE (nQx) 

inversely with their square roots. A sampie half as large as the 6335 persons 
at age 19 i in the table would thus have produced an error SE (IQI9.S) = 0.01. 
The reader may estimate the sampie size for which the standard error of the 
proportion remaining single at 20 i, 1 - 120.s, would reach 5%. 

4.8.2. Significance Tests of Ufe Table Differences 

The final columns ofthe nQx and Ix series ofTable 4.14 show the confidence 
intervals nQx ± 1.96 SE (nQx) and (1 - Ix) ± 1.96 SE (1 - Ix) under simple 
random sampling. Intervals are only slightly wider for the actual sampIe design. 
The reader should note that none of the ranges overlap for the different nQx 

and Ix estimates, suggesting that at every age changes occur in the probabilities 
of marrying as wen as in the overall proportion still single. 

A more rigorous test of the significance of changes across age groups or 
between different sampies than the simple overlap of confidence bands is to 
use the normally distributed test statistic for nPx and nPy or nQx and nQy 
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z = I/lPx-/lpyl- Hl/N(x) + I/N(y)] 
11 [Var(/lPx) + Var<npy» 1/2 

(4.54) 

provided that /lPX + /lPr The sampie size correction Bl/N(x) + I/N(y)] is 
commonly omitted when it is small in comparison with /lPX - /lPr The 
expression may be used to compare any two age groups (x, y) and/or sampies, 
and for Ix and Iy values satisfying (4.48). {A close approximation for /lPX 
estimates satisfying (4.9), where sampies are enumerated in age intervals, is 
to calculate an adjusted sampie base from the /lDx and "t/x terms by the formula 
N(x) = /lDx/"t/x. For /lDx = 0, N(x) = /lNx/n [expression (4.11 ».} 

Table 4.16 displays proportions married by age 20.5 for 1925-54 female 
birth cohorts from the 1975 surveyand for an earlier survey in 1971 with a 
nonoverlapping sampie. For the two youngest cohorts shown in the table 
(1940-44 and 1945-49), differences in proportions married by age 20+ are 
significant at the 0.05 level, indicating that a change in reported marriage 
frequencies may have occurred between the two surveys. For the 1945-49 
cohort, however, differences at 19+ were significant only at the 0.13 level and 
at 21 + only at the 0.27 level (table not shown). As sometimes happens, we 
have evidently picked an atypical age for the comparison. The 1940-44 cohort 
difference is significant at all ages above 18. 

When differences at single ages are unrepresentative of overall differences 
between life tables, or there is no particular advantage to testing the tables 
only at a single point, a test of differences between two or more series of 
proportions can be used. Two that are relatively simple are the generalized 
Wilcoxon and Mantel-Haenszel tests. For the tests, differences between ob
served and expected numbers of events at each duration are summed. Dividing 
the square of the summed differences by the sampie variance yields the test 

Tsble 4. 16. Proportion of Wornen Born during 1925-54 Who Married by Age 
20! frorn Surveys in 1971 and 1975. Sourees: Glick (1972), Glick and 

Norton (1976) 

Sampie size Proportion married 
Birth Z 

cohort 1971 1975 1971 1975 Düf. score p(Z) 

1925-29 6114 6046 0.457 0.453 0.004 0.4 0.337 
1930-34 5615 5805 0.510 0.503 0.007 0.7 0.232 
1935-39 5722 5870 0.551 0.544 0.007 0.7 0.233 
1940-44 5863 6906 0.522 0.49S 0.027 3.1 0.001 
1945-49 8376 8334 0.474 0.458 0.016 2.0 0.021 
1950-54 9276 0.439 
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statistic D, which is asymptotically (i.e., for large sampies ) distributed as a 
chi square with k - 1 degrees of freedom, where k is the number of sampies 
being compared. For two-sample tests (d.f. = 1): 

where Wx = 1 for the generalized Wilcoxon sampie size weighted test and Wx 

= 1/ [NI (x) + N2 (x)] for the uniformly weighted Mantel-Haenszel test (La
galms, 1982). Expression (4.55), like (3.19), is a sum ofchi square tests for 
2 X 2 tables with entries 

with 

a b 

c d 

D = [~(ad- bc)/WxY/ 

= 
NI (x) - nDx. I 

N2(x) - nDx. 2 

{ ~ [(a + b)(c + d)(a + c)(b + d)/(a + b + c + d - 1 )Jlw~ } 

The Mantel-Haenszel test converts the table entries to proportions by 
dividing by the sampIe size. The test can be used with cross-sectional data, 
as in Table 4.16, with the substitution 

The D statistic can also be used as a test for consistency between nPx 
estimates from censored and uncensored observations in sampIe surveys (see 
Section 4.2.3). The test uses the terms 
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a b N(x) - Ndx) - nDx 

C d { ! Ndx) I nqx, censored sampIe = 0 } 

nDC, xlAx, cen - nDc, x lAx, cen > 0 

where !Ndx) or nDc,xlAx,censoredsample estimates N*c(x), the effective sampIe 
size for the observations under censorship, depending on whether Ax, cen is 0 
or greater than O. 

Table 4.17 shows the calculation of the D statistic for the data of Table 
4.1, using the linear estimator for right-censored sampIes: 

nPx, linear = grealer 0/ {O, 1 - nDxf(N(x) - ! NRdx)]} 

for which the censored sampIe estimator is 

nPx, RC linear = 1 - nDc, xl!Ndx) 

nqx, RC linear = nDC, xl! Ndx) 

The chi square probability for these data is found to be P = 0.0014. That level 
of significance implies that the censored and uncensored sampIes represent 

Table4.17. Estimation of D for the Data of Table 4.1, Using rrPx. U_r 

Censored 
Uncensored 

Total Right-censored Effective 
Start of Number number 
interval Number Number Events at risk Events at risk 

(x) at risk Events at risk d a+b b ,.qx,cea c+d 

0 350 74 0 0 350 74 0.0000 0.0 
1 276 48 45 1 231 47 0.0111 22.5 
2 184 31 50 0 134 31 0.0000 25.0 
3 103 10 36 1 67 9 0.0556 18.0 
4 58 4 28 0 30 4 0.0000 14.0 

Interval: 2 3 4 

a b 231 - 47 47 134 - 31 31 67 - 9 9 30-4 4 
c d 22.5 - 1 1 25 -0 0 18 - 1 1 14 - 0 0 

D = [(184 XI - 21.5 X 47) + (103 x 0 - 25 x 31) + (58 x 1 - 17 x 9) 
+ (26 x 0 - 14 x 4)]2/[(231 x 22.5 x 205.5 x 48)/252.5 + (134 x 25 x 128 x 31)/158 
+ (67 x 18 x 75 x 10)/84 + (30 x 14 x 40 x 4)/43] = 10.25, with 1 df 
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populations with dissimilar survival experience, and that sampie nPx estimates, 
by whatever formulas they are generated, will be of uncertain quality. 

For survival differences in human populations, where mortality is con
centrated at relatively fewages near the end oflife, Z tests for life expectancy 
differences will usually outperform Mantel-Haenszel and related tests. For 
two populations or sampies i, j the test for a difference in life expectancy at 
age x is 

(4.56) 

Tbe power of the Z test arises from the fact that a difference in survival 
probabilities at one age impacts on the life expectancy at all younger ages, 
and is thus likely to be identified. A difference in "Px at a single age has less 
effect on D, which essentially tests for a pattern of differences between the 
distributions. 

In general, the Ze test is appropriate to rectangular survival distributions 
and Mantel-Haenszel and related tests to linear and exponential distributions. 
Using the concept of entropy (H) introduced as expression (4.23) and in 
Fig. 6A.I, the distinction is between populations whose mortality is low until 
near the end oflife (H < 0.25) and those with significant losses at most ages 
(H~ 0.5). 

4.9. SUMMARY 

The life table is made by following a population or sampie from one 
exact age or exact duration of exposure to a later exact age or duration. De
pending on the type of information given, one offour formulas, ( 4.1 ), ( 4.2), 
(4.9), or (4.10), will usually estimate the interval survival probability "Px. 
The remaining terms of the life table-the radix 10 and cumulative survivaI 
probabilities Ixllo, the estimated number of persons or the person time lived 
in each interval "Lx and events occurring in the interval "dx, and the life 
expectancy ex-embody the principal contributions of the life table to pop
ulation analysis. 

The life table terms contain two distinct types of information. Tbe "Px, 
Ix, and ex terms are probabilistic measures that permit precise and intuitive 
comparisons between populations. By contrast, the "Lx and "dx terms have 
a cross-sectional focus that makes them analogous to observed populations 
"Nx and numbers of deaths or events "Dx • Tbey describe the age structure as 
it would appear ifbirths and deaths always numbered 10 and death rates were 
frozen at the levels from which the life table was generated. 
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The similarities between life table and real population terms sometimes 
allow life tables to be constructed by direct substitution of population for life 
table terms. With direct substitution it is possible for some values Ix+n to 
exceed earlier Ix terms due to sampIe errors or differences between the cohorts 
from wbich the rates are estimated, but apart from such errors the overall 
quality of the approximations can be high. 

The chapter has not emphasized the limits to life table analysis. The most 
critical is the need for complete population and event counts. Populations 
can be standardized (Chapter 3) using subsets of events, such as deaths for 
one cause, but the life table is a table of probabilities and requires completeness. 
The life table is also not calculable for repeated terminating events. That is, 
for y > x, no individuals in nDx are retained in N(y) or "Dy. Finally, the life 
table translates poorly to calendar events. It is tedious to attempt to estimate 
events in a given month or year, such as the marriages and deaths of the 
chapter examples, or annual numbers of births at various parities, from the 
event probabilities that form the life table.· The reader should be alert to 
these limits, and to other applications for which life tables are not well suited. 

Readers desiring additional information on life table construction may 
consult a number of other texts. At an elementary level, Barclay ( 1958, pp. 
93-122), PolIard (1973, pp. 3-21), PolIard et al. (1981, pp. 26-47), and 
NewelI (1988, pp. 63-81) introduce life tables by the linear formulas (4.9) 
and (4.15). Pressat (1972, pp. 107-152) and Wunsch and Termote (1978, 
pp. 79-105) should also be reviewed, particularly for their attention to cohort 
and period distinctions. More comprehensive texts are Namboodiri and 
Suchindran (1987) and Chiang (1984), and for follow-up study data Elandt
Johnson and Johnson (1980). The reader should also see DeGruttola and 
Lagakos ( 1989) on the analysis of data with both left and right censorship. 

We close the chapter with a selection of problems in life table analysis, 
using the U.S. 1980 census population and deaths and NCHS 1980 life tables 
(Appendix 6A.2). The chapter appendices continue the discussion of life 
tables with comments on data coding for life table analysis, formulas for 
construction oflife tables from census data, and further remarks on parametric 
estimators and maximum likelihood. 

4.9. 1. Applications of the Ufe Table to SurvivBl sr Exset 
and Interval Ages 

The life table allows survival to be estimated between exact ages, using 
the nPx and Ix series, and interval ages, using "Lx. This section introduces 
several problems that bring out the distinctions between the two types 

• An example of the estimation of annual deaths from survival probabilities is given in Sec
tion 5.5. 
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of estimates, using the NCHS 1980 life table, reproduced as Appendix 
Table 6A.2. 

1. Using exact ages, find the proportion ofthe total population (Table 
6A.2a) surviving from birth to age 20 and to age 65. Find the proportion of 
20-year-olds who survive to 65. 

Answer: The proportion surviving from birth to age 20 is given by the 
nPx series, as the product .Po X 4P. X sPs X sP.o X sP.S = 120/10. For survival 
to age 65 we have .Po X 4P. X ••• X 5P6t) = 4s1l0. Survival from 20 to 65 
is estimated as 5P20 X SP2S X ••• X 5P6t) = 165 /120 • For the total population 
the needed Ix terms are 10 = 100,000,120 = 97,700,/65 = 76,944. We have 120/ 

10 = 0.97700, 165 /10 = 0.76944, 165 /120 = 76,944/97,700 = 0.78755. 

2. Given that the sex ratio at birth is about 105 males to 100 females in 
the white population, what proportion of white infants survive to age 201 Of 
black infants, whose sex ratio at birth is about 102:100? 

Answer: From Table 6A.2, 10 = 100,000, 120, wm = 97,461, and 120, wf 

= 98,346. Weighting these terms by the ratio of births, we will have 120, w 

= (105 X 0.97461 + 100 X 0.98346)/205 = 0.97893; For black infants, 120,b 

= (102 X 0.96127 + 100 X 0.97183)/202 = 0.96650. 

3. At birth, what is the complete life expectancy for the total U.S. pop
ulation? If we define the working ages as 15-65, what is the working life 
expectancy? 

Answer: The complete life expectancy eo = To/Io is given as 73.7 in 
Table 6A.2a. It is decomposable as life expectancy from birth to age 15, from 
age 15 to age 65 and at age 65 as (To - T.,>lIo, (T.5 - T65 )/lo, and (T65 -
TaJ)/lo. Theestimatesbecome(7,371,986 - 5,895,364)/100,000 = 14.8 years, 
(5,895,364 - 1,261,626)/100,000 = 46.3 years, and (1,261,626 - 0)/100,000 
= 12.6 years. 

Comment: The reader will note that these quantities add to the complete 
life expectanCY of 73.7 years. Formally, the first quantity is the partiallife 
expectancy .seo = 14.8 years (out of 15.0 years that would be lived if no 
deaths occurred). The second and third terms are future life expectancies as 
assessed at birth. Out of the 50 years that would be lived between 15 and 65 
in the absence of mortality, at birth we expect to live 46.3, and from age 65 
onward we expect to live 12.6 years. The dependency ratio [expression ( 1.9)] 
as assessed from the life table is (14.8 + 12.6)/46.3 = 0.59, which suggests 
that we spend about 60% as much time at the nonworking ages as at the 
working ages, or 100 X (14.8 + 12.6)/73.7 = 37% of OUf expected lifetimes. 

The reader might also note that at age 15 OUf working life expectancy is 
soe.s = (T.s - T6s )/I.s = (5,895,364 - 1,261,626)/98,182 = 47.2 years. The 
expectancy is nearly a year greater than the 46.3 years expected at birth, since 
mortality from birth to age 15 is no longer taken into acoount. SimilarIy, the 
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life expectancy at 65 is e6' = 16.4 years, almost 4 years greater than the 12.6 
years assessed at birth. 

4. Working with grouped ages, what is the probability that an individual 
aged between 20 and 25 will live 50 more years? 

Answer: In the life table the nLx series represents both time lived between 
ages x and x + n, and the population we would have at those ages if births 
and mortality probabilities remained constant at the life table levels. Under 
those assumptions for Table 6A.2a the proportion surviving 50 years from 
ages 20-24 will be ,L,o/,~o = 312,015/486,901 = 0.64082. Note that the 
figure will be between the 50-year survival probability at exact age 20 (1701120 

= 0.69579) and the probability at exact age 25 (1,,112, = 0.58177), since the 
population,Lw comprises individuals between those two ages. 

Comment: This is a problem in population projection, in that if mortality 
remained constant we would be surviving persons ages 20-24 in 1980 to ages 
70-74 in 2030, at which point about 64% would still be living. For an actual 
projection we would want to separate males from females and blacks from 
whites, since survival probabilities differ substantially for the four groups (75% 
of females would survive versus 56% of males in the white population, and 
60% versus 40% in the black population, Tables 6A.2d-6A.2g). 

S. Find the probability that a couple, both white, who married when 
they were ages 20-24, will be living 50 years later, when they are 70-74. 

Auswer: Using interval ages (nLx) the probability both will survive 
is the product of the individual probabilities. We therefore need to find 
(sL,o, _/sLw, _)(sL,o, wr/sL2o, wr)= (272,110/484,997)(367,579/491,029) 
= (0.56106)(0.74859) = 0.42. The remaining probabilities will be (1 
- 0.56106)(0.74859) = 0.33 that the female partner alone survives, 
(0.56106) (1 - 0.74859) = 0.14 that the male partner alone survives, and (1 
- 0.56106) (1 - 0.74859) = 0.11 that neither survives. 

6. A white female age 25 has just given birth to a son. At 1980 survival 
rates, find the probability that she will outlive him. 

Auswer: Using exact ages (Ix) we need to compute joint survival and 
mortality probabilities at all ages to the end of the mother's life. For the first 
interval, to her age 30, we have the joint probability (I" _110)(130, wr112" wr) 
= (98,508/100,000)(97,776/98,063) = 0.98220 that both survive, the prob
ability [(100,000 - 98,508)/100,000] (97,776/98,063) = 0.01488 that she 
alone survives, and the probability [( 100,000 - 98,508)/100,000] 
X [(98,063 - 97,776)198,063] = 0.00004 that neithersurvives. Ifwe assume 
that where both die the mother survives her son half ofthe time, the probability 
that she outlives bim in the tirst 5 years becomes 0.01488 + 0.00002 = 0.01490. 

During the next 5 years the survival probabilities are conditional on both 
surviving the initial period. For the joint probabilities we therefore have 
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0.98220 ( 1.0, wm/I" wm)( 13" wr/I30, wf) = 0.98220( 98,348/98,508)( 97,420/ 
97,776) = 0.97703 that both survive. the probability 0.98220[(98,508 
- 98,348)/98,508](97,420/97,776) = 0.00159 that she alone survives, and 
the probability 0.98220[(98,508 - 98,348)/98,508][(97,776 - 97,420)/ 
97,776] = 0.000006 that neither survives. Tbe cumulative probability that 
she outlives her son now becomes 0.01490 + 0.00159 + 0.000006/2 
= 0.01649. 

Continuing through the rest of the life table, the probability ultimately 
reaches 0.156 or about 1/6, treating the final interval 85+ as 85-89 to be the 
same width as earlier intervals. In the black population the probability is 
0.237 or about 1/4 for a mother the same age at the birth of her son. Both 
females have a probability of 0.64 of surviving a husband of their same age. 

Formally, the cumulative probability an individual at age y outlives an
other individual age x is given by 

co 

~ (lx+j/lx)(/y+j/ly )[( 1 - Ix+}+n/1x+j)(ly+}+n/1y+j) 
j-O 

where the durationsj, x, yare integer multiples of n, the interval width in 
the life table. 

APPENDIX 4A. 1. DATE CODING FOR UFE TASLE ANALYSIS 

8. Coding by Dul7!ltion of Exposute 

Population and event data for nationallife tables are usually taken from 
census and vital statistics estimates, as were the data of Table 4.4, or from 
sampies tabulated in the same format. Tbe researcher may want to adjust the 
data for distortions or omissions in reported ages and deaths by age, but the 
information is otherwise useable as presented. Tbe life table methodology 
addresses problems of left and right censorship and incomplete overlap be
tween numerators and denominators. 

By contrast, in sampie surveys population and event data are normally 
coded as the dates of entry into risk, event ifit has occurred, and latest contact 
or study cutoff. Tbe data need to be recoded as intervals and summed before 
life tables can be constructed. 

As an example, we might have a sampie that includes the cases shown 
in Table 4A.l. Tbe cases are observed from start of risk, and are right-censored 
at cutoff: left censorship, affecting cases that are first observed after the start 
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of risk, will be introduced below. All dates are calendar 1980, so we may 
convert from the day and month to 1980 calendar day, for which 1/ 1 / 1980 
= 1, 1 /20/ 1980 = 20, and so forth, as shown in columns 4-6. 

The durations to event and cutoff are found by date subtraction in the 
final columns of the table. Grouping the durations into 30-day intervals 
("months") and summing, we have the life table sampie shown in Table 
4A.2. Beginning with five cases at risk, in the initial interval case d experiences 
the terminating event but not cutoff, and e reaches cutoff. The remaining 
three cases begin interval 1. In that interval case b experiences the event but 
none in the sampie reach cutotf. Cases a and c begin interval 2, where case a 
reaches cutotf. Case c begins intervals 3 and 4, reaching cutoff in interval 4. 

It is possible that all ofthe durations in the example are coded incorrectly, 
and that one individual, case d, is mislocated in Table 4A.2. For case d, the 
duration from exposure on 4/ 15/ 1980 to cutoff on 5/ 15/ 1980 may be 29.01 
to 30.99 complete days. It is under 30 complete days, and case d belongs in 
the right-censored subsets NdO) and IDc,o, ifexposure began at a later time 
during theday on 4/ 15/ 1980than the cutofftime point on 5/15/1980. With 
the correction, the entries in the first row ofTable 4A.2 would be 5, 1,2, 1 
and not 5, 1, 1, O. 

The potential error is significant because it is directional: durations can 
be overestimated by one unit ofmeasure (here, one day) but not underesti
mated. The error can be corrected in large measure by a ! -unit downward 
recalibration of the interval indexes. If, for example, we locate the start of 
interval 1 at 29! days rather than 30 days, we will overestimate interval 
lengths only for those whose actual durations are 29.01 to 29.49 days. At the 
same time, we will underestimate intervallengths for those whose true intervals 
are between 59.50 and 59.99 days [these are persons coded as 59 days who 
should fall into recoded interval 2 (59! days to 89! days) but are in interval 
1]. By recalibrating the interval indexes we replace the unidirectional errors 
that may arise by bidirectional errors that are largely offsetting. 

Teble 4A.1. Dates ofStart ofRisk, Event, and Cutoff(Hypothetical Cohort) 

Date of Date-12/31/1979 Duration from risk to 
start Date of Date of 

of risk event cutoff Risk Event Cutoff Event Cutoff 
Case (1) (2) (3) (4) (5) (6) (7) = (5) - (4) (8) = (6) - (4) 

a 1/20/1980 4/15/1980 20 106 
b 1/20/1980 3/5/1980 5/5/1980 20 65 126 
c 2/10/1980 6/20/1980 41 172 
d 4/15/1980 5/10/1980 5/15/1980 106 131 136 
e 4/15/1980 4/15/1980 106 106 

45 

25 

86 
106 
131 
30 
o 
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Table 4A.2. Survival Status for the Sampie in Table 4A.l 

Total Right-censored 
Start Recalibrated 

interval intervalG Number Number 
(x) x-l/2 u at risk Events at risk Events 

0 0.0 5 1 0 
1 0.983 3 1 0 0 
2 1.983 2 0 1 0 
3 2.983 0 0 0 
4 3.983 0 1 0 

• Recalibrated by subtracting 1/2 unit (1/2 day or 1/60 month) from each indexed interval. Sec text. 

If in place ofthe year, month, and day at start of risk, event, and cutoff, 
dates are given only by year and month, we would have the date codes and 
intervals shown in Table 4A.3, and the life table entries of Table 4A.4. With 
the change in interval units, cases a, b, and d are followed at longer index 
durations than earlier. The greater recalibration, 1/2 month rather than 1/2 
day, corrects for the apparent difference in observation times.* 

Our example has not yet dealt with left censorship. To introduce left 
censorship, we may suppose that cases band c in Table 4A.l entered obser
vation on 2/25/ 1980 (calendar day 56). For b, the initial observation date 
is 36 days after start of risk, which places b in the second interval at tirst 
contact. The case is therefore omitted from the initial interval and introduced 
as a left-censored case in the second intervaI. The event date for case b also 

• Tbe efl'ects of misstatement ofthe interval widths are illustrated using the example offecundability 
in Goldman et al. (1984). Tbe authors include formulas for estimating,.l/" terms from ,.1/"-1/2 
for the hyperbolic distribution (Section 4.2.2 and Appendix 4A.3 ), which are: 

Iqo. byperboIIc = I/~O + (1 - 1/2qO)( !.ql/2)/( 1 - !.ql/2) 

Iq", bypaboIic = !.q,,-I/z + (1 - ! Iq,,-1/2)( !.q,,+1/z)/(l - !lq,,+I/z) 

Tbe expressions are best suited to distributions in which mortaIity hazards are decreasing. For 
constant or increasing mortaIity, the researcher may use the quadratic fitting 

_ {I/~O + (1 - 1/2Po IPI/2)/3 
IqO, quodntIc - I/Z 

1 - 1/2Po IPI/2 

1(1 - 1/2Po IPI/Z) < 31/2Po 

I( 1 - 1/2Po IPI/2);:= 31/2PO 

where the restrictions avoid IlJo estimates greater than 1. Besides the hyperbolic, for later intervals 
either exponential interpolation [expression (2.3d)] or linear or cubic interpolation [expressions 
(2.3a), (2.3b)] may be used to estimate Iq" from the midinterval series Iq,,-I/2> Iq"+1/2, ... , . 
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TBble 4A.3. Dates of Start of Risk, Event, and Cutolf 
for the Sampie of Table 4A.l 

Duration from risk to 
Dateof Dateof Dateof 

start of risk event cutoft' Event Cutoft' 
Case (I) (2) (3) (7) = (5) - (4) (8) = (6) - (4) 

a 1/1980 4/1980 3 
b 1/1980 3/1980 5/1980 2 4 
c 2/1980 6/1980 4 
d 4/1980 5/1980 5/1980 1 
e 4/1980 4/1980 0 

falls in the second interval and is left-censored. The cutoff point for b occurs 
in the fourth interval and is not of concern. For case c entry into observation 
occurs in the initial interval, 15 days after start of risk. The case is thus left
censored in the initial interval. Case c remains in the sampie as an uncensored 
observation in each of the next three intervals, and is right-censored in the 
fifth interval. With the changes to band c, Table 4A.2 is revised as shown in 
Table4A.S. 

b. Coding by Age Interval 

Besides üfe tables coded by exposUre and event durations, tables are 
sometimes required in which intervals are grouped by the ages at which in
dividuals were at risk. In medical studies, for example, survival may depend 
as strongly on the age at which an individual is diagnosed or treated for disease 
as on the nature of the disease and the efficacy of the treatment offered. To 
determine whether treatment has inßuenced survival, the appropriate com-

Table 4A.4. Survival Status for the SampIe in Table 4A.3 

Total RiPt~red 
Start of Recalibrated 
interval intervald Number Number 

(x) x-I/2 u at risk Events at risk Events 

0 0.0 5 0 1 0 
1 0.5 4 I 1 1 
2 1.5 3 1 0 0 
3 2.5 2 0 0 
4 3.5 0 0 

• Recalibrated by sublractiDa 1/2 wUt (1/2 month) trom each indexed intervaJ. See text. 
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Table 4A. 5. Survival Status for the Sampie in Table 4A.l, 
with Left Censorship of Cases band c 

Total Left-censored Right-censored 
Start of Recalibrated 
interva1 intervalG Number Number Number 

(x) x-I/2 u atrisk Events at risk Events at risk Events 

0 0.0 4 1 0 1 0 
1 0.983 3 1 1 1 0 0 
2 1.983 2 0 0 0 1 0 
3 2.983 1 0 0 0 0 0 
4 3.983 1 0 0 0 1 0 

• Recalibrated by subtracting 1/2 unit (1/2 day or 1/60 month) from each indexed intervaI. See text. 

parison may be to the mortaJity rates ofindividuals not receiving the treatment, 
or individuals drawn at random from the general population, whose ages and 
durations of observation compare to those of the study sampie. 

To construct life tables by age, we begin by replacing the dates of start 
of risk, event, and cutoff for the sampie with their ages at start of risk, event, 
and cutoff. The five individuals in Table 4A.I, for example, might be infants 
with the dates ofbirth and ages shown in Table 4A.6. 

Using Table 4A.6 we find the exposure time accrued in each age interval, 
essentially equivalent to the sampie {nNx} that would be expected to be counted 
if a census were taken at midinterval. These exposure times are shown in 
Table4A.7. 

Examining the table, for case a, we find 0.5 month of actual exposure 
during the first month oflife, 1.0 month ofrisk in months 1 and 2, and 0.33 
month of risk in month 3. These estimates derive from an age at entry into 
risk of 15 days (born 1 /5/ 1980, entered into risk 1/20/ 1980) and continuation 

Table 4A. 6. Dates of Birth and Ages at Start of Risk, Event, and Cutoff fQr the 
Example ofTable 4A.l (Ages in MonthsG ) 

Ageatstart 
Case Date of birth ofrisk Age at event Age at cutoff 

a 1/5/1980 0.50 3.33 
b 1/10/1980 0.33 1.83 3.83 
c 1/15/1980 0.83 5.17 
d 1/15/1980 3.00 3.83 4.00 
e 3/5/1980 1.33 1.33 

• For ease of calculation, each month has been set to 30 days. 
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Table4A.7. Exposure Time to Event Occurrence at Ages 0-5 Months for the 
Sampie of Table 4A.6 

Interval 

Case 0 2 3 4 5 Total 

a 0.50 1.00 1.00 0.33 0 0 2.83 
b 0.67 0.83 0 0 0 0 1.50 
c 0.17 1.00 1.00 1.00 1.00 0.17 4.33 
d 0 0 0 0.83 0 0 0.83 
e 0 0 0 0 0 0 0 

No. at risk 1.33 2.83 2.00 2.17 1.00 0.17 9.50 
Events 0 1 0 1 0 0 2 

at risk until age 3 months and 10 days (cutoff 4/ 15/1980). The reader may 
confirm the exposure times shown for cases b-e. 

Summing vertica1ly, the table shows the number of person months at 
risk during each month of age and the number of events. The two rows are 
the interval population nNx and events nDx for life tables using events and 
person months of exposure [expression (4.9)] or age-specific event rates 
[expression ( 4.lO)] . 

Defining the events as infant deaths, we might want to compare the 
survival of the sampie with the survival of a random subset of infants of the 
same ages. For the random subset, we require the exposure durations and 
numbers of events the sampie infants would accrue at the ordinary survival 
probabilities for their ages. 

If no deaths occurred, which is what we expect at 1980 U.S. survival 
rates to the two- or three-digit precision we are using, the comparison sampie 
would have the observation times ofthe study infants, shown in Table 4A.8, 
with no events. At bigher mortality rates, or using greater estimate precision, 
the sampie sizes would be smaller than in Table 4A.8, due to occasional infant 
deaths. If, for example, Ix decreased exponentially at the rate p. = 0.05 per 
month, orfrom 10.$ = 1.00 to 13.33 = 0.868, usingexpression (2.7d) to estimate 
exposure times for the sampie, the observation time and event count for the 
comparison infant a' would be: 

in interval 0: (0.5)(0.975 - 1.00)/(100.975 -In 1.00) 
= 0.494 month and ( 1.00 - 0.975) = 0.025 death 

in intervall: (1.0)(0.928 - 0.975 )/(In 0.928 - In 0.975) 
= 0.951 month and (0.975 - 0.928) = 0.047 death 
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in intenal2: (1.0)(0.883 - 0.928)/(1n 0.883 -ln 0.928) 
= 0.905 month and 0.045 death 

in interval3: (0.33)(0.868 - 0.883)/(ln 0.868 -ln 0.883) 
= 0.292 month and 0.015 death 

For the same mortality pattern, comparison infant b' entering at 10.33 = 1.00 
would have the observation times and events: 

in intenal 0: (0.67)(0.967 - 1.00)/(ln 0.967 -In 1.00) 
= 0.656 month and 0.033 event 

in intenall: 0.943 month and 0.047 event 

in intenal 2: 0.897 month and 0.045 event 

in intenal 3: 0.714 month and 0.036 event 

The reader may complete the example for infants c', d', and e', to find the 
total exposure times and events 1.315 months and 0.066 event in interval 0, 
2.862 months and 0.143 event in intervall, 2.722 months and 0.136 event 
in interval2, and 2.857 months and 0.143 event in interval3. 

The reader might note that sinee the reference survival distribution is 
exponential, the event rate "Mx = "Dx/"Nx will be "Mx = p. = 0.05 in aU 
intervals and will serve as a check on the "Dx and "Nx estimates. Under other 
survival distributions the rates would be sensitive to the left and right interval 
censorship observed in Tables 4A.7 and 4A.8. 

Table 4A.8. Hypothetical Exposure Times at Ages 0-5 Months for the Sampie 
ofTable 4A.6, in the Absence ofTerminating Events 

Interval 

Case 0 2 3 4 5 Total 

a 0.50 1.00 1.00 0.33 0 0 2.83 
b 0.67 1.00 1.00 0.83 0 0 3.50 
c 0.17 1.00 1.00 1.00 1.00 0.17 4.33 
d 0 0 0 1.00 0 0 1.00 
e 0 0 0 0 0 0 0 

Total 1.33 3.00 3.00 3.17 1.00 0.17 11.67 
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Omitting the censored intervals, the life tables would be constructed using 
tbe observations in months 1 and 2 for infants a and b, months 1 through 4 
for c, and month 3 for d (Table 4A.8). Matching observation times, the 
comparison sampie would enter at 1l = 1.0 for a', b', and c', and at 13 = 1.0 
for d', and continue to 13 for a' and b', Is for c', and 14 for d'. 

APPENDIX 4A.2. TWO-CENSUS UFE TABLES 

Tbe relatively high level of annual immigration into the United States 
(about 0.3% of total population) and a 2% difference in completeness of 
coverage between tbe 1970 and 1980 censuses limit tbem as a source of in
formation about mortaIity patterns. In mucb of the developing world, age 
misstatements contribute an additional element of uncertainty to census fig
ures. When they exist, bowever, reasonably good censuses can be used to 
construct life tables, and wben reasonably good life tables exist they provide 
a useful cbeck on census quality. 

Tbe reason this is so is that in tbe absence of migration the population 
counted in a census at time t represents tbe survivors of earlier censuses plus 
the survivors of births in tbe intervening years. If j years elapse between cen
suses, then the population between x + j and x + j + n at time t + j sbould 
number 

N (t+j ) - N(t)( L / L ) n x+j - n x n x+j n x (4A.l) 

Together with independent estimates of births and net migration, (4A.l) is 
used in tbe United States to project the expected population count at suc
ceeding censuses. 

To construct a life table from (4A.l ) it is necessary to convert tbe terms 
in nLx to terms in nPx. For linear survival distributions we make the substi
tution 

IX+(I/2)n, linear = nLxl n 

whicb uses the mean single year population in the interval as an estimate of 
survival at the interval midpoint x + in. Tbe expression does not provide an 
estimate ofthe number ofindividuals starting the life table, the radix 10 , but 
since nN1t) and nN~':j) are the survivors at t and at t + j of the same birth 
cobort, we do not require the radix to find 

jPX+(I/2)n. linear = IX+j+(I/2)n. Iinear/lx +(I/2)n. linear 

- L / L - N(t+j)1 N(t) - n x+j n x - n x+j n x 

(4A.2) 
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The terms in jPx+( 1/2)n can be fitted to modellife tables to generate a complete 
Ix series or, if a life table is already available, they may be matched against it 
to estimate the relative quality of coverage of the two censuses. When the 
enumeration is better in one census than the other, (4A.2) will produce im
probable survival estimates. In or out migration also has that effect. 

An alternative to ( 4A.l ) and ( 4A.2), due to Preston and Bennett ( 1983), 
is to use the census populations at time t and t + j, nNJP and nNl'+j) , to 
estimate the intercensal growth rates and midperiod age distributions: 

n'x = (1/ j)[lnnNlt+) -lnnNl')] (4A.3) 

(4A.4) 

where (4A.4) is an exponential interpolation formula related to (2.7d). 
If mortality is constant, the population nNlt+(1/2)j) will differ from any 

younger population nNl'!,JIJ2))) in proportion to survival and to the changes 
in birth rates over the k year interval, which are estimated from the n'x terms. 
A consistent series of nLx estimators can therefore be constructed as 

(4A.5) 

Except at age 0, Ix terms can be found from nLx by derivative estimators 
[expression (2.8)], of which the simplest is the linear function 

Ix. linear = (nLx-n + nLx)/(2n) 

Like (4A.2), (4A.5) will produce improbable survival estimates in the 
presence of migration and when the source censuses differ in quality or com
pleteness. These points are discussed and applications of the method presented 
in Preston and Bennett ( 1983). A general introduction to age-specific growth 
rates will be found in Horiuchi and Preston ( 1988). 

Life tables constructed using (4A.2) or (4A.5) belong to the set ofvirtual 
life tables introduced in Section 4.7, in which the nature of the source data 
and methods oftable construction allow terms (nPx = Ix+n/ Ix) > 1. 

APPENDIX 4A.3. PARAMETRIC nPx ESTIMATES 

Sampies that are left- or right-censored in an interval [NLC(x), NRdx)] 
are of limited value for survival estimation, since the relationship between 
observed and unobserved segments of the interval is problematic. Given the 
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interval survival probability nPx and the proportions surviving at censorship 
in the censored sampIes, 

nPx. left partial = 1 - nDLC, xl NLC(x) (4A.6) 

(4A.7) 

the investigator can make an informed judgment as to the concentration of 
mortality in its early and later segments. Alternatively, the nPx distribution 
may be expressible as a mathematical function in a region encompassing 
(x, x + n), which would allow the function to determine the relationship of 
the partial intervals to the fuH interval. 

The latter approach, involving parameterization of the survival distri
bution, is widely used for exploiting partial interval survival. In the simplest 
case, discussed in Section 4.2, the number or proportion of survivors at du
ration xis estimated by the linear function Ix = a + bx. When the survival 
distribution is linear, deaths in the unobserved part of any censored interval 
will equal deaths in the observed part. For nPx were therefore have: 

(4A.8) 
= 1 - nDLC. xl HNLC(x) + nDLC. x] 

nPx. Re linear = 1 - 2nDRC. xl NRdx) = 1 - nDRC. xl !NRdx) (4A.9) 

Expressions (4A.8) and (4A.9) differ only slightly. In (4A.8), nPxis estimated 
by doubling the number of events nDLC. x in the partial interval to represent 
events in the complete interval, and adding the extra events to the sampIe 
base NLd x), where they would not have been counted since they left the 
sampIe before the initial observation. In ( 4A.9), the numerator is doubled to 
include the additional n~c. x events occurring after censorship. The denom
inator is not adjusted, since the cases are already included in NRdx) as in
dividuals surviving at censorship. 

Substituting (4A.6) and (4A.7) into (4A.8) and (4A.9), the relationship 
between nPx and the partial interval estimators becomes: 

nPx. linear = nPx. left partial/(2 - nPx. left partial) 

(4A.lO) 

nPx. left partial = 2npx. linear/( 1 + nPx. linear) 

nPx. linear = 2npx. right partial - 1 
(4A.l1) 

nPx. right partial = (1 + nPx. linear)/2 
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To estimate "Px using both censored and uncensored observations, we 
combine the numerators and denominators of the curtate sampIe estimator 
[expression (4.2») and the estimators under censorship, (4A.8) and ( 4A.9). 
Since known events in the censored sampIes number "Dc, x, and since the 
observation times for the censored sampIes are about half those for the un
censored sampIe, we will assign the censored observations 1/2 unit weight. 
[That is, we will combine (4.2) with the second form of(4A.8) and (4A.9).) 
By that convention, for a linear "Px estimator incorporating left- and right
censored observations in the interval we would have: 

Ifthe data set contains no left-censored observations NLd x), the expres
sion reduces to 1 - "Dx/[N(x) - !NRdx)). In either form it may take 
negative values when a high proportion of the censored sampie Ndx) are 
terminators. To control the estimate range, the expression with right censorship 
is written: 

"Px,lincar = greatero!{O, 1 - "Dx/[N(x) - !NRdx)]} (4A.12) 

By (4A.l2), "Px,lioe&r is reset to 0 when "Dx > [N(x) - !NRdx»), as the 
right-hand expression becomes negative. 

If the survival distribution is exponential (Ix = aebx ), the event risk is 
constant in the interval and the survival probability "Px is related to the partial 
probability "Px,riptpartial by (Chiang, 1984, p. 225): 

"Px, right partial = ("Px, exp - 1 )!1n"px, cxp (4A.13) 

"Px, cxp = 1 + "Px, right partial ln"px, cxp (4A.14) 

where ln"px,exp is the naturallogarithm ofthe survival probability. After sub
stituting ( 4A. 7) for "Px, right partial, (4A.14) can be solved for "Px, exp by Newton
Raphson iteration, outlined in Appendix 4A.4. 

Assigning 1/2 weight to censored observations as in (4A.12), (4A.14) 
can be merged with the curtate sampie estimator ( 4.2) to yield, for sampies 
with right-censored observations, 

(4A.15) 

where "p:,exp is the solution to (4A.14). For "DRC, x > 0 the numerator of 
this expression will be smaller than the numerator of the linear estimator 
( 4A.12), yielding a higher estimate of the survival probability. 
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An alternative to ( 4A.12) and ( 4A.15 ) is to incorporate the curtate sampie 
estimator (4.2) with the linear ( 4A.9) or exponential ( 4A.14) in a maximum 
likelihood estimator. For the exponential, the MLE estimator is Chiang's A. 
In samples with right-censored observations it is: 

nPx. exp2 = S(x)1 ([NRdx) + nDx - 2n~c. x]/Ax 
(4A.16) 

[where S(x) = [N(x) - NRdx)] - (nDx - nDRC,x). Forreadersfamiliarwith 
calculus, Chiang's expression is derived in Appendix 4A.4. 

Expressions (4A.15) and (4A.16) produce identical nPx estimates only 
when the curtate sample ( 4.2) and right partial (4A.14) estimates are identical, 
or when NRdx) = O. When NRL~X) > 0 and (4.2) =1= (4A.l4), Chiang's 
estimator is biased downward, at times falling below the linear estima
tor (4A.12). 

In sampies with improving survival in each interval, and sampies in 
which censored <n~c.x) and uncensored (nDx - n~c,x) events in the interval 
cannot be c1early distinguished (see Section 4.2.2), the hyperbolic (or "ac
tuarial") formula is commonly used. For right-censored samples the expression 
is: 

nPx. hyperbolic = 1 - nDxl {N(x) - HNRc<x) - nDRC, x]} 
(4A.17) 

In (4A.17) the term NRdx) - n~C,x = nWRC.x represents individuals 
surviving at censorship, who can be counted without distinguishing nDRC, x 
from nDx. 

