

Handbook of
Neural
Computation
Editors in Chief

Emile Fiesler and Russell Beale

INSTITUTE OF PHYSICS PUBLISHING
Bristol Philadelphia

and

OXFORD UNIVERSITY PRESS
New York Oxford
1997

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9111 iii
Copyright © 1997 IOP Publishing Ltd

INSTITUTE OF PHYSICS PUBLISHING
Bristol Philadelphia

and

OXFORD UNIVERSITY PRESS
Oxford New York
Athens Auckland Bangkok Bogota
Bombay Buenos Aires Calcutta Cape Town
Dares Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madras Madrid Melbourne
Mexico City Nairobi Paris Singapore
Taipei Tokyo Toronto

and associated companies in

Berlin Ibadan

Copyright @ 1997 by IOP Publishing Ltd and Oxford University Press, Inc.

Published by Institute of Physics Publishing,
Techno House, Redcliffe Way, Bristol BSI 6NX, United Kingdom
(US Editorial Office: The Public Ledger Building, Suite 1035, 150 South Independence Mall West,
Philadelphia, PA 19106, USA)
and Oxford University Press, Inc., 198 Madison Avenue, New York, New York 10016, USA
Oxford is a registered trademark of Oxford University Press
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of IOP Publishing Ltd and Oxford University Press

British Library Cataloguing-in-Publication Data and
Library of Congress Cataloging-in-Publication Data are available

ISBN 0 7503 0312 3

This handbook is a joint publication of Institute of Physics Publishing
and Oxford University Press

PROJECT STAFF

INSTITUTE OF PHYSICS PUBLISHING

Publisher: Robin Rees
Project Editor: Sarah Hood
Production Editor: Neil Scriven
Production Manager: Sharon Toop
Assistant Production Manager: Jenny Troyano
Production Assistant: Sarah Plenty
Electronic Production Manager: Tony COX

OXFORD UNIVERSITY PRESS

Senior Editor: Sean Pidgeon
Project Editor: Matthew Giarratano
Editorial Assistant: Merilee Johnson
Cover Design: Joan Greenfield

Printing (last digit): 9 8 7 6 5 4 3 2 1
Printed in the United Kingdom on acid-free paper

iV Hundbook of Neurul Compurution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Contents

PART A

PART B

PART C

PART D

PART E

PART F

PART G

PART H

Preface
Foreword
How to Use This Handbook

INTRODUCTION
A1 Neural Computation: The Background
A2 Why Neural Networks?

FUNDAMENTAL CONCEPTS OF NEURAL COMPUTATION
B1 The Artificial Neuron
B2 Neural Network Topologies
B3 Neural Network Training
B4
B5 Network Analysis Techniques
B6

Data Input and Output Representations

Neural Networks: A Pattern Recognition Perspective

NEURAL NETWORK MODELS
C1 Supervised Models
C2 Unsupervised Models
C3 Reinforcement Learning

HYBRID APPROACHES
D1 Neuro-fuzzy systems
D2 Neural-Evolutionary Systems

NEURAL NETWORK IMPLEMENTATIONS
E l Neural Network Hardware Implementations

APPLICATIONS OF NEURAL COMPUTATION
F1 Neural Network Applications

NEURAL NETWORKS IN PRACTICE: CASE STUDIES
G1 Perception and Cognition
G2 Engineering
G3 Physical Sciences
G4 Biology and Biochemistry
G5 Medicine
G6 Economics, Finance and Business
G7 Computer Science
G8 Arts and Humanities

THE NEURAL NETWORK RESEARCH COMMUNITY
H1 Future Research in Neural Computation

List of Contributors

Index

vii
ix
xi

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook of Neurul Computution release 9711 V

Copyright © 1997 IOP Publishing Ltd

Preface

The current era of human history has been termed the Information Age. Our new array of information
media still includes those relics of a previous era, printed books and journals, but has been expanded
immeasurably by the addition of digital modes of information storage and transmission. These media
provide a repository for the increasingly distributed and diverse collection of data, theories, models and
ideas that constitutes the universe of human knowledge. It might also be argued that the dissemination
of information has been one of the successes of this era, although it is important to make the distinction
between information volume and effectiveness of distribution. In the academic arena, it seems clear that
the quantity of new research materials makes it increasingly difficult to access what is genuinely relevant
and useful, as the usual collection mechanisms (libraries, journals, conference proceedings) have become
overloaded.

This information explosion has been a particular characteristic of the fieid of neural computing, which
has seen, in the last 10 years, a rapid increase in the number of published papers, together with many new
monographs and textbooks. It is this information overload that the Handbook of Neural Computation aims
to address, by providing a central resource of material that is continually updated and refreshed. It distills
the information and expertise of the whole community into a structured set of articles written by leading
researchers. Such a reference is of little use if it does not evolve in parallel with the field that it claims
to represent; to remain current and useful, therefore, the handbook will be updated by means of regular
supplements, allowing it to mirror the continuing development of the field.

Neural computation is at the center of a new kind of multidisciplinary research that adapts natural
paradigms and applies them to practical problems. Artificial neural networks are useful tools that have
been applied successfully in a broad range of environments (as witnessed by the case studies in Part
G of this handbook), and yet they have an intrinsic complexity that provides a continuing stimulus
to theoretical investigations. These interesting aspects of the field have attracted a diverse research
community. For example, neural networks attract the interest of computer scientists because, as designers
of computing systems, they are interested in the possibilities that the technology holds. Engineers, users of
the technology, are interested to see how effective the approach can be and therefore want to understand the
operational characteristics of networks. Because of their relationship with models of human information
processing, neural networks are investigated by psychologists and others interested in human capabilities.
Mathematicians and physicists find application for their previously developed tools in modeling complex,
dynamic systems, while discovering new challenges that require different techniques. This heterogeneous
mix of backgrounds provides the community with a many-pronged attack on the problems posed by the
field, with a lively debate available on practically any topic; this collusion, sometimes collision, of cultures
has resulted in a spectacularly fast development of the area.

The multidisciplinary character of the field creates some problems for its practitioners, who often have
to become familiar with contributions from a number of different disciplines. The diversity of publications
and worldwide activity makes it very difficult to develop a feel for the whole field. This problem is
partly addressed by conferences and neural network journals, but these present only the leading edge of
research. The Handbook of Neural Computation aims to bridge this gap, collecting material from across
the spectrum of neural network activity and tying it together into a coherent whole. Input from computer
scientists, engineers, biologists, psychologists, mathematicians and physicists (and now also those whose
background is explicitly in neural networks, a relatively recent phenomenon) has been assembled into a
work that forms a central reference repository for the field.

This handbook is not designed to compete with journals or conferences. The latter are well suited to the
dissemination of leading-edge research. The handbook provides, instead, an overview of the field, collating
and filtering the research findings into a less detailed but broader view of the domain. As well as allowing
established practitioners to view the wider context of their work, it is designed to be used by newcomers
to the field, who need access to review-style articles. The opening sections of the handbook introduce the
basic concepts of neural computation, followed by a comprehensive set of technical descriptions of neural

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 V i i
Copyright © 1997 IOP Publishing Ltd

Preface

network models. While it is not possible to describe every variant of every model, we have aimed to
present the major ones in a structured and self-consistent arrangement. Descriptions of hybrid approaches
that couple neural techniques with other methods are followed by details of implementations in hardware.
Applications of neural computation to different domains form the next part, followed by more detailed
individual case studies, collated under common headings and written in such a style as to facilitate the
transfer of applicable techniques between different domains. The handbook finishes with a collection of
essays from leading researchers on future directions for research.

We hope that this handbook will become an invaluable reference tool for all those involved in the field
of neural computation. It should provide a comprehensive, organized view of the field for many years,
supplemented on a regular basis to allow it to remain genuinely up to date. The electronic version of the
handbook, comprising both CD-ROM and Internet implementations, will facilitate distributed access to the
content and efficient retrieval of information. The handbook should provide a coherent overview of the
field, helping to ensure that we are all aware of important developments and thinking in other disciplines
that impact our own research activities.

Russell Beale and Emile Fiesler, June 1996

viii Handbook ojNeuruj Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

Foreword

James A Anderson

Neural networks are models for computation that take their inspiration from the way the brain is supposed
to be constructed and that often try to solve the problems that the brain seems to try to solve. Biological
neural networks in mammals are built from neurons (nerve cells) that are themselves remarkably complex
biological units. Huge numbers of neurons, connected together and cooperating in poorly understood ways,
give rise to the complex behavior of organisms. Artificial neural networks, variants of which are discussed
at length in this volume, are smaller, simpler, and more understandable than the biological ones, but are
still able to do some remarkably interesting things. Some of the operations that artificial networks are good
at-pattern recognition, concept formation, association, generalization, some kinds of inference-seem to
be similar to things that brains do well. It is fair to say that artificial neural networks behave a lot more
like humans than digital computers do.

There are two related but distinct goals that have driven neural network research since its beginnings:

(i) First, we want to construct and analyze artificial neural networks because that may allow us to begin to
understand how the biological neural networks in our brains work. This is the domain of neuroscience,
cognitive science, psychology, and perhaps philosophy.

(ii) Second, we want to construct and analyze artificial neural networks because that will allow us to
build more intelligent machines. This is the domain of engineering and computer science.

These two goals-understanding the brain and making smart devices-are mixed together in varying
proportions throughout this collection though the bias here is toward the careful analysis and application
of artificial networks. Although there is a degree of creative tension between these two goals, there is also
synergy.

The modern history of artificial neural networks might be said to begin with an often reprinted 1943
paper by Warren McCulloch and Walter Pitts, ‘A logical calculus of the ideas immanent in nervous activity’.
McCulloch and Pitts were making models for brain function, that is, what does the brain compute and how
does it do it? However, only two years after the publication of their paper, in 1945, John von Neumann
used their model for neuron behavior and neural computation in an influential discussion of the proper
design to be used for future generations of digital computers.

The creative tension arises from the following observation. Consider an engineer who wants to use
biology as inspiration for an intelligent adaptive device. Why should engineers be bound by biological
solutions? If you are stuck with slow and unreliable biological hardware, perhaps you are also forced to
use intrinsically undesirable algorithms.

Ample evidence suggests that our lately evolved species-specific behaviors like language are simply
not very well constructed. After only a few tens of thousands of generations of talking ancestors, human
language is still no more than an indispensable kludge, grounded in and limited by the circuitry that nature
had to work with in the primate brain. Maybe after several million more years of evolution our descendants
will finally get it right. Maybe there are better ways to perform the operations of intelligence. Why stick
with the second rate?

The synergy between biological neural networks and artificial neural networks arises in several ways.
First, precise analysis of simple, general neural networks is intrinsically interesting and can have

unexpected benefits. The McCulloch-Pitts paper developed a primitive model of the brain, but a very
good model for many kinds of computation. One of its side effects was to originate the field of finite state
automata.

Second, to make intelligent systems usable by humans perhaps we must make artificial systems that
are conceptually, though not physically, designed like we are. We would have difficulty communicating
with a truly different kind of intelligence. The current emphasis on user-friendly computer interfaces is

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook vf Nrurul Computurion release 97/1 i X

Copyright © 1997 IOP Publishing Ltd

Foreword

an example. Large amounts of computer power are spent to provide a translator between a real logic
processor and our far less logical selves. For us to acknowledge a system as intelligent perhaps it has to
be just like us. As Xenophanes commented 2500 years ago, ‘horses would draw the forms of gods like
horses, and cattle like cattle, and they would make the gods’ bodies the same shape as their own’.

Third, neural networks provide a valuable set of examples of ways that a massively parallel computer
could be organized. Current digital computers will soon run up against limitations imposed by the physics
of electronic circuitry and the speed of light. One way to keep increasing computer speed is to use multiple
CPUs; if one computer computes fast, then two computers should compute twice as fast. Unfortunately,
coordinating many CPUs to work fast and effectively on a single problem has proven to be extremely
difficult. Neurons have time constants in the millisecond range; present-day silicon devices have time
constants in the nanosecond range. Yet somehow the brain has been able to build exceedingly powerful
computing systems by summing the abilities of huge numbers of biological neurons, even though each
neuron is computing several orders of magnitude more slowly than an electronic device constructed from
silicon. The best known example of this design is the mammalian cerebral cortex, where neurons are
arranged in parallel arrays in a highly modular structure. Most neural networks described in this collection
are abstractions of the architecture of the mammalian cerebral cortex. Knowing, in detail, how this parallel
architecture works would be of considerable practical value.

However, the study of human cognitive abilities suggests a price may be paid for using it. The
resulting systems, both biological and artificial, may be forced to become very special-purpose and will
almost surely lack the universality and flexibility that we are accustomed to in digital computers. The things
that make neural networks so interesting as models for human behavior, for example, good generalization,
easy formation of associations, and the ability to work with inadequate or degraded data, may appear in
less benign form in artificial neural networks as loss of detail and precision, inexplicable prejudice, and
erroneous and unmotivated conclusions. Making effective use of artificial neural networks may require a
different kind of computing than we are used to, one that solves different problems in different ways but
one with great power in its own domain.

All these fascinating, important and very practical issues are discussed in detail in the pages to follow.
It is hard to predict what form computers will take in a century. There is a good chance, however, that
they will incorporate in some form many of the ideas presented here.

X Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

How to Use This Handbook

The Handbook of Neural Computation is the first in a series of three updatable reference works known
collectively as the Computational Intelligence Library. (The other two volumes are the Handbook of
Evolutionary Computation and the Handbook of Fuzzy Computation.) This handbook has been designed
to provide valuable information to a diverse readership. Through regular supplements, the handbook will
remain fully up to date and will develop and evolve along with the research field that it represents.

WHERE TO LOOK FOR INFORMATION

An informal categorization of readers and their possible information requirements is given below, together
with pointers to appropriate sections of the handbook.

The Research Scientist

This reader has a very good general knowledge of neural computation. She may want to

e

e

develop new neural network models or improve existing ones (Part C: Neural Network Models)
develop new applications of neural networks (Part F: Applications of Neural Computation; Part G:
Neural Networks in Practice: Case Studies)
improve the underlying theory and/or heuristic principles of neural computation (Part B: Fundamental
Concepts of Neural Computation; Part H: The Neural Network Research Community)

0

The Applications Specialist

This reader is working in a technical environment (such as engineering). He perhaps

0

e

e

has a problem that may be amenable to a neural network solution (Part F: Applications of Neural
Computation; Part C: Neural Network Models)
wants to compare the cost-effectiveness of the neural network solution with that of other possible
solutions (Part F: Applications of Neural Computation)
is interested in real systems experience as conveyed by case studies (Part G: Neural Networks in
Practice: Case Studies)

The Practitioner

This reader is working in a professional discipline that is not closely related to computer science, such as
medicine or finance. She may have heard of the potential of neural networks for solving problems in her
professional field, but might have little or no knowledge of the principles of neural computation or of how
to apply it in practice. She may want to

e find a quick way into the subject (Part A: Introduction; Part B: Fundamental Concepts of Neural
Computation)
look at real case studies to see what neural networks have already achieved in her field of interest
(Part G: Neural Networks in Practice: Case Studies; Part F: Applications of Neural Computation)
find a relatively easy and quick route to implementation of a neural network solution (Part G: Neural
Networks in Practice: Case Studies; Part F: Applications of Neural Computation; Part C: Neural
Network Models)

e

e

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compululinn release 9711 Xi

Copyright © 1997 IOP Publishing Ltd

How to Use This Handbook

The Student (or Teacher)

This reader may be
0

0

0

looking for an easy way into the subject (Part A: Introduction)
interested in getting a firm grasp of the fundamentals (Part B: Fundamental Concepts of Neural
Computation)
interested in practical examples for projects (Part G: Neural Networks in Practice: Case Studies)

CROSS-REFERENCES

Most of the articles in the handbook contain cross-references to related articles. A section number in the
margin indicates that further information on the concept under discussion may be found in that section of
the handbook. The notation in the following example indicates that further information on the multilayer
perceptron and the radial basis function network may be found in sections C1.2 and C1.6.2, respectively.

CI 2 Several neural network models have been proposed for applications of this type. The multilayer
c1.6.2 perceptron and the radial basis function network were considered in this case.

In the electronic edition of the handbook, these marginal section numbers become hypertext links
to the section in question. (Full details of the functionality of the electronic edition are provided in the
application itself.)

NUMBERING OF EQUATIONS, FIGURES, PAGES, AND TABLES

To facilitate incorporation of the regular supplements to the handbook, which will include new material
and updates to existing articles, a unique system of numbering of equations, figures, pages and tables has
been employed. Each section in the handbook starts at page 1 with the section code preceding the page
number. For example, section F1.8 starts on page F1.8:l and continues through page F1.8:6, and then
section F1.9 follows on page F1.9:l. Equations, figures, and tables are numbered sequentially throughout
each section with the section code preceding the number of the equation, figure, and table. For example,
the third equation in section B3.2 is referred to as equation (B3.2.3) or simply (B3.2.3). The third figure
or table in the same section would be referred to as figure B3.2.3 or table B3.2.3.

HANDBOOK SUPPLEMENTS

The Handbook of Neural Computation will be updated on a regular basis by means of supplements
containing new contributions and revisions to existing articles. To receive these supplements it is essential
that you complete and return the registration card at the front of the loose-leaf binder and return it to
the address indicated on the card. (Purchasers of the electronic edition will receive separate registration
information.) If you have not already completed the registration card, please do so now. After you
have registered, you will receive new supplements as they are published. The first two supplements are
free; thereafter, you will be sent subscription renewal notices. If you wish to keep your copy of the
handbook fully up to date, it is essential that you renew your subscription promptly.

FURTHER INFORMATION

For the latest information on the Handbook of Neural Computation, please visit our website at
http://www.oup-usa,org/acadref/hnc.html, or you may contact the editors in chief or the publisher at the
contact addresses given below.
Dr Emile Fiesler Dr Russell Beale Mr Sean Pidgeon
IDIAP School of Computer Science Senior Editor
C.P. 592 University of Birmingham, Scholarly and Professional Reference
Martigny CH-1920 Edgbaston Oxford University Press
Switzerland Birmingham B15 2TT 198 Madison Avenue
e-mail: efiesler @ idiap.ch United Kingdom

e-mail: r.beale @ cs.bham.ac.uk
New York, NY 10016, USA
e-mail: sdp @ oup-usa.org

Xii Hundbook of’Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

http://www.oup-usa.org/

IMPORTANT

Please remember that no part of this handbook may be reproduced
without the prior permission of Institute of Physics Publishing and

Oxford University Press

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computorion release 9711
Copyright © 1997 IOP Publishing Ltd

LIST OF CONTRIBUTORS

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Igor Aleksander (C1.5)
Professor of Neural System Engineering,
Imperial College of Science, Technology and Medicine,
London,
United Kingdom
e-mail: i.aleksander@ic.ac.uk

Nigel M Allinson (G1.l)
Professor of Electronic System Engineering,
University of Manchester Institute of Science and

Technology,
United Kingdom
e-mail: allinson@umist.ac.uk

Luis B Almeida (C1.2)
Professor of Signal Processing and Neural Networks,
Instituto Superior Tecnico,
Technical University of Lisbon,
Portugal
e-mail: lba@inesc.pt

Shun-ichi Amari (H1.l)
Director of the Brain Information Processing Group,
RIKEN (Institute of Physical and Chemical Research),
Saitama,
Japan
e-mail: amari@zoo.riken.go.jp

James A Anderson (Foreword, H1.4)
Professor of Cognitive and Linguistic Sciences,
Brown University,
Providence,
Rhode Island,
USA
e-mail: james-anderson@brown.edu

Nirwan Ansari (G2.3)
Associate Professor of Electrical and Computer

New Jersey Institute of Technology,
Newark,
USA
e-mail: ang@ hertz.njit.edu

Michael A Arbib (A1.2, B1)

Engineering,

Professor of Computer Science and Neurobiology,
University of Southern California,
Los Angeles,
USA
e-mail: arbib@po~lux.usc.edu

Patrick Argos (G4.4)
Professor and Senior Research Group Leader in

European Molecular Biology Laboratory,
Heidelberg,
Germany
e-mail: argos@mailserver.embl-heidelberg.de

Biocomputing,

William W Armstrong (C1.8, G2.1, G5.1)
Professor of Computing Science,
University of Alberta;
and President of Dendronic Decisions Limited,
Edmonton,
Alberta,
Canada
e-mail: arms@cs.ualberta.ca

James Austin (F1.4, G1.7)
British Aerospace Senior Lecturer in Computer Science,
and Director of the Advanced Compu fer Architecture

University of York,
United Kingdom
e-mail: austin@minster.york.ac.uk

Group,

Timothy S Axelrod (E 1.1)
Senior Fellow,
Mount Stromlo Observatory,
Canberra,
Australia
e-mail: tsa@mso.anu.edu.au

Magali E Azema-Barac (G6.3)
Quantitative Researcher,
U S West Inc,
Englewood,
Colorado,
USA
e-mail: mazemab@uswest.com

George Y Baaklini ((32.6)
Nondestructive Evaluation Group Leader,
Structural Integrity Branch,
NASA Lewis Research Center,
Cleveland,
Ohio,
USA
e-mail: baaklini#y#-george@lims-a1.lerc.nasa.gov

Martin B&er (G3.2)
Research Assistant,
Institutfiir Theoretische Physik,
Universitat Hamburg,
Germany
e-mail: baeker@x4u2,desy.de

Etienne Barnard (G1.5)
Associate Professor of Computer Science and Electrical

Oregon Graduate Institute of Science and Technology,
Beaverton,
USA
e-mail: barnard@cse.ogi.edu

Engineering,

@ 1997 IOP Publishing Lid and Oxford University Press Hundbook of Neurui Computurion release 9111 LOC: 1
Copyright © 1997 IOP Publishing Ltd

List of Contributors

T K Barrett (G3.1)
Senior Scientist,
ThermoTrex Corporation,
San Diego,
California,
USA
e-mail: tbanett@crash.cts.com

Andrea Basso (F1.5)
Senior Researcher,
Ecole Politechnique FPdCreli de Lausanne (EPFL),
Switzerland
e-mail: basso@tcom.epfl.ch

Russell Beale (Preface, B5.1)
Lecturer in Computer Science,
University of Birmingham,
United Kingdom
e-mail: r,beak@cs.bham.ac.uk

Valeriu Beiu (E1.4)
Senior Lecturer in Computer Science,
Bucharest Polytechnic University,
Romania;
and Postdoctoral Fellow,
Los Alamos National Laboratory,
New Mexico,
USA
e-mail: beiu@mth.kcl.ac.uk

Laszlo Berke (G2.6)
Senior Staff Scientist,
NASA Lewis Research Center,
Cleveland,
Ohio,
USA
e-mail: berke#m#-IaszloBlims-a1 .lerc.nasa.gov

Christopher M Bishop (B6)
Professor of Neural Computing,
Neural Computing Research Group,
Aston University,
Birmingham,
United Kingdom
e-mail: c.m.bishop@aston.ac.uk

F Blayo (G6.1)
Consultant;
and Director of PREFIGURE,
Lyon,
France;
and Lecturer in Neural Networks,
Swiss Federal Institute of Technology,
Lausanne,
Switzerland
e-mail: fblayo@babel.asi.fr

David Bounds (G6.2)
Professor of Computer Science and Applied Mathematics,
Aston University;
and Recognition Systems Ltd,
Birmingham,
United Kingdom
e-mail: boundsd@aston.ac.uk

P Stuart Bowling (G2.7)
Technical Staff Member,
Los Alamos National Laboratory,
New Mexico,
USA
e-mail: psb@lanl.gov

Charles M Bowden (G3.3)
Senior Research Scientist,
US Army Missile Command,
Redstone Arsenal,
Alabama,
USA;
and Adjunct Professor of Physics and Optical

Science,
University of Ahbama,
Huntsville,
USA
e-mail: fybt0IaOprodigy.com

Thomas M Breuel (G 1.3)
IBM Almaden Research Center,
San Jose,
California,
USA
e-mail: tmb@almaden.ibm.com

Stanley K Brown (G2.7)
Technical Staff Member,
Los Alamos National Laboratory,
New Mexico,
USA
e-mail: skbrown@lanl.gov

Masud Cader (C1.4)
CSIS,
Department of Computer Science,
Washington, DC,
USA
e-mail: mcader@worldbank.org

Gail A Carpenter (C2.2.1)

H

Professor of Cognitive and Neural Systems;
and Professor of Mathematics,
Boston University,
Massachusetts,
USA
e-mail: gail@cns.bu.edu

John Caulfield (H1.2)
University Eminent Scholar,
Alabama A&M University,
Normal,
USA
e-mail: caulfield@caos.aamu.edu

Krzysztof J Cios (C1.7, D1, G2.6, G2.12)
Professor of Electrical Engineering and Computer Science,
University of Toledo,
Ohio,
USA
e-mail: fac1765@uoftOl .utoledo.edu

LOC:2 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Ron Cole (G1.5)
Director of the Center for Spoken Language

and Professor of Computer Science and Engineering,
Oregon Graduate Institute of Science and Technology,
Beaverton,
USA
e-mail: cole@cse.ogi.edu

Understanding;

Shawn P Day (F1.8)
Senior Scientist,
Synaptics Inc,
San Jose,
California
USA
e-mail: shawn@synaptics.com

Massimo de Francesco (B2.9)
University of Geneva
Switzerland
e-mail: massimo@cui.unige.ch

Thierry Denaeux (F1.2)
Enseignan t-Chercheur en Ginie Informatique,
Universiti de Technologie de Compiigne,
France
e-mail: tdenceux@hds.univ-compiegne.fr

Alan J Dix (G7.1)
Reader in Software Technology,
University of Huddersfield,
United Kingdom
e-mail: alan@zeus.hud.ac.uk

Mark Fanty (G1.5)
Assistant Professor of Computer Science,
Oregon Graduate Institute of Science and Technology,
Beaverton,
USA
e-mail: fanty@cse.ogi.edu

Emile Fiesler (Preface, B2.1-B2.8, C1.7, E1.2)
Research Director,
Institut Dalb Molle d’lntelligsnce Artificielle Perceptive

(IDIAP),
Martigny,
Switzerland
e-mail: efiesler@idiap.ch

Janet E Finlay (G7.1)
Senior Lecturer in Information Systems,
University of Huddersfield,
United Kingdom
e-mail: j.e.finlay@hud.ac.uk

Dmitrij Frishman (G4.4)
Postdoctoral Fellow,
European Molecular Biology Laboratory,
Heidelberg,
Germany
e-mail: frishmanQmailserver.emb1-heidelberg.de

Bernd Fritzke (C2.4)
Postdoctoral Researcher in Systems Biophysics,
Institute for Neural Computation,
Ruhr-Universitat Bochum
Germany
e-mail: fritzke@neuroinformatik.ruhr-uni-bochum.de

Hiroshi Fujita ((35.2)
Professor of Computer Engineering,
Gifu University,
Japan
e-mail: fujita@fjt.info.gifu-u.ac.jp

John Fulcher (F1.6, G1.2, (38.2)
Senior Lecturer in Computer Science,
University of Wollongong,
New South Wales,
Australia
e-mail: john@cs.uow.edu.au

George M Georgiou (C1.l)
Associate Professor of Computer Science,
California State Universify.
San Bernadino,
USA
e-mail: georgiou@.csci.csusb.edu

Richard M Golden (G5.4)
Assistant Professor of Psychology,
University of Texas at Dallas,
Richardson,
T a m ,
USA
e-mail: golden@utdallas.edu

Jim Graham (G4.3)
Senior Lecturer in Medical Biophysics,
University of Manchester,
United Kingdom
e-mail: jim.graham@man.ac.uk

Stephen Grossberg (C2.2.1, C2.2.3)
Chairman and Wang Professor of Cognitive and

Director of Center for Adaptive Systems;
and Professor of Mathematics, Psychology,

Boston University,
Massachusetts,
USA
e-mail: steve@cns.bu.edu

Gary Grudnitski ((36.4)

Neural Systems;

and Biomedical Engineering,

Professor of Accountancy,
San Diego State University,
California
USA
e-mail: gary.grudnitski@sdsu.edu

Mohamad H Hassoun (C1.3)
Professor of Electrical and Computer Engineering,
Wayne State University,
Detroit,
Michigan,
USA
e-mail: hassoun@brain.eng.wayne.edu

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 97t1 LoC:3

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Atsushi Hiramatsu (G2.2)
Senior Research Engineer,
N7T Network Service Systems Laboratories,
Tokyo,
Japan
e-mail: hiramatsu@csl.ntt.jp

Paul G Horan (E1.5)
Senior Research Scientist,
Hitachi Dublin Laboratory,
Ireland
e-mail: Paul .horan@hdl.ie

Peggy Israel Doerschuk (C2.2.2)
Assistant Professor of Computer Science,
Lamar University,
Beaumont,
Texas,
USA
e-mail: doerschupi@hal.lamar.edu

George W Irwin (G2.9)
Professor of Control Engineering,
The Queen's University of Belfast,
United Kingdom
e-mail: g.invin@ee.qub.ac.uk

Marwan A Jabri (G5.3)
Professor of Adaptive Systems;
and Director of the Systems Engineering and Design

University of Sydney,
New South Wales,
Australia
e-mail: manvan@sedal.usyd.edu.au

Automation Laboratory,

Geoffrey B Jackson (G2.11)
Design Engineer,
Information Storage Devices,
San Jose,
California,
USA
e-mail: gjackson@isd.com

Thomas 0 Jackson (B4)
Research Manager,
High Integrity System Engineering Group,
University of York,
United Kingdom
e-mail: tom@minster.york.ac.uk

John L Johnson ((31.6)
Research Physicist,
US Army Missile Command,
Redstone Arsenal,
Alabama,
USA
e-mail: jjohn@ssdd.redstone.army.mil

Roger D Jones (G2.7)
Director of Basic Technologies,
Center for Adaptive Systems Applications,
Los Alamos,
New Mexico,
USA
e-mail: rdj@lacasa.com

Christian Jutten (C1.6)

S

Professor of Electrical Engineering,
University Joseph Fourier;
and Director of the fmage Processing and Pattern

National Polytechnic Institute of Grenoble (INPG),
France
e-mail: chris@tirf.inpg.fr

Sathiya Keerthi (C3)

Recognition Laboratory (LTIRF),

Associate Professor of Computer Science and Automation,
Indian Institute of Science,
Bangalore,
India
e-mail: ssk@csa.iisc.emet.in

Wolfgang Knecht (G2.10)
Doctor of Technical Sciences,
Research and Development Department,
Phonak AG,
Staefa,
Switzerland
e-mail: phonak@dial-switchxh

Aleksandar Kostov (G5.1)
Research Assistant Professor,
Faculty of Rehabilitation Medicine,
University of Alberta,
Edmonton,
Canada
e-mail: aleks.kostov@ualberta.ca

Cris Koutsougeras (C2.3)
Associate Professor of Computer Science,
Tulane University,
New Orleans,
Louisiana,
USA
e-mail: ck@cs.tulane.edu

Govindaraj Kuntimad (GI .6)
Engineering Specialist,
Rockwell International,
Huntsvilie,
Alabama,
USA
e-mail: gkuntima@rdyne.rockwell.com

Barry Lennox (G2.8)
Research Associate in Chemical Engineering,
University of Newcastle-upon-Tyne,
United Kingdom
e-mail: bany.lennox@ncl.ac.uk

Gordon Lightbody (G2.9)
Lecturer in Control Engineering,
The Queen's University of Belfast,
United Kingdom
e-mail: g.lightbody@ee.qub.ac.uk

h C : 4 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Alexander Linden (B5.2)
Staf Scientist,
General Electric Corporate Research and Development

Center,
Niskayuna,
New York
USA
e-mail: alexander.linden@crd.ge.com

Stephen P Luttrell (B5.3)
Senior Principal Research Scientist in Pattem and

Information Processing,
Defence Research Agency,
Worcestershire,
United Kingdom
e-mail: luttrell@signal.dra.hmg.gb

Gerhard Mack ((33.2)
Professor of Physics,
University of Hamburg,
Germany
e-mail: mack@x4u2.desy.de

Robert A J Matthews (G8.1)
Visiting Research Fellow,
Aston University,
Birmingham,
United Kingdom
e-mail: 100265.3005@compuserve.com

William C Mead ((32.7)
President,
Adaptive Network Solutions Inc,
Los Alamos,
New Mexico,
USA
e-mail: wcm9ansr.com

M Mehmet Ali ((32.4)
Associate Professor of Electrical and Computer

Concordia University,
Montreal,
Quebec,
Canndo
e-mail: mustafa@ece.concordia.ca

Engineering,

Thomas V N Merriam (G8.1)
Independent Scholar,
Basingstoke,
United Kingdom

Perry D Moerland (E1.2)
Researcher,
Institut Dalle Molle d’lnrelIigence Artijkielle Perceptive

(IDIA P),
Martigny,
Switzerland
e-mail: peny.moerland@idiap.ch

Gary A Montague (G2.8)
Reader in Process Control,
University of Newcastle-upon-Tyne,
United Kingdom
e-mail: gary.montague@ncl.ac.uk

Helen B Morton (C1.5)
Lecturer in Psychology,
Brunel University,
Middlesex,
United Kingdom
e-mail: helen.morton@brunel.ac.uk

Gary Lawrence Murphy (F1.l)
Director of Communications Research,
TeleDynamics Telepresence and Control Systems,
Sauble Beach,
Ontario,
Canada
e-mail: garym@mayasos.on.ca

Alan F Murray (G2.11)
Professor of Neural Electronics,
University of Edinburgh,
United Kingdom
e-mail: a.fm”y@ee.ed.ac.uk

Robert A Mustard (G5.6)
Assistant Professor,
Department of Surgery,
University of Toronto,
Ontario,
Canada

Huu Tri Nguyen (G2.4)
Systems Engineer,
CAE Electronics Ltd,
Montreal,
Quebec,
Canada

Craig Niederberger (G5.4)
Assistant Professor of Urology.
Obstetrics-Gynecology and Genetics;
Chief of the Division of Andrology;
and Director of Urologic Research,
University of Illinois at Chicago,
USA
e-mail: craign@uic.edu

James L Noyes (B3)
Professor of Computer Science,
Wittenberg University,
Springfield,
Ohio,
USA
e-mail: noyes@wittenberg.edu

Witoid Pedrycz (Dl)
Professor of Computer Engineering and Computer Science,
University of Manitoba,
Winnipeg,
Canada
e-mail: pedrycz@ee.umanitoba.ca

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 Loc:5

Copyright © 1997 IOP Publishing Ltd

List of Contributors

LoC:6

Shawn D Pethel (G3.3)
Electronics Engineer,
US Army Missile Command,
Redstone Arsenal,
Alabama,
USA
e-mail: sdpethel@ssdd.redstone.army,mil

Tom Pike (G5.6)
Software Engineer,
University of Toronto,
Ontario,
Canada

Riccardo Poli (G5.5)
Lecturer in Artificial Intelligence,
University of Birmingham,
United Kingdom
e-mail: r.poli@cs.bham.ac.uk

V William Port0 (D2)
Senior Staff Scientist,
Natural Selection Inc.
La Jolla,
California,
USA
e-mail: bporto@natural-selection.com

Susan E Purse11 (G5.4)
Resident,
Department of Urology,
University of Illinois at Chicago,
USA

Heggere S Ranganath (G1.6)
Associate Professor of Computer Science,
University of Alabama,
Huntsville,
USA
e-mail: ranganat@cs.uah.edu

Ravindran (C3)
Research Scholar,
Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore,
India
e-mail: ravi@bheeshma.csa.iisc.ernet.in

N Refenes (G6.3)
Associate Professor;
and Director of the Neuroforecasting Unit,
London Business School,
United Kingdom
e-mail: pnr@lbs.co.uk

Duncan Ross (G6.2)
Recognition Systems Ltd,
Stockport,
United Kingdom

Burkhard Rost (G4.1)
Physicist,
European Molecular Biology Laboratory,
Heidelberg,
Germany
e-mail: rost@embl-heidelberg.de

D G Sandler (G3.1)
Chief Scientist,
ThermoTrex Corporation,
San Diego,
California,
USA
e-mail: dsandler@crash.cts.com

I Saxena (E1.5)
Institut Dalle Molle d 'Intelligence Artificielle Perceptive

(IDIAP),
Martigny,
Switzerland
e-mail: isaxena@idiap.ch

Soheil Shams (F1.3)
Senior Research Staff Member,
Hughes Research Laboratories,
Malibu,
California,
USA
e-mail: shams@maxwell.hrl.hac.com

Dan Simon (G2.5)

E

Senior Test Engineer,
TRW Vehicle Safety Systems,
Mesa,
Arizona,
USA
e-mail: d.simon@ieee.org

E Snyder (G4.2)
Biocomputational Scientist,
Sequana Therapeutics Inc,
La Jolla,
California,
USA
e-mail: eesnyder@sequana.com

Marcus Speh (G3.2)
Director,
Knowledge Management Services,
Andersen Consulting,
London,
United Kingdom
e-mail: marcus.speh@ac.com

Richard B Stein (G5.1)
Professor of Physiology and Neuroscience,
University of Alberta,
Edmonton,
Canada
e-mail: richard.stein@ualberta.ca

Maxwell B Stinchcombe (B2.10)
Associate Professor of Economics,
University of Texas at Austin,
USA
e-mail: maxwell@mundo.eco.utexas.edu

Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Gary D Stormo (G4.2)
University of Colorado,
Department of MCD Biology,
Boulder,
USA
e-mail: stormo@beagle.colorado.edu

Harold Szu (C1.4)
Alfred and Helen Lumson Professor of Computer Science;
and Director of the Center for Advanced Computer Studies,
University of Southwestern Louisiana,
Lafayette,
USA
e-mail: hszu@cacs.usl.edu

J G Taylor (Al.1, H1.3)
Director of the Centre for Neural Networks;
and Professor of Mathematics,
King’s College,
London,
United Kingdom
e-mail: udah057@bay.cc.kcl.ac.uk

Monroe M Thomas (C1.8, G2.1, G5.1)
Vice President of Dendronic Decisions Ltd,
Edmonton,
Alberta,
Canada
e-mail: mmt@msn.com

Kari Torkkola (F1.7, G1.4)
Principal Staff Scientist,
Motorola Phoenix Corporate Research Laboratories,
Tempe,
Arizona,
USA
e-mail: a540aa@email.mot.com

Guido Valli (G5.5)
Associate Professor of Bioengineering,
University of Florence,
ltaIy
e-mail: valli@cobra.ing.unifi.it

Alex Vary (G2.6)
Deputy Branch Chiej Retired,
Structural Integrity Branch,
NASA Lewis Research Center,
Cleveland,
Ohio,
USA

Michel Verleysen (C2.1)
Research Fellow in Microelectronics and Neural Nehuorks,
National Fund for Scientific Research,
UniversitP Catholique de Louvain,
Belgium
e-mail: verleysen@dice.ucl.ac.be

Eric A Vittoz (E1.3)
Senior Vice President and Head of Bio-inspired Systems,
Centre Suisse d’Electronique et de Microtechnique SA,
Neuchdrel,
Switzerland;
and Professor of Electrical Engineering,
&ole Politechnique Fkdfreli de Lausanne (EPFL),
Switzerland
e-mail: vittoz@csemne.ch

Paul B Watta (C1.3)

Engineering,
Assistant Professor of Electrical and Computer

Wayne State University,
Detroit,
Michigan,
USA
e-mail: watta@brain.eng.wayne.edu

Paul J Werbos (A2, F1.9)
Program Director for Neuroengineering,
National Science Foundation,
Arlington,
Virginia,
USA
e-mail: pwerbos@nsf.gov

Hu Jun Yin (G1.1)
Research Fellow,
Department of Electrical Engineering and Electronics,
University of Manchester Institute of Science and

Technology,
United Kingdom
e-mail: yin@umist.ac.uk

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 LOC:7

Copyright © 1997 IOP Publishing Ltd

PART A

INTRODUCTION

A1 NEURAL COMPUTATION: THE BACKGROUND
Al . l The historical background

J G Taylor
A 1.2 The biological and psychological background

Michael A Arbib

A2 WHY NEURAL NETWORKS?
Paul J Werbos
A2.1 Summary
A2.2
A2.3

What is a neural network?
A traditional roadmap of artificial neural network capabilities

0 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

A1

Neural Computation: The Background

Contents

A1 NEURAL COMPUTATION: THE BACKGROUND
A l . l The historical background

Al .2
J G Taylor
The biological and psychological background
Michael A Arbib

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

Al.1 The historical background

J G Taylor

Abstract

The brief history of neural network research presented in this section indicates that,
although the initial revolution in neural networks lost its early momentum, the second
revolution may well avoid the fate of the first. The subject now has strengths that
were absent from its earliest version: these are discussed, and especially the fact that the
biological origin of the subject is now giving it greater stability. The new avenues opened
up by biologically motivated research and by studies in other areas such as statistical
mechanics, statistics, functional analysis and machine learning are described, and future
directions discussed. The strengths and weaknesses of the subject are compared with
those of alternative and competing approaches to information processing.

A l . l . l Introduction

The discipline of neural networks is presently living through the second of a pair of revolutions, the
first having started in 1943 with the publication of a startling result by the American scientists Warren
McCulloch and Walter Pitts. They considered the case of a network made up of binary decision units
(BDNs) and showed that such a network could perform any logical function on its inputs. This was
taken to mean that one could ‘mechanize’ thought, and it helped to support the development of the digital
computer and its use as a paradigm for human thought. The result was made even more intriguing due to
the fact that the BDN is a beautifully simple model of the sort of nerve cell used in the human brain to
support thinking. This led to the suggestion that here was a good model of human thought.

Before the logical paradigm won the day, another American, Frank Rosenblatt, and several of his
colleagues showed how it was possible to train a network of BDNs, called a perceptron (appropriate for a ci.1.i

device which could apparently perceive), so as to be able to recognize a set of patterns chosen beforehand
(Rosenblatt 1962).

This training used what are called the connection weights. Each of these weights is a number by
which one must multiply the activity on a particular input in order to obtain the effect of that input on
the BDN. The total activity on the BDN is the sum of such terms over all the inputs. The connection
weights are the most important objects in a neural network, and their modification (so-called training) is ~3

presently under close study. The last word has clearly not yet been said on what is the most effective
training algorithm, and there are many proposals for new learning algorithms each year.

The essence of the training rules was very simple: one would present the network with examples
and change those connection weights which led to an improvement of the results, so as to be closer to the
desired values. This rule worked miracles, at least on a set of rather ‘toy’ example patterns. This caused a
wave of euphoria to sweep through the research community, and Rosenblatt spoke to packed houses when
he went to campuses to describe his results.

One of the factors in his success was that he appeared to be building a model duplicating, to some
extent, the activity of the human brain. The early result of McCulloch and Pitts indicated that a network
of BDNs could solve any logical task; now Rosenblatt had demonstrated that such a network could also be
trained to classify any pattern set. Moreover, the network of BDNs used by Rosenblatt, which possessed a
more detailed description of the state of the system in terms of the connection weights between the model
neurons than did the McCulloch-Pitts network, seemed to be a more convincing model of the brain. B1.2

Handbook of Neural Computution release 9711 A 1.1 : 1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

A1.1.2 Living neurons

~ 1 . 2 To justify such a strong claim it is necessary to expand the argument a little. Living neurons are, in
fact, composed of a cell body and numerous outgrowths. One of these, which may branch into several
collaterals, is called the axon. It acts as the output line for the neuron. The other outgrowths are called
the dendrites; they are often covered with little ‘spines’, where the ends of the axons of other cells attach
themselves. The interior of the nerve cell is kept at a negative electric potential (usually about -60 mV) by
means of active pumps in the cell wall which pump sodium ions outside and keep slightly fewer potassium
ions inside. This electrical balance is especially delicately assessed at the exit point of the axon. If the cell
electrical potential becomes too positive, usually by about +10 to +15 mV, then there will be a sudden
reversal of the potential to about +60 mV, and an almost as sudden return to the usual negative resting
value, all in about 2 to 3 ms.

This sequence of potential changes is called an action potential, which moves steadily down the axon
and its branches (at about 1 to 10 m s-l). It is this action potential that is the signal sent from one
nerve cell to its neighbors. The generation of the signal by the neuron is achieved by the summation of
the signals coming to the cell body from the dendrites, which themselves have been affected by action
potentials coming to them from nearby cells. The strengths of the action potentials moving along the
axons are all the same. It is by means of rescaling the effects of each action potential as it arrives at a
synapse or junction from one cell to the next (by means of multiplication of the incoming activity of a
nerve impulse by the appropriate connection weight mentioned earlier) that a differential effect is achieved
for each cell on its neighbors.

The above description of the actions of the living nerve cells in the brain is highly simplified, but gives
a correct overall picture. It is seen that each nerve cell is acting like a BDN, with the decision to respond
being that of assessing whether or not the total activity from its neighbors arriving at its axon outgrowth is
above the threshold mentioned earlier. This activity is the sum of the incoming action potentials scaled by
an appropriate factor, which may be identified with the connection weight of the BDN. The identification
of the BDN with the living nerve cell is thus complete. A network of BDNs is, indeed, a simple model
of the brain.

A1.1.3 Difficulties to be faced

This, then, was the first neural network revolution. Its attraction to many (although not all) was reduced
when Marvin Minsky and Seymour Papert showed in 1969 that perceptrons are very limited. They have
an Achilles heel: they cannot solve some very simple pattern classification tasks, such as separating the
binary patterns (0, 0), (1, 1) from the patterns (1, 0), (0, l), known as the parity problem, or XOR. To
solve this problem it is necessary to have neurons whose outputs are not available to the outside world.
These so-called ‘hidden neurons’ cannot be trained by causing their outputs to become closer to the desired
values given by the training set. Thus, in the XOR case, the input-output training set is (0, 0), 0; (1,
l), 0; (0, l), 1; (1, 0), 1. The desired outputs of 0 or 1 (in the various cases) for the output neurons are
not provided for any hidden neuron. Yet in the case of any linearly inseparable problem, such as XOR,
there must be hidden neurons present in the network architecture in order to help turn the problem into a
linearly separable one for the outputs.

In addition, there was a further important difficulty which was emphasized by Minsky and Papert,
who gave a very thorough mathematical analysis of the time it takes to train such networks, and how this
increases with the number of input neurons. It was shown by Minsky and Papert (1969) that training times
increase very rapidly for certain problems as the number of input lines increases.

These (and other) difficulties were seized upon by opponents of the burgeoning subject. In particular,
this was true of those working in the field of artificial intelligence (AI) who at that time did not want
to concern themselves with the underlying ‘wetware’ of the brain, but only with the functional aspects-
regarded by them solely as logical processing. Due to the limitations of funding, competition between the
AI and neural network communities could have only one victor.

A1.1.4 Reawakening

Neural networks then went into a relative quietude, with only a few, but very clever, devotees still working
on it. Then came new vigor from various sources. One was from the increasing power of computers,
allowing simulations of otherwise intractable problems. At the same time, the difficulty of training hidden

A l . 1 :2 Handbook ofNeural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The historical background

neurons was solved by the backpropagation algorithm, originally introduced by Paul Werbos (1974), and c1.2.3

independently discovered by Parker (1985) and LeCun (1985); it was highly publicized by the PDP Group
with Rumelhart and McClelland (1986). Backpropagation allowed the error to be transported back from
the output lines to earlier layers in the network so as to give a very precise modification of the weights
on the hidden units. It was possible to simulate ever-larger problems using this training scheme, and so
begin to train neural networks on industrially interesting problems.

Another source of stimulus was the seminal paper of John Hopfield (1982) and related work of
Grossberg and collaborators (Cohen and Grossberg 1983) in analyzing the dynamics of networks by
introducing powerful methods based on Lyapunov functions to describe this development. In all, this
work showed how a network of BDNs, coupled to each other and asynchronously updated, can be seen to
develop in time as if the system were running down an energy hill to find a minimum. Hopfield (1982)
showed, in particular, how it is possible to sculpt the energy landscape so that there are a desired set of
minima. Such a network leads to a content-addressable memory, since a partially correct starting activity
will develop into the complete version quite quickly.

The introduction of an energy function quickly alerted the physics community, ever eager to sharpen
their teeth on a new problem. This led to the spin glass approach, with the global ideas on phase transitions
and temperature entering the field of neural networks for the first time. A spin glass derivation was also
given by Amit (1989) of the capacity limit of 0.14N as the limit to the number of patterns which can
usefully be stored in a network of N neurons (and which was originally found experimentally by Hopfield
(1982)). Gardner then introduced the general notion of the ‘space’ of neural networks (Gardner 1988), an
idea that has been explored more fully by the recent developments of differential geometry by the work of
Amari (1991). It is clear that the statistical mechanical approach is still flourishing, and is leading to many
new insights. For example, it has become clear how the presence of temperature allows the avoidance of
spurious states brought about by the form of the connection weights; these false states are made unstable
if the network is ‘hot’ enough, and only the correct states are recalled in that case. It has also become
clear as to what was the source of the limit on the storage capacity of these networks, and how this might
be increased by choosing suitable connectivity to obtain the full capacity N (Coombes and Taylor 1993).

Another very important historical development was the creation of the Boltzmann machine (Hinton ci.4

and Sejnowski 1983), which may be regarded as the extension of the Hopjeld network to include hidden 81.3

neurons. The name was assigned since the probability distribution of the states of the network is identical
to the Boltzmann distribution. The Boltzmann machine learning algorithm, based on the Kullback-
Liebler metric as a distance function on the probability distributions of the states, allowed this probability
distribution to move more closely to an external one to be learned. However, the learning algorithm is
slow, and this has prevented many useful applications.

A further network which proved very attractive to those entering the field was the self-organizing c2.1.1
map. This had been developed by several workers (Willshaw and von der Malsburg 1976, Grossberg 1976)
and reached a very effective form for applications in terms of the self-organizing feature map (SOFM) of
Kohonen (1982). This allowed the weights of a single-layer network to adapt to an ensemble of inputs so
as to learn the distribution of those inputs in an ordered fashion. Numerous developments have occurred
in this approach more recently (Ritter et a1 1991).

The other question, of the scaling of training times as the size of the input space increases, which
was raised by Minsky and Papert, is still unsolved. Papert, in a recent paper (Minsky and Papert 19891,
wrote ‘. . .the entire structure of recent connectionist theories might be built on quicksand: it is all based
on toy-sized problems with no theoretical analysis to show that performance will be maintained when the
models are scaled up to realistic size. The connectionist authors fail to read our work as a warning that
networks, like brute force, scale very badly’. This is a warning not to be taken lightly. It is being met by
various methods and devices: accelerator cards, ever faster and smaller hardware devices, and a deeper E I
understanding of the theory behind neural computation. It is to be noted in this respect that accelerator
cards may offer time saving and tractable training sessions on large databases but still may not help the
convergence to significant solutions. It may be that the second neural network ‘revolution’ is only just
beginning, but it is very clear that the scaling problem is in the forefront of researchers’ minds.

A1.1.5 Forms of networks and their training

In order to understand in more detail the way that greater strength is being brought to the subject of neural
networks, it is important to point out the two extremes that now exist inside the discipline itself. At one end

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 A 1.1 :3

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

is the work of those mainly concerned with solving industrial problems. These include engineers, computer
scientists, and people in the industrial sector. To them, neural computing is only one of a spectrum of adap-
tive information processing techniques. At the other extreme are those interested in understanding living
systems, such as biologists, psychologists, and philosophers, together with mathematicians and physicists
who are interested in the whole range of the subject as throwing up valuable and interesting new problems.

The styles of approach of the two extremes are somewhat different. The subject of artificial neural
computing is based on networks, some of which have been mentioned earlier, which use the rather simple

~ 2 . 3 BDNs defined above. There are two extremes of the architectures of the networks: feedforward networks
(input streams steadily through the network from a set of input neurons to a set of output ones) and

~ 2 . 3 recurrent networks (where there is constant feedback from the neurons of the network to each other, as in
the Hopfield network mentioned earlier). This is mirrored in the differences between the topologies such
networks possess; one is the line, and the other the circle, which cannot be topologically deformed into
each other. As is to be expected, there are two extreme styles of computation in these networks. In the
feedforward case the input moves through the network to become the output; in the recurrent network the
activities in the network develop over time until it settles into some asymptotic value which is used as the
output of the network. The network thus relaxes into this asymptotic state.

Network training can be classified into three sorts: supervised, reinforcement and unsupervised. The
most popular of the first of these, backpropagation, has been mentioned earlier as the way to train neural
networks to solve hard problems like parity, which needs hidden nodes (with no output that might be
specified directly by the supervisor or teacher). It uses a set of training data which is assumed to be
given, so that the (usually) feedforward network has a set of given inputs and outputs. When a given
input is applied to the untrained network, the output is not expected to be the desired one, so that an
error is obtained. That is used to assign changes, usually small ones, to the connection weights to all the
neurons (including the hidden ones) in the network. This process of change is repeated many times until
an acceptably low error level is obtained.

The second training method uses a reward given to the network by the environment on its response
to a given input. This reward may also be used to determine modifications to the weights to achieve a
maximum reward from the environment. Thus, this form of learning is ‘with a critic’, to be compared to
supervised learning, which is ‘with a teacher’. Finally, there is unsupervised learning, which is closer to the
style of learning in biological systems (although reinforcement learning also has strong biological roots).
In this method correlations between signals are learned by increasing the connection weight between two
neurons which are both active together.

At the other end of the subject of neural computation is investigation of nervous systems of the many
species of animals, in an attempt to understand them. Since even a single living neuron is very complex,
this approach does not aim for application in the marketplace, although simplified versions of mechanisms
gleaned from this area of study are turning out to be of great value in commercial applications. This
is true, for example, for models of the eye or ear, and also in the area of control, where reinforcement
training (related to conditioned learning) has led to some very effective industrial control systems (White
and Sofge 1992). The biological neural networks which are of interest are also extremely complex as
nonlinear dynamical systems or mappings, although there is steady progress in their unraveling.

The most important lesson to be learned from these studies, besides the detailed network styles being
used, is that the brain has developed a very powerful modular scheme for handling the scaling problem
mentioned earlier. Exactly how this works is presently under extensive scrutiny, in particular, through the
use of noninvasive techniques (EEG, MEG, PET, MRI). The causal chains of activations of various brain
regions is being discovered as a subject performs a particular information processing task; the results are
allowing more global models of the brain to be constructed.

~3.1, c3

A1.1.6 Strengths of neural networks

In the face of the difficulties neural networks are still facing, of slow training, incompletely understood
complexity and the highly nonlinear neural network system involved, as mentioned earlier, there are several
features which will ensure the continued strength of the subject as a viable discipline.

Firstly, increases in computing power that were almost undreamed of several years ago, with gigabytes
of memory and giga-interconnection updates per second. That may still be some way from the speed and
power of the human brain. But if only specialized devices are to be developed, the total complexity of
the human brain need not be a deterrent from attaining a lesser goal.

A 1.1 :4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

The historical background

Secondly, there are developments in the theoretical understanding of neural networks that are
impressive. Convergence of training schedules and their speed-up is presently under active investigation.
The subject of dynamical systems theory is being brought to bear on these questions, and impressive
results are being obtained. The use of concepts like attractor, stability, circle maps and so on are allowing
a strong framework to be built for neural networks; in particular, the manner in which the dynamics of
learning appears to display the general features of a sequence of phase transitions, as new features of
the complexity of the training set are able to be discovered by the network, and new specialized feature
detectors in the hidden layers emerge in the training process.

Thirdly, there are several different disciplines which are seen to have a great deal of overlap with
neural networks, Thus the branch of statistics associated with regression analysis is now recognized as
having been extended in an adaptive manner by the use of neural network representations of time series
(Breiman 1994). Computer-intensive techniques, such as bootstrapping, are proving of great value in
neural networks for tackling problems with small data sets. Pattern recognition, for example, also has ~ 1 . 5 , ~6

important overlaps with the discipline in the areas of classification and data compression. Neural networks ~ 1 . 5

can extend these areas to give them an adaptability that is proving to be very important, such as in learning
the most important features of a scene by means of adaptive principle component analysis (PCA) (Oja
1982). Statistical mechanics (especially spin glasses) has already been noted above as leading to important
new insights into the problems of storage and response of neural networks. Machine learning is also of
importance for the subject, and under the ‘probably approximately correct’ (PAC) approach has allowed
the study of the complexity of neural networks needed to solve a given problem.

Fourthly, the field of function approximation has led to the important ‘universal approximation
theorem’ (Hecht-Nielsen 1987, Hornik et af 1989). This theorem states that any suitably smooth function
can be approximated arbitrarily closely by a neural network with only one hidden layer. The number
of nodes required for such an approximation would be expected to increase without bound as the
approximation was made increasingly better. The result is of the utmost importance to those who wish to
apply neural networks to a particular problem; it states that a suitable network can always be found. This
is also true for trajectories of patterns (Funahashi and Nakamura 1993).

There is a similar, but more extended result, for the learning of conditional probability distributions
(Allen and Taylor 1994), where now the universal network has to have at least two layers to be able to
have a smooth limit when the stochastic series being modeled becomes noise-free. Again, this is very
important in the modeling by neural networks of jinanciaf series which have considerable stochasticity.

Fifthly, and already discussed briefly above, is the emerging subject of computational neuroscience.
This attempts to create simple models of the neural systems which are important in controlling the response
patterns of animals of a given species. This has a vast breadth, encompassing as it does the million or
so species of living animals, culminating with man. It is a subject with vast implications for mankind,
especially from the medical benefits that better understanding of brain processes would bring, both to those
in the field of mental health and in the more general area of understanding of healthy living systems.

The field of computational neuroscience has led to useful devices by the route of ‘reverse engineering’.
In this, algorithms are developed for information processing based on simple models of the neural
processing occurring in the living system. Thus it is not only the single neuron which is proving of
value in reverse engineering, as it has already for the development of artificial neural networks (and
where also it continues with the incorporation of increasingly complex neurons to achieve more powerful
artificial neural networks). It is increasingly occurring in the reverse engineering of the overall architecture
of artificial networks from that of living neural networks. This approach has also proved of value at the
hardware level, as well as generating new styles of artificial neural computation. Thus, in the first category,
is the work of Carver Mead and his colleagues at the California Institute of Technology in the United
States (Mead 1989). They have built both a silicon retina and a silicon ear, using VLSI designs based on
the known functions of these devices in living systems and their approximate wiring diagrams.

The retina has lateral inhibitory connections between the first (horizontal) layer of cells and the
input cells, which leads to a very elegant method of reducing redundancy (say, in patches of constant
illumination) of visual inputs. It is also possible to extend this modeling to later layers in the retina, and
also to proceed further into the early layers of the visual cortex. The latter appears to use a decomposition
of the input into some overcomplete set of functions, such as might arise from differences of Gaussians or
similar functions with localized values. This leads into the field of wavelet transforms, another theoretical
area proving to be of great value in developing new paradigms for neural networks (Szu and Hopper 1995).

The manner in which more global brain processing can be understood has been developed over the

~ 6 . 3

Hudbook of Neurul Computation release 97/1 Al.1:5 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

last few years by Teuvo Kohonen in the SOFM mentioned earlier (Kohonen 1982). In more detail, this
algorithm is based on the idea of competition between nearby neurons, ending up in one neuron winning
and the others being tumed off by lateral inhibition from that winner. This winner is then trained by
increasing the connection weights to it so that it gives a larger output. This means rotating the weights on
the winning neuron so that they are more closely aligned to the input. The same is done for the neurons
in a small region round the winner. If this is done repeatedly for a set of training inputs the network
ends up representing the inputs in a topographic fashion over its surface (assuming the network is laid
out in a two-dimensional fashion). If the inputs have features which are more than two dimensional then
the resulting map may have folds in it; such discontinuities are seen, for example, in the map of rotation
sensitivity for cells in the visual cortex.

One can search for other tricks that nature may use, and attempt to incorporate them into suitable
machines. Thus there are presently attempts to build a ‘vision machine’ by means of the sensitive response
of sets of coupled oscillators to their inputs. Yet again this also leads to some very important mathematical
problems in understanding the response patterns of many physical systems.

It also leads to the more general question of whether or not it is possible to use the finer details of
the temporal structure of neural activity. An extreme case of this is the use of information by coincidence
of a number of nerve impulses impinging on a given cell. Suggestions of this sort have been around for a
decade or more, but it is only recently that the improvement in computing power has allowed increasing
numbers of simulations to test this idea.

As is well known, chaos and fractals are a key aspect of any physical phenomena. Will they prove to
be of importance in improving neural networks? Some, especially Walter Freeman (1995) from Berkeley
in connection with olfaction, suggest that such is the case, and that strange attractors may be used to give
a very effective method of searching through, or giving access to, a large region of the state space of a
neural network. That possibility has not yet been achieved in detail; however, see Quoy er al (1995) for
an interesting attempt to achieve a useful speed-up by ‘living on the edge of chaos’ for a neural network.
But the question is an important one and again indicates the breadth of possibilities now coming under
the banner of neural networks.

A1.1.7 Hybrids and the future

From what has been sketched above about the past and some of the avenues being explored in the present
for neural networks, it is clear that the subject now has such breadth and depth that it is unlikely to run
out of steam as it did earlier. Indeed, it is becoming increasingly clear that artificial neural networks
(ANNs) can be seen to be one of a number of similar tools in the tool-kit of anyone tackling problems

~ 2 , DI in information processing. Along with genetic algorithms, fuzzy logic, belief networks, and other areas
(such as parallel computing), ANNs are to be used either on their own or in hybrid systems wherever
and however is most appropriate. The past divisions, noted above as having existed between different
branches of information processing, seem to have been removed by these developments. Moreover, new
techniques are being developed to allow the parallel use of these various technologies, or even better, in a
manner that allows them to help each other. Thus genetic algorithms are being used to help improve the
architecture of a neural network, where the fitness function used to select better descendants at each stage
of the generation process is the error on the training set (in the case of a supervised learning problem).
Similarly, it has proved of value to obtain help from fuzzy logic to allow for rough initial settings of the
weights in a network.

There are some general rules for determining when a neural network is most appropriate for a particular
task, compared with one of the other methods mentioned earlier. If the data are noisy, if there are no rules
for the decisions or response that are required, or if the training and response must be rapid (something
missing from genetic algorithms, for example), then ANNs may be the best bet. It is also necessary to
comment finally on the present situation in the relation between ANNs and AI mentioned earlier. As noted
above for other adaptive techniques, the move is now to combine an ANN solution for part of a problem
with results obtained from a knowledge-based expert system (KBES). That has been done successfully

~ 1 . 7 . 2 , ~ 1 . 4 in speech recognition, where the Kohonen network mentioned earlier is good for individual phoneme
recognition, but not so good for words (due to difficulty in incorporating context into the ANN). A KBES
approach, with about 20000 expert rules, then allows the total system to be far more effective. Similar

~ 4 . 1 0 . 2 , c 1 . 2 . a greater efficiency can also be obtained using hybrid systems with time-delayed neural networks (which
involve inputs that are delayed or lagged relatively to each other, so as to cover a spread of input times).

A 1.1 :6 Hundbook of Neuml computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The historical background

It is clear that a more realistic and effective approach is arising in the relationship between the different
branches of information processing. Undoubtedly this use of the best of all possible worlds will increase.
But at the same time the neural network approach, in the context of obtaining a better understanding of
the human brain, will also give ever increasing powers to the ANN approach. In the end one can only see
that as being the most effective (provided there is the computing power) method for many of the deeper
problems facing the information industry. Nor is there any serious alternative to the further development of
neural network models of ourselves to understand the higher levels of human cognition, including human
consciousness.

References

Allen D W and Taylor J G 1994 Leaming time series by neural networks Proc. Int. Con& on Artijicial Neural Networks

Amari S 1991 Dualistic geometry of the manifold of higher-order neurons Neural Networks 4 443-51
Amit D 1989 Models of Brain Function (Cambridge: Cambridge University Press)
Breiman L 1994 Bagging predictors UCL4 Preprint (unpublished)
Cohen M A and Grossberg S 1983 Absolute stability of global pattem formation and parallel memory storage by

Coombes S and Taylor J G 1993 Using generalised principal component analysis to achieve associative memory in a

Freeman W 1995 Society of Brains (Hillsdale, NJ: Erlbaum)
Funahashi K and Nakamura Y 1993 Approximation of dynamical systems by continuous time recurrent neural networks

Gardner E 1988 The space of interactions in neural network models J. Phys. A: Math. Gen. 21 257-70
Grossberg S 1976 Adaptive pattem classification and universal recoding, I: Parallel development and coding of neural

Hecht-Nielsen R 1987 Kolmogorov’s mapping neural network existence theorem Proc. In?. Con$ on Neural Networks

Hinton G and Sejnowski T 1983 Optimal perceptual inference Proc. IEEE Con& on Computer Wsion and Pattern

Hopfield J 1982 Neural networks and physical systems with emergent collective computational properties Proc. Natl

Homik K, Stinchcombe M and White H 1989 Multi-layer feedforward networks are universal approximators Neural

Kohonen T 1982 Self-organised formation of topologically correct feature maps Biol. Cybem. 43 56-69
LeCun Y 1985 Une procMure d’apprentissage pour rkseau 6 seuil asymetrique Cognitiva 85 (Paris: CESTA) pp 599-

McCulloch W S and Pitts W 1943 A logical calculus of ideas immanent in nervous activity Bull. Math. Biophys. 5

Mead C 1989 Analogue VLSI and Neural Systems (Reading, MA: Addison-Wesley)
Minsky M and Papert S 1969 Perceptrons (Boston, MA: MIT Press)
-1989 Perceptrons 2nd edn (Boston, MA: MIT Press)
Oja E 1982 A simplified neuron model as a principal component analyser J. Math. Biol. 15 61-8
Parker D B 1985 Leaming logic Technical Report TR-47 Center for Computational Research in Economics and

Quoy M, Doyon B and Samuelides M 1995 Dimension reduction by learning in a discrete time chaotic neural network

Ritter H, Martinetz T and Schulten K 1991 Neural computation and self-organising maps (Reading, MA: Addison-

Rosenblatt F 1962 Principles of Neurodynamics (New York: Spartan)
Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing (Boston, MA: MIT Press)
Szu H and Hopper T 1995 Wavelets as preprocessors for neural networks Plenary Talk Proc. World Congr. on Neural

Networks (Washington, DC, 1995) (Washington: INNS); Kohonen T 1995 Plenary Talk Proc. World Congr. on
Neural Networks (Washington, DC, 1995) (Washington: INNS)

(Sorrento, Italy, 1994) ed M Marinaro and P Morass0 (Berlin: Springer) pp 529-32

competitive neural networks IEEE Trans. Syst. Man Cybem. 13 815-26

Hopfield net Network 5 75-88

Neural Networks 6 801-6

feature detectors Biol. Cybem. 23 121-34

III (New York: IEEE) pp 11-13

Recognition (Washington) (New York: IEEE) pp 448-53

Acad. Sci., USA 81 3088-92

Networks 2 359-66

604

1 15-33

Management Science, Massachusetts Institute of Technology, Cambridge, MA

Proc. World Congr. on Neural Networks (1995) (Washington: INNS) pp 1-300-303

Wesley)

Werbos P 1974 Beyond regression PhD Thesis Harvard University
White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control (New York: Van Nostrand Reinhold)
Willshaw D J and von der Malsburg C 1976 How pattemed neural connections can be set up by self-organisation

Proc. R. Soc. B 194 431-45

@ 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neuml Computution release 9711 A 1.1 :7

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

A1.2 The biological and psychological background

Michael A Arbib

Abstract

A brief look at how biology and psychology motivate the definitions of artificial neurons
presented in other sections of this handbook.

A1.2.1 Biological motivation and neural diversity

In biology, there are radically different types of neurons in the human brain, and further variations in neuron
types of other species. In brain theory, the complexities of real neurons are abstracted in many ways to aid
an understanding of different aspects of neural development, learning, or function. In neural computation,
the artificial neurons are designed as variations on the abstractions of brain theory and implemented in
software, VLSI, or other media. Although detailed models of biological neurons are not within the scope
of this handbook, it will be useful to provide an informal view of neurons as defined biologically, for it
is the biological neurons that inspired the various notions of formal neuron used in neural computation BI
(discussed in detail elsewhere in this handbook). The nervous system of animals comprises an intricate
network of neurons (a few hundred neurons in some simple creatures; hundreds of billions in a human
brain) continually combining signals from receptors with signals encoding past experience to barrage
motor neurons with signals which will yield adaptive interactions with the environment. In animals with
backbones (vertebrates, including mammals in general and humans in particular) the brain constitutes the
most headward part of this central nervous system (CNS), linked to the receptors and effectors of the body
via the spinal cord. Invertebrate nervous systems (neural networks) provide astounding variations on the
vertebrate theme, thanks to eons of divergent evolution. Thus, while the human brain may be the source of
rich analogies for technologists in search of ‘artificial intelligence’, both invertebrates and vertebrates will
provide endless ideas for technologists designing neural networks for sensory processing, robot control,
and a host of other applications (Arbib 1995).

Although this variety means that there is no such thing as a typical neuron, the ‘basic neuron’ shown
in figure A1.2.1 indicates the main features that carry over into artificial neurons. We divide the neuron
into three parts: the dendrites, the soma (cell body) and a long fiber called the uxon whose branches form
the uxonal arborization. The soma and dendrites act as input surface for signals from other neurons and/or
receptors. The axon carries signals from the neuron to other neurons and/or effectors (muscle fibers or
glands, say). The tips of the branches of the axon are called nerve terminals or boutons. The locus of
interaction between a terminal and the cell upon which it impinges is called a synapse, and we say that
the cell with the terminal synapses upon the cell with which the connection is made.

The ‘signal’ carried along the axon is the potential difference across the cell membrane. For ‘short’
cells (such as the bipolar cells of the retina) passive propagation of membrane potential carries a signal
from one end of the cell to the other, but if the axon is long, this mechanism is completely inadequate since
changes at one end will decay away almost completely before reaching the other end. Fortunately, cell
membranes have the further property that if the change in potential difference is large enough (we say it
exceeds a threshold), then in a cylindrical configuration such as the axon, a ‘spike’ can be generated which
will actively propagate at full amplitude instead of fading passively. After a spike has been dispatched
to propagate along the axon, there is a refractory period, of the order of a millisecond, during which a
new spike cannot be started along the axon. The details of axonal propagation can be explained by the

Hundbook of Neural Computation release 9711 A 1.2: 1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

Dendrites soma Axon with branches and
synaptic terminals

Figure A1.2.1. The ‘basic’ biological neuron. The soma and dendrites act as the input surface; the axon
carries the output signals. The tips of the branches of the axon form synapses upon other neurons or upon
effectors (though synapses may occur along the branches of an axon as well as at the ends). The arrows
indicate the direction of ‘typical’ information flow from inputs to outputs.

Hodgkin-Huxley equation (Hodgkin and Huxley 1952), which also underlies more complex dynamics that
may allow even small patches of neural membrane to act like complex computing elements. At present,
most artificial neurons used in applications are much simpler, and it remains for future technology in neural
computation to more fully exploit these ’subneural subtleties’,

An impulse traveling along the axon triggers off new impulses in each of its branches, which in
turn trigger impulses in their even finer branches. When an impulse arrives at one of the terminals, after
a slight delay it yields a change in potential difference across the membrane of the cell upon which it
impinges, usually by a chemically mediated process that involves the release of chemical ‘transmitters’
whereby the presynaptic cell affects the postsynaptic cell. The effect of the ‘classical’ transmitters is of two
basic kinds: either excitatory, tending to move the potential difference across the postsynaptic membrane
in the direction of the threshold, or conversely, inhibitory, tending to move the polarity away from the
threshold. Indeed, most neural modeling to date focuses on these excitatory and inhibitory interactions
(which occur on a time scale of a millisecond, more or less, in biological neurons). However, neurons
may also secrete transmitters which modulate the function of a circuit over some quite extended time-
scale. Modeling which takes account of this neuromodulution (Dickinson 1995) will become increasingly
important in future, since it allows cells to change their function-for example, a cell may change from one
which passively responds to stimulation to a pacemaker which spontaneously fires in a rhythmic pattern-
enabling a neural network to dramatically switch its overall mode of activity.

The excitatory or inhibitory effect of the transmitter released when an impulse arrives at a terminal
generally causes a subthreshold change in the postsynaptic membrane. Nonetheless, the cooperative effect
of many such subthreshold changes may yield a potential change at the start of the axon which exceeds
the threshold-and if this occurs at a time when the axon has passed the refractory period of its previous
firing, then a new impulse will be fired down the axon.

Synapses can differ in shape, size, form and effectiveness. The geometrical relationships between
the different synapses impinging upon the cell determine what patterns of synaptic activation will yield
the appropriate temporal relationships to excite the cell. A highly simplified example (figure A1.2.2)
shows how the properties of nervous tissue just presented would indeed allow a simple neuron, by its very
dendritic geometry, to compute some useful function (cf Rall 1964, p 90). Consider a neuron with four
dendrites, each receiving a single synapse from a visual receptor, so arranged that synapses a, b, c and d
(from left to right) are at increasing distances from the axon hillock (e). We assume that each receptor
reacts to the passage of a spot of light above its surface by yielding a generator potential which yields
in the postsynaptic membrane the same time course of depolarization. This time course is propagated
passively, and the further it is propagated, the later and the lower is its peak. If four inputs reached a,
b, c and d simultaneously, their effect might be less than the threshold required to trigger a spike there.
However, if an input reaches d before one reaches c, and so on, in such a way that the peaks of the four
resultant time courses at the axon hillock coincide, it could well pass the threshold. This then is a cell

@ 1997 IOP Publishing Ltd and Oxford University Press Al.2:2 Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

The biological and psychological background

a b C d

Figure A1.2.2. An example, adapted from Wilfrid Rall, of the subtleties that can be revealed by neural
modeling when dendritic properties (in this case, length-dependent conduction time) are taken into account.
The effect of simultaneously activating all inputs may be subthreshold, yet the cell may respond when
inputs traverse the cell from right to left.

which, although very simple, can detect direction of motion across its input. It responds only if the spot of
light is moving from right to left, and if the velocity of that motion falls within certain limits. Our cell will
not respond to a stationary object, or one moving from left to right, because the asymmetry of placement
of the dendrites on the cell body yields preference of one direction of motion over others. We see, then,
that the form (i.e. the geometry) of the cell can have a great impact upon thefunction of the cell and we
thus speak of form-function relations. Very little work on artificial neurons has taken advantage of subtle
properties of this kind, though Mead’s (1989) study of Analog VLSI and Neural Systems, while inspired ~ 1 . 3

by biology, does open the door to technological applications in which surprisingly complex computations
may be executed by single neurons. Such neurons can compute functions that would require networks of
some complexity if one were using the much simpler artificial neurons that are discussed in Chapter B1 B I

of this handbook.

A1.2.2 Psychological motivation and learning rules

Much work in neural computation focuses on the learning rules which change the weights of connections ~ 3 . 3
between neurons to better adapt a network to serve some overall function. Intriguingly, the classic
definitions of these learning rules come not from biology, but from the psychological studies of Donald
Hebb and Frank Rosenblatt. The work since the early 1980s which has revealed the biological validity of
variants of the rules they formulated (Baudry et a1 1993) is beyond the scope of this handbook. Instead,
since the ‘line of descent’ of neural learning rules may be traced back to this psychological work, we now
provide a brief introduction to the ideas of Hebb and Rosenblatt. Hebb (1949) developed a multilevel
model of perception and learning, in which the ‘units of thought’ were encoded by ‘cell assemblies’, each
defined by activity reverberating in a set of closed neural pathways. Hebb introduced a neurophysiological
postulate (far in advance of physiological evidence): ‘When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells, such that A’s efficiency as one of the cells firing B, is increased.’ (Hebb 1949,

The essence of the Hebb synapse is to increase coupling between coactive cells so that they could
be linked in growing assemblies. Hebb developed similar hypotheses at a higher hierarchical level of
organization, linking cognitive events and their recall into ‘phase sequences’-a temporally organized
series of activations of cell assemblies. The simplest formalization of Hebb’s rule is to increase wij by

P 62).

~ 3 . 3 . 1

Awij = kyixj (A1.2.1)

where synapse W i j connects a presynaptic neuron with firing rate x j to a postsynaptic neuron with firing
rate yi . Hebb’s original learning rule referred exclusively to excitatory synapses, and has the unfortunate
property that it can only increase synaptic weights, thus washing out the distinctive performance of different
neurons in a network. However, when the Hebbian rule is augmented by a normalization rule (e.g. keeping ~ 4 . 4 . 1

constant the total strength of synapses upon a given neuron), it tends to ‘sharpen’ a neuron’s predisposition
‘without a teacher’, causing its firing to become better and better correlated with a cluster of stimulus
patterns. This performance is improved when there is some competition between neurons so that if one

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computation release 9111 Al.2:3

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

B1.5, B6

c1.1.1

B1.2

82.3

c 1 . 2

B3.1
B3.1

C1.3, F1.4

neuron becomes adept at responding to a pattern, it inhibits other neurons from doing so (competitive
learning, see Rumelhart and Zipser 1986).

Rosenblatt (1958) explicitly considered the problem of pattern recognition, where a ‘teacher’ is
essential-for example, placing ‘b’ and ‘By in the same category depends on a historico-social convention
known to the teacher, rather than on some natural regularity of the environment. He thus introduced
perceptrons, neural networks that change with ‘experience’, using an error-correction rule designed to
change the weights of each response unit when it makes erroneous responses to stimuli that are presented
to the network. Consider the case in which a set of input lines feeds a single layer of preprocessors whose
outputs feed into an output unit which is a McCulloch-Pitts neuron. The definition of such a neuron is
given in Chapter B1; here we need only note that it has adjustable weights (w1, . . . , W d) and threshold 8
and effects a twofold classification: if the preprocessors feed the pattern x = (XI, . . . , X d) to the output
unit, then the response of that unit will be 1 if f (x) = ~ 1 x 1 -t . . . -t WdXd - 8 2 0, but 0 if f (x) < 0. A
simple perceptron is one in which the preprocessors are not interconnected, which means that the network
has no short-term memory. (If such connections are present, the perceptron is called cross-coupled or
recurrent. A recurrent perceptron may have ‘multiple layers and loops back from an ‘earlier’ to a ‘later’
layer.) Rosenblatt (1958) provided a learning scheme with the property that if the patterns of the training
set (i.e. a set of feature vectors, each one classified with a 0 or 1) can be separated by some choice of
weights and threshold, then the scheme will eventually yield a satisfactory setting of the weights. The
best known perceptron learning rule strengthens an active synapse if the efferent neuron fails to fire when
it should have fired, and weakens an active synapse if the neuron fires when it should not have done so:

(A1.2.2)

As before, synapse wij connects a neuron with firing rate xj to a neuron with firing rate y i , but now Yi is the
‘correct’ output supplied by the ‘teacher.’ (This is similar to the Widrow-Hoff (1960) least-mean-squares
model of adaptive control.) Notice that the rule does change the response to x, ‘in the right direction’. If
the output is correct, Yi = yi and there is no change, Awij = 0. If the output is too small, then Yi - yi > 0,
and the change in wij will add Awi,xj = k(Yi - yi)x,xj > 0 to the output unit’s response to (x l , , , . , x d) .
Similarly, if the output is too large, Awij will decrease the output unit’s response. Thus, there is a sense
in which w + Aw classifies the input pattern x ‘more nearly correctly’ than w does. Unfortunately, in
classifying x ‘more correctly’ we run the risk of classifying another pattern ‘less correctly.’ However,
the perceptron convergence theorem shows that Rosenblatt’s procedure does not yield an endless seesaw,
but will eventually converge to a correct set of weights, if one exists, albeit perhaps after many iterations
through the set of trial patterns.

As Rosenblatt himself noted, extension of these classic ideas to multilayer feedforward networks
posed the structural credit assignment problem: when an error is made at the output of a network, how is
credit (or blame) to be assigned to neurons deep within the network? One of the most popular techniques
is called backpropagation, whereby the error of output units is propagated back to yield estimates of how
much a given ‘hidden unit’ contributed to the output error. These estimates are used in the adjustment
of synaptic weights to these units within the network. In fact, any function f : X + Y for which X
and Y are codeable as input and output patterns of a neural network can be approximated arbitrarily well
by a feedforward network with one layer of hidden units. The catch is that very many hidden units
may be required for a close fit. It is often an empirical question whether there exists a sufficiently good
approximation achievable by a network of a given size-an approximation which a given learning rule
may or may not find.

Finally, we note that Hebb’s rule (i) does not depend explicitly on a teaching signal Y , whereas the
perceptron rule (ii) does depend explicitly on a teacher. For this reason, Hebb’s rule plays an important
role in studies of unsupervised learning or self-organization. However, it should be noted that Hebb’s rule
can also play a role in supervised learning or learning with a teacher. This is the case when the neuron
being trained has a teaching input, separate from the trainable inputs, that can be used to pre-emptively fire
the neuron. Supervised Hebbian learning is often the method of choice in associative networks. Moreover,
picking up another psychological theme, it is closely related to Pavlovian conditioning: here the response
of the cell being trained corresponds to the conditioned and unconditioned response (R), the ‘training input’
corresponds to the unconditioned stimulus (US), and the ‘trainable input’ corresponds to the conditioned
stimulus (CS). Since the US alone can fire R, while the CS alone may initially be unable to fire R, the
conjoint activity of US and CS creates the conditions for Hebb’s rule to strengthen the US --f R synapse,
so that eventually the CS alone is enough to elicit a response.

Al.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The biological and psychological background

Acknowledgement

Much of this article is based on the author’s article ‘Part I-Background’ in The Handbook ofBrain Theory
and Neural Networks edited by M A Arbib, Cambridge, MA: A Bradford BookfI’he MIT Press (1995).

References

Arbib M A (ed) 1995 The Handbook of Brain Theory and Neural Networks (Cambridge, MA: Bradford BooksNIT

Baudry M, Thompson R F and Davis J L (eds) 1993 Synaptic Plasticity: Molecular, Cellular, and Functional Aspects

Dickinson P 1995 Neuromodulation in invertebrate nervous systems The Handbook of Brain Theory and Neural

Hebb D 0 1949 The Organization ofBehavior (New York: Wiley)
Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction

Mead C 1989 Analog VUI and Neural Systems (Reading, MA: Addison-Wesley)
Rall W 1964 Theoretical significance of dendritic trees for neuronal input-output relations Neural Theory and Modeling

Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol.

Rumelhart D E and Zipser D 1986 Feature discovery by competitive leaming Parallel Distributed Processing ed

Widrow B and Hoff M E Jr 1960 Adaptive switching circuits 1960 IRE WESCON Convention Record 4 96-104

Press)

(Cambridge, MA: Bradford Books/MIT Press)

Networks ed M A Arbib (Cambridge, MA: Bradford BooksMIT Press)

and excitation in nerve J. Physiol. Lond. 117 5 0 M

ed R Reiss (Stanford, CA: Stanford University Press) pp 73-97

Rev. 65 386408

D E Rumelhart and J L McClelland (Cambridge, MA: MIT Press)

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 Al.2:5

Copyright © 1997 IOP Publishing Ltd

A2

Why Neural Networks?

Paul J Werbos

Abstract

This chapter reviews the general advantages of artificial neural networks (ANNs)
which have motivated their use in practical applications. It explains two alternative
definitions (computer hardware oriented and brain oriented) of an ANN, and provides an
overview of the computational tasks that various classes of ANNs can perform. The
advantages include: (i) access to existing sixth-generation computer hardware with
huge price-performance advantages; (ii) links to brain-like intelligence; (iii) ease of
use; (iv) superior approximation of nonlinear functions; (v) advantages of learning over
tweaking, including learning off-line to be adaptive on-line (in control); (vi) availability
of many specific designs providing nonlinear generalizations of many familiar algorithms.
Among the algorithms and applications are those for image and speech preprocessing,
function maximization or minimization, feature extraction, pattern classification, function
approximation, identification and control of dynamical systems, data compression, and
so on.

Contents

A2 WHY NEURAL NETWORKS?
A2.1 Summary
A2.2 What is a neural network?
A2.3 A traditional roadmap of artificial neural network capabilities

The views presented in this chapter are those of the author and are not necessarily those of the National Science Foundation.

@ 1997 IOP Publishing Lcd and Oxford University Press Hanabok of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.1 Summary

Paul J Werbos

Abstract

See the abstract for Chapter A2.

Artificial neural networks (ANNs) are now being deployed in a growing number of real-world applications
across a wide range of industries. There are six major factors which (with varying degrees of emphasis)
explain why practical engineers and computer scientists have chosen to use ANNs:
(i) ANN solutions can now be implemented on special-purpose chips and boards which offer considerably

more throughput per dollar and more portability than conventional computers or supercomputers.
(ii) Because the brain itself is made up of neural networks, ANN designs seem like a natural way to try

to replicate brain-like intelligence in artificial systems.
(iii) ANN designs are often much easier to use than the non-neural equivalents-especially when the

conventional alternatives require first-principles models which are not well developed.
(iv) Various universal approximation theorems suggest that ANNs can usually approximate what can be

done with other methods anyway and that the approximation can be as good as desired, if one can
afford the computational cost of the accuracy required.

(v) ANN designs usually offer solutions based on ‘learning’ which can be far cheaper and faster than the
traditional approach of elaborate prior research followed by tweaking applications until they work.

(vi) The ANN literature includes designs to solve a variety of specific tasks-like function approximation,
pattern recognition, clustering, feature extraction, and a variety of novel control-related capabilities-
of importance to many applications. In many cases it provides a workable nonlinear generalization
of familiar linear methods.

Generally speaking, ANNs tend to have greater advantage when data are plentiful but prior knowledge is
limited.

Advantages (i) and (ii) follow directly from the very definition of ANNs discussed in Section A2.2. ~ 2 . 2

Advantages (v) and (vi) are not unique to ANNs; most of the algorithms used to adapt A N N s for specific
tasks can also be used to adapt other nonlinear structures, such as fuzzy logic systems or physical models
based on first principles or econometric models. For example, backpropagation-the most popular ANN
algorithm-was originally formulated in 1974 as a general algorithm, for use across a wide variety of
nonlinear systems, of which A N N s were discussed only as a special case (Werbos 1994). Backpropagation
has been used to adapt several different types of ANN, but applications to other types of structure are now
less common, because it is easier to use off-the-shelf equations or code designed for ANNs. Engineers who
wish to achieve neural-like capabilities using non-neural designs could benefit substantially by learning
about the techniques which have been developed in the neural network field, and subsequently generalized
(for example, see White and Sofge 1992, Werbos 1993).

Some ANN advocates have argued that ANNs can perform some tasks which are beyond the reach
of ‘parametric mathematics’. Some critics have argued that ANNs cannot do anything that cannot be done
just as well ‘using mathematical methods’. Both of these positions are quite naive insofar as ANNs are
simply a subset of what can be done with precise mathematics. Nevertheless, they are an interesting and
important subset, for the reasons given above.

Many of us believe that the greatest value of ANN research, in the long term, will come when we use
it to go back to the brain itself, to develop a more functional, engineering-based understanding of the brain

@ 1997 XOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 A2.1: 1

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

as an engineering device. This belief is shared even by many researchers who believe that ‘consciousness’
in the largest sense includes more than just an understanding of the brain (Levine and Elsberry 1996,
Pribram 1994).

References

Levine D and Elsbeny W (ed) 1996 Optimaliry in Biological and Artijicial Networks (Hillsdale, NJ: Erlbaum)
Pribram K (ed) 1994 Origins: Brain and Self-organization (Hillsdale, NJ: Erlbaum)
Werbos P 1993 Elastic fuzzy logic: a better fit to neurocontrol and true intelligence J. Int. Fuzzy Syst. 1 365-77
-1994 The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control: Neural, Fuzzy a d Adaptive Approaches (New
(New York: Wiley)

York: Van Nostrand)

A2.1:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.2 What is a neural network?

Paul J Werbos

Abstract

See the abstract for Chapter A2.

A2.2.1 Introduction

There are several possible answers to the question,‘What is a neural network?’ Years ago, some people
would answer the question by simply writing out the equations of one particular artificial neural network
(ANN) design. However, there are many different ANN designs, oriented towards very different kinds of
tasks. Even within the field itself few researchers appreciate how broad the range really is.

A2.2.2 The US National Science Foundation neuroengineering program: a case study

The example of the US National Science Foundation (NSF) neuroengineering program is a useful case
study of the varying motivations and concepts behind ANN research. At NSF, the decision to fund a
program in neuroengineering was motivated by two very different-looking definitions of what the field is
about. Fortunately, in practice, the two definitions ended up including virtually the same set of research
efforts. One definition was motivated by computer hardware considerations, and the other by links to the
brain.

A2.2.3 Artificial neural networks as sixth-generation computers

The neuroengineering program at NSF started out as an element of the optical technology program. It was
intended to support a vision of sixth-generation computing, illustrated in figure A2.2.1.

Most people today are very familiar with fourth-generation computing, illustrated on the left-hand side
of the figure. Ordinary personal computers and workstations are examples of fourth-generation computing.
In that scheme, there is one CPU chip inside which all the hard-core computing work is done. The CPU
processes one instruction at a time. Its capabilities map nicely into familiar computer languages like
FORTRAN, BASIC, C or SMALLTALK (in historical order). The key breakthroughs underlying fourth-
generation computing were the invention of the microchip (co-invented by Federico Faggin of CalTech)

A decade or two ago, many computer scientists became excited by the concept of massively parallel
processing (MPP) or fifth-generation computing, illustrated in the middle of the figure. In MPP, hundreds
or even millions of fully featured CPU chips are inserted into a single computer, in the hope of increasing
computational throughput a hundred-fold or a million-fold. Unfortunately, MPP computers cannot just run
conventional computer programs in FORTRAN or C in a straightforward manner. Therefore, governments
in the United States and Japan have funded a large amount of research into high-performance computing,
teaching people how to write computer programs within that subset of algorithms which can exploit the
power of these ‘supercomputers’.

In the late 1980s, researchers in optical technology came to NSF and argued that optical computing
offers the hope of computational power a thousand or even a million times larger than fifth-generation
computing. Since the computing industry is a huge industry, this claim was considered very carefully.
NSF consulted with Carver Mead-the father of VLSI-and his colleague, Federico Faggin, among others,

and the development of VLSI technology. E1.3, E1.4.3

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 A2.2: 1

Copyright © 1997 IOP Publishing Ltd

Whv Neural Networks?

p.. /T
..................... pu @*

....................... ri /CPU/

....................... @. &iJ

One chip

or

Fourth Generation Fifth Generation Sixth Generation

Figure A2.2.1. Three generations of computer hardware.

Mead and Faggin claimed that similar capabilities could be achieved in microchips, if one were willing
to put hundreds or millions of extremely simple processing units onto a single chip. Thus sixth-generation
capability could be implemented either in optical technology or in VLSI. (Michael Conrad of Wayne State
University in Detroit has studied a third alternative, using molecular computing.)

The skeptics argued that sixth-generation computers can only run an extremely small subset of all
possible computer programs. They would not represent a massive improvement in productivity for the
computing industry as a whole, because they would be useful only in a few very small niche applications.
They would not be suitable for truly generic, general-purpose computing. Carver Mead replied that the
human brain itself is based on an extremely massive parallelism, using processors which-like the elements
of optical hologram processors-perform the same 'simple' operations over and over again, without running
anything at all like FORTRAN code. The human brain appears to demonstrate very generic capabilities;
it is not just a niche machine. Therefore, he argued, sixth-generation computers should also be able to
achieve truly generic capabilities. Mead himself has made a major effort to follow through on these
opportunities (Mead 1988).

In evaluating this argument, NSF concluded that Mead's argument was essentially correct, but that
extensive research would be needed in order to convert the argument into a working engineering capability.
More precisely, they concluded that research would be needed to actually develop algorithms or designs, to
perform useful generic computational tasks consistent with the constraints of sixth-generation computing.
The neuroengineering program was initiated in 1988 to do precisely that. For the purposes of this program,
ANNs were defined as algorithms or designs of this sort.

The concept of sixth-generation hardware was largely theoretical in 1988. A few years later, there
was a great variety of experimental ANN boards and chips available; however, few of these were of
direct practical interest, because of limited throughput, reliability or availability. But by 1995, there
were a number of practical, reliable high-throughput workstations, boards and chips available on the
commercial market-boards available for $5000 or less (retail) and chips available, in some cases, at
prices under $10 (wholesale). A few examples follow. Adaptive Solutions Inc, of Beaverton, Oregon,
has sold workstations-using digital ANN chips able to implement a variety of ANN designs-which
benchmark 100 times as fast as a Cray supercomputer, on the image recognition problems which are
currently the main source of funding for the company; they also provide a FC board based on a SIMD
architecture. Accurate Automation Corporation of Chattanooga, Tennessee, sells an MIMD board which is
slower but more flexible, originally developed for control applications. HNC of San Diego, California, has
won a Babbage prize for breakthroughs in price-performance ratios in a neural-oriented array processor
workstation. Among the many interesting chips are those designed by Motorola, Adaptive Solutions, Harris
Semiconductor (motivated by NASA system identification applications) and a collaboration between Ford
Motor Company and the Jet Propulsion Laboratory of Pasadena, California. Some of the chip designers
have distributed software simulators of their designs to researchers; such simulators make it possible for

A222 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

What is a neural network?

engineering researchers, with knowledge of neural networks and applications but not of hardware as such,
to develop and test designs which could be implemented directly in hardware. One should expect even
more powerful hardware from a larger set of suppliers to be developed each year; however, the results
achieved by 1995 were already enough to make sixth-generation computing a realistic option for practical
engineers.

The implications of this are very great. Suppose that you have an existing, conventional algorithm to
perform some task like control or pattern recognition-tested on a mainframe or supercomputer. Suppose
that your algorithm is not widely used in industry, because of its cost or physical demands. (For example,
people do not put mainframes on cars or dedicated supercomputers in every workstation of a factory.) If
you develop an equivalent ANN of equal capability and complexity, then these ANN chips and boards
would make it far easier for people to actually use your work. In some applications-such as spacecraft-
chips could be sent into orbit, and then reprogrammed (virtually rewired) by telemetry, to permit a complete
updating of their functions when desired, without the need to replace hardware.

Some researchers believe in the possibility of a seventh-generation style of computing, exploiting
quantum effects such as Bell’s theorem. Most of the work in true quantum computing today is highly
abstract, with little emphasis on useful generic computing tasks; however, H John Caulfield of Alabama
A&M University has done preliminary work which might have practical implications involving optical
computing and neural networks (Caulfield 1995, Caulfield and Shamir 1992). A few further possibilities
along these lines are discussed in the author’s chapter in Levine and Elsberry (1996), and in Conrad (1994).
In general, we would expect the main computational advantage of quantum computing to involve some
exploitation of massive parallelism involving simple operations, as with optical computing; thus ANN
approaches may be crucial to practical success in quantum computing.

Most successful projects in neuroengineering do not focus at all on the chips or boards at first. They
begin with extensive simulations on PCs or workstations, along with some mathematical analysis and a
very aggressive effort to understand and assimilate designs developed elsewhere. After some success in
simulations, they proceed to tests on real-world plants or data, which they use to refine their designs and to
justify building up a more modular, flexible software system. Then, after there is success on a real-world
plant, market forces almost always encourage them to look more intensively at chips and boards.

A2.2.4 Artificial neural networks as brain-like designs or circuits

Figure A2.2.2 represents a different definition of neuroengineering-the definition used at the actual start
of the NSF program. The figure emphasizes the link to neuroscience, as well as the difference between
neuroscience and neuroengineering. In neuroscience and psychology, one tries to understand what the
capabilities of the brain actually are. Of special interest to us are the capabilities of the brain in solving
difficult computational problems important to engineering. In neuroscience, one also studies how the
circuits or architectures in the brain give rise to these capabilities.

ALGORITHM/ARCHITECTURE

APPLICATIONS THEORETICAL
EVALUATIONS

+ +
Figure A2.2.2. Neuroscience and neuroengineering. Neuroengineering tries to develop algorithms and
architectures, inspired by what is known about brain functioning, to imitate brain capabilities which are not
yet achieved by other means. By demonstrating algorithm capabilities and properties, it may raise issues
which feed back to questions or hypotheses for neuroscience.

In neuroengineering, we do something different. We try to replicate capabilities of the brain, in a
practical engineering or computational context. We try to exploit what is known about how the brain
achieves these capabilities, in developing designs which are consistent with that knowledge. (We now

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 A2.2:3

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

use the word ‘design’ rather than ‘algorithm’ to emphasize the fact that the same equations may be
implemented sometimes in software and sometimes as chip architectures.) We then test and improve these
designs, based on real-world applications, simulations, and mathematical analysis drawing on a variety of
disciplines. Finally, there can be a feedback from what we have learned, allowing us to understand the
brain in a new light, hopefully deriving new insights and designs in the process.

Even at this global level, we can see some issues which lead to diversity or even conflict in the
neural network community. There are two extreme approaches to developing ANN designs: (i) bottom-up
efforts to copy what is currently known about biological circuits directly into chips, sometimes without
engineering analysis along the way; (ii) totally engineering-based efforts, based on the idea that today’s
knowledge of the brain is very partial, and that ‘brain-like circuitry’ now requires little more than limiting
ourselves to what we could implement on sixth-generation hardware. In informal discussions, people
sometimes compare ‘paying biologists to teach engineers how to do engineering’ versus ‘paying engineers
to teach biologists how to do biology’.

The NSF program in neuroengineering emphasizes the engineering approach, because it is hard
to imagine how a purely bottom-up biological approach, without new engineering-based mathematical
paradigms, could replicate or explain something as global as ‘intelligence’ in the brain (Pribram 1994),
let alone ‘consciousness’ in the broadest sense (Levine and Elsberry 1996). Almost all of the useful basic
designs in the ANN field resulted from some sort of biological inspiration, and biology still has a great
deal to tell us; however, we have now reached the point where our ability to learn useful new things
from biology depends on the participation of people who appreciate how much has already been learned
in an engineering context. US government funding is generally available for such collaborations, but it
is difficult to locate competent proposals combining both key elements: firstly, engineers with a deep
enough understanding to be truly relevant and, secondly, wet, experimental biologists willing to take a
novel approach to fundamental issues.

Whatever the limits of today’s ANN designs, the brain still provides an existence proof that far more
is possible and that research to develop more powerful designs can, in fact, succeed.

References

Caulfield H J 1995 Optical computing benefits from quantum mechanics Laser Focus World May 181-4
Caulfield H J and Shamir J 1992 Wave particle duality processors: characteristics, requirements and applications

Conrad M 1994 Speedup of self-organization through quantum mechanical parallelism On SelfOrganization: An

Levine D and Elsberry W (eds) 1996 Optimalify in Biological and Artificial Networks (Hillsdale, NJ: Erlbaum)
Mead C 1988 Analog V U 1 and Neural Systems (Reading, MA: Addison-Wesley)
Pribram K (ed) 1994 Origins: Brain and Self-Organization (Hillsdale, NJ: Erlbaum)

J. Opt. Soc. Am. A 7 1314-23

Interdisciplinary Search for a Unifying Principle ed R K Mishra, D Maaz and E Zwierlein (Berlin: Springer)

A2.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Lid and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.3 A traditional roadmap of artificial neural network
capabilities

Paul J Werbos

Abstract

See the abstract for Chapter A2.

Practical uses of artificial neural networks (ANNs) all depend on the fact that ANNs can perform specific
computational tasks important to engineering or to other economic sectors. Unfortunately, popularized
accounts of ANNs often make it sound as though ANNs only perform one or two fundamental tasks, and
that the rest is ‘mere application’. This is highly misleading.

In 1988, a broad survey of ANNs would have shown the existence of three basic types of design,
still in use today:
(i) hard-wired designs to perform highly specific, concrete tasks, such as image preprocessing by a EI

‘silicon retina’;
(ii) designs to perform static or combinatorial optimization-the minimization or maximization of a ~ 1 . 3

complicated function of many variables;
(iii) designs based on learning, where the weights or parameters of an ANN are adjusted or adapted over ~3

time, so as to permit the system to perform some kind of generic task over a wide range of possible
applications.

Learning designs now account for the bulk of the field, but the other two categories still merit some
discussion

A2.3.1 Hard-wired designs

The hard-wired designs usually try to mimic the details of some brain circuit, complete with all the
connections and all the parameters as they exist in an adult brain without further learning. Major
examples would be ‘silicon retinas’ (used for preprocessing images, as in Mead 1988), ‘silicon cochleas’
(for preprocessing speech data), and artificial controllers for hexapod robots modeled on studies of the
cockroach. Grossberg, like Mead, has put major efforts into developing something like a silicon retina, of
great interest to the US Navy, by building on more detailed biological research in his group (Gaudiano
1992).

Even the brain itself uses relatively fixed preprocessors and postprocessors, to simplify the job of
the higher centers, based on millions of years of evolution and experience with certain very specific,
concrete tasks. Most of the current work on wavelets-which are often used as preprocessors coming
before ANNs-could be seen as belonging to this category; however, even wavelet analysis can be made
adaptive using neural network methods (Szu et a1 1992).

A2.3.2 Static optimization

Years ago, static optimization based on Hopfield networks accounted for perhaps a quarter of all efforts ~ i . 3 , ~ 1 . 3
towards ANN applications. (Grossberg had discussed the same class of network in earlier years, but
Hopfield proposed its use on optimization problems. See the chapter by Hopfield in Lau (1992).) The
key idea here was that Hopfield networks always settle down into a (local) minimum of some ‘energy’

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 A2.3:1

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

function, a function which depends on the weights in the network. By choosing the weights and the
transfer functions in a clever manner, the user can make the network minimize some desired function
of many inputs. This idea was especially natural for people trying to minimize quadratic functions of
many variables with constraints. For example, many researchers envisaged using Hopfield networks to
maximize very complex likelihood functions taken from image segmentation and image analysis research;
they envisaged high-quality segmentation on a chip.

This approach worked very well on toy problems, including toy versions of the traveling salesman
problem; however, it encountered great difficulty in scaling up to problems of more realistic scale. With
larger problems, there were issues of numerical efficiency and the difficulty of finding a ‘good’ energy
function. Even with smaller problems, these kinds of networks frequently have many, many local minima
or ‘attractors’. At present, people in industry facing very large static optimization problems still tend to use
classical methods; see the chapter by Shanno in Miller et a1 (1990). When there are many local minima,
it was popular a few years ago to use simulated annealing or modifications of the Hopfield network (such
as Szu’s ‘Cauchy machine’, Scheff and Szu 1987) to provide a kind of random element to help the system
escape from local minima. Currently, it is more popular to use genetic algorithms for this purpose.

Unfortunately, genetic algorithms also have difficulties in scaling to larger problems (except when
there is a special structure present). There has been a lot of discussion of ANN-genetic hybrids, which
could help overcome the scaling problem, but the author is not aware of any large-scale applications to
static optimization problems or of any hybrid designs which are truly suitable for this purpose. In any
case, it seems very unlikely that neural circuits in the brain would use this particular way of injecting
noise. For a credible alternative view of these issues, see the work of Michael Conrad of Wayne State
University (Conrad 1993, 1994, Smalz and Conrad 1994).

Many researchers believe that Hopfield networks or Hopfield-like networks could perform much better
in optimization, if only the users of these networks could be more ‘clever’, somehow, in specifying their
weights or connections. But from a practical point of view, it is probably not realistic to demand higher
levels of ‘cleverness’ than engineers have displayed in past efforts to use these networks. Fortunately, it
is not necessary to rely on cleverness alone when solving large problems. For example, methods which
make some use of Kohonen’ s feature-extraction ANNs have demonstrated accuracy comparable to that of
classical methods on a number of large-scale routing and optimization problems; see the chapter by El
Ghaziri in Kohonen et a1 (1991). Clearly this approach is worthy of further pursuit.

More generally, it is possible to use learning methods to derive useful weights in a more reliable
~ 3 . 3 . 1 manner for Hopfield networks. When Hopfield networks are adapted by use of the well known Hebbian

methods, they act as associative memories, which are not suitable for solving complex optimization
problems, However, it is also possible to adapt them so as to minimize error and solve problems
which cannot be solved by more popular feedforward networks. Hopfield networks are a special case
of simultaneous recurrent networks (SRNs). See White and Sofge (1992), Chapter 3, and Werbos (1993)
for relatively straightforward discussions of how to adapt the weights in such networks so as to minimize
error. This is a promising area for future research, but the author is not aware of any working examples
as yet in static optimization.

In summary, there are several examples of state-of-the-art performances on large problems by
Kohonen-related networks. There is reason to hope for better performance and reliability with Hopfield-like
networks in the future, with further research exploiting learning and noise injection.

A2.3.3 Designs based on learning

The vast bulk of the neural network field today is based on designs which learn to perform tasks over time.
Learning can be used to solve extremely complex problems, especially when the human user understands
the art of learning in stages, using a schedule of related tasks of increasing difficulty.

Many authors have argued that ‘intelligence’ in the true sense of the word can never be achieved by
simply expanding our library of computational algorithms tailored to narrow, application-specific tasks.
Instead, ‘intelligence’ implies the ability of a computational system to learn the algorithms itself, from
experience, based on generalized learning principles which can be used in a wide variety of applications.
Many authors have argued at length that a deeper understanding of learning must be the foundation of any
really scientific explanation of intelligence (Hebb 1949, F’ribram 1994, Werbos 1994).

But what kinds of generic tasks can ANNs learn to perform? The ANN field has traditionally used a
three-fold taxonomy to describe these tasks:

A2.3:2 Handbook of Neural Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A traditional roadmap of artificial neural network capabilities

0 Supervised learning
0 Unsupervised learning
0 Reinforcement learning.
In all three areas, there is a traditional choice between two modes of learning:

0

0

‘off-line learning’, where all the observations in a database of ‘training data’ are analyzed together,
simultaneously;
‘on-line learning’, where data are fed into the network one observation at a time. The weights or
parameters in the network are changed after each observation, but there is no other record kept of the
observation. The system then goes on to the next observation, and so on.

A2.3.3.1 Supervised learning

Intuitively, in on-line mode, supervised learning works as follows. Whenever we make an observation, 8 3 . 1

we first see a set (or vector) of input values X. We plug in these values as inputs to our ANN and
then calculate the outputs of the ANN using the weights or parameters inherited from before. Then, in
the training period, we also obtain a specification of exactly what the outputs of the ANN should have
been for that observation. (For example, the inputs might represent the pixels of an image containing a
handwritten digit; the desired output might be a coded representation of the correct classification of the
digit.) We then adjust the weights of the ANN so as to make its actual output more like the desired output
in the future (see figure A2.3.1).

Figure A2.3.1. The supervised learning task.

Many researchers will immediately recognize the similarity between this figure and the well
established, well known method called multiple regression or ordinary least squares. As in multiple
regression, supervised learning tries to estimate a set of weights which represent the relationship between
the input variables X and the dependent or target variables Y, but supervised learning looks for the
best nonlinear relationship, not just the best linear relationship. It uses ANN forms which are capable
of approximating any smooth nonlinear relationship (Barron 1993). Also, it offers numerical techniques
which are faster than those generally used in statistics. Conventional statistics normally use the offline
mode; however, the on-line mode is more useful in many applications.

Nevertheless, the theoretical issues involved in supervised learning (apart from learning speed) are
indeed quite close to those in statistics. The best current research in supervised learning draws heavily
on the literature in statistics-including the literature on issues like robustness and multicolinearity, which
are neglected all too often in conventional statistical analysis.

Computer tools for supervised learning are now very widespread, though of varying quality. Most of
the real-world applications of ANNs today are based at least in part on supervised learning. Supervised
learning may be thought of as a tool for function approximation, or as a tool for statistical pattern
recognition. Former post office officials have told me that all of the best ZIP-code recognizers today
use fairly standard ANNs for digit recognition. This is a remarkable achievement in such a short time,
relative to a field (statistical pattern recognition) which had already been highly developed and intensively
funded long before ANNs became widely known. Also, this is far from an isolated example; fortunately,
there are other sections in this handbook which review some of the many, many applications in this

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compuiution release 9711 A2.3:3

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

category. There is substantial opportunity to develop even better designs for supervised learning (Werbos
1993), but the tools available today are already quite useful.

A2.3.3.2 Unsupervised learning

On the other hand, supervised learning is clearly absurd as a model of what the human brain does as a
whole system. There is no one telling us exactly what to do with every muscle of our body every moment

~ 3 . 1 of the day. The term unsupervised learning was coined in the 1980s to describe ANN designs which do
not require that kind of detailed guidance or feedback.

Whenever we make an
observation, we first see a vector of input values X. We plug these values in as inputs to our ANN,
calculate the outputs of our ANN using weights inherited from before, then adapt or adjust the weights
without using any external information about how ‘good’ the outputs were.

From an engineering viewpoint, supervised learning is a well defined task-the task of matching
or predicting some externally-specified target variables. Unsupervised learning as such is not a well
defined task. Some of the designs used in unsupervised learning originated as biological models, models
which were formulated well before their value as computational systems was known; fortunately, many of
these designs did turn out to have important ‘emergent properties’, computational capabilities which were
discovered only after the models were studied further (see Pribram 1994 for more elaborate discussions
of the related concepts of self-organization, chaos and so on).

As a practical matter, unsupervised learning includes useful designs to perform a variety of tasks-
c1.3, F1.4 most notably, feature extraction, clustering and associative memory. In feature extraction, one maps an

input vector X into another vector R, which tries to represent the same useful information in a more useful
form-usually a more compact form. If the vector R does have fewer components than the original input
vector, then this can be used as a data compression scheme. In any event, it can also be used to provide
more useful, more tractable input either to a supervised learning scheme or to some other downstream
information processor. Clustering offers similar benefits.

Some of the ANN designs for clustering and feature extraction are based more on experimentation
and intuition than on mathematical theory. However, classical methods for clustering, found in standard
statistical packages, are usually even more ad hoc in nature; they tend to require arbitrary choices of distance
measures and sequencing (Duda and Hart 1975). At least some of the ANN designs do provide something
like adaptive distance measures to permit a more rational clustering strategy, which is occasionally useful.

Some of the ANN designs for feature extraction are equivalent (in the limit) to conventional principal
components analysis (PCA), the most popular classical method for data-based feature extraction. However,
PCA itself is a linear design, and it does not represent a true stochastic model (Joreskog and Sorbom
1984). There is another class of ANN design which is truly nonlinear, but approximates PCA in the
linear special case; we might say that these ‘autoassociator’ designs are the nonlinear generalization
of PCA (Werbos 1988, Hinton and Beckman 1990, Fleming and Cottrell 1990). These designs have
performed reasonably well in moderate-sized applications like diagnostics in aerospace vehicles and
chemical plants; however, they have not performed as well in complex data compression applications,
and the issue of statistical consistency is a concern, There are other ANN designs-like Kohonen’s

cz.i.1 self-organizing maps (see Kohonen in Lau 1992) and the stochastic encoderldecoderlpredictor (White and
Sofge 1992, Chapter 13)-which are firmly rooted in stochastic analysis; they may be viewed as nonlinear
generalizations of factor analysis, which is the standard method used by statisticians to model the structure
of probability distributions for vectors containing many continuous variables (Joreskog and Sorbom 1984).
Both of these have had significant real-world applications, but the details are proprietary in the cases I am
most familiar with.

The distinction between supervised and unsupervised systems has been confused at times in the
literature, in part because of confusion between systems and subsystems, and in part because of cultural

CZ.Z.I differences within the field. For example, there is a design called ARTMAP which is used to perform
supervised learning tasks, using components based on unsupervised learning designs; the system as a
whole is worthy of evaluation in the context of supervised learning-because it is a competitor in that
market-even though its components are unsupervised (Carpenter et a1 1992). Heteroassociative memories
are similar. On the other hand, the autoassociators mentioned above use a supervised learning approach
on the inside in order to solve a problem in unsupervised learning; the design as a whole is unsupervised.
The human brain itself clearly has a structure of modules and submodules which is far more complex

Intuitively, in online mode, unsupervised learning works as follows.

A2.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A traditional roadmap of artificial neural network capabilities

than anything which has ever been implemented as an ANN; thus it would not be surprising if the brain
included supervised components as part of a more complex architecture.

A2.3.3.3 Reinforcement learning

Many of us believe that the concept of unsupervised learning is just as absurd as the concept of supervised
learning, as a description of what the brain does as a whole system. Intermediate between supervised
learning and unsupervised learning is another classical area called reinforcement learning, illustrated in c3
figure A2.3.2.

U

Y

Figure A2.3.2. The reinforcement learning task. (From Miller et a1 1990 with permission of MIT Press.)

Intuitively, in online mode, reinforcement learning works as follows. When we make an observation,
we first see a vector of inputs, X. We plug X into our ANN, calculate the outputs of the ANN, then
obtain from the outside a global evaluation U of how good the outputs were. Instead of obtaining total
feedback (as in supervised learning) or no feedback (as in unsupervised learning), we obtain a moderate
degree of feedback. In the modern formulation of reinforcement learning, it is also assumed that U (t) at
time t will depend on the observed variables X, which in turn depend on actions taken at an earlier time;
the goal is to maximize U over future time, accounting for the impact of present actions on future U .
An example of such a system might be an ANN which learns how to operate a factory so as to maximize
profit over time, or to minimize fuel consumption or pollution or a weighted sum of both.

In figure A2.3.2, we see a cartoon figure representing our ANN system. The cartoon figure has
control over certain levers, forming a vector U, and gets to see certain input information X. The cartoon
figure starts out with no knowledge about the causal relationships between U, X and U . Its job is to
learn these relationships, and come up with a strategy of action which will maximize the reward criterion
U over time. This is the problem or task of reinforcement learning. Reinforcement learning maps very
well into many serious theories and models of human and animal behavior (Levine and Elsberry 1996). It
also maps directly into the problem of optimizing pe$ormance over time, a fundamental task considered
in modern control theory and decision analysis. Modern work on reinforcement learning has modified
the definition of the problem very slightly, to allow for knowledge of U as a function of X, for reasons
beyond the scope of this section. Some of the very largest, socially important applications of ANNs have
come precisely in this area.

Reinforcement learning should not be interpreted as an alternative way to perform supervised learning
tasks. Rather, it is a large collection of alternative designs aimed at performing a dzfferent task. These
designs typically contain components which are supervised, but the designs as a whole are neither
supervised nor unsupervised.

Reinforcement learning is only one example-though perhaps the most important example-of neural
network designs for control. Problems in decision and control can be resolved into a number of specific
tasks-including prediction over time or system identification by ANN-which are just as fundamental,
in their own way, as the task of supervised learning. In the last few years, there has been a tremendous
growth in research, developing new generic designs for use on these generic tasks. Decision and control

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 A2.3:5

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

may itself be seen as a kind of integrating framework-like the human brain itself-which encourages us
to combine a wide variety of subtasks and components into a single system, which serves as a unifying
framework. This requirement for unification and integration is one of the key factors which distinguishes
the ANN approach from earlier styles of research.

References

Barron A R 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Info. Theory
39 930-45

Carpenter G A, Grossberg S, Markuzon N, Reynolds J H and Rosen D B 1992 Fuzzy ARTMAP: a neural network
architecture for incremental supervised leaming of analog multidimensional maps IEEE Trans. Neural Networks
3 698-7 13

Conrad M 1993 Emergent computation through self-assembly Nanobiology 2 5-30
Conrad M 1994 Speedup of self-organization through quantum mechanical parallelism On Self-organization: An

Duda R 0 and Hart P E 1975 Pattern Classification and Scene Analysis (New York: Wiley)
Fleming M K and Cottrell G W 1990 Categorization of faces using unsupervised feature extraction Proc. Int. Joint

Cant on Neural Networks (San Diego, CA) (New York: IEEE Press) p 11-65-70
Gaudiano P 1992 A unified neural network model of spatiotemporal processing in A and Y retinal ganglion cells 11:

temporal adaptation and simulation of experimental data Biol. Cybern. 67 23-34
Hebb D 0 1949 The Organization of Behavior (New York: Wiley)
Hinton G E and Beckman S 1990 An unsupervised leaming procedure that discovers surfaces in random-dot

stereograms Proc. Int. Joint Con5 on Neural Networks (Washington, DC) (Hillsdale, NJ: Erlbaum) 1-218-222
Joreskog K G and Sorbom D 1984 Advances in Factor Analysis and Structural Equation Models (Lanham, MD:

University Press of America). See also the classic but out-of-print text by Maxwell and Lawley Factor Analysis
as Maximum Likelihood Method

Kohonen T, Makisara K, Simula 0 and Kangas J (eds) 1991 Art$cial Neural Networks vol 1 (New York: North-
Holland)

Lau C G (ed) 1992 Neural Networks: Theoretical Foundations and Analysis (New York: IEEE Press)
Levine D and Elsberry W (eds) 1996 Optimality in Biological and Artificial Networks (Hillsdale, NJ: Erlbaum)
Mead C 1988 Analog V U 1 and Neural Systems (Reading, MA: Addison-Wesley)
Miller W T, Sutton R and Werbos P (eds) 1990 Neural Networks for Control (Cambridge, MA: MIT Press)
Pribram K (ed) 1994 Origins: Brain and Self-Organization (Hillsdale, NJ: Erlbaum)
Scheff K and Szu H 1987 1-D optical Cauchy machine infinite film spectrum search Proc. IEEE Int. Conf on Neural

Smalz R and Conrad M 1994 Combining evolution with credit apportionment: a new leaming algorithm for neural

Szu H H, Telfer B and Kadambe S 1992 Neural network adaptive wavelets for signal representation and classification

Werbos P 1988 Backpropagation: past and future Proc. Int. Con$ on Neural Networks (New York: IEEE Press)

-1993 Supervised leaming: can it escape its local minimum Proc. WCNN93 (Hillsdale, NJ: Erlbaum)
-1994 The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control: Neural, Fuuy and Adaptive Approaches (New

Interdisciplinary Search for a Unifying Principle ed R K Mishra, D Maaz and E Zwierlein (Berlin: Springer)

Networks (New York: IEEE Press)

nets Neural Networks 7 341-51

Opt. Eng. 31 1907-16

1-343-353

(New York: Wiley)

York: Van Nostrand)

A2.3:6 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

PART B

FUNDAMENTAL CONCEPTS OF NEURAL
COMPUTATION

B1 THE ARTIFICIAL NEURON
Michael A Arbib
B 1.1
B 1.2 The McCulloch-Pitts neuron
B 1.3 Hopfield networks
B 1.4
B 1.5 Pattern recognition
B1.6
B1.7 Variations on a theme

Neurons and neural networks: the most abstract view

The leaky integrator neuron

A note on nonlinearity and continuity

B2 NEURAL NETWORK TOPOLOGIES
B2.1

B2.2

B2.3

B2.4

B2.5

B2.6

B2.7

B2.8

B2.9

Introduction
Emile Fiesler
Topology
Emile Fiesler
Symmetry and asymmetry
Emile Fiesler
High-order topologies
Emile Fiesler
Fully connected topologies
Emile Fiesler
Partially connected topologies
Emile Fiesler
Special topologies
Emile Fiesler
A formal framework
Emile Fiesler
Modular topologies
Massimo de Francesco

B2.10 Theoretical considerations for choosing a network topology
Maxwell B Stinchcombe

B3 NEURAL NETWORK TRAINING
James L Noyes
B3.1 Introduction
B3.2
B3.3 Learning rules
B3.4 Acceleration of training
B3.5 Training and generalization

Characteristics of neural network models

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

B4 DATA INPUT AND OUTPUT REPRESENTATIONS
Thomas 0 Jackson
B4.1 Introduction
B4.2 Data complexity and separability
B4.3
B4.4 Data preprocessing techniques
B4.5 A ‘case study’ review
B4.6 Data representation properties
B4.7 Coding schemes
B4.8 Discrete codings
B4.9 Continuous codings
B4.10 Complex representation issues
B4.11 Conclusions

The necessity of preserving feature information

B5 NETWORK ANALYSIS TECHNIQUES
B5.1 Introduction

B5.2

B5.3 Designing analyzable networks

Russell Beale
Iterative inversion of neural networks and its applications
Alexander Linden

Stephen P Luttrell

B6 NEURAL NETWORKS: A PATTERN RECOGNITION PERSPECTIVE
Christopher M Bishop
B6.1 Introduction
B6.2 Classification and regression
B6.3 Error functions
B6.4 Generalization
B6.5 Discussion

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

B1

The Artificial Neuron

Michael A Arbib

Abstract

This chapter first describes the basic structure of a single neural unit, briefly relating
it to the general notion of a neural network. The interior workings of simple artificial
neurons+xpecially the discrete-time McCulloch-Pitts neuron and continuous-time leaky
integrator neuron-are then presented, including the general properties of threshold
functions and activation functions. Finally, we briefly note that there are many alternative
neuron models available.

Contents

B1 THE ARTIFICIAL NEURON
B1.l
B 1.2 The McCulloch-Pitts neuron
B 1.3 Hopfield networks
B1.4 The leaky integrator neuron
B 1.5 Pattern recognition
B1.6
B1.7 Variations on a theme

Neurons and neural networks: the most abstract view

A note on nonlinearity and continuity

Much of this chapter is based on the author’s overview article ‘Part I-Background’ in The Handbook of Brain Theory and Neural
Networks edited by M A Arbib, Cambridge, MA: A Bradford BooIuThe MIT Press (1995).

@ 1997 IOP Publishing Ltd and Oxford University Ress HanaBook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

B1.l Neurons and neural networks: the most abstract
view

Michael A Arbib

Abstract

See the abstract for Chapter B1.

There are many types of artificial neuron, but most of them can be captured as formal objects of the kind
shown in figure B1.l.l. There is a set X of signals which can be carried on the multiple input lines X I ,

. . . , x, and single output line y . In addition, the neuron has an internal state s belonging to some state
set S.

n

Figure B1.1.1. A ‘generic’ neuron, with inputs XI, . . . , x,, output y , and internal state s.

A neuron may be either discrete-time or continuous-time. In other words, the input values, state and
output may be given at discrete times t E Z = {0, 1,2,3, . . ,}, say, or may be given at all times t in some
interval contained in the real line R. A discrete-time neuron is then specified by two functions which
specify (i) how the new state is determined by the immediately preceding inputs and (in some neuron
models, but by no means all) the previous state, and (ii) how the current output is to be ‘read out’ from
the current state:

The next-state-function f : X” x S + S , s (t) = f (x l (t - l), . . . , xn(t - l), s (t - 1)); and
The outputfunction g : S + Y , y (t) = g (s (t)) .

As we shall see in later sections, popular choices take the signal-set X to be either a binary set-{O, 1)
is the ‘classical choice’, though physicists, inspired by the ‘spin-glass’ analogy, often use the spin-down,
spin-up set denoted by {-I, + l } - o r an interval of the real line, such as [0, I]; while the state-set is often
taken to be E% itself. A continuous-time neuron is also specified by two functions f : X ” x S --f S, and
g : S +- Y , y (t) = g(s(t)) , but now f serves to define the rate of change of the state, that is, it provides
the right-hand side of the differential equation which defines the state dynamics:

Clearly, S at least can no longer be a discrete set. A popular choice is to take the signal-set X to be
an interval of the real line, such as [0, 11, and the state-set to be R itself.

The focus of this chapter will be on motivating and defining some of the best known forms for f
and g. But first it is worth noting that the subject of neural computation is not interested in neurons as

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computurion release 9711 B 1.1 : 1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

input

lines

--b

-+ output

lines

Figure B1.1.2. A neural network viewed as a system (continuous-time case) or automaton (discrete-time
case). The input at time t is the pattem on the input lines, the output is the pattem on the output lines; and
the intemal state is the vector of states of all neurons of the network.

ends in themselves but rather in neurons as units which can be composed into networks. Thus, both as
background for later chapters and as a framework for the focused discussion of individual neurons in this
chapter, we briefly introduce the idea of a neural network.

We first show how a neural network comprised of continuous-time neurons can also be seen as a
continuous-time system in this sense. As typified in figure B1.1.2, we characterize a neural network by
selecting N neurons and by taking the output line of each neuron, which may be split into several branches
carrying identical output signals, and either connecting each branch to a unique input line of another neuron
or feeding it outside the network to provide one of the N L network output lines. Then every input to a
given neuron must be connected either to an output of another neuron or to one of the (possibly split)
N1 input lines of the network. Then the input set X of the entire network is RN1, the state set Q = WN,
and the output set Y = W N L . If the ith output line comes from the j th neuron, then the outputfunction
is determined by the fact that the ith component of the output at time t is the output gj(sj(t)) of the j th
neuron at time t. The state transitionfunction for the neural network follows from the state transition
functions of each of the N neurons

as soon as we specify whether xij(t) is the output of the kth neuron or the value currently being applied
on the lth input line of the overall network.

Turning to the discrete-time case, we first note that, in computer science, an automaton is a discrete-
time system with discrete input, output and state spaces. Formally, we describe an automaton by the sets X ,
Y and Q of inputs, outputs and states, respectively, together with the next-statefunction 6 : Q x X --f Q
and the output function @ : Q --f Y . If the automaton is in state q and receives input x at time t,
then its next state will be S(q, x) and its next output will be @(q). It should be clear that a network
like that shown in figure B1.1.2, but now a discrete-time network made up solely from discrete-time
neurons, functions like a finite automaton, as each neuron changes state synchronously on each tick of
the time-scale t = 0, 1 ,2 ,3 , . , . . Conversely, it can be shown (see e.g. Arbib 1987, Chapter 2-that the
result was essentially, though inscrutably, due to McCulloch and Pitts 1943) that any finite automaton
can be simulated by a suitable network of discrete-time neurons (even those of the ‘McCulloch-Pitts
type’ defined below). Although we can define a neural network for the very general notion of ‘neuron’
shown in figure B1.l.l, most artificial neurons are of the kind shown in figure B1.1.3 in which the input
lines are parametrized by real numbers. The parameter attached to an input line to neuron i that comes
from the output of neuron j is often denoted by wij, and is referred to by such terms as the strength or

~ 3 . 3 synaptic weight for the connection from neuron j to neuron i . Much of the study of neural computation
is then devoted to finding settings for these weights which will get a given neural network to approximate
some desired behavior. The weights may either be set on the basis of some explicit design principles,

~ 3 . 3 or ‘discovered’ through the use of learning rules whereby the weight settings are automatically adjusted
‘on the basis of experience’. But all this is meat for later chapters, and we now return to our focal aim:

B 1.1 :2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neurons and neural networks: the most abstract view

introducing a number of the basic models of single neurons which ‘fill in the details’ in figure B1.1.3. As
described in Section A1.2, there are radically different types of neurons in the human brain, and further ~ 1 . 2

variations in neuron types of other species.

Figure B1.1.3. A neuron in which each input xi passes through a ‘synaptic weight’ or ‘connection strength’
W i .

Dendrites Soma Axon with branches and
synaptic terminals

Figure B1.1.4. The ‘basic’ neuron. The soma and dendrites act as the input surface; the axon cames the
output signals. The tips of the branches of the axon form synapses upon other neurons or upon effectors.
The arrows indicate the direction of information flow from inputs to outputs.

In neural computation, the artificial neurons are designed as variations on the abstractions of brain
theory and implemented in software, VLSI, or other media. Figure B1.1.4 indicates the main features ~ 1 . 3 , ~ 1 . 4 . 3

needed to visualize biological neurons. We divide the neuron into three parts: the dendrites, the soma
(cell body) and a long fiber called the axon whose branches form the axonal arborization. The soma
and dendrites act as input surface for signals from other neurons and/or input devices (sensors). The
axon carries ‘spikes’ from the neuron to other neurons and/or effectors (motors, etc). Towards a first
approximation, we may think of a ‘spike’ as an all-or-none (binary) event; each neuron has a ‘refractory
period’ such that at most one spike can be triggered per refractory period. The locus of interaction between
an axon terminal and the cell upon which it impinges is called a synapse, and we say that the cell with
the terminal synapses upon the cell with which the connection is made.

References

Arbib M A 1987 Brains, Machines and Mathematics 2nd edn (Berlin: Springer)
McCulloch W S and Pitts W H 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.

5 115-33

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Compururion release 9711 B 1.1 :3

Copyright © 1997 IOP Publishing Ltd

B1.2 The McCulloch-Pitts neuron

Michael A Arbib

Abstract

See the abstract for Chapter BI .

The work of McCulloch and Pitts (1943) combined neurophysiology and mathematical logic, modeling
the neuron as a binary discrete-time element. They showed how excitation, inhibition and threshold might
be used to construct a wide variety of ‘neurons’. It was the first model to squarely tie the study of
neural networks to the idea of computation in its modern sense. The basic idea is to divide time into
units comparable to a refractory period (assumed to be the same for each neuron) so that in each time
period at most one spike can be initiated in the axon of a given neuron. The McCulloch-Pitts neuron
(figure B1.2.l(a)) thus operates on a discrete time-scale, t = 0, 1 ,2 ,3 , We write y (t) = 1 if a spike
does appear at time t , y (t) = 0 if not. Each connection or synapse, from the output of one neuron to
the input of another, has an attached weight. Let wi be the weight on the ith connection onto a given
neuron. We call the synapse excitatory if wi > 0, and inhibitory if wi < 0. We also associate a threshold
8 with each neuron, and assume exactly one unit of delay in the effect of all presynaptic inputs on the
cell’s output, so that a neuron ‘fires’ (i.e. has value 1 on its output line) at time t only when the weighted
values of its inputs at time t are at least 8. Formally, if at time t - 1 the value of the ith input is xi($ - 1)
and the output one time step later is y(t) , then

y (t) = 1 if and only if wixi(t - 1) 3 8 .
i

To place this definition within our general formulation, we note that the state of the neuron at time t
does not depend on the previous state of the neuron itself, but is simply s (t) = xi wixi(t - l) , and that
the output may be written as y (t) = g(s(t)), where g is now the thresholdfunction

g(s) = H (s - 8) which equals 1 iff s 2 8

where H is the Heaviside (unit step) function, with H (x) = 1 if x 2 0, but H (x) = 0 if x < 0.
Figures B1.2.l(b)-(d) show how weights and threshold can be set to yield neurons which realize

the logical functions AND, OR and NOT. As a result, McCulloch-Pitts neurons are sufficient to build
networks which can function as the control circuitry for a computer carrying out computations of arbitrary
complexity. This discovery played a crucial role in the development of automata theory and in the study
of learning machines (see Arbib 1987 for a detailed account of this relationship). In neural computation,
the McCulloch-Pitts neuron is often generalized so that the input and output values can lie anywhere in
the range [0, 11 and the function g (s (t)) which yields y (t) is a continuously varying function rather than
a step function. In this case we call g the activationfunction of the neuron; g is usually taken to be a
sigmoidfunction, that is, g : W + [0, 11 is continuous and monotonically increasing, with g(-oo) = 0 ~ 3 . 2 . 4
and g(oo) = 1 (and, in some studies, with the additional property that it has a single inflection point).
Two popular sigmoidal functions are

1
1 + exp(-s/e)

and ;(I + tanh(s)) .

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computution release 9711 B 1.2:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

X*Y 1
-1

Figure B1.2.1. (a) A McCulloch-Pitts neuron operating on a discrete time-scale. Each input has an
attached weight wi, and the neuron has a threshold 6’. The neuron ‘fires’ at time t + 1 if the weighted
values of its inputs at time t are at least 6’. Settings of weights and threshold for neurons that function (b)
as an AND gate (the output fires if x1 and x2 both fire), (c) an OR gate (the output fires if XI or x2 or both
fire), and (d) a NOT gate (the output fires if XI does NOT fire).

References

Arbib M A 1987 Bruins, Machines and Mathematics 2nd edn (Berlin: Springer)
McCulloch W S and Pitts W H 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.

5 115-33

B 1 2 2 Handbook of Neural Computation release 9711 @ 1597 IOP Publishing Lul and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B1.3 Hopfield networks

Michael A Arbib

Abstract

See the abstract for Chapter BI .

Hopfield (1982) contributed much to the resurgence of interest in neural networks in the 1980s by
associating an energyfunction with a network, showing that if only one neuron changed state at a time (the
so-called asynchronous update), a symmetrically connected network would settle to a local minimum of the
energy, and that many optimization problems could be mapped to energy functions for symmetric neural
networks. Based on this work, many papers have used neural networks to solve optimization problems
(Hopfield and Tank 1985). The basic idea, given a criterion J to be minimized, is to find a Hopfield
network whose energy function E approximates J , then let the network settle to an equilibrium and read
off a solution from the state of the network. The study of optimization is beyond the scope of this chapter,
but it will be worthwhile to understand the notion of network ‘energy’.

In a McCulloch-Pitts network, every neuron processes its inputs to determine a new output at each time 81.2

step. By contrast, a Hopfield network is a network of such units with (a) symmetric weights (wij = wji) ci.3.4
and no self-connections (wii = 0), and (b) asynchronous updating. For instance, let si denote the state
(0 or 1) of the ith unit. At each time step, pick just one unit at random. If unit i is chosen, Sj takes the
value 1 if and only if wijsj 2 ei. Otherwise si is set to 0. Note that this is an autonomous (input-free)
network: there are no inputs (although instead of considering 8i as a threshold we may consider -ei as a
constant input, also known as a bias). Hopfield defined a measure called the energy for such a network,

This is not the physical energy of the neural network, but a mathematical quantity that, in some ways, does
for neural dynamics what the potential energy does for Newtonian mechanics. In general, a mechanical
system moves to a state of lower potential energy. Hopfield showed that his symmetrical networks with
asynchronous updating had a similar property. For example, if we pick a unit and the foregoing firing
rule does not change its s i , it will not change E. However if si initially equals 0, and wijs, 2 8i then
si goes from 0 to 1 with all other s, constant, and the ‘energy gap’, or change in E , is given by

A E = - ; C (w i j s j + wjis j) + ei
i

= - wijsjsj + B i , by symmetry
j

< o s i n c e C wijsj 2 e, .
Similarly, if Si initially equals 1, and W i j S j < Oi then si goes from 1 to 0 with all other Sj constant,

and the energy gap is given by
A E = x w i j s j - O j < O .

In other words, with every asynchronous update, we have A E 5 0. Hence the dynamics of the
network tends to move E towards a minimum. We stress that there may be different such states-they
are local minima-just as, in figure B1.3.1, both D and E are local minima (each of them is lower than

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 97/1 B 1.3:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

Basin of

C

Figure B1.3.1. An energy landscape: For a ball rolling on the ‘hillside’, point A is an unstable equilibrium,
point B lies in a region of neutral equilibrium, and point C is a point of stable equilibrium. Point C is
called an attractor: the basin ofattraction of C comprises all states from which the ball’s dynamics tend
toward C.

any ‘nearby’ state) but not global minima (since C is lower than either of them). Global minimization is
not guaranteed.

The expression just presented for A E depends on the symmetry condition, wij = wji , for, without
this condition, the expression would instead be A E = -1 c j (wi j s j + wjisj) +@. In this case, Hopfield’s
updating rule would not yield a passage to the energy minimum, but might instead yield a limit cycle,
which could be useful in, for example, controlling rhythmic behavior. In a control problem, a link wi,
might express the likelihood that the action represented by i would precede that represented by j , in which
case wi, = wji is normally inappropriate.

The condition of asynchronous update is crucial, too. If we consider the simple ‘flip-flop’ with
w12 = w21 = 1 and 81 = 62 = 0.5, then the McCulloch-Pitts network will oscillate between the
states (0, 1) and (1, 0) or will sit in the states (0, 0) or (1, 1); in other words, there is no guarantee
that it will converge to an equilibrium. we have
E(0,O) = 0, E(0, 1) = E(1,O) = 0.5 and E(l , 1) = 0, and the Hopfield network will converge to
the minimum at either (0, 0) or (1, 1).

However, with E = -; Cij S i S j W i j + E,.

References

Hopfield J 1982 Neural networks and physical systems with emergent collective computational properties Proc. Natl

Hopfield J and Tank D W 1985 Neural computation of decisions in optimization problems B i d . Cybem. 52 141-52
Acud. Sci., USA 19 2554-8

B 1.3:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B1.4 The leaky integrator neuron

Michael A Arbib

Abstract

See the abstract for Chapter B1.

The simplest continuous-time model of the neuron in frequent use is the leaky integrator model, which
has become popular in the simpler applications of neural networks which choose analog VLSZ for their ~ 1 . 3

implementation. The leaky integrator model uses the 'firing rate' (to mimic the biological measure of the
number of spikes traversing the axon in some recent interval: but the artificial neuron need not involve
any explicit spike generation) as a continuously varying output measure of the cell's activity, in which the
internal state of the neuron is described by a single variable, the 'membrane potential' (another biological
term with no implications for how this value should be stored in digital or analog circuitry). The firing rate
is approximated by a simple, sigmoidal function of the membrane potential. That is, for this continuous-
time neuron, the state is just the membrane potential, and the activation function g converts the membrane ~ 3 . 2 . 4

potential m to the firing rate g(m) which increases from 0 to its maximum value, 1 say, as m increases
from -cc to fco. The biological motivation is this: if the membrane potential is low, the neuron will
never reach threshold and so will have 0 as its firing rate; conversely, above a certain membrane potential
the neuron will fire at its maximal firing rate, namely once every refractory period.

The time evolution of the cell's membrane potential is given by the differential equation

t- = -m(t) + wjXi(t) + h
i dt

(B 1.4.1)

where t is the time constant, and Xi(t) is the firing rate at the ith input. Thus an excitatory input (wi > 0)
will be such that increasing it will increase dm(t)/dt, while an inhibitory input (wi < 0) will have the
opposite effect. A neuron described by (B1.4.1) is called a leaky integrator neuron. This is because the
equation

(B1.4.2)

would simply integrate the inputs with scaling constant t:

but the -m(t) term in (B1.4.1) opposes this integration by a 'leakage' of the potential m(t) as it tries to
return to its input-free equilibrium h. When all the inputs are zero,

dm(t)
dt

t- = -m(t) + h

has h as its unique equilibrium, and

which tends to the resting level h with time constant r with increasing t so long as t is positive.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Compurution release 9711 B 1.4:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

It should be noted that, even at this simple level of modeling, there are alternatives. In the above
model, we have used subtractive inhibition. But one may alternatively use shunting inhibition which,
applied at a given point on a dendrite, serves to divide, rather than subtract from, the potential change
passively propagating from more distal synapses. Again, the ‘lumped-frequency ’ model cannot model
relative timing effects corresponding to different delays (corresponding to pathways of different lengths
linking neurons). These might be approximated by introducing appropriate delay terms

t- =
i dt

All this reinforces the observation that there is no modeling approach which is automatically
appropriate. Rather, we seek to find the simplest model adequate to address the complexity of a given
range of problems.

B 1.4:2 Handbook of Neural Computation release. 9711 @ 1997 IOP Publishing Ud and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B1.5 Pattern recognition

T
r y 1
e

o 9
e .

p x r r

3 c .

s .
s .
0 .
t

Michael A Arbib

5

Pattem

Recognition

Network

Abstract

See the abstract for Chapter B1.

With xj a ‘measure of confidence’ that the j th item of a set of features occurs in some input pattern x , the
preprocessor shown in figure B1.5.1 converts x into the feature vector (q , x 2 , . . . , xd) in a d-dimensional
Euclidean space Bd called the pattern space. The pattern recognizer takes the feature vector and produces
a response that has the appropriate one of K distinct values; points in Bd are thus grouped into at least
K different categories. However, a category might be represented in more than one connected region
of Rd. To take an example from visual pattern recognition (although the theory of pattern recognition ~6
network applies to any classification of Eld), ‘a’ and ‘A’ are members of the category of the first letter of
the English alphabet, but they would be found in different connected regions of a pattern space. In such
cases, it may be necessary to establish a hierarchical system involving a separate apparatus to recognize
each subset, and a further system that recognizes that the subsets all belong to the same set (see our later
discussion of radial basis functions). Here we avoid this problem by concentrating on the case in which
the decision space is divided into exactly two connected regions.

Input

Pattem

Classification

Vector

Figure B1.5.1. One strategy in pattern recognition is to precede an adaptive neural network by a layer of
‘preprocessors’ or ‘feature extractors’ which replace the image by a finite vector for further processing. In
other approaches, the functions defined by the early layers of the network may themselves be subject to
training.

We call a function f : Bd + R a discriminant function if the equation f (x) = 0 gives the decision
surface separating two regions of a pattern space. A basic problem of pattern recognition is the specification
of such a function. It is virtually impossible for humans to ‘read out’ the function they use (not to mention
how they use it) to classify patterns. Thus, a common strategy in pattern recognition is to provide
a classification machine with an adjustable function and to ‘train’ it with a set of patterns of known
classification that are typical of those with which the machine must ultimately work. The function may
be linear, quadratic, polynomial (see the discussion of polynomial neurons below), or even more subtle
yet, depending on the complexity and shape of the pattern space and the necessary discriminations. The
experimenter chooses a class of functions with parameters which, it is hoped, will, with proper adjustment,

@ 1597 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 B 1.5: 1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

yield a function that will successfully classify any given pattern. For example, the experimenter may
decide to use a linear function of the form

~ 1 . 2 (i.e. a McCulloch-Pins neuron) in a two-category pattern classifier. The equation f (x) = 0 gives a
hyperplane as the decision surface, and training involves adjusting the coefficients (w 1 , w 2 , . . . , W d , w d + l)

so that the decision surface produces an acceptable separation of the two classes. We say that two categories
are linearly separable if an acceptable setting of such linear weights exists. Of course, as will be shown

~ 1 . 7 . 3 , ~ 1 . 6 . 2 in later chapters, many interesting pattern sets are not linearly separable (cf the section on radial basis
functions below), and so whole networks-rather than single, simple neurons-are needed to categorize
most interesting patterns.

~~

B 1.5:2 Handbook of Neural Computation release 9711 @ 1997 IOP hblishtng Ltd and Oxford Umversity Ress

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.6 A note on nonlinearity and continuity

Michael A Arbib

Abstract

See the abstract for Chapter B l

In both the McCuZloch-Pitts and leaky integrator neurons, the neuron is defined by a linear term followed ~ 1 . 2 , ~ 1 . 4
by a nonlinearity. Without the nonlinearity, the theory of neural networks reduces to linear systems
theory-an already powerful branch of systems theory. A number of applications of neural networks do
indeed exploit the methods of linear algebra and linear systems. However, with fixed input, a linear system
has only a single equilibrium state whereas a nonlinear system may, depending on its structure, exhibit
multiple equilibrium states, limit cycles, or even chaotic behavior. This rich repertoire takes us far beyond
the range of linear systems, and is exploited in neural network applications. For example, the equilibria
of a network may be considered as ‘standard patterns’, and the passage of a network from some initial
state (a ‘noisy’ pattern) to a nearby equilibrium may be considered a means of pattern recognition. Since ~ 1 . 5 . ~6
stable equilibria are often called ‘attractors’, this is called ‘pattern recognition by attractor networks’. This
complements the style of pattern recognition exemplified in figure B1.5.1 where the ‘noisy’ pattern is the
input to the network, and the ‘classification’ of the pattern is the output. In this case, too, nonlinearities
are crucial as, whether by the sharp divide of the Heaviside step function or by the more gentle emphasis
of the sigmoid, they can separate the patterns into, or towards, a vector of binary oppositions. The closest
that a linear system comes to this-and it is a method emulated in some neural network applications
(Oja 1992)-is principal component analysis which is a method not of classifying patterns but rather of 84.4.3
reducing them to a low-dimensional representation which contains much of the variance of a given set of
patterns.

Given these reasons for using nonlinear activation functions, are there reasons to choose continuous
ones, rather than the simple step function? There are two main reasons. One is noise resistance: a
step function can amplify noise which a sigmoid function may smooth out, but this may be at the price
of postponing a binary decision until after further statistical analysis has been made. The other is to
allow the use of training methods (see Chapter B3) which exploit methods of the differential calculus 8 3
to adjust synaptic weights to better approximate some desired network behavior. In fact, the classical
Hebbian and perceptron training rules do indeed work for binary neurons. However, the widely used ~ 3 . 3 . 1 , ~ 3 . 3 . 2
backpropagation method for training multilayer feedforward networks makes essential use of the fact that c1.2.3
the activation functions are continuous, indeed differentiable. This is not the place to review the details
of backpropagation. Rather, we note the general situation of which it is a special case. If a network
has no loops in it, then the input pattern uniquely determines the output pattern (so long as we hold the
input constant and wait long enough for its effects to propagate through all the layers of the network).
The output y depends, however, not only on the input x itself, but also upon the current setting w of the
weights of the network connections. We write y = f (x ; w) , where the form of f depends on the actual
structure of the network. The training problem is this: given a set of constraints on the desired values of
input pairs, find a choice w, of w such that y = f (x ; w,) ‘best’ meets these constraints. The definition
of ‘best’ usually involves some cost function C which measures how well the current f(-; w) , at step i
of the training procedure, meets the constraints; call the current cost C (w , i). Training then consists in
adjusting w to try and minimize C (w , i) . Since calculus-based methods of minimization rest on the taking
of derivatives, their application to network training requires that C be a differentiable function of w ; this,
in turn, requires that f (x ; w) be differentiable, and this, in turn, requires that the activation functions be

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 9711 B 1.6: 1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

differentiable. This, then, provides a powerful motivation for using activation functions that are not only
continuous but also differentiable. However, minimization can also be conducted by step-wise search and
so, as noted before, training methods have been successfully defined for networks employing the Heaviside
function as an activation function.

References

Oja E 1992 Principal components, minor components, and linear neural networks Neural Networks 5 927-35

B 1.6:2 Handbook of Net" Computation release 9711 @ 1997 LOP Publishing Ltd and Oxford University F'ress

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.7 Variations on a theme

Michael A Arbib

Abstract

See the abstract for Chapter B1.

There are many variations on the basic definitions given above, and a few are briefly noted here. We first
look at integrate-and-fire neurons which add spike generation to the leaky integrator neurons defined above.
However, as noted earlier, much of neural computation is devoted to finding settings for the connection
weights which will get a given neural network to approximate some desired behavior. This has led authors
to define classes of ‘neurons’ which are defined not because of their similarity to ‘real’ neurons but simply
because of their mathematical utility in an approximation network. We present polynomial neurons and
radial basisfunctions as two examples of this kind, before looking at the use of stochastic neurons to c1.6.2.ci.4
provide a means of escaping ‘local minima’. We close with a brief mention of the use of neurons to form
selforganizing maps, but can give no details since they depend on ideas about synaptic plasticity that will c2.2.1

not be presented until Chapter B3.

B1.7.1 Integrate-and-fire neurons

Another class of neuron models has continuous-time, continuous state-space W, but discrete signal space
{0, I}-so that the model approximates spike generation. This model of a spiking cell-the integrate and
fire model-far antedates the discrete-time model of McCulloch and Pitts: it was introduced by Lapicque
(1907). Essentially, it uses the leaky integrator model (1) for the membrane potential, but now an arriving
input Xi(t) = 1 acts like a delta-function to instantaneously increment the state by wi. The output
instantaneously switches to 1 (a spike is generated) each time the neuron reaches a given threshold value.
This model captures the two key aspects of biological neurons: a passive, integrating response for small
inputs and a stereotyped impulse once the input exceeds a particular amplitude. Hill (1936) used fwo
coupled leaky integrators, one of them representing membrane potential, and the other representing the
fluctuating threshold to approximate the effect of the refractory period on neuron dynamics.

B1.7.2 Polynomial neurons

Here the idea is to generalize the input-output power of neurons by replacing the linear next-state function
Ci wixi by some polynomial combination of the inputs:

xi, ... x i .
Jk ’ . .

11 ... rjkwil ... ljk

Here we have some finite set S, say, of tuples of the form i l . . . i j k , where each i, is the index of one
of the inputs to the neuron under consideration. Then, for each such tuple we calculate the monomial
wil...ijkxil . . . xijk and then sum them to get the term that drives the activation function of the neuron. We
thus regain the usual neuron definition when each tuple is restricted to be of length one, forcing the above
sum to be linear. This idea goes back to the work of Gilstrap in the 1960s (see Barron et a1 1987 for a
more recent review). These neurons are also known as high-order neurons or ‘neurons with high-order
connections’; they are also called sigma-pi neurons since the above expression is a sum (sigma) of products
(pi) of the x i .

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 B 1.7:1

Copyright © 1997 IOP Publishing Ltd

The increased power of polynomial neurons is clear on considering XOR, the simple Boolean operation
of addition modulo 2, also known as the exclusive-or. If we imagine the square with vertices (0, 0), (0, I) ,
(1, l) , and (1 ,O) in the Cartesian plane, with (XI, x2) being labeled by x1 $x2, we have Os at one diagonally
opposite pair of vertices and Is at the other diagonally opposite pair of vertices. It is clear that there is
no way of interposing a straight line such that the 1s lie on one side and the Os lie on the other side;
i.e. there is no way of choosing w1, w2 and 8 such that ~ 1 x 1 + ~ 2 x 2 2 8 iff x1 @ x2 = 1. However,
we can realize the exclusive-or with a single polynomial neuron with w1 = w2 = 1, w12 = 2, since
x1 + x2 - 2XIX2 = x1 @ x2.

B1.7.3 Radial basis functions

Suppose that a pattern space can be divided into ‘clusters’ for each of which there is a single category
to which pattern vectors within the cluster are most likely to correspond. We can then address the
pattern recognition problem by dividing the pattern space into regions bounded by hyperplanes, where
each hyperplane corresponds to a single threshold neuron (figure B1.7.1). By connecting each neuron to
an AND gate, we get a network that signals whether or not a pattern falls within the polygonal space
approximating the cluster; connecting all these AND gates to an OR gate, we end up with a network that
signals whether or not the pattern is (approximately) in any of the clusters belonging to a given category.

Figure B1.7.1. Here we see two convex ‘clusters’ approximated by a set of lines (‘hyperplanes’ in a
general d-dimensional set). Each line serves as discriminant function f for a threshold neuron; we choose
the sign of f so that most of the points in the cluster satisfy f (x) > 0. If we connect these neurons to an
AND gate, then the AND gate will fire primarily for x belonging to the cluster. If we can divide the set
of instances of patterns in a more complex category into a finite set of convex clusters (two in the above
case), and connect AND gates for these clusters to an OR gate, we get a network which will fire primarily
for x belonging to any cluster of the pattern.

An alternative to this ‘compounding of linear separabilities’ (the architecture described above is
c1.2, c1.6.2 sometimes referred to as an instance of a three-layer perceptron) is the use of radial basis functions

(RBFs; see Lowe 1995 for a survey). An RBF operates on an input x in W” and is characterized by a
weight vector w in W“. However, instead of forming the linear combination xi wixi and passing it through
a step or sigmoid activation function, we instead take the norm I Ix - w I I of the difference between x and
w , and then pass it through an activation function f which decreases as I Ix - w I I increases (a Gaussian is
a typical choice). The ‘neuron’ thus tests whether or not the current input x is close to w , and can relay
the measure of closeness to other units which will use this information about where x lies in the input
space to determine how best to process it. Although the details are beyond the scope of this chapter, we
briefly discuss the use of RBFs to solve the above ‘cluster-based’ pattern recognition problem in cases in
which it is possible to describe the clusters of data as if they were generated according to an underlying
probability density function. The multilayer perceptron method concentrates on class boundaries, while
the RBF method focuses upon regions where the data density is highest. In probabilistic classification of
patterns, we are primarily interested in the posterior probability p(c lx) that class c is present given the
observation x. However, it is easier to model other related aspects of the data such as the unconditional
distribution of the data p (x) , or the probability p (x l c) that the data were generated given that they came
from a specific class c-the Bayes theorem then tells us that p(ciIx) = p (c i) p (x l c i) p (x) . Of interest here
is the case where the distribution of the data is modeled as if it were generated by a mixture distribution,
that is, a linear combination of parameterized states, or basis functions such as Gaussians. Since individual

B 1.7:2 Handbook ofNeural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Variations on a theme

data clusters for each class are not likely to be approximated by a single Gaussian distribution, we need
several basis functions per cluster. (Think of each Gaussian as defining an elliptical ‘hill’ resting on the
ocean floor. Then we may need to superimpose a set of such hills to cover a given area which rises above
‘sea level’ to form an island.) We assume that the likelihood and the unconditional distribution can both
be modeled by the same set of distributions, q (x l s) but with different coefficients (e.g. Gaussians with
different means, variances and orientations of the axes of the ellipsoid), that is,

This gives a radial basis function architecture (see Lowe 1955 for further details).

B1.7.4 Stochastic neurons

Finally, we note that there are many cases in which a noise term is added to the next-state function or
the activation function, allowing neural networks (such as the Boltzmann machine of Ackley et a1 1985, 83.2.4, C I A
see Aarts and Korst 1995 for a recent review) to perform a kind of stochastic approximation. We have
earlier spoken of deterministic discrete-time neurons in which the quantity s (t) = xi wixi(t - 1) is passed
through a sigmoidal function to determine the output

1
1 + exp(-s(t)/8) ‘

Y(t> =

The twist in Boltzmann machines is to use a noisy binary neuron; it has two states, 0 and 1, and the
formula

1
1 + exp(-s(t)/T) PO> =

is now interpreted as the probability that the state of the neuron will be 1 at time t . When T is very
large, the neuron’s behavior is highly random; when T + 0, the next state will be 1 only when s (t) > 0.
T is thus a noise term, often referred to as ‘temperature’ on the basis of an analogy with the Boltzmann
distribution used in statistical mechanics. In most cases, the response of a Boltzmann machine to given
inputs starts with a large value of T. Subsequently, the value of T is decreased to eventually become
0. This is an example of the strategy of simulated annealing which uses controlled noise to escape from
local minima during a minimization process (recall our discussion of figure B1.7.1 in relation to Hopfield ~ 1 . 3
networks) to almost surely find the global minimum for the function being minimized. The idea is to use
noise to ‘shake’ a system out of a local minimum and let it settle into a global minimum. Returning to
figure B1.3.1, consider, for example, shaking strong enough to shake the ball from D to A, and thus into
the basin of attraction of C, but not strong enough to shake the ball back from C towards D.

B1.7.5 Learning vector quantization and Kohonen maps

The input patterns to a neural network define a continuous vector space. Vector quantization provides a
means to ‘quantize’ this space by forming a ‘code book’ of significant vectors linked to useful information-
we can then analyze a novel vector by looking for the vector in the code book to which it is most similar.
Learning vector quantization provides a means whereby a neural network can self-organize, both to provide c1.1.5
the code book (one neuron per entry) and to find (by a winner-take-all technique) the code associated with a
novel input vector. If this methodology is augmented by constraints which force nearby neurons to become
associated with similar codes, the result is a self-organizingfeature map (also known as a Kohonen map), c2.1.1

whereby a high-dimensional feature space is mapped quasi-continuously onto the neural manifold (Kohonen
1990). These methods of self-organization are extensions of the Hebbian learning mechanisms described ~ 3 . 3 . 1
in Chapter B3, and thus further description lies beyond the scope of this introduction.

References

Aarts E H L and Korst J H M 1995 Boltzmann machines The Handbook of Brain Theory and Neural Networks ed

Ackley D H, Hinton G E and Sejnowski T J 1985 A learning algorithm for Boltzmann machines Cog. Sci. 9 147-69
M A Arbib (Cambridge, MA: Bradford BooksiMIT Press) pp 162-5

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Compurution release 9111 B 1.7:3

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

Barron R L, Gilstrap L 0 and Shrier S 1987 Polynomial and neural networks: analogies and engineering applications
Proc. Int. Con. on Neural Networks (New York: IEEE Press) I1 431-93

Hill A V 1936 Excitation and accommodation in nerve Proc. R. Soc. B 119 305-55
Kohonen T 1990 The self-organizing map Proc. IEEE 78 1464-80
Lapicque L 1907 Recherches quantitatifs sur I’excitation klectrique des nerfs trait& comme une polarisation J. Physiol.

Lowe D 1995 Radial basis function networks The Handbook of Brain Theory and Neural Networks ed M A Arbib
Paris 9 620-35

(Cambridge, MA: Bradford BooksiMIT Press) pp 779-82

B 1.714 Handbook of Neurul Computution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B2

Neural Network Topologies

Abstract

An artificial neural network consists of a topology and a set of rules that govern
the dynamic aspects of the network. This section contains a detailed treatment of
the topology of a neural network, that is, the combined structure of its neurons and
connections. It starts with the basic concepts including neurons, connections, and layers,
followed by symmetry and high-order aspects. Next, fully and partially connected
topologies are discussed, which is complemented by an overview of special topologies
like modular, composite, and ontogenic ones. The next section discusses aspects of a
formal framework, which is an underlying theme that unites this section in which a
balance is sought between clarity and mathematical rigor in the hope of providing a
useful basis and reference for the other chapters of this handbook. This section proceeds
with a discussion on modular topologies and concludes with theoretical considerations
for choosing a neural network topology.

Contents

B2 NEURAL NETWORK TOPOLOGIES
B2.1

B2.2

B2.3

B2.4

B2.5

B2.6

B2.7

B2.8

B2.9

B2.10

Introduction
Emile Fiesler
Topology
Emile Fiesler
Symmetry and asymmetry
Emile Fiesler
High-order topologies
Emile Fiesler
Fully connected topologies
Emile Fiesler
Partially connected topologies
Emile Fiesler
Special topologies
Emile Fiesler
A formal framework
Emile Fiesler
Modular topologies
Massimo de Francesco
Theoretical considerations for choosing a network topology
Maxwell B Stinchcombe

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook of Neurul Computution release 9111
Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.1 Introduction

Emile Fiesler

Abstract

See the abstract for Chapter B 2 .

A neural network is a network of neurons. This high-level definition applies to both biological neural
networks and artificial neural networks (ANNs). This chapter is mainly concerned with the various ways
in which neurons can be interconnected to form the networks or network topologies used in ANNs, even
though some underlying principles are also applicable to their biological counterparts. The term ‘neural
network’ is therefore used to stand for ‘artificial neural network’ in the remainder of this chapter, unless
explicitly stated otherwise. The main purpose of this chapter is to provide a base for the rest of the
Handbook and in particular for the next chapter, in which the training of ANNs is discussed.

n

Figure B2.1.1. An unstructured neural network topology with five neurons.

Figure B2.1.1 shows an example neural network topology. A node in such a network is usually called
an art8cial neuron, or simply neuron, a tradition that is continued in this handbook (see Chapter Bl). BI
The widely accepted term ‘artificial neuron’ is specific to the field of ANNs and therefore preferred over
its alternatives. Nevertheless, given the length of this term and the need to frequently use it, it is not
surprising that its abbreviated form, ‘neuron’, is often used as a substitute instead. However, given that
the primary meaning of the word ‘neuron’ is a biological cell from the central nervous system of animals,
it is good practice to clearly specify the meaning of the term ‘neuron’ when using it. Instead of ‘(artificial)
neuron’, other terms are also used:
0 Node. This is a generic term, related to the word ‘knot’ and used in a variety of contexts, one of them

being graph theory, which offers a mathematical framework to describe neural network topologies
(see Section B2.8.4). 82.8.4

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 B2.1: 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

0 Cell. An even more generic term, that is more naturally associated with the building blocks of
organisms.

0 Unit. A very general term used in numerous contexts.
0 Neurode. A nice short term coined by Caudill and Butler (1990), which contains elements of both

the words ‘neuron’ and ‘node’, giving a cybernetic flavor to the word ‘neuron’.
The first three words are generic terms, borrowed from other fields, which can serve as alternative
terminology as long as their meaning is well defined when used in a neural network context. The neologism
‘neurode’ is specifically created for ANNs, but unfortunately not widely known and accepted.

A connectionist system, better known as artificial neural network, is in principle an abstract entity.
It can be described mathematically and can be manifested in various ways, for example in hardware
and software implementations. An artificial neural network comprises a collection of artificial neurons
connected by a set of links, which function as communication channels. Such a link is called an
interconnection or connection for short.

References

Caudill M and Butler C 1990 Naturally Intelligent Systems (Cambridge, MA: MIT Press)

B 2 . 1 2 Hundbook of Neurul Computution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.2 Topology

Emile Fiesler

Abstract

See the abstract for Chapter 82.

A neural network topology represents the way in which neurons are connected to form a network. In
other words, the neural network topology can be seen as the relationship between the neurons by means
of their connections. The topology of a neural network plays a fundamental role in its functionality and
performance, as illustrated throughout the handbook.

The generic terms structure and architecture are used as synonyms for network topology. However,
caution should be taken when using these terms since their meaning is not well defined as they are also
often used in contexts where they encompass more than the neural network topology alone or refer to
something different altogether. They are for example often used in the context of hardware implementations
(computer architectures) or their meaning includes, besides the network topology, also the learning rule
(see for example the book by Zurada (1992)).

More precisely, the topology of a neural network consists of its frame or framework of neurons,
together with its interconnection structure or connectivity:

neural framework
interconnection structure neural network topology

The next two subsections are devoted to these two constituents respectively.

B2.2.1 Neural framework

Most neural networks, including many biological ones, have a layered topology. There are a few exceptions
where the network is not explicitly layered, but those can usually be interpreted as having a layered
topology, for example in some associative memory networks, which can be seen as a one-layer neural c1.3
network where all neurons function both as input and output units.

At the framework level, neurons are considered as abstract entities, thereby not considering possible
differences between them. The framework of a neural network can therefore be described by the number
of neuron layers, denoted by L , and the number of neurons in each of the layers, denoted by N I , where 1
is the index indicating the layer number:

number of neuron layers L
number of neurons per layer Nl where 1 5 I 5 L . neural framework

The number of neurons in a layer (N l) is also called the layer size.
The following neuron types can be distinguished.

Input neuron. A neuron that receives external inputs from outside the network.
Output neuron. A neuron that produces some of the outputs of the network.
Hidden neuron. A neuron that has no direct interaction with the ‘outside world’, only with other
neurons within the network.

Similar terminology is used at the layer level for multilayer neural networks.

e
e

e

~~

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 B2.2:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

a

a

a

Input layer. A layer consisting of input neurons.
Hidden layer. A layer consisting of hidden neurons.
Output layer. A layer consisting of output neurons.

In multilayer and most other neural networks the neuron layers are ordered and can be numbered: the
input layer having index one, the first hidden layer index two, the second hidden layer index three, and
so forth until the output layer, which is given the highest index L , equal to the total number of layers in
the network. The number of neurons in the input layer can thus be denoted as N I , the number of neurons
in the first hidden layer as N2, in the second hidden layer as N3 and so on, until the output layer, whose
size would be N L . In figure B2.2.1 a four-layer neural network topology is shown, together with the layer
sizes.

Layer name

output layer

second hidden layer

first hidden layer

input layer

1

4 = L

3

2

1

N l

N4= NL= I

N3= 2

N,= 4

NI = 2

n

Figure B2.2.1. A fully interlayer connected topology with four layers.

Combining all layer sizes yields
L N = C N ~ (B2.2.1)

1 = 1

where N is the total number of neurons in the network. Besides being clearer, the indexed notation for
layer sizes is preferred since the number of layers in neural networks varies from one model to another
and there are even some models that adapt their topology dynamically during the training process, thereby

ci.7 varying the number of layers (see Section C1.7). Also, if one assigns a different variable to each layer (for
example I, m, n , . . .), one soon runs out of variables and into notational conflicts; this is especially the
case for generic descriptions of multilayer neural networks and deep networks, which are networks with
many layers.

In some neural networks, neurons are grouped together, as in layered topologies, but there is no
well-defined way to order these groups. The groups of neurons in networks without an ordered structure

B2.2:2 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Topology

are called clusters, slabs, or assemblies, which are therefore generic terms which include the layer concept
as a special case.

The neurons within a layer, or cluster, are usually not ordered, all neurons being equally important.
However, the neurons within a cluster are sometimes numbered for convenience to be able to uniquely
address them, for example in computer simulations. Layers are likewise shapeless and can be represented
in various ways. Exceptions are the input and output layers, which are special since the application
constraints can suggest a specific shape, which can be one, two, or higher dimensional. Note however,
that this structural shape is usually only present in pictorial representations of the neural network, since
the individual neurons are still equally important and ‘unaware’ of each other’s presence with respect
to relative orientation. An exception could be an application specific partial connectivity where only
certain neurons are connected to each other, thereby embedding positional information, such as the feature
detectors of LeCun et a1 (1989).

Likewise, there is also no fixed way of representing neural networks in pictorial form. Neural networks
are most often drawn bottom up, with the input layer at the bottom and the output layer at the top, as in
figure B2.2.1. Besides this, a left-to-right representation is also used, especially for optical neural networks E I S
since the direction of the passing light in optical diagrams is by default assumed to be from left to right.
Besides these, other pictorial orientations are also conceivable. This representational flexibility is also
present in graph theory (see Section B2.8.4).

I

3 = L

2

1

N l

N 3 = NL= 1

N,= 2

N I = 2

Figure B2.2.2. A three-layer neural network topology with six interlayer connections (i), four supralayer
connections (s) between the input and output layer, and four intralayer connections (a) including two
self-connections (self) in the hidden layer.

B2.2.2 Interconnection structure

The interconnection structure of a neural network determines the way in which the neurons are linked.
Based on a layered structure, several different kinds of connection can be distinguished (see figure B2.2.2
for an illustration):

Interlayer connection. This connects neurons in adjacent layers whose layer indices differ by one.
Intralayer connection. This is a connection between neurons in the same layer.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeuml Computution release 9711 B2.2:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

0

0

Selfconnection. This is a connection that connects a neuron to itself. It is a special kind of intralayer
connection.
Supralayer connection. This is a connection between neurons that are in distinct layers that are not
adjacent; in other words these connections ‘cross’ or ‘jump’ at least one hidden layer.

With each connection an (interconnection) strength or weight is associated which is a weighting factor
that reflects its importance. This weight is a scalar value (a number), which can be positive (excitatory)
or negative (inhibitory). If a connection has a zero weight is it considered to be nonexistent at that point
in time.

Note that the basic concept of layeredness is based on the presence of interlayer connections, In
other words, every layered neural network has at least one interlayer connection between adjacent layers.
If interlayer connections are absent between any two adjacent clusters in the network, a spatial reordering
can be applied to the topology, after which certain connections become the interlayer connections of the
transformed, layered, network.

References

Le Cun Y, Boser B, Denker J S , Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation
applied to handwritten zip code recognition Neural Comput. 1 541-51

Zurada J M 1992 Introduction to ArtGcial Neural Systems (St Paul, MN: West)

B2.2:4 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.3 Symmetry and asymmetry

Emile Fiesler

Abstract

See the abstract for Chapter B2.

The information flow through a connection can be symmetric or asymmetric. Before elaborating on this,
it should be stated that ‘information transfer’ or ‘flow’, in the following discussion, refers to the forward
propagation, where network outputs are produced in reaction to external inputs or stimuli given to the
neural network. This in contrast to the information used to update the network parameters as determined

A connection in a neural network is either unidirectional when it is only used for information transfer
in one direction at all times, or multidirectional where it can be used in more than one direction (the
term multidirectional is used here instead of bidirectional to include the case of high-order connections
(see Section B2.4)). A multidirectional connection can either have one weight value that is used for 82.4

information flow in all directions, which is the symmetric case (see figure B2.3.1), or separate weight
values for information flow in specific directions, which is the asymmetric case (see figure B2.3.2).

by the neural network learning rule. B3.3

Figure B2.3.1. A symmetric connection between two neurons.

w2. I

Figure B2.3.2. Two asymmetric connections between two neurons.

Hence, a symmetric connection is a multidirectional connection which has one weight value associated
with it that is the same when used in any of the possible directions. All other connections are asymmetric
connections, which can be either unidirectional connections (see figure B2.3.3) or multidirectional
connections with more than one weight value per connection. Note that a multidirectional connection
can be represented by a set of unidirectional connections (see figure B2.3.2), which is closer to biological
reality where synapses are also unidirectional. In a unidirectional connection the information flows from
its source neuron to its sink neuron (see figure B2.3.3).

The definitions regarding symmetry can be extended to the network level: a symmetric neural network
is a network with only symmetric connections, whereas an asymmetric neural network has at least one

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B2.3~1

Copyright © 1997 IOP Publishing Ltd

Neural Network ToDologies

source sink
neuron neuron

w1,2

Figure B2.3.3. A unidirectional connection between a source and a sink neuron.

asymmetric connection. Most neural networks are asymmetric, having a unidirectional information flow
or a multidirectional one with distinct weight values.

An important class of neural networks is the so called feedforward neural networks with unidirectional
information flow from input to output layer. The name feedforward is somewhat confusing since the best-

ci.z.3 known algorithm for training a feedforward neural network is the backpropagation learning rule, whose
name indicates the backward propagation of (error gradient) information from the output layer, via the
hidden layers, back to the input layer, which is used to update the network parameters. The opposite of
feedforward is ‘feedback’; a term used for those networks that contain loops where information is fed
back to neurons in previous layers. This terminology is not recommended since it is most often used
for networks which have unidirectional supralayer connections from the output to the input layer, thereby
excluding all other possible topologies with loops from the definition. Preferred is the term recurrent neural
network for networks that contain at least one loop. Some common examples of recurrent neural networks
are symmetric neural networks with bidirectional information flow, networks with self-connections, and
networks with unidirectional connections from output back to input neurons.

B2.3~2 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.4 High-order topologies

Emile Fiesler

Abstract

See the abstract for Chapter B2.

Most neural networks have only first-order connections which link one source neuron to one sink neuron.
However, it is also possible to connect more than two neurons by a high-order connection (the term higher
order is sometimes used instead of ‘high order’) (see figure B2.4.1).

sink neuron P
source neurons

Figure B2.4.1. A third-order connection.

High-order connections are typically asymmetric, linking a set of source neurons to a sink neuron.
The connection order (U) is defined as the cardinality of the set of its source neurons, which is the number
of elements in that set. As an example, figure B2.4.1 shows a third-order connection. The information
produced by the source neurons is combined by a splicing function which has w inputs and one output.
The most commonly used splicing function for high-order neural networks is multiplication, where the
connection outputs the product of the values produced by its source neurons. The set of source neurons
of a high-order connection is usually located in one layer. The connectivity definitions of Section B2.2.2
apply therefore also to high-order connections.

The concept of higher orders can also be extended to the network level. A high-order neural network
has at least one high-order connection and the neural network order (52) is determined by the highest-order
connection in the network:

(B2.4.1) i-2 = max ow
W

where w ranges over all weights in the network.

the input data set, which is a powerful feature.

(Zn) neural networks, since a summation (E) of products (n) is used in the forward propagation:

Having high-order connections gives the network the ability to extract higher-order information from

Layered high-order neural networks with multiplication as splicing function are also called sigma-pi

(B2.4.2)

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Computution release 9711 B2.4:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

where aj is the activation value of the sink neuron, { s j } is the set of source neurons, w ~ , ~ , . ~ ~ the associated
weight, and ai the activation values of the source neurons. The layer indices are omitted from this formula
for notational simplicity. In Section B2.8.8 notational issues concerning weights are discussed. For more
information on sigma-pi neural networks, see Rumelhart et af (1986), which is based on the work of
Williams (1983).

The history of high-order neural networks includes the work of Poggio (1975) where the term ‘high
order’ is used, and Feldman and Ballard (1982) where multiplication is used as splicing function and the
connections are named conjunctive connections. An important and fundamental contribution to the area
of high-order neural networks, which has given rise to their wider dissemination, is the work by Lee et a1
(1986).

For completeness functional link networks (Pa0 1989) and product unit neural networks (Durbin and
Rumelhart 1989) are mentioned here since they can be considered as special cases of high-order neural
networks. In these types of network there is no combining of information from several source neurons
taking place, but incoming information from a single source is transformed by means of a nonlinear
splicing function.

References

Durbin R and Rumelhart D E 1989 Product units: a computationally powerful and biologically plausible extension to

Feldman J A and Ballard D H 1982 Connectionist models and their properties Cogn. Sci. 6 205-54
Lee Y C, Doolen G, Chen H, Sun G, Maxwell T, Lee H and Giles CL 1986 Machine leaming using a higher order

Pao Yoh-Han 1989 Adaptive Pattern Recognition and Neural Networks (Reading, MA: Addison-Wesley)
Poggio T 1975 On optimal nonlinear associative recall Biol. Cybernet. 19 201-9
Rumelhart D E, McClelland J L and the PDP Research Group 1986 Parallel Distributed Processing: Explorations in

Williams R J 1983 Unit Activation Rules for Cognitive Network Models ICs Technical Report 8303, Institue for

backpropagation networks Neural Comput. 1 133-42

correlation network Physica D 22 276-306

the Microstructure of Cognition. vol I : Foundations (Cambridge, MA: MIT Press)

Cognitive Science, University of California, San Diego

B2.4:2 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.5 Fully connected topologies

Emile Fiesler

Abstract

See the abstract for Chapter B2.

The simplest topologies are the fully connected ones, where all possible connections are present. However,
depending on the neural framework and learning rule, the term f i l ly connected neural network is used for
several different interconnection schemes, and it is therefore important to distinguish between these.

The most commonly used topology is the fully interlayer-connected one, where all possible interlayer
connections are present but no intra- or supralayer ones. This is the default interconnectivity scheme for
most nonrecurrent multilayer neural networks.

A truly fully connected or plenary neural network has all possible inter-, supra-, and intralayer
connections including self-connections. However, only a few neural networks have a plenary topology. A
slightly more popular 'fully connected' topology is a plenary neural network without self-connections, as
used for example for some associative memories. (21.3

B2.5.1 Connection counting

In order to compare different neural network topologies, and more specifically their complexities, it is useful
to know how many connections a certain topology comprises. The connection counting is based on f i l ly
connected topologies since they are the most commonly used and since they enable a fair and yet simple
comparison. Fully interlayer-connected topologies are considered as well as the various combinations
of interlayer connections together with intra- and supralayer connections (see Section B2.2.2); and fully
connected means here that all possible connections of each of those kinds are present in the topology.
Before starting the counting of the connections, a few related issues need to be discussed and defined.

The total number of weights in a network can be denoted by W . For most neural networks this
number is equal to the number of connections, since one weight is associated with one connection. In
neural networks with weight sharing (Rumelhart et a1 1986), where a group of connections shares the same
weight, the number of weights can be smaller than the number of connections. However, even in this
case it is common practice to assign a separate weight to each connection and to update shared weights
together and in an identical way. Given this, the number of connections is again equal to the number of
weights and the same notation (W) can be used for both.

When counting the number of weights, it has to be decided whether to also count the neuron biases.
The bias of a neuron, which determines its threshold level, can also be regarded as a special weight and its
value is often modified in the same way as normal weights. This can be explained in the following way.
The weighted sum of inputs to a neuron n, which has W!,n input providing connections, can be denoted as

(B2.5.1)
i = l i=l

where ai is the activation value of the neuron providing the ith input, and ~ i , ~ is the weight between that
neuron providing the ith input to neuron n and neuron n itself (see Section B2.8.2 for a discussion on

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9111 B2.5: 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

notational issues concerning weights). Renaming 0, as WO,,, and assuming a0 to be a virtual activation
with a constant value of -1, equation B2.5.1 becomes equal to:

W.
Wi,n a i .

i=O
(B 2.5.2)

Hence, the bias of a neuron can be seen as the weight of a virtual connection that receives its input from a
virtual or dummy neuron that has a constant activation value of -1. In this section biases are not counted
as weights. They can be included in the connection counting by initializing the appropriate summation
indices with zero instead of one.

For networks where intralayer connections are present, two cases need to be distinguished: with and
without self-connections. Both cases can be conveniently combined in one formula by using the f symbol,
as utilized in the following section. If self-connections are present, the addition has to be used, else the
subtraction has to be used.

The maximum number of connections in asymmetric neural networks is twice that of their symmetric
counterparts, except for self-connections, which are intrinsically directed. Asymmetric topologies are
therefore not elaborated upon in this context. The most common neural networks have symmetric first-
order topologies, which will be discussed first, followed by symmetric high-order ones.

B2.5. I . 1 Counting symmetric $first-order connections

The simplest and most widely used topologies have interlayer connections only. The total number of
possible interlayer connections can be obtained by multiplying the layer sizes of each pair of adjacent
layers and summing these over the whole network:

L-l L- l

w = wl = N~ N ~ + : (B2.5.3)
1=1 1=1

where W, represents the number of connections between layer 1 and 1 + 1 .

within a layer ((N1/2) (NI f 1)) has to be added for each layer in the network, and the total becomes
When intralayer connections are also present, a number equal to the number of possible connections

L-1

C , (N l f 1) + C N l N l + l Nl = (N L) 2 * + E Nl (Nl + F) . (B2.5.4)
1=1 1=1 1=1

The number of connections in networks with both interlayer and supralayer connections can be
calculated by summing over all the layer sizes, multiplied by the sizes of all the layers of a higher index:

(B2.5.5)
1=1 m=l m=l 1=1

Plenary neural networks have all possible connections and are equivalent to a fully connected
undirected graph with N nodes (see Section B2.8.4), which has

(B2.5.6)
N
- (N f 1)
2

connections.

number of neurons:
In summary, the number of connections in (fully connected) first-order topologies is quadratic in the

w = O (N 2) (B2.5.7)

where O() is the 'order' notation as used in complexity theory (see for example Aho et a1 (1974)).

B2.5.1.2 Counting high-order connections

In this subsection the counting of connections is extended to high-order topologies. In order to focus
the high-order connection counting on the most common case, all the source neurons of a high-order

B2.52 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fully connected topologies

connection are assumed here to share the same layer and the possibility of having multiple instances of
the same source neuron providing input to one high-order connection is excluded.

It is illustrative to first examine the case of one single sink neuron in a high-order network. The total
number of possible connections of order w that can provide information for one specific sink neuron is
equal to the number of possibilities of combining the corresponding source neurons. This number is equal
to

n ! (;):= w!(n - U) !
(B2.5.8)

where n is the number of potential source neurons. Note that w can be maximally n.

with a high-order neuront then becomes
Adding up these numbers over all possible orders, the maximum number of connections associated

q i= l 7).
Since SZ is bounded by n, the total number of high-order connections is bounded by

e(7) = 2 . - 1 .
i = l

(B2.5.9)

(B 2.5.10)

The virtual bias connection of the neuron can be added to this sum to obtain the crisp maximum of 2".
To obtain the connectivity count of a high-order topology, these high-order neurons need to be

combined into a network. Given the scope of this handbook, only the most prevalent case, that of
asymmetric fully interlayer connected high-order networks is presented here (high-order connections are
usually unidirectional and counting multidirectional high-order connections is complicated since the set
of source neurons can no longer be assumed to share the same layer). For a more elaborate treatment of
this subject the reader is referred to the article by Fiesler et al (1996), which also contains a comparison
between the various topologies based on these connection counts.

The number of connections in a fully interlayer-connected neural network of order S2 is

i= l
(B2.5.11)

In general, the number of connections in (fully connected) high-order topologies is exponential in the

w = O (2 9 (B2.5.12)
number of neurons:

References

Aho A V, Hopcroft J E and Ullman J D 1974 The Design and Analysis of Computer Algorithms (Computer Science

Fiesler E, Caulfield H J, Choudry A and Ryan J P 1996 Maximal interconnection topologies for neural networks, in

Rumelhart D E, McClelland J L and the PDP Research Group 1986 Parallel Distributed Processing: Explorations in

and Information Processing) (Reading, MA: Addison-Wesley)

preparation

the Microstructure of Cognition. vol I : Foundations (Cambridge, MA: MIT Press)

t Note that the concept of 'order' can be seen from the connection point of view as well as from the neuron point of view.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B2.53

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.6 Partially connected topologies

Emile Fiesler

Abstract

See the abstract for Chapter B2.

Even though most neural network topologies are fully connected according to any of the definitions given in
Section B2.5, this choice is usually an arbitrary one and based on simplicity. Partially connected topologies
offer an interesting alternative with a reduced degree of redundancy and hence a potential for increased
efficiency. As shown in Sections B2.5.1.1 and B2.5.1.2, the number of connections in fully connected
neural networks is quadratic in the number of neurons for first-order networks and exponential for high-
order networks. Although it is outside the scope of this chapter to discuss the amount of redundancy
desired in neural networks, one can imagine that so many connections are in many cases an overkill with
a serious overhead in training and using the network. On the other hand, partial connectedness brings
along the difficult question of which connections to use and which not. Before giving an overview of the
different strategies followed in creating partially connected topologies, a number of metrics are presented,
providing a base for studying them.

B2.6.1 Connectivity metrics

Some basic neural network connectivity metrics are presented in this section. They can be used for the
analysis and comparison of partially connected topologies, but are also applicable to the various kinds of
fully connected topology discussed in Section B2.5.

The degree of a neuron is equal to the number of connections linked to it. More specifically, the
degree of a neuron can be subdivided into an in degree (din) orfan-in, which is the number of connections
that can provide information for the neuron, and an out degree (,Out) or fan-out, which is the number of
connections that can receive information from the neuron. It therefore holds that

d,, = d r + d;' (B2.6.1)

where d,, is the degree of neuron n . For the network as a whole, the average degree (2) can be defined as

(B2.6.2)

where d,, i denotes the degree of neuron i in layer 1. Another useful metric is the connectivity density of a
topology, which is defined as

(B2.6.3)

where W is the number of connections in the network and W,, the total number of possible connections
for that interconnection scheme; these are given in Sections B2.5.1.1 and B2.5.1.2.

The last metric given here is the connectivity level, which provides a ratio of the number of connections
with respect to the number of neurons in the network:

W
N '
- (B2.6.4)

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Nrurul Computution release 9711 B2.6:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.6.2 A classification of partially connected neural networks

As mentioned earlier, choosing a suitable partially connected topology is not a trivial task. This task is
most difficult if one strives to find a scheme for choosing such a topology a priori, that is, independent
of the application. Most approaches leading to partially connected topologies are therefore assuming a
number of constraints, which can aid in the topology choice. Based on this, the methods for constructing
partially connected networks can be classified as follows:

e

e

e

e

e

E1.2.4

e

C I .7, C2.4

Methods based on theoretical and experimental studies. These methods usually assume a fixed,
possibly random, connectivity distribution with either a constant degree or connectivity level. The
created networks are typically used for theoretical studies to determine fundamental aspects of these
networks, as for example their storage capacity.
Methods derived from biological neural networks. The goal of these methods is to mimic biological
neural networks as well as possible, or at least to use certain criteria from biology as constraints to
aid the network building.
Application dependent methods. This is an important class of methods where the choice of topology
is directly based on information obtained from a given application domain.
Methods based on modularity. Modular neural networks, which are discussed in a later section, are a
special kind of partially connected neural networks that can be seen as a subclass of the application-
dependent models. They consist of sets of modules, which can each be either fully or partially
connected internally. The modules themselves are typically sparsely connected to each other, again
often based on application-dependent knowledge. (See also Sections B2.7 and B2.9.)
Methods developed for hardware implementation. These methods are based on constraints that arise
from hardware limitations in analog or digital electronic, optical, or other hardware implementations.
An important subclass are the locally connected neural networks, such as cellular neural networks (see
Section E l .2.4), that minimize the amount of wiring needed for the network, which is of fundamental
importance for electronic implementations.
Ontogenic methods. An important class of methods, where the topology is dynamically adapted during
the training process by adding and/or deleting connections and/or neurons, are the ontogenic methods.
The ontogenic methods that include the removal and/or addition of individual connections provide an
automatic way to create partially connected neural networks. The various kinds of ontogenic neural
network are discussed in Sections C1.7 and C2.4

An extensive review of partially connected neural networks, based on this classification, can be found
in the atricle by Elizondo et a1 (1996). A short summary of this work, restricted to nonontogenic methods,
is the article by Elizondo et a1 (1995).

Besides these purely neural-network-based methods, other artificial intelligence techniques, such as
~2 evolutionary computation and inductive knowledge, have been used to aid the construction of partially

connected networks.
For completeness, a technique that does not necessarily reduce the number of connections but reduces

the number of modifiable parameters by reducing the number of weights needs to be mentioned here, which
is weight sharing (see also Section B2.5.1). Using this technique, groups of connections are assigned only
one updatable weight. These groups of connections can for example act as feature detectors in pattern
recognition applications.

References

Elizondo D, Fiesler E and Korczak J 1995 Non-ontogenic sparse neural networks Proc. Int. Conf: on Neural Networks

- 1996 A survey of partially connected neural networks, in preparation
(Perth) (Piscatawat, NJ: IEEE) pp 290-5

B2.6:2 Hundbook of Neurul Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.7 Special topologies

Emile Fiesler

Abstract

See the abstract for Chapter B2.

Besides the common layered topologies, which are usually at least fully interlayer connected, there exists
a variety of other topologies that are not necessarily layered, or at least not homogeneously layered. In
this section a number of these are discussed.

Modular neural networks are composed of a set of smaller subnetworks (the modules), each performing ~ 2 . 9

a subtask of the complete problem. The topology design of modular neural networks is typically based
on knowledge obtained from a specific application or application domain. Based on this knowledge, the
problem is split up into subproblems, each assigned to a neural module. These individual modules do not
have to belong to the same category and their topologies can therefore differ considerably. The global
interconnectivity of the modular network, that links the modules, is often irregular as it is usually tuned to
the application. The overall topology of modular neural networks is therefore often irregular and without
a uniform layered structure.

Somewhat related to modular neural networks are composite neural networks. A composite neural c1.6, c2.3
network consists of a concatenation of two or more neural network models, each with its associated
topology, thereby forming a new neural network model. A layered structure can therefore be observed
at the component level, since they are stacked, but the internal topologies of the components themselves
can differ from each other, yielding an inhomogeneous global topology. Composite neural networks are
often called hybrid neural networks, a context-dependent term that is even more popular for describing
combinations of neural networks with other artificial intelligence techniques such as expert systems and
evolutionary systems. In this handbook, the term ‘hybrid neural network’ is therefore reserved for these
latter systems (see part D of this handbook).

Another kind of topology that is sometimes used in the context of neural computation is the tree,
which refers to the graph theoretical definition of a connected acyclic graph (see Section B2.8.4 for the
relationship between graph theory and neural network topologies). The typical tree topology used is a
rooted one, where connections branch off from one point or a set of points. These points are usually the
output neurons of the network. Tree-based topologies are usually deep and sparse, and the neurons have
a restricted fan-in and fan-out. If these networks are trees according to the definition, that is, without
cross-connections between the branches of the tree, it can be argued whether they should be classified
as neural networks or as decision trees (Kana1 1979, Breiman et a1 1984). In this context it should be
mentioned that it is in some cases possible to convert the tree-based topology into a conventional layered
neural network topology (see for example Frean 1990).

networks, as discussed in the previous section, where the topology can change over time during the
training process. Even though their topology is dynamic, it is usually homogeneous at each point in time
during the training; this in contrast with modular neural networks, which are usually inhomogeneous.

One of the fundamental motivations behind ontogenic neural networks is to overcome the notorious
problem of finding a suitable topology for solving a given problem. The ultimate goal is to find the optimal
topology, which is usually the minimal topology that allows a successful solution of the problem. For
this reason, but also for establishing a base for comparing the resulting topologies of different ontogenic
training methods, it is important to define the minimal topology (Fiesler 1993).

An important class of networks which can have a nonstandard topology are the ontogenic neural ci.7,c2.4

~

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Compurution release 9711 B2.7:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

Definition. A minimal neural network topology for a given problem is a topology with a minimal
computational complexity that enables the problem to be solved adequately.

In practice, the topological complexity of neural networks can be estimated by the number of high-
complexity operations, like multiplications, to be performed during one recall phase. In the case where
the splicing function is either the multiplication operation or a low-complexity operation, the count can
be restricted to the number of multiplications only. For first-order networks, where the number of
multiplications to be performed in the recall process is almost equal to the number of weighted connections,
this can be further simplified as:

Definition. A minimal$rst-order neural network topology for a given problem is a neural network topology
with a minimal number of weighted connections that solves the problem adequately.

To illustrate the concept of minimal topology, the well-known exclusive OR (XOR) problem can be used.
The exclusive OR function has two Boolean inputs and one Boolean output which yields FALSE either
when both inputs are TRUE or when both inputs are FALSE, and yields TRUE otherwise. This function is
the simplest example of a nonlinearly separable problem. Since nonlinearly separable problems cannot be
solved by first-order perceptrons without hidden layers (Minsky and Papert 1969), the minimal topology
of a perceptron that can solve the XOR problem has either hidden layers or high-order connections.

I

3 = L

2

1

N l

N3 = NL = I

N 2 = 2

N , = 2

e = i

Figure B2.7.1. A first-order neural network with a minimal interlayer-connected topology that can solve
the XOR problem. It has three layers and six interlayer connections.

In the following three examples, binary (0, 1) inputs, outputs, and activation values are assumed, as
well as a hard-limiting threshold or Heaviside function (3-1) as activation function:

(B2.7.1)

and the activation value of a neuron in layer 1 + 1 is calculated by the following forward propagation
formula:

(B2.7.2)

where uli is the activation value of neuron i in layer I, and Wl,,, the weight of the connection between this
neuron and neuron j in layer 1 + 1, in accordance with the abbreviated notation of Section B2.8.2.

B2.712 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Special topologies

1

3 = L

2

1

N l

N3 = NL = I

N,= I

N I = 2

Figure B2.7.2. A first-order neural network with a minimal topology that can solve the XOR problem. It
has three layers, three interlayer connections, and two supralayer connections.

2 = L

1

N2= NL= 1

N I = 2

Figure B2.7.3. A high-order neural network with a minimal topology that can solve the XOR problem. It
has two layers, two first-order connections, and one second-order connection.

Figure B2.7.1 shows the minimal topology of an interlayer-connected first-order neural network able
to solve the XOR problem, and figure B2.7.2 the smallest first-order solution which uses supralayer
connections.

Figure B2.7.3 shows the smallest high-order solution with two first-order connections and one second-
order connection.

References

Breiman L, Friedman J H, Olsen R A and Stone C J 1984 Classification and Regression Trees (Belmont, CA:
Wadsworth)

@ 1997 IOP Publishing Ltd and Oxford University Press Hudbook of Neurul Computution release 9711 B2.713

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

Fiesler E 1993 Minimal and high order network topologies Proc. 5th Workshop on Neural Networks:
Academic/IndustriaLNASA/Defense; Int. Con$ on Computational Intelligence: Neural Networks, Fuzzy Systems,
Evolutionary Programming and Virtual Realio (WNN93/FNN93) (San Francisco, CA); SPIE Proc. 2204 173-8

Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networks Neural
Comput. 2 198-209

Kana1 L N 1979 Problem solving models and search strategies for pattern recognition IEEE Trans. Pattem Anal.
Machine Intell. 1 194-201

Minsky M L and Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press)

B2.7:4 Hundbook of Neurul Compurution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.8 A formal framework

Emile Fiesler

Abstract

See the abstract for Chapter B2.

Even though ANNs have been studied for several decades, a unifying formal theory is still missing.
An important reason for this is the nonlinear nature of neural networks, which makes them difficult to
study analytically, since most of our mathematical knowledge relates to linear mathematics. This lack of
formalization is further illustrated by the upsurge in progress in neurocomputing during the period when
computers became popular and widespread, since they enable the study of neural networks by simulating
their nonlinear dynamics. It is therefore important to strive for a formal theoretical framework that will
aid the development of formal theories and analytical studies of neural networks. A first step towards
this goal is the standardization of terminology, notations, and several higher-level neural network concepts
to enable smooth information dissemination within the neural network community, including users, that
consists of people with a wide variety of backgrounds and interests. The IEEE Neural Network Council
Standardization Committee is aiming at this goal. A further step towards this goal is a formal definition
of a neural network that is broad enough to encompass virtually all existing neural network models, yet
detailed enough to be useful. Such a topology-based definition, supported by a consistent terminology and
notation, can be found in the article by Fiesler (1994); other examples of formal definitions can be found
in the artices by Valiant (1988), Hong (1988), Farmer (1990), and Smith (1992).

A deep-rooted nomenclature issue, that of the definition of a layer, will be addressed in the next
section. Further, in order to illustrate the concept of a consistent and mnemonic notation, the notational
issue of weights, the most important neural network parameters, is discussed in the subsequent section,
which is followed by a structured method to visualize and study weights and network connectivity. Lastly,
the relationship between neural network topologies and graph theory is outlined; this offers a mathematical
base for neural network formalization from the topology point of view.

B2.8.1 Layer counting

A fundamental terminology issue which gives rise to much confusion throughout the neural network
literature is that of the definition of a layer and, related to this, how to count layers in a network. The
problem is rooted in the generic nature of the word ‘layer’, since it can refer to at least three network
elements:

A layer of neurons
0

Some of these interpretations need further explanation. The second meaning, that of the connections and
associated weights, is difficult to use if there are other connections present besides interlayer connections
only, for example intralayer connections, which are inherently intertwined with a layer of neurons. Defining
a layer as a set of connections plus weights is therefore very limited in scope and its use should be
discouraged. For both the second and the third meaning, the relationship between the neurons and ‘their’
connections needs to be defined. In this context of layers, all incoming connections, that is, those that are
capable of providing information to a layer of neurons, are usually the ones that are associated with that

A layer of connections and their weights
A combination of a layer of neurons plus their connections and weights.

@ 1997 IOP Publishing Ltd and Oxford University Press Hurulbook of Neurul Computurion release 9711 B2.8:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

ayer. Nevertheless, independent of which meaning is used, an important part of this terminology issue can
be solved by simply defining what one means by a layer.

An early neural network in history with a layered topology was the perceptron (Rosenblatt 1958),
c1.1 which is sometimes called the single-layer perceptron. It has a layer of input units that duplicate and

fan-out incoming information, and a layer of output units that perform the (nonlinear) weighted sum
operation. The name single-layer perceptron reflects the third meaning of the word ‘layer’ as given above,
and is based on not counting the input layer as a layer, which is explained below. Since the conception
of the perceptron, many other neural network models have been introduced. The topology of some of
these models does not match with the layer concept given by the third interpretation. This is for example
the case for networks which have intralayer connections in the input (neuronal) layer or where a certain

ci.4 amount of processing takes place in the input layer, such as the Boltzmann machine and related stochastic
~ 2 . 3 neural network models and such as recurrent neural networks that feed information from the output layer

back to the input layer.
Currently, the most popular neural network models belong to the family of multilayer neural networks.

The terminology associated with these models includes the terms input layer, hidden layer, and output
layer (see Section B2.2.1), which corresponds to the first interpretation of the word ‘layer’ as a layer of
neurons.

The issue of defining a layer also gives rise to the problem of counting the number of layers, which is
mainly caused by the dilemma of whether one should count the input layer as a layer. The argument against
counting the input layer is that in many neural network models the input layer is used for duplicating and
fanning out information and does not perform any further information processing. However, since there
are neural network models where the input neurons are also processing units, as explained above, the
best solution is to include the input layer in the counting. This policy has therefore been adopted by this
handbook.

The layer counting problem manifests itself mainly when one wants to label or classify a neural
network as having a certain number of layers. An easy way to circumvent the layer counting problem is
therefore to count the number of hidden layers instead of the total number of layers. This approach avoids
the issue of whether to count the input layer.

In can be concluded that the concept of a layer should be based on a layer of neurons. For a number
of popular neural network models it would be possible to also include the incoming interlayer connections
into the layer concept, but this should be discouraged given its limited scope of validity. In general it is
best to clearly define what is understood by a layer, and in order to avoid the layer counting problem one
can count the number of hidden layers instead.

B2.8.2 Weight notation

To underline the importance and to illustrate the use of a consistent and mnemonic notation, the notation
of the most fundamental and abundant neural network parameters, that of the weights, is discussed in this
section.

A suitable and commonly used notation for a connection weight is the letter w, which is also
mnemonic, using the first letter of the word ‘weight’. Depending on the topology, there are several
ways to uniquely address a specific weight in the network.

The best and most general way is to specify the position of both the source and the sink neuron that
are linked by the connection associated with a weight, by specifying the layer and neuron indices of both:
qm,, where 1 and m are the indices of the source and sink layers respectively and i and j the neuron
indices within these layers. This notation specifies a weight in a unique way for all the different kinds of
first-order connection as defined in Section B2.2.2.

For neural networks with only interlayer connections, the notation can be simplified if necessary.
Since the difference between the layer indices (I and m) is always one for these networks, one of the two
indices could be omitted: wl,, . In cases where this abbreviated notation is used, it is important to clearly
specify which layer the index 1 represents: whether it represents the layer containing the source or the
sink neuron.

A further notational simplification is possible for first-order networks with one neuronal layer or
networks without any cluster structure, where all neurons in the network are equally important. The
weights in these networks can be simply addressed by wij , where the i and j indices point to the two
neurons linked by the connection ‘carrying’ this weight.

B2.8:2 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A formal framework

High-order connections require a more elaborate notation since they combine the information of
several source neurons. Hence, the set of source neurons ({si}) needs to be included in the notation and
the weight of a high-order connection can be denoted as ~ (~ ~ , 1 ~ ~ . When desired, this notation can be
abbreviated for certain kinds of networks, analogous to first-order connections as described above.

Similarly to the weight notation, mnemonic notations for other network parameters are also
recommended and used in this handbook.

B2.8.3 Connectivity matrices

A compact way to represent the connections and/or weights in a neural network is by means of a
connectivity matrix. For first-order neural networks this is a two-dimensional array where each element
represents a connection or its associated weight. A global connectivity matrix describes the complete
network topology with all neuron indices enumerated along each of its two axes. Note that a symmetric
neural network has a symmetric connectivity matrix and an asymmetric neural network an asymmetric
one. Feedforward neural networks can be represented by a triangular matrix without diagonal elements.
Figure B2.8.1 shows an example for the fully interlayer connected topology of figure B2.2.1.

1 , l 1,2

I I

2, l 2,2 2,3 2,4

a m m a

a e a e

3, l 3,2

a

a

Figure B2.8.1. Connectivity matrix for the four-layer fully interlayer-connected neural network topology
as depicted in figure B2.2.1. On the vertical axis the source neurons are listed by a tuple consisting of
the layer number followed by the neuron number in that layer. On the horizonal axis the sink neurons are
listed using the same notation. A ‘0 ’ symbol marks the presence of a connection in the topology.

For layered networks, the order of the neuron indices should reflect the sequential order of the layers,
starting with the input layer neurons at one end of the matrix and ending with the output neurons at the
other end of the matrix. The matrix can be subdivided into blocks based on the layer boundaries (see
figure B2.8.1). In such a matrix, subdivided into blocks, the diagonal elements, which are the matrix
elements with identical indices, represent the self-connections and the diagonal blocks containing these
diagonal elements contain the intralayer connections. The interlayer connections are found in the blocks

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook of Neurul Computution release 9711 B2.8:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

that are horizontally or vertically adjacent to the diagonal blocks. All other blocks represent supralayer
connections. Figure B2.8.2 shows the global connectivity matrix for the network depicted in figure B2.2.2.

Figure B2.8.2. Global connectivity matrix for the layered neural network topology with various kinds of
connection as depicted in figure B2.2.2. The notation is the same as in figure B2.8.1.

For layered neural networks with only interlayer connections, individual connectivity matrices can be
constructed for each of the connection sets between adjacent layers.

The connectivity matrices for high-order neural networks need to have a dimensionality of R + 1,
corresponding to the maximum number of source neurons (Q) plus one sink neuron.

Based on the definitions of Section B2.2.2, the span of a connection, measured in number of layers,
can be defined as the difference between the indices of the layers in which the neurons that are linked by
that connection are located. That is, the span of a connection which connects layer 1 with layer m is I I -ml.
For example, interlayer connections have a span of one, intralayer connections a zero span, and supralayer
connections a span of two or more. Different kinds of supralayer connection can be distinguished based on
their span. The span of a connection can be easily visualized with the aid of a global connectivity matrix,
since it is equal to the horizontal or vertical distance, in blocks, from the matrix element corresponding
to that connection to the closest diagonal element of the connectivity matrix. The span of a high-order
connection, which is equal to the maximum difference between any of the indices of the layers it connects,
is more difficult to visualize given the increased dimensionality of the connectivity matrix.

B2.8.4 Neural networks as graphs

Graph theory (see for example Harary 1969) provides an excellent framework for studying and interpreting
neural network topologies. A neural network topology is in principle a graph (N , W) , where N is the
set of neurons and W the set of connections, and when the network has a layered structure it becomes a
layered graph (Fiesler 1993). More specifically, neural networks are directed layered graphs, specifying
the direction of the information flow. In the case where the information between neurons can flow in more
than one direction, there are two possibilities:

0 if distinct weight values are used for the information flow (between some neurons) in more than one
direction, the topology remains a directed graph but with multiple connections between those neurons
that can have a multidirectional information flow;
if the same weight value is used in all directions, the topology becomes symmetric (see Section B2.3)
and corresponds to the topology of an undirected graph.

Figure B2.1.1 shows a neural network topology without a layered structure, which is a directed graph.
If all possible connections are present, as in a plenary neural network, its topology is equivalent to afully
connected graph.

B2.8:4 Hudbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A formal framework

References

Farmer J D 1990 A Rosetta stone for connectionism Physica D 42 153-87
Fiesler E 1993 Layered graphs with a maximum number of edges Circuit Theory and Design 93; Proc. 11th Eur.

Con$ on Circuit Theory and Design (Davos, 1993) part I, ed H Dedieu (Amsterdam: Elsevier) pp 403-8
- 1994 Neural network classification and formalization Comput. Standards Interfaces 16 23 1-9
Harary F 1969 Graph Theory (Reading, MA: Addison-Wesley)
Hong Jiawei 1988 On connectionist models Commun. Pure Appl. Math. 41 1039-50
Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol.

Smith L S 1992 A framework for neural net specification IEEE Trans. Software Eng. 18 601-12
Valiant L G 1988 Functionality in neural nets Pmc. 7th Null Con$ Am. Assoc. Artificial Intell. (AAAI)-88 (St Paul,

Rev. 65 386-408

MN, 1988) vol 2 (San Mateo, CA: Morgan Kaufmann) pp 629-34

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurui Computurion release 9711 B2.8:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.9 Modular topologies

Massimo de Francesco

Abstract

See the abstract for Chapter B2.

B2.9.1 Introduction

The beauty of neural network programming, and certainly one of the reasons why early models were found
so appealing by computer science researchers, is the idea of a distributed, uniform method of computation,
where a few decisions concerning simple topologies of fully connected layers of neurons are enough to
define a complete system able to carry out any assigned task. Indeed, the dream of a self-programming
system, coupled with the mathematical purity of a regular structure, has been the primary focus of research
in neural networks.

This uniformity, however, can be the major shortcoming when trying to cope with real-world problems.
The brain itself, the most perfected biological neural system, is far from being a regular and uniform
structure: millions of years of evolution and genetic selection ended up in a highly organized, hierarchical
system, which can be better described by the expression network of networks. From nature’s point of view,
uniformity is a waste of resources.

B2.9.2 The complexity problem

As a matter of fact, uniform architectures such as multilayerperceptrons have proved to be able to tackle c1 .2
problems in an effective way, and approximation theorems show that these networks are able under certain
conditions to represent virtually any mapping. However, the computational costs associated with training
a uniformly connected network can be unacceptably high, and the learning rules commonly used are not
guaranteed to converge to the global optimum.

Scaling properties of uniform multilayer perceptrons are a matter of concern, because the number
of weights usually grows more than linearly with the size of the problem. Since an interesting result of
computational learning theory tells us that we need proportionally as many examples as weights to achieve
a given accuracy (Baum and Haussler 1989), the actual number of examples and the time needed to train
the system can become prohibitively large as the problem size increases.

Furthermore, uniform feedforward architectures are subject to interference effects from uncorrelated
features in the input space. By trying to exploit all the information a given unit receives, it becomes much
more sensible to apparent relationships between unrelated features, which arise especially with high input
dimensionality and insufficient training data.

treatment by a uniform architecture is not conceivable without relying on heavy preprocessing of the data
in order to extract the most relevant information.

Modular architectures try to cope with these problems by restricting the search for a good
approximation function to a smaller but potentially more interesting set of candidates. The idea that
led to the investigation of more modular architectures came from the observation that class boundaries in
large, real-world problems are usually much smoother and more regular than those found in such toys but
extremely difficult problems as n-parity or the double spiral, and do not require the excessively powerful

Problems such as image or speech recognition convey such an amount of information that their ~ 1 . 6 , ~ 1 . 7

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B2.9:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

approximation capability of uniform architectures. For instance, we do not expect a face classification
system to completely change its output as one single bit in the input space is altered.

Modularity is also the natural outcome of divide and conquer strategies, where a priori knowledge
about the problem can be exploited to shape the network architecture.

B2.9.3 Modular topologies

Although any simple categorization could not account for all the types of architecture commonly called
modular, published work seems to focus on three main levels of modularity related to neural computation:
modular multinetwork systems, modular topologies, and (biological) modular models. We will essentially
discuss the former, with special emphasis on modular topologies, although we will give a definition of
and pointers to the latter.

B2.9.3. I Modular systems

Modular systems usually decompose a difficult problem into easier subproblems, so that each subproblem
can be successfully solved by an eventually uniform neural network. Different options have been
investigated regarding the way input data is fed into the different modules, how the different results
are finally combined, and whether the subnetworks are trained independently or in the context of the
global system.

Some of these modular systems rely on the decomposition of the training data itself, by specializing
different networks on different subsets of the input space. Sabourin and Mitiche (1992) for instance
describe a character recognition system where high-level features in the input data, such as presence or
absence of loops, are used to select a specifically trained subnetwork. Others rely on the fact that different
instantiations of the same network trained on the same data (or on different representations of the same
data) usually converge to different global minima (because of the randomized starting conditions), so that a
simple voting procedure can be implemented (see for instance the article by Lincoln and Skrzypek (1990).
Others again add specific neural circuitry to provide more sophisticated combination of the partial results
(see for instance the article by Waibel (1989)).

Among modular systems, the multiexpert model (Jacobs et a1 199 1) deserves special consideration,
since no a priori knowledge regarding the task decomposition is required: the system itself learns the
correct allocation of training cases by performing gradient descent on an altered error function enforcing
the competition between the expert networks and thus inducing their specialization to local regions of the
input space.

Most of the modular systems described here claim better generalization than a comparable uniform
architecture, although some of them achieve this at the expense of increased computation.

B2.9.3.2 Modular models

CALM networks (Murre et a1 1992) or cortical column models (Alexandra et al 1991) are original
neural network models which are intrinsically modular. The basic computing structures of CALM and
cortical column models are small modules composed by neuron-like elements, and the models describe
the interaction, learning, and computing properties of assemblies of these modules. The main focus here
is on biological resemblance, rather than computational efficiency.

B2.9.3.3 Modular topologies

The final category of modular architectures includes simple topological variations of otherwise well known
and widely used neural models such as multilayer perceptrons. Units of the hidden and possibly output
layers in these networks are further organized into several clusters which have only local connectivity to
units in the previous layer. Modules are thus composed by one or more units having connections limited
to a local field (or a union of local fields) in the previous layer, and several modules operating in parallel
are needed to completely cover the input space. This eventually overlapping tiling can be repeated for the
subsequent layers, but is especially useful between the input and the first hidden layer. These architectures
do not require modification of the standard learning rules, so that standard backpropagation can be applied.
They are therefore very easy to implement, yet achieve very good results by diminishing the total number

B2.9:2 Hundbook of Neural Computurion release 9711 @ 1997 IOP Publishing Lrd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Modular topologies

of weights, by partially avoiding interference effects, and by enforcing a divide and conquer strategy. If
it is possible to load the training set in a modular topology, then we will obtain a network which is faster
and which generalizes better than a corresponding uniform network.

The study of a printed optical character recognition task from De Francesco (1994) will help illustrate
these points with some numbers. Suppose we are processing a 16 x 16 binary image with a feedforward
neural network. With 50 hidden units, the first layer in a fully connected topology would contain
50 x 16 x 16 = 12800 weights. If we define a modular architecture using nine modules with an 8 x 8
local input field overlapping the whole image, and if each of these modules contains six units (for a total
of 9 x 6 = 54 hidden units), the combined first layer would have 9 x 6 x 8 x 8 = 3456 weights, roughly a
quarter of the uniform architecture. The results reported in table B2.9.1 show that the modular architecture
is much more accurate than the uniform one. Furthermore, since the modular architecture has much fewer
weights, it is tighter and executes faster, so that it can be more easily deployed in an industrial application
where speed and space constraints are an important factor.

Table B2.9.1. A comparison of modular and uniform topologies.

Topology No of modules No of weights No of hidden layers No of outputs Accuracy (%)
~~ ~

Uniform 2 (2 layers) -W -25
Uniform 2 -2w -50
Modular 10 W -50

-100 c 85*
-100 98.2
-100 99.5

* The uniform architecture with the same number of weights as the modular network was most of the
time unable to converge on the training set; 85% represents the accuracy on the test set of the most
converged network in the batch. Accuracy values of the two other architectures are averaged over ten
runs.

Similar results have been reported by Le Cun (1989) on a smaller problem, with a topology combining
local fields with additional constraints of equality between weights in different clusters. This is known as
the weight sharing technique, described by Rumelhart et a1 (1986). Today, weight sharing is especially
used in time delay neural networks, which have been extensively applied to speech recognition tasks.

Recent theoretical results on sample size bounds for shared weight networks (Taylor 1995) indicate
that the generalization power of these networks depends on the number of classes of weights (shared
weights are counted only once), rather than on the total number of connections, which explains their
improved performance over uniform architectures.

ci.2.8, ~ 1 . 7

B2.9.4 A need for further research

It must be noted that many modular architectures are in fact subsets of uniform topologies, in the sense
that they are equivalent to a uniform architecture with some of the connections fixed with zero-valued
weights. It can thus be objected that these modular networks are intrinsically less powerful than uniform
ones, and this is certainly true in the general case. The point is that modular architectures can and must
be adapted to the particular problem or class of problems to be effective, where uniform ones only depend
on the problem dimensions. This raises the issue of determining whether and how a given architecture is
suited to the particular task. Local receptive fields for instance can be easily justified in image processing,
but much less so in financial forecasting or medical diagnosis, where the input is composed of complex
variables with no evident topological relationship. Which knowledge is useful and how it can be translated
into the network architecture is still an open question from a theoretical point of view.

during training, usually pruning apparently unused connections, trying in this way to prevent some of
the problems associated with fully connected networks. They however fail to produce any intelligible
modularity in the final architecture, and their global performance is usually not as good as successfully
trained networks with a fixed modular topology.

Although important experimental evidence supporting the superiority of modular architectures has
been cumulated over the last few years, and even if large-scale problems such as speech recognition have
shown to be tractable only by modular topologies, the lack of important theoretical results and the additional
efforts needed to choose and specify a modular architecture have certainly diminished their interest among

Some ontogenic networks attempt to cope with the architectural dilemma by modifying themselves c1.7, c2.4

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Compurution release 9711 B2.9:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

researchers in neural networks. Therefore, before hoping to find a more widespread use of modular neural
networks, some fundamental and related questions will have to be answered more precisely:

0 How can problems be categorized in order to establish which ones benefit the most from modularity?
0 How can we exploit topological data in the theoretical determination of optimal bounds for the size

of the training set?
0 Conversely, given a problem, is there any computationally effective way to determine a good topology

to solve it?

References

Alexandre D, Guyot F, Haton J-P and Bumod Y 1991 The cortical column: a new processing unit for multilayered

Baum E B and Haussler D 1989 What size net gives valid generalization? Neural Comput. 1 151-60
De Francesco M 1994 Functional networks: a new computational framework for the specification, simulation and

Jacobs R A, Jordan M I, Nowlan S J and Hinton G E 1991 Adaptive mixtures of local experts Neural Comput. 3

Murre J M J, Phaf R H and Wolters G 1992 CALM: a building block for learning neural networks Neural Networks

Le Cun Y 1989 Generalization and network design strategies Technical report CRG-TR-89-4, University of Toronto
Connectionist Research Group

Lincoln W and Skrzypek J 1990 Synergy of clustering multiple back propagation networks Advances in Neural
Information Processing Systems 2 (Denver, CO, 1989) ed D S Touretzky (San Mateo, CA: Morgan Kaufmann)
pp 650-9

Rumelhart D E, Hinton G E and Williams R G 1986 Leaming internal representation by error propagation Parallel
Distributed Processing vol 1, ed D E Rumelhart and J L McClelland (Cambridge, MA: MIT Press) pp 318-62

Sabourin M and Mitiche A 1992 Optical character recognition by a neural network Neural networks 5 843-52
Taylor J S 1995 Sample sizes for threshold networks with equivalences Information Comput. 118 65-72
Waibel A 1989 Modular construction of time delay neural networks for speech recognition Neural Comput. 1 39-46

networks Neural Networks 4 15-25

algebraic manipulation of modular neural systems PhD Thesis University of Geneva

79-87

5 52-82

B2.9:4 Handbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10 Theoretical considerations for choosing a
network topology

Maxwell B Stinchcombe

Abstract

A minimal criterion for choosing a network topology is ‘denseness’. A network topology
is dense if it contains networks that can come arbitrarily close to any functional relation
between inputs x and outputs y . Within a chosen dense class of networks, the question
is how large a network to choose. Here a minimal criterion is consistency. A method of
choosing the size of the the network is consistent if, as the number of data or training
examples grows large, all avoidable errors disappear. This means that the choices cannot
overfit. The most widespread consistent methods of choice are variants of a statistical
technique known as cross-validation,

B2.10.1 Introduction

Neural networks provide an attractive set of models of the unknown relation between a set of input variables
x E W k and output variables y E W m . The different topologies or architectures provide different classes of
nonlinear functions to estimate the unknown relation. The questions to be answered are as follows:
(i) What class of relations is, at least potentially, representable?
(ii) What parts of the potential are actually realizable?
(iii) How might we actually learn (or estimate) the unknown relation?
(iv) How well does the estimated relation do when presented with new inputs?

The formal answers to the first question have taken the form of denseness (or universal approximation)
theorems-if some aspect of the architecture goes to infinity, then, up to any E > 0, all relations in some
class X of functions from W k to Wm can be €-captured. If an architecture does not have this property, then
there are relations between x and y that will not be captured.

The formal answers to the second question have taken the form of consistency theorems-if the
number of data (read number of training examples) becomes large, then, up to any E > 0, all relations
in X between x and y can be e-learned (read estimated). The previous denseness results are a crucial
ingredient here.

Imbedded in the consistency theorems are two kinds of answer to the third question. The first class
of consistency theorems delivers asymptotic learning if the complexity of the architecture (measured by
the number of parameters) goes to infinity at a rate sufficiently slow relative to the the amount of data.
These results provide little practical guidance-multiplication of the complexity by any positive constant
maintains the asymptotic relation. The second, more satisfactory class of consistency theorems delivers
asymptotic learning if the complexity of the architecture is chosen by cross-validation (CV). The focus 83.5.2. c i . 2 . 6

here will be CV and related procedures.
The essential CV idea is to divide the N data points into two disjoint sets of N 1 and N2 points,

N1 + N2 = N , estimate the relation between x and y using the N I points, and (providing an answer
to the fourth question) evaluate the generalization capacity using the N2 points. This simple idea has
many variants. Related procedures include complexity regularization (loss-minimization procedures that
include penalties for overparametrization), and nonconvergent methods (N I -estimated gradient descent on
overparametrized models with an N2 deterioration-of-fit stopping rule).

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B2.10: 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10.2 Measures of fit and generalization

The aim is to use artificial neural network (ANN) models to estimate an unknown relationship between
x and y and to estimate the quality of estimate’s fit to the data, and its capacity for generalization. The
starting point is a representative sample of N data points, (x i , ~i):!~. The most widely used measures
of generalization of an estimated relation, (D, are of the form (l , , p) where l , : + R+ is the
(measurable) ‘loss function’, p is the (countably additive Borel) probability on from which the
generalization points (x , y) will be drawn, and (f, w) := j” f d u for any nonnegative function f and
probability U. By far the most common loss function is l i (x , y) = (y - (~ (x)) ~ , but any lg = (y - (~ (x)) ” ,
p E [l , m] (with the usual LP convention for p = m) is feasible. Extremely useful for theoretical
purposes are the Sobolev loss functions that depend on f (x) , the true conditional mean of y given x , and
the distance between the derivatives of f and (0, for example, l ; sOb(x , y) = C , a , 5 M (D a f (x) - D a ~ (x)) 2 .
(In these last two sentences and from here onwards, we will assume that y E RI. This is for notational
convenience only, the results and discussion apply to higher output dimensions.)

This loss function approach covers both the case of noisy and noiseless observations. If f (x) denotes
(a version of) E (y l x) , then a complete description of p is given by y = f (x) + E where x is distributed
according to P , the marginal of p on Rk, and E is a mean-zero random variable with distribution Q (x)
on R”. If E is independent of x and Q (x) Q, we have the standard additive noise model. If Q (x) is a
point mass on 0, i.e. if the conditional variance of E is a.e. 0, we have noiseless observations (the additive
noise model with zero variance).

When the data are a random sample drawn from p, and both N I and N2 are moderately large,
the Glivenko-Cantelli theorem tells us that the empirical distributions p ~ , p ~ , , and p~~ are good
approximations to p. If we pick a model, $, to minimize (l, , p ~ ,) , then (88 , ,UN,) is an underestimate of
(.e@, p) . However, (t k , p ~ ~) is unbiased, and this is the basis of CV. We can not expect good generalization
of our estimated models if the empirical distribution of the (x i , y i) E l is very far from p.

B2.10.3 Denseness

ci.1 Single-layer feedforward (SLFF) networks are (for present purposes) functions of the form f (x , 8, J) =
BO + BjG(Y9 + yj,o) where y ix is the inner product of the k-vectors y i and x , y,,~ is a scalar,
G : R + R, and 8 is the vector of the ,b and y . The first formal denseness results were proved for SLFF
networks in Funahashi (1989), followed nearly immediately (and independently) by Cybenko (1989) and
Hornik et a1 (1989). All three of these showed that, if G is a sigmoid, then for any continuous g defined
on any compact set K c Rk, and for any E > 0, if J is sufficiently large, then there exists a 8 such
that supxEK I f (x , 8, J) - g(x) l < 6 . (This is ‘denseness in C(Rk) in the compact-open topology’.) Note
carefully that this is a statement about the existence of a network with this type of architecture, not a
guarantee that the network can be found, something that the consistency results deliver.

In the article by Hornik et al (1989) there is an inductive proof that the same result is true for
CI .2 multilayer feedforward (MLFF) networks (feedforward networks applied to the outputs of other feedforward

networks). An immediate consequence of denseness in the compact open topology is the result that for
the .tg loss functions with compactly supported P , for large J , there exist 8 such that the loss associated
with f (x , 8, J) is within any E > 0 of the theoretical minimum loss (which is zero in the noiseless case,
and is the expected value of the conditional variance in the .t i case). Using some of the techniques in
Funahashi (1989) and Cybenko (1989), Hornik et a1 (1990) show that the same results are true using the
various .ts,.b loss functions; Stinchcombe and White (1989, 1990) and Hornik (1991, 1993) have expanded
these results in various directions, loosening the restrictions on G and allowing for different restrictions
on the 8.

Radial basis function (RBF) networks are (for present purposes) functions of the form h (x , 8, J) =
BO + E:=, BjG((x - c,)’M(x - cj)) where the B are scalars, the cj are k-vectors, M is a positive definite
matrix, and G : R -+ R. Park and Sandberg (1991, 1993a, 1993b) show that for large J , the loss
function is within any E > 0 of its theoretical minimum.

The sum of dense networks is again dense, meaning that combination networks will also have
denseness properties. One expects that architectures more complicated than SLFF, MLFF, and RBF
networks will also have denseness properties, and the techniques used in the literature just cited are
well-suited to delivering such results.

ci .6 .2

B2.10:2 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Theoretical considerations for choosing a network topology

Denseness is a minimal property, and, unfortunately rather too crude to usefully compare different
dense network architectures-given two different architectures, there are typically two corresponding
disjoint, dense sets X I , X2 c X of possible relations for which the two architectures are better suited.
Further, the known rates at which the loss can can be driven to its theoretical minimum as a function
of the number of parameters is the same for both RBF and SLFF networks (Stinchcombe et a1 1993).
The empirical process techniques used in Stinchcombe et a1 (1993) (and previously for a class of SLFF
networks in Barron 1993) seem broadly applicable (see also Hornik et a1 1993).

B2.10.4 Consistency

Let @ (N) be an estimator of the relationship between x and y based on the data set N . A consistency
result for @ (N) is a statement of the form, ‘as N f CO, (& N) , p) converges to its theoretical minimum’.
The methods of Grenander (1981), Gallant (1987), White and Wooldridge (1991) allow denseness results
to be turned into consistency results (White 1990, Gallant and White 1992, also Hart and Wehrly 1993).

For SLFF networks, the two consistency results in White (1990) concern the ti loss function and
have very different flavors. The first gives conditions on the rates at which different aspects of SLFF
architecture can go to infinity, the second concerning leave-one-out cross-validation (see below). By
contrast, the article by Gallant and White (1992) concerns the .tgVSob loss functions, p < 00, imposes a
prior compactness condition on the set of possible relations between x and y, and requires only that the
complexity of the network become infinite in the limit. In particular, this allows for the many variants of
cv.

B2.10.5 Cross-validation

Cross-validation (CV) refers to the simple idea of splitting the data into two parts, using one part to find
the estimated relation, and then judging the quality of the fit using the other part of the data. There are
many variants of this simple idea.

Let M = U J M J be the union of different classes of models of the relation between x and y. (The
classical example has M J as the class of linear models in which regressors 1, . . . , J are included. In
fitting either an SLFF or an RBF, M J is the class of functions where J nonlinear terms are included in
the summation. If the choice is to be between architectures that vary in more than the number of nonlinear
terms to be added, the appropriate choice of M J should be clear.) Let @ J (S) E M J denote the loss
minimizing estimate of the relation between x and y based on the data in S c N , that is, @ J (S) minimizes
&, P S) Over P E M J .

Originally (Stone 1974), CV meant ‘leave-one-out CV’ or ‘delete-one CV,’ picking that @ J that
minimizes the average Ave(t&,,\,il), pi) where the average is taken over all i E N and pi is a point
mass on the ith data point. Intuitively, this works because ‘overfitting’ the data leads on N\{i} to larger
errors in predicting yi from x i . The variants in the statistics literature (Zhang 1993) include delete-d CV
(the obvious variant of classical delete-one CV), r-fold CV, picking @ J to minimize Ave(l$J(N\N,), p ~ ,)
where the average is taken over a random division of the data into r equally sized parts, and repeated
learning-testing, a bootstrap method which consists of picking @J to minimize Ave(L$,(N1), p ~ ,) where
the average is taken over random independent selections of size d subsets N2 of N and N I = N\N2. Note
that this list includes sample-splitting CV, which is just twofold CV, splitting the data in half, fitting on
one half, and picking the model from the predicted loss estimated with the second half.

Delete-d CV requires fitting the model N choose d times, and is, computationally, the most expensive
of the procedures. The least expensive is r-fold CV with r = 2. Generally, in the classical case (described
above), the computationally more intensive procedures have a better chance of picking the correct model
(Zhang 1993, 1992). Even though there is a tendency to overfit in the classical case, provided M is
dense, the CV procedure will deliver a consistent estimate of the functional relationship between x and y.
That is, as N t CO, the loss approximates its theoretical minimum (Hart and Wehrly 1993). Thus, when
data (training examples) are cheap relative to the computational problems of picking the e, 2-fold CV
recommends itself.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compururion release 9711 B2.10:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10.6 Related procedures

Complexity regularization and noncovergent methods either are or can be understood as variants of cross-
validation.

B2. IO. 6. I Complexity regularization

Complexity regularization picks that model @ E M that minimizes (lV, p ~) + h P (p) where P(p) is a
penalty term for the complexity of p, and h is a scalar. This is an idea that goes back (at least) to ridge
regression (Hoer1 and Kennard 1970). For example, P(p) could be the minimal J such that (p E M j
when M J c M J + ~ . Intuitively, the tendency to overfit by picking too complex a p is countered by the
penalty.

Akaike’s information criterion (AIC; Akaike 1973) works for the independent additive noise model. It
has being the sample log likelihood, h = 1, and P(p) being the number of parameters used in specifying
p (in the case that the additive noise is i.i.d. Gaussian, this is the same as the loss function). Stone
(1977) showed that delete-one CV is equivalent to maximizing the sample log likelihood plus e J 2 0. He
also showed that if one of the classes of models, say M J * , is exactly correctly specified, then e p is equal
to the number of parameters used in specifying M J * . There is a tendency to overinterpret this result;
eJ may not be equal to the number of parameters for J # J*, and there is no guarantee that the two
criteria make the same choice. The Kullback-Leibler (1951) information criterion can provide a (slight)
generalization of the AIC.

The general difficulty in applying complexity regularization procedures is correctly choosing h, This
can be done by CV (though it seems rather indirect)-simply let p (h) be the choice as a function of h
based on the subset N I of the data, and pick h to minimize (l,,,,, p ~ ~) (see Lukas 1993 for the asymptotic
optimality of this procedure).

B2.10.6.2 Nonconvergent methods

The nonconvergent methods of model selection (Finnoff et a1 1993) is a form of twofold CV. One starts
with a model that is tremendously overparametrized (e.g. the number of nonlinear terms in an ANN might
be set at N / 2) . By gradient descent (or its backpropagation variant), the parameters in the model are
moved in a direction chosen to improve { lV, p ~ ,) , continuing until (lV , p ~ ~) begins to increase. This is
a model selection procedure in two separate senses. First, if the starting point of the parameters is zero,
then gradient descent will not have pushed very many of the parameters away from zero by the time the
N 2 fit has begun to deteriorate. Parameters close to zero identify nonlinear units that can be ignored and
so an M J has been chosen. The second point arises from a shift away from the statistical viewpoint of
nested sets of models. The aim is a model (or estimate) of the relation between x and y. The fact that our
model has ‘too many’ parameters is not, in principle, an objection if the model itself has not been overfit.

References

Akaike H 1973 Information theory and an extension of the maximum likelihood principle Second Int. Symp. on

Baron A 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Info. Theory

Billingsley P 1968 Convergence of Probability Measures (New York: Wiley)
Cybenko G 1989 Approximation by superpositions of a sigmoidal function Math. Control Signals Syst. 2 303-14
Finnoff W, Hergert F and Zimmermann H G 1993 Improving model selection by nonconvergent methods Neural

Funahashi K 1989 On the approximate realization of continuous mappings by neural networks Neural Networks 2

Gallant R 1987 Identification and Consistency in Seminonparametric Regression ed T F Bewley Fifth World Con$ on

Gallant R and White H 1992 On learning the derivatives of an unknown mapping with neural networks Neural

Grenander U 1981 Abstract Inference (New York: Wiley)
Hart J D and Wehrly T E 1993 Consistency of cross-validation when the data are curves Stochastic Processes and

Information Theory ed B N Petrov and F Csaki (Budapest: Akademiai Kiado) pp 267-81

39 930-45

Networks 6 771-83

183-92

Advances in Econometrics vol 1 (New York: Cambridge University Press) pp 145-170

Networks 5 129-138

their Applications 45 351-61

B2.10~4 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Theoretical considerations for choosing a network topology

Hoer1 A and Kennard R 1970 Ridge regression: biased estimation for non-orthogonal problems Technometrics 12 55
Hornik K 1991 Approximation capabilities of multilayer feedforward networks Neural Networks 4 251-7
-1993 Some new results on neural network approximation Neural Networks 6 1069-72
Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural

Networks 2 359-66 (Reprinted in White H (ed) 1992 ArtiJcial Neural Networks: Approximation & Learning
Theory (Oxford: Blackwell) and in Rao Vemuri V (ed) ArtiJcial Neural Networks: Concepts and Control
Applications (IEEE Computer Society))

-1990 Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
Neural Networks 3 551-560 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation &
Learning Theory (Oxford: Blackwell))

Hornik K, Stinchcombe M, White H and Auer P 1994 Degree of approximation results for feedforward networks
approximating unknown mappings and their derivatives Neural Comput. 6 1262-75

Kullback L and Leibler R A 1951 On information and sufficiency Ann. Math. Stat. 22 79-86
Lukas M A 1993 Asymptotic optimality of generalized cross-validation for choosing the regularization parameter

Park J and Sandberg I W 1991 Universal approximation using radial basis-function networks Neural Comput. 3 246-57
-1993a Approximation and radial-basis function networks Neural Comput. 5 305-16
-1993b Nonlinear approximations using elliptic basis function networks Circuits, Syst. Signal Processing 13 99-1 13
Stinchcombe M and White H 1989 Universal approximation using feedforward networks with non-sigmoid hidden

layer activation functions Proc. Int. Joint Con. on Neural Networks (Washington, DC) vol I (San Diego: SOS
Printing) pp 613-7 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation & Learning
Theory (Oxford: Blackwell))

-1990 Approximating and learning unknown mappings using multilayer feedforward networks with bounded
weights Proc. Int. Joint Con. on Neural Networks (Washington, DC) vol I11 (San Diego: SOS Printing) pp
7-16 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation & Leaming Theory (Oxford:
Blackwell))

Stinchcombe M, White H and Yukich J 1995 Sup-norm approximation bounds for networks through probabilistic
methods IEEE Trans. Info. Theory 41 1021-7

Stone M 1974 Cross-validitory choice and assessment of statistical predictions J. R. Stat. Soc. B 35 11 1-33
-1977 An asypmtotic equivalence of choice of model by cross validation and Akaike’s criterion J. R. Stat. Soc. B

39 44-47
White H 1990 Connectionist nonparametric regression: multilayer feedforward networks can leam arbitrary mappings

Neural Networks 3 535-50
White H and Wooldridge J 1991 Some results for sieve estimation with dependent obserations Nonparametric and

Semiparametric Methods in Econometrics and Statistics ed W Barnett, J Powell and G Tauchen (New York:
Cambridge University Press)

Numerische Mathemutik 66 41-66

Zhang P 1992 On the distributional properties of model selection criteria J. Am. Stat. Assoc. 87 732-7
-1993 Model selection via multifold cross validation Ann. Stat. 21 299-313

~~

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B2.10:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

James L Noyes

Abstract

The characteristics of neural network models are discussed, including a four-parameter
generic activation function and an associated generic output function. Both supervised
and unsupervised learning rules are described, including the Hebbian rule (in various
forms), the perceptron rule, the delta and generalized delta rules, competitive rules, and
the Klopf drive reinforcement rule. Methods of accelerating neural network training
are described within the context of a multilayer feedforward network model, including
some implementation details. These methods are primarily based upon an unconstrained
optimization framework which utilizes gradient, conjugate gradient, and quasi-Newton
methods (to determine the improvement directions), combined with adaptive steplength
computation (to determine the learning rates). Bounded weight and bias methods are
also discussed. The importance of properly selecting and preprocessing neural network
training data is addressed. Some techniques for measuring and improving network
generalization are presented, including cross validation, training set selection, adding
noise to the training data, and the pruning of weights.

Contents

B3 NEURAL NETWORK TRAINING
B3.1 Introduction
B3.2
B3.3 Learning rules
B3.4 Acceleration of training
B3.5 Training and generalization

Characteristics of neural network models

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.1 Introduction

James L Noyes

Abstract

See the abstract for Chapter B3.

Neural networks do not learn by being programmed; they learn by being trained. Sometimes the words
training and learning are used interchangeably within the context of neural networks, but here a distinction
will be made between them. Learning, in a neural network, is the adjustment of the network in response
to external stimuli; this adjustment can be permanent. In biological neural networks, both memory and the
formation of thoughts involve neuronal synaptic changes. An artificial neural network models the synaptic
states of its artificial neurons by means of numerical weights. A successful neural network learning process
causes these weights to change and eventually to stabilize.

Learning may be supervised or unsupervised. Supervised learning is a process in which the external
network input data and the corresponding target data for network output are provided and the network
adjusts itself in some fashion so that a given input will produce the desired target. This can be done by
determining the network output for a given input, comparing this output with the corresponding target,
computing any error (difference) between the output and target, and using this error to provide the external
feedback, based upon external target data, that is necessary to adjust the network. In unsupervised learning,
the network adjusts itself by using the inputs only. It has no target data, and hence cannot determine errors
upon which to base external feedback for learning. An unsupervised network can, however, group similar
sets of input patterns into clusters predicated upon a predetermined set of criteria relating the components
of the data. Based upon one or more of these criteria, the network discovers any existing regularities,
patterns, classifications or separating properties. The network adjusts itself so that similar inputs produce
the same representative output.

Training, in a neural network, refers to the presentation of the inputs, and possibly targets, to the
network. This is done during the training phase. Training, and hence learning, is just the means to an
end. This end is effective recall, generalization, or some combination of the two during the application
phase, when the network is used to solve a problem. Recall is based upon the decoding and output of
information that has previously been encoded and learned. Generalization is the ability of the network
to produce reasonable outputs associated with new inputs. This is usually an important property for a
neural network to possess. Recall and generalization take place during the use of a neural network for a
particular application. In general, these are quite fast, whereas learning is commonly much slower because
the network weights must typically be readjusted many times during the learning process. These weight
adjustments, which are based upon the particular learning rule employed, are the main characteristics of
training. Once a neural network has been trained and tested, it is used in an application mode until it
no longer performs to the satisfaction of the user. When this point is reached, the training data set may
be modified by adding or removing data, and the training and testing process repeated (Rumelhart and
McClelland 1986, Noyes 1992, Fausett 1994).

References

Fausett L 1994 Fundamentals of Neural Networks (Englewood Cliffs, NJ: Prentice-Hall)
Noyes J L 1992 Artificial Intelligence with Common Lisp: Fundamentals of Symbolic and Numeric Processing

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)
(Lexington, MA: D C Heath)

@ 1997 1OP Publishing Ltd and Oxford University Ress Handbook of Neuml Computation release 9711 B3.1: 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.2 Characteristics of neural network models

James L Noyes

Abstract

See the abstract for Chapter B3.

Before discussing the concepts of neural network training, a brief discussion outlining the characteristics
of general neural network models is necessary.

B3.2.1 Biological and applications-oriented modeling

A neural network model may be developed to simulate various features of the human or animal brain
(for example, to study the effectiveness of different neural connection schemes, or how the absence of
myelin affects response times, or how the loss of a collection of neurons degrades memory). This type
of modeling can be characterized as biologically oriented (McClelland and Rumelhart 1986, Klopf 1988,
Hertz et a1 1991, Kandel 1991).

On the other hand, a neural network model may be developed to help solve a problem that has
nothing in common with biology or neurophysiology. The network model is designed or chosen with a
specific application in mind, such as the identification of handwritten letters, face recognition, function
approximation, robotic control, or prediction of credit risk. This type of model can be characterized as
application oriented. The majority of neural network models are of this type. In this type of model one
need not concern oneself with developing constructs that have any biological counterpart at all. If the
network performs well on a certain class of problem, then it is deemed adequate.

B3.2.2 The neuron

The purpose of the neuron is to receive information from other neurons, perform some relatively simple
processing on this combined information and send the results on to other neurons. For neural network
models it is convenient to classify these neurons into one of three types: (i) An input neuron is one that
has only one input, no weight adjustment, and the input is from an external source (i.e. the input values
used for training or in applications). (ii) An output neuron is one whose output is used externally as
a network result. For example, the values from all of the output neurons are used during a supervised
training session. (iii) A hidden neuron receives its inputs only from other neurons and sends its output
only to other neurons. Neural network topologies are discussed in detail in Chapter B2 of this handbook. ~2

The following general notational conventions will be followed in the remainder of this chapter. A
scalar variable will be written with one or more italicized lower-case letters, such as net, w, or "ti. A
vector is written as a lower-case letter in italicized boldface. For example, an input vector is written as z
and an output vector is written as y. All vectors are assumed to be column vectors. A matrix is written as
an upper-case letter in bold sans serif. For example, a weight matrix could be denoted by W. A transpose
of a vector or matrix is indicated with a small upper-case T as a superscript, such as zT (a row vector)
and w. Since there are typically many of these scalars, vectors, and matrices needed to describe neural
network processing, subscripts will be used frequently.

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computurion release 9711 B3.2:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.2.3 Neuron signal propagation

For a given neuron to fire, the incoming signals from other neurons must be combined in some fashion.
One early solution was to use a simple weighted sum as ajiring rule. When this weighted sum reaches a
given threshold value 8, the neuron will fire. For neuron i this is written as:

j=1

This approach was adopted by Warren McCulloch and Walter Pitts in one of the first neural network models
ever devised (McCulloch and Pitts 1943). Here a signal of 1 was output when its weighted sum reached
or exceeded the threshold and a 0 was output when it did not. Even though these signals were limited
to binary values, they were able to demonstrate that any arbitrary logical function could be constructed
by an appropriate combination of such ‘logical threshold elements’. The learning issue was not actually
addressed.

In general, a propagation rule describes how the signal information coming into a hidden or output
neuron is combined to achieve a net input into that neuron. The weighted-sum rule is the most common
way to do this and for neuron i is given by:

(B3.2.1)

Here wio is an optional bias value for this neuron, zi is the vector of input values (signals) from other
neurons, and wi is the vector of the associated connection weights. Sometimes the bias is incorporated
into the vector wj, in which case the vector zi is given an extra first-component value of unity. It should
be noted that the above m-term inner product is very computationally intensive. In general, the number
of inputs to a neuron will depend on the connection topology, so it is sometimes more accurate to say that
mi inputs are used, instead of just m.

One could use this bias to implement the above threshold value 6 and cause the neuron to output a
value if the above inner-product value meets or exceeds this threshold. This type of firing scheme could
be incorporated into the weighted-sum rule by setting wi0 = -6 and then producing an output only when
neti p 0. This is equivalent to the previous firing rule.

B3.2.4 Neuron inputs and outputs

The output of input neurons is usually identical to their input (i.e. yi = x i) . For hidden and output neurons,
the inputs into one neuron come from the output of the other neurons, so it is sufficient to discuss output
signals only. The neuron outputs can be of different types. The simplest type of output is binary output,
where yi takes the value 0 or 1. A similar type of output with slightly different properties, is bipolar
output, where each yi takes on the value -1 or +l. While the binary output is simpler and more natural
to use, it is frequently more computationally advantageous to use bipolar output. Alternatively, the output
may be continuous: this is sometimes called an analog output. Here yj takes on real-number values,
often within some predefined range. This range depends upon the choice of the activation function and its
parameters (described below).

An activation rule describes how the neuron simulates the firing process that sends the signal onward.
This rule is normally described by a mathematical function called an activationfunction which has certain
desired properties. Here is a useful generic sigmoid activationfunction associated with a hidden or output
neuron:

f (z) = a/(l + + d . (B3.2.2)

This function has one variable (z) and four controlling parameters (a , b , c , and d) which typically remain
constant during the network training process. This activation function performs the mapping f : B +
(d , a + d) , is monotonically increasing, and has the shape of the s-curve for learning. This type of curve
is often called a sigmoid curve. The parameter b has the most significant effect on the slope of this curve:
a small value of b corresponds to a gradual curve increase, while a large value corresponds to a steep
increase. The case b = m corresponds to a hard-limiting step function. (One can define the steepness by
the product ab.) The parameter c causes a shifting along the horizontal axis (and is usually zero). The
parameters a and d define the range limits for scaling purposes. Here are some specific examples:

B3.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Characteristics of neural network models

-10 -5 5 10

Figure B3.2.1. Logistic function with b = 2.

Figure B3.2.2. Simple logistic function.

Figure B3.2.3. Bipolar function with b = 1

a = 1, b > 0, c = 0, d = 0

a = 1, b = 1, c = 0, d = 0

a = 2, b > 0, c = 0, d = - 1

a = 2, b = 2, c = 0, d = -1

gives the logistic function 1/(1 + e-bz)
with a range of (0, 1) as shown in figure B3.2.1.
gives the simple logistic function
with a range of (0, 1) as shown in figure B3.2.2.
gives the bipolarfunction 2 / (1 + e-bz) - 1
with a range of (-1, 1) as shown in figure B3.2.3.
gives the simple hyperbolic tangentfunction
tanh(z) with a range of (- 1, 1)
as shown in figure B3.2.4.

All four of these functions are frequently used in neural network learning models. Once the activation
function has been selected, the output of neuron i is typically given by

yi = f (n e t i) . (B3.2.3)

Notice that the generic sigmoid activation function is also direrentiable, which is a requirement for many
of the training methods to be discussed later in this chapter. In particular, its derivative is given by

f'(z) = abe-bz+"/(l + = (b / a) [f (z) - d l [(a + d) - f (z) l (B3.2.4)

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computurion release 9711 B3.2:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

I I

-10 -5 I
I I

5 10

Figure B3.2.4. Simple hyperbolic tangent.

which performs the mapping f ' : W -+ (0, ab/4), where the derivative maximum of ab/4 occurs when
z = c/b.

Many other activation functions may be used in neural network models. A common discontinuous
function is the stepfunction. However, because it is discontinuous, it cannot be used for training methods
that require differentiability.

In addition to the activation function, it is sometimes useful to define an outputfunction that is applied
to the activation function for each output neuron in order to modify its result (it is not normally used to
modify the result computed by input neurons or hidden neurons). One common modification is to convert
continuous output into discrete output (e.g. real output into binary or bipolar output). One can define
a generic output function, which is compatible with the generic sigmoid activation function previously
described, when one sets d = y~ and a = yu - y ~ , where y~ and YIJ are given problem-dependent lower
and upper limits:

if z 5 n + a e
if y~ + ae < z < yu - ae
if z 2 yu - - e .

(B3.2.5)

This function performs the mapping: F : (d , a + d) + [d , a+d]. The parameter e is a measure of closeness
and must lie within the interval [0, 1/2). This function is not differentiable and hence is typically used only
in conjunction with the display of the results produced by the output neurons and in a supervised training
algorithm that has a termination condition that stops the iteration when all of the yi values produced by
the output neurons are within e of the corresponding target values ti. When continuous target values are
being matched, a sum of squared errors is frequently used in a termination condition, stopping when the
sum of all of the ti^ - y i ~ I 2 values are small enough, where L is the output layer. When something like
binary or bipolar target values are to be matched, one can compute an auxiliary sum of squares by using
[t iL - F (y i ~) I 2 as an additional termination condition, stopping when this sum is exactly zero-which
can often happen before the regular sum of squares is small and thereby save additional training iterations.
This can also help prevent overtraining.

For example, suppose one requires a bipolar range with y~ = -1 and yu = 1. One then sets
d = n = -1 and a = yu - y~ = 2. One choice is to set e = 0.4. This leads to what is sometimes called
the 40-2040 rule (Fahlman 1988). The generic sigmoid activation and output functions become:

YL

Yu
F (z) = z

f(z) = 2/(1+ e-bz) - 1

if z 5 -0.2 (lower 40% of the range)
if -0.2 < z < 0.2 (middle 20% of the range)
if z 2 0.2 (upper 40% of the range).

for c = 0 and

F (z) = z 1 I'
The smaller the value of e, the more stringent the matching requirement. Another choice is e = 0.1, which
yields a more stringent 10-80-10 rule.

B3.2.5 Neuron connections

The way in which neurons communicate information is determined by the types of connections that are
allowed. For the purposes of this chapter, some basic definitions will be given. For further information

B3.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Characteristics of neural network models

the reader should consult Chapter B2 of this handbook, which provides a detailed discussion of neural BZ
network topology.

A feedforward network is one for which the signal only flows in a forward direction from the input ~ z . 3

neurons through possible intermediate (hidden) neurons to the output neurons during their use, without
any connections back to previous neurons. On the other hand, a recurrent network contains one or more ~ z . 3

cycles and hence allows a neuron to have a closed-loop signal path back to itself either directly or through
other neurons.

Neural networks only work properly if they have a suitable connection structure for the given
application. One common structure groups the neurons into layers. Neurons within these layers usually
have the same characteristics and are typically not connected at all or else are fully interlayer connected.
Multiple layers are common and are called multilayer networks. The input neurons are all in the first layer, c1.2

known as the input luyer, the output neurons are all in the last layer, known as the ourput luyer, and any
hidden neurons are contained in hidden layers between the input and output layers. The input layer is
unique in that no weights affect the input into it so it is not considered to be a computational layer that
has weights to compute.

A single-layer network is a neural network that has only one computational layer (i.e. it really has c1.1
two layers, an input layer that is not computational and an output layer that is). A multilayer feedforward
network (MLFF) is one in which the neuron outputs of one layer feed into the neuron inputs of the
subsequent layer.

References

Fahlman S E 1988 An empirical study of learning speed in back-propagation networks Camegie Mellon Computer

Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture

Kandel E R (ed) 1991 Principles of Neural Science 3rd edn (New York: Elsevier)
Klopf A H 1988 A neuronal model of classical conditioning Psychobiology 16 85-125
McClelland J L and Rumelhart D E 1986 Parallel Distributed Processing vol 2 (Cambridge, MA: MIT Press)
McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.

Science Report CMU-(3-88-162

Notes vol 1 (Redwood City, CA: Addison-Wesley)

5 115-33

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 B3.2:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.3 Learning rules

James L Noyes

Abstract

See the abstract for Chapter B3.

This section describes some of the more important learning rules that have been used in neural network
training. It is not intended to present the complete training algorithms themselves (one training rule
could be incorporated in many algorithmic variations; specific algorithmic implementations are discussed
in Part C. Each of these rules describes a learning process that modifies a specified neural network to
incorporate new information. There are two standard ways to do this: (i) The on-line training approach,
sometimes called case or exemplar updating, updates the appropriate weights after each single input (and
target) vector. (ii) The off-Zine training approach, sometimes called butch or epoch updating, updates the
appropriate weights after each complete pass through the entire sequence of training data.

As indicated above, the term ‘learning’ applied to neural networks usually refers to learning the
weights, and that is what is discussed in this section. This definition excludes other information about the
network that might be learned, such as the way in which the neurons are connected, the activation function
and parameters that it uses, the propagation rule, and even the learning rules themselves.

B3.3.1 Hebbian rule

Donald 0 Hebb, a psychologist at McGill University, developed the first commonly used learning rule for
neural networks in his classic book Organization of Behavior (Hebb 1949). His rule was a very general
one which was based upon synaptic changes. It stated that when an axon of neuron A repeatedly stimulates
neuron B while neuron B is firing, a metabolic change takes place such that the weight w between A and
B is increased in magnitude. The simplest versions of Hebbian learning are unsupervised. Denoting these
neurons by nj and ni, if neuron ni receives positive input x, while producing a positive output yi, this rule
states that for some learning rate 17 > 0:

wij := wij + Awij

where the increase in the weight connecting nj and ni can be given by

(B3.3.1)

(B 3.3.2)

where on-line training is normally used. Of all the learning rules, Hebbian learning is probably the best
known. It established the foundation upon which many other learning rules are based.

Hebb proposed aprinciple, not an algorithm, so there are some additional details that must be provided
in order to make this computable. (i) It is implicitly assumed that all weights wjj have been initialized
(e.g. to some small random values) prior to the start of the learning process. (ii) The parameter 17 must be
specified precisely (it is typically given as a constant, but it could be a variable). (iii) There must be some
type of normalization associated with this increase or else wij can become infinite. (iv) Positive inputs
tend to excite the neuron while negative inputs tend to inhibit the neuron.

Example: Suppose one wishes to train a single neuron, nl, which has m = 4 inputs from other
neurons and has a bipolar activation function of f (2) = sgn(z). Layer notation will be used. Assume a
fixed learning rate is used with rl = 1/4, an initial random weight vector of w = (0.1, -0.4, -0.1, 0.3)T

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B3.3:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

is given with a bias value of w10 = 0.5, and that k = 2 training input vectors are to be used; these are
given as: z1 = (0, 1,0, 2 2 = (1, 0, 0, l)T. The computation is performed as follows, starting with
2 1 :

net1 = 0.5 + (0.1)(0) + (-0.4)(1) + (-O.l)(O) + (0.3)(-1) = -0.2
y1 = f(net1) = sgn(-0.2) = -1

Awl1 = $(-l)(O) = 0
Awl3 = $(-I)(()) = 0 Awl4 = ;(-1)(-1) 1 =

Awl2 = z(-l)(l) 1 = -2 1

The updated weight vector becomes w = (0.1, -0.65, -0.1, Continuing this computation for 22:

net1 = 0.5 + (0.1)(1) + (-0.65)(0) + (-O.l)(O) + (0.55)(1) = 1.15
yl = f(net1) = sgn(l.15) = 1

1
Awl1 = $(1)(1) = 2

~ ~ 1 3 = +(1)(0) = o
Awl2 = i(l)(O) = 0
~ ~ 1 4 = T(l)(l) = 5 .

1 1

The updated weight vector now becomes w = (0.35, -0.65, -0.1, 0.8)T.
In the example above, the Hebbian rule was used in an unsupervised fashion. Notice that the

appropriate weight was also increased when the input and output were both ‘off (negative) at the same
time. That is a common mod$cation to what the Hebbian rule originally stated and it leads to a stronger
form of learning sometimes called the extended Hebbian rule.

Suppose now that the Hebbian rule is used in another way, namely in a supervised learning situation,
In this situation the weight improvement is given by:

Awij := qtixj (B3.3.3)

where ti is a given target value. In this form it is sometimes called the correlation rule (Zurada 1992).
Example. Suppose one wishes to train a single neuron, n l , which has m = 4 inputs and an identity

activation (and output) function of f(z) = z . Assume a fixed learning rate is used with q = 1, an initial
weight vector of w = 0 is given with a bias value of WO = 0 and that k = 4 orthogonal unit vectors and
corresponding targets are to be used for training. These training pairs are given as: 2 1 = (1, 0, 0, O)T,
tl = 0.73; 2 2 = (0, 1,0, O)T, t2 = -0.32; 2 3 = (O,O, 1, O)T, tg = 1.24; 2 4 = (O,O, 0, l)T, 24 = -0.09.
Now consider how well the weights can be determined with just one pass through the training set. The
training computation can now be simplified to:

The training phase proceeds as follows:

~ 1 1 = 0 + (0.73)(1) = 0.73
w13 = O + (1.24)(1) = 1.24

~ 1 2 = 0 + (-0.32)(1) = -0.32
w14 = O + (-0.09)(1) = -0.09.

Using equation (B3.2.1), the propagation rule is given by

Hence, by inspection, it may be seen that the training input vectors produce their target values exactly
with just one pass through the training set. This network has been trained as an associative memory.

The previous example worked well because of the particular selection of input vectors. The suitability
of this rule depends upon the orthogonality (correlation) of the input training vectors. When the input
vectors are not orthogonal, the output will include a portion of each of their target values. However, if
the training input vectors are linearly independent, then they can be orthogonalized by the Gram-Schmidt
process (Anderson and Hinton 1981). Unfortunately, the Gram-Schmidt process can be unstable, so other
techniques such as Householder transformations may be used (Tucker 1993). The advantage is that the
m x m weight matrix W may be readily determined to satisfy

B3.3:2 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Lid and Oxford University F’ress

Copyright © 1997 IOP Publishing Ltd

Learning rules

where zi are the orthogonalized input training vectors and the X’ and Y matrices are constructed from
these respective column vectors. Since X’ is orthogonal, its inverse is equal to its transpose so that the
weight matrix is simply computed by:

w = Y(X’)T . (B3.3 -4)

There have been several variations of the Hebbian learning rule that offer certain improvements (Hertz et
a1 1991). One simple variation has already been illustrated, that of extended Hebbian learning. A second
simple variation is to normalize the weights that are found by a factor of 1/N where N is the number of
neurons in the system. Another more substantial variation, called by some neo-Hebbian learning, utilizes
a component that incorporates forgetting, together with learning (Kosko 1992). Still another variation,
called differential Hebbian learning, computes the weight increase based upon the product of the rates of
change (i.e. the derivatives with respect to time) of the input and output signals instead of the xi and yi
values themselves (Wasserman 1989, Kosko 1992). Only when both of these signals increase or decrease
at the same time is their product positive, causing a weight increase.

B3.3.2 Perceptron rule

The psychologist Frank Rosenblatt invented a device known as the perceptron during the late 1950s
(Rosenblatt 1962, McCorduck 1979). The perceptron used layers of neurons with a binary step activation
function. Most perceptrons were trained, but some were self-organizing. Rosenblatt’s original perceptron
device was designed to simulate the retina. His idea was to be able to classify patterns appearing on the
retina (the input layer) into categories. A common type of perceptron model is a neural network using
linear threshold neurons with m neurons in the input layer and one neuron in the output layer. The outputs
could be binary or bipolar. This is a supervised scheme that updates the weights by using equation (B3.2.1)
where the weight change for the learning rate > 0 is given by

A ~ i j := ti - y i) ~ j . (B3.3.5)

Here yi = f (ne t i) where f (z) is now defined by the discontinuous rhreshold activation function

for z 2 8
for z < 8

where 8 is a given threshold. This type of neuron is called a linear threshold neuron. As stated in
section B3.2.1, this can be accomplished by setting wio = -8 in the weighted-sum rule that determines
neti .

> 0, but now the error is multiplied instead of just the output alone.
Because of the incorporation of the target value, it is easy to see that this is a supervised learning method.
It is also more powerful than the Hebbian rule. Notice that whenever the output of neuron i is equal to
the desired target value, the weight change is zero. As with Hebbian learning, on-line training is normally
used.

There is a theorem called the perceptron convergence theorem (Rosenblatt 1962) which states the
following: if a set of weights exists that allow the perceptron to respond correctly to all of the training
patterns, then the rule’s learning method will find a set of weights to do this and it will do it in a finite
number of iterations.

Perceptrons became very successful at solving certain types of pattern recognition problem. This led
to exaggerated claims about their applicability to a broad range of problems. Marvin Minsky and Seymour
Papert spent some time studying these types of model and their limitations. They authored a text in 1969
(reprinted with additional notes in Minsky and Papert 1988) which presented a detailed analysis of the
capabilities and limitations of perceptrons. The best-known example of a very simple limitation was the
impossibility of modeling an XOR gate. This is called the XOR problem (exclusive OR). To solve this
problem a model has to learn two weights so that the following XOR table can be reproduced:

Here, as in the Hebbian rule,

XI x2 tl

0 0 0
0 1 1
1 0 1
1 1 0 .

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computurion release 9711 B3.3:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

These four input points can easily be plotted on the x1-x~ axis as the corners of a unit square.
Dropping the neuron i index for simplicity, the output is then defined by:

for w l x l + w2x2 2 0
for wlxl + ~ 2 x 2 e e b f (net) =

Hence, to match the target values, the following four inequalities would have to be satisfied:

~ ~ (0) + ~ ~ (0) e e or 0 e e
~ ~ (0) + ~ ~ (1) 2 e or w2 L e
~ ~ (1) + w2(o) 2 e or w1 L e
~ ~ (1) + ~ ~ (1) e e or w1 + w2 < e .

This is a contradiction, because it is impossible for each individual weight to be greater than or equal to
8 while their sum is less than 8.

This was a two-dimensional example of a general inability of a single-layer network to map functions
(solve problems) that are not linearly separable. A linearly sepurublefunction is a function for which
there exists a hyperplane of the form

m

W ~ X = wjxj = e
j=1

for which all points on one side of this hyperplane have one function value and all points on the other side
of this plane have a different function value. For example, if m = 2 the AND gate function and OR gate
function are linearly separable on the plane since a straight line can be shown to separate their points with
the same function values, but this is not the case with the XOR gate function. However, as will be seen
later, a multilayer network can solve such a problem.

B3.3.3 Delta rule

Bernard Widrow and Marcian E (Ted) Hoff developed an important learning rule to solve problems in
adaptive signal processing. It may be considered to be more general than the perceptron rule because
their rule could handle continuous as well as discrete inputs and outputs for problems. This rule, which
they called the least-mean-square (LMS) rule, could be used to solve a variety of problems without using
hidden neurons (Widrow and Hoff 1960). Because it uses the ‘delta’ correction difference, it is often
called the delta rule.

The delta rule is a supervised scheme that updates the weights by using equation (B3.3.1) where the
weight change is given for a fixed learning rate r j > 0 by

Awij := rj(ti - neti)x, (B3.3.6)

with no activation function needed. (An alternative view of this is to use the delta as (ti - yi) , as was the
case in the perceptron rule, where the activation function is the simple linear identity function f (z) = z.)

The LMS name derives from the idea of training until the weights have been adjusted so that the
total least-mean-square error of a single neuron in the output layer, namely

(B3.3.7)
j=1 j=1

is minimized, summing over all j = 1,2, . . . , k training cases (where the index 1 is dropped since there
is only one output). It is important to remember that E is a function of all the weight and bias variables,
since the input and target data are all known.

Using equation (B3.2.1) for this single output neuron, equation (B3.3.7) becomes

k

B3.3:4 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

The delta rule may be viewed as an adaptive way of solving the least-squares minimization problem where
the parameters W O , w1, , . . , w,,, of a multiple linear regression function are to be determined. This method
has been used successfully in conjunction with both on-line and off-line training.

that the training algorithm for this network would converge for any function that the network is capable of
representing. This single neuron in the output layer was later extended to a multiple-neuron model called

Widrow and Hoff called the single output model an adaptive linear element or adaline. They showed ci.1.3

mudaline (many adalines). C1.1.4

B3.3.4 Generalized delta rule

This rule (sometimes also just called the delta rule) was proposed by several researchers including Werbos,
Parker, Le Cun, and Rumelhart (Rumelhart and McClelland 1986). It is also related to an early method
presented by Bryson for solving optimal control problems (Dreyfus 1990). David Rumelhart and the
PDP Research Group helped popularize this learning rule in conjunction with a complete training method
known as backpropagation. This training method is one of the most important techniques in neural network c1.2
training. As will be shown later, this is a gradient descent method which moves a positive distance along the
negative gradient in 'weight space'. The associated learning rule requires that the activation function f (z)
be semilinear. A semilinear activation function is one in which the output of a neuron is a nondecreasing
and diflerentiable function of the net total input. Note that the generic sigmoid activation function given
by equation (B3.2.2) is semilinear.

The generalized delta rule again uses equation (B3.3.1). Here the weight changes for the output layer
are given for a fixed learning rate > 0 by

Note that the term in braces is the same as (ti - yi) , which was used in the perceptron rule (see
equation (B3.3.5)) so the weight changes will be small when these values are close together. However,
now the weight changes will also be small whenever the derivative of the activation function is close to
zero (i.e. the function is nearly flat at the neti point). Examination of the derivative of the generic sigmoid
activation function shows that f'(neti) is always positive and it approaches zero as net; becomes large.
This helps ensure the stability of the weight changes so that they do not oscillate. Backpropagation has
been shown to be very effective for a variety of problems, and the added hidden layers can overcome
the separability problem. However, there are three difficulties with this method. If some of the weights
become too large during the training cycle, the corresponding derivatives will approach zero and the weight
improvements also approach zero (even though the output is not close to the target). This can cause what
is sometimes called network paralysis (Wasserman 1989). It can lead to a termination of the training even
though a solution has not yet been found. A second difficulty is that, like all gradient methods, it may
stop at a local minimum instead of a global one. A third difficulty, also common with unmodified gradient
methods, is that of slow convergence (i.e. a lengthy learning process). Using a smaller learning rate q
may help some of these situations, or it may just increase the training time. This indicates the value of a
variable learning rate, as will be seen later.

The weight changes for the hidden layers are more involved since this derivative is multiplied by the
inner product of a weight vector and an error vector. For each prior layer 1, summing over j , it has the
form:

(B3.3.9)

The basic idea behind both of these weight correction formulas is to determine a way to make the
appropriate correction to a weight in proportion to the error that it causes. The importance of this method
is that it makes it possible to make these weight corrections in all of the computational layers. The details
of the backprojection method are described more fully by Rumelhart and McClelland (1986).

B3.3.5 Kohonen rule

This rule is typically used in an unsupervised learning network to bring about what is called competitive
learning. A competitive learning network is a neural network in which each group (cluster) of neurons
competes for the right to become active. This is accomplished by specifying an additional criterion for

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B3.35

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

Figure B3.3.1. Two-dimensional unit vectors in the unit circle.

the network so that it is forced to make a choice as to which neurons will respond. The simplest network
of this kind consists of a single layer of computational neurons, each fully connected to the inputs. A
common type of layer may be viewed as a two-dimensional self-organizing topographic feature map. Here
the location of the most strongly excited neurons is correlated with certain input signals. Neighboring
excited neurons correspond to inputs with similar features. Teuvo Kohonen is the person most often

c2.1.1 associated with the selforganizing network, which is one in which the network updates the connection
weights based only upon the characteristics of the input patterns presented. Kohonen devised a learning
rule that can be used in various types of competitive learning situation to cause the neural network to
organize itself by selecting representative neurons.

The most extreme competitive learning strategy is the winner take all criterion where the activation
of the neuron with the largest net input is the one to have its weights updated.

This type of competitive learning assumes that the weights in the network are typically initialized
to random values. Their weight vectors and input vectors are normalized by using their corresponding
Euclidean norms. If the current normalized m-dimensional input vector is z, and there are 4 neurons in
the group, then one computes

(B3.3.10)

This represents a collection of 4 m-dimensional weight vectors and one input vector all emanating from
the origin of a unit hypersphere (in two dimensions this is a circle). See figure B3.3.1, where q = 8 and
p = 5 . This means that neuron p is the winning neuron in this group if its weight vector wp makes a
smaller angle with z than the weight vector associated with any other neuron.

The weight improvement is given for a decreasing learning rate a > 0 by

w i z = max{wTz, wlx,. . . , wqzj. T

wPj := wPj + a AwPj (B3.3.11)

where the weight changes associated with neuron p are given as:

AwPj := ~j - w P j . (B3.3.12)

For the winner take all criterion, this corresponds to modifying the corresponding wp vector (only) by a
fraction of the difference between the current input vector and the current weight vector. (Notice that no
activation function is needed in order to do this.) After this improvement, the weights associated with
neuron p tend to better estimate this input. Unfortunately, neurons which have weight vectors that are far
from any input vector may never win and hence never learn; these are like ‘dead neurons’. Solutions to
this difficulty and other variations of this learning rule are given by Hertz et al (1991).

B3.3:6 Handbook of Neural Computation release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

Other less extreme variations of this strategy allow the neighboring neurons to have their weights
updated also. Here a ‘geometry’ is chosen that can be used to define these neighbors. For example, suppose
the group of neurons is considered to be arranged in a two-dimensional array. A linear neighborhood
would be all neurons within a certain distance away in either the same row or the same column (e.g. if
the distance were 2, then two neurons on each side would also have their weights updated). A hexagonal
neighborhood is one in which the neighbors are within a certain distance in all directions in this plane
(e.g. two hexagons away from a neuron in a plane would correspond to 17 neighbors that would also have
their weights updated). Other choices are possible (Caudill and Butler 1992). Kohonen also proposed a
modification of his rule called the ‘Mexican hat’ variation, which is described by Hertz et a1 (1991). In
this variation, a neighborhoodfunction is defined and used as a multiplier.

This type of learning can be used for determining the statistical properties of the network inputs
(it generates a model of the distribution of the input vectors around the unit hypersphere). Competitive
learning, in general, is well suited as a regularity detector in pattern recognition.

B3.3.6 Outstar rule

Steven Grossberg coined the terms instar and outstar to characterize the way in which actual neurons
behave. Here instar refers to a neuron that receives (dendrite) inputs from many other neurons in the
network. Outstar refers to a neuron that sends (axon) outputs to many other neurons in the network, and
again the connecting synapses modify this output.

Znstar training, which is unsupervised, is accomplished by adjusting the connecting weights to match c1.1.6
the input vector. This can be achieved by using the Kohonen rule defined in the last section. The instar
neuron fires whenever a specific input vector is used. On the other hand, the outstar produces a desired
pattern to be sent to other neurons when it fires, and hence it is a supervised training method. One way
to accomplish outstar training is to adjust its weights to be like the desired target vector. The weight c1.1.6
improvement here is given for a decreasing learning rate B > 0 by

(B3.3.13) w. . := w.. + B Awji

where the weight changes associated with the neurons j = 1,2, . . . to which neuron i sends output are
given as

Awji := tj - wji . (B 3.3.14)

Here the outstar weights are iteratively trained, based upon the distribution of the target vectors (Wasserman
1989). Outstar training is distinctive in that the neuron weight adjustments are not applied to the neuron’s
own input weights, but rather applied to the weights of receiving neurons. Counterpropagation networks, c2.3.2
such as those proposed by Hecht-Nielsen (1990), can utilize a combination of Kohonen learning and
Grossberg outstar learning.

B3.3.7 Drive reinforcement rule

Drive reinforcement learning was developed by Harry Klopf of the Air Force Wright Laboratories. This
name arises from the fact that the signal levels, called the drives, are used together with the changes in
signal levels, which are considered as reinforcements. This approach is a discrete variation of differential
Hebbian learning and does well at modeling several different types of classical conditioning phenomenon.
Classical conditioning involves the following components: an unconditional stimulus, an unconditional
response, a conditioned stimulus, and a conditioned response. One important feature of this type of model
is the time between stimulus and response.

Klopf suggested the following changes to the original Hebbian model (Klopf 1988):

(i) Instead of correlating presynaptic levels of activity with postsynaptic activity levels, changes in these
levels are correlated. Specifically, only positive changes in the first derivatives of these input levels
are correlated with changes in output levels.

(ii) A time interval is incorporated into the learning model by correlating earlier changes in presynaptic
levels with later changes in postsynaptic levels.

(iii) The change in synapse efficacy should be proportional to its current efficacy in order to account for
experimental s-shaped learning curves.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B3.3:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

This model predicts a learning acquisition curve that has a positive initial acceleration and a subsequent
negative acceleration (like the s-curve) and which is not terminated by conditioned inhibition. First one
defines a new neti as

neti (t) := wi, (t>xij (t) - 8 (B3.3.15)
n

j = 1

where n is the number of synaptic weights.
The output, or drive, for neuron i may then be defined as

for netj(t) 5 0
for 0 < neti(t) < A
for neti(t) I A .

(B3.3.16)

Here each y i (t) is nonnegative and bounded. (Negative values have no meaning because they would
correspond to negative firing frequencies.) A common range is from 0 to A = 1. The time value t is
computed by adding a discrete time step for each iteration. The weight update has the form:

W i j (t + 1) := wij (t) + A ~ i j (t) . (B3.3.17)

Here the weight change is given by

(B3.3.18)

where the sum is from k = 1 to k = t (the upper time interval limit) and absolute weight values are used.
The change in the input presynaptic signal at time t - k is given by

A ~ j j (t - k) := x i j (t - k) - x i j (t - k - 1) . (B3.3.19)

If Axij(t - k) e 0, then it is reset to zero before computing the above weight change.
The change in the output postsynaptic signal, the reinforcement, at time t is

Ayi(t) := y i (t) - yj(t - 1). (B3.3.20)

For this learning rule there are t constants ql > q 2 > . . . > qr 2 0. These are ordered to indicate that
the most recent stimuli have the most influence. For example, if At = 1/2 second, then one might choose
t = 6 so that t - 1, t - 2, . . , , t - 6 would correspond to half-second time intervals back 3 seconds from
the present time, and q6 could be zero. For example, ql = 5 , q 2 = 3, q 3 = 1.5, q4 = 0.75, qs = 0.25,
q6 = 0 can be used to model an exponential recency effect (Kosko 1992).

A lower bound is set on the absolute values of the weights, which means that positive (excitatory)
weights remain positive and negative (inhibitory) weights remain negative (e.g. I wij (t) I 2 0.1). These
weights are typically initialized to small positive and negative values such as f0.1 and -0.1. Finally, the
change in Ayi(t) is usually restricted to positive changes only. Learning does not occur if this signal is
decreasing in strength.

This type of learning allows the corresponding neural network to perceive causal relationships based
upon temporal events. That is, by keeping track of past events, these may be associated with present
events. None of the other learning rules presented in this chapter can do this. The drive reinforcement
method has also been used to develop adaptive control systems. As an example, this method has been
used to solve the pole balancing problem with a self-supervised control model (Morgan et a1 1990). In
this problem the object is to balance a pole that is standing up on a movable cart by moving it back and
forth. This learning rule can also be used to help train hierarchical control systems (Klopf et a1 1993).

B3.3.8 Comparison of learning rules

The following is a general summary of the main features of these rules and how they compare with one
another.

The Hebbian rule is the earliest and simplest of the learning rules. Learning occurs by modifying
the connecting weight between each pair of neurons that are ‘on’ (fire) at the same time, and weights are
usually updated after each example (on-line training). The concept of how to connect a collection of such

B3.318 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

neurons into a network was not explicitly defined. The Hebbian rule can be used in either an unsupervised
or a supervised training mode. It is still a common learning rule for a neural network designed to act as
an associative memory. It can be used with training patterns that are either binary or bipolar. The original
Hebbian rule only referred to neurons firing at the same time and did not address neurons that do not fire
at the same time (see the discussion on asynchronous updating in section B3.4.3). A stronger form of
learning arises if the weights are increased when both neurons are ‘off at the same time as well as ‘on’
at the same time.

The perceptron rule is a more powerful learning rule than the Hebbian rule. Here a layered network
of neurons is defined explicitly. Single-computational-layer perceptrons are the simplest types of network.
The perceptron rule is normally used in a supervised training mode. The convergence theorem states that
if a set of weights exist that will permit the network to associate correctly all input-target training patterns,
then its training algorithm will learn a set of weights that will perform this association in a finite number
of training cycles. Weights are updated after each example is presented (on-line training). The original
perceptron with a binary-valued output served as a classifier. It essentially forms two decision regions
separated by a hyperplane.

The delta rule is also known as the Widrow-Hoff or least-mean-square (LMS) learning rule. It is
also a supervised rule which may be viewed as an extension of the single-computational-layer perceptron
rule since this rule can handle both discrete and continuous (analog) inputs. The ‘delta’ in this rule is
the difference between the target and the net input with the weight improvement proportional to this
difference. The weights are typically adjusted after each example is presented (on-line training), so the
method is adaptive in nature just as the two previous learning methods. The LMS name refers to the
fact that the sum of squares of these deltas is minimized. It can be used when the data are not linearly
separable. A commonly employed special case of this network is the adaline that only uses one (bipolar
or binary) output unit.

The generalized delta rule can be viewed as an extension of the delta rule (or the perceptron rule).
Specifically, it extends the previous delta rule in two important ways that significantly increase the power
of the learning process. First, it generalizes the delta difference of the previous rule by replacing the net
input by a function of the net input and then multiplying this difference by the function’s rate of change
(derivative). This activation function, providing a neuron’s output, is required to be both nondecreasing and
differentiable. Typically this is some type of s-shaped sigmoid function. In the previous learning rules, the
neuron outputs were typically quite simple (such as step functions and identity functions) and not always
differentiable. Second, by requiring differentiability of the activation function, it permits learning methods
(e.g. backpropagation) to be developed that can train weights in multiple-layer networks. This supervised
learning rule can be used with discrete or continuous inputs and can update the weights through either
on-line or off-line training. Off-line training is equivalent to a gradient descent method. With only three
layers (one hidden layer) and continuous data, these networks can form any decision region and can learn
any continuous mapping to an arbitrary accuracy (Kolmogorov 1957, Sprecher 1965, Hecht-Nielsen 1987).

The Kohonen rule also utilizes a network of layered neurons, but the layer can be of a different
type than the layers associated with the previous three learning rules. In those rules the neurons were in
one-dimensional layers (i.e. each is considered as a column or row of neurons). The Kohonen rule uses
either a one- or two-dimensional layer of neurons, the latter being somewhat more common. The neurons
in a layer can form cluster units. This is a self-organizing unsupervised network in which the neurons
compete with one another to become active. Different competition criteria have been used. For example,
during the training process, the neuron whose weight vector most closely matches the input training pattern
becomes the winner. Only this neuron and its neighbors update their weights. A more extreme winner
take all criterion only allows the winning neuron to update its weights. This type of network can be used
to determine the statistical properties of the network inputs.

The outstar rule utilizes the ability of a neuron to send its output to many other neurons. It is a
supervised training method that directly adjusts its weights to be just like a given target vector. It is
distinctive from the other learning rules in that the weight adjustments are applied to the weights of the
receiving neurons, not its own input weights.

The drive reinforcement rule allows a neural network to identify causal relationships and solve certain
adaptive control problems. Klopf modified the original Hebbian rule to incorporate changes in neuron input
levels, time intervals, and current weight values in order to determine how weights should be modified.

Overall, it is seen that the Hebbian rule, perceptron rule, delta rule, and sometimes the generalized
delta rule are typically employed when one has an on-line training situation. The generalized delta rule and

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B3.39

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

the others can be used in the off-line mode. The generalized delta rule is very flexible and can also be used
as a general function approximator. The Hebbian rule and Kohonen rule may be considered as operating
in an unsupervised mode, while the others are typically supervised (the Hebbian rule has a supervised
form also). The drive reinforcement rule is the only one of these that incorporates rates of change over
time and is designed to deal with cause and effect learning.

References

Anderson J A and Hinton G E 1981 Models of information processing in the brain Parallel Models of Associative

Caudill M and Butler C 1992 Naturally Intelligent Systems (Cambridge, MA: MIT Press)
Dreyfus S E 1990 Artificial neural networks, backpropagation, and the Kelley-Bryson gradient procedure J. Guidance,

Hebb D 0 1949 The Organization of Behavior (New York: Wiley)
Hecht-Nielsen R 1987 Kolmogorov’s mapping neural network existence theorem IEEE Int. Con& on Neural Networks

-1990 Neurocomputing (Reading, MA: Addison-Wesley)
Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture

Notes vol 1 (Redwood City, CA: Addison-Wesley)
Klopf A H 1988 A neuronal model of classical conditioning Psychobiology 16 85-125
Klopf A H, Morgan J S and Weaver S E 1993 A hierarchical network of control systems that learn: modeling nervous

Kolmogorov A N 1957 On the representation of continuous functions of many variables by superposition of continuous

Kosko B 1992 Neural Networks and F u u y Systems: a Dynamical Systems Approach to Machine Intelligence

McCorduck P 1979 Machines Who Think (San Francisco, CA: Freeman)
Minsky M and Papert S 1988 Perceptrons: an Introduction to Computationul Geometry expanded edition reprinted

Morgan J S, Patterson E C and Klopf A H 1990 Drive-reinforcement learning: a self-supervised model for adaptive

Rosenblatt F 1962 Principles of Neurodynumics (Washington, DC: Spartan Books)
Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)
Sprecher D 1965 On the structure of continuous functions of several variables Trans. Am. Math. Soc. 115 340-55
Tucker A 1993 Linear Algebra: an Introduction to the Theory and Use of Vectors and Matrices (New York: Macmillan)
Wasserman P D 1989 Neural Computing: Theory and Practice (New York: Van Nostrand Reinhold)
Widrow B and Hoff M E 1960 Adaptive switching circuits Wescon Convention Record part 4 (New York: Institute of

Zurada J M 1992 Introduction to ArtGcial Neural Systems (St Paul, MN: West Publishing)

Memory ed G E Hinton and J A Anderson (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 9 4 8

Control Dynamics 13 926-8

vol I11 (New York: IEEE Press) pp 11-4

system function during classical and instrumental conditions Adaptive Behavior 1 263-319

functions of one variable and addition Dokl. Akad. Nauk USSR 114 953-6

(Englewood Cliffs, NJ: Prentice Hall)

from the 1969 edition (Cambridge, MA: MIT Press)

control Network 143948

Radio Engineers) pp 96-104

B3.3:10 Handbook of Neurul Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4 Acceleration of training

James L Noyes

Abstract

See the abstract for Chapter B3.

Early neural network training methods, such as backpropagation, often took quite a long time to train. The c1.2
time that it takes to train a network has long been an issue when different types of applications have been
considered. The length of training time depends upon the number of iterations (passes through the training
data). The number of iterations required to train a network depends on several interrelated factors including
data preconditioning, choice of activation function, the size and topology of the network, initialization of ~ 3 . 2 . 4

weights and biases, learning rules (weight updating schemes), the way in which the training data are ~ 3 . 3
presented (on-line or off-line), and the type and number of training data used.

In this section, some of these factors will be addressed and suggestions will be made to accelerate
network training in the context of multilayer feedforward networks.

B3.4.1 Data preprocessing

Of all the quantities that one can set or modify prior to a neural network training phase, the single
modification that can have the greatest effect on the convergence (training time) is data preprocessing.
The training data that a network uses can have a significant effect on the values computed during the
learning process. Data preprocessing can help condition these computations so they are not as susceptible
to roundoff error, overflow, and underflow. Preprocessing of the training data typically refers to some
simple type of data transformation achieved by some combination of scaling, translation, and rotation.
Sometimes a less sophisticated algorithm can work as well with preconditioned data as a more sophisticated
algorithm can work with unconditioned data.

It has generally been found that problems with discrete {O, 1) binary values should be transformed
into equivalent problems with corresponding bipolar values (or their equivalent), unless one has a good
reason to do otherwise. This is because training problems are often exacerbated by zero (0) input values.
Not only do these values cause the corresponding neti not to contain (add) any wi, components because
the corresponding xj = 0, but the zero values also prevent the same W i j values from being efficiently
corrected because the term xjerrori = 0 for that value (it behaves just as though errori = 0).

The simple linear transformation T(z) = 22 - 1 will transform binary {0, I} values into bipolar (-1, 1)
values. To employ these bipolar training values requires that the generic sigmoid activation function
(equation (B3.2.2)) use a = 2 and d = -1 as parameters. Another common mapping range, as an
alternative to the bipolar range, is { - O S , +OS} with T(z) = z - 1/2. As always, when the training
data are transformed and the network is trained with these transformed data, the problem data must be
transformed in the same manner. Simple symmetric scaling can sometimes make a significant difference
in the training time.

If continuous (analog) data, rather than discrete data, are to be used for network training, then other
scaling techniques can be used, such as normalizing each input data value by using the transformation
zi = (xi - p)/a, where p is the mean and o is the standard deviation of the underlying distribution.
In practice, the sample mean and standard deviation are used. This is a statistically based data scaling
technique and can be used to help compensate for networks that have variables with widely differing
magnitudes (Bevington 1969). In general, all of the standard deterministic and statistically based scaling
techniques are candidates for use in the preprocessing of neural network data.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B3.4:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4.2 Initialization of weights

Initialization of the network weights (and biases) can also have a significant influence upon both the
solution (the final trained weights) and the training time. it is important to avoid choices of these weights
that would make either the activation function values or the corresponding derivatives near zero. The most
common type of initialization is that of uniformly distributed ‘random’ numbers. Here a pseudorandom
number (PRN) generator is used (Park and Miller 1988). Usually the initial weights are generated as
small positive and negative weights distributed around zero in some manner. It is not generally a good
idea to use large initial weights since this can lead to small error derivatives which produce small weight
improvements and slow learning.

It is common to use a PRN generator to compute initial weights within the interval [- p , p] where
p is typically set to a constant value within some range, say 1/4 5 p 5 5 . In general, the choice of p
depends upon the gain of the activation function (as specified by its parameters), the training data set, the
learning method, and learning rate used during training (Thimm et al 1996).

For the standard backpropagation method using the simple logistic function, the most commonly
used intervals are probably [- 1, 11 and [- 1 / 2 , 1 / 2] . For example, Fahlman (1988) conducted a detailed
investigation of the learning speed for backpropagation and backprop-like algorithms (e.g. Quickprop).
These were applied to a benchmark set of encoder and decoder problems of various sizes, mostly of size 8
or 10; for example, a 10-5-10 multilayer feedforward (MLFF) network was common. In this empirical
study he found that even though PRNs in the interval [-1, 11 worked well, there were good results for p
as large as 4.

Success has also been achieved with other schemes whereby the hidden layer weights are initialized
in a different manner than the output layer weights. For example, one might initialize the hidden layer
weights with small PRNs distributed around zero and initialize the weights associated with the output
layer with an equal distribution of +1 and -1 values (Smith 1993). Here the idea is to keep hidden layer
outputs at a mid-range value and to try achieve output layer values that do not make the derivatives too
small.

If one choice of initial weights does not lead to a solution, then another set is tried. Even if a solution
is reached, it is sometimes a good strategy to generate two or three other sets of initial weights in order to
see if the corresponding solution is the same or at least equally as good. Other useful weight initialization
schemes have also been developed and studied, such as by Fausett (1994). Thimm and Fiesler (1994)
present a detailed comparison of neural network initialization techniques. They conclude that all methods
are equally or less effective compared with a simple initialization scheme with a fixed range of random
numbers. The range [-0.77,0.77] is found to be most suitable for multilayer neural networks.

B3.4.3 Updating schemes

Synchronous updating of a neural network means that the activation function is applied simultaneously for
all neurons. Asynchronous updating means that each neuron computes its activation function independently
(e.g. randomly) which corresponds to independent neuron firings. The corresponding output is then
propagated to other neurons before another neuron is selected to fire. This type of updating can add
stability to a neural network by preventing oscillatory behavior sometimes associated with synchronous
updating (Rumelhart and McClelland 1986).

B3.4.4 Adaptive learning rate methods

Adaptive learning rates have been shown to provide a substantial improvement in neural network training
times. This can be especially important in real-time training problems. A significant class of adaptive
learning rate methods is based upon solving the unconstrained minimization problem (UMP). In the
following, this problem and the methods for its solution will be given, they will then be placed within the
framework of neural network training.

B3.4.4.1 The unconstrained minimization problem

The general unconstrained minimization problem (UMP) consists of finding a real vector such that a given
scalar objective function of that vector is maximized or minimized. In the following, the minimization
problem will be addressed in the context of minimizing the errors associated with an MLFF network.

B3.4:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

However, it is possible to formulate other supervised neural network models as optimization problems
also. The vector to be determined is the n-dimensional vector w = (w1, w2, . . . , Wn)T of network weights
and biases, which is typically called the weight vector. The UMP may then be formulated as

minimize: E(w) (B3.4.1)

where w is unconstrained (not restricted in its n-dimensional real domain). E(w) is the neural network
objective function and it is possible that many local minima exist.

There are many well-known methods for solving the general UMP. Most of these methods are
extremely effective and have been perfected over the years for the solution of scientific and engineering
problems. Once the neural network problem has been formulated as a UMP, all of the theory of
unconstrained optimization, such as that relating to the existence of solutions, problem conditioning, and
solution convergence rates, may be applied to neural network problems. In addition, all of the practical
knowledge such as efficient optimization algorithms, scaling techniques, and standard UMP software may
be applied to help facilitate neural network learning (Noyes 1991).

(9

(ii)

(iii)

..

The optimization methods are broadly classified by the type of information that they use. These are:
Search methods. These use evaluations of the objective function E(w) only and do not utilize any
partial derivative information of the objective function with respect to the weights. These methods
are usually very slow and are seldom used in practice unless no derivative information is available.
Sometimes, however, n-dimensional search methods can be used to augment derivative methods.
First-derivative (gradient) methods. These use both objective function evaluations and evaluations of
the first partial derivatives of E(w). The gradient VE(w) is an n-dimensional real vector consisting
of the first partial derivatives of E (z) with respect to each weight wi for i = 1 , 2 , . . . , n. These
gradient methods are the optimization methods that are typically used for neural network training.
Most are relatively fast and require only a moderate amount of information. These methods include:
(a) steepest descent, (b) conjugate gradient descent, and (c) quasi-Newton descent. These are called
descent methods because they guarantee a decrease in E(w) at each iteration (e.g. training epoch).
Second-derivative (Hessian) methods. These use function evaluations and both first- and second-
partial-derivative evaluations. The Hessian V2E(w) is an n x n real matrix consisting of the second-
partial derivatives of E(w) with respect to both wi and wj for i = 1,2, . . . , n and j = 1,2, . . . , n.
These methods are used less often than the first-derivative methods, because they require more
information and often more computation. These methods typically require the fewest number of
iterations, especially when they are close to the solution. Even though these methods may often be
the fastest, they are typically not that much faster than the modified gradient methods (i.e. conjugate
gradient and quasi-Newton). Hence these modified gradient methods are usually the methods of
choice.

In general, all of these classes of methods for solving the UMP find a local minimum point w* such
that E(w*) I E(w) for all weight vectors w in a neighborhood of w*. (If w* is a local minimum of E(w)
then the norm of VE(w*) is zero and V2E(w*) is positive semidefinite.) Only additional conditions on
E(w), such as convexity, will guarantee that this local minimum is also global. In practice, several ‘widely
scattered’ initial weight vectors wo can be employed, each yielding a solution tu*. The w* associated
with the smallest E(w*) is then selected as the best choice for the global minimum weight vector.

B3.4.4.2 The neural network optimization framework

Suppose one chooses the multilayer feedforward (MLFF) network as the neural network model. The
objective function is then typically a least-squares function so the neural network optimization model can
be given by:

P Nr

(B3.4.2)
p=l q=l

Here P is the total number of presentations (input-target cases) in the training set given by { (zp, t p) ; p =
1,2, . . , , P) . NL is the number of components in t,, f p q is the qth component of the pth target vector
and ypq is the corresponding computed output from the output layer that depends upon w. The multiplier
of 1/2 is simply used for normalization purposes.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B3.43

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

Even a moderately sized neural network problem can lead to a large, high-dimensional optimization
problem and hence the storage required by certain algorithms can be a major issue. This is easily seen since
the number of weights and biases needed for an L-layer MLFF network of the form N l - N 2 - N 3 - . . .-NL
is given by

n = (NI + 11% + (N 2 + 1) N 3 + . . . + (N L - I + ~) N L (B3.4.3)

where Ni is the number of units in the ith layer. Note that the added constant ‘1’ indicates the inclusion
of the bias term with the other weight terms.

Example: Consider the previously discussed XOR gate problem modeled as a 2-2-1 network with
bipolar training data given by

x1 x 2 t l

-1 -1 -1
-1 +l +1
+1 -1 +1
+1 +1 -1.

The corresponding activation function of f (z) = 2/(1 + e-bz) - 1 could then be used with
the parameter b =- 0 controlling the slope of this s-curve. The number of weights and biases is
n = (2 + 1)2 + (2 + 1)l = 9. There are P = 4 input-target cases, with N L = 1 component in the
target vector (in this case it is a scalar). Fortunately, E(w) seldom needs to be explicitly formulated in
practice. Here it will be done in order to show the presence of the weights and biases which are to be
chosen optimally so that E(w) is minimized:

E(w) = i { [t l l - y l I l 2 + It21 - Y2Il2 + [t31 - y31I2 + [t41 - y41I2)

= ;{[-I - f (W 7 4 + w75f(W51 - w 5 2 - w 5 3) + W 7 6 f (w 6 1 - w 6 2 - w 6 3)) l 2

+ 11 - f (W 7 4 + W75f(W51 - w 5 2 + w 5 3) + W 7 6 f (w 6 1 - w 6 2 $. w 6 3)) l 2

+ - f (W 7 4 f W75f(W51 + w 5 2 - w 5 3) + W76f(W61 + w 6 2 - W63))l2

+ [-l - f (W74 + W75f(W51 + w 5 2 + w 5 3) + W76f(W61 + w 6 2 + W63)) l2} .

The nine-element vector w is defined by

where the first index is the index of the receiving neuron and the second index is that of the transmitting
neuron in the previous layer.

Even without making the final substitution of 2/(1 + e-bz) - 1 for the activation function f (z) , one
can see the complexity of this objective function E(w). Fortunately, however, this problem together with
many much larger problems can often be solved easily with the right optimization method.

In the above example, the elements ~ 5 1 , ~ 5 2 , w 5 3 , respectively, represent the bias and the two weights
associated with the first neuron in the second (hidden) layer. The elements W61, w 6 2 , W63, respectively,
represent the bias and the two weights associated with the second neuron in the hidden layer. The elements
w 7 4 , w 7 5 , w 7 6 , respectively, represent the bias and the two weights associated with the first (and only)
neuron in the output layer.

Based upon the objective function, it is relatively easy to write the computer code for a function
and procedure that will evaluate the function E(w) and gradient VE(w) respectively. To evaluate E(w)
requires P forward passes through the network (no backward passes are needed). A training epoch
consists of one pass through all of the input-target vectors in the training set. To evaluate the gradient
VE(w) requires P forward and backward passes (just like the backpropagation method). With a little
extra computation, E(w) can also be computed in the gradient procedure.

The reason for making this last statement is that, by using the best-known optimization methods
for solving the neural network training problem, not only is a weight improvement direction recomputed
during each training epoch, but an adaptive learning rate can be computed as well (Gill et a1 1981). None
of the well known optimization methods would use ajixed learning rate, because it would be extremely
inefficient to do so. The standard backpropagation method typically uses a ‘small’ fixed learning rate and
this is why it is typically quite slow. The reason this is done is because a small enough learning rate is

B3.4:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

guaranteed to produce a decrease in the objective function as long as the gradient VE(w) is not zero.
However, adaptive learning rates can be chosen to guarantee such a decrease also and they are usually
much faster.

In addition, most optimization methods modifr -VE(w), the negative gradient at the current point,
in order to compute a new direction. This is because other information, such as gradients at nearby
points, can frequently yield a better direction of decrease. Only one method, steepest descent, uses just
the negative gradient for the direction to move at each iteration, but even this method does not use a
fixed step. This method is typically slow also, but not nearly as slow as a fixed-step gradient algorithm
(e.g. backpropagation). Within a neural network context, a judicious computation of both the direction
and learning rate can guarantee a suficient decrease in the objective function during each training epoch.
Specifically, this means that the computed learning rate must be large enough to reduce the magnitude of
the directional derivative by a prescribed amount and must also reduce the objective function by a given
amount. On the other hand, the learning rate cannot be too large or a functional increase may result. The
equations to test these conditions are standard and are given below. The variable U is the counter for the
training epochs-it is not an exponent. It is typically used as a subscript for scalars and as a superscript
for vectors (so that the counter is not confused with the indices).

IVE(W” + qud”)Td”l 5 -a v E (~ ”) ~ d ” where 0 l a < 1 (B3.4.4)
E(w”) - E(w’ + qud”) 2 -pqu V E (W ”) ~ ~ ” where 0 < 5 i. (B3.4.5)

The value of the constant a determines the accuracy with which the learning rate approximates a stationary
point of E(w) along a direction d”. If a = 0, the learning rate procedure is normally associated with
an ‘exact line search’. If a is ‘small’, the procedure is usually associated with an ‘accurate line search’.
However, the objective function E(w) must also be sufficiently reduced at the same time, using the
constant value as a multiplier. If /3 5 a, then there is at least one solution (at least one value for v u)
that satisfies these two conditions (Gill et a1 1981). This sufficient decrease at each iteration, in turn,
guarantees convergence to a local minimum since the least-squares objective function is bounded below
by zero. In addition, most of these methods usually have a superlinear convergence rate (Fletcher 1987).
In neural network terminology, this means that the learning will be much faster than backpropagation,
which has a linear rate.

B3.4.4.3 Adaptive learning rate algorithm

Before presenting a generic minimization algorithm, a simple adaptive learning rate algorithm will be
given (Dennis and Schnabel 1983).

0 < p < Q e 1 as chosen constants along with w” and d”, the
current weight and direction, start with a learning rate of q,, = 1:

Given E in (0, 1/2), e.g. E =

While E(w” + q,,d’) > E(w”) + ~q , ,VE(w”)~d”
adjust q,, := AV,, for some h in [p , a]

Then set w”+l := w” + q,,d”.

In this implementation, if h < p, a search failure is indicated and is automatically reset to a new
random value which restarts the process. This modification makes the adaptive learning rate algorithm
more robust.

B3.4.4.4 Neural network minimization algorithm

A generic neural network minimization algorithm that encompasses all of the classes of methods mentioned
in this chapter is now presented. This represents a framework for neural network training. The geometrical
interpretation of this algorithm is that for each current weight vector 20” a direction d” is chosen which
makes a strictly acute angle with the negative of the gradient vector -VE(w”). The new weight vector
w”+’ is obtained by using a positive learning rate of size qu with a direction d” that will sufficiently
decrease E(w). The extreme case is to choose a value q,, that minimizes E(w) along this direction line
(instead of just reducing E(w)), but this is a time-consuming process and is not usually implemented in
practice. As with most algorithms of this nature, it is only guaranteed to approximate a stationary point
(i.e. a point where the gradient is zero).

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B 3 . 4 ~ 5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

0. Set U := 0, select an initial weight vector wo and choose nu”, the maximum number of iterations
to use.

Solve the direction subproblem by finding a search direction d” from the current weight vector w”
that guarantees a function decrease. This can be achieved if the gradient VE(w”) is not zero. If the
norm of the gradient (1 VE(w”) 11 is suitably small, the algorithm terminates successfully.

Solve the learning rate subproblem by finding a positive learning rate qv so that a sufficient decrease
is obtained. (In particular, this means that E(w” + qud”) is sufficiently smaller than E(w”).) Set the
improvement p” := qud”.

:= w” + p ” and U := U + 1. If U > numax, the algorithm terminates unsuccessfully,
otherwise return to step 1 .

1 .

2.

3. Update

Table B3.4.1. Weight and bias improvement vectors.
~~ ~

Simple gradient (SBP):
Modified gradient (MBP):

Conjugate gradient (CG):

p” := qd” = -q VE(w”)
p” := qd“ = -q[VE(w”) + yp”-’l

p” := qUdY = -qu[VE(w”) + yup”-’1
Steepest descent:

Quasi-Newton (QN):
Newton:

p” := qyd” = - q u VE(w”)

p” := qydY = -qYS(wY) V E (W ”)
p ” := qyd” = - ~ ~ { V 2 E (~ ”) } - ’ V E (W ”)

In table B3.4.1, q is a fixed learning rate, while qu is an adaptive learning rate which depends upon the
current training epoch, dv is the current direction vector, y is a fixed scalar multiplier, yu is a variable scalar
multiplier involving two inner product calculations, S(w”) is an n x n matrix built up from the differences
in successive gradients and improvement vectors, VE(w’) is the current n-component gradient vector,
and finally V2E(w”) is the current n x n Hessian matrix. In practice, since both of these matrices are
symmetric, only the upper-triangular part of S(w”) and V2E(wu) are usually stored (requiring n(n + 1)/2
locations instead of n2 locations). For the Newton method, a linear system of equations is solved instead
of finding a matrix inverse for V2E(w”) and multiplying the inverse by -VE(w”). That is, one solves
the linear system V2E(w”)du = -VE(w”) for the current direction d”.

The specific algorithm classes are usually based upon how the direction subproblem is solved.
Table B3.4.1 shows the improvement vector p’ for some of these classes. Notice that the first two
of these methods are the standard backpropagation method (SBP) and the backpropagation method with a
momentum term added (MBP). Notice also that these are the only methods that u s e h e d learning rates
(steplengths). This helps explain why SBP and MBP often take a great many training epochs to converge,
when they do.

B3.4.4.5 Algorithm eficiency

The following example demonstrates that the choice of learning rate can significantly affect convergence.
Example: This example uses the standard backpropagation method (SBP) to solve the XOR gate

problem with the training set shown using layers containing 2-2-1 neurons and a logistic activation
function with b = 1 . The training data are as follows:

0 0 0
0 1 1
1 0 1
1 1 0 .

Using the same randomly chosen starting point, one can use SBP with severalfied learning rates
and count the number of training epochs (iterations) needed. Note the differences in training efficiency.
~~

B3.4:6 Handbook of Neural Computation release 97i1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

Learning rate (q) Training epochs (U)

0.9 932
1.7 494
3 .O 280
5 .O 160

10.0 121
q > 10 (convergence failure)

Convergence is also affected by the initial weight vector and the fact that these same fixed learning
rates will produce a difSerent number of training epochs when different initial weight vectors are used.
The only efficient way to perform this minimization is to have the algorithm adjust the learning rate as it
goes. That adjustment requires additional computation (more forward passes through the training set), but
the overall training computations will normally be greatly reduced.

Of course, measuring efficiency by simple iteration (epoch) counts is not the whole story. The
computation of the improvement p’ can require many floating point operations. Even though the actual
implementation of these ‘formulas’ is typically more efficient than that shown here, the adaptive learning
rate methods usually require a lot more operations per iteration than SBP or MBP. However, they
frequently require a lot fewer operations per problem, and this is the real measure of algorithm efficiency.
The number of operations required for various optimization schemes is calculated and described by Moreira
and Fiesler (1995).

B3.4.4.6 Quasi-Newton and conjugate gradient methods

In unconstrained optimization practice, quasi-Newton (QN) methods and conjugate gradient (CG) methods
are the methods of choice, because of their superlinear convergence rates. Both of these methods are based
upon minimizing a quadratic approximation to a given objective function. However, there are significant
differences between these two methods. CG uses a simpler updating method that is easier to code and
requires fewer floating point operations and much less memory (see table B3.4.1). The coefficient y,, is the
quotient of two inner products, and there are three formulas that have been used in practice to compute this
coefficient: Fletcher-Reeves, Polak-Ribiere, and HestenesStiefel. (These formulas are fully described
by Gill et a1 1981.) The CG method requires O(n) memory locations, while QN requires O(n2) memory
locations; this is the most significant factor for neural network models because of their potentially large
size of n. This can be seen by examining equation (B3.4.3) and is illustrated in table B3.4.2. However, the
QN method is typically less sensitive to the accuracy in computing the learning rate in order to produce a
sufficient decrease in the objective function and directional derivative. The earliest method of this type was
called the DFP (Davidon-Fletcher-Powell) variable-metric method. Because the QN method is similar to
the Newton method, a learning rate of unity is often satisfactory and eliminates the need for an adaptive
learning rate determination. The contemporary method for computing the matrix S(w”) is typically the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method and has been found to work well in practice (Fletcher
1987). For these reasons, QN is usually faster than CG and is usually the preferred method for small-to-
moderate-size optimization problems. Unfortunately, while some neural networks are small, others can be
quite large, as shown by the MLFF examples in table B3.4.2. The value of n is obtained from equation
(B3.4.3).

Table B3.4.2. Multilayer feedforward storage size examples.

N I - N z - N ~ Network n n2 n(n+ 1)/2 Ion

2-2- 1 9 81 45 90
10-5-10 115 13 225 6670 1150
25-10-8 348 121 104 60726 3480
81-40-8 3608 13017664 6510636 36080

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9111 B3.4:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4.4.7 Low-storage methods

Because of these sizes, several practitioners have chosen the CG method over the QN method as a means
of speeding up neural network learning (Barnard and Cole 1989, Johansson et af 1990). However, there
is still another class of methods called low-storage methods which have the advantages of the QN speed,
but require not much more memory than CG, taking O(n) memory locations. For example, one low-
storage version of the quasi-Newton method requires approximately 10m additional memory locations (see
table B3.4.2).

One such technique that has successfully been used for neural network training is Nocedal’s low-
storage L-BFGS method (Nocedal 1980). L-BFGS employs a low storage approximation to the standard
BFGS direction transformation matrix, combined with an efficient adaptive learning rate determination.
The matrix used approximates the inverse Hessian, so this method is of the quasi-Newton variety, but it
is not explicitly stored. Instead, it uses a rotational vector storage algorithm where only the most recent
gradient differences are stored (the oldest are overwritten by the newest). The learning rate qv = 1 is
always tried first. If this fails to produce a sufficient decrease, a safeguarded and efficient cubidquadratic
polynomial fitting algorithm is used to find an appropriate value of q,. L-BFGS has both reduced memory
requirements and improved convergence speed (Liu and Nocedal 1989). It has been employed to solve a
variety of MLFF neural network problems (Noyes 1991).

Low-storage optimization techniques belong to a relatively recent class of methods. Other methods
of this class have been proposed by Griewank and Toint (1982), Buckley and Lenir (1983), and Fletcher
(1990). Fletcher’s method is described as using less storage than L-BFGS at the expense of more
calculations.

B3.4.4.8 Other optimization methods

Many other optimization strategies could be tried. The best-known methods for solving the UMP are
the line search methods which are the one-dimensional search methods used to solve the learning rate
subproblem discussed earlier in this chapter. A newer class of methods is based upon trust regions, which
could be used to restrict the size of the learning rate at any iteration, based upon the validity of the Taylor
series approximation (Fletcher 1987). Another optimization strategy that can be used to limit the weight
and bias values is that of constrained optimization where the weight values are constrained in some fashion
(discussed in section B3.4.5).

There are other ways to compute adaptive learning rates for the solution of optimization problems.
One such method, developed by Jacobs and Sutton, has been used in conjunction with accelerating the
backpropagation method. It is called the delta bar delta method and was designed to compute a dlfSerent
learning rate for each weight in the network based upon a weighted average of the weight’s current and
past partial derivative values (Jacobs 1988, Smith 1993).

No matter what adaptive learning rate method is used, it is clear that adaptive learning rate methods
have the potential of significantly accelerating the network learning process over that of a fixed learning
rate for gradient-based methods. They tend to be very robust and free the user from the often difficult
decision of what learning rate to use for a given application.

B3.4.5 Weight constraints

A general neural network training problem is frequently modeled through the use of an unconstrained
objective function E(w) that depends upon the training data as well as the n-vector (n-dimensional vector)
w of weights and biases. Another type of optimization is called constrained optimization in which some
or all of the variables are constrained in some way, often by algebraic equalities or inequalities. For the
neural network problem, the simplest types of constraint are upper and lower bounds upon each of the
weights and biases. These simple bounds could be enforced for each. More computation per iteration
would typically be necessary, but convergence could be faster overall if reasonable bounds were known
(because these values could not be overadjusted).

Any least-squares function to be minimized, such as that resulting from training an MLFF network,
possesses the special property that its minimum objective function value is bounded below by zero. In the
usual problem statement, the tu vector is not constrained and hence not bounded at all. However, there are
certain problems such as those with physical parameters (such as scientific models) in which it is useful

B3.4:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

to consider the employment of simple bounds of the form

W L 5 w’ 5 wu

where W L = wLe, wu = wue for given scalars w ~ , wu and the n-vector e = (1, 1, 1, . . . , l)T. Note that
this is a special case in which the same simple bounds are used for all weights and biases.

There can be advantages in bounding these weights. As the network is trained, unconstrained weights
can occasionally become very large, which can force the neuron units to produce excessive neti values
(especially if a fixed learning rate is used which is too large). Small derivatives with proportionally small
propagation error corrections can result, and little improvement will be made to the weights and biases.
This brings the training process to a standstill, which is called nefwork paralysis. Bounding the weights
and biases will prevent them from becoming too large. Such bounds can also limit the weights and biases
from ever being overcorrected and producing floating point overflow during the iteration process. If any
a priori information is known about realistic limits for a given problem, this information can be easily
and naturally incorporated. Finally, because well-chosen bounds W L and wu can be employed to restrict
the sequence wv from going too far in a given direction, convergence can be improved in some cases.
Notice, however, that poorly chosen bounds can actually prevent the sequence w’ from converging to an
optimum point.

There are different ways of implementing such bound limits in an algorithm. Here is the simplest
method that adjusts each component wi after the vector w”+l has been computed. Sometimes this method
is called ‘clipping’:

if wy” < WL then wy” := WL

else if w;” > wu then wy+I := wu
(lower-limit check}
(upper-limit check}.

This has the advantage of being very easy to code, being relatively fast, and requiring no additional storage.
Its disadvantage is that the adjusted w’+I point may not lie in the same direction as the improvement
vector, and hence may slow down the convergence process.

With a small amount of additional work, the aforementioned disadvantage may be corrected by
computing a modified learning rate which is the minimum of the previously computed adaptive learning
rate and the learning rate which would place wvfl on the nearest constraint bound. Here both w” and
r” = -VE(w”) are used, with their respective components denoted by wi and ri:

if ri .c 0 then sv := min(s,, (WL - wi) / r i }
else if ri > 0 then su := min{Sv, (wu - w i) / r i }

{lower-limit check}
{upper-limit check}.

This may be derived from a more general set of standard linear constraint conditions (Gill et a1 1981). This
is done before the vector w U f 1 is computed. These conditions check each component ri in the direction
vector T ” . The constraints to be checked are the potentially binding ones having normal vectors which
make an acute angle with the direction vector (otherwise a decrease in E(w) cannot be guaranteed). The
most binding limit is the nearest bound, which corresponds to the minimum s u s No learning rate, fixed or
adaptive, is allowed to exceed this limit.

B3.4.6 Implementation issues

This section briefly describes two important implementation issues that may be used to further enhance all
neural network training methods. Extended precision computation can help ensure that gradient directions
and improvements are computed accurately. Neural network models can be very ill conditioned in that
a small perturbation in the modeling expressions or training data can produce a large perturbation in the
final weights and biases. Consequently, it is usually important to code the necessary expressions so as
to reduce roundoff error and the possibility of floating point overflow. One simple technique is to test
the argument of any exponential or hyperbolic activation function in order to ensure that the function
evaluation will not produce overflow. Another more general technique to employ whenever possible is to
perform all floating point computations, or at least the critical ones such as inner products, weight updates,
and function evaluations, in extended precision (e.g. double precision). While using a higher precision
will always take more storage and a little more execution time per iteration, it usually results in fewer

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 9711 B3.4~9

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

iterations per problem and can often make the difference between convergence and failure to solve a neural
network problem.

Dynamic data StrucrureS can permit even larger problems to be modeled. Neural network models
are natural candidates for such an approach because of their potentially large size and inherent dynamic
character. Several high-level computer programming languages such as Ada, C, C++, Modula-2, and
Pascal contain the capability of accessing additional primary memory known as dynamic memory. This
allows the algorithm implementor to utilize both regular static memory and dynamic memory to solve
much larger problems. Usually this is accomplished by using pointers and dynamic variables to create
some type of linked structure in dynamic memory. Since several data structures such as linked scalars,
linked vectors, and linked matrices are possible, it is important to choose a dynamic data structure suitable
for the type of neural network model a t hand (Freeman and Skapura 1991). Here ‘suitable’ means a
structure that supports efficient floating point computation and makes efficient use of memory.

References

Bamard E and Cole R A 1989 A neural-net training program based on conjugate-gradient optimization Technical

Bevington P R 1969 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill)
Buckley A and Lenir A 1983 QN-like variable storage conjugate gradients Mathematical Programming 27 155-75
Dennis J E Jr and Schnabel R B 1983 Numerical Methods for Unconstrained Optimization and Non-linear Equations

Fahlman S E 1988 An empirical study of leaming speed in back-propagation networks Carnegie Mellon Computer

Fausett L 1994 Fundamentals of Neural Networks (Englewood Cliffs, NJ: Prentice-Hall)
Fletcher R 1987 Practical Methods of Optimization 2nd edn (New York: Wiley)
-1990 Low storage methods for unconstrained optimization Computational Solution of Non-linear Systems of

Equations (Lectures in Applied Mathematics 26) ed E L Allgower et a1 (Providence, RI: American Mathematical
Society) pp 165-79

Freeman J A and Skapura D M 1991 Neural Networks: Algorithms, Applications and Programming Techniques
(Reading, MA: Addison-Wesley)

Gill P E, Murray W and Wright M H 1981 Practical Optimization (San Diego, CA: Academic)
Griewank A and Toint P L 1982 Partitioned variable metric updates for large structured optimization problems

Jacobs R A 1988 Increased rates of convergence through leaming rate adaptation Neural Networks 1 295-307
Johansson E M, Dowla F U and Goodman D M 1990 Backpropagation Learning for Multi-Layer Feed-Forward

Neural Networks using the Conjugate Gradient Method Lawrence Livermore National Laboratory, UCRL-JC-
104850 Preprint September 26

Liu D C and Nocedal J 1989 On the limited memory BFGS method for large scale optimization Math. Programming

Moreira M and Fiesler E 1995 Neural networks with adaptive leaming rates and momentum terms IDIAP Technical

Nocedal J 1980 Updating quasi-Newton matrices with limited storage Math. Comput. 35 773-82
Noyes J L 1991 Neural network optimization methods Proc. 4th Con$ Neural Networks and Parallel Distributed

Park S K and Miller K W 1988 Random number generators: good ones are hard to find Communications of the ACM

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)
Smith M 1993 Neural Networks for Statistical Modeling (New York, NK: Van Nostrand Reinhold)
Thimm G and Fiesler E 1994 High Order and Multilayer Perceptron Initialization IDIAP Technical Report 94-07 1994

(Institut Dalle Molle D’Intelligence Artificielle Perceptive, Case Postale 609 1920 Martigny Valais Suisse)
Thimm G, Moerland P and Fiesler E 1996 The interchangeability of leaming rate and gain in backpropagation neural

networks Neural Comput. 8

Report CSE 89-014 July Oregon Graduate Center

(Englewood Cliffs, NJ: Prentice-Hall)

Science Report CMU-CS-88-162

Numerische Mathematik 39 119-37

B 45 503-28

Report No 95-04

Processing (Fort Wayne, IN: Indiana-Purdue University) pp 1-12

31 1192-203

B3.4:10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.5 Training and generalization

James L Noyes

Abstract

See the abstract for Chapter B3.

In a neural network, the number, dimension, and type of training data have a substantial effect upon the
network’s training phase as well as its subsequent performance during the application phase. In particular,
training affects generalization performance. The connection topology chosen and the activation function
used are usually influenced by the available training data. Different neural network models and their
associated solution methods may have different training data requirements. If a particular model is to be
employed, then the user should determine whether there are any special training approaches recommended.
This section addresses some general approaches to training and generalization, often within the context of
a multilayer feedforward (MLFF) network baseline model.

Some basic terminology must first be established. A set of training data is the data set that is used
to train a given network (i.e. determine all weights and biases). A validation datu set can be used to
determine when the network has been satisfactorily trained. A set of test data is used to determine the
quality of this trained network. Typically, the neural network modeler is familiar with the characteristics
of both training data and validation data. The test data are the data associated with the problem that the
neural network is designed to solve. In some cases, the characteristics of the data associated with the
problem may not be completely known before it is used in the network. The real goal of the network is to
perform well on these actual problem datu because of the network’s ability to generalize. Typically, some
balance between recall and generalization is desired. A lengthy training phase tends to improve recall at
the expense of generalization. It is possible to quantify the notion of generalization, but some of these
quantification methods can be rather complex (Hertz et al 1991).

To many, the generalization ability is the most valuable feature of neural networks. This leads to
further questions relating to the size of the training set (the size of the potential application set may not
even be known), the amount of training employed, the order in which the training data are presented, and
the degree to which the training data are representative of the problem data.

B3.5.1 Importance of appropriate training data

When discussing the problem of selecting appropriate training data, one can consider the neural network ~4

to be a mapping from an NI-dimensional space into an NL-dimensional space, where these dimensions
are the number of neurons in the input and output layers, respectively. In a supervised network, the
number of input and output neurons is dictated by the problem. However, when layers or clusters are to
be used, the modeler is able to choose other topology defining characteristics. There are many similarities
between designing and training a neural network and that of approximating a function (with a statistical
emphasis). To start, one first picks the underlying network topology (with the form of the approximating
function) so that it will adequately be able to model the anticipated data. Having selected the topology,
one then attempts to determine the weights and biases (parameters of the approximation function) so that
the training error is small. However, as will be seen, this does not guarantee that the error associated with
the actual problem data will also be small.

The set of training data should be representative of the anticipated problem data. A polynomial fitting
analogy may be used to illustrate why this is true. If only a very small sample of data is used where none

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compururion release 9711 B3.5:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

of the data used has an ordinate value larger than a given number, then the corresponding polynomial
is not guaranteed to give a close approximation for any abscissa that does have a large ordinate, even if
the data are error free. Put another way, the statistical characteristics of the training data (the sample)
should be close to the statistics of the actual problem data (the underlying population) for a network to be
properly trained. In addition, the statistics of the validation data (a different sample) should also be close
to the statistics of the actual problem data.

In the following it will be assumed that the chosen network topology can adequately model the
application data and that the training data, validation data, and actual problem data all come from the same
underlying distribution.

The size of the network model, as well as the type of model used, should depend upon the number
of data to be used to train it. These two sizes are interrelated. A model with a lot of weights and biases
to determine generally requires a lot of training data or else it will memorize well, but not generalize
well. That is, it may train faster and do quite well reproducing desired training results, but it may give a
very unsatisfactory performance when any kind of nontraining data is used. On the other hand, a model
with too few weights compared with the size of the training data set may train very slowly or not train
at all. (The training speed depends upon the difficulty of the problem itself as well as the size of the
training data set.) These data set sizes must often be determined empirically, after a lot of experimentation.
Normally one chooses the smallest network that trains well and performs satisfactorily on the test data.

ci.2.4 Another consideration is the robusrness of the network-its sensitivity to perturbations in its parameters
and weights. For example, it has been shown that the probability of error increases with the number of
layers in an MLFF network (Stevenson et a1 1990).

During the application period when the network is used to solve actual problems, it may be found
that there are new types of data case for which the network is not producing the anticipated or required
output. This could result from obtaining new problem data having different characteristics than the data
used to train the network. This could also result from trying to solve a problem containing data from
a different underlying distribution than that of the training data. Assuming that these new problem data
are valid for the intended application, some or all of the data from these new cases can be added to the
training (and validation) data sets and the network can be retrained.

B3.5.2 Measuring and improving network generalization

Network generalization may be addressed in two stages: how to detect and measure the generalization
error, and how to reduce this error by improving generalization.

B3.5.2.1 Measures of generalization

Quantitative measures of generalization try to predict how well a network will perform on the actual
problem data. If a network’s generalization ability cannot be bounded or estimated, then it may not
reliably be used for unseen problem data. Given a test data set of m examples from some arbitrary
probability distribution, what size of MLFF network will provide a valid generalization? Alternatively,
given a network, what is the minimum and maximum number of samples needed to train it adequately?

A method of quantifying the number of training data needed for an L-layer MLFF network was
given by Mehrotra et a1 (1991) and a perceptron-based example of this was given by Wasserman (1993).
Consider an MLFF network with N1 inputs. For this type of network, assume there are W weight and bias
values to be determined. Each input corresponds to a single point in NI-dimensional space. If one were to
partition each dimension into K intervals, then there are K N 1 uniformly distributed hypercubes in this NI-
space. As the number of input components increases, the number of hypercubes increases exponentially.
If it is desired to have a training point in each hypercube in order to have the set of training data uniformly
distributed, then the number of training examples needed is also K N 1 . For example, suppose one had
to design a 5 4 2 - 3 network (so N1 = 5) and wanted K = 2 intervals. This would mean that 25 = 32
input examples would be needed in the training set. The number of weights and biases would then be
W = (5 + 1)N2 + (Nz + 1)3 = 9N2 + 3. So an N2 of 2 or 3 should be reasonable to try for a good
generalization capability, but an N2 of 5 or higher would probably be too large. One can work this in
the other direction, choosing N2 first, then picking a K value to determine the number of training cases
needed.

B3.5 :2 Hundbook of Neurul Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Training and generalization

B3.5.2.2 The Vapnik-Chervonenkis dimension

An even more theoretical way to try to determine the number of training data needed to achieve good
generalization is by using the Vapnik-Chervonenkis dimension or VC dimension (Vapnik and Chervonenkis
1971, Baum and Haussler 1989, Sakurai 1993, Wasserman 1993). The VC dimension can be used to relate a
neural network's memorization capacity to its generalization capacity. The VC dimension is closely related
to the number of weights and biases in a network, in analogy with the number of degrees of freedom
(coefficients) in polynomial least-squares data fitting problems. Roughly speaking, for a fixed number
of training cases, the smaller the network, the better the generalization since it is more likely to behave
similarly on another training set of the same size with the same characteristics.

If 3 is a class of {-1, +l}-valued functions on W N 1 (where NI is the number of input neurons), and
S is a set of m points in W", then VCdim(3) is the cardinality of the largest set S c RNl that is shattered
(i.e. all partitions S+ and S - of S can be induced by functions in 3). The VC dimension for a network of
this type with only one computational layer can be shown to be just n , the number of unknown weights
and biases.

There is no closed-form solution for the VC dimension for a general MLFF network, but it is closely
related to the number of weights and biases in the network. Even though no closed-form solution has been
found, a theoretical bound has been obtained. Baum and Hausler (1989) define an accuracy parameter
E and try to predict correctly at least a fraction 1 - E of examples from a test data set with the same
distribution. Assuming 0 -= E I 1/8, theoretical order of magnitude bounds for m are given by Q(n/E)
and O((n/c) log,(N/c)), where N is the number of neurons in a single-hidden-layer network and n is the
total number of weights and biases. For example, this means that one needs on the order of n / ~ training
examples in order to have a generalization error under E .

Yamasaki (1993) has given a precise expression for the number of test examples that can be memorized
in an MLFF network that employs a logistic activation function (see section B3.2.4) and a single unit in
the output layer L . This expression is given by

where the ceiling (least-integer) and floor (greatest-integer) functions are used.

tend to be quite conservative about the number of training examples required.
Although upper and lower bounds have been defined for certain network types, these bounds often

B3.5.2.3 The generalized prediction error

Other approaches to the measurement of a network's generalization have been tried. Moody (1992)
proposed a measure called the generalized prediction error (GPE) to estimate how well a given network
would perform on nontest data. The GPE is based upon the weights and biases, the number of examples
in the training set, and the amount of error in the training data. It works by appending an additional term
to the objective function to be minimized during the training process.

B3.5.2.4 Cross validation

A more empirical method of measuring generalization error is that of cross validation (Stone 1959, 1974, c1.2.6
White 1989, Smith 1993, Liu 1995). The idea here is to use additional examples from test data sets that
were not used in training the network. The network is trained with the training data set (only) to determine
the weights and biases, and a test data set is selected. Each input pattern from the test set is presented
to the trained network and the corresponding output is computed. That output is then compared with the
corresponding target data in the test set to determine each error. These errors can be combined to produce
an overall error for the given test set by using the same error measure as was used when the network was
trained (e.g. a least-squares error). This is done for all the test data sets. If each of these overall errors
is small enough, then the neural network model generalizes well and is said to be validated. If not, then
some adjustments are made either in the training or in the model itself to improve generalization, and the
entire process is repeated.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 B3.5 :3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.5.2.5 The ‘leave one out’ approach

In some cases there are not enough data to make more than one test data set. In some cases there may
only be enough data to place in the training set and train the network, but none for the test set to validate
the network. In this situation a typical strategy is the ‘leave one out’ approach. That is, one trains the
network with m - 1 examples in the training set, then evaluates the network with the unused example.
This can then be done m times and a determination made as to whether the results are satisfactory. This
approach can be extended to ‘leave some out’ with more combinations to be tried. A different type of
approach is to effectively synthesize new data from the old by adding random errors to the training data
(see below).

B3.5.2.6 Reducing the number of weights

Perhaps the simplest methods to improve generalization are to simply increase the training set or decrease
the number of weights and biases in the model (e.g. by reducing the size of the hidden layers). Both of
these methods tend to reduce the effects of any errors in the training data. If the ability to generalize
is important, then one wants to be sure that there are not too many hidden neurons for the amount of
training data used. Extra neurons can cause overfitting. This situation is analogous to the task of fitting a
polynomial to a given set of data. If the polynomial has too high a degree, then extra coefficients must
be determined. So even though the polynomial fits the data points well (perhaps even exactly), it can be
highly oscillatory between the given data points so that it does not accurately represent the data trend,
even at nearby data points.

B3.5.2.7 Early training termination

c1.2.6 Another relatively simple method to improve generalization is that of early training termination used by
Smith (1993) and others. The training algorithm determines weights and biases based upon training data
that often include errors. If the network models this type of training data too closely, then it is not likely
to perform well on the actual problem data, even if both are from the same distribution. This tends
to happen when one overfits the data by training with the goal of malung the overall training error as
small as possible (this is the normal goal of any minimization algorithm). The resulting network then
models too much of the training data error. To prevent this from happening one pauses periodically in
the training process to compute an overall (cross validation) test case error for one or more test sets using
the current weight and bias values. These values, together with the corresponding overall test case error,
are then saved. The training is then resumed. As the training continues, the overall training error usually
gets smaller. However, at some stage of the training process, the overall testing error gets larger. When
this happens, one terminates the training and uses the previous weights and biases that were saved. An
alternative method of early training termination is even simpler and can be employed when binary or
bipolar training data is used. This method uses a generic sigmoid output function (equation (B3.2.5)) to
compute an auxiliary sum of squares and stops when this sum is exactly zero instead of stopping when
the regular sum of squares (equation (B3.4.2)) is small (see section B3.2.4)).

B3.5.2.8 Adding noise to the data

Another method of using the available training data in such a way as to improve generalization without
using exceptionally large training sets involves adding noise to the data, effectively augmenting the original
training data with generated training data. This is done by applying a small, say 1-5%, random error to
each component of each training example each time the network processes it. This does two things: it has
the effect of adding more training data, and it prevents memorization. Here the training examples actually
used are different for every presentation (the original training data are unchanged), and it is impossible
for any of the weights to adjust themselves so that any single input is memorized. In addition, the trained
network tends to be more robust when there is a relatively smooth mapping from the input space into the
output space (Matsuoka 1992).

B3.5:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Training and generalization

B3.5.2.9 Weight decay and weight pruning

There are several methods of improving generalization by causing the weights and biases to be computed
in a different manner. Weight decay methods try to force some of the weights toward zero. Weight c1.2.6
pruning methods actually seek to eliminate small weights entirely. One way to implement weight decay is
by adding a nonnegative penalty term to the objective function to be minimized (Krogh and Hertz 1992,
Smith 1993). This could take the form

where E(w) is the original objective function (e.g. a least-squares function), p > 0 is a scaling multiplier,
and C(w) is a ‘complexity’ measure that frequently includes some or all of the weights and biases directly.
For example, C(w) = (X w f) / 2 helps keep the weights small since small weights help minimize A(w).

The multiplier p should be chosen so that it is neither too small (allowing a close fit with possible
overfitting) nor too large (allowing an excessive error influence). It can either be fixed or it can be adjusted
successively by using the previous test validation methods.

Often the penalty term is differentiable, where the partial derivatives are easily formulated and
incorporated into any gradient-based or Hessian-based descent methods. Other penalties can be based
upon Taylor series expansions (Le Cun et al 1990) or weight smoothing methods (Jean and Wang 1994).

After the initial training of a neural network, one may decide to prune the weights, and perhaps
neurons (when all input weights are zero). It is possible effectively to remove any weights and biases that
are too small, and will therefore have the least effect on the training error, by setting the weights to zero
and retraining the network. When the network is fully or partially retrained, the zero weights and biases
are treated as constants so that they are not altered. This can be accomplished with or without the aid of
automation since the pruning algorithm to do this can be directly followed by the network modeler when
the model is small or implemented on the computer when the model is large and many weights and biases
must be checked (Ying et a1 1993). The use of this type of method is an alternative to methods that limit
the number of hidden neurons. This method can also be used in conjunction with weight decay methods.

One may combine some of the above methods to help further improve a neural network’s
generalization capability.

References

Baum E B and Haussler D 1989 What size net gives valid generalization? Neural Information Processing Systems
vol 1, ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 81-90

Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture
Notes vol 1 (Redwood City, CA: Addison-Wesley)

Jean J S N and Wang J 1994 Weight smoothing to improve network generalization IEEE Trans. Neural Networks 5
752-63

Krogh A and Hertz J A 1992 A simple weight decay can improve generalization Advances in Neural Information
Processing Systems vol 4 ed J Moody, S J Hanson and R P Lippman (San Mateo, CA: Morgan Kaufmann)

Le Cun Y L, Denker J S and Solla S A 1990 Optimal brain damage Advances in Neural Information Processing

Liu Y 1995 Unbiased estimate of generalization error and model selection in neural networks Neural Networks 8
2 15-9

Matsuoka J 1992 Noise injection into inputs in back-propagation leaming IEEE Trans. Systems, Man, Cybem. 22
436-40

Mehrotra K G, Mohan C K and Ranka S 1991 Bounds on the number of samples needed for neural learning IEEE
Trans. Neural Networks 2 548-58

Moody J E 1992 The effective number of parameters: an analysis of generalization and regularization in nonlinear
leaming systems Advances in Neural Information Processing Systems vol 4, ed J Moody, S J Hanson and
R P Lippman (San Mateo, CA: Morgan Kaufmann) pp 847-54

Sakurai A 1993 Tighter bounds of the VC-dimension of three-layer networks World Congress on Neural Networks
vol I11 (International Neural Network Society) 540-3

Smith M 1993 Neural Networks for Statistical Modeling (New York, NK: Van Nostrand Reinhold)
Stevenson M, Winter R and Widrow B 1990 Sensitivity of feedforward neural networks to weight errors IEEE Trans.

pp 950-7

Systems vol 2 ed D S Touretsky (San Mateo, CA: Morgan Kaufmann) pp 598605

Neural Networks 1 71-80

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B3.5:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

Stone M 1959 Application of a measure of information to the design and comparison of regression experiments Ann.

-1974 Cross-validatory choice and assessment of statistical predictions J. R. Statistical Soc. B 36 1 11-47
Vapnik V N and Chervonenkis A 1971 On the uniform convergence of relative frequencies of events to their

Wasserman P D 1993 Advanced Methods in Neural Computing (New York: Van Nostrand Reinhold)
White H 1989 Leaming in artificial neural networks: a statistical perspective Neural Comput. 1 425-64
Yamasaki M 1993 The lower bound of the capacity for a neural network with multiple hidden layers World Congress

Ying X, Surkan A J and Guan Q 1993 Simplifying neural networks by pruning alternated with backpropagation training

Math. Statistics 30 55-69

probabilities Theory Probab. Appl. 16 264-80

on Neural Networks vol 111 (International Neural Network Society) 544-7

World Congress on Neural Networks vol 111 (International Neural Network Society) July 364-7

B3.5:6 Handbook ojNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Thomas 0 Jackson

Abstract

Neural networks are adaptive systems that have ‘automatic’ learning properties, that is,
they adapt their internal parameters in order to satisfy constraints imposed by a training
algorithm and the input and output training data. In order to extract the maximum
potential from the training algorithms very careful consideration must be given to the
form and characteristics of the data that are presented to the network at the input and
output stages. In this chapter we discuss the requirements for data preparation and
data representation. We consider the issue of feature extraction from the data sample
to enhance the information content of the data used for training, and give examples of
data preprocessing techniques. We consider the issue of data separability and discuss the
mechanisms by which neural networks can partition and categorize data. We compare and
contrast the different means by which real-world variables can be represented at the input
and output of neural networks, looking in detail at the properties of local and distributed
schemes and discrete and continuous methods. Finally, we consider the representation
of more complex or abstract properties such as time and symbolic information. The
objective in this chapter is to highlight the fundamental role that data preparation plays
in developing successful neural network systems, and to provide developers with the
necessary methods and understanding to approach this task.

Contents

B4 DATA INPUT AND OUTPUT REPRESENTATIONS

B4.1 Introduction
B4.2 Data complexity and separability
B4.3
B4.4 Data preprocessing techniques
B4.5 A ‘case study’ review
B4.6 Data representation properties
B4.7 Coding schemes
B4.8 Discrete codings
B4.9 Continuous codings
B4.10 Complex representation issues
B4.11 Conclusions

The necessity of preserving feature information

@ 1997 IOP Publishing Ltd Handbook for lnrtitutc of Physics Publishing release 9711
Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.1 Introduction

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

The past decade has seen a meteoric rise in the popularity of neural network techniques. One reason
for this increase may be that neural computing can offer relatively simple solutions to complex pattern
classification problems. In simple terms, the neural computing approach can be described by the following
algorithm.
(i) Gather the data sample.
(ii) Choose and prepare the training set from the sample.
(iii) Select an appropriate network topology.
(iv) Train the network until it displays the desired properties.
It has been described as a ‘black box’ solution (even ‘statistics for amateurs’ (Anderson 1995)) because
the internal representations or mechanics of the network need not be known, or understood, in order to
find a solution to the problem in hand. Neural networks have been, and perhaps continue to be, applied
in this ‘simplistic’ manner. However, this approach obscures a realm of complexities which contribute
to the successful performance of neural computing methods. One major issue, which is the focus of
this chapter, is the manner in which data are presented to a neural network. That is, the mechanisms
by which the data set is transformed into input vectors such that the salient information is presented in
a ‘meaningful’ manner to a network. It is true to say that the familiar maxim applied to conventional
computing systems-‘garbage in, garbage out’-is equally valid in the neural computing paradigm.

The theme of data representation receives minimal attention in many neural texts. This is a major
oversight. The structures used to represent data at the input to a neural network contribute as much to the
successful solution of any given problem as the choice of network topology. It could be argued that the
data representations are more critical than the network topology; the flexibility inherent in neural learning ~2

algorithms can accommodate nonoptimal selection of topological parameters such as weights or the number
of nodes. However, if a network is trained with inappropriately structured data then it is unlikely that the
network will learn a mapping function that has any useful correlation with the training data. Similarly,
the representations used at the output of a neural network play a crucial role in the training process.

The aim of this chapter is to illustrate the techniques and data structures that ensure appropriate
representation of the input and output data. There are two issues: (i) enhancement of feature information
from the data set, and (ii) how to represent features (as variables) at the network input and output layers.
We will discuss these two problems from a number of different viewpoints. In Section B4.2 we start
with fundamental principles and consider data complexity and data separability. In the course of this
discussion we shall examine the mechanisms by which neural networks are able to partition and categorize
data. The motivation for this discussion is simple-in order to understand the constraints that determine
satisfactory data representations it is first necessary to understand how a network ‘processes’ data. Section
B4.3 considers data preprocessing. Sections B4.4 to B4.10 deal with the specifics of data representation,
considering discrete versus continuous data formats, local and distributed schemes and data encoding
techniques.

It is worth emphasizing that this chapter does not address the issue of internal data representations
but rather the means by which data are represented at the input and output stages of a network. The
subject of internal representations is discussed within Chapter B5. B5

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.1:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

References

Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)

B4.1:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.2 Data complexity and separability

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

There are a number of different mathematical frameworks which might be used to illustrate the point that
data representation is a fundamental issue in neural computing. The approach adopted here is to consider
the problem in terms of pattern space partitioning. To identify the properties that distinguish ‘good’
data representations we must first review how a neural network performs pattern classification within a
given pattern space. To do this a hypothetical and somewhat trivial pattern classification problem will be
discussed. Consider the data set shown in figure B4.2.1; it describes two data classes distributed across
a two-dimensional feature space. The data points are representative samples taken from each class. The
pattern classification task is defined as follows: given any random vector, A, taken from the same feature
space, which class should it be assigned to?

decision
class Y

class X
A A

+

t

+ f + +ve

Figure B4.2.1. Class separation using a linear decision boundary

One traditional pattern classification technique which is commonly used to solve this categorization
problem is pattern space partitioning using decision boundaries. A decision boundary is a hyperplane
partition in the pattern space which segregates pattern classes. The simplest example of a decision boundary
is the linear decision boundary shown in figure B4.2.1. Any vector that falls on the (arbitrarily assigned)
positive side of the boundary is attributed to class Y, similarly, any vector that falls on the negative
side of the boundary is attributed to class X. The field of statistical pattern recognition has given rise ~ 6 . 2 . 3

to many forms of decision boundary (two good reference texts on this subject are Duda and Hart (1973)
and Fu (1980)). However, the challenge of decision boundary methods is not in defining the form of the
hyperplane boundaries, but in positioning the planes in the pattern space.

In the trivial example shown in figure B4.2.1, a simple visual inspection is sufficient to identify
where a linear partition may be positioned. Clearly, however, the problem becomes nontrivial when
we move to data sets with three or more dimensions, and complex analytical methods are required in
these cases. The compelling attraction of neural computing techniques is that they provide adaptive
learning algorithms which can position decision boundaries ‘automatically’ through repetitive exposure to
representative samples of the data.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 B4.2: 1

Copyright © 1997 IOP Publishing Ltd

Data Inuut and Outuut Reuresentations

c i . 1 . 1 , ~ 1 . 2 . 3 The perceptron (Rosenblatt 1958) is the simplest neural class$er and it can be easily demonstrated
that the network functions as a linear discriminator. The analysis is straightforward and is worth considering
briefly here. The definition of the perceptron classifier is given by

(B4.2.1)

where wi are the weight vectors, xi are the input vector components, e is a constant bias input and H u
is the Heaviside function.

Figure B4.2.2. The perceptron classifier.

The output, y, will take on a positive or negative value dependent upon the input data and weight

We can rearrange (B4.2.1) and express it in the inner product form
vector values. A positive response indicates class Y, a negative response indicates class X .

The cos4 term (where 4 is the angle between the weight vector, W , and the input vector X) has a range
between f l . Any value of 4 greater than f90" will reverse the value of the output, y . This produces
a linear decision boundary because the crossover point is at f90" . The weight parameters and the bias
value determine the position of the decision boundary in the pattern space. If we consider the crossover
region where y = 0, we can demonstrate this point

n
o = wixi - e. (B4.2.3)

i = l

Expanding this for the perceptron two weight network:

o = w l x x l + W 2 ~ X 2 - e e . (B4.2.4)

Rearranging this for x ,

(B4.2.5)

Comparing (B4.2.5) to the equation for a straight line, y = mx + c, we can see that the slope of the
decision boundary, m, is controlled by the ratio of W I / W Z , and the axis intercept, c, is controlled by the
bias term, 8 .

During the learning cycle the weight values are modified iteratively, in order to arrive at a satisfactory
position of the decision plane. Satisfactory in this context means minimizing the number of classification
errors to a predefined acceptable level across the training set (which of course should converge to zero in

The brief analysis of the perceptron has demonstrated that it can partition a pattern space by placing a
linear decision boundary within it. Identifying representative data samples is clearly a key issue. Placement
of the boundary is made on the assumption that the samples taken from classes X and Y are fully
representative of the class types. Inadequate training data can lead to the boundary being positioned
incorrectly. For example, in figure B4.2.3 exclusion of the samples X1 and X2 from the training data
could result in classification errors.

In 'real world' classification tasks the data sets are rarely separated or partitioned as easily as the
trivial example we have discussed, and, in practice, the range of problems that can be solved with simple
linear decision boundaries is extremely limited. For most nontrivial pattern classification problems we must

~3 the optimal case). Details of the training algorithms are discussed in Chapter B3.

B4.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data complexity and separability

A

Figure B4.2.3. Misclassification due to incorrectly positioned decision boundary.

contend with data sets which have complex class boundaries. Examples are shown in figure B4.2.4(a) and

The data spread shown in figure B4.2.4(b) is an example of the XOR classification problem. This
classification task was used by Minsky and Papert (1969) to highlight the limitations of the single-layer
perceptron classifier.

(b).

class Y A

Figure B4.2.4. (a) Meshed classes. (b) XOR problem

A simple visual inspection shows that neither of these data sets can be separated using a single linear
classification boundary. In such cases, a perceptron could not converge to a satisfactory solution. Complex
data sets, as typified in the examples of figure B4.2.4, must be partitioned by combining multiple decision
boundaries. For example, the XOR problem shown in figure B4.2.4(b) can be resolved in the following
manner.

Figure B4.2.5. Piece-wise linear classification achieved by combining decision planes.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9111 B4.2:3

Copyright © 1997 IOP Publishing Ltd

c1.2

B4.2:4

Data Input and Output Representations

By placing two decision boundaries it is possible to logically combine the classification decisions of
each and partition the data satisfactorily. This technique is known as piece-wise linear classification. A
truth table illustrating the combination of the decision boundaries is shown in table B4.2.1,

Table B4.2.1. Truth table for piece-wise linear classification scheme.

Classification Sign of decision line
D1 D2

Class X + +
Class Y - +
Class Y + -

Partitioned regions of this type are known as convex regions or alternatively convex hulls. A convex
region is one in which any point in the space can be connected by a straight line to any other without
crossing the boundary of that region. Convex regions may be open or closed--examples of each type are
shown in figure B4.2.6.

Clond

-lulls

Figure B4.2.6. Examples of open and closed convex hulls.

In a perceptron classifier convex hulls are created by combining the output of two parallel perceptron
units into a third unit, figure B4.2.7. The third unit, which forms a second layer in the network, is
configured to perform the logical AND function (i.e. it becomes active when both its inputs are active) so
that it implements the condition for class X in table B4.2.1. There are, however, many classes of problems
which cannot be partitioned by convex regions. The meshed class example shown in figure B4.2.4(a) is
one example. The solution to this class of problems is to combine perceptrons into a network of three
or more layers. This class of networks are generally termed multilayer perceptrons. The third layer of
units receives regions as inputs and is able to combine these regions into areas of arbitrary complexity.
Examples are shown in figure B4.2.8.

The number of units in the first layer of the network controls the number of linear planes. The
complexity of the regions that can be created in the pattern space is defined by the number of linear planes
that are combined. There is a mathematical proof, the Kolmogorov theorem (Kolmogorov 1957), which
states that regions of arbitrary complexity can be generated with just three layers. The proof will not be
explored here, but a useful analysis can be found in (Hecht-Nielsen 1987).

To summarize, we have seen that the class of networks based upon perceptron classifiers are able to
partition a pattern space using decision boundaries. We have also seen that the position of the boundaries
in the pattern space is determined by the weight constants in the network and the bias terms. At this point
the fundamental link between the classification performance and the quality of the training data becomes

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data complexity and separability

Figure B4.2.7. Two-layer perceptron network for partitioning convex hulls.

class Y

+ +;lass ++$+ +

+++

class Y class X

Figure B4.2.8. Arbitrary complex regions partitioned by perceptron networks of three or more layers.

apparent; the weights of the network are modified in response to the training data. Clearly, for a network
to generate meaningful internal representations that adequately partition the pattern space, we must present
the network with data that accurately define that pattern space.

References

Duda R 0 and Hart P E 1973 Pattern Classifkation and Scene Analysis (New York: Wiley)
Fu K S 1980 Digital Pattern Recognition (Berlin: Springer)
Hecht-Neilsen R 1987 Kolmogorov’s mapping neural network existence theorem 1st ZEEE Int. Conference on Neural

Kolmogorov A N 1957 On the representation of continuous functions of many variables by superposition of continuous

Minsky M and Papert S 1969 Perceptrons: An Introduction to Computational Geometry (Cambridge, MA: MIT Press)
Rosenblatt F 1958 The Perceptron: a probabilistic model for information storage and retrieval in the brain Psych. Rev.

Networks 3 San Diego 11-14

functions of one variable and addition Dokl. A M . Nauk USSR 114 953-6

65 38-08

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.25

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.3 The necessity of preserving feature information

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

The preceding discussion provides us with an important insight into neural network classification
techniques; the clustering of the data has a large impact upon the complexity of the neural network
classifier. From this we conclude that the data presentations should preserve the clustering inherent in
the data set. This implies that the properties which determine the class distribution must be understood.
Neural computing offers no ‘short cuts’ here; data analysis is a prerequisite, and we need to draw from
established statistical and numerical analysis techniques (again, Duda and Hart (1973) and Fu (1980) are
useful references).

problem: a neural network will be used to map the five bitmaps, figure B4.3.1, onto their respective vowel
classes.

As an example of how we might approach this task, consider the following character recognition ~ 1 . 2

Figure B4.3.1. Five ‘character’ bitmaps.

The ‘raw’ data is the set of five 64-bit binary vectors representing the bitmaps. One simple approach
to this problem might be to use the 64-bit vector as the input to the network. Another option is to assign
each bitmap an arbitrary code, for example 11001 1 to represent the bitmap for character ‘A’. However,
a more productive approach might be to recognize that it is the information contained in the shape of
the characters which uniquely defines them. This information can be used to derive representations that
explicitly define the shape. For example, we might consider counting the number of the horizontal and
vertical spars, the relative positions of the spars, and the ratio of vertical to horizontal spars. This approach
allows contextual or a priori knowledge to be captured in the data presented to a network. One advantage
of this approach is that similar shape characters, such as ‘0’ and ‘U’, would have similar representations
(that is, there would be many common features in the two feature vectors). In many applications this is a
desirable property as it can lead to more robust generalization.

Wasserman (1993) has suggested that in some circumstances it may be desirable to use the ‘raw’
data as the input to the network. Many classification problems are difficult to solve using traditional
pattern recognition partially because the task of identifying and extracting appropriate feature information
is so complex and ill-defined. In such cases a neural network m y prove more adept at identifying

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 B4.3:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

underlying features or data trends than a human analyst. Consequently, there may be an advantage gained
from presenting a network with large, unprocessed data vectors and expecting that the adaptive training
procedure will be able to identify the underlying information. There is clearly a compromise which must
be reached between these two approaches. Unfortunately there are few analytical methods available to
assist in the decision process.

To demonstrate that a data representation is capable of destroying the clustering properties we will
consider an example using binary coding. Binary codings map a discrete valued number from a single
dimension into a much higher, complex dimension space. For example, if a feature with a range of values
0-32 is mapped into a binary representation, the set of values is mapped onto a six-dimension feature
space. However, this transform is not an appropriate mapping because the binary representation has many
discontinuities between neighboring states. For example, consider the transition of values from 29-32 in
binary form.

Value Binary

29 011101
30 011110
31 011111
32 100000

We can see that there is a common pattern in bits 3-5 of the vectors for the values 29-31. However,
there is no corresponding pattern in the binary vector for value 32. In terms of pattern vectors this would
suggest that the two feature values, 31 and 32, are quite separate in pattern space. These discontinuities
destroy the inherent clustering of the data set and fragment the data. In general, the fragmentation leads
to more complex pattern spaces and a more demanding partitioning task.

This simple example leads us to an important general principle: the metric we use to gauge similarity
in the pattern domain should be preserved in the data representation. In the example above, we are using a
Euclidean metric to determine the similarity of the discrete representation, but the similarity of the binary
patterns is determined by the Hamming metric, and, as we have argued, these are not equivalent.

This is not to say that binary codings are universally inappropriate. The discrete Hopfield network,
for example, makes good use of binary representations. However, it is important to note that the inputs
to a Hopfield network generally encode states or events rather than feature values. For example, one
application of the Hopfield network is in optimization problems such as the traveling salesman. In this
problem the binary input vectors record the event that a particular salesman has visited a certain city
(represented by a discrete node).

In conclusion, the primary objective for any data representation is to capture the appropriate
information from the data set in order to adequately constrain the classification problem. Careful
consideration of the problem characteristics and suitable preprocessing will, in general, lead to more
predictable classification performance.

~ 1 . 3

References

Duda R 0 and Hart P E 1973 Pattem Classijication and Scene Analysis (New York: Wiley)
Fu K S 1980 Digital Pattem Recognition (Berlin: Springer)
Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

B4.3:2 Hundbook of Neurul Computation release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.4 Data preprocessing techniques

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

Data sets are often plagued by problems of noise, bias, large variations in the dynamic range or sampling
range, to highlight a few. These problems may obscure the major information content or at least make it
far more problematic to extract. There are a number of general data processing algorithms available which
can remove these unwanted variances, and enhance the information content in the data. We will discuss
these in the following sections.

B4.4.1 Normalization

Data sets can exhibit large dynamic variances over one or more dimensions in the data. These large
variances can often dominate more important but smaller trends in the data. One technique for removing
these variations is normalization. Normalization removes redundant information from a data set, typically
by compacting it or making it invariant over one or more features. For example, when building a
pattern recognition system to recognize surface textures in gray-scale images it is often desirable to ~ 1 . 2

make the system invariant to changes in light conditions (i.e. contrast and brightness) within the image.
Normalization techniques allow the variations in the contrast and brightness to be removed such that the
images have a consistent gray-scale range.

Similarly when processing speech signals, for example in a voice recognition system, it is advantageous ~ 1 . 7
to make the system invariant to changes in the absolute volume level of the signal. This is described in
figure B4.4.1.

IAmplitu de I Amplitude

Phase Phr

Figure B4.4.1. (a) Varying magnitudes; (b) normalized amplitudes.

The vectors represent the phase and amplitude of the signal. In figure B4.4.l(a), the three vectors
are shown with varying amplitudes and phases, however, it may only be the phase information that is
of relevance to the classification problem. In figure B4.4.l(b) the vectors have been normalized to unit
length, such that all amplitude variations have been removed, whilst leaving the phase information intact.

We may also want to normalize data with respect to its position. For example, in a character
recognition system it is typical that the input data are normalized with respect to position and size. In

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computation release 9111 B4.4: 1

Copyright © 1997 IOP Publishing Ltd

Data Input and Outtwt Representations

classification systems which use template matching schemes this preprocessing step can substantially reduce
the number of templates required. A simple example is shown in figure B4.4.2.

One point of caution should be noted from this example. Normalization procedures can remove
important feature information as well as redundant information. For example, consider the case of a
character ‘C’. If it is normalized to remove scale variations then it is possible to normalize upper case
‘C’ and lower case ‘c’ to the same representation. This may or may not be a desirable transform,
depending upon the application. This example stresses the importance of understanding the context of the
normalization with respect to the classification task in hand.

Figure B4.4.2. Scale and position normalization. The three ‘ T characters in the top of the diagram can
be normalized and reduced to a single representation shown below.

B4.4.2 Normalization algorithms

The principle of normalization is to reduce a vector (or data set) to a standard unit length; usually 1, for
convenience. To do this we compute the length of the vector and divide each vector component by its
length. The length, I , of a vector, Y, is given by

(B4.4.1)

where 1 is the length, and m is the dimensionality of Y. Hence, a normalized, unit length vector Y‘ is
given by

y ’ = -. (B4.4.2)

A vector (or data set) can be normalized across many different dimensions, and with respect to many
different statistical measures such as the mean or variance. We shall describe three approaches which
Wasserman (1993) has termed total normalization, vertical normalization and horizontal normalization.

Total normalization. This is the most widely applied normalization method. The normalization is performed
globally across the whole data set. For example, to remove unnecessary offsets from a data set we can
normalize with respect to the mean. This is described in equation (B4.4.3).

Y
1

Evaluate the mean of the data vectors, 7, across the full data set (1 to p vectors):

i

P x m

where m is the number of components in a vector.
For each vector, divide by the mean:

Y
Y

y’= - * -

(B4.4.3)

(B4.4.4)

Vertical normalization. In some applications normalizing over the total data set is not appropriate, for
example when the components of a feature vector represent different data types. In these circumstances

B4.4~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data preprocessing techniques

it is more appropriate to evaluate the mean or variance measure of the individual vector components. An
algorithm to normalize by removing the mean is described in equation (B4.4.5).

Determine the mean yi of each component, i , over each vector in the data set (1 to p) :

(B4.4.5)

For all vectors, divide each component by the corresponding component mean:

for i = 1 to m (B4.4.6)

Horizontal normalization. When handling vectors that incorporate temporal properties, for example, a
vector that represents an ordered time series, we must normalize the vectors individually. Hence, to
normalize with respect to the mean, we can perform the following equation.

I Yi y = -
Yi
-

For each vector, j = 1 to p , establish the mean, yj:

For each vector, j = 1 to p , divide by the mean:

(B4.4.7)

(B4.4.8)

The algorithms described above describe techniques to remove offsets from a data set. The same methods
can be used to remove unwanted variations in vector magnitude by dividing by the vector length.

These descriptions present details of three possible approaches to normalization. They are not a
definitive set of algorithms. However, they highlight the fact that caution must be exercised when
normalizing vectors to ensure that only the redundant information is removed. Normalization is a powerful
technique when applied correctly and can significantly enhance the information content within a data set.

B4.4.3 Principal component analysis

Normalization is one scheme by which pertinent feature information can be enhanced in a data set.
Another scheme which is often linked to neural networks, largely due to the work of Oja (1982, 1992) and
Linsker (1988), is principal component analysis (PCA) (also known as the Karhunen-Loeve transform,
(Papoulis 1965)). It is a data compression technique that extracts characteristic features from the data
whilst minimizing the information loss. It is typically used in statistical analysis for high-dimensional data
sets, where the features with the greatest significance are obscured by the size and complexity of the data.

The basic principle of PCA is the representation of the data by a reduced set of unit vectors
(eigenvectors). The eigenvectors are positioned along the directions of greatest data variance. They
are positioned so that the projections from the data points onto the axis of the vector are minimized across
the full data set. A simple example is shown in figure B4.4.3. The vector, Y, is positioned along the
direction of the greatest data spread in the two-dimensional space. Any point in the data sample can now
be described in terms of its projection along the axis of Y, with only a small reduction in positional
accuracy. As a consequence, a two-dimensional position vector has been reduced to a single-dimensional
description. In high-dimensional spaces the objective is to find the minimum set of eigenvectors that can
describe the data spread whilst ensuring a tolerably low loss in accuracy.

Having discussed the approach in general terms, we can now provide a mathematical framework for
PCA. The eigenvectors that are required are members of the covariance matrix, R, for the data set. This
matrix is generated from the outer product equation:

(B4.4.9)

where V is the mean vector of the data sample and N is the number of vectors.
Once the eigenvectors of this matrix are found, (AI, A2, K, An), they can be ordered in terms of their

eigenvalues. The principal components are those which minimize the mean squared error between the data

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurol Computution release 9711 B4.413

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Figure B4.4.3. Determining the direction of greatest variation in a data set.

and its projection onto the new axis. The smaller eigenvectors are discarded (i.e. those with the smallest
variance) and the data vectors are approximated by a linear sum of the remaining m eigenvectors:

(B4.4.10)

5 will be close to 2 if the appropriate eigenvectors were chosen. Note that the dimensionality of 5 is
less than that of the original vector. Proof that the information loss in this reduction is minimal will not
be discussed here, however, a detailed analysis can be found in Haykin (1994), and a formal analysis
of eigenvectors and eigenvalues is presented in Rumelhart and McClelland (1986). Principal component
analysis is a useful statistical technique in a data preprocessing ‘toolkit’ for neural networks.

References

Haykin S 1994 Neural Networks: A comprehensive foundation (New York: Macmillan College Publishing Company)
Linsker R 1988 Self-organisation in a perceptual network Computer 21 105-17
Oja E 1982 A simplified neural model as a principal component analyzer J. Math. Biol. 15 267-73
-1992 Principal components, minor components and linear neural networks Neural Networks 5 927-36
Papoulis A 1965 Probability, random variables and stochastic processes (New York: McGraw-Hill)
Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing: Explorations in the Microstructure of

Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)
Cognition (Cambridge, MA: MIT Press)

B4.4:4 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.5 A ‘case study’ review

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4,

To consolidate the ideas discussed so far, we will review a neural network application as a small case
study. The application is a face-recognition system using gray-scale camera images. The neural system ~1.6.5
was developed at Rutgers University and reported in Wilder (1993). The recognition system was required
to identify individual faces captured by a CCD camera, under controlled and constant lighting conditions.
The neural network used was the Mammone-Sankar neural tree network (NTN) (the details of this are not
important for our discussion).

The CCD camera produces a gray-scale image that is 416 x 320 pixels in size. A ‘holistic’ analysis
approach was used, whereby the facial image is processed as a whole, rather than being partitioned into
regions of high interest features (such as eyes, ears, mouth etc). The question is, given the 416 x 320
pixel image, where do we start on the task of generating data suitable for developing a neural network
solution? Clearly, we would not wish to take the ‘easy’ option and treat the image as a pixel map; this
would generate a 133, 120 component vector. This approach would quickly leave us bereft of computer
resources and sufficient hours (or patience) to complete the training task! Obviously some form of data
reduction is required.

The method selected was gray-scale projections. This involves generating a ‘gray-scale’ profile of
an image by summing the gray-scales along predetermined paths in the image (e.g. along pixel rows or
columns). If a ‘number of projections are made, along several high interest planes, then a two-dimensional
image can be represented by a one-dimensional gray-scale profile vector. The images were partitioned
into 16 horizontal and vertical planes, and the gray-scale data were integrated over these planes. These
profiles provided strong delineation of the facial features in each orientation. A schematic representation
is provided in figure B4.5.1.

I

1 - - - -
s-

0-
10

1 5 F

Figure B4.5.1. Feature extraction processing stages.

This step reduces the 133, 120 pixel image into two one-dimensional vectors, each with 16 components
describing the vertical and horizontal gray-scale profiles. One could potentially consider using these vectors

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B4.5:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

as the basis for the network training data. However, a further data transform was applied to these vectors,
mapping them into a spatial frequency domain using a unitary orthogonal transform. The authors cite
several reasons for this step:
0 unitary transforms are energy and entropy preserving;
0 they decorrelate highly correlated vectors, and;
0 the major percentage of the vector information is mapped onto the low frequency components,

allowing the high frequency components to be discarded with minimum information loss.
Three transforms were tested: the discrete cosine transform (DCT), the Karhunen-Loeve (PCA, described
in section B4.4.3) and the Hadamard. All three gave similar recognition performance. However, the
DCT was chosen due to the fact that it has an efficient and fast hardware implementation. The feature
decorrelation provided by the transform also creates some invariance to small localized changes in the
input image (caused, for example, by the subject changing a facial expression or removing spectacles).
The final step in the preprocessing phase was to discard some of the high frequency components (which
had minimal information content) of the DCT. This resulted in a final training vector with 23 feature
components.

A number of important principles for data preprocessing are demonstrated in this example. Firstly,
there is a solid grasp of the underlying characteristics of the classification problem. As a result efficient
techniques for extracting the high interest features within the images were derived. Secondly, a clear
method for data reduction with minimal information loss was applied (that is, gray-scale projections).
Thirdly, transforms were applied to the ‘reduced’ vector descriptions which enhanced the information
content and allowed further redundant information to be discarded. These transforms provided some
invariance to small changes in the images and increased the separability between individual images. These
principles should be uppermost in our thinking when developing a pattern recognition system (neural or
otherwise).

References

Wilder J 1993 Face recognition using transform codings of gray scale projections and the neural tree network Art$iciaZ
Neural Networks for Speech and Vision ed R J Mammone (London: Chapman and Hall) pp 520-36

B4.5:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.6 Data representation properties

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

Having looked at data preparation techniques in broad terms we can now focus on the details of data
representations. Anderson (1995) has suggested that there are five general rules to consider when adopting
data representations. Summarizing, these are broadly as follows:

similar events should give rise to similar representations;
things that should be separated should be given different representations (ideally separate categories
should have orthogonal representations);
if an input feature is important (in the context of the recognition task) then it should have a large
number of elements associated with it;
carrying out adequate preprocessing will reduce the computational task in the adaptive parts of the
network;
the representation should be easy to program and flexible.
Wasserman (1993) has also proposed a list of properties for data representation schemes. He suggests
there are four principal characteristics of a good representation:
Compactness
Information preservation
Decorrelation
Separability.

We shall discuss each of these properties in turn.
Compactness. Large networks require longer training times. For example, it has been shown that the
training times for the simple perceptron network increase exponentially with the number of inputs, within
the range 2" c t c M', where M is the number of inputs. Also it has been proposed that learning times
for MLPs increase at a rate proportional to the number of connections cubed. Hence, it is advantageous
to keep input vectors short.
Information preservation. The need for compact representations must be balanced against the need to
preserve information in the data vector. Consequently, we need to utilize data transforms which allow
a reduction in dimensionality without a reduction in the amount of information represented. Also,
the transform should be reversible-such that when the reduced vector is expanded all of the original
information is recovered. Data transforms of this nature are in use in the analog domain, for example
techniques such as fast Fourier transforms, which represent complex frequency modulated signals in terms
of a number of sinusoid components. Similarly, in the digital domain there are numerous encoding
techniques, such as Manchester encoding, which also reduce the dimensionality of a digital signal without
a reduction in the information content.
Decorrelation. This supports Anderson's suggestion that objects which belong to different classes should
be given different representations.
Separability. Ideally the data transforms should increase the separation between disparate classes but
enhance the grouping of similar classes. This is complementary to the requirement for decorrelation.

These lists outline the broad objectives that need to be satisfied by a data representation scheme. In
the following sections, we discuss appropriate coding schemes which meet some or all of these constraints.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 97t1 B4.6:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

References

Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)
Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

B4.6:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.7 Coding schemes

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

In the following section we consider the pragmatic issue of how to present features or variables to a neural
network using discrete or continuous values input nodes. Discrete codings typically refer to binary (0,l)
or bipolar (-1, +1) activation functions but can also include nodes with graded output levels. Continuous
valued variables can take any value in the set of real numbers. There are many alternative coding schemes,
so to structure the discussion we categorize them in terms of local or distributed schemes, and discrete
hence, continuous representations. There has been only marginal effort expended to date on comparing the
quantitative and qualitative benefits of the various representation schemes, although the work of Hancock
(1988) is one useful reference. Walters (1987) has also suggested a mathematical framework within which
the various schemes may be compared.

B4.7.1 Local versus distributed schemes

One of the first issues that needs to be resolved when considering schemes to present data to a neural
network is the choice of distributed or local representations. A local representation is one in which the
feature space is divided into a fixed number of intervals or categories, and a single node (or a cluster of
nodes) is used to represent each category. For example, a local input representation for a neural network
to classify the range of colors in the visible spectrum would use a seven node input, in which each node
is assigned one of the colors, figure B4.7.1.

Figure B4.7.1. A local representation scheme.

Each node has a unique interpretation and they are nonoverlapping. A color is represented by
activating the appropriate node. Local representations typically use binary (or bipolar) activation levels.
However, it is possible to use continuous valued nodes and introduce the concept of fuzzy or probabilistic ~ 1 . 2

representation. The representation usually operates in a one-of-n mode, but it is also possible to indicate
the presence of two or more features by turning on each of the relevant nodes simultaneously.

A distributed representation is one in which a concept or feature is represented by a pattem of activity
over a large set of units. The units are not specific to any individual feature but each unit contributes

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B4.7: 1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Figure B4.7.2. A distributed coding scheme.

(a)
one node one

I I I

Figure B4.7.3. (a) A local representation. (b) Coarse distributed representation.

to the representation of many features. For example, a distributed representation to encode the spectrum
described above could employ just three nodes to represent the primary colors (red, blue, green) and
describe the full color spectrum in terms of the combinations of the primary colors, figure B4.7.2.

Table B4.7.1. Characteristics of local representation schemes.

Advantages Disadvantages

It is a simple representation scheme which
allows direct visibility of variables.
More than one concept can be represented
at any time by activating units
simultaneously.
If continuous valued units are used then
probabilistic representations can be
implemented. schemes.

Local schemes do not scale well-a node is
required for each input feature.
A new node has to be added in order to
encode a new feature.

They are sensitive to node failures and are
consequently less robust than distributed

One example of a distributed scheme is Hinton’s coarse coding (Rumelhart and McClelland 1986).
In coarse coding each node has an overlapping receptive field, and a feature or value is represented by the
simultaneous activation of several fields. Hinton (1989) has contrasted the two schemes in the following
manner.

In figure B4.7.3(a), a local representation scheme is depicted. The state space is divided into 36
states, and a neuron is assigned to each state. Figure B4.7.3(6) shows how the state space could be
mapped onto a coarse coding scheme using neurons with wider, and overlapping, receptive fields. In
this example each neuron in the coarse coding scheme has a receptive field four times the size of that
in the local representation. The feature space is represented with only 27 nodes in the coarse coding,
but requires 36 nodes in the local representation scheme. The economy offered by coarse coding can be
improved by increasing the size of the receptive field. The accuracy of the coarse coding scheme is also

B4.7~2 Handbook ofNeuml Computation release 9711 @ 1597 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Coding schemes

Table B4.7.2. Characteristics of distributed representation schemes.

Advantages Disadvantages

Distributed schemes are efficient (in the ideal Distributed schemes are more complex than
case they require logn nodes, where n is the local schemes.
number of features).
Similar inputs give rise to similar Variables are not directly accessible but
representations. must be ‘decoded’ first.
They are robust to noise or faulty units Distributed schemes can only represent a
because the representation is spread across single variable at any one time.
many nodes.
Addition of a new concept does not require
the addition of a new unit.

improved by increasing the size of the receptive fields. This is possibly counterintuitive, but the increased
field size ensures that the overlapping field zones become increasingly more specific. Hence, accuracy is
proportional to nr where n is the number of nodes and r is the receptive field (or radius).

Hinton suggests that coarse coding is only effective when the features to be represented are relatively
sparsely distributed. If many features co-occur within a receptive field, then the patterns of activity become
ambiguous and individual features cannot be distinguished. As a rule of thumb, Hinton suggests that the
size of the receptive fields should be similar to the spacing of the feature set.

In tables B4.7.1 and B4.7.2 the properties of local and distributed coding schemes are described.

References

Hancock P 1988 Data representation in neural nets: an empirical study Proc. 1988 Connectionist Models Summer
School (Camegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Hinton G 1989 Neural networks 1st Sun Annual Lecture in Computer Science (University of Manchester, UK)
Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing: Explorations in the Microstructure of

Walters D K W 1987 Response mapping functions: classification and analysis of connectionist representations. ZEEE
Cognition (Cambridge, MA: MIT Press)

1st Znt. Con$ on Neural Networks ed M Caudill and C Butler (New York: IEEE Press)

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Compururion release 9711 B4.7:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.8 Discrete codings

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4.

In general continuous codings provide better performance than discrete. This point will not be justified
here, but a detailed investigation is reported in Hancock (1988). However, in some circumstances we
may have to use discrete codings and discrete nodes. For example, if we are using an off-the-shelf V U Z ~ 1 . 3 , ~ 1 . 4 . 3

neural network; many commercial neural network chips use discrete implementations. Hence, despite the
performance advantage of continuous codings we shall look at both discrete and continuous schemes for
representing numbers. We will start with a discussion of discrete schemes.

B4.8.1 Simple sum scheme

The most basic coding scheme for representing real values using a layer of discrete input nodes is the
simple sum scheme. This scheme represents a number, N , by setting an equivalent number of nodes to
an active state. For example, the number 5 could be represented by the binary patterns 00001 11 11 1, or
1100001 11 or 11 1 1 loo00. This scheme offers simplicity as well as some inherent fault tolerance (the loss
of an individual node does not result in large error in the value of the variable represented). For small
numeric ranges this approach is practical. However, it does not scale well; representing a large range of
numbers (e.g. 1-1000) soon becomes prohibitive.

B4.8.2 Value unit encoding

An encoding closely related to the sum scheme is value unit encoding (also known as point approximation
Gallant (1993)). In this method each node is assigned a unique interval within the input range [U, U]. A
node becomes active if the input value lies within its interval. The intervals do not overlap, so only one
unit is active during the representation of a number (i.e. it is a local representation scheme). The precision
of the representation is bounded by the interval width, which in turn is defined by the number of units
used. The scheme can be represented in the following manner:

(B4.8.1)

where n is the number of nodes, an is the output activation of unit n, and a is the interval size given by
(U - u)/n. Note that the lower limit of the range, U , is represented by an all zero representation.

As an example, to represent a range of values [0,15] using five input nodes, an interval width of 3 is
required. Representations for the values 2 and 10 would be as in figure B4.8.1.

The efficiency of the value unit encoding scheme is clearly dependent upon the degree of precision
required; higher precision requires the use of more units and a reduction in the economy of representation.
Unlike the sum scheme, this technique does not offer fault tolerance because the failure of a single node
can lead to a loss of representation.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B4.8~1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

1-3 4-6 7-9 10-12 13-15 0 0 0 0 Value unit encociingfor2

000 0 Value unit encoding for 10

Figure B4.8.1. Example of value unit encoding.

B4.8.3 Discrete thermometer

Discrete thermometer encoding is an extension to value unit encoding; the units are coded to respond over
some interval of the input range [U, U]. However, thermometer coding is a distributed scheme and a unit
is always active if the input value is equal to, or greater than, its interval threshold. To represent a value
in the range [0,15] the following representations would be used, figure B4.8.2.

x > O x > 3 x > 6 x > 9 x>12 0 0 0 0 Encodingforvalue2

0 Encoding forvalue 10

Figure B4.8.2. Example of a discrete thermometer encoding.

For an input range of [U, U] the thermometer code can be expressed in the following manner:

(B4.8.2)

where n is the number of nodes, a,, is the output activation of unit n , and a is the interval size given by
(U - u) / n + 1.

The thermometer scheme has some inherent fault tolerance, due to the fact that the failure of a node
does not result in a large error in the value represented. The maximum error introduced by the failure of
a single node is equivalent to the value of the interval width.

One of the benefits of the thermometer scheme is that variable precision can be controlled in a
simple manner: the precision can be improved by reducing the size of the intervals. The cost of this
improved resolution is the need to use more units for any given range of input values. Where economy
of representation is required (for example in hardware implementations) precision can be traded for larger
interval widths and fewer nodes. In situations where both precision and compactness are required, the
group and weight scheme may be more appropriate.

B4.8.4 Group and weight scheme

Takeda and Goodman (1986) have proposed a discrete representation which combines the economy of
binary representations with the strengths of the simple sum scheme. A number is represented as a bit
pattern, using N bits. The bit pattern is split into K groups, each of which has M bits (hence N = K M) .
The bits in each group are summed and multiplied by a base number given by M + 1. The algorithm to
transform a number using this group and weight approach is as follows:

k = l i = l

(B4.8.3)

B4.8:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Discrete codings

where X k i is bit i of group k.

M = 3, k = 2). This can be represented by 100 x 100. Expanding this using equation (B4.8.3) gives us
For example, to represent the number 5 using a 6-bit pattern, with two groups of three bits (i.e.

[4’ x (1 + 0 + 0) + 4O x (1 + 0 + O)] = 5 .

The binary and simple sum scheme are special cases for equation (B4.8.3). If M = 1 and K = N , then it
reduces to the binary case. If M = N and K = 1, then we have the simple sum scheme. One difficulty
with this scheme is that there are many possible permutations for representing any number. In the above
example (010 loo), (001 010) (001 001) (etc) are all valid bit patterns for the number 5 . This can make
generating a training set problematic.

B4.8.5 Bar coding

A simple variation on the thermometer scheme has been employed by Anderson (1995), which can be
loosely described as ‘bar coding’. This scheme incorporates elements of linear thermometer coding
with aspects of topographical map representation (see Section C2. l), and is modeled on neurobiological
mechanisms observed in the cerebral cortex regions. A continuous parameter is represented by a state
vector with two fields. The first field is a ‘symbolic’ field which provides a unique code for the value
(e.g. Anderson has used binary ASCII codes to represent characters). The second field is an analog code
represented by a ‘sliding bar’ of activity on a ‘topographical scale’. The activity bar is represented by
activating consecutive nodes in the input layer. This is described in figure B4.8.3.

Min increasing M a x
Value Value

Symbolic code

Figure B4.8.3. Two-field state vector with ’symbolic’ field and sliding analog field (after Anderson (1995)).

Vectors in this representation scheme can be concatenated together to represent multiple parameters.
A further variant on the theme is the use of an activity bar that can increase or decrease in width in order
to represent the degree of similarity between two states, figure B4.8.4.

Low Similarity between X and Y

Variable X

Min
Value

Max
Value

Variable Y

Min
Value

increasing Max
Value

High Similarity between X and Y

Variable X

Min
Value

M a
Value

Variable Y

Min
Value

Max
Value

Figure B4.8.4. The use of an activity bar of increasing or decreasing width is used to represent the degree
of similarity between two vectors (after Anderson (1995)).

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B4.83

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Anderson has used this scheme in a neural classification system to represent multiparameter continuous
valued signals from a radar. A typical input vector was composed of five signal parameters and had the
following form:

azimuth elevation frequency pulse-width pseudo-spectra
[0000111100] [OI 11000000] [00000111 IO] [OOI 11 100001 [0001010101000]

The variables (e.g. azimuth, elevation) are represented by an ‘activity bar’ consisting of three or four
active nodes. The position within the frame represents the magnitude. The ‘pseudo-spectra’ field is used
to encode category information about the type of the radar signal. There were three signal types used in
the training example: a monochromatic pulse, a phase modulated signal or a continuous frequency sweep
signal. A single active node was used to represent a monochromatic pulse, an alternating sequence (as
shown in the example) was used to represent a phase modulated frequency. A continuous block of active
nodes was used to represent a signal with a continuous frequency sweep. The patterns used are ‘caricature’
representations of the spectrum produced by Fourier analysis of each signal type. The signal codes are
positioned within the pseudo-spectra data field relative to the center frequency of the signal.

The approach used here by Anderson raises an interesting issue, namely mixing data types within any
single or output vector. In practice many data sets will be composed of diverse data types, for example,
continuous, discrete, binary, symbolic. There is no reason, other than hardware constraints, why these
diverse types cannot be represented simultaneously within a network input or output layer. For example,
to generate a feature vector to capture information for trading on a financial market, we may need to
represent each of the following: share-price, share-price-index, share-price-rising, month, company. This
could map onto a feature vector with the following data types: continuous value, continuous value, bipolar
(Y,N), discrete, symbolic. An example of a vector to represent this data may be: (4.59, 101.3, +1, 10,
11 lOO0).

B4.8.6 Nonlinear thermometer scales

The discrete thermometer and bar coding schemes we have discussed so far have used linear scales and
constant width intervals. However, these schemes can also be adapted to use nonlinear numeric scales,
to accommodate nonlinear trends in data. For example, if the data have a large range we may wish to
make the intervals logarithmic in order to enhance the regions of interest. Wasserman (1993) suggests
that Tukey’s (1977) transformational ladder lists a useful set of methods to consider for monotonically
increasing or decreasing nonlinear representations. The list is as follows:

0 exp(exp(y))
0 exP(Y>

Y4
Y 2

0 yo3

0 h (Y)
0 log(log(y))

y0.25

Monotonically increasing data sets would use the transforms in the upper half of the list, decreasing
distributions would use the transforms in the bottom of the list. Other methods such as normal and Gaussian
distributions would also clearly be applicable, These methods can also be applied in the continuous valued
variants for thermometer coding.

B4.8.7 N-tupling preprocessing

The representation schemes we have considered so far are biased towards multilayer networks derived
from the perceptron model. However, there is a class of neural network schemes which do not use nodes

ci.3, ~ 1 . 4 and weights architectures. The class of networks in question are binary associative networks such as the
ci.5.4, c1.5.8 binary associative memory (Anderson 1995), WISARD (Aleksander and Morton 1990), and the advanced

distributed associative memory (Austin 1987). These networks rely on binary input representations, and

B4.8:4 Handbook of Neural Compuration release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Discrete codinas

place quite different demands upon the form of representations that can be employed. In particular these
networks rely upon the use of sparsely distributed binary input vectors.

One representation technique that is applicable in this domain is N-tuple preprocessing (Browning
and Bledsoe 1959). N-tupling is a one-step mapping process that semi-orthogonalizes the input data by
greatly increasing the dimensionality of the input vector. The input is sampled by an arbitrary number of
N-tuple units. The function of a tuple unit is to map an N-bit binary vector onto a discrete location in
a 2N address space (i.e. a tuple unit is a one-of-N decoder), this is shown in figure B4.8.5. The N-tuple
sampling produces a high-dimensional but sparse coded binary representation of the input vector. 4 0

Tuple
Unit
I

15

6

0

U

Figure B4.8.5. A 4-tuple unit, showing the 4 to 16-bit vector expansion.

The increase in dimensionality is defined by

dim(,?)
dim(;) + 2N (B4.8.4)

where N is the dimensionality of the tuple units, and X is the input vector. From (B4.8.4) it can be seen
that N-tuple sampling increases the dimensionality of the input vector x , and reduces the density x , / x ,
of the vector. For binary networks N-tupling is an effective preprocessing method.

References

Aleksander I and Morton H 1990 An Introduction to Neural Computing (London: Chapman and Hall)
Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)
Austin J 1987 ADAM: A distributed associative memory for scene analysis 1st IEEE Int. Con$ on Neural Networks

Browning W and Bledsoe W 1959 Pattem recognition and reading by machine Proc. astem J. Comp. Con$ pp 225-232
Gallant S I 1993 Neural Network Leaning and Expert Systems (MIT Bradford Press)
Hancock P 1988 Data representation in neural nets: an empirical study Proc. 1988 Connecrionist Models Summer

School (Camegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Takeda M and Goodman J W 1986 Neural networks for computation: number representations and programming
complexity Appl. Opt. 25 3033-47

Tukey J W 1977 Exploratory data analysis (Reading, MA: Addison-Wesley)
Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

ed M Caudill and C Butler (San Diego, CA: IEEE)

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B4.815

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.9 Continuous codings

Thomas 0 Jackson

Abstract

See the abstract for Chapter 84.

Continuous codings provide more robust and flexible means for coding numbers, both real valued and
integer. There are several popular forms for continuous coding of inputs, all of which rely on the use of
units with a continuous graded output response. These schemes will now be discussed.

B4.9.1 Simple analog

The simplest continuous valued representation scheme is the use of direct analog coding, whereby the
activation level of a node is directly proportional to the input value. It would be a reasonable approximation
to suggest that this method is probably used in 60-70% of neural network applications. Neuron models
typically use an activation range of [0,1] or [-1, +1]. In order to use the analog coding scheme over
any given number range, [U, U], we simply linearly scale the representation. If the number range is offset
from zero then we can use a simple transform:

value in range (U, U) = (U - u) [a i] + U (B4.9.1)

where ai is the activation of the node.
The simple analog scheme is robust and economical. The most significant weakness in this technique

is the potential loss of precision when scaling the input over a large range. For example, given an input
range of [0, 10001, the difference in representation between two input values such as 810 and 890 can be
masked by the precision of the neuron transfer function. This effect is more pronounced at the extremes of
the range due to the nonlinearity of the sigmoid transferfunction. Some of these difficulties can be avoided ~ 3 . 2 . 4
by careful preprocessing of the data, using methods such as normalization (see section B4.4.1). Also, a ~ 4 . 4 . 1

data set that has a large dynamic range can be preprocessed using a logarithmic representation. This will
allow the large range of the data to be compressed, but will emphasize small percentage deviations which
may be of greatest relevance to the classification problem.

The effect of the nonlinearity in the sigmoid transfer function is of greater concern when the scheme is
used for representing variables at the output stage of a multilayer perceptron network. Care must be taken c1.2

to avoid using output values which place the nodes in their saturation mode (i.e. outside of the nonlinear
region of the sigmoid function); failure to do so can lead to excessively long training times. This is due
to the fact that the output error value propagated through the network during the backpropagation training
phase is proportional to the derivative of the sigmoid function. At the points of saturation the rate of change
in output with respect to input activation tends to zero. As a consequence the rate of change of weights
also tends to zero, and training rates crawl along at a prohibitively slow pace. To combat this problem, the
outputs should be offset from the limits by some scaling factor. Guyon (1991) has demonstrated that the
multilayer perceptron algorithm training performance is improved by biasing the sigmoid function such
that it is asymmetric, figure B4.9.1. He proposed the following modifications to the sigmoid function to
make it asymmetric about the origin:

2a
f (x > = - 1 + e-bx - a . (B4.9.2)

@ 1997 IOP Publishing Ltd and Oxford University Press Hudbook of Neurul Computution release 9711 B4.9:l

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Suggested values of a and b (which are scaling and bias terms) are:

a = 1.716

and
b = 0.66666.

For convenience it is useful to set the target output range for the MLP between the limits of kl. These
bias values allow an adequate offset of f0.716.

Figure B4.9.1. Offset, asymmetric, transfer function.

A typical example of this encoding technique can be found in Gorman and Sejnowski's (1988) neural
sonar recognition system. Here a neural network is trained to classify sonar returns, distinguishing between
mines and similarly shaped natural objects. The sonar signal is a power/frequency spectrum, as shown in
figure B4.9.2. The spectral envelope is sampled at sixty points by sixty analog neuron nodes. Each node
records a single value in the envelope. This example illustrates the inherent simplicity of analog codings.
However, one downside to this simplicity is that the scheme offers no fault tolerance; if a node fails then
the representation is lost.

16 node input layer

Figure B4.9.2. Sampling of the spectral envelope by the analog coding scheme.

B4.9.2 Continuous thermometer

The continuous thermometer coding is a mix of the discrete thermometer and simple analog methods. The
advantage of the continuous scheme over the discrete scheme is that higher precision can be achieved
using fewer nodes. This is due to the fact that each node can represent a continuous range of values
within its interval. It offers similar fault tolerant properties to the discrete scheme. An example is shown
in figure B4.9.3.

B4.9.3 Interpolation coding

Interpolation coding, proposed by Ballard (1987), is a multiunit extension of simple analog coding. In the
simplest case, a single analog unit is replaced by two units, with the output activation functions mapped in

B4.9:2 Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Continuous codings

x > O x 2 3 x > 6 x > 9 x > 1 2 0 0 0 OValueunitenmdingforZ

0 Value unit encoding for 1 o

Figure B4.9.3. Continuous thermometer scheme.

opposition to each other. The outputs of the units always sum to a total of one, but one unit’s activation
decreases linearly with the increase in the other. The scheme can also be used in thermometer type codings,
with pairs of units being assigned to each interval. For example, using a thermometer range of 0-12, the
output for the value 2, and the output for the value 10 can be encoded as shown in figure B4.9.4.

00 00 00 Encoding for value 2

cooooo Encoding for value 10

Figure B4.9.4. Two-unit interpolation encoding.

This method can also be extended across multiple units. This scheme has been found to have good

The output is decoded using the following algorithm.

Determine the value of the node with maximum response, 01 and the value of the highest neighbor,
02. The peak responses (or center response), p, for the selected nodes are then weighted by the actual
response, and the output value is given by

resilience to noise (Hancock 1988).

0

(B4.9.3)

B4.9.4 Proportional coarse coding

In section B4.7.1 we described how a coarse distributed scheme can represent a feature space using the 84.7.1

simultaneous activation of many discrete units. Coarse coding can also be implemented with nonlinear
activation functions. The contribution to the output value from each node is not linear but is proportional,
the relative contributions being controlled by the activation function. Saund (1986) has developed a scheme
which uses the derivative of the sigmoid function as the proportionality function

e-x
(1 + e-x)2’

(B4.9.4)

Examples of the derivative are shown in figure B4.9.5. The width of the function can be controlled by

f’(x> =

a gain parameter. The width of the function controls the degree of distribution across the nodes (i.e. the
coarseness of the representation). Saund calls this a smearing function.