The hyperbolic estimate is derived by setting Ix = I/(a + bx), making 
the probability of surviving in the subinterval from x + k to x + n a linear 
function of the time remaining in the interval. That is (Batten, 1978, pp. 
5-6): 

_ _ a + b(x + k) _, , 
n-kPx+k - Ix+nllx+k - a + b(x + n) - a + b (x + k) forO ~ k ~ n 

The survival distribution is a hyperbola within the interval. It estimates nPx 
from right-censored observations as: 

nPx. RC hyperboJic = 1 - nDRC. xl HNRdx) + n~C. x] 
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Table 4A.9. Estimated Proportion ofTable4.1 SampIe 
Surviving, by Selected nP" Formulas 

IPo,.~ = 1 - IDo/N(O) 
= 1 - 74/350 = 0.78857 

IPI,OII>I = 0.81068 
1/12.011>1 = 0.80503 
11'3.011> 1 = 0.88246 
IP .... pl = 0.90909 

IPI.OII>l = 0.81033 
1Pz.0II>1 = 0.80391 
11'3.011>1 = 0.88231 
IP4,0II>2 = 0.90863 
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For the hyperbolic, the numerator and denominator ofthe estimate are added 
to the numerator and denominator of the curtate sampie estimator. 

Table 4A.9 displays survival probabilities under the two parametric es
timators in this section, for the data of Table 4.1. The reader may compare 
these estimates with those of the curtate sampie, linear, and hyperbolic esti
mators in Tables 4.2 and 4.3. 

APPENDIX 4A.4. MAXIMUM LIKEUHOOD ESTIMATION 
OF nPx 

In data sets with right censorship but not left censorship, the maximum 
likelihood estimator is derived from the probability of drawing Sex) = [N(x) 
- NRdx» - (nDx - n~c,x) survivors and (nDx - n~C,x) nonsurvivors in 
a sampie of [N(x) - NRdx)) uncensored observations at the survival prob
ability nPx, which is given by the binomial: 

( Sex) + nDx - nDRC, x) pS(X) (1 _ p )("D"-xo,,c. x) 
Sex) n x n x 

and of drawing SRdx) = NRdx) - n~C,x survivors and n~C,x nonsurvivors 
amongNdx) censored observations at the survival probability nPx,partiah given 
by the binomial: 
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The likelihood function is the product of these two probabilities, omitting 
constant tenns. Using oc to represent proportionality, we have: 

X nP~~~( 1 - nPx. putiaI),.Dac,x (4A.18) 

To find the survival probabilities nPx and nPx. putiaI for which the observed 
sampie of S(x), SRdx), nDx, and n~C,x would be likely to be drawn, we 
replace nPx. putiaI by its estimating function and set the derivative of the like
lihood function (dLldnpx) or its logarithm (dlnLldnpx) equal to O. 

The unadjusted and curtate sampie estimators are the solution to (d InLI 
dnPx) = 0 with censored observations omitted. For the curtate sampie estimator 
in sampies with right censorship we will have: 

InL(x; nPx) oc S(x)lnnPx + <nDx - nDRc, x)ln( 1 - nPx) 

dlnLldnpx = S(x)/nPx - (nDx - n~c, x)/(l - nPx) = 0 

nPx. cur18te sampIe = S(x)/[S(x) + nDx - nDRC,x] 

Chiang's exponential estimator (4A.16) is found by substitution of 
(4A.13) in the derivative ofthe log likelihood function. Both Chiang's esti
mator and ( 4A.14 ) are solved for nPx by iteration, Most easily by using the 
Newton-Raphson formula: 

(4A.19) 

where an initial nPx estimate is inserted on the right-hand side of ( 4A.19) and 
the expression is solved to yield a better estimate nP~ on the left. The new 
estimate is inserted on the right and the expression again solved, continuing 
until !(nPx) ~ 0 and nP~ stabilizes. Convergence is faster if the initial nPx 
estimate is nearly correct, which suggests using nPx. curtate sampIe for the initial 
approximation. t 
t Tbe Newton-Rapbson formula generalizes as x· = x - /( x)//'(x). It is satisfactory for dis

tributions whose derivative/'ex) is!arge relative to/(x) near the point/ex) = 0 and approx
imately constant. It may converge slowly or not at an ifthis condition ja not Met. For polynomial 
expressions a formula that converaes More rapidly and for a broader 1'8IIIt' of functions ja the 
Laguerre (1880) formula [Householder (1970, pp. 176-179»): 

x· = X - n!(x)/(f'(x) ± {[(n - 1 )f'(x>J2 - n(n - 1 )!(x)!'(x)} 112) 
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Because of its complexity, Cbiang's expression will not always converge 
using Newton-Rapbson. Expression ( 4A.14) is more easily solved. It has the 
tenns 

As in Cbiang's exponentia~ the es estimator "Px. curtatuamp!e may be used in 
(4A.13) as an initial approximation to "Px.exp' After finding the value 
"pt exp for wbicbf("Px) ~ 0, it is substituted on the rigbt side of ( 4A.15) and 
the expression is solved for "Px. expl' 

Inserting the linear estimator nPx. riaht partia1 [ expression ( 4A.ll )] in ( 4A.18) 
and setting (dlnL/ dnPx) = 0 produces Elveback's estimator (Elveback, 1958): 

_ X [Sex) + I(NRdx) - "Dac, x)]} 1/2 ( 
- i"Dac, x + { i"Dic, x + 4[N(x) - i NRdx» )2 

"Px. ML linear - 2[N(x) - iNRdx)) 

(4A.20) 

Tbis estimator is not Fisher consistent in the presence of censorship witbin 
the interval. That is, for a sampie drawn from a population with the survival 
rate 8, the estimator satisfies only the approximate equality E[,.px. E1vebaclt] 

~ 8. 
Tbe reader may consult Elveback ( 1958, p. 431 ), Elandt-Jobnson ( 1977, 

p. 252), or Chiang (1984, p. 227) for the variance ofElveback's estimator. 

where the sign of the square root tenn is taken so as to minimize the absolute value I x· - xl. 
and n is the order ofthe polynomial. Tbe function converges ftom real to both real and complex 
values: in Newton-Raphson. convergence is from real to real values or ftom complex to either 
real or complex values. 

When severaI roots arc sought, the n:searcher can use root sweepiDJ to avoid converaence 
to roots a1ready found RewritiDJf( x) as (x - Xo)(x - XI) ••• (x - x.). after finding the root 
Xi we remove it by the divisionf-Ax) = f(x)/(x - Xi)' Tbe procedure is outlined in K.eyfttz 
and Flieger (1971, pp. 202-203). 

If aII roots are distinct, a simpler method ofroot sweeping can be used in Newton-Raphson 
iteration. For the solution to the jth root we may set 

where the tenns Xo, XI, ••• , Xj-I arc roots a1ready found and Xi is the current estimate ofthe 
jth root. 
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APPENDIX 4A. 5. SAMPLE SIZE ESTIMATION 
FOR LlFE TABLES 

CHAPTER 4 

The sampling error formulas introduced in Section 4.8.1 can be inverted 
to provide estimates of the sampIe sizes needed to establish statistical signif
icance for selected differences between survival distributions. The exercise is 
an important one: much of the value of a research project may be forfeited 
through inadequate sampie sizes or, more rarely, unnecessary costs may be 
incurred through overestimation of sampie size needs. Using a two-tailed test, 
the relationsbip between the difference oftwo proportions, the sampIe variance, 
and the significance level desired leads to the approximate equality, assuming 
no sampIe losses occur in the interval j to j + n, 

(4A.21 ) 

for unequal sampIe sizes NI (j) and N2(j), and 

(4A.22) 

for two equal sampies. In the expressions Z(l/2)« is the normal deviate cor
responding to the significance level a, nPj. I - nPj.2 is the anticipated difference 
between the proportions surviving from j to j + n in sampies 1 and 2, and 
nPj is the proportion surviving in the combined sampies. Tbe expressions omit 
a continuity correction, which requires the addition of approximately W cases 
to NJ(j) and W[NJ(j)/N2(j)) cases to N2(j), where 

For NI(j) = N2(j), Wreduces to 2/(nPl.1 - nPj.2)' 
These expressions may also be used for survival differences between du

rations 0 andxby the substitution Ix = xPo as in (4.48), for sampies in which 
no losses occur prior to x. * 

As an example, suppose we want to select two sampies of equal size that 
are large enough for an absolute difference of 0.025 to be significant at the 
5% level. (That is, if the rates in the interval j to j + n were further apart, we 
would want that finding to be statistically significant.) Ifthe combined sampie 
survival probability in the interval is nPj = 0.5 (which suggests that nPl. land 
nPj,2 not be c10ser than about 0.4875 and 0.5125), at the 5% level of signiftcance 

• The condition is met when N(x) = N(O) - "Do. 
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(Z = 1.96), the required sampie sizes from expression (4A.22) with continuity 
correction (4A.23) are 

N.(j) = N2(j) ~ (1.96)2(0.5)(1 - 0.5)/(0.025)2 + 2/0.025 = 3200 

For a similar difference to be significant near nPj = 0.25 or nPj = 0.75, the 
sampie sizes would need to be about 2400, or one-fourth less. 

When unequal sampie sizes are used, the overall numbers needed are 
increased. If at nPj = 0.5 we desire that N. (j) be no larger than 2000, N2(j) 
would need to be about 7500. This estimate is derived by initially setting 
N.(j) = 1950 in (4A.2l), yielding N2(j) = 7300 and W = 50. The final 
sampie sizes become N.(j) = 1950 + 50 = 2000, and N2(j) = 7300 + 50 
(7300/1950) = 7500 after the Wadjustment [The initial estimate N.(j) 
= 1950 was determined by testing N. (j) = 2000 and finding W to be 
about 50.] 

Larger sampie sizes than those estimated by (4A.21 )-( 4A.23) allow the 
researcher to control at a preselected level for the risk of not finding significant 
differences between sampies when they are present in the initial populations, 
as weIl as for the risk of finding significant sampie differences when there are 
no population differences. The modification of ( 4A.22) that satisfies both 
conditions for sampies of equal sizes is 

_ {Z(1/2)"(2npj nQj) ./2 - Z.-II[nPj, • nqj, • + nPp nQj, 2]1/2 F 
- (nPj, • - nPj, 2)2 (4A.24 ) 

In the expression, Z. -11 is the normal deviate corresponding to the (one-tailed) 
probability of accepting the observed sampie difference as significant when a 
population difference of the magnitude nPj, • - nPj,2 exists. As before, an ad
ditional W cases are required for continuity correction. [The reader may 
consult Fleiss ( 1981, pp. 44-48) for estimation formulas for unequal sampie 
sizes, which are far more complex.] 

Suppose, as before, we want to select equal sampIes such that a difference 
of 0.025 in survival rates near nPj = 0.5 would be significant at the 5% level, 
and we also want the probability to be no more than 5% of not finding a 
significant difference ifthe populations do actually differ by 0.025. Then from 
(4A.24) and (4A.23) the sampies would need to be of sizes N. (j) = N2(j) 
= 7400, using Z(1/2)" = 1.96 and Z._II = 1.645. In sampies this large, a 
difference of only 0.01 would be significant at the 5% level; and we would be 
95% certain offinding a difference ofthat magnitude or greater in the sampIes 
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if in fact they were drawn from populations which differed by at least 0.025 
at that duration. 

In our example ofages at first marriage (Table 4.16), we observed that 
surveys in 1971 and 1975 produced estimates of the proportion of women 
bom in 1940-44 who married by age 20 I that differed by about 0.027, the 
reported proportions being 0.522 in the 1971 survey and 0.495 in the 1975 
survey. The difference was significant at the 0.001 level. Among other birth 
cohorts the reporting was more consistent between the two surveys, although 
an gave lower figures in 1975 than in 1971. Sampie sizes for the 1940-44 
birth cohort were 5863 in the 1971 survey and 6906 in the later survey. 

These numbers accord nicely with our previous example, and suggest 
that the sampies drawn were about the right size for reasonably assuring that 
we would find a significant difference if one existed, as weil as reasonably 
assuring that we would not find a significant difference ifthere was none.· 

We refer the reader to George and Desu (1973), Wu et al. (1980), and 
Lachin ( 1981 ) for formulas for sampie size estimation when cumulative sur
vival differences (Ix) rather than single interval differences ("p}) are to be 
tested. If interval sampie sizes vary and Ix is estimated as the product of a 
series of "p} terms [expression (4.12)] not reducible to 10 xPo, sampie size 
estimation becomes complex. Lachin suggests the crude adjustment N(O)adj 
= N(O)/( 1 - r)2 for testing significance of Ix differences in sampies in which 
the proportion r leave observation prior to x. In the expression, N(O) is the 
initial sampie size that would be required in the absence of losses. 

• Explaining the difference in the two survey results is another matter. Within the population 
the proportion ever-married could not have changed, although the quality of reporting may 
have, or changes in the sampling frame between the two surveys may have altered the repre
sentativeness of the sampies. (The overall age distributions of respondents in the 1925-29 
through 1945-49 birth cohorts (columns 1 and 2 of Table 4.16) were not significantly different 
in the two surveys (p = 0.34), but that does not preclude other types of compositional changes 
which might account for the drop in reported proportions ever married at all ages over 20 in 
every cohort.] 
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The Life Table 11 
In composing this Memoir • ... I was above all concerned to display in a 

single table the two conditions of mankind, the one as it actua/ly is and the other 
as it would be if we were ahle to rid the whole human race of smallpox. I had 
in m;nd that the comparison of these two conditions would explain the difference 
and the contrast between them better than the most ample commentary; but I 
had in mind. too. the difficulty of the enterprise and the defective nature of the 
Bills of M ortality. which do not give the age ofthose carried off by smallpox and 
were bound to be a ser;ous obstacle to my purpose. I could see immediately that 
to carry out such a design demands two items of elementary iriformat;on: what 
is the risk. at various ages. of being caught by smallpox. for those who have not 
already had ;t. and what is the risk. for those who are attacked by it. of dying 
ofit? 

5. ,. INTRODUCTION 

-DANIEL BERNOULLI ( 1766) 
Translated by Leslie Bradley (1971) 

Besides total deaths or events, life tables can be disaggregated to provide in
formation on subsets of events that together comprise the total. Two different 
approaches are used. In multiple decrement tables, the number or proportion 
dying at each age is distributed into categories according to cause of death. 
Bysumming across ages, the total population eventually dying of each cause, 
and their mean age at death, can be estimated. 

The multiple decrement table can be extended to states other than death, 
such as rural and urban residence with migration, or labor force status, in 
which the number or proportion surviving (Ix) in a given state may either 
increase or decrease with age. Increment-decrement or multistate tables are 
of this type. They largely follow multiple decrement formulas, but with ad
ditional terms to allow transitions between attribute states. 

139 
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Cause-eliminated and cause-substituted life tables resolve an important 
problem in multiple decrement analysis, the effects of competing causes of 
death on mortality for each single cause. By controlling for competing risks, 
the tables improve the quality of comparlsons across populations where sur
vival differences may be attributable to several causes of death. The tables 
are also valuable in mortality projections, where they allow the user to specify 
anticipated changes in single causes of death and to trace their effects on 
mortality rates for other causes. 

The chapter has one appendix, which introduces procedures for data 
regrouping for the life table. The problem arises in the context of the text 
example for multistate rates, which is condensed from 5-year interval data in 
the source article (Tabah, 1968) to 15-year intervals to permit readers to more 
easily work the example. 

Much of the discussion of the chapter will refer to deaths, since that is 
the context in which multiple decrement and cause-eliminated life tables are 
most commonly used. The methods apply equally to allother types of ter
minating events for which life tables are constructed. 

5.2. MULTIPLE DECREMENT LlFE TABLES 

The life tables considered in the previous chapter were constructed for 
total deaths or events enumerated by age or by duration of exposure. To 
separate multiple causes requires that the ndx term, life table deaths at ages x 
to x + n, be partitioned into subcategories "dx, I, "dx,2, ... , "dx,j' That is 
most often done by distributing the "qx,l and "dx,l terms linearly in proportion 
to observed deaths for each cause, "Dx,j. That is, 

(5.1 ) 

(5.2) 

The variance of (5.1 ) is found from the variance ofthe source "Qx distribution 
(Table 4.15) with the substitution of "Px,b "QX,l for "Px, "Qx in the pq / N form 
ofthe expression. In the pq2/D form, the terms become "Px,j "Qx,j "Qx/"Dx. 

Table 5.1 illustrates the estimation of "dX,l terms for the U.S. 1980 life 
table, using 1980 deaths for neoplasms, major cardiovascular diseases, and 
allother causes, and the life table "dx estimates ofTable 4.9.· Beginning at 
age 0, we have: 

• The causes of death used are, for neoplasms, codes 140-239, and for major cardiovascular 
diseases, codes 390-448, from the Ninth Revision, International Classiftcation ofDiseases ( 1975). 
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.do, neoplasma = .do(.Do, neop/.Do) = 1266( 180/45,526) = 5.0 

.do, cvd = .do(.Do, cvdltDo) = 1266(984/45,526) = 27.4 

.do, other = .do(.Do, other/.DO) = 1266(44,362/45,526) = 1233.6 

The reader may check the "dX ,l estimates at other ages. Since the example 
inc1udes all causes of death, the reader can confirm that "dx = Li "dx,i' -

The "dx ,} terms are used to estimate the proportion ofthe life table pop
ulation that dies from each cause of death at ages up to age x and at ages after 
x. For ages up to x we have, 

and for ages x and above, 

x-" 
xdo, i = L "da,} 

a=O 

.,-" 
.,-xdx,} = L "da,} 

a=x 

(5.3) 

(5.4) 

Expression (5.4 ) uses CA) (the term 00 is also used) to represent the oldest age 
to which anyone lives in the life table. 

The sum ofthe "dX,i terms across all ages, found by adding (5.3) and 
(5.4), represents alilife table deaths for thejth cause. It is also the number 
of persons who eventually die of cause j from among the 10 births that begin 
the life table. The probability that an individual dies of the jth cause is therefore 

.,-" / 
.,qo, j = L: "da, j Lo = .,do,lLo 

a-O 
(5.5) 

The "dx ,} series can also be used to construct a conditional life table, 
showing the survival distribution for individuals who eventually die of one 
cause, by defining the initial population Io,j to be 

.,-" 
Lo,} = ",do,} = L: "da,} (5.6) 

acO 

Table 5.1 displays the summations of the "dx ,} terms, which yield the 
totals: Lo,neop = 19,806, Io,cvd = 54,347, and Lo,other = 25,847. The reader can 
confirm that .,do = 10 = 100,000 = L} Io,}. The Io,} estimates inform us that 
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of 100,000 persons born, 20% would eventually die from neoplasms, 54% 
from cardiovascular diseases, and 26% from other causes at 1980 survival 
probabilities. [At age 65 the proportions become 18%,61%, and 21%. The 
proportions at the two ages are similar, since onlyabout one-fourth of deaths 
(6SQO = 0.22608) occur before age 65.] 

Having found lo,}, the life table population eventually dying of the jth 
cause, we estimate the number of survivors for the cause at subsequent ages 
Ix,} by subtraction ofthe ndx,j terms. That is, 

Ix+n,} = Ix, j - ndx,} (5.7) 

The Ix,j series is exactly like the Ix series ofthe ordinary life table, except that 
it describes the survival experience of persons eventually dying of a particular 
causej. 

For the conditional table, the life table population in the age interval x 
to x + n, nLx,J> can be constructed from the Ix,} series using (4.15), (4.16), 
or one of the nLx formulas of Section 6.2.* A problem arises in estimating 
the final nLx term .,_fLf,J> since the proportion of deaths due to each cause is 
known, but not the ages within the interval at which deaths for each 
cause peak. 

One possibility for the final interval is to let the conditionallife expectancy 
atJ, ef,J> be the same for all causes. In that event, 

(5.8) 

Expression (5.8) will usually be adequate when the proportion surviving at 
the final age fis small. It may not be when the proportion is high, since for 
many causes of death it is manifestly wrong. An alternative solution is to 
assurne that deaths for the jth cause in the final interval follow the age pattern 
of deaths in the preceding interval, given by "a/-n,j. We set: 

* Since nLx,} represents individuals at ages x to x + n who will die of the jth cause at some point, 
the sum ofthe nLx,} terms for a1I causes will be the complete life table population in the interval, 
nLx' That is: 

The equality will be exact if nLx and a1I nLx,} terms are estimated linearly, but will only be 
approximate for most other nLx formulas, If the error is nontrivial, the nLx,} terms should be 
rescaled to sum to nLx, and the adjusted nLx,} terms cbecked to ensure that Ix,} ~ (nLx,J/n) 
~ Ix+n,}, (Rescaling tbe terms (nix,) - nLx,}), wbicb represent the time lived in the interval by 
individuals dying between x and x + n, to sum to (nix - nLx) will assure that the inequality is 
satisfied. ] 
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(5.9) 

where k is estimated as 

Expression (5.9) reduces to (5.8) when the terms nLt-n,l are estimated linearly 
using (4.15). 

When the user is unsure as to an appropriate estimate for ,.,-tLt,i> he or 
she may omit ,.,-tL!.} and construct the partiallife expectancy t-xex,J for ages 
x to fin place ofthe complete life expectancy ex,i' 

Construction of the life expectancy is by the formulas of Chapter 4, with 
the substitution of the conditional terms Ix,} and nLx,i for the ordinary life 
table quantities Ix and nLx. 

Table 5.2 displays multiple decrement survival distributions for neo
plasms, major cardiovascular diseases, and other causes for the United States 
in 1980, using the ndx,} series ofTable 5.1. [The table is constructed by the 
linear formulas of Chapter 4, and therefore uses (5.8) to estimate ,.,-tL!.).] 
We haveadded theterm I!,l = Ix.) ( 100,000//0,), whichrescalesthe Ix,lseries 
to the radix 100,000. The rescaling is not necessary to the table, but simplifies 
comparison of rates of population attrition for each cause. 

Since the multiple decrement life table is a device for partitioning the 
ordinary life table into component tables for various causes of death, a number 
of relationships link the two types of tables. At all ages Ix = ~} Ix,) and nLx 
= ~} nLx,}. From these relationships, for the totallife expectancy and jth 
cause life expectancy we have: 

ex = ~ (Ix,) ex, })!lx 
1 

In words, the life expectancy for a population is the average of the multiple 
decrement life expectancies for the separate causes of death, weighted by the 
proportions (lx,Jllx) dying of each cause. Thus, the life expectancies at birth 
for those dying ofthe three groups of causes in Table 5.2 are 70.5, 78.5, and 
65.4 years. For the overalilife expectancy we have: 

eo = ~ (10,) eo,})/Io 
} 

= [(19,806)(70.5) + (54,347)(78.5) 

+ (25,847)(65.4)]/100,000 = 73.5 
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Table5.2. Multiple Decrement Life Table for Neoplasms, Major Cardiovascular 
Diseases, and Other Causes, United States 1980 

a. Neoplasms 

Multiple decrement 

Ages .dx._ Ix,_ .Lx._ ex._ It_ 

0 5 19,806 19,802 70.5 100,000 
1-4 19 19,801 79,158 69.5 99,975 
5-14 45 19,782 197,595 65.6 99,879 

15-24 65 19,737 197,045 55.7 99,652 
25-44 548 19,672 387,960 45.9 99,323 
45-64 5279 19,124 329,690 26.9 96,557 
65-74 5573 13,845 110,585 13.3 69,903 
75-84 5369 8,272 55,875 9.0 41,765 
85+ 2903 2,903 18,289 6.3 14,657 

b. Cardiovascular diseases 

Multiple decrement 

Ages .dX,cwl Ix, cwl .Lx,cwl ex,cwl Itcwl 

° 27 54,347 54,323 78.5 100,000 
1-4 12 54,320 217,251 77.6 99,950 
5-14 13 54,308 543,015 73.6 99,928 

15-24 40 54,295 542,750 63.6 99,904 
25-44 559 54,255 1,079,510 53.6 99,831 
45-64 6,714 53,696 1,006,780 34.1 98,802 
65-74 10,187 46,982 418,885 17.5 86,448 
75-84 17,240 36,795 281,750 11.0 67,704 
85+ 19,555 19,555 123,196 6.3 35,982 

c. All other causes 

Multiple decrement 

Ages .dx,_ Ix._ .Lx._ ex,OIber It_ 

0 1234 25,847 24,767 65.4 100,000 
1-4 221 24,613 97,922 67.7 95,226 
5-14 243 24,392 242,705 64.3 94,371 

15-24 1021 24,149 236,385 54.9 93,431 
25-44 2199 23,128 440,570 47.1 89,480 
45-64 4364 20,929 374,940 31.0 80,973 
65-74 4399 16,565 143,655 16.5 64,089 
75-84 6091 12,166 91,205 10.6 47,069 
85+ 6075 6,075 38,272 6.3 23,504 

COIIIinued Oll MXt page 



146 

Fonnulas: 
ndx•1•n_ = ndx (.D"'1InDx) 

10•1 = .. r41 = L .d.,J/Io .-0 
1X+"'1 = 1"'1 - nd"'1 
1~.1 = Ix,1 (100,000110,1) 
nL"'1,1i_ = n (1"'1 + 1,,+ ... 1)/2 
.. -fLf,j,u_ = 1/'1 ef 

e",1 = (!x .L •• 1)/ 1"'1 

CHAPTER 5 

Table 5.2. Continued 

Figure 5.1 displays the multiple decrement Ix,i distributions as they appear 
in Table 5.2 and rescaled to the radix lo,i = 100,000. In the rescaled series 
the differences in ages at death for the three groups of causes are pronounced. 
The long life expectancies of persons dying of cardiovascular diseases (78.5 
years) and neoplasms (70.5 years) will be seen to be due to 1;he rarity of deaths 
for these causes before about age 40, in contrast to the fairly steady losses that 
occur from birth onward for other causes (eo = 65.4 years). Ifthe other cause 
group were disaggregated, life expectancies would be about 40 years for ac
cidental deaths and homicides, only a few months for causes of death associated 
with infancy, and 65 or more years for most other causes. 

To this point our discussion of multiple decrement life tables has been 
restricted to populations followed to age or duration w (in Table 5.1 the open
ended interval 85+), beyond which no individuals survive. The researcher 
will sometimes need tables truncated at an earlier durationf, as in the single 
decrement examples of Tables 4.1 and 4.8 (breast cancer) and Table 4.13 
(first marriage). No problems arise in such tables ifthe ultimate distribution 
of events by cause is known and the terms .,-rdJ,i = Ir,} can be estimated, but 
where information is incomplete the user is at a loss. 

In that circumstance, the table can be constructed only by defining a 
new event category .,-rDJ, U = NU) - ~i .,-rDr,i> comprising events in (f, w) 
unassigned by cause. The incomplete multiple decrement lije table that is then 
constructed will have initial terms lo,i- distributing attributable events, and 
the residual 10, U comprising deaths for which the cause is undetermined. The 
correct initial values Io,} remain unknown, but satisfy the equality ~} lo,} = 10 

and the inequalities 10,i- ~ 10,1 ~ <Io,i- + 10, u). That is, the correct initial terms 
will not be less than the values estimated in the table, nor can any be greater 
than its estimated value plus the unattributed residual. Tbe reader can confirm 
the inequality by assigning deaths after age 75 in Tables 4.9 and 5.1 to the 
category ...-7s d7S,UDaUnb = 17s = 57,233. He or she will then find 10, neop- = 11,534; 
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Figure 5. ,. U.S. 1980 multiple decrement life table for neoplasms, cardiovascular diseases, and 
allother causes of death: (a) cause-specific survival distribution and (b) rescaled single cause 
estimates. 
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Table 5.3. Survival Status ofBreast Cancer Patients First Seen between 1956 and 
1961, with Inclusion ofUnattributable Deaths. Source: Drolette (1975) 

Total Rigbt-censored 
Start of 
interval Number Recorded Subsequent Number Recorded 

(x) at risk deaths deaths at risk deaths 

0 350 74 0 0 0 
1 276 48 0 45 1 
2 184 31 0 50 0 
3 103 10 0 36 1 
4 58 4 26 28 0 
Co) 0 

10• cvd- = 17,552; 10. other- = 13,681; and 10• unattrib = 57,233. The reader will 
note from the example that if we did not have cause of death information for 
ages beyond 75, over half of life table deaths would be unattributable. The 
incomplete multiple decrement life table for breast cancer (Table 4.1) with 
unattributed mortality after year 4 is presented as Tables 5.3 and 5.4. In Table 
5.4, unattributed mortality is set equal to the number of survivors at study 
eompletion (time 5.0). By its nature the unattributed event count is uneen
sored. From Table 5.4, the life table distribution oftotal deaths becomes 6377 
per 10,000 diagnosed patients, with 0 to 3623 possible additional breast cancer 
deaths, and 3623 to 0 possible deaths for other causes. These numbers might 
have been found direct1y from Table 4.8. 

5.3. MULTISTATE LlFE TABLES 

For events other than death, multiple decrement life tables can be eon
structed that allow transfers between attribute states. In the multistate model 
the number of survivors with attribute j at age x + n is given by 

Ix+n• ) = ~ Ix, I nPx. 1-) nlx. I-i 
i 

(5.10) 

where nlx. i-i represents the transfer probability from alt states i to state j as 
indieated by the direction arrow, and nPx. i-i is the associated survival prob
ability. As in the ordinary multiple decrement table, Ix+n = ~i Ix+n•i . However, 
witb tbe occurrence oftransfers, IX+1I,) may be greater or smaller than Ix,). 

The transfer probabilities nlx. t-) are estimated from available data sources, 
usua1ly censuses or surveys, or from model distributions. All are restricted 
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probabilities in the important sense that they estimate the proportion of the 
population observed at one location at time t and observed at the same or a 
different location at time t + n, using the survival terms nPx to adjust for 
mortality. Intermediate transfers, as i - k - j, are subsumed into the general 
category of i - j transfers, with the result that only part of the population 
flow is recorded in the model. The reader will recognize that information is 
lost whenever interval widths n are wide enough to encompass multiple moves. 

The method may be illustrated by a simplified version of a model by 
Tabah (1968), in which he projected transfers between economic activity 
and inactivity and between rural and urban residence for Mexico, using 1960 
population estimates. Tabah's source data are displayed in Appendix Table 
5A.l and are regrouped from 5-year to 15-year ages in Table 5.5 to simplify 
calculations for readers wanting to work the example. Appendix 5A.l discusses 
the methodology for the regroupings. 

The data in Table 5A.l include 1960 census distributions for the urban 
and rural economically inactive and active male populations (,Nx)' These are 
recentered from ages 0-4,5-9, 10-14, ... , to ages 0-7!, 71-22!, 221-37!, 
... , in Table 5.5 to facilitate calculation oflabor force transfer probabilities. 
(The initial interval 0-71 represents ages near birth, for which the proportion 
economically active is O. Later intervals are centered at exact ages 15, 30, 45, 
60 and 75.) The source table also displays net migration estimates from rural 
(r) and urban (u) residential distributions in the 1950 and 1960 censuses 
(stx+2.S.r-+u), and survival estimates (SSx+2.,) for 1960-1964 from life tables 
computed by Benitez and Cabrera ( 1966). The latter terms are estimated as 

Table 5.5. Mexican 1960 Male Population by Residence; Ages Grouped 
for Estimating Life Table Labor Force Transitions 

1960 urban population 1960 rural population 

Proportion Proportion 
Inactive Active activeG Inactive Active active G 

Ages • N",u,! IINx.u •• II)lX,U,er .N",r.! .Nx• r •• "I'x, r, a 

0-71 2,373,800 0 0.0000 2,446,150 0 0.0000 
71-221 1,993,450 951,650 0.3231 1,745,250 1,367,000 0.4392 

22t-37t 119,400 1,622,650 0.9315 114,150 1,602,550 0.9335 
37t-52t 44,850 988,100 0.9566 49,550 942,350 0.9500 
52t-67t 61,150 495,050 0.8901 39,400 533,000 0.9312 
671-821 135,950 94,350 0.4097 97,800 123,800 0.5587 

82t+ 0 0 0.0000 26,100 0 0.0000 

......... = .N ...... /(.N ..... 1 + .N ...... ). 
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S SX+2.' = ,LxH! ,Lx [expression ( 4.18)], and representlife table survival from 
the age interval (x, x + 5) to the interval (x + 5, x + 10). 

Table 5.6 displays survival and migration probabilities for the example, 
also from Appendix 5A.1. For the transfer probabilities between activity (a) 
and inactivity (i) in the table we adopt the conventions suggested by Tabah: 

o 
I x ~ Jlx or nVx+(1/2)n, • S nVx-(1/2)n, a 

(nVX+(1/2)n, • - nVx-(1/2)n, .)!( 1 - nVx-(1/2)n, .) 

I x< Jlx and nVx+(1/2)n,. > nVx-(1/2)n, • 

(5.11 ) 
0 

I x< Jlx or nVx+( 1/2)n, • ~ nVx-(1/2)n, • 

(nVx-(1/2)n, • - nVx+(1/2)n, .)!(nVx-(1/2)n, .) 

I x ~ Jlx and nVx+( 1/2)n, • < nVx-( 1/2)n, • 

In the expression, the terms nVx,j = nNx,i/nNx are the proportions ofthe pop
ulation ages x to x + n with attribute j, and the term Jlx is the mean age in 

Table 5.6. 15-Year "Px Terms and Transfer Probabilities for the Data 
ofTables 5.5 and 5A.l 

Urban population Rural population 

Probability of Probability of 
remaining remaining 

Life Life Net out 
table lnactive Active table Inactive Active migration 

Ages ,.Px,u ,.tx• U, i-i "t".o, .... "Px.r "tx. r, 1-1 "lx. r,a-a "tx. ... u 

0-14 0.9582 0.6769 1.0000 0.9056 0.5608 1.0000 0.2172 
15-29 0.9479 0.1013 1.0000 0.9138 0.1186 1.0000 0.2390 
30-44 0.9007 0.6335 1.0000 0.8408 0.7513 1.0000 0.2137 
45-59 0.7584 1.0000 0.9305 0.7125 1.0000 0.9801 0.1835 
60-74 0.4000 1.0000 0.4603 0.4101 1.0000 0.6000 0.1619 
75+ 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0279 
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the population. [It is used to differentiate between conventions at young and 
old ages. For the inactive population, the probability of becoming active is 
set to 0 at ages x ~ Ilx, since at these ages the proportion active is constant 
or decreasing. For the active population, the probability ofbecoming inactive 
is set to 0 at young ages (x < Ilx), where the proportion active would be 
expected to be increasing.] 

Applying (5.11 ), for the urban population the activity transition prob
abilities from birth to age 15 are given by 

1,/0, u, i-a = (1'''7.5, u, a - 7.5"0, u, a)/( 1 - 7.'''0, u, a) 

= (0.3231 - O)/( 1 - 0) = 0.3231 

1,/0, u, a-1 = 0 

1,/0. u, i-i = 1 - 0.3231 = 0.6769 

1510, u, a-a = 1 - 0 = 1 

The labor force transition probabilities at ages 15 to 30 are shown in Appendix 
5A.l. The reader may calculate the estimates for the older urban population 
and the rural population, which should agree with Table 5.6. 

Using the Table 5.6 estimates for survival, migration, and labor force 
transitions, the construction of multistate life tables for urban and rural Mexico 
follows easily using (5.10). Since urban and rural survival probabilities and 
labor force activity rates differ, however, we will need to make ajudgment as 
to whether migrants should share the survival and activity probabilities of 
their rural origin or urban destination for the interval in which they migrate.· 

For SUMVal an intermediate probability may be reasonable, of which 
the simplest will be the geometrie mean of the two probabilities: 

nPx, r-u, exp = (nPx, r nPx, u) 1/2 (5.12) 

For labor force activity we will follow Tabah in using the probabilities 
of the sending area (here, rural probabilities) for the interval of migration. 

With these conventions and setting t 10, u, i = 10, r, i = 10,000 we have the 
urban and rurallife table distributions ofTable 5.7. (The nonmigrant and 

• Additional life tables will be needed if migrants are assumed to remain distinct from other 
urban residents beyond the interval in which they migrate. 

t We select 10,000 rather than 100,000 for the radix for consistency with the three- to four-digit 
precision of the survival and migration probabilities in the source article. 
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migrant distributions are estimated separately, since the increment added to 
the urban population by migration from rural areas will depend on the number 
of life table births in each area. Actual urban and rural births were approxi
mately equal in 1960, but the life table is not restricted to that circumstance, 
and resca1ing the proportions is tedious once the tables are merged.) 

Table 5.7 displays the Ix,} series for the example. Checking a fewentries 
more or less at random, we have: 

(Table 5.7b) 130, r, a = IIS, r, a ISPI5. r 1S/ 15, r, a-a IS/ IS, r-r 

= (3114)(0.9138)( 1.0000)(0.7610) 

+ (3976)(0.9138 )(0.8814 )(0.7610) 

= 4602.5 - 4602 

(Table 5. 7a) 145, u, i = 130, u, i ISP30, u IS130, u, i-i 

= (623)( 0.9007)( 0.6335) 

+ (8460)(0.9007)(0.0000) 

= 355.5 - 355 

(Table 5. 7c) 145, u, i = 130, u, i ISP30, u !SIlO, u, i-i 

= (214)(0.9007)(0.6335) 

+ (328)(0.8702)(0.7513)(0.2137) 

+ (4602)(0.8702)(0.0000)(0.2137) 



Ta
bl

e 
5.

7.
 

M
ul

tis
ta

te
 L

if
e 

T
ab

le
s 

fo
r 

tb
e 

D
at

a 
of

T
ab

le
s 

5.
5 

an
d 

5.
6 

- ~ 
a.

 R
es

id
en

t 
ur

ba
n 

po
pu

la
tio

n 

ln
ac

tiv
e 

Su
rv

iv
or

s 
T

ra
ns

fe
rs

 
A

ct
iv

e 
Su

rv
iv

or
s 

T
ra

ns
fe

rs
. 

po
pu

la
tio

n 
re

m
ai

ni
ng

 
fr

om
 a

ct
iv

e 
po

pu
la

tio
n 

re
m

ai
ni

ng
 

fr
om

 i
na

ct
iv

e 
A

le
 

1;"
 ..

. i
 

in
ac

tiv
e 

po
pu

la
tio

n 
Ix

. .
..

 
ac

tiv
e 

po
pu

la
tio

n 

0 
10

,0
00

 
64

86
 

0 
0 

0 
30

96
 

15
 

6,
48

6 
62

3 
0 

30
96

 
29

35
 

55
25

 
30

 
62

3 
35

5 
0 

84
60

 
76

20
 

20
6 

45
 

35
5 

26
9 

41
2 

78
26

 
55

23
 

0 
60

 
68

1 
27

2 
11

92
 

55
23

 
10

17
 

0 
75

 
1,

46
4 

0 
0 

10
17

 
0 

0 

Fo
nn

ul
as

: 
Su

rv
iv

or
s 

re
m

ai
ni

ng
 in

ac
tiv

e 
""

 I
x. 

..
 i 

,J
Jx

. a
 n

Ix
. .

. t
-
i 

T
ra

ns
fe

rs
 f

ro
m

 a
ct

iv
e 

""
 I

x. 
..

. n
Px

. u
n

Ix
. .

. .
-
; 

Su
rv

iv
or

s 
re

m
ai

ni
ng

 a
ct

iv
e 

"" 
Ix

. .
..

 n
Px

. u
n

lx
. .

. .
-
.
 

T
ra

ns
fe

rs
 fr

om
 i

na
ct

iv
e 

""
 I

x. 
..

 i 
,J

Jx
. u

n
lx

. .
..

..
..

 

b.
 

R
es

id
en

t 
ru

ra
l 

po
pu

la
tio

n 

In
ac

tiv
e 

Su
rv

iv
or

s 
T

ra
ns

fe
rs

 
A

ct
iv

e 
Su

rv
iv

or
s 

T
ra

ns
fe

rs
 

po
pu

la
tio

n 
re

m
ai

ni
ng

 
fr

om
 a

ct
iv

e 
po

pu
la

tio
n 

re
m

ai
ni

ng
 

fr
om

 i
na

ct
iv

e 
A

le
 

Ix
.r

.i
 

in
ac

tiv
e 

po
pu

la
tio

n 
Ix

.r •
• 

ac
tiv

e 
po

pu
la

tio
n 

0 
10

,0
00

 
39

76
 

0 
0 

0 
31

14
 

15
 

3,
97

6 
32

8 
0 

31
14

 
21

65
 

24
37

 
2 

30
 

32
8 

16
3 

0 
46

02
 

30
42

 
54

 
)
i 

45
 

16
3 

95
 

36
 

30
96

 
17

65
 

0 
."

 
60

 
13

1 
45

 
24

3 
17

65
 

36
4 

0 
!i1 ~ 

75
 

28
8 

0 
0 

36
4 

0 
0 

CJ
1 



F
or

m
ul

as
: 

S
ur

vi
vo

rs
 r

em
ai

ni
ng

 in
ac

ti
ve

 =
 I

x, 
r, 

I 
,./

Jx
, r

 n
tx,

 r, 
I-

I 
nt

x, 
r
-
r
 

T
ra

ns
fe

rs
 f

ro
m

 a
ct

iv
e 

=
 I

x, 
r,

' ,
./J

x,
 r 

nt
x, 

r, 
.-

1
 nt

x, 
r-

r 

S
ur

vi
vo

rs
 r

em
ai

ni
ng

 a
ct

iv
e 

=
 I

x, 
r,

' n
Px

, r
 n

tx,
 r

,'
-
' 
"t

x,
 r

-r
 

T
ra

ns
fe

rs
 f

ro
m

 i
na

ct
iv

e 
=

 I
x, 

r, 
I "

Px
, r

 "t
x,

 r
,I

-.
 n

t",
 r-

r
 

c.
 R

ur
al

-t
o-

ur
ba

n 
m

ig
ra

nt
 p

op
ul

at
io

n 

T
ra

ns
fe

rs
 f

ro
m

 

ln
ac

ti
ve

 
Su

rv
iv

or
s 

R
ur

al
 

po
p.

 
re

m
ai

ni
ng

 
A

ge
 

Ix,
 u,

 I 
in

ac
ti

ve
 

ln
ac

t. 
A

ct
. 