The layer of units is configured in the same manner as a thermometer coding: each unit is assigned
a response interval. However, the scheme differs from thermometer coding in that intervals overlap. To
represent a variable the smearing function is centered at the value of the variable, x , and the units within
the range of the function are activated to the level determined by the smearing function.

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 B4.9:3

Copyright © 1997 IOP Publishing Ltd

Data h u t and OutDut Remesentations

. * . * * . . .
--.

Figure 134.9.5. Proportionality functions based on the derivative of the sigmoid function.

L

--I - - . '.
1 1 1 1 1 1 '

To determine the value of a number represented by a pattern of activity, the smearing function is 'slid'
across the outputs until a best-fit is found. The best-fit is determined by the placement which minimizes
the least square difference

(B4.9.5)

where a is the activation value of the node at interval i and sx-i is the value of the smearing function at
point x within the interval. The placement of the function at the best-fit point indicates the value of the
variable. An example is shown in figure B4.9.6. Saund reports that variable precision of better than 2%
can be achieved using eight units.

Figure 134.9.6. The smearing function determines the point of maximum response (after Saund (1986)).

B4.9~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Continuous codings

B4.9.5 Computational complexity of distributed encoding schemes

The advantage of distributed schemes is their compactness and robustness to damage or noise. The penalty
paid for this compactness is complexity. For example, in Hancock (1988) a proportional coarse coding
scheme is described which is based upon a Gaussian distribution:

output = exp(-OS(A/a)) (B4.9.6)

where A is the distance of the input from the node’s center value, and cr is the standard deviation of the
Gaussian curve.

Hancock describes a one-pass algorithm which is used to ‘decode’ the representation. The example
is based upon a four-node representation. Each of the units, a144 has a value at which it gives peak
response, p1-p4. The purpose of the algorithm is to establish the distance of the actual response from
the peak response, and subsequently determine the value represented by the nodes. The algorithm is as
follows:

find the unit, a l , with the highest output, 01;

find the neighboring unit a2 with the next highest output, 02;
calculate the offset A2 from the peak response p2, using

A = [-21n(02)11’2 (IP2 - ml>/a;

calculate an initial estimate x2 of the output value:

form an estimate xi for each of the other units, i:

calculate the output value by weighting the individual estimates according to the actual outputs of
each unit:

X l O l + x202 + x303 + x404
01 + 0 2 + 0 3 + 0 4

output =

This example highlights the computational overhead that is associated with some of the more complex
distributed encoding schemes. It is worth highlighting this issue because this decoding must be performed
as a postprocessing activity, and hence requires additional computer resource. In software implementations
of neural systems this may not present a problem; however, it is more problematic (or costly) in systems
that use dedicated hardware. In some circumstances the computational overhead associated with these
coding methods may be too high, and simpler schemes may prove more pragmatic.

References

Ballard D H 1987 Interpolation coding: a representation for numbers in neural models Bioi. Cybem. 57 389-402
Gorman R P and Sejnowski T J 1988 Analysis of hidden units in a layered network trained to classify sonar targets

Guyon I P 1991 Application of neural networks to character recognition Int. J. Patt. Recog. Art$ Intell. 5 353-82
Hancock P 1988 Data representation in neural nets: an empirical study Proc. I988 Connectionist Models Summer

School (Camegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Saund E 1986 Abstraction and representation of continuous variables in connectionist networks Proc. A.A.A.1-86: Fgth
National Conference on Artificial Intelligence (Philadelphia, PA: Los Altos, Kaufmann) 63843

Neural Networks 1 75-89

@ 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 B4.95

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.10 Complex representation issues

Thomas 0 Jackson

Abstract

See the abstract for Chapter B4,

B4.10.1 Introduction

In our review of data representations we have so far restricted the discussion to the representation of
real-valued variables. However, in some application domains we may wish to represent more complex
variables and concepts, such as time or symbolic information. There are many diverse methods being
developed to facilitate the representation of these complex parameters, but an in-depth review of these
methods is outside the scope of this chapter. However, we shall highlight a number of techniques which
are broadly representative of developments in this area. Firstly, we shall consider how to represent time
in neural networks. Secondly, we shall review the work of Pollack and discuss symbolic representation.
It will become apparent that the network topology and the form of data representation become highly
interdependent in these domains.

B4.10.2

The question of representing time in neural systems raises many interesting issues. We shall discuss
three fundamental approaches to the problem, and illustrate them with examples of their use in typical
applications. These approaches broadly split into the following methods:
0

0

0

Representing time in neural systems

representing time by transforming it into a spatial domain;
making the representation of data to a network time-dependent through the use of delays or filters in
time delay networks;
making a network time-dependent by the use of recursion.

B4.10.2.1

Many signal processing domains produce data that have important temporal properties, for example, in ~ 1 . 8 , G3.3
speech processing applications. In general, neural network topologies are configured to handle static data, ~ 1 . 7 , ~ 1 . 4

and are not able to process time-varying data. One method to resolve this problem is to transform time
varying signals into a spatial domain. The simplest way to do this is to sample a time-varying signal,
using n samples, and represent it as a time ordered series of measurements in a static feature vector:
[t l , t 2 , . . . , t ,] . Alternatively, the signal can be sampled and transformed into a spatial domain using
mathematical techniques such as fast Fourier transforms (FFTs) or spectrograms.

Examples of this approach can be seen in many neural network applications, for example in Kohonen’s
phonetic typewriter, and in the NETtalk system, both of which are speech processing systems.

Kohonen (1988) has developed a neural based system for real-time speech-to-text translation (for
phonetic languages). The key to Kohonen’s system is the transformation of a time-varying speech signal
into a spatial representation using FFTs. The speech signal is sampled at 9.83 millisecond intervals. This is
achieved using a D/A converter, the output of which is analyzed using a 256 point fast Fourier transform.
The Fourier transform extracts 15 spectral components, which, after normalization, form the features of the

Transforming between time and spatial domains

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ojNeural Computaation release 9711 B4.10: 1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

at time t n

Figure B4.10.1. Sampling a time-varying signal, into n discrete measurements.

input vector. This is a static vector, representing the spatial relationships between the instantaneous values
of 15 frequency components. The sampling interval of 9.83 milliseconds is much shorter than the duration
of a typical speech phoneme (which vary in duration from 40 to 400 milliseconds) and as a consequence
the classification of a phoneme is made on the basis of several consecutive samples (typically seven). A
rule-based system is used to analyze the transitions between the samples and subsequently classify the
speech phonemes. Hence, the neural network is used to identify and classify the static, spectral signals,
but rule-based postprocessing is used to capture the temporal properties.

A similar approach can be seen in the NETtalk system, although in this application the spatial
relationships in the data are of more specific concern than the temporal properties. ”he NETtalk system
was developed by Sejnowski and Rosenberg (1987). It is a neural system which produces synthesized
speech from written English text. The neural network generates a string of phonemes from a string of input
text; the phonemes are used as the input to a traditional speech synthesis system. Pronouncing English
words from written text is a nontrivial task because the rules of English pronunciation are idiosyncratic and
the sound of an individual character is dependent upon the context provided by the surrounding characters
contained in a word. As a consequence the neural network uses a ‘sliding’ window that is able to ‘view’
characters behind and ahead of any individual input character. The NETtalk system uses a seven character
window, which slides over a string of input text. This is described in figure B4.10.2. Each of the characters
within the frame is fed to one of seven groups within the input layer. Each input cluster is composed of 29
input units. The clusters use local representation; a character is represented by activating one of the nodes
(26 alphabet characters plus three special characters including a ‘space’ character). Using this approach,
and a supervised training algorithm, the network is able to learn the phonetic translation of each central
character input, whilst accounting for the context of the surrounding characters. Although this application
is not strictly a problem with temporal properties, it can be appreciated that this type of approach could
be usefully applied to time-varying signals.

Central
character

A STRl T TEXT -
7 letter window
‘slides’ over the text

Figure B4.10.2. The text ‘window’ used in the NETtalk system.

These two examples demonstrate how it is possible, using appropriate preprocessing and
postprocessing, to generate data representations in time-dependent domains that are devoid of explicit
temporal properties, and which make use of spatial relationships that standard neural network topologies
can readily process.

B4.10:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Complex representation issues

84.10.2.2 Time-delay neural networks

In the preceding section we described methods for representing time-varying signals using spatial
representations. However, in some applications we are not concerned with analyzing a signal at a specific
point in time, but in predicting the state of a signal at a future point in time. In these circumstances,
we need to encapsulate the notion of time dependency within the neural network solution. This can
be achieved using time delays or filters to control the effect, with time, of the network inputs on the
internal representations. One network incorporating this approach is the time-delay neural network (TDNN)
developed by Lang and Hinton (1988) for phoneme classification.

The operation of the TDNN relies on two key modifications to the standard multilayer network
topology; the introduction of time delays on inter-layer connections and duplication of the internal layers
of the network. The hidden layer and the output layer are replicated (in Lang and Hinton’s example there
are ten duplicate copies of the hidden layer and five duplicate copies of the output layer) with identical
sets of weights and nodes. The input vector is time sliced with a moving window (in a similar fashion to
the NETtalk system), and a sampled section, at time tn, is presented to one copy of the hidden layer via
time delays of t,, tn+l, tn+2, and so on. In a similar manner, the activity represented at the hidden layer
is passed to one copy of the output layer via five time delays. At time ?,,+I, the input is moved to the
next time slice, and this is presented to the next copy of the hidden layer and the next copy of the output
layer. Using this approach the variation of the input signal over time has a direct impact on the internal
representations formed by the network during training. The detailed mechanics of the network will not be
discussed here, but are presented in Section C1.2. For the purposes of our discussion we wish to highlight
the fact that there are no specific constraints on the data representation to capture the time series. The
temporal properties are captured, via the time delays, in the network topology itself.

B4.10.2.3 Time sensitivity through recursion

The two methods described above both suffer from the same limitation that all temporal sequences must
be of the same (predetermined) length or sampled on a fixed time base. This may be acceptable in some
applications but clearly not in all. Elman (1990) has addressed this issue by developing networks that
incorporate the concept of ‘memory’ through the use of recursion. Memory allows time to be represented
in a network by its impact upon the current input state. In figure B4.10.3 a schematic diagram is shown
which describes Elman’s feedback mechanisms that create a short-term memory module to modify the
internal network state parameters on a time-dependent basis.

output

A A A

Context Units

Input

Figure B4.10.3. A simple recurrent network used by Elman to represent time. (Note the feedback
connections from the hidden layer to the context layer.) Not all connections are shown (after Elman
1990).

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B4.10:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

The network shown in the diagram has a memory component; the context units. The context units
have a one-to-one mapping with the hidden layer, so that any activation at the hidden layer is directly
mirrored at the context layer. The context units also have feedforward connections to the hidden layer;
each context unit activates all of the hidden units. At time t , the first input is presented to the network.
The activation at the hidden layer is replicated at the hidden layer via the feedback connections. At time
t + 1 the next input is presented and propagated through the network. However, both the input and the
context units activate the hidden units. Consequently, the total input to the hidden layer is a function
of the present input plus the previous input activation at time t . The context units therefore provide the
network with a dynamic ‘memory’ which is time sensitive.

To demonstrate the principles involved we shall discuss Elman’s use of the network for learning
sentence structure. In the test application, a set of sentences was randomly generated, using a lexical
dictionary of 29 items (with 13 classes of noun and verb) containing 10000 two- and three-word sentences.
Each lexical item was represented by a randomly assigned sparse coded vector (one-bit set in 31, so that
each vector was orthogonal to the others). The training process consisted in presenting a total of 27534
31-bit binary vectors to the network, which were formed from the stream of the 10000 sentences. The
training was supervised, such that the first input word-vector was trained to map onto the next word in
the sentence sequence. For example, the sentence ‘man eats food’ meant that the first input would be the
binary representation for ‘man’. The associated target vector would be the vector for ‘eats’. Similarly, the
next input would be ‘eats’ which would be associated with ‘food’ as the output target.

Elman discovered that the network had many highly interesting emergent properties when trained
on this test set. The prediction task is nondeterministic, sentence sequences cannot be learned ‘rote’
fashion. However, it was found that the network functioned in a predictive manner and suggested probable
conclusions for incomplete sentence inputs.

B4.10.3 Representation of symbolic information

One area of neural computing where the issue of data representation acquires a very different perspective
is the domain of cognitive science or artificial intelligence. A wide range of neural networks are being
developed which form the basis for cognitive models. The issues in this domain are far reaching and
the range of methods that have been developed are highly diverse. However, to draw attention to some
of the issues in this novel area of neural computing we shall highlight the work of Jordan Pollack who
has developed neural network models for high-level symbolic data representation. This work focuses on
the issues of recursion, and the need for flexible data structures when representing symbolic information.
The primary reason for discussing this work rather than any of the other major efforts in this area is that
Pollack’s approach places emphasis on the data representation issues. By way of introduction we shall
first define the concept of a ‘symbol’ and ‘symbolic reasoning’.

The most widely accepted model for cognitive reasoning is currently the ‘symbolic processing’
paradigm. This paradigm hypothesizes that reasoning ability is derived from our mental capacity to
manipulate symbols and structures of symbols. A symbol is a token which represents an object or a
concept. The formal definition of the symbolic paradigm has been credited to Newel1 and Simon (1976)
and reads as follows: ‘a physical symbol system consists of a set of entities, called symbols, which are
physical patterns that can occur as components of another type of entity called an expression (or symbol
structure)’. One important issue to highlight in this definition is that the symbol representations must
display compositionaliry, that is, that they can be combined, systematically, to form new or higher-level
concepts.

The challenge facing the neural computing community is to derive neural architectures that are capable
of manipulating symbols and symbol structures, whilst adhering to the formalisms defined by the symbol
paradigm. Alternatively, the challenge is to propose new, viable models to replace the symbol model of
reasoning. To date the bulk of the effort in neural network cognitive research has been focused towards
symbolic models. However, there are also a number of researchers calling for a paradigm shift and
developing models based at the ‘sub-symbolic’ level (e.g. Hinton 1991, Smolensky 1988). As we have
already stated, these issues are largely outside the scope of our current discussions, but we shall consider
some of the data structure issues raised in Pollack’s work.

Pollack (1 99 1) has argued that a major failing of connectionism in addressing high-level cognition is
the inadequacy of its representations, especially in addressing the problem of how to represent variable
length data structures (as typified by trees and lists). He has proposed a neural network solution to this

B4.10~4 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Complex representation issues

problem which draws extensively on the properties of reduced descriptions and recursion. A reduced
description is a compact, symbol representation for a larger concept or object. In principle, reduced
descriptions support the notion of compositionality. The system is called a recursive autoassociative
memory (RAAM). He suggests that the RAAM demonstrates that neural systems can learn rules for
compositionality if they use appropriate internal representations. The RAAM principle is best described
by way of a diagram, see figure B4.10.4.

2n output neurons

I Left’ Terminal 1 Right’ Terminal I

neurons

Compressor Stage

A 0 c D
I LeftTerminal I RighlTerminal I

2n input neurons

Figure B4.10.4. RAAM network, with typical temary tree structure which the network can encode.

The RAAM is a two-stage encoding network with a compressor stage and a reconstructor stage.
The input layer to hidden layer is the compressor stage-this combines two n-bit inputs (i.e. two nodes
in the tree) into a single n-bit vector. The hidden layer to output layer is the reconstructor, which maps
the compressed vector back into its two constituent parts. For example, considering the tree structure in
figure B4.10.4, the compressor stage of the network maps the terminals A and B onto a compressed vector
representation for terminal X . Similarly C and D are mapped onto a representation for Y . Applying
this mechanism recursively X and Y are reapplied to the input layer and are mapped onto a reduced
vector representation for the node Z. The reconstructor layer learns the reciprocal mappings, hence 2
would be mapped back onto nodes X and Y , and X back to A and B etc. The representation for 2 can
consequently be considered a reduced representation for the complete tree. These mappings are trained
using standard autoassociative backpropagation learning algorithms. A tree of any depth can be represented
by this recursive approach. To support the recursion the network uses an external stack (not shown in
figure B4.10.4) to store intermediary representations.

The RAAM system can be also used to represent sequences, for example, (X + Y + 2) by
exploiting the fact that they map onto left-branching binary trees, that is, (((NIL X) Y) 2). Pollack
suggests that, using these principles, the RAAM can represent complex syntactic and semantic trees (such
as required in natural language processing) and represent propositions of the type ‘Pat loved John’, ‘Pat
knew John loved Mary’. Given that the propositional sentences can be parsed into ternary trees of type
(action agent object), the network can represent a proposition of arbitrary depth. For example, the sentence
‘Pat knew John loved Mary’ can be broken into the triple sequence (KNEW PAT (LOVED JOHN MARY)).
Pollack demonstrated the properties of the network using a training set of 13 propositional sentences, with
recursion varying from 1 to 4 levels.

The constituent parts of the propositions were encoded using binary codings (e.g. the human agent
set-John, Man, Mary, Pat-was encoded using the binary patterns 100, 101, 110, 111 respectively).
Once trained, the system was shown to perform productive generalization. For example, given the triple
(LOVED X Y) the network is able to represent all sixteen possible instantiations of the triple even though
only four were present in the training set. Pollack argues that this demonstrates that the RAAM is not
simply memorizing the training set but is learning the high-level principles of compositionality.

Although we do not have time to explore the implications of the network performance in the cognitive
domain, it highlights an important issue with respect to data representation. The RAAM network provides
mechanisms for representing arbitrary length data structures within a fixed topology network. These
types of mechanisms are a prerequisite if neural networks are to make any future impact in the domain of
symbolic processing. The following references are recommended to readers who may wish to pursue this
topic further: Shastri and Ajjanggade (1989), Hinton (1991), Smolensky (1988).

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B4.10:5

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

The discussion of the time-dependent networks and Pollack’s work demonstrate that in these complex
domains the data representations do not differ greatly from the techniques we have discussed in the context
of neural networks for pattern recognition. However, it is evident that the structure of the networks play
a much more significant role than the input or output representations in determining how the data are
interpreted.

References

Elman J L 1990 Finding structure in time Cognitive Sci. 14 179-21 1
Hinton G E 1991 Connectionist symbol processing (Cambridge, MA: MITElsevier)
Kohonen T 1988 The Neural Phonetic Spewriter IEEE Computer 21 2 5 4 0
Lang K J and Hinton G E 1988 The development of time-delay neural network architecture for speech recognition

Newel1 A and Simon H A 1976 Computer science as empirical enquiry: symbols and search Commun. ACM 19
Pollack J B 1991 Recursive distributed representations Connectionist Symbol Processing (Cambridge, MA:

Sejnowski T J and Rosenberg C R 1987 Parallel networks that learn to pronounce English text Complex Systems 5

Shastri L and Ajjanggade V 1989 A connectionist system for rule based reasoning with multi-place predicates and

Smolensky P 1988 Connectionism, constituency and the language of thought Fodor and his Critics ed B L G Rey