0 
0 

0 
11

35
 

0 
15

 
11

35
 

10
9 

10
5 

0 
30

 
21

4 
12

2 
46

 
0 

45
 

16
8 

12
7 

22
 

8 
60

 
36

3 
14

5 
9 

46
 

75
 

88
2 

0 
0 

0 

F
or

m
ul

as
: 

"P
x, 

...
.. 

=
 (,.

/Jx
, r

 ,
./J

x,
 ,J

1
/2

 

U
rb

an
 in

ac
ti

ve
 p

op
ul

at
io

n:
 

S
ur

vi
vo

rs
 r

em
ai

ni
ng

 in
ac

ti
ve

 =
 Ix

, u
, I

 "P
x, 

u 
"t

x,
 u,

 i
-I

 

T
ra

ns
fe

rs
 f

ro
m

 r
ur

al
 in

ac
ti

ve
 =

 I
x, 

r, 
I 

,./
Jx

, r
-u

 "t
x,

 r, 
l-

i 
"t

x,
 ..

...
 

T
ra

ns
fe

rs
 f

ro
m

 r
ur

al
 a

ct
iv

e 
=

 I
x, 

r, 
a 

"P
x, 

r-
u

 "t
x, 

r,
 _

 
.tx

, r
-u

 

T
ra

ns
fe

rs
 f

ro
m

 u
rb

an
 a

ct
iv

e 
=

 I
x, 

u
,.

 ,.
/J

x,
 0 

"t
x,

 u,
 _

 

U
rb

an
 a

ct
iv

e 
po

pu
la

ti
on

: 
S

ur
vi

vo
rs

 r
em

ai
ni

ng
 a

ct
iv

e 
=

 I
x, 

u
,.

 "P
x, 

u 
"t

x,
 u

,.
-
. 

T
ra

ns
fe

rs
 f

ro
m

 r
ur

al
 in

ac
ti

ve
 =

 I
x, 

r. 
i 

,./
Jx

, r
-u

 "t
x,

 r, 
i-

a
"
tx

, r
-
u

 

T
ra

ns
fe

rs
 f

ro
m

 r
ur

al
 a

ct
iv

e 
=

 I
x, 

r,
' "

Px
, r

-o
 "t

x,
 r
,
'-

' 
"t

x,
 r

-u
 

T
ra

ns
fe

rs
 f

ro
m

 u
rb

an
 in

ac
ti

ve
 =

 I
x, 

u,
 I 

.P
x,

 u 
nt

x, 
u,

 i
-a

 

A
ct

iv
e 

U
rb

an
 

po
p.

 
ac

t. 
Ix,

 u
,.

 

0 
0 

0 
88

9 
0 

32
83

 
20

6 
38

99
 

68
2 

31
60

 
0 

65
1 

S
ur

vi
vo

rs
 

re
m

ai
ni

ng
 

ac
ti

ve
 o 

84
3 

29
57

 
27

51
 

58
2 o 

ln
ac

t.
 

88
9 

78
0 15
 0 0 0 

T
ra

ns
fe

rs
 f

ro
m

 

R
ur

al
 

A
ct

. 0 
69

3 
85

6 
40

9 69
 0 

U
rb

an
 

in
ac

t. 0 
96

7 71
 0 0 0 

;t! ."
 ~ n; ~
 

~
 

."
 

:::::
: - ~ 



156 CHAPTER 5 

+ (3283)(0.9007)(0.0000) 

= 167.9 - 168 

For a life table population with 10, u, i = 10,000 and 10, r, i = 6000 entrants, 
Table 5.7a and 5.7c produce the combined estimate 14s, u,i = 364.7 + (6000/ 
10,000)( 169.8) = 466.6 - 467 males surviving and in the inactive urban 
population at age 45.0. 

To estimate the life table population "Lx,j from the IX,i series we may 
use (4.15) or (4.16), or one ofthe formulas ofSection 6.2.· 

Alternatively, we may estimate "Lx and use the proportion ofthe source 
population in the attribute state j, "Nx,j/ "Nx, to partition "Lx into attribute 
subgroups "LX,i' We exploit the approximate equality 

(5.13) 

eWe note for the reader that using the linear relationship Ix+( 1/2)n,j,linear = "Lx,J/ 
n, we also have the virtuallife table estimator, expression (4.42), 

The expression might be used to construct conventional multiple decrement 
life tables, except that the population ,.Nx,i eventually dying or terminating 
due to causej is rarely known before the fact.] 

After ca1culating the "Lx,i terms they should be checked for consistency 
with IX,i' lethe interval (x, x + n) does not contain a distribution peak or 
minimum, the unit population "Lx,i/n should satisfy the inequality 

greater 0/ {Ix, j, Ix+", j} ~ "Lxjn ~ lesser 0/ {Ix, i> Ix+n• i} (5.14) 

In conventional (decrement) life tables the constraint holds for all "LX,i' 
Table 5.8 displays the residence and occupation distribution of Table 

5A.l, groupe<! into 15-year ages for use with (5.13). The regrouping in Table 
5.8 is conventional, since we do not require estimates oftransfers across in-

* Land and Schoen ( 1982. pp. 285-290) also find nLx by fitting a quadratic through Ix. Ix-+{ 1/2),,, 

and Ix+n• where Ix-+{ 1/2.", is estimated nonlinearly. The integral ofthe quadratic gives their expres
sion (2.26): 

We have introduced other polynomial estimators in Section 2.2. 
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tervals to partition nLx. In Table 5.9 we construct nLx and complete the 
partitioning into nLx,J. We also find nLx,J by (4.15) for comparison with the 
source table estimates. [We omit ooL,s, for which an estimate of annual deaths 
is required. See expression (4.38).] 

In comparing the two nLx,J series, the source data estimate is seen to be 
out ofthe range given by (5.14) in one case (nonmigrant active rural popu
lation ages 15-29), where the estimate using(5.13), IsLIS,r,a,1IOImle1 15, exceeds 
both Ils, r, sand 130, r, S' The interval may be a distribution peak, but is not 
necessarily one. Ifwe decide it is not, we correct IsLIS, r, s to a value no greater 
than the targer ofthe boundary values 115, r,s, 130, r,s' Tbe larger term is l:w, r,s 
= 4602, which limits IsLIS,r,a to no more than 15 X 4602 = 69,030. Since 
IsLIS,r = 90,150, forthe limiting value IsLIS,r,a = 69,030, IsLlS,r,i will equal 
21,120, which is within the correct range for the inactive population. For 

Table 5.9. Linear and Source Data "Lx.} Estimates for the Data ofTables 5.5-5.S" 

Ages Ix "Lx.n_ "Lx. I. Ii_ "L",I._ "L", .. u_ "L", .. _rce 

a. Resident urban population 

0-14 10,000 146,865 123,645 144,221 23,220 2,644 
15-29 9,582 139,987 53,317 27,129 86,670 112,858 
30-44 9,083 129,480 7,335 6,642 122,145 122,838 
45-59 8,181 107,887 7,770 6,150 100,117 101,737 
60-74 6,204 65,137 16,087 14,213 49,050 50,924 
75+ 2,481 (20,657) 

b. Resident rural population 

0-14 10,000 128,175 104,820 120,677 23,355 7,498 
15-29 7,090 90,150 32,280 9,150 57,870 81,OOOb 
30-44 4,930 61,417 3,682 3,310 57,735 58,107 
45-59 3,259 38,662 2,205 2,041 36,457 36,621 
60-74 1,896 19,110 3,142 2,010 15,968 17,100 
75+ 652 (5,429) 

c. Rural-to-urban migrant population 

0-14 0 15,180 8,513 14,907 6,667 273 
15-29 2,024 41,407 10,117 8,025 31,290 33,382 
30-44 3,497 56,730 2,865 2,910 53,865 53,820 
45-59 4,067 56,925 3,982 3,245 52,943 53,680 
60-74 3,523 37,920 9,337 8,274 28,583 29,646 
75+ 1,533 (12,764) 

• The tables includc the estimates .. 1SL" = I" e" = 8.326/", from Keyfitz aod Aiegcr (1968, p. 118). 
b This estimate is outside the expectcd range for increment-decrement life tables: grealer of {Ix." I".. .. ,} "" .L ... ,I 
n "" lesser 01{ I ... " I ...... ,}. See text. 
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other ages and other subpopulations, both sets of nLx,i estimates are within 
range. Other estimating formulas for nLx might result in more or fewer nLx,i 
terms being out of the expected range. 

We note that except for .sL.s, r, a, the nLx,}, lOuree estimates are at least 
equal to nLx,}, linear estimates in quality: at the youngest ages in particular, the 
linear estimates probably assign too few person years to the nonlabor force 
nLx, i and too many to the active labor force nLx, •. The proportions inactive 
and active in the source populations are also biased with respect to the life 
table since they are more heavily weighted toward young ages owing to pop
ulation growth, about 3% annually at that time. 

The value of multistate life tables is contributed both by the Ix,} estimates, 
which display proportions in each attribute state as of age or duration x, and 
by the nLx,i estimates, which display person-time spent in each state. Had 
the source data included annual deaths at age 75+ we could also have found 
the expected lifetime ex,i spent in each attribute state: here, the number of 
years spent in the labor force, spent in childhood before labor force entry, 
and spent in retirement. 

Besides the formulas presented here, a number of others have been in
troduced for multistate tables. As a starting point, the reader is referred to 
Schoenand Nelson (1974), Rogers( 1975), Schoen (1975,1978,1988), Hoem 
( 1975), Krishnamoorthy ( 1979), Willekens et al. (1982), Land and Rogers 
(1982), Land et al. (1986), and Land and Hough (1989). Readers should 
also see Keyfitz ( 1985, pp. 350-367) and the comment by Nour and Suchin
dran (1984), who emphasize that common estimating formulas may yield 
multistate transition probabilities that are suspect or out of range for at least 
some data sets. An application ofthe transition probabilities ofTable 5.9 to 
population projection is presented in Section 9.3. 

5.4. CAUSE-EUMINATED AND CAUSE-SUBSTITUTED 
UFE TABLES; COMPETING RISKS 

Since multiple decrement rates correspond to the observed rates of oc
currence of different causes of death, it may not be obvious that they can be 
improved upon. In fact they sometimes can be. Whenever two populations 
have an equal risk of death from a particular cause, but one has a greater risk 
from other causes, the actual occurrence rates for the equal risk cause will 
differ between the populations. The problem is one of competing risks: in the 
population with higher overall mortality rates, some people die of other causes 
who in the lower mortality population would have survived those and ulti
mately died ofthe cause ofinterest. To find the actual risk for any one cause, 
tables are needed in which the distorting effects of other causes of death are 
eliminated. 
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For projections of future mortality and life expectancy, the same con
sideration applies. Because observed rates are affected by competing risks, the 
past patterns of individual mortality rates are not a reliable indicator of changes 
occurring in underlying survival probabilities. In consequence, they are also 
relatively poor guides to the possible course of future mortality. Rates that 
more nearly reßect the underlying probabilities are a better base from which 
to extrapolate. 

To develop cause-eliminated life tables, we need a means of estimating 
survival probabilities for individual causes of death as they would appear if 
no other causes operated. Tbe actual survival probability nPx over the age 
interval x to x + n would be the product of these rates. For example, if the 
chance of surviving cardiovascular risks is nPx, CV\f, the chance of surviving the 
various cancers is nPx, neoplasms, and the chance of surviving other risks is 
nPx,othe .. the probability of surviving the combined rlsks for all factors should 
be 

nPx = {nPx, cvd)(nPx, neop)(nPx, other} = rr nPx, j 
j 

We implicitly assume that the causes of death are independent.· 
The elimination of one cause is equivalent to setting the survival rate for 

that cause to 1.0. For example, the survival probability nPx, -cvd, representing 
the probability of surviving through the interval if cardiovascular deaths were 
eliminated, is ( 1.0)(nPx, neop)(nPx, other). Elimination of all causes but one would 
set nPx to the rate for that cause. 

A simple approach to the estimation of the nPx.j terms is to suppose that 
the risk of morta1ity is constant over the age interval and equal to the multiple 
decrement death rate nMx,i = nDx,l nNx. We might then estimate nPx,i using 
the exponential t: 

{5.15} 

More generally, for nMx,i we can substitute nMx{nDx,i/nDx}, which allows us 
to rewrite the survival probability as 

• If causes are not independent, they can be handled in cause-eliminated Iife tables only to the 
extent that their interconnectedness can be modeled explicitly. The issue is raised forcef'ulIy in 
Prentice et 0/. (1978), and in works by Manton and others (Manton et a/ .• 1976; Manton and 
StaIlard, 1984; Manton and Myers, 1987) on underlying causes ofmortaIity. 

t The expression is shown in .Mx.} form for continuity with the discussion that foDows. When 
(5.15) is used, .Dx.JI.Nx should be substituted for .Mx.} to preserve accuracy. 
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Ifwe then substitute nPx for e-nnM" we have 

nPx, j, Grevil1e = (I D I D 
nPxn x.) • x 

(5.16) 

This expression was introduced by Greville ( 1948).· When nPx is estimated 
by the exponential, the equivalence of(5.15) and (5.16) is exact. Under all 
nPx formulas it produces cause-elminated rates whose product II} nPx,j = nPx. 

Examining (5.16), nPx,j takes the value nPx when all deaths in the age 
interval are due to cause j, and the value 1.0 when no deaths in the interval 
are due to j. These are correct limits. The chance of surviving for a single risk 
j cannot be lower than the chance of surviving for all risks combined; nor 
can it be above 1. 

The elimination of a cause of death is found by setting all of the nPx,j 

terms for that cause to 1.0, the value they would take if the cause produced 
no fatalities, and recalculating nPx as the product of the survival rates for the 
remaining causes. Altematively, the new survival estimate can be found from 
the initial nPx and nPx,J values using 

nPx, -} = rr nPx, i = nPxl nPx, j 
i+j 

(5.17 ) 

where nPx, -j is the survival probability with cause j eliminated. t If nPx,j is 
estimated by (5.16), the expression simplifies to 

• Readers will also often see the hyperbolic ("actuarial") single cause survival probability: 

where .Wx = Nc(x) - .Dc,,,, representing individua1s censored in the interva1 who were surviving 
at the point ofloss of contact. The formula assigns fractional observation times to these individuals, 
and in the cause-eliminated rates, to individuals dying of causes other than j in the interval 
<.Dx• _j) and therefore exposed to the risk of dying of cause j for only part of the intervaI. 
Although widely used, in Most applications the hyperbolic single cause survival probabilities 
are oflower quality than Greville's .px.) estimates (Smith, 1985a). On the estimation of survival 
probabilities with competing risks the reader should also see Pollard (1982, 1988) and Hsieh 
( 1989). 

t In studies with censorship due to unscheduled sampie losses or to arrivals at study cutoff, < 5.16) 
and (5.17) may be used to estimate survival in the absence of the losses. Following Chiang 
(1968, pp. 287-288) and Mode (Mode et al .• 1977), we treat the loss subset Nc(x) - .Dc,xas 
an event subset, say .Dw.x. We then estimate .px by the unadjusted sampie formula 

.Px, uDO<\iuAocl = 1 - (.Dx + nDw. x)! N(x) 
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P j G ')) = P (I-.D ... jl.D .. ) 
n x, - , revt e n x (5.18 ) 

Partial rather than complete elimination of a cause of death can also be 
investigated, most simply by setting 

nPx, -j, (l-a)j = nPx/(nPx, j)a ( 5.19) 

After finding ,,]J .. , we estimate the survival probability in the absence of withdrawal as 

.P .. , -w = .P .. (I-.,D ..... 1c"D. + .D .... '>1 

Tbe reader can confirm that for the data ofTable 4.1, treating sampIe lasses as a competing 
risk will yield the survival probabilities in the absence of lasses: 

IPI. -wo 0IeviIIe = (I - 92/276)(1-44/92) = 0.80933 

IP2. -w, 0revII1e = (l - 81/184)(1-50/ 11 ) = 0.80087 

1P3, -w, o...UIo = (1 - 45/103)(1-3'/4') = 0.88019 

IP4, -w, 0IeviIIe = (I - 32/58)(1-21/32) = 0.90454 

These rates will be found to fall near or within the range ofthe Table 4.2 and 4.3 estimates. 
Although not widely used, the formula is competitive with conventional estimators. 

We might also distinguish censorship by lasses (CL) from censorship by arrivaI at study 
cutoff(CC). Restricting analysis to right-censored sampIes, we would have the subsets 

Ndx) = Na..(x) + Ncdx) 

.De. .. = .DCL, .. + .Dce. .. 

Defining only the unscheduled lasses as events in competition with other causes oftermination, 
total events in the interval will number .D .. + .Dw, ... By this convention, the censored subset 
is restrlcted to persons censored by study cutolf, Ncc(x) and .Dcc.". A curtate survival probability 
for the sample would be found as: 

.P". __ .... = I - l.D" + .Dw, " - .Dce. ,,]/lN(x) - Ncdx» 

Tbe survival probability in the absence of sampie losses is then 

.P". _'- Grevlilo = .P" I-.D ..... /1.0. + .0,.. . ...... Dcx:. .1 

In the absence of unscheduled lasses the expression reduces to the curtate estimator, ( 4.2). 
The reader may find survival probabilities under other .P" formulas where assignment of the 
censored sampie is partly to lasses and partly to censorship by arrival at study cutoff. 

We caution that treatment oflosses as a competing risk is not a way ofremoving the biases 
arising when the lasses are nonrandom. A test for bias is presented in Section 4.8. 
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In the expression a represents the proportion of the jth cause that has been 
removed. (a can also be assigned negative values, to show the impact of an 
increase in mortaIity for cause j.) 

A different approach to the partial elimination or augmentation of causes 
of death is to substitute the nPx,j terms of one life table for those of another. 
Usingj andj* to represent causej in the source and alternate tables, respec
tively, the original and revised survival probabilities at ages x to x + n become 

nPx = (nPx, j)(nPx, -.;) 

and 

(5.20) 

Any of the series of terms nPx,j> nPx, -j, nPx, -j, (l-a)j> or nP x, _j,j_ can be 
substituted for nPx to construct a life table displaying the effect of the change 
on Ix, nLx, and life expectancy to the start ofthe final age interval '-xex, using 
the same radix as the ordinary life table, commonly either 1 or 100,000. 

In the final age category (J, w) of cause-eliminated and cause-subsituted 
tables, no satisfactory conventions exist for estimating person years lived .,--,LJ,j 

or life expectancy e',j' For the trivial case where j contributes no deaths in 
the final intervaI, we may set .. _,L" _j = .. _,L" but the example is of limited 
interest. We also expect that with the reduction or elimination of causes pro
ducing some deaths, the time lived in the interval will increase-that is, for 
0< a < 1, .. -,LJ,-j,(I-a)j > .. _,L,-but the inequality does not yield exact 
.. -,L,,-),(I-a») estimates. For other changes the relationship of .. -,LJ,_j,j- to .. _,L, will depend on the intensity and age pattern of deaths in the source (j) 
and substituted (j* ) tables. That information is unlikely to be known. In tbe 
final interval the population .. _,N,and deaths by cause .. -,DJ,j are given, but 
not the ages at which the deaths occur.t 

t The reader is cautioned that for cause-eliminated rates the Iife expectancy for the terminal 
category is sometimes estimated as ef,J = r-fNf/..-fDf,J> or population ages fand over divided 
by cause j deaths. The life expectancy for allother causes becomes ef. -J = o.--fNf / (,,-fDf - .. -fDf,j). 

The first expression is correct for o.--fDf,J = o.--fDf (that is, if all deaths are due to cause j) 
but is undefined for o.--fDf,J = 0; the opposite conditions hold for the second expression. At 
intermediate ..... tDf,J values the expressions produce life expectancy estimates between the source 
Iife table efand 00, with ef,J becoming increasingly implausible as ( .. -fDf,JI..-fDf ) -. 0 and ef,-J 

becoming increasingly implausible as (..-fDt.l.-fDf) -. 1. 
Since everyone dies, the identity N(f) = ot-fDfmust continue to hold as deaths for cause j 

or deaths for other causes approach 0, implying that ..-fDf, -J or .. -fDf,J converges to N(f) and 
that all effects of cause elimination are expressed as increases in the population ( or amount of 
time lived) beyond f, ...-/Vf. For the two life expectancies ef, -J and ef,b we therefore have ef,-J 

= k..-fNf/..-fDf = kef' and ef,J = k'o.--fNf/ .. -fDf = kiel> where it is known only that k> land k ' 
> I. Historica1ly, the gains at the oldest ages have been small (Fries, 1980; Fries and Crapo, 
1981) but even that does not tell us much about k and k'. 
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Omitting the tenninal age category from analysis, for cause-eliminated 
and cause-substituted rates the life expectancy is replaced by the partial Iife 
expectancy to the start of the final age interval (J, Ca), 

Table 5.10 and Figs. 5.2 and 5.3 display cause-eliminated survival rates 
for the United States in 1980 for neoplasms, major cardiovascular diseases, 
and other causes. The example uses ,.Px tenns from Table 4.9 and the pro
portional distribution of deaths ,.Dxj,.Dx found from Table 5.1. After esti
mating ,.Px,) by (5.16), Ix,Jo ,.LX,i> and f-xex,j distributions are computed by 
standard fonnulas. The table also displays Ix, -) and f-xex, -Jo estimating ,.px, _ j 
by ( 5.17). [The reader might note that after interpolating from initial (x) to 
midinterval (x + in) ages, the tenns f-xex, _j can be substituted ror the ordinary 
life table tenns ex+( 1/2),. in ( 4.24 ) or ( 4.25), to estimate years of potentiallife 
lost. In their original fonnulation the expressions do not incorporate the effects 
of competing risles.] 

At age 0 the single cause probabilities are 

Total Neoplalml CVD Other 

Number aurvlvlng per 100,000 blrtha 
100000 ..., ...... ~~ .... ~ 

'~~ 80000 • 4" ... 
\ .:-: . 

\ . 80000 
\ 

40000 

20000 

o~ ____ ~~ ____ ~ ______ ~ ________________ ~ 

o 20 40 80 80 100 

Aga 

Figure 5.2. U.S. 1980 causwliminated life table for neoplasms, cardiovascular diseases, and all 
other causes of death. 
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Figure 5.3. U.S. 1980 multiple decrement and cause-eliminated life tables for neoplasms, car
diovascular diseases, and aIl other causes of death: (a) neoplasms, (b) nuüor cardiovascular diseases, 
and (c) allother causes. 
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Figure 5.3. Continued 

,Po. cvd = 0.98734°·00395 = 0.99995, 

IPo. neop = 0.98734°.02133 = 0.99973, Iqo. neop = 0.00027 

IPO. other = 0.98734°.91472 = 0.98766, Iqo. other = 0.01234 

The product of the survival terms is 

n IPO.} = (0.98734°.00395)(0.98734°.02133)(0.98734°.91412) = 0.98734 = IPO 
} 

For all three causes the single cause probabilities of dying Iqo.} agree 
closely with the Iqo.} terms of the multiple decrement table (Table 5.1: the 
table displays Ido.) = 10 Iqo.} = 100,000 Iqo.}). The terms diverge at older ages 
where the proportions dying of each cause are more nearly equal. 

The single cause and overall Ix distributions are graphed in Fig. 5.2. At 
young ages, neoplasms and cardiovascular deaths are rare, and Ix is only slightly 
lower than Ix. other. At the oldest ages, where cardiovascular deaths predominate, 
the Ix distribution closely parallels Ix•cvd• In Fig. 5.3 the multiple decrement 
and cause-eliminated distributions are superimposed. For all three causes the 
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survival patterns are similar, since at most ages mortality is low and the ad
justment for competing risks in the cause-eliminated tables is small. 

Variances for the cause-eliminated survival probabilities of ( 5.16 ), ( 5.19), 
and (5.20) are similar to those for multiple decrement rates, with the substi
tutions nPx, 1, GreviJle, n<lx,1, GreviJle, nPx, -1, (l-a)jo n<lx, -1, (l-a)jo and nPx, -1,i*' n<lx, -i,i* 
for terms in nPx, n<lx, respectively. 

! 

5.5. EFFECTS OF CHANGING SURVIVAL RATES ON THE 
RISK POPULA TION nNxI DEATHS nDxI AND DEATH 
RATES nMx 

We measure the effects of a change in the probability of survival on the 
interval population, deaths, and age-specific death rates by inverting standard 
life table formulas. Restricting analysis to ages (x, x + n) below J, the start 
of the final age interval, and letting nPx,i and nP~, 1 represent the initial and 
changed survival probabilities for the jth cause of death, and nPx and nP~ 
represent the corresponding probabilities for all causes combined, for total 
deaths before and after the change in the survival probability we will have 

nDx = N(x){ 1 - nPx) 
(5.21) 

nD~ = N{x)( 1 - nP~ ) = nDx{ 1 - nP~ )/( 1 - nPx) 

N(x) does not itself change, since it represents survivors at the start of the 
interval. 

For the jth cause, the change in the number of deaths is found by solving 
Greville's expression (5.16) for nD'tjo after substituting nP~, nP'ti' and 
nD~ for nPx, nPx,i' and nDx. With the substitutions the expression becomes 

P* . "-.lle = p* ("D~ )I"D~) n X,}, UceYI n (5.22) 

whence 

(5.23) 

A change in the survival rate for cause j changes the interval population 
nNx as weil as deaths nDx. With the change in deaths from nDx to nD~ the 
population size becomes 
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The expression is derived from the linear estimator [expression (4.8)] N(xmnear 
= nNx/" + ! nDx. 

Using (5.21) and (5.24), for the age-specific death rate we bave 

[Where fewer or more than half of interval deaths fall before the interval 
midpoint, the estimate ,,(1 - ,.ax/") may be substituted for ,,/2 in (5.24) 
and (5.25).] 

Using (5.21 )-(5.25) and Tables 5.1 and 5.2, we will illustrate the effect 
of changes in survival probabilities on nNx, nDx, nDx,jo nMx, and nMx,), by 
letting 10P75, neop increase from 0.87791 to 0.87791 0.80915 = 0.90000 and letting 
10P75, cvd increase from 0.65828 to 0.65828°·85303 = 0.70000. With the cbanges, 
we have, omitting the subscripted identifiers, Greville and linear, 

IOP~5 = TI 10P75,j = (0.90000)(0.70000)(0.86267) = 0.54348 
) 

= 517,257(1 - 0.54348)/(1 - 0.49854) = 470,901 

IOD;5, neop = 470,901 (In 0.90000)/(ln 0.54348) = 81,367 

IOD~s, cvd = 470,901 (In 0.70000)/(ln 0.54348) = 275,449 

IOD;5, other = 470,901 (In 0.86267)/(ln 0.54348) = 114,082 

The revised numbers of deaths can be compared with the earlier values 
IOD75,neop = 96,769, IOD7',cvd = 310,704, and IOD75,other = 109,784. The 
changes represent a 16% decline for neoplasms, an 11 % decline for cardio
vascular diseases, and a 4% increase for other causes. 

The example brings out the effects of competing risks on numbers of 
deaths and mortality rates. With improvements in survival rates ror two causes 
and no change for the third cause, numbers of deatbs for the third cause 
increase. What has bappened is tbat the improvements increase the number 
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at risk for the third cause. Competing risks also impact on the improved 
causes. If survival had increased only for neoplasms, we would have 
IOD~5, neop = 79,162, out ofa total (IOD~5) of504,312 deaths. The number of 
deaths for neoplasms with no other mortality changes is slightly smaller than 
is found when survival improves for both neoplasms and cardiovascular deaths. 

The increase in persons at risk ION~5 with changes in survival probabilities 
can be estimated by (5.24): 

= 7,728,800 + (10/2)(517,257 - 470,901) = 7,960,600 

The reader should note that although ION~s is estimated from the 1980 census 
population ION7S, it represents a hypothetical population. The new population 
estimate and the changes in deaths by cause are for the population N(75) 
whosurvivetotheir 75th birthday. Thechangesin lol'7s,jdo not affect N(75), 
or we would be unable to generate estimates of the interval population and 
deaths that would follow from changes in survival. 

For the revised population, the age-specific death rates become: 

nM~ = nD~ /nN~ = 470,901/1,960,600 = 0.05915 

nMt neop = 0.01022 

nM~, cvd = 0.03460 

nMt other = 0.01433 

For comparison, the initial age-specific death rate was 0.06693, and the rates 
by cause were 0.01252, 0.04020, and 0.01420 for neoplasms, cardiovascular 
diseases, and other causes, respectively. The reader can work backward through 
the example to confirm that the interval survival probability nPx, other remains 
0.86267 and that the difference in the age-specific death rates nMx, other and 
nM~, other is wholly attributable to the changes in the competing causes nPx, neop 

and nPx,cvd' 
We note for the reader that ofthe three terms nN~ , nD~ , and nM~ , the 

first two are changes specific to the source estimates nNx and nDx. For another 
source population noN x with the same initial age-specific death rate nMx and 
deaths n1)x = noN x nMx, the revised population and death terms would become 
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n.N~ = n.Nx(nN~ InNx) and n1)~ = n1)x(nD~ InDx). Tbe age-specific death 
rates, being ratios of deaths to population, would be the same for the two 
cohorts. That is, given n.M.x = nMx we will also have n.M.~ = nM~. 

5.6. DECOMPOSITION OF CHANGES IN UFE EXPECTANCY 

Differences in life expectancy between populations and changes over 
time are wholly explained by the differences in the survival probabilities for 
each cause of death. If a single cause is responsible for the difference, (5.20) 
will generate either life table from the other, up to the start of the final age 
interval (f, CA» or (f, 00). We may also have the population and death estimates 
.. -fNf, ..... tDf for both populations, which would allow complete life expectancies 
to be found by the formulas of Chapter 4. Tbe difference in life expectancies 
f-xex or ex measures the contribution of j and j* to survival at ages x 
and above. 

When life expectancy differences are due to several causes of death, the 
apportionment of the differences by cause is no longer unambiguous. Con
structing aseries of life tables, each with a single cause substituted from the 
other table, will provide aseries of differences 

(5.26) 

that sum more or less to the overall difference I-xe~ - I-xex. Tbe summation 
will usually be inexact, since competing risks operate differently in each of 
the calculated life tables. Tbe equality can be made exact by distributing the 
error proportionately among the causes, for which we set: 

C x, i, forward = gi, forward Cx, i, forward 

where 

gi, forward = 1 + sign(cx,i, forward) ( 8forward /7 I Cx,i, forward I ) 

and e is the error term 

eforward = (I-xe! - f-xex) - ~ cx, J, forward 

i 

(5.27) 

In Ki. forward the quantities within verticals (I I) are absolute values. (The 
complexity of these expressions arises from the necessity of adjusting the 
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absolute magnitudes ofthe Cx,j terms. For the individual terms the corrections 
will be greater or less than 1.0 depending on their signs and the sign of the 
error term e.) 

Besides forward differences we may also estimate the backward differences 

where 

Cx, j, backward = f-xe~ - f-xe~, - r, j 

C x, j, backward = gj, backward cx , j, backward 

~ckward = (f-xe~ - f-xex) - L ct J, backward 
j 

(5.28) 

(5.29) 

For Table 4.9b the life expectancy to age 85 is 8SeO = 71.1 years. We also 
have, from Table 5.10, the life expectancies to age 85 with single causes elim
inated 8SeOr-neop = 74.1 years, 8SeO,-cvd = 75.8 years, 8SeO,-other = 76.2 years. 
Tbe gains in life expectancy following elimination of each cause are thus 

Co, -neop, forward = 74.1 - 71.7 = 2.4 years 

Co, -cvd, forward = 75.8 - 71.7 = 4.1 years 

Co, -other, forward = 76.2 - 71.7 = 4.5 years 

The differences sum to ~J CO,j = 11.0 years, less than the 85.0 - 71.7 = 13.3 
years that would actually be gained if all three causes (that is, all causes of 
death) were eliminated at ages below 85. Using (5.27), the scale adjustments 
we require to correct ~j Co,l will be 

Cx, j, forward = gj, forward Cx, j, forward 
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Co, neop, forward = gncop, Forward Cx , neop, Forward 

= [1 + (+)(2.3/11.0)](2.4) = (1.21)(2.4) = 2.9 

Co, cvcI, forward = (1.21)(4.1) = 5.0 

Co, other, forward = (1.21)(4.5) = 5.4 

(Note that aIl ofthe changes are positive, since they arise through elimination 
of causes of death. For mixed changes some terms IJ will be greater than 1.0 
and some less than 1.0.) 

Tbe reader may use the single cause survival probabilities 8,eO,J from 
Table 5.10 to find adjusted backward survival changes using (5.28) and (5.29) 
from the unadjusted changes 85.0 - 81.2 = 3.8 years, 85.0 - 79.1 = 5.9 
years, and 85.0 - 78.9 = 6.1 years for neoplasms, cardiovascular diseases, 
and other causes, respectively. He or she might also average the unadjusted 
forward and backward differences, to produce estimates (3.1, 5.0, and 5.3 
years, respectively) that are usually closer to the correct difference, and there
fore need less adjustment than forward or backward estimates taken separately. 

5.7. MORTALITY PROJECTION 

In addition to past and current mortality, problems of competing risks 
also arise in projections of future mortality. Projections typically assume in
creasing longevity, but they are rarely specific as to the causes of death con
tributing to the gains. By extrapolating from past changes in cause-eliminated 
Ix,} rates, it is possible to construct life table survival estimates for future years 
based on clearer assumptions about mortality trends. 

For the projection let nP~~~ represent the cause-eliminated survival rate 
for the jth cause at time 0, and let nP~~ ~ represent the rate at time 1. The 
relationship between the two rates can be expressed by a varlety of functions. 
We will use*: 

• An alternative to (S.30) sugested by Keyfitz (1971a) is to fit the survival probabilities NP",} 
for two or More periods to a reference distribution usina the BI'IIIIS IoBit (Section 6.3). Survival 
probabilities for future periods are found ftom the reference distribution by extrapolation from 
the fitted coefficients 4, b for the source periods. Uke (S.30), the loBit littina constrains nP",} 
values to the l'IlDje (0, 1). It also smooths the projected mortality cbaups at the various agcs, 
helpful principally when source distributions display enatic patterns due to sma1l sempie sizes 
or smalJ numbers of events. Tbc reader is cautioned that neither (S.30) nor the Jogit is intended 
to substitute for insight. 
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P (I) , = 
n X,} 

where h is estimated as: 
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o I P(I),= 0 
/I X,J 

I P(l), = 1 
11 X,} 

(5.30) 
[ P(I),]I 
/I X,J I/lP~?~ = 0, 1; /lP~~~ =F 0, 1 

[ P(I-,1)]h 
/I X,J I 0 [ (0) (I) ] 1 < /lPx,b /lPx,J < 

h = In p(l)j/ln p(O), n x, ,. X,) 

The first three /lP~)J estimators in (5.30) address cases in which either 
/lP~?~ or /lP~~ ~ is 0 or 1 and h is 0 or is undefined. The final expression, for 
intermediate values of /lPx,J' generates future mortality changes with two useful 
properties: /lP~)J is bounded between 0 and 1 at all durations t; and mortality 
at times 0 and 1 can be reproduced by backward projection from future values 
provided /lP~)J =F 0 or 1. The estimator can be generalized as an average of 
In/lPx,J ratios over several past intervals. 

A limitation of( 5.30) is that iftwo causes are combined, the joint estimate 
(/lPX, I /lPX, 2)(1) may differ from the product of the separate cause estimates 
[/lP~) I] [/lP~) 2]' Additionally, future changes in the intensity of mortality or 
mortality hazard * are made proportional to the change from time 0 to time 
1. Proportional intensities capture ceiling effects weil (that is, the slowing of 
gains as /lPx,J - 1.0), but where an initially high survival probability decreases 
from time 0 to time 1, the rate of worsening accelerates in future rarojections. 
Ifthe user is willing to establish upper and lower asymptotes for /lP x~], changes 
can be controlled by rescaling /lPx,J values near or outside the asymptotic 
limits to bring them into range. 

Expression (5.30) is not used for the final age interval in the life table 
(f, CA), since .,-!PI,J = 0 for all causes of death j. 

Table 5.11 displays the projection of mortality for neoplasms, cardio
vascular diseases, and other causes of death to 1985, from (5.30) and 1975 
and 1980 cause-eliminated /lPx,J values. 

The reader may note in Table 5.11c that the coefficients h 
= In[/lP~~~80)]/ln[/lP}~~7S)] take values greater than 1 when survival rates are 
worsening and values less than 1 when survival is improving. In the example, 
survival probabilities for neoplasms are found to have improved from 1975 
to 1980 at ages under 50 but to have worsened thereafter, controlling for the 

• The intensity of mortality (1'",) is related to nP", by the equality nP", = exp[ - f;l'(x + a)da). 
From (4.10) we have the approximate equality 1'",+(1/2)1 ~ nM",. See Appendix 6A.l for the 
calculus of the life table. 
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effects of competing risks for other causes of death. Survival rates for cardio
vascular diseases and other causes improved at Most ages. These patterns are 
continued to 1985 in the mortality projection. The reader might note that 
the National Center for Health Statistics 1985life table Ix estimates (NCHS, 
1985) are near the projected series at Most ages. The series diverge at about 
age 75, but would be closer if for 1980 we had used NCHS Ix estimates (Table 
6A.2) in place of the linear estimates of Tables 4.9 and 5.11. That is not to 
say they would have been correct. The advantage in projection by cause
eliminated rates is that we are clear as to the assumptions being Made, a 
criterion only marginally Met in examples that include few age categories and 
that faH to distinguish between males and females, for whom patterns of 
mortality change are dissimilar. 

We refer the reader to McNown and Rogers (1989) ror newer formulas 
and ongoing research in mortality projection. 

5.8. SUMMARY 

Multiple decrement, cause-eliminated, and cause-substituted tables were 
developed to disentangle the effects of competing causes of death on overall 
mortality. All depend on the researcher's ability to distinguish clearly between 
the varlous causes: where there is uncertainty or where causes are only partly 
separable, the methods may seriously distort the actual survival patterns. Un
fortunately, that qualification is almost a description of our current under
standing of mortality in extreme old age. It argues powerfully for truncating 
cause-eliminated life tables at ages under 100. 

The essential distinction between the methods is that cause-eliminated 
and cause-substituted tables take into account competing risks from other 
causes of death, while multiple decrement rates reßect the patterns as they 
are observed. The distinction is important for comparisons between popu
lations whose overall mortality levels differ markedly, or whose patterns differ 
sharply for single causes. In these cases multiple decrement tables may give 
misleading impressions. Where the researcher is in doubt, both types oftables 
may be constructed to check their consistency. 

In mortality projection, cause-substituted rates allow the user to explore 
the effects of changes in one or several causes of death on overall deaths and 
life expectancy. We no longer look to changes as dramatic as the elimination 
of smallpox would have been in Bernoulli's time, or as the control of major 
infectious diseases became in the postwar period. But our need for informed 
analysis is not less, particularly in the United States where more than 5 years 
separates the life expectancies ofblack and white populations. The projection 
formula we have introduced as (5.30) allows reasonable near-term projections 
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to be made byextrapolation from past ehanges. The reader may ehoose other 
assumptions or other formulas. As in ordinary population projections (Chapter 
8), our eonfidence in more distant projections will be lower. 

Multistate life tables were developed to relate life table analysis to survival 
models with repeated events, initially marriages and geographie migration. 
The transition probabilities for these events are analogous to eonventional 
life table interval survival estimates nSx+(1/2)n = nLx+nlnLx, but with both 
entry and exit possible nSx+(I/2)n becomes a ratio estimator. For individual 
states j we have nLx+n,j = (~i nLx ntx, i-j) ~ nLx,j, and therefore nSx+( 1/2)n,j 

~ 1.0. The eomputation of the transition ratios is not diffieult, but more care 
is needed than in conventionallife tables to ensure that nLx,j estimates remain 
correctly bounded [expression (5.14)]. 

APPENDIX 5A. 1. REGROUPING INTERVAL DATA FOR 
LlFE TABLE CONSTRUCTION 

The source data for the multistate life table ofSection 5.3 included 1960 
census population estimates by residenee and labor force status in 5-year age 
intervals, life table survival estimates [expression (4.18)] SSx+2.S = sLx+s1 

sLx , and estimates of rural-to-urban migration probabilities Stx +2.S. r-u' The 
data for the male population are presented in Table 5A.1. To eonstruct life 
tables in 15-year age intervals for these data requires both data recentering 
(from SSx+2.S, Stx+2.S to sSx, stx) and regrouping (from sPx, sSx, stx to ISPx, 

ISSx, IStx)' 
Regrouping is straightforward. For survival terms, probabilities or their 

complements are produced as in (4.12): 

ISPx = (sPx)(sPx+s)(sPx+lo) (5A.1) 

(5A.2) 

where we interpret transfer probabilities ntx as analogues to eonventional mor
tality probabilities nIlx = 1 - nPx. 