Technical Report CMU-CS-88-152 Carnegie-Mellon University, Pittsburgh, PA

MITElsevier) ed G E Hinton pp 77-106

145-68

variables Technical report MS-CIS-89-06 University of Pennsylvania

(Oxford: Blackwell)

~~~~ 

B4.10:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Data Input and Output Representations 

B4.11 Conclusions 

Thomas 0 Jackson 

Abstract 

See the abstract f o r  Chapter  B4. 

The successful design and implementation of a pattern classification system hinges on one central 
principle-‘know your data’. This cannot be overstated. A thorough understanding of the characteristics 
of the data-its properties, trends, biases and distribution-is a prerequisite to generating training data for 
neural networks. Poor training data will confound even the most sophisticated neural network training 
algorithm. 

In this chapter we have drawn attention to this issue, and provided a broad overview of techniques 
for data preparation and variable representation that will contribute to developing efficient neural network 
classification systems. Neural networks are being applied extensively in many diverse application domains. 
It would be a mammoth task to try to provide a set of definitive techniques that would cater for all cases, 
and clearly we have not taken this approach. Instead, we have emphasized the approach to data preparation 
and analysis which should be adopted, stressing that traditional data analysis techniques, appropriate to 
the domain in question, should be exploited to the full. Attention to detail in data preparation will reap 
major benefits in the ease with which a neural solution to a classification task will be found. 

We will close with a quote from Saund (1986): 
‘A key theme in artificial intelligence is to discover good representations for the problem at hand. A 

good representation makes explicit information useful to the computation, it strips away obscuring clutter, 
it reduces information to its essentials.’ 

References 

Saund E 1986 Abstraction and representation of continuous variables in connectionist networks Proc. A.A.A.I-86: Fifth 
National Conference on Art8cial Intelligence (Philadelphia, PA: Los Altos, Kaufmann) pp 63843 

Further reading 

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 and 2 (Cambridge, MA: MIT 
Press) 

The PDP volumes provide broad coverage of representation issues. The appendix of volume 1 also contains 
useful tutorial material on linear algebra. 

Anderson J A 1995 An Introduction to Neural Networks (Cambridge, MA: MIT Press) 
Anderson’s book provides a very thorough and interesting discussion of data representation, taking on board 
developments within the field of neuroscience. 

Wasserman P D 1993 Advanced Methods in Neural Computing (New York: Van Nostrand Reinhold) 

Wasserman has a lengthy section on ‘neural engineering’ in this book which covers many issues relating to data 
representation and the application of neural computing methods. 
Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: MacMillan) 
This book provides a very mathematical treatise of neural computing methods, including discussions of theorems 
for pattem separability. Not for the mathematically faint-hearted. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Compufarion release 9711 B4.1 1 :1 

Copyright © 1997 IOP Publishing Ltd



B5 

Network Analysis Techniques 

Contents 

B5 NETWORK ANALYSIS TECHNIQUES 
B5.1 Introduction 

B5.2 

B5.3 Designing analyzable networks 

Russell Beale 
Iterative inversion of neural networks and its applications 
Alexander Linden 

Stephen P Luttrell 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

B5.1 Introduction 

Russell Beale 

One of the oft-quoted advantages of neural systems is that they can be used as a black box, able to learn a 
task without the user having a detailed understanding of the internal processes. While this is undoubtedly 
true, it is also the case that many errors and cases of poor performance are created by users who use 
inappropriate networks, architectures or learning paradigms for their problems, and that having a grasp of 
what the network is trying to do and how it is going about it will inevitably result in the more appropriate 
and effective use of neural systems. 

It is natural to want to extend this understanding to a deeper level, and to ask what exactly is 
happening inside the network-it is often not sufficient to know that a network appears to be doing 
something; we want to know how and why it is doing it. Analyzing networks in order to understand their 
internal dynamics is not an easy task, however. In general, networks learn a complex nonlinear mapping 
between inputs and outputs, parametrized by the weights, and sometimes the architecture, of the network. 
This mapping may be distributed over the whole of the network, and it can be difficult or impossible to 
disentangle the different contributions that make up the overall picture. Any connectist system that has 
learned a representation is unlikely to have developed a highly localized one in which individual nodes 
represent specific, atomic concepts, though these do occur in some systems that are specifically designed 
for a more symbolic approach. Equally, truly distributed representations, in which the contribution of any 
one element of the network only marginally affects the overall output, are hard to point to. There are 
visualization tools that allow, for example, the weight values to be pictured, but these do not give the 
whole story, and the representation of often huge numbers of weights in a two- or three-dimensional space 
is restrictive at best, useless at worst. 

The two sections that follow present different approaches to understanding the behavior of networks 
and their internal representations. Stephen Luttrell discusses the creation of analyzable networks, in which 
the network is constructed in such a manner that it is immediately amenable to analysis. While this 
has the advantage of being comprehensible in terms of its behavior, it results in a network structure that 
is unfamiliar to most neural network researchers. Alexander Linden presents a different angle on the 
problem. He discusses the use of iterative inversion techniques on previously trained networks, which 
helps in finding, for example, false-positive and false-negative cases, and answering ‘what if questions. 
This approach, in comparison to Luttrell’s, can be applied to any pretrained network. 

It is likely that future supplements to this handbook will contain descriptions of other approaches to 
network analysis, and that ongoing research will bring this aspect of neural computation to full maturity. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 9111 B5.1: 1 

Copyright © 1997 IOP Publishing Ltd



Network Analvsis Techniaues 

B5.2 Iterative inversion of neural networks and its 
applications 

Alexander Linden 

Abstract 

In this section we survey the iterative inversion of neural networks and its applications, 
and we discuss its implementation using gradient descent optimization. Inversion is 
useful for analyzing already trained neural networks, for example, finding false positive 
and false negative cases and answering related ‘what-if questions. Another group of 
applications addresses the reformulation of knowledge stored in neural networks, for 
example, compiling transition knowledge into control knowledge (model-based predictive 
control). Among the applications that will be discussed are inverse kinematics, active 
learning and reinforcement learning. At the end of this section, the more general case 
of constrained solution spaces is discussed. 

B5.2.1 Introduction 

Many problems can be formulated as inverse problems, where events or inputs have to be determined, 
that cause desired or observed effects in some given system or environment. The corresponding forward 
formulation models the causal direction, that is, it takes causal factors as input and predicts the outcome 
due to the system’s reaction. Examples of inverse problems are briefly presented here, jointly with their 
forward formulation. 

0 For a robot manipulator, the forward model maps its joint angle configuration to the coordinates of 
the end-effector. The inverse kinematics takes a specified desired position of the end-effector as input 
and determines the configurations that cause it. Usually there will be infinitely many configurations 
in the solution space (DeMers 1996) for a robot manipulator with excess degrees of freedom. 
In process control, the forward model predicts the next state of some dynamic system, based on its 
current state and the control signals applied to it. The inverse dynamics determines the control signals 
that would cause a given desired state given the current state (Jordan and Rumelhart 1992). 
In remote sensing (e.g. medical imaging, astronomy, geophysical sensing with satellites) the forward 
model maps known or speculated characteristics of objects (e.g. geo- and biophysical parameters like 
nature of soil and vegetation) to sensed measurements (e.g. electromagnetic or acoustic waves). The 
inverse task is to infer the characteristics of the remote objects given their measurements (Davis et 
a1 1995)-see also Inverse Problems 10 1994 for more applications. 

It will be assumed, unless otherwise stated, that the problems considered here are such that causes and 
effects can be adequately described by vectors of physical measurements. Under this assumption, forward 
models are usually many-to-one functions, since many causes may have the same effects. The inverse 
does only exist as a set-valued function and learning this with neural networks will cause problems. It 
can be shown (Bishop 1995) that if specific inputs of a neural network are trained onto many targets, the 
output will converge to their weighted average, which is usually not an inverse solution. 

To avoid this problem, the methodology discussed here will consider inversion as an optimization 
problem. Inverse solutions will be calculated iteratively based on a given forward model (Williams 1986). 

0 

0 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9111 B5.2:l 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

B5.2.2 Introduction to inversion as an optimization problem 

Assume a feedforward neural network has already been trained (e.g. by supervised learning) to implement 
a forward mapping for a given problem. In other words, it implements a differentiable function f, that 
maps real-valued inputs z = (XI, . . . , X L )  to real-valued outputs y = (y1, . . . , yw) .  Since only the 

DI differentiability of f is assumed, the method described here applies to statistical regression and fuzzy 
systems as well. 

The problem of inversion can now be stated as follows: for which input vectors z does f(x) 
approximate a desired y*? This question can be translated into an optimization problem: find the x 
that minimize 

E = I I Y *  - f(z>l12. (B5.2.1) 

Since f is differentiable, gradient optimization is applicable, whereby the input components of z are 
considered as free parameters, while the weights of the neural network are held constant. The procedure 
requires the calculation of the partial derivatives Si for each of the input components X I ,  . . . , X L :  

a E  ai = - 
axi  

(B5.2.2) 

(B5.2.3) 

The procedure of computing the 6 i  is very similar to the error backpropagation procedure for training the 
weights of a neural network, The only difference is that error signals are now also computed for the input 
units and that the partial derivatives for the weights a E / a w i j  need not be computed, since the weights are 
held constant. 

Starting with an initial point d o )  in input space, the gradient-descent step rule for the nth iteration is 

I (B5.2.4) xp) = p-1) - @j"-" 

where q > 0 is the step-width. Its iteration over n yields a sequence of inputs d ) ,  d2), . . . , x @ ) ,  

which subsequently minimizes IIy* - f (dn))  112. As is common for gradient-descent techniques, this 
procedure can get trapped into local minima, that is, if Ily* - f(dfl))1I2 converges to some c >> 0. 

~ 2 . 1 , ~ 1 . 4 . 2  In these cases more global techniques like genetic algorithms or simulated annealing could be used. 
Furthermore, gradient descent techniques are sometimes a little slow for real-time applications. Faster 
gradient optimization methods have already been developed for the purpose of training the weights and 
are hence applicable to iterative inversion as well. The techniques discussed here are also applicable to 

~ 2 . 3 ,  c1.2.s other types of structures, for example, recurrent neural networks, time-delay neural networks (Thrun and 
Linden 1990) and Hidden Markov Models. The key idea is to transform these structures into feedforward 
neural network representation (unfolding from time to space). Therefore, without loss of generality, the 
following discussion can be focused on feedforward neural networks. 

B5.2.3 An example: iterative inversion for network analysis 

Although classificationt is usually treated as a forward problem, we consider it here as a first demonstration 
on iterative inversion. Furthermore, it will be illustrated how it can be applied to the analysis of already 
trained neural networks. The domain of numerical character recognition was chosen for demonstration 
purposes only. 

Consider a feedforward neural network (Linden and Kindermann 1989) that has already been trained 
~ 1 . 3  on classifying handwritten numeralst. Inputs to the network are 8 x 1 1  gray-level pixel maps and its ten 

output units specify the corresponding categories. In figure B5.2.1 the task is to find an input, without 
looking at the training set, that gets classified as a '3 ' .  Consequently, the output of the network must 
come close to the vector (0, 0, 0, 1 ,  O,O, 0,  0,  0,O). The process starts in figure B5.2.l(a) with the null 
matrix (hence all pixels are white). A modification to equation (B5.2.4) ensures that input activations do 
not leave the interval [0, 1 1 :  

t The task of classification is to assign categorical symbols to given patterns. 

should be noted however, that the training set contained 49 different versions of the ten numerals. 
The details will be ignored, because iterative inversion is independent of the structure and the training of the neural network. It 

B 5 . 2 2  Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Iterative inversion of neural networks 

0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7 8 9  

(a) 

0 1 2 3 4 5 6 7 8 9  

-+ + 
(b) (c 

0 1 2 3 4 5 6 7 8 9  

+ 

I123456789 

Figure B5.2.1. Example of iterative inversion in a numerical character recognition domain. The snapshots 
from initial input (a )  to the final result (f) have ten iterations in between. White pixels indicate input 
activations near zero and black indicates a one. 

x?’ = min[ 1 ,  max[o, XY-” + &+”]] . (B5.2.5) 

After a number of iterations, the classification of the input pattern in figure B5.2.1 comes gradually closer 
to a ‘3’. Inverse solutions as in figure B5.2.l(f) are quite sensitive to the particular choice of initial starting 
points. Often, domain knowledge can help in choosing good starting points, especially if an expectation 
about the solution already exists. If no good domain knowledge exists, a neutral or a selection of parallel 
initial starting points (possibly combined with genetic algorithms) can be chosen. 

Sometimes it is required to integrate additional constraints to restrict the number of possible inverse 
solutions, which is is also called regularization. For example, minimizing the extended objective function 

will favor inverse solutions z that are in the neighborhood of z* (Kindermann and Linden 1992). The 
weighting factor h > 0 sets a priority between the different objectives. A choice of A. < 0 favors solutions 
that are distant from z*. 

This method can also be used to improve the training technique considerably. It is possible, for 
example, to detect false positive input patterns which are very close to the null matrix, but still get 
classified as a ‘7’ (figure B5.2.2(a)). Augmenting the training set with this and similar derived input 
patterns and training with the correcting output (Hwang et a1 1990) leads to improved behavior. For 
example, figure B5.2.2(b) is derived using the same conditions as for figure B5.2.2(a), but is less of a 
false positive. This technique of augmenting a training set can be considered as a kind of knowledge 
acquisition or selective querying: a human is put into the loop in order to correct the outputs of the neural 
network by analyzing its input/output behavior. 

The same principle can also be applied to spot false negatives. Figure B5.2.2(c) shows an input 
pattern not classified as a ‘7’ but still close to a typical ‘7’ (z* has been set to a ‘7’ used during training). 
This example shows that having access to the classifier can be abused for camouflaging fraud, such that 
it is not detected. Iterative inversion provides a way to proactively detect possible fraudulent situations. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B5.2:3 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

0123456789  0123456789 0123456789 0123456789 
rIumIm3 ElI"n c u u u u n  c"II 

Figure B5.2.2. Interesting input/output relationships can be found with the iterative inversion technique: 
( a )  depicts an input pattem that is as 'white' as possible; (b) same as (a ) ,  but with an improved classification 
network; (c) depicts an input pattern that looks like a '7' but does explicitly not get classified as such; (d )  
depicts an input pattern that is 'white' in its upper half, but still gets classified as a $1'. 

It is also useful, as will be pointed out in the next section, to hold specific parts of the input vector 
constant. In figure B5.2.2(d), only the lower half of the pixel map was allowed to vary while searching 
for an input pattem that would be classified as a '1'. 

B5.2.4 Applications of knowledge reformulation by inverting forward models 

B5.2.4.1 From transition knowledge to control knowledge 

Control problems have a natural inverse formulation: given a current state description 2, of a process and 
a description of a desired state d,  what control input U, should be applied to the dynamic process to yield 
a given desired state? The corresponding forward formulation is a mapping g which predicts the next state 
&+I given a current state zt and a current control U, as input: 

The following assumes that a forward model g has been identifiedt for a given process. Iterative 
inversion can be now applied to calculate a control vector B, in order to get the dynamic process closer 
to a desired state d = g ( z t ,  U t )  given a current state zt.  Inputs to g which represent 2, are held constant 
during the gradient descent optimization. 

This procedure actually implements a technique called model-based predictive control (Bryson and Ho 
1975) with lookahead 1. The generalization to k-step lookahead can be achieved by k-times concatenating 
g (see the left part of figure B5.2.3 for an example of k = 3). In the general case, the objective function 
is 

E = Ild - g ( & + k - I ,  G + k - l ) l l  2 (B5.2.8) 

where &+; is the result of repeatedly applying g to &+i-1 and &,+;-I until 2, and iit are reached. The 
control signal vectors {G,+i}~~~ are considered the free variables of the optimization. Only the control 
vector 6, is sent to the process to be controlled. After the state transition into z,+l is observed, the other 
control signal vectors {Bt+i}:;i can be used as starting points for the next iterative inversion. 

This neurocontrol method is very flexible and has the potential to deal with even discontinuous control 
laws, since the control action is computed as the result of gradient descent. It has been applied for dynamic 
robot manipulator control (Kawato et a1 1990, Thrun et a1 1991). Its main drawback is that for real-time 
purposes the method might be slow, especially if the lookahead k is large. There have been a couple 
of techniques developed to speed this process up (Thrun et a1 1991, Nguyen and Widrow 1989). Their 
basic idea is to use a second neural network trained on the results of iterative inversion in order to quickly 
compute ut given 2, and d.  This second neural network can either provide good initial starting points or 
can be used as the controller. 
t The field of system identification deals with obtaining approximations of g. 

B5.2:4 Hadbook  of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Prtss 

Copyright © 1997 IOP Publishing Ltd



Iterative inversion of neural networks 

Figure B5.2.3. A cascaded neural network architecture for performing three-step look ahead model-based 
predictive control. The gray arcs represent the flow of error signals. The gray arcs running into the control 
variables denote the fact that their corresponding partial derivatives (i.e. error signals) have to be computed 
for the gradient descent search. 

B5.2.4.2 Inverse kinematics 

Consider a simple planar robot arm with three joints. The forward kinematics takes the joint angles 
8 = (6j,&, &)* as input and calculates the ( x ,  y)-position of the arm’s fingertip. In this simple example, 
the forward kinematics can be represented by a differentiable trigonometric mapping K(81, &,&) = ( x ,  y). 
It is again straightforward to derive inverse solutions by iterative inversion (Thrun et al 1991, Hoskins et 
a1 1992). Figure B5.2.4 illustrates this process by showing the robot arm in each of the joint positions 
that gradient descent steps through from the initial starting point (i.e. the current position of the robot 
manipulator) to the final configuration, where its fingertips are at a specified ( x * ,  y*) position. Even in 
this simple case, the inverse mapping is not a function, since many joint angles yield the same fingertip 
position. Regularization constraints can be included to relax the joints as much as possible or to have 
minimum joint movement. In analogy to the human planning process, this kind of search can be considered 
as mental planning, because the robot arm is moved ‘mentally’ through the workspace (Thrun et a1 1991) 
until it coincides with the ‘goal’. 

B5.2.5 Other applications of search in the input space of neural networks 

B5.2.5.1 Function optimization 

Optimization of a univariate function f with respect to its input x can be achieved by either performing 
gradient ascent (for maximization) or descent (for minimization): 

(B5.2.9) 

This is a special case of iterative inversion, because the application of equation B5.2.9 is equivalent to 
iteratively assigning y* = f(x) f 1 as desired target and using equation B5.2.3. The following two 
applications will briefly illustrate the use of function extremization. 

85.2.5.2 Active leaming 

In active learning (Cohn 1996) the objective is to learn forward models with minimum data collection 
efforts. Usually one starts with an incomplete or nonexistent forward model. The idea is to derive 

@I 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B5.2:5 

Copyright © 1997 IOP Publishing Ltd



Network Analvsis Techniaues 

I- 
,///- 

Figure B5.2.4. A planar robot manipulator in each of the calculated points in joint space during an iterative 
inversion. 

points in input space, such that maximal information can be gained for the forward model by querying 
the environment for the corresponding outputs at these input points. Consider a committee of neural 
networks?, where a large disagreement between individual neural networks on the same input can be 
interpreted as something ‘interesting’ in terms of information gain (Krogh and Vedelsby 1995). The 
measure of disagreement is a function A(=) based on some kind of variance calculation of the outputs 
y i  = f i ( z ) .  Query points z are then calculated by maximizing A ( z )  by equation (B5.2.9). A query on z 
yields a target g* which once integrated into the training set will reduce the disagreement of the committee 
(at least on z and its neighborhood). Other methods in active learning use other heuristics to specify the 
‘interestingness’ or ‘novelty’ of input points to derive new useful queries (Cohn 1996). 

B5.2.5.3 Converting evaluation knowledge into actionable knowledge 

Evaluation models estimate the utility or value of being in a particular state or performing a certain control 
action while being in a state, that is, they calculate functions like Q(z) or Q(z, U). As iterative inversion 
was applied to infer control knowledge from transition knowledge, it can in the same way calculate actions 

c3 from evaluation models. Reinforcement learning is one of the most prominent ways of obtaining evaluation 
models, for example, Q-learning. Control actions can be directly calculated by maximizing Q(z, U) with 
respect to U for any given z (Werbos 1992). If only state evaluations Q(z) are available, the existence of 
a transition model g(z, U) is needed to calculate control actions by maximizing Q@(z, U)) with respect 
to U. Both techniques assume differentiable evaluation models. Unfortunately, some applications have the 
property that the evaluation models make sudden jumps in the state space (Linden 1993), that is, are not 
differentiable. 

B5.2.6 The problem of unconstrained search in input space 

When searching in input space some input configurations may be impossible by the nature of the domain. 
The information about the validity of inputs is not captured by the structure and parameters of the model 
f. For example, consider that the variables x1 and x2 describe the position of an object on a circle. 
Hence, x1 and x2 have to obey xf + xg = 1. But gradient descent on XI and x2 in order to minimize 
E(d, z) = Ild - f ( x 1 ,  x2)112 would yield values XI and x2 for which x: + xg # 1. The idea is to find a 
way of restricting the search space. In this example one would minimize E(d,  8 )  = [Id- f(sin8, cos8)Il2 
with respect to 8 and obtain provable valid solutions. 
f A committee of neural networks is a set of neural networks which all try to model the same function. The resulting output of the 
committee is usually the mean of the individual neural networks: f(z) = (Cf i (z) ) /n.  

B5.2:6 Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Iterative inversion of neural networks 

The key idea is to know (or to learn to know) where the input data are actually coming from. If all 
input data lie on a lower-dimensional manifold X’ C X and it is possible to describe X’ by an auxiliary 
space A and a mapping h : A H X’ such that 
0 

0 

0 and h is differentiable 
then, instead of minimizing E(d,  x) = Ild - f(x)1I2 with respect to x, one can now minimize 
E(d,  a) = [Id - f(h(a))ll* in an unconstrained way with respect to A-space, but still conforming to 
the constraints defined by h. An example for this is the case where all inputs XI, . . . , X L  describe a 
discrete probability distribution, that is, they satisfy Cxj = 1 and xi 2 0. In this example, the function h 
should be the softmax function 

for each point a E A the image h(a) E X’ 
for each point x’ E X’ the inverse image a E A exists such that h(a) = x’ 

(B5.2.10) 

whereby A is the whole illL. Another frequent constraint is the positivity of input variables (e.g. if 
they describe distances). Here h is simply the component-wise application of the exp function, that is, 
xi = expai. 

The real challenge is how to acquire h when little is known about the domain. In this context, 
methods used for dimensionality reduction such as nonlinear principal component analysis might turn out 
to be useful. The idea is to train autoassociative networks with a bottle-neck hidden layer (Oja 1991) on 
all input data. The bottle-neck hidden layer here represents the auxiliary search space A. The part of the 
network that maps the bottle-neck layer representation to the output would represent the function h. 

B5.2.7 Alternative approaches 

Indirect approaches for obtaining an inverse. Jordan and Rumelhart (1992) presented an approach of 
learning exactly one inverse function by training a second neural network g such that the composite 
function f o g accomplishes an autoassociation task. The only way for g to achieve x = (f o g)(x) for 
all relevant cases x is that g approximates one inverse of f. A nice application of this approach is a 
lookahead controller for a truck backer-upper (Nguyen and Widrow 1989). A drawback of this method is 
that only one of the many inverse solutions is compiled into g. 

Density estimation. Ghahramani (1994) and Bishop (1995) propose a probability density framework to 
deal with inverse problems. Here, the joint probability distribution of the inputs and outputs p(x; y*) is 
learned from data. Inputs z are determined by maximizing the conditional probability p ( z l y ) .  Although 
this framework results only in valid inputs that have actually been used in the training process, high- 
dimensional input or output spaces make estimating joint probabilities much more data-intensive than 
simple function estimation. It is also not obvious how to include domain knowledge, for example in the 
form of fuzzy rules, into a joint density estimation framework. 

Mathematical programming. Lu (1993) addresses the question of inverting neural networks with 
mathematical programming techniques. The advantage of this technique is that there is no need to choose 
initial starting points. On the other hand, it seems difficult to extend this framework to other neural 
network architectures, for example, radial basis functions or mixtures of experts, because it assumes that 
the activation functions are monotone. 

Acknowledgements 

Most of this work originates from my time at the GMD (German National Research Center for Information 
Technology) in Sankt Augustin, Germany, and ICSI (International Computer Science Institute) in Berkeley, 
California. I am very grateful for all the joint work at these places, in particular with Jorg Kindermann, 
Frank Weber, Heinz Miihlenbein, Gerd Paass, Sebastian Thrun, and Christoph Tietz (during my time at 
GMD) and Ben Gomes and Steven Omohundro (during my time at ICSI). Many thanks go also to my 
colleagues in the Information Technology Lab at the General Electric Corporate Research and Development 
Center (New York) for commenting on earlier versions of this paper: Bill Cheetham, Ozden Gur Ali, and 
in particular Pratap Khedkar. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B5.2~7 

Copyright © 1997 IOP Publishing Ltd



Network Analvsis Techniaues 

References 

Bishop C M 1995 Neural Networks for Pattem Recognition (Oxford: Oxford University Press) pp 202-4 
Bryson A E and Ho Y C 1975 Applied Optimal Control (Chichester: Wiley) (revised version of 1969 edition) pp 15ff 
Cohn D A 1996 Neural network exploration using optimal experiment design Neural Networks (at press) also appeared 

as Technical Report, AI MEMO no 1491, MIT, Cambridge (ftp to pub1ications.ai.mit.edu) 
Davis D T et a1 1995 Solving inverse problems by Bayesian iterative inversion of a forward model with applications to 

parameter mapping using SMMR remote sensing data IEEE Trans. Geoscience and Remote Sensing 33 1 182-93 
DeMers D E 1996 Canonical parameterization of excess motor degrees of freedom with self-organizing maps IEEE 

Trans. Neural Networks 7 (to appear) 
Ghahramani 2 1994 Solving inverse problems using an EM approach to density estimation Proc. 1993 Connectionist 

Models Summer School ed Mozer M et a1 (Hillsdale, NJ: Erlbaum) pp 316-23 
Hoskins D A, Hwang J N and Vagners J 1992 Iterative inversion of neural networks and its application to adaptive 

control IEEE Trans. Neural Networks 3 292-301 
Hwang J N, Choi J J, Oh S and Marks R J 1990 Query learning based on boundary search and gradient computation 

of trained multilayer perceptrons Proc. Int. Joint Con$ on Neural Networks (San Diego, 1990) 
Jordan M I and Rumelhart D E 1992 Forward models: supervised learning with a distal teacher Cognitive Science 16 

Kawato M, Maeda Y, Uno Y and Suzuki R 1990 Trajectory formation of arm movement by cascade neural network 
model based on minimum torque-change criterion Biol. Cybem. 62 275-88 

Kindermann J and Linden A 1992 Inversion of neural networks by gradient descent Artifiial Neural Networks: 
Concepts and Control Applications ed R Vemuri (Washington, DC: IEEE Computer Society Press) also appeared 
1990 J. Parallel Comput. 14 3 277-86 

Krogh A and Vedelsby J 1995 Neural network ensembles, cross validation and active leaming Advances in Neural 
Information Processing Systems 7 (Cambridge, MA: MIT Press) p 231 

Linden A 1993 On discontinuous Q-functions in reinforcement leaming Proc. German Workshop on Artificial 
Intelligence (Lecture Notes in Artificial Intelligence) (Berlin: Springer) 

Linden A and Kindermann J 1989 Inversion of multilayer nets Proc. 1st Int. Joint Con$ on Neural Networks (Washington 
DC) (San Diego, CA: IEEE) 

Lu B L 1993 Inversion of feed-forward neural networks by a separable programming Proc. World Congress on Neural 
Networks, (Portland, OR) pp IV-415-420 

Nguyen D and Widrow B 1989 The truck backer-upper: an example of self-leaming in neural networks Proc. First 
Int. Joint Con$ on Neural Networks (Washington, DC: IEEE) 

Oja E 1991 Data compression, feature extraction, and autoassociation in feed-forward networks Artificial Neural 
Networks (North-Holland: Elsevier) pp 737-45 

Thrun S and Linden A 1990 Inversion in time Proc. EURASIP Workshop on Neural Networks (Sesimbra, Portugal) 
Thrun S, Mirller K, and Linden A 1991 Planning with an adaptive world model Advances in Neural Information 

Processing Systems 3: Proc. 1990 Con$ ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA: 
Morgan Kaufmann Publishers) pp 450ff 

307-54 

Werbos P 1992 Neurocontrol and fuzzy logic: connections and designs Int. J. Approximate Reasoning 6 185-219 
Williams R J 1986 Inverting a connectionist network mapping by backpropagation of error 8th Annual Con$ of the 

Cognitive Science Society (Hillsdale, NJ: Lawrence Erlbaum) pp 859ff 

Further reading 

1. Lee S and Kil R M 1994 Inverse Mapping of continuous functions using local and global information IEEE 
Trans. Neural Networks 5 409-23 

Discusses an approach to deal with local minima while doing gradient descent in input space. 

Weigend A S, Zimmermann H G and Neuneier R 1995 The observer-observation dilemma in neuro-forecasting: 
reliable models from unreliable data through leaming AI Applications on Wall Street ed R Freedman (New York) 
pp 308-17 

Uses gradient descent in input space to modify the training data. The word ’clearning’ is a contraction of the two 
words ‘cleaning’ and ‘learning’. The authors consider this technique as a cleaning procedure for noisy training 
data based on the belief in the structure and generalization of the model. 

2. 

B5.2:8 Hadbook  of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

B5.3 Designing analyzable networks 

Stephen P Luttrell 

Abstract 

In this section a unified theoretical model of unsupervised neural networks is presented. 
The analysis starts with a probabilistic model of the discrete neuron firing events that 
occur when a set of neurons is exposed to an input vector, and then uses Bayes’ theorem 
to build a probabilistic description of the input vector from knowledge of the firing 
events. This sets the scene for unsupervised training of the network, by minimization of 
the expected value of a distortion measure between the true input vector and the input 
vector inferred from the firing events. Various models of this type are investigated. For 
instance, if the model of the neurons permits firing to occur only within a defined cluster 
of neurons, and further, if only one firing event is observed, then the theory approximates 
the well known topographic mapping network of Kohonen. 

B5.3.1 Introduction 

The purpose of this article is to present an analysis of an unsupervised neural network whose behavior 
closely approximates the well known topographic mapping network (Kohonen 1984) in which the neural c2.1.1 

network was tailored in a purely algorithmic fashion to have topographically ordered neuron properties, 
some of which were derived by considering the convergence properties of the training algorithm (for 
instance, see Ritter and Schulten 1988). An alternative approach will be described which is based on 
optimization (e.g. by gradient ascenddescent) of an objective function. This approach allows some of the 
properties of the neural network to be derived directly from the objective function, which is not possible 
in the original topographic mapping network because it does not have an explicit objective function. 
The main novel feature of the new approach is that it uses a neuron model in which each neuron fires 
discretely in response to the presentation of an input vector. If these firing events are assumed to be the 
only information about the input vector that is preserved by the neural network, then it is possible to define 
an objective function that satisfies two constraints: (i) it seeks to maximize a suitably chosen measure of 
the information preserved about the input vector and (ii) it yields network properties that are as close to 
those of the original topographic mapping network as possible. Subject to these two constraints there is 
very little freedom of choice in the form of the chosen objective function, which may then be used to 
derive many interesting and useful properties. 

In section B5.3.2 the neural network model is presented together with its probabilistic description. In 
section B5.3.3 the network optimization criterion (i.e. an objective function) is presented and analyzed, and 
in section B5.3.4 a useful upper bound to the objective function is derived that is much easier to optimize 
than the full objective function. In section B5.3.5 a very simple neural network model is discussed in which 
only one neuron is permitted to fire in response to the input vector; this is equivalent to a vector quantizer ci.i.5 

(Linde et a1 1980). In section B5.3.6 a related neural network model is discussed in which neurons in 
a single cluster fire in response to the input vector; this is equivalent to the well known topographic 
mapping network (Kohonen 1984), as was shown in Luttrell (1990, 1994). The theory provides a natural 
interpretation of the topographic neighborhood function. In section B5.3.7 a neural network model is 
discussed in which a single neuron in each of many clusters of neurons fires in response to the input; this 
is equivalent to the ‘self-supervised’ network that was discussed in Luttrell (1992, 1994). In section B5.3.8 
various pieces of research that are related to the theory presented in this section are briefly mentioned. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B5.3 :1 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

B3.4.4 

B5.3:2 

B5.3.2 Probabilistic neural network model 

The basic neural network model will describe the behavior of a pair of layers of neurons, called the 
‘input’ and ‘output’ layer. The locations of the neurons that ‘fire’ in the output layer will be described 
probabilistically. Denote the rates of firing of the neurons in the input layer by the vector z, where dimz 
is equal to the number of neurons in the input layer. Denote the location of a neuron that fires in the 
output layer by the vector y, which is assumed to sit on a d-dimensional rectangular lattice of size m 
(where dim m = d), so dim m = 2 for a two-dimensional sheet of output neurons. 

The answer to the question ‘Which output neuron will fire next?’ is then Pr(ylz), which is the 
probability distribution over possible locations y of the next neuron that fires, given that the input 
z is known. More generally, the answer to the question ‘Which n neurons will fire next?’ is then 
Pr (y1, y2, . . . , yn 12) which is a joint probability distribution over the possible locations (31, y2, . . . , yn) 
of the next n neurons that fire. Note that the yi are not restricted to being different from each other, so a 
given neuron might fire more than once. Marginal probabilities may be derived from Pr (y1, y2, . . . ,yn 12) 
to give the probability of occurrence of a subset of the events in (yl, 312, . . . , y,,). Thus, to obtain a 
marginal probability, the locations of the unobserved firing events must be summed over. Care has to 
be taken when forming marginal probabilities. For instance, in the n = 3 case the marginal probabilities 
for (?, y1, yz), (y1, ?, y2) and (yl, y2, ?) are all diferent (where the ? denotes the unobserved event). 
However, if the order in which the neurons fire is not observed, then Pr (y1, y2, . . . , y,, Is) is the sum of 
the probabilities for all n! permutations of the sequence of firings, in which case Pr(y1, y2, . . . , ynlz) is 
a symmetric function of (yl , y2, . . . , y,,), and in the n = 3 case the marginal probabilities for (?, y1, y2), 
(yl, ?, y2) and (yl, y2, ?) are all the same. If the number of firings is itself known only probabilistically 
(i.e. as Pr(n)) then an appropriate average CEO Pr(n)(. .) must be formed. 

It is important to distinguish between the neural network itself, whose input-output state after n 
neurons have fired is described by the vector (yl, y2, . . . , y,,; z), and the knowledge ofthe network input- 
output relationship, which is written as Pr (y1, y2, . . . , y,,lz). For instance, a piece of software that is 
written to compute quantities like Pr (~1,312, . . . , y,, lz) is not really a ‘neural network’ program; rather, 
it is a program that makes probabilistic statements about how a neural network behaves. The utility 
of Pr (y1, y2, . . . , y,, 12) it that it allows average properties of the neural network to be computed. One 
particular property that is of great interest is the network objective function; this is the quantity that 
measures the network‘s average performance. This is the subject of the next section. 

B5.3.3 Optimization criterion 

A neural network is trained by minimizing a suitably defined objectivefunction, which will be chosen to 
be the average Euclidean distortion D defined as (Luttrell 1994) 

where z and z’ are both vectors in input space, the yi are vectors in output space, 11z-z’112 is the square of 
the Euclidean distance between z and z‘, J dz R(z)(. .) is the average over input space using probability 
density Pr(z). It will be assumed that J d x  Pr(z)(...) is accurately approximated by an average over 
a suitable training set. Thus, if samples z are drawn from the training set and plotted in input space, 
then after a large number of samples has been drawn the density of plotted points approximates Pr(z). xE,ar2,...,va=l R(yl,y2, . . . , YnlZ)(* .  a )  is the average over output space as specified by the probabilistic 
neural network model, and J dz’Pr(z’ly1, y2, . . . , yn)(- - .) is the average over input space as specified 
by the inverse of the probabilistic neural network, i.e. the probability density of input vectors given that 
the location of the firing neurons is known. This is determined entirely by the other probabilities already 
defined, and may be written as 

Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F‘ress 

Copyright © 1997 IOP Publishing Ltd



Designing analyzable networks 

which is an application of Bayes’ theorem. This may be used to eliminate Pr(z’(y1, y2, . . . , yn) from the 
expression for D in (B5.3.1) to obtain 

(B5.3.2) 

where the z’(y1, y2,. . . , yn) are defined as z‘(y1, y2,. . . , yn) = l d z  Pr(zJy1, y2,. . . , yn)a:. The 
z’(y1, y2, . . . , yn) will be called ‘reference vectors’. This means that there is a separate reference vector 
for each possible set of locations for the n neurons that fire. Thus the total number of reference vectors 
increases exponentially with n ,  which soon leads to an unacceptably large number of reference vectors. 
The next section introduces a theoretical trick for circumventing this difficulty. 

B5.3.4 Least upper bound trick 

The exponential increase with n of the number of reference vectors z’(y1, y2, . . . , y,) in (B5.3.2) can 
be avoided (Luttrell 1994) by minimizing not D, but a suitably defined upper bound to D that depends 
on simplified reference vectors with the functional form z’(y), rather than z’(y1, y2, . . . , yn). When this 
upper bound is minimized it yields a least upper bound on D, rather than its ideal lower bound. This is 
the price that has to be paid for not using the full reference vectors z’(y1, y2, . . . , yn). The upper bound 
is derived as follows. Use the following identity, which holds for all z’(yi) 

to separate a: from d(y1, y2, . . . , yn) and assume that Pr(y1, y2, . . . , ynla:) is a symmetric function of 
(y1, y2, . . . , y,,), to write D in (B5.3.2) in the form D = D1 + D2 - D3, where 

(B5.3.3) 

D1 is l / n  times the average Euclidean distortion that would occur if only 1 out of the n neuron firing 
events is observed (assuming that z’(y) is chosen to be J da: Pr(zly) 2). D2 is a new type of term that 
cannot be interpreted as a simple Euclidean distortion. Suppose that the locations y1 and y2 of two out 
of the n neuron firing events are observed (which two does not matter, because it is assumed that the 
order in which the events occur is not observed), and an attempt is made to reconstruct the input vector 
independently from each of these firing events. This produces two vectors x’ (y1) and z’(y2), and two 
error vectors (a: - z’(y1)) and (a: - z’(y2)). The covariance of these error vectors is the average of their 
outer product dx  Pr(z) CE,y211 Pr(y1, y21x)(a: - z‘(yl))(z - ~ ’ ( y 2 ) ) ~ ,  and D2 is 2 (n  - l ) / n  times 
the trace of this covariance matrix (i.e. the sum of its eigenvalues). Because 0 3  2 0, it follows that 
D 5 DI + Dz, so minimization of D1 + 0 2  yields a least upper bound to D, as required. Note that D2 
and 0 3  contribute only for n 2 2. In the n + 00 limit the contribution of D1 vanishes, and then D2 is the 
value that D would take if 2’ ( ~ 1 , 3 1 2 ,  . . . , yn) were approximated by the expression 3 a:’ (yi) and 
the error term D3 were ignored. Many useful results can be obtained by minimizing D1 + D2 as defined 
in (B5.3.3) when n 2 2(or minimizing D itself when n = 1) and some of these will be discussed in the 
following sections. 

B5.3.5 Vector quantizer model: single neuron approximation 

In the expression for D in (B5.3.2) assume that only a single neuron fires n times, so that 
(YI t ~ 2 1 .  * 9 l/n 12) is given by (YI t ~ 2 9  . . * 9 Vn 12) = a,, ,g(r)&z,y(r) 4 * &,,,v(r), where &.V(r) = 1 if 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B5.3~3 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

y = y (z), and 0 otherwise. The role of the ‘encoding function’ y (2) is to convert the input vector z 
into the index of the ‘winning’ neuron (i.e. the one that fires). This allows D to be simplified to the form 

D = 2 1 d z  Pr(z)llz - z’(y(z))(l* (B5.3.4) 

where the n argument reference vector x’(y(z), y(z), . . . , y(z)) has been written using an abbreviated 
notation z’(y(z)). In (B5.3.4) D can be minimized with respect to y(z) to give 

(B5.3.5) 

where ‘arg minY . . . ’ means ‘the value of y that minimizes . . . ’. This is a ‘nearest-neighbor’ encoding rule 
because the winning neuron y has the reference vector that is closest to the input vector, in the Euclidean 
distance sense. In (B5.3.4) D can be minimized with respect to z’ (y) to give 

(B5.3.6) 

where the second line has been obtained by using Bayes’ theorem. The term z’(y) is the centroid of 
the input vectors z that are permitted given that the location y of the firing neuron is known. In effect, 
z’(y) is the decoder corresponding to the encoder y(z). Because the optimizations of y(z) and z’(y) 
are mutually coupled, these two results (i.e. (B5.3.5) and (B5.3.6)) must be iterated in order to obtain a 
consistent solution. This is essentially the LBG algorithm (Linde er al 1980) for training a vector quantizer, 
which may be summarized as follows. 

Initialize the reference vectors z’(y), for example, set them to different randomly selected vectors 
chosen from the training set. 
Encode each vector x in the training set using the nearest-neighbor rule y(z) in (B5.3.5). 
Compute the centroids on the right-hand side of (B5.3.6). 
Update the reference vectors z’(y) as in (B5.3.6). 
Test if the reference vectors x’(y) have converged, and if not then go to step (ii), otherwise stop. 
There are many possible convergence tests. For instance, have all the reference vectors moved by 
less than some predefined fraction of the diameter of the volume of input space that they live in? 
Another possibility is: has D decreased by less than some predefined fraction of its value on the 
previous iteration? There is no method that is guaranteed to avoid premature termination. 

The LBG algorithm is a ‘batch’ training algorithm. An ‘online’ training algorithm can be obtained 
by updating the z’(y) in the direction of -aD/az’(y) (i.e. gradient descent), which yields the update 
prescription 

Az’(Y/(z)> = E (z - =’(y(z))) (B5.3.7) 

which operates as follows. 

(i) Initialize the reference vectors z’ (y), for example, set them to different randomly selected vectors 
chosen from the training set. 

(ii) Encode a vector z from the training set using the nearest-neighbor rule y(z) in (B5.3.5). 
(iii) Move the corresponding reference vector z’(y(x)) a small amount towards the input vector z as in 

(B5.3.7). 
(iv) Test whether the reference vectors z’(y) have converged, and if not then go to step (ii), otherwise 

stop. 

Neither the batch nor the online training algorithms can avoid the problem of becoming trapped in a 
local minimum. It is prudent to run these algorithms several times on each training set, but starting from 
a different initial configuration of reference vectors on each run. 

B5.314 Hondbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Designing analyzable networks 

B5.3.6 Topographic mapping model: single cluster approximation 

Generalize the vector quantizer case studied in section B5.3.5 so that the neurons that fire are not all 
forced to be the same neuron. Thus, in the expression for D in (B5.3.2) assume that the neurons 
that fire are located in a single cluster and fire independently, so that Pr(yl,y2, . . . , y n l  a) is given 
by Pr(y1, y2, . . . , yn lz) = Pr(y~(y(z)) Pr(yzly(z)) - Pr(yn ly(z)), where the ‘shape’ of the cluster is 
modeled by Pr(yly(z)). The results for D1 and 0 2  in (B5.3.3) then permit an upper bound on D to be 
obtained as 

(B5.3.8) 

In the special case n = 1, this inequality reduces to an equality, and the second term on the right-hand side 
of (B5.3.8) vanishes. The first term of (B5.3.8) is l /n  times the average Euclidean error that occurs when 
only one neuron firing event is observed. The second term of (B5.3.8) is 2(n - l ) /n  times the average 
Euclidean error that occurs when an attempt is made to reconstruct the input vector from the weighted 
average Pr(yly(z)) z’(y) of the reference vectors. This term dominates when n >> 1.  

It is possible to interpret the second term of (B5.3.8) in terms of a radial basisfunction network. The ~ 1 . 7 . 3  
Pr(yly(z)) are a set of nonlinear functions that connect the input layer to a hidden layer, z’(y) is the set 
of weights connecting the yth hidden neuron to the output layer, and z- E;, Pr(yly(z)) z’(y) is the 
error vector between the input and output layers. This use of a nonlinear input-to-hidden transformation 
plus a linear hidden-to-output transformation is the same as is used in a radial basis function network, 
except that here the nonlinear basis functions add up to 1, and the error is measured between the input 
and output, rather than between a target and the output. 

B5.3.6.1 Optimization of the n = 1 case 

D itself in (B5.3.2) (and not merely its upper bound in (B5.3.8)) may be minimized with respect to y (2) 
and z’ (y) to give (Luttrell 1990, 1994) 

(B5.3.9) 

The term y(z )  is no longer a nearest-neighbor encoding rule as it was in the vector quantizer case in 
(B5.3.5). It is a ‘minimum distortion’ encoding rule where the winning neuron is the one that leads to the 
minimum expected Euclidean error. Note that the phrase ‘winning neuron’ is used loosely in this context; 
it is actually the neuron that determines where the cluster of firing neurons is located. When n = 1 the 
neuron that actually fires is somewhere in the cluster located around the winning neuron. z’(y) is a 
straightforward generalization of the vector quantizer case in (B5.3.6). Both the batch and online versions 
of the training algorithm are implemented as a straightforward generalization of the batch and online 
vector quantizer training algorithms, so they will not be repeated here. In the online training algorithm, 
an important change is that each training vector z causes each reference vector z’(y) to be updated by 
an amount that is proportional to Pr(yly(z)). In the vector quantizer case in (B5.3.7) only the winning 
reference vector z’(y(z)) was updated. 

It is useful to approximate y(z) (Luttrell 1990) by doing a Taylor expansion of 112 - z’(y’)l12 in 
(B5.3.9) in powers of (y’-y) to obtain 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 9711 B5.35  

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

where the derivatives are evaluated as finite-difference expressions on the lattice of points on which y 
sits. If the 'arg min' operation is applied to the first term in isolation, then it returns a y that guarantees 
that a 112 - z'(y)112/ay = 0, which ensures that the first-order term in the Taylor series vanishes. So y(z)  
reduces to y(z)  = arg min,(IIx - z'(y)1I2) + second-order terms, which is a nearest-neighbor encoding 
rule. Using this approximation, the online training algorithm is the same as the well known topographic 
mapping training algorithm (Kohonen 1984) and Pr(y'1y) plays the role of the 'neighborhood function' 
around the yth neuron. 

B5.3.6.2 Optimization of the n >> 1 case 

If n >> 1 in (B5.3.6) then D1 << D2, so D1 can be ignored, in which case the upper bound for D in 
(B5.3.8) can be approximately minimized with respect to y(z)  and z'(y) to give 

Y(Z) arg m i n m  - $7Y)1I2) 
II 

AZ'(Y) = E Pr(YlY@)) (z - *'(y(z>)> 

where S ( y )  is a weighted average of the reference vectors z'(y) defined as $:'(y) = E,, = 
ETZl Pr(y'1y) ~ ' ( y ' ) .  These results may also be obtained directly from the original definition of D 
in (B5.3.2) for n >> 1 by making the approximation z'(y1, y2, . . . , y,) P'(yi) (i.e. ignoring 
D3)  and noting that i z'(yi) R5 ET=, Pr(y'ly(z))z'(y') (i.e. the n neurons that fire allow a good 
estimate of the cluster shape Pr(y'ly(z)) to be made). 

i 

B5.3.7 Topographic mapping model: multiple cluster approximation 

In the expression for D in (B5.3.2) assume that one neuron located in each of c clusters fires, so that Pr(y1z) 
has the form Pr(y1z) = Pr(yl, y2, . . . , yclyl(z),  y2(z), . . . , y'(z)), where superscripts have been used for 
cluster indices, and the encoding function y(z)  has been partitioned as y(z)  = (y'(z), y2(x), . . . , y'(z)) 
to separate the pieces that locate each cluster. This allows D to be written as 

D = 2 d z  Pr(z) Pr(y', y2 , .  . . , y"ly'(z), y2(z>,  . . . , y/'(z>) s y' * $ I Z . . , . . ~  =I 

x 112 - Z'(Yl, Y2* * * .  , Y">1I2. 

Partition the input space into c nonoverlapping subspaces, so that the input vector x is written as 
x = (d, z2, . . . , z"), and use the following identity, which holds for all ~ " ( y ' )  

z - z'(y',y2, . . . , y") = ((d, 2 2 ,  . . . , s") - (z'1(2/1), S'*(Y2), . . . , z"(y"))) 
- (S'(Y', y2,  . . , Y") - (Z"(Y'), Zt2(Y2), * * * , Z'"YC>>) 

where z"(y') lies in input subspace i ,  to write D in the form D = D1 - D J ,  where 

c m  

D1 2 d z  Pr(z) Pr(y'ly'(z), y2(z), . . . , y'(z))llzi - z"(yi)Il2 

which should be compared with the results in (B5.3.3). Note that in D1 the ith cluster contributes only 
to the average Euclidean error in the ith input subspace; this was enforced by the assumed functional 
dependence in (z'I(y1), d2(y2) ,  . . . , ~ ' ~ ( y ' ) ) .  Because D3 2 0 it follows that D 5 D I ,  so minimization 
of D1 leads to a least upper bound on D .  Minimization of D1 with respect to y i (z )  and z"(y') then 
gives 

B5.3:6 Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University F'ress 

Copyright © 1997 IOP Publishing Ltd



Designing analyzable networks 

AZ"(Y') = ~Pr(y 'Jyl(z) ,  y2(z), . . . , Y'(z)) (a' - ~ " ( 9 ' ) )  (B5.3.10) 

which is equivalent to the 'self-supervised' network training algorithm that was discussed in Luttrell 
(1992, 1994). If the c subspaces were treated completely separately, then in (B5.3.10) the results for 
the ith subspace would read the same as the n = 1 topographic mapping case in (B5.3.9), with a 
superscript i inserted where appropriate. Now examine (B5.3.10) in detail. When there is more than 
one cluster of firing neurons, the effective shape of each cluster is modified by the locations of the 
other clusters, i.e. Pr(y"ly'(z)) -+ Pr(y"ly'(s), y2(z), . . . , y'(z)). So, the cluster shapes determine 
the winning neurons, which, in turn, determine the cluster shapes. Note, as in the single cluster case in 
section B5.3.6, that the phrase 'winning neurons' refers to the neurons that determine the cluster locations 
(y'(z), y2(z), . . . , y'(z)). This feedback makes the determination of which neurons are the winners a 
nontrivial coupled optimization problem, in which the y' (2) affect each other, so they must be jointly 
optimized. In particular, the optimal y" (2) is a function of the whole input vector z, and not merely 
a function of the part of z that lies in the ith subspace (i.e. x i ) ,  as it would be if the subspaces were 
considered separately. In practice, the problem of optimizing the y' (5) could be solved by iterating the 
following set of equations 

m 

where the {U'(,) : j # i} on the right-hand side is obtained from the previous iteration of the equation. If 
this converges, then it solves the coupled optimization problem. Although only one neuron was permitted 
to fire in each of the c clusters, it is straightforward to generalize these results to the case where any 
number of neurons may fire in each cluster. It is also possible to generalize to the more realistic case 
where the input subspaces overlap each other. 

B5.3.8 Related research 

In section B5.3.6 the density of reference vectors can be derived for an optimized network (Luttrell 1991) 
and the result obtained is independent of the topographic neighborhood function. This contrasts with the 
result obtained for a standard topographic network in Ritter (1991) where the density is dependent on the 
topographic neighborhood function, This difference arises from the choice of encoding prescriptions used 
in the two approaches; minimum distortion in Luttrell (1991), and nearest neighbor in Ritter (1991). The 
results of section B5.3.6 may also be used to derive a hierarchical vector quantizer (Luttrell 1989a) for 
encoding high-dimensional vectors in easy-to-implement stages. An example of the use of this approach in 
image compression can be found in Luttrell(1989b). The results of section B5.3.6 may also be interpreted ~ 1 . 5 . ~  

as vector quantization for communication along a noisy channel (Luttrell 1992). This type of coding 
problem was analyzed in Kumazawa et al (1984) and Farvardin (1990), but the connection with neural 
networks was not made. 

References 

Farvardin N 1990 A study of vector quantization for noisy channels IEEE Trans. Info. Theory 36 799-809 
Kohonen T 1984 Self Organization and Associative Memory (Berlin: Springer) 
Kumazawa H, Kasahara M and Namekawa T 1984 A construction of vector quantizers for noisy channels Electron. 

Linde Y, Buzo A and Gray R M 1980 An algorithm for vector quantizer design IEEE Trans. Commun. 28 84-95 
Luttrell S P 1989a Hierarchical vector quantization Proc. IEE I 136 405-13 
-1989b Image compression using a multilayer neural network Putt. Recog. Lett. 10 1-7 
-1990 Derivation of a class of training algorithms IEEE Trans. Neural Networks 1 229-32 
-1991 Code vector density in topographic mappings: scalar case IEEE Trans. Neural Networks 2 427-36 
-1992 Self-supervised adaptive networks h o c .  IEE F 139 371-7 
-1994 A Bayesian analysis of self-organizing maps Neural Comput. 6 767-94 
Ritter H 1991 Asymptotic level density for a class of vector quantization processes IEEE Trans. Neural Networks 2 

Eng. Japan B 67 3947 

173-5 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B5.3~7 

Copyright © 1997 IOP Publishing Ltd



Network Analysis Techniques 

Ritter H and Schulten K 1988 Convergence properties of Kohonen’s topology conserving maps: fluctuations, stability 
and dimension selection Biof. Cybern. 60 59-71 

B5.3:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University’ F’ress 

Copyright © 1997 IOP Publishing Ltd



B6 

Neural Networks: A Pattern Recognition 
Perspective 

Christopher M Bishop 

Abstract 

The majority of current applications of neural networks are concerned with problems in 
pattern recognition. In this chapter we show how neural networks can be placed on a 
principled, statistical foundation, and we discuss some of the practical benefits which 
this brings. 

Contents 

B6 NEURAL NETWORKS: A PATTERN RECOGNITION PERSPECTIVE 
B6.1 Introduction 
B6.2 Classification and regression 
B6.3 Error functions 
B6.4 Generalization 
B6.5 Discussion 

Handbwk of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University h s s  
Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

B6.1 Introduction 

Ch r is top h e r M Bishop 

Abstract 

See the abstract for Chapter 86, 

Neural networks have been exploited in a wide variety of applications, the majority of which are concerned 
with pattern recognition in one form or another. However, it has become widely acknowledged that the 
effective solution of all but the simplest of such problems requires a principled treatment, in other words 
one based on a sound theoretical framework. 

From the perspective of pattem recognition, neural networks can be regarded as an extension of the ~ 1 . 5  

many conventional techniques which have been developed over several decades. Lack of understanding 
of the basic principles of statistical pattern recognition lies at the heart of many of the common mistakes 
in the application of neural networks. In this chapter we aim to show that the ‘black box’ stigma of neural 
networks is largely unjustified, and that there is actually considerable insight available into the way in 
which neural networks operate, and how to use them effectively. 

Some of the key points which are discussed in this chapter are as follows: 

(i) Neural networks can be viewed as a general framework for representing nonlinear mappings between 
multidimensional spaces in which the form of the mapping is governed by a number of adjustable 
parameters. They therefore belong to a much larger class of such mappings, many of which have 
been studied extensively in other fields. 

(ii) Simple techniques for representing multivariate nonlinear mappings in one or two dimensions (e.g. 
polynomials) rely on linear combinations of j ked  basis functions (or ‘hidden functions’). Such 
methods have severe limitations when extended to spaces of many dimensions; a phenomenon known 
as the curse of dimensionality. The key contribution of neural networks in this respect is that they 
employ basis functions which are themselves adapted to the data, leading to efficient techniques for 
multidimensional problems. 

(iii) The formalism of statistical pattern recognition, introduced briefly in section B6.2.3, lies at the heart 
of a principled treatment of neural networks. Many of these topics are treated in standard texts on 
statistical partem recognition, including those by Duda and Hart (1973), Hand (1981), Devijver and ~ 6 . 2 . 3  
Kittler (1982), and Fukunaga (1990). 

functions arise naturally from the principle of maximum likelihood, and how different choices of 
error function correspond to different assumptions about the statistical properties of the data. This 
allows the appropriate error function to be selected for a particular application. 

(v) The statistical view of neural networks motivates specific forms for the activationfunctions which ~3 .2 .4  

arise in network models. In particular we see that the logistic sigmoid, often introduced by analogy 
with the mean firing rate of a biological neuron, is precisely the function which allows the activation 
of a unit to be given a particular probabilistic interpretation. 

(vi) Provided the error function and activation functions are correctly chosen, the outputs of a trained 
network can be given precise interpretations. For regression problems they approximate the 
conditional averages of the distribution of target data, while for classification problems they 
approximate the posterior probabilities of class membership. This demonstrates why neural networks 
can approximate the optimal solution to a regression or classification problem. 

(iv) Network training is usually based on the minimization of an errorfunction. We show how error ~ 6 . 3  

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B6.1:1 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

~ 6 . 3  (vii) Error backpropagation is introduced as a general framework for evaluating derivatives for feedforward 
networks. The key feature of backpropagation is that it is computationally very efficient compared 
with a simple direct evaluation of derivatives. For network training algorithms, this efficiency is 
crucial. 

(viii) The original learning algorithm for multilayer feedforward networks (Rumelhart et a1 1986) was 
based on gradient descent. In fact the problem of optimizing the weights in a network corresponds 
to unconstrained nonlinear optimization for which many substantially more powerful algorithms have 
been developed. 

(ix) Network complexity, governed for example by the number of hidden units, plays a central role in 
determining the generalization performance of a trained network. This is illustrated using a simple 
curve-fitting example in one dimension. 

These and many related issues are discussed at greater length by Bishop (1995). 

~ 6 . 4  

References 

Anderson A and Rosenfeld E (eds) 1988 Neurocomputing: Foundations of Research'(Cambridge, MA: MIT) 
Bishop C M 1995 Neural Networks for Pattem Recognition (Oxford: Oxford University Press) 
Devijver P A and Kittler 1982 Pattern Recognition: A Statistical Approach (Englewwd Cliffs, NJ: Rentice-Hall) 
Duda R 0 and P E Hart 1973 Pattern Classication and Scene Analysis (New York: Wiley) 
Fukunaga K 1990 Introduction to Statistical Pattem Recognition (2nd edn) (San Diego, CA: Academic) 
Hand D J 1981 Discrimination and Classifcation (New York: Wiley) 
Rumelhart D E, Hinton G E and Williams R J 1986 Learning intemal representations by error propagation 

Parallel Distnhuted Processing: Explorations in the Microstructure of Cognition Volume 1: Foundations 
ed D E Rumelhart, J L McClelland, and the PDP Research Group (Cambridge, MA: MIT) pp 318-62 (reprinted 
in Anderson and Rosenfeld (1988).) 

B6.1:2 Handbook of Neural Computation release 9711 @ 1997 COP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition PersDective 

B6.2 Classification and regression 

Christopher M Bishop 

Abstract 

See the abstract for  Chapter Bd. 

In this section we concentrate on the two most common kinds of pattern recognition problem. The first 
of these we shall refer to as regression, and is concerned with predicting the values of one or more 
continuous output variables, given the values of a number of input variables. Examples include prediction 
of the temperature of a plasma given values for the intensity of light emitted at various wavelengths, or the 
estimation of the fraction of oil in a multiphase pipeline given measurements of the absorption of gamma 
beams along various cross-sectional paths through the pipe. If we denote the input variables by a vector z 
with components xi where i = 1, . . . , d and the output variables by a vector y with components yk where 
k = 1,. . . , c then the goal of the regression problem is to find a suitable set of functions which map the 
xi to the yk. 

The second kind of task we shall consider is called classification and involves assigning input patterns 
to one of a set of discrete classes Ck where k = 1, . , . , c. An important example involves the automatic 
interpretation of handwritten digits (Le Cun 1989). Again, we can formulate a classification problem in 
terms of a set of functions which map inputs xi to outputs yk where now the outputs specify which of the 
classes the input pattern belongs to. For instance, the input may be assigned to the class whose output 
value yk is largest. 

In general, it will not be possible to determine a suitable form for the required mapping, except with 
the help of a data set of examples. The mapping is therefore modeled in terms of some mathematical 
function which contains a number of adjustable parameters, whose values are determined with the help of 
the data. We can write such functions in the form 

(B6.2.1) 

where w denotes the vector of parameters wl  , . . , , W W .  A neural network model can be regarded simply 
as a particular choice for the set of functions y k ( z ;  w). In this case, the parameters comprising w are 
often called weights. 

The importance of neural networks in this context is that they offer a very powerful and very general 
framework for representing nonlinear mappings from several input variables to several output variables. 
The process of determining the values for these parameters on the basis of the data set is called learning ~3 
or training, and for this reason the data set of examples is generally referred to as a training ser. Neural 
network models, as well as many conventional approaches to statistical pattern recognition, can be viewed 
as specific choices for the functional forms used to represent the mapping (B6.2. l), together with particular 
procedures for optimizing the parameters in the mapping. In fact, neural network models often contain 
conventional approaches (such as linear or logistic regression) as special cases. 

B6.2.1 Polynomial curve fitting 

Many of the important issues concerning the application of neural networks can be introduced in the 
simpler context of curve fitting using polynomial functions. Here, the problem is to fit a polynomial to a 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.2~1 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

set of N data points by minimizing an error function. Consider the Mth-order polynomial given by 

(B6.2.2) 

This can be regarded as a nonlinear mapping which takes x as input and produces y as output. The precise 
form of the function y ( x )  is determined by the values of the parameters W O ,  . . . , w y ,  which are analogous 
to the weights in a neural network. It is convenient to denote the set of parameters ( W O ,  . . . , W M )  by 
the vector ‘w in which case the polynomial can be written as a functional mapping in the form (B6.2.1). 
Values for the coefficients can be found by minimization of an error function, as will be discussed in detail 
in Section B6.3. Examples of polynomial curve fitting are given in Section B6.4. 

B6.2.2 Why neural networks? 

Pattern recognition problems, as we have already indicated, can be represented in terms of general 
parametrized nonlinear mappings between a set of input variables and a set of output variables. A 
polynomial represents a particular class of mapping for the case of one input and one output. Provided we 
have a sufficiently large number of terms in the polynomial, we can approximate a wide class of functions 
to arbitrary accuracy. This suggests that we could simply extend the concept of a polynomial to higher 
dimensions. Thus, for d input variables, and again one output variable, we could, for instance, consider a 
third-order polynomial of the form 

(B6.2.3) 
i l = l  i,=1 iz=l il=I iz=1 i3=l  

For an Mth-order polynomial of this kind, the number of independent adjustable parameters would grow 
like d M ,  which represents a dramatic growth in the number of degrees of freedom in the model as the 
dimensionality of the input space increases. This is an example of the curse ofdimensionality (Bellman 
1961). The presence of a large number of adaptive parameters in a model can cause major problems as 
discussed in Section B6.4. In order that the model make good predictions for new inputs it is necessary 
that the number of data points in the training set be much greater than the number of adaptive parameters. 
For medium to large applications, such a model would need huge numbers of training data in order to 
ensure that the parameters (in this case the coefficients in the polynomial) were well determined. 

There are, in fact, many different ways in which to represent general nonlinear mappings between 
multidimensional spaces. The importance of neural networks, and similar techniques, lies in the way 
in which they deal with the problem of scaling with dimensionality. In order to motivate neural 
network models it is convenient to represent the nonlinear mapping function (B6.2.1) in terms of a linear 
combination of basis functions, sometimes also called ‘hidden functions’ or hidden units, Z j ( Z ) ,  so that 

(B6.2.4) 

Here the basis function zo takes the fixed value 1 and allows a constant term in the expansion. The 
corresponding weight parameter wko is generally called a bias. Both the one-dimensional polynomial 
(B6.2.2) and the multidimensional polynomial (B6.2.3) can be cast in this form, in which basis functions 
are fixed functions of the input variables. 

We have seen from the example of the higher-order polynomial that to represent general functions 
of many input variables we have to consider a large number of basis functions, which in turn implies a 
large number of adaptive parameters. In most practical applications there will be significant correlations 
between the input variables so that the effective dimensionality of the space occupied by the data (known 
as the intrinsic dimensionality) is significantly less than the number of inputs. The key to constructing 
a model which can take advantage of this phenomenon is to allow the basis functions themselves to be 
adapted to the data as part of the training process. In this case the number of such functions only needs 
to grow as the complexity of the problem itself grows, and not simply as the number of input variables 
grows. The number of free parameters in such models, for a given number of hidden functions, typically 

B6.2:2 Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Classification and regression 

only grows linearly (or quadratically) with the dimensionality of the input space, as compared with the 
dM growth for a general Mth-order polynomial. 

One of the simplest, and most commonly encountered, models with adaptive basis functions is given 
by the two-layer feedforward network, sometimes called a multilayer perceptron, which can be expressed 
in the form of (B6.2.4) in which the basis functions themselves contain adaptive parameters and are given 
by 

(B6.2.5) 

where wjo are bias parameters, and we have introduced an extra ‘input variable’ xo = 1 in order to 
allow the biases to be treated on the same footing as the other parameters and hence be absorbed into 
the summation in (B6.2.5). The function g(.) is called an activarionfuncrion and must be a nonlinear 
function of its argument in order that the network model can have general approximation capabilities. If 
g(.) were linear, then (B6.2.4) would reduce to the composition of two linear mappings which would itself 
be linear. The activation function is also chosen to be a differentiable function of its argument in order 
that the network parameters can be optimized using gradient-based methods as discussed in section B6.3.3. 
Many different forms of activation function can be considered. However, the most common are sigmoidal 
(meaning ‘S shaped’) and include the logistic sigmoid 

(B6.2.6) 

which is plotted in figure B6.2.1. The motivation for this form of activation function is considered in 
section B6.3.2. We can combine (B6.2.4) and (B6.2.5) to obtain a complete expression for the function 
represented by a two-layer feedforward network in the form 

(B6.2.7) 

The form of network mapping given by (B6.2.7) is appropriate for regression problems, but needs some 
modification for classification applications as will also be discussed in section B6.3.2. It should be noted 
that models of this kind, with basis functions which are adapted to the data, are not unique to neural 
networks. Such models have been considered for many years in the statistics literature and include, 
for example, projecrion pursuit regression (Friedman and Stuetzle 1981, Huber 1985) which has a form 
remarkably similar to that of the feedforward network discussed above. The procedures for determining 
the Parameters in projection pursuit regression are, however, quite different from those generally used for 
feedforward networks. 

Figure B6.2.1. Plot of the logistic sigmoid activation function given by (B6.2.6). 

It is often useful to represent the network mapping function in terms of a network diagram, as shown in 
figure B6.2.2. Each element of the diagram represents one of the terms of the corresponding mathematical 
expression. The bias parameters in the first layer are shown as weights from an extra input having a fixed 
value of xo = 1. Similarly, the bias parameters in the second layer are shown as weights from an extra 
hidden unit, with activation again fixed at zo = 1.  

c1.2 

83.2.4 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B6.2:3 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

81.7.3 

B6.2:4 

Figure B6.2.2. An example of a feedforward network having two layers of adaptive weights. 

More complex forms of feedforward network function can be considered, corresponding to more 
complex topologies of network diagram. However, the simple structure of figure B6.2.2 has the property 
that it can approximate any continuous mapping to arbitrary accuracy provided the number M of hidden 
units is sufficiently large. This property has been discussed by many authors including Funahashi (1989), 
Hecht-Nielsen (1989), Cybenko (1989), Hornik eta1 (1989), Stinchcombe and White (1989), Cotter (1990), 
Ito (1991), Hornik (1991), and Kreinovich (1991). A proof that two-layer networks having sigmoidal 
hidden units can simultaneously approximate both a function and its derivatives was given by Hornik er 
a1 (1990). 

The other major class of network model, which also possesses universal approximation capabilities, is 
the radial basisfunction network (Broomhead and Lowe 1988, Moody and Darken 1989). Such networks 
again take the form of (B6.2.4), but the basis functions now depend on some measure of distance between 
the input vector 2 and a prototype vector pj. A typical example would be a Gaussian basis function of 
the form 

(B6.2.8) 

where the parameter u j  controls the width of the basis function. Training of radial basis function networks 
usually involves a two-stage procedure in which the basis functions are first optimized using input data 
alone, and then the parameters W k j  in (B6.2.4) are optimized by error function minimization. Such 
procedures are described in detail by Bishop (1995). 

B6.2.3 Statistical pattern recognition 

We turn now to some of the formalism of statistical pattern recognition, which we regard as essential for 
a clear understanding of neural networks. For convenience we introduce many of the central concepts in 
the context of classification problems, although much the same ideas also apply to regression. The goal 
is to assign an input pattern 2 to one of c classes c k  where k = 1, . . . , c. In the case of handwritten 
digit recognition, for example, we might have ten classes corresponding to the ten digits 0, . . . ,9 .  One 
of the powerful results of the theory of statistical pattern recognition is a formalism which describes the 
theoretically best achievable performance, corresponding to the smallest probability of misclassifying a 
new input pattern. This provides a principled context within which we can develop neural networks, and 
other techniques, for classification. 

For any but the simplest of classification problems it will not be possible to devise a system which 
is able to give perfect classification of all possible input patterns. The problem arises because many input 
patterns cannot be assigned unambiguously to one particular class. Instead the most general description 
we can give is in terms of the probabilities of belonging to each of the classes c k  given an input vector 2. 
These probabilities are written as P ( c k l x ) ,  and are called the posterior probabilities of class membership, 
since they correspond to the probabilities after we have observed the input pattern x .  If we consider a 
large set of patterns all from a particular class c k  then we can consider the probability distribution of the 
corresponding input patterns, which we write as p ( x I c k ) .  These are called the class conditional distributions 
and, since the vector x is a continuous variable, they correspond to probability density functions rather 
than probabilities. The distribution of input vectors, irrespective of their class labels, is written as p(s> and 

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Classification and regression 

is called the unconditional distribution of inputs. Finally, we can consider the probabilities of occurrence 
of the different classes irrespective of the input pattern, which we write as P(Ck). These correspond to 
the relative frequencies of patterns within the complete data set, and are called prior probabilities since 
they correspond to the probabilities of membership of each of the classes before we observe a particular 
input vector. 

These various probabilities can be related using two standard results from probability theory. The 
first is the product rule which takes the form 

and the second is the sum rule given by 

k 

From these rules we obtain the following relation 

which is known as Buyes’ theorem. The denominator in (B6.2.11) 

(B6.2.9) 

(B6.2.10) 

(B6.2.11) 

is given by 

(B6.2.12) 

and plays the role of a normalizing factor, ensuring that the posterior probabilities in (B6.2.11) sum to one, rk P(Ck1i-c) = 1 .  As we shall see shortly, knowledge of the posterior probabilities allows us to find the 
optimal solution to a classification problem. A key result, discussed in section B6.3.2, is that under suitable 
circumstances the outputs of a correctly trained neural network can be interpreted as (approximations to) 
the posterior probabilities P(Cklx)  when the vector x is presented to the inputs of the network. 

As we have already noted, perfect classification of all possible input vectors will, in general, be 
impossible. The best we can do is to minimize the probability that an input will be misclassified. This is 
achieved by assigning each new input vector 5 to that class for which the posterior probability P(Cklx)  
is largest. Thus an input vector x is assigned to class c k  if 

P(Cklx)  > P(CjIx)  for all j # k .  (B6.2.13) 

We shall see the justification for this rule shortly. Since the denominator in Bayes’ theorem (B6.2.11) is 
independent of the class, we see that this is equivalent to assigning input patterns to class ck provided 

p(x1ck>P(ck)  > p ( x 1 c j ) P ( c j )  for all j # k - (B6.2.14) 

A pattern classifier provides a rule for assigning each point of feature space to one of c classes. We 
can therefore regard the feature space as being divided up into c decision regions RI, . . . , R, such that a 
point falling in region Rk is assigned to class c k .  Note that each of these regions need not be contiguous, 
but may itself be divided into several disjoint regions all of which are associated with the same class. The 
boundaries between these regions are known as decision suvuces or decision boundaries. 

In order to find the optimal criterion for placement of decision boundaries, consider the case of a 
one-dimensional feature space x and two classes C1 and C2. We seek a decision boundary which minimizes 
the probability of misclassification, as illustrated in figure B6.2.3. A misclassification error will occur if 
we assign a new pattern to class C1 when in fact it belongs to class C2, or vice versa. We can calculate 
the total probability of an error of either kind by writing (Duda and Hart 1973) 

P(error) = P ( x  E R2, C I )  + P ( x  E R I ,  C2) 
= P ( x  f ~ 2 1 C I ) P ( C I )  + P ( x  E RIIC2)P(C2) 

= J,, P ( x I c l ) P ( C l ) d x  + /  P(XlC2>PG2>dx (B6.2.15) 

where P ( x  E RI, C2) is the joint probability of x being assigned to class C1 and the true class being C2. 
From (B6.2.15) we see that, if p ( x l c ~ ) P ( C ~ )  > p(xlC2)P(Cz)  for a given x ,  we should choose the regions 

RI 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.25 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

Figure B6.2.3. Schematic illustration of the joint probability densities, given by p(x,  C,) = p(x(Ck)P(Ck) ,  
as a function of a feature value x, for two classes CI and Cz. If the vertical line is used as the decision 
boundary then the classification errors arise from the shaded region. By placing the decision boundary 
at the point where the two probability density curves cross (shown by the arrow), the probability of 
misclassification is minimized. 

RI and 721 such that x is in RI, since this gives a smaller contribution to the error. We recognize this as 
the decision rule given by (B6.2.14) for minimizing the probability of misclassification. The same result 
can be seen graphically in figure B6.2.3, in which misclassification errors arise from the shaded region. 
By choosing the decision boundary to coincide with the value of x at which the two distributions cross 
(shown by the arrow) we minimize the area of the shaded region and hence minimize the probability of 
misclassification. This corresponds to classifying each new pattern x using (B6.2.14), which is equivalent 
to assigning each pattern to the class having the largest posterior probability. A similar justification for 
this decision rule may be given for the general case of c classes and d-dimensional feature vectors (Duda 
and Hart 1973). 

It is important to distinguish between two separate stages in the classification process. The first is 
inference whereby data are used to determine values for the posterior probabilities. These are then used 
in the second stage which is decision making in which those probabilities are used to make decisions such 
as assigning a new data point to one of the possible classes. So far we have based classification decisions 
on the goal of minimizing the probability of misclassification. In many applications this may not be the 
most appropriate criterion. Consider, for instance, the task of classifying images used in medical screening 
into two classes corresponding to ‘normal’ and ‘tumor’. There may be much more serious consequences 
if we classify an image of a tumor as normal than if we classify a normal image as that of a tumor. Such 
effects may easily be taken into account by the introduction of a loss marrix with elements L k j  specifying 
the penalty associated with assigning a pattern to class Cj when in fact it belongs to class c k .  The overall 
expected loss is minimized if, for each input z, the decision regions R j  are chosen such that z E R j  when 

(B6.2.16) 

which represents a generalization of the usual decision rule for minimizing the probability of 
misclassification. Note that, if we assign a loss of 1 if the pattern is placed in the wrong class, and 
a loss of 0 if it is placed in the correct class, so that L k j  = 1 - &j (where &j is the Kronecker delta 
symbol), then (B6.2.16) reduces to the decision rule for minimizing the probability of misclassification, 
given by (B6.2.14). 

Another powerful consequence of knowing posterior probabilities is that it becomes possible to 
introduce a reject criterion. In general, we expect most of the misclassification errors to occur in those 
regions of z-space where the largest of the posterior probabilities is relatively low, since there is then a 
strong overlap between different classes. In some applications it may be better not to make a classification 
decision in such cases. This leads to the following procedure 

then classify z 
if maxP(Cklz) k { $i then reject z (B6.2.17) 

where 8 is a threshold in the range (0, 1). The larger the value of 8, the fewer points will be classified. For 
the medical classification problem, for example, it may be better not to rely on an automatic classification 
system in doubtful cases, but to have these classified instead by a human expert. 

B6.2:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Classification and regression 

Yet another application for the posterior probabilities arises when the distributions of patterns between 
the classes, corresponding to the prior probabilities P ( c k ) ,  are strongly mismatched. If we know the 
posterior probabilities corresponding to the data in the training set, it is then a simple matter to use 
Bayes’ theorem (B6.2.11) to make the necessary corrections. This is achieved by dividing the posterior 
probabilities by the prior probabilities corresponding to the training set, multiplying them by the new 
prior probabilities, and then normalizing the results. Changes in the prior probabilities can therefore ~ 4 . 4 . 1  

be accommodated without retraining the network. The prior probabilities for the training set may be 
estimated simply by evaluating the fraction of the training set data points in each class. Prior probabilities 
corresponding to the operating environment can often be obtained very straightforwardly since only the 
class labels are needed and no input data are required. As an example, consider again the problem of 
classifying medical images into ‘normal’ and ‘tumor’. When used for screening purposes, we would expect 
a very small prior probability of ‘tumor’. To obtain a good variety of tumor images in the training set 
would therefore require huge numbers of training examples. An alternative is to increase artificially the 
proportion of tumor images in the training set, and then to compensate for the different priors on the test 
data as described above. The prior probabilities for tumors in the general population can be obtained from 
medical statistics, without having to collect the corresponding images. Correction of the network outputs 
is then a simple matter of multiplication and division. 

The most common approach to the use of neural networks for classification involves having the 
network itself directly produce the classification decision. As we have seen, knowledge of the posterior 
probabilities is substantially more powerful. 

References 

Bellman R 1961 Adaptive Control Processes: A Guided Tour (New Jersey: Princeton University Press) 
Bishop C M 1995 Neural Networks for Pattern Recognition (Oxford: Oxford University Press) 
Broomhead D S and Lowe D 1988 Multivariable functional interpolation and adaptive networks Complex Syst. 2 

Cotter N E 1990 The Stone-Weierstrass theorem and its application to neural networks IEEE Trans. Neural Nerworks 

Cybenko G 1989 Approximation by superpositions of a sigmoidal function Math. Control, Signals Syst. 2 304-14 
Duda R 0 and P E Hart 1973 Pattern Classication and Scene Analysis (New York: Wiley) 
Friedman J H and W Stuetzle 1981 Projection pursuit regression J. Am. Stat. Assoc. 76 817-23 
Funahashi K 1989 On the approximate realization of continuous mappings by neural networks Neural Networks 2 

Hecht-Nielsen R 1989 Theory of the back-propagation neural network Proc. Int. Joint Con& on Neural Networks vol 1 

Homik K 1991 Approximation capabilities of multilayer feedforward networks Neural Networks 4 251-7 
Homik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural 

-1990 Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks 

Huber P J 1985 Projection pursuit Ann. Stat. 13 435-75 
Ito Y 1991 Representation of functions by superpositions of a step or sigmoid function and their applications to neural 

Kreinovich V Y 1991 Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem 

Le Cun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation 

Moody J and Darken C J 1989 Fast learning in networks of locally-tuned processing units Neural Comput. 1 281-94 
Stinchcombe M and White H 1989 Universal approximation using feed-forward networks with non-sigmoid hidden 

321-55 

1290-5 

183-92 

pp 593-605 (San Diego, CA: IEEE) 

Networks 2 359-66 

Neural Networks 3 55 1-60 

network theory Neural Networks 4 385-94 

Neural Networks 4 381-3 

applied to handwritten zip code recognition Neural Comput. 1 541-51 

layer activation functions. Proc. Znt. Joint Con& on Neural Networks (San Diego, CA: IEEE) vol 1 pp 613-8 

@ 1997 IOP Publishing Ltd and Word  University Ress Handbook of Neural Computation release 9711 B6.2:7 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

B6.3 Error functions 

Christopher M Bishop 

Abstract 

See the abstract for Chapter B6. 

We turn next to the problem of determining suitable values for the weight parameters w in a network. 
Training data are provided in the form of N pairs of input vectors z" and corresponding desired 

output vectors t" where n = 1, . . . , N labels the patterns. These desired outputs are called target values 
in the neural network context, and the components t; of t" represent the targets for the corresponding 
network outputs yk. For associative prediction problems of the kind we are considering, the most general 
and complete description of the statistical properties of the data is given in terms of the conditional density 
of the target data p ( t l z )  conditioned on the input data. 

A principled way to devise an error function is to use the concept of muximum likelihood. For a set 
of training data {z", t"}, the likelihood can be written as 

L = n p(t"1z") (B6.3.1) 

where we have assumed that each data point (x", t") is drawn independently from the same distribution, 
so that the likelihood for the complete data set is given by the product of the probabilities for each data 
point separately. Instead of maximizing the likelihood, it is generally more convenient to minimize the 
negative logarithm of the likelihood. These are equivalent procedures, since the negative logarithm is a 
monotonic function. We therefore minimize 

n 

(B6.3.2) 

where E is called an errorfinction. We shall further assume that the distribution of the individual target 
variables tk, where k = 1, . . . , c, are independent, so that we can write 

(B6.3.3) 

As we shall see, a feedforward neural network can be regarded as a framework for modeling the conditional 
probability density p( t1z ) .  Different choices of error function then arise from different assumptions about 
the form of the conditional distribution p ( t l z ) .  It is convenient to discuss error functions for regression 
and classification problems separately. 

B6.3.1 Error functions for regression 

For regression problems, the output variables are continuous. To define a specific error function we must 
make some choice for the model of the distribution of target data. The simplest assumption is to take 
this distribution to be Gaussian. More specifically, we assume that the target variable t k  is given by some 
deterministic function of x with added Gaussian noise 6, so that 

tk = hk(2)  + E k .  (B 6.3.4) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.3:l 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

We then assume that the errors ~k have a normal distribution with zero mean, and a standard deviation CJ 
which does not depend on z or k. Thus, the distribution of e k  is given by 

(B6.3.5) 

We now model the functions hk(z )  by a neural network with outputs y k ( z ;  w) where w is the set of 
weight parameters governing the neural network mapping. Using (B6.3.4) and (B6.3.5) we see that the 
probability distribution of target variables is given by 

(B6.3.6) 

where we have replaced the unknown function hk( z )  by our model y k ( z ;  w). Together with (B6.3.2) and 
(B6.3.3) this leads to the following expression for the error function 

(B6.3.7) 

We note that, for the purposes of error minimization, the second and third terms on the right-hand side 
of (B6.3.7) are independent of the weights w and so can be omitted. Similarly, the overall factor of l/aZ 
in the first term can also be omitted. We then finally obtain the familiar expression for the sum of squares 
error function 

l N  
E = - 

2 1 1 ~ ( ~ " ;  w) - tn 11' 
n=l 

(B6.3.8) 

Note that models of the form (B6.2.4), with fixed basis functions, are linear functions of the parameters 
w and so (B6.3.8) is a quadratic function of w. This means that the minimum of E can be found in 
terms of the solution of a set of linear algebraic equations. For this reason, the process of determining the 
parameters in such models is extremely fast. Functions which depend linearly on the adaptive parameters 
are called linear models, even though they may be nonlinear functions of the input variables. If the basis 
functions themselves contain adaptive parameters, we have to address the problem of minimizing an error 
function which is generally highly nonlinear. 

The sum of squares error function was derived from the requirement that the network output vector 
should represent the conditional mean of the target data, as a function of the input vector. It is easily 
shown (Bishop 1995) that minimization of this error, for an infinitely large data set and a highly flexible 
network model, does indeed lead to a network satisfying this property. 

We have derived the sum-of-squares error function on the assumption that the distribution of the target 
data is Gaussian. For some applications, such an assumption may be far from valid (if the distribution is 
multimodal for instance) in which case the use of a sum-of-squares error function can lead to extremely 
poor results. Examples of such distributions arise frequently in inverse problems such as robot kinematics, 
the determination of spectral line parameters from the spectrum itself, or the reconstruction of spatial data 
from line of sight information. One general approach in such cases is to combine a feedforward network 
with a Gaussian mixture model (i.e. a linear combination of Gaussian functions) thereby allowing general 
conditional distributions p ( t l z )  to be modeled (Bishop 1994). 

B6.3.2 Error functions for classification 

In the case of classification problems, the goal, as we have seen, is to approximate the posterior probabilities 
of class membership P(Cklz) given the input pattern z. We now show how to arrange for the outputs of 
a network to approximate these probabilities. 

First we consider the case of two classes C1 and Cp. In this case we can consider a network having 
a single output y which should represent the posterior probability P(C11z) for class CI. The posterior 
probability of class Cp will then be given by P(C21z) = 1 - y .  To achieve this we consider a target coding 
scheme for which t = 1 if the input vector belongs to class C1 and f = 0 if it belongs to class C2. We can 
combine these into a single expression, so that the probability of observing either target value is 

p ( t  12) = y f ( l  - yy -2  (B6.3.9) 

B6.312 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Error functions 

which is a particular case of the binomial distribution called the Bernoulli distribution. With this 
interpretation of the output unit activations, the likelihood of observing the training data set, assuming the 
data points are drawn independently from this distribution, is then given by 

(B6.3.10) 

As usual, it is more convenient to minimize the negative logarithm of the likelihood. This leads to the 
crowentropy error function (Hopfield 1987, Baum and Wilczek 1988, Solla et al 1988, Hinton 1989, 
Hampshire and Pearlmutter 1990) in the form 

E = - C { t n 1 n y n + ( 1  - tn>ln( l  - y n > } .  
n 

(B6.3.11) 

For the network model introduced in (B6.2.4) the outputs were linear functions of the activations of 
the hidden units. While this is appropriate for regression problems, we need to consider the correct choice 
of output unit activation function for the case of classification problems. We shall assume (Rumelhart et 
a1 1995) that the class conditional distributions of the outputs of the hidden units, represented here by the 
vector a, are described by 

P ( 4 C k )  = exp {A(&) + w, 4) + e : % }  (B6.3.12) 

which is a member of the exponential family of distributions (that includes many of the common 
distributions as special cases such as Gaussian, binomial, Bernoulli, Poisson, and so on). The parameters 
& and r#~ control the form of the distribution. In writing (B6.3.12) we are implicitly assuming that the 
distributions differ only in the parameters & and not in 4. An example would be two Gaussian distributions 
with different means, but with common covariance matrices. (Note that the decision boundaries will then 
be linear functions of a but will of course be nonlinear functions of the input variables as a consequence 
of the nonlinear transformation by the hidden units.) 

Using Bayes' theorem, we can write the posterior probability for class C1 in the form 

1 
1 + exp(-a) 

- - 

which is a logistic sigmoid function, in which 

p(aIC1 )W1) 
P (a IC21 p (C2) * 

a = In 

Using (B6.3.12) we can write this in the form 

a = wTa +WO 

where we have defined 

(B6.3.13) 

(B6.3.14) 

(B6.3.15) 

w = el - e2 (B6.3.16) 

(B6.3.17) 

Thus the network output is given by a logistic sigmoid activation function acting on a weighted linear 
combination of the outputs of those hidden units which send connections to the output unit. 

Incidentally, it is clear that we can also apply the above arguments to the activations of hidden units 
in a network. Provided such units use logistic sigmoid activation functions, we can interpret their outputs 
as probabilities of the presence of corresponding 'features' conditioned on the inputs to the units. 

As a simple illustration of the interpretation of network outputs as probabilities, we consider a two- 
class problem with one input variable in which the class conditional densities are given by the Gaussian 
mixture functions shown in figure B6.3.1. A feedforward network, with five hidden units having sigmoidal 
activation functions, and one output unit having a logistic sigmoid activation function, was trained by 
minimizing a cross-entropy error using 100 cycles of the BFGS quasi-Newton algorithm (section B6.3.3). ~6.3.3 

@ 1997 1OP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.3~3 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

3.0 I I 1 

2.0 

1 .o 

0.0 
0.0 0.5 1.0 

Figure B6.3.1. Plots of the class conditional densities used to generate a data set to demonstrate the 
interpretation of network outputs as posterior probabilities. The training data set was generated from these 
densities, using equal prior probabilities. 

1 .o X 0.0 0.5 

Figure B6.3.2. The result of training a multilayer perceptron on data generate from the density functions 
in figure B6.3.1. The full curve shows the output of the trained network as a function of the input variable 
x ,  while the broken curve shows the true posterior probability P ( C l l x )  calculated from the class-conditional 
densities using Bayes’ theorem. 

The resulting network mapping function is shown, along with the true posterior probability calculated 
using Bayes’ theorem, in figure B6.3.2. 

For the case of more than two classes, we consider a network with one output for each class so that 
each output represents the corresponding posterior probability. First of all we choose the target values for 
network training according to a 1-of-c coding scheme, so that f$ = 8kl  for a pattern n from class Cl. We 
wish to arrange for the probability of observing the set of target values f ; ,  given an input vector x”, to be 
given by the corresponding network output so that p(C113c) = yl. The value of the conditional distribution 
for this pattern can therefore be written as 

(B6.3.18) 
k=l 

If we form the likelihood function, and take the negative logarithm as before, we obtain an error function 
of the form 

C 

E = - r x t , ” l n y ; .  
n k=l 

(B6.3.19) 

Again we must seek the appropriate output unit activation function to match this choice of error 
function. As before, we shall assume that the activations of the hidden units are distributed according to 
(B6.3.12). From Bayes’ theorem, the postenor probability of class ck is given by 

(B6.3.20) 

B6.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Error functions 

Substituting (B6.3.12) into (B6.3.20) and rearranging we obtain 

where 

and we have defined 

(B6.3.21) 

(B6.3.23) 
(B6.3.24) 

The activation function (B6.3.21) is called a sofrmax function or normalized exponential. It has the 
properties that 0 5 yk 5 1 and Ck yk = 1 as required for probabilities. 

It is easily verified (Bishop 1995) that the minimization of the error function (B6.3.19), for an infinite 
data set and a highly flexible network function, indeed leads to network outputs which represent the 
posterior probabilities for any input vector 2. 

Note that the network outputs of the trained network need not be close to 0 or 1 if the class conditional 
density functions are overlapping. Heuristic procedures, such as applying extra training using those patterns 
which fail to generate outputs close to the target values, will be counterproductive, since this alters the 
distributions and makes it less likely that the network will generate the correct Bayesian probabilities! 

B6.3.3 Error backpropagation 

Using the principle of maximum likelihood, we have formulated the problem of learning in neural networks 
in terms of the minimization of an error function E(w). This error depends on the vector w of weight 
and bias parameters in the network, and the goal is therefore to find a weight vector w* which minimizes 
E. For models of the form (B6.2.4) in which the basis functions are fixed, and for an error function given 
by the sum-of-squares form (B6.3.8), the error is a quadratic function of the weights. Its minimization 
then corresponds to the solution of a set of coupled linear equations and can be performed rapidly. We 
have seen, however, that models with fixed basis functions suffer from very poor scaling with input 
dimensionality. In order to avoid this difficulty we need to consider models with adaptive basis functions. 
The error function now becomes a highly nonlinear function of the weight vector, and its minimization 
requires sophisticated optimization techniques. 

We have considered error functions of the form (B6.3.8), (B6.3.11) and (B6.3.19) which are 
differentiable functions of the network outputs. Similarly, we have considered network mappings which 
are differentiable functions of the weights. It therefore follows that the error function itself will be a 
differentiable function of the weights and so we can use gradient-based methods to find its minima. We 
now show that there is a computationally efficient procedure, called backpropagation, which allows the ci.2.3 
required derivatives to be evaluated for arbitrary feedforward network topologies. 

In a general feedforward network, each unit computes a weighted sum of its inputs of the form 

(B 6.3.25) 

where zi is the activation of a unit, or input, which sends a connection to unit j, and Wji  is the weight 
associated with that connection. The summation runs over all units which send connections to unit j. 
Biases can be included in this sum by introducing an extra unit, or input, with activation fixed at +l. We 
therefore do not need to deal with biases explicitly. The error functions which we are considering can be 
written as a sum over patterns of the error for each pattern separately so that E = C,, E”. This follows 
from the assumed independence of the data points under the given distribution. We can therefore consider 
one pattern at a time, and then find the derivatives of E by summing over patterns. 

For each pattern we shall suppose that we have supplied the corresponding input vector to the network 
and calculated the activations of all of the hidden and output units in the network by successive application 
of (B6.3.25). This process is often calledforwardpropagation since it can be regarded as a forward flow 
of information through the network. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.3:5 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

Now consider the evaluation of the derivative of E" with respect to some weight wji. First we note 
that E" depends on the weight wji only via the summed input aj to unit j .  We can therefore apply the 
chain rule for partial derivatives to give 

We now introduce a useful notation a E" S. = - 
- aaj 

(B6.3.26) 

(B6.3.27) 

where the 6 are often referred to as errors for reasons which will become clear shortly. Using (B6.3.25) 
we can write 

aaj 
awji 
- = z i .  

Substituting (B6.3.27) and (B6.3.28) into (B6.3.26) we then obtain 

- = S j Z i  . 
awji 
aE" 

(B6.3.28) 

(B6.3.29) 

Equation (B6.3.29) tells us that the required derivative is obtained simply by multiplying the value of S 
for the unit at the output end of the weight by the value of z for the unit at the input end of the weight 
(where z = 1 in the case of a bias). Thus, in order to evaluate the derivatives, we need only to calculate 
the value of Sj for each hidden and output unit in the network, and then apply (B6.3.29). 

For the output units the evaluation of & is straightforward. From the definition (B6.3.27) we have 

(B6.3.30) 

where we have used (B6.3.25) with Z k  denoted by yk. In order to evaluate (B6.3.30) we substitute 
appropriate expressions for g'(a) and aE"/ay .  If, for example, we consider the sum-of-squares error 
function (B6.3.8) together with a network having linear outputs, as in (B6.2.7) for instance, we obtain 

8k = y; - t! (B6.3.3 1) 

and so 6k represents the error between the actual and the desired values for output k. The same form 
(B6.3.31) is also obtained if we consider the cross-entropy error function (B6.3.11) together with a network 
with a logistic sigmoid output, or if we consider the error function (B6.3.19) together with the softmax 
activation function (B6.3.21). 

To evaluate the S for hidden units we again make use of the chain rule for partial derivatives, to give 

(B6.3.32) 

where the sum runs over all units k to which unit j sends connections. The arrangement of units and 
weights is illustrated in figure B6.3.3. Note that the units labeled k could include other hidden units 
and/or output units. In writing down (B6.3.32) we are making use of the fact that variations in aj give 
rise to variations in the error function only through variations in the variables ak. If we now substitute 
the definition of S given by (B6.3.27) into (B6.3.32), and make use of (B6.3.25), we obtain the following 
backpropagation formula 

(B 6.3.3 3) 

which tells us that the value of 6 for a particular hidden unit can be obtained by propagating the 6 backwards 
from units higher up in the network, as illustrated in figure B6.3.3. Since we already know the values of 
the 6 for the output units, it follows that by recursively applying (B6.3.33) we can evaluate the 6 for all 
of the hidden units in a feedforward network, regardless of its topology. Having found the gradient of the 
error function for this particular pattern, the process of forward and backward propagation is repeated for 
each pattern in the data set, and the resulting derivatives summed to give the gradient VE(w) of the total 
error function. 

B6.3:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Error functions 

Figure B6.3.3. Illustration of the calculation of Sj for hidden unit j by backpropagation of the S from 
those units k to which unit j sends connections. 

The backpropagation algorithm allows the error function gradient V E ( w )  to be evaluated efficiently. 
We now seek a way of using this gradient information to find a weight vector which minimizes the error. 
This is a standard problem in unconstrained nonlinear optimization and has been widely studied, and a 
number of powerful algorithms have been developed. Such algorithms begin by choosing an initial weight 
vector do) (which might be selected at random) and then making a series of steps through weight space 
of the form 

w('+l) = w(r) + Aw(') (B6.3.34) 

where t labels the iteration step. The simplest choice for the weight update is given by the gradient 
descent expression 

Aw") = -q VEI,w (B6.3.35) 

where the gradient vector V E  must be reevaluated at each step. It should be noted that gradient descent is 
a very inefficient algorithm for highly nonlinear problems such as neural network optimization. Numerous 
ad hoc modifications have been proposed to try to improve its efficiency. One of the most common is the 
addition of a momentum term in (B6.3.35) to give C1.2.4 

A w ' ~ )  = -Q VEI,w + p Aw('-') (B6.3.36) 

where p is called the momentum parameter. While this can often lead to improvements in the performance 
of gradient descent, there are now two arbitrary parameters q and p whose values must be adjusted to 
give best performance. Furthermore, the optimal values for these parameters will often vary during 
the optimization process. In fact, much more powerful techniques have been developed for solving 
nonlinear optimization problems (Polak 1971, Gill et a1 1981, Dennis and Schnabel 1983, Luenberger 
1984, Fletcher 1987, Bishop 1995). These include conjugate gradient methods, quasi-Newton algorithms, 
and the Levenberg-Marquardt technique. 

It should be noted that the term backpropagation is used in the neural computing literature to mean 
a variety of different things. For instance, the multilayer perceptron architecture is sometimes called a 
backpropagation network. The term backpropagation is also used to describe the training of a multilayer 
perceptron using gradient descent applied to a sum-of-squares error function. In order to clarify the 
terminology it is useful to consider the nature of the training process more carefully. Most training 
algorithms involve an iterative procedure for minimization of an error function, with adjustments to 
the weights being made in a sequence of steps. At each such step we can distinguish between two 
distinct stages. In the first stage, the derivatives of the error function with respect to the weights must be 
evaluated. As we shall see, the important contribution of the backpropagation technique is in providing a 
computationally efficient method for evaluating such derivatives. Since it is at this stage that errors are 
propagated backwards through the network, we use the term backpropagation specifically to describe the 
evaluation of derivatives. In the second stage, the derivatives are then used to compute the adjustments to 
be made to the weights. The simplest such technique, and the one originally considered by Rumelhart et 
a1 (1986), involves gradient descent. It is important to recognize that the two stages are distinct. Thus, the 
first-stage process, namely the propagation of errors backwards through the network in order to evaluate 
derivatives, can be applied to many other kinds of network and not just the multilayer perceptron. It can 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B6.3~7 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

also be applied to error functions other than the simple sum-of-squares, and to the evaluation of other 
quantities such as the Hessian matrix whose elements comprise the second derivatives of the error function 
with respect to the weights (Bishop 1992). Similarly, the second stage of weight adjustment using the 
calculated derivatives can be tackled using a variety of optimization schemes (discussed above), many of 
which are substantially more effective than simple gradient descent. 

One of the most important aspects of backpropagation is its computational efficiency. To understand 
this, let us examine how the number of computer operations required to evaluate the derivatives of the 
error function scales with the size of the network. A single evaluation of the error function (for a given 
input pattern) would require O ( W )  operations, where W is the total number of weights in the network. 
For W weights in total there are W such derivatives to evaluate. A direct evaluation of these derivatives 
individually would therefore require O( W 2 )  operations. By comparison, backpropagation allows all of the 
derivatives to be evaluated using a single forward propagation and a singlebackward propagation together 
with the use of (B6.3.29). Since each of these requires O ( W )  steps, the overall computational cost is 
reduced from O( W 2 )  to O( W ) .  The training of multilayer perceptron networks, even using backpropagation 
coupled with efficient optimization algorithms, can be very time consuming, and so this gain in efficiency 
is crucial. 

References 

Anderson A and Rosenfeld E (eds) 1988 Neurocomputing: Foundations of Research (Cambridge, MA: MIT) 
Baum E B and Wilczek F 1988 Supervised learning of probability distributions by neural networks Neural Information 

Bishop C M 1992 Exact calculation of the Hessian matrix for the multilayer perceptron Neural Comput. 4 494-501 
-1994 Mixture density networks Technical Report NGRG194/001 Neural Computing Research Group, Aston 

-1995 Neural Networks for Pattern Recognition (Oxford: Oxford University Press) 
Dennis J E and R B Schnabel 1983 Numerical Methods for Unconstrained Optimization and Nonlinear Equations 

Fletcher R 1987 Practical Methods of Optimization (2nd edn) (New York: Wiley) 
Gill P E, Murray W and Wright M H 1981 Practical Optimization (London: Academic) 
Hampshire J B and Pearlmutter B 1990 Equivalence proofs for multi-layer perceptron classifiers and the Bayesian 

discriminant function Proc. 1990 Connectionist Models Summer School ed D S Touretzky, J L Elman, T J 
Sejnowski and G E Hinton (San Mateo, CA: Morgan Kaufmann) pp 159-72 

Processing Systems ed D Z Anderson pp 52-61 (New York: American Institute of Physics) 

University, Birmingham, UK 

(Englewood Cliffs, NJ: Prentice-Hall) 

Hinton G E 1989 Connectionist leaming procedures Artif. Intell. 40 185-234 
Hopfield J J 1987 Leaming algorithms and probability distributions in feed-forward and feed-back networks Proc. 

Luenberger D G 1984 Linear and Nonlinear Programming (2nd edn) (Reading, MA: Addison-Wesley) 
Polak E 1971 Computational Methods in Optimization: A Unified Approach (New York: Academic) 
Rumelhart D E, Durbin R, Golden R and Chauvin Y 1995 Backpropagation: the basic theory Backpropagation: 

Theory, Architectures, and Applications ed Y Chauvin and D E Rumelhart (Hillsdale, NJ: Lawrence Erlbaum) 

Rumelhart D E, Hinton G E and Williams R J 1986 Learning internal representations by error propagation Parallel 
Distrihuted Processing: Explorations in the Microstructure of Cognition Volume I :  Foundations ed D E 
Rumelhart, J L McClelland, and the PDP Research Group (Cambridge, MA: MIT) pp 318-62 (reprinted in 
Anderson and Rosenfeld (1988).) 

Natl Acad. Sci. 84 8429-33 

pp 1-34 

Solla S A, Levin E and Fleisher M 1988 Accelerated leaming in layered neural networks Complex Syst. 2 62540 

B6.3~8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

B6.4 Generalization 

Christopher M Bishop 

Abstract 

See the abstract for Chapter B6. 

The goal of network training is not to learn an exact representation of the training data itself, but rather 
to build a statistical model of the process which generates the data. This is important if the network is to 

In order for the network to provide a good representation of the generator of the data it is important 
that the effective complexity of the model be matched to the data set. This is most easily illustrated by 
returning to the analogy with polynomial curve fitting introduced in section B6.2.1. In this case the model 
complexity is governed by the order of the polynomial which in turn governs the number of adjustable 
coefficients. Consider a data set of 11 points generated by sampling the function 

exhibit good generalization, that is, to make good predictions for new inputs. B3.5.2 

h ( x )  = 0.5 + 0.4 sin(2nx) (B6.4.1) 

at equal intervals of x and then adding random noise with a Gaussian distribution having standard deviation 
Q = 0.05. This reflects a basic property of most data sets of interest in pattern recognition in that the 
data exhibit an underlying systematic component, represented in this case by the function h(x) ,  but are 
corrupted with random noise. Figure B6.4.1 shows the training data, as well as the function h(x)  from 
(B6.4.1), together with the result of fitting a linear polynomial, given by (B6.2.2) with M = 1. As can 
be seen, this polynomial gives a poor representation of h(x) ,  as a consequence of its limited flexibility. 
We can obtain a better fit by increasing the order of the polynomial, since this increases the number of 
degrees of freedom (i.e. the number of free parameters) in the function, which gives it greater flexibility. 

Figure B6.4.2 shows the result of fitting a cubic polynomial (M = 3) which gives a much better 
approximation to h ( x ) .  If, however, we increase the order of the polynomial too far, then the approximation 
to the underlying function actually gets worse. Figure B6.4.3 shows the result of fitting a ten-order 
polynomial (M = 10). This is now able to achieve a perfect fit to the training data, since a ten-order 
polynomial has 11 free parameters, and there are 11 data points. However, the polynomial has fitted 
the data by developing some dramatic oscillations and consequently gives a poor representation of h(x) .  
Functions of this kind are said to be overjitted to the data. 

In order to determine the generalization performance of the different polynomials, we generate a 
second independent test set, and measure the root mean square error ERMS with respect to both training 
and test sets. Figure B6.4.4 shows a plot of ERMS for both the training data set and the test data set, as 
a function of the order M of the polynomial. We see that the training set error decreases steadily as the 
order of the polynomial increases. However, the test set error reaches a minimum at M = 3, and thereafter 
increases as the order of the polynomial is increased. The smallest error is achieved by that polynomial 
(M = 3) which most closely matches the function h(x)  from which the data were generated. 

In the case of neural networks the weights and biases are analogous to the polynomial coefficients. 
These parameters can be optimized by minimization of an error function defined with respect to a training 
data set. The model complexity is governed by the number of such parameters and so is determined by the 
network architecture and in particular by the number of hidden units. We have seen that the complexity 
cannot be optimized by minimization of training set error since the smallest training error corresponds to 
an overfitted model which has poor generalization. Instead, we see that the optimum complexity can be 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 B6.4~1 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

1.1 

0.0 0.5 x 1.0 

Figure B6.4.1. An example of a set of 11 data points obtained by sampling the function h ( x ) ,  defined 
by (B6.4.1), at equal intervals of x and adding random noise. The broken curve shows the function h ( x ) ,  
while the full curve shows the rather poor approximation obtained with a linear polynomial, corresponding 
to M = 1 in (B6.2.2). 

0.0 I I 
0.0 0.5 x 1.0 

Figure B6.4.2. This shows the same data set as in figure B6.4.1, but this time fitted by a cubic (M = 3) 
polynomial, showing the significantly improved approximation to h (x) achieved by this more flexible 
function. 

0.0 I 1 
0.0 0.5 x 1.0 

Figure B6.43. The result of fitting the same data set as in figure B6.4.1 using a ten-order (M = 10) 
polynomial. This gives a perfect fit to the training data, but at the expense of a function which has large 
oscillations, and which therefore gives a poorer representation of the generator function h ( x )  than did the 
cubic polynomial of figure B6.4.2. 

chosen by comparing the performance of a range of trained models using an independent test set. A more 
~ 3 . 5 . 2  elaborate version of this procedure is cross-validation (Stone 1974, 1978, Wahba and Wold 1975). 

Instead of directly varying the number of adaptive parameters in a network, the effective complexity 
~ 2 . 1 0 . 6  of the model may be controlled through the technique of regularization. This involves the use of a model 

with a relatively large number of parameters, together with the addition of a penalty term 52 to the usual 
error function E to give a total error function of the form 

E = E + v S Z  (B6.4.2) 

where v is called a regularization coefficient. The penalty term 52 is chosen so as to encourage smoother 
network mapping functions since, by analogy with the polynomial results shown in figures B6.4.1-B6.4.3, 
we expect that good generalization is achieved when the rapid variations in the mapping associated with 
overfitting are smoothed out. There will be an optimum value for v which can again be found by 
comparing the performance of models trained using different values of v on an independent test set. 
Regularization is usually the preferred choice for model complexity control for a number of reasons: it 

B6.4~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Generalization 

0.0 
0 2 4 6 8 1 0  

order of polynomial 

Figure B6.4.4. Plots of the RMS error E M S  as a function of the order of the polynomial for both training 
and test sets, for the example problem considered in the previous three figures. The error with respect to 
the training set decreases monotonically with M, while the error in making predictions for new data (as 
measured by the test set) shows a minimum at M = 3. 

allows prior knowledge to be incorporated into network training; it has a natural interpretation in the 
Bayesian framework (discussed in Section B6.5); and it can be extended to provide more complex forms 
of regularization involving several different regularization parameters which can be used, for example, to 
determine the relative importance of different inputs. 

References 

Stone M 1974 Cross-validatory choice and assessment of statistical predictions J. R. Stat. Soc. B 36 11 1-47 
- 1978 Cross-validation: a review Math. Operationsforsch. Statist., Ser. Statistics 9 127-39 
Wahba G and Wold S 1975 A completely automatic French curve: fitting spline functions by cross-validation Corn" 

Stat. A 4 1-17 

@ 1997 IOP Publishing Ud and Oxford University Press Handbook ofNeural Computation release 9711 B6.4:3 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recognition Perspective 

B6.5 Discussion 

Christopher M Bishop 

Abstract 

See the abstract for Chapter B6. 

In this chapter we have presented a brief overview of neural networks from the viewpoint of statistical 
pattern recognition. Due to lack of space, there are many important issues which we have not discussed 
or have only touched upon. Here we mention two further topics of considerable significance for neural 
computing. 

In practical applications of neural networks, one of the most important factors determining the overall 
performance of the final system is that of data preprocessing. Since a neural network mapping has 
universal approximation capabilities, as discussed in section B6.2.2, it would in principle be possible to 
use the original data directly as the input to a network. In practice, however, there is generally considerable 
advantage in processing the data in various ways before they are used for network training. One important 
reason why preprocessing can lead to improved performance is that it can offset some of the effects of the 
‘curse of dimensionality’ discussed in section B6.2.2 by reducing the number of input variables. Input can 
be combined in linear or nonlinear ways to give a smaller number of new inputs which are then presented 
to the network. This is sometimes called feature extraction. Although information is often lost in the 
process, this can be more than compensated for by the benefits of a lower input dimensionality. Another 
significant aspect of preprocessing is that it allows the use of prior knowledge, in other words information 
which is relevant to the solution of a problem which is additional to that contained in the training data. 
A simple example would be the prior knowledge that the classification of a handwritten digit should not 
depend on the location of the digit within the input image. By extracting features which are independent of 
position, this translation invariance can be incorporated into the network structure, and this will generally 
give substantially improved performance compared with using the original image directly as the input to 
the network. Another use for preprocessing is to clean up deficiencies in the data. For example, real data 
sets often suffer from the problem of missing values in many of the patterns, and these must be accounted 
for before network training can proceed. 

The discussion of learning in neural networks given above was based on the principle of maximum 
likelihood, which itself stems from the frequentist school of statistics. A more fundamental, and potentially 
more powerful, approach is given by the Bayesian viewpoint (Jaynes 1986). Instead of describing a trained 
network by a single weight vector w*, the Bayesian approach expresses our uncertainty in the values of the 
weights through a probability distribution p ( w ) .  The effect of observing the training data is to cause this 
distribution to become much more concentrated in particular regions of weight space, reflecting the fact that 
some weight vectors are more consistent with the data than others. Predictions for new data points require 
the evaluation of integrals over weight space, weighted by the distribution p ( w ) .  The maximum-likelihood 
approach considered in Section B6.3 is related to a particular approximation in which we consider only 
the most probable weight vector, corresponding to a peak in the distribution. Aside from offering a more 
fundamental view of learning in neural networks, the Bayesian approach allows error bars to be assigned 
to network predictions, and regularization arises in a natural way in the Bayesian setting. Furthermore, a 
Bayesian treatment allows the model complexity (as determined by regularization coefficients, for instance) 
to be treated without the need for independent data as in cross-validation. 

Although the Bayesian approach is very appealing, a full implementation is intractable for neural 
networks. Two principal approximation schemes have therefore been considered. In the first of these 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 B6.5~1 

Copyright © 1997 IOP Publishing Ltd



Neural Networks: A Pattern Recoenition PersDective 

(MacKay 1992a, b, c) the distribution over weights is approximated by a Gaussian centered on the most 
probable weight vector. Integrations over weight space can then be performed analytically, and this leads to 
a practical scheme which involves relatively small modifications to conventional algorithms. An alternative 
approach to the Bayesian treatment of neural networks is to use Monte Carlo techniques (Neal 1994) to 
perform the required integrations numerically without making analytical approximations. Again, this leads 
to a practical scheme which has been applied to some real-world problems. 

An interesting aspect of the Bayesian viewpoint is that it is not, in principle, necessary to limit network 
complexity (Neal 1994), and that overfitting should not arise if the Bayesian approach is implemented 
correctly. A more comprehensive discussion of these and other topics can be found in the book by Bishop 
(1995). 

References 

Bishop C M 1995 Neural Networks for Pattem Recognition (Oxford: Oxford University Press) 
Jaynes E T 1986 Bayesian methods: general background Maximum Entropy and Bayesian Methods in Applied Statistics 

ed J H Justice (Cambridge: Cambridge University Press) pp 1-25 
MacKay D J C 1992a Bayesian interpolation Neural Comput. 4 41547 
- 1992b The evidence framework applied to classification networks Neural Comput. 4 720-36 
- 1992c A practical Bayesian framework for back-propagation networks Neural Comput. 4 448-72 
Neal R M 1994 Bayesian leaming for neural networks PhD Thesis University of Toronto, Canada 

B6.5:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



PART C 

NEURAL NETWORK MODELS 

C1 SUPERVISED MODELS 
(21.1 Single-layer networks 

George M Georgiou 
C1.2 Multilayer perceptrons 

Luis B Almeida 
C 1.3 Associative memory networks 

Mohamad H Hassoun and Paul B Watta 
C1.4 Stochastic neural networks 

Harold Szu and Masud Cader 
C1.5 Weightless and other memory-based networks 

Igor Aleksander and Helen B Morton 
C1.6 Supervised composite networks 

Christian Jutten 
C 1.7 Supervised ontogenic networks 

Emile Fiesler and Krzysztof J Cios 
C1.8 Adaptive logic networks 

William W Armstrong and Monroe M Thomas 

C2 UNSUPERVISED MODELS 
C2.1 Feedforward models 

Michel Verleysen 
C2.2 Feedback models 

Gail A Carpenter (C2.2.1), Stephen Grossberg (C2.2.1, C2.2.3), and 
Peggy Israel Doerschuk (C2.2.2) 

Cris Koutsougeras 

Bernd Fritzke 

C2.3 Unsupervised composite networks 

C2.4 Unsupervised ontogenetic networks 

C3 REINFORCEMENT LEARNING 
S Sathiya Keerthi and B Ravindran 
C3.1 Introduction 
C3.2 Immediate reinforcement learning 
C3.3 Delayed reinforcement learning 
C3.4 Methods of estimating V R  and Qz 
C3.5 Delayed reinforcement learning methods 
C3.6 Use of neural and other function approximators in reinforcement learning 
C3.7 Modular and hierarchical architectures 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compululion release 9111 
Copyright © 1997 IOP Publishing Ltd



c1 

Supervised Models 

Contents 

C1 SUPERVISED MODELS 
c1.1 

c1.2 

C1.3 

C1.4 

C1.5 

C1.6 

C1.7 

C1.8 

Single-layer networks 
George M Georgiou 
Multilayer perceptrons 
Luis B Almeida 
Associative memory networks 
Mohamad H Hassoun and Paul B Watta 
Stochastic neural networks 
Harold Szu and Masud Cader 
Weightless and other memory-based networks 
Igor Aleksander and Helen B Morton 
Supervised composite networks 
Christian Jutten 
Supervised ontogenic networks 
Emile Fiesler and Krzysztof J Cios 
Adaptive logic networks 
William W Armstrong and Monroe M Thomas 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Cl.1 Single-layer networks 

George M Georgiou 

Abstract 

In this section single-layer neural network models are considered. Some of these models 
are simply single neurons, which, however, are used as the building blocks of larger 
networks. We discuss the perceptron which was developed in the late 1950s, and played 
a pivotal role in the history of neural networks. Nowadays, it is rarely used in real- 
life applications as more versatile and powerful models are available. Nevertheless, 
the perceptron remains an important model due to its simplicity and the influence it 
had in the development of the field. Today most neural networks consist of a large 
number of neurons, each largely resembling the perceptron. The adaline, also a single 
neuron model, was developed contemporaneously with the perceptron and is trained by 
the widely applied least mean square (LMS) algorithm. Both adaline and its extension 
known as madaline found many real applications, especially in signal processing. Notable 
is that the backpropagation algorithm is a generalization of LMS. A powerful technique, 
called learning vector quantization (LVQ) is also presented. This technique is used often 
in data compression and data classification applications. Another model discussed is the 
CMAC (cerebellar model articulation controller), which has many applications especially 
in robotics. All of these models are trained in a supervised manner: for each input, there 
is a target output, based on which an error signal is generated, based on which the weights 
are adapted. Also discussed are the instar and outstar models, single neurons which are 
closer to biology, and are primarily of theoretical interest. 

C1.l.l The perceptron 

CI.I.I.1 Introduction 

The perceptron was developed by Frank Rosenblatt in the late 1950s (Rosenblatt 1957, 1958) and the proof 
of convergence of the perceptron algorithm, also known as the perceptron theorem, was first outlined in 
Rosenblatt (1960). This result was enthusiastically received, and stimulated research in the area of neural 
networks, which was at the time called machine learning. The hope was that since the perceptron can 
eventually learn all mappings it can represent, then it might be possible that the same is true for networks 
of perceptrons arranged in multiple layers, to enable them to perform more complex mapping tasks. By 
the mid-l960s, in absence of a major breakthrough, enthusiasm in the area subsided. The landmark book 
Perceptrons by Minsky and Papert (1969, 1988) scrutinized the learning ability of single-layer perceptrons 
(i.e. perceptrons arranged on a single layer with no interconnections) to learn different functions. While 
mathematically accurate, the book was highly critical and pessimistic of the ultimate utility of perceptrons. 
It showed that such networks cannot learn to perform certain simple pattern recognition tasks, either within 
a reasonable amount of time or with reasonable weight magnitudes, or perform the task at all. The heart 
of the problem is that this type of neural network cannot represent nonlinearly separable functions, and 
thus cannot possibly learn such functions. What the book did not consider was multilayer networks of 
perceptrons, which can represent arbitrary functions. Yet, until now, we did not have algorithms for 
such networks that were equivalent to the elegant perceptron theorem, which guarantees learning without 
classification errors, if possible, in finite time. The renewed interest in neural networks in the 1980s was 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofhreurul Compuruiion release 97/1 c1.1:1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

c1.2.3 largely due to the development of backpropagation, which is used to train multilayer neural networks. 
Learning in these networks is neither exact nor guaranteed, but in practice it gives good solutions, The 

~ 3 . 2 . 4  activation function of the neurons is not the Heavisidefunction, as in the case of the perceptron, but instead 
~ 3 . 2 . 4  the sigmoid function. 

CI .  1.1.2 Purpose 

The perceptron is used as a two-class classifier. The input patterns belong to one of two classes. The 
perceptron adjusts its weights so that all input patterns are correctly classified. This can only happen when 
they are linearly separable. Geometrically the algorithm finds a hyperplane that separates the two classes. 
After training, other input patterns of unknown class can be classified by observing on which side of the 
hyperplane each of them lies. 

C1.1.1.3 Topology 

The perceptron is a single-neuron model shown in figure C1.l.l. Each of the input vector components xi 
is multiplied with the corresponding weight wi, and these products are summed up yielding the net linear 
output, upon which the Heaviside function is applied to obtain the activation, which is either 1 or -1: 

if net 2 0 
if net < 0 .  I t, a = f(net) = (C 1 . 1.2) 

The input vector is X = ( X I ,  x2, . . . , x,, 1). The extra component 1 corresponds to the extra weight 
component wn+l,  which accounts for the threshold of the perceptron. 

Figure (21.1.1. The perceptron. 

C1.1.1.4 Learning 

Learning is done in a supervised manner. The input patterns are cyclically presented to the perceptron. 
The order of presentation is not important. The error for input pattern X is calculated as the difference 
between the target output and the activation value. The weights are updated according to this formula: 

wi(k + 1) = wi ( k )  + UE(k)xi(k)  (C1.1.3) 

where k is the iteration counter, (Y > 0 is the learning rate, a positive constant, and ~ ( k )  is the error 
produced by the input vector at iteration k :  

E(k) = t ( k )  - a(k) (Cl.l.4) 

c1.1:2 Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

where t ( k )  is the target value and a(k )  the activation of the perceptron, both at step k .  The exact value 
of the learning rate CY does affect the speed of learning, but regardless of its exact value, as long as it is 
positive, the algorithm will eventually converge. The algorithm can be described as follows. 

(i) Compute activation for input pattern X. 
(ii) Compute the output error E .  

(iii) Modify the connection weight by adding to it the factor C Y E X .  
(iv) Repeat steps (i), (ii) and (iii) for each input pattern. 
(v) Repeat step (iv) until error is zero for all input patterns. 

C1.1.2 The perceptron theorem and its proof 

In this section we formally state the perceptron theorem and present its proof. 

Theorem: (Rosenblatt) It is given that the input pattern vectors X belong to two classes CI and Cz, and 
that there exists a weight vector WO that linearly separates them. In other words, the two classes are 
linearly separable. The weight vector W is randomly initialized at step 0 to W(0). The input pattern 
vectors are repeatedly presented to the perceptron in finite intervals, and the weight vector W at step k is 
modified according to this rule (which is the vector form of (C1.1.3)): 

W(k + 1) = W(k) + cY&(k)X(k) (C1.1.5) 

where CY is a real positive constant, ~ ( k )  is the error as defined in (Cl,l.4), and X(k)  the input vector. Then 
there exists an integer N such that for all k 1 N ,  the error ~ ( k )  = 0, and therefore W(k + 1) = W(k).  
In words, in a finite number of steps the algorithm will find a weight vector W that will correctly classify 
all input vectors. 

Proof: Without loss of generality, it is assumed that = 1 and that W(0) = 0. It is also assumed that 
the iteration counter k counts only the steps at which the weight vector is corrected, that is the error E is 
nonzero. Thus, the weight vector at step k + 1 can be written as 

W(k + 1) = E(l)X(l)  + &(2)X(2) + ' . ' + &(k)X(k)  . (Cl,  1.6) 

We multiply both sides of (Cl.l.6) by the row vector Wz: 

((21.1.7) 

Since all input vectors X ( j )  are missclassified, &(j)W:X( j )  is strictly positive. To see this, consider 
the case when W l X ( j )  is positive. Since WO correctly classifies all input vectors, then the target value 
of X ( j )  is t ( j )  = 1 and ~ ( j )  = 1 - (-1) =- 0, and therefore ~ ( j ) W l X ( j )  is positive. Following similar 
reasoning for the case when & ( j ) W l X ( j )  is negative, we conclude that ~ ( j ) w , T X ( j )  is always positive. 
We define the strictly positive number a as 

a = min(&(j)W,TX(j)). (C 1.1.8) 
J 

Then, from (C1.1.7), 
W,TW(k + 1) 2 ka . (C 1.1.9) 

The Cauchy-Schwartz inequality for two vectors A and B in finite-dimensional real space, is llA112\1B\12 2 
(ATBI2, and when applied to WO and W(k + 1) we get 

(Cl. 1.10) 

where (1 (1 is the Euclidean distance metric, or length, of its vector argument, and 1 . 1  indicates the absolute 
value of its real-valued argument. Combining equations (C 1.1.9) and (C 1.1. lo), we arrive at the following 
inequality: 

(Cl. 1.1 1) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 9711 c1 .13  

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

This last inequality will be combined with another one (C1.1.15), to be derived now, and it will be 
concluded that k must be finite. 

We take the square of the Euclidean distance metric of both sides of the update rule (C1.1.5): 

IIWU + 1 1 1 1 ~  = ItW(j>I12 + I I E ( ~ ) x ( ~ ) ) I I ~  +2e(j)wT(j)x(j). (C 1 . 1 . 1  2) 

(C 1.1.13) 

and using the fact that & ( j ) W T ( j ) X ( j )  5 0 (recall that X ( j )  is missclassified), we can write 

IIWU + 1)112 5 IIW(j)l12 + Q. (C 1.1.14) 

Adding the inequalities that are generated by the last inequality for j = 1,2,  . . . , k,  we obtain 

IlW(k + 1>112 5 Q k .  (Cl. 1.15) 

Now we combine (C1.1.15) with (C1.1.10) to obtain 

Dividing all sides by Qk, we finally arrive at this inequality 

ka ’ QllWoII2 

(C 1 . 1 . 1  6) 

(Cl. 1.17) 

from which it is clear that k cannot grow without bound, as it would violate the inequality, and therefore 
k must be finite. This concludes the proof of the perceptron theorem. 

Equation (C1.1.17) defines a bound on k, which can be computed by converting the inequality to 
equality and rounding up to the next integer: 

(C 1.1.18) 

This upper bound for the number of (nonzero) corrections to the weight vector is of little practical use, 
since it depends on knowledge of a solution weight vector WO, which normally would not be known 
beforehand. 

C1.1.2.1 

The learning process will stop when either the weight vector causes all input vectors to be classified, or 
when the number of iterations has exceeded a maximum number ITERMAX. 

Pseudocode representation of the perceptron algorithm 

program perceptron; 
{The perceptron algorithm} 

type 
pattern = record 

inputs : array[] of float; 
targetout : integer; 
end; {record} 

Var 
patterns : pattern[ I; 
weights : ^float[]; 
input : ^float[]; 
alpha : float; 
target : integer; 

{input pattern data structure] 
{array of input values} 
{the target output) 

{array of input patterns} 
{array of weights} 
{array of input values} 
{learning rate} 
(the target output) 

c1.1:4 Handbook of Neuruf Computation release 97J1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

net: float; 
i, j ,  k : integer; 
iter : integer; {iteration count} 
finished : boolean; {finish flag} 

{the net (linear) output} 
{iteration indices} 

begin 
alpha = 1; {initialize alpha] 
for i = 1 to length(weights) do 

weights[i] = 0.0; 
end do; 

(initialize weights to zero} 

repeat {loop until done) 
finished = true; (assume finished} 
for i = 1 to length(patterns) do 

net = 0.0; 
end do; 

{initialize net output} 

input = patterns[i].inputs; 

target = patterns[ i] .targetout; 

for j = 1 to length(weights) do 

{find inputs} 

{find target output} 

{calculate net output} 
net = net + weights[ j ]  * input[ j ] ;  
end do; 

if sgn(net) c > target[i] 
begin 
finished = false; 
for k = 1 to length(weights) do 

{if input pattern not correctly classified} 

{at least one input pattern is not correctly classified.} 

{update weight vector} 
weights[k] = weight[k] + alpha * (targetout - sign(net)) 

end do; 
* input[k]; 

end; 
end do; 

end do; 
until finished or (iter > ITERNAX)) {loop until done} 
end do; 

end. {Program} 

C1.1.2.2 Advantages 

The perceptron guarantees that it will learn to correctly classify two classes of input patterns, provided 
that the classes are linearly separable. The adaline (LMS algorithm) cannot guarantee that it will learn to ci.i.3 
separate two linearly separable classes. 

CI. 1.2.3 Disadvantages 

If the two classes are not linearly separable, then the perceptron algorithm becomes unstable and fails 
to converge at all. In many such cases the weight vector appears to wander in a random-like fashion in 
space. Determining whether two classes are linearly separable beforehand is not easy. 

The adaline, on the other hand, ordinarily converges to a good solution regardless of linear separability, 
but it does not guarantee separation of the two classes even if it is possible. Another disadvantage of the 

@ 1997 IOP Publishing Lcd and Oxford University Press Handbook of Neural Computation release 97t1 c 1 .1:5 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

perceptron is that the target output must be binary, unlike adaline which can take any real value, 

C1.1.2.4 Hardware implementations 

Rosenblatt, with the help of others, built in hardware the Mark I Perceptron (1968), which operated as a 
G I  .3  character recognizer. It is considered to be the first successful neurocomputer (Hecht-Nielsen 1990). 

CI .  1.2.5 Variations and improvements 

In Gallant (1986) the perceptron algorithm was modified to the pocket perceptron algorithm, which can 
handle nonlinearly separable data. The idea is quite simple: have an extra set of weights which are kept ‘in 
your pocket’. Whenever the perceptron weights have a longest run of consecutive correct classifications, 
they replace the pocket weights. The training input vectors are randomly selected. It is guaranteed that 
changes in the pocket weights will become less and less frequent. Most of the changes will replace one 
set of optimal weights with another. Occasionally, nonoptimal weights will replace the pocket weights, 
but this will happen less and less frequently as training continues. The pocket algorithm, as well as other 
related variations, are discussed in Gallant (1990). 

Another extension of the perceptron is the complex perceptron (Georgiou 1993), where the input 
vectors and the weights are complex-valued, and the output is multivalued. 

C1.1.3 Adaline 

Adaline (adaptive linear element) is a simple single-neuron model that is trained using the LMS (least 
~3.3.3 mean square) algorithm, otherwise known as the delta rule and also as the Widrow-Hoff algorithm. The 

input patterns of the adaline, like those of the perceptron, are multidimensional real vectors, and its output 
is the inner product of the input pattern and the weight vector. Training is supervised: for each input 
pattern, there is a desired output. For each input pattern, the weights are corrected based on the difference 
between the activation value, that is the actual output value, and the target value. 

In general, it converges quite fast to a small mean square error, which is defined in terms of the 
difference between the target output and the actual output. 

It differs from the perceptron in that its output is not discrete (-1 or 1) but is instead continuous 
and its value can be anywhere on the real line. It has been widely used in filtering and signal processing. 
Being a simple linear model, the range of problems it can solve is limited. Being an early success in neural 
computation, it bears historical significance. Also note that the widely used backpropagation algorithm is 
a generalization of the LMS algorithm. 

Unlike the perceptron, it cannot guarantee separation of two linearly separable classes, but it has the 
advantage that it converges fast and training in general is stable even in classification problems where the 
two classes are not linearly separable. 

C1.1.3.1 Introduction 

The adaline was introduced by Widrow and Hoff (1960) a few months after the publication of the perceptron 
theorem (Rosenblatt 1960). Adaline and the perceptron are considered to be landmark developments in 
the history of neural computation. Widrow and his students generalized adaline to the madaline, many 

~ 1 . 2 ,  ~ 1 . 8 ,  ~ 1 . 9  adalines, network (Widrow 1962). Adaline found many applications in areas such as paftern recognition, 
signal processing, adaptive antennas, adaptive control and others. 

Like the perceptron, the adaline is a single-neuron model and is shown in figure C1.1.2. The output 
is calculated as the inner product of the weight vector and the input vector: 

n + l  

a = f(net) = wixi . (Cl. 1.19) 
i = l  

The extra component wn+l accounts for the threshold of the neuron. The input at wn+l is set to 1 

The LMS (least mean square) algorithm minimizes the mean square error function E ,  hence its name, 
for all input vectors, and is called the bias. 

using the numerical analysis method of steepest descent. 

c1.1:6 Hdndbook ofNeuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

Figure C1.1.2. The adaline. 

C1. I .3.2 Purpose 

The adaline is used as a pattern classifier, and also as an approximator of input-output relations. Both the 
inputs and the target values can take real values. 

C1.1.3.3 Topology 

Adaline, like the perceptron, is a single-neuron model (figure C1.1.2). The difference is that the output is 
not discrete, like for the perceptron where the output is binary (0 or 1) or bivalent (- 1 or l), but is instead 
continuous (C1.1.19). 

C1.1.3.4 Learning 

The objective of the LMS algorithm is to minimize the mean square error (MSE) function, which is a 
measure of the difference between the target outputs and the corresponding actual outputs. Thus, LMS 
tries to find a weight vector W that would cause the actual outputs to be as close to the the target outputs 
as possible. 

The training process is a statistical one, and the MSE function J for the weight vector W = W(k) 
is defined as 

(C 1.1 -20) 
where k is the step and E [ . ]  is the statistical expectation operator. The error ~ ( k )  is the difference between 
the target output and the actual output: 

(Cl. 1.21) 

J = kE[&(k)2]  

&(k)  = t ( k )  - W T ( k ) X .  

J = ; E [ ? @ ) ]  - E[tXT]W(k) + p T ( k ) E [ X X T ] W ( k ) .  

The MSE J is expanded to the following: 

(Cl.  1.22) 

The cross-correlation P ,  a vector, between the target output and the corresponding input vector is defined 
as 

PT = E[tXT] ,  (Cl. 1.23) 
Also, the input correlation matrix R is defined as 

R = E [ X X T ] .  (Cl. 1.24) 

Thus, the mean square error function (C1.1.22) is simplified to 

J = i E [ t 2 ( k ) ]  - PTW(k) + iWT(k)RW(k). (C1.1.25) 

Considering that R is a real, semi-definite (in most practical cases) and symmetric matrix, we conclude 
that J is a non-negative quadratic function of the weights. Thus, in most cases, J can be viewed as a 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 97/1 c 1.1 :7 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

bowl-shaped surface with a unique minimum. The optimal weight vector W', which is called the Wiener 
weight vector, that minimizes J ,  can be found by taking the gradient of J with respect to W(k), and 
setting it to 0: 

VWQ)J = - P +  RW(k) (C 1.1.26) 
which yields 

W' = R - ' P .  (Cl. 1.27) 
LMS approximates the gradient of the MSE function (C1.1.26), which is difficult to compute in the neural 
networks context, by using the gradient of the square of the instantaneous error: 

The steepest descent method requires that the weight vector be updated by adding to it a quantity that is 
proportional to the negative gradient. Thus, the LMS learning rule is derived to be this equation: 

W(k + 1) = W(k) + U & ( k ) X ( k ) .  (Cl. 1.29) 

Note that the LMS learning rule (C1.1.29) is identical to that of the perceptron (C1.1.3). The difference 
lies in the fact that in the perceptron the error ~ ( k )  is computed using discrete values for the target and 
actual outputs. In LMS, those values are real (continuous-valued). 

Learning is supervised and it resembles that of the perceptron: the input patterns are cyclically 
presented to the adaline. Ordinarily the order of presentation is not important. The error for input 
pattern X = (XI, x2, . . . , x n ,  1) is calculated as the difference between the target output and the activation 
value (C1.1.21). The weights are updated according to this formula: 

U J ~  ( k  + 1) = wi ( k )  + a&(k)~i  ( k )  (C 1.1.30) 

where k is the iteration counter, a > 0 is the learning rate, a positive constant. The algorithm can be 
described as follows. 

(i) Initialize total error E to zero. 
(ii) Compute activation for input pattern X. 
(iii) Compute the output error E .  

(iv) Modify the connection weight by adding to it the factor a&X. 
(v) Add output error E to total error E .  
(vi) Repeat steps (ii), (iii), (iv) and (v) for each input pattern. 
(vii) Repeat steps (i)-(vi) until total error E at the end of step (vi) is small. 

The LMS algorithm converges in the mean if the mean value of the weight vector W(k) approaches 
the optimum weight vector W' as k grows large. The learning rate U determines the convergence properties 
of the algorithm, and, for most practical purposes, convergence in the mean is obtained when 

0 < a < 2/hmax (Cl. 1.31) 

where Amax is the maximum eigenvalue of the correlation matrix R (C1.1.24), 

C1.1.3.5 Pseudocode representation of the LMS algorithm 

The learning process will stop either when the total error is smaller than MINXRROR, or when the number 
of iterations has exceeded a maximum number ITERMAX. 
program adaline; 
{The LMS algorithm for the adaline} 

type 
pattern = record {input pattern data structure) 

{array of input values} 
(the target output) 

inputs : array[] of float; 
targetout : integer; 
end; {record} 

c 1.1 :8 Hundbook of Neuwl Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

Var 
patterns : ^pattern[ 1; 
weights : ̂ float[]; 
input : *float[]; 
alpha : float; 
target : integer; 
net: float; 
i ,  j ,  k : integer; 
iter : integer; 
error : float; 

{array of input patterns} 
{array of weights] 
{array of input values] 
{learning rate] 
{the target output} 
{the net (linear) output] 
{iteration indices} 
{iteration count} 
{total error} 

begin 
alpha = 0.2; {initialize alpha] 
for i = 1 to length(weights) do 

weights[i] = random(-0.5 ,O.%pitialize weights to small values] 
end do; 

repeat {loop until done] 
error = 0.0; {initialize error} 
for i = 1 to length(patterns) do 

net = 0.0; 
end do; 

{initialize net output] 

input = patterns[i] .inputs; 

target = patterns[i].targetout; 

for j = 1 to length(weights) do 

{find inputs} 

{find target output} 

{calculate net output} 
net = net + weights[j] * input[jl; 
end do; 

for k = to length(weights) do 
error = error + (target - net); 

{update weight vector] 
weights[k] = weight[k] + alpha * (target - net) 

end do; 
* input[k]; 

end do; 
end do; 

until (error < MINZRROR) or (iter > ITERMAX) 

end do; 
{loop until done] 

end. {Program] 

C1.1.3.6 Advantages 

The adaline ordinarily converges to a good solution quite fast, even in the case where the two classes are 
not linearly separable. It can handle datasets where the target output is real-valued (nonbinary). 

C1.1.3.7 Disadvantages 

Unlike the perceptron, it cannot guarantee separation of two linearly separable classes. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compuwtion release 9711 c 1.1 :9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.1.4 Madaline 

C1.1.4.1 Introduction 

Madaline is an early example of a trainable network having more than one layer of neurons. It consists 
of a layer of trainable adalines that feed a second layer, the output layer, which consists of neurons that 
function as logic gates, such as AND, OR and MAJ (majority-vote-taker) gates. The weights of the output 
neurons, however, are not trainable but fixed. Therefore, we classify madaline as a single-layer network. 
Widrow and Lehr (1990) provide an excellent first-hand account of the history of madalines, as well as 
for the adaline. 

Madaline was developed by Bernard Widrow (Stanford University) (Widrow 1962) and Marcian Hoff 
in his PhD thesis (Hoff 1962). It is noteworthy that a 1000-weight Madaline I was built in hardware 
in the early 1960s (Widrow 1987). In its early beginning Madaline I was used in applications such as 
speech and pattern recognition (Talbert et a1 1963), weather prediction (Hu 1964) and adaptive controls 
(Widrow 1987), and later to adaptive signal processing (Widrow and Stearns 1985), where it was used 
quite successfully in many applications. 

The more powerful backpropagation algorithm superseded Madaline I, as this algorithm handles the 
training of networks with multiple layers, each having adjustable weights. 

C1.1.4.2 Purpose 

Madaline I, as well as its variants, are commonly used as classifiers. 

C1.1.4.3 Topology 

The Madaline I network consists of two layers of neurons (figure C1.1.3). The first layer consists of 
adalines, each of which receives input directly from the input pattern. The output from the adalines is 
then passed through a hard-limiter, that is the Heaviside function, which in turn feeds the the second layer, 
which consists of one or more neurons. The neurons of this layer are logical function gates, such as AND 
gates, OR gates or majority-vote-taker (MAJ) gates. The MAJ gate gives output 1 if at least half of its 
inputs are 1, and output -1 otherwise, The weights of the logic gate neurons are fixed, whereas those of 
the adalines in the first layer are adjustable. 

Adaline Layer 

xkl 

kZ 

k3 

k4 

xk5 

k6 

output - 

Figure C1.1.3. The madaline. 

C1.1.4.4 Learning 

Learning is supervised-each input pattern in the training set has a target pattern, usually either 1 or -1. 
The input patterns are presented to the network. A random order of presentation is preferable over a 

c 1.1 : lo  Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

cyclical one, since the latter may cause cyclic repetition of values of the weights, and thus convergence is 
not possible (Ridgeway 1962). The Heaviside (hard-threshold) function is applied to each of the outputs 
of the adalines in the first layer, and the result (1 or -1) is fed as input to the output neuron(s) (the logic 
gate(s)). Then, the output of the network is compared with the target output for the particular input. If 
the two agree, no correction is made to the weights of any adaline; if they disagree, then the weights of 
one or more adalines are adjusted. 

The question now becomes ‘which adalines should be chosen to have their weights adjusted?’ This 
is answered by the following procedure: start from the adaline whose (net) linear output is closest to 
zero. (The idea here is to start from the adaline whose output can most easily take the reverse sign, 
thus changing from positive to negative, or vice versa.) Then, reversing the sign of the corresponding 
hard-limiter (Heaviside function) of the chosen adaline, check the output to see if it agrees with the target 
output, If yes, then no other adaline is chosen to have its weights adjusted. If not, repeat the process 
by choosing the adaline with the next closest value to zero. Thus, this procedure chooses the minimum 
number of adalines-whose linear output is closest to zero-that when reversing the sign of their linear 
outputs, the correct target output is obtained. 

The next question is ‘how to adjust the weights of the chosen adalines?’ This adjustment of the 
weights can be done in two ways: the first way is by changing the weights by a sufficient amount in the 
LMS direction (see previous section) so that the linear output of the adaline changes sign. In other words, 
choose a large enough learning rate a in (C1.1.29) so that the output of the adaline, for the same input 
vector, reverses its sign. This type of learning is called ‘fast’. It is possible, and quite often it is the 
case, that by changing the weights to achieve the correct output for a specific input, the wrong output is 
obtained for previously learned input-output pairs. 

The second way of adjusting the weights is by changing them by a small amount in the LMS direction, 
without considering whether the change would be large enough to cause the sign of the linear output to 
be reversed. 

In both cases, it is expected (but not guaranteed) that after many iterations, the weights will assume 
values that will correctly classify all, or at least most, input vectors. 

The intuitive idea behind the choice of adalines to adjust their weights, and the way of adjusting 
their weights, is known as the ‘least disturbance principle’ (Widrow and Lehr 1990): adapt to reduce the 
output error for the current input pattern with minimal disturbance to the responses already learned. This 
principle is adhered to by the madaline learning algorithm in various ways: the least number of adalines 
that can cause the output to change is chosen (minimal disturbance); the adalines with outputs closest to 
zero are chosen (disturbance is minimal); and the weights are changed in the direction of the negative 
gradient, which is the direction toward the input vector (error correction with minimal weight change). 
This heuristic principle is applicable to LMS, madaline, backpropagation and other neural network learning 
algorithms. 

As an example consider the case where there are three adalines in the first layer and a MAJ gate at 
the output, and that an input pattern X, with desired output +1, causes only one out of three adalines 
to have positive linear output, thus the hard-thresholded output of the madaline is -1. Thus, only one 
adaline, that has negative linear output at present, will have its weights adjusted, since a single reversal of 
the output of an adaline will cause the correct output. The general algorithm can be described as follows, 

(i) Initialize the weights of the adalines with small random numbers. 
(ii) Consider first input pattern. 
(iii) Compute the linear output of the adalines. 
(iv) Compute the outputs of the Heaviside functions. 
(v) Compute the value of output logic gate(s). 
(vi) Compute error = (target output) - (actual output). 
(vii) If the error is different than zero, determine the adalines to be adjusted. 
(viii) Adjust the weights of the adaline. 
(ix) Repeat step (viii) for each adaline to be adjusted. 

(x) Repeat steps (iii) through (ix) for each input pattern. 
(xi) Repeat step (x) until error is zero for all input patterns. 

0 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computufion release 9711 c 1.1 : 11 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

C l .  1.4.5 Pseudocode representation of Madaline I 

program Madaline-I; 
{The Madaline-I algorithm. The output unit is a single AND gate.) 

type 
pattern = record 

inputs : array[] of float; 
targetout : integer; 
end; [record} 

unit = record 
weight : array[] of float; 
net : float; 
end; {record} 

V U  
patterns : ^pattern[ 1; 
weights : ^float[]; 
input : ̂ float[ I ;  
units : ^unit[]; 
alpha : float; 
target : integer; 
net: float; 
i, j, k : integer; 
iter : integer; 
error: integer; 
finished : boolean; 
sum : integer; 
output : integer; 
iter : integer; 

begin 
alpha = 0.2; 
for j = 1 to length(units) do 

weights = units[j].weight; 
for i = 1 to length(weights) do 

[input pattern data structure} 
{array of input values} 
{the target output} 

{The weights of the adaline) 
{The linear output of unit} 

{array of input patterns} 
{array of weights} 
{array of input values} 
{array of adaline units) 
{learning rate} 
{the target output} 
{the net (linear) output} 
{iteration indices} 
{iteration count} 
{output error} 
(finish flag} 
{the number of adalines with positive output) 
[value of output (AND gate)} 
[iteration counter) 

{initialize alpha} 
{initialize weights to small values) 

weights[i] = random(-OS, 0.5); 
end do; 

end do; 
iter = 0; 
repeat {loop until done} 

{initialize iteration counter) 

{update iteration counter} iter = iter +l;  
finished = true; {assumed finished} 

for k = 1 to length(units) do 
{initialize net output of adalines} 

units[k].net = 0.0; 
for i = 1 to length(patterns) do 
units[k].net = units[k] .weights[i] * units[k] .net 
end do; 

end do; 

for k = 1 to length(patterns) do 

sum = 0; {initialize sum} 
for i = 1 length(units) do 

c 1.1 : 12 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

{calculate number of adalines with positive output} 
if sgn(units[i].net) = 1 then 

sum = sum + l ;  
end if; 

end do; 
if sum = length(units) then 

{If all outputs of adalines are positive, AND output is 1) 
output = 1 ;  

output = 0; 
else (else 0) 

end if; 

error = patterns[k].targetout - output; 
{calculate error) 

if error < > 0 then 
finished = false; {at least one correction made} 

{update weights of units with wrong output) 
for i = 1 to length(units) do 

if sgn(units[i].net) < > patterns[k].targetout then 
for j = 1 to length(weights) do 

{update using adaline rule) 
units[i].weights[ j ]  = units[i].weights[j] 

+ alpha * (patterns[k].targetout - units[i].net) 
* patterns[k].input[j]; 

end do; 
end if; 

end for; 
end if; 

end do; 
until finished or (iter > ITERNAX) 

end. {hogram} 

Cl.  I .4.6 Advantages 

Obviously, madaline is more powerful than adaline. It is one of the earliest, if not the earliest, feasible 
schemes of training multilayer neural networks. It can learn to separate two nonlinearly separable classes. 

C1.1.4.7 Disadvantages 

It is not as flexible or powerful as backpropagation, where the weights of the output units are adjustable 
as well. 

C1.1.4.8 Hardware implementations 

A 1000-weight madaline was built in hardware in the early 1960s (Widrow 1987). 

(21.1.5 Learning vector quantization 

CI.1.5. I Introduction 

Learning vector quantization (LVQ) was first studied in the neural network context by Teuvo Kohonen 
(Kohonen 1986). It is related to Kohonen’s self-organizing maps (SOM) (Kohonen 1984), with the main c2.1.1 
difference being that LVQ is a supervised method, which takes advantage of the class information of the 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 c 1.1 : 13 

Copyright © 1997 IOP Publishing Ltd



Suuervised Models 

t 

Figure C1.1.4. Voronoi tessellation in two dimensions. The circles represent the prototype vectors of each 
region. 

input patterns in the training set. It is also related to the well known K-means clustering algorithm (Lloyd 
~1.6, ~ 1 . 7  1957, 1982, MacQueen 1967). Traditional LVQ algorithms, primarily used for speech and image data 

compression, are reviewed in Gray (1984) and Nasrabadi and King (1988). 
In LVQ, input pattern space is divided into disjoint regions. Each region is represented by a prototype 

vector. Thus, each prototype vector represents a cluster of input vectors. The collection of prototype 
vectors is called the codebook. Learning vector quantization as a classifier can be used in the following 
manner. The input vector to be classified is compared with all prototypes in the codebook. The prototype 
that is closest, using the Euclidean distance metric, to the input vector is chosen, and the input vector is 
classified to the same class as the prototype. It is assumed that each prototype is tagged with the label of 
the class it belongs to. 

The other major use of LVQ is in data compression. When used for this purpose, the input space 
is again divided into regions and prototype vectors are chosen. Each input vector is compared with all 
prototypes, and is replaced with the index of the prototype in the codebook that it is closest to, using 
Euclidean distance. Thus the original vectors are replaced with indices, which point to prototype vectors 
in the codebook. (The term vector quantization refers to the act of replacing an input vector with its 
corresponding prototype.) Replacing vectors with indices can potentially achieve high compression ratios. 
Decompression is achieved by looking-up in the codebook the prototypes that correspond to the indices. 
When the compressed data are transmitted over a channel, substantial bandwidth savings can be achieved. 
However, it is necessary for the receiver to have the codebook to be able to decompress. Of course, 
LVQ is a lossy compression technique, as the original vectors cannot be exactly reconstructed-unless, of 
course, there are as many prototype vectors as there are input vectors. To achieve higher resolution, it is 
necessary to have a finer subdivision of space, and thus more prototypes. 

The question now becomes ‘how are the prototypes arrived at?’ This is exactly what the LVQ 
algorithm does. Note that division of space into regions is implicit. All that is needed is the prototypes, 
since each prototype defines a region. The regions are defined using the nearest-neighbor rule. That is, a 
vector X j  belongs to the region of the prototype vector Wi that is closest to it: 

where 11 . 11 is the Euclidean distance metric. This partition of space into distinct regions, using prototype 
vectors and the nearest-neighbor rule, is called Voronoi tessellation. A two-dimensional example of such 
tessellation appears in figure C1.1.4. Notice that the boundaries of the regions are perpendicular bisector 
lines (planes in three dimensions and hyperplanes in higher dimensions) of the lines joining neighboring 
prototypes. 

The weight vectors of the neurons in an LVQ neural network are the prototypes, the number of 
which is usually fixed before training begins. Training the network means adjusting the weights with the 
objective of finding the best prototypes, that is, prototypes that would give best classification or best image 
compression. The LVQ training algorithm is a case of competitive learning. That is, during training, when 
an input vector is presented, only a small group of winner neurons (usually one or two) are allowed to 
adjust their weight vectors. The winner neuron or neurons are the ones closest to the input vector. At 

c 1 . 1  :14 Hundbook of Neurul Computution release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

the end of training, the weight vectors are frozen, and the network operates in its normal mode: when 
an input vector is presented, only one neuron becomes active; that is, the one whose weight vector best 
matches the input vector. 

C1.1.5.2 Purpose 

Learning vector quantization can be used both as a classifier and as a data compression technique. 

C1.1.5.3 Topology 

The network consists of a single layer of neurons, each of which receives the same input, which is the input 
pattern currently presented to the network (figure C1.1.5). The weight vectors of the neurons correspond 
to the prototype vectors. 

A 

xkl 

k2 

k3 

k4 

x k 5  

k6 

Figure C1.1.5. The leaming vector quantization (LVQ) network. It is a single layer of neurons that all 
receive the same inputs. 

C1.1.5.4 Learning 

This is a description of the basic LVQ algorithm (LVQI) (Kohonen 1990~).  The training set consists of n 
input patterns. Each of these vectors is labeled as being one of k classes. The next step is to decide how 
many prototype vectors there should be, or equivalently, how many neurons the network should have. 
Quite often one neuron per class is used, but having more neurons per class may be more appropriate in 
some cases, since a class may be comprised of more than one cluster. It is common to initialize the weight 
vectors of the neurons to the first input pattern vectors that have the corresponding class. Then, the input 
vectors are presented to the network either cyclically or randomly. Being a competitive learning process, 
for each presentation of input vector Xi, a winner neuron Wi is chosen to adjust its weight vector: 

Updating of Wi(t) to the next time step t + 1 is done as follows: 

Wi(t + 1) = Wi(t) + a ( X j  - Wi(t))  if Xj and Wi belong to the same class (C1.1.34) 

and 

Wi(t + I )  = Wi(t) - a(X, - Wi(t)) if X, and Wi belong to different classes. (C1.1.35) 

The idea is to move Wi towards X,  if the class of Wi is the same as that of X i ,  else move it away 
from X , .  The learning rate 0 < a < 1 may be kept constant during training, or may be decreasing 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computation release 9711 c 1.1 : 15 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

monotonically with time for better convergence. It is suggested that the initial value of a is less than 0.1 
(Kohonen et a1 1995). 

The algorithm should stop when some optimum is reached, after which the generalization ability 
of the network degrades, a condition known as overtraining. The optimal number of iterations depends 
on many factors, including the number of neurons, the learning rate, the number of input patterns and 
their distribution, amongst others, and can only be determined by experimentation. It was found that the 
optimum number of iterations is roughly between 50 and 200 times the number of neurons (Kohonen et 
a1 1995). 

Cl. 1.5.5 Pseudocode representation of the LVQ algorithm 

program lvql; {The LVQl algorithm.) 
type 
pattern = record {input pattern data structure} 

{array of input values} 
{the target output} 

inputs : array[] of float; 
class : integer; 
end; {record} 

weight : array[] of float; 
class : integer; 

unit = record 
{The weights of the unit] 
{The class of the unit} 

end; {record] 

V N  
patterns : ̂ pattern[ 1; 
units : ^unit[]; 
alpha : float; 
i ,  j ,  1, m : integer; 
dis, distance: float; 
winner: integer; 

begin 
alpha = 0.05; 

{array of input patterns] 
{array of units} 
{learning rate} 
{iteration indices] 
{Euclidean distance} 
{The winning neuron} 

{initialize alpha) 

It is assumed that the weights of the neurons (units) are initialized 

for i = 1 to MAXJTER do 
for j = 1 to length(patterns) do 
distance = 1oooOO; 

for 1 = to length(units) do 

dis = DISTANCE(patterns[j].inputs,units[l].weight); 
if (dis c distance) then 
begin 

distance = dis; 
end; 

end do; 
(Modify weight vector of neuron closest to input pattern} 

If (patterns[j].class = units[winner].classj then 
{If they belong to the same class) 

{a large number (plus infinity)} 
{find the closest neuron to the input pattern} 

{find the Euclidean distance between the two vectors] 

winner = I ;  

for m = 1 to length(weightsj do 
units[winner}.weight[m] = units[winner).weight[m] + 
else 

for m = 1 to length(weights) do 

alpha * (patterns[j].weight[m] -units[winner}.weight[m]) 

{They belong to different class] 

c 1.1 :16 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Lul and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

units[winner}.weight[m] = units[winner}.weight[m] - 

end if; 
end do; 

alpha * (patterns[j].weight[m] -units[winner).weight[m]) 

end. {Program} 

C1.1.5.6 Variations and improvements 

Several improvements and variations of the basic algorithm (LVQ1) (Kohonen 1990c) have also been 
proposed by Kohonen (1990a, b, c), as well as others. 

In LVQ2 not only the weights of the winning neuron (nearest neighbor of input vector X) are updated, 
but also so are the weights of the next-nearest neighbor, but only under these conditions: 
(i) The nearest neighbor Wi must be of different class than input vector X .  
(ii) The next to the nearest neighbor Wj must be of the same class as input vector X .  
(iii) The input vector X must be within a window defined about the bisector plane of the line segment 

that connects Wi and W,. 
Mathematically, ‘ X  falls in a “window” of width w’ if it satisfies 

(C1.1.36) 

where w is recommended to take values in the interval from 0.2 to 0.3. Thus, if X falls within the 
window, the weight vectors Wi and Wj are updated according to these equations: 

W j ( t  + 1) = W i ( t )  - . ( t ) ( X ( t )  - Wj(t)) (Cl. 1.37) 

W j ( t  + 1) = W j ( t )  + . ( t ) ( X ( t )  - W j ( t ) )  * (C1.1.38) 

The idea behind the LVQ2 algorithm is to try to shift the bisector plane closer to the Bayes decision 
surface. There is no mechanism to ensure that in the long run the weight vectors of the neurons will reflect 
the class distributions. 

The LVQ3 algorithm improves on LVQ2 by trying to make the weight vectors roughly follow the 
class distributions, by adding an extra case where updating takes place: if the two nearest neighbors Wi 
and Wj of input vector X belong to same class as X, then update them according to this equation: 

W k ( t  + 1) = W d t )  + €a( t ) (X( t )  - W & ( t ) )  (Cl. 1.39) 

where k is in { i ,  j } .  Recommended values of 6 range between 0.1 and 0.5 (Kohonen et a1 1995). 

C1.1.6 Instar and outstar 

CI. I .  6. I Introduction 

These two neuron models-or concepts of a neuron-were introduced by Stephen Grossberg of Boston 
University in Grossberg (1968) in the context of modeling various biological and psychological phenomena. 
In that paper and in others that followed (Grossberg 1982), he demonstrated that variations of the outstar 
model can account for many cognitive phenomena such as Pavlovian learning and others that can be 
informally described as practice makes perfect, overt practice unnecessary, self-improving memory, and 
so on. 

A neuron when viewed as the center of activity, receiving input signals from other neurons, is called 
an instar (figure C1.1.6). When the the neuron is viewed as distributing its activation signal to other ~ 3 . 3 . 6  
neurons it is called an outstar (figure C1.1.7). Thus, a neural network can be considered as a tapestry 
of interwoven instars and outstars. By having various ways of learning, i.e. adjusting the weights and 
obtaining the activation signal of a neuron, one obtains a rich mathematical structure in such networks, 
the analysis of which quickly becomes difficult. A contributing factor to the difficulty is the fact that 
time delays are accounted for in Grossberg’s formulation. There is little work done on the instar and 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computurion release 9711 c 1.1 :17 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

outstar concepts beyond what has been done by Grossberg and his associates. However, in artificial neural 
networks the outstar model, though not used by itself, is used as a building block of larger networks, most 

c2.2.1 notably in all versions of adaptive resonance theory (ART) (Carpenter and Grossberg 1987a, b, 1990) 
and the counterpropagation network (Hecht-Nielsen 1987, 1988). In these networks, part of the training 
is done using variations of the outstar learning. A characteristic of outstar learning, unlike other neuron 
models, is that the weights to be adjusted are outgoing from the neuron under consideration, as opposed 
to being incoming. 

Figure C1.1.6. The instar 

e 
e 
e 

e 
e 
e 

Figure C1.1.7. The outstar. 

f 

Figure C1.1.8. The outstar network. The j th  outstar supplies input to a layer of neurons. 

c 1.1 : 18 Hundbook of Neurul Compururion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

C1.1.6.2 Purpose 

Originally, instar and outstar were developed as mathematical models of various biological and 
psychological mechanisms. 

In artificial neural networks the outstar model, though not used by itself, is used as a building block 
of larger neural network models, most notably in all ART networks (Art 1, Art 2, Art 3) and for the 
counterpropagation network. C2.3.2 

C1.1.6.3 Topology 

The instar appears in figure (21.1.6 and the outstar in figure C1.1.7. The outstar model in a network 
is shown in figure C1.1.8. The j t h  outstar supplies input to a layer of neurons, and the corresponding 
weights, which appear as thicker lines, are to be adjusted. 

C1.1.6.4 Learning 

A rare readable tutorial discussion of Grossberg’s ideas on instar and outstar appears in Caudill (1989a), 
from which the following discussion draws. This is a collection of eight papers which originally appeared 
in the magazine A I  Expert. In particular, these two (Caudill 1988, 1989b) are relevant to the present 
discussion. 

The activation function a, of an instar j is not explicit, but instead is given as a time-evolving 
differential equation, a variant of which, not the most general, is the following: 

da.(t) 
dt 

n 
I- - -Aaj(t) + Zj(t) + C wij[ai(t - 10) - TIs 

i=l  
(Cl. 1.40) 

where A is a positive constant which accounts for forgetting (exponential decay); Z,(t) is the external input 
to instar j ,  which is known as the conditioning stimulus (which corresponds to the bell in the well-known 
Pavlovian experiment with a salivating dog); ai(t - to) the activation function of neuron i from which 
neuron j receives input; and wij  the corresponding weight. The time delay to is included to account for 
the time it takes for signal ai to arrive at neuron j .  The constant T is a threshold value, and the function 
[.I+ takes the value of its argument, if the argument is positive. If is negative, the quantity is zero: 

i f x z O  
i f x  < O .  

(C 1.1.41) 

This is a noise suppression mechanism, as any activation signal less than the threshold T does not contribute 
to the computation of a,. Small fluctuations in the levels of activity in surrounding neurons are ignored, 
just as happens in biological neurons in the brain. 

Now we will proceed with more explanation of the three terms on the right-hand side of (C1.1.40). 
The first term accounts for the decay of the neuron activation level with the passage of time-a well-known 
characteristic of biological neurons. This can be clearly seen when the external input Zj (t) is zero and the 
inputs from other neurons are all less than the threshold, and thus are noncontributing. In such a case, 
(C 1.1.40) simplifies to 

(Cl. 1.42) 

whose solution, has the form of a decaying exponential, and in simplified form is a,(t) = e-Af. Thus, the 
larger the positive constant A is, the faster the decay. 

Considering only the external input Zj (t), (C 1.1.40) becomes: 

(Cl. 1.43) 

which implies that as long as Zj(t) is greater than zero, the activation a,(t) increases. Finally, considering 
the effect of the activity values of other neurons (without precluding the possibility that neuron j receives 
input from itself), (C1.1.40) is simplified to 

(Cl. 1.44) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 c 1.1 : 19 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

which accounts for the cumulative effect of the inputs received by neuron j from other neurons. If weight 
wi j  has a negative value, it represents an inhibitive connection. 

The other important aspect of the instar-outstar view of neurons is the instar (or outstar, depending 
on how neurons are viewed during application) learning equation, which specifies how the weights are 
updated, and again is a time-dependent differential equation. Consider outstar j giving input to neuron i 
with connection (weight) Wij. Then, wij is changing according to 

dwij(t) = -Fwij(t) + Gaj[ui(t - to) - T ] +  
dt (Cl. 1.45) 

where the positive constant F accounts for weight decay, otherwise known as forgetting. It is very similar 
in function to A in (C1.1.40), but it should be noted that A is considerably larger than F since neuron 
activation level decay happens a lot faster than forgetting learned memories, i.e. the erasing of old weight 
values. The factor Uj[Ui(t - to) - TI+ accounts for Hebbian learning: when the input uj to a synapse 
(weight) and activation ai of a neuron are both high, then the weight is to be strengthened. The constant 
G is called gain, and it corresponds to the usual learning rate coefficient in neural networks: the larger it 
is, the faster the learning. 

In artificial neural networks the outstar learning equations are substantially simpler, one reason being 
that updating happens at discrete intervals and thus time delays are easier to handle. As was mentioned 
earlier, two well-known networks use outstar learning: counterpropagation and ART. In counterpropagation 
there are two layers of neurons: one which is trained using Kohonen learning and the other using the 
outstar type of learning equation: 

wij(k + 1) = Wij(k) + a(bj(k) - wij(k))ai(k) (C 1.1.46) 

where k is the step, ai is the output of the Kohonen neuron i (note that only one Kohonen neuron has 
nonzero activation) and bj is the desired output. 

The basic outstar learning algorithm in ART networks, for outstar j ,  is given by this equation: 

wmj(k + 1) = wmj(k) + a(tm(k) - wmj) (C1.1.47) 

where k is the step parameter; wmj is the weight being modified, which emanates from outstar j and feeds 
neuron i; and 01 is the learning rate; tm is the target output of neuron m. The subscript m runs through all 
neurons that receive input from outstar j .  

C1.1.7 CMAC 

CI ,  1.7. I Introduction 

The CMAC (cerebellar model articulation controller) model was invented and developed by James Albus 
in a number of papers in the 1970s (Albus 1971, 1972, 1975a, b). Originally, it was formulated as a model 
of the cerebellar cortex of mammals (Albus 197 1) and was subsequently applied to the control of a robotic 
arm manipulators. Albus applied CMAC to the control of a three-axis master-slave arm in Albus (1972), 
and in Albus (1975a) to a seven-degrees-of-freedom manipulator arm. In the latter reference, he gave a 
detailed description of CMAC and it is considered to be a standard reference. The robotic arms were to 
learn certain trajectories. After many years of relative obscurity, CMAC was re-examined and shown to 
be a viable model for complicated control tasks, where the popular backpropagation algorithm could be 
used (Ersii and Militzer 1984, Ersii and Tolle 1987, Miller 1986, 1987, Miller et a1 1990a, Moody 1989). 

In Parks and Militzer (1989) the convergence of Albus’ learning algorithm was proven. In Parks and 
Militzer (1992) it is discussed that the algorithm is identical to the Kaczmarz technique (Kaczmarz 1937) 
which is for finding approximate solutions of systems of linear equations. 

CMAC is a neural network that generalizes locally; that is, inputs that are close to each other in 
the input space will yield similar outputs, whereas distant inputs will yield uncorrelated outputs. In the 
latter case, different parts of the network will be active. Thus, CMAC will likely not discover higher-order 
correlations in the input space. It has been shown, however, to yield good results for a variety of problems, 
with the added advantage that training is exceptionally fast. Unlike most common neural network models, 
CMAC is not merely an ensemble of neurons that produce the output for a given input. Instead, it can be 
viewed as a single neuron (when the output is one-dimensional) of which a small subset of weights are 

c 1.1 :20 Hundbook of Neurul Computotion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

State Space Detectors 
Input State Space 

State Space 
of Input 
Dimension X 

State Space 
of Input 
Dimension Y 

S A M 0 

Figure C1.1.9. The CMAC network. 

summed to obtain the output and are subsequently modified using the LMS algorithm, considering their 
input to be 1. The rest of the weights are ignored. The specification of this subset of weights for a given 
input constitutes that heart of CMAC. 

C1.1.7.2 Purpose 

CMAC is used as a classifier or as an associative memory. It has also been used extensively in robotic ~ 1 . 4  

control. 

CI.1.7.3 Topology 

A schematic diagram of CMAC appears in figure C1.1.9. Differing from other neural networks, its 
description includes the invocation of memory cells, both in virtual and in physical memory. The only 
conventional neurons are the ones that give the output, which are labeled ‘output summers’. A detailed 
explanation of the diagram is included in the next section. 

C1.1.7.4 Learning 

The operation of CMAC is perhaps not as simple to describe as other neural network models. This is due 
to the fact that the nonlinearity in the network is not the result of activation functions used, as usual, but 
instead it is the result of some peculiar mappings. 

CMAC can be thought of as a series of mappings (see figure C1.1.9) (Burgin 1992): 

S + A - + M + O  (Cl. 1.48) 

where S is the input vector, notated as such for ‘stimulus’; A is a large binary array, often impractical, 
due to its size, to be saved in memory; M is a multidimensional table in memory which holds the weights 
of the output summers; and 0 is the output vector. 

An input vector S, causes a fixed number C, called the generalization parameter, of elements of array 
A to be set to 1, while the rest are set to 0. Then, the array A is mapped using random hashing on M .  
The 1s in A ‘activate’ the corresponding weights in M .  The output is obtained by summing the activated 
weights of each summer. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9111 c1.1:21 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Training is done by cyclically presenting the input vectors to CMAC. For each input the output is 
obtained, and then activated weights in M are adjusted using the usual LMS algorithm (C1.1.29), using 
input xi = 1. The weights that have not been activated are not modified, which is equivalent to considering 
their input to be 0 in the LMS algorithm. 

It remains to be explained exactly how S is mapped to A ;  this mapping is called the input mapping. 
Each of the input dimensions is quantized, and thus the input space becomes discrete. Figure C1.1.9 shows 
a case where the input is two-dimensional, with dimensions X and Y .  

The value that each element of A gets is the output of an AND gate (not shown in figure Cl.l.9). The 
AND gates are called state-space detectors. Each AND gate receives inputs from the input sensors, one 
input per input dimension. The input sensors are excited whenever the input falls within their receptive 
fields. If all input sensors that are inputs to an AND gate are excited, then the output of the AND gate is 
1, and 0 otherwise. 

Each point on the one-dimensional grid in an input dimension excites exactly C input sensors. The 
input sensors have overlapping receptive fields. If, for example, C = 3 and sensor a is excited by the 
consecutive points (4,5,6) on a hypothetical grid in the X-dimension, then sensor b is excited by points 
{ S ,  6,7}, sensor c by ( 6 7 ,  8}, and so on. Thus, two neighboring points will excite some input sensors in 
common, whereas two distant points will not. 

The input sensors feed the AND gates in such a way that exactly C AND gates have output 1 for 
each input vector S. One can visualize the effect of the input smoothly traveling in the input space on 
the output of the AND gates, by imagining the AND gates as bulbs: the number of bulbs that are ON is 
a constant C ,  and whenever there is a change, only a small number of bulbs turn OFF and a like number 
of OFF bulbs turn ON at the same time. 

C1.l. 7.5 Advantages 

In general, learning in CMAC, both in software and in hardware, is substantially faster than in other 
neural networks such as backpropagation (Miller et a1 1990b). The speed-up can sometimes be measured 
in orders of magnitude. This speed advantage makes it feasible to have large CMAC networks, with 
weights present into the hundreds of thousands, that solve large problems. 

The local generalization property of CMAC can be considered an advantage in certain cases. For 
example, it is possible to add input patterns in a remote area of the input space incrementally, without 
affecting the already learned inpudoutput relations. 

C1.1.7.6 Disadvantages 

The local generalization property prevents CMAC from discovering global relations in the input space, 
which other neural networks, such as backpropagation, are capable of. 

Collisions that can occur in the hashing scheme that maps the virtual memory into the real memory, 
cause interference, or noise, during learning. However, this can be avoided with proper design. 

References 

Albus J S 1971 A theory of cerebellar functions Math. Biosciences 10 25-61 
-1972 Theoretical and experimental aspects of a cerebellar model PhD Thesis University of Maryland, USA 
-1975a Data storage in the cerebellar model articulation controller CMAC Trans. ASME, J. Dynamic Systems, 

-1975b A new approach to manipulator control: the cerebellar model articulation controller (CMAC) Trans. ASME, 

Burgin G 1992 Using cerebellar arithmetic computers AI Expert 7 32-41 
Carpenter G A and Grossberg S 1987a ART 2: Self-organization of stable category recognition codes for analog input 

-1987b A massively parallel architecture for a self-organizing neural pattem recognition machine Computer Vision, 

-1990 ART 3: Hierarchical search using chemical transmitters in self-organizing pattem recognition architectures 

Caudill M 1988 Neural networks primer part v AI Expert 57-65 
-1989a Neural Networks Primer (San Francisco, CA: Miller Freeman) 
-1989b Neural networks primer part vi AI Expert 61-7 

Measurement, and Control 228-33 

J.  Dynamic Systems, Measurement, and Control 97 220-7 

pattems Appl. Opt. 26 4919-30 

Graphics and Image Processing 37 54-1 15 

Neural Networks 3 129-52 

c 1.1 122 Hundbook of Neuml Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Single-layer networks 

Ersu E and Militzer J 1984 Real-time implementation of an associative memory-based learning control scheme for non- 
linear multivariable processes Manuscript, Symposium ‘Application of Multivariate System Technique ’ (Plymouth, 
UKl 

Ersu E and Tolle H 1987 Hierarchical learning control-an approach with neuron-like associative memories ed 
D Anderson Proc. IEEE Con5 on Neural Information Processing (Denver) (AIP, Denver, CO: IEEE) 

Gallant S I 1986 Optimal linear discriminants Eighth Int. Con$ on Pattern Recognition (New York: IEEE) 849-52 
-1990 Perceptron-based learning algorithms IEEE Trans. Neural Networks 1 179 
Georgiou G M 1993 The multivalued and continuous perceptrons, World Congress on Neural Networks (Portland, OR) 

Gray R M 1984 Vector quantization IEEE ASSP Magazine 4-29 
Grossberg S 1968 Some nonlinear networks capable of learning a spatial pattern of arbitrary complexity Proc. Natl 

Grossberg S (ed) 1982 Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition 

Hecht-Nielsen R 1987 Counterprogagation networks Appl. Opt. 26 4979-84 
-1988 Applications of counterpropagation networks Neural Networks 1 131-9 
Hoff M 1962 Learning phenomena in networks of adaptive switching circuits Technical Report 1554-1 Stanford 

Hu M 1964 Application of the adaline system to weather forecasting Thesis, Technical Report 6775-1 Stanford 

Kaczmarz S 1937 Angenaherte Auflosung von Systemen Linearer Gleichungen Bull. lnt. Acad. Polon. Sci. C1. Math. 

Kohonen T 1984 Self-Organization and Associative Memory (Berlin: Springer) 3rd edn 1989 
-1986 Learning vector quantization for pattern recognition, Report TKK-F-A601, Helsinki University of 

-1990a Internal representations and associative memory, Parallel Processing in Neural Systems and Computers ed 

-1990b The self-organizing map Proc. IEEE 78 1464-80 
-199Oc Statistical pattern recognition revisited Advanced Neural Networks ed R Eckmiller (Amsterdam: Elsevier) 

Kohonen T, Hynninen J, Kangas J, Laaksonen J and Torkkola K 1995 LVQ-PAK: The learning vector quantization 

Lloyd S P 1957 Least squares quantization in PCMs Technical report Bell Telephone Laboratories, Murray Hill, NJ 
-1982 Least-squares quantization in PCM IEEE Trans. Information Theory 28 129-31 
MacQueen J 1967 Some methods for classification and analysis of multivariate observations Proc. Fifrh Berkeley 

Miller W T 1986 A nonlinear learning controller for roboting manipulators vol 726 lntelligent Robots and Computer 

-1987 Sensor-based control of robotic manipulators using a general learning algorithm IEEE J. Robotics and 

Miller W T and Glanz F H and Kraft L G 1990a CMAC: an associative neural network alternative to backpropagation 

Miller W T, Hewes R P, Glanz F H and Kraft G 1990b Real-time dynamic control of an industrial manipulator using 

Minsky M L and Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press) 
-1988 Epilogue: the new connectionism Perceptrons ed M L Minsky and S A Papert expanded edition (Cambridge, 

Moody J 1989 Fast learning in multi-resolution hierarchies (San Mateo, CA: Morgan Kaufmann) 
Nasrabadi N M and King R A 1988 Image coding using vector quantization: a review IEEE Trans. Communications 

Parks P C and Militzer J 1989 Convergence properties of associative memory storage for learning control systems 

-1992 A comparison of five algorithms for the training of CMAC memories for learning control systems Automatica 

Ridgeway W C 111 1962 An adaptive logic system with generalizing properties Phd Thesis, Technical Report 1556-1 
Electron. Labs, Stanford, CA 

Rosenblatt F 1957 The perceptron: a perceiving and recognizing automaton Technical Report 85-460-1 Cornell 
Aeronautical Laboratory 

-1958 The perceptron: a probabilistic model for information storage in the brain Psych. Rev. 65 386408 
-1960 On the convergence of reinforcement procedures in simple perceptrons Cornell Aeronautical Laboratory 

VOI IV 679-83 

Acad. Sci. USA 59 368-2 

and Motor Control (Boston: Reidel) 

Electron. Labs, Stanford, CA 

University 

Nat. Ser. A. 

Technology, Espoo, Finland. 

R Eckmiller, G Hartman and G Hauske (Amsterdam: Elsevier) pp 177-82 

pp 137-44 

program package, Technical report, Helsinki University of Technology, Espoo, Finland 

Symposium on Mathematics, Statistics and Probability vol 1 pp 281-96 

Vision SPIE 416-23 

Automation 3 157-65 

Proc. IEEE 78 1561-7 

a neural-network-based learning controller IEEE Trans. Robotics and Automation 6 1-9 

MA: MIT Press) 

36 957-71 

Automation and Remote Control 50 part 2 254-86 

28 1027-35 

Report VG-1196-G-4 Buffalo, NY 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 c 1.1 123 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

Talbert L R et a1 1963 A real-time adaptive speech recognition system Technical Report Stanford University 
Widrow B 1962 Generalisation and information storage in networks of adaline Self-organizing systems ed Yovits et 

-1987a Adaline and madaline-1963 Proc. IEEE 1st Int. Conf on Neural Networks vol 1 143-57 Plenary speech 
-1987b The original adaptive neural net broom-balancer Proc. IEEE Int. Symp. Circuits and Systems pp 351-7 
Widrow B and Hoff M 1960 Adaptive switching circuits Western Electronic Show and Convention, Convention Record 

Widrow B and Lehr M A 1990 30 years of adaptive neural networks: perceptron, madaline, and backpropagation 

Widrow B and Steams S 1985 Adaptive Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 

a1 (Washinton, DC: Wiley) 

vol 4 Institute of Radio Engineers (now IEEE) 96-104 

Proc. IEEE 78 141542 

c 1.1 :a Handbook of Neurul Compururion release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.2 Multilayer perceptrons 

Luis B Almeida 

Abstract 

This section introduces multilayer perceptrons, which are the most commonly used 
type of neural network, The popular backpropagation training algorithm is studied 
in detail. The momentum and adaptive step size techniques, which are used for 
accelerated training, are discussed. Other acceleration techniques are briefly referenced. 
Several implementation issues are then examined. The issue of generalization is studied 
next. Several measures to improve network generalization are discussed, including 
cross validation, choice of network size, network pruning, constructive algorithms and 
regularization. Recurrent networks are then studied, both in the fixed point mode, with 
the recurrent backpropagation algorithm, and in the sequential mode, with the unfolding 
in time algorithm. A reference is also made to time-delay neural networks. The section 
also includes brief mention of a large number of applications of multilayer perceptrons, 
with pointers to the bibliography. 

C1.2.1 Introduction 

Multilayer perceptrons (MLPs) are the best known and most widely used kind of neural network. They 
are formed by units of the type shown in figure (21.2.1. Each of these units forms a weighted sum of its 
inputs, to which a constant term is added. This sum is then passed through a nonlinearity, which is often 
called its activation function. Most often, units are interconnected in a feedforward manner, that is, with ~ 3 . 2 . 4  

interconnections that do not form any loops, as shown in figure (21.2.2. For some kinds of applications, 
recurrent (i.e. nonfeedforward) networks, in which some of the interconnections form loops, are also used. 

1 

Figure C1.2.1. A unit of a multilayer perceptron. 

Training of these networks is normally performed in a supervised manner. One assumes that a training 
set is available, which contains both input patterns and the corresponding desired output patterns (also 
called target patterns). As we shall see, the training is normally based on the minimization of some 
error measure between the network’s outputs and the desired outputs. It involves a backward propagation 
through a network similar to the one being trained. For this reason the training algorithm is normally 
called backpropagation. 

In this chapter we will study multilayer perceptrons and the backpropagation training algorithm. We 
will review some of the most important variants of this algorithm, designed both for improving the training 
speed and for dealing with different kinds of networks (feedforward and recurrent). We will also briefly 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97f1 c1.2:1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.2.2. Example of a feedforward network. Each circle represents a unit of the type indicated 
in figure C1.2.1. Each connection between units has a weight. Each unit also has a bias input, not depicted 
in this figure. 

mention some theoretical and practical issues related to the use of multilayer perceptrons and other kinds 
of supervised networks. 

C1.2.2 Network architectures 

We saw in figure C1.2.2 an example of a feedforward network, of the type that we will consider in this 
chapter. As we noted above, the interconnections of the units of this network do not form any loops, 

~ 2 . 3  and hence the network is said to be feedfurward. Networks in which there are one or more loops of 
interconnections, such as the one in figure C1.2.3, are called recurrent. 

Figure C1.2.3. A recurrent network. 

A 

Figure C1.2.4. A layered network. 

In feedforward networks, units are often arranged in layers, as in figure C1.2.4, but other topologies 
can also be used. Figure C1.2.5 shows a network type that is useful in some applications, in which direct 
links between inputs and output units are used. Figure C1.2.6 shows a three-unit network that is fully 
connected, i.e. that has all the interconnections that are allowed by the feedforward restriction. 

The nonlinearities in the network’s units can be any differentiable functions, as we shall see below. 
The kind of nonlinearity that is most commonly used has the general form shown in figure (21.2.7. It 
has two horizontal asymptotes, and is monotonically increasing, with a single point where the curvature 

~ 3 . 2 . 4  changes sign. Curves with this general shape are usually called sigmoids. Some of the most common 
expressions of sigmoids are 

1 1 + tanh(s/2) 
2 S(s) = - = 

1 +e-S 
S(s) = tanh(s) 
S(s) = arctan(s) . 

(C1.2.1) 

(C1.2.2) 
(C1.2.3) 

c1.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

Figure C1.2.5. A network with direct links between input and output units. 

Figure C1.2.6. A fully connected feedforward network. 

‘I 

Figure C1.2.7. Sigmoids corresponding to: ( a )  equation (Cl.Z,l) ,  (b) equation (C1.2.2) and (c) 
equation (C1.2.3). 

Sigmoid (C1.2.3) is sometimes scaled to vary between - 1  and + l .  Sigmoid (C1.2.1) is often designated 
as the logistic function. As we said above, interconnections between units have weighs, that multiply 
the values which go through them. Besides the variable inputs that come through weighted links, units 
normally also have a fixed input, which is often called bias. 

It is through the variation of the weights and biases that networks are trained to perform the operations 
that are desired from them. As an example of how weight changes can affect the behavior of networks, 
figure C1.2.8 shows three one-unit networks that differ in their weights and that perform different logical 
operations. Figure C 1.2.9 shows two networks with different topologies, that both perform the logical 
XOR operation. These two networks were trained by the backpropagation algorithm, to be described 
below. Note that since these networks have analog outputs, the output values are often not exactly 0 or 
1 .  A usual convention, for binary applications, is that output values above the middle of the range of the 
sigmoid are taken as true or 1 ,  and output values below that are taken as false or 0. This is the convention 
adopted here. 

As we shall see below, it is sometimes convenient to consider input nodes as units of a special kind, 
which simply copy the input components to their outputs. These units are then normally designated as 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1.2:3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

input units. The number of units and the number of layers that a given network is said to have may depend 
on whether this convention is taken or not. Another convention that is normally made is to designate as 
hidden units the units that are internal to the network, i.e. those units that are neither input nor output 
units. The two networks of figure C1.2.9 have, respectively, two and one hidden units. 

Figure C1.2.8. Single-unit networks implementing simple Boolean functions. ( U )  OR. (b )  AND. (c )  NOT. 
The units are assumed to have logistic nonlinearities. 

1 

Figure C1.2.9. Two networks that have been trained to perform the XOR operation. The units are assumed 
to have logistic nonlinearities. The weight values have been rounded, for convenience. 

C1.2.3 

Let us represent the input pattern of a network by an m-dimensional vector x (italic bold characters shall 
represent vectors) and the outputs of the units of the network by an N-dimensional vector y. To keep 
the notation compact, we will represent the input nodes of the network as units (numbered from 1 to m). 
These units simply copy the components of the input pattern, i.e. 

The backpropagation algorithm for feedforward networks 

yi = x i  i = 1, . . . ,  m .  

We will also assume that there is a unit number 0, whose output is fixed at 1, i.e. yo = 1. The weights 
from this unit to other units of the network will represent the bias terms of those units. The remaining 
units, m + 1 to N, are the operative units, that have the form shown in figure C1.2.1. In this way, all the 
parameters of the network appear as weights in interconnections among units, and can therefore be treated 
jointly, in a common manner. Denoting by wji the weight in the branch that links unit j to unit i, we can 
write the weighted sum performed by unit i as 

N 
si = C w j i y j  i = m + 1 ,  ..., N .  (C1.2.4) 

Note that WO( represents the unit’s bias term and wji, with j = 1, , . . , m, are the weights linking the inputs 
to unit i .  We will make the convention that if a branch from one unit to another does not exist in the 
network, the corresponding weight is set to zero. The unit’s output will be 

j = O  

y i  = S(si)  i = m + 1, . . . , N (C1.2.5) 

where S represents the unit’s nonlinearity. For the sake of simplicity, we shall assume that the same 
nonlinearity is used in all units of the network (it would be straightforward to extend the reasoning in this 
chapter to situations in which nonlinearities differ from one unit to another). As we shall see, the only 

c 1.2:4 Handbook ofhreural Compurarion release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilaver DerceDtrons 

restriction on the nonlinearities is that they must be differentiable. The output pattern of the network is 
formed by the outputs of one or more of its units. We will collect these outputs into the output vector 0. 

Let us denote by xk the kth pattern of the training set. We assume the training set to have K patterns 
(the training sets that are most often used are of finite size; infinite-sized training sets are sometimes used, 
and this would imply slight modifications in what follows, essentially amounting to changing the sums 
over training patterns into series or integrals, as appropriate). If we assume that we are presenting zk at 
the input of the network, we can define an error vector ek between the actual outputs ok and the desired 
outputs dk for the current input pattern: 

ek = ok - dk . (C1.2.6) 

The squared norm of the error vector, Ek = Ilek1I2 can be seen as a scalar measure of the deviation of the 
network from its ideal behavior, for the input pattern xk. In fact, Ek is zero if ok = dk.  Otherwise it is 
positive, progressively increasing as the network outputs deviate from the desired ones. We can define a 
measure of the network’s deviation from the ideal, in the whole training set, as 

K E = C E ~  
k= 1 

(C 1.2.7) 

where K is the number of patterns of the training set. If the training set and the network architecture are 
fixed, E is only a function of the weights of the network, that is, E = E(w) (when convenient, we will 
assume that we have collected all the weights as components of a single vector w). We can think of the 
task of training the network on the given training set as the task of finding the weights that minimize E. 
If there is a set of weights that yields E = 0, then a successful minimization will result in a network that 
performs without error in the whole training set. Otherwise, the weights that minimize E will correspond 
to the network that performs best in the quadratic error sense. 

The quadratic error may not be the best measure of the deviation from ideal in all situations, though 
it is by far the most commonly used one. If convenient, however, some other cost function C(e) can be 
used, with Ek = C ( e k ) .  The total cost to be minimized is still given by (C1.2.7). The cost function C 
should be chosen so as to represent, as closely as possible, the relative importances of different errors in 
the situation where the network is to be applied. In general, C ( e )  has an absolute minimum for e = 0, 
and in what follows the only restriction on C is that it be differentiable relative to all components of e. 

C1.2.3.1 The basic algorithm 

There are, in the mathematical literature, several different methods for minimizing a function such as E(w). 
Among these, one that results in a particularly simple procedure is the gradient method. Essentially, this 
method consists of iteratively taking steps, in weight space, proportional to the negative gradient of the 
function to be minimized, that is, of iteratively updating the weights according to 

wnfl = 20“ - qVE (C1.2.8) 

where V E  represents the gradient of E relative to w.  This iteration is repeated until some appropriate 
stopping criterion is met. If E(w) obeys some mild regularity conditions and q is small enough, this 
iteration will converge to a local minimum of E. The parameter q is normally designated as the learning 
rate parameter or step size parameter. 

The main issue in applying this algorithm is the computation of the gradient components, aE/awji. 
For feedforward networks, this computation takes a very simple form (Bryson and Ho 1969, Werbos 1974, 
Parker 1985, Le Cun 1985, Rumelhart et a1 1986). This is best described by means of an example. 
Consider the network of figure C1.2.10(a). From this network we obtain another one (figure C1.2.10(b)) 
as follows: we first linearize all nonlinear elements of the original network, replacing them by linear 
branches with gains gi = S ’ ( S i ) .  We then transpose it (Oppenheim and Schafer 1975) that is, we reverse 
the direction of flow of all branches, replacing summing nodes by divergence nodes and vice-versa, 
and changing outputs into inputs and vice-versa. This new network is often called the backpropagation 
network, or error propagation network, for reasons that will soon become clear. As indicated in the figure, 
we denote the variables in this network by the same letters as the corresponding ones in the MLP, with 
an overbar. 

For feedforward networks, the backpropagation rule for computing the gradient components, which 
we shall describe next, can be easily derived by repeated application of the chain rule of differentiation; 

@ 1997 1 0 P  Publishing Ud and Oxford University Press Handbook of Neural Computarion release 9711 c1.25 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.2.10. Example of a multilayer perceptron and of the corresponding backpropagation network. 
( a )  Multilayer perceptron. (b )  Backpropagation network, also called error propagation network. 

see for example (Rumelhart er a1 1986). We will not make that derivation here, however, because 
in section C1.2.8.1 we will make the derivation for a certain class of recurrent networks that includes 
feedforward networks as a special case. Here, we will therefore simply describe the rule. First of all, note 
that, from (C1.2.7) 

aE a Ek -- 
awji -Fa,,,. 

We place the pattern zk at the inputs of the MLP, we compute the output error according to (C1.2.6) 
and we place at the inputs of the error propagation network the values i3Ek/aoi as shown in figure C1.2.10. 
The backpropagation rule states that the partial derivatives can then be obtained as 

- = yjsi 
a Ek 
a wji 

(C 1.2.9) 

i.e. the partial derivative relative to a weight is the product of the inputs of the branches corresponding 
to that weight in the MLP and in the backpropagation network. As we said, the proof of this fact will be 
given in section C1.2.8.1. 

If the quadratic error is used as a cost function, then aEk/aoi = 2ef. Since the backpropagation 
network is linear, we can place at its inputs ef ,  instead of 2ef, and compute the derivatives according to 

- = 2yjsi . a Ek 
awji 

(C 1.2.10) 

In this case the backpropagation network is propagating errors. This justifies the name of errorpropagation 
network that is commonly given to the backpropagation network. The variables Si are often called 
propagated errors. 

To apply this training procedure, we must have a training set, containing a collection of input patterns 
and the corresponding target outputs, and we must select a network architecture to be trained (number of 
units, arranged or not in layers, interconnections among units, activation functions). We must also choose 
an initial weight vector, w1 (weights are normally initialized in a random manner, usually with a uniform 
distribution in some symmetric interval [ -a,  a]-see section C1.2.5.3 below), a step size parameter 17 and 
an appropriate stopping criterion. 

The backpropagation algorithm can be summarized as follows, where we denote by K the number of 
patterns in the training set. 
(i) Set n = 1. Repeat steps (a) through (c) below until the stopping criterion is met. 

(a) Set the variables gji to zero. These variables will be used to accumulate the gradient components. 

c1.2:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

(b) For k = 1, . . . , K perform steps (1) through (4). 
(1) Propagate forward: apply the training pattern x k  to the perceptron and compute its internal 

(2) Compute the cost function derivatives: compute a Ek/ao:. 
(3) Propagate backwards: apply aEk/ao: to the inputs of the backpropagation network and 

(4) Compute and accumulate the gradient components: compute the values aEk/aw,i = YjSi 

variables yi and outputs ok. 

compute its internal variables Si. 

and accumulate each of them in the corresponding variable, i.e. gji = gji + Yj9i. 
(c) Update the weights: set wyT1 = wyi - qgji. Increment n. 

This algorithm can be used with any differentiable cost function. When the quadratic error is used as a 
cost function, the factor 2 that appears in (C 1.2.10) is usually incorporated into the learning rate constant 
q,  and steps (2) to (4) are replaced by the following. 

(2) Compute the output errors: compute ek = ok - dk. 
(3) Propagate backwards: apply e: to the inputs of the backpropagation network and compute 

(4) Compute and accumulate the gradient components: compute the values y,S, and accumulate 

For finite minima, i.e. for minima that are not situated at infinity, the above algorithm is guaranteed to 
converge for q below a certain value qmm, if the activation functions and the cost function are continuous 
and differentiable. However, the upper bound qmm depends on the network, on the training set and on the 
cost function, and cannot be specified in advance. On the other hand, the fastest convergence is normally 
obtained for an optimal value of q that is somewhat below this upper bound. For q below the optimal value, 
the convergence speed can decrease considerably. This makes the choice of the learning rate parameter q 
a critical aspect of the training procedure. Often, preliminary tests have to be made with different learning 
rates, in order to try to find a good value of q for the problem to be solved. In section C1.2.4.2 we will 
describe a modification of the algorithm, involving adaptive step sizes, which solves this difficulty almost 
completely, and also yields faster training. 

The stopping criterion to be used depends on the problem being addressed. In some situations, 
the training is stopped when the cost function E becomes lower than some prescribed value. In other 
situations, the algorithm is stopped when the maximum absolute value of the error components e: becomes 
lower than some given limit. In other situations still, training is stopped when the variation of E or of the 
weights becomes too slow. Often, an upper bound on the number of iterations n is also incorporated, to 
prevent the algorithm from running forever if the chosen conditions are never met. 

its internal variables Ti. 

each of them in the corresponding variable, g,i = g j i  + y,Si. 

C1.2.3.2 Stochastic backpropagation 

When the training set is large, each weight update (which involves a sweep through the whole training 
set) may become very time-consuming, making learning very slow. In such cases, another version of the 
algorithm, performing a weight update per pattern presentation, can be used. 

(i) Set n = 1. Repeat step (a) below until the stopping criterion is met. 
(a) For k = 1, . . . , K ,  perform steps (1) through (5 ) .  

(1) Propagate forward: apply the training pattern x k  to the perceptron, and compute its internal 

(2) Compute the cost function derivatives: compute a Ek/ao:. 
(3) Propagate backwards: apply aEk/ao: to the inputs of the backpropagation network, and 

compute its internal variables Fi. 
(4) Compute the gradient components: compute the values aEk/awji = yjSi. 
(5 )  Update the weights: set wJT1 = 

variables yi and outputs ok. 

- qy,Fi. Increment n .  
To differentiate between the two forms of the algorithm, the former is often qualified as batch, of-line or 
deterministic, while the latter is called real-time, on-line or stochastic. This last designation stems from 
the fact that, under certain conditions, the latter form of the algorithm implements a stochastic gradient 
descent. Its convergence can then be guaranteed if r]  is varied with n ,  in such a way that (i) v ( n )  + 0 and 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computarion release 9711 c 1.2:7 

Copyright © 1997 IOP Publishing Ltd



Suuervised Models 

(ii) q ( n )  = 00. In fact, the algorithm can then be shown to satisfy the conditions for convergence 
introduced by Ljung (1978). In practice, since any training is in fact finite, it is not always clear how 
best to decrease q. A solution that is sometimes used is to train first in real-time mode, until convergence 
becomes slow, and then switch to batch mode. Frequently, the largest speed advantage of real-time training 
occurs in the first part of the training process, and the later switch to batch mode does not bring about any 
significant increase in training time. 

C1.1.3 Backpropagation is a generalization of the delta rule for training single linear units: a h l i n e s .  In fact, 
it is easy to see that, when applied to a single linear unit (i.e. a unit without nonlinearity), backpropagation 

82.3.4 coincides with the delta rule. For this reason, backpropagation is sometimes designated the generalized 
delta rule. 

C1.2.3.3 Local minima 

An issue that may have already come to the reader’s mind is that gradient descent, like any other local 
optimization algorithm, converges to local minima of the function being minimized. Only by chance will it 
converge to the global minimum. A solution that can be used to try to alleviate this problem is to perform 
several independent trainings, with different random initializations of the weights. Even this, however, 
does not guarantee that the global minimum will be found, although it increases the probability of finding 
lower local minima. On the other hand, this solution cannot be used for large problems, where training 
times of days or even weeks can be involved. When the function E(w) is very complex, with many 
local minima, one must essentially abandon the hope of finding the optimum, and accept local minima as 
the best that can be found. If these are good enough, the problem is solved. Otherwise, the only viable 
solution normally involves using a more complex architecture (e.g. with more hidden units, andor with 
more layers) that will normally have lower local minima. It must be said, however, that although local 
minima are a drawback in the training of multilayer perceptrons, they do not usually cause too many 
difficulties in practice. 

C1.2.3.4 Universal approximation property 

An important property of feedforward multilayer perceptrons is their universality, that is, their capacity 
to approximate, to any desired accuracy, any desired function. The main result in this respect was first 
obtained by Cybenko (1989), and later, independently, by Funahashi (1989) and by Hornik et al (1989). 
It shows that a perceptron with a single hidden layer of sigmoidal units and with a linear output unit can 
uniformly approximate any continuous function in any hypercube (and therefore also in any closed, bounded 
set). More specifically, it states that, if a function f ,  continuous in a closed hypercube H c Rk, and an 
error bound E > 0 are given, then a number h ,  weight vectors wi and output weights ai ( i  = 1 , .  . , , h )  
exist such that the output of the single hidden layer perceptron 

i = l  

approximates f in H with an error smaller than E ,  that is, If(z) - o(z)l < E for all z E H, if the 
nonlinearity S is continuous, monotonically increasing and bounded. Here, for compactness of notation, 
we have assumed that the input vector s has been extended with a component xo = 1 and that the weight 
vectors wi have components from 0 to k ,  so that the inner product ( w i  - s) incorporates a bias term. 

This result is rather reassuring, since it guarantees that even perceptrons with a single hidden layer 
can approximate essentially all useful functions. However, the limitations of this result should also be 
understood. First of all, the theorem only guarantees the existence of a network, but does not provide 
any constructive method to find it. Second, it does not give any bounds on the number of hidden units 
h needed for approximating a given function to a desired level of accuracy. It may well turn out that, 
for some specific problems, while a single hidden layer perceptron must exist which gives a good enough 
approximation to the desired result, either it is too hard to find, or it has too large a number of hidden units 
(or both). A large number of units, and therefore of weights, may be a strong drawback, meaning that a 
very large number of training patterns is required for adequately training the network (see the discussion 
on generalization in section C1.2.6). On the other hand, it may happen that networks with more than one 
hidden layer can yield the desired approximation with a much smaller number of weights. The situation 

c 1 . 2 ~ 8  Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

is somewhat similar to what happens with combinatorial digital circuits. Although any digital function 
can be implemented in two layers (e.g. by expressing it as a sum of products), a complex function, such 
as an output of a binary adder for a large word size, can require an intractable number of product terms, 
and therefore of gates in the first layer. However, by using more layers, the implementation may become 
easily tractable. 

C1.2.4 Accelerated training 

The training of multilayer perceptrons by the backpropagation algorithm is often rather slow, and may 
require thousands or tens of thousands of epochs, in complex problems (the name epoch is normally given 
to a training sweep through the whole training set, either in batch or in real-time mode). The essential 
reason for this is that the error surface, as a function of the weights, normally has narrow ravines (regions 
where the curvature along one direction is rather strong, while it is very weak in an orthogonal direction, 
the gradient component along the latter direction being very small). In these regions, the use of a large 
learning rate parameter q will lead to a divergent oscillation across the ravine. A small q will lead the 
weight vector to the 'bottom' of the ravine, and convergence to the minimum will then proceed along this 
bottom, but at a very low speed, because the gradient and q are both small. In the next sections we will 
describe two methods of improving the training speed of multilayer perceptrons, especially in situations ~ 3 . 4  

where narrow ravines exist. 

C1.2.4.1 Momentum technique 

Let us rewrite the weight update equation C1.2.8 as 

= W" + Aw" wn+l 

with 

The momentum technique (Rumelhart et a1 1986) replaces the latter equation with 

Aw" = - 7 V E .  

Aw" = - q V E  + a w n  

in which 0 5 CY < 1. The second term in the equation, called the momentum term, introduces a kind of ~ 6 . 3 . 3  

'inertia' in the movement of the weight vector, since it makes successive weight updates similar to one 
another, and has an accumulation effect, if successive gradients are in similar directions. This increases 
the movement speed along the ravine, and helps to prevent oscillations across it. This effect can also 
be seen as a linear low-pass filtering of the gradient V E .  The effect becomes more pronounced as CY 

approaches 1, but normally one has to be conservative in the choice of CY because of an adverse effect of 
the momentum term: the ravines are normally curved, and in a bend the weight movement may be up 
a ravine wall, if too much momentum has been previously acquired. Like the learning rate parameter q,  
the momentum parameter CY has to be appropriately selected for each problem. Typical values of CY are in 
the range 0.5 to 0.95. Values below 0.5 normally introduce little improvement relative to backpropagation 
without momentum, while values above 0.95 often tend to cause divergence at bends. The momentum 
technique may be used both in batch and real-time training modes. In the latter case, the low-pass filtering 
action also tends to smooth the randomness of the gradients computed for individual patterns. 

With momentum, the batch-mode backpropagation algorithm becomes the following. 
(i) Set n = 1 and AW;~ = 0. Repeat steps (a) through (d) below until the stopping criterion is met. 

(a) Set the variables gji to zero. These variables will be used to accumulate the gradient components. 
(b) For k = 1, . . . , K (where K is the number of training patterns), perform steps (1) through (4). 

(1) Propagate forward: apply the training pattern xk to the perceptron and compute its internal 

(2) Compute the cost function derivatives: compute aEk/aoF. 
(3 )  Propagate backwards: apply aEk/ao: to the inputs of the backpropagation network and 

(4) Compute and accumulate the gradient components: compute the values aEk/awji = yj7i 

variables yj and outputs ok. 

compute its internal variables Si.  

and accumulate each of them in the corresponding variable, i.e. gji = gji + y j7 i .  

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9111 c 1.2:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

(c) Apply momentum: set AwYi = -qgji + aAwn-' 
(d) Update the weights: set wJT1 = wYi + Aw/". Increment n. 

I t  

The real-time backpropagation algorithm with momentum is 

(i) Set n = 1 and A$ = 0. Repeat step (a) below until the stopping criterion is met. 

(a) For k = 1, . . . , K, perform steps (1) through (6).  
(1) Propagate forward: apply the training pattern x k  to the perceptron and compute its internal 

(2) Compute the cost function derivatives: compute a Ek/aof. 
(3) Propagate backwards: apply aEk/aof to the inputs of the backpropagation network and 

(4) Compute the gradient components: compute the values aEk/awj i  = y jT i .  

( 5 )  Apply momentum: set AwYi = -qy,Fi + aAwJ;'. 

(6) Update the weights: set wy?' = wyi + AwYi. Increment n. 

variables yj and outputs ok. 

compute its internal variables 7;. 

C1.2.4.2 Adaptive step sizes 

The adaptive step size method is a simple acceleration technique, proposed in Silva and Almeida (1990a, 
b) for dealing with ravines. For related techniques see Jacobs (1988) and Tollenaere (1990). It consists of 
using an individual step size parameter q,; for each weight, and adapting these parameters in each iteration, 
depending on the successive signs of the gradient components: 

q p 4  

a y 3  
if (E>" and (e>"-' have the same sign 

if (E)n and (e>"-' have different signs 
(C1.2.11) a:, = 

(C 1.2.1 2) 

where U > 1 and d < 1. There are two basic ideas behind this procedure. The first is that, in ravines 
that are parallel to some axis, use of appropriate individual step sizes is equivalent to eliminating the 
ravine, as discussed in Silva and Almeida (1990b). Ravines that are not parallel to any axis but are not 
too diagonal either, are not completely eliminated, but are made much less pronounced. The second idea 
is that quasi-optimal step sizes can be found by a simple strategy: if two successive updates of a given 
weight were performed in the same direction, then its step size should be increased. On the other hand, if 
two successive updates were in opposite directions, then the step size should be decreased. 

As is apparent from the explanation above, the adaptive step size technique is especially useful for 
ravines that are parallel, or almost parallel, to some axis. Since the technique is less effective for ravines 
that are oblique to all axes, use of a combination of adaptive step sizes and the momentum term technique 
is justified. This combination is normally done by replacing (C1.2.12) with 

that is, we first filter the gradient with the momentum technique, and then multiply the filtered momentum 
by the adaptive step sizes. 

For applying the backpropagation algorithm with adaptive step sizes and momentum, one must choose 
the following parameters: 

qo initial value of the step size parameters 
U 'up' step size multiplier 
d 'down' step size multiplier 
a momentum parameter. 

c1.2:10 Handbook ofh'euraf Computarion release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

Typical values, which will work well in most situations, are U = 1.2, d = 0.8 and a! = 0.9. The initial 
value of the step size parameters is not critical, but is normally chosen small to prevent the algorithm 
from diverging in the initial epochs, while the step size adaptation still did not have enough time to act. 
The step size parameters will then be increased by the step size adaptation algorithm, if necessary. If the 
robustness measures indicated in section C1.2.4.3 are incorporated in the algorithm, even large initial step 
size parameters will not cause divergence, and essentially any value can be chosen for 90. 

(i) 

The batch-mode training algorithm with adaptive step sizes and momentum is as follows. 
Set n = 1 ,  qji = qo and z:, = 0. Repeat steps (a) through (d) below until the stopping criterion is 
met. 
(a) Set the variables gyi to zero. These variables will be used to accumulate the gradient components. 
(b) For k = 1, , . . , K (where K is the number of training patterns), perform steps (1) through (4). 

(1) Propagate forward: apply the training pattern xk to the perceptron and compute its internal 

(2) Compute the cost function derivatives: compute aEk/ao: .  
(3) Propagate backwards: apply aEk/ao:  to the inputs of the backpropagation network and 

(4) Compute and accumulate the gradient components: compute the values aEk/aor and 

variables y j  and outputs ok. 

compute its internal variables Ti. 

accumulate each of them in the corresponding variable, i.e. gyi = gyi + yjFi. 
(c) Apply momentum: set zyi = gyi + crz"-'. J l  

(d) Adapt the step sizes: if n 2 2 set 

UI]?.-' 

J r  { dv;;' 
if g?. J I  and gy;' have the same sign 
if g". 11 and gn:' I '  have opposite signs, 

q?, = J I  

(e) Update the weights: set w;:' = wyi - qyjzyi ,  Increment n. 
The adaptive step size technique was designed, in principle, for batch training. It has, however, been 
used with success in real-time training, with the following modifications: (i) while weights are adapted 
after every pattern presentation, step sizes are adapted only at the end of each epoch, and (ii) instead of 
comparing the signs of the derivatives, in the step size adaptation (C1.2.1 l), we compare the signs of the 
total changes of the weight in the last and next to last epochs. 

C1.2.4.3 Robustness 

As was said in section C1.2.3.1, the step size parameter q has to be small enough for the backpropagation 
algorithm to converge. During the course of training, either with or without adaptive step sizes, one may 
come to a region of weight space for which the current step size parameters are too large, causing an 
increase in the cost function from one epoch to the next. A similar increase can also occur in a curved 
ravine if too much momentum has previously been acquired, as noted in section C1.2.4.1. To prevent the 
cost function from increasing, one must then go back to the step with lowest cost function, reduce the step 
size parameters and set the momentum memory to zero. To do this, after each epoch we must compare the 
current value of the cost function with the lowest that was ever found in the current training, and take the 
above-mentioned measures if the current value is higher than that lowest one (a small tolerance for cost 
function increases is allowed, as we will see below). To be more specific, these measures are as follows. 

(i) Return to the set of weights that produced the lowest value of the cost function. 
(ii) Reduce all the step size parameters (or the single step size parameter, if adaptive step sizes are not 

being used) by multiplying by a fixed factor r < 1 .  
(iii) Set the momentum memories z;;' (or Aw;;' if adaptive step sizes are not being used) to zero. 
After this, an epoch is again executed. If the error still increases, the same measures are repeated: returning 
to the previous point, reducing step sizes and setting momentum memories to zero. This repetition continues 
until an error decrease is observed. The normal learning procedure is then resumed. A value that is often 
used for the reduction factor is r = 0.5. A tolerance is normally used in the comparison of values of 
the cost function, that is, a small increase is allowed without taking the measures indicated above. In 
batch mode, the allowed increase is very small (e.g. 0.1%) just to allow for small numerical errors in 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1.2:11 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

the computation of the cost function. In real-time mode, a larger increase (e.g. 20%) has to be allowed, 
because the exact cost function is normally never computed. Instead, the cost function contributions from 
the different patterns are added during a whole epoch, while the weights are also being updated. This sum 
of cost function contributions is only an estimate of the actual cost function at the end of the epoch, and 
this is why a larger tolerance is needed. If desired, the actual cost function could be computed at the end 
of each epoch, by presenting all the patterns while keeping the weights frozen, but this would increase 
computation significantly. 

The procedure described in this section is rather effective in making the training robust, irrespective of 
whether it is combined with adaptive step sizes and/or momentum or not. When combined with adaptive 
step sizes and momentum, it yields a very effective MLP training algorithm. 

C1.2.4.4 Other acceleration techniques 

~ 3 . 4  In this section we will summarize other existing techniques for fast MLP training. Most of them are 
based on a local second-order approximation to the cost function, attempting to reach the minimum of that 
approximation in each step (for a review of a number of variants see Battiti (1992)). These techniques 
make use of the Hessian matrix, that is, of the matrix of second derivatives of the cost function relative to 
the weights. Some methods compute the full Hessian matrix. Since the number of elements of the Hessian 
is the square of the number of weights, these methods have the important drawback that their amount of 
computation per epoch is proportional to that square. These methods reduce the number of training epochs 
but, for large networks, they involve a very large amount of computation per epoch. Other methods 
assume that the Hessian is diagonal, thereby achieving a linear growth of the computation per epoch 
with the number of weights. Among these, a variant (Becker and Le Cun 1989) estimates the diagonal 
elements of the Hessian through a backward propagation, similar to the one described in section C1.2.3.1 
for computing the gradient. Another variant, called quickprop (Fahlman 1989) estimates the second 
derivatives based on the variation of the first derivatives from one epoch to the next. It should be noted 
that the adaptive step size algorithm described in section C1.2.4.2, and the related algorithms referenced 
in that section, can also be viewed as indirect ways to estimate diagonal Hessian elements. 

Another class of second-order techniques is based on the method of conjugate gradients (Press et 
a1 1986). This is a method which, when employed with a second-order function, can find its minimum 
in a number of steps equal to the number of arguments of the function. The various conjugate gradient 
techniques that are in use differ from one another, essentially, in the approximations they make to deal 
with non-second-order functions. Among these techniques, one of the most effective appears to be the one 
of Moller (1990). 

We should not conclude this section without mentioning that, when the input patterns have few 
~1.7.3, c1.6.2 components (up to about 5-10), networks of local units (e.g. radial basisfunction networks) are normally 

much faster to train than multilayer perceptrons. However, as the dimensionality of the input grows, 
networks of local units tend to require an exponentially large number of units, making their training very 
long, and requiring very large training sets to be able to generalize well (cf section C1.2.6). 

C1.2.5 Implementation 

In this section we discuss some issues that are related to the practical implementation of multilayer 
perceptrons and of the backpropagation algorithm. 

CI .2.5.1 Sigmoids 

As we said above, the activation functions that are most commonly used in units of multilayer perceptrons 
are of the sigmoidal type. Other kinds of nonlinearities have sometimes been tried, but their behavior 
generally seems to be inferior to that of sigmoids. Within the class of sigmoids there still is, however, a 
wide room for choice. The characteristic of sigmoids that appears to have the strongest influence on the 
performance of the training algorithm is symmetry relative to the origin. Functions like the hyperbolic 
tangent and the arctangent are symmetric relative to the origin, while the logistic function, for example, 
is symmetric relative to a point of coordinates (0,0.5). Symmetry relative to the origin gives sigmoids a 
bipolar character that normally tends to yield better conditioned error surfaces. Sigmoids like the logistic 

c 1.2:12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

tend to originate narrow ravines in the error function, which impair the speed of the training procedure 
(Le Cun et a1 1991). 

C1.2.5.2 Output units and target values 

Most practical applications of multilayer perceptrons can be divided, in a relatively clear way, into two 
different classes. In one of the classes, the target outputs take a continuous range of values, and the task 
of the network is to perform a nonlinear regression operation. Normally, in this case, it is convenient not 
to place nonlinearities in the outputs of the network. In fact, we normally wish the outputs to be able 
to span the whole range of possible target values, which is often wider than the range of values of the 
sigmoids. We could, of course, scale the amplitudes of the output sigmoids appropriately, but this rarely 
has any advantage relative to the simple use of units without nonlinearities at the outputs. Output units 
are then said to be linear. They simply output the weighted sum of their inputs plus their bias term. 

In the other class, which includes most classification and pattern recognition applications, the target 
outputs are binary, that is, they take only two values. In this case it is common to use output units 
with sigmoid nonlinearities, similar to other units in the network. The binary target values that are most 
appropriate depend on the sigmoids that are used. Often, target values are chosen equal to the two 
asymptotic values of the sigmoids (e.g. 0 and 1 for the logistic function, and f l  for the tanh and the 
scaled arctan functions). In this case, to achieve zero error, the output units would have to achieve full 
saturation, i.e. their input sums would have to become infinite. This fact would tend to drive the weights 
linking to these units to grow indefinitely in absolute value, and would slow down the training process. 
To improve training speed, it is therefore common to use target values that are close, but not equal, to the 
asymptotic values of the sigmoids (e.g. 0.05 and 0.95 for the logistic function, and k0.9 for the tanh and 
the scaled arctan functions). 

CI. 2.5.3 Weight initialization 

Before the backpropagation algorithm can be started, it is necessary to set the weights of the network 
to some initial values. A natural choice would be to initialize them all with a value of zero, SO as not 
to bias the result of training in any special direction. However, it can easily be seen, by applying the 
backpropagation rule, that if initial weights are zero, all gradient components are zero (except for those 
that concern weights on direct links between input and output units, if such links exist in the network). 
Moreover, those gradient components will always remain at zero during training, even if direct links 
do exist. Therefore, it is normally necessary to initialize the weights to nonzero values. The most 
common procedure is to initialize them to random values, drawn from a uniform distribution in some 
symmetric interval [ - a ,  a ] .  As we mentioned above, several independent trainings with independent 
random initializations may be used, to try to find better minima of the cost function. 

It is easy to understand that large weights (resulting from large values of a )  will tend to saturate 
the respective units. In saturation the derivative of the sigmoidal nonlinearity is very small. Since this 
derivative acts as a multiplying factor in the backpropagation, derivatives relative to the unit’s input weights 
will be very small. The unit will be almost ‘stuck’, making learning very slow. 

If the inputs to a given unit i in the network all have similar root mean square (rms) values and are 
all independent from one another, and if the weights are initialized in some given, fixed interval, the rms 
value of the unit’s input sum will be proportional to (fi)’/*, where fi is the number of inputs of unit i 
(often called the unit’sfan-in). To keep the rms values of the input sums similar to one another, and to 
avoid saturating the units with largest fan-ins, the parameter a,  controlling the width of the initialization 
interval, is sometimes varied from unit to unit, by making ai = k / ( f i ) ’ / * .  There are different preferences 
for the choice of k. Some people prefer to initialize the weights very close to the origin, making k very 
small (e.g. 0.01 to O.l) ,  and therefore keeping the units in their central linear regions in the beginning of 
the training process. Other people prefer larger values of k (e.g. 1 or larger), that lead the units into their 
nonlinear regions right from the start of training. 

C1.2.5.4 Input normalization and decorrelation 

Let us consider the simplest network that one can design, formed by a single linear unit. Single-unit 
linear networks (adalines) have been in use for a long time, in the area of discrete-time signal processing. 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1.2:13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Finite-impulse response (FIR) filters (Oppenheim and Schafer 1975) can actually be viewed as single linear 
units with no bias. The inputs are consecutive samples of the input signal, and the weights are the filter 
coefficients. Therefore, adaptive filtering with FIR filters is essentially a form of real-time training of 
linear-unit networks. It is therefore no surprise that the first adaptive filtering algorithms were derived 
from the delta rule (Widrow and Stearns 1985). 

It is a well-known fact from adaptive filter theory that training is fastest, because the error function is 
best conditioned (without any ravines) if the inputs to the linear unit are uncorrelated among themselves, 
that is, (x ix , )  = 0 for i # j ,  and have equal mean-squared values, that is, (x i” )  = ( x j )  for all i ,  j .  Here ( a )  

represents the expected value (most often, when training perceptrons, the expected value can be estimated 
simply by averaging in the training set). 

If a bias term is also used in the linear unit, it acts as an extra input that is constantly equal to 
1 .  Its mean squared value is 1, and therefore the mean squared values of all other inputs should also 
be equal to 1. On the other hand, cross-correlations of other inputs with this new input are simply the 
expected values of those other inputs, which should be equal to zero, as all cross-correlations between 
inputs: ( x i l )  = ( x i )  = 0. In summary, for fastest training of a single linear unit with bias one should 
preprocess the data so that the average of each input component is zero, 

( X i )  = 0 

and the components are decorrelated and normalized: 

( X i X j )  = s j j  

where S i j  is the Kronecker symbol. It has been found by experience that this kind of preprocessing 
also tends to accelerate the training in the case of multilayer perceptrons. Setting the averages of 
input components to zero can simply be performed by adding an appropriate constant to each of them. 
Decorrelation can then be performed by any orthogonalization procedure, for example, the Gram-Schmidt 
technique (Golub and Van Loan 1983). Finally, normalization can be performed by an appropriate scaling 
of each component. The most cumbersome of these steps is the orthogonalization, and people sometimes 
skip it, simply setting means to zero and mean-squared values to one. This simplified preprocessing 
is usually designated input normalization, and is often quite effective at increasing the training speed of 
networks. A more elaborate acceleration technique, involving the adaptive decorrelation and normalization 
of the inputs of all layers of the network, is described in (Silva and Almeida 1991). 

C1.2.5.5 Shared weights 

In some cases one would wish to constrain some weights of a network to be equal to one another. This 
situation may arise, for example, if we wish to perform the same kind of processing in various parts of 
the input pattern. It is a common situation in image processing, where one may want to detect the same 
feature in different parts of the input image. An example, in a handwritten digit application, is given in (Le 
Cun et a1 1990a). Two examples of shared weight situations will also be found below, in the discussion 
of recurrent networks. 

The difficulty in handling shared weights comes from the fact that even if these weights are initialized 
with the same value, the derivatives of the cost function relative to each of them will usually be different 
from one another. The solution is rather simple. Assume that we have collected all weights in a weight 
vector w = ( W I ,  w2, . . .)T (where T denotes transposition), and that the first m weights are to be kept 
equal to one another. These weights are not, in fact, free arguments of the cost function E .  To keep all 
of the arguments of E free, one should replace all of these weights by a single argument a, to which all 
of them will be equal, Then, the partial derivative of E should be computed relative to a, and not relative 
to each of these weights individually. But 

The derivatives that appear in the last line can be computed by the normal backpropagation procedure. 
In summary, one should compute the derivatives relative to each of the individual weights in the normal 

c 1.2~14 Handbook of Neural Compurarion release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

way, and then use their sum to update a and therefore to update all the shared weights. One should also 
remember that shared weights should be initialized to the same value. 

C1.2.6 Generalization 

Until now we have been discussing the training of multilayer perceptrons based on the assumption that 
we wish to optimize their performance (measured by the cost function) in the training set. However, this 
is a simplification of the situation that we normally find in practice. Consider, for example, a network 
being trained to perform a classification task. We assume that we are given a training set, which is usually 
finite, containing examples of the desired classification. This set is usually only a minute fraction of the 
universe in which the network will be used after training. After training, the network will be used to 
classify patterns that were not in the training set. 

We see that ideally we would like to minimize the cost function computed in the whole universe. 
That is normally either impossible or impractical, however, because the universe is infinite, because we do 
not know it all in advance, or simply because that would be too costly in computational terms. Until now 
we have been using the cost function evaluated in the training set as an estimate of its value in the whole 
universe. Whenever possible, precautions should be taken to ensure that the training set is as representative 
of the whole universe as possible. This may be achieved, for example, by randomly drawing patterns from 
the universe, to form the training set. Even if this is done, however, the statistical distribution of the 
training set will only be an approximation to the distribution of the universe. A consequence of this is 
that, since we optimize the performance of the network in the training set, its performance in that set will 
normally be better than in the whole universe. A network whose performance in the universe is similar to 
the performance in the training set is said to generalize well, while a network whose performance degrades 83.5 

significantly from the training set to the universe is said to generalize poorly. 
These facts have two main implications. The first is that if we wish to have an unbiased estimate 

of the network’s performance in the universe, we should not use the performance in the training set, but 
rather in a test sef that is independent from the training set. The second implication is that we should 
try to design networks and training algorithms in order to ensure good generalization, and not only good 
performance in the training set. 

C1.2.6.1 Network size 

An important issue in what concerns generalization is the size of the network. Intuitively, it is clear that 
one cannot effectively train a large network with a training set containing only a few patterns. Consider 
a network with a single output. When we present at the input a given training pattern, we can idealize 
writing an expression of the output of the network as a function of the weights. If we wish to make 
the output equal to the desired output, we can set that expression equal to the desired output, and we 
will obtain an equation whose unknowns are the weights. The whole training set will therefore yield a 
set of equations. If the network has more than one output, the situation is similar, and the number of 
equations will be the number of training patterns times the number of outputs. These equations are usually 
nonlinear and very complex, and therefore not solvable by conventional means. They may even have no 
exact solution. Training algorithms are methods to find exact or approximate solutions for such sets of 
equations. 

By making an analogy with the well-known case of the systems of linear equations, we can gain 
some insight into the issue of generalization. If the number of unknowns (i.e. weights) is larger than the 
number of equations, there will generally be an infinite number of solutions. Since each of these solutions 
corresponds to a different set of weights, it is clear that they will generalize differently from one another, 
and only by chance will the specific solution that we find generalize well. If the number of weights is equal 
to the number of equations, a linear system will usually have a single solution. A nonlinear system will 
usually have no solutions, a single solution or a finite number of solutions. Since these are optimal for the 
training set, which is different from the universe, they will still often not generalize well. The interesting 
situation is the one in which there are fewer weights than equations. In this case, there will be no solution, 
unless the set of equations is redundant. Even the existence of an approximate solution implies that there 
must be some kind of redundancy, or regularity, in the training set (e.g. in a digit-recognition problem, 
regularities are the facts that all zeros have a round shape, all ones are approximately vertical bars, and so 
on). With fewer weights than training patterns, the only way for the network to approximately satisfy the 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1.2:15 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

training equations is to exploit the regularities of the problem, and the fewer weights the network has, the 
more it will have to rely on the training set’s regularities to be able to perform well on that set. But these 
regularities are exactly what we expect to be maintained, from the training set to the universe. Therefore, 
small networks, with fewer weights than the number of equations, are the ones that can be expected to 
generalize best, if they can be trained to pegorm well on the training set. Note that the latter condition 
means that network topology is a very important factor. A network with the appropriate number of weights 
but with an inappropriate topology will not be able to perform well in the training set, and therefore cannot 
also be expected to perform well in the universe. On the other hand, a network with an appropriately 
small number of weights and with the appropriate topology will be able to perform well in the training 
set, and also to generalize well. As a rule of thumb, we would say that the number of weights should be 
around or below one tenth of the product of the number of training patterns by the number of outputs. In 
some situations, however, it may go up to about one half of that product. 

There are other methods to try to improve generalization. The methods that we will mention are 
stopped training, network pruning, constructive techniques and the use of a regularization term. 

C1.2.6.2 Stopped training and cross-validation 

~ 3 . 5 . 2  In stopped training, one considers all the successive weight vectors found during the course of the training 
process, and tries to find the vector that corresponds to the best generalization. This is normally done by 

~ 3 . 5 . 2  cross-validation. Another set of patterns, independent from the training and test sets, is used to evaluate 
the network’s performance during the training (this set of patterns is often designated the validation set). 
At the end of training, instead of selecting the weights that perform best in the training set, we select the 
weights that performed best in the validation set. This is equivalent, in fact, to performing an early stop 
of the training process, before convergence in the training set, which justifies the designation of ‘stopped 
training’. Since the performance in the validation set tends to oscillate significantly during the training 
process, it is advisable to continue training even after the first local minimum in the validation performance 
is observed, because better validation performance may still arise later in the process. Note that, since the 
validation set is used to select the set of weights to be kept, it effectively becomes part of the training data, 
i.e. the performance of the final network in the validation set is not an unbiased estimate of its performance 
on the universe. Therefore, an independent test set is still required, to evaluate the network’s performance 
after training is complete. 

C1.2.6.3 Pruning and constructive techniques 

B3.5.2 Network pruning techniques start from a large network, and try to successively eliminate the least important 
interconnections, thereby arriving at a smaller network whose topology is appropriate for the problem at 
hand, and which has a good probability of generalizing well. Among the pruning techniques we mention 
the skeletonization method of Mozer and Smolensky (1989), optimal brain damage (Le Cun et at 1990b) 
and optimal brain surgeon (Hassibi et a1 1993). Network pruning, while effective, tends to be rather time- 
consuming, since after each pruning some retraining of the network has to be performed (an interesting and 
efficient technique, which is a blend of pruning and regularization, is mentioned below in section C1.2.6.4). 
Constructive techniques work in the opposite way to pruning: they start with a small network and add 
units until the performance is good enough. Several constructive techniques have appeared in the literature, 
the best known of which is probably cascade-correlation (Fahlman and Lebiere 1990). Other constructive 
techniques can be found in Frean (1990) and Mtzard and Nadal (1989). 

C1.2.6.4 Regularization 

Regularization is a class of techniques that comes from the field of statistics (MacKay 1992a, b). In its 
simplest form, it consists of adding a regularization term to the cost function to be optimized: 

Etotal = E + AEreg 

where E is the cost function that we defined in the previous sections, E,, is the regularization term, A 
is a parameter controlling the amount of regularization and Etotd is the total cost function that will be 
minimized. The regularization term is chosen so that it tends to smooth the function that is generated by 
the network at its outputs. This term should have small values for weight vectors that generate smooth 

c 1.2~16 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

outputs, and large values for weight vectors that generate unsmooth outputs. An intuitive justification for 
the use of such a term can be given by considering a simple example (figure C1.2.11). Assume that a 
number of training data points are given (in the figure these are represented by dark circles). There is an 
infinite number of functions that pass through these points, two of which are represented in the figure. 
Of these, clearly the most reasonable are the ones that are smoothest. If the function to be approximated 
is smooth, then the approximator’s output should be smooth also. On the other hand, if the function to 
be approximated is unsmooth, then only by chance would an unsmooth function generated by a network 
approximate the desired one, in the regions between the given data points, since unsmooth functions have a 
very large variability. Therefore, only by chance would the network generalize well, in such a case. Only 
a larger number of training points would allow us to expect to be able to successfully approximate such 
a function. Therefore, one should bias the training algorithm towards producing smooth output functions. 
This can be done through the use of a regularization term (in the theory of statistics, supervised learning 
can be viewed as a form of maximum-likelihood estimation, and in this context the use of a regularization 
term can be justified in a more elaborate way, by taking into consideration a prior distribution of weight 
vectors (MacKay 1992a, b)). 

Figure C1.2.11. An illustration of generalization. Given the data points denote- -I full circles, there is an 
infinite number of functions that pass through them. Only the smooth ones can be expected to generalize 
well. 

One of the simplest regularization terms, which is often used in practice (Krogh and Hertz 1992), is 
the squared norm of the weight vector 

j.1 

Use of such a regularization term is justified since smaller weights tend to produce slower-changing (and 
therefore smoother) functions. The use of this term leads to gradient components that are given by 

+ A W j j  . a E t o t d  aE -=- 
awji awji 

The first term on the right-hand side of this equation is still computed by the backpropagation rule. Since 
the derivative of Etotal is to be subtracted (after multiplication by the step size parameter) from the weight 
itself, we see that if the derivative of E is zero, the weight will decay exponentially to zero. For this 
reason, this technique is often called exponential decay. Other forms of regularization terms have been 
proposed in the literature, which are based e.g. on minimizing derivatives of the function generated by the 
network (Bishop 1990), or on placing a smooth cost on the individual weights, in an attempt to reduce 
their number (Weigend er al 1991). 

A type of regularization term that appears to be particularly promising has been recently introduced 
(Williams 1994). Instead of the sum of the squares of the weights, it uses the sum of their absolute values: 

Ere, = I W j i I .  
j . i  

Use of this term leads to 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9111 c 1.2: 17 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

where ‘sgn’ denotes the sign function. If the derivative of E is zero, the weight will decay linearly to zero, 
reaching that value in a finite time. Only if the derivative of E relative to a weight has absolute value larger 
than A will this weight be able to escape the zero value. Therefore, this E,, term acts simultaneously 
as a regularizer, tending to keep the weights small, and as a pruner, since it automatically sets the least 
important weights to zero. Experience with this technique is still limited, but its ability to perform both 
regularization and pruning during the normal training of the network gives it a potential that should not 
be overlooked. We will designate this form of regularization as linear decay, for the reasons given above, 
or Laplacian regularization, since it can be justified, in a statistical framework, by assuming a Laplacian 
prior on the weights. One word of caution regarding the use of this form of regularization concems the 
fact that the regularizer term E,, is not differentiable relative to the weights when these have a value of 
zero. A way to deal with this problem is discussed in Williams (1994). A simpler way, which this author 
has used with success, is to check, in every training step, whether each weight has changed sign, and 
to set the weight to zero if it did. The weight is allowed to leave the zero value in later training steps, 
if IaE/awjiI > A. 

In finalizing this section, we should point out that there are several other approaches to the issue of 
trying to find a network with good generalization ability, and also to other related issues, such as trying 
to estimate the generalization ability of a given network. One of the best known of these approaches is 

~ 3 . 5 . 2 . 2  based on the concept of Vapnik-Chervonenkis dimension (often designated simply VC dimension) (Guyon 
et al 1992). 

C1.2.7 Application examples 

We have already seen, in figure C1.2.9, two examples of networks trained to perform the logical XOR 
operation. Another artificial problem that is often used to test network training is the so-called encoder 
problem. A network with m inputs and m outputs is trained to perform an identity mapping (i.e. to yield 
output patterns that are equal to the respective input patterns) in a universe consisting of m patterns: those 
obtained by setting one of the components to 1 and all other ones to 0. The difficulty lies in the fact that 
the network topology that is adopted has a hidden layer with fewer than m units, forming a bottleneck. The 
network has to learn to encode the m patterns into different combinations of values of the hidden units, 
and to decode these combinations to yield the correct outputs. An example of a 4 - 2 4  encoder is shown in 
figure C1.2.12. Table C1.2.1 shows the encoding learned by a network with the topology of figure C1.2.12, 
trained by backpropagation. In this case target values were 0.05 and 0.95 instead of 0 and 1, respectively, 
as explained in section C1.2.5.2. It should be noted that, with the given architecture, the network cannot 
reproduce the target values exactly. This is why it sometimes outputs 0.02 and sometimes 0.06, instead 
of 0.05. 

Figure C1.2.12. A 4-2-4 encoder. 

Multilayer perceptrons have a rather widespread use, in very diverse application areas. We cannot 
give a full description of any of these applications here. We shall only give brief accounts of some of 
them, with references to publications where the reader can find more details. 

Often, perceptrons are used as classifiers. A well-known example is the application to the recognition 
ofhandwritten digits (Le Cun et a1 1990a). Normally, digit images are segmented, normalized in size and 
de-skewed. After this, their resolution is lowered to a manageable level (e.g. 16 x 16 pixels), before they 
are fed to a recognizer MLP. Recognition error rates of only a few percent can be achieved. A significant 

G1.3 

c1.2: 18 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

Table C1.2.1. Encoding learned by the network of figure C1.2.12. 

inputs hidden units outputs 

1.0 0.0 0.0 0.0 0.95 0.94 0.95 0.06 0.02 0.06 
0.0 1.0 0.0 0.0 0.07 0.95 0.06 0.95 0.06 0.02 
0.0 0.0 1.0 0.0 0.10 0.03 0.02 0.06 0.95 0.06 
0.0 0.0 0.0 1.0 0.95 0.08 0.06 0.02 0.06 0.95 

percentage of errors normally comes from the segmentation, which is not performed by neural means. 
In the author’s group (unpublished work), an error rate of 3.8% on zipcode digits was achieved, with 
automatic segmentation followed by manual elimination of the few gross segmentation errors (segments 
with no digit at all, or with two or more complete digits). For digits that are pre-segmented, e.g. by 
being written in forms with boxes for individual digits, it is now possible to achieve recognition errors 
below 1%, a performance that is already suitable for replacing manual data entry. Several such systems 
are probably in use these days. The author knows of one designed and being used in Spain (L6pez 1994). 
However, the problems of automatic digit segmentation and, more generally, of segmentation of cursive 
handwriting are still hard to deal with (Matan et a1 1992). 

Another important example of a classification application is speech recognition. Here, perceptrons F I  .7.2, G1.4 

can be used per se (Waibel 1989) or in hybrid systems, combined with hidden Markov models. See 
Robinson et a1 (1993) for an example of a state-of-the-art hybrid recognizer for large vocabulary, speaker 
independent, continuous speech. In hybrid systems, MLPs are actually used as probability estimators, 
based on an important property of supervised systems: when they are trained for classification tasks, using 
as cost function the quadratic error (or certain other cost functions), they essentially become estimators 
of the probabilities of the classes given the input vectors. This property is discussed in Richard and 
Lippmann (1991). In another example of a classification application, MLPs have been used to validate 
sensor readings in an industrial plant (Ramos et a1 1994). 

In nonclassification, analog tasks, an important class is formed by control applications. An interesting ~ 1 . 9  

example is that of a neural network system that is used to drive a van, controlling the steering based on 
an image of the road supplied by a forward-looking video camera (Pomerleau 1991). This kind of system 
has already been used to drive the vehicle on a highway at speeds up to 30 mph. It can also be used, with 
appropriately trained networks, to drive the vehicle on various other kinds of roads, including some that 
are hard to deal with by classical means (e.g. dirt roads covered with tree shadows) (Pomerleau 1993). 

Another example of a control application is the control of fast movements of a robot arm, a problem 
that is hard to handle by more formal, theoretical means (Goldberg and Pearlmutter 1989). For further 
examples of applications to control, see White and Sage (1992). There have already been in the market, 
for a few years, industrial control modules that incorporate multilayer perceptrons. 

Another important area of application is prediction. Multilayer perceptrons (and also other kinds 
of networks, namely those based on radial basis functions) have been used in the academic problem of 
predicting chaotic time series (Lapedes and Farber 1987), but also to predict consumptions of commodities 
(Yuan and Fine 1993), crucial variables in industrialplants (Cruz eta1 1993) and so on. A very appealing, ~ 2 . 8  

Given the 
but also somewhat controversial area is prediction ofjnancial time series (Trippi and Turban 1993). G6.3 

The practical applications of neural networks are constantly increasing in number. 
impossibility of making an exhaustive listing here, we shall content ourselves with the above examples. 

C1.2.8 Recurrent networks 

Recurrent networks are networks with unit interconnections that form loops. They can be employed in 
two very different modes. One is nonsequential, that is, it involves no memory, the desired output for 
each input pattern depending only on that pattern and not on past ones. The other mode is sequential, that 
is, desired outputs depend not only on the current input pattern, but also on previous ones. We shall deal 
with them separately. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1.2119 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.2.8. I Nonsequential networks 

In this mode, as said above, desired outputs depend only on the current input pattern. Furthermore, it 
is assumed that whenever a pattern is presented at the network’s input, it is kept fixed long enough to 
allow the network to reach equilibrium. As is well known from the theory of nonlinear dynamic systems 
(Thompson and Stewart 1986), a network with a fixed input pattern can exhibit three different kinds of 
behavior: it can converge to a fixed point, it can oscillate (either periodically or quasi-periodically) and it 
can have chaotic behavior. In what follows, we shall assume that for each input pattern the network will 
have stable behavior, with a single fixed point. The conditions under which this will happen are discussed 
later in this section. 

Recurrent backpropagarion. In. this nonsequential situation, the gradient of the cost function E 
can still be computed by backward propagation of derivatives through a backpropagation network, in a 
natural extension of the backpropagation rule of feedforward networks (this extension is usually designated 
recurrent backpropagation). The proof of this fact was first given by Almeida (1987), and soon thereafter 
independently by Pineda (1987). Here we shall give a version of the proof based on graphs, which is more 
intuitive than the ones given in those references. 

Consider first a recurrent nonlinear network N (not necessarily a multilayer perceptron), which has a 
single output, any number of inputs, and an internal branch which is linear with a gain w. Such a network, 
with the notation that we will adopt for its variables, is depicted in figure C1.2.13(a). A single input is 
shown, for simplicity, but multiple inputs would be treated in exactly the same manner, as we shall see. 
We assume that this network, as well as all other networks used in this proof, are in equilibrium at fixed 
points. We wish to compute the derivative of the network’s output relative to w, and therefore we shall 
give an infinitesimal increment dw to w. This can be done by changing w to w + dw, but it can also be 
achieved by adding an extra branch with gain dw, as shown in figure C1.2.13(b). Of course, all internal 
variables, as well as the output, will suffer increments, as indicated in the figure. 

The state of the network will not change if we replace the new branch by an input branch, as long 
as its contribution to its sink node is unchanged. This could be achieved by keeping the gain dw and the 
input y + dy of this branch unchanged. We can, however, change the input to y, since the contribution 
dy dw is a higher order infinitesimum, and can therefore be disregarded (figure C1.2.13(c)). 

We shall now linearize the network around its fixed point, obtaining a linear network NL that takes 
into account only increments (figure C1.2.13(d)). Note that the original input branch disappears, since its 
contribution has suffered no increment. If we had multiple inputs, the same would have happened to all 
of them. 

We will now divide the contribution of the input branch by dw, by changing its gain to unity. Since this 
network is linear, its node variables and its output will change to derivatives relative to w, which we will 
represent by means of upper dots, for compactness (i.e. for example, 0 = ao/aw;  see figure C1.2.13(e)). 

Finally, we will transpose the network, obtaining network NLT, shown in figure C1.2.13(f) (recall 
that transposition of a linear network consists in changing the direction of flow of all branches, keeping 
their gains; inputs become outputs, and vice-versa; summation points become divergence points, and vice- 
versa). From the transposition theorem (Oppenheim and Schafer 1975) we know that the input-output 
relationship of the network is not changed by transposition, i.e. if we place y at its input we will still 
obtain 0 at its output. Therefore, we can write 

0 = r y  

where t is the total gain from the input to the output node of the NLT network. 
Now consider a recurrent perceptron P (figure C1.2.14(a)) with several outputs, and assume that we 

wish to compute the derivative of an output oP relative to a weight w,i. By the same reasoning, we can 
write 

OP = tip Y j  
where we now use the upper dot to designate the derivative relative to w,i. The factor tip is the total gain 
of the linearized and transposed network, PLT, from input p to node i (cf figure C1.2.14(b)). Finally, let 
us consider the derivative of a cost function term Ek (corresponding to a given input pattern z k )  relative 
to wit. Using the chain rule, we can write 

a Ek a E k ,  -=E- awji aop OP 

@ 1997 IOP Publishing Ltd and Oxford University Press c1.2:20 Handbook of Neural Computation release 9711 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

0 
X 

\ W . I  

Y 

X 

Y 

Y 

I 

Figure C1.2.13. Illustration of the proof of validity of the backpropagation rule for recurrent networks. 
Case of a general network. See text for explanation. 

and therefore 

a Ek a Ek 
- = -tipyj 
awji aop 

where P is the set of indices of units that produce outputs. Noting that network PLT is linear, we can 
write 

- = yjsi 
a Ek 
a wj i  

(C1.2.13) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c 1.2:21 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.2.14. Illustration of the proof of validity of the backpropagation rule for recurrent networks. 
Case of a recurrent perceptron. See text for explanation. 

where, as depicted in figure C1.2.14(b), S; is obtained in the corresponding node of network PLT when 
the values aEk/aop  are applied at its inputs. 

If we assume that the original perceptron was feedforward, we recognize network PLT as the 
backpropagation network. Equation (C1.2.13) is the same as (C1.2.9), proving the validity of the 
backpropagation rule for feedforward networks, described in section C1.2.3.1. We will keep the designation 
of backpropagation network for network PLT in the case of recurrent networks. As we saw, this network 
is still obtained from the original perceptron by linearization followed by transposition. The recurrent 
backpropagation rule states that, if we apply the values aEk/aop  to the corresponding inputs of the 
backpropagation network, the partial derivative of the cost function relative to a weight will be given by 
the product of the inputs of that weight’s branches in the perceptron network and in the backpropagation 
network. Of course, the special case of the quadratic error, described in section C 1.2.3.1, where one places 
the errors at the inputs of the backpropagation network, and then uses (C1.2.10), is also still valid in the 
recurrent case. For this reason, the backpropagation network is still often called the error propagation 
network, in the recurrent case. 

Training a recurrent network by backpropagation takes essentially the same steps as for a feedforward 
network. The difference is that, when a pattern is applied to the perceptron network, this network must 
be allowed to stabilize before its outputs and node values are observed. The error propagation network 
must also be allowed to stabilize, when the derivatives a E k / a o ,  are applied to its inputs. In digital 
implementations (including computer simulations) this involves an iteration in the propagation through the 
perceptron, until a stable state is found, and a similar loop in the propagation through the backpropagation 
network. In analog implementations the networks will evolve, through their own dynamics, to their stable 
states. 

An important practical remark is that, in recurrent networks, the gradient’s components can easily 
have a much larger dynamic range than in feedforward networks. The use of a technique such as adaptive 
step sizes, and of the robustness measures described in section C1.2.4.3, is therefore even more important 
here than for feedforward networks. Note that the gradient can even become infinite, at some points in 
weight space. This, however, does not cause any significant practical problem: gradient components can 
simply be limited to some convenient large value, with the proper sign. 

Network stability. We assumed above that, with any fixed pattern at its input, the perceptron network 
was stable and had a single fixed point. It is this author’s experience that often, when training recurrent 
networks with recurrent backpropagation, the networks that are obtained during the training process are 
all stable and all have single fixed points. There are exceptions, however, and it would be desirable to be 
able to guarantee that networks will in fact always be stable, and will always have a single fixed point. 
The issue of stability can be dealt with by means of a sufficient condition for stability, which we shall 
discuss next. The discussion of the number of fixed points will be deferred to the end of this section. 

To derive a sufficient condition for stability, we first note that, while the static equations (C1.2.4) 
and (C1.2.5) suffice to describe the static behavior of a network, and therefore to find its fixed points, 
the dynamic behavior of the network is only defined if we specify the dynamic behavior of its units. 
Therefore, a discussion of network stability will always involve the units’ dynamic behavior. 

If some restrictions are imposed on it, a recurrent perceptron is formally equivalent to a Hopjeld 
network with graded units (Hopfield 1984). These restrictions are that the units’ dynamic behavior is 
as schematized in figure C1.2.15(a), that weights between units are symmetrical, i.e. w,; = W i j  for 

c1.3.4 

c 1.2:22 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

i, j = m + 1 ,  . . . , N ,  and that the units' nonlinearities are all increasing, bounded functions. The stability 
of such networks has been proved in Hopfield (1984) (we have assumed that the network variables are 
voltages; if currents were considered instead, then the resistor and capacitor should both be connected 
from the input to ground, as in Hopfield (1984)). 

1 
I 

Figure C1.2.15. ?pica1 dynamic behaviors assumed for units of continuous-time recurrent networks. 

The behavior of figure C1.2.15(a) normally arises from attempting to model the dynamic behavior 
of biological neurons. When considering network realizations based on analog electronic systems, it is 
more natural to consider the dynamic behavior of figure C1.2.15(b). This is because, unless special 
measures are taken, an analog electronic circuit will have a lowpass behavior that can be modeled, to 
a first approximation, by a first-order lowpass system. The two behaviors are equivalent if all RC time 
constants are equal, but otherwise they are not. Here we shall give the proof of stability for the behavior 
of figure C1.2.15(b). This proof was first given in Almeida (1987), and is very similar to the proof given 
in Hopfield (1984) for the dynamic behavior of figure C1.2.15(a). 

Using the notation given in figure C1.2.15(b), we can write 
N 

si = wjiyj 

ui = S(Si) 
j = O  

(C 1.2.14) 

where ri = RiCi is the time constant of the RC circuit of the ith unit. Here we assume that the index i 
varies from m + 1 to N, as in (C1.2.4) and (C1.2.5). We shall prove the network's stability by showing 
that it has a Lyapunov function (Willems 1970) that always decreases with time. The Lyapunov function 
that we will consider is 

N N 

j , i  i=m+l 
where U is a primitive of S-' ,  the inverse of S (see figure C1.2.16). We are still assuming, as in 
section C1.2.3, that yo has a fixed value of 1 ,  and that y1, . . . , ym represent the input components. We 
are also still assuming that the nonlinearities of all units are equal (it would again be straightforward to 
extend this proof to the situation in which the nonlinearities differ from one unit to another, but are all 
increasing and bounded; the proof could still be easily extended to the case in which all nonlinearities are 
decreasing and bounded; in this case the function W would increase with time, instead of decreasing). 

Since we assumed that the inputs do not change, the time derivative of W is given by 

(C 1.2.15) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1 . 2 ~ 2 3  

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.2.16. The functions S, S-’ and U. See text for explanation. 

For i = m + 1 , .  . . , N ,  we have 

= - [Si - S-*(yi)] 
= - [ S - ’ ( u j )  - P ( y J  

Since S is an increasing function, S-* also is, and therefore either the difference in the last equation has 
the same sign as the difference in (C1.2.14), or they are simultaneously zero. Therefore, the products in 
(C1.2.15) are all negative or zero, and dW/dt must be negative or zero. It is zero if and only if all the 
aW/ayi and the dyi/dt are simultaneously zero. In that case the network is in a fixed point, and W is at 
a point of stationarity. Since W always decreases in time during the network‘s evolution, the network’s 
state cannot oscillate or have chaotic behavior. It can only move towards a fixed point, or to infinity. But 
since the yi are bounded (because S is bounded), movement towards infinity is not possible, and the state 
must converge towards some fixed point. As we saw, these fixed points occur at the points of stationarity 
of w. 

A useful remark (Almeida 1987) is that, except for marginally stable states, whenever the perceptron 
network is stable, the backpropagation network will also be stable, if the same RC-type dynamics are used 
in it. In fact, if the perceptron is in a nonmarginal stable state, the linearized perceptron network will also 
be stable. If we write its equations in the standard state space form (Willems 1970) 

d u  
dt 
- = AU 

where U is the vector of state variables and A is the system matrix, then it will be stable if and only if all 
the eigenvalues of A have negative real parts. The backpropagation network, being the transpose of this 
system, has state equations 

where 6 is the state vector of the backpropagation network and AT is the transpose of A. But the 
eigenvalues of a matrix and of its transpose are equal. Therefore, if the linearized perceptron was stable, 
the backpropagation network will also be stable. Here, transpose is taken in the dynamic system sense. 
In practice this means that the RC dynamics have to be kept in the backpropagation network too. 

The above remark is always true, except for marginally stable states, which are those stable states for 
which the linearized network is not stable. They lie at the boundary between stability and instability, and 
can normally be disregarded in practice, since the probability of their occurrence is essentially zero. To 
train a network with the guarantee that it will always be stable, we therefore have to obey three conditions. 
(i) To use nonlinearities which are increasing and bounded. Networks with sigmoidal units always satisfy 

this condition. 
(ii) To keep the weights symmetrical. For this purpose, we have first to initialize them in a symmetrical 

way, and then to keep them symmetrical during training. This is an example of a situation of 
shared weights, and is dealt with in the manner we described in section C1.2.5.5: the two derivatives 

c 1.2:24 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

aEklawi, and aEk/i3wji are both computed using recurrent backpropagation, and their sum is used 
for updating both w,; and W i j .  

(iii) To implement the RC dynamics both in the perceptron and in the backpropagation network. In digital 
implementations this means performing a numerical simulation of the continuous-time dynamics. If 
stability is not achieved, the numerical simulation is too coarse, and its time resolution should be 
increased. In analog implementations, RC circuits can actually be placed both in the perceptron and 
in the backpropagation network, to ensure that they have the appropriate dynamics. 

Clearly, weight symmetry is a sufficient, but not necessary condition for stability. For example, feedforward 
networks are always stable, but do not obey the symmetry condition. Weight symmetry is a restriction 
on the network's adaptability, and it can be argued that it will reduce the network's capabilities. This is 
a price to be paid for being sure to obtain a network that will always be stable. But as we said at the 
beginning of this section, training without enforcing symmetry often yields stable networks, and in many 
situations it may be worth trying first, before resorting to symmetrical networks. 

We come now to the discussion of the requirement that there be a single fixed point for each input 
pattern. Unfortunately, we do not know of any sufficient condition for guaranteeing that this will be true. 
The discussion of this issue can therefore only be made in qualitative terms. In practice, we have observed 
situations with multiple stable states only very seldom, and we never needed to take any special measures 
to cope with them-multiple stable states normally merged by themselves, during training. This can be 
explained by noting that, when training a recurrent network, we are in fact trying to move its stable states 
to given areas that are determined by the desired values of the outputs. If two different stable states exist 
for the same input pattern, and if the network stabilizes sometimes in one and sometimes in the other, 
then we will be trying to move them both to the same region. It is therefore not too surprising that they 
will merge. On the other hand, if there are multiple stable states but the network always stabilizes in the 
same one, then the other ones can be disregarded, as if they did not exist, since they do not influence the 
network's behavior in any way. 

C1.2.8.2 Sequential networks 

Besides the nonsequential mode described in section C1.2.8.1, recurrent networks can also be used in a 
sequential, or dynamic mode. In this case, network outputs depend not only on the current input, but also 
on previous inputs. There are several variants of the sequential mode, and we will concentrate here on the 
one that is most commonly used: discrete-time recurrent networks. 

In this mode, it is assumed that the network's inputs only change at discrete times r = 1,2,  . . . , 
and that there are units in the network whose outputs are also only updated at these discrete times, 
synchronously with the inputs. We shall designate these units discrete-time units. The other units, whose 
outputs immediately follow any variations of their inputs, will be called insrunruneous units. Wherever 
interconnections between units form loops, there must be at least one discrete-time unit in the loop. There 
may, however, be more than one of these units per loop. Often, people build networks in which all units 
are discrete-time ones, as in figure C1.2.17(u). However, nothing prevents us from using discrete-time and 
instantaneous units in the same network, as long as there is at least one discrete-time unit per loop. A simple 
example of a network with one instantaneous and two discrete-time units is given in figure Cl.2.17(b). 
We will use this second network as an example, to better specify the operation of networks of this kind. 
To be consistent with the conventions used above, we will identify unit 1 with the input, that is, y; = x". 
The input has some initial value xo (here, we will denote by an upper index the time step that variables 
refer to). Units 2 and 3, which are the discrete-time ones, have initial states y i  and y: . Unit 4, which 
is instantaneous, immediately reflects at its output whatever is present at its input. Therefore, its output is 
always given by 

Y i  = s(w24Yi) 

(here n denotes the discrete time, and not the iteration number as in previous sections). Whenever a new 
discrete-time step arises, the input changes from x" to x"+ ' ,  and the outputs of the discrete-time units 
change to new values that are computed using the values of variables before that time step: 

$+I = S(WI2X" + w;,y;> 
y;+' = s(w33Y; + W43Y3. 

@ IS97 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computarion release 9711 c 1.2:25 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

U 
w33 

Figure C1.2.17. Examples of sequential networks. Shaded units are discrete time ones, unshaded units are 
instantaneous ones. (a) A network that has only discrete time units. ( b )  A network with both discrete time 
and instantaneous units. 

The output of unit 4 instantaneously changes to reflect the changes of the other units and of the input: 

y,"+' = S(w24y;+'). 

We see that, given the initial state of the network, for each input sequence x o ,  x ' ,  x2,  . . . , xT the network's 
outputs will yield a sequence of values. The network's operation is sequential because each output value 
will depend on previous values of the input. 

It is now easy to see why it is required that in every loop of interconnections there be at least one 
discrete-time unit. In a loop formed only by instantaneous units, there would be a never-ending sequence 
of updates, always going around the loop. 

Training of this kind of recurrent network consists in finding weights so that, for given input sequences, 
the network approximates, as closely as possible, desired output sequences. The desired output sequences 
may specify target values for all time steps, or only for some of them. For example, in some situations 
only the desired final value of the outputs is specified. Different input sequences may be of different 
lengths, in which case the corresponding output sequences will also have different lengths. Naturally, 
training, test and validation sets will be formed by pairs of input and desired output sequences. 

A great advantage of discrete-time recurrent networks is that, as we shall see, they can be reduced 
to feedforward networks, and can therefore be trained with ordinary backpropagation. This had already 
been noted in the well known book by Minsky and Papert (1969). To see how it can be done, consider 
again the network of figure C1.2.17(a). Assume that we construct a new network (figure C1.2.18(a)) 
where each unit of the recurrent network is unfolded into a sequence of units, one for each time step. 
Clearly, this network will always be feedforward since, in the original network, information could only 
flow forward in time. The input pattern of this unfolded network will be formed by the sequence of input 
values x o ,  x ' ,  x 2 ,  . . . , xT, presented all at once to the respective input nodes. The output sequence can also 
be obtained all at once, from the respective output nodes. The outputs can be compared with target values 
(for those times for which target values do exist), and errors (or, more generally, cost function derivatives) 
can be fed into a backpropagation network, obtained from the feedforward network in the usual way. The 
only remark that needs to be made, regarding the training procedure, concerns the fact that each weight 
from the recurrent network appears unfolded, in the feedforward network (and also in the backpropagation 
network) T times. All instances of the same weight must be kept equal, since they actually correspond 
to a single weight in the recurrent network. This is again a situation of shared weights, that we have 
already seen how to handle: the derivatives relative to each of the instances of the same weight are all 
added together, and the sum is used to update the weight (in all its instances). Networks involving both 
discrete-time and instantaneous units can also be easily handled. Figure C1.2.18(6) shows the unfolding 
of the network of figure C1.2.17(6). 

The training method that we have described is normally called unfolding in time, or 6ackpropagation 
through time. It requires an amount of storage that is proportional to the number of units and to the length 
of the sequence being trained, since the outputs of the units at intermediate time steps must be stored until 
the backward propagation is completed and the cross-products of (C1.2.9) are computed. The total amount 
of computation per presentation of an input sequence is O ( W T ) ,  where W is the number of weights in 
the network, and T is, as above, the length of the input sequence. 

Unfolding in time can clearly be used in the batch and real-time modes, if real-time is understood 
to mean that weights are updated once per presentation of an input sequence. In some situations, instead 
of having a number of input sequences with the corresponding desired output sequences, one has a single 
very long (or even indefinitely long) input sequence, with the corresponding desired output sequence. It 

c 1.2126 Handbook of Neural Computation release 97/1 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

Figure C1.2.18. The unfolded networks corresponding to the sequential networks of figure C1.2.17. 

would then be desirable to be able to make a weight update per time step, without having to wait for the 
end of the sequence to update weights. In such cases, unfolding-in-time may become rather inefficient 
(or even unusable, if the sequence is indefinitely long). Even in cases where there are several sequences 
in the training set, it might be more efficient to perform one update per time step. On the other hand, 
if training sequences are long, it may also be desirable not to have to store the values corresponding to 
all time steps, as required by the unfolding in time procedure, since these values may consume a large 
amount of memory. A few algorithms exist which do not need to wait for the end of the sequence to 
compute contributions to gradients, and which require only a limited amount of memory, irrespective of 
the length of the input sequence. We will mention only the best known one, often designated real-time 
recurrent learning (RTRL), which was originally proposed by Robinson and Fallside (1987) under the 
name of infinite impulse response algorithm, and is best known from later publications of Williams and 
Zipser (1989). This algorithm carries forward, in time, the information that is necessary to compute the 
derivatives of the cost function, and therefore does not need to store previous network states, and also 
does not need to perform backward propagations in time. There are two prices to be paid for this. One is 
computational complexity. While, for a fully interconnected network with N units (and therefore W = N 2  
weights) unfolding in time requires O ( N 2 T )  operations per sequence presentation, RTRL requires O ( N 4 T )  
operations. This quickly makes it impractical for large networks. The other price to be paid is that, if 
weight updates are performed at every time step, what is computed is only an approximation to the actual 
gradient of the cost function. Depending on the situation, this approximation may be good or bad. For 
some problems this is of little importance, but for others it may affect convergence, and even lead the 
training process to converge to wrong solutions. A variant of RTRL that deserves mentioning is called the 
Green’sfinction algorithm (Sun et a1 1992). It has the advantage of reducing the number of operations 
to O ( N 3 T ) .  However, in numerical implementations it involves an approximation that may affect its 
validity for long sequences. 

Several examples of the application of unfolding in time to the training of recurrent networks have 
appeared in the literature. A very interesting one is described in Nguyen and Widrow (1990), where 
a controller is trained to park a truck with a trailer in backward motion. A very early example of an 
application to speech was given in Watrous (1987). Examples of the use of RTRL have also appeared in 
the literature; for example, for the learning of grammars (Giles et a1 1992). 

Besides the discrete-time mode, recurrent networks are also sometimes used in a continuous-time 
mode. In this case, the outputs of units change continuously in time according to given dynamics. Inputs 
and target outputs of the network are then both functions of continuous time, instead of being sequences. 
A training algorithm for this kind of network, which is an extension of unfolding in time to the continuous 
time situation, was presented in Pearlmutter (1989). 

C1.2.8.3 Time-delay neural networks 

An architecture that is often used for sequential applications is shown in figure C1.2.19. It consists of 
a feedforward neural network that is fed by a delay line which stores past values of the input. In this 
case the sequential capabilities of the system do not come from the neural network itself, which is a plain 
feedforward one. They come, instead, from the delay line. An advantage of this structure is that it can be 
trained with standard backpropagation, since the neural network is feedforward. The disadvantages come 
from the facts that the architecture is not recursive and that its memory capabilities are fixed and cannot 
be adapted by training. For several kinds of problems, like those involving a long-time memory, this 
architecture may need many more weights (and therefore many more training patterns) than a recurrent 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Compurarion release 9111 c 1.2:27 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

one. Systems of this kind are often designated time-delay neural networks (TDNN). They have been 
applied to  several kinds of problems. See Waibel (1989) for an example of an application to speech ~1 .7 .2  
recognition, in which this architecture is extended by using delay lines at multiple levels, with multiple 
time resolutions. 

- - - - -  
debylirr, -’ 

Figure C1.2.19. A time-delay neural network. 

Acknowledgement 

We wish to  acknowledge the use of the ‘United States Postal Service Office of Advanced Technology 
Handwritten ZIP Code Data Base (1987)’, made available by the Office of Advanced Technology, United 
States Postal Service. 

References 

Almeida L B 1987 A leaming rule for asynchronous perceptrons with feedback in a combinatorial environment Proc. 
lEEE First lnt. Con$ on Neural Networks (New York: IEEE Press) pp 609-18 

Battiti R 1992 First- and second-order methods for leaming: between steepest descent and Newton’s method Neural 
Comput. 4 141-66 

Becker S and Le Cun Y 1989 Improving the convergence of back-propagation leaming with second order methods 
Proc. 1988 Connectionist Models Summer School ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: 
Morgan Kaufmann) pp 29-37 

Bishop C M 1990 Curvature-driven smoothing in backpropagation neural networks Technical Report CLM-P-880 
(Abingdon, UK: AEA Technology, Culham Laboratory) 

Bryson A E and Ho Y C 1969 Applied Optimal Control (New York: Blaisdell) 
Cruz C S ,  Rodriguez F, Dorronsoro J R and Ldpez V 1993 Nonlinear dynamical system modelling and its integration 

in intelligent control Proc. Workshop on Integration in Real-Time Intelligent Control Systems (Miraflores de la 
Sierra) pp 30-1 to 30-9 

Cybenko G 1989 Approximation by superpositions of a sigmoidal function Math. Control, Signal Syst. 2 303-14 
Fahlman S E 1989 Fast-leaming variations on back-propagation: an empirical study Proc. 1988 Connectionist Models 

Fahlman S E and Lebiere C 1990 The cascade-correlation leaming architecture Advances in Neural Information 

Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networks Neural 

Funahashi K 1989 On the approximate realization of continuous mappings by neural networks Neural Networks 2 

Giles C L, Miller C B, Chen D, Sun G Z, Chen H H and Lee Y C 1992 Extracting and leaming an unknown grammar 
with recurrent neural networks Advances in Neural Information Processing Systems 4 ed J E Moody, S J Hanson 
and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 317-24 

Goldberg K Y and Pearlmutter B A 1989 Using backpropagation with temporal windows to leam the dynamics of the 
CMU direct-drive arm I1 Advances in Neural Information Processing Systems 1 ed D S Touretzky (San Mateo, 
CA: Morgan Kaufmann) pp 356-65 

Summer School ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan Kaufmann) pp 38-51 

Processing Systems 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 524-32 

Comput. 2 198-209 

183-92 

Golub G H and Van Loan C F 1983 Matrix Computations (Baltimore, MD: Johns Hopkins University Press) 
Guyon I, Vapnik V, Boser B, Bottou L and Solla S A 1992 Structural risk minimization for character recognition 

Advances in Neural Information Processing Systems 4 ed J Moody, S J Hanson and Lippmann R P (San Mateo, 
CA: Morgan Kaufmann) pp 471-9 

Hassibi B, Stork D G and Wolff G J 1993 Optimal brain surgeon and general network pruning Proc. IEEE Int. Con5 
on Neural Networks (San Francisco, CA) pp 293-9 

c1.2:28 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Multilayer perceptrons 

Hopfield J J 1984 Neurons with graded response have collective computational properties like those of two-state 

Homik K, Sithcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural 

Jacobs R 1988 Increased rates of convergence through leaming rate adaptation Neural Networks 1 295-307 
Krogh A and Hertz J A 1992 A simple weight decay can improve generalization Advances in Neural Information 

Processing Systems 4 ed J E Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 
950-7 

Lapedes A S and Farber R 1987 Nonlinear signal processing using neural networks: prediction and system modelling 
Technical Report LA-UR-87-2662 (Los Alamos, NM: Los Alamos National Laboratory) 

Le Cun Y 1985 Une proctdure d’apprentissage pour rtseau ?I seuil assymitrique Cognitiva 85 599-604 
Le Cun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1990a Handwritten 

digit recognition with a backpropagation network Advances in Neural Information Processing Systems 2 ed 
D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 3964.09 

Le Cun Y, Denker J S and Solla S 1990b Optimal brain damage Advances in Neural Information Processing Systems 
2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 598-605 

Le Cun Y, Kanter I and Solla S 1991 Second order properties of error surfaces: leaming time and generalization 
Advances in Neural Information Processing Systems 3 ed R P Lippmann, J E Moody and D S Touretzky (San 
Mateo, CA: Morgan Kaufmann) pp 918-24 

neurons Proc. Natl Acad. Sci. USA 81 3088-92 

Networks 2 359-66 

Ljung L 1978 Strong convergence of a stochastic approximation algorithm Ann. Statistics 6 680-96 
Mpez V 1994 Private communication 
MacKay D J 1992a Bayesian interpolation Neural Comput. 4 4 1 5 4 7  
MacKay D J 1992b A practical bayesian framework for backprop networks Neural Comput. 4 448-72 
Matan 0, Burges C J, Le Cun Y and Denker J S 1992 Multi-digit recognition using a space displacement neural 

network Advances in Neural Information Processing Systems 4 ed J E Moody, S J Hanson and R P Lippmann 
(San Mateo, CA: Morgan Kaufmann) pp 488-95 

Mtzard M and Nadal J P 1989 Leaming in feedfoxward layered networks: the tiling algorithm J. Phys. A: Math. Gen. 

Minsky M L and Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press) 
Moller M F 1990 A scaled conjugated gradient algorithm for fast supervised leaming Preprint PB-339 (Aarhus, 

Mozer M C and Smolensky P 1989 Skeletonization: a technique for trimming the fat from a network via relevance 

Nguyen D and Widrow B 1990 The truck backer-upper: an example of self-leaming in neural networks Advanced 

Oppenheim A V and Schafer R W 1975 Digital Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 
Parker D B 1985 Leaming logic Technical Report TR-47 (Cambridge, MA: Center for Computational Research in 

Pineda F J 1987 Generalization of backpropagation to recurrent neural networks Phys. Rev. Lett. 59 2229-32 
Pearlmutter B A 1989 Leaming state space trajectories in recurrent neural networks Neural Comput. 1 263-9 
Pomerleau D A 1991 Efficient training of artificial neural networks for autonomous navigation Neural Comput. 3 

Pomerleau D A 1993 Input reconstruction reliability estimation Advances in Neural Information Processing Systems 5 
ed S J Hanson, J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 279-86 

Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1986 Numerical Recipes (Cambridge: Cambridge 
University Press) 

Ramos H S, Langlois T, Xufre G, Amaral J D, Almeida L B and Silva F M 1994 Neural networks in industrial 
modeling and fault detection Proc. Workshop on Artificial Intelligence in Real-Time Control (Valencia) 

Richard M D and Lippmann R P 1991 Neural network classifiers estimate Bayesian a posteriori probabilities Neural 
Comput. 3 461-83 

Robinson A J and Fallside F 1987 The utility driven dynamic error propagation network Technical Report CUED/F- 
ZNFENGRR. I (Cambridge, UK: Cambridge University Engineering Department) 

Robinson A J et a1 1993 A neural network based, speaker independent, large vocabulary, continuous speech recognition 
system: the Wemicke project Proc. Eurospeech’93 Con$ (Berlin) pp 1941-4 

Rumelhart D E, Hinton G E and Williams R J 1986 Leaming intemal representations by error propagation Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition vol 1 ed D E Rumelhart, J L McClelland 
and the PDP research group (Cambridge, MA: MIT Press) pp 318-62 

Silva F M and Almeida L B 1990a Acceleration techniques for the backpropagation algorithm Neural Networks ed 
L B Almeida and C J Wellekens (Berlin: Springer) pp 110-19 

Silva F M and Almeida L B 1990b Speeding up backpropagation Advanced Neural Computers ed R Eckmiller 
(Amsterdam: Elsevier) pp 151-60 

22 2191-204 

Denmark: Computer Science Department, University of Aarhus) 

assignment Report CU-CS-421-89 (Boulder, CO: Department of Computer Science, University of Colorado) 

Neural Computers ed R Eckmiller (Amsterdam: Elsevier) pp 11-20 

Economics and Management Science, MIT) 

89-97 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c 1.2~29 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Silva F M and Almeida L B 1991 Speeding-Up backpropagation by data orthonomalization Artificial Neural Networks 
vol 2, ed T Kohonen, K Makisara, 0 Simula and J Kangas (Amsterdam: Elsevier) pp 149-56 

Sun G Z, Chen H H and Lee Y C 1992 Green’s function method for fast on-line leaming algorithm of recurrent neural 
networks Advances in Neural Information Processing Systems 4 ed J E Moody, S J Hanson and R P Lippmann 
(San Mateo, CA: Morgan Kaufmann) pp 333-40 

Thompson J M and Stewart H B 1986 Nonlinear Dynamics and Chaos (Chichester: Wiley) 
Tollenaere T 1990 SuperSAB: fast adaptive back propagation with good scaling properties Neural Networks 3 561-74 
Trippi R R and Turban E (eds) 1993 Neural Networks in Finance and Investing (Chicago, IL: Probus) 
Waibel A 1989 Modular construction of time-delay neural networks for speech recognition Neural Compuf. 1 39-46 
Watrous R L 1987 Leaming phonetic features using connectionist networks: an experiment in speech recognition 

Proc. IEEE 1st International Con$ on Neural Networks (New York: IEEE Press) pp 381-7 
Weigend A S ,  Rumelhart D E and Huberman B A 1991 Generalization by weight-elimination with application 

to forecasting Advances in Neural Information Processing Systems 3 ed R P Lippmann, J E Moody and 
D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 875-82 

Werbos P J 1974 Beyond regression: new tools for prediction and analysis in the behavioral sciences PhD Thesis 
(Cambridge, MA: Harvard University) 

White D A and Sage D A (eds) 1992 Handbook of Intelligent Control: Neural, Fuuy and Adaptive Approaches (New 
York: Van Nostrand Reinhold) 

Widrow B and Steams S D 1985 Adaptive Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 
Willems J L 1970 Stability Theory of Dynamical Systems (London: Thomas Nelson) 
Williams P M 1994 Bayesian regularization and pruning using a Laplace prior Cognitive Science Research Paper 

Williams R J and Zipser D 1989 A leaming algorithm for continually running fully recurrent neural networks Neural 

Yuan J L and Fine T L 1993 Forecasting demand for electric power Advances in Neural Information Processing 

CSRP-312 (Brighton: School of Cognitive and Computing Sciences, University of Sussex) 

Comput. 1270-80 

Systems 5 ed S J Hanson, J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 739-46 

c1.2~30 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.3 Associative memory networks 

Mohamad H Hassoun and Paul B Watta 

Abstract 

One of the most extensively analyzed classes of artificial neural networks is the class 
of associative networks or associative neural memories. These memory models can be 
classified in various ways depending on their architecture (static versus recurrent), their 
retrieval mode (synchronous versus asynchronous), the nature of the stored associations 
(autoassociative versus heteroassociative), the complexity and capability of the memory 
storagehecording algorithm, and so on. This section discusses various architectures and 
recording algorithms for the storage and retrieval of information in neural memories with 
emphasis on dynamic (recurrent) associative memory (DAM) architectures. The Hopfield 
model and the bidirectional associative memory are discussed in detail, and criteria 
for high-performance dynamic memories are outlined for the purpose of comparing the 
various models. 

C1.3.1 Feedback models: associative memory networks 

C1.3.1.1 Introduction 

One of the most extensively analyzed classes of artificial neural networks is the class of associative 
networks or associative neural memories (ANMs). In fact, the neural network literature over the last ~ 1 . 4  

two decades abounds with papers of proposed associative neural memory models (e.g. Amari 1972a, b, 
Anderson 1972, Nakano 1972, Kohonen 1972 and 1974, Kohonen and Ruohonen 1973, Hopfield 1982, 
Kosko 1987, Okajima et a1 1987, Kanerva 1988, Chiueh and Goodman 1988, Baird 1990). For an 
accessible reference on various associative neural memory models the reader is referred to the edited 
volume by Hassoun (1993). These memory models can be classified in various ways depending on their 
architecture (static versus recurrent), their retrieval mode (synchronous versus asynchronous), the nature ~ 2 . 2  

of the stored associations (autoassociative versus heteroassociative), the complexity and capability of the ~ 3 . 1  

memory storage/recording algorithm, and so on. 
This section discusses various architectures and learning algorithms for the storage and retrieval 

of information in neural memories with emphasis on dynamic (recurrent) associative memory (DAM) 
architectures. These dynamic, or feedback, models arise when recurrent connections are made between 82.3 

the input and output lines of the network. Analytically, feedback models are treated as nonlinear dynamical 
systems. From this perspective, information retrieval is viewed as a process whereby the state of the system 
evolves from an initial state representing a noisy or partial input pattern (key) to a stationary state which 
represents the stored or retrieved information. With this dynamic model of associative memory, it is crucial 
that the system exhibit asymptotically stable behavior. 

The remainder of this section is organized as follows. First, some fundamental concepts, definitions 
and terminology of associative memories are introduced. Then, it is shown how artificial neural networks 
may be used to act as associative memories by constructing both feedforward (static) and feedback ~ 2 . 3  

(dynamic) neural architectures. Criteria for high-performance dynamic memories are outlined for the 
purpose of comparing the various models. Static models are discussed in order to introduce some of 
the commonly used recording recipes. Finally, dynamic models, including the Hopfield model and the 
bidirectional associative memory, are discussed in detail. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 C1.3:l 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.3.2 Fundamental concepts and definitions 

C1.3.2.1 Statement of the associative memory problem 

Associative memory may be formulated as an input-output system, as shown schematically in figure C1.3.1. 
Here, the input to the system is an n-dimensional vector z E R" called the memory key, and the output 
is an L-dimensional vector y E RL called the retrievedpattern. The relation between the memory key 
and the retrieved pattern is given by y = G ( x ) ,  where G : R" -+ RL is the associative mapping of the 
memory. Each input-output pair or memory association (2, y) is said to be stored or recorded in the 
memory. 

1 

Figure C1.3.1. A block diagram representation of the operation of an associative memory. 

The associative memory design problem may be formulated mathematically as follows. Given a finite 
set of desired memory associations { (zk,  yk) : k = 1 ,2 ,  . . . , m},  the first task is to determine an associative 
mapping which captures these associations as input-output pairs; that is, we are required to determine a 
function G which satisfies 

(C1,3.1) 

Recalling that G is a function of the form G : R" -+ R L ,  equation (C1.3.1) is not the end of the story 
because it only specifies the value of G at k points in R"; the question is: where does G map all the 
remaining vectors? This leads to the second task of associative memory design: here, we require G to 
not only store the given associations, but also provide noise tolerance and error correction capabilities. 
In this case, for each noisy? version Sk of zk, we require the memory to retrieve the uncorrupted output, 
that is, we require yk = G(Sk).  

The given set of associations { (zk,  yk)} is called the fundamental memory set and each association 
(zk,  yk) in the fundamental set is called afundamental memory. A special case of the above problem arises 
when the fundamental memory set is of the form {(zk, zk) : k = 1 ,2 ,  . . . , m } .  In this case, the memory is 

~ 3 . 1 . 2  required to store the auroassociations { ( zk ,  zk ) )  and is said to be an autoassociative memory. In general, 
~ 3 . 1 . 2  though, when the output yk is different from the input zk, the memory is said to be heteroassociative. 

The process of designing an associative memory is called the recording phase. As discussed above, 
the recording phase consists of determining or synthesizing an associative mapping G which provides for 
(i) storage of the fundamental memory set and (ii) error correction. Given a fundamental memory set, 
an algorithm that specifies how G is to be synthesized is called a recording recipe. It is usually the case 
that the complexity of a recording recipe is related to the quality of the resulting associative mapping. In 
particular, simple recording recipes tend to produce associative memories which exhibit poor performance 
in the sense that the memory fails to fully capture the fundamental memory set andor provides very 
limited error correction. One of the most common performance problems associated with simple recording 
algorithms is the creation of a large number of spurious or false memories. A spurious memory is a 
memory association that is unintentionally stored in the memory, that is, a memory association which was 
not part of the fundamental memory set. 

Once recording is complete, the memory is ready for operation, which is called the retrieval phase. 
Here, the memory may be tested to verify that the fundamental memories are properly stored, and the 
error correction capability of the memory may be measured by corrupting each fundamental memory key 
with various amounts of noise and observing the resulting output. 

yk = G ( z k )  for all k = 1 , 2 , .  . . , m .  

C1.3.2.2 Neural network architectures for associative memories 

In the neural network approach to associative memory design, a network of artificial neurons is used 
to realize the desired associative mapping G. Figure C1.3.2(a) shows the architecture for a static or 

t The type of noise depends on the application. For example, if the xk are binary pattems, noise could be measured in terms of bit 
errors. On the other hand, if the xk are real-valued, then the noise may appear as additive Gaussian noise. 

c1.3:2 Hundbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

feedforward associative neural memory. This network consists of L noninteracting neurons. The output 
of the lth neuron y1 is given by 

Y/  = fi ($ w / i x i )  

where fi : R + R is the activation function and ' w l  = ( ~ 1 1 ,  w12 ,  . . . , win) are the weights associated ~ 3 . 2 . 4  

with the lth neuron. Usually, each neuron in the network uses an identical activation, which is typically 
a linear, sigmoidal, or threshold function. Figure C1.3.2(b) shows a block diagram description of the 
network. Here, the weight vectors are collected in an L x n weight or interconnection matrix W = ( w l i ) ,  

where w l i  is the synaptic weight connecting the ith input to the lth neuron. Similarly, the activation 
functions are collected as a vector mapping F(0)  = ( f i ( o ) ,  f 2 ( 0 ) ,  . . . , f ~ ( o ) ) .  The associative mapping 
implemented by this feedforward network may be expressed as y = G(s)  = F(Ws) .  Note that in the 
autoassociative case, there are n inputs and n output units, hence the weight matrix is a square n x n 
matrix. 

Figure C1.3.2. (a) The architecture of a static neural network for heteroassociative memory. (b) A block 
diagram representation of the neural network. 

Although simple, the feedforward architecture can usually provide only limited error correction 
capability. More powerful architectures can be constructed by including feedback or recurrent connections. 
To see why feedback improves error correction, consider an autoassociative version of the single-layer 
associative memory employing units with the sign-activation function. Now assume that this memory is 
capable of associative retrieval of a set of m bipolar binary memories {zk} .  Upon the presentation of a 
key g k ,  which is a noisy version of one of the stored memory vectors xk ,  the associative memory retrieves 
(in a single pass) an output y which is closer to the stored memory xk than 53k. In general, only a fraction 
of the noise (error) in the input vector is corrected in the first pass (presentation). Intuitively, we may 
proceed by taking the output y and feeding it back as an input to the associative memory, hoping that a 
second pass would eliminate more of the input noise. This process could continue with more passes until 
we eliminate all errors and arrive at a final output y equal to x k .  

Note that with feedback connections, care must be taken to distinguish between autoassociative and 
heteroassociative operation. Block diagrams for both the autoassociative and heteroassociative architectures 
are shown in figures C1.3.3(a) and (b), respectively. In both cases, memory retrieval may be viewed as a 
temporal process and described by a system of difference (assuming a discrete-time system) or differential 
(assuming a continuous-time system) equations. 

The dynamics of a (discrete-time) dynamic autoassociative memory (DAM) corresponding to 
figure C1.3.3(a) may be described by the system equation 

z(t + 1) = F(W[z ( t ) ] )  t = 0, 1,2,3, . . . . (C1.3.2) 

The actual interpretation of equation (C1.3.2) depends on the type of updating chosen. The two most 
common updating modes for such a system are called synchronous and sequential. In synchronous ~ 3 . 4 . 3  

updating, all states are updated simultaneously at each time instant. In sequential updating, only one ~ 3 . 4 . 3  
(randomly chosen) state is updated at each time instant. 

The dynamic autoassociative memory operates as follows: given a memory key x, the dynamical 
system of equation (C1.3.2) is iterated starting from the initial state z(0) = 2, until the dynamics converge 
to some stationary state which is then taken to be the retrieved pattern, that is, 

y = G(s)  = lim s(t) . 
t+m 

@ 1997 IOP Publishing Ltd and Oxford University Press Hanabok of Neural Computation release 9711 c1.3:3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

1 

x(t + 1) 

Figure C1.3.3. (a )  Architecture for a dynamic autoassociative memory and ( b )  dynamic heteroassociative 
memory. 

The above description of the associative mapping of the DAM makes sense only in the case when 
equation (C1.3.2) represents a stable dynamical system. In the case of an unstable, oscillatory or chaotic 
system, the limit lim+,mz(t) may not exist, and hence for certain memory keys (initial states) the 
memory may not produce a retrieval. This type of open-endedt behavior can be avoided by insisting that 
the dynamic memory represents a stable dynamical system. The most optimal DAM consists of a state 
space with n attractors, corresponding to the fundamental memories to be stored. 

The architecture for a heteroassociative dynamic associative neural memory (HDAM) is shown in 
figure C1.3.3(b). This system operates similarly to the autoassociative memory, but is described by two 
sets of equations 

(C1.3.3) 
(C1.3.4) 

Here, F is usually the sgnt activation operator. Similarly to the autoassociative case, it can be operated 
in the parallel (synchronous) or serial (asynchronous) version, where one and only one unit updates its 
state at a given time. The stability analysis of this type of network is generally more difficult than for the 
single-layer feedback network. 

C1.3.2.3 Characteristics of high-pe$omnce DAMs 

In Hassoun (1993), a set of desirable performance characteristics for the class of dynamic associative 
neural memories is given. Figures C1.3.4(a) and (b) present conceptual diagrams of the state space for 
high- and low-performance DAMs, respectively (Hassoun 1993, 1995). 

The high-performance DAM in figure C1.3.4(a) has large basins of attraction around all fundamental 
memories. It has a relatively small number of spurious memories, and each spurious memory has a very 
small basin of attraction. This DAM is stable in the sense that it exhibits no oscillations. The shaded 
background in this figure represents the region of state space for which the DAM converges to a unique 
ground state (e.g. zero state). This ground state acts as a default ‘no decision’ attractor state where 
unfamiliar or highly corrupted initial states converge. 

A low-performance DAM has one or more of the characteristics depicted conceptually in 
figure C1.3.4(b). It is characterized by its inability to store all desired memories as fixed points; those 
memories which are stored successfully end up having small basins of attraction. The number of spurious 
memories is very high for such a DAM, and they have relatively large basins of attraction. This low- 
performance DAM may also exhibit oscillations. Here, an initial state close to one of the stored memories 
has a significant chance of converging to a spurious memory or to a limit cycle. 

To summarize, high-performance DAMs must have the following characteristics: (1) high capacity, 
(2) tolerance to noisy and partial inputs (this implies that fundamental memories have large basins of 
attraction); (3) the existence of relatively few spurious memories and few or no limit cycles with negligible 
basin of attraction; (4) provision for a ‘no decision’ default memoryhtate (inputs with very low ‘signal-to- 
noise’ ratios are mapped, with high probability, to this default memory), and ( 5 )  fast memory retrievals. 
t As an analogy, consider the frustrating scenario of asking someone a question and patiently listening to a long-winded response, 
only to find out that the person cannot answer your question after all! On the other hand, some researchers have advocated the 
notion that oscillatory and chaotic neural systems are more closely related to the processing of natural biological systems; see Hirsch 
(1989) for a concise summary of this discussion. 

The s g n  activation is defined as sgn(x) = - 1  for all x < 0, and sgn(x) = 1 for all x >_ 0. 

c1.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

Figure C13.4. A conceptual diagram comparing the state space of (a) high-performance and (b) low- 
performance autoassociative DAMS. 

This list of high-performance DAM characteristics can act as performance criteria for comparing various 
DAM architectures and/or DAM recording recipes. 

C1.3.3 Static models and simple recording recipes 

C1.3.3.1 The LAM model and correlation recording 

One of the earliest associative neural memory models is the linear associative memory (LAM), also called 
correlation memory (Anderson 1972, Kohonen 1972, Nakano 1972). For this memory, given an input key 
vector z E R", the retrieved or output pattern y E RL is computed by the simple linear relation 

y = w x  (C1.3.5) 

where W is the L x n weight or interconnection matrix. The architecture for this network is given in 
figure Cl .3.2(a) with linear (identity mapping) activation functions for each neuron. Note the simplicity 
of this associative mapping-it is characterized by a simple matrix-vector multiplication. Hence, it is 
referred to as a linear associative memory (LAM). 

Having constructed an architecture for a simple neural memory, the question now is: how does one 
record the memory set {zk, yk} into this LAM architecture? More specifically, how do we determine or 
synthesize an appropriate weight matrix W such that yk = Wzk for all k = 1,2, . . . , m? The correlation 
memory is a simple recordingktorage recipe whereby W is given by the following outer product rule: 

m 

w = c yk(zk)T. (C1.3.6) 

In other words, the interconnection matrix W is simply the correlation matrix of m association pairs. 
Another way of expressing equation (C1.3.6) is 

k=l 

w = YXT (C1.3.7) 

where Y = [y', y2,. . . , ym] and X = [z', x2,. . . , zm]. Note that for the autoassociative case where the 
set of association pairs (zk, zk) is to be stored, one may still employ equation (C1.3.6) or (C1.3.7) with 
yk replaced by zk. 

This recording recipe is simple enough, but how well does it work? That is, what are the requirements 
on the (zk, yk} associations which will guarantee the successful retrieval of all recorded vectors (memories) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeurul Compururion release 9711 c1.3:5 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

from their associated 'perfect key' zk? Substituting equation (C1.3.6) into (C1.3.5) and assuming that the 
key xh is one of the xk vectors, we get an expression for the retrieved pattern as 

(C1.3.8) 

The second term on the right-hand side of equation (C1.3.8) represents the cross-talk between the 
key xh  and the remaining m - 1 patterns xk. This term can be reduced to zero if the xk vectors are 
orthogonalt. The first term on the right-hand side of equation (C1.3.8) is proportional to the desired 
memory yh, with a proportionality constant equal to the square of the norm of the key vector xh .  Hence, a 
sufficient condition for the retrieved memory to be the desired perfect recollection is to have orthonormal$ 
vectors xk, independent of the encoding of the yk (note, though, how the yk affects the cross-talk term if 
the xk are not orthogonal). 

An appealing feature of correlation recording is the relative ease with which memory associations 
may be added or deleted. For example, if after recording the m associations (z' , y l )  through (x", gm) it 
is desired to record one additional association (d'"', ym+'), then one simply updates the current W by 
adding to it the matrix ym+l ( z ~ + ' ) ~ .  Similarly, an already recorded association ( x i ,  y') may be 'erased' 
by simply subtracting from W. 

C1.3.3.2 A simple nonlinear associative memory model 

In the case of binary-valued associations xk E (-1, 1}" and yk E {-1, l}L, a simple nonlinear memory 
may be constructed by using threshold activations. In this case, F is a clipping nonlinearity operating 
componentwise on the vector WZ (i.e. each unit now employs a sgn or sign-activation function) according 
to 

y = F ( W x ) ,  (C1.3.9) 

The advantage of this nonlinear memory is that some of the constraints imposed by correlation recording 
of a LAM for perfect retrieval can be relaxed. That is, we require only that the sign of the corresponding 
components of yk and Wsk agree. For this nonlinear memory, it is more convenient to use the normalized 
correlation recording given by 

. m  

(C 1.3.10) 

which automatically normalizes the xk vectors (note that the square of the norm of an n-dimensional 
bipolar binary vector is n). Now, suppose that one of the recorded key patterns xh  is presented as input, 
then the retrieved pattern eh can be written as 

(C1.3.11) 

where Ah represents the cross-talk term. For the ith component of eh, equation (C1.3.11) gives 

1 "  $ = sgn[y: + 7 x yFx;x,!] = sgn[y: + A!] 
j=1 k#h 

r . n m  

L j=1 k#h 

from which it can be seen that the condition for perfect recall is given by the requirements 

A: > -1 

A! < 1 

for yh = 1 

for yh = -1 
and 

for i = 1,2, . . . , L. These requirements are less restrictive than the orthonormality requirement of the xk 
in a LAM. The error correction capability of the above nonlinear correlation associative memory has been 
analyzed by Uesaka and Ozeki (1972) and later Amari (1977, 1990) (see also Amari and Yanai 1993). 

t A set of vectors (91.. . , , qp) is said to be orthogonal if qTqj = 0 for each i # j = 1 , 2 , .  . . , p. 
$ A set of vectors (91,. . . , qp) is said to be orthonormal if it is orthogonal and if qTqi = 1 for all i = 1,2, . . . , p .  

c1.3:6 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

C1.3.3.3 The OLAM model and projection recording 

It is possible to derive another recording technique which guarantees perfect retrieval of stored memories 
as long as the set (xk : k = 1,2,  . . . , m} is linearly independent. Such a learning rule is desirable since 
linear independence is a less stringent requirement than orthonormality . This recording technique used in 
conjunction with the LAM architecture (linear network of neurons) is called the optimal linear associative 
memory (OLAM) (Kohonen and Ruohonen 1973). 

For perfect storage of m fundumental associations (zk, yk}, a LAMS interconnection matrix W must 
satisfy the matrix equation 

Y = W X  (C1.3.12) 

where X and Y are as defined earlier in this section. This equation always has at least one solution if all m 
vectors xk (columns of X) are linearly independent, which necessitates that m must be less than or equal 
to n. For the case m = n, the matrix X is square and a unique solution for W in equation (C1.3.12) may 
be computed: 

w* = YX-' , (C 1.3.13) 

Here, we require that the matrix inverse X-' exists, which can be guaranteed when the set {xk} is linearly 
independent. Thus, this solution guarantees the perfect recall of any yk upon the presentation of its 
associated key xk. 

Returning to equation (C1.3.12) with the assumption that m < n and the xk are linearly independent, 
it can be seen that an exact solution W* is not unique. In this case, we are free to choose any of the 
W* solutions satisfying equation (C1.3.12). In particular, the minimum Euclidean norm solution (Rao and 
Mitra 1971): 

w* = Y(XTX)-'XT (C 1.3.14) 

is desirable since it leads to the best error-tolerant (optimal) LAM (Kohonen 1984). Equation (C1.3.14) will 
be referred to as the projection recording recipe since the matrix-vector product (XTX)-'XTxk transforms 
the kth stored vector xk into the kth column of the m x m identity matrix. Note that if the set (zk} 
is orthonormal, then XTX = I and equation (C1.3.14) reduces to the correlation recording recipe of 
equation (C1.3.7). An iterative version of the projection recording recipe exists (Kohonen 1984). This 
iterative method is convenient since a new association can be learned (or an old association can be 
deleted) in a single update step without involving other earlier-learned memories. Other adaptive versions 
of equation (C1.3.14) can be found in Hassoun (1993, 1995). 

The error correcting capabilities of OLAMs have been analyzed by Kohonen (1984) and Casasent 
and Telfer (1987), among others, for the case of real-valued associations, and by Amari (1977) and Stiles 
and Denq (1987) for the case of bipolar binary key/recollection vectors. 

C1.3.4 Dynamic models: the autoassociative case 

13.3.4.1 The Hopjield model 

Consider the nonlinear active electronic circuit shown in figure C1.3.5. In this circuit, each ideal amplifier 
provides an output voltage given by xi = f ( u i ) ,  where U j  is the input voltage and f is a nonlinear 
activation function. Each amplifier is also assumed to provide an inverting terminal for producing the 
output -xi .  The resistor Rij connects the output voltage x,  (or - X j )  of the j th amplifier to the input 
of the ith amplifier. Since, as will be seen later, the conductances R,?' play the role of interconnection 
weights, positive as well as 'negative' resistors are required. Connecting a resistor Rij to -xi helps avoid 
the complication of actually realizing negative resistive elements in the circuit. The R and C are positive 
quantities and are assumed equal for all n amplifiers. Finally, the current Zi represents an external input 
signal (or bias) to the ith amplifier. 

continuous-time feedback network. The dynamical equations describing the evolution of the ith state x i ,  
i = 1,2, . . . , n, in the Hopfield network can be derived by applying Kirchhoff s current law to the input 
node of the ith amplifier. After rearranging terms, the ith nodal equation can be written as 

The circuit in figure C1.3.5 is known as the Hopjield network, and can be thought of as a single-layer, 81.3 

(C 1.3.15) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neuml Computution release 9711 c 1.3:7 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

I 1 
a 
a ' I  

Figure C1.3.5. Circuit diagram for an electronic dynamic associative memory. 

1 where ai = cyel + and wij = (or wij = -& if the inverting output of unit j is connected 
to unit i). The above Hopfield network can be considered as a special case of a more general dynamical 
network developed and studied by Cohen and Grossberg (1983) which has ith state dynamics expressed 

(C 1.3.16) 

Using vector notation, the dynamics of the Hopfield network can be described in compact form as 

(C 1.3.17) 
d u  
dt 

C-=-CYu+Wz+8 

where C = CI (I is the n x n identity matrix), CY = diag(al,a2, . . . ,an) ,  2 = F(u) = 
[ f (ul) ,  f(u2), . . . , f(u,)lT, 8 = [ZI, Z2, . . . , ZnlT and W is an interconnection matrix defined as 

r wl l  w12 ... 1 

The equilibria of the dynamics in equation (C1.3.17) are determined by setting $ = 0, giving 

au = wz + 8 = W F ( U )  + e .  (C 1.3.18) 

It can be shown (Hopfield 1984) that the Hopfield network is stable if (i) the interconnection matrix W 
is symmetric, and (ii) the activation function f is smooth and monotonically increasing. Furthermore, 
Hopfield showed that the stable states of the network are the local minima of the bounded computational 
energy function (Lyapunov function) 

(C 1.3.19) 

where z = [xl, x 2 ,  , , , , x,IT is the network's output state, and f-' ( x j )  is the inverse of the activation 
function x, = f ( u j ) .  Note that the value of the right-most term in equation (C1.3.19) depends on the 
specific shape of the nonlinear activation function f .  For high gain approaching infinity, f (U,) approaches 

c1.3:8 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

the sign function, that is, the amplifiers in the Hopfield network become threshold elements. In this case, 
the computational energy function becomes approximately the quadratic function 

E(z) = -;xTWa: - zTB. (C 1.3.20) 

It has been shown (Hopfield 1984) that the only stable states of the high-gain, continuous-time, 
continuous-state system in equation (C1.3.17) are the corners of the hypercube, i.e. the local minima 
of equation (C1.3.20) are states x* E {-1, I}”. For large but finite amplifier gains, the third term in 
equation (C1.3.19) begins to contribute. The sigmoidal nature of f ( u )  leads to a large positive contribution 
near hypercube boundaries, but a negligible contribution far from the boundaries. This causes a slight drift 
of the stable states toward the interior of the hypercube. 

Another way of looking at the Hopfield network is as a gradient system which searches for local 
minima of the energy function E ( z )  defined in equation (C1.3.19). To see this, simply take the gradient 
of E with respect to the state x and compare with equation (C1.3.17). Hence, by equating terms, we have 
the following gradient system: 

d u  
dt 
- = -pVE(x)  (C1.3.21) 

where p = diag(l/C, 1/C, . . . , l /C) .  The gradient system in equation (C1.3.21) converges asymptotically 
to an equilibrium state which is a local minimum or a saddlepoint of the energy E (Hirsch and Smale 
1974) (fortunately, the unavoidable noise in practical applications prevents the system from staying at 
the saddlepoints and convergence to a local minimum is achieved). To see this, we first note that the 
equilibria of the system described by equation (C1.3.21) correspond to local minima (or maxima or points 
of inflection) of E ( z ) ,  since du/dt = 0 means that VE(x)  = 0. For each isolated local minimum x*, 
there exists an open neighborhood over which the candidate function V ( z )  = E(=)- E(=*) has continuous 
first partial derivatives and is strictly positive except at x* where V ( z )  = 0. Additionally, 

dx‘ (du’)i (C1.3.22) -- dV - - dE = VE(x)%(t) = E 2 8Ed.T. - --cE”=-cE’ du.dx .  > 
dt dt j = 1  axj dt j=l dt dt j=1 duj dt 

is always negative since dxjlduj is always positive, because of the monotonically nondecreasing nature of 
the relation xj = f(u,), or zero at x*. Hence V is a Lyapunov function, and x* is asymptotically stable. 

The operation of the Hopfield network as an autoassociative memory is straightforward; given a set of 
memories {zk}, the interconnection matrix W is encoded such that the states xk become local minima of 
the Hopfield network’s energy function E ( x ) .  Then, when the network is initialized with a noisy key 2, its 
output state evolves along the negative gradient of E ( z )  until it reaches the closest local minimum which, 
hopefully, is one of the fundamental memories xk. In general, however, E ( z )  will have additional local 
minima other than the desired ones encoded in W. These additional undesirable stable states represent 
spurious memories. 

When used as a DAM, the Hopfield network is usually operated with very high activation function 
gain. In this case, the Hopfield memory stores binary-valued associations. The synthesis of W can be 
done according to the correlation recording recipe or the more optimal projection recipe. These recording 
recipes lead to symmetrical W (since autoassociative operation is assumed, that is, yk = xk for all k) 
which guarantees the stability of retrievals. Note that the external bias may be eliminated in such DAMS. 
The elimination of bias, the symmetric W, and the use of high-gain amplifiers in such DAMS lead to the 
truncated energy function 

E ( z )  = -;xTWx. (C 1.3.23) 

This discrete-time discrete-state Hopfield model (Hopfield 1982) may be derived by starting with 
the dynamical system in equation (C1.3.15) and replacing the continuous activation function by the sign 
function 

(C 1.3.24) x i ( k  + 1) = s g n [ e  wijxj(k) + l i  . 

It can be shown that the discrete Hopfield network with a symmetric interconnection matrix 
( W i j  = wji) and with non-negative diagonal elements (wii 2 0) is stable with the same Lyapunov 
function as that of a continuous-time Hopfield network in the limit of high amplifier gain, that is, it has 
the Lyapunov function in equation (C1.3.20). Hopfield (1984) showed that both networks (discrete and 

1 j=1  

@ 1997 IOP Publishing Lrd and Oxford University Press Handbook of Neural Computation release 9711 c1.3:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

continuous networks with the above assumptions) have identical energy maxima and minima. This implies 
that there is a one-to-one correspondence between the memories of the two models. Also, since the two 
models may be viewed as minimizing the same energy function E ,  one would expect that the macroscopic 
behaviors of the two models are very similar; that is, both models will perform similar memory retrievals. 

C1.3.4.2 Capacity of the Hopfield DAM 

DAM capacity is a measure of the ability of a DAM to store a set of m unbiased random binary patterns 
xk E { - 1 ,  1 )" (that is, the vector components xf are independent random variables taking values 1 or - 1 
with probability 0.5) and at the same time be capable of associative recall (error correction). One common 
capacity measure is known as absolute capacity and is defined as an upper bound on the pattern ratio 
m / n  such that (with probability approaching 1 )  all fundamental memories are stored as equilibrium points. 
This capacity measure, though, does not say anything about error correction behavior, that is, it does 
not require that the fundamental memories xk be attractors with associated basins of attraction. Another 
capacity measure, known as relative capacity, has been proposed which is an upper bound on m l n  such 
that the fundamental memories or their 'approximate' versions are attractors (stable equilibria). 

It has been shown (Amari 1977, Hopfield 1982, Amit et a1 1985) that if most of the memories in 
a correlation-recorded discrete Hopfield DAM, with wii = 0, are to be remembered approximately (i.e. 
nonperfect retrieval is allowed), then m / n  must not exceed 0.15. This value is the relative capacity of the 
DAM. Another result on the capacity of this DAM for the case of error-free memory recall by one-pass 
parallel convergence is (in probability) given by the absolute capacity (Weisbuch and Fogelman-Soulib 
1985, McEliece et a1 1987, Amari and Maginu 1988, Newman 1988), expressed as the limit 

a s n + o o .  (C1.3.25) 
1 max - + - (r) 41nn 

Equation (C1.3.25) indicates that the absolute capacity approaches zero as n approaches infinity! Thus, 
the correlation-recorded discrete Hopfield network is an inefficient DAM model. Another, more useful 
DAM capacity measure gives a bound on m l n  in terms of error correction and memory size (Weisbuch and 
Fogelman-Soulit 1985, McEliece et a1 1987). According to this capacity measure, a correlation-recorded 
discrete Hopfield DAM must have its pattern ratio m l n  satisfy 

(C 1.3.26) 
n 41nn 

in order that error-free one-pass retrieval of a fundamental memory (say xk) from random key patterns 
lying inside the Hamming hypersphere (centered at sk) of radius p n  ( p  < i) is achieved with a probability 
approaching 1 .  Here, p defines the radius of attraction of a fundamental memory. In other words, p is 
the largest normalized Hamming distance from a fundamental memory within which almost all the initial 
states reach this fundamental memory in one pass. 

In general, projection-recorded autoassociative DAMs outperform correlation recorded DAMs in terms 
of capacity and overall performance. Recall that with projection recording, any linearly independent set of 
memories can be memorized error-free (note that linear independence restricts m to be less than or equal to 
n) .  In particular, projection DAMs are well suited for memorizing unbiased random vectors xk E {-1,  l}n, 
since it can be shown that the probability of m (m < n)  of these vectors to be linearly independent 
approaches 1 in the limit of large n (KomlBs 1967). The relation between the radius of attraction of 
fundamental memories p and the pattern ratio m / n  is a desirable measure of DAM retrievaverror-correction 
characteristics. For correlation-recorded binary DAMs, such a relation has been derived analytically for 
single-pass retrieval and is given by equation (C1.3.26). On the other hand, deriving similar relations for 
multiple-pass retrievals andor more complex recording recipes (such as projection recording) is a much 
more difficult problem. In such cases, numerical simulations with large n values (typically equal to several 
hundred) are a viable tool (e.g. see Kanter and Sompolinsky 1987, Amari and Maginu 1988). 

C1.3.4.3 The brain-state-in-a-box DAM 

The brain-state-in-a-box (BSB) model (Anderson et a1 1977) is one of the earliest DAM models. It is a 
discrete-time continuous-state parallel-updated DAM whose dynamics are given by 

z(t + 1 )  = ~ [ y ~ ( t )  + UWZ(~)  +se] (C 1.3.27) 

c 1.3~10 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

where the input key is presented as the initial state z(0) of the DAM. Here, yz( t ) ,  with 0 5 y 5 1, is 
a decay term of the state z ( t )  and a is a positive constant which represents feedback gain. The vector 
8 = [II, 12, . . . , ZnlT represents a scaled external input (bias) to the system, which persists for all time t .  
Some particular choices for S are 6 = 0 (i.e. no external bias) or S = a. The operation F(E)  is a piecewise 
linear operator which maps the ith component & of its argument vector < according to 

(C1.3.28) 

The BSB model gets its name from the fact that the state of the system is continuous and constrained 
to be in the hypercube [-1, 13". When operated as a DAM, the BSB model typically employs an 
interconnection matrix W given by the correlation recording recipe to store a set of m n-dimensional 
bipolar binary vectors as attractors (located at corners of the hypercube [- 1, 11"). Here, one normally sets 
S = 0 and assumes the input to the DAM (i.e. z(0)) to be a noisy vector which may be anywhere in the 
hypercube [-1, 11". The performance of this DAM with random stored vectors, large n and m << n, has 
been studied through numerical simulations by Anderson (1 993). These simulations particularly address 
the effects of model parameters on memory retrieval. 

The stability of the BSB model in equation (C1.3.27) with symmetric W ,  S = 0 and y = 1 has 
been analyzed by several researchers including Golden (1986), Greenberg (1988), Hui and Zak (1992) and 
Anderson (1993). In this case, the model reduces to 

z(t + 1) = F[x( t )  - a W z ( t ) ] .  (C 1 -3.29) 

Golden (1986, 1993) analyzed the dynamics of the system in equation ((3.3.29) and found that it 
behaves as a gradient-descent system that minimizes the energy B5.2.2 

E ( z )  = - i z T W z .  (C 1.3.30) 

He also proved that the dynamics in equation (C1.3.29) always converge to a local minimum of 
E(%) if W is symmetric and A d n  2 0 (i.e. W is positive semidefinite) or a e 2/lAhnI3 where A h n  is 
the smallest eigenvalue of W .  With these conditions, the stable equilibria of this model are restricted 
to the surface and/or vertices of the hypercube. It is interesting to note here that when this BSB DAM 
employs correlation recording (with a preserved diagonal of W), it always converges to a minimum of 
E(z) because of the positive-semidefinite symmetric nature of the autocorrelation matrix. 

C1.3.5 Dynamic models: the heteroassociative case 

CI.3.5.1 The heteroassociative DAM 

The heteroassociative DAM (HDAM) architecture is shown in figure C1.3.3(b) (Okajima et a1 1987). It 
consists of two processing paths which form a closed loop. The first processing path computes a vector 
y E { - 1, l}L from an input z E { - 1, 1)" according to the parallel update rule 

vl(t + 1) = F(WIz( t ) )  (C1.3.3 1) 

or its serial (asynchronous) version, where one and only one unit updates its state at a given time. Here, F 
is usually the sgn activation operator. Similarly, the second processing path computes a vector x according 
to 

z(t + 1) = F(W2y(t))  (C1.3.32) 
or its serial version. The HDAM can be operated in either parallel or serial retrieval modes. In the parallel 
mode, the HDAM starts from an initial state x(O), computes its state y according to equation (C1.3.31), 
and then updates state z according to equation (C1.3.32). This process is iterated until convergence, i.e. 
until state x (or equivalently y) ceases to change. On the other hand, in the serial update mode, only one 
randomly chosen component of the state 2 or y is updated at a given time. 

Various methods have been proposed for storing a set of heteroassociations Isk, yk}, k = 1,2, . . . , m 
in the HDAM. In most of these methods, the interconnection matrices W1 and W2 are computed 
independently by requiring that all one-pass associations xk + yk and yk -P zk, respectively, are 

~ ~ 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hadbook of Neural Computurion release 9711 c 1.3: 11 

Copyright © 1997 IOP Publishing Ltd



Suoervised Models 

stored perfectly. Here, it is assumed that the set of associations to be stored forms a one-to-one mapping; 
otherwise, perfect storage becomes impossible. Examples of such HDAM recording methods include the 
use of projection recording (Hassoun 1989a, b) and Householder transformation-based recording (Leung 
and Cheung 1991). These methods require the linear independence of the vectors xk (also yk) for which 
a capacity of m = min(n, L )  is achievable. One drawback of these techniques, however, is that they do 
not guarantee the stability of the HDAM, i.e. convergence to spurious cycles is possible. Empirical results 
show (Hassoun 1989b) that parallel updated projection-recorded HDAMs exhibit significant oscillatory 
behavior only at memory loading levels close to the HDAM capacity. 

Kosko (1987, 1988) proposed a heteroassociative memory with the architecture of the HDAM but with 
the restriction W i  = W1 = W. This memory is known as a bidirectional associative memory (BAM). The 
interesting feature of a BAM is that it is stable for any choice of the real-valued interconnection matrix W 
and for both serial and parallel retrieval modes. This can be shown by starting from the bounded Lyapunov 
(energy) function 

(C1.3.33) 

of the BAM and showing that each serial or parallel state update decreases E .  One can also prove BAM 
stability by noting that a BAM can be converted to a discrete autoassociative DAM (discrete Hopfield 
DAM) with state vector z’ = [zT, yTIT and interconnection matrix W’ given by 

o w  
W ‘ = [  w 0 1  (C 1.3.34) 

Now, since W’ is a symmetric zero-diagonal matrix, the autoassociative DAM is stable if serial update is 
assumed. Therefore, the serially updated BAM is stable. One may also use this equivalence property to 
show the stability of the parallel-updated BAM (note that a parallel-updated BAM is not equivalent to the 
(nonstable) parallel-updated discrete Hopfield DAM; this is because either states z or y, but not both, are 
updated in parallel at each step). 

From above, it can be concluded that the BAM always converges to a local minimum of its energy 
function defined in equation (C1.3.33). It can be shown (Wang et a1 1991) that these local minima 
include all those that correspond to associations {zk, yk} which are successfully loaded into the BAM (i.e. 
associations which are equilibria of the BAM dynamics). 

The most simple storage recipe for storing the associations as BAM equilibrium points is the 
correlation recording recipe. This recipe guarantees the BAM requirement that the forward-path and 
backward-path interconnection matrices W1 and W2 are the transpose of each other, since 

and 

m 

m 

wp = s k ( y k ) T  * 

(C 1.3.35) 

(C1.3.36) 
k = l  

However, some serious drawbacks of using the correlation recording recipe are low capacity and poor 
associative retrievals; when m random associations are stored in a correlation-recorded BAM, the condition 
m << min(n, L )  must be satisfied if good associative performance is desired (Hassoun 1989b, Simpson 
1990). Heuristics for improving the performance of correlation-recorded BAMs can be found in Wang et 
a1 (1990). 

C1.3.6 Other models 

It should be noted that the above models of associative memories are by no means exhaustive. A number 
of other interesting .models have been reported in the literature (interested readers may find the volume 
edited by Hassoun (1993) useful in this regard). For example, in terms of overall performance, the Ho- 
Kashyap model (Hassoun and Youssef 1989) has been shown to outperform both correlation and projection 
recorded DAMS. Other models are interesting because of their connection to biological memories (e.g. 
see Kanerva 1988, 1993 and Alkon et a1 1993). 

c1.3:12 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory networks 

References 

Alkon D L, Blackwell K T, Vogl T P and Wemess S A 1993 Biological plausibility of artificial neural networks: 
leaming by non-Hebbian synapses Associative Neural Memories: Theory and Implementation ed M H Hassoun 
(New York: Oxford University Press) pp 31-49 

Amari S-I 1972a Learning patterns and pattem sequences by self-organizing nets of threshold elements IEEE Trans. 
Comput. 21 1197-206 

-1972b Characteristics of random nets of analog neuron-like elements IEEE Trans. Syst. Man Cybem. 2 643-57 
-1977 Neural theory of association and concept-formation Biol. Cybem. 26 175-85 
-1990 Mathematical foundations of neurocomputing Proc. IEEE 78 1443-63 
Amari S-I and Maginu K 1988 Statistical neurodynamics of associative memory Neural Networks 1 63-73 
Amari S-I and Yanai H-F 1993 Statistical neurodynamics of various types of associative nets Associative Neural 

Memories: Theory and Implementation ed M H Hassoun (New York: Oxford University Press) pp 169-83 
Amit D J, Gutfreund H and Sompolinsky H 1985 Storing infinite numbers of patterns in a spin-glass model of neural 

networks Phys. Rev. Lett. 55 1530-3 
Anderson J A 1972 A simple neural network generating interactive memory Math. Biosci. 14 197-220 
-1993 The BSB model: a simple nonlinear autoassociative neural network Associative Neural Memories: Theory 

Anderson J A, Silverstien J W, Ritz S A and Jones R S 1977 Distinctive features, categorical perception, and probability 

Baird, B 1990 Associative memory in a simple model of oscillating cortex Advances in Neural Information Processing 

Casasent D and Telfer B 1987 Associative memory synthesis, performance, storage capacity, and updating: new 

Chiueh T D and Goodman R M 1988 High capacity exponential associative memory Proc. IEEE Int. Con$ on Neural 

Cohen M A and Grossberg S 1983 Absolute stability of global pattem formation and parallel memory storage by 

Golden R M 1986 The brain-state-in-a-box neural model is a gradient descent algorithm J. Math. Psychol. 30 73-80 
-1993 Stability and optimization analysis of the generalized brain-state-in-a-box neural network model J. Math. 

Greenberg H J 1988 Equilibria of the brain-state-in-a-box (BSB) neural model Neural Networks 1 3 2 3 4  
Hassoun M H 1989a Adaptive dynamic heteroassociative neural memories for pattem classification Proc. SPIE, Optical 

-1989b Dynamic heteroassociative neural memories Neural Networks 2 275-87 
- (ed) 1993 Associative Neural Memories: Theory and Implementation (New York: Oxford University Press) 
-1995 Fundamentals of Artificial Neural Networks (Cambridge, MA: MIT) 
Hassoun M H and Youssef A M 1989 A high-performance recording algorithm for Hopfield model associative memories 

Hirsch M 1989 Convergent activation dynamics in continuous time networks Neural Networks 2 3 3 1 4 9  
Hirsch M and Smale S 1974 Difserentiaf Equations, Dynamical Syst., and Linear Algebra (New York: Academic) 
Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl 

-1984 Neurons with graded response have collective computational properties like those of two-state neurons Proc. 

Hui S and Zak S H 1992 Dynamical analysis of the brain-state-in-a-box neural models IEEE Trans. Neural Networks 

Kanerva P 1988 Sparse Distributed Memory (Cambridge, MA: Bradford/MIT) 
-1993 Sparse distributed memory and other models Associative Neural Memories: Theory and Implementation ed 

Kanter I and Sompolinsky H 1987 Associative recall of memory without errors Phys. Rev. A 35 380-92 
Kohonen T 1972 Correlation matrix memories IEEE Trans. Comput. 21 353-9 
-1974 An adaptive associative memory principle IEEE Trans. Comput. 23 44.4-5 
-1984 Self-organization and Associative Memory (Berlin: Springer) 
Kohonen T and Ruohonen M 1973 Representation of associated data by matrix operators IEEE Trans. Comput. 22 

Komlds J 1967 On the determinant of (0, 1) matricies Stud. Sci. Math. Hung. 2 7-21 
Kosko B 1987 Adaptive bidirectional associative memories Appf. Opt. 26 4947-60 
-1988 Bidirectional associative memories IEEE Trans. Syst. Man Cybem. 18 49-60 
Leung C S and Cheung K F 1991 Householder encoding for discrete bidirectional associative memory Proc. Int. Con$ 

and Implementation ed M H Hassoun (New York: Oxford University Press) pp 77-103 

learning: some applications of neural model Psychol. Rev. 84 413-51 

Systems 2 {Denver, 1989) ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 68-75 

heteroassociative memory results SPIE, Int. Robots Comput. Vision 848 3 13-33 

Networks {San Diego, CA) vol I (New York: IEEE Press) pp 153-60 

competitive neural networks IEEE Trans. Syst. Man Cybem. 13 815-26 

Psychd. 37 282-98 

Pattem Recognition vol 1053 ed H-K Liu pp 75-83 

Opt. Eng. 27 4 6 5 4  

Acad. Sci., USA 79 2445-558 

Natl Acad. Sci., USA 81 3088-92 

3 86-9 

M H Hassoun (New York: Oxford University Press) pp 50-76 

701-2 

on Neural Networks (Singapore 1991) pp 23741 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compururion release 9711 c1.3:13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

McEliece R J, Posner E C, Rodemich E R, and Venkatesh S S 1987 The capacity of the Hopfield associative memory 

Nakano K 1972 Associatron: a model of associative memory IEEE Trans. Syst. Man Cybern. 2 380-8 
Newman C 1988 Memory capacity in neural network models: rigorous lower bounds Neural Networks 3 223-39 
Okajima K, Tanaka S and Fujiwara S 1987 A heteroassociative memory network with feedback connection Proc. IEEE 

First Int. Con$ on Neural Networks (San Diego, CA) vol 11, ed M Caudill and C Butler pp 71 1-8 
Rao C R and Mitra S K 1971 Generalized Inverse of Matrices and its Applications (New York: Wiley) 
Simpson P K 1990 Higher-ordered and intraconnected bidirectional associative memory IEEE Trans. Syst. Man Cybern. 

Stiles G S and Denq D-L 1987 A quantitative comparison of three discrete distributed associative memory models 

Uesaka G and Ozeki K 1972 Some properties of associative type memories J. Inst. Elec. Commun. Eng. Japan D-55 

Wang Y-F, Cruz J B Jr and Mulligan J H Jr 1990 Two coding strategies for bidirectional associative memory IEEE 

-1991 guaranteed recall of all training pairs for bidirectional associative memory IEEE Trans. Neural Networks 2 

Weisbuch G and Fogelman-Soulit F 1985 Scaling laws for the attractors of Hopfield networks J.  Physique Lett. 46 

IEEE Trans. Info. Theory 33 461-82 

20 637-53 

IEEE Trans. Comput. 36 257-63 

323-30 

Trans. Neural Networks 1 81-92 

559-67 

L623-30 

c 1.3 : 14 Handbook of Neural Computation release 9711 @ 1497 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.4 Stochastic neural networks 

Harold Szu and Masud Cader 

Abstract 

Deterministic neural networks such as backpropagation of error, multilayer perceptrons, 
and locally based radial basis methods have been a major focus of the neural network 
community in recent years. However, there has been a distinct, albeit less pronounced, 
interest in stochastic neural networks. In this review we provide the reader with a sense 
of the defining components of a stochastic neural network, as well as some of the issues 
arising from working with stochastic neural networks. In particular, issues revolving 
around hardware implementation, software simulation, and innovation are developed. 

C1.4.1 Introduction 

The term stochastic neural network refers to a model of computation whose output is a stochastic function 
of its inputs and interactions among its neurons. It primarily differs from the more popular deterministic 
gradient descent algorithms (e.g., backpropagation) in that a unit activation is not a deterministic sigmoid ci.2.3 
function of the inputs, but rather a stochastic function. In addition, the learning algorithm for a stochastic 
machine usually implements a procedure for finding a minimum on the energy surface as well as entropy 
maximization (Szu 1986). Although the stochastic component increases the complexity of understanding 
and implementation, the reward follows from the fact that a training algorithm based on simulated annealing 
is, theoretically, assured to converge to the global minimum, albeit slowly. 

Recent developments in stochastic neural network modeling have attempted to improve computational 
performance either by parallel implementation or by replacing the computation of stochastic dynamics with 
simpler deterministic mean field approximations (Peterson 1987, Hertz 1991, Zerubia and Rama 1993, 
Yuille 1994, Kappen 1995a, b), that is, estimating stochastic transitions by the mean of the transitions. 
The performance of such annealed estimates is addressed by Tishby (1995). 

Primarily, this line of accelerating the search algorithms has been based on a deterministic Boltzmann 
learning procedure proposed by Hinton (1989); the ‘Cauchy Machine’, invented by Szu (Szu and Messner 
1986, Szu 1987), which uses a Cauchy distribution to generate random flights as well as walks to new states; 
‘adaptive simulated annealing’ models (Ingber 1995) which permit fast learning via the use of differing 
annealing schedules across parameter dimensions; and Markov chain Monte Carlo sampling methods 
for state generation (Geyer 1993). These approaches offer a faster learning procedure than the original 
Boltzmann machine (Hinton er al 1984); however, they are not without their drawbacks (Wasserman 
1989a, b, Galland 1993, Ingber 1995). 

Other approaches, based on the fact that sufficiently simple architectures of Boltzmann machines can 
learn by gradient descent on the objective function (Hopfield 1987), utilize hierarchical configurations 
of simple Boltzmann machines so that training may proceed by gradient descent rather than involving 
simulated annealing. More complex interaction is enabled through the use of configurations or Boltzmann 
trees (Saul and Michael 1994). Still other approaches consider the problem of training a Boltzmann 
machine from an information geometrical view. The alternating minimization algorithm (Byrne 1992) 
proposes that the learning problem be addressed by minimizing the informatiw divergence of repeated 
projections of the machine states and shows the equivalence of the algorithm to gradient descent and the 
expectation maximization technique under specific conditions, 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Compururion release 9711 c1.4:1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Further, the stochastic Helmholtz machine (Dayan et a1 1995) illustrates an innovative statistical 
learning algorithm (the wake-sleep algorithm of Hinton et a1 1995) where the stochastic neural network 
architecture is unsupervised. That is, a multilayer network of stochastic binary neurons is augmented by 
two groups of weights, a top-down generative set in addition to the bottom-up recognition set (resembling 

c2.2.1 very much the biweight connectivity of the ART model of Carpenter and Grossberg). 
Parberry and Schnitger (1989) augment the ‘classical’ Boltzmann machine model, and show that in 

some cases Boltzmann machines may not be much more powerful than combinatorial circuits built from 
Boolean threshold gates. They make a number of useful comments about the practical implementation of 
Boltzmann machines. 

An electronic chip implementation of a Boltzmann machine has been developed by Alspector et 
~ 1 . 5  a1 (1989) at Bellcore, and Skubiszewski (1992), with an optical version by Farhat (Farhat and Psaltis 

1987, Farhat 1987). Similarly, an electronic Cauchy machine has been designed by Takefuji and Szu 
(1989), and its optical version realized by Scheff and Szu (1987). Recently, a Gaussian machine based on 
both the minimization of Helmholtz’s free energy and the maximization of entropy has been studied and 
implemented in a chip by Akiyama et a1 (1990) at Keio University. 

~1.3, ~ 1 . 4  

C1.4.2 Simulated annealing 

Since the major ingredient in stochastic machines is the simulated annealing algorithm, we compare the 
Boltzmann machine and Cauchy machine in terms of different algorithms: Boltzmann annealing (BA) and 
Cauchy annealing (CA) in section C1.4.2. Then, we review two benchmark applications; one for finding 
the global minimum solution of the Traveling Salesman Problem (TSP) and a second which searches for 
the mini-max feature in an image processing problem in section C1.4.3. 

We shall discuss the sequential algorithms used in the above parallel machine implementations as 
follows. In BA, a Gaussian random process is used to generate new states in the sequential algorithm. 
Geman and Geman (1984) have proved that the cooling schedule T ( t )  must be inversely proportional to 
the logarithm of time t ,  in order to guarantee convergence to the global minimum. This relatively slow 
convergence is due to the bounded variance of the Gaussian process which constrains the neighborhood 
of successive samples. This bounded-variance random walk is called a local search strategy. On the other 
hand, if one uses an infinite-variance Cauchy random process, a faster cooling schedule that is inversely 
proportional to time t has been deduced by Szu (1987) in one dimension and Szu and Hartley (Szu 1987, 
Szu and Hartley 1987) in arbitrary higher dimensions (as applied to solving the bearing fix problem with 
multiple sensors and multiple targets). This new class of algorithms, implementing a semilocal search 
strategy, permits occasionally long steps (the so-called Levy-Doob diffusion) far from the neighborhood 
of the previous sample. These random flights are indicative of the divergence of the second moment of 
the Cauchy probability distribution. 

In a convex optimization problem, one can start at any point in the function space, measure the local 
gradient, and take a step in any direction which is lower in altitude than the current position. Repetition of 
this process will assure asymptotic convergence to the minimum (i.e., optimum) solution. In a nonconvex 
problem, the optimization function has multiple local minima, each with different depths, for which the 
optimum is defined to be the global minimum. The application of local gradient techniques to nonconvex 
optimization creates a problem where one becomes caught in a local minimum with no way of determining 
whether the local minimum is also the desired global minimum. One solution to this dilemma is to permit 
steps whose magnitude and direction are dependent on the local gradient and to add random noise in an 
annealing process Wasserman (1989a, b). 

Further, for the algorithm to converge, the magnitude of the random component of the step size 
must decrease in a statistically monotonic fashion. In the physical annealing process these steps can be 
equated with Brownian motion of a particle, traveling at statistical velocity V, over an intersample time 
A t ,  The expectation of V2 is linearly related to the temperature of the particle. The simulated annealing 
community (Kirkpatrick et a1 1983) therefore refers to the ‘temperature’ of the random process and uses 
the term ‘cooling schedule’ to refer to the algorithm for monotonically reducing the temperature. 

An annealing methodology requires three major steps: (i) the generation of a new search state by 
means of a random process covering all phase space without the barrier of an energy landscape (section 
C1.4.2.1); (ii) the acceptance criterion of the new state, based on the energy landscape property at the new 
and the old states (section C1.4.2.2); and (iii) the cooling schedule for quenching the random noise used 

c1.4:2 Hundbook ofNeurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Stochastic neural networks 

to generate a new state together with an appropriate change in the new-state acceptance criterion (section 
C1.4.2.3). 

C1.4.2.1 State-generating probability density 

The Boltzmann machine uses a Gaussian probability density to generate the incremental displacement X 
between the old state x and the new state x’ as follows: 

Based on the central limit theorem (CLT), any random variable with a bounded variance approaches the 
Gaussian distribution in the large-sampling limit. 

The Cauchy state generating probability density is: 

G T ( X ’ I X ’  = x + X) = [T/T(T~ + 1 ~ 1 ~ ) l .  (C 1.4.2) 

Both distributions can be expanded in Taylor series and become identically quadratic for small 
displacements. This means that locally they are both identical to random walks. However, when the 
second moment is taken, the Cauchy density produces an infinite divergence while the Gaussian density 
gives the value of the temperature. This illustrates that the Cauchy distribution will generate random flights 
in long steps (Levy flights), and that the CLT does not apply. 

For an optical implementation, the random displacement X can be easily generated by a uniform 
angle distribution between f n / 2  by a light beam deflected from a suspended mirror on a flat screen as 
demonstrated previously for an optical Cauchy machine (Scheff and Szu 1987). The displacement X is 
measured from the center and is given by 

X = T tan(@ (C1.4.3) 

since with dtan(O)/dB = 1/(1 + tan(O)*), we can replace tan(8) with X/T yielding equation (C1.4.3). 

C1.4.2.2 Local and distributed acceptance criteria 

The primary difference between sequential simulations and parallel implementations of simulated annealing 
is that the former relies on a centralized acceptance criterion (an uphill energy concept), while parallel 
versions require a distributed criterion (an against peer pressure concept). 

The total system energy is convenient for a top-down design, but is not suited for parallel 
implementations. Any criterion based on the total system energy requires a central processor to tally 
the contribution from all distributed processors. If each processor is waiting for a centralized decision, the 
speed of parallel execution will be slowed down. 

A natural choice for a distributed acceptance criterion is one based on the interaction forces carried 
by local communication links. These interactions can be related to the entire energy landscape. 

For example, the natural phenomenon occurring in a water-ice phase transition is a parallel and 
collective computation without central control where a slow cooling or annealing schedule insures the 
low-energy crystalline state of ice. In other words, during the occasional uphill climb of the energy 
landscape to detrapping (or a metastable crystalline state), there is an occasional thermal fluctuation against 
peer pressure. This fluctuation manifests itself via the interacting Coulomb forces which communicate 
instantaneously among all processors or molecules, rather than through the posterior energy landscape. A 
neural network is similar to this liquid-solid phase transition which promises the minimum-energy crystal 
state if it is cooled down properly. 

If the energy change AE = E,,, - Eold is less than zero, the new state is accepted. On the other 
hand, if the energy change AE is greater than zero, then the following acceptance probability is computed: 

PT = 1/[1+ exp(-AEIT)] (C1.4.4) 

(which is larger than a uniformly generated random number) and the uphill state is accepted, otherwise the 
state is rejected. Such an energy landscape formula can be thought of as a two state normalized transition 
probability: e x p ( - E ~ ~ ~ ) / [ e x p ( - E ~ ~ ~ )  + eXp(-Eold)] and therefore works well on a conventional serial 
machine for one neuron decision at a time. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeurul Computurion release 9711 c1.4:3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

For a Gaussian noise model, the appropriate Metropolis acceptance criterion (Metropolis et a1 1953) 
cannot be integrated into an elementary quadrature, which yields, by the steepest-descent approximation, the 
energy landscape concept A E .  Hinton and Sejnowski have interpreted the acceptance criterion, equation 
(C1.4.4), as the energy change for each neuron, AEi, which is used to derive a specific hidden layer 
weight, in order to derive a local acceptance criterion (cf see appendix of Hinton and Sejnowski (1986)). 

A one-dimensional optically implemented neural network utilizing CA has been developed as the 
Cauchy Machine (Scheff and Szu 1987). However, a local distributed VLSI design could not be 
implemented until a distributed acceptance criterion was derived for the Cauchy density (Takefuji and 
Szu 1989). 

If the total input ui to the McCulloch-Pitts model of a binary neuron is defined as 

then, as consistent with the Metropolis acceptance criterion, the output ui is locally set to be one only 
if random numbers generated within the interval [0, 13 are less than the acceptance function-which is 
integrated exactly for each total input as follows: 

( 1 / n ~ )  Jdmdx/[i + ( ( x  - u i > / ~ ) 2 1 =  (1/2) + tan-l(ui/T(t))/n. (C 1.4.5) 

In the case of annealing, the inverse of the cooling schedule is defined to be the piecewise constant gain 
coefficient, G,, at a positive integer time point rn :  

G(t,) = l/T(t,) = G,. (C1.4.6) 

Then, the output ui also fluctuates within a finite bound described as both firing rate transfer functions: 

~i = D l n ( U i )  = (1/2) + tan-’(uiG,)/n. (C1.4.7) 

Note that equation (C1.4.7) is almost identical to the standard sigmoidalflogistic function of 1/[1 + 
exp(-uiGn)], except that the arctangent function becomes slightly rounded near the central region. In the 
case of the sigmoidal function, the slope 0; is proportional to the gain coefficient G,: 

0; = dui/dui G,vi(l - vi). (C1.4.8) 

When T = 0, the infinite gain G implies an infinite slope. In this limit, both firing rate transfer functions 
become a binary step function ui = step(ui) describing a binary neuron model. Thus, the annealing process 
gradually changes a sigmoidal neuron toward a binary neuron. 

C1.4.2.3 Annealing cooling schedules 

The cooling schedule is critical to the performance of the learning algorithm. For a given random process, 
cooling at too fast a rate will probably ‘freeze’ the system in a nonglobal minimum. Cooling at too slow 
a rate, while reaching the desired global minimum, is a waste of computational resources. The technical 
problem is to derive the fastest cooling schedule that will guarantee convergence to the global minimum. 
With this understanding, the term ‘cooling schedule’ is synonymous with ‘permissible fastest cooling 
schedule’ during which the complete phase space is guaranteed to be available for searching at all time. 

Without any knowledge of energy landscapes, one can only hope to derive an appropriate cooling 
schedule for a specific stochastic process. The necessary condition is that at any temperature the phase 
space is always accessible infinitely often in time (IOT). In other words, an inappropriately fast cooling 
schedule may quench the IOT availability of some remote states, and hence, not find the global minimum. 
The specific energy landscape and an appropriate acceptance criterion must be taken into consideration 
to determine whether the minimum will be actually be found. Ingber (1993), has shown that exponential 
cooling schedules may be used but only with specific distributional forms used as the state generating 
function. 

For a Gaussian random process, Geman and Geman (1984) have proved that the simulated annealing 
cooling schedule of the temperature T ( t )  must be decreased (from a given sufficiently high temperature 
To down to zero ‘degrees’) according to the inverse logarithmic formula: 

T = Tf)/log(l+ t ) .  (C 1.4.9) 

c1.4:4 Hundbook of Neurul Computution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Stochastic neural networks 

Thus, in the interest of speeding up the annealing process and yet maintaining the capability of finding the 
global minimum, Szu er a1 applied Cauchy colored noise to the problem, instead of a Gaussian random 
process. The resultant cooling schedule for an arbitrary initial temperature is derived: 

T = To/(l + r )  (C1.4.10) 

which is indeed faster, and was shown to insure that the complete search space is available at all 
temperatures. 

The mathematical truth in both proofs is based on the fact that the infinite series of the inverse time 
steps is divergent from an arbitrary initial time point to 

(C1.4.11) 

The complete proofs for both are provided in appendix A. 
It is useful to note that CA is t /  log(t) faster than a Gaussian (white noise) simulated annealing 

algorithm which in turn is superior to the conventional Monte Carlo method in which the temperature is 
held constant. 

C1.4.3 Applications 

A stochastic neural network model, the Boltzmann machine, has been used in demonstrating the celebrated 
Net-Talk (Sejnowski and Rosenberg 1987). Similarly, the problem of obtaining rapid and accurate 
estimations of the locations of moving emitters from samples of imprecise bearing only data has been 
addressed with the Cauchy machine (Szu 1987). Another innovative application has been the use a class 
of BM (in which visible units are connected only to hidden units) to repair a dataset with missing values 
(Kappen 1995a, b). 

In the remainder of this section, we illustrate two applications of the Cauchy machine. The first, a 
benchmark problem in this area, is that of determining the shortest tour length of a traveling salesman 
through a set of cities only taking into account the constraint of distance between cities. The second is a 
problem related to optical character recognition, where the idea is to automatically extract features from 
the character pattern sets. 

C1.4.3.1 Constraint specGcations 

A traveling salesman problem (TSP), which attempts to find the shortest possible tour through a given 
number of cities, can be stochastically solved by generating noise via the leptokurtic Cauchy probability 
density, T/lr(T2+X2) (Szu 1990). The noise must be quenched with the inversely linear cooling schedule: 
T = To/(l + t )  as described earlier. Moreover, the schedule must be followed consistently for every time 
step, both in generating new states and in visiting some of the states whenever the acceptance criterion is 
met. 

The performance of CA was calibrated by comparing against the results obtained by an exhaustive 
search through all possible TSP solutions. This is possible due to a novel factorial number representation 
for each TSP configuration by an integer n described as follows. 

We require a one-dimensional coding scheme for the TSP search space that is one-to-one unique. 
Due to the combinatorial nature of the TSP, a good guess at a number representation might be a factorial 
number base system. We adopt, in the following manner, a coding scheme as follows: 

(i) The real line x is sampled by the set of real integers x ,  using the function Int( ). 
(ii) Then, integers are made periodically in the modulus base set of ( N  - l)!, using the Mod( , ) function, 
(iii) Such an integer number represents a state of a valid tour since a factorial base set is related to the tour 

order permutations. Thus, one represents the integer in terms of the factorial number base system by 
calculating the most significant numbers denoted by the index tuple, 

Xnew = index, x n ! (C1.4.12a) 

Xnew t, (indexhi-1, indexhi-2,. . . , indexl, indexo) (C 1.4.1 2b) 
n 

sequentially for all n beginning with N - 1 down to 0. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9711 c1.4:5 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

To produce the set of indices, one considers an example for five cities, N = 5, denoted by city: Nos 
1-5. Given Xold = 0 = (No 1, No 2, No 3, No 4, No 5) as a reference (the diagonal matrix element of 
Hopfield-Tank), where the arbitrary tour order is that city No 1 is visited first, and so on. One finds, 

X,,, = 15 = 0 x O! + 1 x l !  + 1 x 2! + 2 x 3! + 0 x 4! ++ (NO 1, NO 4, NO 3, NO 5, NO 2) 

where the representation index = (0, 1,  1 ,2 ,0)  is obtained with respect to the base set (O!, l!, 2!, 3!, 4!). 
The energy corresponding to each of the possible round-trip routes through n cities, 4 5 n 5 10, 

has been reported (Szu and Scheff 1990), so, while the exhaustive search through hundreds of thousand 
of possible cases used several hours of computer time on a Mac I1 (with factorial scaling implying that 
five hours for ten cities would require 50 hours for 11 cities). In contrast, CA took about 10 minutes or 
less to find the global minima for the ten-city problem. As the shortest tours agreed with those found by 
CA, it is clear that CA is superior because the search required a sampling of less than 1% of the states, 
with another 2% sampling to verify the stability. Thus, it is evident that traditional Monte Carlo random 
sampling should be replaced with the CA algorithm. 

~1.2, ~ 1 . 6  C1.4.3.2 Image processing and pattern recognition 

Geman and Geman (1984) have applied Boltzmann annealing to the problem of noisy image restoration. 
Smith et a1 (1983) have also applied BA to radiology image reconstructions. Szu and Scheff (1990) have 
shown that CA can also be useful in pattern recognition. In particular, they have used a minimax cost 
function to investigate the self-extraction of unkown features, previously accomplished using self-reference 
matched filters (Szu et a1 1980, Szu and Blodgett 1982, Szu and Messner 1986). 

Let the critical feature of the template class c be denoted as f c ( x ,  y).  Then, a space-filling curve, 
Peano N-curve, is employed to replace the traditional line-by-line scan sampling, in order to preserve the 
neighborhood proximity relationship. 

The performance criterion seeks to minimize the distance between the image template IC of the c- 
class (c = 1, 2), to minimize the inner product between classes ( f c l f c ( ) ,  and to maximize the distance 
I f c  - f C , l 2  between two feature vectors. Thus, the minimax energy for the determination of the global 
minimum associated with the unknown feature f c  is given by, 

(C 1.4.13) 
c#c' c=1,2 c#c' 

Note how the representation permits parametrization of relative feature importance. For example, the 
Lagrangian multipliers U = 10 and d = 10 are set higher than b = 1 to reflect the less important fact that 
feature f c  should resemble image I C .  The results using the CA algorithm are provided by Szu (1990). A 
sample listing in a variant of Basic is provided in appendix B. 

In these examples, we have focused on representation issues which clearly have significant impact on 
the performance of the algorithms. There is nothing significantly unique about the need for representation 
encodings in neural network applications; however, in digital simulations of stochastic neural models any 
time improvement afforded by clever representation greatly facilitates the application. 

C1.4.4 Summary 

We have illustrated that Cauchy annealing is superior to Boltzmann annealing, which in turn is superior to 
conventional Markov Monte Carlo methods. We have illustrated or referenced how digital implementations 
of stochastic neural networks are inefficient, except, perhaps, when coupled with mitigating factors such 
as clever problem representation, deterministic annealing, adaptive simulated annealing, or composite 
hierarchical architectural topologies (trees for example). It is also clear that for hard problems of large 
scale, analog (especially optical) implementations hold great promise for extending the applicability of 
stochastic neural networks. 

Appendix A. Proofs of both cooling schedules 

There are a number of similarities in the proofs of the cooling schedules for the CA and BA algorithms 
in D-dimensional vector spaces. For the convenience of comparison, the proofs will be demonstrated in 

c1.4:6 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Stochastic neural networks 

parallel. In locating the minimum, one must start at some position or state in a D-dimensional space, 
evaluate the function at that state, and generate the next state vector. 

The CA and BA algorithms are different in that CA uses a Cauchy distribution and BA uses a 
Gaussian distribution in their respective state generating functions. Both the BA and CA algorithms will 
use as their next state either the current state vector or the next state vector provided its incremental cost 
increase is less than the time-dependent noise bound, which is temperature (and therefore time) dependent. 

The CA algorithm requires that state generating be infinitely often in time (ZOT) (in the sense of 
accumulation in time defined by the negation below) whereas the BA requires the state visiting be IOT. 
At some cooling temperature T,(t) at time t, let the state generating probability of being within a specific 
neighborhood be lower bounded by g,. Then the probability of not generating a state in that neighborhood 
is upper bounded by (1 - g l ) .  To insure a globally optimum solution for all temperatures, a state in an 
arbitrary neighborhood must be able to be generated IOT, which however does not imply ergodicity, the 
latter requiring actual visits IOT. To prove that a specific cooling schedule maintains the state generation 
IOT, it is easier to prove the negation of the converse, namely the impossibility of never generating a 
state in the neighborhood afrer an arbitrary time to. Mathematically this is equivalent to stating that the 
infinite product of 11 - g,l terms is zero. Taking the Taylor series expansion of the logarithm of the 
product, one can alternatively prove that the sum of the gt terms is infinite. One can now verify cooling 
schedules in a D-dimensional neighborhood IAxol and arbitrary time to. Among the various Uvy-Doob 
distributions (including Cauchy, Holtzmach, and Gaussian) there are two different classes, local (as in CA) 
and semilocal (as in CA). There exists an initial temperature TO and for t > 0, such that 

BA : Tu(t)  = To/log(t) 
CA : Tc(t) = To/t 

BA : 

CA : 

(C 1.4.Ala) 
(C1.4.Al b) 

(C1.4.A2a) 

(C 1.4 .A2 b) 

Appendix B. Cauchy annealing algorithm (Macintosh QuickBasic version) 

! input two known images and known feature 
DATA 4,5,8,9,11,14,15,16,17,38,41,44,46,47,50,51,52,53,56,57 !input 81 Peano-scanning pixel# 

DATA 58,59,67,69,70,71,72,78,79 
DATA 4,5,8,9,12,13,14,15,16,17,30,31,37,42,43,46,47,50,51,52 
DATA 53,56,57,58,59,62,63,69,70 
DIM fl(8l),f2(8l),avel(8l),ave2(81),ft1(81),ft2(81) 
MAT ave2 =O 
FOR n=l  to 29 

READ k 
LET ave 1 (k)= 1 

NEXT n 
FOR m = 30 to 58 
READ J 
LET ave2(J)= 1 
NEXT m 
! set up Cauchy annealing to determine the unknown feature by mini-max 
RANDOM 
FOR t=l to tmax 

for the black value=l 
! 1= black gun barrel, track belt 

! True-Basic Matrix Equating 
! read the tank into avel, namely I1 

! read the carrier into ave2, namely I2 

!random number rnd generated [0,1] 
!after initialize the display- 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Compururion release 9711 c1.4:7 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

LET temp=To/( l+t) 
LET theta=(md-.5)*Pi 
LET dx=int(temp*tan(theta)) 
LET xnew=mod(x+dx,82) 
IF xnew=O then LET xnew=81 
IF a(xnew)=O THEN 

LET ft2(xnew)=ave2(xnew) 
LET ftl(xnew)=O 

LET ft2(xnew)=O 
LET ftl (xnew)=avel(xnew) 

!Cauchy annealing cooling schedule 

! new pixel by T tan(theta) 
!uniform theta using the radian angle option 

! modulo for 81 scan pixels 

ELSE 

END IF 
LET enew= 0 
LET denominator=O 
LET efl=O 
LET ef2=0 
FOR n=l to 81 

LET ef 1 =ef 1 +(ft 1 (n)-ave 1 (n))*(ft 1 (n)-avel (n)) 
LET ef2=ef2+(ft2(n)-ave2(n))*(ft2(n)-ave2(n)) 
LET denominator=denominator+(ftl (n)-ft2(n))*(ftl (n)-ft2(n)) 
LET enew = enew + ftl(n)*ft2(n) 

NEXT n 
LET enew= a*enew + b*efl + c*ef2 + (ddenominator) 
IF eneweeold then 

MAT f2=ft2 
MAT fl=ftl 
LET eold=enew 
LET x=xnew 

END IF 
IF enew>=eold then 

IF(rnd*0.5)< (1/( 1 + exp((enew-eold)/temp))) then !up-hill climbing 
MAT f2=ft2 
MAT f 1 =ft 1 
LET eold=enew 
LET x=xnew 

END IF 
END IF 

PLOT POINTS :t,xnew+200 
PLOT POINTS :t,x+100 
PLOT POINTS : t,eold2 

! plotting search states, accepted states, and its minimax energy value 

References 

Akiyama Y Y, Anzai Y and Aiso H 1990 The Gaussian machine: a stochastic, continuous neural network model J. 

Alspector J, Guputa B and Allen R 1989 Performance of stochastic leaming microchip Neural Information Processing 

Byrne W 1992 Alternating minimization and Boltzmann machine learning IEEE Trans. Neural Networks 3 612-20 
Dayan P, Hinton G E and Neal R M 1995 The Helmholtz machine Neural Comput. 7 889-904 
Farhat N H 1987 Optoelectronic analogs of self-programming neural nets: Architecture and methodologies for 

implementing fast stochastic learning by simulated annealing Appl. Opt. 26 5093-103 
Farhat N H and Psaltis D 1987 Optical implementation of associative memory based on models of neural networks 

Optical Signal Processing ed J L Homer (New York: Academic) 
Galland C C 1993 The limitations of deterministic Boltzmann machine leaming Network: Computational Neural Syst. 

4 355-79 

Neural Network Comput. 2 (3) 43-5 1 

Systems I (Morgan Kaufmann) 

c1.4:8 Hundbook of Neuml Compufufion release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Stochastic neural networks 

Geman S and Geman D 1984 Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images IEEE 

Geyer C J 1993 Annealing Markov Chain Monte Carlo with Applications toAncestra1 Inference University of Minnesota 
Hertz J A P, Krogh R G and Anders S 1991 Introduction to the Theory of Neural Computation (Reding, MA: Addison- 

Hinton G E 1989 Deterministic Boltzmann learning performs most steep descent is weight space. Neural Comput. 1 

Hinton G E, Dayan P, Frey B J and Neal R N 1995 The Wake-Sleep Algorithm for Unsupervised Neural Networks 

Hinton G E and Sejnowski T J 1986 Learning and Relearning in Boltzmann Machines Parallel Distributed Processing 

Hinton G E, Sejnowski T J and Ackley D H 1984 Boltzmann Machines: Constrained Satisfaction Networks that Learn 

Hopfield J J 1987 Learning algorithms and probability distributions in feed-forward and feed-back networks Proc. 

Ingber L 1993 Simulated annealing: Practice versus theory Math. Comp. Modeling 18 29-57 
-1995 Adaptive simulated annealing (ASA): lessons learned Control and Cybemetics Preprint 
Kappen H J 1995a Deterministic learning rules for Boltzmann Machines. Neural Networks 8 537-548 
-1995b Radial basis Boltzmann machines and leaming with missing values University of Nijmegen 
Kirkpatrick S, Gelatt C Jr and Vecchi M P 1983 Optimization by simulated annealing Science 220 671-80 
Metropolis N, Rosenbluth A W, Rosenbluth M N and Teller A H 1953 Equations of state calculations for fast computing 

Parberry I and Schnitger G 1989 Relating Boltzmann machines to conventional models of computation. Neural 

Peterson C 1987 A mean field theory learning algorithm for neural networks Complex Syst. 1 995-1019 
Saul L J and Michael I 1994 Learning in Boltzmann trees Neural Comput. 6 117484 
Scheff K and Szu H 1987 1-D optical Cauchy machine infinite film spectrum search IEEE Int. Con$ on Neural 

Sejnowski T J and Rosenberg C R 1987 Parallel networks that learn to pronounce English text Complex Syst. 1 145-68 
Skubiszewski M 1992 An Exact Hardware Implementation of the Boltzmann Machine Digital Equipment Corporation 
Smith W E, Barrett H H and Paxman R G 1983 Reconstruction of objects from coded images by simulated annealing 

Szu H H 1986 Non-convex optimization. Real time signal processing IX SPIE vol 698 (Bellingham, WA: SPIE) 

-1987 Fast simulated annealing Neural Networks for Computing, Snow Bird, Utah (New York: AIP) 
Szu H and Blodgett J 1982 Self-reference spatiotemporal image-restoration technique. J. Opt. Soc. Am. 72 1666-9 
Szu H, Blodgett J and Sica L 1980 Local instances of good seeing Opt. Commun. 35 317-22 
Szu H and Hartley R 1987 Nonconvex optimization by fast simulated annealing Proc. IEEE 75 153840 
Szu H and Messner R 1986 Adaptive invariant novelty filters Proc. IEEE 74 519 
Szu H and Scheff K 1990 Simulated annealing feature extraction from occluded and cluttered objects Int. Joint Con$ 

Takefuji Y and Szu H 1989 Parallel distributed Cauchy machine Int. Joint Con$ on Neural Networks (Washington, DC, 

Tishby N 1995 Statistical physics models of supervised learning The Mathematics of Generalization. Proc. SFIKNLS 

Wasserman P D 1989a A combined back-propagatiodcauchy machine network J. Neural Network Comput. 1 (3) 

-1989b Neural Computing Theory and Practice (New York: Van Nostrand Reinhold) 
Yuille A L 1994 Statistical Physics Algorithms that Converge. Neural Comput. 6 341-56 
Zerubia J and Rama C 1993 Mean field annealing using compound Gauss-Markov random fields for edge detection 

Trans. Pattern Anal. Machine Intell. 6 6 1 4 3 4  

Wesley) 

143-50 

University of Toronto 

ed J Clelland and D Rumelhart (Cambridge, MA: MIT Press) pp 282-317 

Camegie Mellon University 

Natl Acad. Sci. USA 84 8429-33 

machines J. Chem. Phys. 21 1087-91 

Networks 2 29-67 

Networks (San Diego, 1987) 

Opt. Lett. 8 199-201 

pp 59-65 

on Neural Networks (Washington, DC, 1990) 

1990) 

Workshop on Formal Approaches to Supervised Leaming (Santa Fe, NM: Addison-Wesley) 

34-40 

and image estimation IEEE Trans. Neural Networks 4 703-9 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1.4:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.5 Weightless and other memory-based networks 

Igor Aleksander and Helen B Morton 

Abstract 

Several models are described which stem from the notion that an artificial neuron is 
a variable-logic decision device and may be regarded as an intelligent lookup table. 
Feedforward and feedback systems are discussed and related to standard networks. The 
systems have a history which stretches back to 1965 and have led to machines which 
have been used to some effect in industrial applications. One such machine is the 
WISARD which is described in some detail. The key features of such systems are that 
they may be easily implemented using conventional digital technology and that they 
provide optimal results with one-shot learning. The systems are unashamedly binary 
but may be used in a probabilistic mode and may be adjusted for different levels of 
generalization. The relationship of weightless systems to similar schemes is discussed: 
specifically, Kanerva’s sparse memory methods and the ADAM system developed by 
Austin. 

C1.5.1 Introduction 

The concept described first in this section is ‘weightlessness’-the use of memory nodes whose function 
is altered not by the changing of weights but by altering the contents of a memory device. In the world of 
neural computing, this approach is seen as being somewhat unorthodox. It starts by using a conventional 
random access memory as a neural node. It is shown that a single-layer group of such nodes (called 
a ‘discriminator’) acts very much like a single-layer perceptron. The advantages of the discriminator ci.1 
approach are that its behavior is amenable to simple analysis and that it is easily implemented with 
conventional computer hardware. The article looks at a multidiscriminator system used in industrial 
settings-the WISARD. A way of calculating and optimizing the behavior of this system is given. On 
the whole, it turns out that usable neural systems with a clear, predictable performance may be obtained 
through the multidiscriminator approach. The WISARD is a product of the early 1980s. More recently 
there have been other variants of this technique which are probabilistic in kind and in which generalization 
can be selected and controlled. These are described, as are other binary systems related to weightless 
notions, notably the work on sparse memory by Kanerva and Austin’s ADAM system. 

WISARD is an acronym for WIlkie, Stonham and Aleksander’s Recognition Device. It is an adaptive 
patfern recognition machine which is based on neural principles. The prototype was completed in 1981 at ~6 
Brunel University in London by a team under the direction of one of the authors (IA). Bruce Wilkie was 
the design engineer and John Stonham his faculty supervisor. The machine was subsequently patented and 
produced commercially in 1984. Here the object is to examine the principles on which these machines 
are based. The history of these principles goes back to 1965, when it was suggested that a simple 
memory device (which nowadays would be called a ROM, read-only memory) has neural-like properties 
(Aleksander 1965). The ROM is a once-only learning device. Over the years, it has been shown that 
the same neural-like properties are held by RAM (random-access memory). RAM devices can learn and 
relearn. Here we examine these learning properties of RAM systems and develop simple ways of analyzing 
networks of such devices. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurui Compumrion release 9111 c1.5:1 

Copyright © 1997 IOP Publishing Ltd



Suwrvised Models 

Broadly, the difference between a conventional McCulloch and Pitts (MCP) weighted node and a 81.2 
RAM node is that the RAM can achieve any of the functions of its inputs but cannot generalize. This 83.5 

makes it appear to be a less interesting device than the MCP. However, we shall show that networks of 
RAM nodes do generalize and that this makes them as interesting as networks of MCP nodes (if not more 
so). In the latter parts of the article we show how even single RAMs can be made to generalize. The 
main advantage of the RAM node is that systems may be built using conventional digital circuitry, without 
the need to develop special VLSI devices. It will also be shown that learning in RAM networks is much 
faster than in MCP networks. 

C1.5.2 The RAM neuron 

The random-access memory device is the silicon building brick of the local memory of any modern 
computer. Designing neurocomputers which exploit silicon RAM leads more directly to usable machines 
of significant capacity than relying on node designs which still require VLSI development. The principal 
components of a RAM device are an address decoder, a group of memory registers, a data-in register 
and a data-out register. To store information, an N-input binary address is supplied to the input of the 
decoder. The output of this decoder has 2N lines, one for each possible address, i.e. a combination of Os 
and 1s on the N input terminals. The presence of one such pattern at the input of the decoder energizes 
the corresponding line and makes the memory register connected to the line active. The active memory 
register absorbs the data held in the data-in register and stores it. For a typical, commercially available 
RAM chip, M (the number of bits of information that can be stored in each memory register) is 8. This 
type of chip is said to be ‘byte-oriented’-a byte being eight bits. Vpically, N could be 18 and this would 
be called a 256 K RAM (218 is 262 144, but it is conventional to name these devices with the first three 
digits of the nearest power of 2 which, in this case, is 256). 

In order to relate the RAM to the neuron, two further points need to be understood. First, it is noted 
that taking one bit of the data input and the corresponding bit of the output, the values of this bit can 
be set independently, and represent precisely the truth table of a logic device with one output. As whole 
words are always written into the memory one row at a time, this independent setting of a particular bit 
in a column is done by selecting the selected bit in the word, leaving the other bits unaltered. Therefore, 
a RAM with M bits in the memory register can be thought of as M RAMs each with one bit per memory 
register, and each connected to the same N input variables. 

The second step is to concentrate only on one of these one-bit-per-word RAMs. The sense in which 
such a RAM is like a neuron is that, given an input at XI to XN at the address terminals and a desired 
output to be held at the data-in terminal, setting the RAM into the reading mode will cause it to ‘learn’ 
this desired response, and this can be overwritten by a subsequent training step. The sense in which this 
is not like a neuron is that there is no need for a sophisticated training algorithm-the setting for one 
input does not affect another and, therefore, the description in the last paragraph is the training algorithm. 
Admittedly, there is no generalization in the RAM itself. While this could be seen as a disadvantage, it is 
shown in the subsequent sections that networh of RAMs generalize in a way which is similar to networks 
of neurons. It will also be shown later that the RAM itself can be made to generalize. 

C1.5.3 A discriminator of RAM neurons 

The simplest RAM network with properties of generalization is called a discriminator and is shown in 
figure C1.5.1. This consists of a layer of K RAMs with N inputs and thus each RAM stores 2N one-bit 
words, and the single layer receives a binary pattern of K N  bits. It is assumed that, before any training 
takes place, all the memory cells in the RAMs are set to 0. Training consists of applying an ‘input pattern’ 
of Os and 1s at the input terminals shown in figure C1.5.3. This is called a training pattern and is an 
example of the class of patterns to be learnt by the discriminator. To record this pattern, a 1 is stored in 
that memory location of each RAM which is addressed by this input pattern. Effectively, this causes each 
RAM to record the occurrence of part of the input pattern-the part ‘sampled’ by that RAM. This is done 
for other input patterns leading to further 1s being stored in the RAMs. 

The RAMs can be switched from a ‘write’ mode for training, as described above, to a ‘read’ mode 
during which what has been learnt can be used. In this latter phase, when another, previously unseen 
pattern is later presented at the input, the summing device (denoted E) produces a number which is equal 
to the number of RAMs that output a 1. This number is said to be the response of the discriminator and 

c 1.5~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

Iplu t Pattern 

c-, r 

Figure C1.5.1. A RAM discriminator. 

r 1 .  

T1 RU 
T 
i 

Figure C1.5.2. Discriminator analysis based on overlapping areas. 

given the symbol r .  Clearly, if one of the patterns used in the training set were to be entered later at the 
input of the network, it would find storage locations that contain a 1 in each of the RAMs and therefore 
r would have its maximum value of K, whereas, if the unknown input pattern were to be totally different 
from any of the training patterns (in the sense that no RAM would receive an individual input on which it 
had been trained) then the value of r would be 0. Therefore, r is, in some way, a measure of the similarity 
of an unknown pattern to each of the patterns in the training set. It is worth looking at this idea in greater 
depth. Figure C1.5.2 is an aid in visualizing the nature of this analysis. 

We assume that a RAM with N inputs is connected quite arbitrarily somewhere within an image 
area whose dimensions are chosen to be one unit by one unit as shown in figure C1.5.2(u). Also in 
figure C1.5.2(u) is the first training pattern for this network, T I ,  Before going further, we shall show how 
the network responds to an unknown test pattern U shown in figure C1.5.2(b). For a RAM to output a 1 
for U, all its N inputs must receive exactly the same pattern for TI and for U .  In figure C1.5.2(c) the 
overlap area that is the same for TI and U is shown in black. Let us say that it measures A1 area units. 
(As the total area of the image is unity, A1 must be less than 1.) If any point within the image can be 
selected with equal probability, the probability of such a point being in A1 is A1/1, that is, precisely A l .  
As this is the probability for receiving the same input in TI and U for any of the inputs of the RAM in 
question, the probability for all N RAMs being so connected is A1 x A I  x . . . x A I  ( N  times), i.e. ( A 1 ) N .  
That is, the probability of an arbitrarily connected RAM outputting a 1 is  AI)^. 

Assume now that there is a large number of such arbitrarily connected RAMs. By the law of large 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c 1.5:3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

numbers, a proportion 
relative response of the network, R. So the absolute response r for a network with K RAMs is 

of this number would fire with a 1 and the rest with a 0. This is called the 

r = KR = K ( A I ) ~ .  

The same form of reasoning can now be extended to a system trained on two patterns TI and T2 as shown 
in figures C1.5.2(d) and (e), respectively. The unknown pattem, U, is shown in figure C1.5.2V). This 
time, the arbitrarily connected RAM will output a 1 if all its inputs are in the overlap area between TI and 
U (shown in figure C1.5.2(g) as a black area and dubbed A I )  or in the overlap area between T2 and U 
(shown in figure C1.5.2(h) as a black area and dubbed A2). Again the probability of connecting a RAM 
to the first of these areas is   AI)^ and the second is ( A z ) ~ .  To get the total probability of the RAM 
firing with a 1 ,  the probability of these two events can be added, provided that one subtracts the event 
of connecting to an area common to the two events which would otherwise be counted twice. This area 
is shown in black in figure C1.5.20’) and is the overlap of U, TI and T2. We call this area A12 and note 
that the probability of connecting to it is ( A I ~ ) ~ .  So, the relative response for the system trained on two 
patterns is: 

R = + (A7JN -   AI^)^. (C1 S . 1 )  

The final step of this analysis is to extend equation (C1.5.1) to any number (say E )  of training patterns 
T I ,  T2, T 3 , ,  . . , TE. The form of such an expression is the same as (C1.5.1). That is, first U is overlapped 
with all the training patterns to calculate the contribution to the response, then overlap with pairs has to 
be removed to correct for double counting: but this takes away too much as it also removes the overlap 
of three training patterns once too many and this has to be put back, and so on. Formally, this is written 
as: 

(The last term in an equation such as this is negative if E is even and positive if E is odd.) 
This formidable looking formula is really no different from (ClS. l ) ,  there is just more of it. The 

main characteristic of the system (and equation (C1.5.2)) is that R is 1 if U is one of the training patterns. 
This can be understood either from the description of the system in the earlier parts of this section or from 
realizing that if, in equation (C1.5.2), U = T I ,  say, then A I  = 1 and the rest of the equation adds up to 0. 
Also if U is close to any one of the training patterns, this makes R closer to 1 by an amount which we 
shall find depends on N .  

A legitimate question that can be asked at this point is why is it worth going to all the trouble of 
inventing discriminators, since the value of R as given by (C1.5.2) could clearly be calculated on any 
computer. In other words, U could be compared to all the stored training patterns and their combinations, 
thereby generating all the overlap counts needed by equation (C1.5.2). The value of R could then be 
computed as a result of this exhaustive search. On the other hand, a specially built hardware discriminator 
delivers R in just one computation (one pass through the network) thus avoiding long searches and overlap 
calculations as would be carried out in a simulation on a conventional serial machine. 

C1.5.4 The WISARD 

A multidiscriminator system has each of its discriminators trained to a different class of object. If the 
task is one of recognizing the hand-printed letters of the alphabet, say, then the scheme would contain 26 
discriminators, one for each letter. The notion of a multidiscriminator system is quite general and takes the 

~ 1 . 2  form shown in figure C1.5.7. The WISARD is a hardware implementation of this scheme directed towards 
~ 1 . 6 . 5 .  ~ 1 . 6  the recognition of images. The hardware will be discussed later-here we concentrate on the principles of 

the arrangement. 
We assume that there are 26 discriminators, each of which covers a binary ‘image’ with K RAMs of 

N address inputs each while, in theory (such as led to the calculations and predictions in the examples of 
the last section), it is assumed that the K RAMs are randomly connected to the image with no constraints; 
in practice a constraint is added+ach image input is connected to precisely one RAM input. In other 
words the size of the image is K N  binary picture points. This is done to ensure that the image is evenly 
covered with a minimum number of RAMs. Several points should be noted here. 

C 1.5 :4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

Figure C1.53. A multidiscriminator system (the WISARD). 

(i) Although one talks of ‘images’, these ideas can be applied to any binary data (e.g. sampled speech ~ 1 . 7  

signals). 
(ii) Although one refers to binary picture points, an image could use more than one binary input per 

picture point. For example, if 16 gray levels are used there are at least 4 binary inputs for each 
such point. In this case, it is assumed that all these binary points are input randomly to the learning 
network. 

(iii) Whether the discriminators have identical input connections or not hardly matters. Each discriminator 
is trained to its own class of pattern, and therefore whether it is wired similarly to or differently from 
other discriminators is not of much consequence. 

It is assumed that at the start of any training regime, all the RAMs of all the discriminators are set to 0. 
The training consists of setting to 1 the outputs of all the RAMs in the discriminator which is appropriate to 
the desired class, Say that a 26-discriminator system is being trained to recognize hand-printed characters, 
that the system is currently being trained to recognize a hand-printed letter A, and that discriminator 1 
is designated to recognize As. Then discriminator 1 is trained to respond to a version of A with a 1 at 
all the RAMS it possesses. This is repeated for many other slightly different versions of As. The entire 
process is repeated for many examples of each of the other letters, taking care that only the appropriate 
discriminator for each letter is trained. 

After training is complete, a response Rj (% of K RAMs that output a 1 )  will occur at the j th 
discriminator (indeed, this is true for all values of j from 1 to 26) for the presentation of an unknown 
pattern to the entire system. The system recognizes the unknown pattern as belonging to the class for 
which Rj is highest. This comparison and selection is performed by the calculator section of the system 
shown in figure C1.5.3. The key mechanism at work in determining the response of each discriminator 
is that described by equation (C1.5.2). Some examples will be used to illustrate this, but first, two more 
tasks performed by the calculator need to be described. The first is a measure of absolute conjidence. This 
is merely the actual value of the highest Rj .  Should this be close to loo%, the system is saying ‘not only 
is this a member of class j ,  but also it is very much like one of the training patterns in that class’. Should 
the highest R, be low, however, this can be interpreted as the system saying ‘this pattern is not much like 
any that have been used in training, but, if pushed, I will say that it is a member of class j ’ .  

The second additional task done by the calculator is to provide a measure of relative confidence C. 
This is calculated by looking at the difference D between the highest Rj and the second highest. C is 
then given by the simple formula: 

n 

(C1 S.3) 

To illustrate the operation of this system we look at an example which involves the prediction of its 
performance when faced with having to recognize patterns in the presence of noise. One of the very 
important areas of application of neural networks is in the monitoring of premises for the presence of 
intruders. Figure C1.5.8 shows a highly stylized version of what this entails. 

The task centers on training one discriminator on a particular scene (a room, or an airfield, say) under 
normal conditions, that is, with no intruders present. A second discriminator is trained with intruders in 
many possible positions. This has sometimes to be done under very poor lighting conditions, and so the 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 C1.55 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

U1 U2 

Figure C1.5.4. Intruder detection in a noisy image of a room. 

machine is required to operate correctly even with very poor images. Noise (which looks like ‘snow’ on a 
television set) occurs when TV cameras are made to operate in very poor lighting conditions. On a binary 
image we represent this as the alteration of some picture points from black to white and from white to 
black. Noise is measured in percentage terms, as a percentage probability of a picture point being affected 
by it. 

Figure C1.5.8 shows the normal image (TI) of a room on which discriminator 1 is trained. 11, 12 
and 13 are images containing an intruder on which disriminator 2 is trained. U1 is a test pattern which is 
intruder-free, but contains roughly 40% noise, while U2 is a test image containing an intruder and 40% 
noise. Using the theory developed earlier, the responses of the two discriminators to the two test patterns 
may be calculated once the effect of noise has been formulated. This is done as follows. Taking the 
overlap between any training pattern X and some unknown test pattern V as being A, then, given s% 
noise, the A area will lose s% (i.e. it will be A(l - s/100)), while the 1 - A area will gain an overlap 
of (1 - A)s/100. Hence we have an expression for the noisy overlap A’ as a function of the non-noisy 
one: 

AS (1 - A)s 
100 100 ‘ 

A/ = A - - + 

This may be simplified a little to 

So, using equation (C1.5.2), assuming that the intruder shadow covers 1/6 of the image and that the 
shadows in 11, 12 and 13 do not overlap, then using the overlap values modified by noise as shown above, 
the relative confidence of the two-discriminator system may be calculated from (C1.5.3) and tabulated as 
shown in table C1.5.1 (rounded) for N = 8. 

Table C1.5.1. Relative confidence of the two-discriminator system. (In these calculations it is assumed 
that the intruder has overlapped with one of the intruder training pattems.) 

Noise Intruder absent Intruder present 
S% RI% R2% C% RI% R2% C% 

0 100 58 42 23 100 77 
10 43 28 34 12 43 72 
20 17 13 25 5.7 16 65 
30 5.7 4.9 14 2.5 5.7 55 
40 1.7 1.6 3.7 1.1 1.7 37 
50 0.39 0.39 0 0.39 0.39 0 

Where only one discriminator is used (say, discriminator number 1) putting a threshold on the response 
that discerns the presence of an intruder could be done only if the exact amount of noise were known 

c1.5:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

t 
N I 

I 

Memory U 

- - 
p A x  M 

RAM 1 - 
I I  I 

M-r 

Camera I 68000-Based 

Histogram 

Multi-discriminator implementation ........................................................................ 
Figure C1.5.5. Details of the WISARD architecture. 

beforehand. That is, were it known that the noise was precisely 20%, the presence of an intruder of the 
size assumed would cause the response of the discriminator to fall from 17% to 5.7%, which would be 
easily discernible with a threshold of, say, 10%. But were the noise to change from 20% to 30% this 
would be interpreted as the presence of an intruder and would raise a false alarm. 

However, in these calculations it is the relative values of the two discriminators that are indicative of 
the presence of the intruder, RI being greater than R2 without the intruder and the reverse when the intruder 
is there. This is true of any noise value up to 50%. Of course, 50% noise obliterates any meaningful 
pattern, as it is no longer possible to know whether any bit has its true value or a value due to noise. 
The confidence too is an indication of the level of noise. Perhaps it is worth noting that the confidence is 
greater in the presence of the intruder-this is due to the fact that the ‘intruder-detecting’ discriminators 
have had more training and generally give a stronger response to anything. In practice, this imbalance 
could be corrected by training the non-intruder discriminator on noisy images. 

In a more general sense, it is the fact that there is no need to select a threshold that gives strength to 
the multidiscriminator method. Put simply, it allows the system to say ‘the image before me is nothing 
like the images that I have been trained on, but if pressed, I will say that it is more like X than any other 
training pattern’. The WISARD is currently being used in security applications such as described above 
and in quality control tusks where it is used to identify and classify faults in products and to measure the ~ 2 . 8 ,  ~ 2 . 1 2  

alignment of parts on production lines. 
Details are given below of the hardware that has been engineered by Computer Recognition Systems 

in the United Kingdom to produce a commercial version of the WISARD idea. Figure C1.5.5 shows a 
block diagram of the system. 

AMASS 
INPUTS 

T 
i“ 

Figure C1.5.6. Partitioning a large memory to make the neural memory. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurution release 9711 c 1.5:7 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Most of this equipment is a general purpose image processing system. A video inpudoutput controller 
digitizes the image picked up by the camera and transfers the resulting bits to an image memory or 
‘framestore’. Typically this picks up an image of 512 x 512 picture points (or pixels), which in the case of 
WISARD are only on or off. The digitized image may be output, again via the image bus and input/output 
controller, and displayed on a monitor over the original image. The controller can also allow the user to 
select the size and position of the digitized image. 

The part of the system described so far is interfaced to a standard microprocessor system which carries 
the control software for the entire system and allows the user to select parameters displayed in ‘menu’ 
fashion on the visual display unit. The not-so-conventional part of the system is shown within the dotted 
frame and largely consists of a large memory which can be partitioned to act as the notional system shown 
in figure C1.5.3. The way in which this partitioning may be achieved is shown in figure C1.5.6. 

Under control of the 68000 microprocessor chip, the user can select a value of N and the size of 
the window which he wishes to use (say X x Y). This determines the number of notional RAMs per 
discriminator (XYIN). The number of discriminators available is M, that is, each bit of a stored word 
contributes to the output of a different discriminator. If the total amount of memory available is 2A words 
of M bits it requires A address terminals. N of these are used as RAM inputs while the other A - N 
are used to index the individual RAMs. Therefore the number of RAMs per discriminator cannot exceed 

The random connection to the input image is arranged by a pseudorandom generator or a predefined 
lookup table, which builds up the N address values for the memory after ‘picking off specific picture 
points from the image memory. The other (A - N) address terminals of the memory are addressed in a 
systematic manner each time a complete group of N (N-tuple) has been brought together. During training 
only one of the M terminals at one time (corresponding to the discriminator being trained) is energized and 
set to 1. The rest of the M terminals are left in the ‘non-writing’ state. During the ‘use’ phase, counters 
carry out a tally of the number of 1s that are generated by each of the M data-out lines, providing the 
histogram of Rj responses on which the output of the system can rapidly be calculated. The user can set 
values of confidence and response that are required to drive overall output lines (e.g. robot controls or 
relays that operate gates on a conveyor belt). 

Clearly, the operation of this system is serial, but the access time of the image memory can be made 
high enough for all the RAMs in the neural memory to be addressed within a short time. Some typical 
figures are given below. 
0 Size of neural memory: 2 megabytes 
0 Value of M: 8 
0 Value of A : 20 
0 Value of N: 4 
0 Number of RAMs per discriminator: 220-4 = 64536 
0 Number of input image points that can be covered by a discriminator: 4 x 64536 = 218 
0 This means that a 512 x 512 image (218) can be completely covered 
0 Time for a training or testing operation of the entire network (independent of N and window size): 

0.08 seconds. 
Provision is made in the WISARD for partial coverage if large windows are being used with large values 
of N. The parameters (N, M, window size and position, coverage) are selected by the user from the menu 
on the VDU. A warning is issued if the memory requirement is exceeded. 

Further details on the architecture of the commercial version of the WISARD are in Aleksander et a1 
(1984). 

2 A - N  

C1.5.5 

Recently, the B bits at each storage location of a RAM have been considered to store a number in the 
interval from 0 to 1 which represents the ‘firing probability’, P(1), of the neuron. Gorse and Taylor 
(1989) have indeed assumed that B is so large as to allow them to analyze their node (which they called a 
p-RAM) as storing continuous values of firing probability. Myers (1990) has investigated RAM systems 
with M = 2E well-defined probabilistic states calling them M-PLNs: M-valued probabilistic logic nodes. 

It is assumed that a RAM node (the discourse is restricted here to M-PLNs) receives global training 
c3 signals of a reinforcement kind. That is, a reward or punish signal is distributed globally to a prescribed 

Probabilistic and generalizing weightless neurons 

c 1.5~8 Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

section of the system, and every node in that section receives the same signal. In this paper it is assumed 
that the set of M values has at least three elements: 

P( l )  = 0 P(l) = 1 and P(l)  = 0.5. 

At the commencement of training all nodes for all inputs store P ( l )  = 0.5. As a final assumption, a 
clocked timing system is required. At the arrival of every clock signal each node will either fire or not 
fire (i.e. output a 1 or a 0, respectively). Over a stretch of many clock periods the node will have fired 
with a frequency approaching P(1). At the arrival of a reinforcement signal, each node ‘knows’ whether 
at the last clock point it fired or not. If the reinforcement is positive (i.e. a reward) the last firing value (0 
or 1) is stored. If the reinforcement is negative and the stored value is 0 or 1 the value is returned to 0.5. 

A modified RAM-the G-RAM-which generalizes internally, has been suggested by Aleksander 
(1990). This device operates in three phases. Two of them are the usual learning phase and operating 
phase during which the device records the addresses with their required response and uses the stored 
information, respectively. The third phase is unusual: it is called the ‘spreading’ phase. Spreading refers 
to a process of affecting the content of storage locations, not addressed during training, by the use of 
a suitable algorithm which may be implemented on-chip or through appropriate actions in the control 
machinery. Whatever the implementation, spreading is something that can be done ‘off-line’, that is, 
between the time that training information has been captured (which may have to be done in some kind 
of ‘real time’) and the time that the nodes have to use what has to be learnt (which may also have to be 
done at speed). 

We assume that spreading has taken place and use a simple model of its effect. The training set sets 
some of the addresses to 0 and others to 1. Full generalization means that any other address will be set 
to 0 if it is closest in Hamming distance to one of the 0 training patterns or 1 if it is closest to one of 
the 1 training patterns. So if the training patterns were 00000000 set to 0 and 11 110000 set to 1, only 
addresses that are equidistant from these two patterns (such as 001 1001 1) would be left with P( l )  = 0.5, 
while others such as oooO1110 and 1oooOOOO would both be set to 0 as they are distinctly nearer to the 
00000000 pattern. The simple model is this: 

If a node is sampling N points of a pattern, given an unknown pattern U and that a majority of N is in 
a pattern area that distinguishes between a required 0 output and a required 1 output, the appropriate 
pattern will be generated for U. 

C1.5.6 The general neural unit 

The structure of a general neural unit (GNU) is shown in figure C1.5.7. The circuit parameters of the 
GNU are: K ,  the number of neurons in the unit; W, the width of a binary input interface; N ,  the number 
of connections that each neuron receives from the input and Q, the proportion of K that each neuron 
receives as input. So the number of inputs to each neuron is N + QK. We generally let F = Q K  as this 
is the number of inputs that a node receives from other nodes in the GNU. A further parameter that needs 
specification is the degree of generalization G of each neuron. It is of some interest that the propcrties of 
the unit can be discussed without detailed reference to the function or structure of the node. In fact, the 
most direct thing that can be done is to assume that the node is a G-RAM with maximum generalization 
as specified earlier. 

With this set of parameters, particularly with the variation of Q, the GNU can be varied from a 
single layer of a feedforward structure (Q = 0) to a Hopfield-like autoassociator ( N  = 0, Q = 1). But ~ 2 . 3 ,  ci.3.2 
what is more interesting are the modes of behavior that can be obtained between these extremes. Some 
examples now follow. The Hopfield model provides an explanation for useful autoassociation properties ~ 1 . 3  

in systems which by our formulation have Q = 1, N = 0 and the node generalization of linearly separable 
functions associated with weighted neurons. Additionally, much of the analysis depends on the existence 
of reciprocal connections between neurons. From the point of view of biological modeling this seems 
wrong, because as far as the author is aware, neural clusters with Q = 1 have not been found in living 
brains. More typical are areas such as C A 3  in the hippocampus where Q is of the order of 5% . These 
have been highlighted by Rolls (1989) and have led others to use statistical mechanics methods to analyze 
low-connectivity autoassociators. From a technological standpoint too, it is important to understand the 
effect that low Q has on the memory properties of the GNU, as Q determines the cost growth of the unit 
with K. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1.5:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

AUTOASSOCIATOR 
F-interconnected 

N 

INPUT 

-w- 

Figure C1.5.7. A general neural unit. 

Here, systems with N = 0 are analyzed and it is shown that a constant number of inputs per 
neuron leads to constant performance independently of K. Technologically this is good news because cost 
increases linearly with the size of the GNU, the performance being set by the number of feedback inputs F 