To estimate transfers IStx from Stx +2.S we also require the half-interval 
transition probabilities 2.Stx+2.S, 2.Stx+S' If we assume a constant transfer prob
ability in the interval (x + ! n, x + I! n ), the partial probabilities become 

2.Stx+2.S, cxp = 2.Stx+S, cxp = 1 - (1 - stx+2.S) 1/2 (5A.3) 

Combining (5A.2) and (5A.3), for the 15-year transition probabilities 
IStx we have: 



180 CHAPTER 5 

x (1 - stx+ 7.S)( 1 - Stx+12.S) 1/2 (5A.4) 

We will also require 

To fit probabilities at ages 0-14, we substitute Tabah's 2.SSo for (sSx-2.S) 1/2 

and approximate the migration probability from birth to age 2! as 2.S10 = 1 
- (l - St2.s) 1/2. 

These conventions yield survival and transfer probabilities 

ISPo, u = (0.9772)(0.9945)(0.9923)(0.9874 1/ 2) = 0.9582 

ISPO, r = (0.9481 )(0.9811 )(0.9833 )(0.9803 1/ 2 ) = 0.9056 

IStO, r-u = 1 - (0.93 1/ 2)(0.93)(0.915)(0.91 1/ 2 ) = 0.2172 

ISPIS, u = (0.98741/2)(0.9839)(0.9809)(0.97701/2) = 0.9479 

IsPIS, r = (0.9803 1/ 2)(0.9748)(0.9671 )(0.9584 1/ 2 ) = 0.9138 

15/15, r-u = 1 - (0.91 1/ 2 )(0.91)(0.915)(0.918 1/ 2 ) = 0.2390 

The reader may compute the survival and transfer probabilities for other ages, 
which should agree with the entries in Table 5.6. 

Transfers between inactivity and activity can be estimated from the pro
portions inactive and active in Table 5A.l, with survival being defined to 
mean remaining inactive at ages under 45 and remaining active at older ages, 
since the data do not allow estimates ofthe two-way flows. We apply (5.11) 
to adjust from proportions economically active to transition probabilities. 

Using 5-year age intervals, the initial transfer probabilities from inactivity 
to activity for urban males will be given by 

Stx+2.S, i-a = {
o 
(s"x+s, a - 5"x, a)/( 1 - a"x, a) 

I s"x+s, a ~ s"x, a 

I S"xH, a > s"x, a 
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where n"x,. = "Nx,.1 nNx is the proportion active at ages x to x + n. For the 
data of Table 5A.l we have 

2.s10, u, i-. = 0 

sI7.s, u, i-a, exp = (0.22 - O)/( 1 - 0) = 0.22 

SI12.S, u, i-a, exp = (0.86 - 0.22)/( 1 - 0.22) = 0.8205 

Isl0, u, i-a, exp = 1 - (1 - 0)( 1 - 0)(1 - 0.22)(1 - 0.8205) 1/2 = 0.6695 

The reader can confirm that for the later ages of labor force entry we 
will have IStlS, u, i-a, exp = 0.8039, and !St30, u, i-a, exp = 0.2285, ifwe let st37.S, u, i-. 

= S142.S, u, i-. = S147.S, u, i-. = O. 
The transition probabilities can also be estimated by recentering and 

regrouping ages, from 0-4,5-9, ... to 0-7!, 71-221. 221-37!, ... , Note 
that the initial interval is arbitrarily 0-71, representing time near birth, for 
which the transition probability for labor force entry is O. Using linear esti
mation for the partial intervals, we will have 

7.sNo, linear = sNo + lsNs 

IsNx+7.S, linear = lsNx+s + sNx+10 + sNx+1S + lsNx+20 

Thus, 7.sNo,u,i = 1,712,700 + !< 1,322,2(0), IsN7.S,u,i = 1( 1,322,2(0) 
+ 980,100 + 319,200 + !<66,1(0), and SO forth. 

After recentering and regrouping ages the proportions inactive and active 
are estimated as 

These terms are entered into expression (5.11). For urban males ages 0-14 
and 30-44, they yield the transition probabilities for labor force entry 

Islo, u, i-a, exp = (0.3231 - O)/( 1 - 0) = 0.6769 

!SIlO, u, i-. = (0.9315 - 0.3231 ) I (1 - 0.3231) = 0.8988 
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TIIbIe 5.A1. Mexican 1960 Male Population, Life Table "p", and 
Net Migration Probabilities. Source: Tabah (1968) 

a. 1960 urban population 

Proportion 
Inactive Active active Lifetable 

Ales ,N", .. , ,N", •.• '''", ... ,Sx+2.s.u 

2.SSo 0.9772 
0-4 1,712,700 0 0.000 0.9945 
5-9 1,322,200 0 0.000 0.9923 

10-14 980,100 73,800 0.070 0.9874 
15-19 319,200 543,600 0.630 0.9839 
20-24 66,100 668,500 0.910 0.9809 
25-29 42,800 568,300 0.930 0.9770 
30-34 32,300 506,800 0.940 0.9717 
35-39 22,500 426,600 0.950 0.9627 
40-44 14,800 355,000 0.960 0.9488 
45-49 12,200 294,000 0.960 0.9309 
SO-S4 13,200 251,600 0.950 0.9028 
55-59 19,500 196,700 0.910 0.8582 
60-64 22,600 128,300 0.850 0.7953 
65-69 24,900 88,500 0.780 0.7066 
70-74 27,000 50,100 0.650 0.5904 
75-79 96,500 0 0.000 0.3774 
80+ 0 0 0.000 0.0000 

b. 1960 rural population 

Proportion 
Inactive Active active Life table Migrants 

Ages sN",r.' sN",r •• '''x.r, • SSx+2.5.r Stx+2.S ...... 

2.SSo 0.9481 
0-4 1,746,700 0 0.000 0.9811 0.070 
5-9 1,398,900 0 0.000 0.9833 0.085 

10-14 889,400 250,900 0.220 0.9803 0.090 
15-19 127,400 782,600 0.860 0.9748 0.090 
20-24 58,000 667,000 0.920 0.9671 0.085 
25-29 43,100 572,600 0.930 0.9584 0.082 
30-34 31,000 486,400 0.940 0.9496 0.080 
35-39 22,100 420,100 0.950 0.9395 0.075 
40-44 17,500 333,400 0.950 0.9268 0.070 
45-49 14,600 277,400 0.950 0.9094 0.067 
50-S4 12,800 243,000 0.945 0.8846 0.064 
55-59 12,800 200,900 0.940 0.8463 0.060 
60-64 13,700 157,900 0.920 0.7914 0.058 
65-69 13,000 105,400 0.890 0.7167 0.056 
70-74 12,600 71,100 0.850 0.6177 0.055 
75-79 52,600 0 0.000 0.4212 0.000 
80+ 52,200 0 0.000 0.0000 0.000 
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These probabilities may be compared to the corresponding probabilities 0.6695 
and 0.8039 found using 5-year age intervals. Other transitions at ages 30-44 
are estimated as 

15130, u, a-i = (0.9315 - 0.9566)/0.9315 = -0.0269 -.0 

15130, U, i-i = I - 0.8988 = 0.1012 

15130, u, a-a = 1 - 0 = I 

These estimates are used in Table 5.5 for their ease of calculation. The reader 
should recognize, however, that they are less accurate than probabilities found 
from 5-year age intervals. 



CHAPTER 6 

The life Table III 
. . . it is plain that the Purchaser ought to pay only for such apart of the 

value of the Annuity, as he has Chances that he is living; and this ought to be 
computed yearly, and the Sum of all those yearly Values being added together, 
will amount to the value of the Annuity for the Life of the Person proposed. Now 
the present value of Money payable qfter a term of years, at any given rate of 
Interest, either may be had from Tables already computed; or almost as com
pendiously, by the Table of Logarithms: For the Arithmetical Complement of 
the Logarithm of Unity and its yearly Interest (that is, of 1.06 for Six per Cent. 
being 9.974694.) being multiplied by the number ofyears proposed, gives the 
present value of One Pound payable after the end of so many years. Then by the 
foregoing Proposition, it will be as the number of Persons living after that term 
of years, to the number dead; so are the Odds that any one person is Alive or 
Dead. And by consequence, as the Sum of both or the number of Persons living 
ofthe Agefirst proposed, to the number remaining after so many years, (both 
given by the [/ifeJ Table) so the present value ofthe yearly Sum payable after 
the term proposed, to the Sum which ought to be paidfor the Chance the person 
has to enjoy such an Annuity after so many Years. And this being repeated for 
every year of the persons Life, the Sum of all the present Values ofthose Chances 
is the true Value of the Annuity. This will without doubt appear to be a most 
laborious Calculation, but it being one of the principal Uses ofthis Speculation, 
and having found some Compendia for the Work, I took the pains to compute 
the following Table, being the short Result of a not ordinary number of Arith
metical Operations; It shews the Value of Annuitiesfor every Fijlh Year of Age, 
to the Seventieth, as folIows. 

Age Years purchase Age Years purchase Age Years purchase 

1 10.28 25 12.27 50 9.21 
5 13.40 30 11.72 55 8.51 

10 13.44 35 11.12 60 7.60 
15 13.33 40 10.57 65 6.54 
20 12.78 45 9.91 70 5.32 

185 
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This shews the great Advantage oJ putting Money into the present Fund 
lately granted to their Majesties [William and Mary) , giving 14 per Cent. per 
Annurn, or at the rate oJ 7 years purehase Jor a Life; when young Lives, at the 
usual rate oJ Interest, are worth above 13 years Purehase. It shews Iikewise the 
Advantage oJyoung Lives over those in Years; a life oJTen Years being almost 
worth 13! years purehase, whereas one oJ 36 is worth but 11 . . . . 

-EDMUND HALLEY ( 1693) 

6. ,. INTRODUCTION 

This chapter introduces one of the earliest contributions to life table analysis 
and three relatively recent developments. The first ofthe recent contributions, 
due to Keyfitz and FrauenthaI (1975), is aseries of nPx and nLx formulas 
whieh permit construction of life tables that use 5-year age intervals, but are 
virtually indistinguishable from life tables using single year ages. Tbe formulas 
have not replaced the NCHS reference series formulas for constructing in
tereensallife tables (Section 4.6), but could. 

Tbe second topic we address is the fitting oflife table survival probabilities 
to model schedules using Berkson's (1944, 1951) logits, introduced in de
mographie modeling by Brass (Brass and CoaIe, 1968, pp. 127-135; Brass, 
1975, pp. 85-105) and extended to model tables for amenorrhea and breast
feeding by Lesthaeghe and Page ( 1980). The method is used to smooth and 
adjust distributions where small sampie sizes or age heaping in the source 
data limit the quality of direct estimates. 

The third development is the adaptation of linear models to life tables, 
allowing the researcher to examine covariates of survival differences between 
populations. Tbe most respected of the models is the Cox ( 1972; Cox and 
Oakes, 1984, pp. 91-141) proportional hazards model, whose coefficients 
represent the relative mortality risks associated with various attributes of the 
populations or sampies being compared. 

Besides these methods, the chapter includes life table formulas for in
surance and annuities, the essential eoncems that motivated early Iife table 
work. In the 20th century the focus of demography has expanded so dra
maticaily that they are not now routinely studied except in advanced courses. 
Tbe basie formulas are not difficult and should be understood. 

The chapter includes two appendices. The first presents the life table 
columns and related terms in eontinuous notation, whieh allows the rela
tionships between them to be expressed more eompactly than in the discrete 
formulations presented in the main text. Tbe discussion is abbreviated, but 
may help c1arify a few points for readers familiar with caiculus. Appendix 
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6A.2 displays the 1980 U.S. population and NCHS life tables by age, sex, and 
ethnicity, used in the text to illustrate life table construction. 

6.2. HIGHER PRECISION LlFE TABLE FORMULAS 
FOR LARGE DATA SETS 

When mortality tables are constructed from initial or interval population 
and death estimates for single year ages, the "Px and "Lx formulas introduced 
in Chapter 4 provide as much precision as investigators are likely to need. 
With wider age intervals, however, "Px estimates by those formulas tend to 
drift noticeably at the older ages, where mortality rates are high. 

Efforts to produce 5- and lO-year rates that very closely duplicate single 
year rates have continued for more than a century. Old formulas exist that 
are fairly good, but during the Second World War they were eclipsed by new 
estimating formulas due to Reed and Merren (1939) and Greville (1943). 
Part of Greville's contribution was a derivation for the Reed-Merrell "Px 
formula, which they had developed empirically. Reed and Merrell's estimator 

(6.1 ) 

and Greville's 

"Px. Greville = [esser 0/ { 1, 
(6.2) 

continue to be widely respected for their good fit at the oldest ages. A range 
restriction is applied to Greville's estimator, since for rare survival distributions 
the sign of the bracketed term may be positive, with the result that "Px exceeds 
1.0. Readers using either expression are re~inded that estimate precision will 
normally be higher if terms in "Dx/ "Nx are substituted for "Mx, due to ag
gressive rounding of "Mx in most sources. 

In 1975, expanding on Greville's methodology, Keyfitz and Frauenthal 
introduced aseries of formulas for life table terms that offer higher precision 
for a wider range of populations and mortality distributions than do any of 
their predecessors'. For "Px they have suggested 

"Px. KF = [esser 0/ { 1, 
(6.3) 

exp[ -n"Mx - (n/48)("Mx+" - "Mx-")("Nx-,, - "Nx+")/,,Nx]} 
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AI> in (6.2), terms in nDx/ nNx should be substituted for terms in nMx whenever 
the precision of the nMx terms is low due to rounding. 

All three of these nPx formulas have as their first term the simple expo
nential [expression (4.10)], nPx = exp[ -nnMx] , which overestimates nPx at 
the older, high-mortality ages. (The exponential assumes constant mortality 
within intervals. The actual pattern is one ofworsening mortality.) To reduce 
nPx, in Reed and Merrell survival is adjusted downwards in proportion to 
nMi, which locates the adjustment at the ages it is most needed. In Greville, 
nPx is reduced in proportion both to nMx and to the rate at which nMx is 
changing (the derivative of nMx) at ages x to x + n, which is on the order of 
d / dx nMx = (nMx+n - nMx-n) / 2n. Greville's is the more general of the two 
approaches and produces nPx rates that are usually a little closer to those of 
life tables with single year ages. In Keyfitz and Frauenthal an additional ad
justment is made for population composition. It is introduced because pop
ulations with different age distributions but identical mortality probabilities 
not only have different emde death rates but also slightly different age-specific 
death rates. The derivative l/nNx d/dx nNx = (nNx-n - nNx+n)/(2n1nNx} in 
(6.3) takes these effects into account.· The residual quantities in the three 
formulas are introduced by the estimation procedures. 

Table 6.1 displays nPx and Ix values at selected ages for 1980 U.S. NCHS 
life tables and by linear, Reed-Merrell, and Keyfitz-Frauenthal formulas. 
(The table sets 16, = 100,000 for all formulas, since estimate differences at 
younger ages are not of great interest. The source data are from Table 6A.l.) 
Even at the oldest ages the differences are uniformly small. Changes in the 
U.S. age distribution will favor Keyfitz-Frauenthal estimates somewhat more 
in the 19905 (Smith, 1984). 

In addition to nPx, linear and exponential nLx estimates [( 4.15) and 
( 4.16 )] also tend to drift at the older ages when intervals as wide as 5 or 10 
years are used. Fitting a cubic through the values Ix-n, Ix, Ix+n, Ix+1n allows 
nLx to be estimated as 

nLx. cubic = median 0/ {nix, nlx+n, 
(6.4) 

(n/24 )[13(1x + Ix+n) - (lx-n + Ix+2n ))} 

• All three formulas are derived by expanding the survival probability .P" = exp[ - J: I'(x + t) 
X dt] as a Taylor series, and expressing the derivatives ofthe function by linear tenns in .Mx 

and nN". Tbe reader should consult K.eyfitz and Frauenthal (1975) for the derivation of the 
expressions. 
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Table 6.1. U.S. 1980 Life Table "px and Ix Values by Selected Formulas, 
for 165 = 100,000 

NCHS 1979-1981 NCHS 1980 Linear 

Ages "Px Ix "Px Ix "Px Ix 

20-24 0.99354 0.99340 0.99342 
40-44 0.98602 0.98610 0.98614 
60-64 0.92094 0.92060 0.92127 
65-69 0.88511 100,000 0.88350 100,000 0.88433 100,000 
70-74 0.83224 88,511 0.83060 88,349 0.83245 88,433 
75-79 0.76022 73,663 0.75730 73,381 0.75996 73,616 
80-84 0.64752 56,000 0.64460 55,573 0.64684 55,945 
85+ 0.00000 36,261 0.00000 35,822 0.00000 36,188 

Reed-Merrell Keyfitz-Frauenthal 

Ages "Px Ix .Px Ix 

20-24 0.99341 0.99341 
40-44 0.98613 0.98607 
60-64 0.92107 0.92095 
65-69 0.88393 100,000 0.88377 100,000 
70-74 0.83177 88,393 0.83137 88,377 
75-79 0.75900 73,522 0.75813 73,474 
80-84 0.64646 55,804 0.64242 55,703 
85+ 0.00000 36,075 0.00000 35,785 

with four-digit precision to age 70 or 75 in the U.S.life table.· The Iimiting 
values, "Lx.cubie = nix and "Lx.cubic = nlx+", are used in the rare cases when 
the principal estimator is out of range. [The corresponding estimate for Ix 
from "Lx terms is: 

(6.5) 

The two expressions differ because the "Lx series represents survivors in in
tervals and Ix represents survivors at exact ages. Section 2.4 discusses their 
derivation.] 

• The cubic can also be written 
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An expression that is competitive with (6.4) at the older ages is the 
Keyfitz-Frauenthal estimator 

o or nlx/2 I/x+n = 0 

median of {nix, nlx+n, 

n(/x - Ix+n) } 
1 I -1 I [1 + (n/24)(nMx+n - nMx-n)) 
n x n x+n 

I/x+n > 0 

(6.6) 

The formula adjusts the exponential nLx estimator [( 4.16)] upwards in pro
portion to the rate at which mortality is changing over the interval, as is done 
in the Greville and Keyfitz-Frauenthal nPx estimators. The user should sub
stitute terms in "Dx/"Nx for terms in nMx whenever the two choices yield 
different nLx estimates due to rounding of the nMx terms. 

Keyfitz and Frauenthal have also introduced a generalization ofGreville's 
formula [(5.16)] that adjusts cause-eliminated survival rates to take into ac
count changing mortality patterns and population size across age groups.· 
They suggest the estimator 

{ 
nPx 

P i KF = p("v ... ]I,.D .. ) 
n x. , n x 

nP~ 

InDx = 0 

I nDx > 0, R undefined (6.7) 

InDx> 0, nDx,i > 0, R defined 

where, if its terms are defined, 

R = nDx. i {I + (1 /48)ln[n Nx+n]ln[nDx+n nDx-n. i]} (6.8) 
nDx nNx-n nDx-n nDx+n. j 

The expression is undefined when any of the terms in D or N other than 
nDx.i is O. 

In applying the formulas of this section, readers should note that the key 
expressions are out of range or undefined only for markedly irregular age and 
survival distributions, or when numbers of deaths are too small to display 
consistent patterns by age. Other formulas can be substituted whenever prob
lems occur, or for nLx, if the estimates lead to questionable "ox values. We 

• We omit the Keyfitz-Frauenthal expression for multiple decrement rates, which they found to 
differ only trivially from (5.2) (Keyfitz and FrauenthaI, 1975, pp. 897-898). 



THE UFE rABLE '" 191 

also stress that the formulas are intended for use with large data sets, as in 
constructing nationallife tables. They will not improve small sampie estimates. 

Variances for (6.3) and (6.7) may be estimated as 

VarnPx,i, KF = "Px, i "Qx,i "Qx/"Dx 

6.3. LOGIT FITTING TO REFERENCE LIFE TABLES 

(6.9) 

(6.10) 

When survival rates are estimated using relatively poor age information, 
errors may occur in the count of deaths by age or age group sizes. Tbe result 
will be to produce uneven or erratic "Qx' nPx, and Ix distributions. Tbe same 
may happen when Iife tables are produced from sampie data in which the 
number of events reported is small. To the extent that biases at adjacent ages 
offset each other, relatively robust estimates of life expectancy (ex) may still 
be produced. What is most critical for life expectancy estimation is that the 
overall counts of deaths and population be rougbly correct, and that the age 
shifting is not largely in one direction. 

If these conditions are met, it is possible to smooth the estimated "Qx, 
"Px, or Ix distributions by regressing either series on the "Qx, "Px, or Ix distri
bution of a reference Iife table. Relatively simple models, such as the linear 
Ix = a + bl1reO , are not especially helpful, in part because the distributions 
are nonlinear across ages, and also because the models may produce estimated 
proportions surviving that are greater than t or less than O. Brass (Brass and 
Coale, 1968, pp. 127-135; Brass, 1975, pp. 85-105) bassuggested.atransfonn 
ofthe Ix distribution that resolves these two problems, the logit model 

(6.11 ) 

After estimating the constants a, b by ordinary or weigbted linear regres
sion, smoothed Ix values are found from the inverse of (6. tl): 

(6.12) 

Weigbts for (6.11) should be inversely proportional to the variances of the 
logit terms, which are found as 

Where Ix = xPo the expression reduces to 
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(6.14) 

The regression constants in (6.11) and (6.12) have an intuitive inter
pretation, a being loosely associated with life expectancy and b with the dis
tribution of mortality between younger and older ages, relative to the reference 
table. The constants do not allow the user unlimited scope in the selection of 
the reference life table, however. Certain ratios in the reference table-mor
tality at ages 1-4 and later in life relative to infant mortality, and the rate at 
which mortality worsens in old age-will be preserved in the smoothed Ix 
rates. Ifthese ratios are inappropriate for the population whose rates are being 
smoothed, the fitted estimates might be less informative than the initial values. 

The reference tables most commonly used for fitting developing country 
data to the Brass logit are the Brass (Brass and Coale, 1968, p. 133) and Coale 
et al. ( 1983) modellife tables. Other valuable sources are nationallife tables 
ror countries or subpopulations with mortality experience similar to the pop
ulation being investigated, where the tables derive from original data and have 
not themselves been smoothed by (6.11) or other techniques. Besides mor
tality, the logit is also used to fit the Lesthaeghe and Page (1980) model 
amenorrhea and breastfeeding distributions. 

For nonhuman populations and most events other than death, the choice 
of reference tables is usually restricted to simple linear or exponential models. 
The linear model is I1ref) = a + bx; the exponential is l1ref) = aebx, or taking 
logarithms, In/iref) = Ina + bx. The fitting ofthe models is restrlcted to Ix and 
l1reO values in the range 0 < [Ix, fireO] < 10 • 

Whenever the logit is used, the researcher should examine the residuals 
Ix - Ix to ensure that no systematic differences between the source and fitted 
Ix estimates arise. A test for autocorrelation-the tendency for positive or 
negative differences to be grouped in particular age ranges-is the Durbin
Watson statistic (Durbin and Watson, 1950, 1951, 1971; Judge et al., 1980, 
pp. 216-217): 

(6.15) 

where 

e/ = I/ - 1; 

and k is the number of age intervals in the life table. The logit fitting and 
Durbin-Watson test can also be used to fit nPx or "qx. 

The distribution of the Dow statistic is given in statistics and econometrics 
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textbooks. For the ,/lx, Ix, and logit Ix distributions of Most abridged life tables, 
the critical value at the 0.05 level falls between 1.3 (for intervals 0, 1-4, and 
5-year intervals to ages 60-64) and 1.4 (for intervals to ages 80-84 ): smaller 
values of Dow are significant (Smith, 1983). Tbe Durbin-Watson test should 
a1ways be used when estimated life tables are fitted to reference tables, as a 
check on the appropriateness of the reference table selected. 

Table 6.2 and Fig. 6.1 illustrate the application of the logit regression 
and Durbin-Watson statistics, using mortality estimates CAx) from the 1971 
Liberian Population Growth Survey. Tbe life expectancy at birth was found 
to be near 45 for both sexes in the survey, an estimate that is probably ofthe 
right order of magnitude. Tbe survey ,/lx distribution, however, displays sharp 
ßuctuations at individual ages. 

The dotted lines in the figure show fitted ,/lx estimates using CoaIe
Demeny west Level 12 modellife tables as a reference. The level selected 
produces life expectancies at birth of about 45 years, close to those found 
from the survey. 

Neither Durbin-Watson statistic is significant at the 0.05 level, a1though 
for females the level is close to its critical value ( 1.30). Readers will note from 
the table that the estimate error terms (8i) for females are positive at the 
youngest and oldest ages and negative at central ages, accounting for the near 
significance of the statistic. The male error term distribution displays less 
pattern. 

Tbe reader may construct fx distributions from the fitted ,Bx terms. He 
or she will find that for both males and females the fitted distributions produce 
bisher proportions surviving at Most ages and bigher life expectancies than 
the source distributions. Tbe intent of fittings to model tables is to impose 
reasonable age patterns of mortality on defective sampies, and not to preserve 
the sampie life tables unchanged. It is left to the user to judge whether the 
given result is satisfactory. 

An application of the Brass logit model to migration ßows will be found 
in Rogers and Castro (1982). Comments on the quality of fit of the logit 
transform and two others, ln[ -ln/x] and ln[ -ln( 1 - Ix)], for historical data 
will be found in Barrett (1976). 

6.4. liNEAR MODELS FOR UFE TABLE ANALYSIS 

Mortality tables and life tables for other events constructed from sampie 
survey data can be analyzed in greater detail than the decompositions by 
cause of death in Chapter 5, by using each individual's survivorship status as 
the dependent variable in one of severallinear models. All code survivorsbip 
status at age or duration x in one of the forms 
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Figure 6. ,. Logit fitting ofLiberia 1970 .qx estimates to CoaIe-Demeny model West 12 estimates. 
Sourees: Coale et aJ. (1983), Massalee (1974): (a) females and (b) males. 
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JUx) = {O, 
1, 

J("px) = {
O, 

1, 

CHAPTER 6 

for individuals experiencing the tenninating event prior to x 

for individuals not experiencing the event as of x 
(6.16) 

for individuals experiencing the event in x to x + n 

for individuals not experiencing the event as of x + n 
(6.17) 

The analysis omits individuals with exposure times less than x in (6.16), and 
those with exposure times less than x + n or tenninations prior to x in (6.17). 

The tenns J(lx) and J("px) can be regressed on ordinal scale attributes 
of the sampie (e.g., age, education, income) using discriminant or probit 
analysis, or on Mixed nominal scale (e.g., sex, ethnicity) and ordinal scale 
attributes using logistic regression or other categorica1 models (Freeman, 1987; 
Hosmer and Lemeshow, 1989). Changes in significance levels, magnitudes, 
and signs ofthe regression coefficients for different observation intervals give 
the researcher an indication ofthe relative explanatory power ofthe regressor 
variables that have been used. They indicate as weIl which variables are 
significant at most ages or durations, and which are only loca1ly significant 
(for example, significant in the early part ofthe Ix or IIPX series but not the 
later part). 

The researcher also has the option of combining some or all of the ob
servation intervals in a single model, with dependent variablesJ(lx) - Ix or 
J(IIPX) - IIPX' In this fonn the dependent variables measure the difference 
between the individual's survival status at x, or in the interval x to x + n, 
and that of the sampie as a whole. When intervals are combined, observations 
at each duration x or interval x to x + n are weighted in proportion to the 
inverse of the variance of Ix or "Px, which can be found by the fonnulas of 
Section 4.8. Alternatively, (6.16) or (6.17) may be used, but with the inclusion 
of duration (x) as a regressor variable. 

The discriminant and difference models have the limitation that they 
may produce survival estimates JUx) or l<IIPX) outside the range ° to 1 [or 
the range 0 to 10 for J(lx) when 10 ::/= 1], especially for individuals with rare 
attributes. That is avoided in logistic regression, which fits the distribution 

1/0• x = 1.0 (6.18) 

where Ix. x is the proportion surviving at duration x among individuals with 
attributes X, and b is the set of regression coefficients associated with X. 

More widely used than (6.18) is the Cox ( 1972) proportional hazards 
model 
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I = (I )eI bX x. X x.O 110. x = 1.0 (6.19) 

As with discriminant analysis, both models may be fitted either to the 
complete survival distribution or separately to subinterva1s by the introduction 
of time-dependent terms, according to the researcher's interpretation of the 
effects of the regressor variables at different durations. For the Cox model the 
coeflicients b are estimates ofthe relative risk ofmortality associated with the 
attributes X. 

To understand the ability of the logistic and Cox model to control the 
range offitted Ix values, the reader should note that for all values ofthe sum 
L bX, the exponential exp I L b X] > o. The exponential term contributes to 
the denominator of (6.18), which fixes its range to the interva1 (0, 1). In the 
Cox model the range is fixed to the (0, 1) interval by raising the fractional 
value Ix. 0 to the power exp[L bX]. 

A linear analogue to (6.19) exists that can be fiUed by ordinary or weighted 
least squares. On taking the log minus log transform [In ( -Ina)] of Ix. x, we 
have 

In(-In/x• x) = In(-In/x• 0) + ~ bX 1/0• x = 1.0 (6.20) 

Some readers will recognize (6.20) as a variant ofthe Brass (United Nations, 
1983, pp. 25-26) relational Gompertz function used to smooth or graduate 
fertility distributions: 

In[ -In ( "lxI ~ "fx)] = a + b In[ -In ( ,,/ 1m) I ~ ,,/ 1m) ) ] (6.21) 

In the Brass expression "Ix/Lx"fx is the proportion oftotal fertility achieved 
by ages x to x + n, and "flm)/Lx ,,/1m) is the proportion achieved by the 
same age in a model fertility schedule. The Brass logit fitting to modellife 
tables [(6.11 )] is essentially similar, but with the substitution of the odds of 
an event, (10 - Ix)! Ix, for the log proportion -In("fx/ Lx"fx) in (6.21). The 
term relational is a descriptor for fittings to a reference series. 

The transform given by (6.21) is essentially linear in Ix, and provides a 
link between ordinary or weigbted least squares regressions using (6.16) and 
(6.17) and the proportional bazards model (6.19). To a close approximation, 
we have (Smith, 1985b)*: 

• The estimate is found from the derivative d/dx Jn(-Jux) = l/(x Jux). The derivative at 
x = 0.5 is -2.9. 
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Tsble 6.3. Difference and Proportional Hazards Coefticients for Duration 
ofBreastfeeding, Bahia State, Brazil, 1980. Source: Anderson et al. (1984) 

Variable 

Constant 
Urban residence 
Education 
Ageofwoman 
Place of last live birth 

"IV.) -I. = 1: bX. 
b I •.• = (/ .. o)"""UX~ 
< Significant at 0.05 level. 

Difference regression G 

0.096 
-0.050 
-0.123< 

0.030 
-0.099< 

-3 (diff.) Prop. hazardsb 

-0.288 -1.131 
0.150 0.158 
0.369 0.365< 

-0.090 -0.122 
0.297 0.335" 

The two models are compared in an analysis of breastfeeding durations 
in Bahia State, Brazil, in Anderson et al. ( 1984). Table 6.3 displays the coef
ficient estimates for their model. 

An excellent introduction to the properties ofthe logistic and proportional 
hazards models is given in Manton and Stallard (1988, pp. 69-74, 79-87). 
Applications of proportional hazards models to conventionallife tables include 
Trussell and Hammerslough (1983) on child mortality, Trussell et al. (1985) 
on interbirth intervals, and Menken et al. (1981) on marriage dissolution. 
An application to virtuallife tables (Section 4.7) for breastfeeding distributions 
will be found in Diamond et al. ( 1986). On possible limitations of the model 
the reader should see Aalen ( 1989). Valuable general introductions to linear 
models in demography include Namboodiri and Suchindran ( 1987) and Halli 
and Rao (1991). 

6.5. INSURANCE AND ANNUITIES 

When Edmund Halley invented the life table in 1693, one of his first 
interests was to address problems in individual and joint survivorships that 
had arisen with the popularization of insurance and annuity plans in the late 
17th century. Both types of plans represent wagers between a subscriber and 
an issuing provider as to how long the subscriber will live. Under an insurance 
plan the subscriber's estate benefits if he or she dies earlier than the provider 
anticipates. Annuities provide lifetime pensions that begin at astated age, 
and benefit subscribers surviving longer than the number ofyears anticipated 
by the provider. 

In current practice, providers cover themselves generously for overhead, 
risk, and profit. (The provider's risk is the prospect of a run on reserves 
through investment losses and through random ßuctuations and unanticipated 
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secular changes in subscriber mortality.) Until Halley's life table became 
available, providers had not begun to resolve even the basic question of how 
long subscribers might reasonably be expected to live. 

Ignoring interest for the present, at a fixed annual insurance premium 
Ks a provider can expect revenues As to total * 

",-n 

(6.22) 
a-x 

dollars accrued over the lifetimes of subscribers joining the plan at age x. In 
the expression, Ix is the life table population surviving at exact age x, nLx is 
the life table population or person years lived in the interval x to x + n, and 
ex is the life expectancy at x, found as years lived after x divided by survivors 
at x. [The summation is from nLx to nL",-n, where CA) represents the oldest 
age to which anyone survives.] From the expression, the number ofyears an 
average individual will pay into the fund is the same as bis or her life 
expectancy·t 

The amount Ksex constitutes the provider's reserve from wbich to pay 
insurance benefits. Assuming the provider withdraws aproportion a of each 
payment to cover operating costs and risk, the insurance benefit paid at the 
subscriber's death would be 

(6.23) 

For a fixed benefit BI the premium will therefore be 

(6.24 ) 

Straight life insurance is ofthis form, but with provisions for the subscriber's 
recovery of part of the benefit in the event of withdrawal from the plan. 

Since the young earn lower incomes than their seniors, and are at a very 
small risk of imminent death, annual premiums as bigh as Ks dollars for an 
eventual return to their estates of (1 - a)K,ex dollars are not necessarily 

• For ease ofinterpretation, the notation ofthis section diWers from current actuarial usage. We 
use A to represent the present value of accruals to an insurance or annuity account, B to 
represent benefits paid from the account, and K to represent annual premiums. Subscripts a, 
S, and t refer to annuities, straight life insurance, and term insurance, respectively. 

t Payments might also be made from the subscriber's age x to a later age!. at which time the 
policy will be paid up. In place of ~e", revenues will total A, = ~(T" - 1j )/1" in that event, 
again omitting interest. Allowing interest, revenues will be found from ( 6.28), with substitution 
ofthe age limit f - n for w - n in the summation ~". 
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appealing. An alternative to straight life insurance that defers payments from 
the present to the future is term insurance. Term insurance fixes the payment 
Kt for n years only, accumulating revenues of 

(6.25) 

dollars per subscriber over the n year period. The accrued revenue equals the 
annual premium times the number of years on average lived in the interval. 

Since the proportion of subscribers dying in the intervals is (Ix - lx+n)f 
Ix = ndxl Ix, the individual death benefit will be 

(6.26) 

[Note in comparing term insurance (6.26) with straight life (6.23), that (6.23) 
has the denominator lxI Ix = I, since alt subscribers die while the policies are 
in effect.] Fixing the death benefit at B .. the annual premium becomes 

(6.27) 

For the same death benefit, Bs = Bt = (1 - a)K.ex = (1 - a)KtnLxlndx, 
the annual premiums at ages x to x + n for policies entered into at age x are 
in the proportion 

The advantage of the lower initial premium for term insurance relative to 
straight life insurance is made up in bigher future premiums. At ages x + j 
to x + j + n the ratio of term to straight life premiums for the same benefit 
payment becomes 

The expression reßects a change in the term premium with age, and no change 
in the straight life premium. 

As an example, in the 1980 U.S. life table (Table 4.9) at age 15 IOdu 

= 1126, IOLI5 = 976,181, and eiS = 59.9; at age 65 lod65 = 20,159, IO~S 
= 673,125, and e65 = 16.5; and at age 75 IOd1S = 28,700, 101-,5 = 428,829, 
and e75 = 10.6 years. 

For a premium of K. = $1000 per year to a provider retaining a = 1 14 
of receipts, a 15-year-old could buy a straight life policy paying (1 
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- i)( 1000)(59.9) = $44,925 at hisdeath. The same death benefit would eost 
(1000)(59.9)( 1126)/(976,181) = $69 ifbought at lO-year tenn. At ages 65-
74 the annual premium for $44,925 in 100year tenn insurance would be 
(1000)(59.9)(20,159)/(673,125) = $1794, or nearly double the annual $1000 
fixed premium for the straight life poliey. Byages 75-84 the premium for the 
tenn policy would have risen to $4009, or about four times the annual pre
mium for straight life insurance and over the 10 years of the policy nearly 
the value ofthe benefit. In old age, as the proportion ofthe age group expected 
not to survive through the interval becomes high, the OO8t of tenn insurance 
rises prohibitively. 

Ifthe provider is able to invest the premiums at a fixed real rate ofinterest 
, (interpreting , as the difference between the rate of interest actually paid 'I 
and the rate of inflation '2-a distinction insurance salespersons do not em
phasize), the cost ratio between tenn and straight lire insurance ehanges. 

As before, a straight life policy with an annual premium Ks taken out at 
age x will yield Ksex dollars to the provider in actual payments. At any interest 
rate , > 0, the provider gains an additional sum through interest: in t years 
an immediate payment of Ks dollars will be worth Ks( 1 + ,)' dollars, or in 
eontinuous notation, Ksert dollars. A payment made next year will be worth 
Kser(1 -I) dollars in year t, and so forth. Inverting the fractions, we can interpret 
a premium of Ks dollars paid next year as equivalent to Kse- r dollars paid 
immediately, or a premium of Ks dollars paid in t years as equivalent to an 
immediate premium of K.e- rt dollars. 

To measure the ratio of premiums to benefits that is required to ultimately 
balance the fund, we may suppose that all premiums are paid immediately, 
and therefore at their eurrent value; and are deposited in a fund from whieh 
benefits can be withdrawn as they come due. The present value of the annual 
premiums Ks will be 

A = K .. ~ e-r (a-x+(I/2)nJ L /1 S,r sLJ na x 
a-x 

(6.28) 

where the tenn e- r (a-x+(I/2)nJ measures the duration to the midpoint ofthe 
payment interval. [For example, premiums paid between x and x + n have 
the present value e- r (a-x+(1/2)nJ = e- r ((I/2)nJ, premiums paid between x 
+ n and x + 2n have the value e-r(J.Sn), and so forth.*] 

Reserving aproportion a of eaeh premium to cover costs, in tenns of 
their present values death benefits BI, r will be paid out at the rate 

• The width ofthe final interval, from age 8S to w in Table 4.9, can be estimated linearly as twice 
the life expectancy e", making the life expectancy the interval midpoint. 
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",-/t 

(1 - a)As, r = Bs• r ~ e-rla-x+(I/2)/tlnda!lx 
a=x 

The individual benefit is therefore: 

Bs, r = (l - a)Ks(",~n e-rla-x+(1/2)nl/tLa)! ("'i:n e-rla-x+(1/2)nlnda) 
a=X a=x (6.29) 

and for a benefit of Bs, r the premium will be 

Ks = Bs, r("'i e-rla-x+(I/2)nlnda)! [( 1 - a) ",~n e-rla-x+(1/2)nlnLa] 
a=x a=x (6.30) 

Continuing with our earlier example, ifthe real rate ofinterest is 3%, the 
straight life insurance premium for a policy begun at age 15 and paying $44,925 
becomes 

Ks = (44,925 )[e-(O.03)(S) 11 26 + e-(O.03)(20)3306 + e-(o.o3)(40)16,357 

+ e-(o.o3)(SS)20,159 + e-(O.03)(6S)28,700 + e-(O.03)(76.3)28,533] / 

{( I - 1 )[e-(o.o3)(sl976, 181 + e-(O.03)(20)1,908,039 

+ e-(o.o3)(40)1,711,412 + e-(o.o3)(SS)673,125 

+ e-(o.o3)(6S)428,829 + e-(o.o3)(76.3)178,554]} 

= $426 

as against $1000 if the fund is simply hoarded. (The example uses the life 
expectancy at 85, eSS = 6.3 years, to approximate the interval midpoint.) 
Taking interest into account, the individual will pay about $25,500 over his 
expected lifetime (eIs = 59.9 years), whieh is mueh less than the death benefit 
bis estate receives. If interest was not being eamed on the principal, the ex
pected premiums would total $59,900, of wbieh a = 1/4, or $14,975, is 
retained by the provider. 

Term policies gain little of the benefit of interest rates, sinee eaeh poliey 
remains in effect only n years. (At the level of aggregation we have used, both 
premiums and benefits are paid at the same time point x + 1 n and no effects 
of interest are feIt. With finer measurement of the ages at payment and at 
death, a small interest eontribution would be seen.) Ifinterest makes no eon-
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tribution, by about age 50 the premium on lO-year term insurance exceeds 
that on a straight life policy entered into age 15 and eaming 3% interest. 

Term policies have two advantages over straight life policies that these 
numbers do not address. First, the amount of insurance an individual might 
reasonably want is not constant throughout life. The claims on the subscriber's 
estate will be greater when he or she is married than when single, greater 
when a home is being purchased on mortgage than when it is rented or owned 
outright, and greater in the presence of minor dependents, especially older 
adolescents, than in their absence. Straight life policies typically accommodate 
such changing needs by including provisions for termlike adjustment of pre
miums and benefits. 

A more important distinction between the two types of policies is the 
risk inherent in projecting lifetime returns on the basis ofhistorical or current 
experience. Projections over a few years are not normally hazardous, but as 
intervals lengthen they may become so. The U.S. inflation of the 1970s, for 
example, sharply diminished the real value of straight life insurance policies 
that had been entered into in the 19508 and 1960s. 

Annuity plans charge their subscribers a fixed annual premium Ka from 
initiation ofthe policy to a specified age, typically 65, after which the subscriber 
begins drawing an annual pension. Disregarding interest, the provider accu
mulates premiums in proportion to the expected lifetimes of the subscribers 
up to age 65, and therefore 

6S-n 
Aa = Ka L nLa/lx = Ka( Tx - T6S )/ Ix (6.31 ) 

a=x 

where Tx represents persons ages x and over in the life table. If aproportion 
er of each premium is retained, the fund becomes (1 - er)Aa out of which 
benefits totaling 

",-n 

Ba L nLa/lx = Ba(/6s/ lx)e6s 
a-6S 

are to be returned to the subscriber. [The benefits are drawn for the rest of 
their lives (e6S) by the proportion ofsubscribers (/6S/lx) who survive to age 
65.] Setting the reserve fund equal to benefits: (1 - er)Aa = Ba(l6s/lx)e6s, the 
annual pension becomes 

(6.32) 

Inverting (6.32), the annual premium on a pension plan subscribed at 
age x and paying Ba dollars from age 65 will be 
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Using the 1980 U.S. life table (Table 4.9), a pension plan absorbing a 
= 1 /4 of each premium, and paying a benefit of $1000 per year after age 65, 
would need to charge premiums of Ka = (1000)/[( 1 - 1)(5,876,1401 
1,280,508 - 1)] = $372 to subscribers entering at age 15. The premium is 
about 1/3 of the expected annual pension. The reader can conftrm that a 
person joining at age 45 would pay premiums of $998 for the same benefit, 
or very nearly the amount he or she would annually draw out 

If the provider earns interest on the premiums at the real rate r, the 
amount accumulated by age 65 will have the present value 

6S-n 
Aa• r = Ka ~ e-r[a-x+(I/2)n1 nLallx (6.33) 

a=x 

Benefits will have the present value 

.,-n 
B ~ e-r[a-x+(I/2)nl L 1I = (1 - a)A a, r L.J n a x a t r 

a=6S 

from which the value of Ba. r at the time of payment is found to be 

(
6S-n )/ ( .,-n ) Ba. r = (1 - a)Ka ~ e-r[a-x+(1/2)n1nL a ~ e-r[a-x+(1/2)n1nL a 
a=x a-6S 

(6.34 ) 

The premium will equal 

Ka = Ba. r (:~: e-r[a-x+(1/2)nlnLa) / [( 1 - a)C~: e-r[a-x+(I/2)nlnLa)] 

(6.35) 

Setting a = 1/4, and Ba. r = $1000 per year, and assuming arealinterest 
rate of 3%, the annual premium for an individual joining the plan at age 15 
will be 

Ka = (lOOO)[e-(o.o3)(SS)673,125 + e-(O.03)(6S)428,829 

+ e-(o.o3)(76.3)178,55411 {(1 - 1 )[e-(o.o3)(s>976, 181 
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+ e-(o.o3)(20)1 908 039 + e-(o.o3)(40)1 711 412]} , , , , 

=$116 

The reader can confirm that for a person joining the fund at age 45 the pre
mium is $539. 

Differences in life expectancy between males and females, and between 
whites and nonwhites, create fairly large differences in life insurance and 
annuity costs. From the 1980 NCHS life tables, an annual premium of$1 000 
would buy the straight life insurance and annuity benefits shown in Table 
6.4 for white and black males and females entering the plans at age 25. (The 
table assumes a = 1/4 in provider overhead and real interest = 3%.) At the 
extremes, the estate of the nonwhite male would receive only 60% as large a 
death benefit as that of a white female. A white female would receive lower 
annuity benefits than a nonwhite male in roughly the same proportion. 

Like straight life insurance policies, annuities with fixed benefit payments 
can be severely eroded by inßation. With the relatively high inßation rates of 
the 1970s, they have been superceded by variable annuities, whose reserve 
funds ßuctuate with current market conditions. A variety of hybrid policies 
are also offered for annuities and life insurance that preserve features ofboth 
fixed and variable benefit plans. 

We caution the reader that insurance and annuity plans are more complex 
than our remarks may suggest. A critica1 dimension is the treatment of risk, 
particularly as it relates to the probability of declines in portfolio values or of 
runs on reserves for which the provider is unprepared. Accessible introductions 
to insurance and annuity calculations include Jordan (1975) and Beard et 
aJ. ( 1984). At a higher mathematica11evel the reader may see Beekman ( 1974) 
and Slud and Hoesman (1989). Keyfitz (1985) develops matrix analogues 
of actuarial formulas. An overview of the insurance industry is available in 
Huebner and Black (1982). 

6.6. SUMMARY 

The Keyfitz-Frauenthal estimators of Section 6.2 were developed to 
closely replicate life tables for single years of age using 5-year or wider intervals. 
At ages beyond infancy their high accuracy makes it unlikely they will be 
superceded by other nPx formulas. Greater potential exists for new formulas 
to fit real data to modellife tables, especially as model tables of greater gen
erality are developed. For analysis ofthe correlates ofmortality, proportional 
hazards models and logistic regression are also a major advance over traditional 
regression methods. Here too, the scope for improvement is broad, as computer 
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Table 6.4. Lire Insurance and Annuity Benefits per $1000 Annual Premium, 
U.S. Black and White Males and Females, 1980G 

Females Males 

Type of policy!age entered White Black White Black 

Insurance: 
Age 0 192,600 148,300 146,600 109,500 

25 92,100 73,400 70,200 52,400 
50 34,300 27,900 25,200 20,000 
75 9,500 8,700 7,000 6,600 

Annuity: 
Age 0 12,900 16,200 18,400 25,600 

25 4,900 6,000 6,800 9,000 
50 1,100 1,300 1,500 1,800 

"In the table. provider ovcrhead is assumed to be 25% and annual intere5t on the fund is set at 3%. 

technology removes barriers to the testing of new methodologies that were 
once formidable. 

Among topics we have not addressed, the most important may be the 
analysis of mortaIity due to multiple or overlapping causes, and the impli
cations ofheterogeneity ofrisk. For an introduction to these issues the reader 
should see Manton and Stallard (1984, 1988), Keyfitz (1985, pp. 385-399), 
and shorter papers by Keyfitz and Littman (1979), Vaupel et al, (1979), 
Vaupe1 and Yashin (1985), and Trussell and Rodriguez (1990). In many 
respects, heterogeneity remains both achalIenge and an enigma. There exists 
a broad consensus that individuals are at unequal risk for many causes of 
illness and death, but the differences are unquantifiable where underlying 
survival distributions are nonparametric in form. Parametric forms can be 
imposed on the survival distribution, or on the distribution ofheterogeneity, 
but the implications of each model cannot be divorced from the choices the 
researcher makes (Trossell and Richards, 1985). The heterogeneity of fe
cundability, introduced in Section 1.3 in connection with the Pearl Index, is 
more tractab1e only because conception probabilities may be assumed constant 
over intervals of a few years or so, aperiod 10ng enough for distribution 
moments to be estimated. 

APPENDIX 6A. ,. THE UFE TABLE IN 
CONTlNUOUS NOTATION 

Applications of the life tab1e to real data always require discrete analysis 
and the formulas appropriate to it, but in the theoretical models that underlie 



THE UFE TAßLE 111 207 

life table construction continuous notation is a simpler medium with which 
to work. An easy entry into continuous analysis is provided by the Ix term, 
the number surviving at exact age x from among 10 births. In continuous 
notation Ix becomes I(x); for convenience we will set the radix 10 = 1.0. 

The number surviving in an age interval, nLx, can be decomposed into 
the sum of the numbers of survivors in aseries of smaller intervals of width 
k. For n = 5 the sum may be over the five single year intervals 

x+n-J 

nLx = JLx + JLx+J + ... + JLx+4 = L JLa 
a=x 

or the sum over the 10 half-year intervals 

x+n-J/2 

nLx = J/2 L x+J/2 L X+l/2 + ... + J/2 L x+n-J/2 = L J/2 L a 
a-x 

and so fot1h. The limit of the decomposition substitutes a continuous sum
mation (f> across I(a) terms for the discrete summation (~) across kLa to 
yield 

(6A.l ) 

Both the discrete and continuous terms represent the sum of all persons in 
the age interval from x to x + n. The transition from kLa to I( a) occurs as 
the age interval narrows to widths at which the distinction between an interval 
and a point largely disappears. 

The life expectancy, in discrete notation 

a-x 

becomes in continuous notation 

(6A.2) 

At birth the lifeexpeclancy is I; I(a)dallo, and since ro I(a) darepresents 
the total population the birth rate is b = 101 I; l( a) da = I I eo. The life table 
death rate is also 1 I eo since the number in the life table birth cohort is also 
the number of deaths. 
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The proportional rate at which the population is dying at age x is given 
by the derivative of Ix over Ix, or (I/Ix) d/ dx Ix, which from elementary 
ca1culus isalso d/dxln/x = ,,(x). The rate I'<x) represents the hazardor/orce 
o/mortality. We can define Ix in terms ofthe integral ofits hazard function: 
if I'<x) is the derivative ofthe logarithm of I(x), then In/(x) = - f~oo ,,(al da 
= - f; ,,(al da, since " is undefined for negative ages. Setting 10 = 1, I(x) is 
found as 

I(x) = exp [ - LX ,,(al da] 110 = 1 (6A.3) 

Over smaller age intervals we define ,.Px = exp U;+" ,,( a) da]. 
The reader may think of the integral f~ ,,( a) da as summing the rates at 

which the population is being depleted by deaths over the age intervals from 
birth to x, for which a reasonable approximation is the sum of the age-specific 
death rates,.Ma to agex. Forexample, in the V.S. 1980 life table (Table 4.9), 
the sum ofthe mortality rates up to age 25 is 0.01280 + 4(0.00063) + 10 
(0.00031 + 0.00115) = 0.02992. The life table estimate is 

r2S 
Jo ,,( a) da = - ln/2s = 0.02989 (6A.4) 

When the hazard " is constant over an age interval, as in our example, the 
integral f:+" I'<a) da reduces to" f:+" da = n", and ,.px = e-"". Substituting 
,.Mx for" produces the familiar exponential ,.px formula [(4.10)) 

,.Px; expoDeDtiaI = e-""M" 

We used this expression to find (6A.4). Approximate formulas for finding 
,,(x) from the Ix distribution are given in tbe footnote on p. 38. 

For Most of life the rate of population depletion is low and the sum of 
the increments ,,(al or n,.Ma remains small. Near the end oflife ,,(al rises 
sharply, in 1980 reacbing about 0.07 byages 80-84. Only about two-thirds 
oftbose alive at 80 survive to 85, and fewer to 90 or beyond. 

The curvature oftbe Ix distribution is measured by H(x), defined for 10 

= 1.0 as 

H(x) = - f' I(a)ln/(a) da/ex 110 = 1.0 (6A.5) 
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Figure 6A. T. Values of H for selected Ix distributions. 

= f' d(a)e(a) da/ex (6A.6) 

where d(a) = -l'(a) is the number of deaths in the interval (a, a + da). H 
has two equivalent interpretations. The first, due to Keyfitz (1911a; 1985, 
pp. 62-12), presents it as a measure ofthe rate at which the population is 
depleted, or population entropy, over its lifetime. The second, due to Goldman 
and Lord (1986), sees it as the average years of future life lost by observed 
deaths, divided by life expectancy. A linear approximation to the Goldman 
and Lord expression was introduced as (4.23), in connection with measures 
of potential years of 1ife lost. 

For ages at which all persons survive, la = 1 and 1nla = O. When the Ix 
distribution is rectangular (that is, when all deaths occur at the single age CI), 

H(x) = 0, as both the Keyfitz and Goldman and Lord interpretations will 
suggest. When survival falls Iinearly by age, H(x) = 1/2, representing the 
loss of half of the potential life span; and when the decline is exponential, 
H(x) = 1, indicating that the loss is equal to the life expectancy. For the 
United States, H( 0) is about 0.18 (see Section 4.6). The relationship between 
the slope of Ix and H(x) for selected survival distributions is shown in 
Fig.6A.l. 

The essential source for readers interested in mathematica1 demography 
is Keyfitz ( 1911b ). Readers should also see Keyfitz ( 1985 ), both for its in
troduction to entropy and for its many extensions of Keyfitz ( 1911b). 
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APPENDIX 6A.2. U.S. 1980 POPULATION, DEATHS, AND 
NATIONAL CENTER FOR HEALTH 
STATISTICS UFE TABLES BY AGE, 
SEX, AND ETHNICITY 

Table 6.A 1. 1980 Census Population and Deaths, and Age-Specific Death 
Rates, for Total, Male, and Female Populations by Race. (Population Estimates 

are for the Resident Population, and Omit Overseas U.S. Military.) 
Source: National Center for Hea1th Statistics (1984-1985) 

a. Total population 

Age-specific 
Ase interva1 Census population 1980deaths death rate 
xtox+n 

nN" nD" .M" 

0-1 3,533,692 45,526 0.012 883 
1-5 12,814,562 8,187 0.000 639 
5-10 16,699,956 5,075 0.000 304 

10-15 18,242,129 5,614 0.000 979 
15-20 21,168,124 20,733 0.000 979 
20-25 21,318,704 28,294 0.001 327 
25-30 19,520,919 25,732 0.001 318 
30-35 17,560,920 24,508 0.001 396 
35-40 13,965,302 25,656 0.001 837 
40-45 11,669,408 32,762 0.002 808 
45-50 11,089,755 49,787 0.004 489 
50-55 11,710,032 83,370 0.007 120 
55-60 11,615,254 126,016 0.010 849 
60-65 10,087,621 166,165 0.016 472 
65-70 8,782,481 216,277 0.024 626 
70-75 6,798,124 250,344 0.036 825 
75-80 4,793,722 263,611 0.054 991 
80-85 2,935,033 253,646 0.086420 

85 andover 2,240,067 357,970 0.159 803 
Unknown 568 

Total 226,545,805 1,989,841 0.008 783 

Ct1IIIlnu«1 on _ ptJge 
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CHAPTER 7 

Measures of Fertility 

The process of reproduction involves three necessary steps sufficiently obvious 
to be generally recognized in human culture: ( 1) intercourse, (2) conception, and 
(3) gestation and parturition. In ana/yzing cultural influences on fertility, one 
may weil start with the factors directly connected with these three steps. Such 
factors would be those through which, and only through which, cultural conditions 
can qffect fertility. for this reason, by way of convenience, they can be called the 
"intermediate variables" and can be presented schematically as foliows: 

I. Factors qffecting exposure to intercourse ("intercourse variables") 
A. Those governing the formation and dissolution of unions in the 

reproductive period 
1. Age of entry into sexual unions 
2. Permanent celibacy: proportion of women never entering sexual 

unions 
3. Amount o/reproductive period spent after or between unions 

a. When unions are broken by divorce, separation, or desertion 
b. When unions are broken by death 0/ husband 

B. Those governing the exposure to intercourse within union 
4. Voluntary abstinence 
5. Involuntary abstinence (/rom impotence, illness, unavoidable 

but temporary separations) 
6. Coital/requency ( excluding periods 0/ abstinence) 

Il. Factors ajfecling exposure to conception ("conception variables") 
7. Fecundity or infecundity, as ajfected by involuntary causes 
[ 7 a. Lactational i'!fecundity] 
8. Use or nonuse of contraception 

a. By mechanical or chemical means 
b. By other means 

9. Fecundity or i'!fecundity, as ajfected by voluntary causes 
(sterilization. subincision, medical treatment, etc.) 
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111. Factors qf[ecting gestation and success/ul parturition ("gestation vari
ables") 

10. Fetal mortality /rom involuntary causes 
11. Fetal mortality from voluntary CIluses 

-DAVIS AND BLAKE ( 1956) 

[We have added lactational infecundity to Davis and Blake's listing as item 
7a, after Hobcraft and Little (1984 ).] 

7. 1. INTRODUCTION 

An important distinction between crude birth and death rates is that popu
lations may vary greatly in their proportions over ase SO or 65, wbere mortality 
is concentrated, but Most tend to be similar in the proportions at ages 15-
44, wbere ferti1ity concentrates. As an illustration, Table 7.1 displays age 
distributions for the United States and six other countries, supplementing the 
series of Table 3.1. 

Comparing summary rates for the United States and Mexico, Mexico's 
crude death rate is substantially lower tban the U.S. CDR despite the greater 
U.S.life expectancy, because a mucb smaller proportion ofthe Mexican pop
ulation is in the older age groups. At the fertile ases. bowever, the proportions 
in the two populations are nearly the same. The similarity, wbicb bolds across 
nearly all countries, allows us to develop relationsbips between fertility mea
sures and make comparisons across populations in a way that is not possible 
for mortality measures. 

Another aspect of fertility that is common to world populations is the 
sex ratio at birth, ,.Bo. m/ .. Bo. r, wbere ..,Bo represents birtbs to parents of one 
sex across all ofthe fertile ages and the subscripts f, m denote the infants' sex. 
Tbe sex ratio averqes about 102 males per 100 females in b1ack populations 
and 105 males per 100 females in other ethnicities. Tbe ratio is higber at 
conception, but is brougbt down by bigber male than female fetallosses. It 
also declines sligbtly with birth order. 

As far as is known, tbe sex ratio is not affected by nutrition during preg
nancy, or by parental preferences or stopping rules. Couples wanting sons or 
daughters but baving daughters or sons, do not improve their chances that 
the next child will be ofthe sex they want as their family sizes increase. Wbere 
the sex of their children is important to parents, at eacb bigber birth order 
the population still procreating may become more concentrated toward those 
without sons or without daughters, but the outcomes of tbeir bigber-order 
pregnancies will be sons and daughters in about equal proportions. 
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7.2. COMPUTATION OF AGE-SPECIFIC, GENERAL 
AND TOTAL FERTILITY RATES 

CHAPTER 7 

Age-specific !ertility rates display the proportion of women at various 
ages who give birth during one year, usually using 1- or 5-year age intervals 
from 15 to 44 or 15 to 49. For women in the age interva1 x to x + n the ASFR 
is: 

(7.1 ) 

or, more simply, 

where "Bx, F represents annual births to women ages x to x + n and "Nx, F is 
the midyear female population at the same ages. (The numerator subscripts 
F or M, denoting the sex of the parents, are conventionally omitted when 
rates are calculated for females.·) 

U.S. 1980 female ASFRs are shown in Table 7.2.t They range from 2% 
or fewer of women at ages 35+ giving birth during the year to about 6% of 
women 15-19 and 30-34, and 11% ofwomen in their 20s. These are not 
high rates: if 11% of women give birth each year from age 20 through 29, 
over the 10 years ofthe interval they will average only 1.1 births each (10 
years X 0.11 birth per year). At 15-19 and 30-34, only about 6% of women 
give birth each year, adding about 0.6 birth in these 10 years. By age 35, 

• Following standard usage, we will include the subscripts F for females and M for males to 
designate the ICX ofthe parents onIy when that is not clear from the context. Lowercase subscripts 
f, m will be used to dift'erentiate tbe sex ofthe infants. As examples, tbe terms .. 1Io.F, .. 1Io.m.F' 
and .. Bo. (F will represent total, male, and female births to women at an ages (0, 111) during one 
calendar year. Total birtbs to women 20.0-24.9 are represented as,~ F, and so forth. Omitting 
parental subscripts, the four terms we bave higbligbted become .. 110 ... Bo. .. , .. Bo.r. and ,B20 • 

t Besides the ASFRs sbown in Table 7.2, the NCHS also publisbes cerrtraJ fertility rates, which 
are used in cumulating cohort fertility. Central rates divide birtbs at aae x between July 1 of 
year t and tbe following June 30 by (IN.-I.F + 6IN".F + IN"+I.F)/8, wbere tbe terms in the 
denominator are women bom in the years t - x - I, t - x, and t - x + I. and are weigbted 
in pmportion to eacb cobort's contribution to birtbs in the midyear-to-midyear period. [Tbc 
central cohort IN", F is responsible for about 3/4 of birtbs at aae x in tbe last half of year t and 
3/4 of birtbs at aae x in the first half of year t + I, and therefore for 3/4 of total birtbs at x 
betwe~m July I ud June 30. Tbc remaining 1/4 ofthe births are contributed equally by the 
next oldercohort (in year t), and the next youngercohort (in year t + 1 ).] Birtbsat agexfrom 
January 1 to December 31 ofyear t are less cobort specific, as halfwould be to the cohort bom 
in year t - x-I and half to the cohort bom in year t - x. 
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family sizes thus average about 1.7 children. Including births at ages 35-44, 
the completed family size is a little over 1.8 children. Family sizes were not 
much larger, about 2.5 ehildren, in the late 1920s and during the early depres
sion years, but rose to about 3.5 ehildren at the peak of the postwar baby 
boom in 1960. Figure 7.1 displays U.S. ASFRs from World War I to 1985, 
from U.S. Vital Statistics and Heuser (1976). 

The estimates of family size we have given derive from the total fertility 
rate. Formally the TFR is found by summing aeross the ASFRs and adjusting 
for the number of years of age eaeh ASFR spans. That is, 

TFR = n ~ nlx = n ~ nBxlnNx, F (7.2) 
x x 

where }:x is the summation ofthe terms in BIN over all ofthe fertile ages. 
(A related measure is the cumulativefertility rate, whieh sums fertility to their 
eurrent ages for women under 45 or 50. The rate is historical rather than 
cross-sectional. ) 

In the example of Table 7.2, the TFR is found by summing the ASFRs 
and multiplying by 5 (in the last column of the table). The multiplier is used 
because eaeh ASFR is for a 5-year age interval: Ü we had used 30 single year 
intervals (n = 1 year) instead of6 five-year intervals (n = 5 years), the TFR 
would be the sum of the 30 single year rates. 

At most ages, 5-year age intervals substitute well for single year ages (Fig. 
2.1), but because of interest in teen fertility, ages 15-19 are eommonly 

Ages 

15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
Total 

Tsble 7.2. Illustration ofthe Computation of Age-Specific and 
Total Fertility Rates for U.S. Females, 1980. Source: National Center 

for Health Statistics (1984-1985) 

Children added 
Female ASFR in interval 

population Births4 ,Ix 5 ,Ix 

10,412,715 562,330 0.054 0.270 
10,655,473 1,226,200 0.115 0.575 
9,815,812 1,108,291 0.113 0.565 
8,884,124 550,354 0.062 0.310 
7,103,793 140,793 0.020 0.100 
5,961,198 24,290 0.004 0.020 

52,833,115 3,612,258 0.068 1.840 

Approximate mean age at birth = (17.5 X 0.270 + 22.5 X 0.575 + ... + 42.5 X 0.020)/1.840 
= 26.0 

• Births at ages 10-14 are included with births at 15-19, and births at 45-49 are included with births at 40-44. 
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FigulfI 7. ,. U.S. female age-specific fertility rates, 1917-1985. Sources: Hcuser (1976), U.S. 
Vital Statistics (NCHS, various years). 

separated into subintervals 15-17 and 18-19, or into single years. These cat
egories Me shown with fertility at age 14 in Table 7.3. Summing the rates, 
the number of children added at 14 and in the interval 15-19 becomes 0.266, 
close to tbe estimate of 0.270 in Table 7.2. 

Birth rates for tbe 1980 U.S. male population are shown in Table 7.4. 
Altbough they are for tbe same population and year as the female rates of 
Table 7.2, the male rates differ in several respects. Fatbers Me older than 

Table 7.3. V.S. 1980 Age-Specific Fertility at Ages 14-19. 
Source: National Center ror Health Statistics (1984-1985) 

Ales Female population Births ASFR 
Nix 

14 1,850,066 10,169 0.005 

15 1,990,172 28,178 0.014 
16 2,045,750 63,198 0.031 
17 2,063,734 106,846 0.052 
18 2,098,487 153,333 0.073 
19 2,214,572 200,606 0.091 

15-17 6,099,656 198,222 0.032 
18-19 4,313,059 353,939 0.082 

15-19 10,412,715 552,161 0.053 
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Table 7.4. U.S. 1980 Male Age-Specific and Total Fertility Rates 

Lire table Children added 
population ASFR in interval 

Ages Male population ,Lx,M Births'" b ,Ix 5 ,Ix 

15-19 10,755,409 488,224 202,000 0.019 0.095 
20-24 10,663,231 483,870 982,000 0.092 0.460 
25-29 9,705,107 478,990 1,194,000 0.123 0.615 
30-34 8,676,796 474,430 790,000 0.091 0.455 
35-39 6,861,509 469,323 294,000 0.043 0.215 
40-44 5,7011,210 462,351 98,000 0.017 0.085 
45-49 5,388,249 451,697 33,000 0.006 0.030 
50-54 5,620,670 435,061 19,000 0.003 0.015 
Total 63,278,180 3,612,258 0.057 1.970 

Approximate mean age at birth = (17.5 X 0.095 + 22.5 X 0.460 + ... + 52.5 X 0.015)/ 
1.970 = 29.3 

• Births are estimated from the 1980 census population and NCHS 1980 male age-specific fertility rates. We 
have rounded the numbers at individual aaes since about 12% of birth certificates omit father's age. 

6 Births at aaes SH are inc1uded with births at SO-S4. 

mothers by about 3 years, their fertility continues to much older ages, and 
their completed family sizes are larger. 

To understand the difference in family sizes, the reader needs to know 
that in the United States in 1980 women outnumbered men at all ages over 
25, and outnumbered men 3 years older than themselves, the mean age dif
ference between parents, at all ages over 20. In computing fertility rates, births 
are thus averaged across smaller numbers of males than females at almost alt 
ages, a pattern that has held for most of the 20th century (Myers, 1941). 
Other factors may also contribute, including errors in the 1980 census, the 
possible misallocation of fathers' ages that were unreported, and distortions 
in male and female fertility rates that result from changing marriage and birth 
patterns. 

Besides the ASFRs and TFR, Tables 7.2 and 7.4 also show the general 
/ertility rate: 

x (7.3) 

GFRM = ",BO/40N IS, M = ~ nNx, M(nBx, MlnNx, M)/40NIS, M 
x 

For females, the GFR is the ASFR for the complete interval 15-44, which 
also makes it the average ofthe 1- or 5-year ASFRs weighted by the number 
of women in each age interval. It is therefore intermediate to the ASFRs in 
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value: in Table 7.2, the OFR = 0.068, compared to the range of OJ)04 to 
0.115 in the ASFRs. 

Since the OFR is an ASFR (OFR = lOftS), for the female population we 
can estimate the total ferti1ity rate from the OFR as 

TFR = n L nfx~ 300FR (7.4) 
x 

For the data of Table 7.2 the TFR becomes 30 (3,612,258/52,833,115) 
= 2.05, a figure not as accurate as our earlier estimate but ofthe right order 
ofmagnitude. For males the comparable figure is 40 (3,612,258/63,278,180) 
= 2.28. 

7.3. RELATIONS BETWEEN THE GFR, TFR, AND eBR 

Because the proportion of women 15-44 is similar in Most world pop
ulations, at about 1 or ! of total population, the general fertility rate (annual 
births) 1 (midyear female population 15-44) will typically be about four or 
five times the crude birth rate (annual births)/(total population). That is, 

OFR = CBR/(30NIS, F/",No) ~ 41 X CBR (7.5) 

From the relationship of the OFR to the TFR we also have for the female 
population: 

TFR ~ 30 OFR ~ 30 X 41 X CBR (7.6) 

Using these expressions, the approximate OFR for the United States is 41 
X 0.016 = 0.072, and the approximate TFR is 135 X 0.016 = 2.16 ehildren. 
Both estimates are tolerably near the eorrect values. 

7.4. MARITAL AND NONMARITAL FERTIUTY 

Historically, about 20% of first births to married women in the United 
States have occurred within the first 9 months of marriage. With abortion, 
later marriageS, smaller proportions of women marrying, and higher divorce 
rates, pregnancy and marriage have gradually become less elosely related. 
Whether or not children are bom to married parents, a high proportion now 
spend part of their childhood in single parent homes. 

The principal demographie measures relating to single parent homes 
are the marital and nonmarital fertility (illegitimacy) rates and ASFRs by 
marital status. The marital OFR is found as the annual number of births to 
women in unions divided by the number of women 15-44 (or 15-49) in 
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TBble 7.5. V.S. 1980 Marital and Nonmarital Age-Specific 
Fertility Rates. Source: National Center ror Health Statistics 

(1984-1985) 

ASFRG 

Ages Wornen currently single Wornen currently rnarried 
,!x,-. slx .• 

15-19 0.028 0.350 
20-24 0.040 0.204 
25-29 0.031 0.146 
30-34 0.019 0.073 
35-39 0.008 0.022 
40-44 0.002 0.004 

GFR 0.028 0.098 

• Births at ages 10-14 are included with birthsat 1S-19, and birthsat4S-49 are included 
witb birtbs at 40-44. 
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unions at midyear, ".Bo, u/30N1S, F, U' The nonmarital GFR is the complemen
tary fertiIity rate .,Bo, -u!JoN1S, F, -u' The nonmarital fertility ratio is found as 
• .Bo, -u/.,Bo, u' Marital and nonmarital ASFRs are found by limiting numer
ators and denominators to specified age groups, as in ordinary ASFRs. 

For 1980 the proportion of women who were ever married by age is 
displayed in Table 4.12 and Fig. 4.2. U.S. marital (nix, u) and nonmarital 
(nlx,-u) ASFRs for 1980 are displayed in Table 7.5. At all ages, nonmarital 
fertiIity rates are low relative to marital fertility rates. The GFRs and numhers 
of births are more nearly equal: the ratio of the GFRs is about 0.28 : 1, and 
the ratio of births is about 0.23 : 1. (Overall, 666,000 or 18% of total births 
were to unmarried women.) 

The table omits TFRs to married and unmarried women, which are 
essentially hypothetical quantities since marital status changes over time.· 
We might also estimate cumulative or total fertility rates for ever married 
and never married women, but historically most women who have borne 
children have also at some point heen married. 

7.5. THE GROSS AND NET REPRODUCTION RA TES 

The TFR is a measure of completed family sizes of women or of men 
surviving to the end of the reproductive age interval. To determine whether 

• The rnarital total ferti1ity rate (MTFR = n ~xnlx .• lnNx .• ) is introduced asa Iinkbetween total 
fertility and natural fertiiity in Bongaarts's proxirnate detenninant analysis, di~ in Appendix 
7A.1. 
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the population will increase, remain constant, or decrease gradually over time, 
the TFR needs to be adjusted to births of one sex and adjusted for survival. 
Table 7.6 shows the adjustments for daugbters. In the table, female births 
replace total births and fertility rates for daugbtets replace rates for all children. 
Summing the fertility rates for daugbters and multiplying by 5, since 5-year 
age intervals are used, we have the gross reproduction rate, or lifetime female 
births per 1000 women: 

GRR = n ~ "Bx• r/"Nx, F = TFR X .,Bo. rI.,Bo (7.7) 
x 

For the example the GRR is 5(0.026223 + 0.056076 + ... + 0.(02004) 
= 0.89560, calculated from female births by age of mother. Alternatively, 
multiplying the TFR by,the overall proportion ofbirths that are female we 
haveGRR = 1.83916 X 1,759,642/3,612,258 = 0.89591. TheGRRisusually 
calculated by the second method, using the TFR and proportion of total 
births that are female, since the TFR is normally available and the proportion 
ofbirths that are female is nearly constant across ages. (For the United States 
in 1980, the proportion offemale births varies from 0.486 at ages 15-19 to 
0.492 at 40-44, averaging 0.487 overall.) 

A limitation of the GRR is that it estimates the number of daugbters 
born per woman in the absence of mortality. To measure population replace
ment, mortality needs to be taken into account, which can be done by mul
tiplying the ASFRs for daugbters by the survival probabilities from birth to 
the mother's age at the delivery. The appropriate life table terms are the "Lx 

values, showing the number of women at ages x to x + n per 10 births, and 
n1o, the number ofbirths in n years, from which the nLx survivors arise. The 
survival probability from birth to the interval x to x + n becomes x+( 1/2)1lS0. F 

= "Lx.F/<n1o). Table 7.6 displays these values for the 1980 U.S. life table, 
and completes the calculation for the net reproduction rate or generational 
replacement rate: 

NRR = Ro = n ~ ("Bx• r/"Nx• F)["Lx• F/{nlo» 
x 

(7.8) 
~ GRR X 545. F/{51o) 

Since survival probabilities vary by a relatively small amount over the 
main reproductive ages, the NRR can be approximated using the GRR and 
an estimate of the survival probability to about the midpoint of the fertility 
distribution, usually near age 27!. For the United States the approximate 
formula yields an NRR ofO.89591 X 0.97693 = 0.87524, as compared with 
0.87587 using the full information from Table 7.6. 

For U.S. males, the NRR is found as the product of the TFR and pro-
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portion of births that are male times the survival probability to the mean 
fertile age. For males, the mean fertile age is near 30, allowing us to use the 
proportion surviving at that exact age, 130, M/Io, in place ofthe female sL27.s, F/ 
(510 ) centered at age 27!. We have: 

NRRMale ~ TFRMale X (.,Bo, m/.,Bo) X 130, Male/io 

= 1.970 X 0.513 X 0.95336 = 0.963 

Calculated by the more precise method of Table 7.6, the NRR is estimated 
as 0.965. The NRR difference repeats the disparity between the male and 
female TFRs. 

For a population to exactly replace itself, the NRR must be 1.0, indicating 
that each woman (man) averages one surviving daughter (son). The U.S. 
1980 NRRs of 0.876 for females and 0.964 for males are lower, and suggest 
that the population should be declining from one generation to the next. That 
has not yet happened, in part because below replacement fertility is recent 
and follows upon baby boom fertility rates that were about twice as high at 
their peak in 1959-1961, and in part because of continuing immigration into 
the United States. With little permanent immigration, lower historical fertility 
rates than the Uoited States, and current fertility near V.S. levels, several 
European populations are now decreasing very slowly. 

7.6. THE MEAN FERTILE AGE 

In Tables 7.2 and 7.4 we used the distribution of ASFRs to estimate an 
approximate mean fertile age. We might also have included the number of 
males and females at each age as weights, to find the mean age of parents for 
births in the calendar year. For the latter we would have: 

x x 

x x 

= (17! X 562,330 + 22! X 1,226,200 + ... 
+ 42! X 24,290)/3,612,258 

= 25.5 

(7.9) 

Vsing Table 7.4, the reader can confirm that the mean age of the fathers of 
1980 infants was mM = 28.2. 



MEASURES OF FERTlUTY 233 

Of more interest to demographers than the actual ages of parents, which 
change every year, are the ages of the life table population of parents (the age 
distribution associated with the NRR). For the mean age in the life table 
population we replace the terms in nN/C in (7.9) by the Iife table population 
nLx. We have: 

ILF = ~ (x + !n)(nLx. F nlx. F>I ~ (nLx. F nlx. F) 
x x 

= (17! X 491,492 X 0.026301 + 22! X 490,045 

X 0.056076 + ... + 42! X 480,283 X 0.(02004)1 

(491,492 X 0.026301 + 490,045 X 0.056076 

+ . . . + 480,283 X 0.(02004) = 26.0 

(7.10) 

For males, ILM = 29.2. Both means are slightly older than the mean ages of 
parents for the calendar year, since the 1980 U.S. population was relatively 
young due to a long period of rising births after the mid-1930s. 

7.7. CHILD-WOMAN RA TlOS 

The child-woman ratio is defined as: 

(7.11 ) 

where ~No represents the midyear population of children of both sexes ages 
0-4, and 30NI~.F is the midyear female population ages 15 to 44. Tbe value 
of the CWR as a· fertility measure is that it can be estimated from a census, 
without the researcher having to know the number of annual births. Children 
0-4 are used, rather than children age 0, because census underenumeration 
and age misreporting are worse at age 0 than at 0-4. 

We can relate the CWR to the GFR by noting that if the number of 
births is relatively stable from year to year and infant mortality is low, the 
number of children 0-4 will be about four or five times the annual births. 
We can therefore relate the CWR to the general fertiIity rate, GFR = ",Bol 
JONls• F, by the simple formula 

CWR~4! XGFR (7.12) 

Tbe approximation requires that both, the CWR and GFR have the same 
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denominator, either women 15-44 or 15-49. The United States had 
16,348,000 children 0-4 in 1980 (Table 6A.l ), making the CWR ( 16,348,000 / 
52,833,000) = 0.309 for women 15-44, a figure close to the estimate of 4! 
times the GFR. 

If we have access to a life table for the population, we can also use the 
CWR to estimate the NRR directly, by the approximation: 

NRRThornpson ~ CWR/CWRlife table (7.13) 

The approximation is known as Thompson 's Index. It holds because the life 
table can be used to generate a stationary population. The ratio ofthe actual 
to the life table CWR will thus be a measure of the difference in family sizes 
between the actual population and one with similar mortality rates that exactly 
replaces itself. 

The life table CWR is computed as: 

CWRufetabie = [(",Bo, rn/",Bo. r)sLo. M + 5La. F1!3oL". F (7.14 ) 

where 3OLIS.F is the life table female population at ages 15-44 (in 5-year 
intervaliife tables, the sum ofthe terms sLIS• F + S~O.F + ... + sL40• F ). 

Because the actual child-woman ratio includes both boys and girls at ages 0-
4, the numerator of the life table CWR must also include both sexes, and 
needs to take into account the fact that more boys are bom than girls. The 
term ",Bo. rn/ .. BO. r is the sex ratio at birth for the actual population, about 1.05 
in 1980. The 1980 CWR for the United States was 0.309, and the life table 
CWR (from Table 6A.2) is (1.05 X 492,536 + 494,011 )/2,921,057 = 0.346. 
For NRRThompeon we have 0.309/0.346 = 0.893, above the more precise es
timate of 0.876 found earlier. 

7.8. HIGH AND LOW FERTlLlTY LEVELS 
AND PARITY PROGRESSION 

Fertility rates are substantially above U.S. levels in many world popu
lations, but are not limitless. In even the highest fertility countries, women 
space children 2 years or more apart on average, and not all are building their 
families at the same time. In consequence, it is rare for ASFRs to be much 
above 0.350 or 0.400, levels equivalent to one birth every 1/0.350 = 2.9 years 
or 1/0.400 = 2.5 years.* Continuing over the 10 years 20-29, an ASFR of 

• We have set the upper limit ofthe vertical scale in Fig. 7.1 at 400 to allow the reader to contrast 
current and historial U .S. fertility rates visually with natural fertility levels. 
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Table 7. 7. Age-Specific and Total Fertility Rates for the 
United States 1980, Mexico 1976, and U.S. Hutterites 

1946-1950 

ASFR 

Ages U.S! Mexico Hutterites 

15-19 0.054 0.104 0.012 
20-24 0.115 0.276 0.231 
25-29 0.113 0.268 0.383 
30-34 0.062 0.227 0.391 
35-39 0.020 0.166 0.345 
40-44 0.004 0.074 0.208 
45-49 0.000 0.017 0.042 

CBR 0.016 0.038 0.046 
GFR 0.068 0.174 0.227 
CWRb 0.279 0.752 0.963 

TFR 1.840 5.660 8.060 
GRR 0.896 2.761 4.004 
NRR 0.876 2.477 3.664 

Approximate mean age 
at birth = 26.01 29.11 32.52 

• Births at ages 10-14 are included with births at 15-19. 
bChildren 0-4/women 15-49. 
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0.350 implies 3.5 children per family: populations acbieve bigher birth rates 
only with sustained high fertility at ages over 30 and perbaps at 15-19. Table 
7.7 displays ASFRs and TFRs for the United States in 1980 and for a small 
but exceptionally high fertility subpopulation, the Hutterite population ofthe 
northem plains states about 1950.· (Restricted to the married population 
only, 1950 Hutterite fertility rates were 0.498 at 25-29 and 0.443 at 30-34.) 

An important component of fertility differences between populations is 
the range over which usual family sizes vary. In the United States, more than 
one-fourth ofthe female birth cohort of 1909-1910 remained childless, passing 
through their peak fertile years during the depression of the 19308. Female 
birth cohorts ofthe 19508 and 1960s may have equal proportions ultimately 
childless. 

• Artic\es on Hutterite fertility inc\ude Eaton and Mayer (1953), Tietze (1957), Sheps (1965), 
Laing (1980), and Robinson (1986). For an introduction to high fertility and natural fertility 
populations, the reader should see Henry (1961, 1972), Leridon (1977), and Leridon and 
Menken (1977). Bongaarts (1975) discusses soeial and biologica1limits to family size. 
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Tsb/e 7.8. U.S. 1980 Current and Retrospective Parity 
Progression Ratios and Cumulative Fertility Rates. 

Source: National Center for Health Statistics 
(1984-1985) 

Parity progression ratio 

Birth order 1980 births Birth cohort 

1955 1945 

0 0.56 0.86 
1 0.74 0.55 0.82 
2 0.47 0.32 0.52 
3 0.38 0.26 0.43 
4 0.38 0.25 0.41 
5 0.25 0.43 
6 0.25 0.43 

Cumulative fertility rate 1.00 2.20 

1935 

0.92 
0.89 
0.73 
0.62 
0.56 
0.56 
0.55 

3.16 

A simple measure of the variation in family sizes is the parity progression 
ratio, defined as 

li ~ 1 (7.15) 

where i represents birth order. The ratio may be taken either from births in 
a single calendar year, or retrospectively, from completed family size distri
butions. The calendar year measure is approximate, since the proportion of 
births of any given order depends in part on the age composition of the child
bearing population. In a population that is increasing rapidly, calendar year 
estimates will be weighted toward younger parents, and may be much below 
retrospective estimates. 