per neuron. So Q becomes a dependent parameter of the system with Q = F/K.  The training of a GNU 
with N = 0 consists of assuming that, one by one, the patterns of a training set T = It l ,  12, . . . , fn} are 
forced onto the output terminals of the neurons so determining their inputs as well as their target outputs. 
The adaptation in the neurons is such as to cause the inputs to generate the target outputs, keeping each 
of tj ‘stable’ in the network with time. Given an unknown pattern U it is expected that, after a number of 
transient states, the GNU will stabilize in the element of T, which in some way (say, in Hamming distance) 
is most similar to U. The primary performance parameters, therefore, are, first, this retrieval ability and 
second, the storage capacity (i.e. the number of patterns S that T can contain and that are absorbed by 
the GNU without interference). A secondary performance parameter is the speed (i.e. number of transient 
steps) within which the retrieval is achieved. It will first be shown that storage capacity is independent of 
K and heavily dependent on F .  

Consider a binary pattern U currently present at the K binary state variables of what, after all, is an 
autonomous finite-state machine. The next value (assuming the presence of a clock) of a particular state 
variable will be solely determined by the computation that can be achieved on the basis of its F input 
terminals. Assuming that they are randomly connected to the K state variables, and that the computation 
is related to some measure of similarity with the F-tuples seen during training, the statistical distribution 
of the next value of the K state variables can only be related to the amount of information contained in K 
independent F-tuples. This depends on the relative similarities of the patterns in T and pattern U ,  which 
can be specified in terms of proportional pattern areas rather than being a function of K,  To be clearer 
about this we shall look at some specific performance parameters in simplified circuit conditions. 

Storage capacity needs to be defined probabilistically, to which end the concept of a contradiction 
is used. A contradiction occurs if, after training on ti, training on ?k causes f, no longer to be a stable 
pattern in the GNU. For two patterns fj  and fk that are the same for ajk of the area of the entire pattern, a 
contradiction occurs if for any one of the K neurons different targets are required for the same input. The 
storage capacity of the GNU is then determined by the number of training patterns (and assumptions about 
their similarity) that yield some tolerable level of contradiction probability. More precisely, consider two 
patterns fj and fk that have a proportional overlap area ajk. The probability that any neuron will have the 
same input for the two patterns is (ajk)F while the probability that such neurons require different outputs 
is (1 - ajk). so the probability of a contradiction for patterns f j  and f k ,  P(cjk), is 

P(cjk) = (1 - ajk>(ajk) F (C 1 -5.4) 

It can easily be shown that if S patterns are to be stored in such a system, and if there is choice over 
the coding of the patterns, such that the overlap between any two of them is the same and minimal, this 
minimal overlap ajk(min) is 

(C 1.5.5) ajk(min) = 1 - - . 2 
S 

This gives a lowest bound on the probability of contradiction for any two training patterns: 

(C1.5.6) 

c 1.5 : 10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

This needs to be extended to take into account the cumulative effect of S - 1 patterns on the disruption of 
any one pattern. The principle involved in doing this is to account for new disruptions threatened as new 
training patterns are added to the GNU. As seen, the disruptive effect of r2 on tl is (2/S)[(S - 2)/SIF. If 
one now considers the additional effect of t 3  on t l ,  a new group of 1/S differing neuron outputs becomes 
threatened again by an area of [(S - 2)/SIF equal inputs. Also 1/S differing neuron outputs that have 
already been accounted for in t2, are now threatened by a new group of inputs that is identified by the 
expression 

(C1.5.7) 

Repeating this to account for all the S - 1 patterns leads to the overall probability of disrupting a trained 
pattern P d ( S ) :  

(C 1 S.8) 2(S - 1)[(S - 2 ) / S I F  - (S - 2)[(S - 3)/SIF 
S 

P d ( S )  = 

There are several characteristics of this somewhat bizarre expression that are worth noting. 

0 

0 

It confirms that which is obvious-any GNU can store two orthogonal patterns as P d ( S )  evaluates 
to 0 for S = 2 
It also confirms that for large S the probability of disruption tends to 1 
More interestingly, it provides a relationship between F and S for a given limit of acceptability for 
the value of P d ( S ) .  For example, the following list of values has been computed empirically for 
P d ( S )  between 10% and 15%: 

F = 2 4 8 16 32 * - *  Large F 
S =  3 4 7 14 27 0.8 (Large F )  

Also, it shows that if S is held to the same value as F ,  the probability of disruption tends to 22.08%. 
The last observation can be generalized as one would expect the limiting value of P d ( S )  for large S 
to fall logarithmically with F / S .  An empirical relationship is: 

0 

0 

F 
log,,[Pd(S)] = 0.3 - 0.85- 

S 
(C1 S.9) 

A major conclusion can be drawn from this analysis. The storage capacity depends primarily on thefun-in ~ 2 . 6 . 1  
F of each node as a result of being able to model the K-node output pattern as a field of signals which 
the node inputs sample. This has implications not only for the design of artificial perceptual systems but 
also for the analysis of biological systems as F is a measurable parameter. 

Work on weightless systems has recently developed into areas of combined weighted and weightless 
algorithms (Aleksander et a1 1994) and neural state machines which are aimed at representing symbols 
and their perceptual meaning (Aleksander et al 1984). 

C1.5.7 

Pennti Kanerva is a Finnish scientist who, while working in the United States, developed a method of 
associative storage which is both physiologically plausible and pragmatically attractive for implementation 
in hardware. It is impossible to do justice in a few paragraphs to the well argued case that Kanerva himself 
has made (Kanerva 1988) and the depth of understanding that this represents of the similarity distributions 
of randomly selected binary vectors. The interested reader should refer to the original text, while here we 
merely illustrate the principles on which the method is based. 

The method starts with the observation that, in common with the weightless methods discussed in 
the above paragraphs, a pattern recognition memory should be addressed by the patterns to be recognized 
with the contents of the addresses being the results of the recognition. Kanerva observes, as we have done 
in the case of the WISARD system, that the number of meaningful addresses of, say, an n-bit pattern 
vector, is very small with respect to the total of 2". A conventional computer memory would require 2" 
storage locations most of which would not be used. In WISARD this redundancy is removed by sampling 
of the n-bit space, while in Kanerva's method a special memory with a reduced number of locations is 
constructed, retaining the entire n-bit width as the address vector. The locations have arbitrary addresses, 
and the method is based on the way that patterns are mapped into these arbitrary addresses. The system 
is best understood by referring to a physical implementation as shown in figure C1.5.8. 

Kanerva's sparse distributed memory methods 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 c 1.5 : 11 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Decoder n counters 
Neurons per row 

A t  I 

The key this 

Figure C1.5.8. Kanerva’ s sparse, distributed memory. 

rrangement lies in the ‘decoder neuron’. Each of these is prim rily tuned to one 
arbitrary pattern by means of its binary weights. So if the weights were set to, say, 011101 (n = 6), then 
the neuron activation is a maximum of 6, for x = 01 1101 (counting the contribution of one synapse as 
unity if its weight matches its input). Were the threshold of the neuron set at 5 6 then the neuron would 
act as a memory address decoder only for the x address 01 1101. But the threshold is set and left fixed at 
a lower value in which case the neuron decodes more than one address. For example, were the threshold 
set at p 5 then the neuron would decode not only 01 1101, but also all patterns differing from 01 1101 by 
one bit (i.e. at a Hamming distance of 1). So in this case a total of seven patterns would be decoded by 
this neuron. The distance which each decoder is prepared to accept is called the radius of the decoder. 
The word ‘sparse’ is used to describe this method because the number of decoders is very much less than 
2”. In the above example the number of decoders might be, say 3, the other two being tuned arbitrarily 
to, say, loo001 and 010011. 

With the decoding neurons set as suggested above (i.e. with the weights determined by the toss of a 
coin) say that we wish to store three patterns in the system: 

Q = 11oooo 
#L? = 001100 
y = 1o0011, 

Let the three decoders be A (for OlllOl), B (for loo00l), and C (for OlOOll), then we can show the 
distance of each pattern that needs to be stored from the decoder weight patterns: 

Q from A is 4 bits; from B is 2 bits; from C is 3 bits; 
/3 from A is 2 bits; from B is 4 bits; from C is 5 bits; 
y from A is 5 bits; from B is 1 bit; from C is 1 bit. 

Say that the radius of the decoders is set at 5 2 bits. Ignoring for a moment the counter circuitry of 
figure C1.5.8, Q would energize only decoder B .  The object of Kanerva’s memory is to retrieve the stored 
patterns and therefore (Y itself would somehow be stored at location B .  Similarly /3 would be stored at 
A, while y would be stored at B and C. This indicates that, in contrast with conventional memory, the 

c 1.5:12 Handbook ofNeura1 Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

sparse memory can activate more than one address decoder. This means that a space of 2“, being sparsely 
occupied, is mapped into a space of as many dimensions as decoders, and this is less than n.  The fact that 
a pattern can now be stored in several locations explains why the term ‘distributed’ is used in this method. 
The only remaining question is how does one store more than one word in the addressed location. This is 
where the counters come in. In the above example, each address, when activated, gates n counters which 
are initially set to 0. When writing to the memory, the 1 bits in the patterns to be stored increment the 
counters. So when a is presented for storage, only B is addressed and the contents of its counters go to 
11oooO. That is, after the first training step the content of the counters is 

A : 0 0 0 0 0 0  
B :  11o000 
c :  o00000. 

When ,9 is presented, only A is addressed and the contents of its counters go to 001100. That is, after the 
second training step the content of the counters is 

A :  001100 
B :  11oooO 
c :  000o00. 

When y is presented, both B and C are addressed and the contents of their counters are incremented by 
lo001 1. So after the third training step the contents of the counters are 

A :  001100 
B : 210011 
c : 1o0011. 

To read from the memory, the contents of the addressed counters are added and thresholded bit by bit as 
shown in the figure (how the threshold is set is discussed below). 

So when a is presented, the bitwise sums are 210011 (from the B counters only) . Pattern #l gives 
bitwise sums of 001100 (from A counters only). However, y behaves a little differently as the bitwise 
sums are 310022 as the contents of counters B and C are summed bit by bit. Kanerva’s point is that 
this pooling of memory in a distributed way retrieves a distinctive representation of an input if not the 
input itself. The success of this depends on the setting of the threshold. A threshold of 2 1 gives the 
representations 

a: 110011 
p :  001100 
y :  110011. 

This leaves a and y undistinguished. So a threshold of 2 2 is attempted. This gives the result 

a: lo0000 
p:  oooo00 
y :  110011. 

This achieves Kanerva’s predicted result that individual internal representations are created for the training 
patterns, provided that the judicious choice of threshold is made. Kanerva recommends that a value of 
about half the possible maximum of the summed bits be used. 

In fact, it is slightly misleading to judge the behavior of sparse distributed memory on an example 
with very low dimensions as chosen above. This merely illustrates the mechanism. The strength of the 
method comes to the fore when systems are large enough for the law of large numbers to become effective 
and the behavior to benefit from the advantageous statistical properties that the method embodies. Kanerva 
showed that a system with n = lo00 and 20 decoders can store loo00 patterns which may be retrieved 
by inputs up to a distance of 420 bits from the centers of the decoder retrieval centers. He also showed 
that such systems can retrieve sequences and converge on prototypes if organized as state machines in a 
manner similar to the methods discussed in earlier parts of this article. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computurion release 9711 c 1.5: 13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.5.8 Correlation matrices and ADAM 

Another family of binary neural systems owes its existence to an early suggestion by Willshaw et a1 
(1969) for an adaptive correlation matrix and its later modification by Austin (1987) which combines the 
correlation matrix with N-tuple processing similar to that described in section C1.5.2 above. The latter is 
called ADAM as it is a distributed associative memory. 

A correlation matrix such as suggested by Willshaw can be thought of as a set of p horizontal wires 
and q vertical ones. Binary input patterns are applied at horizontal wires h l ,  h2, . . , , h,  and, for training, 
the desired output is placed on vertical wires u1, u2, . . . , uq. A binary ‘weight’ is placed at the crosspoint 
of two wires if, at any point during training, there is a logical 1 both at the input wire and the output 
wire. After training, an unknown input is said to activate those weights for which the input is 1. The 
output wires simply sum all the activated weights and produce a raw response which is precisely this sum. 
In the original version, a threshold had to be applied to the output wires so as to decide whether they 
would output a 1 or not. This makes these outputs precise equivalents to McCulloch and Pitts neurons 
with binary weights. 

The designers of ADAM made a series of modifications to this scheme. First they introduced n-point 
operation at the output wires. This means that only codes containing n 1s are allowed at the output vector 
of the matrix. This enables the automatic adjustment of the output threshold which is effected by, say, 
increasing the threshold from 0 until the output code contains exactly n 1s. A further addition is that of 
N-tuple processing at the input wires. Say that the total number of bits in an input vector is n, N-tuples 
require that this group be broken down into x/N groups of N bits each. Then the input vector to each 
N-tuple is decoded into a single 1 on 2N wires. This is one way of doing things; other versions use a 
tighter coding, that is, between N and 2N wires. The effect in each case is to make more redundant the 
encoding of the possible codes at the input of the correlation matrix which helps to prevent saturation in 
the matrix itself. 

In the ADAM system itself two correlation matrices have been used, one to turn the input vector into 
a set of prototype n-point codes, and the second to turn these codes back into the prototypes of the input 
of the training set. The result of this is that an autoassociator is formed which has good resistance to 
noise. Austin (1989) has also shown that this scheme may be used for the recognition of two-dimensional 
shapes which can be made independently of their orientation. 

C1.5.9 Conclusions on memory-based networks 

In what has become the classical paradigm of neural networks the convention has been to think of the 
variable element in the neuron as an analog memory-a weight. It has been shown in this article that 
digital memory has a major role to play in neural systems not merely as a way of implementing weights but 
also as variable-logic, ‘weightless’ processors. Both feedforward and recursive applications benefit from 
this design philosophy. A further principle which comes into view is the concept of sparse codes which 
through systems with binary weights can perform useful neural functions. Kanerva networks, Willshaw 
matrices and the ADAM concept have been described as examples of the application of this principle. 

References 

Aleksander I 1965 Fused logic element which learns by example Electron. Lett. 1 173-7 
- 1990 Ideal neurons for neural computers Proc. ICNC (Dusseldofl (Berlin: Springer) 
- 1994 Developments in artificial neural systems: towards intentional computers Sci. Prog. 77 43-55 
Aleksander I, Clarke T J W, Braga A P 1994 Binary neural systems: combining weighted and weightless properties 

Aleksander I, Thomas W and Bowden P 1984 Wisard, a radical new step forward in image recognition Sensor Rev. 

Aleksander I and Wilson M J D 1985 Adaptive windows for image processing Proc. IEE E 132 233-45 
Austin J 1987 ADAM: a distributed associative memory for scene analysis Proc. Ist Int. Con5 on Neural Networks 

- 1989 Application of the ADAM system to rotation invariant pattern recognition Proc. IEE Con5 on Art$cial 

Gorse D and Taylor J G 1989 An analysis of noisy RAM and neural nets Physica 34D 9G114 
Kanerva P 1988 Sparse Distributed Memory (Boston, MA: MIT Press) 

IEE J. Intell. Syst. Eng. 3 211-20 

2 120-4 

IV (San Diego, CA: IEEE) pp 285-89 

Neural Networks (London: Plenum) 

c 1.5 : 14 Hundbook of Neural Computufion release 9711 @ 1997 IOP Publishing Ud and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Weightless and other memory-based networks 

Myers C 1990 Leaming with delayed reinforcement in an exploratory, probabilistic logic neural network PhD Thesis 

Rolls E T 1989 The Computing Neuron ed R Durbin, C Miall and G Mitchison (Reading, MA: Addison-Wesley) 

Willshaw D J,  Buneman 0 P and Longuet-Higgins H C 1969 Non-holographic associative memory Nature 222 960-62 

University of London 

pp 125-59 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 9711 c 1.5: 15 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.6 Supervised composite networks 

Christian Jutten 

Abstract 

Composite neural networks consist of multilayer networks, in which each layer may 
use different models of neurons: the classical sigmoidal neuron, the kernel neuron (like 
radial basis function neurons), the logical neuron, and so on. This section is devoted 
to supervised composite neural networks and contains three main parts. The first is 
focused on radial basis function (RBF) networks, as introduced by Poggio and Girosi. 
The second presents a special class of neural Bayesian classifier based on the kernel 
density estimator. In the third part, we briefly explain neural tree architectures, and the 
architecture of the well-known restricted Coulomb energy (RCE) algorithm, stressing 
their limitations. 

C1.6.1 Introduction 

Most of the models and algorithms described in this section are constituted of three or four layers (including 
the input layer). Each layer may use different neuron models, may have different topology, and may be 
associated with a specialized task. 

In neural models described in the previous sections of this chapter, neurons are basically computing 
units whose output is a sigmoidal function, a Heaviside function, or some other function of its activation. 
The activation is the inner product between the input vector and the weight vector of the neuron. Other 
neural models have been proposed, based on another neural model whose output is a nonlinear decreasing 
function of the distance between the input vector and the weight vector: such a neuron will be called 
a kernel neuron or a radial basis function (RBF) neuron in this section. Neurons used in RBF neural B1.7.3 
networks, in kernel neural networks (KNNs)-also called probabilistic neural networks (PNNs)-and in 

Note that, in both cases, from a statistical point of view, the neuron is nothing other than a particular 
nonlinear regressor, whose assemblies have the interesting property of being able to model any nonlinear 
function. 

the famous self-organizingfeature maps (SOWS) belong to this family. c2.1.1 

Figure C1.6.1. Boundaries defined by (a) hard-limiter neuron, (b) RBF neuron. 

The difference and the interest of the two neuron models can be easily explained within the framework 
of classification. For the sake of simplicity, consider a simple binary classification task. In both cases, 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c 1.6: 1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

each neuron is a basic discriminant function, which divides the observation (features or patterns) space 
into two parts. However, with the hard-limiter neuron the boundary is a hyperplane, while with the 
RBF neuron the boundary is the circumference of a hypervolume (hypersphere with Euclidean distance) 
(see figure C1.6.1) centered around class samples. The RBF neuron gives a local decision, and regions of 
the feature located too far from samples are not classified. This neuron property, which allows rejection 
and avoids misclassification, is preserved at network level. 

This section is devoted to supervised composite networks and is divided into three subsections. The 
first addresses RBF neural networks. It is followed by a section on KNNs. Finally, we present two other 
approaches leading to composite neural networks: restricted Coulomb energy (RCE) and related models, 
and neural trees (NTs). 

C1.6.2 Radial basis function neural networks 

C1.6.2.1 Introduction 

In the neural network world, the paradigm of RBF was first introduced by Broomhead and Lowe (1988) and 
Moody and Darken (1989). Another major contribution was the paper by Poggio and Girosi (1990) who 
explained the design and interest in RBF networks with regularization theory. RBF networks can perform 
both classification and function approximation. For classification, the interest in RBF can be explained 
by the concept of $-separable patterns proposed by Cover (1965). Concerning function approximation, 
theoretical results on multivariate approximation constitute the basic framework. For more details see 
Powell (1985), Poggio and Girosi (1990), Haykin (1994 ch 7, pp 237-44). 

C1.6.2.2 Purpose of the model 

RBF neural networks are general purpose approximators. In the literature, numerous applications involving 
function approximation as well as classification properties are encountered: time series analysis (Saha and 
Keeler 1990, Kadirkamanathan et a1 199 l), equalization (Cheng et a1 1992), classification of seismic 
events (Chang and Lippmann 1992), handwritten digit recognition (Lee 1991), speech recognition (Lee 
and Lippmann 1990), adaptive control (Sanner and Slotine 1992), spectral estimation (Nedir et a1 1993), 
and so on. 

Cl. 6.2.3 Topology 

An RBF network consists of three layers: 

(i) the first contains simple neurons which transmit input without distortion, 
(ii) the second (hidden) layer contains the RBF neurons, 
(iii) neurons in the output layer are simple linear units. 
Each layer is fully-connected to the next one with simple first-order connections (figure C 1.6.2). 

Basically, the number of input units (output units, respectively) is equal to the dimension n of the 
input vectors (of the output space, respectively). However, the number of output units can vary according 
to the coding of the outputs. For instance, for binary classification, we can choose: 

(i) 1 output unit which is close to 0 for class 0, and close to 1 for class 1, 
(ii) 2 output units: unit 0 is close to 1 and unit 1 is close to 0 if class 0 is decided, and vice versa. 

Finally, the number N2 of RBF units is equal to the number of samples, N, in the learning database. 
The weight vector between the input vector and the jth RBF unit is simply equal to the input vector of 
the j th samples of the database: wj = 2’. 

The output of the ith neuron of the output layer is then 

N 

(C1.6.1) 

where $ ( e )  is a function from R+ to R, generally decreasing, 2 is the input vector, and xi  are input 
examples of the learning database. In equation (C1.6.1), the weights wij (between RBF units and output 
units) are tuned during the training, as we will explain in section C1.6.2.5. In what follows, for the sake 

c 1.6:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised composite networks 

W 
Input units REF units 

Figure C1.6.2. Topology 

of simplicity, we always consider 1-output networks, 
becomes: 

Output units 

of an RBF network. 

and we omit the index i .  Equation (C1.6.1) then 

(C1.6.2) 

Finally, we remark that the number of RBF units becomes very large with a huge learning database: 
practical methods to reduce the number will also appear in section C1.6.2.5. 

C1.6.2.4 Choice offunction 

There now remains an essential question: what radial basis function must we use? Poggio and Girosi (1990) 
addressed this question in the framework of multivariate interpolation with regularization, for function f 
from Rn to R. In fact, learning consists of designing a mapping f from N empirical input/output examples 
(d, d j ) ,  1 I: j 5 N ,  which are currently noisy examples. It is thus an ill-posed problem in the Hadamard 
sense, especially since the same input can produce various outputs, in which case we must exploit other 
information in order to transform the problem to a well-posed problem. This can be done by looking for 
the function f minimizing a functional consisting of two terms: 

= C(llf (z’) - d’1D2 + VIIPf ID2 (C1.6.3) 

where dJ is the (noisy) target output in response to input xJ,  h is a scalar parameter (regularization 
parameter), and P is usually a differential operator. The first term of the functional measures the fitting 
on data, while the second term imposes smoothing on f .  It can be shown that equation ((3.6.3) leads to 
a Euler-Lagrange partial differential equation, solutions of which involve Green’s functions G(z, zJ): 

J 

4 N  
I 

f ( s )  = - C ( d ’  - f (zJ))G(z,  2’). 
j=1 

(C1.6.4) 

The optimal choice of the Green function depends on the operator P. For instance, for one- 
dimensional data, P can be defined such that 

(C1.6.5) 

In that case, the Green function is a cubic spline (Haykin 1994, pp 249-50). Furthermore, if we 
constrain the operator P to be invariant under rotations and translations, a solution of the Green function 
leads to the Gaussian RBF (Poggio and Girosi 1990): 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1.6~3 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

Finally, the RBF network approximation becomes 

(C1.6.6) 

(C1.6.7) 

that is, a linear superposition of Gaussian RBF, whose centers are samples x J  and variances are IT;. 

C1.6.2.5 Learning 

Three types of parameter are adjusted by training. Weights wj and variances 0; are trained by supervised 
learning. Finally, to avoid too large a complexity, the number of RBF units may be reduced by selecting, 
usually unsupervised, a small but representative number of samples in the database. RBF networks being 
universal approximators, there is no restriction on either inputs or outputs, which may be integer as well 
as real. 

Weight computation withour center selection. In the simplest case, all the RBFs have the same width. The 
location of the RBF and the weight wj  must be computed. If the number of samples, N ,  in the learning 
database is not too large, one chooses N RBF units, each one being centered on each sample. The N 
weights w,, 1 5 j e N ,  are solutions of the set of N linear equation: 

N 

y ( z k )  = dk = x w j 4 ( l l d  - ~ ' 1 1 )  1 5 k 5 N (C1.6.8) 
j=1 

which can be written: 

@ w = y  (C1.6.9) 

where @ = ( e k , )  is an N x N matrix such that 4 k j  = r$(llzk - zjII), w is the unknown vector 
( W I ,  w 2 , .  . . , W N ) ~  and y is the target vector ( d l ,  d 2 , .  . . , d N ) T .  

According to Light's theorem (Light 1992), the matrix @ is positive definite if the input vectors xl, 
x 2 ,  . . . , x N  are distinct. If so, the above set of equations has a unique solution. Note that such a set of 
N equations must be solved for each output unit. 

Weight computation with center selection. If N is large, to avoid computation and memory being too 
large, one selects N2 << N samples in the learning database, which will be associated with N2 RBF units. 
Such RBF neural networks are usually called generalized RBF (GRBF) neural networks. The selection 

c i . 1 . 5 ,  ~ 3 . 3 . 5  of representative samples is usually done by simple vector quantization (VQ) algorithms or Kohonen's 
algorithm, which are unsupervised algorithms. We denote these N2 new samples, usually different from 
database samples, by cj .  Then, for each output unit, we have a set of N equations with N2 unknowns: 

or again: 
@ w = y .  (C 1.6.11) 

The matrix @ is now rectangular, N x N2. An optimal solution, in the mean-square error sense, is 

(C1.6.12) 

where @+ denotes the pseudo-inverse matrix of @. This pseudo-inverse matrix can be computed by 
direct computation, using the relation @+ = (mT@)-l DT, iterative algorithm or adaptive (least-square) 
algorithms. 

then given by 
w = @+y 

c1.6:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing LAd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



SuDervised comoosite networks 

Supervised selection of centers. Supervised selection of centers was first proposed by Poggio and Girosi 
(1990), and is more efficient than unsupervised selection (Wettschereck and Dietterich 1992). The idea is 
based on gradient descent of the cost function: 

(C 1.6.13) 

Gradients of E with respect to w,, cj are easy to compute (see Haykin 1994 for detailed gradient 
computations) and adaptive algorithms are simply 

(C1.6.14) 

(C1.6.15) 

Adaptation ofthe radial basisfunction width. In the most general case, it is interesting to have non-radial 
basis functions (Poggio and Girosi 1990). This is equivalent to having a weighted norm and is simply 
obtained by replacing llzk - cj 1 1 2  by (zk - c ~ ) ~ I : - ~ ( z ~  - c j ) ,  where I : - l  is a positive definite matrix. The 
weighting matrix can also be adapted by a gradient procedure on the cost E (see Haykin 1994 for details) 
and the learning rule is: 

(C1.6.16) 

With radial functions, the covariance matrix reduces to I: = a21, and (C1.6.16) adapts only the parameter 
U2. 

For RBF classifiers, Musavi et a1 (1992) proposed another approach to adjust the matrix I:-' of an 
RBF centered on a point ci. We briefly explain the procedure for a 2-class problem. We first assume that 
the cluster i centered on ci corresponds to class i .  The idea is to define the largest cluster possible using 
a Gram-Schmidt procedure. First, one looks for the nearest input of ci, for instance z{ belonging to the 
opposite class. The vector el = z{ - ci determines the least principal axis. Then, one looks for the nearest 
input, for instance xi,, with respect to e l ,  whose projection on el is less than jlel 11. The second principal 
axis is then e2 = (zi - ci)  - [eT(zk - ci)el]/llel 1 1 2 ,  and so on. Finally, eigenvalues of I: are defined 
from !lei 11, with a correction factor taking into account the empty space phenomenon for high dimensions. 

Orthogonal least-square learning. Chen et a1 (1991) proposed an orthogonal least-square (0LS)- 
supervised-algorithm to select, one by one, the best centers ci within database samples zJ.  Assume 
the best approximation with q RBF units involves the input samples zi, 1 5 i 5 q ,  as centers: 

4 
Y ( Z )  = wj4(IIz - S'II) - (C1.6.17) 

To improve the approximation, we choose, within the remaining N - q samples of the database, 
the vector zk which constitutes the best (q + 1)th regressor, that is, minimizing the square error on the 
whole database. Note that the criterion must be computed for every remaining point! The algorithm is 
still a variation of the Gram-Schmidt orthonormalization procedure. Its main drawback is computational 
cost, the main attractions are incrementality and the small size of the network with respect to a random 
selection. 

j = 1  

C1.6.2.6 Related neural network models 

Many kernels can be used for multivariate interpolation. In the RBF approach, all RBF units have the 
same shape with different width (for instance Gaussian shape with different variances). However, similar 
approaches suggest approximation based on a family of functions. 
0 Baldi (1991) has shown theoretical results based on Bernstein polynomials of degree n: 

B,(k,  X )  = C,kxk(l - x)" -&.  (C1.6.18) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computarion release 9711 c 1.65 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

0 The kernel basis function (KBF), introduced by HiavBEkovB (1995), may include various types of 
classical kernels: F6jer kernel, Dirichlet kernel, Jackson kernel, and so on. 
Mukherjee and Nayar (1995) designed an RBF network based on wavelets. 0 

Other authors develop spline networks (Friedman 1991, Williamson and Bartlett 1992) or networks using 
hyperbolic kernels (Jones 1994). 

C1.6.3 Kernel density estimators 

CI.6.3.1 Introduction 

These networks were first proposed by Comon (1990), and Specht (1990) who called them probabilistic 
neural networks (PNNs). In fact, they are very close to Parzen's windows (Parzen 1962). This approach 
is very interesting for a Bayesian approach to neural classifiers, as proved by the results of the European 
Esprit project ELENA (Comon et a1 1993, 1994, 1995, Comon 1995), but has only been developed by a 
few other researchers. 

C1.6.3.2 Purpose 

Kernel density estimators are special RBF neural networks devoted to the estimation of probability density 
functions (PDFs). They constitute the first step to computing a Bayesian decision. In fact, associated with 
a winner-take-all (WTA) network, we obtain a complete neural Bayesian classifier. 

CI.6.3.3 Topology 

The complete network consists of three networks in cascade (figure C1.6.3) (Jutten and Comon 1993): 

(i) the first is the kernel network, very close to the RBF network, but devoted to density estimation, 
(ii) the second is purely linear, and computes terms - Ik  (see Bayesian class$cation below); the sums of 

these are densities weighted by prior probabilities and decision costs, 
(iii) the last is a winner-take-all network which computes the largest term -1k (that is, the smallest Zk) 

and produces an estimate of the Bayesian decision. 

All the connections are first-order and direct. 

- 4 

Winner 
take 
all 

network 

- ZY 

Class 1 - 
Class 2 
I 

Class M 
I 

Figure C1.6.3. Topology of a neural Bayesian classifier. 

c 1.6:6 Handbook of Neural Compurarion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



SuDervised comDosite networks 

Bayesian classijication. The classification problem consists of designing a mapping f ,  from a set of 
patterns X to a set of classes C. In supervised classification, the mapping is known for N examples 
(si, wj(i)) ,  where x i  (1 5 i 5 N )  are the patterns, and wj(i) ,  ( 1  5 j ( i )  5 M) are the associated classes. 

We have assumed that every feature vector belonging to the same class wj is drawn independently 
from the same PDF p ( s ( w j ) .  The optimal Bayesian classifier is the mapping which minimizes the Bayesian 
risk: 

(C1.6.19) 

where Pj is the prior probability of class w j ,  C i j  is the cost associated with the decision: 'say oi while 
wj is true', and Di is the region, in the feature (pattern) space, in which each point is assigned to the 
class mi. If C ,  = 1 - ai , ,  where 6 i j  is the Kronecker symbol, the Bayesian risk R reduces to the average 
error probability of the decision process. Arranging equation (C1.6.19) leads to 

(C1.6.20) 

where the first term is a constant cost. Then, minimization of equation (C1.6.20) only depends on the 
second term. Assuming that Cj j  < Cij, each integrand Zi is positive. The risk R will be minimized if and 
only if we assign to any pattern x the class wk(=) satisfying 

(C1.6.21) 

Then the neural Bayesian classifier (figure C1.6.3) is simply computed using the Bayesian decision 
(C1.6.21). 

Kernel density estimators. Kernel density estimators are well-known tools in statistics, and are long- 
established (Rosenblatt 1956, Parzen 1962, Cacoulos 1966, Silverman 1986, Hkdle 1990). 

Let us consider the set Xj = {z(t) E R", 1 5 t 5 N,} of patterns belonging to class wj.  Kernel 
estimation of the conditional PDF p ( z l w j )  is then 

(C1.6.22) 

where K(.) is a kernel function and h( t ,  j )  is the width of the kernel. In the simplest case, kernels have 
fixed width: h ( t ,  j )  only depends on Nj. Then, comparing equations (C 1.6.22) and (C1.6.2), a basic kernel 
estimator can be viewed as a special RBF network whose connections are all equal to l / N j .  

Usually, a kernel K ( z )  is a decreasing function of 1(x((. More precisely, it has been proved that 
S ( S J W j )  is asymptotically an unbiased PDF estimator if K ( z )  is positive and bounded and satisfies 

K ( z ) d ~  = 1 

lim 11x11"K(x) = 0 

lim h = 0 

s 
1 1 = 1 1 - - * ~  

N , + w  

lim N j  h" + CO. 
N j + w  

(C1.6.23) 

(C1.6.24) 

(C1.6.25) 

(C1.6.26) 

the convergence is in quadratic mean. However, as h increases, the bias decreases and the variance 
increases. Usually, one can then choose the width h which minimizes the integrated mean-square error 
(MISE). Unfortunately, MISE requires knowledge of the Laplacian of the unknown density! This point 
is essential, because h determines the smoothness of the estimator and avoids overfitting. This parameter 
should be related to the regularization term in RBF. 

For n = 1 ,  according to the above conditions, it is easy to define many candidates: 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c 1 . 6 3  

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

uniform: K(x) = (C1.6.27) 

triangle: K(x) = (1 - Ix I) Rect 

3 
4 

Epanechnikov: K(x) = -(1 - 1xI2) 

(C1.6.28) 

(C 1.6.29) 

1 
(21r)'/2 exp( -x2/2) 

Gaussian: K(x) = (C1.6.30) 

where Rect(u) = 1 if I U I< 1/2, and 0 otherwise. In higher dimensions, one usually used radial kernels 
with similar shapes. Practical algorithms for choosing a good but suboptimal value of h have been proposed 
by Comon (1995), Voz et al (1995). 

C1.6.3.4 Learning 

Two parameters must be adapted in kernel networks: 
(i) as in RBF networks, the number of kernels must often be reduced, usually using unsupervised 

procedures, 
(ii) the width of the kernels. 

Reducing the kernel number. The kernel number is basically equal to the number of samples in the 
database. With large databases, it is essential to select a small subset of samples, leaving the underlying 
distribution unchanged. This can be roughly done by unsupervised vector quantization (adaptive k-means 
algorithm) or self-organizing feature maps, as already suggested for reducing the center number in RBF 
networks. 

Another constructive approach (suboptimal) (Comon and Cheneval 1995), based on non-radial kernels, 
suggests an algorithm able to design the best network with restricted complexity (number of kernels) and 
directly maximizing the classification rate. 

Finally, if a small number of samples must be canceled, vector quantization gives poor results. In that 
case, for fixed kernels, Fambon and Jutten (1995) have proposed an efficient method, inspired by optimal 
brain surgery (OBS) (Hassibi et al 1993), to prune a few kernels in KNN. The method computes location 
modifications of remaining kernels, which minimizes the integrated mean-square error between the pruned 
approximation and the initial approximation. The method can be considered unsupervised, because it uses 
as a reference the current network approximation. 

Computing the kernel width. In the simplest case, all the kernels have the same width. It is easy to 
show that hopt = O(N-' / (d+4)) ,  but, as we previously said, the optimal width hopt explicitly contains the 
unknown density and its second derivative! The problem is well-known in statistics, and HSirdle (1990) 
proposed three approaches: 
(i) if the unknown density is close to a reference distribution, we can compute these unknown terms and 

hopti 
(ii) another idea is to directly estimate the second derivative, but the problem of width choice is still 

encountered; 
(iii) finally, two cross-validation methods. 

For a small sample size variable kernel estimation, first proposed by Silverman (1986), seems a 
more reliable method. However, other problems appear. For instance, variable kernel estimation may 
not integrate to 1, contrary to fixed kernel estimation (with weights equal to l/Nj). Silverman (1986) 
simply chooses the width of the Gaussian kernel, proportional to the kth nearest neighbor. Recently, 
Lowe (1995) suggested a refinement and instead used the average distance of the first k neighbors. 
Optimization is done again using a cross-validation method, and experimental results point out an excellent 
performance/complexity ratio. 

After a center selection by vector quantization, Voz et a1 (1995) computed the average square coding 
error (called 'inertia' and denoted i m )  inside each Voronoi region coded by a center c,,, . Assuming the PDF 

c 1.6:s Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised composite networks 

estimation is almost constant between two neighboring kernels (if the number of kernels is large), they 
show for Gaussian kernels that hmopt = y23im/(2n In 2 ) ,  where n is the pattern dimension. The factor y 
varies from about 0.7 to 2, according to n and the number of initial samples in each cluster. Experimental 
results show excellent performance. Curves for the choice of y are given in their paper. 

For variable kernels, Comon (1995) suggests estimating the density iteratively. Initially, a rough 
estimate of the density is obtained using a rough estimate f i ~ ( t ,  j )  by a k-nearest-neighbor estimator. 
Then, a new value h( t ,  j )  can be computed and used again to refine the density estimator. Experimentally, 
it seems a two-pass iteration is enough. Details and complete equations are given by Comon (1995). 

C1.6.3.5 Advantages 

The kernel classifier method is able to give a very good estimate of conditional density functions provided 
that we have enough samples (for each class) in the database. The learning is simple, and only one 
parameter, for the whole network or for each cluster, is awkward to compute. It is then possible to converge 
toward the optimal Bayesian classifier, and to compute ultimate bounds for a given problem. This is very 
useful in evaluating the efficiency of any suboptimal algorithm. Moreover, suboptimal algorithms, simple 
enough and very efficient, may be designed from this approach. 

Finally, with good PDF estimates, the neural Bayesian classifier (figure C 1.6.3) always remains 
optimal without retraining because prior probability and cost modifications are canceled by adjusting 
parameters in the second and third layers, but the kernel estimators are not influenced. 

However, a good density estimate is not necessary to achieve a good classifier. In fact, it is enough 
to have precise estimates near boundaries. Consequently, optimization directly based on classification 
performance may be very efficient (Comon and Cheneval 1995). 

C1.6.4 Other composite networks for classification 

C1.6.4. I Restricted Coulomb energy neural network 

Introduction. This algorithm was proposed by Reilly et a1 (1982) for classification. It is a very simple 
constructive procedure, very popular, although the efficiency strongly reduces with pattern overlapping. 

Topology. The network consists of three layers: an input layer F which transmits patterns, a prototype 
layer G which codes classes, and a decision layer H (see figure C1.6.4). Connections are direct from one 
layer to the next. First and second layers are fully connected, but only one connection starts from each 
neuron of the second layer. 

Neurons Gk, 1 5 k 5 N2 of the prototype layer are special RBF neurons. For the input pattern 2, 
the output of neuron Gk is 

YCk (2) = wH[Ak - 112 - WkII] (C1.6.3 1 )  

where X[.] denotes the Heaviside function (E[u] = 0 if U < 0, and 1 otherwise) and Ak is the radius of 
influence of the neuron Gk. 

The aim of the neurons of the prototype layer is to approximate the classes w j ,  1 5 j 5 M by 
a superposition of hypervolumes. In fact, if Wk corresponds to a pattern of class w j ,  (C1.6.31) defines 
around the pattern wk a region (hypersphere with Euclidean distance), with a radius kk. assigned to class 
W j  in the pattern space. 

Then, the output of neuron Gk is only connected to the neuron Hi,  with a weight equal to 1. The 
output of neuron Hi is 

(C1.6.32) 

The unit Hj is then active if and only if at least one of cells Gk connected to it is equal to 1. Assuming 

if only one output cell H, is active, the pattern is assigned to class w,, 
if no output cell is active, the pattern is not classified, 
if two output cells are simultaneously active, for instance Hj and Hk, there is a misclassification. 

the input pattern 2: 
0 

0 

0 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1 .6~9  

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

input units (F) Prototype units (0) Decision units (HI 

Figure C1.6.4. Topology of the RCE neural network. 

Learning. The learning is a very simple one-shot supervised learning. At the beginning, the second and 
third layers are empty. Assume the first learning sample is the pair patterdclass (d, 0,). Because the 
network is empty, the pattern cannot be classified. One then adds a prototype cell GI ,  with a radius 
AI = Ao, and with input connections w1 = d. The output of G I  is connected, with a weight equal to 1, 
to a new neuron Hi. 

Assume the second sample is (z2, OR). Four cases may occur: 

(i) ycI (z2) = 1, consequently y ~ ,  (z2) = 1 and Wk = w,. There is nothing to do. 
(ii) yc,  (z2) = 0, Consequently y ~ ,  (x2) = 0 and wk # wj.  We must create a new prototype neuron G2, 

with a radius A2 = Ao, coding the class Wk, whose input weight is w2 = x2. Another decision neuron 
Hk, devoted to class Wk, is created. It is connected to the output of neuron G2 with a weight equal 
to 1. 

(iii) yc,(z2) = 0, consequently YH,(z~) = 0 and wk = 0,. There is no classification. We improve the 
coding of class w, by adding one neuron G2, whose input weight is w2 = x2, and whose output is 
connected to the neuron Hi. 

(iv) ycI (z2) = 1, consequently YH,(z~) = 1 but wk # w j .  There is a misclassification. We must code the 
new class by adding a new prototype neuron G2 coding the class wk, whose input weight is 202 = x2. 
Another decision neuron Hk, devoted to class wk, is also created and connected to the output of 
neuron G 2  with a weight equal to 1. To avoid future misclassification, radii A1 and A2 must decrease 
and satisfy AI = A2 < 112’ - z211. 
And so on. 

Advantages. The algorithm is very simple, but also presents two main drawbacks. First, if the initial radius 
A0 is too small, the number of prototype neurons becomes equal to the number of samples in the database! 
Secondly, if patterns of different classes overlap, the learning leads to overfitting, because the learning 
imposes that each pattern must be correctly learned. In that case, this algorithm is not recommended 
because the generalization error rate becomes large. Figure C1.6.5 explains this overfitting effect for a 
simple two-class problem by comparing the RCE algorithm boundary with the k-nearest-neighbor boundary, 
that asymptotically tends towards the Bayesian boundary. 

C1.6.4.2 Neural trees 

Introduction. Trees, especially binary trees, are very well-known tools in supervised classification. They 
are easy to use and are efficient. Moreover, a neural implementation of classification binary trees is 
straightforward. First attempts for neural trees seem to be due to Koutsougeras and Papachristou (1988), 
then Sethi (1990) and Sirat and Nadal (1990). In all these approaches, the network is automatically 
constructed: at each step, one adds a new cell corresponding to the best hyperplane, which is defined 
using an entropy measure, and other simple ‘AND’ neurons to define new regions corresponding to new 
leaves of the tree, and connections or simple ‘OR’ neurons to define the class. 

Topology. Neural trees are networks with four layers (figure C1.6.6): 

(i) the first layer transmits input patterns; 

c 1.6: 10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised composite networks 

class 0 I Classo 0 

O O  0 

X X 

x x  I x  X 

I X Class x 

Figure C1.6.5. Comparison of boundaries obtained with (a )  RCE and (b)  k-NN algorithms with two 
overlapping classes. 

A H1 
3 2 l 

t 
I 
I 

Figure C1.6.6. Classification of patterns ( a )  leads to the tree (b )  which can be easily implemented by a 
four-layer neural network (c). 

(ii) neurons of the second layer are binary neurons which define hyperplanes in the pattern space-the 
number of neurons is then equal to the number of hyperplanes (nodes in the tree); 

(iii) units of the third layer are logical AND neurons which share the space in regions by combining 
outputs of hyperplane layers-the number of AND neurons is equal to the number of leaves of the 
tree; 

(iv) units of the last layer are logical OR neurons which sum together regions belonging to the same classes 
and gives the final decision-the number of OR neurons is then equal to the number of classes. 

Neural trees have direct, first-order connections. Input layer and hyperplane layer are fully-connected with 
adaptive connections, while connections between other layers are sparse and fixed. 

Learning. Learning is supervised and mainly concerns connections between the input layer and the second 
layer, which determine the hyperplane equations. Neuron weights can be adapted using the backpropagation 
algorithm, the pocket algorithm (Gallant 1986) and so on, in order to minimize the error number. An 
information-based criterion is usually used (Koutsougeras and Papachristou 1988, Sethi 1990, Sirat and 
Nadal 1990, Omohundro 1987, Willshaw er al 1969) to choose the best partition. Sirat and Nadal (1990) 
have also proposed a class dichotomy based on principal component analysis. 

0 1997 IOP Publishing Lid and Oxford University Ress Handbook of Neural Computation release 9711 c 1.6: 11 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

Figure C1.6.7. Improvement of the tree: black node in ( a )  implies very simple modification on the 
associated neural tree: black neurons and connections in (b) .  

Advanrages. This method allows one to find very simply a good initial network architecture which 
can then be refined. As suggested by Sethi, an appropriate architecture can be obtained by training 
hyperplane neurons on a reduced learning database. Then, to improve generalization, one may replace hard 
nonlinearities of neurons (logical AND and OR neurons of third and fourth layers) by soft nonlinearities 
(sigmoid function) and then continue the training on all the connections using a larger database. To avoid 
overfitting by adding more and more neurons, a stopping criterion based for instance on entropy measure 
can control the network expansion (Sethi 1990). Moreover, it is very simple to improve the network: 
addition of new neurons does not change existing connections' as shown in figure C1.6.7. Note also that 
addition of new classes can be easily obtained by only adding new neurons and connections, but without 
teaching again existing neurons and connections. 

References 

Baldi P 1991 Computing with arrays of bell-shaped and sigmoid functions Advances in Neural Information Processing 

Broomhead D S and Lowe D 1988 Multivariable functional interpolation and adaptive networks Complex Syst. 2 

Cacoulos T 1966 Estimation of multivariate density Ann. Inst. Star. Math. 18 178-89 
Chang E I and Lippmann R P 1992 A boundary hunting radial basis function classifier which allocates centers 

constructively Advances in Neural Information Processing Systems 4 ed J Moody, S J Hanson and R P Lippmann 
(San Mateo, CA: Morgan Kaufmann) pp 1 3 9 4 6  

Chen S ,  Cowan C F and Grant P M 1991 Orthogonal least squares learning algorithm for radial basis function networks 
IEEE Trans. Neural Networks 2 302-9 

Comon P 1990 Classification Baytsienne distribuke Revue Technique Thomson 22 543-61 
- 1995 Supervised classification: a probabilistic aproach Invited paper in European Symp. on Arttficial Neural 

Comon P and Cheneval Y 1995 Bayesian supervised classification: an approach with variable kemel estimators Int. 

Comon P, Jutten C, Blayo F, Cheneval Y, Fambon 0, Thissen Ph and Verleysen M 1993 Deliverable RI-A-P Axis 

Comon P et a1 1994 Deliverable R2-A-P Axis A: Theory Esprit Basic Research Project 6891 ELENA 
Comon P, Jutten C, Cheneval Y, Chentouf R and Fambon 0 1995 Deliverable R3-A-P Axis A: Theory Esprit Basic 

Cover T M 1965 Geometrical and statistical properties of systems of linear inequalities with application in pattern 

Fambon 0 and Jutten C 1995 Pruning kemel density estimators European Symp. on Artificial Neural Networks 

Systems 3 ed R P Lippmann, J Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 7 3 5 4 2  

321-55 

Networks (Brussels) ed M Verleysen (Brussels: D facto) pp 11 1-28 

Workshop on ArtiJcial Neural Networks (Malaga) 

A: Theory Esprit Basic Research Project 6891 ELENA 

Research Project 6891 ELENA 

recognition IEEE Trans. Electronic Computers 14 326-34 

(Brussels) ed M Verleysen (Brussels: D facto) pp 147-52 

C1.6:12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised composite networks 

Friedman J 1991 Adaptive spline networks Advances in Neural Infomation Processing Systems 3 ed R P Lippmann, 

Gallant S I 1986 Optimal linear discriminants Proc. 8th Con$ on Pattem Recognition (Paris) (Washington, DC: IEEE 

Hkdle W 1990 Smoothing techniques, with implementations in S (Berlin: Springer) 
Hassibi B, Stork D G and Wolff G J 1993 Optimal brain surgeon and general network pruning IEEE Int. Con$ on 

Haykin S 1994 Neural networks, a comprehensive foundation (Macmillan College Publishing Company) 
HlaviEkovA K 1995 An upper estimate of the error of approximation of continuous multivariable functions by KBF 

European Symp. on Artificial Neural Networks (Brussels) ed M Verleysen (Brussels: D facto) pp 333-4 
Koutsougeras C and Papachristou C A 1988 Training of a neural network model for pattem classification based on an 

entropy measure Proc. IEEE Int. Con$ on Neural Networks (San Diego, CA) pp 247-54 
Jones L K 1994 Goodweights and hyperbolic kernels for neural networks, projection pursuit, and pattem classification: 

Fourier strategies for extracting information from high-dimentional data IEEE Trans. Information Theory 40 439- 
54 

Jutten C and Comon P 1993 Neural Bayesian classifier New Trends in Neural Computation (Lecture notes in Computer 
Sciences) ed J Mira, J Cabestany and A Prieto (Berlin: Springer) 686 pp 119-24 

Kadirkamanathan V, Niranjan M and Fallside F 1991 Sequential adaptation of radial basis function neural networks and 
its application to time-series analysis Advances in Neural Information Processing Systems 3 ed R P Lippmann, 
J Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 721-7 

Lee Y 1991 Handwritten digit recognition using K nearest-neighbor, radial basis function, and backpropagation neural 
networks Neural Comput. 3 440-9 

Lee Y and Lippmann R P 1990 Practical characteristics of neural network and conventional pattem classifiers on 
artificial and speech problems Advances in Neural Information Processing Systems 2 ed D S Touretzky (San 
Mateo, CA: Morgan Kaufmann) pp 168-77 

Light W A 1992 Some aspects on radial basis function approximation Approximation Theory, Spline Functions and 
Applications ed D S Singh NATO AS1 series 256 (Dordrecht: KIuwer) pp 163-90 

Lowe D G 1995 Similarity metric learning for a variable-kernel classifier Neural Comput. 7 72-85 
Moody J E and Darken C J 1989 Fast leaming in networks of locally-tuned processing units Neural Compur. 1 281-94 
Mukherjee S and Nayar S K 1995 Automatic generation of GRBF networks using the integral wavelet transform 

Musavi M T, Ahmed W, Chan K H, Faris K B and Hummels D M 1992 On the training of radial basis function 

Nedir K, Vesin J-M and Eyer L 1993 Spectral estimation of inequally-spaced data via radial basis function interpolation 

Omohundro S M 1988 Efficient algorithm with neural network behaviour Complex Sysr. 1 273-347 
Parzen E 1962 On estimation of probability density function and mode Ann. Math. Stat. 33 1065-76 
Poggio T and Girosi F 1990 Networks for approximation and leaming Pmc. IEEE 78 1481-97 
Powell M J D 1985 Radial basis function for multivariable interpolation: a review IMA Con$ on Algorithms for the 

Reilly D L, Cooper L N and Erlbaum C 1982 A neural model for category learning Biol. Cybem. 45 35-41 
Rosenblatt M 1956 Remarks on some non parametric estimates of a density Ann. Math. Stat. 27 832-7 
Saha A and Keeler J D 1990 Algorithms for better representation and faster leaming in radial basis function networks 

Advances in Neural Information Processing Systems 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) 

Sanner R M and Slotine J-J E 1992 Gaussian networks for direct adaptive control IEEE Trans. Neural Networks 3 

Sethi I K 1990 Entropy nets: from decision trees to neural networks Proc. IEEE 78 1605-13 
Silverman B W 1986 Density estimation for statistics and data analysis (London: Chapman and Hall) 
Sirat J A and Nadal J-P 1990 Neural trees: a new tool for classification Network 1 423-38 
Specht D 1990 Probabilistic neural networks Neural Networks 3 109-18 
Voz J-L, Verleysen M, Thissen Ph and Legat J-D A practical view of suboptimal Bayesian classification with radial 

Gaussian kernels From Natural to Artificial Neural Computation (Lecture Notes in Computer Sciences) ed J Mira 
and F Sandoval (Berlin: Springer) vol930 404-1 1 

Williamson R C and Bartlett P L 1992 Splines, rational functions and neural networks Advances in Neural Information 
Processing Systems 4 ed J Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) 

Wettschereck D and Dietterich T 1992 Improving the performance of radial basis function networks by learning center 
locations Advances in Neural Information Processing Systems 4 ed J Moody, S J Hanson and R P Lippmann 
(San Mateo, CA: Morgan Kaufmann) pp 113340 

Willshaw D J, Buneman 0 P and Longuet-Higgins H P 1969 Non-holographic associative memory Nature 222 960-2 

J Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 675-83 

Computer Society Press) pp 849-52 

Neural Networks (San Francisco, CA) vol 1, pp 293-9 

SPIE '95 

classifiers Neural Networks 5 595603 

XIVth Colloque sur le traitement du signal et ses applications (GRETSI) (Juan-Les-Pins) 217-20 

Approximation of Functions and Data pp 143-67 

pp 482-9 

837-63 

pp 1040-7 

@ 1997 IOP htblishing Ud and Oxford University Ress Handbook of Neural Computation release 9711 c 1.6~13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.7 Supervised ontogenic networks 

Emile Fiesler and Krzysztof Cios 

Abstract 

One of the most powerful aspects of neural networks is their ability to adapt to problems 
by changing their interconnection strengths according to a given learning rule. On the 
other hand, one of the main drawbacks of neural networks is the lack of knowledge 
for determining the topology of the network, that is, the number of layers and number 
of neurons per layer. A relatively new class of neural networks tries to overcome this 
problem by letting the network also automatically adapt its topology to the problem. 
These are the so-called ontogenic neural networks. This section provides an extensive 
survey and comparison of these methods. 

C1.7.1 Introduction 

One of the main strengths of artificial neural networks is their adaptivity, or, more precisely, their ability to 
adapt their interconnection weights to solve a given problem. One of their drawbacks, on the other hand, 
is the lack of methodology for determining the topology, or architecture, of the network, which affects 
important characteristics of the network’s learning, such as training time and generalization capability. As 
for the network’s generalization, larger networks tend to overfit (memorize) the training data, while the 83.5 
small ones may not be able to learn the training data at all. Ontogenic neural networks overcome this 
problem by allowing the network to adapt, besides their weights, also their topology during the training 
process. 

This section provides an overview and comparison of the various ontogenic training algorithms, and 
consists of the following parts. In this section ontogenic neural networks are defined. Section C1.7.2 
presents a classification scheme for ontogenic neural networks. Section C1.7.3 describes methods for 
layered ontogenic networks. In section C1.7.4 tree-based ontogenic networks are described, and in 
section C1.7.5 the methods discussed in C1.7.2.1 and C1.7.2.2 are summarized. The material presented in 
this section is partly based on work by Klotz and Fiesler (1996). 

What distinguishes ontogenic algorithms from other neural network training algorithms is that they 
are used not only to train the weights, but also to learn the topology needed to correctly learn the training 
data. With a conventional training algorithm for multilayer networks, such as backpropagation, the typical c1.2.3 
topology design procedure involves several steps. The only modifiable parameters are usually the weight 
values of the interconnections and the gain of the activation function. The first design step is to choose 
the number of hidden layers and the number of neurons in each hidden layer, together with a connectivity 
scheme which is usually fully interlayer connected. Next, the weights of this network are adapted using 
the training algorithm. Then, if the training does not result in an acceptable solution, that is, inputs do not 
yield the expected outputs, a new topology is guessed and the process is repeated until a suitable solution 
is found. Ontogenic neural networks greatly simplify this process by learning the topology needed for 
solving a given task with no or minimal intervention of a user. Supervised ontogenic networks, which 
need a tutor that provides target outputs during the training phase, are described in this section, whereas 

A growing, or constructive, ontogenic neural network typically starts with a very small topology, for 
example a single hidden neuron, and keeps adding new neurons and connections, until the task at hand 

unsupervised ontogenic networks are described in Section C2.4. C2.4 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 c 1.7: 1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

is solved. Pruning, or destructive, neural networks start with a large topology and reduce its size by 
eliminating neurons, connections, or both. Growing-pruning methods performs both operations, either in 
separate stages or in an interleaved manner. 

The concept of automatically changing the topology of a neural network is not new (Cameron 1964, 
Hopcroft and Mattson 1965, Ivakhnenko 1968), but a widespread interest in ontogenic neural networks did 
not start until the latter part of the 1980s (Gallant 1986a, Mjolsness and Sharp 1986, Lansner and Ekeberg 
1987). Since then, various ontogenic methods have been proposed by research teams all over the world. 
In this section an overview and comparison of these methods is given. 

In order to give the reader good insight into how they work, the neural tree algorithm (Sirat and Nadal 
1990), which is an extension of the earlier tiling algorithm of Nadal (1989), is explained in greater detail, 
The aim of this section is to present a broad overview of the area of ontogenic neural networks. It should 
be noted, however, that this area is a relatively new one and some of the presented methods may not yet 
be sufficiently evaluated or widely applied. The focus of this section is therefore on the not-so-recent 
models which are usually more established and tested. Furthermore, since it is impossible to be complete, 
with new methods and refinements of existing methods being introduced frequently, no claim can be made 
that all ‘important’ models are represented. 

C1.7.2 Classification of ontogenic neural networks 

Many ontogenic training procedures are based on layered neural networks. The neurons in such networks 
are usually (fully) interlayer connected, whereas some also have supralayer connections which link to 

~ 2 . 2  neurons in further layers, not only the adjacent ones (see Section B2.2). Another topology used for 
~ 2 . 7  ontogenic neural networks is the tree (see Section B2.7), which is sometimes used in growing methods, 

Trees can theoretically be regarded as special layered topologies, but will be treated separately in this 
section. It should be noted that in some cases a tree topology can be converted into an equivalent layered 
topology, and sometimes a layered topology corresponds to a virtual tree structure. 

In order to define a classification of the various supervised ontogenic methods, a first distinction 
is made between methods based on layered topologies and those based on tree topologies. A further 
subdivision is made based on whether the method grows and/or prunes the network. This classification is 
used for subdividing this section into sections, where the following aspects are studied: 
0 

0 

0 its generalization capability, 
0 its learning time complexity, 
0 

0 

0 

the type of learning rule used, and whether the ontogenic method uses any heuristics, 
the effectiveness, applicability, and flexibility of a method, 

the existence of a convergence proof, 
the need to retrain the network after its topology is modified, and 
whether the ontogenic method is local, where local means that the method is only based on information 
available at each individual neuron. 

C1.7.3 Methods for layered neural networks 

Growing methods. These ontogenic methods usually start with a small topology, which is often an input 
layer of neurons without nonlinearity and an output layer, to which hidden neurons are added until the 
problem is solved. The size of the input and output layer for supervised learning method s is determined 
by the application. 

In Mezard and Nadal (1989), the authors present the tiling algorithm, which builds several hidden 
layers. In this method, a layer is composed of two kinds of neuron: the master neuron, which delivers 
a partial output, meaning that it usually does not deliver the right answer for all training patterns, and 
so-called ancillary neurons. The input patterns are randomly presented to the network, and new sets of 
weights are generated. Using the pocket algorithm (Gallant 1986b), the set of weights which correspond 
to the smallest error value (that is, the largest number of correctly classified input patterns) is kept. When 
the total error is zero, the generation of the network is completed. Otherwise, ancillary neurons are created 
such that they are correctly learning a subset of prototypes. The convergence of this method is guaranteed 
by the fact that the addition of each new layer gives better results than the previous one: the output error 
of the master neuron in layer 1 + 1 is smaller than the output error of the master neuron in layer 1. 

c 1.7:2 Handbook of Neurul Computufion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



SuDervised ontogenic networks 

Nadal (1989) study a simpler architecture. Here, each new hidden neuron is connected both to the 
most recently added hidden neuron and to the input layer. All the neurons in the output layer are connected 
to every hidden neuron as well as to all the neurons in the input layer. The addition of a hidden layer 
always decreases the error. The methods described by Mezard and Nadal (1989) and Nadal (1989) give 
similar performance and have a good generalization ability. The method of Nadal (1989) builds a simpler 
topology than the tiling algorithm. However, the tiling algorithm uses a smaller number of weights and 
is less constrained (several topologies with different numbers of hidden layer neurons or with a different 
number of hidden layers can be obtained for the same problem). The main difference between the two 
methods concerns the ancillary neurons, which only exist in the tiling algorithm. 

Ash (1989) proposed the dynamic node creation (DNC) method which adds new hidden neurons, 
whose weights are initialized to zero or random values, to a three-layer network when the average error 
curve begins to flatten rapidly, that is, the error is below a given small value during a given number of 
epochs, where an epoch is a complete pass through the training set. Standard backpropagation (BP) is 
used and no retraining is required. The author reports that DNC is usually more efficient than standard 
BP. In his experiments, DNC always converged, even when standard BP did not. Although more training 
iterations are needed for the DNC, less computational time is required for the total computation. 

A variation and extension of the tiling algorithm is the so-called cascade correlation method (CC) 
(Fahlman and Lebiere 1990). It has been designed in an attempt to overcome certain limitations of BP, 
especially the slow training time caused by the fixed learning step size, since it is difficult to choose a 
correct BP step such that the method converges and is not too slow. The second limitation of BP is the 
moving-target problem, where each neuron is trying to be a feature detector, and all other neurons are 
adjusting their weights at the same time. It may therefore occur that the feature a neuron is detecting 
changes during the training. The quickprop learning rule (Fahlman 1988) solves the first problem. As it  8 3 . 4 2  

is not specifically designed for ontogenic neural networks it will not be described here. In order to avoid 
the second problem, in CC, the hidden layer neurons are added one at a time and their incoming weights 
arefrozen. The learning rule attempts to maximize the correlation between the output of the new neuron 
and the residual error of the active network. The decision to create a new neuron is taken when the error 
has not significantly changed after a certain number of epochs. This number of epochs must be tuned by 
a human designer. To create a hidden neuron, a candidate neuron (or even a pool of candidate neurons) is 
connected to all existing neurons. After a few epochs the correlation is calculated and a gradient descent is 
performed to maximize it. In the case of a pool of candidates (each with a different set of initial weights, 
or different thresholds or sigmoid functions), only the neuron whose correlation score is the highest is 
kept. The weights of the new neurons are then frozen and a new one can be created. An advantage of the 
method is that no retraining is required since the existing weights do not change. A recurrent version of the 
algorithm (RCC) was developed later (Fahlman 1991) with the purpose of being able to map a sequence 
of inputs onto a desired sequence of outputs. The main problem is how to adapt the CC method, where 
the weights are frozen, to a recurrent topology where self-recurrent links are aimed to modify the weights. 
Hence, a hybrid architecture has been developed where only recurrent links are allowed to change. The 
remainder of the method is similar to ordinary CC. 

To eliminate a disadvantage of RCC, namely that it cannot learn all finite-state automata, Dong Chen 
et a1 (1995) propose a simple scheme to dynamically generate a recurrent network topology. In recurrent 
neural networks, as opposed to feedforward networks where the information flows from the input to the 
output and no residual information is left in the network after each input is processed, the weights of the 
so-called recurrent neurons are dependent on their previous values. This characteristic enables recurrent 
networks to deal with temporal information. The proposed network structure, like that of the RCC, consists 
of inputs, a hidden layer of fully intralayer connected neurons, and outputs. Both inputs and outputs are 
connected to all hidden layer recurrent neurons. The main difference between RCC and the method of Dong 
Chen er a1 (1995) is that the recurrent layer is fully intralayer connected and is allowed to expand when 
needed. The criterion the authors use for expansion is as follows. A new neuron is added to the recurrent 
layer after every 50 or so epochs, until all training data are recognized correctly. One of the method’s 
disadvantages is the same as for all recurrent neural networks: their training is much more computationally 
complex than for non-recurrent networks. Another disadvantage is that the resulting network size is often 
larger than a minimal one found by using the trial and error method. 

The method described by Baum and Lang (1991) uses an oracle to obtain additional information. 
Assume one has two training patterns with opposite desired outputs. A hyperplane must intersect the 
hypersegment bounded by the two patterns. To increase precision, one can ask the oracle the output value 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Compurution release 9711 c1.7:3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

of the point which is in the middle of the segment. Each query produces a new equation which can be 
solved to find the weights of the hidden units. This method can build a neural network which is as accurate 
as desired. 

RujAn and Marchand (1989) follow the same philosophy: they divide the input space into several 
classes with as few hyperplanes as possible. The input space is represented in a hypercube whose corners 
represent the possible input patterns. According to the desired output, each corner can be colored, for 
example black is assigned the -1 value and white the +1 value. Next, the colored points can be separated 
by hyperplanes such that each region contains points of the same color and the hyperplanes do not 
intersect inside the hypercube. This operation is called regular partitioning. The interesting result is that 
each partitioning is linearly separable and a single hidden neuron can do the work. The partitioning is 
performed by a greedy algorithm. 

Zollner et a1 (1992) describe another ontogenic method based on a three-layer network. Starting from 
the observation that a simple perceptron can correctly learn a linearly separable subset of patterns, the 
method divides the training set into linearly separable subsets which all have the same output value. Each 
neuron in the hidden layer is responsible for a certain set of patterns. In order to find these subsets, the input 
patterns are normalized such that they form a hypersphere. Next, a hyperplane cutting the hypersphere is 
defined such that only patterns inside the resulting hypercone have final output +1 (here, inside means the 
smaller part of the cut sphere), and the patterns outside the hypercone should have intermediate output -1 
(although they have a final output +1). This distinction is made because the patterns inside and outside 
the hypersphere are not linearly separable and thus must be distinguished, even if their final outputs are the 
same. In this way, intermediate hidden neurons are created one by one. Next, the output layer performs a 
logical OR function on the intermediate neurons; at least one +1 means the output must be +1, and lack 
of + 1 means the output must be - 1. The method is reported to be more efficient than the tiling algorithm. 
It creates fewer neurons and the number of created neurons versus the number of training patterns follows 
a smooth curve where the tiling algorithm produces a more erratic (less predictable) curve. 

Reilly et a1 (1982) focus on data classification. Three kinds of neuron are defined: input neurons, 
coding neurons, and decision neurons. An inJuence radius is defined for each pair of codingfdecision 
neurons. This model can be compared to a three-layer network where the coding neurons are in the hidden 
layer and the decision neurons are in the output layer. Initially, the neural network consists of only input 
neurons. Then, when the first pattern is presented, a coding neuron is connected to the input layer and 
a decision neuron is attached to the coding neuron. The weights are updated in such a fashion that the 
decision neuron fires when the first pattern is presented. When another training pattern is presented which 
belongs to the same class, the network is not modified. Otherwise, a new coding neuron and a new 
decision neuron are created such that the decision neuron fires only when the second pattern is presented. 
The influence radius of the first decision neuron is decreased such that the first decision neuron does not 
fire. This process is repeated for each pattern. Since some points may belong to several influence spheres, 
the networks obtained by this method may have a bad generalization rate, although a proper initialization 
of the influence radius can overcome the problem. 

Murphy (1990) was the first to employ Voronoi diagrams, or Dirichlet tesselations, for the design of 
feedforward ontogenic neural networks for pattern classification problems. Bose and Garga (1993) provide 
an improved and systematic way of designing such networks. Their method is based on the construction of 
a Voronoi diagram over the set of points representing patterns in a feature space, using recent advances in 
computational geometry and graph theory. They take advantage of the algorithm of Dwyer (1991) which 
enables quick construction of Voronoi diagrams. A Voronoi cell is a multidimensional polytope which can 
be defined as an intersection of a number of closed half-spaces (hyperplanes); it is this particular feature 
that is used in their algorithm, Once the Voronoi diagram is constructed from the training data, the number 
of separating hyperplanes is also known, and thus their weights, which translates into the first hidden layer 
of their network, These hyperplanes, in turn, define a number of regions, interiors of Voronoi cells, which 
correspond to the number of neurons in the second hidden layer. The number of neurons in the output 
layer is equal to the number of classes one is trying to learn. The advantage of the algorithm is that several 
alternate network topologies can be generated for a given problem. Its biggest disadvantage is the fact 
that it is only well suited for classification problems having a distinct clustering structure. 

In this method, high-order 
~ 2 . 4  connections (see Section B2.4) are created by adding new units. A hierarchical organization allows 

modification of the weights with information from any past period, without the need for a recurrent 
network. The network starts with a two-layer topology, with single-order connections, and the learning 

Another interesting growing method is described by Ring (1993). 

c1.714 Handbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

is performed by gradient descent. High-order units are added when a weight is forced to increase and 
decrease at the same time. This method gives good results for solving temporal tasks (such as grammar 
recognition) but human intervention is still needed to tune the many parameters. It creates a many new 
units, and the generalization capability is therefore poor. On the other hand, the network learns very fast. 

Tan and Vandewalle (1994) propose a design technique where a neural network is constructed from 
an arbitrary set of binary associations. Their key idea is to treat these associations as a binary matrix 
mapping, and to decompose it into a sequence of so-called primitive operations. They define only three 
such operations: deflation, augmentation, and entry flipping, which they prove to form a complete set of 
operations for binary input-output vectors. Their algorithm can be summarized in three steps: 

Decompose a given input-output mapping (treated as matrix to matrix mapping) into a sequence of 
primitive operations 
Construct a sequence of simple feedforward subnetworks realizing each of the primitive operations 
Cascade the subnetworks to construct the overall architecture realizing the input-output mapping. 

The algorithm has an algebraic flavor. Its computation time grows linearly with N I  + N L ,  the dimension of 
input and output vectors, for a fixed number of training pairs, which is very efficient. Another advantage 
of the algorithm is that the output of any neuron in a so-constructed network is connected to at most two 
other neurons. This feature makes the algorithm very attractive for very large-scale integration (VLSI) 
implementations. Its disadvantage is that it works only with binary vectors. 

Moody and Antsaklis (1995) proposed a dependence ident8cation (DI) algorithm which is similar to 
a method of Marchand et a1 (1990) for constructing a Boolean network. The difference is that it works 
with continuous training data and uses the concept of linear dependence for grouping similar patterns. 
The DI algorithm first transforms the training problem into a set of quadratic optimization problems and 
then constructs the appropriate network. In other words it grows from a small network to a large one. 
The network is constructed one layer at a time. At first, an attempt is made to train a two-layer network 
without hidden neurons. If successful, the training is complete. Otherwise, hidden layers are created by 
selecting subsets of the pattern space, until each pattern is classified correctly by at least one hidden layer 
neuron. Outputs of the hidden layer neurons are then used as inputs for the next layer, until the maximum 
number of layers has been generated or an error criterion has been met. The latter two are given as 
parameters to the network. Another parameter required by the network is used to determine whether the 
output of the network for an individual pattern is within specified error bounds. The DI algorithm can be 
used not only with sigmoidal activation functions, required for gradient-based techniques, but also with 
discontinuous switching functions. The advantage of the algorithm over standard BP is its training speed. 
A disadvantage is that it requires batch training which makes it unsuitable for on-line learning. 

The Hopfield (1982) model is usually used for associative memory applications. In the Hopfield model c1.3.4 

the neurons are fully intralayer connected, without self-connections. An unusual topology derived from the 
Hopfield network is an associative nemork used by Lansner and Ekeberg (1987) and Ekeberg and Lansner c1.3 
(1989). In this method, one layer of inpuuoutput nodes is connected to a set of symmetrically intralayer 
connected internal nodes. When two input patterns are very similar, the network makes mistakes, and 
the authors propose the creation of new nodes to avoid this by replacing two strongly dependent neurons 
by three more selective ones. Suppose both neurons A and B are active at the same time. They will be 
replaced by three neurons, performing each of the functions A AND B, (NOT A) AND B, and A AND 
(NOT B). The memorization capacity is thus improved, but the main drawback of the method remains: 
these networks are aimed at memorizing instead of learning. 

In order to teach a trained neural network new samples, Diederich (1988) proposes a system which 
can extend its topology. The network is composed of two kinds of neuron: committed neurons and 
free neurons. The committed neurons are partially connected to each other and already represent some 
information. They are also partially connected to the free neurons. The ontogenic method recruits free 
neurons, that is, it strengthens the connections between a cluster of committed neurons and some free 
neurons. After recruitment, these free neurons become committed neurons. The network consists of four 
parts. 

The concept space. Each concept (feature) is represented by a three-unit subnetwork. These units are 
connected to each other by bidirectional links. The affirmative unit is on only when the corresponding 
concept is present in the input pattern, and the negative unit is on only when it is not present. When 
the three units are off, the concept is neither affirmative nor negative. Each affirmative neuron is 
connected to the affirmative neuron of a substructure representing a more general concept and each 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computation release 9711 c1.7:5 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

negative neuron is connected to a negative neuron representing a more specific concept. Neurons of 
the concept space are also connected to neurons in the attribute space (see below), so that concepts 
are associated with their properties. 

0 The attribute space. Each attribute is materialized by a subnetwork in which each neuron represents 
a possible attribute value. Exactly one attribute value can be on in an attribute subnetwork. 

0 The instance space, which is single neurons connected to the concept neurons. This corresponds to 
the input layer. 

0 The free space, which has the same topology as the concept space. This structure is partially connected 
to the attribute space. 

In order to avoid a combinatorial explosion of the number of connections, only about 50% of all the 
possible connections between the concept space and the free space can be initially created. The learning 
process is based on the winner-take-all method. When a new training example, which is a set of (attribute, 
value) pairs, is presented to the network, a high activity in the attribute space will lead to an activation of 
some neurons in the free space. The neuron with the strongest links will be the only one whose weights are 
reinforced and will become a committed neuron. It is interesting to note that the total number of neurons 
does not increase, but the total number of neurons playing an active role in the network does increase. 
This kind of network is especially designed to build semantic networks and comparing it to more classical 
neural networks is therefore not very meaningful. 

Hanson (1990) starts from the principle that the division of an input space into linearly separable 
regions is a problem whose complexity dramatically increases with the number of elements in the input 
space. He also outlines the stochastic (nondeterministic) nature of neurons’ output signals. Each weight 
can therefore be represented as a random variable, with mean zero and standard deviation one. Hidden 
neurons with a great standard deviation are considered having a low ability in reducing errors and will be 
split into two neurons, each copying half the information of their parent. 

B3.5.2.9 Pruning methods. Destructive, or pruning, methods generally start with a large network and then eliminate 
connections andor neurons. A popular method used here is known as weight decay, where all the weights 
in the network are slightly decreased during each training step. The weights which are rarely changed 
during training will diminish to almost zero in magnitude and become candidates to be eliminated. If all 
the weights associated with a given neuron go down to zero, then this particular neuron also becomes 
a candidate for elimination. Pruning methods still require the user to guess an initial topology and may 
thus be seen as less ‘ontogenic’ than growing methods. A good paper on pruning methods is that of Reed 
(1993). 

Thodberg (1990) proposes to start with a large network trained with standard backpropagation, which 
has many decision hyperplanes, which usually means a poor generalization capability. Next, a connection 
is removed, and the network is retrained. If the error is not significantly increased, the pruning is made 
permanent; otherwise the connection is restored. All the connections are examined in this manner. For a 
network with a large number of hidden units, the pruning scheme is very slow. During the initial training 
process the author proposes to use a method similar to that of Chauvin (1989) in order to minimize the 
number of weights after the initial training. 

LeCun et a1 (1990) (optimal brain damage, OBD) first train a network with a backpropagation-like 
learning rule. Next, some neurons are removed according to a saliency order (that is, the neurons whose 
deletion will have the least effect on the training error will be removed first). To calculate this saliency, the 
effect of a small perturbation of the value of a weight on the error function can be analytically computed 
using an approximation of the second derivative of the error function. The disadvantage is that it needs 
to relearn the entire training set after the removal of each neuron. 

In a work by Hassibi (1993), in the network called optimal brain surgeon (OBS), he has shown that 
OBD sometimes removes the wrong weights (that is, weights with a small magnitude that play an important 
role in keeping the error low). Without these important weights the neural network is sometimes unable to 
find any good solution, and no further training of the network can overcome this mistake. In comparison 
to OBD, OBS removes more weights, and never the wrong ones. It is based on the computation of all 
second-order derivatives of the error function (where OBD computes only approximations) and generalizes 
better than OBD and other magnitude-based methods. An advantage is that no relearning of the training 
patterns is needed because, in addition to deleting the weights, it calculates and changes the other weights 
affected by the pruning. Drawbacks are the large cost of calculation of all second derivatives and the 
nonlocality of the method. 

c1.7:6 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

Lozowski et a1 (1996) followed up the work of Ishikawa (1994), who proposed to use the sum of the 
absolute values of the weights as the penalty term, scaled by a constant referred to as the forgetting rate. 
The new method provides a theoretical framework for investigating the problem of selecting the forgetting 
rate by considering learning as a dynamic system and solutions to the learning process as fixed points in 
the system. The authors observed that the forgetting rate controls the maximum eigenvalue of these fixed 
points and thus their stability properties. As the forgetting rate is increased, starting from a small value, 
fixed points corresponding to poorly pruned networks are removed from the learning dynamics. Their 
method may provide the basis for an improved means of selecting the forgetting rate. 

Growing-pruning methods. These methods are a combination of growing and pruning algorithms. 
An attempt to escape from local minima is described by Hirose et a1 (1991). New neurons are added 

one by one to the hidden layer when the backpropagation error step does not decrease by more than 1% 
after 100 iterations. The weights of the new neurons are initialized to zero or random values. Once the 
network converges, the most recently added neurons are removed one by one and the last network that 
converged is kept as the final network. Some variations in the removal order have been tried and it does 
not seem to be a good heuristic to remove the first-added neurons first. 

An ontogenic method particularly designed for shape recognition has been developed by Honavar 
and Uhr (1988, 1989). The network contains a pyramid of hidden layers (each layer is smaller and has a 
more specialized function than the previous one) where adjacent neurons are grouped to form a so-called 
recognition cone. Each cone is trained to recognize features, where higher layers represent more complex 
features. The weights between transforms are updated according to a rule similar to the BP learning rule, 
but when some condition is reached (computed by a minimal complexity heuristic), the method can create 
new transforms or discard useless ones. 

Alpaydin (1990a, b) presents the grow and learn (GAL) method that allows incremental category 
learning. It is partially based on the work of Reilly et a1 (1982). The topology used is a three-layer 
network where only the size of the input layer is fixed. Each neuron in the output layer represents a 
category and a winner-take-all mechanism in the hidden layer allows exactly one neuron to fire when 
the appropriate pattern is presented to the network, and only the winner neuron is allowed to adjust its 
weights. During learning, new classes (output neurons) are added each time a training patern does not 
belong to any of the existing classes. The role of the hidden layer is to build domination regions for 
each class. Domination regions are separated by hyperplanes which equally divide the space between 
two hidden neurons. Since some classes may belong to more general classes, it is necessary to remove 
some of the hidden neurons in order to remove domination regions that are included in otiiers’. After 
learning, the action of such neurons is disabled and the whole training set is presented to test whether 
the classification has not changed. The disabled neuron is removed from the network if the response of 
the network is unchanged. The GAL method can be combined with the unsupervised grow and represent 
method, described in Alpaydin (1990b), to perform both classification and feature detection. 

In order to solve time-series prediction problems, Kadirkamanathan and Niranjan (1992a,, b) propose 
an ontogenic method based on radial basisfunctions. Each time a new training example is presented c1.6.2 
to the network, the method has the possibility of adding a new basis function. The criterion for adding 
a new unit or not is a comparison between the complexity of introducing a new basis function and the 
approximation error that would incur otherwise. The same principle has been extended to multiple outputs 
and successfully applied to speech patfern recognition. However, pruning schemes (or a modified grow ~ 1 . 7  

criterion) would improve the network behavior, since the authors show that some redundancy has been 
found in the network. 

The first descriptions of the group method of data handling (GMDH) can be found in the articles 
by Ivakhnenko (1968, 1971). This method is typically used to approximate a continuous function. Each 
neuron (except the input neurons) has exactly two inputs and one real-valued output. Each neuron of layer 
1 is connected to one or more neurons of layer 1 + 1. The final network is thus a partially interlayer- 
connected feedforward network. Each neuron computes a quadratic polynomial combination of its two 
inputs. The output signal of a neuron is the value of its polynomial. The growing process starts with an 
input layer only. The next layer is configured in such a way that each pair of outputs from the previous 
layer is associated with its own neuron. Each neuron has its own polynomial and will try to produce an 
output equal to the overall desired output, in contrast to BP-based methods where neurons are specialized to 
recognize a particular feature. The coefficients of the polynomials are adjusted while training patterns are 
presented. The association of these patterns with the desired output values gives a set of linear equations 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 9711 c1.7:7 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

whose solution is approximated in order to minimize the mean squared error. If the ratio of the smallest 
mean squared error versus the mean squared error of one neuron is greater than a given threshold, this 
neuron is eliminated from its layer. Layers are added one by one until the neuron of layer 1 with the 
smallest mean squared error has a greater mean squared error than the best neuron of layer 1 - 1. If there 
are still several neurons in this last layer, only the neuron which best approximates the desired output is 
kept and all useless neurons which do not belong to the same graph as the final output neuron are removed 
from the network, that is, neurons that are not, directly or indirectly, connected to the final output neuron. 
Criteria other than the mean squared error have been proposed in Farlow (1984) and Barron (1984). They 
construct networks which are less sensitive to noise and have a better generalization ability. Barron (1975) 
describes a method very similar to the GMDH method which is based on generalized McLaurin series. 
Tenorio and Lee (1989) propose a variation of the GMDH method which is combined with simulated 
annealing Kirkpatrick et a1 (1983). The GMDH method has been widely used in various domains such as 

~ 1 . 6 ,  ~1.8, ~ 6 . 3  target recognition, image analysis, signal processing, and economic forecasting, 
c1.4.6 The Cauchy machine is a stochastic neural network related to the Boltzmunn machine that uses fast 

simulated annealing instead of classical simulated annealing. Both the methods have the advantage of 
enabling a global search for the minimum of the error function. Their main drawback is the slow training 
process and, as with other multilayer neural networks, the lack of knowledge for choosing the number of 
hidden neurons, If higher-order connections are employed, a smaller number of training cycles can be 
expected and hidden neurons can be avoided. Hence, a high-order generalization of the Cauchy machine 
has been developed (Cuche and Fiesler 1996). However, the problem with fully interlayer-connected 
higher-order neural networks is that the number of possible connections increases exponentially with the 

~2.5.1.2 order (see Section B2.5.1.2). To overcome this problem, three ontogenic methods, a pruning, a growing, 
and a hybrid growing-pruning method have been developed to produce a sparsely connected network 
topology during the training process (Cuche and Fiesler 1996). 

C1.7.4 Tree-based methods 

In this subsection, both tree-based ontogenic methods and those based on virtual trees that result in a 
layered topology are described. 

In Deffuant (1990), the author describes his NEURAL (neural units recruitment algorithms) method 
and provides a convergence proof. The NEURAL method builds a tree structure. Initially, a pool of 
candidate neurons is randomly generated, and the best one (the neuron producing the lowest number of 
errors) is kept. The training set is repeatedly divided into two parts until the error on the training set 
is low enough. The parent neuron is tested on one of the subsets. The test is simply the execution of 
a specified number of training epochs and the computation of the corresponding error value. If it fails, 
two new neurons are recruited (again from a pool of candidates) and each one is trained with one of the 
subsets of patterns. Otherwise, only one new neuron is created. Generalization is achieved by looking 
for the neuron which is more likely to give the correct output. Two versions of the method have been 
implemented: one using the perceptron and one using the BP learning rule. Note that further learning is 
possible after training since new branches and leaves can be added to the tree when needed. 

The upstart algorithm, proposed in Frean (1990), starts from another point of view: instead of building 
layers from the input layer outward until convergence, new neurons are interpolated between the input 
layer and the output layer. A convergence proof is given which is based on the principle that child neurons 
will always make fewer errors than their parent, and the addition of a child always reduces the number 
of errors. When a given neuron makes a mistake (being ON or OFF) its answer can be corrected by a 
new neuron which would be active at the right time. These neurons are called daughter neurons, and 
the flow of information proceeds from daughter to parent. Two different kinds of neuron are used for 
the daughter neurons. These neurons correct the mistakes made by the output neurons. When a given 
neuron answers ‘ON’ when an ‘OFF’ is expected, a new neuron (called X) is connected. When this same 
neuron answers ‘OFF’ when ‘ON’ was expected, another neuron (called Y) is connected to its parent. The 
resulting network has a hierarchical tree structure and its root is the output unit. The author shows that 
the final neural network is equivalent to a single-hidden-layer network, and notes that the network size is 
smaller than the one produced by the tiling algorithm (Mezard and Nadal 1989). 

As an illustration, the details of topology determination in the neural tree algorithm are described 
here. 

c1.7:8 Handbook of Neurul Compururion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

While the method of Nadal (1989) method can be seen as a tiling algorithm without ancillary units, 
the method of neural trees (NT) proposed by Sirat and Nadal (1990) can be considered as a tiling algorithm 
without master units. 

Figure C1.7.1. Tiling and neural tree. ( a )  Tiling algorithm: successive dichotomies of entire input space 
until convergence. ( b )  Neural tree algorithm: successive dichotomies only of inhomogeneous subspaces. 

The idea behind the tiling algorithm is that, given a pattern space, a root node is trained, and a 
dichotomy is obtained that splits the pattern space into two subspaces. If the dichotomy successfully 
separates the space such that no classification errors occur, the pattern space is linearly separable, and the 
process stops. If, however, classification errors still exist, another node is added and trained. This process 
is repeated until all patterns are classified correctly. The drawback of the algorithm is that when considering 
the entire pattern space for each additional node, it is possible to achieve a good dichotomization in one of 
the subspaces, but disrupt correct classification in other subspaces. The advantage of the NT algorithm is 
that after each dichotomy the two resulting subspaces are treated independently. The difference between 
the two algorithms is demonstrated in figure C1.7.1. The NT algorithm is very similar to the one described 
before. A dichotomy is found to separate the pattern space. Subsequently, each of the subspaces is tested for 
homogeneity. If one subspace is inhomogeneous (contains classification errors), a node is added and trained 
to dichotomize that subspace only. The same operation is performed on the other subspace. In the same 
manner, the newly created subspaces are tested for homogeneity, and nodes are added accordingly. This 
recursive process continues until all patterns are correctly classified. Figure C1.7.2 shows several steps of 
this process. The upper part depicts the initial pattern space, the next two are two possible dichotomization 
steps, and the bottom part shows the completed process where all subspaces are homogeneous. It is thus 
possible to visualize the NT forming, as nodes are added onto other nodes. Actually, the tree that is being 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Compurution release 9711 c1.7:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

+ +  

+ +  

Figure C1.7.2. Successive dichotomies of pattern space. 

discussed is only a virtual one. As is shown next, the physical formation of the nodes is quite different. To 
understand the NT topology, one needs to depart from the traditional way of thinking about feedforward 
networks. Physically, the NT consists of only a single layer of neurons. Every node receives the networks 
inputs, that is, every node gets the same information. The outputs of the nodes are considered the network 
outputs and there are no feedback paths. This is not a tree structure; in fact considering this structure 
alone it is impossible to determine which node represents the output of which subspace of inputs. When 
constructing the tree, a virtual tree, or a map, of the topology is placed in memory. This map explicitly 
shows which nodes are the children or parents of other nodes. Hence, during testing this map must be 
referenced in order to determine which node contains the true classification. This is done by testing the 
root nodes’ output. If the output is +1, the right child, the node number which is specified by the virtual 
tree map, is subsequently tested. It h e  output is - 1, the left child is tested. This process is thcn repeated 
where the previously selected child node becomes the root node for the next cycle. The tree traversal is 
repeated until a leaf node is reached. This leaf will then hold the correct value for the classification. For 
the network implementation it is important to distinguish between the actual topology and the virtual tree. 
A typical NT is shown in figure C1.7.3. The NT algorithm is a two-phase process. The first phase is the 
training phase, where the network is designed and the map is built: 

(i) 
(ii) dichotomize the training set 

present training set to a root node 

c 1.7 : 10 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

X Y 

Figure C1.7.3. Typical neural tree architecture. This departs from traditional feedforward networks and 
consists of (i) a virtual tree architecture (top) and (ii) a physical architecture (bottom). 

a try to minimize epoch error 
b separate into two categories (+ 1 and - 1) 

(iii) test if either side is homogeneous 
a if yes, label it as a leaf 
b if no, repeat the process with this subset only. 

The second phase is the classification of a test vector: 
(i) apply test vector 
(ii) determine output of the node 
(iii) test output 

a if output is -1, test left child node 
b if output is +1, test right child node 

(iv) repeat until a leaf is reached. 
The NT training algorithm is able to recognize several classes and includes an epoch weight adjustment, 
not the usual adjustment after each pattern presentation. An emphasis is placed on the generation of an 
evenly balanced tree, which is crucial for reducing the worst-case classification time. 

The NT training algorithm can be broken down into two subalgorithms: class reduction and tree- 
optimized training. Combining features of both enables the algorithm to construct well-balanced trees. 
The class reduction algorithm essentially converts a multiclass subspace into a two-class subspace. This 
is beneficial since a neuron, which represents a decision hyperplane, can only determine whether a pattern 
evaluates to a +1 or a -1. Furthermore, it makes this conversion in a way that greatly enhances the 
possibility of splitting the subspace in half, thus helping in generating a well-balanced tree. The algorithm 
is described by the following five steps: 

(i) determine the number of classes 
(ii) divide the number of classes in half 
(iii) randomly choose half of the classes present and 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computufion release 9711 c1.7:11 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

a assign all patterns in the subspace of those classes a temporary classification of +1 
b assign all patterns belonging to the other half a temporary classification of -1 

(iv) if there is an odd number of classes, randomly decide whether the odd-numbered class will be 
represented by a +1, or a -1 

(v) run the tree-optimized training algorithm. 
By choosing half of the classes as belonging to +1 and the other belonging to -1, the probability of 
dichotomizing the space into two equal halves is greatly enhanced. In the tree-optimized training algorithm 
all patterns are presented before any weight adjustments are made. To make this possible, and to emphasize 
a balanced tree, several pieces of information are collected during each epoch presentation. These include 
the number of incorrectly classified + 1 patterns and the number of incorrectly classified - 1 patterns, and 
the exemplars of all incorrectly classified + 1 patterns and - 1 patterns are found. If, after all patterns have 
been presented, there are more +1 errors than -1 errors, the positive error exemplar pattern is used in the 
traditional updating equation. This has the effect of moving along the gradient in the positive direction. If 
the - 1 errors were greater, the negative error exemplar is used in the updating equation thus moving in the 
negative gradient direction. This process continues until either of the two following situations occurs. The 
first is the event that the total error, +1 errors plus -1 errors, reaches a local minimum. The other is the 
event that an even split has been reached, +1 errors = -1 errors. This criterion helps in the construction 
of a well-balanced tree. The algorithm consists of the following steps: 
(i) choose learning constant, c 
(ii) generate random weights 
(iii) repeat while olderr 2 newerr 
(iv) clear poserr, negerr, and exemplar patterns 
(v) for each pattern vector in subspace do 
(vi) sum = sum + (weight(j) * pattern vector(i)(j)) 
(vii) s =sgn(sum) 
(viii) if s * output vector = -1 then increase negerr and accumulate negexemplar else increase poserr 

and accumulate posexemplar 
(ix) end for 
(x) newerr = negerr + poserr 
(xi) if negerr > poserr then s = - 1 w ( j )  = w ( j )  + c * s*(negexemplar/negerr) 
(xii) if poserr > negerr then s = +1 w ( j )  = w ( j )  + c * s*(posexernplar/poserr) 
(xiii) if poserr = negerr then quit 
(xiv) end repeat while 
The NT algorithm guarantees a satisfactory solution in one iteration, thus saving a lot of time needed 
for repeated training, and finally, since the multiclass tree-optimized training algorithm, used in the NT 
algorithm, is much quicker than the error BP, the required training time is greatly reduced. These benefits, 
coupled with the ease of implementing the algorithm (all that is needed to design a network is training data 
and a learning rate constant) make the NT algorithm an attractive ontogenic network. The only drawback 
of the algorithm is the fact that some postprocessing must be done before a test vector can be classified. 

The ideas of the ID3 machine learning algorithm (Quinlan 1987) and Nadal's algorithms (Nadal 
~ 1 . 4 ,  ~ 2 . 1 2  1989, Nadal 1990) inspired Cios and Liu (1992) to design an ontogenic algorithm called continuous ID3 

(CID3). The main differences between the NT algorithm and the CID3 algorithm are as follows. The 
CID3 algorithm starts with random weights and uses the entropy function to guide the placement of a 
new hyperplane. By doing this, the algorithm finds a suboptimal number of hidden layer neurons where 
the entropy is reduced to zero for the first time. Shannon's entropy function is used as a measure of 
separation of training examples. This is not to say that the generated topology is optimal. According to 
the CID3 algorithm new neurons (hyperplanes) are added in such a way that each new neuron decreases 
the entropy function. The entropy is calculated by counting the numbers of patterns belonging to each 
category on each side (positive-negative) of all hyperplanes. When it has reached zero it means that 
all training examples are correctly recognized. In addition, the concept of Cauchy training (changing a 
weight by a random number) was incorporated into the algorithm to help in escaping from local minima. 
The algorithm will always reach a conclusion with a single output, since each additional layer will have 
fewer neurons than the one before, thus giving a correct response for all patterns. For details the reader 
is referred to Cios and Liu (1992) and Sections D1.4 and G2.12 of this handbook. 

C1.7:12 Hundbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

In what appears to be the first application of fuzzy logic to ontogenic neural networks, Cios and 
Sztandera (1992, 1996) greatly simplified the architecture of the original CID3 algorithm by the use of 
fuzzy sets. The key feature of the ontogenic fuzzy CID3 algorithm, or F-CID3 in short, is its definition 
of fuzzy sets for each neuron of the hidden layer at which the entropy is reduced to zero for the first 
time. The fuzzy sets are defined based on the numbers of examples from both categories positioned on the 
positive and negative sides of the hyperplanes defined by the hidden layer, much in the same way as the 
Shannon entropy is calculated in the CID3 algorithm. Then, these fuzzy sets are ranked in order to decide 
a category the pattern belongs to. For many problems, such as distinguishing two spirals, application of the 
F-CID3 algorithm results in much smaller, in terms of fewer layers, topologies than the CID3 algorithm, 
and thus with a much smaller number of connections. For more details of the F-CID3 algorithm the reader 
is referred to papers by Cios and Sztandera (1992, 1996) as well as to Section D1.4 of this handbook. 

Golea and Marchand (1990), following up RujAn and Marchand (1989), a tree architecture is proposed: 
each hidden neuron generates zero, one, or two neurons and is connected to them such that neurons are 
organized in a hierarchical way. Each child node tries to classify one of the two regions its parent has to 
classify. Typically a child node needs to classify half of its parent’s patterns. Thanks to this, convergence 
is always guaranteed. The principle has been improved by Marchand et a1 (1990). Some conditions for 
choosing the hyperplanes have been relaxed, allowing more freedom. The tree structure has been replaced 
by a more classical three-layer network. Each neuron in the hidden layer is built such that they are 
correctly classifying a subset of the input patterns. New hidden neurons are sequentially added to classify 
the remaining patterns. 

C1.7.5 Summary 

We now summarize the characteristics of the different methods discussed in sections C1.7.3 and C1.7.4 in 
the form of tables which list the most crucial information about each method. It highlights those aspects 
that bring about the advantages of ontogenic neural networks, which are 
0 no trial-and-error process is needed to find a suitable network topology 
0 the design time can be substantially reduced 
0 the memory required to implement the network is smaller 
0 the total training time can be reduced 
0 the recall time can be shorter if an optimal topology is generated 
0 they may generalize better 
0 they may avoid local minima 
0 flexible topology can enable the absorption of new data through retraining. 

The following notations and abbreviations are used in the tables. The ‘model’ column indicates 
the neural network model and the learning rule used, if known. ‘FF’ stands for feedforward, ‘BP’ for 
backpropagation, ‘RBF’ for radial basis functions, ‘SDR’ for stochastic delta rule, ‘HONN’ for higher- 
order neural networks, and ‘GMDH’ for group method of data handling. The ‘descriptor’ column gives 
the name or the most important characteristic of a method. ‘DNC’ stands for dynamic node creation, 
‘NEURAL’ for neural units recruitment algorithms, ‘OBD’ for optimal brain damage, ‘OBS’ for optimal 
brain surgeon, ‘GAL’ for grow and learn, ‘CID3’ for Continuous ID3, ‘F-CID3’ for fuzzy CID3, ‘DI’ for 
dependence identification, and ‘OCM’ for orthogonal complement method. The ‘L’ column indicates the 
number of layers (including the input and output layer); 1 + x means that the number of layers is initially 
1 and can grow. The column marked ‘P’ indicates that the method increases the network size by adding 
layers (L) ,  neurons ( N ) ,  or weights ( W ) ,  where adding a layer implies addition of neurons, and adding a 
neuron implies addition of weights; ‘ N ’  is also used in the case of an initial two-layer network growing to 
a three-layer network, although a new layer is created with the first added neuron. The column marked ‘\’ 
indicates that the method reduces the network size, and whether layers ( L ) ,  neurons ( N ) ,  or weights ( W )  
are removed. The column ‘LOC’ indicates whether the method is local (LOC) or nonlocal. ‘IC’ indicates the 
initial conditions of the method, which are encoded using up to three characters: the first digit indicates 
the number of layers (0 for an empty topology) in the initial topology, the first letter indicates the initial 
connectivity (‘F’ for fully interlayer connected, ‘T’ for a tree structure, ‘0’ for other topologies), and the 
second letter indicates the values of the initial weights (‘R’ when they are initialized with (small) random 
values, ‘T’ if the ontogenic method starts with an already trained network). Column ‘Prf‘ (proof) indicates 
whether a convergence proof exists (‘M’, mathematical proof, ‘I’, informal proof). In general, the symbol 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computorion release 9711 c1.7:13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

'-' indicates that the condition is not satisfied, while '?' indicates that the information was not available. 

Table C1.7.1. Perceptron-based growing methods. 

Reference Model Descriptor L 7 Loc IC Prf 

Ash (1989) 
Fahlman and Lebiere (1990) 

Fahlman (1991) 

MCzard and Nadal (1989) 
Nadal (1989) 
Rujhn and Marchand (1989) 

Zollner et a1 (1992) 
Sirat and Nadal (1990) 

Hanson (1990) 

Defiant (1990) 
Golea and Marchand (1990) 
Frean (1990) 

M L P  + BPb 
MLP 

MLP 

MLP 
MLP 
MLP 

MLP 
MLP 
MLP + BP 

MLP + BP 
MLP + BP 
MLP + BP 

S D R ~  

DNCC 
cascade 
correlation 
recurrent cas- 
cade correlation 
tiling 

regular 
partitioning 

- 

- 
- 
- 
meiosis networks 

NEURAL' 
decision trees 
Upstart algorithm 

3 N - -  
2+x L X 

2+x L - - 

2+x L - ? 
2+x L - ? 
3 N - -  

3 N - -  
3 N -  X 
3 N -  X 
3 N -  X 

tree N - X 
tree N - X 
tree N - ? 
G 3  

3FR - 
2FR - 

20R - 

2FR M 
xOR M 
2FR M 

2FR I 
1 I 
2FR - 
2FR - 
0 M 
2 M 
20R I 

a Multilayer perceptron. 
Backpropagation. 
Dynamic node creation. 
Stochastic delta rule. 

e Neural units recruitment algorithms. 

Table C1.7.2. Perceptron-based pruning methods. 

Reference Model Descriptor L f \ Loc IC Prf 

Chauvin (1989) MLP + BP energy functions 3 - w -  3FR - 
Ji et a1 (1990) M L P + B P  - 3 -  w -  3FR - 
Thodberg ( 1990) MLP + BP Ockham's razor 3 - w -  3Fr - 

Hanson and Pratt (1989) MLP + BP penalty function 3 - w -  3FR - 
LeCun et a1 (1990) MLP OBDa 3 -  w -  3FR - 
Hassibi (1993) MLP OBSb 3 -  w -  3FR - 

Rumelhart et a1 (1991) MLP + BP weight elimination 3 - w -  3FR - 

a Optimal brain damage. 
Optimal brain surgeon. 

Table C1.7.3. Perceptron-based growing and pruning methods. 

Reference Model Descriptor L 7 \ LOC IC Prf 
~ 

Hagiwara (1990) M L P + B P  - 3 N W -  3FR - 
Hirose et a1 (1991) M L P + B P  - 3 " -  ? ? 

Honavar and Uhr (1989) MLP + BP W 
Honavar and Uhr (1988) cone structure units recruitment xu N b  N X x 0 - 

a The method can handle any number of layers. 
Transforms = clusters of neurons. 

c 1 .I : 14 Hundbook of Neurul Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

Table C1.7.4. Hopfield-model-based growing method. 

Reference Model Descriptor L f \ Loc IC Prf 
Lansner and Ekeberg (1987) Hopfield-like - 2 N -  X 20R - 

Table C1.7.5. Radial-basis-function-based ontogenic methods. 

Reference Model Descriptor L f \ Loc IC Prf 

Kadirkamanathan and Niranjan (1 992a) RBFa - 3 N - -  2FR - 
Kadirkamanathan and Niranjan (1 992b) 
Bonnlander and Mozer (1993) RBF latticed networks 2 X - - 20R - 

a Radial basis functions. 

Table C1.7.6. Other ontogenic methods. 

Reference Model Descriptor L f \ Loc IC Prf 
Reilly et a1 (1982) - category learning 3 N -  X O I  
Alpaydin (1990a - GALa 3 N N -  1 0  I 
Diederich (1988) - neuron recruitment 4 N - -  - - 

Barron (1 975) GMDH McLaurin series 1 f x L N X  1 - 
Ivakhnenko (1968) GMDH - 1 f x L N X  1 U 

Tenorio and Lee (1989) GMDH simulated annealing l f x  L N X 1 - 

Fujita (1992) MLP optimization of an 3fx  L ? ? ? ? 

Baum and Lang (1991) MLP query learning 3 x - -  2FR - 
Ring (1993) HONN’ 2fx  L - - 2FR - 

Fujita (1990) ? OCMb ? ? ? ? 2FR ? 

objective function 

a Grow and learn. 
Orthogonal complement method. 
High-order neural networks. 

CI. 7.5.1 Methods based on layered networks 

Growing methods. An important reason for using ontogenic methods is to automatically determine the 
(optimal) topology of a neural network. Growing methods offer such a possibility since they do not require 
the use to select an initial topology. The question of how to find the optimal topology, however, is still 
open because the optimal topology is only known for very small artificial problems (Fiesler 1993), such 
as the XOR problem, where the minimal topology is the optimal topology since the problem is completely 
defined and generalization does not apply. 

Another reason for using growing methods is to avoid the training becoming stuck in local minima, 
since the addition of new units changes the dimensionality of the problem. The goal here is to establish 
that the error surface does not have the same local minima in the higher-dimensional space as in the 
iower-dimensional space. Growing methods usually start with a small size and then grow the topology. 
By doing so they require much smaller computational effort than pruning methods, even if the final network 
size is the same, since they deal with smaller networks most of the time. In addition, a user does not 
have to guess a ‘large enough’ initial network topology. The disadvantage of growing methods can be, in 
some cases, their relatively large final topology. The latter can be alleviated by either eliminating some 
connections and neurons, for example by using fuzzy logic. It becomes then a growing-pruning method. 
It is the opinion of the authors that growing or growing-pruning methods are most promising and can be 
considered as truly ontogenic ones. Table C1.7.1 shows an overview of growing methods for feedforward 
networks. 

Pruning methods. Since small networks have a better generalization capability, several researchers have 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 9711 c1.7:15 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

developed methods for pruning networks. In the simplest scheme the weights are removed one by one 
after training until the performance of the network is satisfactory. Some other methods are based on the 
reduction of the weights’ magnitude during learning (a neuron connected to other neurons by only small 
weights is often considered not important and might be removed) by experimenting with the addition of 
penalty terms to  the error function. These penalty terms often suppose a global knowledge of the network’s 
complexity. Since the magnitude-based methods d o  not seem to be optimal and sometimes encourage the 
removal of important neurons, more complex methods based on second-derivative computation have been 
developed. Table C1.7.2 summarizes the pruning methods. 

Growing-pruning methods. Most methods in this category are a combination of existing growing and 
pruning methods. Usually, they first increase the size of the network when a local minimum has been 
encountered or when the network seems to be too small to learn correctly. Later, redundant or useless 
neurons or connections are removed. Table C1.7.3 summarizes the growing and pruning methods. 

Other methods are summarized in tables C1.7.4-6. 

References 

Alpaydin E 1990a Grow-and learn: an incremental method for category learning Proc. In. Neural Network ConJ 

- 199Ob Neural models of incremental supervised and unsupervised learning PhD Thesis Ecole Polytechnique 

Ash T 1989 Dynamic node creation in backpropagation networks Connection Sci. 1 365-75 
Barron A R 1984 Predicted squared error: a criterion for automatic model selection Self-organizing Methods in 

Barron R L 1975 Learning networks improve computer-aided prediction and control Comput. Design 65-70 
Baum E B and Lang K J 1991 Constructing hidden units using examples and queries Advances in Neural Information 

Processing Systems (NIPS) 3 (IEEE; Denver, CO 1990 ed R P Lippmann, J E Moody and D S Touretzky (San 
Mateo, CA: Morgam Kaufmann) 

Bonnlander B and Mozer M C 1993 Latticed RBF networks: an alternative to constructive methods Advances in 
Neural Information Processing Systems (NIPS)-Natural and Synthetic 5 (1992) 

Cameron S H 1964 The generation of minimal threshold nets by an integer program IEEE Trans. Electron. Comput. 

Chauvin Y 1989 A back-propagation algorithm with optimal use of hidden units Advances in Neural Information 
Processing Systems (NIPS) I (IEEE; Denver, CO 1988) ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) 

Cuche S and Fiesler E 1996 Generalized Cauchy machines Neumcomputing Submitted to special issue on recurrent 
networks 

Deffuant G 1990 Neural units recruitment algorithm for generation of decision trees Proc. Int. Joint Cons on Neural 
Networks (IJCNN) (IEEE; San Diego, CA 1990 vol I (Ann Arbor, MI: Edward) pp 6 3 7 4 2  

Diederich J 1988 Connectionist recruitment learning Proc. 8th Eur. Cons on Artificial Intelligence (Munich, 1988) pp 

Ekeberg 0 and Lansner A 1989 Automatic generation of internal representations in a probabilistic artificial neural 
network Neural Networks from Models to Application; Proc. nEuro-88, 1st Eur. Con& on Neural Networks (ESPCI; 
Paris 1988) ed L Personnaz and G Dryfus (Paris: IDSET) pp 178-86 

Fahlman S E 1988 Faster-learning variations on back-propagation: an empirical study Proc. 1988 Connectionist Models 
Summer School (San Mateo, CA: Morgan Kaufmann) 

- 1991 The recurrent cascade-correlation architecture Advances in Neural Information Processing Systems (NIPS)- 
Natural and Synthetic 3 (Denver, CO, 1990) ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA: 
Morgan Kaufmann) 

Fahlman S E and Lebiere C 1990 The cascade-correlation learning architecture Advances in Neural Information 
Processing Systems (NIPS) (IEEE; Denver, CO, 1989) vol 2, ed D S Touretzky (San Mateo, CA: Morgan 
Kaufmann) pp 524-32 

(INNC) 90 (INNS-IEEE) (Pans, 1990) vol 2 (dordrecht: Kluwer) pp 761-4 

FadBrale, Lausanne 

Modeling: GMDH Type Algorithms ed S J Farlow (New York: Dekker) 

13 299-302 

351-6 

Farlow S J (ed) 1984 Self-organizing Methods in Modeling: GMDH Type Algorithms (New York: Dekker) 
Minimal and high order neural network topologies Proc. 5th Workshop on Neural Networks; an Int. Con5 on 

Computational Intelligence: Neural Networks, Fuuy Systems, Evolutionary Programming and Virtual Reality 
(San Francisco, CA, 1993). Proc. SPIE 173-8 

Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networks Neural 
Comput. 2 198-209 

Fujita 0 1990 A method for designing the internal representations of neural networks Proc. Int. Joint Con5 on Neural 
Networks (IJCNN) (IEEE; San Diego, CA, 1990) vol 111 (Ann Arbor, MI: Edward) pp 149-54 

- 1992 Optimization of the hidden unit function in feedforward neural networks Neural Networks 5 755-64 

c 1.7: 16 Hundbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised ontogenic networks 

Gallant S I 1986a Three constructive algorithms for network learning Proc. 8th Ann. Con$ Cognitive Sci. Soc. (Amherst, 

- 1986b Optimal linear discriminants Proc. 8th Int. Con5 on Pattem Recognition 
Golea M and Marchand M 1990 A groeth algorithm for neural network decision trees Europhys. Lett. 12 205-10 
Hagiwara M 1990 Novel back propagation algorithm for reduction of hidden units and acceleration of convergence 

using artificial selection Proc. Int. Joint Con$ on Neural Networks (IJCNN) (IEEE; San Diego, CA, 1990) vol 1 
(Ann Arbor, MI: Edward) pp 625-30 

Hanson S J 1990 Meiosis networks Advances in Neural Information Processing Systems (NIPS) (IEEE; Denver, CO, 
1989) vol 2, ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 5 3 3 4 1  

Hanson S J and Pratt L Y 1989 Comparing biases for minimal network construction with back-propagation Advances 
in Neural Information Processing Systems 1 (IEEE; Denver, CO, 1988) ed D S Touretzky (San Mateo, CA: 
Morgan Kaufmann) pp 177-85 

Hirose Y, Yamashita K and Hijaya S 1991 Back-propagation algorithm which varies the number of hidden units 
Neural Networks 4 61-6 

Honavar V and Uhr L 1988 A network of neuron-like units that leam to perceive by generation as well as reweighting 
of its links Proc. 1988 Connectionist Models Summer School (1988) ed D Touretzky, G Hinton and T Sejnowski 
(San Mateo, CA: Morgan Kaufmann) pp 472-84 

- 1989 Generative leaming structures and processe for generalized connectionist networks Connection Sci. 1 
139-59 

Hopcroft J E and Mattson R L 1965 Synthesis of minimal threshold logic networks IEEE Trans. Electron. Comput. 
14 552-60 

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Int. 

Ivakhnenko A G 1968 The group method of data handling-a rival of stochastic approximation Sov. Automat. Control 

- 1971 Polynomial theory of complex systems IEEE Trans. Ststems Man Cybemet. 1 364-78 
Ji Chuanyi, Snapp R R and Psaltis D 1990 Generalizing smoothness constraints from discrete samples Neural Comput. 

Kadirkamanathan V and Niranjan M 1992a Application of an architecturally dynamic network for speech pattern 

- 1992b A function estimation approach to sequential learning with neural networks Technical Report CUED/F- 

Kirkpatrick S ,  Gelatt C D Jr and Vecchi M P 1983 Optimization by simulated annealing Science 220 671-80 
Klotz J and Fiesler E 1996 Ontogenic neural networks Expert Syst. in preparation 
Lansner A and Ekeberg 0 1987 An associative network solving the ‘4-bitADDER problem’ Proc. IEEE 1st Int. ConJon 

Neural Networks (ICNN) (IEEE; San Diego, CA, 19870 vol11, ed M Caudill and C Butler (San Diego, CA: SOS) 
Le Cun Y, Denker J S and Solla S A 1990 Optimal brain damage Advances in Neural Information Processing Systems 

(NIPS) 2 (IEEE, Denver, CO, 1989) ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 598-605 
Marchand M, Golea M and Rujgn P 1990 A convergence theorem for sequential learning in two-layer perceptrons 

Europhys. Lett. 11 487-92 
MBzard M and Nadal J-P 1989 Learning in feedforward layered networks: the tiling algorithm J. Phys. A: Math. Gen. 

Mjolsness E and Sharp D H 1986 A preliminary analysis of recursively generated networks Neural Networks for 

Moody J 0 and Antsaklis P J 1995 The dependence identification neural network construction algorithm IEEE Trans. 

Nadal J-P 1989 Study of a growth algorithm for a feedforward neural network Int. J .  Neural Syst. 1 55-9 
Reed R 1993 Pruning algorithms-a survey IEEE Trans. Neural Networks 4 740-7 
Reilly D L, Cooper L N and Elbaum C 1982 A neural model for category leaming Eiol. Cybemet. 45 3 5 4 1  
Ring M 1993 Sequence leaming with incremental high-order neural networks CSE Technical Report AI 93-193 

Rujiin P and Marchand M 1989 Learning by minimizing resources in neural networks Complex Syst. 3 229-41 
Rumelhart D E, Weigend A S and Huberman B A 1991 Generalization by weight-elimination with application to 

forecasting Advances in Neural Information Processing Systems (NIPS)-Natural and Synthetic 3 (Denver, CO, 
1990) ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 875-82 

Sirat J A and Nadal J-P 1990 Neural trees: a new tool for classification Network; Comput. Neural Syst. 1 423-38 
Tenorio M F and Lee Wei-Tsih 1989 Self organizing neural networks for the identification problem Advances in 

Neural Information Processing Systems 1 (IEEE; Dencer, CO, 1988) ed D S Touretzky (San Mateo, CA: Morgan 
Kaufmann) pp 57-64 

1986 (Hillsdale, NJ: Erlbaum) pp 652-60 

Acad. Sci. USA 79 2554 

13 (3) 43-55 

2 188-97 

classification Proc. Inst. Acoust. 14 

INFENGRR. I1 I Cambridge University Engineering Department 

22 2191-203 

Computing (Snowbird, UT, 1986) (AIP Con$ Proc. 151) ed J S Denker, pp 309-14 

Neural Networks 7 

Department of Computer Sciences, University of Texas at Austin 

Thodberg H H 1990 Improving generalization of neural networks through pruning Int. J. Neural Syst. 1 317-26 

@ 1957 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9711 c 1.7: 17 

Copyright © 1997 IOP Publishing Ltd



Suwrvised Models 

Zollner R,  Schmitz H J, WUnch F and Krey U 1992 Fast generating algorithm for a general three-layer perceptron 
Neural Networks 5 711-7 

c 1.7:18 Hundbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

C1.8 Adaptive logic networks 

William W Armstrong and Monroe M Thomas 

Abstract 

An adaptive logic network (ALN) is a multilayer perceptron that accepts vectors of real 
(or floating point) values as inputs and produces a logic 0 or 1 as output. The ALN 
has a number of linear threshold units (perceptrons) acting on the network inputs, and 
their (Boolean) outputs feed into a tree of logic gates of types AND and OR. An ALN 
represents a real-valued function of real variables by giving a logic 1 response to points 
on and under the graph of the function, and a logic 0 otherwise. It cannot compute a 
real-valued function directly, but it can provide information about how to perform that 
computation in a separate decision-tree-based program. If a function is invertible, then the 
same ALN can be used to derive a second decision tree to compute an inverse. Another 
way to look at function synthesis is that linear functions are combined by a tree expression 
of MAXIMUM and MINIMUM operations. In this way, ALNs can approximate any 
continuous function defined on a compact set to any degree of precision. The logic tree 
structure can control qualitative properties of learned functions, for example convexity. 
Constraints can be imposed on monotonicities and partial derivatives. ALNs can be used 
for prediction, data analysis, pattern recognition and control applications. They may be 
particularly useful for extremely large systems, where lazy evaluation allows large parts 
of a computation to be omitted. A second, earlier type of ALN is also discussed where 
the inputs are fixed thresholds on variables and the nodes adapt by changing their logical 
functions. 

C1.8.1 Introduction 

For the purposes of this section, adaptive logic networks (ALNs) are defined as feedforward neural networks 
formed from linear threshold units (LTUs), also called perceptrons, which send their Boolean outputs to C I . I . I  

a tree of units that realize logic gates AND and OR. A four-layer ALN is shown in figure C1.8.1. The 
LTUs can be attached at any level of the logic tree. They produce a logic 1 whenever a given inequality 
is satisfied. 

Training of an ALN can involve changing the weights in the LTUs, the functions at the nodes of 
the logic tree and/or the structure of the tree itself. Different training algorithms and what is called the 
relational approach to neural networks for representing real-valued functions with ALNs distinguish the 
present work from early work on perceptrons (Minsky and Papert 1969) which was mainly concerned with 
classification of inputs into two classes. 

loop-free interconnection of LTUs. This is because one can set the weights of LTUs in all layers but the 
first, so they compute AND and OR functions. For example an AND outputs a 1 if and only if the sum 
of the Boolean inputs is greater than or equal to the fan-in of the unit. There is no loss of generality in 82.6.1 

using trees of logic gates instead of loop-free networks, since one can always transform such a network 

When, in the late 1960s, the (single-unit) perceptron was shown to be unable to synthesize 
nonlinearly-separable classifications (Minsky and Papert 1969), multilayer networks of LTUs were tested. 

Architecturally, the ALN is a special case of the early multilayer perceptron, which consisted of a c1.2 

into an equivalent tree by replication of those units having fan-out greater than one. B2.6.1 

~ 

@ 1997 IOP Publishng Ltd and Oxford Uluversity Press Handbook of Neural Computation release 9711 c 1.8:1 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.8.1. A four-layer ALN. 

Unfortunately, the training algorithms of the day appeared inadequate to train them. In the mid-l970s, 
a solution to the problem of training multilayer perceptrons was found by Werbos. Instead of LTUs, 
Werbos used units that formed a combination of their input signals U = W O  + ~ 1 x 1  + a . + wnxn and 
passed this through a differentiable nonlinearity such as p(u )  = 1/(1 + e-’), the ‘logistic sigmoid’. The 

86.3.3, ~ 5 . 2 . 2  error backpropagation training algorithm based on gradient descent in the weight space was proposed as 
a method for training the network (Werbos 1974). 

Shortly before that, a patent was applied for on a system for training multilayer logic networks using 
a different approach that did not involve differentiable nonlinearities (Armstrong 1974). Generalization 
properties of purely logical networks were found to depend on the choice of gate functions and the unit 
fan-ins (Bochmann and Armstrong 1974). In the early 1990s, ALN software became available in source 
form (Armstrong and Thomas 1992) but until 1993, it was still not convenient to use ALNs for problems 
requiring real outputs. In 1993, LTUs were combined with logic trees, giving rise to the newer type of 

~ 2 . 1  ALN described in this article which was first used in the problem of controlling a vehicle active suspension 
system (Armstrong and Thomas 1994). ALNs are now being applied to problems in diverse areas including 
cardiology (Polak et a1 1995), predictive maintenance (Armstrong et a1 1995), rehabilitation (Stein et a1 
1992, Kostov et a1 1994, 1995, 1996), nondestructive testing and high-energy physics (Kremer and Melax 
1994). Educational and commercial software is becoming available (Armstrong and Thomas 1995). 

Even earlier than that work, Aleksander was using RAM elements, called SLAMS, beginning the 
c i .5  study of what he has termed weightless neurocomputing (Aleksander 1991). Recently, other variants of 

adaptive logic have been used which generate pulse trains of 0 and 1 according to a probability stored in 
a RAM (Gorse et a1 1994). 

C1.8.2 Uses of adaptive logic networks 

The ALN has the role of a data analysis tool. ALNs compute Boolean outputs in a feedforward fashion, 
and hence are classifiers. If the class is the set of points on or under the graph of a real-valued function 
of real variables, an ALN can represent that function, though it cannot compute the real-valued outputs 
directly. Evaluation can be done very rapidly by a decision-tree-based program derived from the ALN, 
that computes a piecewise linear function. A decision tree partitions the input space so that, for each input 
vector, only a few linear expressions have to be evaluated. Because of the way ALNs represent functions, 
it is possible to impose qualitative and quantitative constraints on the functions produced by ALN training. 
ALNs are of particular interest where speed of evaluation or conformity to a specification are important. 
We shall now look at aspects of ALN use in detail. 

C1.8.2.1 Logic networks as classijiers 

A linear threshold unit (LTU), or perceptron, accepts input vectors ( 2 ,  ,x2, . . . , 2,) having n real values 
as components, and outputs the Boolean value 1 or TRUE if W O  + w l x l  + . . . + W , X ,  2 0. Otherwise, 
the LTU outputs the Boolean value 0 or FALSE. The sequence of weights W O ,  . . . , W ,  is called the weight 

c 1.812 Handbook of Neural Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks 

vector of the LTU. The function computed by the LTU, which maps vectors of n real components to 
Booleans, is determined by its weight vector. An LTU thus classifies points in Euclidean n-space into 
two classes: a 1-class where the LTU outputs a 1, and a 0-class where it outputs a 0. Each class is a 
halfspace on one side of an (n - 1)-dimensional hyperplane, the hyperplane being defined by the equation 
wo+w1z1 f.. .+w,z, = 0. The points of the hyperplane itself are placed in the 1-class by our convention. 
In the case where n = 2, the hyperplane becomes a line L ,  and the two classes are half-planes, as shown 
in figure C1.8.2. 

Figure C1.8.2. The half-space (shaded) on and under the line L, where the LTU outputs 1. 

An ALN is a classifier that builds upon the classifications of LTUs. Its 1-class is formed by taking 
a finite sequence of unions and intersections, starting from the 1-classes of the LTUs, according to the 
structure of the ALN (OR becomes union and AND becomes intersection in constructing the 1-class). 
This means that ALNs are very flexible classifiers since the 1-class can approximate any open set in 
n-spacej. An example of an ALN classification is shown in figure C1.8.3. The shaded set of figure C1.8.2 
is intersected with the union of two half-spaces on and under the dotted lines A1 and A2. Then the union 
is taken of that result with the intersection of two half-spaces as suggested by the solid lines B1 and B2. 
(Note that the order of these two operations cannot be interchanged.) 

Figure C1.8.3. The 1-class of a small ALN (shaded). 

The ALN which performs the classification of figure C1.8.3 is shown in figure C1.8.4. 

C1.8.2.2 The relational approach to function representation 

For computing functions with real-valued outputs one cannot use the ALN directly because it can output 
only 0 and 1. Instead, the ALN is used to represent the function. This is done by having the set on and 
under the graph of a function be the 1-class of the ALN. Figure C1.8.5 shows the graph of the function 
which maps values on the horizontal axis into values on the vertical axis. 

Since each LTU must have the 1-class below the 0-class in representing a function, we must have a 
negative weight on w, in the formula of the LTU. Then we can divide all weights by the absolute value 
of that weight without changing the 1-set of the LTU. Thus we can normalize all LTUs used in function 
approximation to have weight on wn, the output variable, equal to minus 1.0. 

t An ALN can be created with a 1-class arbitrarily close to any open set in Euclidean n-space. This is because any open set of 
n-space is a countable union of parallelepipeds, and we can choose an ALN based on a finite number of those parallelepipeds. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c 1.8~3 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

Figure C1.8.4. An ALN which performs the classification of figure C1.8.3. 

Figure C1.8.5. The graph of the function represented by the ALN in figure C1.8.5. 

We shall refer to this method of using the set under the graph of a function to represent the function as 
the relational approach to neural networks. A very large class of functions can be represented in this way. 
A function mapping a rectangle in two-dimensional space to the real values is illustrated in figure C1.8.6. 
The function is formed by taking two sinc functions (y = (sinx>/x), rotating them about the y-axis, 
scaling, translating and adding them. The approximation shown uses 576 LTUs. 

Figure C1.8.6. Graph of a function mapping a rectangle (horizontal) to an interval (vertical). 

Instead of talking about the 1-sets defined by LTUs, one can use functions directly, in which case, 
instead of the LTU defined by WO + wlx l  + a + wnxn 2: 0, we have the real-valued function given 
by Zn = WO + ~ 1 x 1  + ... + w,-lxn-l. The operations AND and OR in the ALN become operations 

c 1.8:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



AdaDtive logic networks 

MINIMUM and MAXIMUM when operating on these functions. This function language is sometimes 
more convenient. The disadvantage is that one loses the strong connection to the ordinary multilayer 
perceptron when describing functions using MAXIMUM and MINIMUM. 

Under the relational approach, an ALN output can also be used directly. In many cases, a real-valued 
output from the usual kind of neural network is compared to a threshold in order to make a binary decision. 
By inserting the threshold value as one of the inputs to the ALN, the user can obtain the decision directly 
by simply evaluating the ALN’s logical output. 

C1.8.2.3 Functions that may be approximated using adaptive logic networks 

The class of functions that may be approximated using ALNs is very large. We can state and prove the 
following. 

Theorem. An ALN with a layer of LTUs and two layers of gates with AND in one and OR in the other 
can represent an approximation, to any degree of precision, of any continuous function defined on an 
(n - 1)-dimensional compact set. 

Proofi The proof is based on simple calculus and topology. We recall from integral calculus that 
Riemann sums, which are made up of thin parallelepipedal pillars reaching up to the function surface, can 
approximate the n-dimensional volume under the graph of a continuous function. The only modification 
which has to be made in a Riemann sum to get an ALN is to slant the edges of each pillar slightly so that 
it represents a function corresponding to the AND of several LTUs. This is suggested in figure C1.8.7 
where only three pillars are shown. The OR of the output of the ANDs of LTUs approximates the set 
under the function graph?. 

Figure C1.8.7. A Riemann sum is converted to an ALN representation of a function. 

C1.8.2.4 Qualitative properties offunctions versus logic tree shape 

If it is known that a function y = g ( x )  is convex-up (that is to say, the function values are always greater 
than or equal to the value given by linear interpolation between any two points of the domain) then it 
is possible to force the ALN to approximate it with a convex-up function. The graph of any convex-up 
function is an intersection of (usually infinitely many) half-spaces. We can choose a finite number of 
half-spaces to approximate the function, and the corresponding LTUs must be combined by a single AND 

t There are a few more details that may be helpful. We need a fixed base height for the construction, and we take that as the 
minimum on the compact set of the function to be approximated, minus the required precision E .  We have to choose the width of 
the base of each pillar such that the function does not vary within the corresponding part of its domain by more than ~ / 2  from its 
value at the center of the pillar. We take the top of the pillar to be ~ 1 2  below that value. Now we slope the sides of the pillar inward 
so that it has half the size at the top as at the bottom (so the sides become functions). Now we cover the compact set which is the 
domain of the function with open sets, namely the interiors of the sets representing the tops of the pillars. To show that it is possible 
to select the pillars to form the ALN that approximates the function to within E ,  we use the theorem from toplogy that any covering 
of a compact set with open sets has a finite subcover (Kelley 1955). This completes the proof. The informed reader will note that 
this is the ALN counterpart of Kolmogorov’s theorem, which is much harder to prove. In fact the ALN also gives a lower bound 
on the function, and a similar construction gives an upper bound. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Computation release 9711 c 1.85 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

gate. This is shown in figure C1.8.8, where we suppose that In N is convex-up (this example will be used 
below in a predictive maintenance illustration). 

Figure C1.8.8. A convex-up function is represented by an ALN using one AND gate. 

Similarly, a convex-down function can be represented by an ALN with one OR gate. Clearly, if we 
know in advance something about the structure of the function surface, we can force it to be defined by a 
certain logic tree. For example, a saddle-shaped function surface could be computed by an AND of ORs 
of LTLTs (with some restrictions on the weights-otherwise we can approximate any continuous function). 
The details of the relationship between types of surfaces, logic trees and weights remain to be worked out. 
It is clear that this aspect of ALNs represents a departure from the usual idea that random connections 
of units is the substrate out of which the desired function emerges by training. When there is inadequate 
a priori knowledge, one can take a tree that is large enough to contain an appropriate tree for the given 
surface type. 

C1.8.2.5 Using adaptive logic networks to computefuzzy sets 

~ 1 . 2  ALNs synthesize piecewise linear functions. Such functions are often used in applications of fuuy sets. 
In one application, the goal was to compute afuuy set N of measurements (pressures, temperatures, etc) 
representing ‘normal’ operation of a compressor. Instead of stating which vectors of measurements on a 
compressor are ‘normal’, a fuzzy set allows one to express to what extent a measurement vector z is a 
member of the normal set by assigning it a number N ( z )  between 0 and 1. A value of N near 1 represents 
normal operation of the compressor, while a value near 0 represents a state close to breakdown. If it is 
assumed that the function N has qualitative properties like a multivariate normal density, then one way 
to use ALNs on the problem is to try to approximate the natural logarithm of N .  The logarithm of a 
multivariate normal density of mean m is, up to an additive constant 

-i(z - m)’C-’(z - m) 

where the prime indicates transposition. The covariance matrix C is symmetric and positive definite. Since 
this function is convex-up, an ALN can be set up using a single AND gate to learn it based on samples of 
measurements on the compressor, each together with an estimate of In N .  Figure C1.8.8 shows an ALN 
approximant of this type. 

Even if a decision requires a Boolean output, it may be desirable to formulate it as a problem with 
fuzzy, that is, real-valued, outputs. In this way, the real output can express how close to 0 or 1 the result 
is. A value too close to 0.5 could be interpreted as ‘uncertain’. 

C1.8.3 Adaptive logic network training 

The fundamental operation behind the adaptation of an LTU for an ALN is least-squares fitting of a 
collection of data points.. Given a function, the l-class will be defined as the set on and under the graph 
of the function. This is illustrated in figure C1.8.9. The data points of the training set are shown, where 
each point has some error in the value of the output variable compared to the correct function value. 

c1.8:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



AdaDtive logic networks 

Figure C1.8.9. Fitting nonlinear data with a single LTU. 

To train a single LTU, a least-squares fitting algorithm is used (linear regression, in statistical 
terminology). In figure C1.8.9, the broken line shows the fit that might be determined by linear regression. 
This part of the training algorithm solves the same problem as backpropagation training of a one-unit 
network. 

Figure C1.8.10. Fitting nonlinear data with an ALN containing five LTUs. 

We consider in figure C1.8.10 the situation when an ALN with five LTUs is used to approximate 
the function in figure C1.8.9. The logical expression for the I-set according to these five lines is OR(L1, 
AND(L2, L3), AND(L4, L5)). The vertical lines in figure C1.8.10 indicate the parts of the horizontal axis 
where each of the five lines is active. For example, L1 is active on the left end of the horizontal axis. 
The line L1 could be determined by linear regression on the leftmost five data points. Then L2 could be 
determined by the four points in the next interval, and so on. Performing a piecewise linear regression is 
well understood, and the only complication here is that as a linear piece moves to fit its data points, some 
data points that make that piece active may become inactive for this piece and active for a different one. 
ALN training is an iterative procedure which adjusts the linear piece computed by each LTU, taking into 
account the data points that make that LTU active. Activity of an LTU for a given data point is computed 
recursively from the root of the ALN tree based on the AND and OR gates at the nodes of the tree. For 
example, if two functions are represented by subtrees entering an AND gate, then the one which has the 
minimum value is the one which is responsible for the given data point. This is essentially the training 
method used in current software implementations. 

C1.8.4 Adaptive logic network decision trees 

If we look at the linear pieces as functions of the variable on the horizontal axis of figure C1.8.10, we 
can write the function represented by the above logical combination of LTUs as MAX(L1, MIN(L2, L3), 
MIN(L4, L5)). This expression computes the function represented by the ALN on the whole space. To 
evaluate it, the system could first compute the values of all the linear pieces at the given point and 
then apply the MIN and MAX operations. A much faster way will now be suggested. As shown in 
figure C1.8.11, we can partition the horizontal axis as follows: 
(i) divide the axis into two parts so that about half of the active line segments into which the curve is 

divided lie to the left, and half to the right; 
(ii) keep repeating the procedure for the resulting intervals until at most two linear pieces are active in 

any interval of the partition. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c1 .8~7 

Copyright © 1997 IOP Publishing Ltd



SuDervised Models 

Figure C1.8.11 shows the horizontal axis divided into four intervals. Using this division scheme, at 
most two linear pieces are involved in the computation of the function in any block of the partition. 

Figure C1.8.11. Partitioning the input space to reduce the number of LTUs that have to be evaluated. 

In the leftmost interval, the expression MAX(L1, L2) has to be evaluated, in the next, MIN(L2, L3), 
in the next, MAX(L3, L4), and finally MIN(L4, L5). The correct interval is determined by a decision tree. 

C1.8.4.1 Adaptive logic network decision tree computation 

(1) If x < 81 then go to step 2, otherwise go to step 3. 
(2) If x < I92 then go to step 4, otherwise go to step 5.  
(3) If x < I93 then go to step 6, otherwise go to step 7. 
(4) Compute MAX(L1, L2). 
(5) Compute MIN(L2, L3). 
(6) Compute MAX(L3, L4). 
(7) Compute MIN(L4, L5). 

The number of pieces in the partition ultimately depends on the complexity of the function being 
represented. At each comparison of the decision tree, the number of linear pieces that have to be evaluated 
drops by about half. In general, some pieces will cross a dichotomy, which makes the reduction less than 
half. 

Such an ALN decision tree can be found for problems of any dimension, and the number of linear 
pieces active in a block of the partition can be made at most equal to the dimension of the space. A minor 
adjustment may be required. If more pieces than the dimension of the space intersect at a point (giving an 
overdetermined solution to a system of linear equations) some pieces can be slightly perturbed to correct 
the situation. With this kind of upper bound on the number of linear pieces that have to be evaluated, 
it becomes possible to guarantee hard real-time bounds on the computation time using an ALN decision 
tree. 

C1.8.4.2 Function inversion using adaptive logic network decision trees 

The result of ALN training can be converted into an ALN decision tree computation with a different output 
variable from the one used in training provided the function is monotonic in the new output variable. A 
function inverse is obtained in this way, as shown in figure (3.8.12. Note that the ALN as a classifier is 
increasing in the new output variable, whereas it was decreasing in the original one. 

Function inversion is particularly useful in control. ALNs have been used in controlling a mechanical 
model of a vehicle active suspension system (Armstrong and Thomas 1995, 1996). During training, ALNs 
learned what the future vertical displacement and velocity of the cab would be, based on results of random 
strut commands. After training, the desired displacement and velocity were used to compute two strut 
commands that were averaged to provide a satisfactory control signal. 

c1.8:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks 

.- 

Figure C1.8.12. A monotonic function y = f ( x )  can be inverted to get x = ~ ( y )  using the same ALN. 

C1.8.5 

To avoid additions and multiplications, and thereby accelerate the computation, one can use fixed thresholds 
on individual variables, instead of LTUs, as inputs to a logic tree of ANDs and ORs (Armstrong et a1 
1991). Such a network is shown in  figure C1.8.13. 

Adaptive logic networks with adaptive nodes 

Figure C1.8.13. Structure of an ALN network with fixed thresholds at the leaves. 

The synthesis of functions with real-valued outputs may be achieved with a collection of such networks 
producing one bit each. A bidirectional encoding scheme is then required to convert between the bit 
vectors output by the trees and the real number values of the function output (training needs one direction, 
evaluation the other). The hardware required to compute a fixed threshold given the bits of a number x is 
very simple: two layers of transistors computing NAND (or NOR). A tree of ANDs and ORs can also be 
turned into several layers of transistors. For applications requiring extremely high speed decisions, trees 
of transistors may be very attractive. 

Training may be done by modifying the functions in the nodes of the logic tree (Armstrong and 
Thomas 1992). We shall now turn our attention to ALNs with adaptive nodes. ALNs with adaptive 
nodes have been applied to control (Supynuk and Armstrong 1992), rehabilitation (Kostov er a1 1992, 
Popovic et a1 1993, Armstrong er a1 1993), high-energy particle physics (Kremer and Melax 1994) and 
nondestructive grading of fat in beef (McCauley e f  a1 1994). The case of binary inputs is straightforward, 
where an input bit, sometimes complemented, is sent to the inputs of the adaptive logic tree. An optical 
character recognition (OCR) system has been developed based on this approach, as well as an image 
processor (Armstrong and Gecsei 1978). 

C1.8.5.1 Lazy evaluation 

The original adaptive Boolean logic elements were thought of as being realized in hardware (Armstrong 
1974). These networks learn Boolean functions by choosing functions AND, OR, LEFT or RIGHT at nodes 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compufation release 9711 c1.8:9 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

of a binary tree of flexible logic gates. The LEFT and RIGHT functions are defined by LEFT(x, y)  = x ,  
RIGHT(x, y)  = y. These functions, in effect, help to change the connections to the network inputs as well 
as within the logic tree. When simulated serially on a computer, this kind of system can take advantage 
of the property of lazy evaluation of Boolean logic. ‘Lazy’ in this context refers to the omission of 
computations that are unnecessary. 

Figure C1.8.14. A network of adaptive Boolean logic elements. 

Consider the value on the z connection in figure C1.8.14. If it is a 1, then the output of the OR 
above it will be a 1 no matter what the result of evaluation is of the entire subtree at the right input to 
the OR. Hence the right subtree does not need to be evaluated at all! The same situation holds with a 
0 signal entering an AND gate. Using lazy evaluation, a very large part of a network can be ignored 
during evaluation of the response to a particular input. Averaged over all possible node functions and 
inputs, asymptotically only a fraction 2 (3/4)L of the nodes of an L-layer balanced binary tree has to be 
evaluated, and this approaches zero as the tree becomes infinitely large. 

C1.8.5.2 The role of monotonicity 

The four functions used in the adaptive Boolean logic element are exactly all the nonconstant, weakly 
monotonic increasing Boolean functions of two variables. A function z = f ( x ,  y )  with real variables is said 
to be weakly monotonic increasing (respectively decreasing) in the variable x if, whenever x is increased, 
the output z either increases (respectively decreases) or stays the same. For example, z = 5 x  - 3y is 
monotonic increasing in x and monotonic decreasing in y .  In the case of Boolean functions, which map 
vectors of Os and 1s to output values 0 and 1, the same definitions apply, where 1 > 0 is the convention 
for Boolean values. If x and y are Boolean vectors, then x 2 y if every component of x is greater than 
or equal to the corresponding component of y. 

Monotonicity can be very useful in a learning system with many layers. If all the units in a network 
compute monotonic increasing functions, then the overall function is monotonic increasing. This forces a 
positive correlation, however weak, to exist between the output of a unit and the output of the network. 
This correlation can be exploited in a statistical way by having each adaptive Boolean logic element 
count the 1s and Os desired of the network during training, and choose its output for a given input it 
receives according to the more frequently desired network response when the given input to that unit 
occurs. Statistics to this effect can be accumulated by up-down counters that count up when the desired 
network output is 1 and down when the desired network output is 0. The counters are bounded, which 
prevents counts in some cases. In the particular case of functions AND, OR, LEFT and RIGHT, the unit 
must always output a 0 when the two inputs are 0, and a 1 if the two inputs are 1. For this reason, only 
two counters are required in the adaptive Boolean logic element, one for the input pair (0,l) and one for 
the input pair (1,O) (Armstrong and Gecsei 1979). 

In ALNs with LTUs, increasing monotonicity internal to the logic tree is assured by using only AND 
and OR at the nodes. This internal monotonicity of the network opens up the possibility of controlling 
the monotonicity of the output of a real-valued function represented by the network as a function of each 
of its real inputs by controlling the signs of weights in the LTUs. Monotonicity is a powerful tool when 
using ALNs. For backpropagation-type networks with sigmoids, the specification of monotonicities on 

c 1.8:lO Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks 

parts of the input space is difficult in the presence of weights of both signs, since all weights influence 
each output value. 

C1.8.5.3 Insensitivity to perturbations of inputs 

The natural progression from two-input logic elements to n-input logic elements was not very successful 
from the point of view of generalization. Analysis (Bochmann and Armstrong 1974, Armstrong and 
Godbout 1975) showed that a problem lay in having networks that tended to change output value with 
minor perturbations of the inputs if n exceeded two. It was also shown that restricting the allowable node 
functions gave networks with the greatest insensitivity to perturbations of their inputs, i.e. networks which 
tended to generalize well in the sense of Hamming distance between Boolean vectors. Insensitivity was 
another reason, in addition to monotonicity and lazy evaluation, for choosing AND, OR, LEFT and RIGHT 
as the set of functions that can be realized in an adaptive Boolean logic element. An arbitrary binary tree 
network of the above node functions can always be turned into an equivalent tree having alternating layers 
of AND and OR gates of arbitrary fan-in. This is the form of the logic tree for ALNs with LTUs. 

One of the problems with the usual multilayer perceptrons having sigmoids is that weights can grow 
large and cause large effects on the output for only small changes of input. With ALNs, only weights in 
the LTUs have to be examined; there are no sums and products of weights and derivatives of sigmoids to 
be considered. If one imposes bounds on the weights during training, these become bounds on the partial 
derivatives of the represented function (or bounds on difference quotients where the derivatives do not 
exist.). 

C1.8.5.4 All-or-nothing credit assignment 

The credit assignment problem for learning systems made up of many units is the problem of informing 
a unit to what extent it has been involved with some good or bad result of network action. In the 
backpropagation training algorithm, credit assignment is expressed by a real quantity, the backpropagated 
error. All the units in the network receive some blame for the error. This is disadvantageous in the sense 
that much computation may be involved, proportional to the complexity of the problem. 

In the case of logic networks, there is an obvious approach to credit assignment: make a unit 
responsible for its action (in response to a given input pattern to the network) if and only if that unit has 
had an effect on the network output. This will cause a large part of a logic network to be left unchanged. 
An example will make this clear. In figure C1.8.14, if the value on z is 1, then the output of the network is 
1 because of the OR. The LEFT function in the node at the right below the OR cannot possibly influence 
the output of the network, i.e. the subtree gets no credit or blame. No change of state occurs in the right 
subtree for this pattern presentation. In a similar fashion, an AND with a 0 entering one input lead cuts 
off the entire effect of the opposite subtree. A concept of heuristic responsibility is thus defined which 
selects, for each pattern presented to the network, the subset of units which adapt. If the credit assignment 
computation makes few units change, then learning will be much faster than if adaptation of all units is 
required. 

The particular algorithm just mentioned for assigning heuristic responsibility for a given input to the 
tree has been called true responsibility (Armstrong 1974). 

True responsibility. 

(i) The only heuristically responsible nodes are the ones selected by the following rules. 
(ii) The root unit of the network is always heuristically responsible. 
(iii) A child of a heuristically responsible AND node (respectively OR node) is heuristically responsible 

if the opposite child (unit or input variable) has value 1 (respectively 0). 
(iv) The left (respectively right) child of a heuristically responsible node is heuristically responsible if the 

function in the node is LEFT (respectively RIGHT). 

An important lesson learned from the adaptive Boolean logic element was that the best heuristics for 
assigning credit and blame to particular units of the network were more complex than true responsibility 
above. The flaw in true responsibility is that the function in the node may change, hence the training of 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compufation release 9711 c1.8:11 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

all descendants may be done based on the wrong node function. The following is a heuristic that worked 
much better. 

Heuristic responsibility. Rules (i), (ii) and (iii) are the same as above; rule (iv) is modified to (iv)(a) 
below, and a new rule (v) is added. 

(iv) (a) Both children of a heuristically responsible node are heuristically responsible if the function in 
the node is LEFT or RIGHT. 

(v) If one input of a heuristically responsible node is ‘in error’, meaning its value is different from the 
desired network output, then the child at the opposite input is heuristically responsible. 

The above form of heuristic responsibility goes beyond causing a node to adapt if and only if it has 
an effect on the network output. It adapts a child node that maybe only potentially has an effect if the 
function in its parent were to change. It also makes a subtree adapt if the other subtree appears not to be 
contributing. 

If there is one clear lesson from many years of ALN experimentation, it is this: finding a subset of 
units to adapt, i.e. solving the credit assignment problem, is not easy. In general gradient descent is too 
weak. 

C1.8.6 Advantages of adaptive logic networks 

Cl. 8.6.1 

As networks get larger, lazy evaluation becomes essential to keep the computation time from growing 
in proportion to the complexity of the problem (or worse). The usual reasoning that massive hardware 
is a remedy for long computation times is only true as long as one can afford the hardware. Once the 
same hardware has to be used iteratively for evaluating different parts of a network, it is useful to have 
an algorithm which allows some computations to be omitted. The speedup offered by lazy evaluation of 
ALNs or ALN decision trees is unbounded as problems become larger. 

Speedup based on lazy evaluation 

C1.8.6.2 Bounds on rates of change 

ALNs with LTUs allow arbitrary bounds to be imposed, during training, on the rate of change of the 
output variable with respect to any of the input variables (i.e. partial derivatives). This is done simply 
by imposing the bounds on weights in the normalized LTUs (output weight = -1.0). In particular, the 
learned function may be constrained to be (weakly) monotonic increasing (or decreasing) in any variable 
by maintaining the desired sign of the weight. 

C1.8.6.3 Easy invertibility 

If a function y = f ( X I ,  , . . , x,)  represented by an ALN with LTUs is strongly monotonic increasing or 
decreasing in some variable x i ,  then the function has an inverse of the form xi = g(x1, . . . , y,  . . . , x , ) .  

By extracting an ALN decision tree from the ALN using xi as the output variable, one can compute the 
~ 1 . 9  inverse function directly with no further training. This is important in applications like control. 

C1.8.6.4 Usefulness of expert knowledge 

If one chooses an ALN with LTUs consisting of a single AND (OR) node, then the function represented 
must be convex-up (-down). This simple form occurs very frequently in practice. More complex functions 
are made up of convex pieces, e.g. an S-curve is made up of two convex parts. There is a strong relationship 
among the architecture of the logic tree, the constraints on the weights of the LTUs, and the qualitative 
properties of the functions synthesized. This can be used to force the result of training to have properties 
dictated by physical or economic laws. 

c 1 .8 12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



AdaDtive logic networks 

C1.8.6.5 Narrowly targeted credit assignment 

In an ALN with LWs,  an LTU may change its weights if its linear piece is active for the given input vector 
(or if it should become active). It is critical to reducing training time that only a few LTUs are adjusted at 
each pattern presentation. In ALNs with adaptive nodes, credit assignment is limited through the heuristic 
responsibility mechanism. Both methods of ALN credit assignment contrast with credit assignment through 
the backpropagation algorithm, which allows a small bit of blame or credit to be assigned to almost every 
node in the network. We feel that narrowly targeted credit assignment is a powerful tool for achieving 
machine learning in very large systems. ALN systems with over one hundred thousand logic nodes have 
been trained successfully. 

C1.8.6.6 Availability of educational software 

Educational software illustrating the ALNs discussed in this article is available free on the Internet 
(Armstrong and Thomas 1992, 1994). For further information on software availability, the reader should 
contact one of the authors. 

C1.8.7 Disadvantages of adaptive logic networks 

ALNs offer rich possibilities for further research and experimentation, in particular to determine their 
advantages and limitations. 

C1.8.7.1 Relatively little has been published 

The ALN is nowhere near as thoroughly investigated as the backpropagation-type networks. Because the 
number of persons working on ALNs is much smaller than the number working on other types of neural 
networks, the results appear more slowly. The main sources of information are a few dozen published 
research papers and documented software (with online help) available electronically. 

C1.8.7.2 Reinforcement learning needs work 

The concept of reinforcement leaming using backpropagation through time was demonstrated long ago by 
Paul Werbos (Miller et a1 1990). ALNs have been used on a pendulum problem to learn a cost function of 
the state and the applied torque. This result, though tentative, suggests reinforcement learning with ALNs 
is a possibility, but much more work will be required to demonstrate it convincingly. This question and 
many other questions about ALNs constitute an open invitation to neural network researchers. 

References 

Aleksander I 1991 Connectionism or weightless neurocomputing? Proc. 1991 Int. Con$ Artificial Neural Networks 

Armstrong W W 1974 Adaptive Boolean Logic Element US Patent # 3934231, Feb. 28 
Amstrong W W, Chu C and Thomas M M 1995 Using adaptive logic networks to predict machine failure World 

Congress on Neural Networks (Washington, DC) pp 11-80-11-83 
Armstrong W W, Dwelly A, Liang J-D, Lin D and Reynolds S 1991 Learning and generalization in adaptive logic 

networks Proc. 1991 Int. Con$ Artificial Neural Networks (Espoo) vol 2 ed T Kohonen, K Makisara, 0 Simula, 
J Kangas (New York: Elsevier) pp 1173-6 

Armstrong W W and Gecsei J 1978 Architecture of a tree-based image processor 12th Asilomar Con$ on Circuits, 
Systems and Computers (PaciJic Grove, CA) (New York: IEEE) pp 345-9 

-1979 Adaptation algorithms for binary tree networks IEEE Trans. Syst., Man Cybem. 9 276-85 
Armstrong W W and Godbout G 1975 Properties of binary trees of flexible elements useful in pattem recognition 

IEEE Int. Conj on Cybernetics and Society (San Francisco, CA) IEEE Cat. No. 75 CHO 997-7 SMC pp 447-9 
Amstrong W W, Stein R B, Kostov A, Thomas M, Baudin P, Gervais P and Popovic D 1993 Application of adaptive 

logic networks and dynamics to study and control of human movement 2nd Int. Symp. on 3 0  Analysis of Human 
Movement (Poitiers) (International Society of Biomechanics) pp 8 1 4  

Armstrong W W and Thomas M M 1992 Atree 2.7 ALN Development System for Windows including C++ 
source code and on-line help. Available from ftp.cs.ualberta.ca in pub/atree/atree2/atre27.exe Unix version in 
pub/atree/atree2/atree2.tar.Z (compressed tar file with C source code). 

(Espoo) ed T Kohonen, K Makisara, 0 Simula, J Kangas vol 2 (New York: Elsevier) pp 991-1000 

83.4 

c3 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 c1.8~13 

Copyright © 1997 IOP Publishing Ltd



Supervised Models 

- 1994 Control of a vehicle active suspension system using adaptive logic networks, in the on-site published 
Program Addendum of the World Congress on Neural Networks (San Diego, CA) pp 9-14, also from 
ftp.cs.ualberta.ca in pub/atree/docs/wcnnpub.ps.Z. 

- 1995 Atree 3.0 ALN Educational Kit for Windows ftp.cs.ualberta.ca in pub/atree/atree3/atree3ek9exe (binary 
mode -900 Kilobytes). 

- 1996 Feasibility of control of a vehicle active suspension system using adaptive logic networks Handbook of 
Neural Computation (Bristol and New York: IOP Publishing and Oxford University Press) 

Bochmann G V and Armstrong W W 1974 Properties of Boolean Functions with a Tree Decomposition (Reprint 

Gorse D ,  Taylor J G and Clarkson T G 1994 A pulse-based reinforcement algorithm for learning continuous functions 

Kelley J L 1955 General Topology (Van Nostrand) 
Kostov A, Andrews B J, Popovic D B, Stein R B and Armstrong W W 1995 Machine learning in control of functional 

electrical stimulation systems for locomotion IEEE Trans. Biomed. Eng. 42 541-51 
Kostov A, Armstrong W W, Thomas M M and Stein R B 1996 Adaptive logic networks in rehabilitation of persons 

with incomplete spinal cord injury Handbook of Neural Computation (Bristol and New York: IOP Publishing 
and Oxford University Press) 

Kostov A, Stein R B, Armstrong W W and Thomas M M 1992 Evaluation of adaptive logic networks for control 
of walking in paralyzed patients 14th Ann. Inr. Con& IEEE Engineering in Medicine and Biology Society (Paris) 
v o l 4  (New York: IEEE) pp 1332-4 

Kostov A, Stein R B, Popovic D B and Armstrong W W 1994 Improved methods for control of FES for locomotion 
Proc. Int. Federation of Automatic Control (IFAC) Symp. on Modeling and Control in Biomedical Systems 
(Galveston, TX) pp 422-7 

Kremer S C and Melax S 1994 Using adaptive logic networks for quick recognition of particles IEEE Int. Con& on 
Neural Networks (Orlando, FL) vol 5 (Piscataway, NJ: IEEE Service Center) pp 3015-19 

McCauley J D, Thane B R and Whittaker A D 1994 Fat estimation in beef ultrasound images using texture and 
adaptive logic networks Trans. Am. Soc. Agricult. Eng. 37 997-1002 

Miller W T 111, Sutton R S and Werbos P 1990 Neural Networks for Control (Cambridge, MA: MIT Press) 
Minsky M L and Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press) 
- 1988 Perceptrons Revised edition (Cambridge, MA: MIT Press) 
Polak et a1 1995 Using ALNs to detect ischemia Congress on Cardiology (Henna) pp 217-20 
Popovic D B, Stein R B, Jovanovic K L, Dai R, Kostov A and Armstrong W W 1993 Sensory nerve recording for 

Stein R B, Kostov A, Belanger M, Armstrong W W and Popovic D B 1992 Methods to control functional electrical 

Supynuk A G and Armstrong W W 1992 Adaptive logic networks and robot control Proc. W o n  Interface Con& '92 

Werbos P 1974 Beyond Regression: New tools for prediction and analysis in the behavioral sciences Doctoral 

BIT-14) pp 1-13 

Proc. World Congress on Neural Networks (San Diego, CA) vol 2 pp 73-8 

closed-loop control to restore motor functions IEEE Trans. Biomed. Eng. 40 1024-31 

stimulation in walking 1st Int. Functional Electrical Stimulation Symp. (Sendai) pp 1 3 5 4 0  

(Vancouver) pp 181-6 

Dissertation Applied Mathematics, Harvard University 

C 1.8 : 14 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Lid and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



c2 

Unsupervised Models 

Contents 

C2 UNSUPERVISED MODELS 
C2.1 Feedforward models 

Michel Verleysen 
C2.2 Feedback models 

Gail A Carpenter (C2.2.1), Stephen Grossberg (C2.2.1, C2.2.3), and 
Peggy Israel Doerschuk (C2.2.2) 

Cris Koutsougeras 

Bernd Fritzke 

C2.3 Unsupervised composite networks 

C2.4 Unsupervised ontogenetic networks 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 
Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.1 Feedforward models 

Michel Verleysen 

Abstract 

Feedforward unsupervised models cover a wide range of neural networks with various 
applications. In this section, we discuss three widely used models. (i) Kohonen’s self- 
organizing map, also called the Kohonen network, the self-organizing feature map, or 
the topological map, is intended to map a high-dimensional space into a one- or two- 
dimensional space, preserving the topology of the input space; it has a strong biological 
plausibility and is basically intended to be used in applications where preserving the 
topology between input and output spaces is important (e.g. control, inverse mapping, 
image compression). It is an unsupervised model, but can be extended to a supervised 
one by adding a supplementary layer. In addition to the topology-conserving property, 
the Kohonen model also acts as a vector quantizer. (ii) The neural gas is another vector 
quantization algorithm that may be considered as a neural network method because it 
relies on the same principle of adaptation, may be represented in the form of a feedforward 
graph, and may be described by the same formalism as used in many other neural models. 
It is different from the Kohonen map in the sense that it does not have the topology 
preserving property but it generally performs better giving a smaller final distortion 
error. (iii) The neocognitron is a complex feedforward model formed by several layers 
each containing a large number of neurons. Its goal is to automatically detect features in 
two-dimensional arrays of points through self-organization and reinforcement principles. 
The network is built to be insensitive to shifts in position of the patterns or of small parts 
of them, thus also allowing for distorted patterns. The network is primarily intended to 
be used in feature extraction and pattern recognition tasks, for example in OCR (optical 
character recognition). 

C2.1.1 Kohonen’s self-organizing map 

C2.1.I.I Introduction 

The self-organizing feature map (SOFM) has been developed by Teuvo Kohonen (Helsinki University of 
Technology, Laboratory of Computer and Information Sciences, FIN-02150 Espoo 15, Finland). While it 
has been described in several research papers, an interesting and self-contained description of the model, 
its biological background, its implementation, and possible applications can be found in one of the three 
editions of Kohonen’s seminal book Self-Organization and Associative Memory (Kohonen 1989). 

The SOFM is presented as a biologically plausible network, which takes its inspiration from the fact 
that some regions of the cortex ‘map’ either physical locations of sensory neurons, or the ordering of some 
physical properties like the acoustic frequencies in the auditory cortex. 

C2.1.1.2 Purpose of the model 

The purpose of the self-organizing feature map is basically to map a continuous high-dimensional space 
into a discrete space of lower dimension (usually 1 or 2). This goes through two more or less independent 
properties obtained through the topology and the learning of the network. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computarion release 9711 c2.1:1 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

c1.1.5 First, as in adaptive vector quantization methods like the LVQ algorithms, the input space is quantized 
by assigning each neuron to a defined region in the input space. The number of (external) inputs to each 
neuron being equal to the dimension of the input space, the weight vector of each neuron can be interpreted 
as a location in this space. The region then assigned to a neuron is the set of locations nearer to the 
corresponding neuron than to any other one; this is called the ‘Voronoi tessellation’ of the input space (see 
figure C2.1.1 for a Voronoi tessellation of a two-dimensional space). 

\ 
4 

Figure (22.1.1. Voronoi tessellation of a two-dimensional space. 

In figure C2.1.1, the eight neurons are represented by using their weight vector (of two components, 
the input space being of two dimensions) as coordinates in a two-dimensional space; this is the common 
representation standard for Kohonen maps. 

The second property concerns the preservation of the topology. The principle is that the network 
organizes its topology in the following way. Inherently, all neurons of the network, regardless of their 
weight vectors, are arranged according to a defined topology. For example, they can be arranged on a 
one-dimensional string or a two-dimensional grid, as shown in figure C2.1.2. 

Figure C2.1.2. One-dimensional string and two-dimensional grid. 

The ‘dimension’ do,, of the string (one) or of the grid (two) is usually referred to as the output 
dimension; it is absolutely independent of the dimension of the input space din, which is determined by 
the number of external inputs to each neuron. 

Having defined these two dimensions, the second property of self-organizing feature maps can now be 
explained as follows. After learning, that is, after the network has converged to an ‘ordered’ topology, two 
input vectors (of dimension din), one close to the other (according to the definition of a distance measure 
in the input space), will be projected on two close neurons in the output space; close neurons means here 
that they are close on the string or on the grid, depending on the output dimension. 

Of course, a good topology preservation is not always possible if the input and output dimensions 
are different; for example, if the dimension of the input space is three, and the neurons are arranged on a 
two-dimensional grid, and if the input space is uniformly filled, it is not possible to find a projection from 
the three-dimensional space to the two-dimensional one that will respect the topology (the neighborhood 
property) at all locations. 
~ 

c2.1:2 Hundbook of Neuml Compururron release 9711 @ 1997 IOP F’ubhshing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

Nevertheless, the property of the Kohonen map is that the learning is targeted to the ‘best’ weight 
vector for each neuron in order to best match the neighborhood property; this will be detailed in a later 
section, mainly through examples. 

C2.1.1.3 Biological origin 

It is well known now that the organization of cells in the brain, and more especially in the cortex, is not a 
result of chance. Without doubt, a large part of this organization is determined genetically, while it is also 
proven that learning plays an important role. For example, persons having had a sensory organ amputated 
will develop different sensory sites than other people, through a rearrangement of dedicated sites in the 
brain. 

Moreover, the locations of nervous cells assigned to sensory or motor tasks in the brain are, at least 
in several known parts of it, arranged in a way such that they map either the physical locations of the 
sensory or motor organs themselves, or some of their physical properties: receptive fields are arranged 
in the cortex according to the sensory organs, neighboring locations in the visual cortex correspond to 
neighboring locations in the retina, close neurons in the auditory cortex are activated by close frequencies, 
and so on. 

Of course, because of the complex physical structure of the brain and cortex, these mappings are 
highly nonlinear; their main property is that ‘close’ elements before the projection will correspond to 
‘close’ elements after the projection. It is this specificity that researchers such as Cristoph Von der 
Malsburg (1973) and Teuvo Kohonen (1989) tried to model through topological maps. 

C2.1. I .4 Topology 

A self-organizing feature map contains one layer of neurons, but two layers of connections, as illustrated 
in figure C2.1.3. For the purpose of simplicity, it will be assumed in the following that the output 
dimension do,, is two, i.e. that neurons are arranged on a two-dimensional grid. Each neuron has din 
external connections, to the din inputs. In addition, each neuron is laterally connected to its neighbors (on 
the grid), up to a certain distance; for example, neuron n43 in the grid can be connected to its four nearest 
neighbors n33, 1142, n u ,  and 1153, or to its eight nearest neighbors (the four preceding ones plus 1132, n34, 
n52, and ns4), and so on. 

Computations are feedforward in the first layer of connections: the network computes the scalar 
product between the input vector x and each of the neuron weight vectors w. The self-organizing 
feature map usually supposes that input and weight vectors are normalized; the scalar product can thus be 
considered as a distance measure between the two vectors z and w (it is the angle formed by these two 
vectors on a unit circle). 

The second layer of connections acts as a recurrent excitatorylinhibitory network, whose aim is to ~ 2 . 3  
reinforce the activation values of ‘strong’ neurons and to decrease the activation of the ‘weak’ ones. 
The values of the lateral connections are fixed (they are not changed during the learning), and are only 
dependent on the physical distance between neurons on the grid. A typical function representing the values 

Figure C2.1.3. Self-organizing feature map. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compururion release 9711 c2.1:3 

Copyright © 1997 IOP Publishing Ltd



Unsuuervised Models 

lateral 
weights f weights 

lateral t 

Figure C2.1.4. Lateral connections between neurons. 

of the lateral weights versus the distance between neurons on the grid is plotted in figure C2.1.4(a), while 
practically used values (at discretized locations since there is a discontinuous set of distances between 
neurons) are shown in figure C2.1.4(b). 

It can be seen from figure C2.1.4 that connections for close neurons are positive (excitatory synapses), 
while they are negative for more distant ones (inhibitory synapses); they tend to zero for larger values of 
the distance between neurons. 

While the connections in the first layer (connections to input vectors) are strictly feedforward, the 
lateral ones between neurons are bidirectional: there is obviously the same connection between neurons 
nij and nkl  as between neurons nkl and nij, since the value of the weight only depends on the distance 
between the neurons (measured as Ik - i I  + II - jl) .  

C2.1.1.5 Operation of the network 

The behavior of the network is formally described by 

(C2.1.1) 

where aij is the activation of neuron nij, W j j k  the weight between neuron nij and the kth component xk 
of the input vector x, N(nij) the neighborhood of neuron nij  as defined above, umnij the lateral weight 
between neurons nmn and nij, and U [ . ]  a standard sigmoid-type nonlinearity. In this equation and in 
the following equations, neurons (and related values as activations) have been numbered by two indices, 
corresponding to their location on the Kohonen grid (do,, = 2), and layer indices have been omitted for 
simplicity; lateral fixed weights between neurons are denoted by U to avoid the confusion with adaptable 
weights w .  

Equation (C2.1.1) forms a complex system of coupled nonlinear equations that must be solved to 
find activation values aij. However, a simple interpretation of the behavior of the lateral connection layer 
is that it reinforces the activity of neurons in the areas of the map where strong activations already exist 
through the first summing term of equation (C2.1. l), while it decreases the activations of neurons in other 
areas. This usually leads to the formation of an 'activity bubble' in the map, as shown in figure C2.1.5, 
where the neuron activities in a 15 x 15 neuron map are represented by their gray level. 

With this property, Kohonen showed that it is possible to calculate the activations in a simpler and 
much more straightforward way. Since the activity bubble in the map will be located where the activations 
due to the first summing term of equation (C2.1.1) are the most important ones, Kohonen proposes to 
determine the center of this bubble by choosing the 'best match' between the input vector z and the weight 
vectors wij, under a defined distance measure. To avoid the necessity of normalization with the scalar 
product, the Euclidean distance can be chosen. The best-match neuron nab will thus be chosen as: 

(C2.1.2) 

where Ni and Nj are, respectively, the number of neurons in the x and y directions of the map (N = NiNj 
is the total number of neurons). The selection of the best-match neuron will be used in the learning process 
of the network. 

In this simplified model, much more convenient for practical computations, the activities of the 
neurons are computed by: 

(C2.1.3) ajj = llx - wjj 11 . 

c2.1:4 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

Figure C2.1.5. Activities and ‘bubble’ in a 15 x 15 neuron Kohonen map. 

While the values of the activities will obviously not be the same in the original and simplified models, 
the same phenomena of bubble formation and of topology preservation will be encountered in both models, 
through appropriate learning. 

C2.I. 1.6 Learning 

In order to ensure the above described property of topology conservation between the input space and the 
locations of ‘winning’ (best-match) neurons on the grid, appropriate values of the weights w and U in the 
two layers of connections must be chosen. 

Values of lateral connection weights U are chosen according to some Mexican-hat-like function as 
illustrated in figure C2.1.4. The width of the function (i.e. the distance between neurons above which 
connection weights are null) is initially chosen as ‘reasonable’ according to the size of the map, and then 
decreased during learning. 

Values of weights w between the neurons and the input vector x are the result of an adaptive process. 
Learning in a Kohonen map is a typical example of unsupervised learning: input vectors are presented ~ 3 . 1  

to the network, and the weights are adapted without any knowledge of a ‘desired output value’ to the 
network. During learning, the values of the weights are adapted according to 

wi,(t + I )  = wi,(t) + a( t ) (x ( t )  - wi,(t)) if ni, E N(n,h) (C2.1.4) 

wij(t + 1 )  = wi,(t) if ni, @ N(n,h) (C2.1.5) 

where wij(r) is the weight vector between neuron ni, and input vector x ( t )  at time step r of the learning, 
x ( t )  is the input vector presented to the network at time step t ,  a ( t )  is a learning factor that decreases with 
time to ensure convergence to fixed states, nub is the best-match neuron according to equation (C2.1.2), 
and N(n,h) is a neighborhood of the best-match neuron nub, that also decreases with time. 

In some other versions of this simplified model, a weaker adaptation can be chosen for neurons ‘far’ 
from the best-match one nub, by adding a multiplying term in  the equation 

wij(t + 1) = wij(t) + a(t)B(l i  - a1 + l j  - b l ) ( x ( t )  - wij)(t)  if n i j  E N(n,h) 
wi,(t + 1 )  = wi,(t) if ni j  @ N(n,h) (C2.1.6) 

where B ( . )  is a monotonically decreasing function of the distance between neurons ni j  and n u b  in the map. 
The choice of the adaptation factor a( t )  and the neighborhood domain N(n,h) as a function of time is 

important, but not critical. Usually, a ( t )  is chosen according to the Robbins-Monro conditions (Robbins 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhnok ofNeuml G~mputution release 9711 c2.1 :5 

Copyright © 1997 IOP Publishing Ltd



Unsumrvised Models 

and Monro 1951), that is, 

lim a ( t )  = 0 
f+oo 

&(t) = Co 
t =o (C2.1.7) 

t =o 

The learning algorithm of Kohonen maps in natural language representation is: 
compute the Euclidean distance between the input vector and the weight vector associated with the 
first neuron in the map; 
repeat step (i) for all neurons in the map; 
determine the best-match neuron, the neuron whose distance computed at step (i) is minimum; 
determine a topological neighborhood of the best-match neuron in the Kohonen map; 
update the first weight associated with the first neuron in that topological neighborhood by adding a 
fraction of the difference between the input vector and the weight of this neuron; 
repeat step (v) for all neurons in the neighborhood determined at step (iv). 
The learning rule is basically local: the operation at each neuron only requires the knowledge of 

the weight associated with that neuron and of the input vector. However, a nonlocal function (but 
implementable as a tree structure) is needed to choose the best-match neuron. Adaptation is then again 
local, as soon as a neighborhood of the best-match neuron is chosen. 

C2.1.1.7 Convergence of the algorithm 

As explained by Marie Cottrell (Cottrell et a1 1994) in her review paper about the different proofs of 
convergence of the Kohonen algorithm in specific situations, 
‘Despite the large use and the different implementations in multi-dimensional settings, 
the Kohonen algorithm is surprisingly resistant to a complete mathematical study’. 

In high dimensions, two obstacles prevent a thorough study of the convergence of the algorithm. 
First, while ordering is an obvious concept in one dimension, it is difficult to know what is a correctly 
ordered situation in a dimension greater than one; secondly, it is proven that it is impossible to associate 
a global decreasing potential function with the algorithm in the general case (Erwin er a1 1992). In that 
situation, convergence results of the algorithm are only partial or apply in specific situations. Details of 
the actual state of the research in that domain may be found in the article by Cottrell et a1 (1994); here 
are, very briefly, some of these results: 
0 The self-organization property and the convergence are proved in the one-dimensional case for a 

Kohonen string, for a large class of input distributions and neighborhood functions. 
0 Self-organization in dimension 1 is proven for a large class of neighborhood functions when the input 

and the weights are quantized. 
~ 5 . 2 . 2  0 A potential function (from which the Kohonen algorithm is a stochastic gradient descent function) 

can be found when the input values belong to a finite discrete set; this potential function is not 
differentiable, but the convergence to a stationary point can be proven under some conditions on the 
adaptation parameter and the neighborhood function. 
The ‘0-neighbor’ algorithm (Kohonen procedure with neighborhood restricted to the best-match vector 
only) always corresponds to a gradient descent procedure. 
Results in higher dimensions are only partial. 
Details and references on actual results can be found in the article by Cottrell et a1 (1994). 

0 

0 

C2.1.1.8 Examples of results 

The Kohonen map is basically aimed to project a continuous high-dimensional space onto a discrete one- 
or two-dimensional one. For illustration purposes, we will show by a few examples the projection of a 
two-dimensional space onto a one- or two-dimensional one. Of course, the real interest of Kohonen maps 

c2.1:6 Hundbook ojhreurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University hess 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

Figure C2.1.6. Locations and neighboring relations between neurons after (a) 0 iterations, (b)  100 iterations, 
(c) 1000 iterations, and (d)  10000 iterations, for a uniform distribution of inputs. 

is rarely found in such low-input-dimension examples; the idea of organization principles is, however, 
easily expandable to higher dimensions. 

The way to easily represent a Kohonen map (in two dimensions) is to locate in the input space 
each neuron by the coordinates formed by its weight vector. Moreover, to represent the neighborhood 
relations in the output space, neighboring neurons are linked in the representation. Before learning, there 
is no ordering since the weights are randomly initialized, and the network resembles a dish of spaghetti. 
Progressively, however, a local ordering relationship develops in the map, so that two neurons which are 
neighbors in the map will be close by their locations in the input space. Figure C2.1.6 shows the locations 
and neighboring relations of a 10 x 10 Kohonen map, respectively, after 0, 100, 1000, and 10000 learning 
iterations; the simulation was carried out with a uniform distribution of input patterns in a square area. The 
final distribution of neurons is effectively quite uniform, except on the sides of the map where a border 
effect can be noticed. 

Of course, mapping a two-dimensional uniform distribution onto a two-dimensional square map is not 
the most useful application of a Kohonen map. Figure C2.1.7 shows the mapping of a uniform triangular 
distribution onto a square Kohonen map; the mapping cannot be perfect because of the border and corner 
effects, but one can see that the vector quantization property is well achieved, while the topological ci.1.5 
neighborhood property is maintained at least locally. 

Figure C2.1.8 shows the mapping of a nonuniform distribution (left-hand side of the figure) by a 
10 x 10 Kohonen map. As expected, the density of neurons approximates the density of points in the 
distribution, which proves the vector quantization effect. 

Finally, figure C2.1.9 shows how a three-dimensional distribution of points which are effectively 
arranged on a two-dimensional surface maps onto a two-dimensional Kohonen grid. From such an example, 
it can be concluded that the nonlinear projection realized by a Kohonen map will be optimal when the 
dimension of the map is approximately equal to the intrinsic dimension of the data. 

C2.1.1.9 Kohonen map and principal component analysis 

The last example above clearly shows the projection property of Kohonen maps: points in a high- 
dimensional space are projected onto a low-dimensional (usually one- or two-dimensional) space. If 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neuml Compurution release 9711 c2.1:7 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.1.7. Final locations and neighboring relations between neurons for a uniform distribution of 
inputs in a triangle. 

Figure C2.1.8. Final locations and neighboring relations between neurons for a nonuniform distribution of 
inputs. 

we do not take into account the quantization property of Kohonen maps (which can be ‘bypassed’ by 
some linear or nonlinear interpolation between adjacent nodes in the map if necessary) the projection is 
similar to the one obtained with principal component analysis (PCA) according to the fact that in both 
cases the projected space is chosen to best fit the initial distribution. 

The main difference, of course, relies on the nonlinear projection in the case of the Kohonen map, 
while PCA is purely linear; this can be a strong advantage in many situations. 

C2. I .  I .  10 Related neural network models 

The principle of auto-organization, which is the key aspect of the self-organizing feature map, is at the 
basis of many neural network models, more or less derived from Kohonen’s one. Among these extensions, 
Fritzke’s growing cell structures are of primary interest. The organization principles of Fritzke’s network c 
are similar to those of the Kohonen map; the main difference relies, however, on the fact that the map in 
Fritzke’s network is not fixed apriori as in Kohonen’s model, but is built during learning. The dimension 
of the map dout, its number of neurons, and the connectivity between them are progressively adapted to 
form a structure more adapted to the input distribution. Other differences with respect to Kohonen’s model 

c2.1:8 Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

Figure C2.1.9. Final locations and neighboring relations between neurons for three- to two-dimensional 
mapping of inputs arranged on a two-dimensional surface. 

are a fixed neighborhood limited to the direct neighbors, and fixed adaptation parameters. The principle of 
the network growth is to add cells in regions where neurons are most frequently chosen as the best-match 
ones, in order to obtain similar firing rates for all neurons, which is a characteristic of good quantization. 

The Kohonen self-organizing map is also related to many adaptive models of vector quantization, 
such as K-means algorithm, maximum-entropy clustering, and neural gas, and the like. The principle 
of any vector quantization method is to approximate a continuous generally nonuniform distribution of 
vectors (or a discrete distribution with a large number of vectors) by another distribution being formed 
by a much smaller number of units of the same dimension. If we consider the weight vector of each 
neuron as a unit in the input space, a Kohonen network implements this vector quantization scheme. The 
above-mentioned methods of vector quantization find their place in the field of artificial neural networks 
(ANNs): they are adaptive, may be represented in the form of a feedforward graph, and may be described 
by the same formalism as used in many other neural models, including Kohonen’s. For this reason, in 
the next section we will describe the ‘neural-gas’ method, a vector quantization method known in the 
field of neural networks as a powerful algorithm that quickly converges to low distortion errors, generally 
reaches a final distortion under that obtained by other algorithms, and obeys a gradient descent on an 
energy function surface, like the K-means clustering, but unlike Kohonen’s algorithm. 

C2.1.2 Neural gas 

C2.1.2.1 Introduction 

It is a tricky question to know whether adaptive vector quantization techniques find their place in the frame 
of ANNs or not. We do not pretend to give an answer to this question, but would like to point out some 
common points between methods which are usually classified as ‘artificial neural networks’ and vector 
quantization techniques. Neural networks are adaptive techniques, which can usually be represented in the 
form of a graph of computational units, linked by synaptic weights. Neural networks have a biological 
origin, although this is not acknowledged in all models of learning. Neural networks usually realize some 
kind of function or distribution approximation, or classification. 

In that order of ideas, many adaptive methods of vector quantization resemble neural networks. 
Algorithms like K-means clustering or any derived method such as maximum-entropy clustering and 
frequency-sensitive learning are also adaptive, can be represented as a similar graph of computational 
units, and realize some kind of distribution (or probability density) estimation. It is not our intention 
here, however, to describe all vector quantization methods, since it would greatly exceed the scope of 
a handbook of neural networks. However, it would not be fair to fully omit and completely dissociate 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computation release 9711 c2.1:9 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

them from the field of neural networks; their common characteristics, and the advantages that both vector 
quantization and neural networks can take from a common approach, fully justify their insertion here, 

Vector quantizers are feedforward unsupervised models: they have no ‘teacher’, and there is no 
feedback between the positioning of the neurons and the distribution of input vectors. Rather than 
going into the details of many similar (while different) vector quantization algorithms, we will focus 
our discussion on one model, the neural gas, which seems to have three advantages with respect to most 
other methods (Martinetz et ai 1993): 
0 it converges quickly 
0 

0 

it reaches a lower distortion error after convergence than with other methods 
it obeys a gradient descent on an energy function surface, which is not the case for example with the 
Kohonen maps. 
The neural-gas algorithm has been developed by Thomas Martinetz and Klaus Schulten and a good 

description of the model and its applications can be found in the article by Martinetz et a1 (1993). 

C2.1.2.2 Purpose of the model 

The purpose of the neural-gas model is to quantize multidimensional vectors, that is, to transform an initial 
large set of &-dimensional vectors into a reduced set of N vectors (neurons) of the same dimension, with 
a minimal mean distortion between each of the vectors in the initial set and its best-match neuron, the 
best-match neuron being defined as the vectors in the final set closest to the input vector. Each neuron 
will thus define in the input space a so-called Voronoi region, being the set of locations closer to this 
neuron than to any other one; this property is identical to the vector quantization property of Kohonen’s 
algorithm, while the topology conservation property does not hold in the neural-gas model. In comparison 
with other adaptive vector quantization techniques, the neural-gas algorithm is fast, converges to low 
average distortions, and obeys a gradient descent on a known energy function surface. 

C2.1.2.3 Topology 

A neural-gas network has one layer of neurons and one layer of connections. As in the Kohonen model, 
each din-dimensional neuron is connected to the input vector z of the same dimension, through a weight 
vector w.  There is no connection between units in the neuron layer. 

C2.1.2.4 Learning 

The neuron activations in the neural-gas model may be defined as the distance between the input vector 
z and weight wi associated with neuron ni: 

ai = llWi - 211 (C2.1.8) 

where ai is the activation of neuron ni. 

of the best-match neuron n b  (of weight Wb) at each presentation of an input vector z( t )  to the network: 
Learning, i.e. adaptation of weights wi to a distribution of input vectors, goes through the selection 

(C2.1.9) 

After selection of the winner, the weights of several neurons are adapted, as in the Kohonen map. 
However, the neurons to adapt are not selected according to a topological relation with the best-match 
neuron nb, but are selected according to the rank they have in the ordered list of distances between their 
weights and the input vector. 

Each time an input vector z ( t )  is presented to the network, all neurons are ‘ranked’ according to 
their distance from the input; tuba is the weight of the closest neuron to z (according to the Euclidean 
distance), is the second-closest neuron to z, and so on. In other words, the ranks bi, 1 5 i 5 N - 1, 
are determined according to 

(C2.1.10) 

(C2.1.11) 

c2.1: 10 Hundbook of Ncurcrl Computution release 9711 @ 1997 1OP Publishing Lcd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

where a is an adaptation factor, j is chosen so that b, = i, and p ( j )  is a monotonic decreasing function. 
Usually, function p ( j )  is chosen according to 

p ( j )  = (C2.1.12) 

where A is a decay constant. For A + 0, the algorithm becomes equivalent to the K-means method. 

energy function 
It can be proven that the neural-gas algorithm obeys a gradient descent on the surface defined by the 

. N A  
(C2.1.13) 

where P(z) is the distribution of input vectors z(t), j is chosen so that b, = i, the integral is taken over 
the whole input space, and 

N-I 

(C2.1.14) 

A proof of this can be found in the article by Martinet2 et a1 (1993). As a stochastic gradient descent 
algorithm on a bounded function, the neural-gas algorithm will converge, but may be trapped in one of 
the local minima of the energy function (C2.1.13). It must also be noticed that the parameter A usually 
decreases with time, a large parameter corresponding to a smooth energy function, while when h + 0 the 
energy function (C2.1.13) becomes equivalent to the energy function of the K-means algorithm. Reducing 
the value of A with time thus reduces the risk of being trapped in a 'bad' local minimum of function 
(C2.1.13). 

The neural-gas learning algorithm in natural language representation is: 

(i) compute the Euclidean distance between the input vector and the weight vector associated with the 
first neuron in the map; 

(ii) repeat step (i) for all neurons in the map; 
(iii) rank the neurons by their respective Euclidean distances to the input neuron; 
(iv) update the first neuron in the network by adding a fraction of the difference between the input vector 

and the weight of the neuron, multiplied by a factor depending on its rank; 
(v) repeat step (iv) for all neurons in the network. 

The learning rule is basically local: the operation at each neuron only requires the knowledge of 
the weight associated with that neuron and of the input vector. However, a nonlocal function (but 
implementable as a tree structure) is needed to rank the neurons according to their distance from the 
input vector. 

C2.1.2.5 Examples of results 

An illustration of the neural-gas algorithm behavior in two dimensions is given in figure C2.1.10. The 
input distribution (left-hand part of the figure) is formed by three Gaussian distributions, of which two 
overlap. The right-hand side of the figure illustrates the positions of the neurons after convergence. It can 
be seen that more neurons are concentrated in the center of the Gaussian functions than in the tails; this 
was expected as more points from the input distribution are concentrated in these regions too. 

The neurons seem also to be concentrated in the tails of the distribution which is in contradiction to 
the vector quantization principle. In fact, this visual effect is due to the fact that the Voronoi regions of 
the neurons in the tails of the Gaussian functions are very narrow but long. The (large) size of the Voronoi 
regions associated with these neurons, compared to the regions associated with neurons in the centers of 
the distribution, is thus in accordance with the (low) density of points in the tails. 

C2.1.2.6 Related neural network models 

As already mentioned above, the neural-gas algorithm is closely linked to Kohonen's self-organizing 
feature maps, because of its vector quantization property. While the neural gas does not have the topology- 
preservation property of Kohonen maps, it achieves a similar quantization of input data. In that case, the 
neural-gas algorithm is also usually faster and more accurate (lower final mean-square error) than other 
vector quantization methods. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 c2.1: 11 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

.". 
: .'  

. . a i ;  .. 
*. . .. . . .  .. 

. . .  .. . 
Figure C2.1.10. Input distribution formed by three Gaussian functions in two dimensions, and the 
corresponding neuron locations after convergence of the neural-gas algorithm. 

Many other vector quantization methods exist which are more or less similar to the neural gas; 
including them in the neural network field or not is a question of personal feeling. We can, however, 
mention that most of them are derived from or have links to the K-means Lloyd and MacQueen algorithm, 
which uses the same principle as the above-described neural-gas method, except that only the best- 
match neuron is moved at each presentation of an input vector; the ranking procedure is thus not used. 
Several methods also try to avoid confinement to local minima of the distortion function, by adding some 
probabilistic term in the best-match neuron choice, or by moving several neurons at each presentation of 
an input vector, depending on the distance between the corresponding weights and this input, and so on. 

C2.1.3 Neocognitron 

C2.1.3.1 Introduction 

The neocognitron has been developed by Kunihiko Fukushima (Osaka University, Department of 
Biophysical Engineering, Toyonaka, Osaka 560, Japan). It has been described in many research papers 
and conference communications since 1980; a good description of the network and of the learning process 
can be found in the article by Fukushima (1988). In this section, we will follow Fukushima's description 
from that reference. 

The neocognitron is presented as a biologically plausible network. It can indeed be proved that in the 
visual cortex and in the higher areas there are cells which respond to very simple patterns like segments of 
lines or curves at an early stage, and then respond to more complex figures (squares, circles, and the like) 
at a higher stage, and so on. The neocognitron is based on the same hierarchical structure; cells in the 
first layers extract simple patterns, while they become progressively more complex up to the last layers of 
the network. 

The neocognitron is devoted to pattern extraction, in applications where this property of extracting 
features of increasing complexity may be exploited, for example in optical character recognition, where 
simple features are combined to recognize more complex characters. 

C2.1.3.2 Purpose of the model 

As will be described in the next section the neocognitron is formed by an even number of layers, odd layers 
having adaptable input connections and even layers having fixed input ones. Each odd layer is intended 
to detect features in the plane formed by the preceding layer; in the first stages of the neocognitron, the 
detected features are very simple, such as line segments, circles, and angles. Each neuron in an odd layer 
will be adapted to detect a particular feature in a particular location of the preceding layer. In the even 
layers, fixed connections between each neuron in that layer and a set of close neurons in the previous one 
are intended to cancel the effect of small shifts in position of the features detected in the previous layer. 

The neocognitron is thus intended to detect complex patterns in a plane of cells, through the 
progressive detection of simple to elaborated features from the first to the last layers. One of its applications, 

~ 1 . 2 ,  ~ 1 . 3  largely described by the author of the model, is optical character recognition (OCR), where simple features 
(strokes) may be combined to detect more complex patterns (the characters). 

c2.1:12 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

C2.1.3.3 Topology 

The topology of a neocognitron is described in figure C2.1.11. It contains an even number of layers (the 
input plane U,, having only the task of redistributing the inputs on the different neurons of the first layer 
Us1, is not counted here as a ‘layer’). Layers US; and U C ~  alternate in the network, their functionality 
being different. Neurons used in the S-layers (odd layers) are typical nonlinear neurons with excitatory 
and inhibitory inputs, and with positive outputs. Neurons in C-layers (even layers) act as OR functions 
(they fire if one of their inputs fires). 

21 x2I x38 

19x19~12 

Figure C2.1.11. Layer structure of the neocognitron (according to Fukushima 1988). 

All neuron layers are divided into ‘cell planes’, being represented as squares in figure C2.1.11; 
each cell plane contains neurons which detect similar features at different locations in the previous layer; 
similarly, neurons at corresponding locations in the different cell planes of a layer respond to different 
features at the same location of the previous layer. The numbers of cells indicated at the bottom of 
figure C2.1.11 are given as an example (these values are those given in the application example described 
by Fukushima 1988). 

Each S-layer contains S-cells and inhibitory V-cells. The S-cells are feature extracting cells; after 
learning, they respond to specific features at specific locations in the preceding layer. In general, features 
extracted at lower stages of the network are elementary (line segments, strokes, branchings, and the like), 
while those extracted at upper stages are more complex (e.g. characters). 

C-cells in the C-layers are inserted in the network to allow for shifts in the feature detection in 
the preceding S-layers. Because of their (local) OR function, C-cells fire when one of the S-cells in a 
local neighborhood of the location corresponding to the C-cell, but in the previous layer, is activated; 
this functionality makes the network less sensitive to shifts in the position of the detected features. Since 
C-layers are each inserted between two Slayers, this property applies to the features detected at all stages 
of the network; simple features in one layer of the network being elements of more complex features in 
the subsequent layers, this property also allows for some insensitivity to distortion of complex features. 

Subsidiary V-cells in the S-layers have another functionality. These cells have fixed connections to 
the same neurons in the preceding layer as their associated S-cells (there are as many V-cells as S-cells 
in S-layers) have variable connections to. The outputs of the V-cells are inhibitory connections to their 
associated S-cells. Their objective is mainly a winner-take-all functionality, to allow only one neuron 
firing at a time in one cell plane. 

C2.1.3.4 Learning 

Learning in a neocognitron is primarily unsupervised: neurons in S-layers find themselves the patterns 
they have to extract, according to a competitive adaptive scheme. Some supervised learning can, however, 
be added in the unsupervised scheme to have more control over the kind of feature that will be extracted 
by each S-layer. 

Two principles are at the basis of learning in the neocognitron. The first one concerns the reinforcement 
of maximum-output cells, the second one the development of iterative connections. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 97/1 c2.1: 13 

Copyright © 1997 IOP Publishing Ltd



Unsuwrvised Models 

The first principle consists in reinforcing the variable connections (to the Slayers) under two 
conditions: 

(i) the cell receiving the connection has a stronger activation than other cells in its neighborhood; 

(ii) the cell sending out the connection has a nonzero activation value, 

The weight change at this connection is then proportional to the activation of the neuron sending out the 
connection. 

Connections to the S-cells are thus adapted so that the S-cells will match the template presented at 
the previous layer. Inhibitory V-cells whose outputs are also connected to the S-cells fire when the pattern 
presented in the previous layer at the location scanned by the S- and V-cells does not match the feature 
already learned by the cell; the V-cells thus watch for irrelevant features, and increase the ability of the 
network to differentiate between different features. This differentiation property is also due to the first 
condition mentioned above, that a single cell in a small area will have its connections reinforced when a 
pattern is presented: the connections leading to this cell already match more or less the presented feature 
(since it is the neuron with the largest activation) and are even reinforced in that direction because of the 
proportionality between the reinforcement and the feature. 

The other principle leading to self-organization consists in selecting seed cells. In each hypercolumn, 
defined as the group of S-cells in a layer detecting features at approximately the same location in the 
previous layer, the cell that fires most is chosen as a candidate for seed cells. However, only one seed cell 
can be selected in each cell plane; if two S-cells are selected as candidates in the same cell plane, only 
the one having the greatest activation will be selected. 

Having selected (maximum) one seed cell in each cell plane, all other S-cells in that plane grow in 
order to have the spatial distribution of their inputs identical to that of the seed cell. This ensures that all 
cells in one cell plane will respond to the same feature, but of course at different locations. In contrast, 
all cells in the same hypercolumn will respond to different features at the same locations. 

In order to guarantee that the auto-organization principle of the network can take place, small random 
values must be attributed as initial conditions for the adaptable weights; if all weights were null at the 
beginning of the process, no selection of winner could occur, and the competitive process could not be 
initiated. 

The cooperative and simultaneous action of these two principles is at the basis of the auto-organization 
of the network, where the S-cells will progressively adapt their connections to extract the most frequent 
features detected when input patterns are presented. 

Let us finally mention that supervised learning can easily be inserted into the network, by replacing 
the automatic selection of seed cells by a teacher’s choice. This is possible at any stage of the network, 
and can greatly help in order to add available knowledge in the network (such as conventional similarity 
between visually different characters in OCR). 

C2.1.3.5 Related neural network models 

The neocognitron is not ‘similar’ to other widely used models in the neural network field. Basically, 
it is much more complex, has more layers, more weights, and more neurons than most other networks. 
The learning process is also complex, and not obvious to implement. In fact, an implementation of the 
neocognitron requires a lot of ‘fine-tuning’ effort; the size of the network is obviously dependent on the 
application, and some tricks can be given to guide the choice of the number of layers, neurons, cell planes, 
and so on. There are also parameters in the equations of the network (both use and learning) which are 
not obvious to choose, such as the exact form of the activation functions, the neuron thresholds, and so 
on. This is why we did not go into the details of the equations, since this would have largely exceeded 
the scope of this description. 

However, in the opinion of the author, the network has remarkable properties of adaptation to the 
examples given to the network. Mixing unsupervised and supervised learning can also be a determining 
advantage, to benefit from the inherent properties of the network when no supplementary information 
is available, but also to allow for the insertion of knowledge into the network when this knowledge is 
available. 

(2.1 :14 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedforward models 

References 

Cottrell M, Fort J C and Pages G 1994 Tko or three things that we know about the Kohonen algorithm Proc. Eur. 

Erwin E, Obermayer K and Shulten K 1992 Self-organizing maps: ordering, convergence properties and energy 

Fukushima K 1988 Neocognitron: a hierarchical neural network capable of visual pattern recognition Neural Networks 

Kohonen T 1989 Self-organization and Associative Memory (Berlin: Springer) 
Martinet2 T M, Berkovich S G and Schulten R J 1993 ‘Neural-Gas’ network for vector quantization and its application 

Robbins H and Monro S 1951 A stochastic approximation method Ann. Math. Stat. 22 400-7 
von der Malsburg C 1973 Self-organization of orientation sensitive cells in the striate cortex Kybemetik 14 85-100 

Symp. on Artificial Neural Networks (Brussels: D facto) pp 2 3 5 4  

functions Biol. Cyber. 67 47-55 

1 119-30 

to time-series prediction IEEE Trans. Neural Networks 4 558-69 

@ 1997 IOP Publishing Ltd and Oxford University Press Hudbook of Neurul Computution release 9711 (22.1 :15 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.2 Feedback models 

Gail A Carpenter (C2.2. I), Stephen Grossberg (c2.2.1, C2.2.3), and 
Peggy Israel Doerschuk (C2.2.2) 

Abstract 

See the individual abstracts for sections C2.2.1, C2.2.2, and C2.2.3. 

C2.2.1 Adaptive resonance theory: self-organizing networks for stable learning, recognition, and 
prediction 

Gail A Carpenteij and Stephen Grossberg$ 

Abstract 

Adaptive resonance theory (ART) is a neural theory of human and primate information 
processing and of adaptive pattern recognition and prediction for technology. Biological 
applications to attentive learning of visual recognition categories by inferotemporal cortex 
and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, 
auditory streaming, speech recognition, and eye movement control are noted. ARTMAP 
systems for technology integrate neural networks, fuzzy logic, and expert production 
systems to carry out both unsupervised and supervised learning. Fast and slow learning 
are both stable responses to large nonstationary databases. Match tracking search 
conjointly maximizes learned compression while minimizing predictive error. Spatial 
and temporal evidence accumulation improve accuracy in three-dimensional object 
recognition. Other applications are summarized. 

C2.2.1.1 Introduction 

The problem whereby the brain learns quickly and stably without catastrophically forgetting its past 
knowledge has been called the stability-plasticity dilemma (Grossberg 1980). The stability-plasticity 
dilemma must be solved by every brain system that needs to rapidly and adaptively respond to the flood 
of signals that subserves even the most ordinary experiences. Design principles that show how brain 
systems can stably learn an accumulating knowledge base in response to changing conditions throughout 
life should clarify how the brain unifies diverse sources of information into coherent moments of conscious 
experience. 

This section summarizes neural models that realize and develop a theory called adaptive resonance 
theory, or ART, that was introduced 20 years ago (Grossberg 1976a, b). ART principles have been used to 
explain challenging behavioral and brain data in the areas of visual perception, visual object recognition, 
auditory source identification, variable-rate speech and word recognition, and aspects of adaptive sensory- 
motor control, among others. Some of these analyses are reviewed below. In addition, ART concepts have 
been developed into precise mathematical systems that have been used in a wide variety of technological 

t Supported in part by the National Science Foundation (NSF ]RI-94-3659) and the Office of Naval Research (ONR N00014-95-1- 

4 Supported in part by the Advanced Research Projects Agency (ONR "14-92-J-4015) and the Office of Naval Research (ONR 
0409 and ONR "14-95-1-0657). 

NO00 14-95- 1-0657, ONR NO00 14-95- 1-0409, and ONR NO00 14-92-J- 1309). 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 (22.211 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

applications, including control of mobile robots, learning and search of airplane part inventories, control 
of nuclear reactors, medical diagnosis, three-dimensional visual object recognition, music analysis, and 
recognition of seismic, sonar, lasar radar, and Landsat imagery. These biological and technological 
applications exploit the key properties of ART systems that are summarized below. Note that, despite 
the broad explanatory scope of these systems, fundamentally different types of learning seem to govern 
processes such as spatial navigation and certain aspects of sensory-motor control. In these latter task 
domains, it is adaptive to forget old coordinate transformations as the brain’s control systems adjust to a 
growing body and to other changes in the body’s sensory-motor endowment throughout life. 

In addition to the development of ART as a cognitive and neural theory, families of ART neural 
network architectures have been progressively developed at Boston University. These models include 
ART 1, ART 2, ART 2-A, ART 3, Fuzzy ART, ARTMAP, Fuzzy ARTMAP, and Fusion ARTMAP 
(Asfour et a1 1993, Carpenter and Grossberg 1987a, b, 1990, 1991, Carpenter et a1 1991a, b, c, 1992, 
1993, 1995). Other ART models have also been developed and applied by a number of investigators. 

C2.2.1.2 Some key ARTproperties 

ART systems can autonomously learn, recognize, and make predictions with the following properties. 

Fast learning of rare events. A successful autonomous agent must be able to learn about rare events that 
have important consequences, even if these rare events are similar to a surrounding cloud of frequent 
events that have different consequences. Fast learning is needed to categorize a rare event before it is 
supplanted by more frequent subsequent events. 

Stable learning of large nonstationary databases. Individual events may also occur with variable 
probabilities and durations, and arbitrarily large numbers of events may need to be processed. ART 
systems contain a self-stabilizing memory that permits accumulating knowledge to be stably stored in 
response to arbitrarily many events in a nonstationary environment under incremental learning conditions, 
until the algorithm’s full memory capacity (which can be chosen to be arbitrarily large) is exhausted. 

Efficient learning of morphologically variable events. Multiple scales of generalization, from fine to coarse, 
need to be employed on an as-needed basis. Supervised ART systems can automatically adjust their scale 
of generalization to match the morphological variability of the data using a minimax learning rule that 
conjointly minimizes predictive error and maximizes generalization using only information that is locally 
available under incremental learning conditions. 

MANY-TO-ONE MAP 

VISUAL 

Figure C2.2.1. Many-to-one leaming combines categorization of many exemplars into one category and 
labelling of many categories with the same name. (Reprinted with permission from Carpenter and Grossberg 
1994.) 

c2.2:2 Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

Associative learning of many-to-one and one-to-many maps. Many-to-one learning includes both 
categorization and associative prediction (figure C2.2.1). For example, during categorization of printed 
letter fonts, many similar instances of the same printed letter may establish a single recognition category, 
or compressed representation. During prediction, all of the categories that represent a given letter may be 
associatively mapped into the letter name, or prediction. This is a second, distinct, type of many-to-one 
map, since there need be no relationship between the visual features that define a printed letter A and a 
written letter A, yet both categories have the same name. 

One-to-many learning is used to discover and accumulate expert knowledge about an object or event 
(figure C2.2.2). In many learning algorithms, including backpropagation, the attempt to learn more than 
one prediction about an event leads to unselective forgetting of previously learned predictions, for the 
same reason that these algorithms may become unstable in response to nonstationary data. 

ONE-TO-MANY MAP 

VISUAL AUDITORY 

"ROVER" 

Figure C2.2.2. One-to-many learning enables one input vector to be associated with many output vectors. 
If the system predicts an output that is disconfirmed at a given stage of learning the predictive error drives 
a memory search for a new category to associate with the new prediction without degrading its previous 
knowledge about the input vector. (Reprinted with permission from Carpenter and Grossberg 1994.) 

Paying attention and top-down priming. ART systems learn top-down expectations (also called primes, 
or queries) that can bias the system to ignore masses of irrelevant data. A large mismatch between a 
bottom-up input vector and a top-down expectation can suppress features in the input pattern that are not 
confirmed by the top-down prime and can thereby drive an adaptive memory search that carries out a bout 
of hypothesis testing. 

Hypothesis testing and match learning. The system hereby selectively searches for recognition categories, 
or hypotheses, whose top-down expectations provide an acceptable match to bottom-up data. Each top- 
down expectation begins to focus attention upon, and bind, that cluster of input features that are part of 
the prototype which it has already learned, while suppressing features that are not. 

Choosing the globally best answer without recursive search. After learning has stabilized, an input pattern 
first selects the category whose top-down expectation provides the globally best match. In addition, the 
top-down expectation read out by the selected category acts as a prototype for the class of all the input 
patterns that the category represents. 

@ 1997 IOP Publishing Ltd and Oxford University hess Hundbook of Neuml Compufution release 9711 C2.2:3 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Learning both prototypes and exemplars. The brain sometimes appears to learn prototypes, or abstract 
types of knowledge, such as being able to recognize that a particular object is a face or an animal and at 
other times to learn individual exemplars, or concrete types of knowledge, such as being able to recognize 
a particular face or a particular animal. Supervised ART systems can learn both types of knowledge. 

Controlling vigilance to calibrate conjidence. A confidence measure, called vigilance, calibrates how well 
an exemplar needs to match the prototype that it reads out in order for the corresponding category to 
resonate with it and be chosen. The minimax learning rule is realized by match tracking, a process that 
raises the vigilance parameter in response to a predictive error just enough to initiate hypothesis testing to 
discover a better category. 

Rule extraction andfuzzy reasoning. The IF-THEN rules of supervised ART systems can be read off from 
the learned adaptive weights of the system at any stage of the learning process. This property is particularly 
important in applications such as medical diagnosis from a large database of patient records, where doctors 
may want to study the rules by which the system reaches its diagnostic decisions. Tables C2.2.1-3 
summarize some medical and other benchmark studies that compare the performance of fuzzy ARTMAP 
with alternative recognition and prediction models. These and other benchmarks are described elsewhere 
in greater detail (Carpenter et a1 1991a, 1992, Carpenter and Tan 1995). 

Properties scale to arbitrarily large databases. All of the desirable properties of ART systems scale 
to arbitrarily large problems. On the other hand, ART helps to solve only learned categorization and 
prediction problems. These problems are, however, core problems in many intelligent systems, and have 
been technology bottlenecks for many alternative approaches. 

C2.2.1.3 Adaptive resonance theory topology ana' learning 

Since its introduction as a theory of human cognitive information processing (Grossberg 1976b, 1980), 
theoretical developments of adaptive resonance theory have continued to explain and predict cognitive 
and neural databases; see Carpenter and Grossberg (1991, 1993), Grossberg (1987a, b, 1988, 1994, 1995), 
Grossberg and Merrill(l992, 1996) and Grossberg et a1 (1994) for illustrative contributions. In addition, an 
evolving series of self-organizing neural network models have been developed for applications to adaptive 
pattern recognition and prediction. These self-organizing models can operate in either an unsupervised or 
a supervised mode. Unsupervised learning occurs when network predictions do not receive environmental 
feedback. Supervised learning occurs when prediction contingent feedback is available. This option does 
not occur in many supervised learning algorithms, such as backpropagation, which can learn only when 
feedback is available. Unsupervised ART models learn stable recognition categories in response to arbitrary 
input sequences with either fast or slow learning. These model families include ART 1 (Carpenter and 
Grossberg 1987a), which can stably learn to categorize binary input patterns presented in an arbitrary order; 
ART 2, ARTZA, and fuzzy ART (Carpenter and Grossberg 1987b, Carpenter et a1 1991b, c), which can 
stably learn to categorize either analog or binary input patterns presented in an arbitrary order, and ART 3 
(Carpenter and Grossberg 1990), which can carry out parallel search, or hypothesis testing, of distributed 
recognition codes in a multilevel network hierarchy. Variations of these models adapted to the demands 
of individual applications have been developed by a number of authors. 

Figure C2.2.3 illustrates one example from the family of ART 1 models, and figure C2.2.4 illustrates a 
typical ART search cycle. Level F1 in figure C2.2.3 contains a network of nodes, each of which represents 
a particular combination of input components, such as sensory features. Level F2 contains a network of 
nodes that represent recognition codes which are selectively activated by patterns of activation across F1. 
The activities of nodes in Fl and F2 are also called short-term memory (STM) traces. STM is the type of 
memory that can be rapidly reset without leaving an enduring trace. For example, it is easy to reset the 
STM of a list of numbers that a person has just heard once by distracting the person with an unexpected 
event. STM is distinct from LTM, or long-term memory, which is the type of memory that we usually 
ascribe to learning. For example, we do not forget our parents' names when we are distracted by an 
unexpected event. 

As shown in figure C2.2.4(a), an input vector I registers itself as a pattern X of activity across level 
F1. The Fl output vector S is then transmitted through the multiple converging and diverging adaptive 
filter pathways emanating from Fl . This transmission event multiplies the vector S by a matrix of adaptive 
weights, or LTM traces, to generate a net input vector T to level F2. The internal competitive dynamics 
of F2 contrast-enhance vector T .  Whereas many F2 nodes may receive inputs from F1, competition or 

C2.2:4 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University P r e s s  

Copyright © 1997 IOP Publishing Ltd



Attentionni Orienting 
subsystem subsystem 

A 

Nons ciRc 
InhlbRry 
gain control 

Resot 
and 

Search 

Matching 
criterion: 
vigilance , parameter 

Figure C2.2.3. An example of a model ART circuit in which attentional and orienting circuits interact. 
Level F I  encodes a distributed representation of an event by a short term memory (STM) activation pattern 
across a network of feature detectors. Level F2 encodes the event using a compressed STM representation 
of the F, pattern. Learning of these recognition codes occurs at the long term memory (LTM) traces within 
the bottom-up and top-down pathways between levels FI  and F2. The top-down pathways read-out learned 
expectations whose prototypes are matched against bottom-up input patterns at FI. The size of mismatches 
in response to novel events are evaluated relative to the vigilance parameter p of the orienting subsystem 
A. A large enough mismatch resets the recognition code that is active in STM at F2 and initiates a memory 
search for a more appropriate recognition code. Output from subsystem A can also trigger an orienting 
response. (Adapted with permission from Carpenter and Grossberg 1987a.) 

lateral inhibition between F2 nodes allows only a much smaller set of F2 nodes to store their activation 
in STM. A compressed activity vector Y is thereby generated across F2. In ART 1, the competition is 
tuned so that the F2 node that receives the maximal Fl + F2 input is selected. Only one component of 
Y is nonzero after this choice takes place. Activation of such a winner-take-all node defines the category, 
or symbol, of the input pattern I .  Such a category represents all the inputs I that maximally activate 

c2.1.1 the corresponding node. So far, these are the rules of a self-organizingfeature map (SOFM), also called 
competitive learning, or learned vector quantization (Grossberg 1972, 1976a, 1978, von der Malsburg 
1973, Kohonen 1984/1989). 

C2.2.1.4 The link between matching, hypothesis testing and attention 

The ART scheme for self-stabilizing its embedded SOFM model incorporates heuristics that are also used 
in expert production systems and fuzzy systems. In particular, ART systems carry out a form of hypothesis 
testing to discover new recognition categories and to stabilize learning. Thus in an ART model (Carpenter 
and Grossberg 1987a, 1991), learning does not occur whenever some winning F2 activities are stored in 
STM. Instead activation of F2 nodes may be interpreted as ‘making a hypothesis’ about an input I .  When 
Y is activated (figure C2.2.4(a)), it generates an output vector U that is sent top-down through the second 
adaptive filter. After multiplication by the adaptive weight matrix of the top-down filter, a net vector V 
inputs to Fl (figure C2.2.4(b)). Vector V plays the role of a learned top-down expectation. Activation of 
V by Y may be interpreted as ‘testing the hypothesis’ Y, or ‘reading out the category prototype’ V. When 

ci.i.6 the category representation Y makes a choice (winner-take-all), ART networks employ outstar learning 
(Grossberg 1968) to train the top-down (F2 + F l )  adaptive filter. The distributed outstar (Carpenter 1994) 
allows activity Y in an outstar source field F2 to be arbitrarily distributed. 

The ART 1 network is designed to match the ‘expected prototype’ V of the category against the active 
input pattern, or exemplar, I .  Nodes that are activated by I are suppressed if they do not correspond to 
large LTM traces in the prototype pattern V (figure C2.2.4(c)). Thus FI features that are not ‘expected’ by 
V are suppressed. Expressed in a different way, the matching process may change the F1 activity pattern 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9111 C2.2:5 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C 

I 

Figure C2.2.4. ART search for a recognition code: ( a )  The input pattern I is instated across the feature 
detectors at level FI as a short term memory (STM) activity pattem X. Input I also nonspecifically 
activates the orienting subsystem A;  see figure C2.2.1 STM pattem X is represented by the hatched pattem 
across F1. Pattem X both inhibits A and generates the output pattem S. Pattem S is multiplied by long 
term memory (LTM) traces and added at F2 nodes to form the input pattem T ,  which activates the STh4 
pattem Y across the recognition categories coded at level Fz. (b )  Pattem Y generates the top-down output 
pattem U which is multiplied by top-down LTM traces and added at FI nodes to form the prototype pattem 
V that encodes the learned expectation of the active F2 nodes. If V mismatches I at F 1 ,  then a new STM 
activity pattem X* is generated at F I .  X’ is represented by the hatched pattern. It includes the features of 
I that are confirmed by V. Inactivated nodes corresponding to unconfirmed features of X are unhatched. 
The reduction in total STM activity which occurs when X is transformed into Xm causes a decrease in the 
total inhibition from Fl to A .  (c) If inhibition decreases sufficiently A releases a nonspecific arousal wave 
to F2, which resets the STM pattem Y at F2. (d) After Y is inhibited its top-down prototype signal is 
eliminated and X can be reinstated at F , .  Enduring traces of the prior reset lead X to activate a different 
STM pattem Y’ at F2. If the top-down prototype due to Y* also mismatches I at F I ,  then the search for 
an appropriate F2 code continues until a more appropriate F2 representation is selected. Then an attentive 
resonance develops and learning of the attended data is initiated. (Adapted with permission from Carpenter 
and Grossberg 1987a.) 

X by suppressing activation of all the feature detectors in I that are not ‘confirmed’ by hypothesis Y. The 
resultant pattern X* encodes the cluster of features in I that the network deems relevant to the hypothesis 
Y based upon its past experience. Pattern X* encodes the pattern of features to which the network ‘pays 
attention’, This type of attentional focusing prevents irrelevant features from being incorporated into the 
prototype through learning. 

C2.2.1.5 The link between attention, resonance, and learning 

If the expectation V is close enough to  the input I, then a state of resonance develops as the attentional 
focus takes hold. The  pattern X* of attended features reactivates hypothesis Y which, in  turn, reactivates 
X*. The network locks into a resonant state through the mutual positive feedback that dynamically links 
X* with Y. In ART, the resonant state, rather than bottom-up activation, drives the learning process. The 
resonant state persists long enough, a t  a high enough activity level, to activate the slower learning process; 

C2.2:6 Hundbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

hence the term adaptive resonance theory. ART systems learn prototypes, rather than exemplars, because 
the attended feature vector X*, rather than the input I itself, is learned. These prototypes may, however, 
also be used to encode individual exemplars, as described below. 

C2.2.1.6 The link between intentionality and the stability of learning 

The ART attentive matching process may be realized in several ways (Carpenter and Grossberg 1987a). 
In one instantiation, three different types of inputs are combined at level Fl (figure C2.2.3): bottom-up 
inputs, top-down expectations, and attentional gain control signals. The attentional gain control channel 
sends the same top-down inhibitory signal to all Fl nodes; it is a ‘nonspecific’, or modulatory, channel. 

The ART matching rule allows Fl nodes to generate supratheshold outputs in response to bottom-up 
inputs, since an input directly activates its target Fl features (figure C2.2.4(a)). After the input instates 
itself at F1, leading to selection of a hypothesis Y and a top-down prototype V, the matching rule ensures 
that only those active F1 nodes that are confirmed by the top-down prototype can remain active and be 
attended at F1 after an F2 category is selected, since top-down nonspecific inhibitory feedback shuts off 
the Fl nodes that do not receive large learned top-down excitatory signals. 

The ART matching rule enables an ART network to realize a self-stabilizing learning process. 
Carpenter and Grossberg (1987a) proved that ART learning and memory are stable in arbitrary 
environments, but become unstable when the ART matching rule is eliminated. They also defined several 
circuits that generate the desired matching properties. Thus a type of matching that guarantees stable 
learning also enables the network to selectively pay attention to feature combinations that are confirmed 
by a top-down expectation. 

C2.2. I .  7 Vigilance control of category generalization 

The criterion of an acceptable match between bottom-up inputs and top-down prototypes is defined by a 
parameter p called vigilance (Carpenter and Grossberg 1987a, 1991). The vigilance parameter is computed 
in the orienting subsystem A .  Vigilance weighs how similar an input exemplar must be to a top-down 
prototype in order for resonance to occur. Resonance occurs if plIl - IX*l 5 0, where 0 5 p 5 1. This 
inequality says that the F1 attentional focus X* inhibits A more than the input I excites it. If A remains 
quiet, then an Fl tf F2 resonance can develop. 

Vigilance calibrates how much novelty the system can tolerate before activating A and searching 
for a different category. If the top-down expectation and the bottom-up input are too different to satisfy 
the resonance criterion, then hypothesis testing, or memory search, is triggered. Memory search leads to 
selection of a better category at level F2 with which to represent the input features at level F1. During 
search, the orienting subsystem interacts with the attentional subsystem, as in figures C2.2.4(c) and (d);  
to rapidly reset mismatched categories and to select other F2 representations with which to learn about 
novel events, without risking unselective forgetting of previous knowledge. Search may select a familiar 
category if its prototype is similar enough to the input to satisfy the vigilance criterion. The prototype 
may then be refined by top-down attentional focusing. If the input is too different from any previously 
learned prototype, then an uncommitted population of F2 cells is selected and learning of a new category 
is initiated. 

Because vigilance can vary across learning trials, recognition categories capable of encoding widely 
differing degrees of generalization or abstraction can be learned by a single ART system. Low vigilance 
leads to broad generalization and abstract prototypes since then pi11 - IX*l I 0 for all but the poorest 
matches. High vigilance leads to narrow generalization and to prototypes that represent fewer input 
exemplars, even a single exemplar. Thus a single ART system may be used, say, to recognize abstract 
categories of faces and dogs, as well as individual faces and dogs. A single system can learn both, during 
supervised learning, by increasing vigilance just enough to activate A if a previous categorization leads 
to a predictive error (Carpenter and Grossberg 1987a, 1992, Carpenter et a1 1991a, 1992). ART systems 
hereby provide a new answer to whether the brain learns prototypes or exemplars. Various authors have 
realized that neither one nor the other alternative is satisfactory, and that a hybrid system is needed (Smith 
1990). ART systems can perform this hybrid function in a manner that is sensitive to environmental 
demands. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hmdbook of Neurul Computution release 9711 C2.2:7 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.2.1.8 Memory consolidation and direct access to the globally best category 

As inputs are practiced over learning trials, the search process eventually converges upon stable categories. 
The process whereby search is automatically disengaged may be interpreted as a form of memory 
consolidation. Inputs familiar to the network access their correct category directly, without the need 
for search. The category selected is the one whose prototype provides the globally best match to the 
input pattern. If both familiar and unfamiliar events are experienced, familiar inputs can directly activate 
their learned categories, while unfamiliar inputs continue to trigger adaptive memory searches for better 
categories, until the network’s memory capacity, which can be chosen arbitrarily large, is fully utilized 
(Carpenter and Grossberg 1987a). 

C2.2.1.9 Some biological applications 

These ART properties have been used to explain and predict various cognitive and brain data that have, as 
yet, received no other theoretical explanation (Carpenter and Grossberg 1991, Grossberg 1987a, b). For 
example, a formal lesion of the orienting subsystem creates a memory disturbance that mimics properties 
of medial temporal amnesia (Carpenter and Grossberg 1 9 8 7 ~  1993, Grossberg and Merrill 1992). These 
and related data correspondences to orienting properties (Grossberg and Merrill 1992, 1996) have led 
to a neurobiological interpretation of the orienting subsystem in terms of the hippocampal formation of 
the brain. In applications to visual object recognition, the interactions within the FI and FZ levels of 
the attentional subsystem are interpreted in terms of data concerning the prestriate visual cortex and the 
inferotemporal cortex (Desimone 1992), with the attentional gain control pathway interpreted in terms of 
the pulvinar region of the brain. 

ART processing properties have also helped to explain behavioral and neural data from several other 
sensory, cognitive, and motor systems. The following sections briefly review some recent contributions. 
In all these models, top-down priming effects are due to a top-down nonspecific inhibitory gain control 
signal that is released in parallel with specific excitatory signals. 

C2.2.1.10 Neural dynamics of multisource audition 

How does the brain’s auditory system construct coherent representations of acoustic objects from the 
jumble of noise and harmonics that relentlessly bombards our ears throughout life? Bregman (1990) has 
distinguished at least two levels of auditory organization, called primitive streaming and schema-based 
segregation, at which such representations are formed in order to accomplish auditory scene analysis. The 
work summarized here models data about both levels of organization, and suggests that ART mechanisms 
of matching and resonance play a key role in achieving the selectivity and coherence that are characteristic 
of our auditory experience. In environments with multiple sound sources, the auditory system is capable 
of teasing apart the impinging jumbled signal into different mental objects, or streams, as in its ability to 
solve the cocktail party problem. 

Govindarajan et a1 (1994) have developed a neural network model of this primitive streaming process, 
called the ARTSTREAM model. This model groups different frequency components based on pitch and 
spatial location cues, and selectively allocates the components to different streams. The grouping is 
accomplished through a resonance that develops between a given object’s pitch, its harmonic spectral 
components, and (to a lesser extent) its spatial location. Those spectral components that are not reinforced 
by being matched with the top-down prototype read-out by the selected object’s pitch representation 
are suppressed, thereby allowing another stream to capture these components, as in the ‘old-plus-new 
heuristic’ of Bregman (1990). These resonance and matching mechanisms are specialized versions of 
ART mechanisms. 

C2.2.1.11 Neural dynamics of variable-rate speech categorization 

~ 1 . 7  What is the neural representation of a speech code as it evolves in real time? Grossberg et a1 (1995) 
have developed a neural model of this schema-based segregation process, called the ARTPHONE model. 
It is used to quantitatively simulate data concerning segregation and integration of phonetic percepts, as 
exemplified by the problem of distinguishing ‘topic’ from ‘top pick’ in natural discourse. Psychoacoustic 
data (Repp 1980) concerning categorization of stop consonant pairs indicate that the closure time between 
syllable final vowel-consonant (VC) and syllable initial consonant-vowel (CV) transitions determines 

C2.2:8 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

whether consonants are segregated (perceived as distinct) or integrated (fused into a single percept). 
Hearing two stops in a VC-CV pair that are phonetically the same, as in ‘top pick’, requires about 150 ms 
more closure time than hearing two stops in a VCl-C;?V pair that are phonetically different, as in ‘odd ball’. 
The ARTPHONE model traces these properties to dynamical interactions between a working memory for 
short-term storage of phonetic items and a list categorization network that groups, or chunks, sequences 
of the phonetic items in working memory. The speech code in the model is a resonant wave that emerges 
after bottom-up signals from the working memory select list chunks which, in turn, read out top-down 
expectations that amplify consistent working memory items. 

C2.2.1.12 Neural dynamics of boundary and sulface representation 

In the area of visual perception, Gove et a1 (1995) have developed a neural network model, called 
a FACADE theory model, to explain how visual thalamocortical interactions give rise to boundary 
percepts such as illusory contours and surface percepts such as filled-in brightnesses. Top-down feedback 
interactions are needed in addition to bottom-up feedforward interactions to simulate these data. One 
feedback loop is modeled between lateral geniculate nucleus (LGN) and cortical area V1, and another 
within cortical areas V1 and V2. The first feedback loop realizes a resonant matching process, as in ART, 
which enhances LGN cell activities that are consistent with those of of active cortical cells, and suppresses 
LGN activities that are not. 

C2.2.1.13 Neural dynamics for multimodal control of saccadic eye movements 

Saccades are eye movements by which an animal can scan a rapidly changing enviroment. While the 
saccadic system plans where to move the eyes, it also retains reflexive responsiveness to fluctuating light 
sources. These two types of saccade ultimately result in control of the same set of eye muscles. Visually 
reactive cells encode gaze error in a retinotopically activated motor map. Planned targets are coded in 
head-centered coordinates. When two conflicting commands attempt to share control of the saccadic eye 
movement system, the system must resolve the conflict and coordinate command of one set of eye muscles. 

The superior colliculus is a brainstem region that plays a prominent role in both planned and reactive 
saccades. This region coordinates information to adjust movements of the head and eyes to a stimulus. In 
order to combine these visual, somatic, and auditory saccade targets in the superior colliculus, the targets 
in head-centered coordinates are mapped to a gaze motor error in retinotopic coordinates. 

How does the saccadic movement system select a target when visual and planned movement commands 
differ? How do retinal, head-centered, and motor error coordinates learn to interact during the selection 
process? ART matching and resonance are proposed to control the stability of this learning and the attentive 
selection of saccadic target locations. Targets in retinotopic and head-centered coordinates are rendered 
dimensionally consistent so that they can compete for attention to generate a movement command in motor 
error coordinates. 

These results illustrate the scope of ART processing in the brain. The remaining discussion focuses 
upon ART applications, notably applications wherein fuzzy  logic computations are incorporated into ART DI 
algorithms. 

C2.2.1.14 Fuzzy adaptive resonance theory 

Fuzzy ART is a generalization of ART 1 that incorporates operations from fuzzy logic (Carpenter et a1 
1991~). While ART 1 can learn to classify only binary input patterns, fuzzy ART can learn to classify 
both analog and binary input patterns. Moreover, fuzzy ART reduces to ART 1 in response to binary 
input patterns. As shown in figure C2.2.5, the generalization to learning both analog and binary input 
patterns is achieved si,mply by replacing appearances of the binary intersection operator (n) in ART 1 by 
the analog MIN operator (A) of fuzzy set theory. The MIN operator reduces to the intersection operator in 
the binary case. In particular, as parameter cr approaches 0, the function T j  which controls category choice 
through the bottom-up filter (figure C2.2.4(a)) then measures the degree to which the adaptive weight 
vector w, is a fuzzy subset (Kosko 1986) of the input vector I .  The network first chooses the category j 
that maximizes T j .  

In fuzzy ART, input vectors are L’ (city block) normalized at a preprocessing stage (figure C2.2.6). 
This normalization procedure, called complement coding, leads to a symmetric theory in which the MIN 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 C2.2:9 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

ART 1 FUZZY ART 
(BINARY) (ANALOG) 

n= logical AND A =  f u n y  AND 
Intersection minimum 

Figure C2.2.5. Comparison of ART 1 and fuzzy ART (Reprinted with permission from Carpenter Grossberg 
and Rosen 1991b.) 

operator (A) and the MAX operator (v) of fuzzy set theory (Zadeh 1965) play complementary roles. 
Geometrically, the categories formed by fuzzy ART are then hyper-rectangles. Figure C2.2.7 illustrates 
how MIN and MAX define these rectangles in the two-dimensional case, with the MIN and MAX values 
defining the acceptable range of feature variation in each dimension. Complement coding uses on-cell 
(with activity a in figure C2.2.6) and off-cell (with activity a‘ in figure C2.2.6) opponent processes to 
represent the input pattern. This representation preserves individual feature amplitudes while normalizing 
the total on-celyoff-cell vector. The on-cell portion of a prototype encodes features that are critically 
present in category exemplars, while the off-cell portion encodes features that are critically absent (figure 
C2.2.6). The on-cell components of a category weight vector define the lower left-hand corner of the 
category rectangle in figure C2.2.7, and the complements of the off-cell components define the upper 
right-hand corner. Each category is then defined by an interval of expected values for each input feature. 
Thus for the category ‘man’, fuzzy ART would encode the feature of ‘hair on head’ by a wide interval 
([A, 11) and the feature ‘hat on head’ by a wide interval ([0, B ] ) .  For the category ‘dog’, two narrow 
intervals, [ C ,  11 for hair and [0, D] for hat correspond to narrower ranges of expectations for these two 
features. 

F1 I =(a,ac) I I I=M El t i  

Figure C2.2.6. Complement coding uses on-cell and off-cell pairs to normalize input vectors. (Reprinted 
with permission from Carpenter Grossberg and Rosen 1991b.) 

Learning in fuzzy ART converges because all adaptive weights can only decrease in time. Decreasing 
weights correspond to increasing sizes of category ‘boxes’. A box can grow to a maximum size of 
M(l - p ) ,  so smaller vigilance values permit larger category boxes. Learning stops when the input space 
is covered by boxes. Input complement coding thus works with the property of increasing box size to 

c2.2:10 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

prevent a proliferation of categories. With fast learning, constant vigilance, and a finite input set of 
arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A 
fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory 
against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are 
not rapidly erased in response to statistically unreliable input fluctuations. The equations that define the 
fuzzy ART and fuzzy ARTMAP algorithms are given in Carpenter et a1 (1991c, 1992). 

A Fuzzy AND (conjunction) 
V Fuzzy OR (disjunction) 

............ I yl x q  
& ........... ; 

0 1 

X A Y  

Figure C2.2.7. 
(Reprinted with permission from Carpenter et a1 1991b.) 

Fuzzy AND (MAX) and OR (MIN) operations generate category hyper-rectangles. 

Since fuzzy ARTMAP match tracking allows vigilance pa to vary, a predictive error can create new 
categories that could not be learned if vigilance were constant. Supervised learning permits the creation 
of complex categorical structures without a loss of stability. 

C2.2.1.15 Fuzzy ARTMAP 

Each fuzzy ARTMAP system includes a pair of fuzzy ART modules ART, and ARTb (figure C2.2.8). 
During supervised learning, ART, receives a stream [a(P)) of input patterns and ARTb receives a stream 
{ b @ ) }  of input patterns, where b(p) is the correct prediction given a@). These modules are linked by 
an associative learning network and an internal controller that ensures autonomous system operation in 
real time. The controller is designed to create the minimal number of ART, recognition categories, or 
‘hidden units,’ needed to meet accuracy criteria. As noted above, this is accomplished by realizing a 
minimax learning rule that conjointly minimizes predictive error and maximizes category generalization. 
This scheme automatically links predictive success to category size on a trial-by-trial basis using only local 
operations. It works by increasing the vigilance parameter p, of ART, by the minimal amount needed to 
correct a predictive error at ARTb (figure C2.2.9). 

Parameter pa calibrates the minimum confidence that ART, must have in a recognition category, or 
hypothesis, that is activated by an input a@) in order for ART, to accept that category, rather than search for 
a better one through an automatically controlled process of hypothesis testing. As in ART 1, lower values 
of p, enable larger categories to form. These lower pa values lead to broader generalization and higher 
code compression. A predictive failure at ARTb increases the minimal confidence pa by the least amount 
needed to trigger hypothesis testing at ART,, using a mechanism called match trucking (Carpenter et 
a1 1991a). Match tracking sacrifices the minimum amount of generalization necessary to correct the 
predictive error. Speaking intuitively, match tracking embodies the idea that the criterion confidence level 
that permitted selection of the active hypothesis needs to be raised to satisfy the demands of the current 
environment. Match tracking increases the criterion confidence just enough to trigger hypothesis testing. 
Hypothesis testing leads to the selection of a new ART, category, which focuses attention on a new cluster 
of a(P) input features that is better able to predict b@).  The combination of match tracking and fast learning 
allows a single ARTMAP system to learn a prediction for a rare event different from that for a cloud of 
similar frequent events in which it is embedded. 

@ 1997 1OP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 c2.2: 11 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

mao field FBb 

Figure C2.2.8. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor transforms the 
Mu-vector a into the 2M,-vector A = (a ,  a') at the ART, field F l .  A is the input vector to the ART, 
field Ff. Similarly the input to F,b is the 2Mb-vector (b ,  b')). When a prediction by ART, is disconfirmed 
at ARTb, inhibition of map field activation induces the match tracking process. Match tracking raises the 
ART, vigilance po to just above the Ff to F," match ratio lz"l/lAl. This triggers an ART, search which 
leads to activation of either an ART, category that correctly predicts b or to a previously uncommitted 
ART, category node. (Reprinted with permission from Carpenter et a2 1992.) 

MATCH TRACKING 

PREDICTION 

(a) n 
ORIENTING 
SUBSYSTEM 

(b) ORIENTING 
SUBSYSTEM 

t 
Figure C2.2.9. Match tracking: (a) A prediction is made by ART, when the baseline vigilance p, is less 
than the analog match value. (b) A predictive error at ARTb increases the baseline vigilance value of ART, 
until it just exceeds the analog match value and thereby triggers hypothesis testing that searches for a more 
predictive bundle of features to which to attend. (Reprinted with permission from Carpenter and Grossberg 
1994.) 

c2.2:12 Hundbook of Neurul Compururion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

C2.2.1.16 Some technological applications 

ART models, ranging from ART 1 to fuzzy ARTMAP, outperform many expert systems, genetic algorithms, 
and other neural networks in benchmark studies (tables C2.2.1-3) and have been used to help solve 
outstanding technological problems (Bachelder et a1 1993, Baraldi and Parmiggiani 1995, Caudell et a1 
1994, Christodoulou et a1 1995, Dubrawski and Crowley 1994, Gan and Lua 1992, Gopal eta1 1994, Ham 
and Han 1993, Harvey 1993, Johnson 1993, Kasperkiewicz et al 1994, Keyvan et a1 1993, Kumara et 
a1 1994, Mehta et a1 1993, Moya et a1 1993, Murshed et a1 1995, Suzuki et a1 1993, Tarng et a1 1994, 
Wienke 1994, Wienke and Kateman 1994, Wienke et a1 1994). Recent unsupervised ART models have 
been used to explain behavioral and brain data in auditory source analysis, variable-rate speech perception, 
visual perception, and visual object recognition, as described above. A self-organizing neural architecture, 
called VIEWNET (Bradski and Grossberg 1995), that can learn to recognize noisy three-dimensional 
objects from sequences of their two-dimensional views is next reviewed to show how fuzzy ARTMAP 
can be embedded into larger systems. Another three-dimensional object recognition application illustrates 
how the ART-EMAP architecture (Carpenter and Ross 1993, 1995) uses distributed network activity to 
improve noise tolerance while retaining the speed advantage of fast learning. Both architectures illustrate 
how temporal evidence accumulation can augment ARTMAP capabilities. 

Table C2.2.1. ARTMAP benchmark studies. (Reproduced with permission from Carpenter and Grossberg 
1993.) 

1. Medical database 
Mortality following coronary bypass grafting (CABG) surgery 

Fuzzy ARTMAP significantly outperforms: 
Logistic regression 
Additive model 
Bayesian assignment 
Cluster analysis 
Classification and regression trees 
Expert-panel-derived sickness scores 
Principal component analysis 

2 .  Mushroom database 
Decision trees (90-95% correct) 
ARTMAP (100% correct) 

3. Letter recognition database 
Training set an order of magnitude smaller 

Genetic algoritm (82% correct) 
Fuzzy ARTMAP (96% correct) 

Backpropagation (90% correct) 
Fuzzy ARTMAP (99.5% correct) 

Backpropagation (1 0 000-20 000 training epochs) 
Fuzzy ARTMAP (1-5 training epochs) 

4. Circle-in-the-square task 

5.  Two-spiral task 

C2.2.1.17 Two Applications offuzzy ARTMAP 

VIEWNET: neural architectures for  learning to recognize three-dimensional objects from sequences of two- 
dimensional views. VIEWNET (View Information Encoded With NETworks) accumulates evidence across 
sequences of possibly noisy or incomplete two-dimensional views of a three-dimensional object in order 
to generate more accurate object identifications than would otherwise be possible (Bradski and Grossberg 
1995). The simplest VIEWNET architecture, VIEWNET 1, incorporates a preprocessor that generates a 
compressed but two-dimensional invariant representation of an image, a supervised incremental learning 
system that classifies the preprocessed representations into two-dimensional view categories whose outputs 
are combined into three-dimensional invariant object categories, and a working memory that makes a three- 
dimensional object prediction by accumulating evidence from three-dimensional object category nodes as 
multiple two-dimensional views are experienced. Evidence accumulation has also been successfully used 
in neural network machine vision applications that are based on aspect networks (Baloch and Waxman 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neuml Computution release 9711 c2.2113 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Table C2.2.2. Fuzzy ARTMAP applied to the Landsat image database (Feng el a1 1993). With the exception 
of K-N-N, fuzzy ARTMAP test set performance exceeded that of other neural network and machine learning 
algorithms. Compared to K-N-N, fuzzy ARTMAP showed a 6: 1 code compression ratio. 

Algorithm Accuracy (%) 

K-N-N 
Fuzzy ARTMAP 
RBF 
Alloc80 
INDCART 
CART 
B ackprop 
c4.5 
NewID 
CN2 
Quadra 
SMART 

Discrim 
CASTLE 

M S e g  

91 
89 
88 
87 
86 
86 
86 
85 
85 
85 
85 
84 
83 
83 
81 

Test (%) Compression 
K-N-N 91 1:l 
Fuzzy ARTMAP 89 6: 1 

Table C2.2.3. On the Pima Indian Diabetes (PID) database fuzzy ARTMAP test set performance was 
similar to that of the ADAP algorithm (Smith et a1 1988) but with far fewer rules and faster training. An 
ARTMAP pruning algorithm (Carpenter and Tan 1995) further reduces the number of rules by an order 
of magnitude and also boosts test set accuracy to 79%. An instance counting algorithm ARTMAP-IC 
(Carpenter and Markuzon 1996) boosts accuracy to 81%. 

Supervised learning 

Training 
Test 

576 
192 

ADAP 
(Smith et a1 1988) 
0 100000 rules 

76% correct on test set 
Slow learning 

Fuzzy ARTMAP 
(Carpenter et a1 1992) 
0 50-80 rules 
0 76% correct on test set 
0 Fast learning (6-15 epochs) 

1991, Seibert and Waxman 1990). Recognition was studied with noisy and clean images using slow 
and fast learning. Slow learning at the fuzzy ARTMAP map field was designed to learn the conditional 
probability of the three-dimensional object given the selected two-dimensional view category. VIEWNET 
1 was demonstrated on an MIT Lincoln Laboratory database of 4000 128 x 128 two-dimensional views 
of aircraft with and without additive noise. A recognition rate of up to 90% was achieved with one 
two-dimensional view and a rate of up to 98.5% correct with three two-dimensional views. 

ART-EMAP: object recognition by spatial and temporal evidence accumulation. ART-EMAP also 
incorporates fuzzy ARTMAP into a larger architecture for three-dimensional recognition. It uses spatial 
and temporal evidence accumulation to recognize target objects and pattern classes in noisy or ambiguous 
input environments (Carpenter and Ross 1993, 1995). During performance, ART-EMAP integrates spatial 

c2.2:14 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

evidence distributed across recognition categories to predict a pattern class. During training, ART-EMAP 
is equivalent to fuzzy ARTMAP and so inherits the advantages of fast, on-line, incremental learning, such 
as speed, stability, and the ability to encode rare cases. Distributed activation during performance also 
endows the network with the advantages of slow learning, including noise tolerance and error correction. 
When a decision criterion determines the pattern class choice to be ambiguous, additional input from 
the same unknown class may be sought. Evidence from multiple inputs accumulates until the decision 
criterion is satisfied and the system makes a high-confidence prediction. Accumulated evidence can also 
fine tune performance during unsupervised rehearsal learning. Thus, in four incremental stages, ART- 
EMAP improves predictive accuracy of fuzzy ARTMAP and extends its domain to include spatiotemporal 
recognition and prediction. 

C2.2.1.18 Concluding remarks 

The above examples illustrate an emerging picture of how the adaptive brain works wherein issues 
of stability and plasticity are joined with properties of attention, intention, hypothesis testing, and 
consciousness. The mediating events are adaptive resonances that achieve a dynamic balance between 
the complementary demands of stability and plasticity, and of expectation and novelty, in response to 
rapidly changing environments. Similar issues arise in technological problems wherein intelligent agents 
or controllers are desired that can support a significant level of autonomous performance. This is why 
ART systems are finding their way into solutions to a rapidly expanding set of applied problems. 

Acknowledgement 

The authors wish to thank Robin Locke for her valuable assistance in the preparation of this manuscript. 

C2.2.2 Resonance correlation network 

Peggy Israel Doerschuck 

Abstract 

The resonance correlation network (RCN) is a self-organizing feedback network which 
classifies either binary- or continuous-valued patterns. Its architecture is based on 
adaptive resonance theory (ART), but it eliminates the need for a sequential search 
through previously learned categories which is a drawback of ART. The RCN uses a 
dot product activation function and uses normalized correlation as its similarity measure. 
This guarantees that the most highly activated recognition layer node is the one which 
is most similar to the pattern currently under consideration, thus obviating the need for 
search. 

C2.2.2.1 Introduction 

The resonance correlation network (RCN) was developed by Ryan (1988). The RCN was inspired by 
adaptive resonance theory (ART) (Carpenter and Grossberg 1987a). Its main advantage is that it eliminates 
the need for sequential search which is characteristic of ART. 

C2.2.2.2 Purpose 

The RCN is a self-organizing network which is used to classify binary- or continuous-valued patterns. 
The network automatically forms classes of data by clustering similar patterns together. The user supplies 
a vigilance parameter which specifies how similar patterns must be in order to be clustered together. The 
RCN is inspired by ART, but uses a different similarity measure which eliminates the need for sequential 
search for a matching prototype. This is particularly advantageous where patterns are to be classified in 
real time. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 

c2.2.1 

C2.2:15 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.2.2.3 Topology 

The architecture of the RCN is illustrated in figure C2.2.10. It consists of an input layer I ,  a comparison 
layer C, a recognition layer R ,  and a reset assembly R e .  A vector of bottom-up weights Bj = (b l j ,  bzj . . .) 
goes from each node in C to each node j in R ,  and a vector of top-down weights T, = ( t i l ,  t j 2 ,  . , .) goes 
from each node j in R to each node in C .  The input layer merely stores the input pattern. Each node in 
C corresponds to a component of the input pattern, and each node in R corresponds to a learned pattern 
prototype. The prototype associated with node Rj is stored in the vector of top-down weights T,. 

R Recognition layer 

4 
E 

C Comparison layer 

Re Reset assembly 

Figure C2.2.10. High-level architecture of the resonance correlation network (copyright 1988 IEEE). 

Each node j in R receives signals from C which are modulated by Bj. The nodes in R compete 
with each other, and the one with the highest activation is called the winner. Layer C receives input from 
I and also receives weighted signals from the winning node Rj which are proportional to its top-down 
weights T,, so that the pattern of activation in C is a combination of the input pattern and the winning 
prototype pattern. The reset assembly receives as inputs vectors I and C and produces a signal E which 
will inhibit the winning node Rj if I and C are not similar enough. 

The architecture described thus far is the same as in ART. However, the RCN includes an additional 
set of nodes U associated with the recognition layer. These nodes are used to distinguish those nodes in 
R which correspond to previously learned prototypes from unused R nodes. In the case of a mismatch, 
the reset assembly uses this information to inhibit not only the winning node in R but also any other R 
node which corresponds to a previously learned prototype. This prevents the firing of each of the next 
highest responders in turn and thereby eliminates the sequential search for a matching prototype which is 
characteristic in ART. In addition, U controls whether the input pattern I or the winning node's prototype 
T, is registered on C, as is described further in section C2.2.2.5. 

C2.2.2.4 Learning 

Learning in the RCN is unsupervised. The user supplies a vigilance parameter U which specifies how 
similar patterns must be in order to be clustered together. Learning is accomplished by changing the 
values of the bottom-up and top-down weights and the U nodes. These values are governed by first-order 
nonlinear ordinary differential equations. Like ART, the RCN operates in either fast learning mode or 
slow learning mode. In fast learning, it is assumed that these values are allowed to reach their asymptotic 
limits for each presentation of an input pattern. More than one pass through the training data may be 
needed before the classes stabilize. The RCN works on either binary- or continuous-valued patterns. 

C2.2.2.5 Learning rule 

Bottom-up weights are initialized such that bij < d-'I2, where d is the dimensionality of the input pattern. 
This ensures that the activation of a previously encoded R node will always be greater than that of an 
unused node (Ryan 1988). Top-down weights are initialized to 0. The node activations and weights of the 
network are governed by the following differential equations (Ryan 1988). 

~~ 

c2.2:16 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

Recognition layer nodes: 

Comparison layer nodes: 

Reset mechanism: 

Bottom-up weights: 

Top-down weights: 

L J 

r = ullIll IlCll - I - C 
t E j  = f ( r ) [ f ( R j )  + ~ j ]  - Ej . 

i j i  = f ( R j ) ( C i  - tji) 
U : U j  = f ( R j ) ( l  - ~ j ) .  

(C2.2.2) 

(C2.2.3) 
(C2.2.4) 

(C2.2.5) 

(C2.2.6) 
(C2.2.7) 

The primary forcing function for Rj is the dot product: 

Fj = C *  Bj.  (C2.2.8) 

Here, f ( R , )  is 1 if R, is the winning node and 0 otherwise: 

(C2.2.9) 

The parameter t is a time constant << 1, and A is a constant > IIIllmax which keeps losing nodes from 
becoming active. llXll = (CX?)~/*  denotes the norm of X. 

The vector of nodes U is initialized to 0, and uj converges to 1 if Rj is used to encode a pattern, as 
shown in (C2.2.7). The presence of uj in (C2.2.2) will cause the pattern Tj to be registered on C if the 
winning node R, has been used and will cause I to be registered on C if R, is unused. 

The variable r in (C2.2.3) is a measure of the correlation between I and C. The value f ( r )  in 
(C2.2.4) is 1 if the similarity is too low. This makes Ej in (C2.2.4) respond, so that it inhibits the winning 
node in (C2.2.1). The presence of U ,  in (C2.2.4) causes previously used recognition nodes to be inhibited 
in (C2.2.1) also if there is a reset. The parameter a, which is a value between 0 and 1, controls the stability 
of the prototypes, as is described in more detail later in this section. 

In fast learning mode, the weights are assumed to reach their asymptotic values upon each presentation 
of an input pattern. Under certain conditions, the fast learning algorithm is as follows (assuming K 
prototypes have already been learned). 

Repeat until convergence: 

(i) present the next input pattern P at layer I; 
(ii) copy Z into C; 
( 5 )  calculate the activation level of each node in R and find the winning node R i  for which Fi > Fk for 

all k # j ;  
(iv) send Ri’s activation down via q, to C,  so that C becomes some linear combination of I and z,; 
(v) if C T/IJCII IIZ 11 < U then the pattern is novel so select an unused node j = K + 1;  otherwise 

(vi) update the weights as follows: T /  = C and Bj = C/llCll . 
In step (iv), the pattern of activation in the comparison layer becomes 

j = i ;  

c = I(1 - U U i )  + where R i  is the winning node. (C2.2.10) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neuml Computution release 9711 c2.2:17 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

With (Y = 1, C takes on the value of F ,  so that the ith prototype remains stable at the location of the first 
pattern in cluster i .  With (Y = 0, C = I = P at step (iv), so the ith prototype is moved to the position of 
the current pattem. The parameter (Y is thus used to control the stability of the prototypes. 

Figure C2.2.11 shows how the receptive domains of a prototype can move where (Y # 1. In this 
figure, it is assumed that the patterns are of three dimensions. Normalization projects the patterns onto the 
surface of a unit sphere. The receptive domains are shown plotted in rectangular coordinates for ease of 
illustration. Each circle represents the intersection of a cone of fixed angle with the surface of the sphere, 
where the angle of the cone is determined by U. 

Figure C2.2.11. Fast-leam receptive domains. ‘+’ represents the current input pattem and ‘ 0 ’  represents 
previously coded patterns. Addition and adjustment of receptive domain as training pattems are presented 
to the network. In step 5 ,  the receptive domain initiated at step 3 has shifted and no longer includes the 
original prototype. In step 8, the pattem previously seen at step 3 is presented again and generates a new 
receptive domain (copyright 1988 IEEE). 

It has been shown (Ryan 1988) that where a dot product forcing function is used, the use of normalized 
correlation as a similarity measure provides direct access upon presentation of a pattern P to a node which 
encodes P .  It is easy to see that there is no need for a sequential search through all prototypes since that 
R node with the greatest activation also has the best normalized correlation similarity measure: 

If Rj is the winner, then 

c * Bj > c * Bk for all k # j . (C2.2.11) 

Substituting Bj = Tj/llqll (from step (vi)) into (C2.2.11) yields: 

Dividing each side by llCll yields: 

If C * q/llCl/ llT/ 11 < U then (C2.2.13) yields: 

c * Tk/llcll IlTkll C U for all k # j . (C2.2.14) 

From (C2.2.14), if the winning node’s prototype does not pass the vigilance test, no other node’s prototype 
will. Therefore, it is not necessary to compute the similarity of C with any prototype other than the winner. 

C2.2.2.6 Related neural network models 

The RCN has a control structure like that of ART1 but, since it works for both binary- and continuous- 
valued patterns, is functionally more similar to ART2 (Carpenter and Grossberg 1987b). The main 
difference between the RCN and ART2 is that (i) RCN uses normalized bottom-up weights, while ART2 
normalizes the input pattern; (ii) RCN uses normalized correlation as its similarity measure; and (iii) RCN 

c2.2:18 Hundbook of Neurul Compularion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

eliminates the need for sequential search for a matching prototype, at the cost of an extra set of nodes U 
which keep track of encoded R nodes. 

Simplified ARTl (Israel et al 1992) is another variation of ARTl which eliminates search. It is 
simpler than RCN, and uses only one set of bidirectional weights, but works only on binary patterns. 

Fuzzy ART (Carpenter et a1 1991c) eliminates search in ART by using complement coding, which ~ 2 . 2 . 1 . 1 4  

doubles the size of the input and weights. Fuzzy ART works only on (0, 1) continuous patterns. 

C2.2.2.7 Advantages 

The RCN is faster than ART because there is no need for sequential search. It is more general-purpose 
than simplified ARTl and fuzzy ART because it works on both binary- and continuous-valued patterns 
not restricted to (0, 1). It also has a simpler architecture and learning rule than fuzzy ART. 

C2.2.2.8 Disadvantages 

For classification of binary-valued patterns, the RCN is more complex than simplified ART1, which uses 
only one set of bidirectional weights and does not require normalization. Also, the RCN uses normalized 
prototypes. This approach may not be appropriate where scale is an important factor in classification. 

C2.2.2.9 Typical applications 

The RCN is used for pattern clustering and classification of binary- or continuous-valued patterns where the 
class of the sample patterns is not a priori known. It is functionally equivalent to ART2, but eliminates the 
need for sequential search for a matching category. The RCN can be used in the same types of applications 
as ARTl or ART2. 

C2.2.2. I O  Variations and improvements 

In the RCN, cluster centers are placed at either (i) the location of the first seen pattern in the cluster (if 
a = l), (ii) the most recently seen pattern in the cluster (if a = 0); or (iii) some linear combination of the 
two (for a between 0 and 1). Case (i) results in stationary cluster centers, but these ‘centers’ may actually 
be patterns which are outliers. Cases (ii) and (iii) can lead to cluster drift, as illustrated in figure C2.2.11. 
Both of these situations can cause additional categories to be formed if the ‘centers’ are positioned at 
outlying patterns. While using a value of a between 0 and 1 can control this to some extent, results 
depend on the value selected for a and the order of presentation of the patterns. 

Fuzzy clustering techniques have recently been incorporated into a fast-learning RCN to improve 
cluster formation. The adaptive fuzzy leader clustering resonance correlation network (Cleary and Israel 
1994) incorporates fuzzy leader clustering into the RCN structure to produce better-formed categories. 
Here each cluster center’s position is determined by taking a weighted average of all the patterns in a 
category. Each pattern’s contribution to the average is weighted by its degree of membership in the 
category, which is a function of its relative proximity to the center. Outlying patterns therefore have 
less influence on movement of the cluster center. This tends to produce fewer categories and reduces the 
order dependence of category formation, but at the price of additional storage required to keep track of all 
sample patterns. 

C2.2.3 Boundary and feature contour systems 

Stephen Grossberg 

Abstract 

When humans gaze upon a scene, their brains rapidly combine several different types of 
locally ambiguous visual information to generate a globally consistent and unambiguous 
representation of form-and-color-and-depth, or FACADE. This state of affairs raises the 
question: what new computational principles and mechanisms are needed to understand 
how multiple sources of visual information cooperate automatically to generate a 
percept of three-dimensional form? This section reviews some modeling work aimed 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurui Computution release 9711 c2.2: 19 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

at developing such a general-purpose vision architecture. This architecture clarifies 
how scenic data about boundaries, textures, shading, depth, multiple spatial scales and 
motion can be cooperatively synthesized in real-time into a coherent representation of 
three-dimensional form. It embodies a new vision theory that attempts to clarify the 
functional organization of the visual brain from the lateral geniculate nucleus (LGN) to 
the extrastriate cortical regions V4 and MT. Moreover, the same processes which are 
useful towards explaining how the visual cortex processes retinal signals are equally 
valuable for processing noisy multidimensional data from artificial sensors, such as 
synthetic aperture radar, laser radar, multispectral infrared, magnetic resonance and high- 
altitude photographs. These processes generate three-dimensional boundary and surface 
representations of a scene. 

C2.2.3.1 Introduction 

The difficulties inherent in computationally understanding biological vision can be appreciated by 
considering a few examples. Figure C2.2.12 depicts an Ehrenstein figure and an offset grating. When 
we view the offset grating, we see and recognize horizontal black lines on white paper, but we also 
recognize a vertical boundary between the lines that we do not see. The vertical boundary does not 
generate brightnesses or colors that differ significantly from the background. Such a boundary is often 
said to be an amodal percept. Thus there is a profound difference between seeing and recognizing, and 
we can sometimes recognize groupings that we cannot see. This state of affairs raises the central question: 
if we can recognize things that we cannot see, then why do we bother to see? 

The other side of the coin is equally perplexing; namely, we can sometimes see things that are not 
in the image. Thus, in viewing the Ehrenstein figure shown in figure C2.2.12, we can see a bright disk 
within the perpendicular lines, although the luminance across all white parts of the figure is the same. 

C2.2.3.2 The hierarchical resolution of uncertainty 

In order to computationally understand such labile relationships between recognized boundary 
segmentations and seen surface brightnesses, a qualitatively different type of vision theory, called FACADE 
theory, is being developed to clarify how representations of form-and-color-and-depth are generated 
(Francis et a1 1994, Gove et a1 1995, Grossberg 1994, Grossberg and Mingolla 1985a, b, Grossberg and 
TodoroviC 1988, Pessoa et a1 1995). FACADE theory holds that the paradoxes of figure C2.2.12 can be 
understood as manifestations of adaptive neural mechanisms. Specifically, our visual systems are designed 
to detect, complete and regularize relatively invariant object boundary structures amid noise caused by 
the eyes’ own optics or occluding objects; to fill in relatively invariant surface colors under variable 
illumination conditions; and to learn to recognize familiar objects or events in the environment. These 
three principal functions are performed by the three main subsystems of the theory: the boundary contour 
system (BCS), the feature contour system (FCS) and the object recognition system (ORs), respectively, 
as indicated in the macrocircuit of figure C2.2.13. 

A unifying theme constraining the design of the theory’s mechanisms is that there exist fundamental 
computational limitations at each stage of the visual measurement process-that is, uncertainty principles 
are just as important in vision as in physics. For example, the computational demands on a system 

Figure C2.2.12. ( a )  an offset grating and ( b )  an Ehrenstein figure. 

c2.2:20 &ndbook of Neurul Computation release 9711 @ 1597 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

that computes invariant boundary structures are, in many respects, complementary to those on a system 
that computes invariant surface colors. For example, boundaries are completed in an oriented fashion 
inwardly between pairs or larger numbers of boundary inducers. The output of the boundary system is 
insensitive to contrast polarity because it pools outputs from cells that are sensitive to opposite contrast 
polarities in order to build object boundaries despite contrast reversals against a textured background. ‘All 
boundaries are invisible’ within the boundary system because they add up signals from opposite contrast 
polarities. Surfaces, on the other hand, fill-in in an unorienfed fashion outwardly using a diffusive 
process whose output is sensifive to contrast polarity. Surface representations can therefore support visible 
percepts. 

The complementary computations of the BCS and FCS clarify why they process the signals from 
each monocular preprocessing (MP) stage in parallel (figure C2.2.13). This is not to say that the BCS 
and FCS are independent modules. Figure C2.2.14 depicts in greater detail how levels of the BCS and 
FCS interact through multiple feedforward and feedback pathways to generate a three-dimensional surface 
representation at the final level of the FCS, which is called the binocular filling-in domain, or FIDO. 

In addition to the complementary relationship between the FCS and the BCS, there also exist 
informational uncertainties at processing levels within each of these systems. As indicated below, the 
computations within the FCS which reduce uncertainty due to variable illumination conditions create new 
uncertainties about surface brightnesses and colors that are resolved at a higher FCS level by the process 
that fills-in surface properties such as brightness, color and depth. Likewise, the computations within 
the BCS which reduce uncertainty about boundary orientation create new uncertainties about boundary 
position that are resolved at a higher BCS level by the process of boundary completion. 

C2.2.3.3 Model architecture 

Preprocessing by a model lateral geniculate nucleus. The BCS consists of multiple copies, each with cells 
whose receptive fields are sensitive to a different range of image sizes. Each BCS copy consists of a filter 
followed by a grouping, or boundary completion, network. There are two parallel BCS architectures. One 
models the formation of static boundary segmentations by the LGN parvo + interblob +. interstripe + 
V4 processing stream in figure C2.2.15. The other models boundary segmentations that are derived from 

ORS 

BCS FCS 

I 

BCS FCS 

I 

Figure C2.2.13. A macrocircuit of processing stages: Monocular preprocessed (MP) signals are sent 
independently to both the boundary contour system (BCS) and the feature contour system (FCS). The BCS 
preattentively generates coherent boundary structures from these MP signals. These structures send outputs 
to both the FCS and the object recognition system (ORS). The ORS, in turn, rapidly sends top-down 
learned template signals, or expectations, to the BCS. These template signals can modify the preattentively 
completed boundary structures using learned, attentive information. The BCS passes these modifications 
along to the FCS. The signals from the BCS organize the FCS into perceptual regions wherein filling-in of 
visible brightnesses and colors can occur. This filling-in process is activated by signals from the MP stage. 
The completed FCS representation, in tum, also sends signals to the BCS and the ORS. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 c2.2:21 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

T 

FACADE 
REPRBSENTATlON . 

Figure C2.2.14. Macrocircuit of monocular and binocular interactions of the boundary contour system 
(BCS) and the feature contour system (FCS): left eye and right eye monocular preprocessing stages (MPL 
and MPR) send parallel pathways to the BCS (boxes with vertical lines, designating oriented responses) and 
the FCS (boxes with three pairs of circles, designating opponent colors). The monocular signals BCSL and 
BCSR activate simple cells which, in tum, activate bottom-up pathways, labeled 1 ,  to generate a binocular 
boundary segmentation using the complex, hypercomplex, and bipole cell interactions of figure C2.2.16. 
The binocular segmentation generates output signals to the monocular filling-in domains, or FIDOs, of the 
FCS via pathways labeled 2. This interaction selects binocularly consistent FCS signals and suppresses the 
binocularly inconsistent FCS signals. Reciprocal FCS --f BCS interactions enhance consistent boundaries 
and suppress boundaries corresponding to further surfaces. The surviving FCS signals activate the binocular 
FIDOs via pathways 3 ,  where they interact with an augmented binocular BCS segmentation to fill-in a 
multiple-scale surface representation of form-and-color-and-depth, or FACADE. Processing stages MPL and 
MPR are compared with LGN data; the simple-complex cell interaction with V1 data; the hypercomplex- 
bipole interaction with V2 and (possibly) V4 data, notably about inter-stripes; the monocular FCS interaction 
with blob and thin stripe data; and the FACADE representation with V4 data. (Reprinted with permission 
from Grossberg (1994)) 

moving forms by the LGN magno += 4B += thick stripe + MT processing stream in figure C2.2.15. The 
summary herein will consider only the static BCS, and only a single scale of its monocular processing 
properties, as summarized in figure C2.2.16. For extensions to binocular processing and three-dimensional 
figure-ground separation, see Grossberg (1994). For summaries of the motion BCS, see Francis and 
Grossberg (1996), Grossberg and Mingolla (1993) and Grossberg and Rudd (1992). 

The model LGN ON and OFF cells receive input from retinal ON and OFF cells. ON cells are 
turned on by increments in image contrasts, whereas OFF cells are turned off. (See Schiller (1992) for a 
review.) Because these ON and OFF cells have antagonistic surrounds and obey shunting, or membrane, 
equations, they help to discount the illuminant, normalize image activities, and extract ratio contrasts from 
an image (Grossberg 1983). These image preprocessing properties are needed to simulate even the most 
basic brightness percepts (Grossberg and TodoroviC 1988). 

The LGN model also receives feedback from model cortical cells, and this feedback can cause the 
resultant LGN activity to differ under certain circumstances from that caused solely by its retinal input. 
Grossberg (1980) suggested that the feedback pathway realizes a top-down pattern-matching process that 
helps to select activities of monocular LGN cells that support the activities of binocular cortical cells, 
and to suppress the activities of LGN cells that do not, via positive corticogeniculate feedback linked 
to internal LGN opponent processes. Topographic correspondence is necessary to carry out such a 

c2.2:22 Handbook of Neurul Compururion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

................. ~, _ ............... 
I 

I I L G N P ~ I V ~  
I‘ ......................... I .......................... 
I LGNMagno 1 

Retina I 
Figure C2.2.15. Schematic diagram of anatomical connections and neuronal selectivities of early visual 
areas in the macaque monkey. LGN = lateral geniculate nucleus (parvocellular and magnocellular 
divisions). Divisions of V1 and V2: blob = cytochrome oxidase blob regions; interblob = cytochrome 
oxidase-poor regions surrounding the blobs; 4B = lamina 4B; thin = thin (narrow) cytochrome oxidase 
strips; interstripe = cytochrome oxidase-poor regions between the thin and thick stripes; thick = thick 
(wide) cytochrome oxidase strips; V3 = visual area 3; V4 = visual area(s) 4; MT = middle temporal area. 
Areas V2, V3, V4, MT have connections to other areas not explicitly represented here. Area V3 may also 
receive projections from V2 interstripes or thin stripes. Heavy lines indicate robust primary connections, 
and thin lines indicate weaker, more variable connections. Broken lines represent observed connections that 
require additional verification. Icons: rainbow = tuned and/or opponent wavelength selectivity (incidence 
at least 40%); angle symbol = orientation selectivity (incidence at least 20%); spectacles = binocular 
disparity selectivity and/or strong binocular interactions (V2) (incidence at least 20%); pointing arrow = 
direction of motion selectivity (incidence at least 20%). (Adapted with permission from DeYoe and van 
Essen (1988)J 

matching process. A similar modulatory role for top-down feedback is assumed to be active during 
monocular viewing. Experimental support for this ART prediction has been reported by Sillito et a1 
(1994). 

Corticogeniculate feedback was hypothesized to be part of a more general and ubiquitous model of 
top-down feedback in stabilizing adaptive synapses in thalamocortical and corticocortical circuits, while 
also regulating the gain of these circuits. In this more general adaptive resonance theory, or ART, modeling c2.2.1 
framework, bottom-up processing in the absence of top-down processing can activate its target circuits, 
top-down processing represents a form of hypothesis testing that can subliminally prime these circuits, 
and a combination of bottom-up and top-down processing can select those bottom-up activations that are 
consistent with top-down feedback and suppress those that are not. 

A boundary contour system model of cortical boundary segmentation. The LGN cell outputs activate the 
first stage of cortical BCS processing, the simple cells (see figures C2.2.16 and C2.2.17) whose oriented 
receptive fields respond to a prescribed contrast polarity, or direction-of-contrast. The model LGN cells 
input to pairs of like-oriented simple cells that are sensitive to opposite directions-of-contrast. The simple 
cell pairs, in turn, send their rectified output signals to like-oriented complex cells. By pooling rectified 

@ 1997 IOP Publishing Ltd and Oxford University Press Hunclbook of Neuml Computurion release 9711 c2.2:23 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

I t 

I I ONLGN I 

OFF Retina ON Retina 

Input Image 

Figure C2.2.16. A monocular boundary contour system circuit: BCS stages are designated by octagonal 
boxes, FCS stages by rectangular boxes. Model BCS stages may be divided into a static oriented contrast- 
sensitive filter (SOC filter) and a static oriented cooperative-competitive grouping network (SOCC loop). 
The simple-complex-hypercomplex cells form the filter. The feedback network between hypercomplex 
and bipole cells forms the grouping network. (Reprinted from Gove et al (1995) with the permission of 
Cambridge University Press.) 

outputs from oppositely polarized simple cells, complex cells realize a full-wave rectified filter that responds 
to both directions-of-contrast, as do all subsequent BCS cell types in the model. 

Complex cells activate hypercomplex cells through an on-center off-surround network, or spatial 
competition, whose off-surround carries out an endstopping operation (see figure C2.2.17). In this 
way, complex cells excite hypercomplex cells of the same orientation and position, while inhibiting 
hypercomplex cells of the same orientation at nearby positions. One role of this spatial competition 
is to spatially sharpen the neural responses to oriented luminance edges. Another role is to initiate the 
process, called end cutting, whereby boundaries are formed that abut a line end at orientation perpendicular 
or oblique to the orientation of the line itself, as in figure C2.2.18(c). 

The hypercomplex cells input to a competition across orientations at each position among higher-order 
hypercomplex cells. This competition acts to sharpen up orientational responses at each position. Outputs 
from the higher-order hypercomplex cells feed into bipole cells that initiate long-range boundary grouping 
and completion (figure C2.2.17). Bipole cells have two oriented receptive fields. Their cell bodies fire if 
both of their receptive fields are sufficiently activated by appropriately oriented hypercomplex cell inputs. 
Bipole cells act like a type of statistical and-gate that controls long-range cooperation among the outputs 
of active higher-order hypercomplex cells. For example, a horizontal bipole cell is excited by activation of 
horizontal hypercomplex cells that input to its horizontally oriented receptive fields. A horizontal bipole 
cell is also inhibited by activation of vertical hypercomplex cells. In this way, groupings among horizontal 
contrasts may be blocked by intervening contrasts of different orientation. 

C2.2:24 Hundbook of Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

Output signals from bipole cells feed back to the hypercomplex cells after undergoing competitive 
processing. First, bipole cell outputs compete across orientation to determine which orientation is receiving 
the largest amount of cooperative support (see figure C2.2.16). Competition also takes place across nearby 
locations to select the best spatial location of the emerging boundary. These competitive interactions 
are needed to select and sharpen the best boundary grouping because the bipole cell receptive fields are 
themselves rather broad. Broad bipole receptive fields are needed because, in many situations, neither 
the image contrasts to be grouped nor the cortical cells that group them are precisely aligned across 
space. Broad receptive fields allow the grouping to get started and the competitive interactions sharpen 
and deform it. Hypercomplex cells that receive the most cooperative support from bipole grouping after 
cooperative-competitive feedback takes hold further excite the corresponding bipole cells. 

This cycle of bottom-up and top-down interaction between hypercomplex cells and bipole cells rapidly 
converges to a final boundary segmentation (see figure C2.2.18(c)). Feedback among bipole cells and 
hypercomplex cells hereby drives a resonant cooperative-competitive decision process that completes the 
statistically most favored boundaries, suppresses less favored boundaries, and coherently binds together 
appropriate feature combinations in the image. 

C2.2.3.4 Filling-in of surface representations within the FCS 

Each BCS boundary segmentation generates topographic output signals to the ON and OFF filling-in 
domains, or FIDOs (see figure C2.2.16). These FIDOs also receive inputs from the ON and OFF LGN cells, 
respectively. The LGN inputs activate their target cells, which allow activation to diffuse rapidly across 
gap junctions to neighboring FIDO cells. This diffusive filling-in process is restricted to the compartments 
derived from the BCS boundaries, which create barriers to filling-in by decreasing the permeability of 
their target gap junctions. The filled-in OFF activities are subtracted from the ON activities at double- 
opponent cells, whose activities represent the surface brightness of each percept (see figure C2.2.16). This 
double-opponent representation is illustrated in figure C2.2.18(d). 

7 bipole cells 

+ I- I + II + + I - I  

hypercomplex 
cells 

- I  

endstopping * 
complexcells 

- e  simple cells 

Figure C2.2.17. A simplified monocular model of the SOC filter interactions that convert simple cells into 
complex cells and then into two successive levels of hypercomplex cells. The interactions (simple cell) -+ 
(complex cell) and (complex cell) -+ (hypercomplex cell) describe two successive spatial filters. Simple 
cells form one filter. Their rectified outputs combine as inputs to complex cells. A second filter is created by 
the on-center off-surround, or endstopping, network that generates hypercomplex cell receptive fields from 
combinations of complex cell outputs. Higher-order hypercomplex cells further transform hypercomplex cell 
outputs via a push-pull competition across orientations. These hypercomplex cells interact with cooperative 
bipole cells to complete boundary groupings. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 C2.2:25 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.2.18. (a) The Ehrenstein figure. (b) The LGN stage response. Both ON and OFF activities are 
coded as rectified deflections from a neutral gray. Note the brightness buttons at the line ends. (c) The 
equilibrium BCS boundaries. ( d )  In the filled-in result, the central circle contains stronger FCS signals than 
the background, corresponding to the perception of increased brightness. In this figure, the representations 
of boundaries at multiple orientations are superimposed. (Reprinted from Cove er a1 (1995) with the 
permission of Cambridge University Press.) 

Figure C2.2.19. (a) Top left: unprocessed SAR image of upstate New York scene consisting of highway 
with bridge overpass. (b) Top right: logarithm-transformed SAR image. (c )  Bottom left: ON-minus-OFF 
cell responses averaged across spatial scales. ( d )  Bottom right: Multiple-scale FCS surface representation 
derived by averaging the filled-in responses within each scale of figure C2.2.20.) 

C2.2:26 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

C2.2.3.5 Typical application 

The BCS and FCS have been used successfully to process images from artificial sensors, including synthetic 
aperture radar (SAR) sensors (Grossberg et a1 1995). SAR sensors are used to produce range imagery of 
high spatial resolution under difficult weather conditions (Munsen er al 1983, Munsen and Visentin 1989). 
This application uses several key properties of BCSFCS circuits. 

First, the model ON and OFF cells normalize, and thereby compress, the large dynamic range 
(five orders of magnitude) of the signal. Later boundary segmentation and filling-in stages compensate 
for image speckle that has characteristics of random multiplicative noise. They do so by detecting, 
regularizing and completing boundary structures wherein diffusion of normalized signals can complete 
surface representations that compensate for speckle in a form-sensitive way. 

Figure C2.2.19 shows an SAR image and the result of multiple-scale BCSFCS processing applied to 
the image. Figure C2.2.19(a) shows the original SAR image of a highway with bridge overpass in upstate 
New York. Figure C2.2.19(b) shows the logarithmically transformed (loglo) version of the original image 
for comparison. Figure C2.2.19(c) displays the result of center-surround processing by model LGN ON 
and OFF cells that normalize the image and detect its local ratio contrast. Figure C2.2.19(d) displays the 
FCS surface representation. 

Figure C2.2.20. Top row: complex cell processing at three scales. Intensity of each pixel depicts the 
total activity of the oriented complex cells at that position. Middle row: higher-order hypercomplex cell 
processing at three spatial scales. Intensity of each pixel depicts the total activity of the cells at that position. 
Bottom row: result of surface filling-in processing result at three different scales on the example image. A 
linear combination of these images is used to obtain the final multiple-scale output in figure C2.2.19(d). 

Figure C2.2.20 displays, in its first row, the outputs of complex cells using three different receptive 
field sizes: small, medium and large. Row two shows the corresponding boundaries after sharpening and 
completion by hypercomplex-bipole cell feedback. The third row shows the filled-in surface that forms 
when the LGN ON and OFF cell outputs diffuse within the boundary compartments defined by each scale. 
The final surface representation in figure C2.2.19(d) is a weighted sum of the three images in row three 
of figure C2.2.20. 

Acknowledgements 

This work was supported in part by the Office of Naval Research (ONR "14-95-1-0409 and ONR 
N00014-95-1-0657). The author wishes to thank Cynthia E Bradford for her valuable assistance in the 
preparation of the manuscript. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compururion release 9711 C2.2:27 

Copyright © 1997 IOP Publishing Ltd



UnsuDervised Models 

c2.2:28 

References 

Asfour Y R, Carpenter G A, Grossberg S and Lesher G W 1993 Fusion ARTMAP: A neural network architecture for 
multi-channel data fusion and classification Proc. World Congr. on Neural Networks (WCNN-93) vol I1 (Hillsdale, 
NJ: Lawrence Erlbaum Associates) pp 210-5 

Bachelder I A, Waxman A M and Seibert M 1993 A neural system for mobile robot visual place learning and recognition 
Proc. World Congr. on Neural Networks (WCNN-93) vol I (Hillsdale NJ: Lawrence Erlbaum Associates) pp 5 12-7 

Baloch A A and Waxman A M 1991 Visual learning adaptive expectations and behavioral conditioning of the mobile 
robot MAVIN Neural Networks 4 271-302 

Baraldi A and Parmiggiani F 1995 A neural network for unsupervised categorization of multivalued input patterns: 
An application to satellite image clustering IEEE Trans. Geosci. Remote Sensing 33 305-16 

Bradski G and Grossberg S 1995 Fast learning VIEWNET architectures for recognizing 3-D objects from multiple 
2-D views Neural Networks 8 1053-80 

Bregman A S 1990 Auditory scene analysis (Cambridge, MA: MIT Press) 
Carpenter G A 1994 A distributed outstar network for spatial pattern learning Neural Networks 7 159-68 
Carpenter G A and Grossberg S 1987a A massively parallel architecture for a self-organizing neural pattern recognition 

-1987b ART 2: Stable self-organization of pattern recognition codes for analog input patterns. Appl. Opt. 26 

-1987c Neural dynamics of category learning and recognition: Attention memory consolidation and amnesia The 
Adaptive Brain I :  Cognition Learning Reinforcement and Rhythm ed S Grossberg (Amsterdam: Elsevier/North 
Holland) pp 238-86 

-1990 ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. 
Neural Networks 3 129-52 

-(eds) 1991 Pattern Recognition by Self-organizing Neural Networks (Cambridge MA: MIT Press) 
-1992 Fuzzy ARTMAP: Supervised learning recognition and prediction by a self-organizing neural network. IEEE 

Commun. Mag. 30 3 8 4 9  
-1993 Normal and amnesic learning recognition and memory by a neural model of cortico-hippocampal interactions 

Trends in Neurosci. 16 131-7 
-1994 Fuzzy ARTMAP: A synthesis of neural networks and fuzzy logic for supervised categorization and 

nonstationary prediction Fuzzy Sets, Neural Networks and Sojl Computing ed R R Yager and L A Zadeh (New 
York: Van Nostrand Reinhold) pp 126-65 

Carpenter G A, Grossberg S and Iizuka K 1993 Comparative performance measures of Fuzzy ARTMAP, learned 
vector quantization and back propagation for handwritten character recognition Proc. Inr. Joint Con$ on Neural 
Networks (WCNN-93) vol I (Piscataway NJ: IEEE Service Center) pp 794-9 

Carpenter G A, Grossberg S, Markuzon N, Reynolds J H and Rosen D B 1992 Fuzzy ARTMAP: A neural network 
architecture for incremental supervised learning of analog multidimensional maps IEEE Trans. Neural Networks 

Carpenter G A, Grossberg S and Reynolds J H 1991a ARTMAP: Supervised real-time learning and classification of 
nonstationary data by a self-organizing neural network Neural Networks 4 565-88 

Carpenter G A, Grossberg S and Rosen D B 1991b ART;?-A: An adaptive resonance algorithm for rapid category 
learning and recognition Neural Networks 4 493-504 

-1991c Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system 
Neural Networks 4 759-71 

Carpenter G A and Markuzon N 1996 ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases 
CASXNS Technical Report TR-96-017 Boston University 

Carpenter G A and Ross W D 1993 ART-EMAP: A neural network architecture for learning and prediction by evidence 
accumulation Proc. World Congr. on Neural Networks (WCNN’93) vol I11 (Hillsdale, NJ: Lawrence Erlbaum) pp 

-1995 ART-EMAP: A neural network architecture for object recognition by evidence accumulation IEEE Trans. 

Carpenter G A and Tan A-H 1995 Rule extraction: From neural architecture to symbolic representation Connection 

Caudell T P, Smith S D G, Escobedo R and Anderson M 1994 NIRS: Large scale ART-1 neural architectures for 

Christodoulou C G, Huang J, Georgiopoulos M and Liou J J 1995 Design of gratings and frequency selective surfaces 

Cleary R and Israel P 1994 A resonance correlation network with adaptive fuzzy leader clustering Proc. Shrh Int. 

Desimone R 1992 Neural circuits for visual attention in the primate brain eds G A Carpenter and S Grossberg Neural 

machine. Computer Vision Graphics and Image Processing 37 54-1 15 

49 19-30 

3 698-713 

649-56 

Neural Networks 6 805-18 

Sci. 7 3-27 

engineering design retrieval Neural Networks 7 1339-50 

using Fuzzy ARTMAP neural networks J.  Electromag. Waves and Applications 9 17-36 

Con$ on Tools with Artificial Intelligence 1994 (Los Alamitos, CA: IEEE Computer Society Press) pp 168-74 

Networks for Vision and Image Processing (Cambridge, MA: MIT Press) pp 343-64 

Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Feedback models 

DeYoe E A and van Essen D C 1988 Concurrent processing streams in monkey visual cortex Trends in Neurosciences 

Dubrawski A and Crowley J L 1994 Learning locomotion reflexes: A self-supervised neural system for a mobile robot 
Robotics and Autonomous Syst. 12 133-42 

Feng C, Sutherland A, King S, Muggleton S and Henery R 1993 Comparison of machine learning classifiers to 
statistics and neural networks Proc. Fourth Int. Workshop on Artijicial Intelligence and Statistics pp 363-8 

Francis G and Grossberg S 1996 Cortical dynamics of form and motion integration: persistence, apparent motion, and 
illusory contours. Msion Research 36 149-1 73 

Francis G, Grossberg S and Mingolla E 1994 Cortical dynamics of feature binding and reset: control of visual 
persistence W o n  Research 34 1089-104 

Gan K W and Lua K T 1992 Chinese character classification using an adaptive resonance network Putt. Recog. 25 

Gopal S ,  Sklarew D M and Lambin E 1994 Fuzzy neural networks in multi-temporal classification of landcover 
change in the Sahel Proc. DOSES Workshop on New Tools for  Spatial Analysis (Lisbon Portugal) (Brussells: 

Gove A, Grossberg S and Mingolla E 1995 Brightness perception illusory contours and corticogeniculate feedback 
Msual Neurosci. 12 1027-52 

Govindarajan K K, Grossberg S, Wyse L L and Cohen M A 1994 A neural network model of auditory scene analysis 
and source segregation Technical Report CASKNS-TR-94-039 Boston University 

Grossberg S 1968 Some nonlinear networks capable of learning a spatial pattern of arbitrary complexity Proc. Nut. 
Acad. Sci. USA 59 368-72 

-1972 Neural expectation: Cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classes 
Kybemetik 10 49-57 

-1976a Adaptive pattern classification and universal recoding I: Parallel development and coding of neural feature 
detectors Biol. Cybem. 23 121-34 

-1976b Adaptive pattern classification and universal recoding 11: Feedback expectation olfaction and illusions Biol. 
Cybem. 23 187-202 

-1978 A theory of human memory: Self-organization and performance of sensory-motor codes maps and plan 
Progress in Theoretical Biology ed R Rosen and F Snell vol 5 (New York: Academic) pp 233-374 (Reprinted in 
Grossberg S 1982 Studies of Mind and Brain: Neural Principles of Learning Perception Development Cognition 
and Motor Control (Boston, MA: Reidel)) 

11 219-26 

877-82 

ECSC-EC-EAEC) pp 55-68 

-1980 How does a brain build a cognitive code? Psychol. Rev. 87 1-51 
-1983 The quantized geometry of visual space: the coherent computation of depth, form, and lightness. Behavioral 

-(ed) 1987a The Adaptive Brain I: Cognition Learning Reinforcement and Rhythm (Amsterdam: ElseviedNorth- 

-(ed) 1987b The Adaptive Brain 11: Msion Speech Language and Motor Control (Amsterdam: Elseviermorth- 

+ed) 1988 Neural Networks und Natural Intelligence (Cambridge, MA: MIT Press) 
-1994 3-D vision and figure-ground separation Perception and Psychophys. 55 48-120 
-1995 The attentive brain Am. Sci. 83 438-49 
Grossberg S, Boardman I and Cohen M A 1995 Neural dynamics of variable-rate speech categorization Technical 

Grossberg S and Merrill J W L 1992 A neural network model of adaptively timed reinforcement learning and 

-1996 The hippocampus and cerebellum in adaptively timed learning recognition and movement Technical Report 

Grossberg S and Mingolla E 1985a Neural dynamics of form perception: boundary completion, illusory figures, and 

-1985b Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations Perception 

-1993 Neural dynamics of motion perception: direction fields, apertures, and resonant grouping Perception and 

Grossberg S ,  Mingolla E and Ross W D 1994 A neural theory of attentive visual search: Interactions of visual spatial 

Grossberg S, Mingolla E, and Williamson J 1995 Synthetic aperture radar processing by a multiple scale neural system 

Grossberg S and Rudd M E 1992 Cortical dynamics of visual motion perception: short-range and long-range apparent 

Grossberg S and TodoroviC D 1988 Neural dynamics of 1-D and 2-D brightness perception: a unified model of 

and Brain Sciences 6 625-57 

Holland) 

Holland) 

Report CASKNS-TR-94-038 Boston University 

hippocampal dynamics Cognitive Brain Research 1 3-38 

CAS/CNS-TR-93-065 Boston University (J .  Cognitive Neuroscience in press) 

neon color spreading Psychological Review 92 173-21 1 

and Psychophysics 38 141-171 

Psychophysics 53 243-78 

and object representations Psychol. Rev. 101 470-789 

for boundary and surface representation Neural Networks 8 1005-28 

motion Psychological Review 99 78-121 

classical and recent phenomena Perception and Psychophysics 43 241-277 

0 1997 1OP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 C2.2:29 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Ham F M and Han S W 1993 Quantitative study of the QRS complex using fuzzy ARTMAP and the MIT/BIH 
arrhythmia database Proc. World Congr. on Neural Networks (WCNN-93) vol I (Hillsdale NJ: Lawrence Erlbaum 
Associates) pp 207-1 1 

Harvey R M 1993 Nursing diagnosis by computers: an application of neural networks Nursing Diagnosis 4 26-34 
Israel P, Yu S and Ryan P 1992 Simplified ART1 Proc. SPIE ConJ on Science of Neural Networks entitled Applications 

of Art$cial Neural Networks 111 (Chicago, IL: SPIE) vol 1709, part 1, pp 476-85 
Johnson C 1993 Agent learns user’s behavior Electrical Engineering Times June 28 pp 43, 46 
Kasperkiewicz J, Racz J and Dubrawski A 1994 HPC strength prediction using an artificial neural network ASCE J. 

Keyvan S ,  Durg A and Rabelo L C 1993 Application of artificial neural networks for development of diagnostic 

Kohonen T 1984/1989 Selforganization and Associative Memory 3rd edn (New York: Springer) 
Kosko B 1986 Fuzzy entropy and conditioning Info. Sci. 40 165-74 
Kumara S R T, Merchawi N S, Karmarthi S V and Thazhutaveetil M 1994 Neural Networks in Design and 

Manufacturing (London: Chapman and Hall) 
Mehta B V, Vij L and Rabelo L C 1993 Prediction of secondary structures of proteins using fuzzy ARTMAP Proc. 

World Congr. on Neural Networks (WCNN-93) vol I (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 228-32 
Moya M M, Koch M W and Hostetler L D 1993 One-class classifier networks for target recognition applications Proc. 

World Congr. on Neural Networks (WCNN-93) vol 111 (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 797-801 
Munsen D Jr, O’Brien J, and Jenkins W 1983 A tomographic formulation of spotlight-mode synthetic aperture radar 

Proc. IEEE 72 9 17-925 
Munsen D Jr and Visentin R L 1989 A signal processing view of strip-mapping synthetic aperture radar IEEE Trans. 

Acoustics, Speech, and Signal Processing 37 2131-47 
Murshed N A, Bortolozzi F and Sabourin R 1995 Off-line signature verification without a priori knowledge of class 

w2. A new approach Proc. ICDAR 95: Third Int. Con5 on Document Analysis and Recognition (Los Alamitos, 
CA: IEEE Computer Society Press) pp 191-6 

Pessoa L, Mingolla E and Neumann H 1995 A contrast- and luminance-driven multiscale network model of brightness 
perception Vision Reseamh 35 2201-23 

Repp B H 1980 A range-frequency effect on perception of silence in speech Haskins Laboratories Status Report on 
Speech Research SR-61 151-65 

Ryan T W 1988 The resonance correlation network Proc. IEEE Int. Cons on Neural Networks vol 1 (New York: 

Schiller P 1992 The ON and OFF channels of the visual system Trends in Neurosciences 15 86-92 
Seibert M and Waxman A 1990 Learning aspect graph representations from view sequences ed Touretzky D Advances 

in Neural Information Processing Systems 2 (San Mateo, CA: Morgan Kaufmann) pp 258-65 
Sillito A M, Jones H E, Gerstein G L and West D C 1994 Feature-linked synchronization of thalamic relay cell firing 

induced by feedback from the visual cortex Nature 369 479-82 
Smith E E 1990 An Invitation to Cognitive Science ed D 0 Osherson and E E Smith (Cambridge, MA: MIT Press) 
Smith J W, Everhart J E, Dickson W C, Knowler W C and Johannes R S 1988 Using the ADAP learning algorithm 

to forecast the onset of diabetes mellitus Proc. Symp. on Computer Applications and Medical Care (Piscataway, 
NJ: IEEE Computer Society Press) pp 261-5 

Suzuki Y, Abe Y and Ono K 1993 Self-organizing QRS wave recognition system in ECG using ART 2 Proc. World 
Congr. on Neural Networks (WCNN-93) vol IV (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 39-42 

Tarng Y S, Li T C and Chen M C 1994 Tool failure monitoring for drilling processes Proc. Third Int. Con5 on 
Fuuy Logic, Neural Nets and Sofr Computing (Iizuka, Japan) (Fukuoka, Japan: Fuzzy Logic Systems Institute) 

Comput. Civil Eng. submitted 

monitoring system in nuclear plants Am. Nucl. Soc. Cons Proc. (April 18 - t i )  

IEEE) pp 673-80 

pp 109-11 
von der Malsburg C 1973 Self-organization of orientation sensitive cells in the striate cortex Kybemetik 14 85-100 
Wienke D 1994 Neural resonance and adaptation-towards nature’s principles in artificial pattern recognition 

Chemometrics: Exploring and Exploiting Chemical Information ed L Buydens and W Melssen (Nijmegen, The 
Netherlands: University Press) 

Wienke D and Kateman G 1994 Adaptive resonance theory based artificial neural networks for treatment of open- 
category problems in chemical pattern recognition-Application to UV-Vis and IR spectroscopy Chemometrics 
and Intelligent Laboratory Systems ed L Buydens and W Melssen (Nijmegen, The Netherlands: University Press) 

Wienke D, Xie Y and Hopke P K 1994 An adaptive resonance theory based artificial neural network (ART 2-A) for 
rapid identification of airborne particle shapes from their scanning electron microscopy images Chemometrics 
and Intelligent Laboratory Systems ed L Buydens and W Melssen (Nijmegen, The Netherlands: University Press) 

Zadeh L 1965 Fuzzy sets Info. Control 8 338-53 

C2.2:30 Hundbook of N e u m l  Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.3 Unsupervised composite networks 

Cris Koutsougeras 

Abstract 

This section concerns neural networks which are hybrid either in terms of structure or in 
terms of training algorithms. The counterpropagation network is one that incorporates 
structural characteristics of the Kohonen and Grossberg networks and it is trained by 
composite supervised-unsupervised methods. The adaptive critic concept concerns 
neural network implementations of reinforcement learning where teacher information 
is available, a supervised learning characteristic, but target outputs are not specified, 
an unsupervised learning characteristic. The counterpropagation network as well as a 
number of adaptive critic implementations are taken up in this section. 

C2.3.1 Introduction 

The use of feedforward networks for the purposes of learning is based on the proven fact (Funahashi 1989, ~ 2 . 3  

Kolmogorov 1963) that such structures with at least two layers of neurons (at least one hidden layer) can 
be universal function approximators. An example of a feedforward network is shown in figure C2.3.1. In 
producing the input-to-output mapping, the network maps the input space in an intermediate space (output 
of the hidden layer) and subsequently through the output layer, the intermediate space is mapped to the 
network’s output space. The intermediate space can be viewed as an alternative representation of the 
input space retaining those properties at the original (input) space which pertain to the target learning task. 
The intermediate space may thus emphasize statistical, topological or other properties of the input space 
which make the target task describable or expressible, while suppressing other properties or information 
contained in the original space which do not have an apparent correlation to the target task. 

In pure supervised learning methods and algorithms the intermediate mapping emerges in a rather 
spontaneous way as a result of the overall network adaptation. No specific mechanism is dedicated to 
the intermediate mapping because in the overall objectives of the method there are no specific or explicit 
quality criteria or requirements imposed or referring to this intermediate mapping. Such requirements are 
implicit to the overall adaptation objectives and the intermediate mapping emerges through the adaptation 
process as one that happens to aid the overall input-output mapping. In other words it can be viewed as a 
‘fortunate’ side effect but otherwise no specialized attention is paid to it. Incidentally, this is the reason for 
difficulties relating to the generalization capabilities of feedforward networks and for the requirements of 
extensive trials of various combinations of numbers of hidden layer neurons, initial weights and learning 
rates (Koutsougeras et a1 1992a). 

The combination of supervised and unsupervised techniques allows the exercise of some control over 
the evaluation of the intermediate mapping, so that the input-to-intermediate and the intermediate-to-output 
mappings are developed by essentially different methods with objectives tuned to each one’s role, while the 
development of the two individual mappings happens in a synergistic way. Two representative paradigms 
combining supervised and unsupervised techniques are the subject of this section. First we examine the 
counterpropagation network and then the concept of adaptive critic networks. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neuml Computution release 97/1 C2.3:1 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.3.2 The counterpropagation network 

The counterpropagation network was introduced in 1986 by Robert Hecht-Nielsen (1988, 1987a, 
c2.1.1 1990, 1987b) who was trying to utilize Kohonen's selforganizing m p s  for the purposes of function 

approximation. The resulting counterpropagation network behaves as a statistically optimal self-adaptive 
lookup table. If we were to classify it in one of the broader categories then it would belong to the 
general function approximators. It would work best with continuous mappings from R" + Rm (or at 
least piecewise continuous). The way the network functions can be illustrated intuitively as follows: a 
hidden layer effectively clusters the input space in a collection of regions by a clustering method based on 
unsupervised techniques. The output layer, based on supervised techniques, effectively learns the average 
of the output values associated with each region of the input space. This average value associated with 
a region then becomes the designated output for all inputs falling within the corresponding input space 
region. 

C2.3.2.1 Topology 

There are two functional layers as shown in figure C2.3.1. The first functional layer (hidden layer) is 
a typical Kohonen layer. This layer operates according to the classic Kohonen unsupervised scheme 
(Kohonen 1982a, 1982b, 1988). Each neuron in this layer effectively functions as a receptor for a certain 
cluster of inputs, responding when the network's input belongs to this cluster. 'Qpically, each neuron 
in this layer 'sees' the entire input vector which is fed to the network, so there are connections from 
every input component to every neuron of this layer. Usually there are no physical connections among 
neurons in the Kohonen layer; however, as we will see in the following, there is a competition among 
these neurons and it involves their corresponding network excitation values. So interactions among them 
effectively exist by means of which a scalar value from each neuron is broadcast to all other neurons in 
this layer. 

0 a ( Hidden Layer - Kohonen ) 

( Input Vector - x ) 

Figure C2.3.1. Example of a feedforward structure. The use of a Kohonen type of hidden layer is specific 
to the counterpropagation network model. 

The output layer consists of m neurons where m is the dimensionality of the output space. Thus, if 
the target input-output mapping for the overall network is from R" to Rm, the output layer consists of m 
neurons, that is, one neuron dedicated to producing one component of the output vector. This layer produces 
an output vector for each one of the regions in which the input space has been effectively partitioned by 
the intermediate layer. Incidentally, the vector which gets to be associated with each region is the average 
of the outputs associated with those training set samples which fall within that same region. Thus, the 
only information needed at each neuron of the output layer is which region the input vector falls within. 
This information is provided by the receptor neuron associated with that region (these receptor neurons 
are the ones in the hidden layer). Since each neuron of the output layer needs to know which neuron of 
the hidden layer is active at any given time, there are feedforward (unidirectional) connections from every 
neuron of the hidden layer to every neuron at the output layer. Since only the region identification is 

C2.3:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised composite networks 

needed at each output neuron, there is no exchange among output neurons and thus no intralayer (lateral) 
connections. 

In summary, the topology of the network is as follows. There are two layers: one hidden and one 
output layer. All pairs from input lines to neurons of the hidden layer are connected. All pairs of neurons 
within the hidden layer are laterally effectively connected. All pairs of neurons from the hidden layer to the 
output layer are connected. No lateral connections within the output layer neurons exist. All connections 
are unidirectional carrying single scalar values. The direction of computation is feedforward. Connections 
are unidirectional. Since there is no feedback, for every one connection the inverse one does not exist. 

C2.3.2.2 Learning 

Different learning paradigms are used for each of the two layers since the hidden layer is adjusted using 
unsupervised techniques while the output layer is adjusted using supervised ones. As mentioned before, the 
hidden layer implements a Kohonen self-organizing map while the output layer implements a Grossberg 

The hidden layer. The input to the network is a vector of real values and is fed to all neurons in the 
hidden layer. The weights associated with the connections feeding the kth hidden layer neuron form a 
weight vector w k  associated with that neuron. This neuron simply sums up all the weight-scaled inputs 
feeding to it thereby effectively computing the scalar product W:X of its associated weight vector w k  

and the current input vector X. The value computed by each neuron is broadcast to all other neurons of 
the hidden layer and a competition takes place. The neuron which has produced the largest value wins and 
stays active while all others are shut off thereby setting their output to 0. Thus, one hidden-layer neuron 
responds to a given input vector, and it is this same neuron which will provide input to the output layer 
for determining the final output mapping. So far, the input vector X has been mapped to an intermediate 
binary vector which has one component set to 1 (corresponding to the active hidden layer neuron) and all 
others set to 0. 

The learning rule (hidden layer). While the network is still in the adaptation phase, the weight vectors 
change after the competition step is decided. Only the weight vector of the winning neuron changes by 
moving closer to the current input X. This is done by means of the rule: 

instar (Grossberg 1982, 1971, 1969, Hecht-Nielsen 1990). C1.1.6 

where a ( t )  is a time-decreasing learning rate which guarantees convergence (stability). Thus the w k  is 
changed by adding to it a fraction of its difference from the current input X. After a number of iterations, 
each weight vector w k  will identify a set s k  of input vectors for which the kth neuron will always be 
winning the competition and w k  will approximate their mean. It is also obvious that the kth neuron will 
still win the competition for any new input vector falling in the region which is bounded by the envelope 
of the s k  vectors. 

In this way the input space is partitioned in a number of regions equal to the number of hidden-layer 
neurons. One hidden-layer neuron is associated with each region and this neuron wins the competition 
for any future input that falls within this region. Thus the neuron effectively becomes a ‘receptor’ for 
its corresponding region (receptive field). This clustering evolves in an autonomous way without teacher 
feedback. The weight vectors arrange themselves around the input space thereby identifying their receptive 
fields automatically. The topological distribution of the weight vectors relates to that of the input space 
samples which constitute the training set. 

The outpur layer. This layer learns to produce the mean output vector value for each of the regions in 
which the input space has been clustered so far. The rationale is as follows. Let us assume that Sk  is 
the set of input vectors which falls within the region which has become the receptive field of the kth 
hidden layer neuron. Then we may ask what is the output for a new input vector X which falls within 
the same region (for which the same kth neuron responds). All that is known about the behavior of the 
overall input-output function which is to be approximated is the set of outputs corresponding to the input 
vectors in the set s k .  Thus, if these values are taken as the basis for a guess, a simple reasonable choice 
of statistical approximation is to use the average of these values. During the learning phase the weight 
between the kth neuron of the hidden layer and the ith neuron of the output layer is set to the average 
of the ith component of the output vectors produced by the inputs which fall within the receptive field of 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 C2.3:3 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

the kth neuron of the hidden layer. Whenever this kth neuron is responding to an input, the weight value 
associated with the connection from the kth neuron to the ith neuron becomes the output of the ith neuron. 
Given that the outputs of the hidden layer neurons are binary and that only one of them is nonzero, the 
activation function of the ith neuron of the output layer can be expressed as yi = WTB, where B is 
the intermediate vector produced by the hidden layer and Wi is the weight vector associated with the ith 
neuron. 

The learning rule (output layer). Since learning in the output layer is supervised, each output neuron ‘sees’ 
the target output which corresponds to each input vector of the training set during training. Specifically, 
the ith neuron sees the ith component of each such target output vector. The binary vector produced by the 
hidden layer is input to every output neuron. When the output of the hidden layer is asserted (competition 
settled) all of the weights associated with all output neurons are updated according to the local rule 

where Y; = y i I ;  I is the unit vector and yi is the target value of the ith output neuron corresponding to 
the current input. In other words, Y; is a vector with all its components equal to the yi target value. This 
updating rule (originally used by Grossberg) causes each connection weight to approximate the average 
values for the corresponding receptive fields as mentioned earlier. 

C2.3.2.3 Related neural network models 

c1 .2  The backpropagation network (Rumelhart et a1 1986) is an alternative to the possible uses of the 
counterpropagation network. A related model was developed by Koutsougeras and Papadourakis in 199 1 
using a two-layer feedforward structure, sigmoid nonlinear neurons and blended supervised-unsupervised 
learning (Koutsougeras and Papadourakis 1992b). Feedforward networks trained by other interesting 
alternative algorithms have been presented by Psaltis and Neifeld (1988), Kollias and Anastassiou (1988), 
deFigueiredo (1992), Karayiannis (1992), and Klassen and Pao (Klassen et a1 1988). These networks are 

~ 5 . 3 . 5  also competitors for the uses of the counterpropagation network. Finally, a program package for vector 
quantization called LVQ-PAK was introduced in 1992 by Kohonen et a1 (1992). 

C2.3.2.4 Advantages 

The advantages of the counterpropagation network lie in its simplicity. The learning rules are simple 
and easily computable thus the computing requirements are not greedy. The advantages also lie in the 
fact that it provides a somewhat direct control on the internal representations which are developed for 
the target function. It does not try to implement a mapping or transformation mechanism that applies 
uniformly in the entire input space; instead, it clusters the input space in regions and tries to approximate 
the input-output function independently within each region. An unexpected post-training behavior is less 
likely than with backpropagation or the model proposed by Koutsougeras. While an optimal number of 
hidden-layer neurons for a target input-output function cannot be determined a priori, it is not so sensitive 
to this choice and as a matter of fact with this model the more hidden-layer neurons the better it behaves. 
In the corresponding case of backpropagation there is a certain unknown number of hidden-layer neurons 
beyond which the excessive inherent nonlinearity produces unexpected results. 

C2.3.2.5 Disadvantages 

The disadvantages of this network are those carried over by the Kohonen layer, and also the fact that within 
each region of the clustered input space (receptive field) the target input-output function is approximated 
by a single constant. Let us take these up one by one. First, the Kohonen layer works well with certain 
initial weight distributions relating to the topology of the intended mapping. In other words, the resulting 
clustering is sensitive to the choice of initial weights. Second, the output of the entire network depends on 
the hidden-layer neuron which responds to the input, thus the output over the entire receptive field of each 
neuron will be constant. Thus, a continuous input-output function will be approximated with piecewise 
constant segments. This is not the case with the aforementioned competitor networks. 

C2.3:4 Hundbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised composite networks 

C2.3.2.6 Typical applications 

An attempt to visualize the function of this network would reveal constant output values over segments 
of a continuous input space. The network implies a segmentation of its continuous multidimensional real 
space into convex segments. The output values of all known samples within each segment are averaged 
and the resulting mean value is stored and used as output over the entire segment. So there is a constant 
value over each segment although the corresponding values for two different segments may be different, In 
view of this fact, this network is useful in applications requiring a function approximation with piecewise 
constant segments. Typical examples of this category of applications are pattern recognition/classi$cation ~ 1 . 2  

problems which are such that the pattern space (input space) can be divided into clusters (segments) so that 
each cluster contains patterns of a single class. This network can also be used in any application requiring 
function approximation if piecewise linear approximation with a relatively small number of segments can 
be acceptable. Since backpropagation is a competitor in these same cases, counterpropagation has not 
usually been a preference in significant applications. 

C2.3.2.7 Hardware implementations 

It is rather straightforward to implement simulators for this network, so there are no known hardware 
implementations of it. 

C2.3.2.8 Variations and improvements 

Variations of this network are related to variants of the Kohonen self-organizing maps. These reflect ways 
to deal with the problems associated with the choice of initial weights. There are the methods of radial 
sprouting of the input and weight vectors (Hecht-Nielsen 1990), the addition of uniformly distributed noise 
vectors to the input data, or the conscience method of Desieno (1988). 

Another interesting variant is to allow more than one neuron in the hidden layer to respond to a given 
input. In this case the receptive fields of the various hidden-layer neurons are overlapping rather than 
being disjoint. In this case the output produced by the network should be a weighted sum of the average 
output values corresponding to all the intersecting receptive fields. However, a good way for assessing 
the weights that should be used in computing the above weighted sum is not known. 

C2.3.2.9 State of the art 

An open problem is how to determine the weights to be used for computing the output as the weighted sum 
of the average outputs of a relevant set of receptive fields, as described in the extension above, where more 
than one hidden-layer neuron responds to an input. A method using barycentric coordinates is described 
by Hecht-Nielsen (1990) but such coordinates are not unique and presently no good solution that works 
better than the original network is known. 

C2.3.3 Adaptive critic networks 

C2.3.3.1 Purposes 

The adaptive critic is a concept referring to an automated agent capable of producing a critique for the 
‘goodness’ or the ‘utility’ of its input. In most interesting cases the input is the state of an observed system 
or a sequence of such states or even actions applied to that system. A typical example where this concept 
applies has been the automatic control of a system known as a ‘plant’ in the control systems jargon. Such 
a typical control structure is shown in figure C2.3.2. 

CONTROL 

MODULE 

I---’ 

Figure C2.3.2. A typical control structure utilizing a critic module and an action module. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Compururion release 9711 C2.3:5 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

According to the arrangement in this figure the control mechanism consists of a module which actually 
produces the control inputs (actions) to the plant and a critic module which provides a critique to the action 
module as to how well the latter is doing. The task charged to the critic module is to track the evolution 
of the plant states or outputs and to pass an evaluation of how likely it is that a global goal (the purpose of 
the controlling) will be reached with the observed trajectory of states or outputs. In the literature the term 
‘utility’ is used to refer to the likelihood or to a measure of expectation that a future global goal will be 
reached based on the information at the current state or of a sequence of states within a window extending 
from the past to the present (Bryson and Ho 1969, Raiffa 1968). Thus the purpose of the adaptive critic 
is to approximate the utility as a function of the current state or the recent history of states. If the exact 
value of this utility corresponding to an input is known then the adaptive critic would reduce to a pure 
function approximator and any supervised scheme for function approximation can be used to implement it. 
However, in real-world applications this utility function is not known or it may not even be unique. In such 
cases target output values are not available for the learning or adaptation and thus pure supervised schemes 
cannot be applied. Unsupervised schemes seem to be better candidates because they do not assume the 
availability of target outputs, and instead of a priori targets, it is the rationale behind the design of the 
scheme that determines its goal and function. However, it is usually the case that the critic receives some 
sort of feedback which consists of the occasional information that the global goal has been reached or that 
the control process has led to definite failure. An example is the problem of pole balancing, where the 
control scheme of figure C2.3.2 is used to balance a pole (the pole is the plant in this case). The critic 
occasionally receives the information that the pole has fallen (control strategy unrecoverably failed) or that 
it is still up. This feedback does not provide explicit targets for the critic but rather a reinforcement which 

c3 can be further used for punishmendreward used in reinforcement learning schemes. Thus the adaptive 
critic designs can be classified as reinforcement learning methods which places them in between the pure 
supervised and the pure unsupervised schemes. 

The above discussion leads to the credit assignment task which is yet another use of the adaptive 
critic designs and is necessary to their overall performance goal. Out of the knowledge that a (usually 
long) sequence of states or control actions has failed or has not failed, the critic has to figure out how to 
assign credit to the individual states or actions (or to any specific subsequence for that matter). This is a 
requirement implicit to the goal of determining the utility of an element of a sequence on the basis that 
the only information is the judgment (evaluation) about the sequence as a whole (as opposed to individual 
elements). If it is known that a control sequence led to failure, it is challenging to determine which 
elements in the sequence (or which part of the sequence) led to the unrecoverable downfall. 

A number of adaptive critic designs with the above properties have been implemented with neural 
networks. The most widely known implementations of adaptive critics through neural networks are those 
proposed by Barto et a1 (1983), Anderson (1989, 1987) and Werbos (1990, 1989). Two versions of 
adaptive critics by Werbos based on backpropagation networks are summarized in the following. The first 
concerns a general purpose stand-alone critic network and the second assumes a specific structure of the 
action module that contains a predictive model of the plant to be controlled. Both implement a mechanism 
that is functionally equivalent to a heuristic dynamic programming (HDP) (Howard 1960, Bryson and Ho 
1969). 

C2.3.4 Dynamic programming adaptive critics 

Two models of dynamic programming adaptive critics are discussed in this section. These are the heuristic 
dynamic programming (HDP) and the dual heuristic programming (DHP) critic models which are due to 
Werbos. The HDP model is basically an extension of the DHP model but it requires a slightly different 
system architecture. 

C2.3.4.1 HDP adaptive critic 

Purpose. A crucial assumption in these implementations is that the utility function V(X) is known. This 
assumption essentially reduces the problem to a function approximation for which the classic supervised 
method of backpropagation (using a feedforward network) can be directly applied. The twist, however, is 
that the critic is not called to learn the supplied V ( X )  function but another function J(X) which Werbos 
calls the ‘strategic utility’ function and is supposed to be an approximation of V ( X ) .  The rationale of 
this choice is twofold. First, the real significance of V ( X )  is in the relative values which it produces for 

C2.3:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Unsupervised composite networks 

two different events XI and Xz. Any other function which fluctuates in the same way as V ( X )  would 
in principle be just as good as V ( X )  since it would be consistent with U(X) in telling which of any two 
events XI and X Z  has better utility. Second, the function U is defined on a vector X which represents 
the perceived reality of the state of the plant. However, there may be additional parameters involved in 
the whole decision-making process and so the reality viewed by the controller may be described as another 
vector R which contains X (that is, it is an expanded version of X). So J reflects the thesis that the 
utility function which is actually output by the critic should be good for the vector of the state of reality 
R which is actually chosen and should condense the information content of U, being equivalent to U for 
practical purposes without having to be exactly the same as U. This causes a deviation from the principles 
of the pure supervised schemes in that teacher information is provided for adaptation but the target values 
are flexible. 

Thus the HDP adaptive critic is an approximator for the strategic' utility function. It is implemented 
using backpropagation as a basis. A general utility function U ( X ( t ) )  is assumed given. The strategic 
utility function J ( X ( t ) )  is supposed to be an estimate of CEt V ( t ) .  

Topology. Since this implementation is based on the backpropagation network, the topology is the same. 
There must be at least two neuron layers (that is, at least one hidden layer). The reason for requiring at least 
two layers is the proven fact (Funahashi 1989) that a feedforward network with two layers and sigmoid 
neuron activation functions is a universal analytic function approximator. Connection types are interlayer 
and supralayer connections only. No intralayer connection is allowed. No high-order connections are 
allowed. Within the constraint that no intralayer connections are allowed, all other feedforward connections 
are allowable between pairs of neurons. The usual choice is a two-layer topology with sparse interlayer 
connectivity. The direction of computation is strictly feedforward and thus unidirectional. Since there is 
no feedback, for every connection the inverse one does not exist. The basic topology remains unaltered 
during training. 

Learning. Basic backpropagation is used for adaptation. However, the originality occurs in determining 
the targets for the supervised learning scheme which the backpropagation implements. For input X ( t )  the 
target is set to J ( X ( t  + 1)) + U ( X ( t ) ) .  In intuitive terms this says that the strategic utility of a state X 
is the utility U ( X )  asserted by the teacher plus the strategic utility of the next state to which X leads. 
Each adaptation pass is carried out in two steps. In the first step the target for input X ( t )  is computed 
and in the second step the actual weight update takes place. These steps are as follows: 

(i) The X ( t  + 1) is used as input and the network produces the value J ( X ( t  + 1)). 
(ii) Then X ( t )  is used as input and J ( X ( t  + 1)) + U ( X ( t ) )  is used as target and the weights are updated 

using a backpropagation pass. 

Detailed descriptions of the algorithm and the handling of boundary cases can be found in Werbos (1990, 
1989). 

Learning rule. The learning rule is the standard local Delta rule used in the backpropagation network ~ 3 . 3 . 3  

(Rumelhart et a1 1986). 

C2.3.4.2 DHP adaptive critic 

Purpose. The rate of change of the strategic utility function can be used as an alternative measure 
of goodness for the input being evaluated by the critic. Instead of producing a single scalar value as 
evaluation of the whole input vector, the critic produces a vector of values which reflect evaluations for 
each component of the input vector. Thus the output of the DHP critic network is a vector of the same 
dimension as that of the input vector. The ith component of the output vector is an approximation of the 
partial derivative of the reference strategic utility function with respect to the ith component of the input 
vector. The strategic utility function is the same J function used in the HDP critic network. 

In addition, the DHP critic network assumes that the control structure in which it is contained has a 
particular architecture which is, in fact, the one shown in figure C2.3.3. There are three backpropagation- 
type networks in that structure. The A network produces the actions. The C network is the critic. The M 
network is a model of the plant and is supposed to simulate that plant. Given an input X ( t ) ,  the network 
M is supposed to produce an approximation of the expected next input X ( t  + 1); for example, if X ( t )  is 
the plant's current state, M is supposed to predict the next state. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Computution release 9711 C2.3:7 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.3.3. The control structure of figure C2.3.2 augmented to include a predictive process module. 

Topology. The topology of the C network is the same as that of the HDP critic network, except that 
this network has as many outputs as inputs. The topologies of the A and M networks are also standard 
backpropagation networks. 

Learning. As noted earlier, the ith output of C is the derivative of the strategic utility function J with 
respect to the ith input X i .  The function J ( X )  is supposed to have the same form as in the case of the 
HDP critic approximating J ( X ( t ) )  by J ( X ( t  + 1))  + U ( X ( t ) ) .  If Li is the ith output of the DHP critic 
network, then Li should be: 

a J ( x ( t ) )  ax,( t  + 1 )  au 
Li( t )  = E +- , ax,([  + 1 )  a X i ( t )  a X i ( t )  

or 

The Vi(?) values are assumed to be available. The Li values are computed by the module M. A pass 
of the learning algorithm consists of two parts. The first part concerns the computation of the Li values. 
The second concerns the update of the critic network's weights. 

A single pass of the learning algorithm proceeds as follows: 

(i) First step: use X ( t  + 1) as input to the critic network C and set L(t + 1)  to the values produced by 
the critic network C. Use these L(t + 1)  values as targets of the M network and extend the use of 
the standard backpropagation delta rule to the inputs to obtain the derivatives a M / a X i ( t ) .  

(ii) Second step: set Li ( t )  to vi ( t )  plus the values of the derivatives computed in the first step. Use these 
new values Li( t )  as targets of the critic network C when X( t )  is input. Update the weights of the 
network according to standard backpropagation. 

In the first step above, the delta rule is used to compute the derivatives a J ( X ( t ) ) / a X , ( t  + 1) since 
in backpropagation the delta rule provides a standardized way to express the effect of a variable on the 
network's output. Therefore, it should be assumed that the modeler network M has independently been 
trained beforehand to simulate the plant. The action network A is also adjusted concurrently with the critic 
network C but as this network does not relate directly to the adjustment of the C network it is outside the 
scope of this section. Details can be found in Werbos (1990, 1989). 

Related neural network models. In place of the backpropagation network, one can employ any other 
scheme which implements the supervised learning mechanism required in the above mechanisms. In terms 
of functionality, related models are the GDHP adaptive critics (see below) (Werbos 1990), the adaptive 
critic element (Barto et al 1983) and Anderson's adaptive critic network (Anderson 1989, 2987). 

Advantages. The HDP is the simplest of the general-purpose adaptive critics implemented by multilayer 
networks. Other models (like the DHP and GDHP) require the use of an additional module which acts as 
a model of the plant to be controlled. The HDP model does not require such an extra modeler and thus it 
is simpler. 

C2.3:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised composite networks 

The advantage of the DHP critic over the HDP critic is that it relies on the derivatives of the utility 
function and it is all about computing such derivatives. This alleviates the ‘drift to infinity’ problem (see 
below) which is possible with HDP. 

Disadvantages. The disadvantages of the HDP model are those carried over by the backpropagation 
network which serves as the means for its implementation. Another disadvantage is the ‘drift to infinity’ 
problem: the target values for the function J ( X )  may become too large (remember that these values are 
not provided a priori nor are they fixed so they could grow large). 

The DHP critic assumes the existence of the modeler M network and this introduces a rather large 
number of cascaded layers in the whole design. As a result, adaptation is slow and the structure amplifies 
the standard problems involved with standard backpropagation such as sensitivity to initial weight, learning 
rate, number of neurons in the hidden layers, etc. 

Typical applications. As mentioned already, the HDP and DHP critic networks are to be used in 
combination with action-producing modules as general control mechanisms. 
problems are the typical applications. Also, other applications mostly relating to forecasting can be 
found in Werbos (1977, 1979, 1987, 1988, 1989). 

Variations. Werbos has presented an extension of the DHP critic which he calls Globalized DHP (Werbos 
1990, 1989). This assumes the same structure as DHP and functions similarly except that it reverts to the 
HDP choice of a single output evaluating the entire input X. 

Thus automatic control FI .9 

C2.3.5 The adaptive critic element 

The earliest work relating to the adaptive critic element (ACE) was done by Klopf (1982). More recent 
refinements were introduced through the work of Barto et a1 (1983). Through this work the ACE gained 
more visibility. Other work bearing similarities is the work of Widrow and his colleagues (Widrow et a1 
1973, Widrow and Smith 1964). 

C2.3.5.1 Purposes 

In its original presentation, the ACE is supposed to work together with an associative search element (ASE) 
for the purposes of controlling an external plant. The structure of this controller is the same as that of 
figure C2.3.2 where the ACE is the adaptive critic and the ASE is the component producing actions. Thus 
the purpose that the ACE must fulfill is the same as that of any general type of adaptive critic according 
to the analysis and description of section C2.3.3. 

C2.3.5.2 Topology 

Only one neuron constitutes this adaptive critic as seen in figure C2.3.4. Input to the ACE is a vector of 
values which come from a ‘decoder’ module. Only one component of the input vector is 1 at any given 
time and all others are 0. Each input line of the ACE corresponds to a region of the plant’s state space; 
whenever the plant’s state is in that particular region, this same input will be active (set to 1) and all 
others will be inactive (set to 0). This sort of mapping is performed by a decoder, the details of which 
are outside the scope of this section, but they are available in Barto er a1 (1983). 

An external reinforcement value r ( t )  is also provided as input to the ACE. This input is positive 
when rewarding is intended and negative when punishment is intended. The output of the ACE is a 
time-dependent scalar value y ( t ) .  Let X ( t )  be the input vector and W be the weight vector associated 
with the inputs of the ACE. If we denote the weighted sum of inputs W T X ( t )  by p ( r ) ,  then the output 
of ACE is y ( t )  = r ( t )  + y p ( t )  - p ( t  - l) ,  where 0 I y I 1 is a discount factor. 

C2.3.5.3 Learning 

Learning is supervised since the reinforcement essentially corresponds to teacher information guiding the 
adaptation but no specific targets are provided for the actual output. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 C2.3:9 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.3.4. The adaptive critic element of Barto et ai. 

C2.3.5.4 Learning rule 

A local learning rule updates each component Wi of the weight vector in successive steps as follows: 

where /? is a learning rate and X‘i ( t )  is called the trace of Xi computed by X’i(t + 1) = ;i.X’i(t) + 
(1 - A)Xi( t ) ,  with 0 f A f 1 being a trace decay rate. In intuitive terms, the ACE learns the expected 
value of a discounted sum of future failure reinforcement signals. At each step, predictions are adjusted 
proportionally to the network input and the difference between the new prediction at the current state and 
the previous prediction at the previous state. This reflects the method of temporal differences developed 
by Sutton (1984, 1988) who has also proved convergence theorems for the temporal differences class of 
algorithms. 

C2.3.5.5 Related neural network models 

Other related models are the HDP and DHP adaptive critics (Werbos 1990, 1989) and Anderson’s two-layer 
adaptive critic network (Anderson 1989, 1987). 

C2.3.5.6 Advantages 

The ACE has the advantage of simplicity. With only one neuron it is very versatile and easy to use. 
However, its significance lies more in the paradigm which it establishes. The ACE has been compared to the 
BOXES method developed by Michie and Chambers (1968) and has been found superior. The comparison 
involved the inverted pendulum application in which both systems would be able to achieve incrementally 
longer balancing times with more experience. The ACE did better because it learns continuously rather 
than just at failures. 

C2.3.5.7 Disadvantages 

The ACE assumes the existence of a decoder module which produces a (binary) vector input to the ACE 
depending on what the plant’s state is. A lot depends on this clustering of the plant’s state space and its 
properties. This clustering is extraneous to the ACE and can be done by other methods (e.g. the BOXES 
method (Michie and Chambers 1968)). The limited functional capacity of the ACE causes all the burden 
of a real complex problem to be transferred to the decoder part of the design. Another problem arises 
from the fact that the ACE learns certain behaviors which apply to the regions in which the plant’s state 
space is partitioned by the decoder. This means that ultimately it approximates a global behavior over all 
the state space by means of constant segments or segments of very small variability. For very complex 
(highly nonlinear) target behaviors required for controlling the plant, the state space partition must be very 
fine so that the behavior required within each region can be approximated by the linear function performed 

C2.3:lO Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised composite networks 

by the ACE. This problem led to the replacement of the ACE element by a two-layer feedforward network 
in the work of Anderson (1989, 1987). 

C2.3.5.8 Typical applications 

The pole balancing problem (Barto et a1 1983) has been the classic application related to the ACE. 

C2.3.5.9 Hardware implementations 

No hardware implementations are known by the author. 

C2.3.5.10 Variations and improvements 

Lin and Kim (1991) describe an extension of Barto’s original ACE-ASE control structure where they 
integrate the cerebellar model articulation controller (CMAC). Also, Anderson’s adaptive critic network 
implements the function of the ACE by a two-layer network (Anderson 1989, 1987). In this work the 
decoder which partitions the plant’s state space and provides input to the ACE has been replaced by a layer 
of trainable neurons. Essentially, the decoder-ACE structure has been replaced by a two-layer feedforward 
backpropagation type of network which learns to perform the decoder-ACE composite function. Being 
a universal function approximator, the two-layer network can learn (using a backpropagation type of 
algorithm (Anderson 1987)) the function that needs to be performed by the system’s segment which 
extends from the raw state variables (former inputs to the decoder) all the way to the output of the former 
ACE. This also allows the learning of rather complex and nonlinear control behaviors alleviating the 
disadvantage of the ACE as explained in section C2.3.5.7. Anderson (1989) reports that this scheme 
works much better than the original ACE. 

References 

Anderson C W 1987 Strategy learning with multilayer connectionist representations Technical Report TR87-509.3 GTE 
Laboratories, Waltham, MA (corrected version of report in Proc. Fourth Int. Workshop on Machine Learning 
(Irvine, CA)  pp 103-14) 

-1989 Learning to control an inverted pendulum using neural networks IEEE Control Syst. Mag. 9 31-7 
Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult learning control problems 

Bryson A E Jr and Ho Y C 1969 Applied Optimal Control (Waltham, MA: Ginn) 
deFigueiredo R J P 1992 An optimal multilayer neural interpolating (OMNI) net in generalized fock space setting 

Desieno D 1988 Adding a conscience to competitive learning Proc. Int. Conf: on Neural Networks vol I (New York: 

IEEE Trans. Syst. Man Cybern. 13 83546 

Proc. IEEE Int. Joint Con5 on Neural Networks vol I (New York: IEEE Press) pp 11 1-20 

IEEE Press) pp 117-24 
Funahashi K 19890n the approximate realization of continuous mappings by neural networks Neural Networks 2 3 

183-92 
Grossberg S 1969 Embedding fields: a theory of learning with physiological implications J.  Math. Psychol. 6 209-39 
-1971 Embedding fields: underlying philosophy, mathematics, and applications to psychology, physiology and 

-1982 Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor 

Hecht-Nielsen R 1987a counterpropagation networks Proc. Int. Conf: on Neural Networks vol I1 (New York: IEEE 

-1 987b Counterpropagation networks Appl. Opt. 26 4979-84 
-1988 Applications of counterpropagation networks Neural Networks 1 131-9 
-1990 Neurocomputing (Reading, MA: Addison-Wesley) @ 1990 by Addison-Wesley Publishing Company, Inc. 
Howard R 1960 Dynamic Programming and Markov Processes (Cambridge, MA: MIT Press) 
Karayiannis N B 1992 ALADIN: algorithms for learning and architecture determination Proc. IEEE Int. Joint Con5 

Klassen M, Pao Y H and Chen A D C 1988 Characteristics of the functional link net: a higher order delta rule net 

Klopf A H 1982 The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence (Washington, DC: 

Kohonen T 1982a Self-organized formation of topologically correct feature maps Biol. Cybern. 43 59-69 

anatomy J. Cybern. 1 28-50 

Control (Boston, MA: Reidel) 

Press) pp 19-32 

on Neural Networks vol I (New York: IEEE Press) pp 601-6 

Proc. IEEE Int. Joint Con5 on Neural Networks vol I (New York: IEEE Press) pp 507-14 

Hemisphere) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurution release 9711 C2.3:l l  

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

-1982b A simple paradigm for the self-organized formation of structured feature maps Competition and Cooperation 

-1988 SeIf-Organization and Associative Memory 2nd edn (Berlin: Springer) 
Kohonen T, Kangas J, Laaksonen J and Torkkola K 1992 LVQPAK: a program package for the correct application of 

learning vector quantization algorithms Proc. IEEE Int. Joint Con5 on Neural Networks vol I (New York: IEEE 
Press) pp 725-30 

Kollias S and Anastasiou D 1988 Adaptive training of multilayer neural networks using least squares estimation 
technique Proc. IEEE Int. Joint Con5 Neural Networks vol I (New York: IEEE Press) pp 383-90 

Kolmogorov A N 1963 On the representation of continuous functions of many variables by superposition of continuous 
functions of one variable and addition Am. Math. Soc. Trans. 28 55-9 

Koutsougeras C, Georgiou G and Papachristou C A 1992 A feed forward classifier model: multiple classes, confidence 
output values, and implementation Int. J. Patt. Recog. Art$ Intell. 6 539-69 

Koutsougeras C and Papadourakis G 1992 Coupling supervised and unsupervised techniques in training feedforward 
networks Int. J. Art$ Intell. Tools 137-55 

Lin C S and Kim H 1991 CMAC-based adaptive critic self-leaming control IEEE Trans. Neural Networks 2 530-3 
Michie D and Chambers R A 1968 BOXES: an experiment in adaptive control Machine Intelligence vol 2 ed E Dale 

and D Michie (Edinburgh: Oliver and Boyd) pp 137-52 
Psaltis D and Neifeld M 1988 The emergence of generalization in networks with constrained representations Proc. 

IEEE Int. Joint Conf: on Neural Networks vol I (New York: IEEE Press) pp 371-82 
Raiffa H 1968 Decision Analysis: Introductov Lectures on Making Choices Under Uncertainty (Reading, MA: 

Addison-Wesley ) 
Rumelhart D E, Hinton G E and Williams R J 1986 Leaming intemal representations by error propagation Parallel 

Distributed Processing: Explorations in the Microstructure of Cognition. vol 1: Foundations ed D E Rumelhart 
and J L McClelland (Cambridge, MA: MIT Press) 

Sutton R S 1984 Temporal aspects of credit assignment in reinforcement learning PhD Dissertation University of 
Massachusetts 

-1988 Leaming to predict by the methods of temporal differences Machine Leaming 3 9-44 
Werbos P J 1977 Advanced forecasting methods for global crisis warning and models of intelligence General Systems 

-1979 Changes in global policy analysis procedures suggested by new methods of optimization Policy Anal. Info. 

-1986 Generalized information requirement of intelligent decision-making systems SUGI-1 I Proc. (Cary, NC: SAS 

-1987a Building and understanding adaptive systems: a statisticalhumerica1 approach to factory automation and 

-1987b Leaming how the world works Pmc. 1987 IEEE Int. Con5 on Systems, Man and Cybernetics vol I (New 

-19888 Backpropagation: past and future Proc. IEEE Int. Con5 on Neural Networks vol I (New York: IEEE Press) 

-1988b Generalization of backpropagation with application to a recurrent gas market model Neural Networks 1 

-1989a Backpropagation and neurocontrol: a review and prospectus Proc. IEEE Int. Joint Con5 on Neural Networks 

-1989b Maximizing long-term gas industry profits in two minutes in Lotus using neural network methods IEEE 

-1990 Neural Networks for  Control ed W T Miller, R S Sutton and P J Werbos (Cambridge, MA: MIT Press) 
Widrow B and Smith F W 1964 Pattern-recognizing control systems Computer and Information Sciences ed J T Tou 

Widrow B Gupta N K and Maitra S 1973 Punishheward: learning with a critic in adaptive threshold systems IEEE 

Neural Networks (Lecture Notes in Biomathematics 45) ed S Amari and M Arbib (Berlin: Springer) 

Yearbook 22 25-38 

Syst. 3 1 

Institute) 

brain research IEEE Trans. Syst. Man Cybern. 17 7-19 

York: IEEE Press) pp 302-10 

pp 343-353 

339-56 

vol I (New York: IEEE Press) pp 209-16 

Trans. Syst. Man Cybem. 1 315-33 

and R H Wilcox (Washington, DC: Spartan) pp 288-317 

Trans. Syst. Man Cybem. 3 455-65 

C2.3: 12 Hundbook of Neurul Compurufion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.4 Unsupervised ontogenic networks 

Bernd Fritzke 

Abstract 

In this section, network models are described which learn unsupervised and generate 
their topology during learning. Among the models described, one can distinguish those 
having a specific dimensionality (e.g. two or three) from models whose dimensionality 
varies locally with the input data. Furthermore, models with a fixed number of units but 
variable connectivity can be distinguished from models which also change their number 
of units through insertion and/or deletion. Application areas of the described models 
include vector quantization, data visualization and clustering. 

C2.4.1 Introduction 

First, an incremental self-organizing network model from the author is described which is called ‘growing 
cell structures’. The model is able to generate dimensionality reducing mappings which may be used, for 
example, for visualization of high-dimensional data or for clustering. The basic building blocks of the 
generated topology are hypertetrahedrons of a certain dimensionality k chosen in advance. In contrast to 
Kohonen’ s self-organizing feature map, which serves similar purposes, neither the number of units nor the 
exact topology has to be predefined in this model. Instead, a growth process successively inserts units and 
connections. All parameters in the model are constant over time rather than following a decay schedule. 
This makes it possible to continue the growth process until a specific network size is reached or until an 
application-dependent performance criterion is fulfilled. There is no need to define a priori the number 
of adaptation steps (in contrast, for example, to the self-organizing feature map). The input data directly 
guide the insertion of new units. Generally, this leads to network structures reflecting the given input 
distribution better than a predefined topology could. 

Next, several methods are described which have been proposed by Martinetz and Schulten. 
Competitive Hebbian learning uses a given data distribution to generate topological neighborhoods among ~3.3.1 
a fixed set of centers. ‘Neural gas’ is a particular vector quantization method. If used in combination- 
referred to then as ‘topology-representing networks’-these methods can generate optimally topology- 
preserving mappings for a network of predefined size. 

Finally, a variation of the growing cell structures is described which is able to do ‘topology learning’. 
Rather than mapping the given input data onto a structure of specific dimensionality this model, called 
‘growing neural gas’, incrementally generates a topology which closely reflects the topology of the input 
data. In particular, the resulting graph may have different dimensionalities in different areas of the 
input space. Applications include clustering, vector quantization and function approximation. Again all 
parameters are constant, which leads to substantial advantages over other approaches such as, for example, 
the topology-representing networks of Martinetz and Schulten (1994). 

C2.4.2 Growing cell structures 

C2.4.2.1 Introduction 

The model described here has been proposed earlier (Fritzke 1991) in order to overcome some problems 
of the selforganizing feature map (Kohonen 1982), mainly the difficult choice of the network structure c2.1.1 

@ 1997 1OP Publishing Ltd and Oxford University Press Hundbook of Nruml Computurinn release 97J1 C2.4:1 

Copyright © 1997 IOP Publishing Ltd



UnsuDervised Models 

and the need to define a decay schedule for various parameters. Kohonen's model, which builds upon 
ideas of Willshaw and von der Malsburg (1976), aims at mapping high-dimensional input signals onto an 
(often two-dimensional) neural sheet of fixed size and structure in such a way that neighborhood relations 
among the input signals are preserved as well as possible. An essential prerequisite for this is a network 
structure matching the structure of the distribution. If this is approximately the case, Kohonen's model 
is able to find appropriate mappings (figure C2.4.1). In many cases, however, missing knowledge of the 
probability distribution' of the data prevents the choice of a matching topology. The often chosen standard 
topology (a square grid) can then lead to poor mappings with rather arbitrary neighborhood relations ( 
figure C2.4.2). 

Figure (22.4.1. A Kohonen self-organizing map finds an ordered mapping from the 2D input space onto a 
two-dimensional grid. The figure shows a 10 x 10 map which orders according to a uniform distribution in 
a circle. Shown here are the initial stage with randomly initialized reference vectors (a), two intermediate 
stages (b) ,  (c ) ,  and and the final stage (d ) .  In this case the resulting mapping reflects very well the topology 
of the input manifold: small changes in the input space lead to small (or no) changes of the corresponding 
neuron on the grid. Moreover, neighboring units on the grid have similar reference vectors. (a )  0 signals; 
(b )  30 signals; ( e )  2000 signals; (d )  10000 signals. 

Figure C2.4.2. Kohonen map result after 10000 signals for a clustered data distribution which is uniform 
in the shaded areas. Due to the mismatch between data distribution and network topology there are a large 
number of connections between cells with very different reference vectors. The given data distribution is 
not represented well. 

C2.4.2.2 Purpose 

The purpose of the growing cell structures model is the generation of a topology-preserving mapping 
from the input space R" onto a topological structure A of equal or lower dimensionality k. By topology 
preservation we (informally) mean the following. 
0 

0 

In many situations this property is not achievable in a strict sense since a reversible mapping from high- 
dimensional spaces onto low-dimensional structures does not exist in general. In any case we intend to 

~ 4 . 4 . 3  preserve at least the more prominent similarity relations by the mapping. There is some relation to principal 
component analysis (PCA). When doing a PCA on the data followed by a projection onto the subspace 
spanned by the eigenvectors corresponding to the k-largest eigenvalues, the linear dimensionality reduction 
is achieved which maximally preserves information. A growing cell structures model which generates a 
k-dimensional topological structure can be seen as a projection onto a nonlinear, discretely sampled 

Input vectors which are close in R" should be mapped onto neighboring (or identical) nodes in A .  
Neighboring nodes in A should have similar input vectors mapped onto them. 

C2.4:2 Hundbook of Neurul Compufurion release 9111 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

submanifold. The same holds for the self-organizing feature map (Kohonen 1982) which, however, relies 
on a predefined structure. 

C2.4.2.3 Topology 

The model comprises a set A of nodes. Each node c E A has an associated n-dimensional reference vector 
wc which indicates the center of its receptive field in input space R". A given set of nodes with their 
reference vectors defines a particular partition of the input space, the so-called Voronoi tessellation (see 
figure C2.4.9). The receptive field of each node c is the Voronoi field V ( c )  of its reference vector w, and 
can be characterized by 

V ( c > = b E R n  I ( ~ ~ P - w c ~ ~  < l l p - w d I l > v d E A , d # c ) .  

The Voronoi field of c thus consists of those points in Rn for which 20, is the nearest of all currently 
existing reference vectors. 

Between certain pairs of nodes there are edges indicating neighborhood. The resulting topology is 
strictly k-dimensional whereby k is some positive integer chosen in advance. The basic building block 
and also the initial configuration of each network is a k-dimensional simplex. This is, for example, a line 
for k = 1, a triangle for k = 2, and a tetrahedron for k = 3. Figure C2.4.3 shows some topologies for 
different values of k .  

Figure C2.4.3. Example topologies for the growing cell structures model for different network 
dimensionalities k .  The initial topology is always a k-dimensional simplex. Topologies for k = 1, k = 2 
and k = 3, each consisting of several k-dimensional simplices, are shown. 

For a given network configuration a number of adaptation steps are used to update the reference 
vectors of the nodes and to gather local error information at each node (see figure C2.4.4). 

Figure C2.4.4. One adaptation step for a two-dimensional growing cell structures model. Only the best- 
matching unit s and its direct neighbors are adapted. The columns represent the local error variables. The 
error variable of the best-matching unit s is increased. 

This error information is used to decide where to insert new nodes. A new node is always inserted 
by splitting the longest edge emanating from the node q with maximum accumulated error. In doing 
this, additional edges are inserted such that the resulting structure consists exclusively of k-dimensional 
simplices again (see figure C2.4.5). 

C2.4.2.4 Learning rule 

Learning in the described model comprises adaptation of the reference vectors and insertion of nodes and 
connections. This terminology makes sense since inserting a new node and interpolating its reference 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 C2.4:3 

Copyright © 1997 IOP Publishing Ltd



UnsuDervised Models 

Figure C2.4.5. Insertion of a new node in the growing cell structures model. (a )  Situation before an 
insertion. Unit q has accumulated the most error during the preceding adaptation steps. The broken lines 
indicate the Voronoi regions of the units which can be interpreted as receptive fields. (b )  A new unit r 
has been inserted in between the unit q and its direct neighbor which is furthest in input space (among all 
direct neighbors). The error variables of the neighbors of r have been reduced and r is given a nonzero 
initial value. 

vector from the neighbors is in essence equivalent to performing a number of adaptation steps for a so- 
far unused unit. Insertions, however, can be done much faster than positioning by stepwise adaptation. 
Moreover, if adaptation is not required to move units over large distances, the parameters chosen can be 
small and constant. 

The growing cell structures learning procedure is described in the following. 

(i) Start with a k-dimensional simplex. The ( k  + 1) vertices are initialized to random vectors in R". 
(ii) Choose an input signal E according to the input distribution P(&.  
(iii) Determine the best-matching unit s (the unit with the nearest reference vector): 

(iv) Add the squared distancet between the input signal and the best-matching unit s to a local error 
variable E,: 

AES = 1 1 %  - 5112. 
(v) Move s and its direct topological neighbors4 towards 6 by fractions €6 and E,, respectively, of the 

total distance: 

(With N ,  we denote the set of topological neighbors of a unit c, i.e. those units which are connected 
to c by an edge.) 

(vi) If the number of input signals generated so far is an integer multiple of a parameter A, insert a new 
unit as follows. 

0 Determine the unit q with the maximum accumulated error: 

E,  3 E,  (Vc E A ) .  

0 Insert a new unit r by splitting the longest edge emanating from q ,  say an edge leading to a unit 
f. Insert the connections ( q ,  r )  and ( I ,  f) and remove the original connection ( q ,  f). To rebuild 
the structure such that it again consists only of k-dimensional simplices, the new unit r is also 
connected with all common neighbors of q and f, i.e. with all units in the set Nq n N f .  

t Depending on the problem at hand other local measures are also possible. for example, the number of input signals for which 
a particular unit is the winner or even the positioning error of a robot arm controlled by the network. The local measure should 
generally be something which one is interested in reducing and which is likely to be reduced by the insertion of new units 
$ Throughout this paper the term neighbors denotes units which are topological neighbors in the graph (as opposed to units within 
a small Euclidean distance of each other in input space). 

C2.4:4 Hundbook of Neurul Computurion release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

Interpolate the reference vector of r from the vectors of q and f: 

W, = O . ~ ( W ,  + ~ f ) .  

0 Decreaset the error variables of all neighbors of r :  

O1 
AEi = -- 

Set the error variable of the new unit r to the mean value of its neighbors: 

(Vi E N , ) .  
lNil Ei 

0 

1 
E,  = - Ei 

l N r l  i cN,  

(vii) Decrease the error variables of all units: 

AE,  = -BEc (VC E A ) .  

(C2.4.2) 

(C2.4.3) 

(viii) If a stopping criterion (e.g. net size or some performance measure) is not yet fulfilled, continue with 
step (ii). 

How does this method work? The accumulation of distortion error (iv) enables the identification of 
units generating high distortion error. Inserting a new unit at the same position, however, as the unit q 
with maximum accumulated error would not decrease the expected distortion error$. Therefore, new units 
are always inserted between a unit and one of its neighbors (v). Instead of erasing all error variables after 
an insertion, only the variables of cells in the vicinity of the new cell are decreased. This preserves the 
accumulated error in other regions of the input space and makes it possible to insert new units always 
after a constant number h of adaptation steps. Erasing the error variables would force us to choose h 
proportional to the current network size. The exponential decay of all error variables (vii) stresses the 
impact of recently accumulated error, which makes sense since units are moving around slightly. 

C2.4.2.5 Examples 

Figure C2.4.6 shows some stages of the resulting growth process for a simple distribution. Figure C2.4.7 
depicts the result of the self-organizing process for a more complicated distribution. The parameters used 
in both simulations were: 01 = 0.2, &b = 0.02, E ,  = 0.006, f i  = 0.0005 and A = 200. 

C2.4.2.6 Related neural network models 

In addition to the self-organizing feature map (Kohonen 1982) the described model is related to the elastic 
net model (Durbin and Willshaw 1987). The supervised variant of the growing cell structures (see, for 
example, Fritzke 1994b) is linked to the radial basis function model (Poggio and Girosi 1990, Moody c1.6.2 
and Darken 1989). If one replaces the strict k-dimensional structure with an unconstrained topology one 
arrives at the growing neural gas model described in section C2.4.3. 

t In principle, one could also erase all error variables each time a new unit is inserted. In this case one had to perform a number of 
adaptation steps per insertion which is proportional to the current network size since all units need a sufficient chance to be hit by 
some input signals and to accumulate error information. By keeping the error information, however, and only adjusting the values 
near newly inserted units, we only need a constant number of adaptation steps per insertion. The amount of adjustment actually used 
is a heuristic value. The correct determination of the appropriate error values after an insertion would require detailed knowledge 
of the probability distribution P ( E )  of the input signals and the inherent dimensionality of the data. Assuming this knowledge for a 
unit i the expected summed square error would be the following integral in the Voronoi polyhedron V ( i ) :  

1 
Ei = s S,, p(E)llwi - Ell2 dE 

with B being the decay parameter from equation C2.4.3. One could now approximate the Voronoi polyhedron (which is hard to 
compute in high dimensions) and make assumptions on the unknown probability density P(E)  to improve (C2.4.2). From our 
experience, however, this is not necessary. One reason might be that the adaptation steps provide a constant flow of valid error 
information. 

One can consider the decrease in expected distortion error as a function A E ( w , )  of the position w ,  of the new unit r .  This 
function is non-negative and has minima (where it takes the value 0) exactly at the positions of the existing units. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9711 C2.4:5 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

fa) (b) (c) (4 

Figure C2.4.6. Growing cell structures simulation for the circular data distribution. Starting with one 
triangle of units, more units are inserted by splitting existing edges. The connectivity is updated such that 
the structure consists exclusively of triangles at every moment. The final structure covers the relevant area 
rather evenly. (a) 0 signals; (b )  6000 signals; (c) 10000 signals; ( d )  20000 signals. 

Figure (22.4.7. Growing cell structures result after 20000 signals for the same data distribution as used 
previously for the Kohonen feature map. The growth process has led to a two-dimensional structure with 
a topology rather well adapted to the given data distribution. 

C2.4.2.7 Advantages 

In contrast to other approaches there is no need to specify the network size in advance. Moreover, all 
parameters are constant, which eliminates the need to define a decay (or annealing) schedule. Generally, 
parameter setting is unproblematic. 

C2.4.2.8 Disadvantages 

Due to the irregular and dynamic graph structure employed, the model is more difficult to implement than 
models with a predefined regular structure. 

C2.4.2.9 Typical applications 

~ 1 . 3  Combinatorial optimization. A one-dimensional growing cell structures network which is closed to a 
ring can be used to generate approximate solutions to Euclidean traveling salesman problems (Fritzke 
and Wilke 1991). 
Data visualization. By choosing a small network dimension k for high-dimensional input data it is 
possible to visualize the data with an embedding of the network in the k-dimensional space. Such an 
embedding can be constructed during the growth process (Fritzke 1994a). It always exists due to the 
dimensionality k of the network. See figure C2.4.8 for a simple example. 

C2.4.2.10 Variations and improvements 

Closed networks. Networks which have no ‘outer’ nodes, (e.g. a ring in the one-dimensional case or a 
closed two-dimensional mesh of triangles) and which are useful, for example, to generate approximate 
solutions for the traveling salesman problem (Fritzke 1991). 

Supervised growing cell structures. A combination of the proposed networks with the radial basis function 
approach. New nodes are inserted on the basis of accumulated classification error which leads to near- 
minimal nets with strong generalization abilities (Fritzke 1994b). 

C2.4:6 Hundhook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

Figure C2.4.8. A two-dimensional growing cell structures network has adapted to a signal distribution 
which has different dimensionalities in different areas of the input space. The distribution, which has been 
used earlier by Martinetz and Schulten, consists of a (one-dimensional) ring, a line segment, a rectangle 
and a parallelepiped. ( a )  shows the network in the input space with the triangles in gray shades. ( b )  shows 
an embedding of the network in the plane. Since the network is two-dimensional, such an embedding 
exists independently of the input data dimensionality (three in this case). Thus, the growing cell structures 
network realizes a mapping from the input space to the plane while trying to preserve the topology of 
the input data distribution. This works best for the rectangular part. The ID part is mapped onto two 
dimensions (see lower end of ( b ) ) .  In the 3D region of the input space the network is folded, which is the 
only way to preserve the topology at least to some degree (like a space-filling curve in two dimensions). 

Removal ofunits. By introducing the removal of units it is possible to get networks consisting of different 
unconnected graphs representing clusters in the input data. See Fritzke (1994a) for a removal criterion 
based on estimated probability density. This criterion is applicable if the number of input signals is locally 
accumulated. For the error-minimizing networks presented in this section, however, we are still in the 
process of formulating a suitable removal criterion. This criterion will be based on the quantization error 
which would occur if a specific unit would be removed. 

C2.4.3 Competitive Hebbian learning, neural gas and topology-representing networks 

C2.4.3.1 Introduction 

The models described in this section were proposed at the same time (even in the same session of the 
1991 International Conference on Artificial Neural Networks in Helsinki) as the growing cell structures. 
They represent another kind of extension of the original self-organizing map method with its predefined 
topology. 

C2.4.3.2 Purpose 

The purpose of the methods described here is to distribute a number of centers according to some probability 
distribution (neural gas) and to generate a topology among these centers which has a dimensionality which 
is equal to the local dimensionality of the data and may be different in different parts of the input space 
(competitive Hebbian learning). The generation of such a topology can be denoted as 'topology learning'. 

C2.4.3.3 Topologies 

Competitive Hebbian learning (Martinetz 1993) assumes a number of centers in R" and successively inserts 
topological connections among them by evaluating input signals drawn from a data distribution P(<). The 
principle of this method is: 

For each input signal < connect the two closest centers (measured by Euclidean distance) by an edge. 

The resulting graph is a subgraph of the Delaunay triangulation (figure C2.4.9(a)) corresponding to 
the set of centers. This subgraph (figure C2.4.9(b)), which is called the induced Delaunay triangulation, 
is limited to those areas of the input space R" where P ( < )  > 0. The induced Delaunay triangulation has 
been shown to optimally preserve topology in a very general sense (Martinetz er a1 1993). 

The neural gas method does not use a particular topology. A 'network' simply consists of a number 
of disconnected centers in R". 

@ 1997 1OP Publishing Ltd and Oxford University Press Hundbook of Neurul Compuurion release 9711 C2.4:7 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.4.9. Two ways of defining closeness among a set of points. ( a )  The Delaunay triangulation 
(thick lines) connects points having neighboring Vuronoi polygons (thin lines). Basically, this reduces to 
points having small Euclidean distance with respect to the given set of points. (b )  The induced Delaunay 
triangulation (thick lines) is obtained by masking the original Delaunay triangulation with a data distribution 
P ( < )  (shaded). Two centers are only connected if the common border of their Voronoi polygons lies at 
least partially in  a region where P ( 6 )  > 0 (adapted from Martinetz and Schulten (1994)). 

C2.4.3.4 Learning rules and examples 

Formally, competitive Hebbian learning can be described as follows. 

(i) Initialize the set A to contain N units c L ,  at random positions w,, E R", i = 1, 2 .  . . , N :  

Initialize the connection set C, C c A x A ,  with the empty set (start with no connections): 

c = ( } .  

(ii) Generate at random an input signal E according to P ( < ) .  
(iii) Determine units SI  and s2 ( S I ,  s2 E A )  such that 

and 
llws2 - tll I Ilwc - Ell (VC E A \ S I )  

(iv) If it does not exist already, insert a connection between SI and s2 to C: 

(v) Continue with step (ii) unless the maximum number of signals is reached. 

Only centers lying on the input data submanifold or in its vicinity actually develop any edges (see 
figures C2.4.10 and C2.4.11). The others are useless for the purpose of topology learning and are often 
called dead units. To make use of all centers they have to be placed in those regions of R" where P ( E )  
differs from zero. This could be done by any vector quantization procedure. Martinetz and Schulten 
(1991) have proposed the neural gas method for this purpose (which is a vector quantization method). The 
main principle of neural gas is the following: 

For each input signal < adapt all centers according to their rank order (nearest, second-nearest, etc) with 
respect to E .  Decrease the number of significantly moved centers over time until only the winner is moved. 

The important idea here is to use the distance in input space only for determining a rank order and 
then do adaptations on the basis of this rank order. This makes the method rather invariant to initialization. 
To achieve convergence, a decay schedule is needed for the parameters which again demands to define 
the total number of adaptation steps in advance. 

Formally neural gas can be described as follows. 

C2.4:8 Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

Figure C2.4.10. Competitive Hebbian leaming simulation for the circular data distribution. Starting with a 
number of units at random positions, edges are inserted between best-matching and second-best-matching 
unit for each input signal. The positions of the units, however, remain unchanged which possibly leads to 
‘dead units’ not contributing to the network. (a) 0 signals; (b )  500 signals; (c) 3000 signals; ( d )  80000 
signals. 

Figure C2.4.11. Competitive Hebbian learning result for the clustered data distribution after 80 000 signals. 
A considerable number of ‘dead units’ without any connections can be seen. The random initialization of 
center positions leads to unevenly well represented regions of the input data submanifold. The two clusters, 
however, could be detected by inspecting the graph structure. 

Initialize the set A to contain N units ci, at random positions: w,, E R” (i = 1 ,  2, . . . , N ) .  

Initialize the time parameter t :  
t = o .  

Generate at random an input signal < according to P(<). 
Order all elements of A according to their distance to e, i.e. find the sequence of indices 
(io, i l ,  . . . , i N - 1 )  such that wia is the reference vector closest to <, w;, is the reference vector second- 
closest to < and wik, k = 0 , .  . . , N - 1 is the reference vector such that k vectors wj exist with 
llWj - </I < llwk - <I[. Following Martinetz er a1 (1993) we denote with k i (< ,  A)  the number k 
associated with wi. 
Adjust the reference vectors according to 

with the following time dependencies: 

h( t )  = hi (;if p p a x  r ( t )  = € j  (€f /€;)f’tmax and h l ( k )  = exp(-k/k) . 

Increase the time parameter t :  
r = r + l .  

If r < tmax continue with step (ii). 
For the time-dependent parameters suitable initial values ( A i ,  ~ i )  and final values ( k j  , r j )  have to 

be chosen. In figures C2.4.12 and C2.4.13 simulation results for our example distributions are shown. 
Following Martinetz et a1 (1993) we used the following parameters: A, = 10, AI = 0.01, E ,  = 0.5, 
Cf = 0.005, tmax = 40000. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook of Neurul Compuwfrnn relea\e 9111 C2.4:9 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Figure C2.4.12. Neural gas simulation for the circular data distribution. Strong neighborhood interaction 
at the beginning leads to a rapid clustering of the units which loosens up towards the end of the simulation 
where a very uniform distribution of centers is achieved. ( a )  0 signals; ( b )  250 signals; ( c )  6000 signals; 
( d )  40000 signals. 

Figure (24.13. Neural gas result after 40000 input signals for the clustered data distribution. The 
distribution of the centers reflects well the underlying data distribution. There is no topological information 
involved in neural gas, i.e. there are no neighborhood connections. 

For a given data distribution one could now first run the neural gas algorithm to distribute a certain 
number of centers and then use competitive Hebbian learning to generate the topology. It is, however, 
also possible to apply both techniques concurrently (Martinetz and Schulten 1991). In this case a method 
for removing obsolete edges is required, since the motion of the centers may make edges invalid which 
have been generated earlier. Martinetz and Schulten use an edge aging scheme for this purpose. One 
should note that the competitive Hebbian learning algorithm does not influence the outcome of the neural 
gas method in any way since the adaptations in neural gas are based only on distance in input space 
and not on the network topology. On the other hand neural gas does influence the topology generated 
by competitive Hebbian learning, since it moves the centers around. The straightforward combination of 
competitive Hebbian learning and neural gas has been called ‘topology-representing networks’. We do not 
describe this method separately due to lack of space (Martinetz and Schulten (1994) give a comprehensive 
description). Simulation results for the topology-representing networks for our example distributions are 
shown in figures C2.4.14 and C2.4.15. 

C2.4.3.5 Related neural network models 

c1.1.s The neural gas method is related to other vector quantization methods. Competitive Hebbian learning and 
the topology-representing networks model are related to the growing neural gas model. 

C2.4.3.6 Advantages 

The combination of neural gas and competitive Hebbian learning described above, which is sometimes 
referred to as topology-representing networks (Martinetz and Schulten 1994), is an effective method 
for topology learning. If a sufficient number of units is used a topological structure develops which 
characterizes very well the topology of the underlying data distribution. The nature of competitive Hebbian 
learning prevents the method forming ‘topological defects’ as have been observed for the self-organizing 
feature map. 

C2.4:lO Hundbook of N e u m l  Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

Figure C2.4.14. Neural gas plus competitive Hebbian learning simulation for the circular data distribution. 
Starting with a number of units at random positions, edges are inserted between best-matching and second- 
best-matching unit for one input signal (competitive Hebbian leaming). At the same time the unit positions 
are adapted with the neural gas method. Strong neighborhood interaction at the beginning leads to a rapid 
clustering of the units which loosens up towards the end of the simulation. In intermediate stages a very 
high connectivity may occur which, however, vanishes towards the end. (a) 0 signals; ( b )  250 signals; ( c )  
6000 signals; ( d )  40 000 signals. 

Figure C2.4.15. Neural gas plus competitive Hebbian leaming result after 40000 signals for the clustered 
data distribution. The final structure reflects very well the structure of the underlying distribution. Since a 
parameter decay is needed for neural gas, the number of adaptation steps has to be fixed in advance. The 
same holds for the number of units which must be fixed beforehand. If no knowledge of the distribution 
is present, this is a difficult step. 

C2.4.3.7 Disadvantages 

A problem in practical applications may be to determine a priori a suitable number of centers. Depending 
on the complexity of the data distribution which one wants to model, different numbers of centers may be 
appropriate. The underlying neural gas algorithm requires a decision in advance and, if the result is not 
satisfying, one or more new simulations have to be performed from scratch. 

The parameter A determining the degree of neighborhood adaptation must be set large enough to 
‘capture’ all units in early stages. Otherwise dead units might occur which do not contribute to the 
network. On the other hand A must decay fast enough to allow the units to be distributed according to 
the underlying data distribution (as opposed to the position dictated by neigborhood interaction as can be 
observed in intermediate stages of the simulation (see figure C2.4.14(b)). 

C2.4.3.8 Typical applications 

The methods described can be used for vector quantization and clustering. Also, a supervised version has 
been proposed which associates a local linear mapping with every unit and may be used, for example, for 
time-series prediction (Martinetz et a1 1993). 

C2.4.4 Growing neural gas 

C2.4.4.1 Introduction 

The model described in this section can be seen as a variant of the growing cell structures without the 
strict topological constraiiits of the former model. One could also interpret it as an incremental variant of 
the topology-representing networks described in the previous section. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 9711 C2.4: 11 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.4.4.2 Purpose 

The purpose of the growing neural gas model is to generate a graph structure which reflects the topology 
of the input data manifold (topology learning). This graph has a dimensionality which varies with the 
dimensionality of the input data. The resulting structure can be used to identify clusters in the input data. 
The nodes by themselves can be used as a codebook for vector quantization. 

Moreover, node positions and the neighborhood information contained in the edges can be used to set 
up an interpolation scheme where function values for arbitrary position in R" are computed from the values 
stored at the nearest node and its neighboring nodes in the graph. The growing neural gas model shares 
some properties with the topology-representing networks (Martinetz et a1 1993). In particular, competitive 
Hebbian learning (Martinetz et a1 1993) is used to generate the topology. The incremental structure of our 
method, however, leads to some inherent advantages of the approach presented. The growing neural gas 
model relates to the topology-representing networks in a similar way as the growing cell structures model 
relates to the self-organizing feature map. 

C2.4.4.3 Topology 

In the growing neural gas model there are no such restrictions on the topology as in the growing cell 
structures model. In principle, arbitrary edges are allowed and, in particular, the topology may have 
different dimensionalities in different parts of the input space. 

C2.4.4.4 Learning rule 

In the following we consider networks consisting of 
a set A of units (or nodes). Each unit c E A has an associated reference vector wc E R". The 
reference vectors can be regarded as positions in input space of the corresponding units. 
a set C of connections (or edges) among pairs of units. These connections are not weighted. Their 
sole purpose is the definition of topological structure. 
Moreover, there is a (possibly infinite) number of n-dimensional input signals obeying some unknown 

probability density function P(c). 
The main idea of the method is successively to add new units to an initially small network by 

evaluating local statistical measures gathered during previous adaptation steps. This is the same approach 
as used in the growing cell structures model (Fritzke 1994a) which, in contrast, has a topology with a 
fixed dimensionality. 

In the approach described here, the network topology is generated incrementally by competitive 
Hebbian learning and has a dimensionality which depends on the input data and may vary locally. The 
complete algorithm for our model which we call growing neural gas is given by the following: 

(i) Start with a set A of two units a and b at random positions wu and Wb in R": 

A = { U ,  b } .  

Initialize the connection set C to contain an edge between a and b and set the age of this connection 
to zero: 

C = { (a ,  b)}  

(ii) Generate an input signal E according to P ( 5 ) .  
(iii) Determine units $1 and s2 (SI, s2 E A )  such that 

age(,,b) = 0 .  

I lwq  - Ell i IIW -Ell (VC E A )  

(Vc E A \ S I ) .  

(iv) If it does not already exist, insert a connection between SI and s2 to C :  

and 
IIWSI - Ell i IIWC - Ell 

c = c U {(SI, S 2 ) l .  

In any case: set the age of the connection between SI and s2 to zero ('refresh' the edge): 

C2.4: 12 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

(v) Add the squared distance between the input signal and the nearest unit in input space to a local error 
variable: 

AES, = IlWSl - <I2. 
(vi) Move s1 and its direct topological neighbors towards t by fractions Eb and E" ,  respectively, of the 

total distance: 

AW.9, = cb(E - W S I )  

A w ~  = en(< - Wi) (Vi E iVy,). 

(vii) Increment the age of all edges emanating from 31: 

age(sl,i) = age(sl,i) + 1 P i  E Ns,) 

whereby Nc is the set of direct topological neighborst of c. 

remove them as well. 

unit as follows. 

(viii) Remove edges with an age larger than amax. If this results in units having no emanating edges, 

(ix) If the number of input signals generated so far is an integer multiple of a parameter h, insert a new 

Determine the unit q with the maximum accumulated error. 

(Vc E A )  E, 2 E, 

Interpolate a new unit r from q and its neighbor f with the largest error variable: 

A = A U { r }  W, = O . ~ ( W ,  + w f )  . 
Insert edges connecting the new unit r with units q and f, and remove the original edge between 
q and f :  

Decrease$ the error variables of q and f. 
c = c U I@, 411 0 . 3  f)} c = c \ (41 f) . 

A E ,  = -aE,  A E f  = - a E f .  

Interpolate the error variable of r from q and f: 

E ,  = 0.5(Eq + E f )  . 
(x) Decrease the error variables of all units: 

A E c  = -#l E, (VC E A ) ,  

(xi) If a stopping criterion (e.g. net size or some performance measure) is not yet fulfilled, continue with 
step (ii). 
How does the method described work? The adaptation steps towards the input signals (vi) lead to a 

general movement of all units towards those areas of the input space where signals come from ( P ( t )  > 0). 
The insertion of edges (vii) between the nearest and the second-nearest unit with respect to an input signal 
generates a single connection of the induced Delaunay triangulation (see figure C2.4.9(6)) with respect to 
the current position ofall units. The removal of edges (viii) is necessary to get rid of those edges which 
are no longer part of the induced Delaunay triangulation because their ending points have moved. This 
is achieved by local edge aging (vii) around the nearest unit combined with age resetting of those edges 
(iv) which already exist between nearest and second-nearest units. With insertion and removal of edges 
the model tries to construct and then track the induced Delaunay triangulation which is a slowly moving 
target due to the adaptation of the reference vectors. The accumulation of squared distances (v) during 
the adaptation helps to identify units lying in areas of the input space where the mapping from signals to 
units causes much error. To reduce this error, new units are inserted in such regions. 
t From the definition of Nc and C it follows that for each unit c the following holds: i E Nc iff (c, i )  E C. We do not generally 
distinguish between edges (c. i )  and ( i ,  c), i.e. edges are always undirected. 
$ This step is heuristic and makes it possible to use only a constant number A of adaptation steps per insertion. If, on the other 
hand, one were to use a number of adaptation steps proportional to the current network size, the error values could simply be erased 
after each insertion. See also the corresponding remarks for the growing cell structures model. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 C2.4~13 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

C2.4.4.5 Examples 

In figures C2.4.16 and C2.4.17 the results of our two standard examples can be seen. The parameters 
for this simulation were: h = 200, 6 b  = 0.05, e,, = 0.0006, a = 0.5, amax = 88 and = 0.0005. For 
the circle the growth process looks very similar to that of the growing cell structures. One should note, 
however, that the dimensionality of the growing neural gas network is not strictly fixed but depends only 
on the dimensionality of the input data which in this example happens to be two everywhere. 

This property can be seen very well for the probability distribution in figure C2.4.18 which has been 
proposed by Martinetz and Schulten (1991) to demonstrate their (nonincremental) neural gadcompetitive 
Hebbian learning model. We have used this distribution for the growing neural gas model and it is obvious 
that the model quickly identifies the important topological relations in this rather complicated distribution 
by forming structures of different dimensionalities. See figure C2.4.8 for the very different result of the 
growing cell structures model for the same distribution. 

Figure C2.4.16. Growing neural gas evolves a topology for the circular distribution. Starting with two 
units (which may or may not be connected) more and more units are inserted. Connections are generated 
by competitive Hebbian learning and die away if they are not refreshed for a while. ( a )  0 signals; ( b )  2800 
signals; ( c )  9400 signals; ( d )  20000 signals. 

Figure C2.4.17. Growing neural gas result after 20 000 signals for the data distribution used for the other 
models. The growth process (stopped after 100 units were present) has led to a structure with a topology 
very well adapted to the given data distribution. Note that the structure consists of two clusters reflecting 
the clustered data distribution and that all reference vectors lie in those regions where data actually come 
from. 

C2.4.4.6 Related neural network models 

This model is related in particular to the growing cell structures model from which it differs through its 
less rigid topology definition. Moreover, there is a relation to topology-representing networks since also 
competitive Hebbian learning and edge aging are also used to generate the topology. 

C2.4.4.7 Advantages 

In contrast to the neural gaskompetitive Hebbian learning combination of Martinetz and Schulten, the 
network size need not be predefined in this model. All parameters are constant and also the total number 
of adaptation steps need nzt be defined a priori. The growth process can be interrupted when a user- 
defined performance criterion has been fulfilled. Due to the fractal-like growth all intermediate stages of 
the network are rather good descriptions of the underlying distribution with a resolution depending on the 
current network size. The model of Martinetz and Schulten, however, has intermediate stages with very 

C2.4: 14 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised ontogenic networks 

Figure C2.4.18. The growing neural gas network adapts to a signal distribution which has different 
dimensionalities in different areas of the input space. The initial network consisting of two randomly 
placed units and the networks of size 7, 17, 50, 100 and 200 after 1000, 3000, 9600, 19600 and 39600 
input signals, respectively, are shown. The last network shown is not necessarily the ‘final’ one since the 
growth process could, in principle, be continued indefinitely. The parameters for this simulation were: 
A = 200, 6b = 0.05, E ,  = 0.0006, CY = 0.5, amax = 88 and = 0.0005. 

unevenly distributed centers and extremely high connectivity (see figure C2.4.14) which provide only poor 
descriptions of the underlying data. 

C2.4.4.8 Disadvantages 

An inherent disadvantage of this type of model (which it shares with the topology-representing networks 
of the previous section) is the fact that a visualization of the network is only (directly) possible if the 
data are low-dimensional. The reason is, of course, that no dimensionality reduction is intended by 
topology-learning networks so that they have the same dimensionality as the data. 

C2.4.4.9 Typical applications 

Applications of this unsupervised model are clustering or vector quantization. If one combines this model 
with local linear mappings or the radial basis function model, incremental supervised models are also 
possible. 

References 

Durbin R and Willshaw D 1987 An analogue approach to the travelling salesman problem using an elastic net method 

Fritzke B 1991 Unsupervised clustering with growing cell structures Proc. Int. Joint ConJ: on Neural Networks 2991 

-1994a Growing cell structures-a self-organizing network for unsupervised and supervised learning Neural 

-1994b Supervised learning with growing cell structures Advances in Neural Information Processing Systems 6 ed 

Fritzke B and Wilke P 1991 FLEXMAP-A neural network with linear time and space complexity for the traveling 

Kohonen T 1982 Self-organized formation of topologically correct feature maps Biol. Cybern. 43 59-69 
Martinetz T M 1993 Competitive Hebbian learning rule forms perfectly topology preserving maps Int. Conf. Arti$cial 

Nature 326 689-91 

(Seattle, WA) vol I1 pp 531-6 

Networks 7 1441-60 

J Cowan, G Tesauro and J Alspector (San Mateo, CA: Morgan Kaufmann) pp 255-62 

salesman problem Proc. Int. Joint Con$ on Neural Networks 1991 (Singapore) pp 929-34 

Neural Networks (Amsterdam: Springer) pp 427-34 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compururion release 9711 C2.4: 15 

Copyright © 1997 IOP Publishing Ltd



Unsupervised Models 

Martinetz T M, Berkovich S G and Schulten K J 1993 Neural-gas network for vector quantization and its application 

Martinetz T M and Schulten K J 1991 A ‘neural-gas’ network learns topologies ArtiJicial Neural Networks ed 

-1994 Topology representing networks Neural Networks 7 507-22 
Moody J E and Darken C 1989 Fast learning in networks of locally-tuned processing units Neural Comput. 1 281-94 
Poggio T and Girosi F 1990 Networks for approximation and learning Proc. IEEE 78 1481-97 
Willshaw D J and von der Malsburg C 1976 How patterned neural connections can be set up by self-organization 

to time-series prediction IEEE Trans. Neural Networks 4 558-69 

T Kohonen, K MUisara, 0 Simula and J Kangas (Amsterdam: North-Holland) pp 397-402 

Proc. R. Soc. B 194 43145 

C2.4:16 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



c3 

Reinforcement Learning 

S Sathiya Keerthi and B Ravindran 

Abstract 

This chapter gives a compact, self-contained tutorial survey of reinforcement learning, 
a tool that is increasingly finding application in the development of intelligent dynamic 
systems. Research on reinforcement learning during the past decade has led to the 
development of a variety of useful algorithms. This chapter surveys the literature and 
presents the algorithms in a cohesive framework. 

Contents 

c3 REINFORCEMENT LEARNING 
C3.1 Introduction 
C3.2 Immediate reinforcement learning 
C3.3 Delayed reinforcement learning 
C3.4 Methods of estimating V n  and Qn 
C3.5 Delayed reinforcement learning methods 
C3.6 Use of neural and other function approximators in reinforcement learning 
C3.7 Modular and hierarchical architectures 

@ 1997 IOP Publishing Ud and Oxford University Ress Hundbook of Neural Computation release 97t1 
Copyright © 1997 IOP Publishing Ltd



Reinforcement Learning 

C3.1 Introduction 

S Sathiya Keerthi and B Ravindran 

Abstract 

See the abstract for Chapter C3. 

Reinforcement learning (RL), a term borrowed from animal learning literature by Minsky (1954, 1961), 
refers to a class of learning tasks and algorithms in which the learning system learns an associative mapping, 
n : X += A by maximizing a scalar evaluation (reinforcement) of its performance from the environment 
(user). Compared to supervised learning, in which for each x shown the environment provides the learning 83.1 

system with the value of n(x),  RL is more difficult since it has to work with much less feedback from the 
environment. If, at some time, given an x E X, the learning system tries an a E A and the environment 
immediately returns a scalar reinforcement evaluation of the ( x ,  a )  pair (that indicates how far a is from 
~ ( x ) )  then we are faced with an immediate RL task. A more difficult RL task is delayed RL, in which the 
environment only gives a single scalar reinforcement evaluation, collectively for { (xt , at)} ,  a sequence of 
( x ,  a )  pairs occurring in time during the system operation. Delayed RL tasks commonly arise in optimal 
control of dynamic systems and planning problems of artificial intelligence (AI). In this chapter our main 
interest is in the solution of delayed RL problems. However, we also study immediate RL problems 
because methods of solving them play a useful role in the solution of delayed RL problems. 

Delayed RL encompasses a diverse collection of ideas having roots in animal learning (Barto 1985, 
Sutton and Barto 1987), control theory (Bertsekas 1989, Kumar 1985), and AI (Dean and Wellman 1991). ~1.9 
Delayed RL algorithms were first employed by Samuel (1959, 1967) in his celebrated work on playing 
checkers. However, it was only much later, after the publication of Barto, Sutton and Anderson's work 
(Barto et al 1983) on a delayed RL algorithm called the adaptive heuristic critic and its application to c2.3.3 

the control problem of pole balancing, that research on RL got off to a flying start. Watkins' @learning 
algorithm (Watkins 1989) made another impact on the research. A number of significant ideas have 
emerged rapidly during the past five years and the field has reached a certain level of maturity. In this 
chapter we provide a comprehensive tutorial survey of various ideas and methods of delayed RL. To avoid 
distractions and an unnecessary clutter of notations, we present all the ideas in an intuitive, not-so-rigorous 
fashion. In preparing this tutorial, we have obtained a lot of guidance from the works of Watkins (1989), 
Barto et a1 (1990, 1992), Bradtke (1994) and Barto (1992). 

To illustrate the key features of a delayed RL task let us consider a simple example. 

C3.1.1 Example: navigating a robot 

Figure C3.1.1 illustrates a grid world in which a robot navigates. Each blank cell on the grid is called 
a state. Shaded cells represent barriers; these are not states. Let X be the state space, that is, the set of 
states. The cell marked G is the goal state. The aim is to reach G from any state in the least number 
of time steps. Navigation is done using four actions: A = {N, S ,  E, W}, the actions denoting the four 
possible movements along the coordinate directions. 

Rules of transition are defined as follows. Suppose that the robot is in state x and action N is chosen. 
Then the resulting next state, y, is the state directly to the north of x ,  iffhere is such Q sfafe; otherwise 
y = x .  For instance, choosing W at the x shown in figure C3.1.1 will lead to the system staying at x .  The 
goal state is a special case. By definition we will take it that any action taken from the goal state results 
in a transition back to the goal state. In more general problems, the rules of transition can be stochastic. 

@ 1997 IOP Publishing Ud and Oxford University Press Handbook of Neural Compurarion release 9711 c3.1: 1 

Copyright © 1997 IOP Publishing Ltd



Reinforcement Learning 

Figure C3.1.1. Navigating in a grid world. 

The robot moves at discrete (integer) time points starting from t = 0. At a time step t ,  when the 
robot is at state xtr we define an immediate reward? as 

0 if xf  = G 

In effect, the robot is penalized for every time step spent at non-goal states. It is simple to verify that 
maximizing the total reward over time, 

is equivalent to achieving minimum time navigation from the starting state, xg = x .  Let V'(x)  denote the 
maximum achievable (optimal) value of V ( x ) .  

We are interested in finding a feedback policy, x : X + A such that, if we start from any starting 
state and select actions using x ,  then we will always reach the goal in the minimum number of time steps. 

The usefulness of immediate RL methods in delayed RL can be roughly explained as follows. 'Ifrpical 
delayed RL methods maintain G, an approximation of the optimal function, V'. If action a is performed at 
state x and state y results, then ? ( y )  can be taken as an (approximate) immediate evaluation of the ( x ,  a )  
pair-an optimal action at x is one that gives the maximum value of V * ( y ) .  By solving an immediate 
RL problem that uses this evaluation function we can obtain a good suboptimal policy for the delayed RL 
problem. We present relevant immediate RL algorithms in Section C3.2. 

Delayed RL problems are much harder to solve than immediate RL problems for the following reason. 
Suppose, in the example of navigating a robot, performance of a sequence of actions, selected according to 
some policy, leads the robot to the goal. To improve the policy using the experience, we need to evaluate 
the goodness of each action performed. But the total reward obtained gives only the cumulative effect 
of all actions performed. Some scheme must be found to reasonably apportion the cumulative evaluation 
to the individual actions. This is referred to as the temporal credit assignment problem. (In the previous 
paragraph we have already given a hint of how delayed RL methods do temporal credit assignment.) 

Dynamic programming (DP) (Bertsekas 1989, Ross 1983) is a well known tool for solving problems 
such as navigating a robot. It is an off-line method that requires the availability of a complete model of 
the environment. But the concerns of delayed RL are very different. To see this clearly let us return to 
the example of navigating a robot and impose the requirement that the robot has no knowledge of the 

t Sometimes r is referred to as the primary reinforcement. In more general situations, r is a function of xt as well as a,, the action 
at time step t .  

cz.3.4 

C3.1:2 Handbook of Neural Compufation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Introduction 

environment and that the only way of learning is by on-line experience of trying various actionst and 
thereby visiting many states. Delayed RL algorithms are particularly meant for such situations and have 
the following general format. 

C3.1.2 Delayed reinforcement learning algorithm 

Initialize the leaming system. 
Repeat 

( i )  With the system at state x ,  choose an action a according to an exploration policy and apply it to the 
system. 

(ii) The environment returns a reward, r ,  and also yields the next state, y .  
(iii) Use the experience, ( x ,  a ,  r, y )  to update the learning system. 
(iv) Set x := y .  

Even when a model of the environment is available, it is often advantageous to avoid an off-line 
method such as DP and instead use a delayed RL algorithm. This is because in many problems the state 
space is very large; while a DP algorithm operates with the entire state space, a delayed RL algorithm 
only operates on parts of the state space that are most relevant to the system operation. When a model is 
available, delayed RL algorithms can employ a simulation mode of operation instead of on-line operation 
so as to speed up learning and avoid doing experiments using hardware. In this chapter, we will use the 
term real-time operation to mean that either on-line operation or simulation mode of operation is used. 

In most applications, representing functions such as V* and j~ exactly is infeasible. A better alternative 
is to employ parametric function approximators, for example, neural networks. Such approximators must 
be suitably chosen for use in a delayed RL algorithm. To clarify this, let us take V*,  for instance, and 
consider a function approximator, ?(.; w )  : X + R,  for it. Here R denotes the real line and w denotes the 
vector of parameters of the approximator that is to be learnt so that 3 approximates V* well. Usually, at 
step (iii) of the delayed RL algorithm, the learning system uses the experience to come up with a direction 
q in which ? ( x ;  w )  has to be changed for improving performance. Given a step size, p,  the function 
approximator must alter w to a new value, dew so that 

C ( x ;  Illnew) = C ( x ;  w )  + p v .  (C3.1.1) 

For example, in multilayerperceptrons (Hertz et a1 1991, Haykin 1994) w denotes the set of weights and c1.2 
thresholds in the network and their updating can be carried out using backpropagation so as to achieve ci.z.3 
(C3.1.1). In the rest of the chapter we will denote the updating process in (C3.1.1) as 

?(x ;  w )  := 3 ( x ;  w )  + pq (C3.1.2) 

and refer to it as a learning rule. B3.3 
The chapter is organized as follows. Section C3.2 discusses immediate RL. In Section C3.3 we 

formulate delayed RL problems and mention some basic results. Methods of estimating total reward are 
discussed in Section C3.4. These methods play an important role in delayed RL algorithms. DP techniques 
and delayed RL algorithms are presented in Section C3.5. Sections C3.6-C3.8 address various practical 
issues. We make a few concluding remarks in Section C3.9. 

References 

Barto A G 1985 Leaming by statistical cooperation of self-interested neuron-like computing elements Human 

-1986 Game-theoretic cooperativity in networks of self-interested units Neural Networks for Computing ed 

-1992 Reinforcement leaming and adaptive critic methods Handbook of Intelligent Control: Neural, Fuuy, and 

Barto A G ,  Bradtke S J and Singh S P 1992 Real-time leaming and control using asynchronous dynamic programming 

Neurobiol. 4 229-56 

J S Denker (New York: AIP) pp 41-6 

Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand Reinhold) pp 469-91 

Technical Report COINS 91-57 University of Massachusetts, Amherst, MA, USA 

t During learning this is usually achieved by using a (stochastic) exploration policy for choosing actions. Typically the exploration 
policy is chosen to be totally random at the beginning of learning and made to approach an optimal policy as learning nears 
completion. 

~~~ 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 9711 c3.13

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult learning control problems
IEEE Trans. Syst. Man Cybem. 13 8 3 5 4 6

Barto A G, Sutton R S and Watkins C J C H 1990 Learning and sequential decision making Learning and Computational
Neuroscience: Foundations of Adaptive Networks ed M Gabriel and J Moore (Cambridge, MA: MIT Press)
pp 539-602

Bertsekas D P 1989 Dynamic Programming: Deterministic and Stochastic Models (Englewood Cliffs, NJ: Prentice-
Hall)

Bradtke S J 1994 Incremental dynamic programming for online adaptive optimal control CMPSCI Technical Report

Dean T L and Wellman M P 1991 Planning and Control (San Mateo, CA: Morgan Kaufmann)
Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: Macmillan)
Hertz J A, Krogh A S and Palmer R G 1991 Introduction to the Theory of Neural Computation (Redwood City, CA:

Kumar P R 1985 A survey of some results in stochastic adaptive control SIAM J. Control Opr. 23 329-380
Minsky M L 1954 Theory of neural-analog reinforcement systems and application to the brain-model problem PhD

-1961 Steps towards artificial intelligence Proc. Inst. Radio Eng. 49 8-30 1963 (Reprinted in Computers and

Ross S 1983 Introduction to Stochastic Dynamic Programming (New York: Academic)
Samuel A L 1959 Some studies in machine learning using the game of checkers IBM J. Res. Develop. pp 210-29

-1967 Some studies in machine learning using the game of checkers 11-recent progress IBM J. Res. Develop.