Parity progression ratios for U.S. 1980 births and retrospectively for 
women born in 1935, 1945, and 1955, (who were ages 45, 35, and 25, re
spectively, at the end of 1980) are shown in Table 7.8. The ratios for 1935 
and 1945 birth cohorts represent nearly completed family sizes, as fertility 
after age 35 is low. The 1955 cohort has completed onlyabout half of its 
childbearing. 

Examining the table, the reader might note that the progression ratios 
for calendar 1980 births are dose to the ratios for the 1945 birth cohort, and 
may approximate current fertility patterns except for the omission of the first 
birth probability. The relationship is inexact, in part because the age distri
bution of mothers, which influences birth order, varies from year to year; 
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and in part because ages at childbearing and completed family sizes may 
change across cohorts, as is evident for the 1935 and 1945 cohorts in the 
example. 

Across cohorts, the decline in average family sizes from 3 children to 2 
appears as a sharp drop in parity progression after the second birth, from 0.73 
to 0.52. Only about half of women in the 1945 cohort with a second birth 
progressed to the tbird, as against about three-fourths in the 1935 cohort. The 
proportions of all women reaching parity 3 in the two cohorts were 
(0.86)(0.82)(0.52) = 0.37 and (0.92)(0.89)(0.73) = 0.60, respectively. 

Mean family sizes are estimated from the parity progression ratios as the 
sum of the proportions reacbing each parity (Li), or 

p. = ~ I; = ~ (fi Pk , k+l ) 
i ; k-O 

(7.16) 

For the 1935 cohort we have 

p. ~ 0.92 + 0.92 X 0.89 + 0.92 X 0.89 X 0.73 + ... = 3.09 

omitting eighth- and bigher-order births. The reader can confirm that for the 
1945 cohort, p. ~ 2.19. The 1945 cohort estimate is closer to the completed 
family size in Table 7.8 than is the 1935 cohort estimate, owing to the larger 
proportion of high-order births in the older cohort,. not included in p.. 

The reader might note that parity progression ratios are formally measures 
of the proportion of birth intervals of each order that are c10sed by the oc
currence ofthe next birth. The complement is the proportion ofintervals that 
remain open at each parity. The transitions between parities, and those from 
marriage to successively bigher parities, can be analyzed either cross-sectionally 
or through life tables (see Table 4.7). Efforts to analyze closed and open 
intervals separately have not fared as weIl, since each provides only partial 
information on transitions (Sheps et aL. 1970; Feeney, 1983).· 

U .S. parity progression ratios are discussed in their bistorical context in 
Ryder (1986). The changes are analyzed by model schedules in Pullum et 
al. ( 1989). A method for estimating current fertility from parity distributions, 
due to Brass, will be found in Brass and Coale ( 1968, pp. 89-104) and Hobcraft 
et aL. ( 1982). The Brass method is used where reporting of children ever bom 
is relatively complete but dates of birth are not weIl remembered. 

• Tbe reader should see Feeney and Ross (1984), however, for the analysis of open birth intervals 
in the context of stable population theory. 
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7.9. RATE OF POPULATION INCREASE OR DECREASE 

Since the NRR represents generational replacement, it can be converted 
to an estimate oflong-run annual population growth or decline in the absence 
of migration if the generation length is known. We use the exponential Te

lationsbip: 

r = In(NRR)/T 
(7.17) 

wbere r is the annual rate of inerease or decrease and T is the generation 
lengtb. In most populations tbe generation length T can be set at about 27! 
years. (Tbe generation length is near the mean fertile age caleulated from 
ASFRs. For the United States in 1980 it is about 26.0.) Setting T = 26.0 we 
bave: NRRus = 0.876 = e26 r, from whieb r = -0.0051 or -0.5% per year. 
Tbe 1950 Hutterite NRR is 3.66. It is slightly smaller as aproportion ofthe 
TFR tban the 1980 U .S. NRR because ofbigher mortality levels in tbe earlier 
period. Among Hutterite births, 0.4965 were female. For Hutterites the gen
eration length is about 32! years, longer than tbe 26 years for the wbole 
United States. Tbe annual growtb rate will be r = In(3.66)/32.5 = 0.040. 

Botb tbese rates are eventual rates of growtb that would come about in 
tbe absence of migration, under tbe assumption that fertility and mortality 
remain essentially constant. Tbat is, tbey are intrinsie to the fertility and 
mortality distributions of eaeb population. Tbe actua1 growth rate for the 
United States, the crude growth rate, will be tbe difference between the erude 
birtb and death rates plus tbe erude migration rate (annual immigrants 
- annual emigrants ) / (midyear population). Tbat is, 

CGR = CBR + CMR - CDR 

For populations witb relatively constant fertility and mortality rates over 
many years, the intrinsie rate of increase estimated from the NRR will be 
similar to tbe rate estimated from the difference between crude birtb and 
deatb rates. Tbe United States does not fit that pattern owing to the postwar 
baby boom, whieb contributes to elevated numbers ofbirths in the 19808 and 
1990s. For most of the developing countries, the two estimates are eurrently 
similar, but will diverge over the next generation, as the size of the parenting 
population stabilizes. 

7. 10. POPULA TlON DOUBLING TIMES 

If migration is disregarded, the intrinsie growth rate r can be used to 
estimate the number of years it would take a population to double or, if the 
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NRR is below 1, to decline to half its initial size. Tbe doubling time is simply 
the number of years T it would take for the population to increase from N 
persons to 2N persons, or from 1 person to 2 persons sinee N is arbitrary. It 
is found by setting 

e'" = 2 

and has the solution 

T = In2/r ~ 0.693/r 

Tbe expression is most easily remembered if growth rates are expressed as 
pereentages: for a population growing at 1 % per year the doubling time is 
69.3 or about 70 years; at 2% it becomes 35 years; at 3% 23 years. If r is 
negative, halving times substitute for doubling times and we have 

T = In!!r ~ -0.693/r 

For the United States, r = -0.5%, implying that in the absenee of migration 
the population would decline by half in -70/-0.5 = 140 years. The reader 
can confirm that the doubling time for Mexico will be found from Table 7.7 
as: 

r = In(2.477)/29.11 = 0.031 

T = 70/3.1 = 22! years 

For the Hutterite data of the same table, T = 171 years. 
Doubling and halving time estimates are long-term values for the fertility 

and mortality rates that determine r. Tbey would not hold if r changed or if 
net in or out migration occurred, and might not be realized for a generation 
or more even with fixed rand no migration, sinee they take no account of 
the age structure of the population. In the United States the postwar baby 
boom that peaked in the decade 1955-1964 created a large peak in the age 
distribution that will continue to be discernable almost to the middle of the 
21st eentury. Population decline, ifit sets in, may not occur until after 2025. 
In parts of Europe, slow population decreases are occurring currently. 

7. 11. FERT/LlTY. CONTRACEPT/ON, AND ABORT/ON 

For the reason that women using contraception are not at high risk of 
pregnancy, contraceptive prevalence rates are loosely correlated with the CBR. 
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At one extreme, in populations with two-child families the CBR is usually 
about 15 per 1000 population, and about 75-80% of couples under 45 are 
using contraception at any given time. In six-child families the CBR is about 
3 times as high, at about 45 per 1000 population, with few contraceptive 
users. These figures are end points of the regression line: 

CBR ~ 0.045 - 0.04 X proportion of currently married women 

15-44 using contraception ( 7.18 ) 

Proportion using contraception ~ (0.045 - CBR)/0.04 

The expression was introduced by Nortman and Hofstatter (1975) with 
slightly different constants. It is not precise, since the mix of contraceptives 
that couples use differs from country to country, and the quality of use is 
influenced both by the willingness to risk a birth and by the availability of 
abortion. Ouring the U.S. baby boom, for example, the family size reached 
3.5 children at levels of contraceptive use similar to those of the 1.8-child 
19808 families. In the developing countries the relationship is influenced by 
reporting of irregularly used ''traditional'' family planning methods having 
limited effectiveness, and marginally by breastfeeding. (The relationship of 
breastfeeding to fertility is weak because family sizes may be large even in 
countries where breastfeeding is prolonged, as in Nepal and Bangladesh. In 
both countries, breastfeeding contributes powerfully to child spacing, but 
spacing by itselfhas only a modest effect on the CBR.) 

For Mexico in 1980, expression (7.18) estimates current contraceptive 
use at (0.045 - 0.032)/0.04 = 0.325 or 321% ofmarried women, a figure 
that is probably low. The estimate for current contraceptive use in the United 
States is 72 1 % by the formula, and is of the right order of magnitude. The 
Hutterite CBR of 0.046 in Table 7.7 is outside the range of the formula, 
yielding a contraceptive use estimate of -21 %. The correct figure is close 
toO. 

The reader may use the approximate relationship between the TFR and 
CBR suggested in Section 7.3, TFR ~ 135 CBR, to find: 

TFR ~ 6 - 5 X Proportion using contraception 
(7.19) 

Proportion using contraception ~ 1.20 - 0.20 X TFR 

Besides contraception, abortion is widely used to limit family sizes. Its 
effects are estimated differently, since the concepts "Percent using contracep
tion" and "Percent using abortion" are only vaguely analogous. Contraception 
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is utilized before pregnancy and requires continuity of use, wheras abortion 
may occur only following a pregnaney, with uncertainty in identifying eurrent 
users other than by professed intent, or past use of abortion. From reported 
abortions, we construct the measures. 

Abortion ratio 

= (annual number ofabortions)/(annual number oflive births) 

Age-specifie abortion rate = ASAR = (annual ahortions to women ages 

x to x + n) / (midyear female population ages x to x + n) 

Total abortion rate = T AR = n L ASARx 
x 

These and related measures help in defining the prevalenee of abortion, but 
do not unambiguously measure its effects on fertility. 

To see the potential impact of abortion and contraception, we need to 
decompose the interbirth interval (Potter, 1963; Keyfitz, 1971a). Ifwe let 18 

represent the interbirth interval, p the duration of pregnancy, i the duration 
of postpartum infecundity, and r the duration fecund and at risk of pregnancy, 
we can establish the relationship 

18 = r + p + i (7.20) 

whieh states that the interval between births is comprised of time spent at 
risk of pregnancy, pregnant, and in postpartum infecundity. If we assume 
[ following Bongaarts ( 1978)] that a mean exposure duration of 7! months 
precedes each pregnancy when contraception is not used (that is, that the 
monthly probability of a pregnancy occurring is 1!7! = 0.13), that pregnancy 
lasts 9 months, and that the postpartum sterile period is I! months in the 
absence of lactation, we have 18 = 7! + 9 + I! = 18 months between preg
nancies, not including time added by pregnancy losses, whieh Bongaarts fixes 
at about 2 months. The corresponding interval between abortions, assuming 
the abortions occur after 2 months of pregnancy, will be IA = 7! + 2 + I! 
= ll months. By this simple model, whieh may not be too far off the mark, 
women using abortions to limit their family sizes and taking no other pre
cautions, would average one abortion each 11 months, or nearly two abortions 
in the course of anormal birth interval, including in 18 pregnaney losses but 
not contraception or lactation. 

Lactational amenorrhea lengthens the postpartum sterile period by as 
mueh as a year in a few countries, resulting in average interbirth intervals of 
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IB = 7! + 9 + I! + 12 = 30 months. If abortion is used to limit family sizes, 
the number that will be needed in the course of the normal birth interval is 
now 30/11 = 2.7. 

With contraception, interbirth intervals become longer through length
ening of the average period of exposure to pregnancy r. If we assume that a 
contraceptive with the etfectiveness 0 ~ e ~ 1.0 is used durlng the exposed 
period, the monthly probability of conception changes from l/r to (1 - e)/ 
rand the interbirth interval increases by r / (1 - e) - r = er/ (1 - e) months. 
For a mean exposure time of r = 7! months in the absence of contraception, 
using a contraceptive with 50% etfectiveness contnbutes (0.5)(7! )/ (0.5) = 7! 
additional months to the interbirth interval. At 75% etfectiveness the gain 
becomes 22! months, at 90% etfectiveness it becomes 67! months or 5! 
years, and at 99% it becomes more than 60 years. The reader might calculate 
the impact of 99% etfective contraception used half the time and no contra
ception at other times, or equivalently, of half the population using 99% 
etfective contraception and the other half none. * 

Models that quantify the etfects of contraception through decomposition 
of observed fertility rates into natural fertility rates and the fertility damping 
etfects of the Davis and Blake intermediate fertility variables are introduced 
in Appendix 7 A.l. For a life table analysis of contraception (see Table 4.7) 
the reader may see Potter and Avery ( 1975) and Trossell and Menken ( 1980). 

7.12. THE STATISTICAL ANALYSIS OF FERTIUTY 

Statistical testing of standardized rates and life table düferences was de
veloped for its contrlbution to medical studies, where düferences in the ef
fectiveness of treatment regimens can be critical to patient survival and re
covery. In fertility analysis, statistical tests are less often needed. It is useful 
to know if fertility rates are similar or dissimilar across populations or 
subgroups and whether they are stable or changing, but by the nature of the 
data large ditferences can generally be assumed to be significant and small 
ditferences inconsequential. There is also no ideal age pattern or level of fertility 
that populations aspire to achieve, against which current levels might be as
sayed. Finally, in sampIes of any reasonable size the nonrandom component 
of yearly tluctuations in fertility rates typically outweighs the random com
ponent by a substantial amount. 

Where they are needed, variances of ASFRs are estimated using the con
vention that denominators nNx represent risk populations analogous to the 

• For tbe theoretical dcvelopment of effects of contraception on birtb intervals the reader should 
see Potter ( 1960), Potter and Parker ( 1964), Leridon ( 1977, pp. 121-130), and Bongaarts and 
Potter ( 1983). A More formal analysis is presented in Sheps and Menken ( 1973, pp. 288-310). 
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risk population in mortality analysis N(x). The ASFR is then interpretable 
as a binomial probability* analogous to "Qx, and we have 

(7.21 ) 

The expression is approximate, since nNx represents survivors in the interval 
(x, x + n) and not at the xth birthday. It is therefore not the complete risk 
population. When mortality is low, however, the correspondence of the two 
measures is dose. Formally, the expression is analogous to the approximation 
for the CDR [(3.13)]: 

Var(CDR) ~ CDR( 1 - CDR)/.,No 

We also disregard the distinction between single and multiple births (about 
1 % of confinements and 2% of births) and rare cases of repeat births in the 
same calendar year. 

Since the TFR is summed from the ASFRs, it has the approximate vari
ance [analogous to (3.11 )] t 

Var(TFR) = n2 ~ Var(nh) (7.22) 
x 

To test for significant differences in the pattern and level of ASFRs be
tween populations, we use the D statistic [(3.20» 

D = [ ~ (ad - bc)/wx r/~ [(a + b)(c + d)(a + c)(b + d)/ 

usually with weights Wx = 1 and terms 

a b 

c d 
= 

(a + b + c + d - l}Jlw~ 

(7.23) 

• In place ofthe binomial (7.2), Koop (1951; Keyfitz, 1917b, pp. 351-352) suggests the hyper
geometrie distribution (Johnson and Kotz, 1969, pp. 143-165; Freund, 1972, pp. 77-79, 159-
160; see also Chians, 1967, for the application of the hypergeometrie in mortality analysis, and 
Brillinger, 1986, on the Poisson). Tbe distinction is between sampling with (binomiaI) and 
without (hypergeometrie) replacement. In demographie applications the two distributions are 
usually c1ose. 

t Where sampIes may include repeat births, (7.22) will include covariance terms, for which the 
reader may see Little (1982). 
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Tbe reader can construct variance estimates for gross and net reproduction 
rates by interpreting the two terms as weighted estimates of the TFR and 
using the rule that the variance of a weighted function is the weight squared 
times the variance of the function. 

7. 13. SUMMARY 

For the most part, fertility measures are more intuitive and simpler to 
work with than mortality measures. There are some intractable problems, 
most important among them our inability to reconci1e male and female fertility 
estimates, but their number is small. The complexities of competing risks are 
absent from fertility analysis except in specialized contexts, such as contra
ceptive termination or failure (Tietze and Lewit, 1973; Potter and Avery, 
1975; Trussell and Menken, 1980) for which the formulas of Sections 5.2 
and 5.4 apply. 

If fertility analysis becomes confusing, it is largely because of the variety 
of estimators that exist. To assist the reader, we have suggested approximate 
relationships between many of them. Tbose need not be learned-they are 
essentially heuristic and none are highly accurate-but the underlying rea
soning should be remembered. 

Of the various measures, the most widely used are the TFR, essentially 
a standardized estimate of completed family size, and the annual growth rate 
or stable growth rate. All are important because of the powerful implications 
of family size decisions that most of us would consider unexceptional, such 
as the doubling of populations within a single lifetime when family sizes av
erage only three surviving children and the doubling within 25 years when 
families reach six children. 

Tbe chapter has also explored the role of breastfeeding, contraception, 
and abortion as they impact on completed family sizes. Tbe models introduced 
are elementary but convey valuable insights. Tbey will be utilized in Appendix 
7 A.l, where fertility rates are related to time spent in various exposure states, 
and in Chapter 8, which continues the analysis of fertility and population 
change in the context of population projection. 

Two areas we have not discussed are natural fertility, for which the reader 
should see Henry ( 1972), Leridon ( 1977), and the valuable review of current 
knowledge in Gage et al. (1989); and model marrlage and fertility distribu
tions, for which the reader should see Coale ( 1971, 1977), Coale and McNiel 
( 1972), and Coale and Trussell (1974, 1978). Chapter 2 introduced the normal 
and gamma distributions as approximations to fertility distributions, but nei
ther is of the quality of the model distributions. Besides Henry, the reader 
may see Gini ( 1924), Potter and Parker ( 1964), Sheps (1964), and Sheps 
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and Menken (1973) on models of fecundability and the birth process. For 
insights into differences between period and cohort measures the reader should 
see Ryder ( 1964), Keyfitz (1972), and the collection of articles in Mason 
and Fienberg ( 1985). On efforts to separate period from cohort behavior see 
also Glenn (1976). 

APPENDIX 7 A. 1. FERTILITY EXPOSURE ANALYSIS 

Several of the fertility measures introduced in this chapter are subsets of 
the intermediate fertility variables enumerated by Davis and Blake (1956). 
Because the effects on fertility of the key variables-time spent in unions or 
at risk ofpregnancy, temporary or permanent sterility, breastfeeding, contra
ceptive use, and abortion-vary substantially within and across populations, 
much effort has gone into developing models to estimate their relative con
tributions to family size. 

The fundamental model of fertility determinants is Hobcraft and Little's 
( 1984) fertility exposure analysis, which uses fertility histories extracted from 
individual level survey data to estimate the proportion oftime spent in various 
exposure states during a fixed reference period. Expanding on earlier work 
by Bongaarts (1978; Bongaarts and Potter, 1983; see also Singh et al., 1985) 
and Gaslonde (Gaslonde and Bocaz, 1970; Gaslonde, 1972; Gaslonde and 
Carrasco, 1982) they identify the states (Hobcraft and Little, 1984, p. 23)*: 

PI pregnancy, leading to a live birth 
P2 pregnancy, leading to an induced abortion 
P3 pregnancy, leading to a spontaneous abortion 
P4 pregnancy, leading to a stillbirth 

1 lactational infecundity 
i l nonlactational infecundity, following a live birth 
h infecundity, following an induced abortion 
i3 infecundity, following a spontaneous abortion 
i4 infecundity, following a stillbirth 
is permanent sterility 

ml virginity 
m2 divorce 

• Our notation follows Hobcraft and Little ( 1984), except that we use r (risk) in place of their f 
(fecund). Sans serif variables denote the durations in exposure states in months [expressions 
(7.20), (7A.4), (7A.6), (7A.7)J and are distinguished from the proportion oftime spent in 
exposure states [expressions (7A.1 )-(7A.3), (7A.5)J. 
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m3 widowbood 
lI4 separation 
ms sexual abstinence, following abirtb 
m6 terminal abstinence 

CJc contraception, using method k, k = 1, .•. , K 

r fecund (residual), at risk of conception 

CHAPTER 7 

If analysis is restricted to the principal intermediate variables, for women 
at ages x to x + n we have the identity (omitting the interval subscripts n) 

In the expression, P x represents potential fertility at ages x to x + n, and is 
estimated from the remaining terms of the expression. That is, 

Tbe terms in (7 A.l ) are dx{ -m), the proportion of time at age x spent prior 
to union (i.e., not yet married, bence -m, wbere the minus sign is read as 
"not"); dx { -u), the proportion of time spent not in union or not sexually 
active; and dx{ c), dx{ a), and dx{l), the proportions of time spent contra
cepting, spent in pregnancies that are aborted, and spent lactationally infecund, 
respectively. [Tbe term dx(a) is omiUed in the discussion tbat follows.] We 
adopt the convention that residual terms are 0 for dx{ -m) = 1 or dx{ -m) 
+ dx { -u) = 1. Tbe observation period will be the interval over whicb the 
ASFRs are estimated, usually 12 or 24 months excluding very recent periods.* 

Where individuals fall into more than one category in a given period 
(e.g., both contracepting and lactationally infecund), fractional assignments 
to categories or hierarchical orderings are required. Hobcraft and Little suggest 
the bierarchies -u > I and 1 > c, wbicb assign the overIap between time spent 
not in unions and time lactationally infecund to time not in unions, and 
assign the overlap between lactational infecundity and contraception to lac
tational infecundity. (In life table analyses of contraceptive failure, the period 
of overlap has historically been assigned wbolly to contraception. Tbe actual 
overlap is unassignable for at least some durations after birth.) 

• For very recent periods, women may not know or comctly report their pregnancy status, 
biasing estimates oftheir potential fertility. Current pregnancies, for example, tend not to be 
reported until the middle or the last trimester in surveys, and are therefore undercounted both 
absolutely and relative to the annual number ofbirths. In earlier periods, rec:all errors may also 
arise. These points are addressed in Hobcraft and Little ( 1984) and in PuDum er al. (1987). 
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The terms in (7 A.I ) can be expanded to form conditional exposure state 
probabilities. We set 

Ix = Px{l- dx(-m)} ([I - dx(-m) - dA-u)]/[1 - dx(-m)]} 

X ([I - dx(-m) - dA-u) - dx(c))/[I - dx(-m) - dx(-u)]} 

X ([I - dx( -m) - dx( -u) - dx(c) - dx(l))/ 

[I - dx( -m) - dA -u) - dx( c)]} 

(7A.2) 

(7A.3) 

Using (7A.2). the terms Ck in (7A.3) become: C-m • the proportion oftime 
that follows the start of the first union; c-u , the ratio of time currently in 
union to time ever in union; Ce, the ratio of time currently in union and not 
contracepting to time currently in union; and q, the ratio of time currently 
in union, not contracepting, and not lactationally infecund, to time currently 
in union and not contracepting. 

Using the 1975 National Fertility Survey for the Dominican Republic, 
Hobcraft and Little find the proportions of time in various exposure states 
for women ages 25-29 at 10-21 months prior to survey: 

dx(-m) = 0.116 

dx ( -u) = 0.101 

dx(l) = 0.067 

Residual terms for this population include the proportions of time spent in 
pregnancies (0.192), spent in postpartum infecundity or natural sterility 
(0.047), and spent fecund and at risk ofpregnancy (0.277). 

For the reference period we have used, the ASFR for the cohort is not 
given in Hobcraft and Little. If we allow a mean pregnancy duration of 39 
weeks, however, the rate can be estimated from time spent in pregnancy as 
Ix ~ (52/39)dx(p) = (52/39)0.192 = 0.256. For this estimate we have* 

• For the 12 months immediately prior to survey, the coefticients are d,,< -m) = 0.092, d,,< -u) 
= 0.152, d,,(c) = 0.223, d,,(l) = 0.057, and/x = 0.233. Tbe reader can confirm that ror these 
estimates, 

P" = 0.233/[(0.908)(0.833)(0.705)(0.893)] = 0.489 
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C-m, x = 1 -0.116 = 0.884 

C-u, xl-mx = (1- 0.116 - 0.101)/(1- 0.116) = 0.886 

Cc, xl-mx-ux = (1 - 0.116 - 0.101 - 0.200)/(1 - 0.116 - 0.101) = 0.745 

Ct, xl-mx-uxcx = (1 - 0.116 - 0.101 - 0.200 - 0.067)/ 

(l - 0.116 - 0.101 - 0.200) = 0.885 

Px = 0.256/[(0.884)(0.886)(0.745)(0.885)] = 0.496 

For comparison, the 1950 Hutterite marital ASFR was 0.498 at ages 25-29 
(Robinson, 1986). 

The two estimates imply interbirth intervals of 18 ~ 1/0.496 = 24.2 
months and 18 ~ 1/0.498 = 24.1 months, or a little more than the hypothetical 
duration of 20 months (18 months plus 20 months to allow for pregnancy 
losses) found using expression (7.20),18 = r + p + i. 

The terms of(7.20) can be estimated for the Dominican Republic data 
from the ratios oftime spent in each state. Using a mean duration ofpregnancy 
ofp = 39 weeks or 9.0 months, fortime at risk we find r = 39 (0.277/0.192) 
= 56.3 weeks = 13.0 months, and for time spent in natural sterility we have 
i = 39(0.047/0.192) = 9.5 weeks = 2.2 months. The estimates find the time 
in state j as the expected time in state i times the ratio of time in j to time in 
i. By this convention, the breakdown of the interval is 

18 = r + p + i = 13.0 + 9.0 + 2.2 = 24.2 months ~ I/Px (7A.4) 

as against our hypothetical 7 i + 9 + 1 i = 18 months. 
The high ratio oftime at risk to time in pregnancy (0.277/0.192) and 

the correspondingly long exposure duration for the example ( 13.0 months) 
implies a monthly probability of only 1/13 = 0.08 of becoming pregnant for 
women at risk. The value is low relative to Bongaarts's 1!7 i months = 0.13 
for all women 15-44, which it should exceed, and suggests either that some 
contraceptive methods are unreported or that others of the intermediate fer
tility variables have been subsumed in the residual category dx( r). Hobcraft 
and Little find that stratifying the sampie to remove women apparently sterile 
[dAi s) = 0.07, counting as sterile those at risk during the previous 5 years 
but not giving birth] corrects much or Most ofthe discrepancy. 

The contributions of the terms in (7 A.2) to total fertility are found as 
weighted sums of the age-specific terms, using weights proportional to fertility. 
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That is, 

where 

TFR = P C-m C-ut - m Cct - m -u CII - m -u c 

x 

C-m = L excm, xl L ex 
x x 

x x 

Cct - m -u = L nxcc, xl-m -u/L nx 
x x 

Cll - m -u c = L Pxq, xl-m -u cl P 
x 

The weights ex, Wx, and nx are found as 

ex = Ixl[ 1 - dx( -m)], the ASFR of ever married women 
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(7A.5) 

Wx = Ixl [1 - dx{ -m) - dx{ -u) 1, the ASFR of currently married women 

nx = Ixl (1 - dx(-m) - dx(-u) - dx(c»), the ASFR ofcurrently married, 

noncontracepting women (i.e., natural fertility) 

Using (7 A.5 ) with stratification of the sterile sampie, Hobcraft and Little 
find for the terms Ck and potential fertility P: 

TFR = P C-m C-ul - m Ccl - m -u Cll - m -u c 

= 5.35 = P(O.714)(O.754)(O.729)(O.902) 

P = 15.1 

These estimates are for the 12 months prior to survey. Except for lactation, 
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the overall effects are greater than those at ages 25-29. The contribution to 
C-m comes largely at ages under 25, before women enter fiest marriage; and 
those to C-u and Ce come tater, with union disruptions and increasing eon
traeeptive use. Lactational amenorrhea is similar in its effects across most age 
intervals, as mean durations of breastfeeding average 8-9 months for all but 
the oldest cohorts. Hobcraft and Little assign only about half of time spent 
in breastfeeding to lactational infecundity, because of its overlap with im
mediate postpartum infecundity and its ineomplete effectiveness.· 

Since the effect measures in (7 A.3) and (7 A.5) derive from individual 
level fertility histories, their eomponent terms can be ineorporated in linear 
models, most simply of the form d(k) = Lj bj~, where bJ are regression 
eoefficients for the attributes Kj. Other variables may be substituted for ex
posure times d(k), ineluding terms in c(k) or fertility rates. For these and 
other aspects of fertility exposure analysis, the reader may see Hobcraft 
and Little ( 1984) and Pullum et al. (1987). Additional eomments on the 
estimation of IB from distributions of time in various exposure states are pre
sented in Section 8.11. 

Expression (7A.5) is a reformulation ofa model originally proposed by 
Bongaarts (1978; Bongaarts and Potter, 1983) that is fitted using aggregate 
in place of individual level effect measures. In the Bongaarts proximate de
terminants analysis, the TFR is decomposed as the product of the natural 
fertility rate and the indexes 

TFR = PBC-MCLCCCA = PB {TFR/MTFR} {20/(18.5 + I)} 
(7A.6) 

X {I - 1.08pe} {TFR/[TFR + 0.4 TAR(1 + p)]} 

In the expression, PB is the Bongaarts potential fertility rate in the absence of 
breastfeeding, extended postpartum sexual abstinence, and others of the fer
tility-inhibiting variables. Bongaarts and Potter (1983, p. 87) find the ap
proximate value PB!:!! 15.3 ehildren; as in Hobcraft and Little, its value for 
a given population is determined from the expression after estimating 
other terms. 

The indexes CK represent fertility-depressing effects, with magnitudes 
between 0 and 1.0, as folIows: 

C-M indexes the proportion in unions, and is found as the TFR divided 

• Tbe mean duration of breastfeeding, about 8 months, is close to the duration of pregnancy, 
from which we might expect d,,(l) ~ d,,(p). Owing to the partial assignment ofbreastfeeding 
to lactational infecundity, the actual ratio is substantially lower, 0.067 to 0.192 at ages 25-29. 



MEASURES OF FERTIUTY 251 

by the MTFR.· It is the only one of the Bongaarts variables essentially pre
served intact in Hobcraft and Little. Tbe index is 1.0 if all women are married. 

CL is found as the expected interbirth interval in the absence of breast
feeding, divided by the expected interbirth interval at prevailing breastfeeding 
patterns. Tbe former is estimated as 7! months at risk of pregnancy, 9 months 
in pregnancy, and I! months ofpostpartum sterility, with an allowance of2 
months for pregnancy loss. For the latter, Bongaarts and Potter count 18! 
months plus the duration of postpartum infecundity associated with lactational 
amenorrhea (I), estimated as I = 1.753e°.J396,,-o.OOI872,,\ or about 0.61' for 
typical populations, where I' is the mean duration ofbreastfeeding. The index 
is 1.0 in the absence of breastfeeding. 

Ce indexes the fertility impact of contraceptive use, and varies with botb 
the proportion of currently married couples using contraception (p ) and the 
average effectiveness (e) of tbe methods selected. t The constant term 1.08 
adjusts for the bigher proportion fecund among contraceptors than among 
all couples. The index is 1.0 wbere contraception is not used. 

Tbe index for abortion, CA, is found as the TFRdivided by the TFR 
plus the fertility impact ofthe TAR. To estimate its impact, the abortion rate 
is adjusted for the shortness of abortion intervals relative to birth intervats, 
and for contraceptive prevalence, on the argument that where contraception 
is widespread, fewer abortions are required for a given reduction in births 
than where it is less prevalent. If abortion is not used, the index is 1.0. 

Tbe reader will recognize that much of the Bongaarts model is intuitive, 
and he or she might suspect that its terms will not differ greatly from the 
Hobcraft and Little estimates based on time spent in the several exposure 
states. Tbe marriage effect C-M is expressed in Hobcraft and Little as the 
product C-mC-U • and both models express lactational infecundity through 
estimates of time added to the birth interval by breastfeeding. Tbere is also a 
elose correspondence between contraceptive preValence and use effectiveness 
(Bongaarts) and the proportion oftime couples are protected from pregnancy 
by contraceptive use (Hobcraft and Little). 

Tbe index for abortion in Bongaarts is more problematic. Like contra
ception or lactation, the impact of abortion is to extend the interval between 

• Because the marital ASFR at ages 15-19 includes premarital conceptions and becomes unstable 
as ages at marriage change, Bongaarts and Potter( 1983, pp. 81-82) set ,Ji,.u = (0.7S),!20.u ror 
a1l populations. 

t By method, effectiveness is estimated ror Most developing country populations at 0.9 ror the 
pill, 0.95 ror the lUD, 1.0 ror sterilization, and 0.7 ror other methods, taking into account both 
method quality and care in method use (Bongaarts and Potter, 1983, p. 84). To find e, the 
average contraceptive effectiveness, these estimates are weighted by the proportions using each 
method. 
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births, by perhaps 8-9 months using (7.20). Its impact is not conditioned on 
the nature and quality ofprior contraception, which properly belongs to Ce, 
or for that matter on inadequate protection through lactational amenorrhea 
or others of the Davis and Blake exposure variables. (It is defended by an 
argument that would permit abortion effects to be subsumed in either Ce 
or CL') 

Omitting contraceptive prevalence from the abortion index, it becomes 
C! = TFR/(TFR + 0.4 TAR). The expression is interpretable as the ratio 
of the TFR to the hypothetica1 rate in the absence of abortion. Substituted 
into (7 A.6) it yields 

TFR = P:C-M CL Ce C! = P: {TFR/MTFR} {20/(18.5 + I)} 

X {I - 1.08pe}{TFR/(TFR + 0.4 TAR)} 
(7A.7) 

where P: is found as TFR/( C-MCLCqmC!>. We note that with replacement 
of CA by c· A the impact of abortion is brought more nearly into agreement 
with Hobcraft and Little whose measure is time spent in pregnancies that are 
aborted. 

For the Dominican Republic, the Bongaarts (1982) estimates for con
traceptive prevalence and use effectiveness are p = 0.32 and e = 0.89; the 
mean duration of breastfeeding is estimated at '" = 8 months, from which 
I = 4.76 months ofpostpartum infecundity. Using estimates of 5.85 for the 
TFR and 9.74 for the MTFR, he finds using (7A.6)-(7A.7) (Hobcraft and 
Rodriguez, 1982; Bongaarts, 1982): 

= 5.85 

= PB {5.85/9.74} {l - (1.08)(0.32)(0.89)} {20/(l8.5 + 4.76)} 

= PB(0.601 )(0.692)(0.860)( 1.000) 

PB = 16.4 

Using Hobcraft and Little's TFR estimate of5.35 yields PB = 15.0. The effect 
levels in the Bongaarts model differ from those in Hobcraft and Little, but 
are satisfactory as approximations from limited data. 

The reader should recognize the importance of the quality of available 
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estimates of fertility rates, breastfeeding, contraceptive use, and abortion for 
both Hobcraft and Little and Bongaarts. Where fertility is misreported, or 
pushed backward or forward in time, the contributions of the intermediate 
variables may be seriously distorted. More common is the underreporting of 
contraception and abortion, leading to overestimation oftime at risk ofpreg
naney and therefore to low estimates ofpotential fertility. The reader should 
see Hobcraft and Little (1984) for a careful discussion of these and related 
issues. 



CHAPTER 8 

Population Projection and 
Projection Matrices 

Professor [Leonard] Euler assumes (1) at the outset there exists a ma"ied 
couple aged 20, (2) their descendents also always marry at the age of 20, (3) 6 
children are born to each ma"iage.. . . Also (4) variations must never occur; 
therefore twins will always be born, thefirst pair to each ma"iage coming in the 
22nd, the next in the 24th and the third in the 26th year. It will be assumed (5) 
that all children survive, marry, and remain living until reaching age 40.. . . 

On these assumptions there will be only two people initially, 4 after 2 years, 
6 after 4 years, 8 after 8 years. After this no changes occur until the first two 
children reach their 22nd year, which takes place after 24 years, when their first 
two children come into the world. Two years later this couple will produce 2 
more, but the couple born in the 4th year will also produce 2 children; in the 
28th year 6 children will a"ive; in the 30th again only 4, and so forth. 

Notice that although great unorderliness seerns to rule in Euler's table, the 
number 0/ births belongs 10 a progression which is ca/led a recurrent series and 
which can be produced by dividing out an algebraic fraction. While these pro
gressions initially appear i"egular, if they are continued they finally change into 
a geometrie progression; the initially perceived i"eguJarities decrease with time 
until they finally almost entirely disappear. 

-JOHANN PETER SOSSMILCH ( 1761 ) 

Translated by Nathan Keyfitz (Smith and Keyfitz, 1977, pp. 81-82) 

8. 1. INTRODUCTION 

This chapter and the next focus on population estimation and projection. 
The distinction between these two terms is temporal: eslimalion usually implies 
a judgment or guess as to the size or attributes of a historie or present 
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population; projection implies a judgment or guess as to its future direction.· 
We will not maintain this distinetion as rigorously as we might. The term 
reverse projection is given to applications of projection methodologies to the 
estimation of past populations. 

The simplest population projections begin with population estimates at 
two or more time points, or with the population size and either birth and 
death rates or the net reproduction rate. For small areas, or where knowledge 
of the population is limited, the need for more elaborate formulas may not 
be great. 

If greater precision is needed, we require an initial population and a 
series of fertility and mortality rates by age that can be used to project survivors 
byage and births by parental age in future periods. (The simple projection 
outlined in the opening quotation is ofthis kind.) Additional terms may also 
be ineluded for migration where it is a significant factor. 

An example of source data for a projection without migration is provided 
in Table 8.1. The table uses 15-year age intervals (n) for illustrationt: in 
normal applications, 5- or at most 100year age intervals are used for greater 
precision. The projection period is the same as the width of the age intervals, 
in the example 1980 to 1995, then to 2010, 2025, ete. [The projection is from 
the age interval (x, x + n) to the interval (x + n, x + 2n), or from an average 
age of x + ! n to x + I! n. In the example, in eaeh period the population 0-
14 is projected to ages 15-29, the population 15-29 is projected to ages 30-
44, and so forth. The projection advances eaeh cohort 15 years in age, and 
therefore 15 years in time.] 

It was noticed in the early 1940s (Bemardelli, 1941; Lewis, 1942; Leslie, 
1945, 1948a,b) that population projections could be handled through matrix 
algebra, with the population to be projected represented as a vector N and 
the projection equations as a matrix M of a relatively simple form. Among 
their other properties, matrices ofthe population type stabilize: their elements, 
the survival and birth rates, settle into fixed ratios if the Matrix is repeatedly 
multiplied by itself( equivalent to projecting the population into the relatively 
distant future), with the result that the population age distribution also sta
bilizes. Manipulation ofthe matrix also yields the growth rate ofthe population 
at stability (the intrinsic growth rate r), and provides other insights into its 
behavior. 

• Tbe term forecast is used in the context of economic planning for projections to the near, or 
addressable, future. A demographer's perspective on forecasting will be found in Keyfitz ( 1981a). 

t Where data are to be regrouped into fewer and wider age interva1s to simplify population pro
jection, Keyfitz sugests that the condensed data be adjusted to replicate souroe data projections 
for time to + n, where to is the initial time point and n is the interval width in the regrouped 
data. Tbc adjustment (Keyfitz, 1977b, pp. 37-40) reduces the severity ofinformation losses 
that arise with interval widening. 
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8.2. ELEMENTARY PROJECTION METHODS 

The simplest population projections are constructed from the population 
at one time point, annual crude birth and death rates, and if migration is 
relevant, the net migration rate. The CBR, CDR, and CMR are not direct 
measures of population changes from year to year-all are constructed from 
annual events and the midyear population rather than from events measured 
from midyear to midyear-but may serve as estimates of the intensity of 
birth, death, and migration processes. By that interpretation, for the annual 
population change we will have [using (1.6), rewritten to make explicit the 
different reference periods in the source data]: 

Mt+') - Mt) [( B(t-I/2,t+1/2) ., O,exp-., 0 exp., 0 

The expression uses .,Fo to represent annual net migration. (.,Fo is found as 
"/0 - .,Eo, where I represents immigrants and E represents emigrants.) For 
the midyear 1980 U.S. population (Hollmann, 1989), the expression yields 
the 1981 population: 

.,N~~9!~ = 227,757,000 exp[(3,612,000 - 1,990,000 + 750,000)/ 

227,757,000] = 227,757,OOOeO.01041 = 230,141,000 

The Bureau of the Census estimate for mid-1981 is 230,138,000, or about 
3000 fewer. * Tbe difference is due partly to cbanges in birtbs, deaths, and 
immigration from year to year, and also partly to the formula assumption of 
a constant migration rate for the midyear-to-midyear period, rather than 
a fixed number of migrants as envisioned in U.S. immigration laws. Nei
ther the 1980 nor 1981 population estimates are accurate to the number of 
digits shown. 

For longer term population projections we may extrapolate from changes 
between two time points, by either of the formulas: 

~,(t+n) = M /)( Mk+m)/ Mk»(n,m) 
.,iV 0, exp ., 0 ., 0 ., 0 (8.2) 

* Had we used the demographie balancing equation [( 1.5)] blending annual with midyear terms, 
we would have found 

.. N~t:~) = 227,757,000 + 3,612,000 - 1,990,000 + 750,000 = 230,129,000 
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",('+11) = M') + (n/m)(..Mk+m) _ M k» .. /Va, Hn .. 0 0.. 0 (8.3) 

The formulas find annual population changes exponentially as the 1/ m power 
of an m-year change, or linearly as 1/ m times an m-year dift'erence. The 
annual rate is then raised to the power n or multiplied by n to find the change 
over n years. 