Sutton R S and Barto A G 1987 A temporal-difference model of classical conditioning Proc. Ninth Ann. Con$ of rhe

Watkins C J C H 1989 Learning from delayed rewards PhD Thesis Cambridge University, Cambridge, UK

PP 94-62

Addison-Wesley)

Thesis Princeton University, Princeton, NJ, USA

Thought ed E A Feigenbaum and J Feldman (New York: McGraw-Hill) pp 406-50)

(Reprinted in 1963 Computers and Thoughr ed E A Feigenbaum and J Feldman (New York: McGraw-Hill))

pp 601-17

Cognitive Science Society (Erlbaum, Hillsdale, NJ)

(23.1 :4 Handbook of Neural Computation release 97/1 @ 1597 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning.

C3.2 Immediate reinforcement learning

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

Immediate reinforcement learning (RL) refers to the learning of an associative mapping, j7 : X + A given a
reinforcement evaluator. To learn, the learning system interacts in a closed loop with the environment. At
each time step, the environment chooses an x E X and the learning system uses its function approximator,
r 3 (. ; w) , to select an action: a = *(x; w). Based on both x and a, the environment returns an evaluation or
‘reinforcement’, r(x, a) E R . Ideally, the learning system has to adjust w so as to produce the maximum
possible r value for each x; in other words, we would like 13 to solve the parametric global optimization
problem,

(C3.2.1)

Supervised learning is a popular paradigm for learning associative mappings (Hertz et a1 1991, Haykin
1994). In supervised learning, for each x shown the supervisor provides the learning system with the value
of j7(x). Immediate RL and supervised learning differ in the following two important ways.
0 In supervised learning, when an x is shown and the supervisor provides a = ~ (x) , the learning system

forms the directed information, q = a - r3 (x; w) and uses the learning rule: ?(x; w) := fi(x; w) + M ~ ,

where M is a small (positive) step size. For immediate RL such directed information is not available
and so the system has to employ some strategy to obtain such information.
In supervised learning, the learning system can simply check if q = 0 and hence decide whether the
correct map value has been formed by r3 at x . However, in immediate RL, such a conclusion on
correctness cannot be made without exploring the values of r(x, a) for all a.

Therefore, immediate RL problems are much more difficult to solve than supervised learning problems.
A number of immediate RL algorithms have been described in the literature. Stochastic learning

automata algorithms (Narendra and Thathachar 1989) deal with the special case in which A is a finite set
and r E [0, 11. The associative reward-penalty (AR-P) algorithm (Barto and Anandan 1985, Barto et a1
1985, Barto and Jordan 1987, Mazzoni et a1 1990) extends the learning automata ideas to the case where
X is a finite set. Williams (1986, 1987) has proposed a class of immediate RL methods and has presented
interesting theoretical results. Gullapalli (1990, 1992) has developed algorithms for the general case in
which X, A are finite-dimensional real spaces and r is real valued. Here we will discuss only algorithms
which are most relevant to, and useful in, delayed RL.

One simple way of solving (C3.2.1) is to take one x at a time, use a global optimization algorithm
(e.g. complete enumeration) to explore the A space and obtain the correct a for the given x , and then
make the function approximator learn this (x , a) pair. However, such an idea is not used for the following
reason. In most situations where immediate RL is used as a tool (e.g. to approximate a policy in delayed
RL), the learning system has little control over the choice of x. When, at a given x, the learning system
chooses a particular a and sends it to the environment for evaluation, the environment not only sends a
reinforcement evaluation but also alters the x value. Immediate RL seeks approaches which are appropriate
to these situations.

Let us first consider the case in which A is a finite set: A = {a’ , a2, . . . , am} . Let Rm denote the
m-dimensional real space. The function approximator, 2 , is usually formed as a composition of two

def r(x, ? (x ; w)) = r*(x) = maxr(x, a) Vx E X .
a c A

0

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Compurution release 9711 c3.2:1

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

functions: a function approximator, g(.; w) : X + R m and a fixed function, M : Rm+A. The idea behind
this setup is as follows. For each given x , z = g (x ; w) E Rm gives a vector of merits of the various ai
values. Let Zk denote the kth component of z . Given the merit vector z, a = M(z) is formed by the max
selector,

a = a ' where Zk = max Zi
l i i i m

(C3.2.2)

Let us now come to the issue of learning (i.e. choosing a w) . At some stage, let x be the input, z
be the merit vector returned by g, and a' be the action having the largest merit value. The environment
returns the reinforcement r (x , a'). In order to learn we need to evaluate the goodness of zk (and therefore
the goodness of a k) . Obviously, we cannot do this using existing information. We need an estimator,
call it i (x ; U), that provides an estimate of r * (x) . The difference, r (x , a') - i (x ; U) is a measure of the
goodness of a'. Then, a simple learning rule is

gk(x; w) := g k (x ; w) + a (r (x , a k) - ? (x ; U)) (C3.2.3)

where 01 is a small (positive) step size. If ? (e ; U) r* and (C3.2.3) is repeated a number of times for each
(x , k) combination, then it should be clear that all nonoptimal a's will get large negative merit values
while an optimal a' will retain its initial merit value.

Learning i requires that all members of A are evaluated by the environment at each x . Clearly, the
max selector (C3.2.2) is not suitable for such exploration. For instance, if at some stage of learning, for
some x , g assigns the largest merit to a wrong action, say a k , and i gives, by mistake, a value smaller
than r (x , a'), then no action other than a' is going to be generated by the learning system at the given
x. So we replace (C3.2.2) by a controlled stochastic action selector that generates actions randomly when
learning begins and approaches (C3.2.2) as learning is completed. A popular stochastic action selector is
based on the Boltzmann distribution,

(C3.2.4)

where T is a nonnegative real parameter (temperature) that controls the stochasticity of the action selector.
For a given x the expected reinforcement of the action selector is

def
F(x) = E(r(x, u) ~ x) = pj(x)r(x, U ') .

i
(C3.2.5)

As T+O the stochastic action selector approaches the max selector (C3.2.2) and F(x)+r * (x) . The
c i . 4 . z ideas here are somewhat similar to those of simulated annealing. Therefore we train ? to approximate F

(instead of r*). This is easy to do because, for any fixed value of T , 7 can be estimated by the average of
the performance of the stochastic action selector over time. A simple learning rule that achieves this is

? (x ; U) := i (x ; U) + B (r (x , a) - f (x : U)) (C3.2.6)

where ,9 is a small (positive) step size.
Two important comments should be made regarding the convergence of learning rules such as (C3.2.6)

(we will come across many such learning rules later) which are designed to estimate an expectation by
averaging over time.
0 Even if i (- ; U) F, r (x , a) - f (x ; U) can be nonzero and even large in size. This is because a is only

an instance generated by the distribution, p (x) . Therefore, to avoid unlearning as i comes close to
F, the step size, fl must be controlled properly. The value of may be chosen to be slightly smaller
than 1 when learning begins, and then slowly decreased to 0 as learning progresses.
For good learning to take place, the sequence of x values at which (C3.2.6) is carried out must be
such that it covers all parts of the space X as often as possible. Of course, when the learning system
has no control over the choice of x , it can do nothing to achieve such an exploration. To explore,
the following is usually done. Learning is done over a number of trials. A trial consists of beginning
with a random choice of x and operating the system for several time steps. At any one time step,
the system is at some x and the learning system chooses an action, a and learns using (C3.2.6).
Depending on x , a and the rules of the environment, a new x results and the next time step begins.
Usually, when learning is repeated over multiple trials, the X space is thoroughly explored.

0

C3.2:2 Hundbook ofNeuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Immediate reinforcement learning

Let us now consider the case in which A is continuous, say a finite-dimensional real space. The idea
of using merit values is not suitable. It is better to deal directly with a function approximator, h (. ; w)
from X to A. In order to do exploration a controlled random perturbation v is added to h (x ; w) to form
a = ? (x) . A simple choice is to take 7 to be a Gaussian with zero mean and having a standard deviation,
a(T) that satisfies a(T)+O as T+O. The setting-up and training of the reinforcement estimator, i is as
in the case when A is discrete. The function approximator h can adopt the following learning rule:

h (x ; w) := h (x ; w) + a (r (x , a) - i (x ; u)) ~ (C3.2.7)

where a is a small (positive) step size. In problems where a bound on r* is available, this bound can be
suitably employed to guide exploration, that is, to choose a (Gullapalli 1990).

Jordan and Rumelhart (1990) have suggested a method of ‘forward models’ for continuous action
spaces. If r is a known differentiable function, then a simple, deterministic learning law based on gradient
ascent can be given to update 6:

(C3.2.8)

If r is not known, Jordan and Rumelhart suggest that it is learned using on-line data, and (C3.2.8) be
used using this learned r . If, for a given x , the function r (x , e) has local maxima then the * (x) obtained
using learning rule (C3.2.8) may not converge to n(x). Qpically, this is not a serious problem. The
stochastic approach discussed earlier does not suffer from local maxima problems. However, we should
add that, because the deterministic method explores in systematic directions and the stochastic method
explores in random directions, the former is expected to be much faster. The comparison is very similar
to the comparison of deterministic and stochastic techniques of continuous optimization.

References

Barto A G and Anandan P 1985 Pattem recognizing stocahstic leaming automata IEEE Trans. Syst. Man and Cybem.

Barto A G , Anandan P and Anderson C W 1985 Cooperativity in networks of pattem recognizing stochastic learning

Barto A G and Jordan M I 1987 Gradient following without back-propagation in layered networks Proc. IEEE First

Gullapalli V 1990 A stochastic reinforcement algorithm for leaming real-valued functions Neural Networks 3 67 1-92
-1992 Reinforcement learning and its application to control Technical Report COINS 92-10, PhD Thesis University

Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: Macmillan)
Hertz J A, Krogh A S and Palmer R G 1991 Introduction to the Theory of Neural Computation (Redwood City, CA:

Jordan M I and Rumelhart D E 1990 Forward models: supervised leaming with a distal teacher Center for Cognitive

Mazzoni P, Andersen R A and Jordan M I 1990 AR-P learning applied to a network model of cortical area 7a Proc.

Narendra K and Thathachar M A L 1989 Learning Automata: an Introduction (Englewood Cliffs, NJ: Prentice-Hall)
Williams R J 1986 Reinforcement leaming in connectionist networks: a mathematical analysis Technical Report ICs

-1987 Reinforcement-learning connectionist systems Technical report NU-CCS-87-3 College of Computer

15 360-75

automata In Proc. Fourth Yale Workshop on Appl. Adapt. Systems Theory (New Haven, CT)

Ann. Con$ on Neural Networks (San Diego, CA) ed M Caudill and C Butler pp 11629-36

of Massachusetts, Amherst, MA, USA

Addison-Wesley)

Science Occasional Paper # 40 Massachusetts Institute of Technology Cambridge, MA, USA

1990 Int. Joint Con$ on Neural Networks 2 313-9

8605 Institute for Cognitive Science, University of Califomia at San Diego, La Jolla, CA, USA

Science, Northeastem University, Boston, MA, USA

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 C3.2:3

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

c3.3 Delayed reinforcement learning

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

Delayed reinforcement learning (RL) concerns the solution of stochastic optimal control problems. In this
section we formulate and discuss the basics of such problems. Solution methods for delayed RL will be
presented in Sections C3.4 and C3.5. In these three sections we will mainly consider problems in which c3.4. c3.5

the state and control spaces are finite sets. This is because the main issues and solution methods of delayed
RL can be easily explained for such problems. We will deal with continuous state and/or action spaces
briefly in Section C3.5.

Consider a discrete-time stochastic dynamic system with a finite set of states, X. Let the system begin
its operation at t = 0. At time t the agent (controller) observes statet x, and selects (and performs) action
a, from a finite set, A (x ,) , of possible actions. Assume that the system is Markovian and stationary, that
is,

Prob{x,+l = y I X O , ao, X I , a 1 , . . . , xt = x , a, = a }
def
= P X y (a) . = Prob{x,+l = y I X , = X , U , = U }

A policy is a method adopted by the agent to choose actions. The objective of the decision task
is to find a policy that is optimal according to a well defined sense, described below. In general, the
action specified by the agent's policy at some time can depend on the entire past history of the system.
Here we restrict attention to policies that specify actions based only on the current state of the system.
A deterministic policy, n, defines for each x E X an action n (x) E A (x) . A stochastic policy n
defines, for each x E X, a probability distribution on the set of feasible actions at x , that is, it gives the
values of Prob{n(x) = a } for all a E A (x) . For the sake of keeping the notations simple we consider
only deterministic policies in this section. All ideas can easily be extended to stochastic policies using
appropriate detailed notations.

Let us now precisely define the optimality criterion. While at state x , if the agent performs action
a , it receives an immediate payofs or reward, r (x , a) . Given a policy n we define the value function,
V R : X -+ R as followst:

Here future rewards are discounted by a factor y E [0, 1). The case y = 1 is avoided only because it leads
to some difficulties associated with the existence of the summation in (C3.3). Of course, these difficulties
can be handled by putting appropriate assumptions on the problem solved. But, to avoid unnecessary
distraction we do not go into the details; see Bradtke (1994) and Bertsekas and Tsitsiklis (1989).

The expectation in (C3.3) should be understood as

(C3.3.1)

t If the state is not completely observable then a method that uses the observable states and retains past information has to be used;
see Bacharach (1991, 1992), Chrisman (1992). Mozer and Bacharach (1990a. b), Whitehead and Ballard (1990). See Jaakkola et a1
(1995) and Singh et a1 (1994) for a direct treatment of partially observable Markovian decision processes.
$ Most RL researchers have concerned themselves with the optimization of the expected total discounted reward in (C3.3). See
Heger (1994) for a discussion of an alternative objective function: the minimax criterion.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 (3.3 :1

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

where the probability with which a particular state sequence { x ~ } ~ ~ ~ occurs is taken in an obvious way
using xg = x and repeatedly employing x and P. We wish to maximize the value function:

V*(x) = max V " (x) Vx . (C3.3.2)

V* is referred to as the optimal value function. Because 0 5 y -= 1, V"(x) is bounded. Also, since the
number of ns is finite V*(x) exists.

How do we define an optimal policy, x'? For a given x let xx'* denote a policy that achieves the
maximum in (C3.3.2). Thus we have a collection of policies, {xX . * : x E X) . Now H* is defined by
picking only the first action from each of these policies:

I

x * (x) = nX.*(x>

V*(X) = V"'(X) x E x. (C3.3.3)

x E x.
It turns out that x* achieves the maximum in (C3.3.2) for every x E X . In other words,

This result is easy to see if one looks at Bellman's optimality equation-an important equation that V*
satisfies: r 1

(C3.3.4)

The fact that V* satisfies (C3.3.4) can be explained as follows. The term within square brackets on the
right-hand side is the total reward that one would get if action a is chosen at the first time step and then
the system performs optimally in all future time steps. Clearly, this term cannot exceed V * (x) since that
would violate the definition of V*(x) in (C3.3.2); also, if a = nXs*(x) then this term should equal V*(x).
Thus equation (C3.3.4) holds. It also turns out that V* is the unique function from X to R that satisfies
(C3.3.4) for all x E X . This fact, however, requires a nontrivial proof; details can be found in Ross (1983),
Bertsekas (1989), Bertsekas and Tsitsiklis [1989).

The above discussion also yields a mechanism for computing 7r* if V* is known:
r 1

A difficulty with this computation is that the system model, that is, the function Pxy(a) , must be known.
This difficulty can be overcome if, instead of the V-function, we employ another function called the Q-
function. Let U = { (x , a) : x E X, a E A@)}, the set of feasible (state, action) pairs. For a given policy
x , let us define Q" : U + R by

(C3.3.5)

Thus Q"(x , a) denotes the total reward obtained by choosing a as the first action and then following x
for all future time steps. Let Q* = en'. By Bellman's optimality equation and ((23.3.3) we get

V * (x) = max [Q * (x , a)] . (C3.3.6)
a c A (x)

It is also useful to rewrite Bellman's optimality equation using alone:

(C3.3.7)

Using Q* we can compute n*:
r * (x) = arg max [Q* (x , a)] . (C3.3.8)

Thus, if Q* is known then x* can be computed without using a system model. This advantage of the
Q-function over the V-function will play a crucial role in Section C3.5 for deriving a model-free delayed
RL algorithm called Q-learning (Watkins 1989).

Let us now consider a few examples that give useful hints for problem formulation. These examples
are also commonly mentioned in the RL literature.

a e A (x)

C3.3~2 Handbook of Neural Computation release 9711 0 1997 IOP Publishing Ud and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning

C3.3.1 Example: navigating a robot with dynamics

In section C3.1.1 the robot is moved from one cell to another like the way pieces are moved on a chess
board. True robot motions, however, involve dynamics; the effects of velocity and acceleration need to
be considered. In this example we will include dynamics in a crude way, one that is appropriate to the
grid world. Let h, and ut denote the horizontal and vertical coordinates of the cell occupied by the robot
at time t and h, and U, denote the velocities. The vector (h,, U,, h,, U,) denotes the system state at time t ;
each one of the four components is an integer. The goal state is x G = (hG, u G , 0,O) where (hG, uG) is
the coordinate vector of the goal cell G. In other words, the robot has to come to rest at G. Let hm, and
U, be limits on velocity magnitudes. Thus, the state space is given by

2 = { x = (h , U , h , U) I (h , U) is a blank cell, lhl 5 h,,, and IUI 5 U-}.

We will also include an extra state f called failure state to denote situations where a barrier (shaded) cell
is entered or a velocity limit is exceeded. Thus,

X = i U { f)

The accelerations (negative acceleration will mean deceleration) along the horizontal and vertical
directions, respectively ah and U", are the actions. To keep h and U as integers let us assume that each of
the accelerations takes only even integer values. Let am, be a positive even integer that denotes the limit
on the magnitude of accelerations. Thus a = (ah, a") is an admissible action if each of ah and a" is an
even integer lying in [-am,, a-].

As in section C3.1.1 state transitions are deterministic. They are defined as follows. If barrier cells
and velocity limits are not present, then application of action (ah, a") at x, = (h t , U,, h,, U,) will lead to
the next state xi+1 = (hi+l, hi+l, given by

hj+, = ht + ht + uh/2 = U, + U, + a"/2
= U, + a" . = h, +ah

Let C denote the curve in the grid world resulting during the transition from (h , , U,) at time t to
at time (t+ l) , that is, the solution of the differential equations: d2h/dt2 = ah, d2u/dt2 = a", t E [t , t+l] ,
h (t) = ht, dh/drlr = h,, u (t) = U,, du/dtlr = U,. If either C cuts across a barrier cell or (hi+l, U') is
an inadmissible velocity vector, then we say failure has occurred during transition. Thus, state transitions
are defined as

It?

f if xt = f
f if failure occurs during transition

if x r = x G
x : + ~ otherwise.

-1 i f x = f

The primary aim is to avoid failure. Next, among all failure-avoiding trajectories we would like to choose
the trajectory which reaches the goal state, x G = (h G , u G , 0, 0), in as few time steps as possible. These
aims are met if we define

1 i f x = x G
0 otherwise.

T (X , a) =

The following can be easily checked.
e
e

e

V * (x) < 0 iff there does not exist a trajectory starting from x that avoids failure.
V * (x) = 0 iff, starting from x , there exists a failure-avoiding trajectory, but there does not exist a
trajectory that reaches G.
V * (x) > 0 iff, starting from x , there exists a failure-avoiding trajectory that also reaches G; also, an
optimal policy IP leads to the generation of a trajectory that reaches G in the fewest number of steps
from x while avoiding failure.

C3.3.2 Example: playing backgammon

Consider a game of backgammon (Magriel 1976) between players A and B. Let us look at the game from
A's perspective, assuming that B follows a fixed policy. Now A can make a decision on a move only

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c3.3:3

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

when the current board pattern, as well as its dice roll, are known. Therefore, a state consists of a (board
pattern, dice roll) pair. Each action consists of a set of marker movements. State transition is defined as
follows.
0 A moves its markers in accordance with the chosen action. This step is deterministic and results in

a new board pattern.
0 B rolls the dice. This step is stochastic.
0 B moves its markers according to its policy. This step can be deterministic or stochastic depending

on the type of B's policy.
0 A rolls the dice. This step is stochastic.

The set of states that correspond to A's win is the set of goal states, G , to be reached. We can define
the reward as: ~ (x , a) = 1 if x is a goal state; and r (x , a) = 0 otherwise. If y = 1, then for a given
policy, say n, the value function V"(x) will denote the probability that A will win from that state.

Figure C3.3.1. Pole balancing.

C3.3.3 Example: pole balancing

We now deviate from our problem formulation and present an example that involves continuous state/action
spaces. A standard problem for learning controllers is that of balancing an inverted pendulum pivoted on
a trolley, a problem similar to that of balancing a stick on one's hand (Barto et a1 1983). The system
comprises a straight horizontal track, like a railway track, with a carriage free to move along it. On the
carriage is an axis, perpendicular to the track and pointing out to the side, about which a pendulum is
free to turn. The controller's task is to keep the pendulum upright, by alternately pulling and pushing the
carriage along the track. Let h and 8 be as shown in figure C3.3.1. We say balancing has failed if any
one of the following inequalities is violated:

h s h m h ph,, e sem, e ?-em
where h,, and 0- are specified bounds on the magnitudes of h and 0 . The aim is to balance without
failure for as long a time as possible.

The state of the system is the 4-tuple, (h , h , 8, e) , where h and e are the time derivatives of h
and 8, respectively. The action is the force applied to the carriage. It takes real values in the interval,
[-F- , F-3. To simplify the problem solution, sometimes the action space is taken to be {-F-, F-}
(Michie and Chambers 1968, Barto et af 1983, Anderson 1989). A discrete time formulation of the
problem is obtained by cutting continuous time (nonnegative real line) into uniform time intervals, each
of duration A, and taking the applied force to be constant within each interval. (This constant is the
action for the time step corresponding to that interval.) The state of the system at the continuous time
instant t A is taken to be x t , the discrete time state at the tth time step. The mechanical dynamics of the
system defines state transition, except for one change: once failure occurs, we will assume, for the sake
of consistent problem formulation, that the system stays at failure for ever.

c3.3:4 Handbook of Neural Compuration release 9711 @ 1997 IOP Publishing Ltd and Oxford University Rtss

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning

As in the example of pole balancing we will take the state space to be X = 2 U { f) , where

i = { x = (h , A , € ! , e) [- h,, 5 h 5 h", -8" 5 8 5 8") (C3.3.9)

and f is the failure state that collectively represents all states not in 2. Since the aim is to avoid failure,
we choose

-1 if x = f,
0 otherwise. r (x , a) =

References

Anderson C W 1989 Learning to control an inverted pendulum using neural networks IEEE Control Syst. Mag. 31-7
Bacharach J R 1991 A connectionist learning control architecture for navigation Advances in Neural Information

Processing Systems 3 ed R P Lippman, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann)
pp 457463

-1992 Connectionist modeling and control of finite state environments PhD Thesis University of Massachusetts,
Amherst, MA, USA

Barto A G 1992 Reinforcement leaming and adaptive critic methods Handbook of Intelligent Control: Neural, Fuuy,
and Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand Reinhold) pp 469-91

Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult learning control problems
IEEE Trans. Syst. Man Cybern. 13 835-46

Bertsekas D P 1989 Dynamic Programming: Deterministic and Stochastic Models (Englewood Cliffs, NJ: Prentice-
Hall)

Bertsekas D P and Tsitsiklis J N 1989 Parallel and Distributed Computation: Numerical Methods (Englewood Cliffs,
NJ: Prentice-Hall)

Bradtke S J 1994 Incremental dynamic programming for online adaptive optimal control CMPSCI Technical Report
pp 94-62

Chrisman L 1992 Planning for closed-loop execution using partially observable markovian decision processes Proc.
AAAI

Heger M 1994 Consideration of risk in reinforcement leaming Proc. 11th In?. Machine Learning Con$ ML-94
Jaakkola T, Singh S P and Jordan M I 1995 Reinforcement leaming algorithm for partially observable Markov

decision processes Advances in Neural Information Processing Systems 7 ed G Tesauro, D Touretzky and T Leen
(Cambridge, MA: MIT Press)

Magriel P 1976 Backgammon (New York: Times Books)
Michie D and Chambers R A 1968 BOXES: An experiment in adaptive control Machine Intelligence 2 ed E Dale and

Mozer M C and Bacharach J 1990a Discovering the structure of reactive environment by exploration Advances in

-1990b Discovering the structure of reactive environment by exploration Neural Comput. 2 447-57
Ross S 1983 Introduction to Stochastic Dynamic Programming (New York: Academic)
Singh S P 1994 Learning to solve Markovian decision processes PhD Thesis Department of Computer Science,

Singh S P, Jaakkola T and Jordan M I 1994 Learning without state-estimation in partially observable Markov decision

Watkins C J C H 1989 Learning from delayed rewards PhD Thesis Cambridge University, Cambridge, UK
Whitehead S D and Ballard D H 1990 Active perception and reinforcement learning Neural Comput. 2 409-19

D Michie (Oliver and Boyd) pp 137-152

Neural Information Processing 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 439-446

University of Massachussetts, Amherst, MA, USA

processes Machine Learning

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 (23.35

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.4 Methods of estimating Vr and Qr

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

Delayed reinforcement learning (RL) methods use a knowledge of V" (Q") in two crucial ways: (i) the
optimality of n can be checked by seeing if V" (Q") satisfies Bellman's optimality equation; and (ii)
if n is not optimal then V" (Q") can be used to improve n. We will elaborate on these details in the
next section. In this section we discuss, in some detail, methods of estimating V" for a given policy, n,
(Methods of estimating Qn are similar and so we will deal with them briefly at the end of the section.)
Our aim is to find e(.; v) , a function approximator that estimates V". Much of the material in this section
is taken from the works of Watkins (1989), Sutton (1984, 1988) and Jaakkola et a1 (1994).

To avoid clumsiness we employ some simplifying notations. Since x is fixed we will omit the
superscript from V" and so call it V. We will refer to r (xt , IT (x ,)) simply as r,. If p is a random variable,
we will use p to denote both the random variable as well as an instance of the random variable.

A simple approximation of V(x) is the n-step truncated refurn,

(C3.4.1)

(Here it is understood that xo = x . Thus, throughout this section t will denote the number of time steps
elapsed after the system passed through state x . It is to stress this point that we have used t instead of t .
In a given situation, the use of time-'actual system time' or 'time relative to the occurrence of x'-will
be obvious from the context.) If rmax is a bound on the size of r then it is easy to verify that

Y"r-
(1 - Y)

max IV(x; U) - V(x)l I -
X

(C3.4.2)

n u s , as n + 03, Q(x; U) converges to V (X) uniformly in x .
But equation (C3.4.1) suffers from an important drawback. The computation of the expectation

requires the complete enumeration of the probability tree of all possible states reachable in n time steps.
Since the breadth of this tree may grow very large with n, the computations can become very burdensome.
One way of avoiding this problem is to set

Q (x ; U) = V["l(X) (C3.4.3)

where V["I(x) is obtained via either Monte Carlo simulation or experiments on the real system (the latter
choice is the only way for systems for which a model is unavailable). The approximation (C3.4.3) suffers
from a different drawback. Because the breadth of the probability tree grows with n, the variance of
V["](x) also grows with n. Thus ?(x; U) in (C3.4.3) will not be a good approximation of E(V["l (x))
unless it is obtained as an average over a large number of trials. (As already mentioned, a trial consists of
starting the system at a random state and then running the system for a number of time steps.) Averaging
is achieved if we use a learning rule (similar to (C3.2.6)):

e (x ; U) := Q (x ; U) + p[v[qx> - Q (x ; U)] (C3.4.4)

@ 1997 IOP Publishing Lrd and Oxford University Press Handbook of N e u m f Computation release 9711 c3.4:1

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

where /3 is a small (positive) step size. Learning can begin with a random choice of U. Eventually, after
a number of trials, we expect the 9 resulting from (C3.4.4) to satisfy (C3.4.2).

In the above approach, an approximation of V , 9 is always available. Therefore, an estimate that is
more appropriate than V ["] (x) is the corrected n-step truncated return,

n-1

v(")(x) = C y r r r + yn?(xn; U) (C3.4.5)

where x, is the state that occurs n time steps after the system passed through state x . Let us do some
analysis to justify this statement.

r=O

First, consider the ideal learning rule,

? (x ; U) := E(V'")(x)) v x . (C3.4.6)

Suppose U gets modified to unew in the process of satisfying (C3.4.6). Then, similarly to (C3.4.2), we can
easily derive

maxI?(x; unew) - v (x) l 5 ynmax19(x; U) - v (x) ~ .

Thus, as we go through a number of learning steps we achieve ? -+ V . Note that this convergence is
achieved even if n is fixed at a small value, say n = 1 . On the other hand, for a fixed n, the learning rule
based on VI"], that is, equation (C3.4.1), is only guaranteed to achieve the bound in (C3.4.2). Therefore,
when a system model is available it is best to choose a small n, say n = 1, and employ (C3.4.6).

Now suppose that either a model is unavailable or (C3.4.6) is to be avoided because it is expensive.
In this case, a suitable learning rule that employs V(") and uses real-time data is

(C3.4.7)

X X

3 (x ; U) := 9 (x ; U) + /3[V'"'(x) - ? (x ; U)].

Which is better: (C3.4.4) or (C3.4.7)? There are two reasons why (C3.4.7) is better.

(i) Suppose 9 is a good estimate of V . Then a small n makes V(") ideal: V(") (x) has a mean close to
V (x) and it also has a small variance. Small variance means that (C3.4.7) will lead to fast averaging
and hence fast convergence of 9 to V . On the other hand n has to be chosen large for V["l (x) to
have a mean close to V (x) ; but then, V ["] (X) will have a large variance and (C3.4.4) will lead to
slow averaging.

(ii) If ? is not a good estimate of V then both V(') and V["] will require a large n for their means to be
good. If a large n is used, the difference between V(") and V["] , that is, y"?, is negligible and so
both (C3.4.4) and (C3.4.7) will yield similar performance.
The above discussion implies that it is better to employ V(") than V m l . It is also clear that, when

V (n) is used, a suitable value of n has to be chosen dynamically according to the goodness of ?. To aid
the manipulation of n, Sutton (1988) suggested a new estimate constructed by geometrically averaging
{v(")(x) : n 2 1) :

vA (x) = (1 - A) An-' P (X) . (C3.4.8)

Here (1 - A.) is a normalizing term. Sutton referred to the learning algorithm that uses V A as T D(h) . Here
T D stands for 'temporal difference', The use of this name will be justified below. Expanding (C3.4.8)
using (C3.4.5) we get

CC

n=l

(C3.4.9)

Using the fact that ro = r (x , n (x)) the above expression may be rewritten recursively as

v A (x) = r (x , n(x)) + y (1 - ~) 9 (x l ; U) + y ~ v * (x l) (C3.4.10)

where XI is the state occurring a time step after x . Putting h = 0 gives V o = V (') and putting h = 1 gives
VI = V , which is the same as V(O0). Thus, the range of values obtained using V(") and varying n from 1

C3.42 Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Methods of estimating V n and Qr

to 00 is approximately achieved by using VA and varying A from 0 to 1 . A simple idea is to use V A instead
of V(") , begin the learning process with A = 1, and reduce A towards zero as learning progresses and 9
becomes a better estimate of V . If A is properly chosent then a significant improvement of computational
efficiency is usually achieved when compared to simply using A = 0 or A = 1 (Sutton 1988). In a recent
paper, Sutton and Singh (1994) have developed automatic schemes for doing this assuming that no cycles
are present in state trajectories.

The definition of VA involves all V(")s and so it appears that we have to wait forever to compute it.
However, computations involving VA can be nicely rearranged and then suitably approximated to yield a
practical algorithm that is suited for doing learning concurrently with real-time system operation. Consider
the learning rule in which we use V A instead of V(") :

Q (x ; U) := Q (x ; U) + B[VA(x) - Q (x ; U)]. (C3.4.11)

Define the temporal diference operator, A , by

A (X) = r (x , ~ (x)) + y ? (x l ; v) - Q<x; U). (C3.4.12)

A (x) is the difference of predictions (of V " (x)) at*two consecutive time steps: r (x , n(x)) + y + (x l ; U) is
a prediction based on information at r = 1 , and V (x ; U) is a prediction based on information at t = 0.
Hence the name, 'temporal difference'. Note that A (x) can be easily computed using the experience within
a time step. A simple rearrangement of the terms in the second line of (C3.4.9) yields

V'(X> - Q (x ; U) = A (x) + (Y A) A (x ~) + (Y A) ~ A (x z) + (C3.4.13)

Even equation (C3.4.13) is not in a form suitable for use in (C3.4.11) because it involves future terms,
A(x l) , A (x z) , . , ., extending to infinite time. One way to handle this problem is to choose a large
N , accumulate A (x) , A(x l) , . . ., A (x N - ~) in memory, truncate the right-hand side of (C3.4.13) to
include only the first N terms, and apply (C3.4.11) at r = N + 1 , that is, (N + 1) time steps after
x occurred. However, a simpler and approximate way of achieving (C3.4.13) is to include the effects
of the temporal differences as and when they occur in time. Let us say that the system is in state x at
time t . When the system goes to state x1 at time (t + l) , compute A (x) and update 9 according to:
Q (x ; U)*:= e (x ; U) + B(yA)A(xl) . When the system goes to state x2 at time (t + 2), compute A(x1) and
update V according to: Q (x ; v) := Q (x ; v)+#3(yA)2A(xz) and so on. The reason why this is approximate
is because Q (x ; U) is continuously altered in this process whereas (C3.4.13) uses the Q (x ; U) existing at
time t . However, if /? is small and so Q (x ; U) is adapted slowly, the approximate updating method is
expected to be close to (C3.4.11).

One way of implementing the above idea is to maintain an eligibility trace, e (x , t) , for each state
visited (Klopf 1972, 1982, 1988, Barto et a1 1983, Watkins 1989), and use the following learning rule at
time t :

(C3.4.14) Q (x ; U) := ? (x ; U) + Be(x , ?)A@,) V x

where xt is the system state at time t . The eligibility traces can be adapted according to

if x has never been visited
t - 1) if xt # x

1 + yAe(x, t - 1) if xt = x .
(C3.4.15)

Two important remarks must be made regarding this implementation scheme.

(i) Whereas the previous learning rules (e.g. (C3.4.4), (C3.4.7) and (C3.4.11)) update only for one
x at a time step, (C3.4.14) updates the Q of all states with positive eligibility trace, at a time step.
Rule (C3.4.14) is suitable for neural hardware implementation, but not so for implementations on ~ 1 . 2

sequential computers. In that case one of the following ideas can be tried.
(a) Keep track of the last k states visited and update $' for them only. The value of k should depend

on A. If A is small, k should be small. If A = 0 then k = 1.

t For example, if the underlying dynamic system is deterministic then a value of A close to 1 is appropriate; on the other hand, if
the system is highly stochastic then a value of 1 near zero is better.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 c3.4:3

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

(b) The following idea is due to Cichosz (1995). Choose a nonnegative integer m (depending on the
decay rate y).) and truncate the right-hand side of (C3.4.13) to keep only the first (m + 1) terms
and get

where

Thus, if x is the state occurring at time step t , Q (x ; U) gets, updated at the end of time step
(t + m) and, more importantly, x is the only state for which V is updated at time step (t + m).
The recursion,

S(x1) = [S (x) - A(x)I / (v A) + (YA)"A(xm+l> (C3.4.16)

can be employed so that the S computation can be done in constant time even if m is large.
Cichosz (1995) has suggested (with good justification) another update rule based on truncation
which is even better than the idea described above.

(ii) The rule for updating eligibility traces (C3.4.15) assumes that learning takes place in a single trial. If
learning is done over multiple trials then all eligibility traces must be reset to zero just before each
new trial is begun.
The remark made below equation (C3.2.6) applies also to the learning rules (C3.4.4), (C3.4.7),

(C3.4.11) and (C3.4.14). Dayan and Sejnowski (1993) and Jaakkola et a1 (1994) have shown that, if
the real time T D (A) learning rule, (C3.4.14) is used, then under appropriate assumptions on the variation
of p in time, as t -+ 00, ? converges to V K with probability one. Practically, learning can be achieved
by doing multiple trials and decreasing f i towards zero as learning progresses.

Thus far in this section we have assumed that the policy II is deterministic. If x is a stochastic policy
then all the ideas of this section still hold with appropriate interpretations: all expectations should include
the stochasticity of x , and the n (x) used in (C3.4.10), (C3.4.12), and other equations should be taken as
instances generated by the stochastic policy.

Let us now come to the estimation of Q". Recall from (C3.3.5) that Qn(x ,a) denotes the total
reward obtained by choosing a as the first action and then following IT for all future time steps. Details
concerning the extension of Q" are clearly described in a recent report by Rummery and Niranjan (1994).
Let Q (x , a ; U) be the estimator of Q n (x , a) that is to be learnt concurrently with real-time system operation.
Following the same lines of argument as used for the value function, we obtain a learning rule similar to
(C3.4.14):

(C3.4.17)

where xt and a, are, respectively, the system state and the action chosen at time f ;

O (x ; U) := O (x ; U) + p S (x)

S (X) = A(x) + (yA)A(Xl) + ' * + (YA)mA(Xm).

b(x, a; U) := b(x, a; U) + BeQ(x, a, ~) A Q (x , , a,) v (x , a)

A Q (x , a) = r (x , a) + yQ(x1, xi); U) - Q<x, a; U) (C3.4.18)

and
if (x , a) has never been visited
if (x f , a t) # (x , a) e&, a, f) = yAeQ(x, a, t - 1) (C3.4.19) l o 1 + yAep(x , a, t - 1) if (x f , at) = (x , a) .

If II is a stochastic policy then it is better to replace (C3.4.18) by
As with e , all e p (x , a, t) must be reset to zero whenever a new trial is begun from a random starting state.

AQ(x, a) = r (x , a) + y P (x 1) - Q (x , a ; U) (C3.4.20)

where
(C3.4.21)

Rummery and Niranjan (1994) suggest the use of (C3.4.18) even if x is stochastic; in that case, the x(x1)
in (C3.4.18) corresponds to an instance generated by the stochastic policy at X I . We feel that, as an
estimate of V " (x ,) , ? (X I) is better than the term g (x 1 , x(x1); U) used in (C3.4.18), and so it fits in better
with the definition of Q" in (C3.3.5). Also, if the the size of A(x1) is small then the computation of P(x1)
is not much more expensive than that of & X I , n(x1); U) .

c3.4:4 Handbook of Neural Compufafion release 97f1 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Methods of estimating V" and 8"

References

Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult leaming control problems

Cichosz P 1995 Truncating temporal differences: on the efficient implementation of TD(1) for reinforcement leaming

Dayan P 1993 Improving generalization for temporal difference leaming: the successor representation Neural Comput.

Dayan P and Sejnowski T J 1993 TD(1) converges with probability 1 Technical Report CNL The Salk Institute, San
Diego, CA, USA

Jaakkola T, Jordan M I and Singh S P 1994 Convergence of stochastic iterative dynamic programming algorithms
Advances in Neural Informution Processing Systems 6 ed J D Cowan, G Tesauro and J Alspector (San Mateo,
CA: Morgan Kaufmann) pp 703-710

Klopf A H 1972 Brain funtion and adaptive sytems-a heterostatic theory Technical report AFCRL-724164 Air
Force Cambridge Research Laboratories, Bedford, MA, USA

-1982 The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence (Washington, DC: Hemisphere)
-1988 A neuronal model of classical conditioning Psychobiology 16 85-125
Rummery G A and Niranjan M 1994 Online Q-leaming using connectionist systems Technical Report CUED/F-

Sutton R S 1984 Temporal credit assignment in reinforcement leaming PhD Thesis University of Massachusetts,

-1988 Leaming to predict by the method of temporal differences Machine Learning 3 9-44
Sutton R S and Singh S P 1994 On step-size and bias in TD-learning Proc. Eighth Yale Workshop on Adaptive and

Watkins C J C H 1989 Leaming from delayed rewards PhD Thesis Cambridge University, Cambridge, UK

IEEE Truns. Syst. Man Cybern. 13 835-46

J. Artif: Int. Res. 2 287-318

5 613-24

INFENG/TR 166 University of Cambridge, Cambridge, UK

Amherst, MA, USA

Learning Systems 91-6 Yale University, USA

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 c3.45

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.5 Delayed reinforcement learning methods

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

Dynamic programming (DP) methods (Ross 1983, Bertsekas 1989) are well known classical tools for cz.3.4

solving the stochastic optimal control problem formulated in Section C3.3. Since delayed reinforcement
learning (RL) methods also solve the same problem, how do they differ from DP methods?i The main
differences are as follows.

0 Whereas DP methods simply aim to obtain the optimal value function and an optimal policy using
off-line iterative methods, delayed RL methods aim to learn the same concurrently with real-time
system operation and improve performance over time.
DP methods deal with the complete state space X in their computations, while delayed RL methods
operate on 2, the set of states that occur during real-time system operation. In many applications X
is very large, but 2 is only a small, manageable subset of X. Therefore, in such applications, DP
methods suffer from the curse of dimensionality, but delayed RL methods do not have this problem.
Also, typically delayed RL methods employ function approximators (for value function, policy etc)
that generalize well, and so, after learning, they provide near optimal performance even on unseen
parts of the state space.
DP methods fundamentally require a system model. On the other hand, the main delayed RL methods
are model-free; hence they are particularly suited for the on-line learning control of complicated
systems for which a model is difficult to derive.
Because delayed RL methods continuously learn in time they are better suited than DP methods for
adapting to situations in which the system and goals are nonstationary.

Although we have said that delayed RL methods enjoy certain key advantages, we should also add
that DP has been the forerunner from which delayed RL methods obtained clues. In fact, it is correct to
say that delayed RL methods are basically rearrangements of the computational steps of DP methods so
that they can be applied during real-time system operation.

Delayed RL methods can be grouped into two categories: model-based methods and model-free
methods. Model-based methods have direct links with DP. Model-free methods can be viewed as
appropriate modifications of the model-based methods so as to avoid the model requirement. These
methods will be described in detail below.

e

e

0

C3.5.1 Model-based methods

In this section we discuss DP methods and their possible modification to yield delayed RL methods. There
are two popular DP methods: value iteration and policy iteration. Value iteration easily extends to give
a delayed RL method called ‘real-time DP’. Policy iteration, though it does not directly yield a delayed
method, forms the basis of an important model-free delayed RL method called actor-critic.

t The connection between DP and delayed RL was first established by Werbos (1987, 1989, 1992) and Watkins (1989).

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 C3.5 : 1

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.5. I. I Value iteration

The basic idea in value iteration is to compute V'(x) as

V'(x) = lim V l (x)
,+a,

(C3.5.1)

where V,*(x) is the optimal value function over a finite horizon of length n , that is, V,'(x) is the maximum
expected return if the decision task is terminated n steps after starting in state x . For n = 1, the maximum
expected return is just the maximum of the expected immediate payoff:

V;(x) = max r (x , a) V x (C3.5.2)
a e A (x)

Then, the recursion?,

(C3.5.3)

can be used to compute Vl+l for n = 1,2, (Iterations can be terminated after a large number (N) of
iterations, and V i can be taken to be a good approximation of V'.)

In value iteration, a policy is not involved. But it is easy to attach a suitable policy with a value
function as follows. Associated with each value function, V : X + R is a policy n that is greedy with
respect to V , that is,

r 1

(C3.5.4)

If the state space X has a very large size (e.g. size = k d , where d = number of components of x ,
k = number of values that each component can take, d M 10, k M 100) then value iteration is prohibitively
expensive. This difficulty is usually referred to as the curse of dimensionality.

In the above, we have assumed that (C3.5.1) is correct. Let us now prove this convergence. It turns
out that convergence can be established for a more general algorithm, of which value iteration is a special
case. We describe this algorithm as generalized value iteration.

Generalized value iteration. Set n = 1 and V,+ = an arbitraryfunction over states.
Repeat

(i} Choose a subset of states, B, and set

(C3.5.5)

(ii) Reset n := n + 1.
If we choose V,+ as in (C3.5.2) and take B, = X for all n, then the above algorithm reduces to value

iteration. Later, we will go into other useful cases of generalized value iteration. But first, let us concern
ourselves with the issue of convergence. If x E B,, we will say that the value of state x has been backed
up at the nth iteration. Proof of convergence is based on the following result (Bertsekas and Tsitsiklis
1989, Watkins 1989, Barto er a1 1992).

Local value improvement theorem. Let Mn = maxx IV,'(x) - V'(x)l. Then maxxEB, IV,*+I(x) - V'(x)l I
YMn.

Pro05 Take any x E B,. Let a* = n*(x) and ai = n,*(x), where IT,* is a policy that is greedy with respect
to V:. Then

V;+l(x) L r (x , a') + Y C y PXy(a*)V,'(y)
L r (x , a+> + Y C y pxy(a*) [v*(Y) - M]
= V ' (x) - y M n .

t One can also view the recursion as doing a fixed-point iteration to solve Bellman's optimality equation (C3.3.4).

c3.5:2 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Pnss

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning methods

Similarly,
Vn;l(X) = r (x , a,*) + Y cy Pxy(a,t)V,'(Y>

I r (x , a,*) + Y cy Pxy(a,f) [V'(Y) + M]
= V * (x) + yM,

and so the theorem is proved.
(x) - V*(x) l . A little further thought

shows that the following is also true. If, at the end of iteration k, K further iterations are done in such a
way that the value of each state is backed up at least once in these K iterations, that is, U::,",, B, = X,
then we get Mk+K 5 y M k . Therefore, if the value of each state is backed up infinitely often, then (C3.5.1)
holdst. In the case of value iteration, the value of each state is backed up at each iteration and so (C3.5.1)
holds.

Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed by Bertsekas and
Tsitsiklis (1989) as a suitable method of solving stochastic optimal control problems on multiprocessor
systems with communication time delays and without a common clock. If N processors are available, the
state space can be partitioned into N sets-one for each processor. The times at which each processor
backs up the values of its states can be different for each processor. To back up the values of its states, a
processor uses the 'present' values of other states communicated to it by other processors.

Barto et a1 (1992) suggested the use of generalized value iteration as a way of learning during real-
time system operation. They called their algorithm real-time dynamic programming (RTDP). In generalized
value iteration as specialized to RTDP, n denotes system time. At time step n, let us say that the system
resides in state x,. Since V t is available, a, is chosen to be an action that is greedy with respect to
V i , that is, a, = n;(x,). B,, the set of states whose values are backed up, is chosen to include x,
and, perhaps, some more states. In order to improve performance in the immediate future, one can do a
look-ahead search to some fixed search depth (either exhaustively or by following policy 17;) and include
these probable future states in B,. Because the value of x, is going to undergo change at the present time
step, it is a good idea to also include, in B,, the most likely predecessors of x,, (Moore and Atkeson 1993).

One may ask: since a model of the system is available, why not simply do value iteration or, do
generalized value iteration as Bertsekas and Tsitsiklis suggest? In other words, what is the motivation
behind RTDP? The answer, which is simple, is something that we have stressed earlier. In most problems
(e.g. playing games such as checkers and backgammon) the state space is extremely large, but only a small
subset of it actually occurs during usage. Because RTDP works concurrently with actual system operation,
it focuses on regions of the state space that are most relevant to the system's behavior. For instance,
successful learning was accomplished in the checkers program of Samuel (1959) and in the backgammon
program TDgammon of Tesauro (1992) using variations of RTDP. In Barto et a1 (1992), Barto, Bradtke
and Singh also use RTDP to make interesting connections and useful extensions to learning real-time
search algorithms in artificial intelligence (Korf 1990).

The convergence result mentioned earlier says that the values of all states have to be backed up
infinitely often$ in order to ensure convergence. So it is important to explore the state space suitably in
order to improve performance. Barto, Bradtke and Singh have suggested two ways of doing explorations:
(i) adding stochasticity to the policy; and (ii) doing learning cumulatively over multiple trials.

If only an inaccurate system model is available then it can be updated in real time using a system
identification technique, such as the maximum likelihood estimation method (Barto et a1 1992). The
current system model can be used to perform the computations in (C3.5.5). Convergence of such adaptive
methods has been proved by Gullapalli and Barto (1 994).

The theorem implies that M,+l 5 M, where M,+l = max, I

C3.5.1.2 Policy iteration

Policy iteration operates by maintaining a representation of a policy and its value function, and forming
an improved policy using them. Suppose R is a given policy and V n is known. How can we improve n?
An answer will become obvious if we first answer the following simpler question. If p is another given
policy then when is

VC"(x) 2 V"(X) v x (C3.5.6)
t If y = 1 , then convergence holds under certain assumptions. The analysis required is more sophisticated. See Bertsekas and
Tsitsiklis (1989) and Bradtke (1994) for details.
$ For good practical performance it is sufficient that states that are most relevant to the system's behavior are backed up repeatedly.
5 Thrun (1986) has discussed the importance of exploration and suggested a variety of methods for it.

@ 1997 IOP Publishing Ltd and Oxford University Ress HanaBook of Neural Computation release 9711 c 3 . 5 3

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

that is, when is p uniformly better than n? The following simple theorem (Watkins 1989) gives the
answer.

Policy improvement theorem. The policy p is uniformly better than policy n if

Proofi To avoid clumsy details let us give a not-so-rigorous proof (Watkins 1989). Starting at x , it is
better to follow p for one step and then to follow n, than it is to follow n right from the beginning. By
the same argument, it is better to follow p for one further step from the state just reached. Repeating the
argument we find that it is always better to follow p than n. See Bellman and Dreyfus (1962) and Ross
(1983) for a detailed proof.

Let us now return to our original question: given a policy IT and its value function V" , how do we
form an improved policy, p? If we define p by

then (C3.5.7) holds. By the policy improvement, theorem p is uniformly better than n. This is the main
idea behind policy iteration.

Policy iteration. Set n := an arbitrary initial policy and compute V".
Repeat
(i) Compute Q" using (C3.3.5).
(ii) Find p using (C3.5.8) and compute V @ .
(iii) Set: n := p and V" := V @ .
until V @ = V" occurs at step 2.

there are only a finite number of policies; and (ii) when termination occurs we get
Nice features of the above algorithm are: (i) it terminates after a finite number of iterations because

V " (x) = max Qn(x, a) Vx
a

(i.e. V n satisfies Bellman's optimality equation) and so n is an optimal policy. But the algorithm suffers
from a serious drawback: it is very expensive because the entire value function associated with a policy has
to be recalculated at each iteration (step (ii)). Even though V @ may be close to V " , unfortunately there is
no simple shortcut to compute it. In section C3.5.2 we will discuss a well known model-free method called
the actor-critic method which gives an inexpensive approximate way of implementing policy iteration.

C3.5.2 Model-free methods

Model-free delayed RL methods are derived by making suitable approximations to the computations in
value iteration and policy iteration, so as to eliminate the need for a system model. Two important
methods result from such approximations: Barto, Sutton and Anderson's actor-xitic (Barto et a1 1983),
and Watkins' Q-learning (Watkins 1989). These methods are milestone contributions to the optimal
feedback control of dynamic systems.

C3.5.2.1 Actor-critic method

c2.3.3 The actor-critic method was proposed by Barto et a1 (1983) (in their popular work on balancing a pole on
a moving cart) as a way of combining, on a step-by-step basis, the process of forming the value function
with the process of forming a new policy. The method can also be viewed as a practical, approximate way
of doing policy iteration: perform one step of an on-line procedure for estimating the value function for
a given policy, and at the same time perform one step of an on-line procedure for improving that policy.
The actor-critic method-a mathematical analysis of this method has been done by Williams and Baird
(1993)-is best derived by combining the ideas of Section C3.2 and Section C3.4 on immediate RL and
estimating value function, respectively. Details are as follows.

Actor (n). Let m denote the total number of actions. Maintain an approximator, g(-; w) : X --f Rm so
that z = g (x ; w) is a vector of merits of the various feasible actions at state x. In order to do exploration,

c3.5:4 HanaBook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning methods

choose actions according to a stochastic action selector such as (C3.2.4). (In their original work on
pole-balancing, Barto, Sutton and Anderson suggested a different way of including stochasticity.)

Critic (V") . Maintain an approximator, ?(.; w) : X += R that estimates the value function (expected total
reward) corresponding to the stochastic policy mentioned above. The ideas of Section C3.4 can be used
to update ?.

Let us now consider the process of learning the actor. Unlike immediate RL, learning is more
complicated here for the following reason. Whereas, in immediate RL the environment immediately
provides an evaluation of an action, in delayed RL the effect of an action on the total reward is not
immediately available and has to be estimated appropriately. Suppose, at some time step, the system is in
state x and the action selector chooses action a k . For g, the learning rule that parallels (C3.2.3) would be

(C3.5.9) g k (X ; w) := g k (x ; W) + a [p (x , a k) - c (X ; U)]

where p (x ; a k) is the expected total reward obtained if ak is applied to the system at state x and then
policy n is followed from the next step onwards. An approximation is

(C3.5.10)

This estimate is unavailable because we do not have a model. A further approximation is

p (x , a? r (x , a 9 + y c (x 1 ; U > (C3.5.11)

where x1 is the state occurring in the real-time operation when action ak is applied at state x . Since
the right-hand side of (C3.5.11) is an unbiased estimate of the right-hand side of (C3.5.10), using this
approximation in the averaging learning rule (C3.5.9) will not lead to errors. Using (C3.5.11) in (C3.5.9)
gives

g k (X ; W) := g k (X ; W) + CZA(X> (C3.5.12)

where A is as defined in (C3.4.12). The following algorithm results.

Actor-critic trial. Set t = 0 and x = a random starting state.
Repeat Cfor a number of time steps)

(i)

(i i) ComputeAA(x) = r (x , a) + y c (x 1 ; U) - ? (x ; U).
(iii) Update V using c (x ; U) := c (x ; U) + BA@).
(iv) Update gk using (C3.5.12) where k is such that a = ak.

The above algorithm uses the TD(0) estimate of V n . To speed up learning the TD(;1) rule, (C3.4.14)
can be employed. Barto et a1 (1983) and others (Gullapalli 1992a, Gullapalli et a1 1994) use the idea of
eligibility traces for updating g also. They give only an intuitive explanation for this usage. Lin (1992)
has suggested the accumulation of data until a trial is over, updating ? using (C3.4.11) for all states visited
in the trial, and then updating g using (C3.5.12) for all (state, action) pairs experienced in the trial.

With the system at state x , choose action a according to (C3.2.4) and apply it to the system. Let x1 be
the resulting next state.

C3.5.2.2 Q-learning

Just as the actor-critic method is a model-free, on-line way of approximately implementing policy iteration,
Watkins' Q-learning algorithm (Watkins 1989) is a model-free, on-line way of approximately implementing
generalized value iteration. Though the RTDP algorithm does generalized value iteration concurrently with
real-time system operation, it requires the system model for doing a crucial operation: the determination
of the maximum on the right-hand side of (C3.5.5). Q-learning overcomes this problem elegantly by
operating with the Q-function instead of the value function. (Recall, from Section C3.3, the definition of
@function and the comment on its advantage over value function.)

The aim of Q-learning is to find a function approximator, Q(-, .; U) that approximates e., the solution
of Bellman's optimality equation (C3.3.7) in on-line mode without employing a model. However, for the
sake of developing ideas systematically, let us begin by assuming that a system model is available and
consider the modification of the ideas of section C3.5.1 to use the Q-function instead of the value function.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Compufation release 9711 (3.55

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

If we think in terms of a function approximator Q (x ; U) for the value function, the basic update rule that
is used throughout section C3.5.1 is

r 1

For the Q-function, the corresponding rule is

Q (x , a ; U) := r (x , a) + y Pxy(a) by;.) Q < y , b; U). (C3.5.13)
Y

Using this rule, all the ideas of section C3.5.1 can be easily modified to employ the Q-function.
However, our main concern is to derive an algorithm that avoids the use of a srstem model. A model

can be avoided if we: (i) replace the summation term in (C3.5.13) by maxbeA(x,) Q(x1, b; U) where x1 is
an instance of the state resulting from the application of action a at state x ; and (ii) achieve the effect of
the update rule in (C3.5.13) via the ‘averaging’ learning rule,

Q (x , a; U) := a (x , a ; U) + p [r (x , a) + y max Q(x1, b; U) - Q (x , a; U)] . (C3.5.14)

If (C3.5.14) is carried out we say that the Q-value of (x , a) has been backed up. Using (C3.5.14) in
on-line mode of system operation we obtain the Q-learning algorithm.

Q-learning trial. Set t = 0 and x = a random starting state.
Repeat (for a number of time steps)

(i)
(ii) Update Q using (~3.5.15) .
(iii) Reset x := y .

The remark made below equation (C3.2.6) in Section C3.2 is very appropriate for the learning rule,
(C3.5.14). Watkins showed? that if the Q-value of each admissible (x , a) pair is backed up infinitely
ofen, and ifthe step size /3 is decreased to zero in a suitable way then as t + 00, Q converges to Q* with
probability one. Practically, learning can be achieved by: firstly, in step (i), using an appropriate exploration
policy that tries all actionst; secondly, doing multiple trials to ensure that all states are frequently visited;
and thirdly, decreasing

We now discuss a way of speeding up Q-learning by using the TD(A) estimate of the Q-function,
derived in Section C3.4. If T D (A) is to be employed in a Q-learning trial, a fundamental requirement
is that the policy used in step (i) of the Q-learning trial and the policy used in the update rule (C3.5.14)
should match (note the use of ;rr in (C3.4.18) and (C3.4.21)). Thus TD(A) can be used if we employ the
greedy policy

beA(xi)

Choose action a E A (x) and apply it to the system. Let XI be the resulting state.

towards zero as learning progresses.

R (X) = arg max Q (x , a; U) (C3.5.15)
aeA(x)

in step (i)§ but this leads to a problem: use of the greedy policy will not allow exploration of the action
space, and hence poor learning can occur. Rummery and Niranjan (1994) give a nice comparative account
of various attempts described in the literature for dealing with this conflict. Here, we only give the details
of an approach that Rummery and Niranjan found to be very promising.

Consider the stochastic policy (based on the Boltzmann distribution and Q-values),

(C3.5.16)

where T E [0, m). When T -+ m all actions have equal probabilities and when T + 0 the stochastic
policy tends towards the greedy policy in (C3.5.15). To learn, T is started with a suitably large value

t A revised proof was given by Watkins and Dayan (1992). Tsitsiklis (1993) and Jaakkola er a1 (1994) have given other pmfs.
$ Note that step (i) does not put any restriction on choosing a feasible action. So, any stochastic exploration policy that at
every x generates eat! feasible action with positive probability can be used. When learning is complete, the greedy policy
n (x) = argmax,,,q,) Q(x, a; U) should be used for optimal system performance.
5 Although the greedy policy defined by (C3.5.15) keeps changing during a trial, the T D (1) estimate can still be used because Q is
varied slowly. If more than one action attains the maximum in (C3.5.15) then for convenience we take n to be a stochastic policy
that makes all such maximizing actions equally probable.

C3.5:6 Handbook of Neuml Computation release 5711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning methods

(depending on the initial size of the Q-values) and is decreased to zero using an annealing rate; at each T
thus generated, multiple Q-learning trials are performed. This way, exploration takes place at the initial
large T values. The T D (X) learning rule (C3.4.20) estimates expected returns for the policy at each T
and, as T + 0, Q will converge to Q*.

An important remark needs to be made regarding the application of Q-learning to RL problems which
result from the time-discretization of continuous-time problems. As the discretization time period goes to
zero it turns out that the Q-function tends to be independent of action and hence it is unsuitable to use
Q-learning for continuous-time problems. For such problems Baird (1993) has suggested the use of an
appropriate modification of the Q-function called the advantage function.

C3.5.3 Extension to continuous spaces

Optimal control of dynamic systems typically involves the solution of delayed RL problems having
continuous state/action spaces. If the state space is continuous but the action space is discrete then
all the delayed FtL algorithms discussed earlier can be easily extended, provided appropriate function
approximators that generalize a real-time experience at a state to all topologically nearby states are used;
see Section C3.6 for a discussion of such approximators. On the other hand, if the action space is
continuous, extension of the algorithms is more difficult. The main cause of the difficulty can be easily
seen if we try extending RTDP to continuous action spaces: the max operation in (C3.5.5) is nontrivial
and difficult if A @) is continuous. (Therefore, even methods based on value iteration need to maintain
a function approximator for actions.) In the rest of this section we will give a brief review of various
methods of handling continuous action spaces. Just to make the presentation easy, we will make the
following assumptions.
0 The system being controlled is deterministic. Let

Xr+l = f(x,, at) (C3.5.17)

describe the transition. (Werbos 1990 describes ways of treating stochastic systems.)
0 There are no action constraints, that is, A (x) = an m-dimensional real space for every x .
0 All functions involved (r , f , e, e, etc) are continuously differentiable.

Let us first consider model-based methods. Werbos (1990b) has proposed a variety of algorithms.
Here we will describe only one important algorithm, the one that Werbos refers to as the backpropagated c2.3.3
Qdaptive critic. The algorithm is of the actor-critic type, but it is somewhat different from the actor-critic
method of section C3.5.2. There are two function approximators: ?(.; w) for action and e(.; U) for critic.
The critic is meant to approximate V'; at each time step, it is updated using the T D (h) learning rule
(C3.4.14). The actor tries to improve the policy at each time step using the hint provided by the policy
improvement theorem in (C3.5.7). To be more specific, let us define

(C3.5.18) Q(x, a) = r (x , a) + Y ? (f (x , a); U).

At time f , when the system is at state x, , we choose the action a, = ? (x , ; w) leading to the next state
x,+l given by (C3.5.17). Let us assume = V?, so that V*(x ,) = Q(x,, a,) holds. Using the hint from
(C3.5.7), we aim to adjust ?(x , ; w) to give a new value anew such that

def

anew) > Q(x,, a t) . (C3.5.19)

A simple learning rule that achieves this requirement is

(C3.5.20)

where (Y is a small (positive) step size. The partial derivative in (C3.5.20) can be evaluated using

(C3.5.21)

Let us now come to model-free methods. A simple idea is to adapt a function approximator j. for
the system model function, f, and use 3 instead of f in Werbos' algorithm. On-line experience, that

aQ(xt9 a) - - Wx, , a) + a c t U) 1 af (x , 9 a)
aa * y = f Q .a) aa aa

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computarion release 9711 c3.5:7

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

is, the combination (x r , a , , x , + l) , can be used to learn 7. This method was proposed by Brody (1992),
actually as a way of overcoming a serious deficiency-this deficiency was also pointed out by Gullapalli
(1992b)-associated with an ill-formed model-& method suggested by Jordan and Jacobs (1990). A
key difficulty associated with Brody’s method is that, until the learning system adapts a good 7, system
performance does not improve at all; in fact, at the early stages of learning, the method can perform in a
confused way. To overcome this problem Brody suggests that 7 be learnt well, before it is used to train
the actor and the critic.

A more direct model-free method can be derived using the ideas of section C3.5.2 and employing a
learning rule similar to (C3.2.7) for adapting 2. This method was proposed and successfully demonstrated
by Gullapalli (Gullapalli 1992a, Gullapalli et a1 1994). Since Gullapalli’s method learns by observing
the effect of a randomly chosen perturbation of the policy, it is not as systematic as the policy change in
Brody’s method.

We now propose a new model-free method that systematically changes the policy similar to what
Brody’s method and avoids the need for adapting a system model. This is achieved using a function
approximator Q(., a ; U) for approximating Q’, the Q-function associated with the actor. The T D (A)
learning rule in (C3.4.17) can be used for updating Q. Also, policy improvement can be attempted using
the learning rule (similar to (C3.5.20))

l?(x,; w) := l?(xr; w) + a (C3.5.22)

We are currently performing simulations to study the performance of this new method relative to the other
two model-free methods mentioned above.

Werbos’ algorithm and our Q-learning-based algorithm are deterministic, while Gullapalli’s algorithm
is stochastic. The deterministic methods are expected to be much faster, whereas the stochastic method
has better assurance of convergence to the true solution. The arguments are similar to those mentioned at
the end of Section C3.2.

References

Baird 111 L C 1993 Advantage updating. Wright-Patterson Air Force Base Ohio, USA Wright Laboratory Technical
Report WL-TR-93-1146 (available from the Defence Technical Information Center, Cameron Station, Alexandria,

Barto A G 1992 Reinforcement leaming and adaptive critic methods Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand Reinhold) pp 469-91

Barto A G, Bradtke S J and Singh S P 1992 Real-time leaming and control using asynchronous dynamic programming
Technical Report COINS 91-57 University of Massachusetts, Amherst, MA, USA

Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult learning control problems
IEEE Trans. Syst. Man Cybem. 13 835-46

Bellman R E and Dreyfus S E 1962 Applied Dynamic Programming RAND Corporation
Bertsekas D P 1982 Distributed Dynamic Programming IEEE Trans. Auto. Control 27 610-6
-1989 Dynamic Programming: Deterministic and Stochastic Models (Englewood Cliffs, NJ: Prentice-Hall)
Bertsekas D P and Tsitsiklis J N 1989 Parallel and Distributed Computation: Numerical Methods (Englewood Cliffs,

Bradtke S J 1994 Incremental dynamic programming for online adaptive optimal control CMPSCI Technical Report

Brody C 1992 Fast leaming with predictive forward models Advances in Neural Information Processing Systems 4
ed J E Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 563-70

Gullapalli V 1992a Reinforcement leaming and its application to control Technical Report COINS 92-10, PhD Thesis
University of Massachusetts, Amherst, MA, USA

-1992b A comparison of supervised and reinforcement learning methods on a reinforcment leaming task Proc.
1991 IEEE Symp. on Intelligent Control (Arlington, VA) (New York: IEEE Press)

Gullapalli V and Barto A G 1994 Convergence of indirect adaptive asynchronous value iteration algorithms Advances
in Neural Information Processing System 6 ed J D Cowan, G Tesauro and J Alspector (San Francisco, CA:
Morgan Kaufmann) pp 695-702

Gullapalli V, Franklin J A and Benbrahim H 1994 Acquiring robot skills via reinforcement leaming IEEE Control
Syst. Mag. 13-24

C3.5:8 Handbook of Neural Computarion release 9711

VA 22304-6145, USA)

NJ: Prentice-Hall)

PP 94-62

0 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Delayed reinforcement learning methods

Jaakkola T, Jordan M I and Singh S P 1994 Convergence of stochastic iterative dynamic programming algorithms
Advances in Neural Information Processing Systems 6 ed J D Cowan, G Tesauro and J Alspector (San Mateo,
CA: Morgan Kaufmann) pp 703-710

Jordan M I and Jacobs R A 1990 Leaming to control an unstable system with forward modeling Advances in Neural
Information Processing Systems 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann)

Korf R E 1990 Real-time heuristic search Aritg Intell. 42 189-21 1
Lin L J 1992 Self-improving reactive agents based on reinforcement learning, planning and teaching Machine Learning

Moore A W and Atkeson C G 1993 Memory-based reinforcement leaming: efficient computation with prioritized
sweeping Advances in Neural Information Processing Systems 5 ed S J Hanson, J D Cowan and C L Giles (San
Mateo, CA: Morgan Kaufmann) pp 263-70

8 293-321

Ross S 1983 Introduction to Stochastic Dynamic Programming (New York: Academic)
Rummery G A and Niranjan M 1994 Online Q-leaming using connectionist systems Technical Report CUED/F-

Samuel A L 1959 Some studies in machine learning using the game of checkers IBM J. Res. Develop. pp 210-29

Tesauro G J 1992 Practical issues in temporal difference learning Machine Learning 8 257-78
Thrun S B 1986 Efficient exploration in reinforcement leaming Technical report CMU-13-92-102 School of Computer

Tsitsiklis J N 1993 Asynchronous stochastic approximation and Q-learning Technical Report LIDS-P-2172 Laboratory

Watkins C J C H 1989 Learning from delayed rewards PhD Thesis Cambridge University, Cambridge, UK
Watkins C J C H and Dayan P 1992 Technical note: Q-learning Machine Learning 8 279-92
Werbos P J 1987 Building and understanding adaptive systems: a statisticalhumerica1 approach to factory automation

and brain research IEEE Trans. Syst. Man Cybern.
-1989 Neural networks for control and system identification Proc. 28th Con5 on Decision and Control (Tampa,

FL) pp 260-5
-1990 A menu of designs for reinforcement leaming over time Neural Networks for Control ed W T Miller,

R S Sutton and P J Werbos (Cambridge, MA: MIT Press) pp 67-95
-1 992 Approximate dynamic programming for real-time control and neural modeling Handbook of Intelligent

Control: Neural, Fuuy, and Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand-
Reinhold) pp 493-525

Williams R J and Baird I11 L C 1993 Analysis of some incremental variants of policy iteration: first steps toward
understanding actor-critic learning systems Technical Report NU-CCS-93-I I College of Computer Science,
Northeastern University, Boston, MA, USA

INFENGflR 166 University of Cambridge, Cambridge, UK

(Reprinted in 1963 Computers and Thought ed E A Feigenbaum and J Feldman (New York: McGraw-Hill))

Science, Camegie Mellon University, Pittsburgh, PA, USA

for Information and Decision Systems, MIT, Cambridge, MA, USA

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 5711 c3.519

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.6 Use of neural and other function approximators in
reinforcement learning

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

A variety of function approximators have been employed by researchers to solve reinforcement learning
(RL) problems practically. When the input space of the function approximator is finite, the most
straightforward method is to use a lookup table (Singh 1992a, Moore and Atkeson 1993). Almost all
theoretical results on the convergence of RL, algorithms assume this representation. The disadvantage of
using a lookup table is that if the input space is large then the memory requirement becomes prohibitive.
(Buckland and Lawrence (1994) have proposed a new delayed RL method called transition point dynamic
programming (DP) which can significantly reduce the memory requirement for problems in which optimal
actions change infrequently in time.) Continuous input spaces have to be discretized when using a lookup
table. If the discretization is done finely so as to obtain good accuracy we have to face the ‘curse
of dimensionality’. One way of overcoming this is to do a problem-dependent discretization; see, for
example, the ‘BOXES’ representation used by Barto et a1 (1983) and others (Michie and Chambers 1968,
Gullapalli et a1 1994, Rosen et a1 1991) to solve the pole balancing problem.

These methods
have the advantage of being able to generalize beyond the training data and hence give reasonable
performance on unvisited parts of the input space. Among these, neural methods are the most popular.
Connectionist methods that have been employed for RL can be classified into four groups: multilayer c1.z
perceptrons; methods based on clustering; CMAC; and recurrent networks. Multilayer perceptrons have c i . i . 7 . ~ 2 . 3
been successfully used by Anderson (1986, 1989) for pole balancing, Lin (1991a, b, c, 1992) for a
complex test problem, Tesauro (1992) for backgammon, Thrun (1993) and Millan and Torras (1992) for
robot navigation, and others (Boyen 1992, Gullapalli et a1 1994). On the other hand, Watkins (1989),
Chapman (1991), Kaelbling (1990, 1991), and Shepanski and Macy (1987) have reported bad results. A
modified form of Platt’s resource allocation network (Platt 1991), a method based on radial busisfunctions, ci.6.2
has been used by Anderson (1993) for pole balancing. Many researchers have used CMAC (Albus 1975)
for solving RL problems: Watkins (1989) for a test problem; Singh (1991, 1992b, 1992c) and Tham
and Prager (1994) for a navigation problem; Lin and Kim (1991) for pole balancing and Sutton (1990,
(1991a, 1991b) in his ‘Dyna’ architecture. Recurrent networks with context information feedback have
been used by Bacharach (1991, 1992) and Mozer and Bacharach (1990a, b) in dealing with RL problems
with incomplete state information.

A few nonneural methods have also been used for RL. Mahadevan and Connell (1991) have used
statistical clustering in association with @learning for the automatic programming of a mobile robot.
A novel feature of their approach is that the number of clusters is dynamically varied. Chapman and
Kaelbling (1991) have used a tree-based clustering approach in combination with a modified Q-learning
algorithm for a difficult test problem with a huge input space.

The function approximator has to exercise care to ensure that learning at some input point x does not
seriously disturb the function values for y # x . It is often advantageous to choose a function approximator
and employ an update rule in such a way that the function values of x and states ‘near’ x are modified

Non-lookup table approaches use parametric function approximation methods.

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computurion release 9711 C3.6:l

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

similarly while the values of states ‘far’ from x are left unchangedt. Such a choice usually leads to good
generalization, that is, good performance of the learned function approximator even on states that are not
visited during learning. In this respect, CMAC and methods based on clustering, such as RBF, statistical
clustering and so on, are more suitable than multilayer perceptrons.

The effect of errors introduced by function approximators on the optimal performance of the controller
has not been well understood$. It has been pointed out by Watkins (1989), Bradtke (1993), Bertsekas
(1994) and others (Barto 1992) that if function approximation is not done in a careful way, poor learning
can result. In the context of @learning, Thrun and Schwartz (1993) have shown that errors in function
approximation can lead to a systematic overestimation of the @function. Linden (1993) points out that
in many problems the value function is discontinuous and so using continuous function approximators is
inappropriate. But he does not suggest any clear remedies for this problem.

Mance Harmon of Wright-Patterson Air Force Base, Ohio, has pointed out to us the following
explanation as to why function approximators used with RL have difficulties. The generalization that
takes place when updating the approximation systems can, as a side effect, change the target value. For
instance, when the update rule (C3.4.14), which is based on A(x,) , is performed, the resulting change in
? together with generalization can lead to a sizeable change in A&). We are then, in effect, shooting at a
moving target. This is a cause of instability, and the propensity of the weights, in many cases, to grow to
infinity. To overcome this problem Baird and Harmon (1993) have suggested a residual gradient approach

85.2.2 in which gradient descent is performed on the mean square of residuals such as A@,). Then one can
expect convergence in a way similar to how convergence takes place in the backpropagation algorithm. A
similar approach has also been suggested by Werbos (1987).

Overall, it must be mentioned that much work needs to be done on the use of function approximators
for RL, and clear guidelines are yet to emerge.

References

Albus J S 1975 A new approach to manipulator control: the cerebellar model articulation controller (CMAC) Trans.

Anderson C W 1986 Learning and problem solving with multilayer connectionist systems PhD Thesis University of

-1989 Leaming to control an inverted pendulum using neural networks IEEE Control Syst. Mag. 31-7
-1993 Q-learning with hidden-unit restarting Advances in Neural Information Processing Systems 5 ed S J Hanson,

J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 81-8
Bacharach J R 1991 A connectionist learning control architecture for navigation Advances in Neural Information

Processing Systems 3 ed R P Lippman, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann)
pp 457463

-1992 Connectionist modeling and control of finite state environments PhD Thesis University of Massachusetts,
Amherst, MA, USA

Baird 111 L C and Harmon M E Residual gradient algorithms Technical Report Wright-Patterson Air Force Base, Ohio,
USA in preparation

Barto A G 1992 Reinforcement learning and adaptive critic methods Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand Reinhold) pp 469-91

Barto A G, Sutton R S and Anderson C W 1983 Neuronlike elements that can solve difficult learning control problems
IEEE Trans. Syst. Man Cybem. 13 83546

Bertsekas D P 1989 Dynamic Programming: Deterministic and Stochastic Models (Englewood Cliffs, NJ: Prentice-
Hall)

-1994 A counter example to temporal-differences learning Neural Comput. 7
Boyen J 1992 Modular neural networks for leaming context-dependent game strategies Masters Thesis Computer

Speech and Language Processing, University of Cambridge, Cambridge, UK
Bradtke S J 1993 Reinforcement learning applied to linear quadratic regulation Advances in Neural Information

Processing Systems 5 ed S J Hanson, J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 295-
302

ASME J. Dyn. Syst. Meas. Control. 97 220-7

Massachusetts, Amherst, MA, USA

t The criterion for ‘nearness’ must be chosen properly depending on the problem being solved. For instance, in section C3.3.1
(see figure C3.1.1) two states on opposite sides of the barrier but whose coordinate vectors are near have vastly different optimal
‘cost-to-go’ values. Hence the function approximator should not generalize the value at one of these states using the value at the
other. Dayan (1993) gives a general approach for choosing a suitable ‘nearness’ criterion so as to improve generalization.
3 Bertsekas (1989), Singh and Yee (1993) and Williams and Baird (1993) have derived some general theoretical bounds for errors
in value function in terms of function approximator error. Tsitsiklis and Van Roy (1994) have derived bounds for errors when
feature-based function approximators are used.

C3.6:2 Handbook ofNeural Compurarion release 9711 @ 1997 IOP Publishing U d and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Use of neural and other function approximators in reinforcement learning

Bradtke S J 1993 Reinforcement leaming applied to linear quadratic regulation Advances in Neural Information
Processing Systems 5 ed S J Hanson, J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 295-
302

Buckland K M and Lawrence P D 1994 Transition point dynamic programming Advances in Neural Information
Processing Systems 6 ed J D Cowan, G Tesauro and J Alspector (San Fransisco, CA: Morgan Kaufmann)
pp 6 3 9 4 6

Chapman D 1991 Wsion, Instruction, and Action (Cambridge, MA: MIT Press)
Chapman D and Kaelbling L P 1991 Input generalization in delayed reinforcement learning: an algorithm and

Dayan P 1993 Improving generalization for temporal difference leaming: the successor representation Neural Comput.

Gullapalli V and Barto A G 1994 Convergence of indirect adaptive asynchronous value iteration algorithms Advances
in Neural Information Processing Systems 6 ed J D Cowan, G Tesauro and J Alspector (San Francisco, CA:
Morgan Kaufmann) pp 695-702

Gullapalli V, Franklin J A and Benbrahim H 1994 Acquiring robot skills via reinforcement leaming IEEE Control
Syst. Mag. 13-24

Kaelbling L P 1990 Leaming in embedded systems Technical Report TR-90-04 PhD Thesis Department of Computer
Science, Stanford University, Stanford, CA, USA

-1991 Learning in Embedded Systems (Cambridge, MA: MIT Press)
Lin L J 1991a Programming robots using reinforcement learning and teaching Proc. Ninth Nat. ConJ on Arf$cial

Intelligence (Cambridge, MA: MIT Press) pp 78 1-6
-1991 b Self-improvement based on reinforcement learning planning and teaching Machine Leaming: Proc. Eighth

Int. Workshop ed L A Bimbaum and G C Collins (San Mateo, CA: Morgan Kaufmann) pp 323-7
-1991c Self-improving reactive agents: case studies of reinforcement learning frameworks From Animals to

Animats: Proc. First Int. Con$ on Simulation of Adaptive Behaviour (Cambridge, MA: MIT Press) pp 297-
305

-1992 Self-improving reactive agents based on reinforcement learning, planning and teaching Machine Leaming

-1993 Hierarchical learning of robot skills by reinforcement Proc. 1993 Int. Conf. on Neural Networks pp 181-6
Lin C S and Kim H 1991 CMAC-based adaptive critic self-leaming control IEEE Trans. Neural Networks 2 530-3
Linden A 1993 On Discontinuous Q-functions in Reinforcement Leaming (available via anonymous ftp from

archive.cis.ohio-state.edu in directory Ipublneuroprose)
Mahadevan S and Connell J 1991 Scaling reinforcement learning to robotics by exploiting the subsumption architecture

Machine Leaming: Proc. Eighth Int. Workshop ed L A Bimbaum and G C Collins (San Mateo, CA: Morgan
Kaufmann) pp 328-32

Michie D and Chambers R A 1968 BOXES: An experiment in adaptive control Machine Intelligence 2 ed E Dale and
D Michie (Oliver and Boyd) pp 137-152

Millan J D R and Torras C 1992 A reinforcement connectionist approach to robot path finding in non maze-like
environments Machine Leaming 8 363-95

Moore A W and Atkeson C G 1993 Memory-based reinforcement leaming: efficient computation with prioritized
sweeping Advances in Neural Information Processing Systems 5 ed S J Hanson, J D Cowan and C L Giles (San
Mateo, CA: Morgan Kaufmann) pp 263-70

Mozer M C and Bacharach J 1990a Discovering the structure of reactive environment by exploration Advances in
Neural Information Processing 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 439-446

-1990b Discovering the structure of reactive environment by exploration Neural Comput. 2 447-57
Platt J C 1991 Leaming by combining memorization and gradient descent Advances in Neural Information Processing

Systems 3 ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 714-720
Rosen B E, Goodwin J M and Vidal J J 1991 Adaptive range coding Advances in Neural Information Processing

Systems 3 ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 486-94
Shepansky J F and Macy S A 1987 Teaching artificial neural systems to drive: manual training techniques for

autonomous systems Proc. First Ann. Int. Con$ on Neural Networks (San Diego, CA)
Singh S P 1991 Transfer of learning across composition of sequential tasks Machine Learning: Proc. Eighth Int.

Workshop ed L A Bimbaum and G C Collins (San Mateo, CA: Morgan Kaufmann) pp 348-52
-1992a Reinforcement learning with a hierarchy of abstract models Proc. Tenth Nat. Cont on ArtiJicial Intelligence

(San Jose, CA)
-1 992b On the efficient learning of multiple sequential tasks Advances in Neural Information Processing Systems

4 ed J E Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 251-8
-1992c Transfer of learning by composing solutions of elemental sequential tasks Machine Leaming 8 323-39
Singh S P and Yee R C 1993 An upper bound on the loss from approximate optimal-value functions Technical Report

performance comparisions Proc. 1991 Int. Joint Cont on ArtiJicial Intelligence

5 613-24

8 293-321

University of Massachusetts, Amherst, MA, USA

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 C3.6:3

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

Sutton R S 1990 Integrated architecture for leaming, planning, and reacting based on approximating dyanmic
programming Pmc. Seventh Int. Cons on Machine Learning (San Mateo, CA: Morgan Kaufmann) pp 216-24

-1 99 la Planning by incremental dynamic programming Machine Learning: Proc. Eighth Int. Workshp
ed L A Birnbaum and G C Collins (San Mateo, CA: Morgan Kaufmann) pp 353-7

-1991b Integrated modeling and control based on reinforcement leaming and dynamic programming Advances in
Neural Information Processing Systems 3 ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA:
Morgan Kaufmann) pp 471-8

Tesauro G J 1992 Practical issues in temporal difference leaming Machine Learning 8 257-78
Tham C K and Prager R W 1994 A modular Q-learning architecture for manipulator task decomposition Machine

Learning: Proc. Eleventh Int. Con$ ed W W Cohen and H Hirsh NJ (San Mateo, CA: Morgan Kaufmann)
(available via gopher from Dept of Engineering, University of Cambridge, Cambridge, UK)

Thrun S B 1993 Exploration and model building in mobile robot domains Proc. 1993 Int. Cons on Neural Nefworks
(San Francisco: IEEE Press)

Thrun S B and Schwartz A 1993 Issues in using function approximation for reinforcement learning Proc. Fourth
Connectionist Models Summer School (Hillsdale, NJ: Erlbaum)

Tsitsiklis J N and Van Roy B 1994 Feature-based methods for large scale dynamic programming Technical Report LIDS-
P-2277 Laboratory for Information and Decision Systems, Massachussetts Institute of Technology, Cambridge,
MA, USA

Watkins C J C H 1989 Learning from delayed rewards PhD Thesis Cambridge University, Cambridge, UK
Werbos P J 1987 Building and understanding adaptive systems: a statisticaYnumerica1 approach to factory automation

Williams R J and Baird 1993 Tight performance bounds on greedy policies based on imperfect value functions
and brain research IEEE Trans. Syst. Man Cybem.

Technical Report NU-CCS-93-14 College of Computer Science, Northeastern University, Boston, MA, USA

C3.6:4 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.7 Modular and hierarchical architectures

S Sathiya Keerthi and B Ravindran

Abstract

See the abstract for Chapter C3.

When applied to problems with large task space or sparse rewards, reinforcement learning (RL) methods
are terribly slow to learn. Dividing the problem into simpler subproblems, using a hierarchical control
structure, and so on, are ways of overcoming this.

Sequential task decomposition is one such method. This method is useful when a number of complex
tasks can be performed making use of a finite number of ‘elemental’ tasks or skills, say, T I , T2, . , T,.
The original objective of the controller can then be achieved by temporally concatenating a number of
these elemental tasks to form what is called a ‘composite’ task. For example,

Cj = [T (j , l), T (j , 2), . . . , T (j , k)] where T (j , i) E { T I , T2,. . . , Tn]

is a composite task made up of k elemental tasks that have to be performed in the order listed. Reward
functions are defined for each of the elemental tasks, making them more abundant than in the original
problem definition.

Singh (1992a, b) has proposed an algorithm based on a modular neural network (Jacobs et a1 1991) ~ 2 . 9

making use of these ideas. In his work the controller is unaware of the decomposition of the task and
has to learn both the elemental tasks and the decomposition of the composite tasks simultaneously. Tham
and Prager (1994) and Lin (1993) have proposed similar solutions. Mahadevan and Connell (1991) have
developed a method based on the subsumption architecture (Brooks 1986) where the decomposition of
the task is specified by the user beforehand, and the controller learns only the elemental tasks, while
Maes and Brooks (1990) have shown that the controller can be made to learn the decomposition also, in a
similar framework. All these methods require some external agency to specify the problem decomposition.
Can the controller itself learn how the problem is to be decomposed? Though Singh (1992d) has some
preliminary results, much work needs to be done here.

Another approach to this problem is to use some form of hierarchical control (Watkins 1989). Here
there are different ‘levels’ of controllers-controllers at different levels may operate at different temporal
resolutions+ach learning to perform a more abstract task than the level below it and directing the lower-
level controllers to achieve its objective. For example, in a ship a navigator decides in what direction to
sail so as to reach the port while the helmsman steers the ship in the direction indicated by the navigator.
Here the navigator is the higher-level controller and the helmsman the lower-level controller. Since the
higher-level controllers have to work on a smaller task space and the lower-level controllers are set simpler
tasks, improved performance results.

Examples of such hierarchical architectures are feudal RL by Dayan and Hinton (1993) and
hierarchical planning by Singh (1992a, 1992~). These methods too require an external agency to specify
the hierarchy to be used. This is done usually by making use of some ‘structure’ in the problem,

Training controllers on simpler tasks first, and then training them to perform progressively more
complex tasks using these simpler tasks, can also lead to better performance. Here, at any one stage the
controller is faced with only a simple learning task. This technique is called shaping in animal behavior
literature. Gullapalli (1992a) and Singh (1992d) have reported some success in using this idea. Singh
shows that the controller can be made to ‘discover’ a decomposition of the task by itself, using this
technique.

@ 1997 1OP Publishing Ltd and Oxford University Ress Hundbook of Neurul Compururion release 97/1 c3.7:1

Copyright © 1997 IOP Publishing Ltd

Reinforcement Learning

C3.7.1 Other techniques

Apart from the ideas mentioned above, various other techniques have been suggested for speeding-up RL.
Two novel ideas have been suggested by Lin (1991a, b, c, 1992): experience playback and teaching. Let
us first discuss experience playback. An experience consists of a quadruple (occurring in real-time system
operation) (x , a , y , r) where x is a state, a is the action applied at state x , y is the resulting state and r is
r (x , a). Past experiences are stored in a finite memory buffer, P. An appropriate strategy can be used to
maintain P, At some point in time let n be the ‘current’ (stochastic) policy. Let

E = { (x , a, y, r) E P I Prob{x(x) = a } 2 E }

where E is some chosen tolerance. The learning update rule is applied, not only to the current experience,
but also to a chosen subset of E. Experience playback can be especially useful in learning about rare
experiences. In teaching, the user provides the learning system with experiences so as to expedite learning.

Incorporating domain-specific knowledge also helps in speeding-up learning. For example, for a given
problem, a ‘nominal’ controller that gives reasonable performance may be easily available. In that case RL
methods can begin with this controller and improve its performance (Singh et a1 1994). Domain-specific
information can also greatly help in choosing state representation and setting up the function approximators
(Barto 1992, Millan and Torras 1992).

In many applications an inaccurate system model is available. It turns out to be very inefficient to
discard the model and simply employ a model-free method. An efficient approach is to interweave a
number of ‘planning’ steps between every two on-line learning steps. A planning step may be one of
the following: a time step of a model-based method such as real-time dynamic programming (RTDP) or
a time step of a model-free method for which experience is generated using the available system model.
In such an approach, it is also appropriate to adapt the system model using on-line experience. These
ideas form the basis of Sutton’s Dyna architectures (Sutton 1990, 1991) and related methods (Moore and
Atkeson 1993, Peng and Williams 1993).

In this chapter we have given a cohesive overview of existing RL algorithms. Though research
has reached a mature level, RL has been successfully demonstrated only on a few practical applications
(Gullapalli et a1 1994, Tesauro 1992, Mahadevan and Connell 1991, Thrun 1993) and clear guidelines for

c2.3.4 its general applicability do not exist. The connection between dynamic programming and RL has nicely
bridged control theorists and artificial-intelligence researchers. With contributions from both these groups
in the pipeline, more interesting results are forthcoming and it is expected that RL will make a strong
impact on the intelligent control of dynamic systems.

~ 3 . 4

References

Barto A G 1992 Reinforcement leaming and adaptive critic methods Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches ed D A White and D A Sofge (New York: Van Nostrand Reinhold) pp 469-91

Brooks R A 1986 Achieving artificial intelligence through building robots Technical Report AI Memo 899
Massachusetts Institute of Technology, Aritificial Intelligence Laboratory, Cambridge, MA, USA

Dayan P and Hinton G E 1993 Feudal reinforcement learning Advances in Neural Information Processing Systems 5
ed S J Hanson, J D Cowan and C L Giles (San Mateo, CA: Morgan Kaufmann) pp 271-8

Gullapalli V 1992 Reinforcement leaming and its application to control Technical Report COINS 92-10, PhD Thesis
University of Massachusetts, Amherst, MA, USA

Gullapalli V, Franklin J A and Benbrahim H 1994 Acquiring robot skills via reinforcement leaming IEEE Control

Jacobs R A, Jordan M I, Nowlan S J and Hinton G E 1991 Adaptive mixtures of local experts Neural Comput. 3

Lin L J 1991a Programming robots using reinforcement leaming and teaching Proc. Ninth Nat. Con8 on Artificial
Intelligence (Cambridge, MA: MIT Press) pp 781-6

-199 lb Self-improvement based on reinforcement learning planning and teaching Machine Learning: Proc. Eighth
Int. Workshop ed L A Bimbaum and G C Collins (San Mateo, CA: Morgan Kaufmann) pp 323-7

-199 IC Self-improving reactive agents: case studies of reinforcement leaming frameworks From Animals to
Animats: Proc. First Int. Con$ on Simulation of Adaptive Behaviour (Cambridge, MA: MIT Press) pp 297-
305

-1992 Self-improving reactive agents based on reinforcement leaming, planning and teaching Machine karning

-1993 Hierarchical leaming of robot skills by reinforcement Proc. 1993 Int. Con8 on Neural Networks pp 181-6

S y ~ t . Mag. 13-24

79-87

8 293-321

C3.7:2 H u d w o k of Neurul Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Modular and hierarchical architectures

Maes P and Brooks R 1990 Leaming to coordinate behaviour Proc. Eighth Nut. Con$ on Artificial Intelligence (San
Mateo, CA: Morgan Kaufmann) pp 796-802

Mahadevan S and Connell J 1991 Scaling reinforcement learning to robotics by exploiting the subsumption architecture
Machine Learning: Proc. Eighth Int. Workshop ed L A Bimbaum and G C Collins (San Mateo, CA: Morgan
Kaufmann) pp 328-32

Millan J D R and Tonas C 1992 A reinforcement connectionist approach to robot path finding in non maze-like
environments Machine Learning 8 363-95

Moore A W and Atkeson C G 1993 Memory-based reinforcement leaming: efficient computation with prioritized
sweeping Advances in Neural Information Processing Systems 5 ed S J Hanson, J D Cowan and C L Giles (San
Mateo, CA: Morgan Kaufmann) pp 263-70

Peng J and Williams R J 1993 Efficient leaming and planning within the Dyna framework Proc. I993 Int. Joint Con$
on Neural Networks 168-74

Singh S P 1992a Reinforcement learning with a hierarchy of abstract models Proc. Tenth Nut. Con$ on ArtiJcial
Intelligence (San Jose, CA)

-1992b On the efficient learning of multiple sequential tasks Advances in Neural Information Processing Systems
4 ed J E Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 251-8

-1992c Scaling Reinforcement learning algorithms by leaming variable temporal resolution models Proc. Ninth
Int. Machine Learning Con8

-1992d Transfer of leaming by composing solutions of elemental sequential tasks Machine Learning 8 323-39
-1994 Leaming to solve Markovian decision processes PhD Thesis Department of Computer Science, University

of Massachussetts, Amherst, MA, USA
Singh S P, Jaakkola T and Jordan M I 1994 Learning without state-estimation in partially observable Markov decision

processes Machine Learning
Sutton R S 1990 Integrated architecture for learning, planning, and reacting based on approximating dyanmic

programming Proc. Seventh Int. Con$ on Machine Learning (San Mateo, CA: Morgan Kaufmann) pp 216-24
-1 99 1 Integrated modeling and control based on reinforcement leaming and dynamic programming Advances in

Neural Information Processing Systems 3 ed R P Lippmann, J E Moody and D S Touretzky (San Mateo, CA:
Morgan Kaufmann) pp 471-8

Tesauro G J 1992 Practical issues in temporal difference leaming Machine Learning 8 257-78
Tham C K and Prager R W 1994 A modular Q-learning architecture for manipulator task decomposition Machine

Learning: Proc. Eleventh Int. Con$ ed W W Cohen and H Hirsh NJ (San Mateo, CA: Morgan Kaufmann)
(available via gopher from Dept of Engineering, University of Cambridge, Cambridge, UK)

Thrun S B 1993 Exploration and model building in mobile robot domains Proc. 1993 Int. Con$ on Neural Networks
(San Francisco: IEEE Press)

Watkins C J C H 1989 k a m i n g from delayed rewards PhD Thesis Cambridge University, Cambridge, UK

@ 15’97 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computution release 9711 c3.7:3

Copyright © 1997 IOP Publishing Ltd

PART D

HYBRID APPROACHES

D1 NEURO-FUZZY SYSTEMS
Krzysztof J Cios and Witold Pedrycz
D 1.1 Introduction
D1.2 Fuzzy sets and knowledge representation issues
D 1.3 Neuro-fuzzy algorithms
D1.4 Ontogenic neuro-fuzzy F-CID3 algorithm
D1.5 Fuzzy neural networks
D1.6 Referential logic-based neurons
D1.7
D1.8

Classes of fuzzy neural networks
Induced Boolean and core neural networks

D2 NEURAL-EVOLUTIONARY SYSTEMS
V William Port0
D2.1

D2.2
D2.3

Overview of evolutionary computation as a mechanism for solving neural system
design problems
Evolutionary computation approaches to solving problems in neural computation
New areas for evolutionary computation research in neural systems

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

D1

Neuro-fuzzy Systems

Krzysztof J Cios and Witold Pedrycz

Abstract

In this chapter we describe neuro-fuzzy systems which combine the advantages of
numerical computations of neural networks with symbolic processing of fuzzy sets. First,
we give a brief introduction to fuzzy sets, sufficient to understand the topics covered in
the chapter. This includes a discussion of methods for eliciting membership functions.
Next, several typical neuro-fuzzy algorithms are discussed and illustrated. The last
few sections concentrate on fuzzy neural networks, where basic processing components
(fuzzy neurons) and several general architectures are discussed. In particular, it is shown
that some topologies of the networks, such as logic processors, can be exploited in a
logic-based approximation of functional relationships.

Contents

D1 NEURO-FUZZY SYSTEMS
D 1.1 Introduction
D1.2 Fuzzy sets and knowledge representation issues
D1.3 Neuro-fuzzy algorithms
D1.4 Ontogenic neuro-fuzzy F-CID3 algorithm
D1.5 Fuzzy neural networks
D 1.6 Referential logic-based neurons
D1.7 Classes of fuzzy neural networks
D1.8 Induced Boolean and core neural networks

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 97f1
Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

Dl.1 Introduction

Krzysztof J Cios and Witold Pedrycz

Abstract

See ?he abstract for Chapter D1.

This chapter deals with neuro-fuzzy computing, a hybrid of two diverse concepts: neural networks and
fuzzy sets. These two technologies naturally complement each other by addressing various facets of
information processing. The most important features can be outlined briefly as follows: neural networks
are massively parallel processing structures aimed at purely numerical processing. Fuzzy sets, with their
underlying philosophy of looking at collections rather than individual objects, are naturally appropriate for
the representation of knowledge at the higher level of information granularity inherent in human problem
solving. As such, fuzzy sets naturally constitute a crucial component in the development of neural network
theory, especially at the front end of any neural network. They are particularly important when forming
a flexible interface to neural networks and placing numerical computational faculties of the networks
in certain well-thought-out settings. Before elaborating on the principles guiding this integration, it is
worth characterizing the essence of neural networks and fuzzy sets viewed as two key paradigms. The
dominant criteria used in this comparison concern knowledge representation, learning capabilities, and
learning plasticity.

Owing to a distributed architecture with a vast number of network parameters, neural networks are
equipped with significant learning capabilities. These are essentially of a parametric form and aimed at
minimizing a given performance index or objective function by modifying the values of the connections.
Fuzzy sets are primarily concerned with issues of uncertain knowledge representation. Their learning
capabilities are very much limited, if not nonexistent. The domain knowledge is represented explicitly in
terms of easily understood linguistic labels that could be perceived at either numeric or symbolic levels. It
is also worth concentrating on explicit versus implicit methods of knowledge representation and learning
capabilities, and discussing how these facets are handled by fuzzy sets and neural networks.

There are two main approaches towards building neuro-fuzzy architectures depending upon the area
of expertise of a designer. On one hand, one can look at incorporating concepts of fuzzy sets into some
‘standard’ neural networks at the level of their topologies, learning schemes, interpretation of results, and ~ 2 . 2 , ~ 3 . 3
so on: see figure D1.l.l. Quite often these activities fall into a category known as object fuzzification,
such as fuzzification of neurons and weights. By fuzzification we mean taking a single numerical value
and converting it into a collection of numerical values, or a fuzzy set. While the term itself has been
widely used in the literature, we are convinced that this wording does not fully reflect the nature of
this enhancement and any generalization involving fuzzy sets needs to be analyzed with respect to its
computational efficiency. The dual approach involves the use of neural computation viewed as an integral
part of enhancing the computational faculties of fuzzy sets. Some examples of this type of interaction
concern membership function estimation and fuzzy inference mechanisms implemented as neural networks:
refer again to figure D 1.1.1.

Finally, we are also faced with neuro-fuzzy systems-a category of systems where both neural
networks and fuzzy sets give rise to a totally new concept embracing the essence of neural computation
and fuzzy set computing; figure D1.1.1.

Fully acknowledging the variety of the existing approaches, the aim of this chapter is to outline
the main trends, study general development techniques, and discuss in depth some algorithms that are
representative of the areas already identified.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Compuration release 97/1 D 1.1 : 1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

Figure D1.l.l. Different ways of interaction between fuzzy set technology and neural computation.

D 1.1 :2 Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.2 Fuzzy sets and knowledge representation issues

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter DI.

In this section we are primarily concerned with fuzzy sets viewed as a vehicle for knowledge representation.
Our aim is to visualize the essential aspects of fuzzy sets as a tool for explicit knowledge representation
capable of handling uncertainty. It is strongly claimed that fuzzy sets and neural networks are
complementary with respect to their knowledge representation and learning capabilities or plasticity,
making them ideal components for hybridization.

D1.2.1 Sets versus fuzzy sets

In order to introduce the idea of fuzzy sets in more detail, it is worth beginning with the formalism of
two-valued logic. In this setting, the notion of a Set implies that considering any object, no matter how
complex, we are compelled to assign it to one of the two complementary and exhaustive categories specified
a priori, for instance, good-bad, normaldbnormal or odd-even, etc. Sometimes this discrimination does
make sense. In many other situations, this dichotomization tends to be overly restrictive and can easily lead
to some serious dilemmas. For example, let us consider natural numbers and define two categories or sets
of elements such as odd and even numbers. Within this framework any natural number can be classified
without hesitation. On the other hand, in many tasks in engineering, manufacturing, or management, we
are faced with classes that are ill defined and do not have clear and well-defined boundaries.

Even within a field of mathematics we encounter some broadly accepted and used notions with
gradual rather than abrupt boundaries. We refer to such well known terms as: sparse matrix, a linear
approximation of a function in a small neighborhood of a point xo, or an ill-conditioned matrix, and we
accept these notions as conveying useful information. Furthermore, they are not regarded as defects of our
everyday language but rather as a beneficial feature indicating our ability to generalize and conceptualize
knowledge. Nevertheless, we should stress that these notions are strongly context dependent and by no
means can detailed definition be deemed universal.

The key issue of fuzzy sets is one that extends significantly the meaning of a set admitting
different grades of belongingness or membership values of an element in a set. This alleviates the
previous dichotomization problem by embracing all intermediate conceptual situations arising between
total membership and total nonmembership, or truth and falsehood. In the early 1920s Jan tukasiewicz,
a Polish logician, first addressed the problem of the truth of statements being a matter of degree. He
introduced multivalued logic which defined a continuum between falsehood and truth, or between zero
and one. Many authors, among them Kosko (1993), consider tukasiewicz to be the father of what later
became known as fuzzy logic, a term coined much later by Zadeh (1965).

Formally, a fuzzy set A defined in a universe of discourse X is described by its membership function
viewed as a mapping (Zadeh 1965)

A : X + [0, 11.
The degree of membership A (x) expresses the extent to which x fulfils the category described by A . The
condition A (x) = 1 identifies elements of X which are fully compatible with A . The condition A (x) = 0
identifies all the elements which definitely do not belong to A . The higher the membership value at x ,
the higher the adherence of x to A . Any physical experiment whose realization is a matter of energy,

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 D 1.2: 1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

like pulling a rubber band, can serve as a useful metaphor for the notion of membership function or
membership degree. Usually by discussing a fuzzy set we assume that elements exist with membership
grades equal to 1; these sets are called normal.

An intuitive observation that fuzzy sets are generalizations of sets can be formalized in what is usually
called the representation theorem (Zadeh 1965, Kandel 1986). Briefly speaking, it states that a fuzzy set
can be decomposed, and composed by taking into account elements with membership values not lower
than a certain threshold. Let us first introduce the notion of an a-cut. By an a-cut, denoted by A,, we
mean a set of elements of A belonging to it with degrees of membership not less than a ,

A, = (X E X I A (x) 2 a) cy E [0,1].

The representation theorem states that any fuzzy set A can be represented by a union of its a-cuts, namely

This relationship is also referred to as a resolution identity. It is used quite frequently in situations when
a fuzzy set needs to be translated into a collection of sets.

D1.2.2 Membership functions: types and elicitation methods

In many situations it is worth restricting analysis to piecewise linear membership functions. They give
rise to a class of triangular and trapezoidal fuzzy numbers or fuzzy sets as shown in figure D1.2.1.

Figure D1.2.1. Examples of triangular and trapezoidal fuzzy numbers.

This characterization of a fuzzy number is sufficient to capture the uncertainty associated with the
linguistic term studied. The triangular fuzzy number, denoted by A (x ; a, m , B) is uniquely characterized
by parameters m, a and ,9, where a < m < ,9, see figure D1.2.l(a). The first parameter embodies a
modal or typical value. The lower and the upper bounds are denoted by a and ,9, respectively. For
instance, a waiting time W in a queue which typically takes 15 minutes to get service while the bounds
are 5 and 29 minutes, respectively, can be described as a triangular fuzzy number W (t ; 5 , 15,29). Since
no additional information about the waiting time is available, the choice of the linear relationship is fully
legitimate. If there is no uncertainty (fuzziness) then a = m = B and the fuzzy number reduces to a single
quantity regarded as a real number.

A trapezoidal fuzzy number admits an additional degree of freedom that enables us to model a range
of equally acceptable typical values. In this class of membership functions the modal value, m, spreads
into a closed interval [n, m] as shown in figure D1.2.l(b).

As far as membership function estimation is concerned there are the following essential classes: the
first two, described below, elicit the membership functions from experts; the last three estimate membership
functions directly from data.

Horizontal approach. Its underlying idea is to gather information about grades of membership of some
elements of a universe of discourse in which a fuzzy set is to be defined. The process of elicitation of
these membership functions can be stated as follows. Consider a group of N experts. Each of them is
asked to answer the following question:

Can xo be viewed as compatible with the concept represented by a fuzzy set A?
where xo is a fixed element of this universe of discourse and A is a fuzzy set to be determined. The
answers are restricted to ‘yes’ or ‘no’ statements only. Then, counting the fraction of positive responses,
n(xo) , the value of the membership function at xo is estimated as

D 1.2:2 Hundbook of Neurul Computution release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fuzzy sets and knowledge representation issues

Vertical approach. The main concept behind this method is to fix a certain level of the membership, U,
and ask a group of experts to identify a collection of elements in X satisfying the concept carried by A to
a degree not lower than CY. Thus, the essence of the method is to determine a-cuts of the fuzzy set. Once
the experimental results are gathered then the fuzzy set is ‘reconstructed’ by aggregating the estimated
ff-cuts.

Obviously these two approaches are conceptually simple. The factor of uncertainty reflected by
the fuzzy boundaries of A is distributed either vertically, in the sense of the grades of membership, or
horizontally, thus being absorbed by the limit points of the a-cuts. The values of a or different elements of
the universe of discourse should be selected randomly to avoid any potential bias furnished by the experts.

The evident shortcoming of these two methods lies in the ‘local’ nature of the experiments. This
means that each grade of membership is estimated independently from the rest. Then the results may
not fully comply with the general tendency of maintaining a smooth transition from full membership to
absolute exclusion. In this situation, a pairwise comparison method introduced by Saaty (1980) can be
used to alleviate the inadequacy in the above methods.

The following three methods differ from the two discussed above in that they do not require human
experts. Membership functions of any shape, although most often piecewise linear, can be derived directly
from a preferably large data set, called training data, collected from the process which is to be described
by using fuzzy sets. The three methods are briefly outlined next.

Statistical approach. The assumption is that the membership functions can be initially defined using
statistical relationships between the variables of interest. The probability density functions and the
corresponding distribution functions can then be estimated from training data on some interval, or range,
over which a fuzzy set is to be defined. From the ratios of distribution functions fuzzy membership
functions are defined. Details and an example of utilization of the method is described by Cios et a1
(199 1).

Machine learning. To define membership functions, usually piecewise linear, the IF ... THEN ... rules
generated by inductive machine learning algorithms are used in the following way. First, the precedent
parts of all the rules having the same consequent are aggregated using a generalized fuzzy integration
operator. Second, the consequent parts of the same rules are combined to describe a proper linguistic
term (membership function) through the use of a generalized fuzzy union operator. Finally, a so-defined
membership function can be used directly or converted to, say, a trapezoidal fuzzy number. Details of the
method and its utilization on real data can be found in Cios et a1 (1991, 1994).

Neural networks. This method of defining membership functions from numerical data through the use of
neural networks is becoming increasingly popular. It takes advantage of division of training examples,
performed by neuronshyperplanes, into those lying on positivehegative sides of a hyperplane, then
counting them and taking their ratios to define membership functions. The idea behind the method is
explained in Section D1.4 of this chapter, with more details given by Cios and Sztandera (1996).

At this point, it is essential to comment on fuzziness and randomness as two very distinct and
somewhat orthogonal facets of uncertainty. In general, randomness deals with the models of statistical
inexactness emerging due to the occurrence of random events, while fuzziness concerns situations of
modeling of inexactness arising due to perception processes of humans.

D1.2.3 Logical operations on fuzzy sets

The basic operations (logical connectives) can be defined by replacing the characteristic functions of sets
by the membership functions of the fuzzy sets. This gives rise to the following expressions:

(A U B) (x) = max(A(x), B (x))
(A f l B) (x) = min(A(x), B (x))

I(X) = 1 - A(x)

where x E X and X is a universe of discourse.
Since the grades of membership extend the two-element set of truth values {0, I} into the unit interval

[O, 11, it is worth recalling the collection of properties essential for set theory and investigating whether
they are satisfied for fuzzy sets.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9111 D 1.2:3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

The De Morgan law of set theory is also preserved in fuzzy sets, namely,

A n B = A U E A U B = A ~ B .

The distributivity laws are fulfilled and the properties of absorption and idempotency hold as well.
However, the exclusion conditions are not satisfied, that is,

A U A # X
A n A # m

(underlap property)
(overlap property).

These two properties give rise to a very clear distinction between fuzzy sets and sets.
The semantics of the logical connectives can be expressed in many ways. An example is the

product operation, A (x) B (x) , studied as a model used for the logic intersection and the probabilistic
sum, A (x) + B (x) - A (x) B (x) , considered for the union operation. In comparison to the lattice (max and
min) operations, the computed degree of membership reflects both values of the membership functions
A (x) and B(x) . We shall restrict ourselves to a class of binary operations satisfying a collection of the
following assumptions:

boundary conditions

A U X = X A ~ X = A
A U 0 = A A n 0 = 0

commutativity

associativity

A n B = B n A A U B = B U A

(~ n B) n c = A n (B n c) (A U B) U c = A U (B U c).
Observe that all of the above conditions take on an intuitively clear interpretation: for instance, the

boundary conditions indicate that the logical connectives for fuzzy sets coincide with those applied in the
two-valued logic. The property of commutativity states that a truth value of a composite expression does
not depend on the order in which the predicates have been placed.

By accepting the above conditions, a broad class of models for logical connectives (union and
intersection) is formed by triangular norms (Dubois and Prade 1988). The triangular norms (Menger
1942) or t-norms and s-norms originated in the theory of probabilistic metric spaces. By a t-norm we
mean a function of two arguments

such that it is

t : [O, 11 x [O, 11 +. [O, 11

(i) nondecreasing in each argument

x l y , w s z for x t w s y t z

(ii) commutative

(iii) associative

(iv) satisfies the set of boundary conditions

x t y = y t x

(x t y) t z = x t (y t z)

x t O = O x t l = x

with x, y, z , w E [0, 11.

intersection operation (logical AND).
All the properties of the t-norm can be easily identified with the relevant characteristics of the

An s-norm is defined as a function of two arguments

s : [O, 11 x [O, 11 --+ EO, 11

such that it:

D1.2:4 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fuzzy sets and knowledge representation issues

(i) is a nondecreasing function in each argument
(ii) is commutative
(iii) is associative
(iv) satisfies the boundary conditions

x s o = x x s l = 1

Characteristics (i)-(iv) express the properties of the union operation. An interesting fact is that for
each t-norm one can define an associated s-norm such that

x s y = 1 - (1 - x) t (l - y)

The above relation is simply the De Morgan law found in set theory.

D1.2.4 Frame of cognition: toward a unified data representation

Domain knowledge about a given system can be articulated with the aid of linguistic labels. These are
generic pieces of knowledge which are identified by the model developer as being essential in describing
and understanding the system. The linguistic labels are represented by fuzzy sets. As demonstrated
in Zadeh (1979) they can also be viewed as elastic constraints and identifying regions with the highest
degree of compatibility of elements with the given linguistic term. Sometimes the linguistic labels are
also referred to as information granules. All the information granules defined in a certain space constitute
a frame of cognition of the variable (Pedrycz 1990, 1992). More formally, the family of fuzzy sets
A = { A , , A 2 , , . . , A ,) (where A i : X + [0, 11) constitutes a frame of cognition A if the following two
properties are satisfied.
(i) A ‘covers’ the universe X, namely each element of the universe is assigned to at least one granule

with a nonzero degree of membership meaning that

V x 3 i A i (x) > 0 .

This property assures that any piece of information defined in X is properly represented or described

(ii) The elements of A are unimodal fuzzy sets or unimodal membership functions. By stating that, we
identify several regions of X, one for each Ai, as highly compatible with the labels.
The frame of cognition can be developed either on a fully experimental basis or in an algorithmic

way. In the first instance, the linguistic labels can be specified by studying the problem and recognizing
basic relevant information granules as being necessary in describing and handling it. It is the user who
provides relevant membership functions for the variables of the system and therefore creates his own
individual cognitive perspective. Analogously, the standard methods of membership function estimation,
as outlined above, can be utilized directly.

The second approach, which could be helpful when some records of numerical data are available,
relies on a suitable utilization of fuzzy clustering techniques. Fuzzy clustering (Bezdek 1981) enables us
to discover and conveniently visualize the structure existing in the data set. With its aid the numerical
data are structured into a number of clusters according to a predefined similarity measure. The number of
clusters is also defined in advance so that they correspond to the linguistic labels constituting the frame of
cognition. Fuzzy clustering generates grades of membership of the elements of the data set in the given
clusters. The frame of cognition A can be also referred to as a fuzzy partition of X.

Considering the family of the linguistic labels encapsulated in the same frame of cognition, several
properties are worth underlining.

by A i .

SpeciJicity. The frame of cognition A is more specific than A’ if the elements of A are more specific than
the elements of A’. The specificity of the fuzzy set A can be evaluated using, for example, the specificity
measure as discussed in Yager (1980). An example of A and A‘ of different specificity is shown in
figure D1.2.2.
Focus of attention. A scope of perception of Ai in frame A is defined as an a-cut of this fuzzy set. By
moving Ai along X while not changing its membership function we can focus attention on a certain region
of x.

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 D1.2:5

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

Figure D1.2.2. Two frames of cognition of different specificity levels.

Information hiding. This idea is directly linked with the focus of attention. By modifying the membership
function of A being an element of A we can have the important effect of achieving an equivalence of the
elements lying within some regions of X. Consider a trapezoidal fuzzy set A in R with its 1-cut distributed
between U] and u2. All the elements falling within this interval are nondistinguishable: A(x) = 1 for x
contained in this interval. Thus, the processing module does not distinguish between any two elements in
the 1-cut of A, hence the detailed information becomes hidden. By modulating the level of the cr-cut we
can accomplish an cr-information hiding.

There is a question of representing any input datum in the frame of cognition developed in this
manner. We shall introduce possibility and necessity measures (Zadeh 1978, Dubois and made 1988) as
the mechanisms most frequently used to develop this transformation. Let A be one of the elements of
the frame of cognition and X constitute an input datum. X and A are defined in the same universe of
discourse. The possibility measure, Poss(X1 A),

Poss(XIA) = sup[min(X(z), A(z))I
z EX

expresses a degree to which X and A overlap. The necessity measure, Nec(XIA),

Nec(XIA) = inf[max((l - X(z)), A(z))] = inf[max(x(z), A(z))]
Z€X z EX

characterizes an extent to which X is included in A, see figure D1.2.3.

r

X

Figure D1.2.3. Calculations of possibility and necessity measures.

Figure D1.2.4 summarizes the performance of these measures for two sets; to discriminate between
some of these cases we need to use both measures. Frequently the possibility measure alone might not be
sufficient to capture the component of uncertainty residing with X.

Poss(X I A)= 1
Nec(X I A)=O

Poss(XI A)=O
Nec(X I A)=O

~1 APoss(XIA)=l
Nec(X I A)= 1

Poss(XIA)=l
Nec(X I A)=O

Figure D1.2.4. Possibility and necessity measures for several sets X and A.

For any precise numerical information, X = { x o } , these two measures coincide. If X becomes a
numerical interval, X E R, which in fact represents an uncertain input datum, the difference between the

D 1.2% Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fuzzy sets and knowledge reuresentation issues

possibility and necessity measure is usually different from zero. The following monotonicity property
holds:

if XI c X2 then Poss(X~ IA) - Nec(X1 IA) i Poss(X2lA) - Nec(X2IA).

This observation may lead us to consider the two measures collectively to quantify uncertainty residing
within the input datum. Let us introduce the notation,

A = Poss(X1A)

and
p = 1 - Nec(X1A).

Straightforwardly, for X = { x o } , p becomes a complement of A, p = 1 - A, or A + p = 1. In general, we
get either 1 + p 1. 1 or 1 + p 5 1. These values depend heavily upon the relative distribution of A and X
as well as the form of these fuzzy sets.

References

Bezdek J C 1981 Pattern Recognition with Fuzzy Objective Function Algorithms (New York: Plenum)
Dubois D and Prade H 1988 Possibility Theory-an Approach to Computerized Processing of Uncertainty (New York:

Kandel A 1986 Fuzzy Mathematical Techniques with Applications (Reading, MA: Addison-Wesley)
Kosko B 1993 Fuuy Thinking (New York: Hyperion)
Menger K 1942 Statistical metric spaces Proc. Natl Acad. Sci., USA 28 535-7
Pedrycz W 1990 Direct and inverse problem in comparison of fuzzy data Fuzzy Sets Syst. 34 223-36
-1992 Selected issues of frame of knowledge representation realized by means of linguistic labels Int. J. Int. Syst.

Saaty T L 1980 The Analytic Hierarchy Processes (New York: McGraw Hill)
Yager R R 1980 On chosing between fuzzy subsets Kybernetes 9 1 5 1 4
Zadeh L A 1965 Fuzzy sets Information Control 8 338-53
-1978 Fuzzy sets as a basis for a theory of possibility Fuzzy Sets Syst. 1 3-28
-1979 Fuzzy sets and information granularity Advances in Fuzzy Set Theory and Applications ed M M Gupta, R

Plenum)

7 155-70

K Ragade and R R Yager (Amsterdam: North-Holland) pp 3-18

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 D1.217

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.3 Neuro-fuzzy algorithms

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter D l .

Relatively early in neural network research there emerged an interest in analyzing and designing layered,
feedforward networks augmented by some formalism stemming from the theory of fuzzy sets. One of ~ 2 . 3
the first approaches was the fuzzification of the binary McCulloch-Pitts neuron (Lee and Lee 1975). ~ 1 . 2
Then, several researchers looked at a typical feedforward neural network architecture and analyzed several
combinations of such neurons with fuzzy sets viewed as inputs to the neural network. Similarly, the
networks were equipped with connections (weights) viewed as fuzzy sets with triangular membership
functions. Interestingly, in all these cases, the outputs of the network were kept numerical. Some
representative examples include the work of Yamakawa and Tomoda (1989), O’Hagan (1991), Gupta
and Qi (1991), Hayashi et al (1992), and Ishibushi et a1 (1992). Commonly, these authors employed
fuzzy sets with either triangular or trapezoidal membership functions. The training was accomplished
utilizing a standard delta rule. In some other cases (Hayashi et al 1992) a fuzzified delta rule was used. ~ 3 . 3 . 3

The delta rule was also replaced by other algorithms, for instance Requena and Delgado (1992) used a
Boltzmann machine training. C1.4

D1.3.1 Fuzzy inference schemes and their realizations as neural networks

In the following, we briefly review a certain category of fuzzy inference systems also known as
f u u y associative memories (Kosko 1993). This form of memory is often regarded as central to the c1.3,F1.4
implementation of fuzzy-rule-based systems, and, in general, fuzzy systems (Wang and Mendel 1992).

Fuzzy associative memory (FAM) consists of a fuzzifier, fuzzy rule base, fuzzy inference engine, and
a defuzzifier. They are static transformations which map input fuzzy sets into output fuzzy sets (Kosko
1993). It carries out a mapping between unit hypercubes. The role of the fuzzifier and defuzzifier is to
form a suitable interface between the transformation and the external environment in which modeling is
completed. The transformation is based on a set of fuzzy rules, namely rules consisting of fuzzy predicates
and reflecting a domain knowledge and usually originating from human experts. This type of knowledge
may pertain to some general control policies, linguistic description of systems etc. As will be revealed
later on, the knowledge gained from such sources can substantially enhance learning in neural networks
by reducing their training time.

The development of a FAM is realized in several steps which are summarized as follows (Kosko
1993). First, we identify the variables of the system and encode them linguistically in terms of fuzzy sets
such as small, medium and big. The second step is to associate these fuzzy sets by constructing rules
(if-then statements) of the general form:

if X is A then Y is B

where X and Y are system variables, usually referred to as linguistic variables, while fuzzy sets A and
B are represented by their corresponding membership functions. Usually each typical application requires
from several to many rules of the form given above-their number is implied by the granularity of the
fuzzy information captured by the rules. Thus, the rules can be written as:

if X is Ak then Y is Bk .

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D1.3:l

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

As said before, each rule forms a partial mapping from input space X into output space Y, which can
be written in the form of a fuzzy relation or, more precisely, a Cartesian product of A and B, namely

R(x, Y) = min(A(x), B(Y))
where x E X, y E Y and A(x) and B(x) are grades of membership of x and y in fuzzy sets A and B,
respectively.

In the third step we need to decide upon an inference mechanism, used for drawing inferences from
a given piece of information and the available rules. The inference mechanism embodies two keys steps
(Pedrycz 1993, 1995):

(i) Aggregation of rules. This summarization of the rules is almost always done by taking a union of
the individual rules. As such, the aggregation of N rules leads to a fuzzy relation of the form

N

k = l

(ii) Producing a fuzzy set from given A and R. The classic mechanism used here is a max-min
operation yielding the expression

namely,
B = AoR

B(y) = sup[min(A(x), R(x, y))l

y E Y. Because of the nature of fuzzy sets no perfect match is required to fire, or activate, a particular
rule as is the case when using rules not including linguistic terms.

Finally, although the employed inference strategy will determine the output in a form of a fuzzy set,
most of the time a user is interested in a crisp or single value at the output as required in most, if not
all, current applications. To achieve that, one needs to use one of several defuzzification techniques. One
quite often used is the transformation exploiting a weighted sum of the modal values of the fuzzy sets of
conclusion. This gives rise to the expression

xcx

where Ak is the level of activation or possibility measure of the antecedent of the kth rule with

Ak = sup[min(A(x), Ak(X))I
X € X

where b; is a modal value of Bk, namely

Bk(b;> = max Bk(y)
Y CY

Two features of FAMs are worth emphasizing when analyzing their memorization and recall capabilities.
They are very similar to those encountered in correlation-based associative memories:

(i) The learning process is straightforward and instantaneous-in fact FAMs do not require any
learning. This could be regarded as an evident advantage but it comes at the expense of a fairly low
capacity and potential crosstalk distortions.

(ii) This crosstalk in the memory can be avoided for some carefully selected items to be stored. In
particular, if all input items Ak are pairwise-disjoint normal fuzzy sets, Ak rl At = 0 for all k, 1 = 1,2, . . .,
N, k # 1, then Bk = AkoR, k = 1 ,2 , . . . , N, meaning a perfect recall.

The functional summary of the FAM system which outlines its main components is shown in
figure D1.3.1.

Wang (1992) proved that a fuzzy inference system that is equipped with the max-product composition
with scaled Gaussian membership functions is a universal approximator. Let us recall that the main idea
of universal approximation states that any continuous function f : R" + R, can be approximated using a
neural network to any degree of accuracy on a compact subset of R (Hornik et al 1989).

The above described FAM system is often utilized as part of a so-called bidirectional associative
memory (BAM). The applications of it can be found in control tasks such as the inverted pendulum
(Kosko 1993).

C1.3.2

D1.3:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy algorithms

Crisp input

*
crisp output

Fuzzy rules and

mechanism
Fuzzifier + fuzzy inference + Defuzzifier >

Figure D1.3.1. The architecture of the FAM system.

DI.3.1.I Fuzzy backpropagation

The fuzzy backpropagation algorithm (Xu et a1 1992) exploits fuzzy rules for adjusting the activation
function and learning rate. By coding the heuristic knowledge about the behavior of the standard
backpropagation training Xu et a1 (1992) were able to considerably shorten the time required to train
the network, which too often is prohibitive for any real problem.

It should be noted that long training times for backpropagation algorithms arise mainly from keeping
both the learning rate and the activation function fixed. Selection of the proper learning rate and ‘optimal’
activation function in backpropagation algorithms had been studied before (Weir 1991, Silva and Almeida
1990, Rumelhart and Mcklland 1986); however, the two parameters were not studied in unison. Rapid
minimalization of the training error, e, by proper simultaneous selection of the learning rate, c(e, r), and of
the steepness of the activation function, s(e, t, neti), where t is time and net; is the input to the activation
function were proposed by Xu et a1 (1992).

As is the most common case, the weights of the network in the backpropagation algorithm are adjusted
by using the gradient-descent method according to

ae

a wji
wji(t + 1) = wj ; (t) - c(e, t)-

where [wj i] represents the weight matrix associated with connections between the neurons and utilizes the
following activation function:

The activation function, s, is modified by adjusting its steepness factor, a(e, t), as illustrated in
figure D1.3.2.

-3 -2 -1 1 2

Figure D1.3.2. Activation function for different values of 6.

A set of rules involving linguistic terms (Xu et a2 1992) used to modify the learning rate c(e, t) is
shown in table D1.3.1. The formation of these rules is guided by two straightforward heuristics. First, it
is obvious that the learning rate should be large when the error is big, and small when the error is small.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeuraI Computation release 9711 D1.3:3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

Secondly, if training time is short, the learning rate should be large to promote faster learning, and it
should be small if the training time is long, that is, close to a local minimum. Overall, these rules map
two input variables with the quantification

r = {short, medium, long} and e = {very small, small, big, very big}

into the output variable (that is a learning rate)

c (e , t) = {very small, small, large, very large}.

Table D1.3.1. Rules governing changes of learning rate c(e , t) .

Training error

Training time Very small Small Big Very big
Short Small Large Very large Very large
Medium Very small Small Large Very large
Long Very small Small Large Large

These rules can also be expressed in an equivalent ‘if-then’ format:

rule 1: if e = very small and r = very short then c(e , t) = small
rule 2: if e = very small and t = medium then c(e, t) = very small

rule 12: if e = very big and t = long then c(e, t) = large.

Similarly, the rules determining the steepness factor a (e , t) , as defined in Xu et a1 (1992), are shown
in table D1.3.2.

Table D1.3.2. Rules determining steepness factor a (e , t) .

Training error

Training time Very small Small Big Very big
Short Large Small Very small Very small
Medium Very large Large Small Very small
Long Very large Large Small Small

The underlying heuristics behind the rules shown in table D1.3.2 can be summarized as follows: if
the training time is short and the error is big, then use a small value for the steepness factor so that the
activation function becomes flat, and the weights can be quickly adjusted. Second, when the error is very
small and/or training time is very long then the steepness factor should be large, so that the activation
function becomes almost a step function.

The membership functions for the error, time, steepness factor, and the learning rate are shown in
figure D1.3.3.

01.3.1.2 Fuzzy basis functions

In this section, we shall describe application of the FAM system to the powerful and increasingly popular
c i . 6 2 radial basisfunction (RBF) network. When the FAM system is incorporated into it, it becomes a fuzzy

basis function (FBF) network. We need to briefly introduce radial basis functions first (Moody and Darken
1989), since the FBFs are an augmented version of the RBFs. An RBF is a three-layer network with
‘locally-tuned’ processing units in the hidden layer. RBF neurons are centered at the training data points,
or some subset of them, and each neuron responds only to an input which is close to its center. The

D 1.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy algorithms

Small Big Verybig lw Medium lw

0 In 1
training time

-
0 113 U3 1

training error

Small Large Verylarge Small Large Verylarge
1 Very l~

0 113 U3 1
learning rate

-
0 1013 2013 10

steepness factor

Figure D1.3.3. Membership functions for the linguistic terms used in the above specified rules. Training
time and training error are normalized by dividing through by the largest.

receptive field units receptive field units

Figure D1.3.4. General RBF network with two inputs.

output layer neurons are linear or use sigmoidal functions and their weights may be obtained by using a
supervised learning method, such as a gradient-descent method.

Figure D1.3.4 shows a general RBF network with two inputs and a single linear output. The network
performs a mapping f : R" += R specified by the radial basis function expansion (Chen et al 1991):

i = l

where x E R" is the input vector, p (.) is a function from R" + R or a radial basis function, 11 . 11 denotes
the Euclidean norm, A; are the weights and ci are the centers, i = 1,2, . . . , n r , while n, is the number of
the RBF functions.

One of the most common functions used for p (.) is the Gaussian function

where o; is a constant that determines the width of the ith node; the dimension of vectors c; is the same
as the dimension of the input vectors x.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D1.3:5

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

The centers of the RBF functions, c i , are usually chosen as elements of the training data points x i ,

i = 1,2, . . . , N . This approach is known as the ‘neurons at data points’ method (Zahirniak et a1 1990),
and then n, = N . For larger data sets it is not practical to have an RBF center at each data point so
other methods are used to reduce the number of RBF centers. Some of them are the random selection
of centers, clustering of data points (Zahirniak et a1 1990), and orthogonal least-squares (OLS) reduction
method of Chen et a1 (1991). Jang and Sun (1993) have shown that, under some minor restrictions, RBFs
and FAMs are functionally equivalent. Thus, one can apply learning rules of RBFs to fuzzy inference
systems, and the learning rules of FAMs to find the number of hidden layers and other parameters of
RBFs. Both models are universal approximators if membership functions are scaled Gaussian functions
(see also Wang 1992).

In their fuzzy version of the RBF network Wang and Mendel (1992) defined fuzzy basis functions
p (.) , as follows

where j = 1,2, . . . , M is the number of fuzzy if-then rules defined for the system. As can be noticed, the
original Gaussian function was replaced by a fuzzy membership function. This was done by multiplying
the Gaussian function by a constant (scaling factor), ai, from the unit interval. The above formula defines
fuzzy basis functions for fuzzy systems with singleton fuzzifier, product inference and centroid defuzzifier.
The fuzzy Gaussian membership function was defined as

These fuzzy basis functions correspond to fuzzy rules of the general form, specified previously as the first
part of the FAM system, and they can be determined based only on the ‘if parts of the rules. Note that a
more detailed form of a fuzzy rule is

if x1 is A1 and x2 is A2 and . . . an&, is A,, then y is B .

Thus, to calculate the FBF for rule j , or p j (z) , we calculate the product of all membership functions in
the ‘if part of the rule j , then we do the same for all M rules, and divide the former through the latter.

FBFs have an interesting property, namely, they seem to combine the Gaussian radial basis functions,
which are good for characterizing local properties, with sigmoidal activation functions which have good
global characterizing properties (Cybenko 1989). Thus, if fuzzy basis functions are selected using the
popular ‘neurons at data points’ method we achieve high resolution with Gaussian functions, while at the
boundaries they look like sigmoidal functions to capture global characteristics of the data.

The FBF expansion can thus be defined in the same manner as for RBF functions, namely by

where e, E R are constants or weight parameters. The expansion can be viewed as a linear combination of
FBFs, where parameters p , (z) can be fixed, which allows for an efficient linear estimate of the parameters,
in the same manner as in the standard RBF network.

FBFs can be determined in two ways, The first one is to use M fuzzy rules with M = N, as described
above. The other way is to obtain them from training data and initially position the centers at ‘neurons
at data points’ and require that U! = 1 so that the fuzzy Gaussian membership function can achieve unity
value at some center i!. FBFs initial spreads, or their supports, can be determined from

U/ = [max(xp(j), j = 1,2, . . . , N)) - min(xp(j), j = 1,2, . . . , ~) l / n r

where i = 1,2, . . . , n, j = 1,2, . . . , N, and n, is the number of FBFs in the final FBF expansion, n, << N.
If the number of the training data points is small then this simple method is sufficient for finding a mapping
in a reasonably short time. If, on the other hand, this number is large, one can use the standard OLS
method (Chen et a1 1991) to choose the most significant FBFs from the initial FBF determination (Wang
and Mendel 1992) before the training is performed.

D1.3~6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy algorithms

There exists a multitude of other neuro-fuzzy algorithms which will not be elaborated on here. For a
description of fuzzy ART as well as several other algorithms the reader is referred to IEEE Trans. Neural
Networks, Special Issue on Fuzzy Logic and Neural Networks, September 1992.

References

Chen S, Cowan C F N and Grant P M 1991 Orthogonal least squares leaming algorithm for radial basis function

Cybenko G 1989 Approximation by superpositions of a sigmoidal function Math. Control. Signals, Systems 2 303-14
Gupta M M and Qi J 1991 On fuzzy neuron models Proc. Int. Joint Con$ Neural Networks (Seattle, WA) pp 431-6
Hayashi Y, Buckley J J and Czogala E 1992 Direct fuzzification of neural network and fuzzified delta rule Proc. 2nd

Int. Con$ Fuuy Logic Neural Networks pp 73-6
Homik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural

Networks 2 359-66
Ishibushi H, Fukioka R and Tanaka H 1992 An architecture of neural networks for input vectors of fuzzy numbers

Proc. IEEE Int. Con$ Fuuy Syst. (San Diego, CA) pp 1293-300
Jang R and Sun C-T 1993 Functional equivalence between radial basis function networks and fuzzy inference systems

IEEE Trans. Neural Networks "-4 156-9
Kosko B 1993 Fuuy Thinking (New York: Hyperion)
Lee S C and Lee E T 1975 Fuzzy neural networks Math. Biosci. 23 151-77
Moody J and Darken C 1989 Fast leaming networks of locally-tuned processing units Neural Comput. 1 281-94
O'Hagan M 1991 A fuzzy neuron based upon maximum entropy ordered weighted averaging Uncertainty in Knowledge

Bases (Lecture Notes in Computer Science 521) ed B Bouchon-Meunier, R R Yager and L A Zadeh (New York
Springer) pp 598-609

networks IEEE Trans. Neural Networks "-2 302-9

Pedrycz W 1993 Fuzzy neural networks and neurocomputations Fuuy Sets Syst. 56 1-28
-1995 Fuuy Sets Engineering (Boca Raton, FL: Chemical Rubber Company)
Requena I and Delgado M 1992 R-FN: a model of fuzzy neuron Proc. 2nd Int. Con$ Fuuy Logic Neural Networks

Rumelhart D E and McLelland J L 1986 Parallel Distributed Processing (Cambridge, MA: MIT Press)
Silva F M and Almeida L B 1990 Acceleration techniques for the back-propagation algorithm Lecture Notes in

Wang L-X 1992 Fuzzy systems are universal approximators Proc. IEEE 1992 Int. Con$ Fuzzy Systems (San Diego,

Wang L-X and Mendel J M 1992 Fuzzy basis functions, universal approximation and orthogonal least-squares leaming

Weir M K 1991 A method for self-determination of adaptive learning rates in back propagation Neural Networks 4

Xu H Y, Wang G Z and Baird C B 1992 A fuzzy neural networks technique with fast backpropagation leaming Proc.

Yamakawa T and Tomoda S 1989 A fuzzy neuron and its application to pattem recognition Proc. Third IFSA Congress

Zahimiak D R, Chapman R, Rogers S K, Suter B W, Kabrisky M and Pyati V 1990 Pattem recognition using radial

(IIZUKA '92) pp 793-96

Computer Science 412 110-9

CA) pp 1163-70

IEEE Trans. Neural Networks 3 807-14

371-9

Int. Joint Con$ on Neural Networks, Baltimore, 1992 (IEEE Press) pp 1214-9

(Seattle, WA) pp 30-8

basis function networks Sixth Annual Aerospace Application of AI Con$ (Dayton, OH) pp 249-60

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 D1.3:7

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.4 Ontogenic neuro-fuzzy F-CID3 algorithm

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter DI.

The algorithm covered here is a representative of a family of ontogenic (generating their own architecture)
algorithms. For details about supervised ontogenic algorithms see Section C1.7 of this handbook, and for c i . 7

Here we concentrate on the neuro-fuzzy F-CID3 algorithm (Cios and Sztandera 1992, 1996). F-CID3,
a hybrid algorithm, may be produced by combining an ontogenic neural network algorithm CID3 (Cios
and Liu 1992), which is described in detail in Section G2.12 of this handbook, with fuzzy sets. This ~ 2 . 1 2

ontogenic neuro-fuzzy algorithm generates an initial neural network architecture in the same way as the
CID3 algorithm and then defines grades of membership for fuzzy sets associated with hidden layer nodes,
where entropy is the first reduced to zero. Then it switches entirely to operations on fuzzy sets. This
hybrid approach results in the generation of a simple architecture in a relatively short time.

A motivation for incorporating fuzzy sets in the CID3 neural network arose from the fact that part
of the highly connected architecture generated by the original CID3 algorithm (Cios and Liu 1992) was
in a way ‘redundant’. That is, after entropy of separation is first decreased to zero (usually at the second
hidden layer) there is a need for only one more layer (output) to classify the data correctly. However, the
CID3 algorithm generates several additional hidden layers. To illustrate this phenomenon, let us look at
the architecture generated by the CID3 algorithm for recognition of the two spirally organized patterns as
portrayed in figure D1.4.1. For all layers, subsequent to the second layer, where entropy was for the first
time reduced to zero, the entropy was quickly decreasing to zero, see table D1.4.1. For details of how this
entropy is calculated see Section G2.12 of this handbook.

The idea behind adding fuzzy sets was that if one could define fuzzy sets at each node of the second
layer and be able to rank them, then this would greatly simplify the network’s architecture in terms of
both the number of nodes and connections.

unsupervised ontogenic algorithms see Section C2.4. C2 4

Table D1.4.1. Number of nodes neededfor the entropy to decrease to zero; see figure D1.4.1

Hidden Hidden Hidden Hidden Hidden
layer 1 layer 2 layer 3 layer 4 layer 5 Output

~ ~~ ~~ ~~

3 nodes 16 nodes 7 nodes 5 nodes 3 nodes 1 node

In the F-CID3 algorithm that goal was achieved by introducing a neural fuzzy number tree (Cios and
Sztandera 1992, 1996). In a way similar to growing a decision tree in the CID3 algorithm (Cios and Liu
1992), a neural fuzzy number tree, with fuzzy subsets specified at each of its nodes, was incorporated into
the F-CID3 algorithm. This resulted in a drastic reduction of the number of nodes and connections in the
network, as can be seen in figure D1.4.2. There are actually only two hidden layers with 2 and 11 nodes
in them. This example illustrates the advantage of combining neural networks with fuzzy sets.

In the following we shall study an example explaining in more detail the working of the F-CID3
algorithm after Cios and Liu (1992) and Cios and Sztandera (1992, 1996). The task is to separate the data

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofhieurul Computution release 97/1 D1.4: 1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

Figure D1.4.1. A fully connected neural network architecture for telling two spirals apart generated by the
CID3 algorithm (not all of the connections are shown).

shown in figure D1.4.3 into two categories. The neural fuzzy number tree corresponding to this example
is depicted in figure D1.4.4. Connections between the nodes have values equal to the weights of a neural
network. The fuzzy sets at each level of the tree correspond to the examples lying on the positive and
negative sides of a hyperplane, as generated by the neural network CID3 algorithm; more details of how
the hyperplanes are generated can be found in Section G2.12 of this handbook. Each level of the neural
fuzzy number tree corresponds to one hyperplane.

The following definition of fuzzy entropy (Kosko 1986, 1992) was utilized in the F-CID3 algorithm:

(D1.4.1)

where count (sigma-count) is the scalar cardinality of a fuzzy set. The entropy computations were
realized by using, arbitrarily chosen, Dombi’s triangular norms (Dombi 1982) giving rise to the following
form of union and intersection of fuzzy sets:

(D1.4.2)

(D1.4.3)

where A and B are fuzzy sets defined in the same universe of discourse; the parameter of the triangular
norms (I.) assumes the values from (0, CO).

D 1.4:2 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Ontogenic neuro-fuzzy F-CID3 algorithm

Figure D1.4.2. A neural network architecture for telling two spirals apart generated by the ontogenic
neuro-fuzzy F-CID3 algorithm.

x2

Figure D1.4.3. Simple two-category data.

The F-CID3 algorithm retained the CID3’s key feature of generating its own architecture, but then it
generated fuzzy sets at each node of the hidden layer, where the entropy was first reduced to zero, based
on the numbers of positive (+) and negative (-) examples on all sides of the hyperplanes. Once fuzzy
subsets were defined, it switched to very efficient operations on fuzzy subsets. To explain how the method
works, let us introduce here the following notation (Cios and Liu 1992). There are ‘ N ’ training examples
with N + examples belonging to class ‘+’, and N - examples belonging to class ‘-’. A hyperplane divides
the examples into two groups: those lying on the positive (1) and negative (0) sides of it. Four possible
outcomes are envisaged:

(i)
(ii)
(iii)
(iv)

NT number of examples from class ‘+’ on the side 1;
N$ number of examples from class ‘+’ on the side 0;
N , number of examples from class ‘-’ on the side 1;
NC number of examples from class ‘-’ on the side 0.

(D1.4.4)

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 D1.4:3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

N ; = 8

Fuzzy sets

(obtained by
max operation)

k
h

Figure D1.4.4. A neural fuzzy number tree corresponding to figure D1.4.3.

If at a certain level of a decision tree Nr examples are divided by a node r into those belonging to class
'+', and class '-' then the values NZ and N , are calculated as follows:

i=l
(D 1.4.5)

(D1.4.6)
i= l

where Di stands for the desired output, and outi is a sigmoid function. Then we obtain

N ,

N Z + N ; = out1 + . . . + outNr = i outi = Nr i [1 + exp (-? wijXj>]-' . (D1.4.7)

The change in the number of examples, on both the positive and the negative side of a hyperplane, with
respect to the weights (Cios and Liu 1992) was given by

(D 1.4.8)

N ,
A N l , = C (1 - Di)outi(l -0Uti)CXjAwij . (D1.4.9)

i=l j

The learning rule used to minimize the fuzzy entropy f (F) (Cios and Sztandera 1992, 1996) was of the
form

(D1.4.10)

where p is a learning rate, and f(F) is a fuzzy entropy function defined in (D1.4.1).

D 1.4:4 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Ontogenic neuro-fuzzy F-CID3 algorithm

The key point of the F-CID3 algorithm was its definition of the membership function of a fuzzy set
F which was specified as follows:

(D1.4.11)

This fuzzy set quantifies the extent to which a hyperplane separates positive and negative examples. It
can be rewritten in the form:

F = (A(ml) , A(m2), B (m l) , B(m2)J. (D 1.4.1 2)

Obviously we get
$ = l - F . (D1.4.13)

The four grades of membership (equations (D1.4.12) and (D1.4.13)) were used (Cios and Sztandera 1992,
1996) in the generalized Dombi operations (with A = 4) and calculations of fuzzy entropy. The obtained
fuzzy entropy was used to calculate the weights using the learning rule specified in (D1.4.10). In order to
increase the chance of finding the global minimum, the learning rule was combined with Cauchy training
(Szu and Hartley 1987) in the same manner as in Cios and Liu (1992):

wk+l = wk + (1 - {) A w + [Awrandom (D1.4.14)

where [is a learning rate. By changing the weight by the AWrandom value, the algorithm might escape
from local minima.

To show how fuzzy sets for the neural fuzzy number tree were generated, let us again look at the
example shown in figure D1.4.3. The corresponding neural fuzzy number tree had two fuzzy subsets,
denoted by A and B , defined at its nodes, as shown in figure D1.4.4.

The grades of membership for the fuzzy subsets A and B were initially defined for only two arbitrary
points ml and m2 from which the two fuzzy subsets were constructed. These grades of membership were
defined, using the mutual dependence of positive and negative examples on both sides of a hyperplane, as
follows:

(D1.4.15)

where fuzzy set A represents a collection of positive and negative examples on the negative side of
hyperplane r , while fuzzy set B represents the same on the positive side of the hyperplane.

Fuzzy sets A and B were defined by the following membership functions:

I

for x I: ml

for ml I: x 5 m2

for x > m2

for x < ml

for ml i x 5 m2

for m2 5 x 5 m l +mz
for x > ml + m2.

(D 1.4.16)

For fuzzy subsets A and B , specified at some node of a fuzzy neural number tree, the classification
rule was based on the following definition. The data samples are fully separated if the following values
for the ranking indices are established:

XA = i (m , +mz) XB = $(ml +m2) (D1.4.17)

using the center-of-gravity transformation method. Equation (D1.4.17) corresponds to fuzzy entropy equal
to zero. More information about ranking indices can be found in the article by Sztandera and Cios (1993).

@ 1991 IO€' Publishing U d and Oxford University Press Handbook of Neural Computation release 9711 D1.4:5

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzv Systems

Since at the second and third level we have two subsets A and two subsets B , the union operation
is used to obtain the resultant single sets for ranking (one A and one B), see figure D1.4.4. Table D1.4.2
shows the grades of membership for fuzzy sets A and B at each level of the neural fuzzy number tree.
A neural network architecture corresponding to this tree is depicted in figure D1.4.5. Table D1.4.3 lists
grades of membership for fuzzy subsets F and F used in calculation of fuzzy entropy.

Fuzzy sets
(obtained by
max operation) -0.173

fuzzy entropy
at node n,

-0.124
fuzzy entropy
at node n2

0%
1-

-0.ooO
fuzzy entropy
at node n3

Figure D1.4.5. A neural network architecture (left) and neural fuzzy number tree (middle) corresponding
to the hidden layer, and corresponding entropies (right).

Table D1.4.2. Grades of membership for fuzzy subsets A and B at points ml and m2 at each level of the
neural fuzzy number tree corresponding to figure D1.4.5.

Resulting grades Resulting grades
(max operation) (max operation)

Level of a tree A(m1) A(m2) B(m1) B(m2) A(m1) A(mz) B (m l) B(m2)

1 4/12 8/12 415 1/5 4/12 8/12 415 1 I5
2 414 014 011 111

219 119 213 1 /3 414 I19 213 111
3 212 012 01 1 111

212 012 017 111 1 0 0 1

Table D1.4.3. Grades of membership for fuzzy subsets F and P and corresponding fuzzy entropies at each
level of the neural fuzzy number tree.

Level Fuzzy
of a Grades of membership Grades of membership entropy
tree F (x) R x) f (F)
1 4/12 8/12 415 115 8/12 4/12 115 415 0.113
2 414 014 011 111 014 414 111 011 0.124

219 119 213 113 119 219 113 213
3 212 Oi2 011 111 0112 212 111 011 0.000

212 012 011 111 012 212 111 011

To summarize, the F-CID3 algorithm consists of five steps. Step (i) divides the input space into several
subspaces; step (ii) counts the number of samples in those subspaces; step (iii) generates membership
functions for fuzzy sets using the results obtained at step (ii); step (iv) executes ranking of the fuzzy sets
formed in this manner; finally step (v) determines separation of categories based on faithful ranking. For
details see the article by Cios and Sztandera (1992).

The F-CID3 algorithm is an example of a host of methods where the neural network technology is
used as a ‘tool’ for generating fuzzy sets.

D1.4:6 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Ontogenic neuro-fuzzy F-CID3 algorithm

References

Cios K J and Liu N 1992 A machine learning method for generation of a neural network architecture: a continuous

Cios K J and Sztandera L M 1992 Continuous ID3 algorithm with fuzzy entropy measures Proc. 1st Int. ConJ on

-1996 Ontogenic neuro-fuzzy algorithm: F-CID3 Neurocomputing in press
Dombi J 1982 A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures

Kosko B 1986 Fuzzy entropy and conditioning Info. Sci. 40 165-74
-1992 Neural Networks and Fuzzy Systems (Englewood Cliffs, NJ: Prentice Hall)
Sztandera L M and Cios K J 1993 Decision making in a fuzzy environment generated by a neural network architecture

Szu H and Hartley R 1987 Simulated annealing Phys. Lett. 8A 157-62

ID3 algorithm IEEE Trans. Neural Networks "-3 280-91

F u u y Systems and Neural Networks (San Diego, CA) pp 469-76

Fuzzy Sets Syst. 8 149-63

Proc. 5th IFSA World Congress (Seoul) pp 73-6

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 D1.4:7

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.5 Fuzzy neural networks

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter D1.

D1.5.1 Logic-based neurons

In this section we introduce and study basic properties of neurons developed with the aid of logic operations
(fuzzy set connectives) (Pedrycz 1991, 1993, Pedrycz and Rocha 1993). By this class of processing units we
mean the neurons whose architecture and computations are directly guided by the mechanisms of fuzzy
sets and logic operators (logical connectives). Owing to that, each neuron possesses a straightforward
interpretation-a facet not encountered in 'standard' neural networks. From now on, we will be treating
the inputs as well as the parameters (connections) of the neurons as the elements in a unit hypercube.
According to the general taxonomy outlined in figure D1.5.1, the first class of the neurons consists of
aggregative (AND, OR, OWAND) logic neurons while the second category embraces the neurons aimed
at referential processing.

D1.5.1.1 Aggregative logic neurons

The class of aggregative neurons embraces two general types of processing unit such as OR and AND
neurons; the subsequent OWAND neurons emerge as a straightforward combination of the first two. The
OR neuron, denoted by y = OR(z; w), realizes a mapping [0, 11" + [0, 11 that is given in the form,

y = OR[XI AND W I , ~2 AND ~ 2 , . X , AND w,]

where w = [w l , w 2 , . . . , w,] E [0, 13" is a vector of the connections (weights) of the neuron and
z = [XI, ~ 2 , . . . , ~ n] summarizes its inputs.

The standard implementation of the fuzzy set connectives usually involves triangular norms that
means that the OR and AND operators are realized by some s- and t-norms, respectively. This produces
the following expression of the neuron:

y = S[XitWi].
i = l

In the AND neuron, the OR and AND operators are utilized in reverse order: first the inputs interact OR-
wise with the connections and those results are finally aggregated through the AND operation. We obtain

y = AND(z; ut)

which, making use of the notation of the triangular norms, reads as

n

r = l
y = ,T [X i s wj]

The AND and OR neurons realize 'pure' logic operations on their inputs (membership values). The role
of the connections w is to differentiate between the particular levels of impact that the individual inputs
could have on the final result of aggregation. Due to the boundary conditions of the triangular norms,

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 D 1.5: 1

Copyright © 1997 IOP Publishing Ltd

- Neuro-fuzzy Systems

Figure D1.5.1. Classes of fuzzy neurons.

we conclude that the higher values of the connections in the OR neuron emphasize a stronger influence
than the corresponding inputs pose on the output of the neuron. The opposite weighting (ranking) effect
takes place in the case of the AND neuron: the values of wi close to 1 make that influence of xi almost
negligible, cf Pedrycz (1993). In limit, the neurons reduce to the straightforward AND and OR operations;
then all the connections are set to 0 or 1, namely, y = AND(z; 0) and y = OR(=; 1). The specific
numerical form of the or or and characteristics conveyed by the logic-based neurons depends upon the
triangular norms being utilized in their implementation, figures D1.5.2 and D1.5.3.

As a straightforward generalization of these two neurons, we introduce an OWAND neuron
characterized by some intermediate logical characteristics that could easily be modified according to the
specificity of the problem. The OWAND neuron (Hirota and Pedrycz 1994) is constructed by combining
the previously discussed AND and OR neurons into a single two-layer structure as shown in figure D1.5.4.

Considering this structure as a single computational entity, it is easy to notice that the neuron can
synthesize a spectrum of intermediate logical characteristics. The response coming from the OR (AND)
part of the neuron can be properly balanced by selecting (learning) the relevant values of the connections
ul and u2. In limit, when u1 = 1 and U:! = 0, the OWAND neuron operates like a pure AND neuron. In
the second extrema1 situation for which u1 = 0 and u2 = 1, the structure functions as a pure OR neuron.

D1.5:2 Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fuzzy neural networks

Figure D1.5.2. Three-dimensional characteristics of the OR neuron with w = [0.7,0.1] for two
combinations of the triangular norms (a) t-norm: minimum s-norm: maximum, (6) t-norm: product s-
norm: maximum.

Figure D1.5.3. 3D characteristics of the AND neuron with w = [0.7,0.1] for two combinations of the
triangular norms (a) t-norm: minimum s-norm: maximum, (b) t-norm: product s-norm: maximum.

Figure D1.5.4. Architecture of an OFUAND neuron.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D 1.5:3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

We will use the notation
y = OR/AND(z; 'U), V)

to emphasize the intermediate characteristics produced by the neuron. The relevant detailed formulas
describing this architecture read accordingly,

Y = OR([ZI, ~ 2 1 ;

z1 = AND(=; wl) and z2 = OR@; w2)

with v = [V I , v z] , 'Wj = [wi l l wiz, . . . , win] , i = 1,2, being the connections of the corresponding neurons.
We encapsulate the above expressions into a single formula,

y = OR/AND(z; connections)

where now the connections summarize the weights of the network.

D1.5.2 Computational enhancements of fuzzy neurons

We discuss two further enhancements of the fuzzy neurons aimed at increasing their conceptual and
computational flexibility.

01.5.2.1 Representing inhibitory information in fuzzy neurons

The task of representing an inhibitory behavior of some of the inputs of the neurons does not constitute any
problem to the 'classic' networks; we simply admit negative connections between the units. Here, as all
the numerical manipulation encountered in fuzzy sets is realized within the unit interval, the question of the
inhibitory information requires a thorough treatment. Our intention is to maintain the [0,1] style of coding
for the sake of preserving the logical nature of the set-theoretic operations utilized in the construction of the
neuron. The reader should be aware that an attempt (quite naive and fully unjustifiable, yet encountered in
the existing literature) to extend the triangular norms to the [-1, 11 interval and sustain their fundamental
properties is not feasible. Being more specific, the well known boundary condition 0 t x = 0 is no longer
valid; to visualize this put x = -1 (this corresponds to the zero boundary condition) and consider the
product operation: obviously we get (- 1) t (- 1) # - 1.

The intuitively straightforward and convincing solution to the problem is to admit the complemented
variables among the inputs of the neuron. Hence, the higher the input x i , the lower the contribution it
provides to the output of the aggregative neuron. In limit, when xi = 1, the impact of this variable is
completely eliminated. The detailed numerical form of the inhibitory effect depends upon the t-norm being
used to realize this aggregation; refer to some illustrative cases given in figure D1.5.5.

Figure D1.5.5. Inhibitory effect realized by some t-norms: (a) minimum, (b) product, (c) Lukasiewicz
connective (a t b = max(0, a + b - 1)).

This approach is directly motivated by the basic form of minterms and maxterms encountered in
the representation of two-valued (Boolean) functions. Remember that these constructions are completely
sufficient to represent any two-valued functions of many variables. In our context, a binary (two-valued)
OR neuron (in which the entries of 'U) are equal either to 1 or 0) realizes a maxterm. Similarly, the AND
neuron with the 0-1 weights realizes a minterm.

As the inhibitory phenomenon described above takes place at the local level of the specific connection
(refer again to figure D1.5.5) this does not mean (and does not guarantee) that the inhibitory effect could

D1.5:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fuzzy neural networks

be always visible at the output of the neuron. The reason for that is the monotonicity of the triangular
norms. Bearing this in mind, we can refer to the above scheme as the local mechanism of inhibition.

The mechanism of a global inhibition is realized through some structural enhancements to the neuron
as displayed in figure D1.5.6. As shown there, the inhibitory inputs (x i) are fed into an additional OR (or
AND) neuron whose output triggers an inhibitory signal applied to the AND neuron located in the next
layer.

Figure D1.5.6. Realization of a global (structural) inhibition.

The type of aggregative neuron therein depends on the way in which the inhibitory effect needs to
be summarized (disjunctive versus conjunctive aggregation). The illustration of these two mechanisms of
inhibition is shown in figure D1.5.7 (here n = 2; the connections of the neuron are included as well).

t
0.5 OAoa7 f 3 AND

-(r 0.0

Figure D1.5.7. R o mechanisms of inhibition of logic-based neurons: (a) local, (b) structural t-norm:
minimum s-norm: probabilistic sum.

D1.5.2.2 Nonlinear processing element

Despite the well-defined semantics of the logic-based neurons, the main concern one may raise about their
functioning occurs on the numerical side. Once the connections (weights) are set (after learning) each

~

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeuraI Computation release 97/1 D1.5~5

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

neuron realizes an 'in' (rather than an 'on') mapping, that means that the values of y for all possible inputs
cover a subset of the unit interval. More specifically, for the OR neuron the values of the output y are
included in the range [0, S:=, w,] whereas the accessible range of the output values of the dual (AND)
neuron is limited to the interval [T:=, w , , 11.

This shortcoming could be alleviated by augmenting the neuron by a nonlinear element placed in
series with the previous purely logical component (figure D1 S.8).

Figure D1.5.8. Fuzzy neuron equipped with a nonlinear processing element.

The neurons obtained in this manner are formalized accordingly,

where \I, : [0, 13 -+ [0, 13 is a nonlinear monotonic mapping. In contrast to the standard nonlinearities
discussed commonly in neural computation, we admit both monotonically increasing as well as
monotonically decreasing continuous mappings.

A useful two-parametric family of the sigmoidal nonlinearities can be specified in the form

1
1 + exp[-(u - m)a] Y =

where u , m E [0, 13, a E R.
By adjusting the parameters of the function (m and a), various forms of the nonlinear characteristics

of the element can be easily obtained. Especially, the positive or negative values of a determine either
an increasing or decreasing type of the characteristics of the obtained neuron. The other parameter (m)
shifts the entire characteristics along the unit interval. The incorporation of this nonlinearity changes
the numerical characteristics of the neuron-however-its essential logical behavior is sustained-refer to
figures D1 S.9 and D1.5.10 which summarize some of the static input-output relationships encountered
there (with the triangular norms set up as the product and probabilistic sum).

Figure D1.5.9. 3D Characteristics of the AND neuron, w = [0.7,0.2] without a nonlinear element.

D1.5~6 Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

FUZZY neural networks

Figure D1.5.10. Three-dimensional characteristics of the AND neuron, w = [0.7,0.2] with a nonlinear
sigmoidal element m = 0.3, CJ = 15.

D1.5.3 Logic-based neurons with feedback

The logic neurons studied so far realize a static memoryless nonlinear mapping in which the output
depends solely upon the inputs of the neuron. In this form, the neurons are not capable of handling
dynamical (memory-based) relationships between the inputs and outputs. This aspect might, however, be
essential in a proper description of any dynamical system. Take, for instance, a classification problem in
which a decision about a system’s failure should be issued while one of the system’s sensors provides
information about an abnormal (elevated) temperature of an engine. The duration of this phenomenon
itself has a primordial impact on expressing the confidence about particular classes (namely, failures). If
the elevation of the temperature prolongs, the confidence about the failure rises. On the other hand, some
short temporary temperature elevations (spikes) recorded by the sensor might be almost ignored (filtered
out) and should not have any impact on the classification decision. To capture properly this dynamical
effect about class assignment, one has to equip the standard logic neuron with a certain feedback loop as
illustrated in figure D 1.5.1 1.

Figure D1.5.11. Logic-based neuron with feedback.

An example of the neuron with feedback can be described as

~ (k + 1) = [b OR ~ (k)] AND [U OR ~ (k)] .

The dynamics of the neuron are uniquely defined by the strength (a) of a feedback loop that, in
fact, determines a speed of evidence accumulation (x (k)) . The initial condition, x (O) , expresses a priori
confidence associated with this class. After a sufficiently long period of time, x (k + 1) could take on
higher values in comparison to the level of the original evidence being present in the input. Figure D1.5.12
summarizes the dynamical behavior of the OR neuron with the positive and negative feedback.

Higher-order dynamical dependencies to be accommodated by the network call for a feedback loop
consolidating several pieces of temporal information, for example,

~ (k + 2) = [b OR ~ (k)] AND [ai OR ~ (k)] AND [a2 OR ~ (k + l)] .

One can also consider the above expressions as examples of fuzzy difference equations.

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 D1.5:7

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

0.16-

4 6 8 10 12 14 k

Figure D1.5.12. Dynamics of the neurons with positive or negative feedback displayed in a phase plane:
(a) positive feedback x (k + 1) = OR([a, b] [x (k) , U]), (b) negative feedback x (k + 1) = OR([a, b l [f (k) , U])
(t-norm: product, s-norm: probabilistic sum, a = 0.7, b = 0.1, U = 0.5; x (0) = 0.3).

References

Hirota H and Pedrycz W 1994 OWAND neuron in modeling fuzzy set connectives IEEE Trans. F u u y Systems 2

Pedrycz W 199 1 Neurocomputations in relational systems IEEE Trans. on Pattem Analysis and Machine Intelligence

-1993 Fuzzy neural networks and neurocomputations F u u y Sets Syst. 56 1-28
Pedrycz W and Rocha A F 1993 Fuzzy-set based models of neurons and knowledge-based networks IEEE Trans.

151-61

13 289-96

F u u y Systems FS-1 254-66

D1.5:8 Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzv Svstems

D1.6 Referential logic-based neurons

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter D1.

In comparison to the AND, OR, and OWAND neurons realizing logic operations of the aggregative form,
the class of neurons now discussed is useful in carrying out referential computations. The main idea behind
this neuron is that the input signals are not directly aggregated as took place in the aggregative neuron,
but the processing consists of two phases. First, the inputs are analyzed (e.g. compared) with respect to
the given reference point. The results of this analysis are subsequently summarized in the aggregative part
of the neuron along the lines described earlier. In general, one can describe the reference neuron as

y = OR(REF(s; reference-point), W)

(a disjunctive form of aggregation) or

y = AND(REF(2; reference-point), tu)

(that constitutes a conjunctive form of aggregation). The term REF(.) stands for the reference operation
carried out with respect to the provided point of reference. Figure D1.6.1 underlines more profoundly a
composite character of the processing realized by the neuron.

ref

referential 99- aggregative

Figure D1.6.1. General two-step processing in referential neurons.

Depending on the form of the reference operation, the functional behavior of the neuron is described
accordingly (all the formulas below pertain to the disjunctive form of aggregation).

(i) MATCH neuron:

or equivalently

y = MATCH(2; r , W)

y = 5 [Wi t (X i = r i)]
i = l

where r E [0, 11" stands for a reference point defined in the unit hypercube. The mi-;hing operator is
defined as follows (Pedrycz 1990),

a = b = ; [(a p b) A (b p a) 4- (a p b) A (b p Z)]

@ 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 D1.6:1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

and
a p b = {c E [0, 11 I a t c 5 b] .

Quite often the above poperator is also referred to as the fuzzy implication.

the expression of the MATCH neuron as
To emphasize the referential character of this processing carried out by the neuron one can rewrite

y = OR(Z T ; w).

The use of the OR neuron implies an ‘optimistic’ (disjunctive) character of the final aggregation. The
pessimistic form of this aggregation is produced by using the AND operation.

(ii) Difference neuron. The neuron combines degrees to which x is different from the given reference
point g = [gl, g2, . . . , g,]. The output is interpreted as a global level of difference observed between the
input x and this reference point,

y = DIFFER(2; W, g)

that is,
n

y = S [Wi t (X i 1 E gi)]
i = l

where the difference operator I is defined as a complement of the equality index introduced before,

As before, the referential character of processing is emphasized by noting that

DIFFXR(2; W, 9) = OR(2l E 9; ut) .

(iii) The inclusion neuron summarizes the degrees of inclusion stating the extent to which x is included
in the reference point f,

n
y = INCL(Z; W, f) y = S [w , t (xi -+ A)] .

i = l

The relationship of inclusion is expressed in the sense of the pseudocomplement operation (implication).
The two properties of the poperator (already discussed with regard to the MATCH neuron),

if a < b then a p b = 1
if a > b‘ > b then a v b ’ ? a p b

where a, b, b’ E [0, 11, assure us that the output of the neuron becomes a monotonic function of the degree
of satisfaction of the inclusion property.

(iv) The dominance neuron expresses a relationship dual to that carried out by the inclusion neuron

y = DOM(2; W, h)

where h is a reference point. In other words, the dominance relationship generates the degree to which x
dominates h (or, equivalently, h is dominated by x). The coordinate-wise notation of the neuron reads as

n
y = s [Wi t (hi +. X i)] .

i = l

The referential operations provide a variety of processing elements. The tolerance neuron is a good
example of an element exploiting this diversity.

(v) Tolerance neuron. It consists of DOMINANCE and INCLUSION neurons placed in the hidden
layer and a single AND neuron in the output layer (figure D1.6.2).

D 1.6:2 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Referential logic-based neurons

g

Figure D1.6.2. Architecture of a tolerance neuron.

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

Figure D1.63. 2D and 3D characteristics of a tolerance neuron AND neuron: min operator, INCL and
DOM neuron: a + b = min(1, b/a)wi , = 0.05, U, = 0.0.

D1.6.1 Fuzzy threshold neuron

This class of fuzzy neurons constituting a straightforward generalization of threshold computing units
(threshold gates), cf the book by Muroga (1971), is formed by a serial composition of the aggregative
neuron followed by the inclusion operator which generalizes the two-valued threshold element. More
formally, this neuron is defined as

y = INCL(1; OR(s; w)) = A + OR(z; W)

where 1 E [0, 11 denotes a threshold level. The output values of the OR unit exceeding the threshold are
elevated to 1, see figure D1.6.4. In particular, when 1 x 0, the neuron behaves very much as an on-off
device.

)c OR(x;w)

Figure D1.6.4. Characteristics of a single-input threshold neuron; a y~ b = min(1, b/a) .

References

Muroga S 1971 Threshold Logic and Its Applications (New York: Wiley)
Pedrycz W 1990 Direct and inverse problem in comparison of fuzzy data Fuuy Sers Syst. 34 223-36

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 D1.6~3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.7 Classes of fuzzy neural networks

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter D1.

As we have proposed several clearly distinct types of fuzzy neuron, they could potentially give rise to a
tremendous diversity of neuro-fuzzy networks. The variety of some schemes will be exemplified in the
next sections. For the time being, we will introduce and study some architectures of pattern classifiers
that, due to their functional characteristics, are encountered in many applications forming an essential part
of the overall processing structures. Those are logic processors-the networks realizing tasks of logic-
oriented approximation-and referential processors--extended logic processors aimed at the mapping of
the referential properties between the feature and class membership spaces.

D1.7.1 Approximation of logical relationships: development of the logic processor

An important class of fuzzy neural networks concerns approximation of mappings between the unit
hypercubes (from [0, 13" to [0, lIm or [0, 11, in particular) that are realized in a logic-based format. To
fully comprehend the fundamental idea behind this architecture, let us recall some very simple yet powerful
concepts emerging from the realm of two-valued systems. The well known Shannon theorem (Schneeweiss
1989) states that any Boolean function {0, I} + {0, I} can be represented uniquely as a logical sum (union)
of minterms (a so-called SOM representation) or, equivalently, a product of some maxterms (known as
a POM representation). From a functional point of view, the minterms can be identified with the AND
neurons while the OR neurons can be used to produce the corresponding maxterms. It is also noticeable
that the connections of these neurons are restricted to the two-valued set {0, 1) thus making these neurons
two-valued selectors (on-off units). Considering the representation form of the Boolean functions, two
complementary (dual) architectures are envisaged. In the first case, the network includes a single hidden
layer that is constructed with the aid of the AND neurons followed by the output layer consisting of the
OR neurons (SOM version of the network). The dual type of the network is of the POM type in which the
hidden layer has some OR neurons and the output layer is formed by the AND neurons. The generalization
of these networks to the continuous case of the input-output variables will be called a logic processor.
Analogously to the topologies of the networks sketched so far for the Boolean cases, we will be interested
in the two versions of the logic processor (LP), namely its POM and SOM version (figure D1.7.1).

Depending on the value of 'm', we will be referring to a scalar or vector version of the logic processor.
Its scalar version, m = 1, could be viewed as a generic LP architecture.

Two points are worth making here as they contrast between the logic processors realized in their
continuous and two-valued versions.
(i) The logic processor represents Boolean data. Assuming that all the input combinations are different,

we are talking about a representation of the corresponding Boolean function. In this case the POM
and SOM versions of the logic processors for the same Boolean function are fully equivalent (with
the equivalence regarded at the input-output level).

(ii) The logic processor used for fuzzy (continuous) data approximates a certain unknown fuzzy function.
The equivalence of the POM and SOM types of the obtained LPs is not guaranteed at all.
When necessary, we will be using a concise notation N (z , w, v) to describe the network with the

connections w and v standing between the successive layers.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D1.7:1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

AND OR

generalized
minterms

* generalized

z,, minterm

generalized
maxterms

Figure D1.7.1. SOM and POM versions of a logic processor.

D1.7.2 Referential processor

While the role of the logic processor is to implement the logic-based approximation between the unit
hypercubes, the essence of the processing developed by a referential processor is concerned with mapping
some referential properties between the input and output spaces. Figure D1.7.2 highlights these differences
in more detail.

pattems class membership

X M Y

Logic Processor

X Y referential
Property referential

property REF
in the feature

space

REF intheclass
r g membership

space
REFerential Processor

Figure D1.7.2. Logic processing and referential processing.

One among various types of referential computation that is definitely worth discussing deals with
analog reasoning. This form of reasoning is oriented toward inferring similarities between some prototypes
and current inputs. This form of reasoning has been found useful in pattern recognition, especially when
handling relational data. Let us study a reference pattern-lass membership pair (r, g) being considered
as a given pair of associations, r E [0, l]", g E [0, 11". Qualitatively speaking, the scheme reads as

x and r are similar
T , g are associated
y and g are similar

and entails two steps:

(i) determination (quantification) of similarity between y and g
(ii) determination of y based on g and the level of similarity computed at (i).

One could expect, which is intuitively sound, that the more similar the patterns x and r are, the
higher the similarity level between this class assignment defined in the membership space (y and g). The
architecture of the referential (in particular, analogical) processor in this case is visualized in figure D1.7.3.

In fact, the analogical processor dwells upon the logic processor that is now used to transform the
referential property of matching expressed in the feature and class membership spaces. Symbolically one
can express this function as

(matching),], membership space = LP((matching)feat, space, connections) .

D 1.7~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Classes of fuzzy neural networks

MATCH MATCH-'

feature
space

matching
(input space)

class
membership

space

Figure D1.73. General architecture of the analogical processor.

In comparison to the plain logic processor, this architecture is augmented by two additional layers. The
input layer (MATCH) carries out matching (realized through some matching neurons) while the output layer
(marked here symbolically by MATCH-') is utilized to convert the level of the matching into the objects
in the class membership space. From a functional point of view, one can regard the matching (analog)
processor as a static input-output structure (figure D1.7.4) with the additional layers of preprocessing and
postprocessing.

match
(feature space)

I match i (class membership
space)

Figure D1.7.4. Analogical classifier-a functional view.

D1.7.3 Learning

The following discussion will be concerned with the supervised mode of learning of fuzzy neural networks.
In general, two main tasks are encountered.

0 parametric learning
0 structural learning.

Most of the existing schemes of learning are preoccupied by parametric learning whose role is to optimize
the parameters of the fuzzy neural network. On the other hand, structural learning, being definitely more
demanding, is devoted to the optimization of the structure of the network. This could be accomplished in
many different ways, for example, by changing the number of layers, adding, replacing, and deleting the
individual neurons.

An idea of parametric learning can be portrayed as follows. For a given collection of input-output
pairs of patternxlass assignment (~ 1 , t l) , . . . , (ZN, t ~) , modify the parameters of the network (both the
connections and reference points, if included) to minimize the assumed performance index Q (classification

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation releare 9711 D 1.7:3

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

error). The general scheme of learning can be qualitatively described as

a Q
aconnections

A-connections = -CY

where a denotes a learning rate, a E (0, 11. The parameters of the network are adjusted following these
increments,

new-connections = connections + A-connections .
The relevant details of the learning scheme can be fully specified once the topology of the network as well
as some other details regarding the form of triangular norms have been specified.

D1.7.4 Learning of a single neuron

The standard learning procedure concerning a single logic-based neuron pertains to the parametric
modifications of the connections and encompasses a series of iterations aimed at minimizing the following
MSE performance index

N

Q = c (t k - *(AND(zk, w)))'

where \I, represents a nonlinear mapping from [0, 11 to [0, 11. In particular one can consider it to be a
sigmoid nonlinearity, *(U) = 1/[1 + exp(-U)].

Two modes of updates of the connections are distinguished:
0 on-line learning, the adjustments of the connections are realized after presentation of each individual

pattem-class assignment pair of the training data;
0 off-line learning, the updates of the connections occur after a complete pass through the training set.
In general, the results of learning (as well as the value of the performance index itself) could differ quite
significantly under these two learning modes.

The on-line type of algorithm with the updates (adjustments) worked out on the basis of an individual
input-output pair of the training set can be written down as follows:

k=l

a Q
aut

w = w - f f -

a Q m=m-cr- .
am

Obviously, during all of these modifications, the connections w and the shift parameter m must eventually
be clipped to keep them within the unit interval. Denote by z the output of the logical part of the neuron,
z = OR(w, z) (or z = AND(w, 2)). Then the above formulas become more detailed,

a z k w = w + k (t k - *(z(zk, w)))zk(l - z k) o -

0 = 0 + 2ff(tk - *(z(zk, w)))zk(l -zk)(zk - m)
m = m + 2@(tk - *((z(zk, w)))zk(l - z k) (- u) .

aw

The final computation formulas can be obtained once the appropriate triangular norms have been selected.
While most of these detailed computations are to a large extent standard, the calculations of the derivatives
for the maximum and minimum operations deserve a special attention. In this framework of learning, the
problem was initially addressed by Pedrycz (1991). Briefly speaking, the main issue lies in the piecewise
character of these operations. Thus from a formal point of view, the derivative amax(a,x)/ax and
a min(a, x)/ax can be defined for all x but x = U . This produces the formulas

amin(a,x) 1 if x t a
ax = I 0 if x > a .

D1.7:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Classes of fuzzy neural networks

Similarly
amax(a,x) 1 if x > a

ax = l o if x t u .
Note that neither of them includes the case x = a. One can argue that the probability of such a single-
point event {x = a } is zero and therefore the impact it might have on the learning algorithm is practically
negligible. One can eventually slightly modify these definitions by admitting at this critical point the values
of the derivatives equal to 1. Nevertheless, the main learning problem is associated with a Boolean (two-
valued) character of these derivatives rather than their detailed and specific formulations. The potential,
and essentially quite pragmatic aspect of the derivatives defined above is that the learning algorithm could
eventually end up being trapped in a nonstationary point. This is primarily caused by an accidental zeroing
of all the derivatives that might occur under some configurations of the connections and the learning data.
To avoid this highly undesirable phenomenon, several improvements have been proposed.

The above derivative can be viewed as a two-valued predicate (returning either 1 or 0). One can
look at the above derivative as a Boolean predicate ‘equal to’ that returns 1 (true) if and only if the
arguments are equal, namely, amin(a,x)/ax = truth(x < a) and amax(a,x)/ax = truth(x > a).
This predicate can be relaxed by its multivalued version of ‘included in’ that yields

a min(a, x)
= INCL(x, U)

ax
and allows for a smooth transition between a full inclusion and complete dominance. For example,
the hkasiewicz implication induces a linear character of the derivative

a min(a, x) if x ~ a
ax l - x + a if x < a .

The modification proposed by Ikoma et a1 (1993) is quite similar to that explained in (i) but now the
derivative is defined as a sigmoid-like function.

(iii) The maximum and minimum can be replaced by their smooth, albeit still good, approximations of the
original relationships. Feldkamp et a1 (1992) considered a parametric approximation of the minimum
and maximum operations,

where 6 is taken as a small real number close to zero, say 6 = 0.02. This modification eliminates the
edges in the original derivative occurring at x = a. More generally, one can look for any parametrized
family of the triangular norm that approaches the minimum or maximum at some limit values of its
parameters and utilize this representative as a relevant approximation.

While these modifications are conceptually quite different, their final numerical effects of learning, as
investigated by Ikoma et a1 (1993) are quite similar.

To come up with a weightless neuron, all its connections wj have to be kept constant during the
learning process, wi = w , i = 1,2, . . . , n . This style of learning leads to the optimization procedure of
the form,

min Q
wm,u

where the minimization of Q hinges to a significant degree on the parameters of the nonlinear element.
The results of the above approximation might usually show higher values of the performance index Q
in comparison to those obtained by the previous learning scheme. This phenomenon is quite legitimate
considering the lower number of parameters involved in the current optimization. In fact, this behavior
reflects a genuine nature of any linguistic modifier as it tends to look at all the variables simultaneously,
aggregate them linguistically, and ignore any differences between them. If a substantial discrimination
between the variables is necessary, the modifiers (e.g. ‘must’ of the variables) might not perform well as
this is subsequently reflected by the achieved value of the minimized performance index.

The learning of some other neurons is completed in a similar manner following the general update
scheme and including pertinent technical modifications specific to the considered neuron.

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Compuzurion release 97/1 D 1.7:s

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.7.5 General policies for parametric learning: reductions and expansions

The learning in a fuzzy neural network can vary from case to case and usually depends heavily on the
initial information available to the classification problem which can be immediately accommodated in the
network. For instance, in many situations it is obvious in advance that some connections need to be
weaker or even nonexistent. This allows us to build an initial configuration of the network being very
distinct from that of a fully connected network. This initial domain knowledge tangibly enhances the
learning procedure eliminating the need to modify all the connections of the network, thus preventing us
from proceeding with learning from scratch. On the other hand, if the initial domain knowledge about the
problem (network) is not sufficient, then a fully connected structure yielding higher values of its entropy
function (Machado and Rocha 1990, Rocha 1992) would be strongly recommended.

In many cases the role of the individual layers is also obvious so that one can project the behavior
of the network (and evaluate its learning capabilities) in this way. The following two general strategies of
learning are worth pursuing:

Successive reductions. One starts with a large and eventually excessive neural network (containing
many elements in the hidden layer), analyzes the results of learning and, if possible, resumes the
size of the network. These reductions are carried out as far as they do not drastically affect the
quality of learning (by slowing it down significantly and/or elevating the values of the minimized
performance index). The main advantage of this strategy lies in fast learning. This is achieved due
to the ‘underconstraint’ nature of the successive networks. A deficiency of this approach is that the
network constructed in this way can be fairly ‘overdistributed’.
Successive expansions. The starting point in this strategy is a small, compact neural network which is
afterwards expanded successively, based on the values of the obtained performance index. Excessively
high values of the index may suggest further expansions. The network derived in this way could
be made compact; nevertheless, under some circumstances, a total computational overhead (many
unsuccessfully extended structures of the neural networks) may not be acceptable and could make
this approach computationally quite costly.

In addition to the sum of squared errors viewed as a leading indicator of the learning process,
the training can be additionally monitored by the entropy function determined at the level of the hidden
layer(s). Let us concentrate on a network with a single hidden layer (the same procedure can be immediately
applied to the architecture with many hidden layers). The computations of the entropy function proceed
accordingly:

(i) The output signals of the neurons situated in the hidden layer first become normalized,

where z; stands for the activation level of the ith neuron in the hidden layer, i = 1,2, . . . , h. Here
p i is interpreted as a relative normalized frequency (probability) of firing the ith neuron.

(ii) Based on the computed probabilities, the entropy at the level of the hidden layer is next determined
in the usual way,

1 h h

H (z) = - E p ; l o g p ; = E p i l o g - = E {log;}
i= l i=1 Pi

(where E{.} stands for an expectation operator).

The global entropy taken over the available training set of patterns x is obtained by summing the
results obtained for the individual patterns,

D1.7:6

Too large an increase in the size of the hidden layer could be reflected by significantly lowered values of
H(X) pointing out a significant drop in the activities of some neurons after being added to the layer-a
visible sign of their underutilization.

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Classes of fuzzy neural networks

In general, the learning in fuzzy neural networks should be made more specific depending upon the
architecture of the network. More precisely, the learning formulas need to be calculated from scratch
depending upon the topology of the network. As an example, let us consider the network below that
realizes a fragment of a qualitative protocol describing a decision problem:

decision d if
x2 and x3 are close to 0.5

or
XI and not (x2).

The induced fuzzy neural network is shown in figure D1.7.5.

t-”

Figure D1.7.5. Fuzzy neural network in mapping qualitative domain knowledge.

We now derive detailed learning formulas for this network. In particular we compute all necessary
gradients of the connections of the network,

a wi a wi
Let us discuss the similarity (equality) neuron in more depth. Considering its OR-wise form of

aggregation, one gets
~2 = OR([x2, xg] G 113,141; [w3, ~ 1 4 1) .

The logic operations are instantiated accordingly: OR-maximum, AND-product. The similarity operation
is induced by the tukasiewicz implication giving rise to the expression

I-a+b if a z b
1-b+a if a c b .

a = b =

Thus
az2 a
awi awi
- = - [(x i = ri)wi v (xj r,)wj]

which finally produces the expression,

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D1.7:7

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

References

Feldkamp L A, Puskorius G V, Yuan F and Davis L I Jr 1992 Architecture and training of a hybrid neural-fuzzy
system Proc. 2nd Int. Con$ on F u u y Logic and Neural Networks (Iizuku) pp 131-4

Ikoma N, Pedrycz W and Hirota K 1993 Estimation of fuzzy relational matrix by using probabilistic descent method
Fuzzy Sets Syst. 57 3 3 5 4 9

Machado R J and Rocha A F 1990 The combinatorial neural network: a connectionist model for knowledge based
systems Proc. 3rd Int. Con$ on Information Processing and Management of Uncertainty in Knowledge-bases
Systems (Paris) pp 9-1 1

Pedrycz W 1991 Neurocomputations in relational systems IEEE Trans. on Pattem Analysis and Machine Intelligence

Rocha A F 1992 Neural Nets: a Theory for Brain and Machine (Lecture Notes in Art$cial Intelligence 638) (Berlin:

Schneeweiss W G 1989 Boolean Functions with Engineering Applications (Berlin: Springer)

13 289-96

Springer)

D1.7:8 Handbook of Neuml Computation release 97f1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

D1.8 Induced Boolean and core neural networks

Krzysztof J Cios and Witold Pedrycz

Abstract

See the abstract for Chapter D l .

The elicitation of the structure of the network can be enhanced by pruning some weaker connections of the
neurons. Generally, in the OR neuron one eliminates all the connections whose values are below a certain
threshold. These connections are set to 0 while the values of the remainder are retained or eventually
elevated to 1. The opposite rule holds for the AND neuron: all the connections with the values above
the threshold value are set to 1. These threshold levels can be set up arbitrarily or may be subject to
optimization.