The expressions simplifY ifthe time points and durations are coterminus; 
that is, if t = k + m and m = n. For example, using the 1960 and 1970 U.S. 
population to project to 1980 we would have: 

.. '(1980) = M I970)( m1970)1. MI960»(lo/IO) 
.. JVa, exp .. 0 .. 0 .. 0 

= 205,052,000(205,052,000/180,671,000) = 232,723,000 

.. m~9Hs.?) = .. m l970) + ( .. m I970) - .. m l960»( 10/10) 

= 205,052,000 + (205,052,000 - 180,671,000) = 229,433,000 

Both estimates are high, although the linear formula comes closer to tracing 
the slowdown in growth that occurred during the 1970s. For states and 10-
calities, where changes are less predictable than at the national level, the for
mulas are competitive with more complex expressions. 

Where birth rates have been relatively constant over several decades, and 
where migration is negligible, net reproduction rates and the generation length 
can be used for long-term population projections. Given the net reproduction 
rate Ro (Ro is the generational replacement rate, or number of daughters 
women have who survive to their same ages; see Section 7.5), and estimating 
the generation length to be about T = 27! years, the intrinsic rate ofpopulation 
increase or decrease is found from the relationship [(7.17)] 

Ro = e,T 

r = InRo/T 

The expression allows us to project the population in year t + n as 

Mt+II) - M') e'lI .. O,exp2- .. 0 (8.4) 

Expression (8.4) would not be used for the United States, where immi
gration contributes substantively to population growth, or for countries where 
fertility rates are changing, but is applicable to some developing country pop
ulations where ·family sizes remain high. 
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A related measure is the eventual population size that would follow an 
abrupt change in the NRR to replacement level (Ro = 1). Originally developed 
by Keyfitz ( 1971 b) and simplified by Frauenthal ( 1975), the estimate of the 
eventual population size is given by 

JI.T _ ",fl) ",fO)R 1/2 
",HO, stationary - ",iV iJ ~ ",JV iJ 0 It~O (8.5) 

where Ra is the NRR prior to the change. The stationary level is reached in 
about one lifetime, wbich will give dimension to the approximation t ~ O. 
The ratio of eventual to initial births will be about R01/ 2, or roughly the 
inverse of the change in population size. 

Using (8.5) and the data ofTable 7.6, the U.S. population would settle 
to 0.876 1/ 2 = 0.94 times its present size ifthe NRR recovered to 1.0. That is 
not a terribly helpful estimate for a population with both substantial migration 
and substantial momentum from the higher fertility in its recent past. For 
Mexico the formula suggests an eventual population 1.6 times its 1980 size 
with an immediate shift to an NRR of 1.0. A much larger increase is expected, 
since the NRR continues to be bigher. The ratio ofbirths in Mexico to births 
in the United States has been about 1 : 1.6 for more than a decade, and may 
be taken as an estimate of the near-term ratio of the two population sizes. 

None ofthe formulas ofthis section incorporate much information about 
the populations to which they are applied, and all are most often used where 
detailed data are limited or unreliable, or where growth patterns are difficult 
to anticipate. Component formulas, wbich project populations using life tables 
and age-specific fertility rates, are normally better when data are available 
and the researcher is able to exercise judgment about future patterns. 

8.3. COMPONENT PROJECTIONS 

Component population projections begin with age distributions, and es
timates or projections of age-specific fertility, mortality, and migration rates. 
Because they lend themselves well to matrix analysis, from which important 
theorems have been developed, we will introduce them in that context. 

To understand the layout and application of the projection matrix, we 
need to look first at the equations that comprise component projections. * For 
simplicity, we will use only the first three age groups ofthe female population 
in Table 8.1 (ages 0-14, 15-29, and 30-44), and will project females and 

• Readers not familiar with matrix algebra may review Searle ( 1966), Namboodiri ( 1984), or 
CasweU (1989, pp. 280-295) for essential formulas. 
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Table 8.1. U.S. 1980 Population and Births, and National Center for Health 
Statistics 1980 Life Table Population. Source: National Center for Health Statistics 

( 1984-1985) 

Age specific 
1980 Lire table population Births fertility rates 

population nLx+"/ Females Males Females Males 
Ages nNx nLxllo nLx nBx.r .Bx, m .fx.r .Ix, m 

Females: 
0-14 25,073,029 14.79376 0 0 0.000000 0.000000 

15-29 30,884,000 14.70000 0.993662 1,410,649 1,486,172 0.045676 0.048121 
30-44 21,949,115 14.51057 0.987114 348,993 366,444 0.015900 0.016695 
45-59 17,924,259 13.89239 0.95"~98 0 0 0.000000 0.000000 
60-74 14,241,832 11.90186 0.856718 0 0 0.000000 0.000000 

75+ 6,420,409 7.68632 0.645808 0 0 0.000000 0.000000 
Total 116,492,644 1,759,642 1,852,616 

Males: 
0-14 26,217,310 14.74000 0 0 0.000000 0.000000 

15-29 31,123,747 14.51084 0.984453 1,157,616 1,221,147 0.037194 0.039235 
30-44 21,246,515 14.06104 0.969002 576,765 605,014 0.027146 0.028476 
45-59 16,490,782 12.96693 0.922189 25,261 26,455 0.001532 0.001604 
60-74 11,426,394 9.63350 0.742928 0 0 0.000000 0.000000 

75+ 3,548,413 4.04702 0.42099 0 0 0.000000 0.000000 
Total 110,053,161 1,759,642 1,852,616 

daughters. The projection will be generalized for older age groups and males 
subsequently. 

We first estimate the survival rate from ages 0-14 to 15-29, and from 
ages 15-29 to 30-44. If a population life table is available, the ratio of successive 
nLx terms (the life table population surviving in each age interval ) will normally 
serve to estimate survival in the real population. We set: 

(8.6) 

where nN~) represents the population at ages x to x + n at time t and 
nN~::) is the population n years older at time t + n. For the female population 
of Table 8.1 we have: 

0.993662 X 25,073 = 24,914 
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0.987114 X 30,884 = 30,486 

Notiee that by the use of the life table "Lx series we take mortality into 
account but not migration, since the life table displays survivors aeross age 
and time for a fixed number of births. Migration is handled by adjusting the 
survival terms upwards or downwards (for net population inflow or outflow), 
or by adding or subtracting individuals after the projection is completed. 
Projeetions by census survival are of the former type: in place of the life 
table, survival is estimated as the ratio of the census population at ages 
x + n to x + 2n at time t + n to the population ages x to x + n at time t, or 
"Mlt:) / "N~). The ratio may be less than or greater than 1.0, depending both 
on mortality and on the direction and magnitude of migration between the 
two censuses. 

To find the population ages O-n at time t + n, who are the survivors at 
the end of the projection period of the ehildren bom durlng the period, we 
require three types of information. We need to know: ( 1) the proportion of 
the age groups 0 to n, n to 2n, 2n to 3n, and so forth, who will survive through 
part or all of the projection period; (2) the age-specifie birth rates they will 
experience; and (3) the survival probability from birth to the O-n age group. 

One solution for projecting births is to use the average of the age-specifie 
birth rates for eaeh eohort at the start and end ofthe period. Formally, 

where ,,/x, , and "/x+,,, , are the ASFRs for births of ehildren of one sex (here, 
daughters) at ages x to x + n and x + n to x + 2n, respectively, and "Lx+,,/ 
"Lx is the proportion of the cohort ages x to x + n who will survive to ages 
x + n to x + 2n. The term "fx+(l/2)", , thus averages the eurrent fertility of 
the cohort ages x to x + n with its future fertility at x + n to x + 2n, after 
allowing for the prospect that not all members of the cohort will be alive 
through the eomplete projection period. If (8.6) is used to projeet cohort 
survival, "fx+(I/2)", , will satisfy the projection equality for births "Bx+(l/2)n in 
the projection period: 

The sans seriff in "fx+(l/2)n"indicates that it inc1udes a mortality component 
and is not the simple average of ,,/x, rand "/x+,,, f. For projections using census 
survival, the term ("Lx+"/,,Lx ) is replaced by ("N<::::)/"Mj». 
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Substituting the female data ofTable 8.1, expression (8.7) gives: 

= !(O.O + 0.99366 X 0.045676) = 0.022693 

= !(0.045676 + 0.98711 X 0.015900) = 0.030686 

= !(0.015900 + 0.95740 X 0.0) = 0.007950 

The ASFRs are l-year rates, and summing across alt of the fertile age 
groups will provide an estimate of family size. For the example, in which each 
age interval spans 15 years, the family size becomes 15 X (0.022693 
+ 0.030686 + 0.007950) = 0.919935. Using the fertility rates ofTable 8.1, 
it is 15 X (0.045676 + 0.01590) = 0.92364. The latter &gure is the gross 
reproduction rate, and is the number of daughters each woman would have 
in her lifetime in the absence of mortality. For the projection we have had to 
take female mortality into account, which gives a slightly smaller estimate. 

Besides (8.7), we may estimate nfx+(l/2)n.fterms by interpolating from 
nh.f to nh+(1/2)n,f and surviving the population nNx to midinterval. Inter
polation formulas are presented as expression (2.3) and are applied to 1980 
U.S. fertility rates for 5-year age intervals in Table 2.1. Either the cubic or 
fifth-order formula, with the endpoint adjustments shown in the table, will 
produce estimates of higher quality than the essentialty linear averaging that 
is applied in (8.7). 

Survival to midinterval is most easily estimated by adjusting from the 
complete interval estimator nSx+(I/2)n = nLx+nlnLx. Ifsurvival is linear over 
the interval, at midinterval we will have 

(8.8) 

Altematively, if the survival probability is assumed to be constant in the 
interval we will have 

(8.9) 

Using 5-year age intervals, the two expressions will be similar in magnitude 
for the fertile age range. We note from Chapter 4 that linear estimators are 
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usually slightly better than exponential estimators for buman survival, and 
recommend using (8.8) wben the two survival estimates diJfer. 

Combining cubic or fifth-order interpolation of nh, f with midinterval 
survival estimates from (8.8), the fertility terms become 

nfx+(I/2)n, f, linear 2 = (I/2)nSX+(1/2)n, linear nh+(I/2)n, f 

(8.10) 

Tbe reader can confirm that witb cubic interpolation of nh+(I/2)n,f, (8.10) 
yields 

15f7.5, f = (0.99683)(0.021844) = 0.021775 

15f22.5. f = (0.99356)(0.034637) = 0.034414 

15f37.5. f = (0.97870)(0.005095) = 0.004986 

For tbe example we will use (8.7), since (8.10), althougb better for 5-
year age interval data, is less satisfactory for interval widths of 15 years, wbicb 
concentrate fertility into very few age groups.· 

To adjust the estimates of (8.7) from annual birtbs to cbildren in the 
age interval O-n (in tbe example, 0-14) at the end of the period, we may use 
the life table ratio ofpersons 0-14 to birtbs (151.0110). Combining this expres
sion with tbe fertility estimates at each age, we will have: 

+ 15M1[ISJiS. f + (lsL30/lsLls)lsho. f] (8.11 ) 

+ 1~~[lsf30, f + (lsL4s/lsL30)ls}4s. f]} 

To put this expression in matrix format we need to simplify our notation, 
wbich we can do by setting 

(8.12) 
= (n1.o/lo>nfx+(I/2)n. f 

• We test for estimator quality by the c10seness ofthe intrinsic roots ofthe expressions to roots 
found from the source data. This point is discussed in Section 8.S. 
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using the Greek t/J (phi) to mean "fertility." For OUf example, the terms are: 

ISt/J7.S = 14.79376 X 0.022693 = 0.33571 

ISt/J22.S = 14.79376 X 0.030686 = 0.45396 

ISt/J37.S = 14.79376 X 0.007950 = 0.11761 

Notice that multiplication by IS1.o yields a family size estimate ofO.33571 
+ 0.45396 + 0.11761 = 0.90728 daughters. Because it includes a partial 
adjustment for mortality, the sum ofthe nt/Jx+(1/2)n terms approximates the 
completed family size a little better than does the gross reproduction rate. 

Collecting the formulas for survival and for births, the basic projection 
will be equivalent to solving three equations: 

ISt/J7.S ISm') + 
(lsLls/ls1.o)lsftt~) + 

° 

.. .(1) 
ISt/J22.S ISlV is 

o 

In matrix notation these terms become 

ISt/J22.S 
o 

ISL30/lsLls 

M 

+ ISt/J37.S IsN~ = IsN~+IS) 
+ ° _ .. .(I+lS) 

- IslVis 

° 
_ ",.(I+IS) 
- IsJY30 

(8.13 ) 

(8.14) 

Comparing the equations and the matrix, it will be evident that each of 
the elements ofN(I+IS) is the sum ofthe products ofa row ofthe matrix and 
the column vector N(I). The convention that rows multiply columns applies 
to matrices generally, and gives rise to the simple rule that the product of a 
c X d matrix and a d X e matrix is a c X e matrix. In the example, a 3 X 3 
matrix multiplies a 3 X I matrix to produce a second 3 X 1 matrix. (The 
term vector applies to any n X 1 or 1 X n matrix.) 

For our example, we enter the terms in t/J in the first row of the matrix 
and the survival terms from Table 8.1 in the subdiagonals. We then have for 
the 15-year projection: 

[
0.335710.453960.11761][25,073] [25'019] 
0.99366 0.00000 0.00000 30,884 = 24,914 
0.00000 0.98711 0.00000 21,949 30,486 

M 
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Tbe reader can confirm tbat tbe 1995 population estimates are found from 
tbe matrix as: 

0.33571 X 25,073 + 0.45396 X 30.884 + 0.11761 X 21,949 = 25,019 

0.99366 X 25,073 + 0.00000 X 30,884 + 0.00000 X 21,949 = 24,914 

0.00000 X 25,073 + 0.98711 X 30,884 + 0.00000 X 21,949 = 30,486 

8.4. LONGER TERM PROJECTIONS AND 
POPULA TION STABILITY 

Part of tbe power of tbe matrix lies in its ability to simplify long-range 
projections. To find tbe population at time t + 30 by expression (8.13) we 
bave to fim solve for N(t+15) and tben repeat tbe multiplication substituting 
N(t+IS) for N(t) on tbe left-band side oftbe equations. Using tbe projection 
matrix M and tbe population vectors N(t) and N(t+IS), tbe multiplication 
simplifies to 

Projection to any future time point reduces to the problem of raising M 
to tbe appropriate power. Tbis is usually left to tbe computer, but follows tbe 
rule tbat tbe ijtb element ofMz is tbe pMuct-sum ofrow i and columnj 
of M. For our example, element 11 (row 1 column 1) of M Z will be ,,4>7.s 
X IS</J7.S + 15</J22.S X (ISLIS/IsLo) + 15</J37.S X 0.0 = 0.33571 X 0.33571 
+ 0.45396 X 0.99366 + 0.11761 X 0.0 = 0.56378, element 12 (row 1 column 
2) will be IS</J7.S X IS</JZZ.S + IS</J22.S X 0.0 + IS</J37.S X (ISL30/lsLls) = 0.33571 
X 0.45396 + 0.45396 X 0.0 + 0.11761 X 0.98711 = 0.26849, and so fortb. 
Tbe reader can confirm tbe correctness of tbe matrix terms by substituting 
terms in IIN<l+1S) for terms in IIN<l) in (8.13), and tben substituting for 
IIN<i+lS) tbe expressions in IIN<l) tbat produce tbem. Tbe substitutions genera te 
expressions for IIN<r30) as functions of IIN<P wbose coefficients are tbose 
ofMz. 

Raised to very high powers, tbe elements oftbe projection matrix stabilize, 
in tbe sense tbat tbe ijtb element of M k+ I will equal a constant (tbe 15-year 
intrinsie growtb rate ). = eiS') times tbe ijtb element of M k• Tbe elements 
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ofM also settle into fixed ratios with respect to each other, and the population 
converges to the stable fonn'" 

(8.15) 

[Note: matrices in which fertility is nonzero onlyat a single age, or where all 
of the fertile age groups share a common factor, converge cyclically, with 
births ßuctuating from period to period in a fixed pattern. (An example would 
be a population in which fertility was confined to the second and fourth age 
groups, which have 2 as a factor. The population would oscillate between two 
stable distributions.) Oscillations do not occur in human populations, but are 
sometimes generated in projections when very few age intervals are used.] 

For our example, we begin with the initial projection matrix: 

_ [0.33571 0.45396 0.11761] 
M - 0.99366 0.00000 0.00000 

0.00000 0.98711 0.00000 

After squaring the matrix M 5 times (which raises it to the 32nd power, 
equivalent to a projection 480 years into the future) we have 

[
0.08710 0.05328 0.01086] 

M 32 = 0.09174 0.05611 0.01144 
0.09599 0.05871 0.01197 

and again multiplying by M gives 

[
0.08218 0.05026 0.01024] 

M 33 = 0.08655 0.05294 0.01079 
0.09056 0.05539 0.01129 

Dividing any element ofM33 by the corresponding element ofM32 will 
produce an estimate of the population growth rate (the matrix eigenvalue >.) 
during the projection period. For example, using element 11, >. = 0.08218/ 

• The reader may construc1 the projection matrix for Euler's example in the opening quotation. 
Euler was the tirst to recognize that populations stabilize if their fertility and mortality rares 
remain fixed. A loose proof was given by Alfred Lotka in the 19205 (Lotka, 1939), and a 
rigorous proof by W. FeUer in 1939, both using ca1culus. The Matrix proofs date to Perron 
(1907a,b) and Frobenius (1908,1909, 1912, 1917). On the rate ofconvergence to stability see 
Coale ( 1968). who finds that even very sharp initial perturbations in births are largely damped 
within about one lifetime. 
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0.08710 = 0.9435; using element 13, ). = 0.01024/0.01086 = 0.9429; and 
using element 32, ). = 0.05539/0.05871 = 0.9435. Had we displayed more 
significant digits, all three estimates would have given >. = 0.94344. The in
trinsic growth rate r becomes r = In>'/15 = -0.00388 ~ -0.004, using 
>. = eiS'. At 1980 fertility and mortality rates, the U.S. population would 
eventually decline. 

Expression (8.15) allows us to estimate the stable age distribution as a 
function of the size of one of the age groups (in the expression the youngest 
age group has been used). To test this, we multiply M 31N(1980) and find 

",.(2460) 
IY' 0 = 4,068,000 

~"(2460) 
ISlV is = 4,284,000 

~"(2460) 
151V 30 = 4,483,000 

Setting IsNb246O) to 4,068,000 and using (8.15), the numbers in the next two 
age groups would be: 

",.(2460) 
IY' IS = 4,285,000 

",.(2460) 
IY' 30 = 4,483,000 

The two sets of estimates yield virtually identical results, confirming that 
the age distribution has stabilized. (Notice also that the ratio ofthe rowentries 
in each column ofM31 or M 33 is the same as the ratio ofthe age groups. For 
example, in M3:Z element 21/element 11 = 0.09174/0.08710 ~ 1.053 
= 1~~46O)/1~246O),andelement32/element22 =0.05871/0.05611 ~ 1.046 
= 1sN'30 460) !tsN't~46O). The age distribution necessarily stabilizes in the same 
ratio as the rows of the projection matrix from which it is derived, becoming 
independent ofthe initial age structure'except as to the population size.) 

What happens to the matrix when women above age 45 are included? 
Survival ratios for 1980 are ISL4S/lsL30 = 0.95740, IS~/ISL4S = 0.85672, 
and ISL,S/15 ~ = 0.64581, and adding these into the projection matrix gives: 

0.33571 0.45396 0.11761 0.0 0.0 0.0 
0.99366 0.0 0.0 0.0 0.0 0.0 

M= 
0.0 0.98711 0.0 0.0 0.0 0.0 
0.0 0.0 0.95740 0.0 0.0 0.0 
0.0 0.0 0.0 0.85672 0.0 0.0 
0.0 0.0 0.0 0.0 0.64581 0.0 
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0.08710 0.05328 0.01086 0.0 0.0 0.0 
0.09174 0.05611 0.01144 0.0 0.0 0.0 

M3l = 0.09599 0.05871 0.01197 0.0 0.0 0.0 
0.09741 0.05958 0.01214 0.0 0.0 0.0 
0.08846 0.05410 0.01103 0.0 0.0 0.0 
0.06055 0.03703 0.00755 0.0 0.0 0.0 

The zeros in the last three columns ofM3l mean that women over age 
45 in 1980 will make no long-term contribution to population change. All of 
their children had already been born at the outset of the projection period. 
For the same reason, the first three rows and columns are those ofthe earlier 
3 X 3 matrix. All that has been added by enlarging the matrix is an additional 
series of stable ratios corresponding to the upper part of the age distribution. 
These could have been found from (8.15) with less worte, after raising the 
3 X 3 matrix to a high power to derive >.. 

The model we have introduced is Markovian, in that the population 
distribution at t + n is dependent on the distribution at t and the transition 
matrix M, and is independent of earlier states. Models can also be constructed 
with memory, but in demography their applications remain limited. 

8.5. DIRECT ESTIMATION OF ~ 

The closeness of the matrix projection to stability at various time points 
can be checked by estimating >. directly from the initial fertility and survival 
rates. To do so we again need to make use of (8.15). 

We begin by noting that at stability, for IsNo persons at age 0-14 there 
will be >. -I (lsLls/ls1.o)lsNo persons at ages 15-29 and >. -2(lsL30/ls1.o)lsNo 

persons ages 30-44. At the fertility rates IStP7.S, IStP22.S, IStP37.S the population 
0-14 at time t + 15 will be 

.. ,.(I+IS) .. ,.(/) '\ -I( L ) .. ,.(/) 
ISLV 0 = IStP7.S ISLV 0 + 1\ IS Islls1.o IStP22.S ISLV 0 

(8.16) 

Since the population is stable, however, 

.. ,.(I+IS) _ '\ .. ,.(/) 
ISLVO - I\ISLV O 
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Substituting this expression in (8.16) and canceling the terms in 1S~~) on 
both sides gives 

Multiplying both sides of this expression by >. 2 and rearranging terms, we 
have 

(8.18) 
>.3 - 0.33571>. 2 - 0.45396>' - 0.11761 = 0 

Expression (8.18) is the characteristic equation ofthe renewal function, 
in that it defines the relationship between fertility, mortality, and the rate of 
population growth at stability. For the three age interval example the expres
sion is a cubic polynomial, with roots (found by computer or programmable 
calculator ): 

>'1 = 0.94656, rl = (ln>'I)/l5 = -0.00366 

>'2 = -0.30543 + 0.17459i, r2 = -0.06951 + 0.17459i 

>'3 = -0.30543 - 0.17459i, r3 = -0.06951 - 0.17459i 

Tbe first root is the intrinsic growth rate and is c10se to the matrix estimate 
0.94344. Tbe other roots (which could have been estimated from the projection 
matrix M) are complex conjugates and track the ßuctuations in births before 
they ultimately stabilize. They have aperiodicity of211" 10.17459 = 36.0 years, 
or about a generation. [Higher order polynomials have additional roots, but 
these have shorter periodicities and are less easily interpretable. Tbe terms 
i = (-1) 1/2 canceI in the actual projection.] 

As a test of the quality of the projection matrix, we may compare the 
roots found as expression (8.18) with the roots of the maternity function for 
the source fertility distribution (Table 8.1). 

(8.19) 
>. = >.1/2 ISq,O + >. -1/2(IS L,s/,sLo)ISq,JS + >.-J.s( lsL 30/,sLo),Sq,30 

Expression (8.19) differs from (8.18) by the absence ofhalfinterval sur
vival adjustments, either (J/2)nSx+(1/2)n [from (8.8)] or nLx+nlnLx [(8.9)], 
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which are not needed when terms in nfx. r are substituted for terms in 
nfx+< 1/2)n. r; and by the earlier time indexes on A corresponding to the younger 
ages to which the fertility terms nfx. r apply. The fractional powers on A are 
handled by substituting" = A 1/2 in (8.19). With the substitution, and after 
rearranging terms and multiplying through by "s , we will have 

"S - 0 - 0.67144,,2 - 0.23072 = O. 

The largest root ofthe expression is found to be "I = 0.97119, and therefore 
for AI we have AI = "f = 0.94322. Had we fitted (8.17) using the interpolated 
fertility estimates of(8.1O) in place of(8.7), we would have: 

A3 - 0.32213A2 - 0.50911A - 0.07376 = 0 

AI = 0.94412 

The estimate error using (8.10) is about four times as large as that of(8.7). 

8.6. THE GENERA TlON LENGTH 

The characteristic equation (8.17) estimates the growth rate ofthe pop
ulation at stability. To find the generation length, we also need the net repro
duction rate (NRR or Ro), representing the number of daughters women 
have who will survive to their same ages, or generational replacement rate. 
The NRR is found by summing the lifetime fertility for one woman just bom 
[(7.8)]: 

(8.21) 

The expression uses nLxllo to estimate the number ofyears lived in the interval, 
and therefore the number of years during which the fertility rate is nfx. r. For 
our example, 
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= 14.79376 X 0.0 + 14.70000 X 0.045676 

+ 14.51057 X 0.015900 = 0.90215 

[The reader may note that the net reproduction rate ~ is a Iittle less than 
the sum of the fertility terms "tPx+(1/2)n that make up the first row of the 
projection matrix (in the example, 0.90728). The matrix projection survives 
infants into the age interval O-n, a younger age than the age of their mothers 
at the birth.] 

Under stability, the annual population growth rate rand net reproduction 
rate ~ are related througb the generation length T as ~ = e,T. Taking 1088 
of both sides and substituting the ~ and r estimates into the expression, we 
find: T = ln(~)/r = In(0.90215)/-O.00390 = 26.4 years. The estimate is 
younger than the 35.9 years found from the roots of(8.17). The latter figure 
is the time between peaks in annual births before the age distribution stabilizes: 
it would be closer to the generation length if more age intervals were used in 
the projection. * 

8.7. THE STABLE POPULA TION EQUIVALENT 

A question that arises in projections is the closeness of the initial pop
ulation age distribution to its stable population equivalent, a stable population 
with the same long-term growth pattern and same eventual size as the initial 
population. To find the stable equivalent, we project from the stable population 
back to the present. The female population in 2475 ~ the 33rd period) is nearly 
stable, with Ism247S ) = 3.838 million, 1sM.~47S = 4.042 million, and 
1~~47S) = 4.229 million. For X = 0.94344, after 33 periods we have X 33 

= 0.15519, representing the ratio ofthe stable population at time 33 to the 

• In continuous analysis, the generation length is the approximate midpoint (Keyfitz, 1977b, pp. 
141-147) between the mean age at fertility in the stationary population (,,) and the mean age 
at fertility in the stable population (Ar)' For our example the estimate is 

x x 

Ar = L (x + in)(>.. -xl" "Lx .1x)1 L (>" -x/o .Lx "Ix) = 26.50 
x x 

T Q:( (" + Ar)/2 = 26.25 
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initial stable population. Dividing "MI980+"k) r>. k = "N~ (1980), we find 
IsN~ (1980) = 24.7 million, IsNfs(198O) = 26.0 million, IsNfo(l98O) = 27.3 mil
lion. The stable equivalent population thus numbers 78.0 million at ages 0-
45, as compared with 77.9 million in the actual population. The age ratios 
of the stable equivalent population to the actual population are 0.99,0.84, 
and 1.24, respectively. These numbers can be interpreted to mean that the 
youngest age group was in nearly a stable pattern at the outset ofthe projection 
period, but that the 15-29 age group is substantially larger and the 30-44 
group is substantially smaller than it would be expected to be at 1980 fertility 
and mortality rates. 

8.8. PROJECTIONS WITH 80TH SEXES 

A complete population projection includes both sexes and aII age groups. 
For males and females beyond the reproductive ages, (8.6) is used to project 
from one period to the next. To include male births we can construct a pro
jection model similar to that for females, by substituting the male population 
and survival terms in Table 8.1 for the equivalent female terms and substituting 
fathers' fertility rates for sons in place of mothers' fertility rates for daughters. 
In practice that is not often done. Separate male and female projections usually 
yield different estimates of the stable growth rate >., because ages at marriage 
and age differences between husbands and wives change from year to year, 
and in each year a different set of couples contributes to births. 

Consistent estimates for males can be produced most easily by using the 
female fertility distributions to project sons as weIl as daughters, since the 
difference in the number of boys and girls born in any given year is small: in 
the United States about 105 boys are born per 100 girls. 

Using the female fertility distribution for sons "Ix, m, Fand indexing other 
terms as pertaining to males (M) or females (F), the male population 0-14 
would be estimated by 

IS~~+~S) = 1 (151..0, Mllo) 

X {lsm~)F[ISfo, m, F + (lsL1S, F/Is1..o, F)ISJiS, m, F] 

+ Islft/J. F[ISJiS, m, F + (ls L 30, F/1sL1s, F),sf30, m, F] 
(8.22) 

Continuing with our earlier example, for 1980 male and female popu
lations (Table 8.1) expression (8.22) yields the male population: 
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IsNo:C:S) = I (l4.74000)[25,073 (0.0 + 0.99366 X 0.048121) 

+ 30,884(0.048121 + 0.98711 X 0.016695) 
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+ 21,949(0.016695 + 0.95740 X 0.0)] = 26,241 

Using (8.11 ) with the substitution of the male terms ofTable 8.1 for the 
female terms, we would have: 

Ism:C:S) = H 14.74000)[26,217(0 + 0.98445 X 0.039235) 

+ 31,124(0.039235 + 0.96900 X 0.028476) 

+ 21,246(0.028476 + 0.92219 X 0.001604) 

+ 16,491(0.001604 + 0.74293 X 0.0)] = 27,678 

The two estimates differ by about 5%, which is substantial. It is explained 
in part by the fact that at the ages of highest fertility (roughly, 22-26 for 
women and 25-29 for men in 1980) women outnumbered men by roughly 
7% and were caught in a marriage squeeze. For most of the 19908, men will 
outnumber women at these ages and the pattern should reverse. Both effects 
are outcomes of the baby boom that peaked about 1960. 

The complete projection matrix for both sexes using births of sons and 
daughters to mothers is shown below. The reader might rewrite the projection 
equations in algebraic form to confirm that the model satisfies (8.6), (8.11), 
and (8.22). 

0.336 0.454 0.118 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 25,073 25,019 
0.9940.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 30,884 24,914 
0.0 0.987 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 21,949 30,486 
0.0 0.0 0.957 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 17,924 21,014 
0.0 0.0 0.0 0.857 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 14,242 15,356 
0.0 0.0 0.0 0.0 0.646 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6,420 9,197 
0.352 0.475 0.123 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 26,217 26,367 
0.0 0.0 0.0 0.0 0.0 0.0 0.984 0.0 0.0 0.0 0.0 0.0 31,124 25,809 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.9690.0 0.0 0.0 0.0 21,247 30,159 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.9220.0 0.0 0.0 16,491 19,594 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.7430.0 0.0 11,426 12,252 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.4200.0 3,548 4,800 

M Nt'9IO) s Nt'995) 

The projection matrix for the two-sex model is simpler than it may appear. 
It is comprised of four smaller matrices arranged as discrete blocks. The left 
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half of the matrix projects the surviving female population (the coefficients 
of rows 2-6) and children 0-14 (daughters in row 1, sons in row 7) for the 
next period. Tbe right half of the matrix projects surviving males (rows 8-
12). Since the female population does not contribute to surviving males at 
ages 15+, the lower left quadrant of the matrix is 0 except for the female 
contribution to male births. Similarly, the upper right quadrant, which would 
project female births and survivors through the male population, is O. Ifbirths 
were attributed to males, or part to each sex, rows 1 and 7 would inc1ude 
additional nonzero terms. 

Tbe matrix can be partitioned into its component blocks by rewriting it 
to be: 

M = [Mu Mn] 
Mll Mn 

(8.23) 

The submatrices are Mn, projecting female survival and births, Mn projecting 
male survival, M11 projecting male births to females, and Mn, projecting 
female births to males (here, none). 

Each ofthe submatrices is of dimension 6 X 6. Like the original matrix, 
they can be further subdivided. We might, for example, break each submatrix 
into urban and rural population components or labor force components, as 
in the multistate life table example in Section 5.3. A matrix projection for 
that example will be introduced in Section 9.3. 

8.9. BACKWARD AND INVERSE PROJECTION 

Besides the forward projections of populations we have outlined, pro
jections can also be used to reconstruct past populations. Like forward pro
jection, projections into the past require an initial population and fertility 
and mortality information, except that fertility and mortality are now used 
to reconstruct the population that has died. 

Unfortunately, just as an infinite range of current populations can be 
constructed that project to the same stable distribution, an infinite range of 
past populations can be constructed that project to the current distribution. 
Errors propagate, producing implausibly large or small numbers and negative 
numbers that contribute to the confusion of possible origin states. 

The ease with which implausible results are generated is illustrated by 
tbe example ofSection 8.3. After projecting the U.S. female population from 
1980 to 1995 using (8.14): MN(198O) = N(l99S), we may invert M to reconstruct 
the 1980 population as M -IN(l99S) = N( 1980). The inverse projection becomes 
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[
0.00000 1.00638 0.00000][25'019] [25'073] 
0.00000 0.00000 1.01306 24,914 = 30,884 
8.50268 -2.87265 -3.91028 30,486 21,951 

Tbe reader may sense that the inverse is less than ideal: the population 
30-44 is back projected from surviving offspring 0-44 who are only partly 
theirs, with negative weights on the contributions of two of the three age 
intervals. Projected back three more periods, to 1935, the model yields the 
curious result IsJli:3S) = -115,000 X 103 • The problem is not simply that 
we have reconstructed the past with wrong fertility and mortality rates, al
though that has contributed: the negative terms in the matrix are a trap that 
can eventually be sprung by the propagation of simple rounding errors. 

In practice, the projection problem is more complex than we have made 
it, as projection matrices that extend beyond the fertile age span (see the 
example ofSection 8.4 ) will have only zeros in their final column and cannot 
be inverted: in essence, if the final age interval does not contribute to survi
vorship at any younger ages it cannot be reconstructed after it is extinct. 

Backward projection is made more tractable by the use of generalized 
inverses, which invert survival probabilities (compare Mit with M21 in the 
source matrix, and MiJ with M32 ) at ages below the final age and reconstruct 
the final interval (here, M3"J) from the stable population as .,_IN}stable) I 
N (stable) fr th . 'pal' .. '\ I . - 1 2 3 d ni-li ,or om e pnnCl mtnnSlC roots 1\; 1- , , , ... , an source 

population terms at the older ages (Greville and Keyfitz, 1974). The use of 
several roots allows some of the instability of the -source distribution to be 
preserved in backward projection, but also introduces negative terms into the 
matrix and limits the duration for which the projections can be constructed 
before anomalous population estimates arise. 

We can do better in reconstructing historical populations where estimates 
of births and deaths are available, since the inverse projection must satisfy 
the demographic balancing equation [( 1.5)], written for back projection as 

N(I-I) = ~ ,(1) - B(I-I, I) + D(I-I, I) 
., 0 .,iV 0 ., 0 ., 0 (8.24) 

For simplicity we omit net migration. Use ofthe balancing equation requires 
that both fertility and mortality be estimated, since the extinct terminal pop
ulation is found as the residual when births and mortality at all younger ages 
are substituted into (8.24). Tbe reader may consult Wrigley and Schofield 
( 1982) and Lee ( 1974a, 1985) for adjustments to the basic projection equations 
that allow for some uncertainty in (8.24), and for techniques that extend 
backward projection to the distant pas!, where uncertainty is greatly magnified. 
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Conditions under which reconstructed past populations may fail to converge 
to present distributions are d.iscussed in Wachter ( 1986). 

8. 10. CHOICE OF ASSUMPTIONS 

The population projections outlined here are component projections, and 
were tirst suggested by Edmund Cannan in 1895. Although they are markedly 
beUer in concept than projections without age, their history has not been one 
of resounding success. In the United States, P. K. Whelpton produced pop
ulation projections in the mid-1930s that closely matched the actual 1940 
U .S. population, but his series and most others produced over the next 30 
years needed substantial adjustment as early as the next census. In the 1930s 
it was not foreseen that the small family sizes of the late 1920s and the depres
sion years would be succeeded by moderately larger and then dramatically 
larger family sizes in the first two decades after the outbreak of World War 
11 in Europe. Later, in 1960 and 1961 the rapid retrenchment that began in 
1962 was not foreseen. Nor, in the years after the War, were the implications 
for population growth of the assault on infectious diseases in the developing 
countries widely anticipated.· 

The critical problem in projections has consistently been fertility. Mor
tality, except as it affects infants and children, can be under- or overstated by 
fairly substantial amounts without greatly distorting projections, since its im
pact is largely at the oldest ages where numbers of people are typically small 
and remaining lifetimes are not long. By contrast, the difference between 
family sizes of two, three, or four surviving children is a difference between 
an essentially constant population, one doubling about each 70 years, and 
one doubling about each 35 years. With hindsight, we know that family sizes 
can move upward or downward across this range, and downward across an 
even wider range, in as little as 15 years. These are not necessarily the temporal 
limits of fertility shifts, but are more than enough to make even well-reasoned 
projections become curiosities in the lifetimes of their creators. t 

• A compact summary of population projections for the United States will be found in Petersen 
and Petersen ( 1986, pp. 715-718). 

t It has not helped to model fertility on economie behavior or historical time series (Ahlburg, 
1983; Butz and Ward, 1977), or to presuppose cyelie behavior, at least for the United States, 
although theory does not completely preclude the latter (Easterlin, 1961, 1973; Smith, 198Ia,b; 
FrauenthaI and Swiek, 1983; Wachter and Lee, (989). Nor have models in whieh populations 
increasetowardasymptotie limits faredwell (Verhulst, 1838, 1845, 1847;PearlandReed, (920) 
despite the essential plausibiIity of assuming that growth cannot remain rapid indefinitely. Ex
perience continues to reduce demographie eonfidence that future U.S. fertility can be modeled 
with any precision. A valuable perspective on the U.S. convergence to small family sizes is 
Westoff( 1978). The reader should also see Lee (1980) and Udry (1983) on decision processes 
and family size. 
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For the United States, additional complications are introduced by im
migration, only part of which is documented in migration statistics and de
cennial censuses. To the extent that the balance ofimmigrants and emigrants 
can be estimated, they can be accommodated in projections by adjustment 
of survival probabilities or by the addition or subtraction of the estimated 
migrant population at the end of each projection period. These methods are 
reviewed in Chapter 9. 

8. 11. OTHER PROJECTION MODELS 

The methods used for population projection generalize to other models. 
Consider the problem of estimating the mean length ofthe birth interval from 
information on its components, pregnancy, postpartum sterility, and exposure 
prior to the start of the next pregnancy. The three states can be interpreted 
as a transition vector, with women "aging" from pregnancy to postpartum 
infecundity to exposure and a subsequent pregnancy. If the time unit is 
months, then the proportion completing pregnancy and moving into post
partum sterility each month will be 1/9 ofthose who are pregnant. Likewise, 
if the mean infecund period is 17 months, then 1/17 of women will leave 
infecundity and become exposed to the risk of another pregnancy each month. 
We will set the probability ofpregnancy at 0.2 per month among women at 
risk, or 20%. With these conventions we have the projection equations: 

8/9 p(l) + 1/5 r(l) = p(I+1) 

1/9 p(l) + 16/17 i(l) = i(I+1) 

1/17 i(l) + 4/5 r(l) = r(l+1) 

(8.25) 

where the proportions who leave each state and those who remain in it sum 
to 1.0 (we have used the codes p = proportion oftime spent in pregnancy, 
i = proportion oftime in postpartum infecundity, r = proportion oftime at 
risk). In matrix form the model becomes 

[
8/9 0 
1/9 16/17 
o 1/17 

M 

1/5] [P(I)] [P(I+1)] o i(l) = i(l+1) 

4/5 r(l) r(1+1) 

(8.26) 
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As before, raising the matrix to the 32nd power we find 

[
0.2891 0.2908 0.2909] 

M 32 = 0.5493 0.5476 0.5492 
0.1615 0.1616 0.1599 

CHAPTER 8 

The entries have not quite stabilized at this point. Ultimately the column 
entries will settle to p = 9/31 = 0.2903 pregnant, i = 17/31 = 0.5484 in 
postpartum amenorrhea, and r = 5/31 = 0.1613 exposed to risk. Births, not 
shown, number 1/9 of pregnancies = 0.03226 per month at stability. They 
might have been included separately from pregnancy or postpartum sterility 
by revising (8.26) to become a 4 X 4 matrix with entries 

[8/9 0 0 I/sr"] [P(HIl] 1/9 0 0 o b(t) b(t+!) 

1/9 0 16/17 o i(l) = i(l+l) 

o 0 1/17 4/5 r(l) r(t+l) 

(8.27) 

M K(I) = K(t+!) 

The matrix could also be written 

r/9 0 0 I/sr"] r(HIl] 1/9 0 0 o b(/) b(t+I) 

0 1 16/17 o i(l) = i(t+l) 

0 0 1/17 4/5 r(l) r(t+l) 

(8.28) 

M K(I) = K(t+l) 

In either matrix form, the birth function b does not change the model result 
at stability, since births are simply 1/9 of pregnancies. 

In Appendix 7 A.l the proportion of time women spend in various ex
posure states was used to estimate the interbirth interval and durations of 
postpartum infecundity and exposure to pregnancy risks in the absence of 
contraception and lactation. The durations can also be found from the pro
jection matrix, by treating the proportions of time in different states as stable 
outcomes. Using Hobcraft and Little (1984) estimates for the Dominican 
Republic, for the proportion of time in various states we have p(l) = p(t+l) 
= dAp) = 0.192, r(l) = r(t+!) = dAr) = 0.277, and merging contraception, 
lactation, and sterility into the infecund category, i(t) = i(t+l) = dx(c, I, i) 
= 0.314. We seek the expected duration ofinfecundity I, the probabilities 1/ 
i that persons leave and (i - 1)/ i that they remain in the infecund subset, the 
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duration of risk r, and the probabilities 1 /r that persons become pregnant 
and (r - 1 )/r that they remain at risk. These terms will be solutions to the 
projection model 

[
8/9 
1/9 
o 

o 
(i - 1 )/i 

I/i 

M 

Itr l[~:~~;l = [~:~~;l 
(r - 1)/r 0.277 0.277 

(8.29) 

K(t) = K(t+1) 

where the duration of pregnancy is taken to be 9 months as before. The 
algebra of the projection matrix is 

(8/9)(0.192) + 0 + (l/r)(O.277) = 0.192 

(1/9)(0.192) + [(1- 1)/i](O.314) + 0 = 0.314 (8.30) 

o + (l/i)(0.314) + [(r - 1)/r](O.277) = 0.277 

The reader can solve (8.30) to confirm that r = 13.0 months and i = 14.7 
months. The projection matrix is therefore 

[
8/9 0.0 

M = 1/9 13.7/14.7 
0.0 1/14.7 

And for the interbirth interval we will have, 

1/13.0 1 
0.0 

12.0/13.0 

IB = r + p + i = 13.0 + 9.0 + 14.7 = 36.7 months 

(8.31) 

The sterile period includes the proportions oftime spent in contraception, 
lactation, and natural sterility, dx( c) = 0.200, dx{l) = 0.067, and dx{i) = 0.047, 
respectively. Using these estimates, the total sterile period can be disaggregated 
into (0.200/0.314)14.7 = 9.4 months spent contracepting, (0.067/0.314)14.7 
= 3.1 months lactating, and (0.047/0.314)14.7 = 2.2 months in natural 
sterility. For persons not contracepting or breastfeeding the interbirth duration 
is thus 

IB = r + p + i = 13.0 + 9.0 + 2.2 

= 24.2 months, in agreement with (7A.4). 
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8. 12. SUMMARY 

Population projection has been a perennial headache for demographers. 
We are expected to be good at it, and the essential methodologies are difficu1t 
to fault, but our insight cannot be said to be outstanding. Nor is that of 
economists in their efforts to link population and economic projections. The 
failures are not necessarily critica1: if we err by a few percent in projecting 
the U .S. population over a decade or two, the target figure will be reached 
near the anticipated date, and projections to the more distant future require 
few immediate actions. Even projections of the retirement age population 25 
or 30 years hence are of marginal current interest: if the past is any guide, the 
amounts invested in the social security fund by the working population will 
have little bearing on the amounts the survivors among them eventually draw. 
I make these points because even demographers tend not to rea1ize the enor
mous impunity with which long-term projection can actua1Iy be approached. 
It is important that assumptions be competent, but not necessary that the 
future conform to them. 

For demographers the more interesting aspects of projections are the 
insights on current population characteristics that derive from stable popu
lation theory. Using stable theory it is possible to construct the age distributions 
toward which populations are converging and to abstract from the current 
fertility and mortality distributions to the numbers and rates of birth and 
death that would eventually occur. The estimates are not a1ways hypothetica1. 
In the developing world, where information is often limited, many populations 
are close enough to their stable forms to alIow the substitution of stable es
timates for missing or suspect data. [A review of these and other techniques 
for developing country data will be found in Leslie and Gage ( 1989).] 

We have not qualified these uses by introducing variance estimates for 
population projections. For those the reader is referred to Sykes (1969), 
Schweder (1971), and Lee (1974b). The essential finding of these works 
is that the statistica1 precision of projections is high, even with serially cor
related error terms (Lee, 1974b). Where projections become seriously out 
of line with actual population changes, the cause is invariably that the re
searcher's assumptions about future fertility, mortality, and migration were 
notbomeout 

The projection matrix itself is a remarkably versatile tool. Besides pop
ulation projection, we have used it to model interbirth intervals (Section 
8.11) and time in the different exposure states in fertility exposure analysis 
(Appendix 7 A.l ). Among other problems that require the solution of aseries 
of simultaneous equations are data interpolation methods, outlined in Chapter 
2 and Appendix 2A.I. The use of matrices in conventional population pro
jections is due largely to Leslie (1945, 194880 1948b). Besides Leslie's work, 
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the reader should see Sykes (1969), Padett (1970), and Hanson (1989) on 
projection matrices, and Lee ( 1975) on spectral decomposition ofthe matrix. 

The chapter 'has touched brieflyon bistorical demography in the context 
ofbackward population projections. The field ofhistorical demography is far 
larger, drawing both on general bistory and on local registries that have some
times allowed individual families to be traced through several generations. 
The classic works in family reconstitution are Henry (1956), Fleury and 
Henry ( 1956), and Gautier and Henry ( 1958). English introductions to bis
torical demography will be found in Hollingsworth ( 1969) and Willigan and 
Lynch ( 1982). The interested reader should also see the collected papers in 
Glass and Eversley (1965), Wrigley (1966), Wrigley and Schofield (1981), 
Cook and Borah (1971, 1974), and Dyke and Morrill (1980). 



CHAPTER 9 

Migration in Population Analysis 
5. The next Observation we shall offer, is, The time wherein the City hath 

been Re-peopled alter a great Plague; which we affirm to be by the second year. 
For in 1627, the Christnings (which are our Standard in this Case) were 8408, 
which in 1624 next preceding the Plague year 1625 (that had swept away above 
54000) were but 8299, and the Christnings 011626 (which were but 6701) 
mounted in one year to the said 8408. 

6. Now the Cause hereof, lor as much as it cannot be a supply lor Pro
creations; Ergo, it must be by new A.fIluxes to London out olthe Countrey. 

7. We might lortifie this Assertion by shewing, that be/ore the Plague-year, 
1603, the Christnings were about 6000, which were in that very year reduced to 
4789, but crept up the next year 1604, to 5458, recovering the;r lormer ord;nary 
proportion in 1605 016504, about which proportion it stood till the year 1610. 

8. I say, it lolloweth, that, let the Mortality be what ;t will, the City repairs 
its loss olInhabitants within two years, which Observation lessens the Objection 
made against the value 01 houses in London, as if they were liable to great 
prejud;ce through the loss olInhab;tants by the Plague. 

-]OHN GRAUNT (1662) 

9. 1. INTRODUCTION 

Migration contributes with fertility and mortality to the demographie bal
ancing equation [expression ( 1.5)] 

l\.T(t+n) = u{t) + B(t, t+n) _ D(t, t+n) + l(t, t+n) _ E(t, t+n) (9 1) 
.. HO .. lVÖ.. 0 .. 0 .. 0 .. 0 • 

where .. No represents total population, .. Bo represents births, .. Do represents 
deaths, and .. 10 and .. Eo are in-migration and out-migration, respectively. 
[The difference .. 10 - .. Ho is net in-migration, introduced as .. Fo in (8.1).] 
The interval width (0, CI) ) is taken to represent the whole oflife. The superscrlpts 
designate that the population size is estimated at t and t + n; and that births, 
deaths, and migrants are estimated for the interval (t, t + n). 

283 
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Besides (9.1 ), which is exact, population changes can be approximated 
linearly, by substituting the midinterval population ",NÖ'+O·Sn ) for ",NÖ') to 
estimate ",NÖt+I.sn) where annual changes in other terms of (9.l) are small. 
W al (2 1) t fi d N (t+I.Sn),.., 2 lH(I+O.Sn) - N(t=-6.sn) 'f th e may so use . 0 n .. 0 - ",H 0 .. 0 ,1 e 
balance of annual changes in births, deaths, and migrants is approximately 
constant from year to year. Changes can also be modeled geometrically, by 
interpreting annual crude birth, death, and migration rates as measures of 
the average intensity of changes during the year. If the rates are constant over 
time, we will have [( 1.6)] 

N,(t+I.Sn) _ N(t+O.sn) [( B(I, t+n) _ D(I,I+n) 
.. O,exp- .. o exp .. o .. 0 

+ F(I. I+n»/ N(t+O.sn)] 
.. 0 .. 0 (9.2) 

where CGRn is the n-year crude growth rate. 
None ofthese expressions will typically estimate population changes with 

precision, since the crude rates and population estimates are offset in time, 
and since the underlying population composition is ignored, but the estimates 
they give will not err greatiy if the projection interval nisshort. 

Applications of (9.1 ) and (9.2) were introduced in simple population 
projections in Section 8.2. The role of migration in population change was 
also considered in the context of multistate life tables in Section 5.3, where 
age- and residence-specific transition probabilities were estimated. In this 
chapter we attempt to bring migration analysis into sharper focus. Section 
9.2 reviews definition and measurement, which are less straightforward than 
in fertility and mortaIity analysis. In Section 9.3 we introduce projection 
matrices with migration, essentially similar in form to the two-sex projection 
matrix ofSection 8.8. Section 9.4 considers the adjustment ofmigration pro
jections for compositional stability. As in two-sex population projections, 
certain ratios-males to females, parents to children-would be expected to 
hold for regional and subregionaI migration projections. In Section 9.5 for
mulas are introduced for controlled projections, in which local area estimates 
are adjusted to sum to independentiy generated estimates at the state or na
tionallevel. Finally, in Section 9.6 we consider problems that arise in small
area population estimates and projections, where adjustments for survival 
and migration require particular care. 

9.2. DEFINITION AND MEASUREMENT 

Fertility and mortality are unambiguous events, but migration is not. 
People may move across national boundaries or across a street, and may 
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remain relatively permanently at a given location or leave again almost im
mediately. Or they may commute between severallocations, any of which 
they may define as their usua1 place of residence. Tbe conventions used to 
identify migrants and nonrnigrants will be relevant to all of the measures of 
migration we introduce. 

Methodologically, where the immediate purpose of migration estimates 
is not population projection, the estimates can be generated from life tables 
showing the proportion of individuals resident in location i at time t who 
leave in the interval (t, t + 1). For migration, the conventional mortality 
probability "qx = "Dx/ H(x) is revised to 

I"E1t, t+1) E H(x)(t) (9.3) 

for out-migrants in (t, t + I) from the resident population at t, H(x)(t). The 
restriction "Ex E H(x) indicates that the numerator is a subset ofthe denom
inator, and may not be a complete count of migrants in the interval. The life 
table might also be constructed retrospectively, to show the proportion of 
those residing in i at time t + 1 who resided elsewhere at t, 

(9.4) 

In this formulation, "Ix represents the survivors at t + 1 of in-migrants in 
(t,t+ 1). 

For life table estimates using total migrants and census or midperiod 
populations, we require formulas analogous to the central population "Px 
estimators, expressions (4.9) and (4.10). Using (4.9), the life table emigration 
probability becomes 

"qx, linear = "E1t, t+1) /H(x)(t) 

(9.5) 

where "Ix and "Ex need not belong to "HJ/+I/2) but may not count the same 
individuals, or individuals included in "Dx • Tbe limiting values apply where 
mortality or migration distributions are not uniform during the year, and 
lead to "qx estimates outside the range (0, 1). 

Mortality may be taken into account in (9.3) and (9.5) by revising the 
numerators to "Dx + "Ex and using multiple decrement or cause-eliminated 
life tables to estimate "qx. mipaIicm, possibly with further disaggregation by initial 
migrant destination, using "Ex, I-+}' We might also disaggregate immigrants 
by last prior residence, but would not normally be interested in formulations 
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of (9.4) with mortality, as the events nIx and nDx are not competing dec
rements. 

The life table presents an incomplete picture of migration behavior, since 
only a single departure or arrival for individual j would be recorded in nEx 

or nIx. In rea1ity, at least some individuals are likely to enter and leave i 
numerous times during (I, t + 1 ), and a life table for first departure or arrival 
will not be the same as a life table based on actuallocation at t and at t + 1. 

A different approach is taken in multistate life tables and population 
projections, where interest is in the proportion of individuals in location i at 
time 1 who are in location j at t + n. The timing of the first departure and 
durations at intermediate destinations are not of concern. 

An elementary model ofthis type was introduced in Section 5.3 for rural
to-urban migration and for transitions between labor force activity and in
activity. The transition probabilities generalize as [( 5.11)]: 

{ 
0 I ,, (t+n),..... ,,(I) 

n x+n, J c;. n x,1 

(I I+n _ (I) (t+n) (I) 
n1x+(I/t)n,J-i - (n"x, 1 - n"x+n,1)/(n"x, 1) 

I " (t+n) < ,,(I) 
n x+n,1 n x,1 

(9.6) 

n1x+(J/2)n, J-1 = 1 - ntx+(I/2)n, J-I 

where n"i~)1 = nNi~)1/nNil) is the proportion ofthe population inj at ages x 
to x + n and time t, and n"i~:')1 is the proportion in j at ages x + n to 
x + 2n and time t + n. The changes in the proportions in i andj across age 
and time establish the transition probabilities for the model, which will be 
net flows nFx. 

If the source data include individual migration histories, the transition 
probabilities can be improved to 

1(1, t+n) - N(I+n) / N(I) 
n x+(I/2)n, 1-1 - n x+n, (I-)j n x, I (9.7) 

where the subscript (i- ) j on nN<j::) identifies persons in j at time 1 + n who 
were in i at time t. Using (9.7), migrant flows both to and from j can be 
estimated. 
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In more complex models the transition matrix may be made non
Markovian: that is, the probability of migration from i to j in the interval 
(t, t + n) may depend on the individual's previous migration history, or on 
his or her duration at i. 

A variety of identification problems may add to the complexity of mi
gration analysis. For every transition model the specific migration probabilities 
will depend on the geographie boundaries of i and j, and on the conventions 
used to distinguish between moves qualifying and not qualifying as migra
tions. * For many purposes, conventional measures oflocation (census tracts, 
county or state lines, national borders) serve weil, although some will vary 
by user (e.g., U.S. regions) or over time (postal and telephone area codes). 

Problems also arise where individuals may claim more than one residence, 
either because they relocate seasonally or for reasons associated with university 
attendance, state or federal taxes, voting, and so forth. U.S. census counts for 
counties with major universities, for example, may show substantially fewer 
young adults than are usually resident, since students may be missed by the 
census, or may be enumerated either at the university, at their parents' hornes, 
or at other residences. The problem of identification is compounded where 
multiple data sources with differing levels of completeness are used. 

In many settings the difficulties of quantifying migration are mitigated 
by the relative stability of patterns over time. In the United States, the states 
that drew the largest numbers of migrants during the 19808, California, Aorida, 
and Texas, also did so in earlier decades. Growth rates in all three states, 
shown in Fig. 9.1, have been relatively constant for more than a century, 
despite sharp compositional shifts between fertility ( 1940-1965) and migration 
( 1965-1990) as driving forces in population change. In most states the next 
decades should see some slowing of population changes, as fertility continues 
to be low and the baby boom generation is passing out of the ages of highest 
migration. t 

• The reader should see Kephart ( 1988) for a valuable perspective on the inßuence of level of 
aggregation on migration patterns. 

t Migration peaks occur near birth and at ages 20-34, and in some populations again at the 
retirement or postretirement ages. Rogers et al. (1978; see also Rogers and Castro, 1982, 1984; 
Rogers, 1988) have suggested the model 

M(x) = DI exp[ -alx] + D2 exp{ -a2(x - 1'2) - exp[ -A2(x - p.2)]} 

+ D3 exp{ -a3(x - 1'3) - exp[ - A3(x - p.3)]} + c 

where x represents age, 1'2 and 1'3 are the two migration peaks after infancy, and cis a constant 
representing the 10west rate of migration observed. Tbe remaining constant terms determine 
the height and spread of each peak. 
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Figure 9.1.Selected state populations, 1790-1990. Source: U.S. Dept. of Commerce (197S, 
Series A-19S, pp. 24-37; Im, T. 26, p. 20). 

9.3. THE MULTISTATE PROJECTION MATRIX 

Projection of populations with migration may follow the simple models 
ofSections 8.2 and 9.1, or may follow cohort component methods in a manner 
analogous to the two-sex projection of Section 8.8. For the one-sex model 
with two regions we partition M into the submatrices [( 8.23)] 

M = [Mn Mn] 
M:Z1 Mn 

where Mn and M:z:z comprise transition probabilities within regions 1 and 2, 
and Mn and M:Z1 are transfer probabilities between the regions. [Tbe reader 
should recall from (8.23) that in the matrix formulation Mn represents tran
sition probabilities to region 1 from region 2, and M21 represents transitions 
to 2 from 1.] 

Reca1ling our earlier example of rural-to-urban migration in Mexico 
(Section 5.3·), we utilized submatrices of dimension 6 X 6 to project pop
ulations in 15-year age intervals. Tbe submatrices can be expanded and further 

• The reader should review Section S.3 for the details of the example, wbich is based on Tabah 
(1968). For a projection with two-way migration between California and the rest ofthe United 
States, see Rogen (1968, p. 14). 
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subdivided. We might, for example, break eacb submatrix into labor force 
and non-labor force components, raising Mu to dimension 12 X 12 and M 
to dimension 24 X 24. For the two-sex model with ruraI-to-urban migration, 
Mu is also of dimension 12 X 12. 

Tbe data ofTables 5.8 and 5.9 allow us to reproduce only quadrant Mn 
of the 1960-to-1975 transition matrix for Mexico. For tbat quadrant, tbe 
terms of the projection matrix and the projected population will be 

0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.00 0.0 0.0 0.0 4089 
0.9530.0 0.0 0.0 0.0 0.00.2120.0 0.0 0.0 0.0 0.0 2208 4805 
0.0 0.9250.0 0.0 0.0 0.00.0 0.2030.0 0.0 0.0 0.0 1358 2499 
0.0 0.0 0.8330.0 0.0 0.00.0 0.0 0.1580.0 0.0 0.0 787 1338 
0.0 0.0 0.0 0.604 0.0 0.00.0 0.0 0.0 0.0940.0 0.0 341 547 
0.0 0.0 0.0 0.0 0.3170.0 0.0 0.0 0.0 0.0 0.0 0.0 96 108 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 4286 
0.0 0.0 0.0 0.0 0.0 0.00.7030.0 0.0 0.0 0.0 0.0 2251 3013 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.6810.0 0.0 0.0 0.0 1310 1533 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.6290.0 0.0 0.0 761 824 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.4940.0 0.0 374 376 
0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.2840.0 105 106 

Mn N~960) N~7$) 

(9.8) 

Tbe projection omits the 1975 female population, projected using quadrant 
Mn, and the 1975 male population ages 0-14, whicb is contributed by the 
urban and rural female populations (quadrant M11 ). Quadrant Mn, repre
senting male contributions to the 1975 female population, would be O. 

For the projection, 1960 population estimates, N ~960), are taken from 
Table 5.8. Tbe elements ofMll are found from Table 5.9. For tbe urban and 
rural nonmigrant populations, survival from ages (x, x + n) to ages (x + n, 
x + 2n) is found using (8.6) and the nLx terms of the table. Tbat is, for 
nSx+(1/2)n we use nLx+nlnLx. As examples, we bave 

IS S7.5, u-+u = IsLIS, ul IS1...o, u = 139,987/146,865 = 0.953 

Note that the nLx terms in Table 5.9 are r - rand u - u migration-survival 
probabilities, displaying the life table populations wbo both survive and remain 
in eacb area (bence, the large discrepancy between the urban and rural sur
vival terms.) 
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Iftwo eensuses were available, for the urban and rural nonmigrant pop
ulations we migbt also have used census survival estimates (Section 8.3). For 
rural nonmigrants, we would have 

S - [ N(t+k) I N(t) 1t1/ k 
tI x+(I/2)tI,"'" - tI nie,' tI x, r (9.9) 

where the power nl k adjusts the survival estimate from the k-year interval 
between censuses to the n-year interval between age groups. lethe eensus at 
I + k also disaggregated the urban population by place of residence at t, (9.9) 
would also estimate tlSx+(I/2)tI,,...u and tlSx+(I/2)1I, _U' 

Table 5.9 is not used for the rural-to-urban migrant population, sinee as 
we have constructed the table the tlLx series for migrants ineludes both new 
migrants and the survivors of migrants at earlier ages. For the projection 
matrix we require only transfer and survival probabilities at the time of mi
gration. Tbe probabilities can be computed from the source of information 
in Tables 5.5 and 5.6, using the geometrie approximation 

(9.10) 

where the terms in tlSX, ""u are estimated as 

tlSX, ,...U = "px, ,...u tltX, ,...u = (tlPX, , tlPX, u) 1/2 tI Ix, ,...u (9.11) 

Using Tables 5.5 and 5.6, the transition probability for the age group 
30-44 will be 

ISS37.S, ""u = [(0.9007 X 0.8408)1/2 

X (0.2137)(0,7584 X 0.7125)1/2(0.1835)]1/2 = 0.1584 

Tbe reader can confirm the matrix estimates at other ages. Note, how
ever, that for ages 60-74, (9.10) and (9.11) yield ISS67.S,,...u = [(0.4000 
X 0.4101)1/2(0.1619)(0.0000 X 0.0000)1/2(0.0279)]1/2 = 0.0 a result that 
is inconsistent with the source data ofTable SA.l. For the final ages we might 
have substituted the linear approximation 

(9.12) 

whieh yields the transition estimate 

ISS67.S, ""u,lIn = ! [(0.4000 X 0.4101 )1/2(0.1619) 

+ (0.0000 X 0.0000)1/2(0.0279)] = 0.0328 
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This estimate could also bave been found from Tables 5.7b and 5.7c, which 
show (9": 46 + 69) transfers between ages 60 and 74 among (131 + 1765) 
survivors at age 60, and no transfers in the interval 75+. Averaging these 
proportions; we have ! [(9 + 46 + 69)/( 131 + 1765) + 0] = 0.0327. 

From (9.8) tbe increase in the male population at ages 15 and above is 
projected to be 58% from 1960 to 1975, disaggregated as a 94% increase in 
the urban population and 22% increase in the rural population. Tbe cbanges 
represent a shift from 50% to 61 % urban over the 15 years of the projection. 

Tbe actual population change and urban shift over the period were greater. 
The 1975 male population ages 15+ was about 7% above the projection, due 
in part to increasing life expectancies over the period and in part to higher 
current estimates of the 1960 population base than were used in (9.8). Tbe 
proportion urban was 63%. Table 9.1 displays the two sets of estimates, sbow
ing differences by both residence and age. 

To complete the projection matrix will require the three other 12 X 12 
submatrices, Mn, Mn, and M1J • Tbe complete matrix will be dimension 
24 X 24, becoming 48 X 48 if labor force status is also distinguisbed. As the 
complexity of the matrix increases, the user will need to carefully review its 
internal consistency (Section 9.4) to assure that age, sex, and activity ratios 
remain plausible across tbe various categories. 

Tbe complete multistate matrix M would be expected to stabilize over 
time. Where the population is incremented only through fertility, a sufficient 
condition for stability is that in those of the component submatrices with 
fertility terms, the nonzero terms may not be concentrated entirely at ages 
that can be indexed as integer multiples of a common base, leaving gaPs at 
some intermediate ages.· Human fertility normally satisfies that condition, 
as it extends over several adjaeent age intervals even at interval widths of 15 
years. Discussions of stability in multistate models will be found in Rogers 
(1968, 1975), Espenshade et aJ. ( 1982), Sivamurthy ( 1982), Mitra ( 1983), 
and Cerone ( 1987). For this example, the stable population is almost wholly 
urban, sinee rural-to-urban migration flows absorb Most ofthe rural population 
increase, and are not offset (in these data) by any urban-to-rural flows. 

9.4. IMPOSED CONSTRAINTS 

Like population projections with separate birth functions for male and 
female infants, migration projections need to preserve certain ratios between 
ages and sexes. Apart from new settlement areas and temporary migrations, 

• Asan example, indexingtheinterval (0, lI)as 1, theageintervals(311, 411) and (511, 611) become 
4 and 6, with the common ba..ce 2. If fertility concentrated solely at those two ages, populations 
would stabilize only cyclically. Except in very small (3 X 3) matrices, human fertility probabilities 
will be nonzero across several contiguous intervals, assuring eventual stabilization ofthe matrix. 
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Local County State - .. -
~p_ro_~_r_tl_o_n_m_lg_r_at_ln_g ________________________________ • 

1.0r 

0.8 

0.8 

10 20 30 40 60 eo 70 80 

Ag. 
* Totallnclud., mlgrant, from abroad. not ,hown ,.parat.1y 

Figute 9.2. U.8. migration rates, Man:h 1980-Man:h 1981. Source: Hausen and BoertIein (1983, 
T. 6, p. 16). 

sex ratios tend to vary relatively little among populations apart from the 
inßuences of differential mortality. Age ratios are more variable, sinee mi
gration peaks both at relatively young working ages, rougbly 20-34, where 
marriages and job changes are expected (the peak is also reßected in the 
migration patterns of their young children), and to some extent at the retire
ment ages, wbere climate strongly inßuences residential preferences. These 
patterns are brought out in Fig. 9.2, which displays proportions migrating 
during a l-year period following the 1980 census.· In more detailed projec
tions, linguistic, religious, and ethnie coneentration or dispersal can also be 
factored into migration models. Distinctions can also be Made between p0-

tential migrant and nonmigrant subsets (movers and stayers) within area 
populations. 

The variety of patterns that occur will sometimes defeat conventional 
component projections, sinee it is unlikely that aggregate transition proba
bilities will be in a stable balanee among relevant groups at any particular 
time. As in the disparity between male and female marriage and fertility 

• The reader may compare F"J8. 9.2 with Table SA.I, wbich displays S-year rura1-to-urban migration 
probabilities Cor Mexico c. 1960. The Mexico data show a much more unüorm pattern across 
ages, as older workers are Iess vested in the Iocal economy than is usuaI in weaIthier areas. 
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patterns noted in Chapter 7, migration patterns may be in continuous ad
justment. As a result, the medium or longer term consequences for population 
projections of utilizing a fixed set of annual or quinquennial migration esti
mates may be untenable, or at least unpersuasive. 

Where an initial projection requires adjustment, the corrections can be 
imposed on the transition probabilities, or by reformulating the projection 
model to generate selected subpopulations as functions of others. The approach 
is an extension of the procedures by which infants are projected as functions 
of the adult population at the reproductive ages. Projection of older children 
as functions of the adult population is similar to projection of infants, since 
it requires only that the parental cohorts be reverse survived to the time of 
the children's births, and that the children then be survived forward for the 
number ofyears required to bring them to their ages at the end ofthe projection 
period. For the multistate projections the children would be assigned the 
migration probabilities oftheir parents, at least to ages 10-14. 

We illustrate the procedure using the projection model in Section 8.3 to 
project the female population 15-29 in location j at time t + 15 as a function 
ofthe female population ages 15-29, 30-44, and 45-59 in location i at time 
t. We have, from (8.11), 

(9.13) 

Theexpression substitutes(lsLx-Is/IsLx)lsNl') = IsNl':::N)for IsNl') in(8.11) 
to back-age the parenting cohorts to t - 15 to generate the interval births 
.,BÖt-lS, t), and substitutes I5LIsllo for IsLol1o to survive the birth cohort to 
ages 15-29 att + 15. The subscript (i-)j on IsN1~+1S) identifies the population 
as the survivors inj ofmigrants from i. [The terms in I5Lx/ISLX+IS partially 
cancei against the terms in IsLx+1s/ISLx in (8.11), accounting forthe slightly 
different appearance of the two expressions.] Using the data of Section 8.3, 
the reader can confirm that for a single region i = j expressions (8.11) and 
(9.13) are equivalent. 

In the multistate model the migration probabilities for the cohort ages 
15-29, I5t22.5,I-jo would be those of the parents only if families largely re
mained intact at those ages and at the parental ages used in the projection. 
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(At ages 5-9 and 10-14 in 5-year interval projections,· parental migration 
probabilities would be expected to apply. For the 15-year age intervals ofthe 
example, different probabilities are more likely.) 

Including migrants to j from other regions, the complete projection by 
(9.13) would find IsNl~~~) = LI IsNI~~~~)j persons ages 15-29 in j at 
t + 15. Besides the differences between this estimate for region j and the 

. al . . _l\T(t+IS) ~ AT(t) ( L / ) convention proJectlon 15" IS, j = LJj ISlYO, j ISt7.S, i-i+)~ IS, (;-)j ISLo, I , 

there may be differences in the total populations IsN~s found by the two 
methods, since (9.13) assigns the parenting cohorts the fertility, survival, and 
migration probabilities of their places of residence during (t, t + 15) and not 
during (t - 15, t), when the children were bom. Ifthere is substantial dis
agreement between the two IsN~~+IS) estimates, and therefore in the survival 
ratios IsN~~+1S) / IsN~t) found by the two methods, the user may want to expand 
the projection matrix to allow migrating and nonmigrating populations to be 
projected separately. 

After childhood and at the retirement ages, where fertility does not enter, 
unintended discrepancies in age and sex composition can be resolved more 
simply than at young ages. The projections may be constructed initially for 
one sex, and at their completion the researcher can use independently esti
mated sex ratios by age to impute numbers for the omitted sex. Formally, to 
introduce males into a one-sex projection for the female population, for region 
j we would set 

nNCJ.)M, j = ~ nNl~)F, (i_)j(.,Bo, M/.,Bo• F)(nLx, M/nLx, F) (9.14) 
I 

where the terms in • .Bo estimate the sex ratio at birth and terms in nLx provide 
the ratio of males to females surviving at ages x to x + n. The expression can 
be simplified by presetting the terms in parentheses, using observed ratios or 
model tables. Where these terms differ by region or over time, the popula-

• The reader can show that for the 5-year projections we would have 

sN~~+:!.J = H,L,lloHsM'l. I sll7.S. I-j[(,Llo/,LI,),/lo + sI,,] 

+ ,~~. , ,122.,. I-J[(,L1S/'~)sI., + ,IN] + ... 

+ ,NW" ,1.7." I-j[(,L.oI,L.,),/40 + .I.,J} 
sNl:ttj = t~L,o/lo){sN~ ,~L,o/,~),I22.'.'''j[,flo + (,L.,/,LIO)sI.,] 

+ ,N~~ ,~L.,/,~)sI27.,. I-j[,fi, + (,L20/,L.,),/20] + ... 
+ ,N~ ,(,L.oI,Lso ),I,2.,. I-j[,/40 + ~L.,/,L.o)sl4S]} 
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tion figures may be aggregated and the various ratios [nN~)M: nN~)F]' 
[ N (I) • N(I) ] [N(I). N(I)] [( N(I) I N(I) ) • ( N(I) I n x, M • n x+n, M , n x, F • n x+n, F , n x, M n x+n, M • n x, F 

nNl~n, F)] checked to assure that the population distributions by age are plau
sible. If the distribution eventually stabilizes, the stable populations that are 
generated for each projection matrix may also indicate whether the model 
probabilities are reasonable or unreasonable. 

9.5. CONTROUED PROJECTIONS 

In the United States, mortality and fertility rates differ by ethnicity, but 
not greatly by state. One- or five-year population projections for the separate 
ethnic groups at the national level should therefore agree closely with projec
tions generated at the state level and aggregated. They do not. At the state 
level, migration usually contributes nonnegligibly to projections, at rates that 
are not reconcilable with those in the competing projections of other states. 

Constructing state population estimates by disaggregating from national 
population figures would assure consistency. With Bureau ofthe Census access 
to internal revenue and social security address files and annual vital statistics 
reports, and with state reports of school enrollments (see Section 9.6) it is 
also possible to estimate migration patterns with some confidence. Not with 
complete confidence: vital statistics and administrative records locate part 
but not all of the U .S. population. * 

To reconcile state or regional level projections (and local projections 
from the state level figures) where the sum of the state series is reasonably 
elose to anational projection, the series may be controlled (rescaled) to the 
national figure. For the separate age, sex, and ethnic groups at the state level 
we set 

(9.15) 

where nNx is the national population estimate andj indexes combinations of 
the subset categories apart from age. The asterisk identifies the controlled 
state or local estimate. 

• In Texas, where net migration in the 19708 and 1980s fluctuated sharply with oil revenues, the 
last 1980 population projections prior to the 1980 census were low by about 1 million persons, 
or 7%, relative to the census enumeration. The last 1990 projections before the 1990 census 
were high by about the same amount. In both cases the Bureau of the Census was aware of the 
problem, but could not resolve it prior to the census. The numbers will be found in V.S. 
Statistical Abstracts for the relevant years. 
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If the initial quality of partieular state or local estimates is high enough 
that further correcting is not warranted, (9.15) can be adjusted by subtracting 
the satisfactory estimates from nNx and from Lj nNx, 1> limiting the correction 
to the remaining areas. (The same procedure would also be followed for in
stitutional and other fixed populations in local area projections; see Sec
tion 9.6.) 

Besides subpopulations not needing adjustment, there may be some Te

quiring more correction than others. Particularly when the discrepaney be
tween nNx and Lj nNx, j is substantial, the researcher should examine the 
uneorrected state or local projections for possible suspect figures, and review 
the model assumptions from whieh they were derived. 

9.6. SMALL-AREA ESTIMATION AND PROJECTION 

Small-area populations introduce complexities io projection and esti
mation that are rarely fouod in larger units. The projections may need to 
distinguish a variety of special populations, sueh as residents of nursing hornes, 
the military, university students, and prisoners, to the extent that they are 
drawn /rom outside the projection area. These placed populations can usually 
be regarded as fixed, and therefore need not be projected as a component of 
the area population (Davis,.1988). Denoting these individuals as .,No,p and 
the residual population as .,No. _p' the balancing equation ( 9.1 ) for small areas 
becomes 

N,(I+n) = N. + N(l+n) 
., 0 ., 0, p ., O,-p 

= N. + N(I) + B(I, t+n) 
.. 0, p ., 0, -p '" 0 (9.16) 

_ D(I, I+n) + l" I+n) _ E(I,l+n) 
.,0 .,0 .,0 

Unfortunately, when its terms must be approximated, (9.16) is only 
sometimes better than simpler linear or geometrie projection [(8.2), (8.3), 
and (9.2)]. The problems in using it derive from the instability of birth, 
death, and migration counts when oumbers of events are small. Disaggregated 
by age, in some intervals small populations may experience no events, and 
even a single event may imply an event rate that is unsustainable. 

In component projections, model birth, survival, and migration rates can 
substitute for small-area rates, but may yield population estimates at some 
ages that revert to their initial values after rounding off fraetions. In eonse
quence, few or no ehanges except the gradual agiog of the population may 
be projected. The assignment of random number operators to the birth and 
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transition probabilities may improve the realism of the projection, but can 
introduce other anomalies, as small children remaining whose parents have 
migrated.· Inspection of the completed projections may suggest other incon
gruities. 

To a greater extent than larger regions, small-area populations are also 
subject to unpredictable changes as employers enter or leave. If the areas are 
relatively near large urban centers, these changes may be more a function of 
events in the central area than of local conditions. When that is the case, 
future area changes may be more appropriately estimated linearly than ex
ponentially, with the central area taken as the projection base. 

Finally, the separation of placed or otherwise fixed populations ",No, p 

may not be straightforward. Census or institutional estimates for these pop
ulations may be incomplete, or may not separate individuals by local or non
local prior residence. For projections, only those who are not local need to 
be counted in ",No, p' Their number can sometimes be estimated from differ
ences between the area and the regional or state age distributions: nonlocal 
university students would appear as an excess in the population ages 18-22, 
military populations will be slightly older and predominantly male, and prison 
populations slightly older again. The populations of nursing homes will be 
largely female and largely over 70. 

The problems of population estimation and projection for local areas 
may be partly mitigated by other available indicator data. These include vital 
statistics for local area births ",Bo and deaths ..,Do since the last census, available 
in the United States from state records; and school enrollment data for children 
by county of residence, compiled as part of the Federal-State Cooperative 
Program for Population Estimates (FSCPE). 

The Bureau of the Census also has access to federal income tax records 
for estimating individual and family migration, and uses these administrative 
records together with births and deaths to estimate intercensal county and 
state population changes, by expression (9.1 ). 

In place of tax records, which are not released for public use, state and 
local populations are widely estimated from changes in housing units or elec
trical hookups, possibly differentiated by type ofbuilding (Smith, 1986). Using 
housing units the population estimate for area j at time t + n would be 

N,(I+rI) = No + N(t}· (K!I+II)/K(I» 
.. O,J '" O,J,P '" o,J,-p J J (9.17) 

where KJ') is the housing stock at the time of the census (year t), KJt+II} is 

• Given the event probability .qx, the event is determined to occur to individual j if a random 
number r drawn from the uniform distribution satislies 0.0 s r s .q" < 1.0. Where the event 
is migration, transfers of partners and children may be assigned in proportion to transfers of 
adults of one sex. 
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an estimate of housing stock at t + n, and .. N~:)J, _pt KJ') is the census ratio 
of population to housing. 

Births and deaths, and automobile registrations, selected tues, electrical 
or telephone hookups, or school enrollments can also be translated into total 
population estimates by ratio co"elation regression, which regresses the change 
in the ratio ofthe local area population .. No, i to the regional or state population 
.. No as a function of earlier changes in the ratios of the selected attributes KI • 

Tbe estimating model has the form 

(N,(t) ! N(I»!( N(I-m) ! n(l-m» 
"" O,J,-p .. 0 .. O,J,-p .. 0 

(9.18) 
= ~ [bi(K~:)"K~I»!(Ktr)!K~,-m»] + e 

I 

where eisa stochastic error term with mean and variance (0, (12), and the 
fitting is to two time points (we have used t - m and t) at which all ofthe 
terms in (9.18) are known. Tbe expression omits any populations .. NO,i, p 

whose numbers are expected to remain fixed for area j; adjustment is not 
usually needed at the aggregate level. After finding the regression coeßicients 
bl , the local population in year t + n is estimated from (9.17) and (9.18) as 

N,(t+lI) = No + ( N(I) N,(I+II)! N,(I» 
.. 0, i .. 0, J, p "" 0, i, -p.. 0 .. 0 

(9.19) 

Expressions (9.18) and (9.19) are genera1izations of simpler projections 
that extrapolate from the ratios oflocal to Iarger area pogulations, disregarding 
the components K. Given (",N~j~~! .. N~,-m» and (",N~~ i, _pt ",N~'», the pop
ulation of j is estimated at t + n using (2.1 ) or (2.2). We have 

... ,.(1+11) _ No u(I+II)[( )( lI.T(I) ! u(I» 
",JVö, i,lin - .. O,i, p + .. HO n + m .. HO,i, -p .. HO 

... ,.(1+11) _ No + N(t+II) 
.. JVÖ,J, exp - .. o,J, p .. 0 

(9.21 ) 
X ( N,(I) _ ! N,(I»l+II/m!( N,(I-m~ ! N,(t-m»"/m 

"" O,J, p.. 0 .. O,J, p.. 0 

However populations are estimated or projected, if a series is complete 
to the state level, or complete for other administrative areas for which inde
pendent estimates exist, the local series may need to be controlled by age and 
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sex to agree with the aggregate total. For the adjustment the number in each 
age and sex category is multiplied by the ratio of the independent estimate 
to the projected sum, again separating placed subpopulations whose numbers 
are essentially fixed. For ages x to x + n, we will have, 

N * (I+n) - N + N(t+n) (N(l+n) - ~ N )/ ~ N(l+n) (922) n x, J - n x, j, p n x, J, -p n x 7 n x, I, p 7 n x, I, -p • 

After completing area estimates or projections, the user may survive the 
initial population from t to t + n using the life table survival probabilities at 
each age [(4.18) and (8.6)], nSx+(I/2)n = nLx+n/nLx. The difference between 
the population found from (9.17), (9.19), or (9.20) and the population pro
jected using the life table will represent the contribution of migration to the 
change from t to t + n. 

For details on these and other techniques for estimation and projection, 
the reader should see Pittenger (1976), Byerly (1987), National Research 
Council (1980), Lee and Goldsmith (1982), Galdi (1985), Felton (1986), 
and Smith (1986, 1987). For the reasons we have outlined, having to do with 
the instability of small-area measures, none of the estimating formulas is 
wholly satisfactory. The researcher may need to reject one or another formula 
for particular areas where estimatedpopulation totals or age distributions are 
implausible. 

9.7. SUMMARY 

The formal analysis of migration has taken two directions in the United 
States. In one direction, analysis focuses toward the practical problems that 
arise in attempting to estimate and project populations; in the other, the 
ßexibility of matrix analysis is applied to multistate population projections 
where population sizes are assumed large enough to provide robust estimates 
of survival and transition probabilities. In the former category are worb by 
Pittenger (1976), Lee and Goldsmith (1982), and the other contributions 
cited immediately above. The latter category includes worb by Rogers 
(1968, 1975, 1984), Rees and Wilson (1977), Land and Rogers (1982), and 
Schoen ( 1988). 

Two problems complicate migration analysis. The first is one of definition. 
Whereas births and deaths are unambiguous events, individuals may change 
residences frequently, moving over short or long distances at each change. 
Some ofthe moves will not be ofinterest to the researcher, but any conventions 
he or she uses to exclude them may not be adopted by other investiga-
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tors. Hence, the same study sampie may yield multiple estimates of mi
gration rates. 

The other problem in migration analysis, shared by two-sex population 
projections, is associated with the difficulty of reconciling differences among 
subgroup transition probabilities, and with the stochastic and nonstochastic 
variability that arises where population sizes are small. 

A variety of methods can be used to circumvent the Most troublesome 
problems. In Bureau of the Census estimates, they are addressed by finding 
local area and county populations using more than one formula, and averaging 
the results. The procedure does not assure correct estimates, but limits the 
number of areas for which errors are extreme. Projection to stability is also 
useful for identifying unsupportable outcomes, as imbalances by age and sex 
outside the limits that are commonly observed. 
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