The optimized way of pruning the connections leads to the approximation of the fuzzy neural network
by its Boolean version. Within this procedure all the connections of the network are converted to either 0
or 1. Let y = N (z , w, v) denote the neural network to be approximated, where w, v are collections of
the connections between the successive layers. The idea of this approximation is to replace N (z , w, v) by
its Boolean counterpart, denoted by B(z, wg, vg), in such a way that the results produced by the Boolean
network follow as closely as possible those produced by the original network. The quality of the Boolean
approximation can be formally characterized by the performance index

IIN(z, 'w, 21, * * *) - B(z, W E , v E , .
O E X

where II.I(stands for the distance function. The above sum is taken over a certain collection of the patterns
X. The minimization is worked out with respect to the Boolean connections of the network B when
approximating the network N over a set of patterns forming X. More precisely, this task pertains to the
Boolean approximation of the network carried out with respect to X. Obviously, different forms of X
could result in fairly different approximations and, consequently, different Boolean networks induced by
the same fuzzy neural network. In particular, one can contemplate two specific families of the inputs:

(i) X is the same as the training data set;
(ii) X covers the entire universe of discourse by including the elements being randomly distributed in the

input hypercube.

Obviously, some other options of X might be worth considering (figure D1.8.1).

ioo
1

Figure D1.8.1. Training data sets X: (a) uniformly distributed in the plane of inputs, (b) binary biased
(data centered around the vertices of the plane of inputs), (c) functionally constrained, x2 = g(x1).

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D 1.8: 1

Copyright © 1997 IOP Publishing Ltd

Neuro-fuzzy Systems

The multidimensional optimization task can be reduced by admitting a simplified strategy of building
the induced Boolean network. The crux of this simplification is to reduce the dimensionality of the search
by selecting a uniform threshold strategy for all the AND and OR neurons. Let us introduce two threshold
operations. The first applies to all the OR neurons in the network and replaces their original connections
by 0 or 1 depending on their position with respect to the threshold A,

where w, A E [0, 11. The second thresholding operation, T,(w), equipped with another threshold value p ,
is used for the AND neurons,

By considering these threshold operations, we arrive at the reduced two-dimensional version of the
optimization task,

min l l ~ (z , 20, U,. ..I - ~ (s , w, w,. . .>/I
X E X

which is computationally definitely much more amenable than the previous one. Another feasible option
of network induction retains the most significant ('core') connections of the neurons-hence the resulting
architecture will be called the core network. In place of the above transformations we can define less
'drastic' modifications,

and

that preserve the values of the connections once they are recognized as being essential in the sense of the
assumed criteria. The thresholding operations are illustrated in figure D1.8.2.

Figure D1.8.2. Core and Boolean thresholding operations (a) AND neuron, (b) OR neuron.

D1.8:2 Handbook ofNcural Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University F'ress

Copyright © 1997 IOP Publishing Ltd

D2

Neural-Evolutionary Systems

V William Porto

Abstract

In this chapter, evolutionary computation is presented as a methodology for solving many
current problems encountered in the neural network design process. Several design areas
are addressed including alternative training methods, which prevent entrapment in local
minima points, automatic selection of optimal neural topologies, and determination of
optimal input feature sets. Differences between conventional (i.e. gradient-based learning
algorithms, mean-squared-error optimization) and evolutionary computation approaches
are discussed along with current application areas and future research directions.

Contents

D2 NEURAL-EVOLUTIONARY SYSTEMS
D2.1

D2.2
D2.3

Overview of evolutionary computation as a mechanism for solving neural system
design problems
Evolutionary computation approaches to solving problems in neural computation
New areas for evolutionary computation research in neural systems

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

D2.1 Overview of evolutionary computation as a
mechanism for solving neural system design
problems

V William Porto

Abstract

See the abstract for Chapter 02.

Although neural networks hold promise for solving a wide variety of problems, they have not yet fulfilled
this promise due to limitations in training, determination of the most appropriate topology, and efficient ~ 3 , BZ
determination of the best feature set to use as inputs. A number of techniques have been investigated
to solve these problems but none has the combination of simplicity, efficiency and algorithmic elegance
that is inherent in evolutionary computation (EC). These evolutionary techniques comprise a class of
generalized stochastic algorithms which utilize the properties of a parallel and iterative search to solve
a variety of optimization and other problems. Evolutionary computation is well suited to solving many
of the inherently difficult or time-consuming problems associated with neural networks since most of the
difficulties encountered with designing and training neural networks can be expressed as optimization
problems.

One of the most common problems encountered in training neural networks is the tendency of the
training algorithm to become entrapped in local minima. This leads to suboptimal weight sets which
are often insufficient to solve the task at hand. Due to the immense size of the typical search space, an
exhaustive search is usually computationally impossible. Gradient methods, such as error backpropagation, ~ 6 . 3 . 3

are commonly used since these are easy to implement, may be tuned to provide superlinear convergence,
and are mathematically tractable given the differentiability of the network nodal transfer functions. But
these methods have the serious drawback that when the algorithm converges to a solution, there is no
guarantee that this solution is globally optimal. In real-world applications, these algorithms frequently
converge to local suboptimal weight sets from which the algorithm cannot escape.

There is also the problem of determining the optimal topology for the application. Much of the
research attempting to provide optimal estimates of the number and types of nodes in the topology has
been focused on bounding the solutions in a mean squared error (MSE) sense. The notion of nodal
redundancy for robustness is often neglected, as is the fact that system performance may be better suited
using a different metric for network topology determination.

Finally, if one assumes that the aforementioned problems of network training and topology selection
have been surmounted, there still remains the question of optimal input feature selection. Neural networks
have been applied to a variety of problems ranging from pattern recognition to signal detection, yet ~ 1 . 2 , ~ 1 . 8
very little research has been made into ways to optimally select the most appropriate input features for
each application. Qpical approaches range the gamut from complex statistical measures to heuristic
methodologies, each requiring a priori knowledge or specific tuning of the problem at hand.

Fortunately, stochastic evolutionary methods can address not only the weight estimation and topology
selection problem, but can also be utilized to help determine the optimal set of input features going
into a neural network. Searching and parameter optimization using stochastic methods can provide a
comprehensive, self-adaptive solution to parameter estimation problems yet is often overlooked in favor
of deterministic, closed form solutions. The most general of these algorithms search the solution space
in parallel, and as such are perfectly suited to application and implementation on today’s multiprocessor
computers.

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 D2.1: 1

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

D2.1.1 Stochastic search

By formal mathematical definition, a stochastic process X (t , w) is a function of two variables, where w is
an element of the sampling space and t is a time parameter from the time interval set T (Papoulis 1965).
This is typically a real-valued function but can also be complex valued. The terms random process and
stochastic process are often considered synonymous and cover virtually all the theory of probability. In
practice, the term stochastic process is generally used when a time parameter is introduced.

Randomness (or noise) in observations of phenomena is often viewed as corruption of the underlying
process, and hence, something to be filtered out. From a viewpoint of a deterministic search, this is a
common notion, and most optimization algorithms are designed to smooth out any inherent noise processes,
either explicitly or implicitly. Algorithms that take advantage of randomness, however, can be effectively
utilized to search topologies that contain multiple optima. Certainly, an exhaustive search of the topological
parameter space can be computationally impractical, but a number of methodologies exist that selectively
use randomness in their search and are not only competitive in convergence speed, but are asymptotically
immune to entrapment in suboptimal minima (maxima) points.

D2.1.2 Basic evolutionary computation methodologies and intrinsic differences

Evolutionary computation is based upon simulating the process of evolution in order to iteratively derive
better and more appropriate solutions to a variety of problems. As a class of stochastic algorithms, these
techniques efficiently utilize randomness as they search through the parameter space for successively
better solutions, without the need for explicit derivative information. At the very basis of these algorithms
is the presumption that in a statistical sense, phylogenic learning can be encoded in each member of
the solution set and is proportional to the fitness of that member. A selection mechanism statistically
eliminates suboptimal members of the population. Thus increasingly appropriate solutions can be evolved
through competitive selection. Of importance is the parallel nature of these techniques. Other stochastic

c1.4.2 optimization techniques, such as simulated annealing and its derivatives, utilize one solution point which
is iteratively altered through a mutation process (Metropolis et a1 1953, Kirkpatrick et a1 1983, Szu
1986). Evolutionary computation typically utilizes a population of solutions which effect the search for
optima points in parallel. The population of solutions can span a large subspace of the parameter set,
and efficiently directs the search in the most promising areas of the solution space. A set of parent
solutions are iteratively altered to generate offspring solutions. At each iteration, the solutions are scored
with respect to their fitness, which may be least-mean squared error, or any other measurable function.
The best-scoring solutions are then probabilistically retained to become parents for the next generation of
solutions. Selection functions may or may not be elitist, that is, the top M scoring solutions are chosen
to become the parents for the next generation. A statistical competition may also be used to select among
population members. A basic outline of an evolutionary computation algorithm is described below:

02.1.2.1 Basic evolutionary computation algorithm

t := 0;
initialize P(0) := {al(O), a2(0), . . . , a,(O)}
evaluate P(0) : {@(a1(0)), @(az(O>), . . . , @(a,(O)))
iterate

I
recombine: P’(t) := r O , (P (t))
mutate: P”(t) := mO,(P(t))
evaluate: P”(0) : { @ (a y (t)) , @(ag(t)) , . . . , @(a;(t))}
select: P (t + 1) := sO,(P”(t) U Q)
t : = t + l ;

1

where
a is an individual member in the population
p 2 1 is the size of the parent population
A L 1 is the size of the offspring population

D2.1:2 Handbook of Neural Computation release 97t1 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Overview of evolutionary computation as a mechanism for solving neural system design problems

P (t) := {bial(t), a2(t), . . . , a,(t)} is the population at time t
@ : I + 8 is the fitness mapping
t Or is the recombination operator with controlling parameters 0,
mOm is the mutation operator with controlling parameters Om
is the selection operator 3 SO, : (I* U I,+*) +. I@
Q E {PI, P (t)) is a set of individuals additionally accounted for in the selection step, that is, parent
solutions.

Three main variations of this basic algorithm, evolutionary programming (EP), evolution strategies (ES)
and genetic algorithms (CA), involve differences in the mutation and recombination processes, fitness
evaluation, selection mechanism and overall search space representation (Fogel et a1 1966, Holland 1975,
Goldberg 1989, Koza 1992, Baeck et a1 1993, Fogel 1995). Evolutionary programming and evolution
strategies are quite similar in their approach to optimization. Evolution strategies can utilize local or
global recombination whereas in EP, no recombination is used. Genetic algorithms are among the best
known evolutionary algorithms and typically use binary representations. In a GA, an interpretation function
mapping between the search space representation and the evaluation space representation is used. Genetic
algorithms create new solutions by recombining the representational components of two solution members
with a crossover operator. To some degree, mutation operators are also used in GAS. In both EP and ES,
however, the representation evaluated by the fitness function is operated upon directly, that is, there is no
interpretation function necessary to translate between the search and evaluation spaces. An excellent and
more detailed discussion on the similarities and differences between these algorithms can be found in Baeck
and Schwefel (1993). It is important to note that the selection process is not necessarily elitist, and thus
can permit retention of lower fitness solutions in the next generation of the population. By allowing some
percentage of lower scoring solutions, the solution space is often searched more efficiently since higher
scoring solutions, while locally optimal, may be far away from the global optimum. Probabilistically, the
best solutions are retained, thus convergence is largely monotonic.

Simulated annealing is a generalized Monte Carlo technique with a continuously decreasing variance
(Metropolis et a1 1953, Kirkpatrick et a1 1983). It is a specific case of EP utilizing a single member
in the search population with an extrinsic temperature schedule. A semi-local search strategy is used
whereby the parametrized representation is mutated according to a specified probability density function.
Better scoring solutions are always accepted with probability one, but inferior solutions are also accepted
according to the probability used to generate the random process in what is termed as the temperature
cooling schedule (Szu 1986). The choice of the probability function determines the convergence rate with
Cauchy probabilities and proves considerably faster than Gaussian random processes (Szu 1986).

References

Baeck T, Rudolph G and Schwefel H-P 1993 Evolutionary programming and evolution strategies: similarities and
differences Proc. Second Ann. Con$ on Evolutionary Programming ed D B Fogel and W Atmar (La Jolla, CA:
Evolutionary Programming Society) pp 11-22

Baeck T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter optimization Evolutionary
Comput. 1 1-23

Fogel D B 1995 Evolutionary Computation (Piscataway, NJ: IEEE Press) pp 75-84
Fogel L J, Owens A J and Walsh M J 1966 Artifcial Intelligence Through Simulated Evolution (New York: Wiley)

Goldberg D E 1989 Genetic algorithms Search, Optimization and Machine Learning (Reading, MA: Addison-Wesley)

Holland J H 1975 Adaptation in Natural and Artifcial Systems (Ann Arbor, MI: University of Michigan Press)

Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Optimization by simulated annealing Science 220 671-80
Koza J 1992 Genetic Programming (Cambridge, MA: MIT Press) pp 73-7
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 Equation of state calculation by fast

Papoulis A 1965 Probability, Random Variables, and Stochastic Processes (New York: McGraw-Hill) p 280
Szu H 1986 Non-Convex Optimization SPIE vol 698 Real-Eme Signal Processing vol IX pp 59-65

pp 11-26

pp 1-54

pp 20-74

computing machines J. Chem. Phys. 21 1087-92

@ 1997 IOP Publishing ttd and Oxford University Press Hundbook of Neurul Computurion release 9711 D2.1:3

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

D2.2 Evolutionary computation approaches to solving
problems in neural computation

V William Porto

Abstract

See the abstract for Chapter 0 2 .

D2.2.1 Training

The number of training algorithms and variations thereof recently published for different neural topologies
is exceedingly large. The mathematical basis for the vast majority of these algorithms is to utilize gradient
information to adjust the connection weights between nodes in the network. Gradients of the error function
are calculated and this information is propagated throughout the topology weights in order to estimate the
best set of weights, usually in a least-squared error sense (Werbos 1974, Rumelhart and McClelland 1986,
Hecht-Nielsen 1990, Simpson 1990, Haykin 1994, Werbos 1994). A number of assumptions about the
local and global error-surface are inherently made when using any of these gradient-based techniques. ~ 5 . 2
Numerous modifications of simple techniques have been made in order to speed up the often exceedingly
slow convergence (training) rates. Stochastic training algorithms can provide an attractive alternative by
removing many of these assumptions while simultaneously eliminating the calculation of gradients. Thus
they are well suited for training in a wide variety of cases, and often perform better overall than the more
traditional methods.

02.2.1.1 Stochastic methods versus traditional gradient methods

A considerable amount of research has been performed in optimization theory in the areas of gradient-
based methods, that is, those techniques which utilize derivative information to search for and locate
function minima (or equivalently maxima) points. Traditionally, gradient-based techniques have provided
the basic foundation for many of the neural network training algorithms (Rumelhart and McClelland 1986,
Simpson 1990, Haykin 1994, Werbos 1994). It is important to note that gradient-based methods are not
just primarily used in training algorithms for feedforward networks, but also in a variety of networks such 82 .3
as Hopfeld networks, recurrent networks, radial basis function networks and many self-organizing systems. BI 3, ~ 2 . 3 ,
Viewed within the mathematical framework of numerical analysis, gradient-based techniques often provide B1.7.3, '*,'.'

superlinear convergence rates in applications on convex surfaces. First-order (steepest or gradient descent)
and second-order (i.e. conjugate gradient, Newton, quasi-Newton) methods have been successfully used to
provide solutions to the neural connection weight and bias estimation problem (Kollias and Anastassiou
1988, Kramer and Sangiovanni-Vincentelli 1989, Simpson 1990, Barnard 1992, Saarinen et a1 1992).
While these techniques may prove useful in a number of cases, they often fail due to several interrelated
factors. First, by definition, in order to provide guaranteed convergence to a minimum point, first-order
gradient techniques must utilize infinitesimally small step sizes (e.g. learning rates) (Luenberger 1973,
Scales 1985). Step size determination is most often a balancing act between monotonic convergence and
time constraints inherent in the available training apparatus. From a practical standpoint, training should be
performed using the largest feasible step size to minimize computational time. Several automated methods
for step size determination have been researched with some providing near-optimal step size estimation
(Jacobs 1988, Luo 1991, Porto 1993, Haykin 1994). By the Kantorovich inequality, it can be shown that

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computotion release 9711 D2.2: 1

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

the method of the basic gradient descent algorithm converges linearly to a minimum point with a ratio no
greater than [(AI - A ~) / (A I + Az)] where AI and AZ are the largest and smallest eigenvalues, respectively,
of the Hessian of the objective function evaluated at the solution point. However, convergence to a global
optimum point is not guaranteed.

Second-order methods attempt to approximate the (inverse) Hessian matrix and utilize a line search
for optimal step sizes at each iteration. These methods require the assumption that a reasonably smooth
function in N dimensions can be approximated by a quadratic function over a small enough region in
the vicinity of an optimal point. In both cases, however, the actual process of iteratively converging
on the series of solutions is computationally expensive. For example, convergence of the Davidon-
Fletcher-Powell method is inferior to steepest descent with a step size error of only 0.1%, so second-order
information does not always provide superior convergence rates (Luenberger 1973, Shanno 1978). It should
be noted that problems encountered when the Hessian matrix is indefinite or singular can be addressed
by using the method of Gill and Murray, albeit with the added computational cost of solving a nontrivial
size set of linear equations (Luenberger 1973, Scales 1985). In practice, quasi-Newton methods work well
only on relatively small problems with up to a few hundred weights (Dennis and Schnabel 1983).

One alternative approach to training neural networks is to utilize the numerical solution of ordinary
differential equations (ODES) to estimate interconnection weights (Owens and Filkin 1989). By posing
the weight estimation problem as a set of differential equations, ODE solvers can iteratively determine
optimal weight sets. These methods, however, are subject to the same prediction-correction errors and, in
practice, these too can be quite costly computationally.

Hypothetically, one can find an optimal algorithm for determining step size with the desired gradient-
based algorithm. A major problem still remains whereby all of the convergence theorems for these methods
prove convergence to an optimum point. There is no guarantee that this is the global optimum point except
in the rare case where the function to be minimized is convex. Research has proven convergence to a
global optimum point is guaranteed on linearly separable problems when batch mode processing, error-
backpropagation learning is used (Gori and Tesi 1992). However, linearly separable problems are easily
solved using non-neural network methods such as linear discriminant functions (Fisher 1976, Duda and
Hart 1973). In real-world applications, neural network training can, and often does, becomes entrapped
in local minima points, generating suboptimal weight estimates (Minsky and Pappert 1988). The most
commonly used method to overcome this difficulty is to restart the training process by using a different
random starting point. Mathematically, restarting at different initial weight solution ‘sample’ points is
actually an implementation of a simplistic stochastic process.

Stochastic training methods provide an attractive alternative to the traditional methods of training
c1.4 neural networks. In fact, learning in Boltzman machines is, by definition, probabilistic and uses simulated

annealing for weight adjustments. By their very nature, stochastic search methods, and evolutionary
algorithms in particular, are not prone to entrapment in local minima points. Nor are these algorithms
subject to step size problems inherent in virtually all of the gradient-based methods. As applied to the
weight estimation problem, stochastic methods can be viewed as sampling the solution (weight) space in
parallel, retaining those weights which provide the best fitness score. Note that in a stochastic algorithm
fitness does not necessarily imply a least-mean squared error criterion. Virtually any metric or combination
of metrics can be accommodated. In real-world environments robustness against failure of connections or
nodes is often highly important. This robustness can easily be built into the networks during the training
phase with stochastic training algorithms.

02.2.1.2 Case studies

Evolutionary algorithms have been successfully applied to the aforementioned problem of training, that is,
estimating the optimal set of weights for neural networks. Numerous approaches have been studied ranging
from simple iterative evolution of weights to sophisticated schemes whereby recombination operators
exchange weight sets on subtrees in the topology. It is important to note the that these algorithms do not
typically utilize gradient information, and hence are often computationally faster due to their simplicity of
implementation.

Differences between several techniques suitable for training multilayered perceptrons (MLPs) and
other neural networks were investigated by Port0 and Fogel (1992). The computational complexity

c 1 . 4 . 2 of standard backpropagation (BP), modified (line-search) BP, fast simulated annealing (FSA), and
evolutionary programming (EP) were compared. In this paper, FSA using a Cauchy probability distribution

C I .z

D2.2:2 Hundhook of Neurul Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Evolutionary computation approaches to solving problems in neural computation

for the annealing schedule-the temperature schedule for mutating weights is set inversely proportional
to time (number of iterations)-is contrasted with EP. The EP weight optimization is performed with
mutation variance inversely proportional to the RMS error of the aggregate input pattern training set. Thus
the mutation variance decreases as training converges to more optimal solutions. Computational similarities
between the FSA and EP approaches and increased robustness of a parallel search technique such as EP
versus the single solution member of an FSA search are shown. A number of tests are performed using
underwater mine data using MLPs trained from multiple starting points with each of the aforementioned
training techniques in order to ascertain the potential robustness of each to multimodal error surfaces.
Results of this research on neural networks with multiple weight set solutions (i.e. local minima points)
demonstrate better performance on naive test sets using FSA and EP training methods. These stochastic
training methods are proven to be more robust to multimodal error surfaces and hence demonstrate reduced
susceptibility to poor performance due to entrapment in local minima points.

The problem of robustness to processing node failure was addressed by Sebald and Fogel (1992). In
this paper, adaptation of interconnection weights is performed with the emphasis on performance in the
event of node failures. Neural networks are evolved using EP while linearly increasing the probabilistic
failure rate of nodes. After training, performance is scored with respect to classification ability given N
random failures during the testing of each network. Fault-tolerant networks are demonstrated as often
performing poorly when compared against non-fault-tolerant networks if the probability of nodal failure is
close to zero, but are shown to exhibit superior performance when failure modes are increased. Evolutionary
programming is able to find networks with sufficient redundancy which are capable of dealing with nodal
failure.

Using evolutionary computation to evolve network interconnection weights in the presence of
hardware weight value limitations and quantization noise was proposed by McDonnell (1992). A modified
version of backpropagation is used whereby EP is used for estimating the solutions of bounded and
constrained activation functions, and backpropagation is used to refine these solutions. Random competition
of the weight sets is used to choose parent networks for each subsequent generation. Results of this research
indicate the robustness of this technique and its wide range of applicability to a number of unconstrained,
constrained and potentially discontinuous nodal functions.

D2.2.2 Topology selection

Selection of an optimal topology for any given problem is perhaps even more important than optimizing
the training technique. It is a well known fact that suboptimal performance of any system can occur
by overfitting of data using too many degrees of freedom (network nodes and interconnections) in the
model. A balance must be struck between minimizing the number of nodes for generalization in learning
and providing sufficient degrees of freedom to fully encode the problem to be learned while retaining
robustness to failure. Evolutionary computation is well suited to this optimization problem, and provides
for self-adaptive learning of overall topology as well.

02.2.2.1 Traditional methodology versus self-adaptive approaches

Selection of the most appropriate neural architecture and topology for a specific problem or class of
problems is often accomplished by means of heuristic or bounding approaches (Guyon e? a1 1989, Haykin
1994). An eigensystem analysis via a singular value decomposition (SVD) approach has been suggested
by Wilson er a1 (1992) to estimate the optimal number of nodes and initial starting weight estimates in a
feedforward topology. An SVD is performed on all patterns in the training set with the starting weights
initialized using the unitary matrix. The number of nodes in the topology are determined as a function of
the sigma matrix in a least-squares sense.

Other analytic and heuristic approaches have also been tried with some success (Sietsma and Dow
1988, Frean 1990, Hecht-Nielsen 1990, Bello 1992) but these are largely based upon probability distribution
assumptions, and presence of fully differentiable error functions. In practice, methods which are self-
adaptive in determining the optimal topology of the network are the most useful as they are not constrained
by a priori statistical assumptions. The search space of possible topologies is infinitely large, complex,
multimodal, and not necessarily differentiable. Evolutionary computation represents a search methodology
which is capable of efficiently searching this complex space.

@ 1997 IOP Publishing Ltd and Oxford University Press Hunclbook of Neurul Computution release 9111 D2.2:3

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

02.2 .2 .2 Case studies

As indicated previously, genetic algorithms (GAS) generate new solutions by recombining representational
components of two population members using a function known as crossover. Some degree of mutation
is also used but the primary emphasis is on crossover. Specific task environments are characterized as
deceptive when the fitness (goodness of fit) is not well correlated with the expected abilities inherent in
its representational parts (Goldberg 1989, Whitley 1991). The deception problem is manifested in several
ways. Note that identical networks (networks which share identical topologies and common weights
when evaluated) need not have the same search representation since the interpretation function may be
homomorphic. This leads to offspring solutions which contain repeated components. These offspring
networks are often less fit than their parents, a phenomena known as the competing conventions problem
(Shaffer et a1 1992). Second, the crossover operator is often completely incompatible with networks with
different topologies. Finally, for any predefined task, a specific topology may have multiple solutions,
each with a unique but different distribution of interconnections and weights. Since the computational
role of each node is determined by these interconnections, the probability of generating viable offspring
solutions is greatly reduced regardless of interpretation function. Fogel (1992) shows GA approaches
are indeed prone to these deception phenomena when evolving connectionist networks. Efforts to reduce
this susceptibility to deception are studied by Koza and Rice (1991) where they utilize GP techniques
which generate neural networks with much more complex representations than traditional GA binary
representations. They propose using these alternative representations in an effort to avoid interpretation
functions which strongly bias the search for neural network solutions.

The interpretation function which maps the search (representation) space to the evaluation (fitness)
space in a GA approach will exceed the complexity of the learning problem (Angeline er a1 1994). Recent
trends have been focused away from binary representations in using GA approaches to solve neural network
topology determination problems. Angeline proposes EP for connectionist neural network searches as the
representation evaluated by the fitness function is directly manipulated to produce increasingly more
appropriate (better) solutions. The generalized acquisition of recurrent links (GNARL) algorithm evolves
neural networks using both structural level mutations for topology selection as well as simultaneously
evolving the connection weights through mutation. Tests on a food tracking task evolves a number of
interesting and highly fit solutions. The GNARL algorithm is demonstrated by simultaneously evolving
both the architecture and parameters with very little restriction of the architecture search space on a set of
test problems.

Polani and Uthmann (1993) discuss the use of a GA to improve the topology of Kohonen feature
maps. In this study, a simple fitness function proportional to the measure of equidistribution of neuron
weights is used. Flat network as well as toroidal and Mobius topologies are trained with a set of random
input vectors. The GA tests show the existence of networks with nonflat topologies with the ability to be
trained to higher quality values than those expected for the optimal flat topology. Given that the optimally
trainable topologies may lie distributed over different areas on the topological space, the GA approach is
able to find these solutions without a priori knowledge and is self-adaptive. Use of this technique could

c2.1 , I prove valuable in construction of network topologies for self-organizing feature maps where convergence
speed or adaptation to a given input space is crucial.

Genetic algorithms are used to evolve both the topology and weights simultaneously as described
in a paper by Braun (1993). In weak encoding schemes, genes correspond to more abstract network
properties which are useful for efficiently capturing architectural regularities of large networks. However,
strong encoding schemes require much less detailed knowledge about the genetic encoding and neural
mechanisms. Braun researched a network generator capable of handling large real-world problems. A
strong representation scheme is used where every gene of the genotype relates to one connection of
the represented network. Once the maximal architecture is specified, potential connections within this
architecture are chosen and iteratively mutated and selected. Crossover mutation is performed using
distance coefficients to prevent permuted interval representations in order to minimize connection length.
This is where crossover alone often proves problematic. Tests on digit recognition, the truck-backer-upper
task, and the Nine Men’s Moms problem were performed. These experiments concluded that weight
transmission from parent to offspring is very important and effectively reduced learning times. Braun also
notes that mutation alone is potentially sufficient to get good selection performance.

The use of evolutionary search to determine the optimal distribution of radial basis functions was
addressed by Whitehead and Choate (1994). Binary encoding was used in a GA with the evolved networks

c2.1.1

B1.7.3

D2.2:4 Hundbook of Neuruf Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Evolutionary computation approaches to solving problems in neural computation

selected to minimize both the residual error in the function approximation as well as the number of RBF
nodes. A set of space filling curves as encoded by the GA are evolved to optimally distribute the RBFs.
The weights from the first layer which form linear combinations of the RBFs are trained with a conventional
LMS learning rule. Convergence is rapid since the total squared error over the training set is a quadratic. c1.1.3
An additional benefit is realized whereby the local response of each RBF can be set to zero beyond a
genetically selected radius thus ensuring only a small fraction of the weights need to be modified for each
input training exemplar. This methodology strikes a balance between representations which specify all of
the weights and require no training, and the other extreme where no weights are specified and full training
of each network is required on each pass of the algorithm. Results indicate the superiority of evolving the
RBF centers in comparison to k-means clustering techniques. This may possibly be explained by the fact
that a large proportion of the evolved centers were observed to lie outside the convex hull of the training
data, while the k-means clustering centers remained within this hull.

References

Angeline P, Saunders G and Pollack J 1994 Complete induction of recurrent neural networks Proc. Third Con5 on

Bamard E 1992 Optimization for training neural networks IEEE Trans. Neural Networks 3 232-6
Bello M 1992 Enhanced training algorithms, and integrated traininglarchitecture selection for multilayer perceptron

networks IEEE Trans. Neural Networks 3 864-75
Braun H 1993 Evolving neural networks for application oriented problems Proc. Second Ann. Confi on Evolutionary

Programming ed D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 62-71
Dennis J and Schnabel R 1983 Numerical Methods for Unconstrained Optimization and Nonlinear Equations

(Englewood Cliffs, NJ: Prentice-Hall) pp 5-12
Duda R 0 and Hart P E 1973 Pattem Class$cation and Scene Analysis (New York: Wiley) pp 130-86
Fisher R A 1976 The use of multiple measurements in taxonomic problems Machine Recognition of Patterns (reprinted

from 1936 Annals of Eugenics) ed A K Agrawala (Piscataway, NJ: IEEE Press) pp 323-32
Fogel D B 1992 Evolving Art$cial Intelligence PhD dissertation University of California, San Diego, CA
Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networks Neural

Goldberg D E 1989 Genetic algorithms Search, Optimization and Machine Learning (Reading, MA: Addison-Wesley)

Gori M and Tesi A 1992 On the problem of local minima in backpropagation IEEE Trans. Putt. Anal. Mach. Intell.
14 76-86

Guyon I, Poujaud I , Personnaz L, Dreyfus G, Denker J and Le Cun Y 1989 Comparing different neural network
architectures for classifying handwritten digits Proc. IEEE Int. Joint Confi on Neural Networks vol I1 (Piscataway,

Evolutionary Programming ed A V Sebald and L J Fogel (River Edge, NJ: World Scientific) pp 1-8

Comput. 2 198-209

pp 1-54

NJ: IEEE) pp 127-32
Haykin S 1994 Neural Networks, a Comprehensive Foundation (New York: Macmillan) pp 121-281,473-584
Hecht-Nielsen R 1990 Neurocomputing (Reading, MA: Addison-Wesley) pp 48-2 18
Jacobs R A 1988 Increased rates of convergence through leaming rate adaptation Neural Networks 1 295-307
Kollias S and Anastassiou D 1988 Adaptive training of multilayer neural networks using a least squares estimation

Koza J and Rice J 1991 Genetic generation of both the weights and architecture for a neural network IEEE Joint ConJ

Kramer A H and Sangiovanni-Vincentelli A 1989 Efficient parallel leaming algorithms for neural networks Advances

Luenberger D G 1973 Introduction to Linear and Nonlinear Programming (Reading, MA: Addison-Wesley) pp 194-

Luo Z 1991 On the convergence of the LMS algorithm with adaptive leaming rate for linear feedforward networks

McDonnell J M 1992 Training neural networks with weight constraints Proc. First Ann. Confi on Evolutionary

Minsky M L and Pappert S A 1988 Perceptrons expanded edn (Cambridge, MA: MIT Press) pp 255-66
Owens A J and Filkin D L 1989 Efficient training of the back propagation network by solving a system of stiff

ordinary differential equations Proc. Int. Joint Confi on Neural Networks vol I1 (IEEE Press) pp 381-6
Polani D and Uthmann T 1993 Training Kohonen feature maps in different topologies: an analysis using genetic

algorithms Proc. Fi fh Int. Con$ on Genetic Algorithms (San Mateo, CA: Morgan Kaufmann) pp 326-33
Port0 V W 1993 A method for optimal step size determination for training neural networks (San Diego, CA: ORINCON

Intemal Technical Report)

technique Proc. Int. Confi on Neural Networks vol I (Piscataway, NJ: IEEE Press) pp 383-9

on Neural Networks vol I1 (Seattle, WA: IEEE Press) pp 397-404

in Neural Information Processing Systems 1 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 40-8

20 1

Neural Comput. 3 226-45

Programming (La Jolla, CA: Evolutionary Programming Society) pp 11 1-9

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 D2.2:5

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

Porto V W and Fogel D B 1992 Altemative methods for training neural networks Proc. First Ann. Con$ on Evolutionary
Programming (La Jolla, CA: Evolutionary Programming Society) pp 100-10

Rumelhart D E and McClelland J (eds) 1986 Parallel Distributed Processing: Explorations in rhe Microstructure of
Cognition vol 1 (Cambridge, MA: MIT Press) pp 318-30

Saarinen S, Bramley R B and Cybenko G 1992 Neural networks, backpropagation, and automatic differentiation
Automatic Direrentiation of Algorithms: Theory, Implementation, and Application ed A Griewank and G F Corliss
(Philadelphia, PA: SIAM) pp 3 1 4 2

Scales LE 1985 Introduction to Non-Linear Optimization (New York: Springer) pp 60-1
Sebald A V and Fogel D B 1992 Design of fault tolerant neural networks for pattern classification Proc. First Ann.

Con5 on Evolutionary Programming (San Diego, CA: Evolutionary Programming Society) pp 90-9
Shaffer J D, Whitley D and Eshelman L J 1992 Combinations of genetic algorithms and neural networks: a survey

of the state of the art Proc. COGANN-92 International Workshop on Combinations of Genetic Algorithms and
Neural Networks (Baltimore, MD: IEEE Computer Society Press) pp 1-37

Shanno D 1978 Conjugate-gradient methods with inexact searches Math. Op. Res. 3
Sietsma J and Dow R 1988 Neural net pruning-why and how Proc. Int. Con$ on Neural Networks I (IEEE Press)

Simpson P K 1990 Artificial Neural Systems (Elmsford, NY: Pergamon) pp 90-120
Werbos P J 1974 Beyond regression: new tools for prediction and analysis in the behavioral sciences PhD Thesis

Harvard University
-1994 The Roots of Backpropagation from Ordered Derivatives to Neural Networks and Political Forecasting (New

York: Wiley) pp 29-81, 256-294
Whitehead B and Choate T 1994 Evolving spacefilling curves to distribute radial basis functions over an input space

IEEE Trans. Neural Networks 5 pp 15-23
Whitley D 199 1 Fundamental principles of deception in genetic search Foundations ofGenetic Algorithms ed G Rawlins

(San Mateo, CA: Morgan Kaufmann) pp 22141
Wilson E, Umesh S and Tufts D 1992 Resolving the components of transient signals using neural networks and

subspace inhibition filter algorithms Proc. Int. Joint Conf. on Neural Networks vol 1 (Baltimore, MD: IEEE)

pp 325-33

pp 283-8

D2.2:6 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

D2.3 New areas for evolutionary computation research
in neural systems

V William Porto

Abstract

See the abstract for Chapter 02.

There are many other areas in which the methodologies of evolutionary computation may be useful in the
design and solution of neural network problems. Aside from training and topology selection, EC can be
used to select optimal node transfer functions, which are often selected for their mathematical tractability,
not their optimality in neural problems. Self-adaptation of input features is another area of current research
with great potential. Evolving the optimal set of input features (from a potentially large set of transform
functions) can be very useful in refining the preprocessing steps necessary to optimally solve a specific
problem.

D2.3.1 Transfer function selection

One recent area of interest is the use of evolutionary computation to optimize the choice of nodal
transfer functions. Sigmoidal, Gaussian and other functions are often chosen due to their differentiability,
mathematical tractability, and ease of implementation. There exists a virtually unlimited set of alternative
transfer functions ranging from polynomial forms and exponentials to discontinuous, nondifferentiable
functions. By efficiently evolving the selection of these functions, potentially more robust neural solutions
may be found. Simultaneous selection of nodal transfer functions and topology may be the ultimate
evolutionary paradigm, as nature has taken this tack in evolving the brains of every living organism.

D2.3.2 Input feature selection

Evolutionary computation is well suited for automatically selecting optimal input features. By iterative
self-adaptation of these input features for virtually any neural topology, evolutionary methods can be a
more attractive approach than those of principal component analysis and other statistical methods. Efficient,
automatic search of this input feature space can significantly reduce the computational requirements of
signal preprocessing and feature extraction algorithms.

Brotherton et a1 (1995) devised an algorithm which automatically selects the optimal subset of input
features and the neural architecture as well as training the interconnection weights using evolutionary
programming. In developing a classifier for electrocardiogram (ECG) waveforms, EP was used to design
a hierarchical network consisting of MLPs for the first-layer networks, andfuzzy min-max networks for the DI
second output layer. The first-layer networks are trained and outputs fused in the second-layer network.
EP is used to select from among several sets of input features. Initial training provided approximately 75%
correct classification without including heart rate and phase features in the fusion network. Retraining of
the fusion networks was performed with the EP trainer and feature selection mechanism, with the resulting
system providing a 95% classification capability. Interestingly, analysis of the final trained network inputs
showed the EP feature selection technique had determined that these two scalar input features were not
used, but had provided guidance during the training phase.

Chang and Lippmann (1991) examined the use of GAS to determine the input data, storage patterns,
and select appropriate features for classifier systems in both speech and machine vision problems. Using ~ 1 . 7

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 D2.3: 1

Copyright © 1997 IOP Publishing Ltd

Neural-Evolutionary Systems

an EC approach they found they could reduce the input feature size from 153 features to only 33
~ 1 . 2 features with no performance loss. Their investigations into solving a machine vision pat tern recognition

problem demonstrated the ability of GAS to evolve higher-order features which virtually eliminated pattern
classification errors. Finally, in another of their tests with neural pattern classifiers, the number of patterns
needed to be stored was reduced by a factor of 8 without significant loss in performance.

The area of feature selection via evolutionary computation will be of increased interest as more and
more neural systems are put into the field. Selectively choosing the optimal set of input features can make
the difference between a mere idea and a practical implementation.

References

Brotherton T and Simpson P 1995 Dynamic feature set training of neural networks for classification Proc. Fourth Ann.
Con8 on Evolutionary Programming (Cambridge, MA: MIT Press) pp 79-90

Chang E and Lippmann R 1991 Using a genetic algorithm to improve pattern classification performance Advances in
Neural Information Processing Systems ed D Touretsky (Palo Alto, CA: Morgan-Kaufmann) pp 797-803

D2.3:2 Hundbook of Neurul Computation release 9711 @ 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

PART E
~

NEURAL NETWORK IMPLEMENTATIONS

El NEURAL NETWORK HARDWARE IMPLEMENTATIONS
El. 1 Introduction

El .2

E1.3

El .4

El .5 Optical implementations

Emothy S Axelrod
Neural network adaptations to hardware implementations
Perry D Moerland and Emile Fiesler
Analog VLSI implementation of neural networks
Eric A Vittoz
Digital integrated circuit implementations
Valeriu Beiu

I Saxena and Paul G Horan

@ 1997 IOP hblishing Ltd and Oxford University Press Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

El

Neural Network Hardware Implementations

Contents

El NEURAL NETWORK HARDWARE IMPLEMENTATIONS
El . l

E1.2

El .3

E1.4

El .5

Introduction
Emothy S Axelrod
Neural network adaptations to hardware implementations
Perry D Moerland and Emile Fiesler
Analog VLSI implementation of neural networks
Eric A viffoz
Digital integrated circuit implementations
Valeriu Beiu
Optical implementations
I Saxena and Paul G Horan

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711
Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

El . l Introduction

Timothy S Axelrod

Abstract

A brief overview of neural network hardware implementations, introducing the detailed
discussions that follow.

The main impetus behind the development of neural networks has been the impressive capabilities
of biological systems, and our desire to create systems with similar capabilities, but adapted to other
applications. It was recognized from the outset that biological processing systems owe their abilities both
to a novel architecture for computing and to its implementation in hardware that has some quite astonishing
properties. The development of neural networks to date has mainly emphasized the architectural aspects,
with implementation largely being performed in software that runs on conventional digital computers. But
it is clear that neural networks will not reach their full potential until we develop hardware that shares more
of the properties of biological hardware, while retaining the far superior circuit speeds that characterize
modern computing systems. This section of the Handbook is devoted to the approaches that have been
taken so far to realizing this goal and the possible paths forward from this point.

Any hardware implementation technology must satisfy four basic criteria if it is to be a good foundation
for constructing large-scale neural systems. First, it must allow us to build systems with large numbers of
artificial neurons. Artificial neurons, far more than the biological neurons that they imitate, are extremely
simple computing elements. Although biological systems with desirable properties can be found with
hundreds of neurons, or even fewer, the capabilities we ultimately desire to achieve are mostly found in
systems with millions, or billions, of neurons. Second, it must allow these neurons to make large numbers
of connections to other neurons. Third, the weights associated with each neuron must be changeable, so
that the system can learn and adapt, and yet stably storable for long periods of time. Fourth, all this must
be done in a package that is reasonably small and dissipates a manageable amount of power.

In the sections that follow, the implementation technologies that are currently available are described
in the light of these four criteria. Section E1.2 begins the discussion with a more detailed look at some ~ 1 . 2

issues that arise in many hardware implementations, in particular the limited precision available to specify
weights and neural outputs, and the fact that many implementation technologies can represent weights of
only a single sign. Section E1.3 begins a systematic tour of the available implementation technologies ~ 1 . 3

with a look at analog integrated circuits. This is followed by an examination of digital integrated circuits

After reading these sections, it will be clear that we do not yet have a hardware technology that is
wholly satisfactory for building large neural systems. Digital and, to a lesser extent, analog integrated
circuits can readily attain interestingly large numbers of neurons, but have major problems when it comes
to interconnecting them sufficiently densely. In large measure this reflects the fact that current integrated
circuits form systems that are basically planar, while biological systems are fully three-dimensional,
exploiting the extra dimension at all scales from microns to centimeters. Optical technologies have much
better prospects for solving the interconnection problem, but they are still in their infancy and do not today
have the capability to implement large numbers of neurons. All implementations currently have difficulties
with economically storing and modifying large numbers of weights. It may well be that the technology
we require can only be built by a manufacturing technology that can fully control the structure of systems
at the molecular level, a capability that is currently unique to biological development, but is unlikely to
remain so for much longer.

in Section E1.4, and optical techniques in Section E1.5. E1.4, E I S

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 E l . 1 : 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

E1.2 Neural network adaptations to hardware
implementations

Perry D Moerland and Emile Fiesler

Abstract

In order to take advantage of the massive parallelism offered by artificial neural networks,
hardware implementations are essential. However, most standard neural network models
are not very suitable for implementation in hardware and adaptations are needed. In this
section an overview is given of the various issues that are encountered when mapping
an ideal neural network model onto a compact and reliable neural network hardware
implementation, like quantization, handling nonuniformities and nonideal responses,
and restraining computational complexity. Furthermore, a broad range of hardware-
friendly learning rules is presented, which allow for simpler and more reliable hardware
implementations. The relevance of these neural network adaptations to hardware is
illustrated by their application in existing hardware implementations.

E1.2.1 Introduction

Soon after the widespread revival of neural network research in the mid-l980s, it was realized that to
fully profit from the massive parallelism inherent in neural network models, hardware implementations are
essential, This has led to a large variety of implementations using digital and analog electronics, optics,
and hybrid techniques. Even though these implementations are largely different, a common denominator
is the mapping of neural network algorithms onto reliable, compact, and fast hardware. Any hardware
implementation has to optimize three main constraints: accuracy, space, and processing speed. The design
of hardware implementations is governed by a balancing of these criteria. An analog implementation, for
example, is very efficient in terms of chip area and processing speed, but this comes at the price of a
limited accuracy of the network components. In general, this amounts to a trade-off between the accuracy
of the implementation and the reliability of its performance. In this section the influence of the limitations
typical for hardware implementations will be outlined. Examples of this phenomenon are the following:

a The quantization of network parameters in digital implementations, specifically its weights, to obtain
a far more compact implementation. Its counterpart in analog implementations is a limited accuracy
of the network parameters due to system noise.
Computation in analog hardware, be it electronic or optical, is characterized by the nonuniformity of
its components and by the fact that the components are at best approximations of the corresponding
mathematical operations in the neural network model.

This section provides a thorough review of the experimental and theoretical research that has been
performed on the behavior of existing learning algorithms under the limitations imposed by hardware.
Furthermore, training algorithms are discussed that offer an improved performance in the case of limited
accuracy and that further simplify the hardware implementation of neural networks.

In section El .2.2, the effects of a quantization of the network parameters and weight discretization
algorithms for various neural network models are reviewed. The different approaches are illustrated
with examples from existing neural hardware implementations and several commonly used schemes are

a

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Compuwtion release 9711 El .2:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

discussed in more detail. The influence of hardware nonidealities, such as spatial nonuniformity and
nonideal response is outlined in section E1.2.3. Section E1.2.4 contains an overview of hardware-
friendly learning algorithms which are better suited for hardware implementation and especially for on-chip
learning. Finally, in section E1.2.5, a summary and conclusions are presented.

E1.2.2 Quantization effects

The use of very high precision cannot be matched with the goal of developing fast and compact
hardware implementations. While in digital implementations a high numerical precision is too area
consuming, it is incompatible with the system noise present in analog implementations. Therefore,
hardware implementations of neural networks typically use a representation of the network parameters with
a limited accuracy. For example, in Philips’ L-Neuro 1 .O architecture, which allows the implementation
of feedforward networks and on-chip backpropagation training, 16-bit weights are used during the training
process and only 4-bit or 8-bit weights are employed during recall (Mauduit et a1 1992). An example of an
analog electronic implementation is Intel’s Electrically Trainable Analog Neural Network (ETANN), which
can perform an impressive two billion weight multiplications per second. The accuracy of its weights and
neurons, however, can be compared with a resolution of only seven bits (Holler et a1 1989).

Table E1.2.1. Weight discretization in multilayer neural networks: off-chip learning

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Holt and Hwang (1993) 8 1 - Finite-precision error analysis
for the forward retrieving pass

Dundar and Rose (1995) 10 2 - Statistical model of weight quantization
in sigmoidal networks

PichC (1995) 6-10 2 - Statistical analysis of the effects of weight
errors upon an ensemble of multilayer networks

Table E1.2.2. Weight discretization in multilayer neural networks: chip-in-the-loop learning.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks
Fiesler et a1 (1988) 2-3 3 - Forward pass with discrete weights,
Fiesler et a1 (1990)
Marchesi et a1 (1993) 3 4 1 1 Power-of-two weights in the forward

Tang and Kwan (1993) 3 4 1 - Power-of-two weights and adaptive

backward pass with continuous weights

pass and an adaptive learning rate

gain of the activation function

Since hardware implementations are characterized by a low numerical precision, it is essential to
study the effects of this on the recall and training of the various neural network models. The need for
a further reduction of the accuracy, while retaining a satisfactory network performance, has also led to
various weight discretization algorithms, especially designed for this purpose. Since most research has been

c1.2 performed for multilayer feedforward networks, these will be discussed separately from the other neural
network paradigms. A compact overview of a large variety of results on the effects of limited precision
in neural networks can be found in tables E1.2.1 to E1.2.4. These tables list the number of bits that are
required for satisfactory (learning) performance and briefly describe the core idea of the algorithms. In
order to give an indication of the quality of the experimental evaluation in the cited articles, two columns
listing the number of artijicial and real-world benchmarks on which the algorithms have been tested are
also included.

~~

E l .2:2 Handbook of Neural Computation release 97t1 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural network adaDtations to hardware imdementations

E1.2.2.1 Quantization effects in multilayer neural networks

Most methods deal with the various aspects of limited precision calculation in multilayer networks. These
approaches can be divided into three categories corresponding to the three different training modes for
neural network hardware:

Off-chip learning. In this case the hardware is not involved in the training process, which is performed
on a computer using high precision. The weights resulting from the training process are quantized and
then downloaded on the chip. Only the forward propagation pass in the recall phase is performed on-
chip which makes these quantization effects amenable for mathematical analysis using a statistical model.
Some of the results have been summarized in table E1.2.1; these indicate that the accuracy needed in the
on-chip forward pass is around 8 bits. Pich6 (1995) gives a comparison between Heaviside and sigmoidal
multilayer networks, showing that the weight precision required in a Heaviside network is much higher
and even doubles when a layer is added to the network. An interesting practical example illustrating
that low on-chip accuracy is sufficient when mapping a neural network trained with a high precision onto
a chip is the application of the analog ANNA chip to high-speed character recognition (Sackinger et a1
1992). Here, a high precision (32-bit floating point) network is mapped on the ANNA chip which uses
a 6-bit weight resolution and a 3-bit resolution for the neuron inputs and outputs. The chip’s recognition
accuracy is only slightly less than the one obtained with floating-point calculations.

Chip-in-the-loop learning. In this case the neural network hardware is used during training, but only
in forward propagation. The calculation of the new weights is done off-chip on a computer, which
downloads the updated weights onto the chip after each training iteration. Several learning algorithms
have been proposed that take advantage of the fact that in this way the limited precision only plays a
role in the forward propagation pass and that floating point calculations can be used in the backward pass
(table E1.2.2). One of the first, and perhaps most successful, weight discretization techniques is of the
chip-in-the-loop kind (Fiesler et a1 1988, 1990). It is suitable for feedforward neural networks, easy to
implement, and very flexible in that it can handle a large range of discretizations up to the precision of
a few bits only (table E1.2.2). The basic idea is to start with a normal neural network with continuous-
valued weights. These weights are discretized using a staircase-shaped multiple-thresholdfunction and the
so-created discrete weights are then used for the forward propagation pass of the learning rule. The errors
obtained, which are based on the difference between the obtained network outputs and the desired target
outputs, are subsequently used to update the continuous-valued weights during the backward propagation
pass. This scheme is repeated until convergence is obtained. This flexible weight discretization method has
been successfully used in the development of the Apple Newton (Lyon and Yaeger 1996), and in optical
neural networks at Mitsubishi, Japan (Takahashi et a1 1991) and in Switzerland (Saxena and Fiesler 1995,
Moerland et a1 1996). A similar approach has been applied to design neural networks restricted to single
power-of-two weights (see section E1.2.2.3) (Marchesi et a1 1993, Tang and Kwan 1993).

On-chip learning. Here, the training of the neural network is done entirely on-chip which offers the
possibility of continuous training. This means specifically that at least the weight values are represented
with only a limited precision. Simulations have shown that the popular backpropagation algorithm (see for
example the article by Rumelhart et a1 (1986)) is highly sensitive to the use of limited-precision weights
and that training fails when the weight accuracy is lower than 16 bits (first two references in table E1.2.3).
This is mainly because the weight updates are often smaller than the quantization step which prevents
the weights from changing. In order to reduce the chip area needed for weight storage and to overcome
system noise, a further reduction of the number of allowed weight values is desirable. Several weight
discretization algorithms have therefore been designed and an extensive list of them and the attainable
reduction in required precision is given in table E1.2.3. Some of these weight discretization algorithms
have already proven their usefulness in hardware implementations. Battiti’s reactive tabu search, for
example, has been implemented in the TOTEM processor and successfully applied to a triggering problem
in high-energy physics with a weight accuracy as low as 4 bits (Battiti and Tecchiolli 1994). Recently, an
analog electronic chip (Kakadu) has been applied successfully to some classification problems by training
it with the combined search algorithm and semiparallel weight perturbation algorithms using only a 6-bit
weight accuracy (Jabri 1994, Leong and Jabri 1995).

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 El .2:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

E1.2.2.2 Quantization effects in other neural network models

Also for other neural network models the effects of a coarse quantization of the weight values on recall
and learning have been investigated. The small number of weight discretization algorithms proposed can
be partly explained from the fact that the required accuracy for successful learning in these models is
lower than for gradient descent learning in multilayer networks (table E1.2.4). An interesting example of
a hardware implementation is Bellcore’s implementation of a Boltzmann machine and mean-field learning,
which allows on-chip learning with only 5-bit weights (Alspector 1992). Recently, a weight discretization
algorithm for an associative memory with binary {-1, +1} weights has been implemented on a digital
VLSI chip (Hendrich 1996). The pattern storage capacity that can be obtained with this learning rule
is good (0.4 times the number of neurons) and the algorithm is suited for on-chip learning. Verleysen’s
associative memory training algorithm, that uses the Simplex method to train a network with ternary
weights, is best suited for off-chip training (Verleysen et a1 1989).

Table E1.2.3. Weight discretization in multilayer neural networks: on-chip learning.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Asanovid (199 1)

Holt and Hwang (1993)

Grossman (1990)

Reyneri and Filippi (1 99 1)

16 1 Coarse weight quantization in the
backpropagation algorithm
An error analysis of backpropagation
with finite precision
Adaptation of both weights and the
intemal representation of the neurons
Batch backpropagation with a
near-optimum leaming rate
Weight perturbation with gain adaptation
Combination of weight perturbation
and a partial random search
A slight modification of the method of
Grossman (1 990) to train sparsely
connected Heaviside networks
A weighted error function in the
backpropagation algorithm based on
an overestimation of the error
Weight perturbation with an adaptive
gain and leaming rate
Semi-parallel weight perturbation algorithms
Backpropagation without multiplication;
gradients and states of power-of-two
Heuristic method for solving
combinatorial optimization problems
Backpropagation with forced weight updates

14-16

1

9-10 1

10
9

Xie and Jabri (1992)
Xie and Jabri (1992)

Abramson (1991)

2
2

2 3

Sakaue et a1 (1993) 8-10 2

Hollis and Paulos (1994)

Jabri (1994)
Simard and Graf (1 994)

13 1

6
16

1
-

1
1

Battiti and Tecchiolli (1995)

Diindar and Rose (1995)

1-8 1

2

2

10

E1.2.2.3 Some remarks on commonly used schemes

A common point of many weight discretization algorithms is the way in which the effects of having only a
limited weight range are treated. It has been shown by simulations that as soon as the range of the weights
decreases below a certain value, which depends on the problem at hand, the training fails to converge
because of the clipping of the weight values (Hoehfeld 1992). This can often be solved by allowing a
dynamic rescaling of the weights (and hence the weight range) by adapting the gain B of the activation
function. The calculation of an activation value a, in a multilayer network is namely done as follows:

(El .2.1)

El .2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Neural network adaptations to hardware implementations
~ ~~

Table E1.2.4. Weight discretization in other neural network models.

Reference

No of benchmarks

(bits) Artificial Real world Remarks
Accuracy

Self-organizing map,
see Kohonen (1 989)
Kohonen (1993) 3-4 - 1 Quantization of input values during recall
Rueping et a1 (1994) 4 2 1 Power-of-two adaptation factor

Thiran et al (1994) 5 1 - Uses a conical neighborhood function
and quantized weights

instead of a rectangular one

Associative memory,
see Hopfield (1982)
Verleysen et a1 (1989) 2 1 - A linear programming learning algorithm

Johannet et a1 (1992) 9-1 1 1 - Integer arithmetics for learning

Hendrich (1996) 1 1 - Associative memory with binary weights

for associative memories

in associative memory

and a good storage capacity

Boltzmann network
(Ackley et a1 1995)
Balzer et a1 (1991) 6-8 2 - Coarse quantization of the weights

Alspector et a1 (1992) 5 2 - Coarse weight quantization for Boltzmann
during learning

and mean-field learning

Neocognitron
(Fukushima 1980)
White and Elmasry (1992) 3 1 - Uses power-of-two weights

Cascade topology
(Fahlman and Lebiere 1990)
Hoehfeld and 12 2 1 Coarse weight quantization in the
Fahlman (1992) cascade correlation algorithm
Hoehfeld and 6 2 1 Cascade correlation with probabilistic
Fahlman (1992)
Campbell and 1 2 1 A constructive algorithm for Heaviside
Perez Vincente (1995) cascade networks

rounding and variable gain

Thus, a change of the weight range is equivalent to changing the gain of the activation function. Various
strategies have been proposed to perform this gain adaptation, ranging from heuristics based on the average
value of the incoming connections to a neuron (Hoehfeld 1992, Xie and Jabri 1992), to approaches that
use some form of gradient descent to train the gains (Tang and Kwan 1993, Coggins and Jabri 1994).

In some training algorithms the weight values have been limited to powers-of-two (White and Elmasry
1992, Tang and Kwan 1993, Marchesi et a1 1993). The main advantage of this technique is that all costly
multiplications can be replaced by easy to implement shift operations. This scheme has also been applied
to gradient values, activation values, and learning rates (Hollis and Paulos 1994, Simard and Graf 1994).

Work on limiting the number of weight levels has also been done in the design of Heaviside networks
for the computation of boolean functions (majority, parity, comparison, addition) and for the two-spiral
problem (Beiu 1996a, 1997). Beiu’s concern is to minimize the total number of bits required to represent
the weights of a network, since this is a realistic measure of the complexity of VLSI implementations.
Moreover, it opens up the possibility of comparing results obtained by learning algorithms with the entropy
(number of bits) upper bounds of the data set (Beiu 1996b).

Finally, we would like to point out that a comparative benchmarking study of quantization effects
on different neural network models and the improvements that can be obtained by weight discretization

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9711 El .2:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

algorithms has not yet been done. The accuracies listed in table E1.2.1 to E1.2.4 are therefore highly
biased by the different benchmarks that were used by the various authors.

E1.2.3 Hardware nonidealities

Both in analog electronic and optical neural network implementations, computation suffers from drawbacks
which do not play an important role in digital hardware. Some characteristic examples of such nonidealities
inherent to analog computation are the spatial nonuniformity of components and nonideal responses. In this
section, examples of these nonidealities are presented, together with their effects on the learning behavior
of neural networks.

E1.2.3. I Component nonuniformity

Variations between the on-chip components, such as multipliers (Cairns and Tarassenko 1994) and the read-
out of optical weight matrices (Robinson and Johnson 1992), are inevitable in analog hardware. These
nonuniformities are particularly troublesome when the training of the network is done off-chip without
taking these component variations into account (Frye et a1 1991). It is, however, widely claimed that chip-
in-the-loop or on-chip learning can compensate to a considerable extent for these nonuniformities (Card
and Schneider 1992). This is also intuitively clear because the use of the analog circuit in the forward pass
incorporates the nonuniformities in the learning process. This has been confirmed by experimental results,
for example for on-chip learning in backpropagation networks (Cairns and Tarassenko 1994, Dolenko
and Card 1995). Their research indicates that backpropagation learning can adapt to the nonuniformity
of multiplier gains which are caused by fabrication inaccuracies. The occurrence of additive offsets in
the multiplications and especially in weight adaptations do pose serious problems which are not easily
overcome by on-chip learning (Dolenko and Card 1995). A possible solution is the use of some dedicated
hardware in the weight adaptation circuitry which enables offset-compensation (Annema and Wallinga
1995).

E1.2.3.2 Nonideal response

Computations performed in hardware are approximations of the mathematical operations assumed to
be ideal in neural network models. This affects in particular the analog implementation of a linear
multiplication and the implementation of a nonlinear activation function like the widely used standard
sigmoid. The use of a linear multiplier with a reasonable operating range leads to a large area penalty in
VLSI implementations. Therefore, simple nonlinear multipliers are often preferable and are used in both
electronic (Lont and Guggenbiihl 1992, Hollis and Paulos 1994, Reyneri 1995) and optical implementations
(Robinson and Johnson 1992, Neiberg and Casasent 1994). The claims on the learning behavior of a
neural network with nonlinear multipliers are rather contradictory. While Cairns and Tarassenko (1994)
and Dolenko and Card (1995) find the straightforward use of nonlinear multipliers in simulations of on-chip
learning in analog backpropagation networks leads to satisfactory results, Lont and Guggenbiihl(l992) find
the standard backpropagation algorithm fails to converge with nonlinear synapses. Instead, Lont proposes
to incorporate nonlinear multipliers in the formulation of the backpropagation rule, which leads to good
results. A disadvantage of this approach is that an accurate model of the on-chip multiplier is needed.
This can be alleviated by chain rule perturbation learning (Hollis and Paulos 1994), which only performs
a forward pass through a multilayer network and hence incorporates the hardware characteristics directly
into the training. A solution sometimes applied in optical networks is the use of an additional weight
mask which complements and thereby compensates for the nonlinearities in the multiplier (Neiberg and
Casasent 1994).

Another problem for analog hardware is the requisite of an activation function that is similar to the
standard sigmoid. The incorporation of a model of a sigmoid-like hardware activation function in the
training algorithm can compensate for some inaccuracy (Lont and Guggenbiihl 1992). This is another
example of the opportunism that often plays a role in the design of neural hardware: search for the
hidden advantages of apparent drawbacks and try to exploit these instead of trying to approximate the
existing mathematical model as closely as possible. Another approach is the use of a simplified activation

ci.6.z function, for example the replacement of the Gaussian function in radial basis networks by a triangular
one (Dogaru et a1 1996), leading to a simplified hardware implementation. Additional difficulties arise

El .2:6 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural network adaptations to hardware implementations

0
200 4M) 600 800 loo0

Write Light Intensity (p W I cm)

Figure E1.2.1. Response curve of an LCLV

Figure E1.2.2. A schematic of the weight perturbation algorithm.

when the activation functions are implemented by optical hardware, for example in liquid crystal light
valves. These optical activation functions are characterized, among other nonidealities, by a gain /3 that
differs greatly from the standard value of one, as can be seen in figure E1.2.1 where a sigmoid with a gain
of approximately 1/161 is depicted (Saxena and Fiesler 1995). While in analog electronics one can try to
compensate for a nonstandard gain by including a gain stage, this is not possible in optical implementations.
In theory one could add additional optical components whose aim would be a modification of the effective
gain, but this would increase the complexity and cost of the system, as well as introducing new side effects.
A nice and simple way to solve this problem is by using an adapted backpropagation learning rule that is
based on a simple and precise relationship between the gain and two other network parameters (Thimm et
a1 1996), which compensates for a nonstandard gain without any additional hardware, and shows superior
results (Moerland et a1 1995).

E1.2.4 Hardware-friendly learning algorithms

In this section a variety of learning algorithms that are well suited for hardware implementations of neural
networks are presented. These hardware-friendly learning algorithms (Moerland and Fiesler 1996) can be
divided into two classes, namely:

0

0

adaptations of existing neural network learning rules that facilitate their hardware implementation and
learning algorithms that are by their very conception suitable for hardware implementation.

Here, the emphasis will be on the first of these two classes of hardware-friendly learning algorithms.
An example of the second class is cellular neural networks which are of special interest for VLSI
implementation because of their sparse local connectivity: every unit of the network is a simple analog
processor that interacts only with its neighboring units; see the article by Chua and Roska (1993) for a
survey. Another example is the class of RAM-based networks which can be easily implemented with
standard available components. A recent overview of RAM-based networks and related implementation
aspects is given by Austin (1994).

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 El .2:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

Various hardware-friendlier alternatives have been proposed for several neural network learning rules,
especially with the objective to enable on-chip learning. The most significant ones are discussed in this
section, with an emphasis on hardware-friendly alternatives of the backpropagation algorithm for training
multilayer neural networks.

E1.2.4.1 Perturbation algorithms

ci.z.3 The most popular algorithm for the training of multilayer networks is the backpropagation algorithm (see
for example the book by Rumelhart et a1 (1986)). However, the realization of large backpropagation
networks in analog hardware poses serious problems because of the need for separate or bidirectional
circuitry for the backward pass of the algorithm. Other problems are the need for an accurate derivative
of the activation function and the cascading of multipliers in the backward pass.

The general idea of perturbation algorithms is to obtain a direct estimate of the gradients by a slight
random perturbation of some network parameters, using the forward pass of the network to measure the
resulting network error. Thus, these on-chip training techniques not only eliminate the complex backward
pass but also are likely to be more robust to nonidealities occurring in hardware.

The two main variants of this class of algorithms are node perturbation which is based on the
ci.1.4 perturbation of the input value of a neuron, as for example the madaline-3 rule (Widrow and Lehr 1990),

and weighr perturbation, see for example the article by Jabri and Flower (1992). The basic concepts of
weight perturbation (figure E l .2.2) are easily explained by the observation that the gradient descent weight
update can be approximated by finite differences (.f w j k denotes the perturbation or change of W,k):

(El .2.2)

The madaline-3 rule is based on an application of the chain-rule that is standard in the derivation of the
backpropagation algorithm (sk denotes the input to neuron k and f sk its perturbation):

(El -2.3)

The main disadvantage of these perturbation algorithms is their sequential nature, as opposed to the weight
update calculation in the backpropagation algorithm which can, in principle, be performed in parallel.
The main differences between the madaline-3 rule and weight perturbation are the simpler addressing and
routing circuitry needed for the latter and the lower computational complexity of the madaline-3 rule.
As can be seen in table E1.2.3, weight perturbation also has a good performance with limited precision
weights (Xie and Jabri 1992). Moreover, it is more robust against nonidealities occurring in analog
hardware: nonuniformity, nonideal circuit response, and noise (Cairns and Tarassenko 1994). The reason
for this is that in this algorithm modeling of activation functions and multipliers does not need to be done,
since these form an integral part of the training algorithm. It is interesting to note that the derivation of
the madaline-3 rule does assume the multiplication to be linear which makes possible the reduction of
askjawjk to aj in equation (E1.2.3).

The sequential nature of these simple perturbation algorithms has led to more intricate variants which
perform some of the calculations in parallel. A simultaneous perturbation of all weights is a promising
alternative (Alspector et a1 1993, Cauwenberghs 1993), even when for a reliable estimate of the gradient
the results of several perturbations should be averaged or a very small and accurate perturbation is required.
Other variants use a semiparallel perturbation scheme such as chain rule perturbation (Hollis and Paulos
1994), fan-out orfan-in-out perturbation (Jabri 1994), and summed weight neuron perturbation (Flower and
Jabri 1993). These semiparallel techniques perturb simultaneously all the weights feeding into or leaving
one neuron. An experimental comparison of these perturbation algorithms with an analog multilayer
perceptron chip (Kakadu) in-the-loop showed that the semiparallel techniques are best suited for effective
learning when the accuracy is low (Jabri 1994). The fan-in-out technique showed the best generalization
and training convergence results when the weights and weight updates were quantized to 6 bits.

E1.2.4.2 Local learning algorithms

The implementation of a learning rule can be greatly simplified if it only uses information that is locally
available (Palmieri et a1 1993). This feature minimizes the amount of wiring and communication. Since

El .2:8 Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural network adaptations to hardware implementations

the backpropagation algorithm is not local, several local learning algorithms have been designed that avoid
a global backpropagation of error signals. An example is an anti-Hebbian learning algorithm that is suitable
for optical neural networks (Psaltis and Qiao 1993). The weight updates in this algorithm depend only on
the input and output of that layer and one global error signal. Although it is not a steepest-descent rule,
it is still guaranteed that the weights are updated in the descent direction. Another local learning rule has
been developed by Brandt and Lin (1994) which uses only the rates of change of the outgoing weights of
a neuron. One of their algorithms is mathematically equivalent to the backpropagation algorithm, but the
measurement of the rates of change of the weights could be hard to implement. A promising approach is
taken in the Alopex algorithm (Venugopal and Pandya 1991, Unnikrishnan and Venugopal 1994) which
is a stochastic algorithm based on the correlation between individual weight changes and changes in the
network’s error measure. The main advantages of this approach are that the weights can be updated
synchronously and that no modeling of the multipliers and activation functions is needed.

E1.2.4.3 Networks with Heaviside functions

The design of a compact digital neural network can be simplified considerably when Heaviside functions
are used as activation functions instead of a differentiable sigmoidal activation function. While
training algorithms for perceptrons with Heaviside functions abound, training multilayer networks with
nondifferentiable Heaviside functions requires the development of new algorithms. One of the earliest
examples of such a learning rule is the mdaline-2 rule (Widrow and Lehr 1990), which is closely related
to the previously described madaline-3 rule. It is also based on a slight perturbation of the input to a
neuron, but in this case the training error is minimized by investigating the effect of an inversion of the
activation value of a neuron. If this inversion reduces the Hamming error on the output neurons, the
incoming weights of the inverted neuron are adapted with a perceptron training algorithm to reinforce this
inversion.

There is also a large variety of constructive algorithms which gradually build a Heaviside network by
adding neurons and weights (Smieja 1993). The basis of these algorithms is often formed by a perceptron
algorithm that is used to adapt the weights into the freshly added neurons. Recently, some digital and
mixed analog/digital architectures have been designed to be suitable for the implementation of a range of
these constructive algorithms (Moreno Arostegui 1995).

El .2.4.4 Robustness

In section E1.2.3 several examples have already been given of the robustness of neural networks to
hardware nonidealities. Some research has also been devoted to the robustness of a network to unreliable
neurons. This unreliability can consist of sign inversions of hidden neuron values (Judd and Munro
1993) or destruction of hidden neurons (Kerlirzin and RCfrCgier 1995). While neural networks trained by
standard learning algorithms are not inherently fault tolerant, the incorporation of the expected faults in
the training phase leads to remarkable improvements. An illustration of this fact is an adaptation of the
backpropagation learning rule that uses only a random subset of hidden neurons for each iteration. The
trained network is far more robust to the destruction of hidden neurons and shows performance comparable
to the noiseless case (Kerlirzin and RBfrtgier 1995). This is closely related to the injection of random noise
in the weight values during the training of a multilayer neural network, whose effects have been elaborately
discussed by Murray and Edwards (1994). It is demonstrated both analytically and experimentally that this
synaptic noise improves the network’s fault tolerance to weight damage, generalization to unseen patterns,
and training time. Similar results have been obtained when injecting additive noise into the weights of
recurrent neural networks (Jim et a1 1994).

E1.2.4.5 Other hardware-friendly neural network models

Although the majority of neural hardware is concerned with the implementation of multilayer networks,
because of their wide-ranging applicability, most other popular neural network models have also been
implemented in hardware. A few examples of the use of hardware-friendly learning in self-organizing
feature maps and recurrent networks are given here.

Self-organizing maps. One of the requisites of a neural network hardware implementation is the effective c2.1.1

use of the processor resources. In general, batch processing is an appropriate alternative to obtain better

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9111 E 1.2:9

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

parallelisation. Kohonen’s original algorithm, however, has both an on-line selection of the neuron closest
to the input pattern, the winner neuron, and an on-line weight update. Two possible variants are to have a
batch winner selection combined with either a batch or an on-line weight update. Vassilas et a1 (1995) show
the convergence properties of these two variants to be comparable with those of the original algorithm.

c1.4 Recurrent networks. Two widely used paradigms for training recurrent networks are Boltzmann machine
learning and mean field theory learning. The parallelism of a potential hardware implementation is seriously
hampered by the required asynchronous update of the neurons. Therefore, in both analog (Pujol et af
1994) and optical (Peterson et a1 1990) implementations, a synchronous neuron update is used. Another

ci .4 .2 characteristic of the Boltzmann machine is the use of simulated annealing to gradually increase the gain
of a neuron’s activation function. In Bellcore’s implementation of a Boltzmann machine this annealing
schedule has been replaced by a gradual decrease of additive noise (Alspector 1992), while the main idea
of mean field theory learning is to replace the annealing strategy by a deterministic approximation.

E1.2.5 Summary and conclusions

In this section an overview has been given of a variety of adaptations of neural network learning to enable
their successful hardware implementation. These problems can be as general as the effects of a quantization
of the network parameters or those of the nonidealities of hardware components. Other problems are more
specific for a certain neural network model, such as the complications related to the implementation of the
backward pass of the standard backpropagation algorithm.

The effects of quantization on a range of neural network models have been outlined, and weight
discretization algorithms have been reviewed. These estimations of the required accuracy for well-known
learning algorithms and several of the weight discretization algorithms described are already in use in some
large-scale hardware implementations. Designers of digital neurocomputers, for example, profit from the
fact that the required weight accuracy for backpropagation training is around 16 bits (Mauduit et af 1992).
An example of a successful implementation of a weight discretization algorithm is Battiti’s TOTEM-chip
which uses a weight accuracy of 4 bits (Battiti and Tecchiolli 1994).

Compared to the state of the art in digital neural network implementations, the design of analog
neural network implementations with nonidealities such as component nonuniformity, nonideal responses,
and system noise, is still in a more experimental state. Implementations have therefore been limited to
small-scale networks (Leong and Jabri 1995) and it is yet to be shown whether reliable large networks can
be realized in practice by analog techniques. An important step towards this goal could be the possibility
of on-chip learning, since it has been exemplified that neural network models are remarkably robust to
hardware nonidealities when these are incorporated in the training of the network. The development of
hardware-friendly learning rules that form an alternative for algorithms which are intricate to implement,
like the backpropagation algorithm, is therefore essential. The efficacy of perturbation algorithms illustrates
the usefulness of this approach and the first implementations using these training algorithms are emerging
(Leong and Jabri 1995).

References

Abramson S, Saad D and Marom E 1993 Training a neural network with ternary weights using the CHIR algorithm

Ackley D H, Hinton G E and Sejnowski T J 1985 A learning algorithm for Boltzmann machines Cogn. Sci. 9 147-69
Alspector J, Jayakumar A and Luma S 1992 Experimental evaluation of learning in a neural microsystem Advances

in Neural Information Processing Systems (NIPS91) vol. 4, (San Mateo, CA: Morgan Kaufmann) pp 871-78
Alspector J, Meir R, Yuhas B and Jayakumar A 1993 A parallel gradient descent method for learning in analog VLSI

neural networks Advances in Neural Information Processing Systems (NIPS92) vol. 5 (San Mateo, CA: Morgan
Kaufmann) pp 836-44

IEEE Trans. on Neural Networks 4 997-1000

Annema A J and Wallinga H 1995 Analog weight adaptation hardware Neural Processing Lett. 2 1-4
Asanovi6 K and Morgan N 199 1 Experimental determination of precision requirements for back-propagation training of

artificial neural networks Proc. 2nd Int. Con$ MicroNeuro’91, Miinchen, Germany, October 1991 ed U Ramacher,
U Riickert and J A Nossek pp 9-15

Austin J 1994 A review of RAM based neural networks Proc. 4th Int. Con$ on Microelectronics for Neural Networks
and Fuuy Systems, Turin, Italy, September 2 6 2 8 , 1994 pp 58-66

Balzer W, Takahashi M, Ohta J and Kyuma K 1991 Weight quantization in Boltzmann machines Neural Networks 4
405-9

El .2:10 Hundbook of Neurul Compufufion release 97/1 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural network adaptations to hardware implementations

Battiti R and Tecchiolli G 1994 TOTEM: A digital processor for neural networks and reactive Tabu search Proc. 4th
Int. Con$ on Microelectronics for Neural Networks and Fuuy Systems, Turin, Italy, September 26-28, 1994 pp
17-25

-1995 Training neural nets with the reactive Tabu search IEEE Trans. on Neural Networks 6 1185-200
Beiu V 1996a Direct synthesis of neural networks Proc. 5th Int. Con$ on Microelectronics for Neural Networks and

-1996b Entropy bounds for classification algorithms Neural Network World 6 497-505
-1997 VLSI Complexity of Discrete Neural Networks (New York: Gordon and Breach) in press
Brandt R D and Lin F 1994 Supervised leaming in neural networks without explicit error back-propagation Proc.

32nd Allerton Conf. on Communication, Control, and Computing, Monticello, Illinois, September 28-30, I994 pp
294-303

Cairns G and Tarassenko L 1994 Learning with analogue VLSI MLPs Proc. 4th Int. Conf. on Microelectronics for
Neural Networks and Fuuy Systems, Turin, Italy, September 26-28, I994 pp 67-76

Campbell C and C Perez Vincente 1995 The target switch algorithm: a constructive leaming procedure for feed-forward
neural networks Neural Comput. 7 1245-64

Card H C and Schneider C R 1992 Analog CMOS neural circuits-in situ learning Int. J. Neural Syst. 3 103-24
Cauwenberghs G 1993 A fast stochastic error-descent algorithm for supervised leaming and optimization Advances in

Neural Information Processing Systems (NIPS92), vol. 5 (San Mateo, CA: Morgan Kaufmann) pp 244-5 1
Chua L 0 and Roska T 1993 The CNN paradigm IEEE Trans. on Circuits and Systems-I: Fundamental Theory and

Applications 40 147-56
Chua L 0 and Yang L 1988 Cellular neural networks: theory IEEE Trans. on Circuits and Systems 35 1257-72
Coggins R and Jabri M 1994 Wattle: A trainable gain analogue VLSI neural network Advances in Neural Information

Processing Systems (NIPS93) vol. 6 (San Mateo, CA: Morgan Kaufmann) pp 874-81
Dogaru R, Murgan A T, Ortmann S and Glesner M 1996 A modified RBF neural network for efficient current-mode

VLSI implementation Proc. 5th Int. Con$ on Microelectronics for Neural Networks and Fuuy Systems, Lausanne,
Switzerland, February 12-14, 1996 pp 265-70

Dolenko B K and Card H C 1995 Tolerance to analog hardware of on-chip leaming in backpropagation networks
IEEE Trans. on Neural Networks 6 1045-52

G Dundar and Rose K 1995 The effects of quantization on multilayer neural networks IEEE Trans. on Neural Networks
6 1446-51

Fahlman S E and Lebiere C 1990 The cascade-correlation learning architecture Advances in Neural Information
Processing Systems (NIPS89) vol. 2 (San Mateo, CA: Morgan Kaufmann) pp 524-32

Fiesler E, Choudry A and Caulfield H J 1988 Weight discretization in backward error propagation neural networks
Neural Networks 1 380 (special supplement with ‘Abstracts 1st Annual (INNS) Meeting’)

-1990 A weight discretization paradigm for optical neural networks Proc. Int. Congr. on Optical Science and
Engineering SPIE vol 1281 (Bellingham, WA: SPIE) pp 164-73

Flower B and Jabri M 1993 Summed weight neuron perturbation: an O (N) improvement over weight perturbation
Advances in Neural Information Processing Systems (NIPS92) vol. 5 (San Mateo, CA: Morgan Kaufmann) 212-9

Frye R C, Rietman E A, and Wong C C 1991 Back-propagation learning and nonidealities in analog neural network
hardware IEEE Trans. on Neural Networks 2 110-17

Fukushima K 1980 Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition
unaffected by shift in position Biol. Cybernet. 36 193-202

Grossman T 1990 The CHIR algorithm for feedforward networks with binary weights Advances in Neural Information
Processing Systems (NIPS89) vol. 2 (San Mateo, CA: Morgan Kaufmann) pp 516-23

Hendrich N 1996 A scalable architecture for binary couplings attractor neural networks Proc. 5th Int. ConJ: on
Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland, February 12-14 (Los Alamitos,
CA: IEEE Computer Society Press) pp 117-124

Hoehfeld M H and Fahlman S 1992 Learning with limited numerical precision using the cascade-correlation algorithm
IEEE Trans. on Neural Networks 3

Holler M, Tam S , Castro H and Benson R 1989 An electrically trainable artificial neural network (ETANN) with
10240 ‘floating gate’ synapses Proc. Int. Joint Con$ on Neural Networks (IJCNN89), Washington, DC vol. 2, pp

Hollis P W and Paulos J J 1994 A neural network learning algorithm tailored for VLSI implementation IEEE Trans.
on Neural Networks 5 784-91

Holt J L and J-N Hwang 1993 Finite precision error analysis of neural network hardware implementations IEEE Trans.
on Computers 42 1380-9

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. National
Academy of Sciences USA 79 2554-8

Jabri 1994 Practical performance and credit assignment efficiency of analog multi-layer perceptron perturbation based
training algorithms SEDAL Technical Report 1-7-94 Systems Engineering and Design Automation Laboratory,
Sydney University Electrical Engineering, NSW 2006, Australia

Fuuy Systems, Lausanne, Switzerland, February 12-14, 1996 pp 257-64

191-6

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurotinn release 9711 E 1.2: 11

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

Jabri M and Flower B 1992 Weight perturbation: an optimal architecture and learning technique for analog vlsi
feedforward and recurrent multilayer networks IEEE Trans. on Neural Networks 3 154-7

Jim K, Giles C L and Home B G 1994 Synaptic noise in dynamically-driven recurrent neural networks: convergence
and generalization Technical report UMIACS-TR-94-89 / CS-TR-3322 Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA

Johannet A, Personnaz L, Dreyfus G, J-D Gascuel and Weinfeld M 1992 Specification and implementation of a digital
Hopfield-type associative memory with on-chip training IEEE Trans. on Neural Networks 3 529-39

Judd S and Munro P W 1993 Nets with unreliable hidden nodes leam error-correcting codes Advances in Neural
Information Processing Systems (NIPS92) vol 5 (San Mateo, CA: Morgan Kaufmann) pp 89-96

Kerlirzin P and Rtfrtgier P 1995 Theoretical investigation of the robustness of multilayer perceptrons: analysis of the
linear case and extension to nonlinear networks IEEE Trans. on Neural Networks 6 560-71

Kohonen T 1989 SeIf-Organization and Associative Memory 3rd edn (Berlin: Springer Verlag)
-1993 Things you haven't heard about the self-organizing map Proc. 1993 IEEE Int. Con$ on Neural Networks,

San Francisco, California, March 28-April 1, 1993 vol. 3, pp 1147-56
Leong P H W and Jabri M A 1995 A low-power VLSI arrhythmia classifier IEEE Trans. on Neural Networks 6

1435-45
Lont J and Guggenbiihl W 1992 Analog CMOS implementation of a multilayer perceptron with nonlinear synapses

IEEE Trans. on Neural Networks 3 385-92
Lyon R F and Yaeger L S 1996 On-line hand-printing recognition with neural networks Proc. 5th Int. Conf on

Microelectronics for Neural Networks and Fuuy Systems, Lausanne, Switzerland, February 12-14, 1996 pp 201-
12

Marchesi M, Orlandi G, Piazza F and Uncini A 1993 Fast neural networks without multipliers IEEE Trans. on Neural
Networks 4 53-62

Mauduit N, Duranton M, Gobert J and J-A Sirat 1992 Lneuro 1.0: a piece of hardware lego for building neural
network systems IEEE Trans. on Neural Networks 3 414-22

Moerland P and Fiesler E 1996 Hardware-friendly leaming algorithms for neural networks: an overview Proc. 5th
Int. Con$ on Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland, February 12-14,

Moerland P, Fiesler E and Saxena I 1995 The effects of optical thresholding in backpropagation neural networks Proc.
Int. Con$ on Artificial Neural Networks (ICANN95), Paris, France, October 9-13, 1995 vol. 2, pp 339-43

-1996 Multilayer neural networks for all-optical implementation, in preparation
Moreno Arostegui J M 1995 VLSI architectures for evolutive neural models PhD Thesis Technical University of

Murray A F and Edwards P J 1994 Enhanced MLP performance and fault tolerance resulting from synaptic weight

Neiberg L and Casasent D 1994 High-capacity neural networks on nonideal hardware Appl. Opt. 33 7665-75
Palmieri F, Zhu J and Chang C 1993 Anti-Hebbian leaming in topologically constrained linear networks: a tutorial

Peterson C, Redfield S, Keeler J D and Hartman E 1990 An optoelectronic architecture for multilayer learning in a

Picht S W 1995 The selection of weight accuracies for madalines IEEE Trans. on Neural Networks 6 4 3 2 4 5
Protzel P W, Palumbo D L and Arras M K 1993 Performance and fault-tolerance of neural networks for optimization

IEEE Trans. on Neural Networks 4 600-14
Psaltis D and Qiao Y 1993 Adaptive multilayer optical networks Progress in Optics vol. 31, ed E Wolf (Amsterdam:

Elsevier) ch 4, pp 227-61
Pujol H, Klein 0, Belhaire E and Garda P 1994 RA: an analog neurocomputer for the synchronous Boltzmann machine

Proc. 4th Int. Con$ on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, September 26-28,

Reyneri L M and Filippi E 1991 An analysis on the performance of silicon implementations of backpropagation

Reyneri L M 1995 A performance analysis of pulse stream neural and fuzzy computing systems IEEE Trans. on

Robinson M G and Johnson K M 1992 Noise analysis of polarization-based optoelectronic connectionist machines

Rueping S, Goser K and Rueckert U 1994 A chip for selforganizing feature maps Pmc. 4th Int. Con$ on
Microelectronics for Neural Networks and Fuuy Systems, Turin, Italy, September 26-28, I994 pp 2 6 3 3

Rumelhart D, Hinton G and Williams R 1986 Learning internal representations by error propagation Parallel
Distributed Processing: Explorations in the Microstructure of Cognition vol. 1 : Foundations (Cambridge, MA:
MIT Press) pp 3 18-362

Sickinger E, Boser B E, Bromley J, LeCun Y and Jackel L D 1992 Application of the ANNA neural network chip to
high-speed character recognition IEEE Trans. on Neural Networks 3 498-505

1996 pp 1 17-24

Catalunya, Department of Electronics Engineering, Barcelona, Spain

noise during training IEEE Trans. on Neural Networks 5 792-802

IEEE Trans. on Neural Networks 4 748-61

single photorefractive crystal Neural Comput. 2 25-34

I994 pp 449-55

algorithms for artificial neural networks IEEE Trans. on Computers 40 1380-9

Circuits and Systems-11: Analog and Digital Signal Processing 42 642-60

Appl. Opt. 31 263-72

El .2:12 Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural network adaptations to hardware implementations

Sakaue S, Kohda T, Yamamoto H, Maruno S and Shimeki Y 1993 Reduction of required precision bits for

Saxena I and Fiesler E 1995 Adaptive multilayer optical neural network with optical thresholding Opt. Eng. 34 243540
Simard P Y and Graf H P 1994 Backpropagation without multiplication Advances in Neural Information Processing

Systems (NlPS93) vol. 6, ed J D Cowan, G Tesauro and J Alspector pp 232-39 (San Mateo CA: Morgan
Kaufmann)

Smieja F J 1993 Neural network constructive algorithms: trading generalization for learning efficiency? Circuits Syst.
Signal Processing 12 331-74

Takahashi M, Oita M, Tai S, Kojima K and Kyuma K 1991 A quantized back propagation learning rule and its
application to optical neural networks Opt. Comput. Processing 1 175-82

Tang C Z and Kwan H K 1993 Multilayer feedforward neural networks with single power-of-two weights IEEE Trans.
on Signal Processing 41 2724-7

Thimm G, Moerland P and Fiesler E 1996 The interchangeability of learning rate and gain in backpropagation neural
networks Neural Comput. 8 251-60

Thiran P, Peiris V, Heim P and Hochet B 1994 Quantization effects in digitally behaving circuit implementations of
Kohonen networks IEEE Trans. on Neural Networks 5 450-8

Unnikrishnan K P and Venugopal K P 1994 Alopex: a correlation-based learning algorithm for feedforward and
recurrent neural networks Neural Comput. 6 469

Vassilas N, Thiran P and Ienne P 1995 How to modify Kohonen's self-organizing feature maps for an efficient digital
parallel implementation Proc. Int. Con$ on Artificial Neural Networks, Cambridge, June 26-28, 1995

Venugopal K P and Pandya A S 1991 Alopex algorithm for training multilayer neural networks Proc. Int. Joint Con$
on Neural Networks (NCNN), Singapore, November, 1991 vol 1 pp 196-201

Verleysen M, Sirletti B, Vandemeulebroecke A and Jespers P G A 1989 A high-storage capacity content-addressable
memory and its learning algorithm IEEE Trans. on Circuits and Systems 36 762-6

White B A and Elmasry M I 1992 The digi-neocognitron: a digital neocognitron neural network model for VLSI
IEEE Trans. on Neural Networks 3 73-85

Widrow B and Lehr M A 1990 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
Proc. IEEE 78 1415-42

Xie Y and Jabri M A 1992 Training limited precision feedforward neural networks Proc. 3rd Australian Con$ on
Neural Networks pp 68-71

backpropagation applied to pattern recognition IEEE Trans. on Neural Networks 4 270-4

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 El .2:13

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Imdementations

E1.3 Analog VLSI implementation of neural networks

Eric A Vittoz

Abstract

This chapter introduces the motivation for doing signal processing by means of analog
VLSI, before discussing the peculiarities and implementation constraints of this approach.
The possible modes of operation and the model of the MOS transistor are then recalled
before identifying the properties of individual transistors and of their basic combinations
to be exploited opportunistically in analog circuits. Some implementations of local and
collective operators relevant to neural networks are then discussed. The difficult problems
of analog storage of synaptic weights and of communication between cells are addressed
in the last part.

E1.3.1 Introduction

With modern scale-down VLSI processes, hardware implementations of traditional signal processing such
as filtering are progressively changing from analog to digital circuits.
minimum power consumption Pfin required to implement one pole of filtering at frequency f by digital
and by analog circuits. It shows that digital solutions are more efficient with respect to power consumption
when the required signal-to-noise ratio (SNR) exceeds 60 to 80 dB. Indeed, signals represented by codes
or by numbers can be regenerated at every step of the process, and noise is limited to the effect of
quantization. Power is thus only a weak (logarithmic) function of the signal-to-noise ratio. Qualitatively,
the horizontal axis can also represent precision and distortion, whereas the vertical axis also applies to chip
area. Furthermore, digital systems are easy to design by mapping algorithms onto silicon in a top-down
procedure. Therefore, digital implementations are absolutely needed to meet the requirements of systems
aiming at the precise restitution of information, later in time after storage or elsewhere in space after
transmission.

Figure E1.3.1 represents the ~ 1 . 4

Pdn/f per pole [Jl (also qualitatively: chip area)

gate energy per transition [Jl

10-14 I evolution
process

10-13

10-15

t
10-9 ..

for "restitution"

analog for "perception"

10-18 b<yk ~

SNR [a] (also qualitatively:
precision, linearity)

0

Figure E1.3.1. Minimum power and optimum use of digital and analog processing (Vittoz 1990, 1994a).

Neural networks are intended to carry out tasks of a quite different nature, which are related to the
perception of an environment or of a situation, on the basis of a large number of data or signals. Here,

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 E 1.3 : 1

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Imdementations

the need for precision is replaced by that for a massively parallel collective processing of these data,
and noise (not to be confused with the quantization noise of digital systems) is not harmful or may even
improve the processing speed. As also shown by figure E1.3.1, analog solutions can therefore be expected
to be more effective with respect to power consumption and chip area for the implementation of these
perception systems (Mead 1989, Vittoz 1994b). Analog processing permits continuous time and continuous
amplitude. It also allows us to exploit, in an opportunistic manner, all the features offered by the available
components, in order to further reduce the area per function. Truly massive parallel computation is then
possible in very large structures that can be inspired by biological solutions.

E1.3.2 Characteristics of analog signal processing

Analog processing may first be characterized by the fact that signals are represented not by codes or by
numbers, but by physical variables. These may be a voltage, a current, a charge, a frequency, or a time
duration. These various modes of signal representation have their respective advantages and drawbacks
and can therefore be used in different parts of the same system.

The voltage representation makes it easy to distribute a signal in various parts of a circuit, and to
store this signal into a capacitor. Summing voltages requires dedicated active components.

The current representation facilitates the summing of signals. However, it complicates their
distribution since replicas must be created which are never exactly equal to the original current. Linear
and nonlinear current mode operations are facilitated by powerful techniques such as translinear circuits
and pseudoconductance, which will be discussed later.

The charge representation requires time sampling. Packets of charge can be summed or subtracted
by means of charge-coupled devices (CCD) or by switched capacitor (SC) techniques (Temes 1987).
Multiplication requires a translation into voltage or current representations.

The pulse frequency or time between pulses is used as the dominant mode of signal representation for
communication in biological nervous systems. Signals represented in this pseudobinary manner (pulses
of fixed amplitude and duration) are easy to regenerate and this representation is therefore preferred for
long-distance transfers of information. It is discontinuous in time, but the phase information is kept
in asynchronous systems. Alternatively, a representation by pulse duration may facilitate some local
operations.

In any case, the value of the physical variable which represents a signal must be related to a reference
value. This reference must either be produced internally, with its origin clearly identified to keep it under
control with respect to process and ambience variations, or it must be provided from outside. The number
of separate references required to implement an operator with k input variables and p output variables may
range from none to k + p , depending on the signal representations and on the type of operation (Wttoz
1994b). If the operation is time dependent, at least one time reference is needed.

Integrated analog circuits are also characterized by the very poor absolute precision of the available
components. The combination of process variations, temperature variations and aging results in a level of
absolute precision ranging from 5% in the best case to several hundred per cent for some components.
However, all identical components on a chip tend to vary in the same manner, and therefore the relative
precision of components is much better, and may be as good as 0.1% for carefully implemented devices.

All circuit architectures should thus be based on ratios of matched component values. Matching
between components can be improved by respecting the following rules, mostly related to layout
(Vittoz 1985):

0 Devices to be matched should have the same structure, in order to depend on the same process
parameters.
They should be at the same temperature. This is easily obtained if heat generation on the chip is
negligible. Otherwise, matched devices should be placed on the same isothermal curve (by exploiting
symmetries), as far as possible from heat sources.
They should have the same shape and the same size, to minimize the effect of under- or oversizing
due to fabrication steps.
They should be at a minimum distance, in order to eliminate the contribution of spatially correlated
fluctuations of parameters.
Common-centroid shapes should be used to eliminate the effect of constant gradients.

0

0

0

0

El .3:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

e

e

e

and

They should have the same orientation on the chip; this eliminates mismatches due to nonisotropic
effects during processing (i.e. shadows) and to nonisotropic physical mechanisms (stress, temperature
gradient).
Devices to be matched should have identical surroundings. Indeed the first and last elements of linear
arrays may differ from the other elements; therefore, they should not be used functionally in critical
situations. The same is true for the first and last columns and rows in two-dimensional mays.
They should have a nonminimum size to provide better averaging on random variations of relevant
specific local parameters (mobility, oxide thickness, sheet resistivity, and the like) and on spatially
fluctuating width and length.
The relevance and importance of each of these rules depends on the type of device, on the process,
on the required level of precision.
The representation of signals by physical values makes analog circuits very sensitive to physical

sources of noise. Most fundamental is the thermally generated noise, which necessitates elevating the
signal energy above a minimum level, as shown by figure E1.3.1. However, the noise as well as the
limited precision in analog circuits must be clearly distinguished from those due to the limited number
of bits in digital circuits: indeed, they are not related to any quantization effect, and thermal noise is
truly random. It has been shown that the presence of random noise can even be beneficial in improving ~ 3 . 5 . 2 . 8

the learning behavior of analog neural networks (Murray and Edwards 1993). Additional noise, possibly
nonrandom, may come from the power supply or from coupling to clock transitions or to other signals
generated on the chip.

E1.3.3 Basic components of analog complementary metal oxide semiconductor very large-scale
integration

E1.3.3.1 Transistors

The metal oxide semiconductor (MOS) transistor is the most fundamental component of analog VLSI. For
most applications related to neural networks, its drain current ZD can be approximated by (Vittoz 1994c)

= I F - ZR (E1.3.1)

with

and
ZF = Zsf(V,, VG)

ZR = z s f (V ~ , VG)

(forward component)

(reverse component)

(E1.3.2)

(E 1.3.3)
where the source voltage Vs, the drain voltage VD, and the gate voltage VG are defined with respect to the
local substrate (which may be a well), as shown by figure E1.3.2 together with the symbols for p- and
n-channel transistors. In practice, the electrode B corresponding to the local substrate is only represented if
it is not connected to the positive rail V+ for the p-channel, and to the negative rail V- for the n-channel.

The decreasing function f(V, VG) is shown in the same figure. It can be approximated by

f(V, VG) = ln2[1 + e(vp-v)/2uT] with V = VS or VD (El .3.4)

weak inversion:

I V- rail n-channel

Figure E13.2. Modeling and symbols for MOS transistors.

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 El .3:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

v p =

where

'G - 'TO
n constant

equipotential
channel

fleak
version * I d s

ed

reverse
aturation ~ 7 -

VG - VTO
v p =

n

'IS

Figure E1.3.3. Modes of operation of a MOS transistor.

(E1.3.5)

is called the pinchoff voltage and UT = k T / q . In this model, the gate threshold voltage VTO is a constant
of the process (independent of Vs). It may, however, become dependent on the channel length L and
channel width W for very small dimensions (Tsividis 1987). The slopefactor n is normally smaller than
2 and tends slowly to 1 for very large VG. The third and last fundamental parameter of the transistor is
the spec@ current IS appearing in (E1.3.2) and (E1.3.3); it is given by

IS = 2nSUT. 2 (E1.3.6)

It includes the usual transfer parameter

B = CLCOXW/L (E1.3.7)

where p is the mobility in the channel, Cox the gate capacitance per unit area, and W I L the effective
width-to-length ratio of the gate.

For V - Vp << -UT, f(V, VG) becomes a square law. The corresponding component IF or IR given
by (E1.3.2) or (E1.3.3) is much larger than Is , and is said to be in strong inversion.

For V - Vp >> UT, f(V, VG) becomes exponential. The corresponding component IF or IR is much
smaller than IS, and is said to be in weak inversion.

The global mode of operation of the transistor depends on the signs of Vs - Vp and VD - Vp (or on
the values of &/IS and IR/&) as represented in figure E1.3.3.

The transistor is in conduction for Vs and VD smaller than Vp (IF and IR larger than I s) ; the drain
current given by (El .3. lHEl .3 .5) can then be approximated by

where the squared terms are zero for negative arguments. The transistor enters forward (or reverse)
saturation when VD (or Vs) becomes larger than Vp; the second (or respectively the first) term then
vanishes and ID becomes independent of VD (or VS).

For VD and Vs both larger than Vp (IF and IR smaller than I s) , the transistor operates globally in weak
inversion (also called subthreshold); the drain current given by (E1.3.1)-(E1.3.5) can then be approximated

ID = IF - IR = Is e(VG-vT3)/"UT(e-VS/UT - e-vD/uT). (E 1.3.9)

The drain current ID in weak inversion also saturates (becomes independent of VD or Vs) as soon as
(VD - Vsl >> UT. It decreases exponentially with VG and -VS (or -VD) until it becomes SO small that the
transistor is considered to be blocked.

by

El .3:4 Handbook of Neural Compufafion release 9711 @ 1997 IOP Publishing Ud and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

7 i current source I = I F I................. t ID k
Figure E13.4. Generic output characteristics for VG and Vs constant.

Temperature variations affect the transistor characteristics through the variation of the thermal voltage
UT, and through that of the three parameters VTO, /!I, and n. The variation of VTO is approximately
-2 mV "C-' and dominates the drain current variation in weak inversion. Mobility variations affect the
value of by approximately -0.5% "C-' and tend to dominate in strong inversion. The variation of n of
the order of

As also shown by figure E1.3.3, a parasitic bipolar mode appears if the source junction is sufficiently
forward biased (Vs < -V,). It is changed into a clean (lateral) bipolar operation if the surface MOS
current is blocked by pushing Vp below -VJ (by a very small or negative value of VG) (Vittoz 1983). This
provides a compatible bipolar transistor in which the original source (S), well, and drain (D) terminals
become, respectively, the emitter (E), the base (B), and the collector (C). Part of the emitter current of
this bipolar transistor flows downwards to the substrate, which plays the role of a second collector.

This vertical grounded collector transistor may also be used independently; the gate and drain
structures are then useless and can be removed. The same device can be used as a sensitive photodetector;
incident photons create electron-hole pairs which are collected by the base (well) to collector (substrate)
junction. If the base is left open, the generated photocurrent is multiplied by the current gain of the
transistor.

Coming back to the field effect modes of operation, the generic ZD(VD) characteristics for VS and
VG constant are shown in figure E1.3.4, where two qualitatively different behaviors can be identified:
voltage-controlled current source and voltage-controlled conductance.

The transistor behaves as a voltage-controlled current source I = IF in forward saturation, that is, for
VD > VDsat given by (from (E1.3.1)-(E1.3.5))

"C-' is usually negligible.

VDs, = vs + 3 to 4uT

VDs, = v p = vG -
n

for weak inversion (I << IS)
for strong inversion (I >> I S) .

(E 1.3.10)

(El .3.11)

As shown before, the transfer function I (VG) is exponential in weak inversion and quadratic in strong
inversion. Connecting the gate to the drain and imposing a current I provides the inverse functions VG(I)
which are, respectively, logarithmic and square root.

The small-signal dependence of this current source on the gate voltage can be characterized by the
transconductance gm = aZ/aVG. Equations (E1.3.9) and (E1.3.8) yield

I in weak inversion (E 1.3.12) g m = -
n UT

g,=-= - (El .3.13) zs) ' /2 (2:) = /!I (vp - vs) in strong inversion .
n UT

Thus, weak inversion provides the maximum possible value of g, for a given value of current I and

The transistor behaves as a voltage-controlled conductance g for VD Z V,. It can be easily shown

g = n g m (E 1.3.14)

the minimum value of saturation voltage V,,,,.

that

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 El .3:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

E1.3.3.2 Passive components

Capacitors are needed to implement time-dependent processing functions and to store signals or parameters
(in particular, synaptic weights). They can be implemented as a sandwich of any pair of conductive
layers (metal or polysilicon) separated by a layer of silicon oxide. The thinnest oxide layer available
(corresponding to the maximum capacitance per unit area) is often the gate oxide of the MOS transistor.
Therefore, a transistor can be used to implement a capacitor of value WLC,,. The source and the drain
should be connected to the local substrate and care must be taken to bias the gate sufficiently above
threshold VTO, in order to ensure strong inversion of the channel.

Resistors may be needed to convert voltages into currents. The sheet resistivity Rs is usually provided
by the polysilicon layer. It does not usually exceed 100 ahquare, which makes high-value resistors very
area consuming.

A transistor operated in conduction provides a sheet resistivity given by (E1.3.13) and (E1.3.14),

(El .3.15)

This value is inversely proportional to the linear voltage range, as shown by figure E1.3.4. It may
reach several 10 kahquare for a range 1 V. Several techniques, mostly based on symmetry, have been
developed in order to improve the linearity (Tsividis et a1 1986).

Resistors may also be needed to achieve linear splitting of currents. Such a function may be realized
by transistors in the following manner. By defining a pseudovoltage

where VO is a scaling voltage of arbitrary value, equation (E1.3.1) may be rewritten as

This is the linear Ohm law with a constant pseudoconductance of the transistor

g* = k/VO (E1.3.18)

which depends on the width-to-length ratio W / L in I s . Thus, networks of transistors interconnected by
their sources and drains with a common gate voltage behave linearly with respect to currents (Vittoz and
Arreguit 1993). The pseudovoltage V' cannot change sign, but its O-reference level (pseudoground) is
reached as soon as the corresponding real voltage V is large enough to saturate the transistor, which
facilitates the extraction of any current flowing to ground. Moreover, if the transistors are maintained in
weak inversion, equation (E1.3.9) shows that the dependences on VG and VS or VD can be separated to
permit the following alternative definition of V* and g*:

V' = - Voe-v/uT for weak inversion only (E1.3.19)

g* = 5 e(vo-vm)/nuT for weak inversion only. (E1.3.20)

The network of transistors remains linear with respect to currents but the pseudoconductance g* of

VO

each transistor is now controllable independently by the value of its gate voltage VG.

E1.3.3.3 Basic combinations of transistors

The most important and most widespread elementary combinations of transistors are the current mirror
and the differential pair illustrated in figure E1.3.5.

The current mirror provides one or more copies of its input current weighted by the ratios of specific
currents I s i / I s o . These ratios must be obtained by parallel connections (or even series connections in the
same local substrate) of identical unit transistors if precision is needed (Vittoz 1985). Each transistor Ti
may also be used as a current-controlled conductance gi according to (E1.3.12) to (E1.3.14).

The differential pair splits a bias current IO into two components I , and I z , the difference of which
is an S-shaped function of the input voltage V . The transconductance g, at the origin is controlled by lo

El .3:6 Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

Figure E13.5. (a) Current mirror and (b) differential pair.

0.01 1
Weak strong inversion

0-h
0.01 1 loo

W c a L strong inversion

Figure E1.3.6. Effect of mismatch on current mirror and differential pair.

according to (E1.3.12) or (E1.3.13) with I = I 0 / 2 . The transfer function in weak inversion obtained from
(E1.3.9) is

V
(E1.3.21)

and has the maximum slope for a given value of IO. The voltage scale is expanded in strong inversion for
which saturation is reached at

f V = 2nUT(Io/Is)'/2 = (2nIo/B)'/2. (E1.3.22)

The difference I = I1 - I2 of the two output currents of a differential pair is easily carried out by one
or more complementary current mirrors. This results in an operational transconductance amplifier (OTA),
the most fundamental block for traditional analog processing (Vittoz 1985).

The characteristics of combinations of transistors are affected by the unavoidable statistical mismatch
between devices. For the current mirror, the resulting relative spread of output currents has an RMS value
given by (Vittoz 1994c)

(E1.3.23)

where ap is the relative mismatch of specific currents (or of transfer parameters /I) and CTVT the absolute
mismatch of threshold voltages, both in RMS values. In the differential pair, mismatch creates a horizontal
offset of the transfer characteristics of RMS value

(E1.3.24)

These results are plotted in figure E1.3.6 for typical values for minimum-size devices (UT = 5 mV,
ap = 2% nUT = 40 mV), by using a continuous value of &(ID) computed from (E1.3.2) and (E1.3.4).

It can be seen that the precision of a current mirror is drastically degraded when the transistors operate
in weak inversion. If weak inversion is imposed by a very low current level or by the need to minimize
the saturation drain voltage V D ~ ~ ~ , much better results are obtained by operating the transistor in the lateral
bipolar mode. The offset voltage of a differential pair is limited in weak inversion to the contribution of

Another basic combination of transistors is the translinear loop which, in its original form (Gilbert
1975), exploits the exponential transfer characteristics of bipolar transistors to obtain products of currents.

UVT *

~

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 E1.3:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

It can also be implemented with a limited precision by MOS transistors operated in weak inversion. A
translinear loop made of MOS transistors in a common substrate is illustrated in figure E1.3.7.

c 3
Figure E1.3.7. Translinear loop of MOS transistors in weak inversion (common substrate).

Each transistor in the loop is saturated at a current Zi given by (E1.3.9):

The loop is made of an even number of transistors connected by their gates and sources, half of them
in each direction, clockwise (cw) and counterclockwise (ccw), so that

cw ccw

Now, if the cw and ccw transistors are alternated, as in the figure, each gate voltage V G ~ is shared by
a cw-ccw pair of transistors. It is thus compensated side by side in (E1.3.26) and can therefore be replaced
by VGiln in this equation. Expressing VGiln - Vsi as a function of the saturation current Zi according to
(E1.3.25) yields

(E 1.3.27)

where the loop factor A = 1 for perfectly matched identical transistors.
Circuits exploiting this fundamental result may be built on loops sharing some transistors. The

principle can be extended by including any number of transistors connected source to drain in the loop
(Andreou and Boahen 1994). These transistors are then no longer saturated and each of them is equivalent
to two saturated transistors Ti and q-1 (same gate voltage) connected in parallel to represent the forward
and reverse modes. The current flowing through each of these nonsaturated transistors is then Zi - Z i - 1 .

If the transistors in the same substrate are not alternated cw-ccw, equation (E1.3.26) is only
approximately valid since n > 1. Correct translinear operation can be restored by putting each transistor
in a separate well connected to its source (all Vsi = 0), with all transistors saturated.

As shown by figure E1.3.6, currents from MOS transistors operated in weak inversion are not very
precise. Furthermore, the slope factor n depends slightly on the gate voltage, and may thus be slightly
different from transistor to transistor. Much more precise translinear loops are obtained by using bipolar-
operated devices or true bipolar transistors.

E1.3.4 Analog functional blocks

E1.3.4.1 Local operators

Additiodsubtraction of signals. The sum of currents is directly provided by applying Kirchhoff s law. If
needed, the sign of any current can be changed by a single cwent mirror.

Summing voltages is usually best obtained by first converting them to currents. If the voltage sources
are floating, each conversion may be carried out by the transfer function of a differential pair in an OTA.
Several techniques have been developed to increase the range of linearity of the transconductance, mostly
for applications in time-continuous filters (Tsividis 1994). Voltage-to-current conversion can be obtained

El .3:8 Handbook of Neural Computation release 9111 @ 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

I +

V-
(a) (b) (C)

Figure E1.3.8. Current conveyors for weighted sum of voltages.

VO I vo

Figure E1.3.9. (a) Linear voltage-to-current and (b) current-to-voltage conversion.

by any resistive element, provided a virtual ground is available to extract the current. This can be achieved
by elementary current conveyors such as those shown in figure E1.3.8.

Circuit (a) imposes by symmetry a virtual ground node N at the level of the ground. Version (b) is
even simpler, but the virtual ground level is vGI(ZF1 = l o) below the positive rail V+. Conversion of
positive and negative signals can be obtained by adding a bias current at the input of the conveyor and
subtracting the same current at the output. The results of several voltage-to-current conversions may be
directly added with a single conveyor as shown in part (c) of the figure. The characteristics Zi(Vj) of each
dipole may be nonlinear in the general case. It must be a linear conductance for a linear conversion, but
this conductance may be different for each input to achieve different weighting before summing. It may be
implemented by a transistor operated in conduction according to (E1.3.14); linearity is then maintained if

<< V D ~ ~ ~ , and the value may be controlled by the gate voltage. Voltages may be subtracted by converting
them by a separate conveyor and by subtracting its output current.

Linear conversion by a transistor may be done withaut loading the input voltage source by the simple
configuration of figure E l .3.9(a).

Transistor T1 is maintained in conduction by the small drain-to-source voltage imposed by bias VO and
maintained constant by the large transconductance of follower T2 (which may alternatively be a bipolar
transistor). Then, from the strong-inversion model (E 1.3.8):

(E1.3.28)

If needed, the surddifference of currents may be reconverted into a voltage. A simple and elegant
solution shown in figure E1.3.9(b) (Bult and Wallinga 1987) uses two identical transistors operated in
saturated strong inversion. The model yields

PI

n I 2 -(Vo - VTO)(V - VTO) for 8 2 >> and V - VTO >> Vo - VTO .

(E 1.3.29)

The standard manner of weighting and adding voltages shown in figure E1.3.10(a) requires a full
operational amplifier (low output resistance) and linear resistive elements. Another method is based on
switched capacitors as illustrated in part (b) of the same figure. This circuit operates in two clock phases,
and the output voltage is only available during the phase shown in the figure. These two classical methods
are usually too complicated for applications in neural networks.

MuZtipZication/division. Multiplication of voltages (V - VTO) and (VO - VTO) is already provided by the
voltage-to-current converter of figure E1.3.9(a), and the multiplication of current IO by voltage V can be
obtained by a single differential pair operated in weak inversion, according to (E1.3.21) with V << 2 n U ~ .

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 El .3:9

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

Figure E1.3.10. Classical methods for voltage weighting and summing.

The multiplication of two differential voltages requires three differential pairs operated in strong inversion
and configured into a Gilbert multiplier (Gilbert 1968) shown in figure E1.3.11(a).

Application of the model for saturated strong inversion yields

B
21/2n la - 1b -(VI - Vz)(v3 - v4) for (vi - v2) and (v3 - v4) << (2n10/B)'/~. (E1.3.30)

Figure E1.3.11. (a) Voltage and (b) current multipliers.

The multiplicatioddivision of currents is easily obtained by exploiting the translinear principle, as in
the example of figure E1.3.1 l(b) using bipolar transistors. Application of (E1.3.27) with negligible base
currents results in

12 = Z1Z4/13 for ZI 5 13. (El .3.3 1)

This circuit may be modified to carry out a four-quadrant multiplication (Gilbert 1983).

Vecror length calculation. Calculation of the length of a two-dimensional vector (or of the Euclidean
distance between two points) can be obtained by the translinear circuit of figure E1.3.12(a) (Gilbert 1981).

This single-quadrant circuit can be extended to n-dimensional calculation by creating n translinear
loops Tbj - Td - Tci - To, each accepting one component Zi of the vector. It can also be implemented
by means of MOS transistors if the poor precision to be expected from weak inversion is acceptable. An
alternative solution using the square law characteristics of MOS transistors in strong inversion is depicted
in figure E1.3.12(b) (Landolt et a1 1992). It requires 4n + 8 unit transistors to compute the n-dimensional
vector length in all quadrants.

E1.3.4.2 Collective operators

Fast collective processing of a large number of signals is made possible by circuits capable of truly parallel
computation, based on simple repetitive cells, that communicate through only one or a few interconnections.
Several examples are given here.

Nomlization of signals. To permit the comparison of a set of signals in a wide range of levels, it is
useful to normalize these signals to obtain a predetermined total value Ztot. This operation is performed
by the circuit shown in figure E1.3.13 (Gilbert 1984).

All cells have the same voltage difference V between the emitters of their input and output transistors.
Therefore, thanks to the exponential transfer characteristics, each cell provides the same current gain
Zout/Zin, whereas the sum of all output currents is imposed as Ztot. Alternatively the gain may be imposed

El .3:10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

Figure E13.12. Circuits for vector length calculation.

cell i + +
Figure E13.13. Normalization of a set of signals.

by imposing the ratio of the sums of input and output currents. The input node of one cell must then be
grounded to ensure proper biasing, and the circuit is a generalization of the multiplier of figure E1.3.11(b).
Bipolars may be replaced by MOS transistors in weak inversion if precision is not required.

+ I
v-

V+

I 0 3 fout 1

1

I,.-

,..

cell 1 cell i cell n

Figure E1.3.14. Winner-take-all circuit and extraction of maximum current.

Winner-take-all. As illustrated in figure E1.3.14, only 4n transistors are needed to determine the largest of
n currents (Lazzaro et a1 1988). The voltage V increases until the saturation current ZF of all transistors
Ta equals the largest of input currents Zin. Therefore, all transistors T, leave saturation, all transistors Tb
are blocked and all output currents Zout are zero, except in the winning cell which takes all the bias current
ZO and mirrors it at its output. If the current source ZO is replaced by diode-connected transistor Td, then
the winner cell delivers rout = Ziamax. If only the value of the maximum is needed, it can be extracted by
an additional transistor T,. The n-channel current mirrors are then no longer needed and the drains of
transistors Tb can be directly grounded to V - (Chevroulet et a1 1995).

Weighted average of signals. The weighted average of a set of voltage sources vi is easily obtained by
connecting each of them to a common node Vout through a weighting conductance gi, as illustrated in
figure E1.3.15(a). If no current flows out of the common output node, then

(El .3.32)

Each conductance gi may be replaced by the transconductance g,. of an OTA, as shown in part (b)
of the same figure (Mead 1989). The input sources are then no longer loaded and the transconductances
can be individually controlled by the bias current Zoi of the amplifiers.

@ 1997 IOP Publishing Ltd and Oxford University Ress Hadbook ofNeural Computation release 9711 E1.3111

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

....... m (a) "Out

Figure E1.3.15. Weighted averaging of signals.

E1.3.4.3 Resistive diffusion networks

Local averaging, in which the contributions of spatially distant sources are reduced, can be obtained by the
resistive diffusion network (Mead 1989) represented in figure El .3.16 for the two-dimensional case. The
contribution to voltage vj of an input current Zi is maximum locally (i = j) and vanishes with distance at
a rate approximated by

v j / Z i M r-''2exp(-r/L) with L = 1/(RG)'I2 (E 1.3.33)

where r is the distance between nodes i and j measured in grid units. Linearity can be maintained if the
real resistors R and 1 / G are replaced by transistors operated as pseudoconductances, as illustrated by the
comparison of subnetworks (b) and (c) in the same figure. The current ZG flowing to the pseudoground
can be extracted by an n-channel current mirror. If the transistors are maintained in weak inversion, their
gate voltages V, and VG can be adjusted independently to control the value of L. Examples of applications
are spatial filtering of images and implementation of the weighted excitatory-inhibitory connections that
provide the necessary collective behavior in self-organizing feature maps (Vittoz et a1 1989).

Replacing the p-channel transistors TG by n-channel devices operated as current sources ZO results in
the nonlinear diffusion network represented in figure E1.3.17 (Heim et a1 1991). The single input current
Zi, injected at node i is distributed among the Zin/Zo closest current sources Io, which stay saturated with
large node voltage vj. All sources beyond this limit leave saturation with vj close to 0.

This circuit can be used to spread an activity in a well-defined area centered at node i .

E1.3.4.4 Storage of synaptic weights

If the synaptic weight values are preestablished by running the learning phase on a computer, they can be
stored in a fixed manner as width-to-length ratios of transistors or resistors (Vittoz et al 1989). Besides

(a 1 (b) (C)

Figure E1.3.16. No-dimensional resistive diffusion network.

Figure E13.17. Nonlinear diffusion network.

El .3:12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

preventing any further learning, this solution does not allow the compensation of variations from circuit
to circuit.

Short-term storage of adjustable weights can be obtained by sampling and holding a voltage across
on-chip capacitors, as illustrated by figure E1.3.18(a). Even if the channel of the switch transistor Ts is
completely blocked during the storage phase, the storage time is limited by the leakage of the associated
diffusion to substrate junction. This current can be minimized by minimizing the voltage across this
junction as in the improved solution of figure E1.3.18(b) (Landolt 1992). To store current I , transistor
TS is switched on. The difference I’ - I is then integrated into capacitor C until I’ = I . This current
is then available from output transistor To after Ts is blocked. The voltage across the leaking junction
at critical node N is limited to a small offset Vas. The effect of the charge injected by blocking the
transistor can be reduced by various compensation techniques (Wegmann et a1 1987). The storage time
with integrated capacitors cannot exceed a few minutes; the weight values must thus be maintained by
continuous learning, or must be periodically refreshed to predefined analog levels (Vittoz et a1 1991) or
to a digitally stored value. Digital storage may be local or centralized on the chip, or it may be provided
by an external computer. It requires analog-to-digital (AD) and digital-to-analog (DA) conversions with a
number of bits compatible with the acceptable amount of quantization.

The best solution for long-term storage of analog weights is to use floating gate transistors. The
leakage of charge is drastically reduced by completely wrapping the gate electrode in silicon dioxide,
which extends the storage time to several years. Changing the stored value may be achieved in standard
complementary MOS (CMOS) technologies by providing a high level of energy to charge carriers, by
means of avalanching or UV illumination. Better solutions based on field-aided tunneling usually require
special processes adapted for digital E2PROM, although some solutions are being worked out with standard
processes.

, V+

V-

Figure E13.18. Storage of synaptic weight as a voltage on a capacitor C.

E1.3.4.5 Neuron circuit

The generic block of a circuit that includes the most important functions of a formal neuron is represented
in figure E1.3.19. Not all functions are necessarily implemented in a given circuit, and some neural
networks may require completely different types of cell.

E l l cell bodv

Figure E1.3.19. General form of a neuron.

Each dendrite aggregates and possibly delays the inputs which are weighted by the synapses. The cell
body sums up the contributions of all dendrites and produces the output signal to the axon. Its nonlinear
transfer function may be obtained by dedicated means, by the natural saturating behavior of the summing
circuitry, or by that of the subsequent synaptic circuitry (Coggins et a1 1995). An interesting solution

@ 1997 IOP Publishing Ud and Oxford University Ress Handbook of Neural Computation release 9711 E1.3:13

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

creates this nonlinear behavior by the shape of a ramp voltage, common to all neurons, which controls the
pulse-width-modulated (PWM) output signal (Murray et a1 1994); a symmetric ramp avoids synchronous
transitions of the neurons.

Since the number of synapses may be very large, each of them must be implemented in a very dense
manner by using the rich set of possible basic operators. Efforts to achieve high precision usually result
in fairly large synaptic circuits (Heim and Vittoz 1994). The detailed function and implementation of the
weight adaptation part of the synapse depends on the type of network and on the learning process.

E1.3.5 Communication of analog data

Collective computation requires a dense network of communication in neural networks, but high
connectivity is difficult to achieve in intrinsically two-dimensional VLSI technologies. Some collective
actions are possible with just one common wire, as was shown for normalization, averaging, or
determination of a spatial maximum. A collective behavior is also possible by limiting the communication
to adjacent cells, and by propagating the information from cell to cell. This is the approach used in
cellular automata, in cellular neural networks (CNNs) (Chua and Yang 1988a, b), and in resistive diffusion
networks.

The standard algorithms for software implementations of neural networks may be modified in order to
eliminate long-distance connections between cells. Interconnections may be implemented in a hierarchical
manner, or with a density which is a very strong inverse function of the distance, as is the case in biological
networks. Communication of signals represented by voltages or by currents is prone to degradation by
noise and by crosstalk, and can therefore only be used for short-distance communication. Nature has
developed communication schemes based on a pulse frequency representation of activities, which turns
out to be very effective for long-distance communication in artificial networks.

On-chip or chip-to-chip communication can exploit the very large speed available in VLSI technologies
to implement some form of multiplexing of an analog bus. Standard solutions use a periodic scanning
of the array of transmitting cells (Mead and Delbriick 1991). The origin of each sample present on the
analog bus is given by its position in the sequence. Yet this solution has several drawbacks. It requires a
clock which may interfere with analog signals on the chip; maintaining the timing information content of
the signals would require a very high clock frequency, which is usually not feasible. Such a systematic
scanning of all cells becomes very inefficient when the overall activity is very sparse. Thus, the ideal
scheme would be asynchronous with a priority of access to the common bus based on the level of activity.

These features can be obtained by a particular type of pulse frequency communication using address
coding events (Mahowald 1992) as illustrated in figure E1.3.20.

addnts-coding events
I I

Figure E13.20. Communication by address coding pulse events.

The activity to be transmitted from one cell is converted into the frequency of very short pulses.
During each pulse, the address of the cell is transmitted on the bus by simple wired OR coding. Each
synapse can decode the relevant events and reconvert their frequency into an adequate signal representation.

The pulse duration is as short as possible in order to minimize the collision rate. However, collisions
are unavoidable and must be handled in a proper manner. They can be suppressed by using an arbitration
scheme (Mahowald 1992); no event is lost if it can be memorized by the transmitting cell until it is
given access to the bus. The simplest solution is to let the events access the bus without any arbitration
(Mortara and Vittoz 1994, Mortara 1995). The transmitted codes must then be chosen to avoid producing
a third valid code by OR-ing the codes of two colliding events. The only possibility is to use codes
with equal numbers of 'ones'. Collisions then result in lost events with equal probabilities for all codes.

E1.3:14 H a d w o k of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

This corresponds to a transmission attenuation combined with some transmission noise due to the random
nature of collisions, both of them increasing with channel occupation. The optimum number of ‘ones’ in
the code is the integer closest to m / 2 for an m-wire bus, resulting in a redundancy of only about two bits
for 10 < m < 20. One application of this communication scheme is the transfer of the activities of a
sending map to a receiving map for further processing (Arreguit and Vittoz 1994). The hardware may
then be simplified by transmitting separately the line and column addresses of the origin of each event
(Mortara et a1 1995). Pulse frequency decoding can be effected with just two pulses received (Mortara et
a1 1993), and this conversion may be combined with synaptic weighting and summing. No conversion is
necessary if the synapse just weights the pulses and directly accumulates them in the cell body.

An alternative manner of using pulse stream communication is to allocate the channel sequentially to
each transmitting cell during one interpulse time (Murray et a1 1993). Communication is still asynchronous,
but not event driven. Moreover, more time is allocated to less active cells, and very low activities must
be discarded. This scheme is more efficient to transmit PWM signals (Murray et a1 1994) for which the
pulse width is proportional to the activity.

E1.3.6 Conclusion

Analog VLSI offers a rich medium for the hardware realization of neural networks and should require less
power and less chip area than digital implementations if a limited precision is acceptable. As a consequence ~ 1 . 4

of the wide choice of possibilities for signal representation, mode of operation of transistors, and basic
computing blocks, no limit exists to the variety of possible implementations of complete systems. However,
designing viable analog circuits requires a lot of expertise, since a wide range of problems extending from
device physics to system architecture must be addressed. Unlike digital circuits, no real synthesis tools
are available, and design is much more time consuming. New ideas, or even new implementations of
existing ideas, must be verified not only by computer simulation, but by a physical realization. Testing is
also more difficult.

For these reasons, the number of working analog implementations of neural networks is still limited
(Vittoz et a1 1989, Coggins et a1 1995, Murray et a1 1994, Graf et a1 1993, Motishita et a1 1990, Arima
et a1 1991, Holler et a1 1989, Graf and Henderson 1990, Van der Spiegel et a1 1992, Alspector et a1 1991,
Vittoz and Arreguit 1989, Cohen and Andreou 1992, Heim 1993, Masa et a1 1994) and most of them are
still experimental systems waiting for industrial applications. Existing industrial applications are mostly
front ends of perception systems that are closely related to neural networks as they exploit massively
parallel analog VLSI, but only the most elementary have yet been published (Chevroulet et a1 1995, Platt
and Allen 1995, Venier et a1 1996, Arreguit et a1 1996). Most of them are intended for small-size portable
microsystems, where power consumption is a major concern.

These existing applications are believed to be only very elementary with respect to what will become
feasible in the future with more adequate technological solutions (in particular, for very efficient analog
weight storage), with the creation of new dedicated circuit schemes, and with novel architectures. Of
special interest is the trend towards deeper exploration of architectures and computational approaches
of the brain, as a source of inspiration for analog silicon implementations of very advanced processing
systems.

References

Alspector J et a1 199 1 Relaxation networks for large supervised leaming problems Neural Information Processing
Systems vol 3, ed R P Lippmann, J E Moody and D S Touretzky (New York: Morgan Kaufmann) pp 1015-21

Andreou A and Boahen K 1994 Neural information processing I1 Analog V U 1 Signal and Information Processing ed
M Ismail and T Fiez (New York: McGraw-Hill) pp 358-409

Arima Y ef a2 1991 A 336-neuron 28k-synapse self-leaming neural network chip with branch-neuron-unit architecture
ISSCC’91 Dig. Tech. Papers (Castine, ME: J H Wuorinen) pp 182-4

Arreguit X and Vittoz E 1994 Perception systems implemented in analog VLSI for real-time applications From
Perception to Action Con$ (Los Alamitos, CA: IEEE Computer Society Press) pp 17G80

Arreguit X et a2 1996 A CMOS motion detector system for pointing devices ISSCC’96 (San Francisco, CA) Dig. Tech.
Papers (Castine, ME: J H Wuorinen) pp 98-9

Bult K and Wallinga H 1987 A class of analog CMOS circuits based on the square-law characteristic of an MOS
transistor in saturation IEEE J. Solid-state Circuits 22 357-65

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 E l .3:15

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

Chevroulet M et a1 1995 A battery-operated optical spot intensity measurement system Proc. ISSCC’95 Dig. Tech.

Chua L and Yang L 1988a Cellular neural networks: theory IEEE Trans. Circuits Syst. 35 1257-72
-1988b Cellular neural networks: applications IEEE Trans. Circuits Syst. 35 1273-90
Coggins R, Jabri M and Pickard S 1995 A low power network for on-line diagnosis of heart patients IEEE Micro 15

Cohen M and Andreou A 1992 Current-mode subthreshold MOS implementation of the HBrault-Jutten autoadaptative

Gilbert B 1968 A precise four-quadrant multiplier with subnanosecond response IEEE J. Solid-state Circuits 3 365-73
-1975 Translinear circuits: a proposed classification Electron. Lett. 11 14
-1981 Translinear Circuits private notes
-1983 A four-quadrant analog multiplier/divider with 0.01% distortion Proc. ISSCC’83 Dig. Tech. Papers (Coral

-1984 A monolithic 16-channel analog array normalizer IEEE J. Solid-State Circuits 19 956
Graf H P and Henderson D 1990 A reconfigurable CMOS neural network ISSCC Dig. Tech. Papers (Castine, M E

Graf H P, Sackinger E and Jackel L D 1993 Recent developments of electronic neural nets in North America J. V U 1

Heim P 1993 CMOS analog VLSI implementation of a Kohonen map PhD Dissertation 1174, EPFL, Lausanne
Heim P et a1 1991 Generation of learning neighborhood in Kohonen feature maps by means of simple nonlinear

Heim P and Vittoz E 1994 Precise analog synapse for Kohonen feature maps IEEE J. Solid-State Circuits 29 982-5
Holler M et a1 1989 An electrically trainable artificial neural network (ETANN) Proc. Int. Joint Con$ on Neural

Networks (Washington, DC, 1989) pp 19 1-6
Landolt 0 1992 An analog CMOS implementation of a Kohonen network with learning capability 3rd Int. Workshop

on VLSI for Neural Networks and ArtGcial Intelligence (Oxford, 1992)
Landolt 0, Vittoz E and Heim P 1992 CMOS selfbiased Euclidean distance computing circuit with high dynamic

range Electron. Lett. 28
Lazzaro J et a1 1988 Winner-take-all network of O(n) complexity advances Neural Information Processing Systems

(San Mateo, CA: Morgan Kaufman) pp 703-1 1
Mahowald M 1992 VLSI analogs of neuronal visual processing: a synthesis of form and function PhD Dissertation

Computation and Neural Systems, California Institute of Technology
Masa P et a1 1994 A high-speed analog neural processor IEEE Micro 14 40-50
Mead C A 1989 Analog V U 1 and Neural Systems (Reading, MA: Addison-Wesley)
Mead C A and Delbriick T 1991 Scanners for visualizing activity of analog VLSI circuitry CNS Memo 11 California

Morishita T et a1 1990 A BiCMOS analog neural network with dynamically updated weights ISSCC’90 Dig. Tech.

Mortara A 1995 Communication techniques for analog VLSI perceptive systems PhD Dissertation 1329, EPFL,

Mortara A and Vittoz E 1994 A communication architecture tailored for analog VLSI artificial neural networks:

Mortara A et a1 1993 Simple PFM demodulator to be used by analog neural networks which communicate through

Mortara A et a1 1995 A communication scheme for analog VLSI perceptive systems IEEE J. Solid-state Circuits 30

Murray A and Edwards P 1993 Synaptic weight noise during perceptron training: fault tolerance and training

Murray A et a1 1991 Pulse stream VLSI neural networks mixing analog and digital techniques IEEE Trans. Neural

Murray A et a1 1994 Pulse stream VLSI neural networks IEEE Micro 14 29-39
Platt J C and Allen T P 1995 A neural network classifier for the I1000 OCR chip Dig. Con$ on Neural Information

Temes G C 1987 Integrated Analog Filters (New York: IEEE)
Tsividis Y P 1987 Operation and Modeling of the MOS Transistor (New York: McGraw-Hill) pp 168-216
-1994 Integrated continuous-time filter design: an overview IEEE J. Solid-State Circuits 29 166-76
Tsividis Y et a1 1986 Continuous-time MOSFFT-C filters in VLSI IEEE Trans. Circuits Syst. 33 125-39
Van der Spiegel J et a1 1992 An analog neural computer with modular architecture for real-time dynamic computation

Venier P et a1 1996 Analog CMOS photosensitive array for solar illumination monitoring ISSCC’96 Dig. Tech. Papers

Papers (Castine, ME: J H Wuorinen) pp 154-5

18-25

network IEEE J. Solid-State Circuits 27 714-27

Gables, FL: Lewis Winner) pp 248-9

J H Wuorinen) pp 144-5

Signal Processing 6 19-31

network Electron. Lett. 27 275-7

Institute of Technology

Papers (Castine, ME: J H Wuorinen) pp 142-3

Lausanne

intrinsic performance and limitations IEEE Trans. Neural Networks 5 459-66

pulses Electron. Lett. 29 345-6

66&9

improvements IEEE Trans. Neural Networks 4 722-5

Networks 2 193-204

Processing Systems (NIPS) (Vail, CO, 1995) p 60

IEEE J. Solid-State Circuits 7 82-92

(Castine, ME: J H Wuorinen) pp 96-7

E l .3: 16 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Analog VLSI implementation of neural networks

Vittoz E 1983 MOS transistors operated in the lateral bipolar mode and their applications in CMOS technology IEEE

-1985 The design of high-performance analog circuits on digital CMOS chips IEEE J. Solid-state Circuits 20

-1990 Future trends of analog in the VLSI environment Proc. ISCAS’90 (New Orleans, LA) (Piscataway, NJ:

-1994a Low-power design: ways to approach the limits Proc. ISSCC’94 Dig. Tech. Papers (Castine, ME: J H

-1994b Analog VLSI signal processing: why, where, and how J. VLSI Signal Proc. 8 2 7 4
-1994c Micropower techniques Design of VLSI Circuits for Telecommunication and Signal Processing ed J Franca

Vittoz E and Arreguit X 1989 CMOS integration of HCrault-Jutten cells for separation of sources Analog VLSI

-1993 Linear networks based on transistors Electron. Lett. 29 297-9
Vittoz E, Oguey H, Maher M A, Nys 0, Dijkstra E and Chevroulet M 1991 Analog storage of adjustable synaptic

Vittoz E et a1 1989 Analog VLSI implementation of a Kohonen map Proc. Joumies d’Electronique on Artificial Neural

Wegmann G et a1 1987 Charge injection in analog MOS switches IEEE J. Solid-state Circuits 22 1091-7

J. Solid-state Circuits 18 273-9

657-65

IEEE) pp 1372-5

Wuorinen) pp 14-8

and Y Tsividis (Englewood Cliffs, NJ: Prentice-Hall) pp 53-96

Implementation of Neural Networks ed C Mead and M Ismail (Norwell: Kluwer) pp 57-82

weights Introduction to VLSI-Design of Neural Networks ed U Ramacher (Dordrecht: Kluwer)

Nets, EPFL (Luusanne, 1989) (Lausanne: Presse Polytechniques Romandes) pp 292-301

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 E 1.3 : 17

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

E1.4 Digital integrated circuit implementations

Valeriu Beiu

Abstract

This section considers some of the alternative approaches towards modeling biological
functions by digital circuits. It starts by introducing some circuit complexity issues
and arguing that there is considerable computational and physiological justification that
shallow threshold gate circuits are computationally more efficient than classical Boolean
circuits. We comment on the tradeoff between the depth and the size of a threshold
gate circuit, and on how design parameters like fan-in, weights and thresholds influence
the overall area and time performances of a digital neural chip. This is followed
by briefly discussing the constraints imposed by digital technologies and by detailing
several possible classification schemes as well as the performance evaluation of such
neurochips and neurocomputers. Lastly, we present many typical and recent examples
of implementation and mention the ‘VLSI-friendly learning algorithms’ as a promising
direction of research.

E1.4.1 Introduction

The research on neural networks goes back to the early 1940s (see Section Al.1). The seminal year for Ai .1

the development of the ‘science of mind’ was 1943 when several articles were published (McCulloch and
Pitts 1943, Craik 1943, Rosenbleuth et al 1943, 1949, Landahl et al 1943).

Almost immediately different approaches to neural network simulation started to be developed.
Typical of that era was the development of the first neurocomputer Snurk (Minsky 1954). It was in fact
an electromechanical neurocomputer which was shortly followed by the Perceptron Murk I (Rosenblatt
1958). Both were using resistive circuits (motor-driven potentiometers) for implementing the weights.
Another successful neurocomputer that used resistive weights was Bernard Widrow’s aduline and, later, ci.1.3
madaline. They used a type of electronically adjustable resistor called a memistor. Widrow even founded ci.1.4
the first neurocomputer company: the Memistor Corporation. It actually produced neurocomputers during
the early and mid-1960s. More details can be found in Nilsson (1965), Anderson and Rosenfeld (1988)
and Hecht-Nielsen (1989). The neurocomputer industry was born.

In the last decade the tremendous impetus of VLSI technology has made neurocomputer design a really
lively research topic. Hundreds of designs have already been built, and some are available as commercial
products. However, we are far from the main objective as can be clearly seen from figure E1.4.1. Here
the horizontal axis represents the number of synapses (number of connections), while the vertical axis
represents the processing speed in ‘connections per second’ (CPS). The drawing shows a crude comparison
of the computational potential of different neural network hardware ‘technologies’. It becomes clear that
biological neural networks are far ahead of digital, analog and even future optical implementations of
artificial neural networks.

Focusing only on digital implementations, this section will firstly introduce some circuit complexity
issues (section E 1.4.2) and comment on the constraints imposed by digital technologies (section El .4.3).
Several possible classification schemes for digital implementations of artificial neural networks will also
be discussed in the last and most detailed part (section E1.4.4) which will briefly present many different
implementations.

@ 1997 IOP Publishing Ltd and Oxford University Press Hudbook of Neurul Computution release 9711 El .4:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

0 Humai

0
a ,

Leech $ 4 t
a l PCS &

Workstations
2 t

1
0 '
0 2 4 6 8 10 12 14

Number of synapses (exponent of 10)
6

Figure E1.4.1. Different hardware alternatives for implementing artificial neural networks, an enhanced
and updated version from Glesner and Pochmiiller (1994) and Iwata (1990).

E1.4.2 Circuit complexity issues

One main line of theoretical research has concentrated on the approximation capabilities of feedforward
networks. It was started in 1987 by Hecht-Nielsen (1987) and Lippmann (1987) who were probably
the first to point to Kolmogorov's theorem (Kolmogorov 1957), together with Le Cun (1987). The first
nonconstructive proof that neural networks are universal approximators was given the following year by
Cybenko (1988, 1989) using a continuous activation function. Thus, the fact that neural networks are
computationally universal-with more or less restrictive conditions-when modifiable connections are
allowed, was established. These results have been further enhanced by Funahashi (1989), Funahashi and
Nakamura (1993), Hornik (1991, 1993), Hornik etal (1989, 1990), Koiran (1993) and Leshno er a1 (1993).
All these results-with the partial exception of Koiran (1993)-were obtained 'provided that sufficiently
many hidden units are available'. This means that no claim on the minimality of the resulting network
was made, the number of neurons needed to make a satisfactory approximation being in general much
larger than the minimum needed.

The other line of research was to find tight bounds, and the problem can be stated as finding the
smallest network (i.e., smallest number of neurons) which can realize an arbitrary function given a set of
m vectors (examples, or points) in n dimensions. If the function takes as output just 0 or 1, then it is
called a dichotomy. This aspect of the smallest network is of great importance when thinking of hardware
implementations. The networks considered are feedforward neural networks with threshold activation
function. This is probably due to the fact that this line of research was continuing on from the rigorous
results already obtained in the literature dealing with threshold logic from the 1960s (Cameron 1969,
Cohen and Winder 1969, Cover 1965, Dertouzos 1965, Fischler 1962, Hu 1965, Kautz 1961, Klir 1972,
Lewis and Coates 1967, Lupanov 1973, Minnick 1961, Minsky and Papert 1969, Muroga 1959-1979,
Muroga et a1 1961, Neciporuk 1964, Nilsson 1965, Red'kin 1970, Sheng 1969, Winder 1962-1971). The

c1.2 best result was that a multilayer perceptron with only one hidden layer having m - 1 nodes could compute
an arbitrary dichotomy (sufficient condition). The main improvements since then have been as follows:

0 Baum (1988b) presented a network with one hidden layer having rm/nl neurons capable of realizing
an arbitrary dichotomy on a set of m points in general position in R"; if the points are on the corners
of the n-dimensional hypercube (i.e., binary vectors), m - 1 nodes are still needed (the general position
condition is now special and strict).
Huang and Huang (1991) proved a slightly tighter bound: only rl + (m - 2)/nl neurons are needed
in the hidden layer for realizing an arbitrary dichotomy on a set of m points which satisfy a more
relaxed topological assumption as only the points forming a sequence from some subsets are required
to be in general position; also the m - 1 nodes condition was shown to be the least upper bound
needed.

0

El .4:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Digital integrated circuit implementations

0 Arai (1993) recently showed that m - 1 hidden neurons are necessary for arbitrary separability (any
mapping between input and output for the case of binary-valued units), but improved the bound for
the two-category classification problem to m/3 (without any condition on the inputs).

A study which somehow tries to unify these two lines of research has been published by Bulsari
(1993) who gives practical solutions for one-dimensional cases including an upper bound on the number
of nodes in the hidden layer(s). Extensions to the n-dimensional case using three- and four-layer solutions
are derived under piecewise constant approximations having constant or variable width partitions and under
piecewise linear approximations using ramps instead of sigmoids.

To strengthen such claims, we shall go briefly through some basic circuit complexity results
(Papadopoulos and Andronikos 1995, Parberry 1994, Paterson 1992, Pippenger 1987, Roychowdhury
et a1 1991a, b, 1994b, Siu e ta1 1994) and argue that there is considerable computational and physiological
justification that shallow (i.e., having relatively few layers) threshold gate circuits are computationally
more efficient than classical Boolean circuits. When considering computational complexity, two classes
of constraints could be thought of

0 Some arising from the physical constraints (related to the hardware in which the computations are
embedded) and including time constants, energy limitations, volumes, geometrical relations and
bandwidth capacities.
Others are logical constraints: (i) computability constraints and (ii) complexity constraints which give
upper and/or lower bounds on some specific resource (e.g., size and depth required to compute a
given function or class of functions).

The first aspect when comparing Boolean and threshold logic is that they are equivalent in the sense
that any Boolean function can be implemented using either logic in a circuit of depth-2 and exponential
size (simple counting arguments show that the fraction of functions requiring a circuit of exponential size
approaches one as n + ca in both cases). Yet, threshold logic is more powerful than Boolean logic as
a Boolean gate can compute only one function whereas a threshold gate can compute up to the order of
2""' functions by varying the weights, with 112 5 ct 5 1 (see Muroga 1962 for the lower bound, and
Muroga 1971 and Winder 1962, 1963 for the upper bound). An important result which clearly separates
threshold and Boolean logic is due to Yao (1985) (see also HBstad 1986 and Smolensky 1987) and states
that in order to compute a highly oscillating function like PARITY in a constant depth circuit, at least
e ~ p [c (n ~) ' / ~] Boolean gates with unbounded fan-in are needed (Furst et a1 1981, Paturi and Saks 1990).
In contrast, a depth-2 threshold gate circuit for PARITY has linear size.

Another interesting aspect is the tradeoff between the depth and the size of a circuit (Beiu 1994, 1997,
Beiu and Taylor 1996a, Beiu et a1 1994c, Siu and Bruck 199Oc, Siu et a1 1991b). There exists a very
strong bias in favor of shallow circuits (Judd 1988, 1992) for several reasons. First, for a fixed size, the
number of different functions computable by a circuit of small depth is larger than the number of those
computed by a deeper circuit. Second, it is obvious that such a circuit is also faster, as having a small(er)
depth. Finally, one should notice that biological circuits must be shallow-at least within certain modules
like the cortical structures-as the overall response time (e.g., recognizing a known person from a noisy
image) of such slow devices (the response time of biological neurons being at least in the 10-ms range due
to the refractory period) is known to be in the few hundred millisecond range. Other theoretical results
(Abu-Mostafa 1988a, b) also support the shallow architecture of such circuits.

A lot of work has been devoted to finding minimum size and/or minimum constant-depth threshold
gate circuits (Hajnal et a1 1987, Hofmeister et a1 1991, Razborov 1987, Roychowdhury et a1 1994a, Siu
and Bruck 1990a, Siu et a1 1990, 1993b, Siu and Roychowdhury 1993, 1994) but little is known about
tradeoffs between those two cost functions (Beiu et a1 1994c, Siu et a1 1991b), and even less about how
design parameters like fan-in, weights and thresholds influence the overall area and time performances of
a digital neural chip. Since for the general case only existence exponential bounds are known (Bruck and
Smolensky 1992, Siu et a1 1991b), it is important to isolate classes of functions whose implementations
are simpler than that of others (e.g., shallow depth and polynomial size (Rief 1987)). Several of the
corner-stone results obtained so far have been gathered in table E1.4.1. Here n is the number of input
variables, and the nomenclature commonly in use is (see Amaldi and Mayoraz 1992, Papadopoulos and
Andronikos 1995, Parberry 1994, Roychowdhury et a1 1994b, Siu et a1 1994, Wegener 1987):

0 ACk represents the circuits of polynomial size with AND and OR unbounded fan-in gates and depth
O(logk n)

0

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computufion release 9711 E 1.4:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Implementations

0

0

0

0

0

0

0

0

0

0

NCk is the class of Boolean functions with bounded fan-in, and having size nc (polynomial) and
depth O(logk n)
T CO the family of functions realized by polynomial size threshold gate circuits with unbounded fan-in
and constant depth
L c (m) is the class of Boolean functions computed by linear threshold gates with real weights
(bounded by a polynomial in the number of inputs lwil 5 nc (Bruck 1990))
LTk is the class of Boolean functions computed by a polynomial size, depth-k circuit of E l gates
(Bruck 1990, Siu and Bruck 1990b)
PT1 is the class of Boolean functions that can be computed by a single threshold gate in which the
number of monomials is bounded by a polynomial in n (Bruck 1990, Bruck and Smolensky 1992)
PTk is the class of Boolean functions computed by a polynomial size, depth-k circuit of PT1 gates
PL1 is the class of Boolean functions for which the spectral norm L1 is bounded by a polynomial in
n (Bruck and Smolensky 1989)
PL, is the class of Boolean functions with the spectral norm L d bounded by a polynomial in n
(Bruck and Smolensky 1989)
MAJl is the class of Boolean functions computed by linear threshold gates having only f l weights
(Mayoraz 1991, Siu and Bruck 1990c)
MAJk is the class of Boolean functions computed by a polynomial size, depth-k circuit of M A J ,
gates (Albrecht 1992, Mayoraz 1992, Siu and Bruck 1993).

h

Recently three complexity classes for sigmoid feedforward neural networks have been defined and linked
with the (classical) above-mentioned ones:
0 NNk is defined (Shawe-Taylor et a1 1992) to be the class of functions which can be computed

by a family of polynomially sized neural networks with weights and threshold values determined
to b bits of precision (accuracy), fan-in equal to A and depth h , satisfying log A = O [(l ~ g n) ' / ~] ,
b log A = O(1og n) and h log A = O(logk n)
NN;,, is defined (Beiu et a1 1994e, Beiu and Taylor 1996b) to be the class of functions which can be
computed by a family of polynomially sized neural networks which satisfies slightly less restrictive
conditions for fan-in and accuracy: log A = O(log'-' n) and b = O(log'-' n)
NN; is defined (Beiu et a1 1994d, Beiu and Taylor 1996b) to be the class of functions which can
be computed by a family of polynomially sized neural networks having linear fan-in and logarithmic
accuracy (A = U (n) and b = O(1ogn)).

Still, in many situations one is concerned by the values of a function for just a vanishing small fraction
of the 2" possible inputs. Such functions can also be implemented in poly-size shallow circuits (the size
and depth of the circuit can be related to the cardinal of the interesting inputs (Beiu 1996b, Beiu and
Taylor 1996a, Beiu et a1 1994a, Tan and Vandewalle 1992, 1993). Such functions are also appealing from
the learning point of view: the relevant inputs being nothing else but the set of training examples (Beiu
1996b, Beiu and Taylor 1995b, Linial et al 1989, Takahashi et a1 1993).

0

0

Circuit complexity has certain drawbacks which should be mentioned:
0 The extension of the poly-size results to other functions and to the continuous domain is not at all

straightforward (Maass et a1 1991, Siu 1992)
0 Even the known bounds (for the computational costs) are sometimes weak
0 Time (i.e., delay) is not properly considered

All complexity results are asymptotic in nature and may not be meaningful for the range of a particular
application.

But the scaling of some important parameters with respect to some others represents quite valuable results:
0 Area of the chip (wafer) grows like the cube of the fan-in
0 Area of the digital chip (wafer) grows exponentially with accuracy.

Furthermore, it was shown recently that the fan-in and the accuracy are linearly dependent parameters.
If the number of inputs to one neuron is n, the reduction of the fan-in by decomposition techniques has
led to the following results:

If the fan-in is reduced to (small) constants, the size grows slightly faster than the square of the number
of inputs (i.e., n2 log n) while the depth growth is lower than logarithmic (i.e., log n / log log n)

El .4:4 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Digital integrated circuit implementations

Table E1.4.1. Circuit complexity results.

Author(s) Result(s) Remark(s)

Neciporuk
(1964)

Lupanov
(1973)

Yao
(1989)

Allender
(1989)

Immermann and Landau
(1 989)
Bruck
(1 990)
Siu et a1
(1 99 la)

Siu et a1
(1 99 1 b)

Bruck and Smolensky
(1 992)

Siu and Bruck
(1 992)

Albrecht
(1 992)

Shawe-Taylor et a1
(1 992)
Beiu et a1
(1 994d)

Beiu et a1
(1994e)

Lower bound on the size of a threshold
circuit for 'almost all' n-ary Boolean
functions.
Upper bound for the size of a threshold
circuit for 'almost all' n-ary Boolean
functions.
There are Boolean functions for which
depth-@ - 1) threshold gate circuit of
unbounded fan-in (i.e., TC" circuits)
require exponential size depth-k Boolean
circuits of unbounded fan-in.
Any Boolean function computable by a
polynomial size constant-depth logic circuit
with unbounded fan-in (i.e., AC") is also
computable by a depth-3 neural network
(threshold gate circuit) of superpolynomial
size: ACo # TCO.
Conjecture: T C o = N C 1

Conjecture: TC" # N C 1

LTI C PTI C LT2

MUL(x,y)
X mod p , XLmod p , cx mod p
X",cX E LT5
DIV(x,y)
MUL(xl, . . . , x,)
Upper bound on the size or implementing
any Boolean function.

E E2

E E 6

Lower bound on the size or implementing
any Boolean function.

PLI c PTl c P L ,
P L I C PTl C MAJ2
AC'C PL1
ACo p P L ,
ACO p MAJz
LTi C E3
LTd G LTu+I-
MUL(x, y) E LT4
MAX(XI, . . . , x,) E L23
SORT(x1, . . . , x,) E LT4

I

Depth-2 threshold circuits require
superpolynomial fan-in. Polynomial
threshold circuits have more than two
layers.
N C k C N N k & ACk

Existence proofs

depth = const
s i ze 5 nc
weights 5 nc
fan-in unbounded
Partly constructive
depth = 3
s i ze = O(2"I2)
fan-in unbounded
Existence proofs
s i ze = Q (W)
fan-in unbounded
Existence proofs
Existence proofs

depth = const
s i ze 5 n'
weights 5 nc
fan-in unbounded
Existence proofs
depth = 2
s i ze = (1 f E) .
weights E (-1,0, $1)
fan-in unbounded
Partly constructive

Constructive proofs
(based on binary trees
of Boolean gate adders
Constructive proofs
(based on binary trees of
threshold gate adders)

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ojNeurul Computution release 9711 El .4:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Hardware Imdementations

E l .4:6

~~~~ ~ ~ 

Table E1.4.1. Continued. 

Author@) Result(s) Remark( s) 

Goldmann and Karpinski 
(1994) 

LTd C MAJd,, 
(improves on Siu and Bruck 1992 and implies: 

Beiu and Taylor 
(1996b) 

Existence proof. 
An important aspect 
is that such a 
simulation is possible 
even if the depth d 
grows with the 
number of variables n 

Constructive proofs 
(based on carry save 
addition) 

0 Boolean decomposition can be used for reducing the fan-in, but at the expense of a superpolynomial 
increase in size ((n'ogn)1/2) and a double logarithmic increase in depth (log2 n) .  

Much better results can be achieved for a particular function. 
Due to such scaling problems, theoretical results show that we can implement (as digital chips or 

wafers) only neural networks having (sub) logarithmic accuracy and (sub) linear fan-in (with respect to 
the number of inputs n). From the practical point of view (the two parameters being dependent) these 
should be translated to (sub) logarithmic both for accuracy and for fan-in. The main conclusion is that full 
parallel digital implementations of neural networks (as chips or wafers) are presently limited to artificial 
neural networks having 102-103 inputs and about 103-104 neurons of 102-103 inputs each. As will be 
seen later, these values are in good accordance with those from chips and wafers which stick as much as 
possible to a parallel implementation. Although we do expect that technological advances will push these 
limits, they cannot be spectacular-at least in the near future. 

0 By using time-multiplexing 
0 

0 

Such drastic limitations have forced designers to approach the problem from different angles: 

By building arrays of (dedicated) chips working together and exploiting as much as possible (in one 
way or another) the architectural concept of pipe-lining 
By using non-conventional techniques such as: stochastic processing (Gorse and Taylor 1989a, 
Kollmann et a1 1996), sparse memory architecture (Aihara et al 1996) or spike processing (Jahnke 
et a1 1996). 

These allow the simulation of far larger neural networks, by mapping them onto the existent (limited) 
hardware. 

E1.4.3 Digital VLSI 

Digital neurochips (and, thus, neurocomputers) benefit from the legacy of the most advanced human 
technologydigital information processing. VLSI technology is the main support for electronic 
implementations. It has been mature for many years, and allows a large number of processing elements 
to be mapped onto a small silicon area. That is why it has attracted many researchers (Alla et a1 1990, 
Alspector et a1 1988, Barhen et a1 1992, Beiu 1989, Beiu and Rosu 1985, Boser et a1 1992, Del Corso 
et a1 1989, Disante et a1 1989, 1990a, b, Faggin 1991, Fornaciari et a1 1991b, Holler 1991, Jackel 1992, 
Mackie et a1 1988, Personnaz et a1 1989, Tewksbury and Hornak 1989, Treleaven et a1 1989, Weinfeld 
1 990). 

The main constraints of VLSI come from the fact that the designer has to implement the processing 
elements on a two-dimensional limited area and-even more-connect these elements by means of a 
limited number of available layers. This leads to limited interconnectivity as has been discussed in Akers 
et a1 (1988), Baker and Hammerstrom (1988), Hammerstrom (1988), Reyneri and Filipi (1991), Szedegy 
(1989) and Walker et a1 (1989) and limited precision (higher precision requires larger area-both due 
to storing and processing-leading to fewer neurons per chip (Dembo et a1 1990, Denker and Wittner 
1988, Myhill and Kautz 1961, Obradovic and Parberry 1990, Stevenson et a1 1990, Walker and Akers 
1992)). The shallowness of slow biological neural networks has to be traded off for (somehow) deeper 

Hundbook of Neural Compurution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

networks made of higher speed elements. Beside these, the power dissipation might impose another severe 
restriction (especially for wafer scale integration-WSI). The tradeoff is either to reduce the number of 
neurons per chip (working at high speed) or reduce the clock rate (while having more neurons). Lastly, 
the number of available pins to get the information on and off the chip is another strong limitation. 

From the biological point of view, synapses have to be restricted on precision and range to some 
small number of levels (Baum 1988a, Baum and Haussler 1989). Lower bounds on the size of the network 
have been obtained both for the networks with real valued synaptic weights and for the networks where 
the weights are limited to a finite number of possible values (Siu and Bruck 1990a). These bounds differ 
only by a logarithmic factor, but to achieve near optimal performance O ( m )  levels are required (Baum 
1988b)-where m is the number of training examples given. A similar logarithmic factor has been proven 
in Hong (1987), Raghavan (1988) and Sontag (1990) when replacing real weights by integers. Some 
results concerning the needed number of quantization levels have already been presented in Section El  .2.2 
and can be supplemented by many references. For example, Baker and Hammerstrom (1988), Hollis et a1 
(1990), Hohfeld (1990), Shoemaker et a1 (1990), Allipi (1991), Asanovii and Morgan (1991), Holt and 
Hwang (1991, 1993), Nigri (1991) and Xie and Jabri (1991) argue that the execution phase needs roughly 
8 bits (6. . . lo), while learning demands about 16 bits (14. . . 18). There are few exceptions: Halgamuge 
et a1 (1991) being the only pessimistic one claiming that 32 bits are needed, and Reyneri and Filipi (1991) 
claiming that 20. . .22 bits are needed in general, but explicitly mentioning that this value can be reduced 
to 14 . .  . 15 bits or even lower by properly choosing the learning rate (for backpropagation). New weight 
discretization learning algorithms can go much lower: to just several bits (see Section E l  .2.4). This makes 
them ideal candidates for digital implementations. 

Today, the digital VLSI design is still the most important design style. The advantages of the dominant 
CMOS technology are small feature sizes, lower power consumption and a high signal-to-noise ratio. For 
neural networks these are supplemented by the following advantages of digital VLSI design styles (see 
Glesner and Pochmuller 1994 and Hammerstrom 1995 for more details): 

Simplicity (an important feature for the designer) 
High signal-to-noise ratio (one of the most important advantages over analog designs) 
Circuits are easily cascadable (as compared to analog designs) 
Higher flexibility (digital circuits in general can solve many tasks) 
Reduced fabrication price (certainly of interest for customers) 
Many CAD (computer aided design) systems are available to support a designer’s work 
Reliable (as fabrication lines are stable). 

Digital VLSI implementations of a neural network are based on several building blocks: 

Summation can easily be realized by adders (many different designs are possible and well-known: 
combinatorial, serial, dynamic, carry look ahead, manchester, carry select, Wallace tree) 
Multiplication is usually the most area-consuming operation and in many cases a multiplier is time- 
multiplexed (classical solutions are serial, serial/parallel and fully parallel, each of which differ in 
speed, accuracy and area) 
Nonlinear transfer function (very different nonlinear activation functions (Das Gupta and Schnitger 
1993) can be implemented by using circuits for full calculations, but most digital designs use either 
a small lookup table (Nigri 1991, Nigri et a1 1991) or-for even lower area and higher precision-a 
dedicated circuit for a properly quantized approximation, as can be seen in table E1.4.2 and also in 
Murtagh and Tsoi (1992), Sammut and Jones (1991) 
Storage elements (are very common-either static or dynamic--from standard RAM cells) 
Random number generators (are normally realized by shift registers with feedback via XOR-gates). 

E1.4.4 Different implementations 

E1.4.4.1 General comments 

As the different number of proposed architectures or fabricated chips, boards and dedicated computers 
reported in the literature is on the order of hundreds, we cannot mention all of them here. Instead, we 
shall try to cover important types of architectures by several representation implementations-although 
certain readers could disagree sometimes with our choice. For a deeper insight the reader is referred to 
the following books: Eckmiller and von der Malsburg (1988), Eckmiller et a1 (1990), SouEek and SouEek 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeuml Computution release 9111 El .4:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Table E1.4.2. Digital implementations of the sigmoid-alternatives to lookup tables. 

Author(s) Result(s) Remark(s) 

Myers and Hutchinson 
(1989) 
Alippi et a1 
( 1990a) 

Alippi et a1 
( 1990b) 
Pesulima et a1 
( 1990) 
Saucier and Ouali 
(1990) 
Alippi et a1 
(199 1 a) 
Alippi and Storti-Gajani 
(1991) 
HOhfeld and Fahlman 
(1991) 
Krikelis 
(1991) 

Nigri 
(1991) 
Siggelkow et al 
(1991) 

Spaanenburg et a1 
(1991) 

Beiu 
(1992) 

Deville 
( 1993) 

Beiu et a1 
(1993, 1994b) 

Approximation of an A-law 
sigmoid-like function. 
Approximations of a classical 
sigmoid function by sum of 
1-5 steps. 
Approximations of a classical 
sigmoid function. 
Approximation of the classical 
sigmoid by two exponentials. 
Silicon compilation. 

Relations between convergence 
of leaming and precision. 
Approximations of a classical 
sigmoid function. 
Probabilistic weight updates 
(down to 4 bits). 
Approximation of the classical 
sigmoid function. 

Precision required for 
backpropagation. 
Analyzes accuracy and shows 
that a problem-dependent 
synthesis is required. 
Bit-serial approximation of 
binary logarithmic computations 
(problem dependent complex 
parameters). 
Sum of steps approximation of a 
particular sigmoid. 

General method for piecewise 
linearization. Highest precision 
(5 f1.14%). 
Piecewise approximation of the 
classical sigmoid. 

7 segments piecewise. Error 
- < f4.89% for [-8, 81. 
Error 5 &13.1% with 5 steps. 
Four comparators and several 
logic gates. 
Sum of 1-5 steps (Alippi et a1 
1990a). 
Digital implementation: LFSR. 
Error 5 4~2.45% for [-8, 81. 
Approximation by Taylor series. 

Introduces a general class of 
nonlinear functions. 
Piecewise by the set of points 
( f n ,  1/Zn+’). 
Needed precision for sigmoid 
4-6 bits. 
Piecewise linearization with 3 
segments in [-4,4]. Errors 
< f5.07%. 
Look-up table for 8 bits; ‘exact’ 
only for [-2,2]. 
Piecewise linearization of the 
sigmoid with 5 segments. No 
hardware suggested. 
Piecewise linearization of the 
sigmoid with 5 segments (4-6 
bits). Errors around &lo%. No 
hardware suggested. 
Six ‘threshold gates’ solution 
with weights [-1, 1, 2). Error 
- &8.1%. 
Requires IOJloating-point 
numbers and 5 multiplications! 

Errors 5 *1.9% using only a 
shift register and several logic 
gates. 

(1988), Sami (1990), Zornetzer et al (1990), Antognetti and Milutinovic (1991), Ramacher and Ruckert 
(1991), Sanchez-Sinencio and Lau (1992), Hassoun (1993), Przytula and Prasama (1993), Delgado-Frias 
and Moore (1994) and Glesner and Pochmuller (1994) together with the references therein. Several 
overview articles or chapters can also be recommended: Alspector and Allen (1987), Mackie et a1 
(1988), Jackel et al (1987), Jackel (1991), Przytula (1988), DARPA (1989), Del Corso et al (1989), 
Denker (1986), Goser et al (1989), Personnaz and Dreyfus (1989), Treleaven (1989), Treleaven et a1 
(1989), Schwartz (1990), Burr (1991, 1992), Nordstrom and Svensson (1991), Graf et al (1991-having 
many references, 1993), Hirai (1991), Holler (1991), Ienne (1993a, b), Lindsey and Lindblad (1994) 
and the recent ones-Heemskerk (1995), Hammerstrom (1995) and Morgan (1995). The proceedings of 
MicroNeuro (International Conference on Microelectronics for Neural Networks) would also prove useful 
for those readers wishing to find latest details on different implementations or the most recent proposals. 
Many other conferences on neural networks have special sessions on hardware implementations: NIPS 
(Neural Information Processing Systems), IJCNN (International Joint Conference on Neural Networks), 
ICANN (International Conference on Artificial Neural Networks), WCNN (World Congress on Neural 
Networks), IEEE ICNN (IEEE International Conference on Neural Networks) just to mention some of the 
most widely known. 

E l  .4:8 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

One of the difficult problems when discussing dedicated architectures for artificial neural networks 
is how to classify them. There are many different ways of classifying such architectures, and we shall 
mention here some which have already been presented and used in the literature. 

A first classification can be made based on the division of computer architectures due to Flynn (1972): 
single instruction stream, single datastream (SISD); single instruction stream, multiple datastreams 
(SIMD); multiple instruction streams, single datastream (M1SD)-which does not make too much 
sense; multiple instruction streams, multiple datastreams (MIMD). Most of the architectures proposed 
for implementing neural networks belong to the SIMD class, and thus the group should be further 
subdivided into: systolic arrays, processor arrays (linear, mesh, multidimensional) and even pipelined 
vector processors. 
Another classification has been based on ‘how many and how complex’ processing elements are 
(Nordstrom and Svensson 1991). Computer architectures can be characterized by the level of 
parallelism which can be: moderately parallel (16 to 256 processors), highly parallel (256 to 
4096 processors) or massively parallel (more than 4096 processors). As a coarse measure of the 
‘complexity’ of the processing elements, the bit-length (i.e., the precision) of a processing element 
has been used. 
A much more simple classification of neurocomputers has been suggested by Heemskerk (1 995): 
those consisting of a conventional computer and an accelerator board; those built from general purpose 
processors; and those built from dedicated neurochips. 
A completely different classification was suggested by Glesner and Pochmuller (1994) based on the 
following three criteria: biological evidence (mimicking biological systems; mimicking on a higher 
level; or without biological evidence), mapping onto hardware (network-oriented; neuron-oriented; or 
synapse-oriented) and implementation technology (digital; analog; or mixed). 

Only for digital electronic implementations a simple three-class subclassification scheme-somehow similar 
to that of Heemskerk (1995)dould be the following (Beiu 1994). 

Dedicated digital neural network chips (Kung 1989, Kung and Hwang 1988, 1989a), Wawrzynek 
et a1 (1993) can reach fantastic speeds of up to 1G connections per second. Several examples of 
such chips are: L-Neuro from Philips (Duranton 1996, Duranton et a1 1988, Duranton and Maudit 
1989, Duranton and Sirat 1989, 1990), X1 and N64000 of Adaptive Solutions (Adaptive Solutions 
1991, 1992, Hammerstrom 1990), NilOOO from Intel (Scofield and Reilly 1991, Holler et a f  1992), 
MA16 from Siemens (Ramacher 1990, 1992, Ramacher and Ruckert 1991, Ramacher et a1 1991a, b, 
1993), p-RAM from King’s College London (Clarkson and Ng 1993, Clarkson et a1 1989-1993) and 
Hitachi’s WSI (Yasunaga et a1 1989, 1990) and the 1.5-V chip (Watanabe et a1 1993), SMA from 
NTT (Aihara et a1 1996), NESPINN from the Institute of Microelectronics, Technical University of 
Berlin (Jahnke et a1 1996), or SPERT from the International Computer Science Institute, Berkeley 
(AsanoviC et a1 1992, 1993d, Warwzynek 1993, 1996). 
Special purpose digital coprocessors (sometimes called neuroaccelerators) are special boards that 
can be connected to a host computer (PCs and/or workstations) and are used in combination with 
a neurosimulator program. Such a solution tries to take both advantages: accelerated speed and 
flexible and user-friendly environment. Well-known are the delta Floating Point Processor from 
SAIC (DARPA 1989) which can be connected to a PC host, and the ones produced by Hecht-Nielsen 
Computers (Hecht-Nielsen 1991): ANZA, Balboa. Their speed is in the order of 10M connections 
per second improving tenfold on a software simulator. Some of them are using conventional RISC 
microprocessors, some use DSPs or transputers, while others are built with dedicated neurochips. 
Digital neurocomputers can be considered the massively data-parallel computers. Several 
neurocomputers are: WARP (Arnould 1985, Kung and Webb 1985, Annaratone et a1 1987), CM 
(Means and Hammerstrom 1991), RAP (Morgan et a1 1990, Beck 1990), SANDY (Kato et af  1990), 
MUSIC (Gunzinger et a1 1992, Muller er a1 1995), MIND (Gamrat eta1 1991), SNAP (Hecht-Nielsen 
1991, Means and Lisenbee 1991), GF-11 (Witbrock and Zagha 1990, Jackson and Hammerstrom 
1991), Toshiba (Hirai 1991), MANTRA (Lehmann and Blayo 1991, Lehmann er a1 1993), SYNAPSE 
(Ramacher 1992, Ramacher et a1 1991a, b, 1993, Johnson 1993a), HANNIBAL (Myers et a1 1993), 
BACCHUS and PAN IV (Huch et a1 1990, Pochmiiller and Glesner 1991, Palm and Palm 1991), 
PANNE (Milosavlevich et a1 1996), 128 PE RISC (Hiraiwa et a1 1990), RM-nc256 (Erdogan and 
Wahab 1992), CNAPS (Adaptive Solutions 1991, 1992, Hammerstrom 1990), Hitachi WSI (Boyd 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computurion release 9711 E1.4:9 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

1990, Yasunaga et a1 1989-1991), MasPar MP-1 (Grajski et a1 1990, MasPar 1990a-c, Nickolls 
1990), and CNS-1 (AsanoviC et a1 1993a)-just to mention only the most well-known. 
But even such a subclassification is not very clear cut, as in too many cases there are no borders. For 

example, many neurocomputers have been assembled based on identical boards built with custom designed 
neurochips: SNAP uses the HNC 100 NAP chip; MANTRA uses the GENES IV and the GACDl chips; 
HANNIBAL uses the HANNIBAL chip; SYNAPSE uses the MA 16 chip; MasPar MP-1 uses the MP-1 
chip; CNAPS uses the X1 or the N64000 chip; CNS-1 will use the Torrent and Hydrant chips. That 
is why we have decided in this section to use a more detailed classification which starts with the first 
historical neurocomputers and continues through acceleration boards, slice architectures, arrays of DSPs 
(digital signal processors), arrays of transputers, arrays of RISC processors, SIMD and systolic arrays built 
of dedicated processing elements and continuing with several other alternatives and ending with some of 
the latest implementations. 

Beside classification and classification criteria, another problem when dealing with neurocomputers 
and neurochips is their performance evaluation. While the performance of a conventional computer is 
usually measured by its speed and memory, for neural networks ‘measuring the computing performance 
requires new tools from information theory and computational complexity’ (Abu-Mostafa 1989). Although 
the different solutions presented here will be assessed for size, speed, flexibility and cascadability, great 
care should be taken especially when considering speed. Hardware approaches are very different, thus 
making it almost impossible to run the same benchmark on all systems. Even for machines which support 
backpropagation (which is commonly used as a benchmark), the average number of weight updates per 
second or CUPS (connection updates per second) reported in publications shows different computational 
power-ven for the same machine! This is due to: different precision of weights; the use of fixed 
point representation in some cases and the size of the network to be simulated (larger networks may be 

ci.2.3 implemented more efficiently). A typical example of two different backpropugation implementations on 
WARP can be found in Pomerleau et a1 (1988). For architectures which do not support learning, the 
number of synaptic multiplications per second or CPS (connections per second) will be mentioned, but 
the same caution should be taken due to different word lengths (precision of computation) and network 
architectures. Normalizing the CPS value by the number of weights leads to CPS per weight or CPSPW, 
and was suggested as a better way to indicate the processing power of a chip (Holler 1991). Precision can 
also be included in the processing performance by considering a connection primitive per second (CPPS) 
which is CPS multiplied by bits of precision and by bits for representing the inputs (van Keulan et a1 
1994). Another reason for taking such speed measurements with a lot of care is that some of the articles 
report only on a small test chip (and the results reported are extrapolations to a future full-scale chip or to 
a board of chips andor neurocomputer), or that only peak values are given. 

Finally, for neurochips and neurocomputers which are dedicated to a certain neural architecture (e.g., 
C I A ,  c2.1.1 the Boltzmann machine (Murray et a1 1992, 1994); Kohonen’s selforganizing feature maps (Hochet et a1 

1991, Goser et a1 1989, Riiping and Riickert 1996, Tryba et a1 1990, Thiran 1993, Thiran et a1 1994, 
c1.3.4 Thole et a1 1993); Hopfield networks (Blayo and Hurat 1989, Gascuel et a1 1992, Graf and de Vegvar 

1987a, b, Graf et a1 1987, Savran and Morgiil 1991, Sivilotti et a1 1986, Weinfeld 1989, Yasunaga et a1 
c2.1.3, c1.6.2 1989, 1990); Neocognitron (Trotin and Darbel 1993, White and Elmasry 1992); radial basisfunctions and 

ci.6.3.i restricted coulomb energy (LeBouquin 1994, Scofield and Reilly 1991)), or for those which are built as 
c1.4 stochastic devices (Clarkson and Ng 1993, Clarkson et a1 1993a, b, Kollmann et a1 1966), it is almost 

impossible to assess their speed. It should be mentioned that due to such unsurmountable problems there 
is usually little if any information on benchmarks. 

E1.4.4.2 Typical and recent examples 

We shall firstly mention Mark I11 and IV from a historical point of view. 
0 Murk III was built at TRW, Inc., during 1984 and 1985 Hecht-Nielsen (1989). The design used 

eight Motorola M68010-based boards running at 12 MHz, with 512 kbytes of DRAM memory each. 
The software environment used was called ANSE (Artificial Neural Systems Environment). The 
original Mark I11 had a capacity of approximately 8000 processing elements (neurons) and 480000 
connections, and had a speed of 380000 CPS (large instar network using Grossberg learning). 
Mark IV was also built at TRW, Inc., but under funding from the Defense Science Office of the 
Defense Advanced Research Projects Agency (DARPA). A detailed description is given by Hecht- 
Nielsen (1989) who, together with Todd Gutschow, was one of the designers. It was capable of 

0 

E l  .4: 10 Hundbook of Neural Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

implementing as many as 262 144 processing elements and 5.5 M connections, and had a sustained 
speed of 5 MCPS, whether or not learning was taking place Kuczewsk et a1 (1988). It had a mass 
of 200 kg and drew 1.3 kW of power. The basic computing unit was a 16-bit Texas Instruments 
TMS32020 DSP. The idea was that Mark IV would be a node of a larger neurocomputer (which was 
never intended to be constructed). 
In the meantime most of the neural network simulations have been performed on sequential computers. 

The performance of such software simulation was roughly between 25 OOO and 250000 CPS in 1989 
(DARPA 1989). Fresh results show impressive improvements on computers having just one processing 
element. 
e 
e 

e 

IBM 80486/50MHz exhibits 1.1 MCPS and 0.47 MCUPS (Muller et a1 1995). 
Sun (Sparcstation 10) has 3.0 MCPS and 1.1 MCUPS Muller et a1 (1995). 
NEC SX-3 (supercomputer) achieves 130 MCUPS (the implementation was presented by Koike from 
NEC at the Second ERH-NEC Joint Workshop on Supercomputing 1992 Zurich, but no published 
English reference seems to be available). As NEC SX-3 has 5.9 Gflops it is expected that a similar 
performance would be obtained on a Cray Y-MPW (which has 2.5 Gflops). 

Similar results have been reported for Hypercube FPS 20 (Roberts and Wang 1989, Neibur and Brettle 
1992) and CM (Deprit 1989, Zhang et a1 1990). At least one order of magnitude increase can be expected 
on Fujitsu, Intel Paragon or on the NEC SX-4. 

As a first alternative and aimed at increasing the speed of simulations on PCs and workstations, 
special acceleration boards have been developed Williams and Panayotopoulos (1989). 
e Delta Floating Point Processor from the Science Application International Corporation (SAIC), has 

separate addition and multiplication parts: it runs at 10 MCPS and 1-2 MCUPS (SouEek and SouEek 
1988, Works 1988). 
SAIC later developed SIGMA-I which has a 3.1 M virtual interconnections and has reached 
11 MCUPS (Treleaven 1989). 
ANZA Plus from Hecht-Nielsen Computers (Hecht-Nielsen 1988) has a 4-stage pipelines Harvard 
architecture. It can go up to 1 M virtual processing elements, 1.8 MCUPS (Atlas and Suzuki 1989) 
and 6 MCPS (Treleaven 1989). 
Intel i860 RISC processor is used in the Myriad MC860 board and in the Balboa board from HNC, 
showing around 7 MCUPS (Hecht-Nielsen 1991). 

One simple way to increase performance even more is to use processors in parallel. A classical design 

e 

e 

e 

Many other accelerator boards are mentioned in a tabular form by Lindsey and Lindblad (1994). 

style was used for slice architectures, and several representative models are detailed. 

Micro Devices have introduced the NBS (Neural Bit Slice) chip MD1220 (Micro Devices 1989a-c, 
1990). The chip has eight processing elements with hard-limit thresholds and eight inputs (Yestrebsky 
et a1 1989). The architecture is suited for multiplication of a 1-bit synapse input with a 16-bit weight. 
The chip only allows for hard-limiting threshold functions. The weights are stored in standard RAM, 
but only eight external weights per neuron and seven internal weights per neuron are supported. 
Such a reduced fan-in (maximum 15 synapses per neuron) is quite a drastic limitation. This can 
be avoided by additional external circuits, but increasing the fan-in decreases the accuracy (as the 
16-bit accumulator can overflow). The chip has a processing rate of 55 MIPS which roughly would 
correspond to 8.9 MCPS. 
A similar chip is the Neuralogix NU-420  Neural Processor Slice from Neuralogix (1992), which 
has 16 processing elements. A common 16-bit input is multiplied by a weight in each processing 
element in parallel. New weights are read from off-chip. The 16-bit weights and inputs can be user 
selected as 16 1-bit, 4 4-bit, 2 8-bit or 1 16-bit value@). The 16 neuron sums are multiplexed through 
a user-defined piecewise continuous threshold function to produce a 16-bit output. Internal feedback 
allows for multilayer networks. 
The Philips L-Neuro 1.0 chip (Duranton and Maudit 1989, Duranton and Sirat 1989, Theeten et a1 
1990, Maudit et a1 1992) was designed to be easily interfaced to transputers. It also has a 16-bit 
processing architecture in which the neuron values can be interpreted as 8 2-bit, 4 4-bit, 2 8-bit or 
1 16-bit value(s). Unlike the NLX-420, there is a 1 kbyte on-chip cache to store the weights. The chip 
has 32 inputs and 16 output neurons and only the loop on the input neurons is parallelized (weight 
parallelism). This chip has on-chip learning with an adjustable learning rate. The transfer function is 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Compufution release 9711 E 1.4: 11 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

computed off-chip. This allows for multiple chips to provide synapse-input products to the neurons 
and, thus, to build very large networks. An experiment with 16 L-Neuro 1.0 (Maudit et a1 1991) 
was able to simulate networks with more than 2000 neurons and reached 19 MCPS and 4.2 MCUPS. 
The work has been continued: a L-Neuro 2.0 architecture was reported (Dejean and Caillaud 1994), 
followed recently (Duranton 1996) by L-Neuro 2.3 (see the paragraph on the latest implementations). 
BACCHUS is another slice architecture which was designed at Darmstadt University of Technology. 
There have been three successive versions I, 11, and I11 (Huch et a1 1990, Pochmuller and Glesner 
1991). The neurons perform only a hard-limiting threshold function. The final version was designed as 
a sea-of-gates in 1.5-pm CMOS (Glesner e f  a1 1989, Glesner and Piichmiiller 1991). The chip contains 
32 neurons and runs at 32 MCPS (but for 1-bit interconnections!). An associative system PAN IV, 
based on BACCHUS I11 chips has been built (Palm and Palm 1991). It has eight BACCHUS I11 chips 
(for a total of 256 simple processors) and 2 Mbytes of standard RAM. The system was designed only 
as a binary correlation matrix memory. 

For even higher performances the designers have used SIMD arrays (various one- or two-dimensional 
systolic architectures (Kung 1988, Kung and Hwang 1988, 1989a, 1989b, Kung and Webb 1985), made 
of DSPs (digital signal processors), RISC processors, transputers or dedicated chips. 

0 

Many neuroprocessors have been built as arrays of DSPs. 

One of the first array-processors proposed for neural network simulation was built at IBM Palo Alto 
Scientific Center (Cruz et a1 1987). The building block was the NEP (Network Emulation Processor) 
board able to simulate 4000 nodes (neurons) with 16000 links (weights) and a speed of between 
48 000 and 80 000 CUPS. Up to 256 NEPs could be cascaded (through a NEPBUS communication 
network), thus allowing for networks of 1 million nodes and 4 million links. 
Another DSP neuroprwessor called SANDY emerged from Fujitsu Laboratories (Kato et a1 1990). 
The DSP used was the Texas Instruments TMS320C30 connected in a SIMD array. SANDYI6 (with 
64 processors) was benchmarked on NETtalk (Sejnowski and Rosenburg 1986) at 118 MCUPS and 
141 MCPS. SANDY/8 with 256 processors was expected to work at 583 MCUPS (Yoshizawa et a1 
1991). 
The RAP (Ring Array Processor) developed at the International Computer Science Institute (ICSI, 
Berkeley) is an array of between 4 and 40 Texas Instruments TMS320C30 DSPs containing 256 kbytes 
of fast static RAM and 4 Mbytes of dynamic RAM each (Morgan et a1 1990, 1992, 1993, Kohn et a1 
1992). These chips are connected via a ring of Xilinx programmable gate arrays, each implementing 
a simple two register data pipeline and running at the DSP clock speed of 16 MHz. A single board 
can perform 57 MCPS and 13.2 MUCPS, with a peak performance for a whole system reaching 
640 MCPS (tested at 570 MCPS) and 106 MCUPS. 
At the Swiss Federal Institute of Technology in Zurich, a 63-processor system named M U S K  
(Multiprocessor System with Intelligent Communication) has been developed (Muller et a1 1992, 
1994, 1995). The architecture is similar to that of RAP but differs in the communication interface. 
Three Motorola 96002 DSPs (32-bit floating-point) are mounted on one board, each one with a 
Xilinx LCA XC3090 programmable gate array and an Inmos T805 transputer. Up to 21 boards 
(i.e., 63 processors) fit into a standard 19-inch rack. A global 5-MHz ring connects the nodes and 
communication can be overlapped with computation. The complete system has achieved 817 MCPS 
and 330 MCUPS (for a 5000-1575-63 two-layer perceptron), but the peak performance is 1900 MCPS. 
A fully equipped system consumes 800 W. 
PANNE (Parallel Artificial Neural Network Engine) has been designed at the University of Sydney 
(Milosavlevich et a1 1996) and exploits the many specialized features of the TMS32OC40 DSP chip. 
One board contains two DSPs together with 32 Mbytes of DRAM and 2 Mbytes of high speed 
SRAM. These are accessed through a dedicated local bus. Apart from this local bus, each board has 
a global bus and six programmable unidirectional 8-bit ports specially designed to allow connections 
of neighboring DSPs at 20 Mbytes per second. The system has up to eight boards and is estimated 
at 80 MCUPS. 
Different solutions have been implemented on arrays (networks) of transputers (Ernst et a1 1990, 

Murre 1993). Ernoult (1988) reported that a network of 2048 neurons with 921 600 connections running 
on a 16-transputer system (T800) has reached 0.57 MCUPS. A Megaframe Hypercluster from Parsytec 
(Achen, Germany), having 64 transputers (T800) and implementing backpropagation, runs at 27 MCPS 

0 

0 

0 

0 

0 

El .4:12 Hundbook of Neurul Compururion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

and 9.9 MCUPS (Muhlbein and Wolf 1989). This performance should increase tenfold on the Parsytec’s 
Gigacluster which uses T9000 transputers. 

Instead of transputers some researchers have used RISC processors and here are some of the 
neurocomputers built as arrays of RISC processors. 

One solution was to design a RISC processor (dedicated for simulating neural networks) and 
assembling several of them in SIMD arrays. Here we can mention the 16-bit Neural RISC developed at 
University College London (Pacheco and Treleaven 1989, Treleaven et a1 1989, Treleaven and Rocha 
1990). Several neural RISCs have been connected in a linear array. A linear array interconnecting 
scheme has several advantages: simplified wiring and ease of cascadability. Several arrays are linked 
by an interconnecting module (Pacheco and Treleaven 1992). This allows for different topologies 
(rings, meshes, cubes) and is expandable up to a maximum of 65536 processors. The flexibility is 
high as the computer is of the MIMD type (multiple instructions multiple data). 
REMAP3 was an experimental neurocomputing project (Bengtsson et a1 1993, Linde et a1 1992) 
with its objective being to develop a parallel reconfigurable S M D  computer using FPGAs. The 
performance was estimated to be between 100 and 1000 MCUPS. 
Another solution is to use a standard RISC processor. An example is the 128 PE RISC which uses 
the Intel 80860 (Hiraiwa et a1 1990). 128 processors are connected in a two level pipeline array 
where the horizontal mesh connections serve for information exchange (weights) and vertical meshes 
share dataflow. For a 256-80-32 network and 5120 training set vectors, the performance is around 
1000 MCUPS. 
BSP400 from Brain Style Processor (Heemskerk et a1 1991, Heemskerk 1995) used low-cost 
commercial microprocessors MC68701 (8-bit microprocessor). Due to the low speed of the processor 
used (1 MHz!) the overall performance reached only 6.4 MCUPS when 400 processors were used. 

Because both DSP and RISC processors are too powerful and flexible for the task of simulating 
neural networks, a better alternative is to use smaller and more specific (less flexible) dedicated processing 
elements. This can increase the computational power and also maintain a very small cost. The trend 
has been marked by the use of SZMD arrays (Single Instruction Multiple Data) and especially systolic 
arrays (Kung and Hwang 1988) of dedicated chips. Systolic arrays are a class of architecture where 
the processing elements and the interconnecting scheme can be optimized for solving certain classes of 
algorithms. Matrix multiplication belongs to this class of algorithms (Leiserson 1982), and it is known 
that neural network simulation relies heavily on matrix multiplication (Beiu 1989, Kham and Ling 1991, 
Kung and Hwang 1989b). The SIMD arrays are similar structures, the main difference being that the 
elementary processing elements have no controllers and that a central controller is in charge of supervising 
the activity of all the elementary processing elements. 

The WARP array was probably the earliest systolic one (Kung and Webb 1985, Arnould 1985, 
Annaratone et a1 1987). Although built primarily for image processing, it has also been used for 
neural network simulation (Pomerleau et a1 1988). It is a ten (or more) processor programmable 
systolic array. The system can work either in a systolic mode, or in a local mode (each processor 
works independently). A performance of 17 MCUPS was obtained on a 10-processor WARP. 
ARZANE chip (Gascuel et a1 1992) is a 64-neuron implementation in a 1 . 2 - ~ m  CMOS of the 
architecture first proposed by Weinfeld (1989). The chip-having 420000 transistors in 1 cm2- 
implements a fully digital Hopfield-type network, thus continuing on the lines of other Hopfield- 
type implementations (Sivilotti 1986, Graf et a1 1986). All operations are performed by a 12-bit 
adderlsubtracter. There are 64 connections per neuron, making it possible to store 4096 weights. The 
reported speed is 640 MCUPS, but this figure cannot be compared to standard CUPS as the chip 
does not implement backpropagation. The main drawback is that the chip is not easily cascadable 
(however, a four chip board has been designed). 
SNAP (SIMD Neurocomputer Array Processor) from Hecht-Nielsen Computers, Inc is based on 
HNC 100 NAP chips (Neural Array Processor). The chip is a one-dimensional systolic array of four 
arithmetic cells forming a ring (Hecht-Nielsen 1991, Means and Lisenbee 1991) and implementing 
IEEE 32-bit floating-point arithmetic. Each arithmetic cell contains a 32-bit floating point multiplier, 
floating point ALU and integer ALU, and runs at 20 MHz with all instructions being executed in 
one clock cycle. Four NAPS are linked on one SNAP board. SNAP has either 32 (SNAP-32) or 64 
(SNAP-64) processors (i.e., either two or four boards). The SNAP-32 performed at 500 MCPS (peak 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neural Compurution release 9711 El .4: 13 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

performance being 640 MCPS) and 128 MCUPS. Although the system performs lower than CNAPS 
(described below), we have to mention that SNAP uses 32-bit floating point arithmetic. 
The APLYSIE chip is a two-dimensional systolic array dedicated for Hopfield-type networks (Blayo 
and Hurat 1989). Since the outputs are only +1 and -1, the synaptic multiplication can be performed 
by an adderhubtracter (like in Weinfeld’s 1989 solution). The weights are limited to 8-bit and 
the partial product is computed by a 16-bit register. The adderhubtracter is of the serial type for 
minimizing the area, but is also thought for the serial interconnecting scheme used. An advantage of 
such a solution is its cascadability. 
The GENES chip is a generalization of APLYSIE and it was implemented at the Swiss Federal Institute 
of Technology (Lausanne) as part of the MANTRA project (Lehmann and Blayo 1991, Lehmann et 
a1 1993, Viredaz et al 1992). It is based on the same recurrent systolic array as APLYSIE, but 
it has been enhanced to simulate several neural network architectures. The first chip of the family 
was GENES HN8 implementing each synapse as a serial-parallel multiplier. Two versions have been 
fabricated: 2 x 2 array of processors and 4 x 4 array of processors. Weights and inputs are represented 
on 8 bits. The partial sum is calculated on 24 bits. A full board, GENES SY 1, was built as a 9 x 8 
array of GENES HN8 2 x 2 chips (18 x 16 synapses) and was able to reach 110 MCPS. A GENES IV 
chip was later designed as an upgrade of GENES HN8 (Lehmann et a1 1993, Viredaz et a1 1992). It 
has 16-bit inputs and synaptic weights and uses 39 bits for the partial sum. The chip was designed 
with standard cells in a l - p m  CMOS technology on a 6.2 x 6.2 mm2 area. Together with another 
chip, GACDl (dedicated to the error computation for delta rule and backpropagation), it was used 
to build the first MANTRA neurocomputer as a 40 x 40 array of processing elements. The speed is 
estimated at 500 MCPS and 160 MCUPS. 
A low-cost high-speed neurocomputer system has recently been proposed (Strey et a1 1995) and 
implemented (Avellana et a1 1996). The system is based on a dedicated AU chip which has been 
designed so as to dynamically adapt the internal parallelism to data precision. It tends to achieve 
an optimal utilization of the available hardware resources. The AU chip is organized as a pipeline 
structure where the data path can be adapted dynamically to the encoding of the data values. The 
chip has been realized in 0.7 p m  and has 80 mm2. Four chips are installed on a board together 
with: a Motorola DSP96002 (used for the management of the local bus, computation of the sigmoid 
function, error calculation, winner calculation and convergence check); an FPGA for communication; 
local weight memories; central memory; and FIFO memory. Several boards can be used together. For 
16-bit weights and with only one board the estimated performance is 480 MCPS and 120 MCUPS. 

0 TNP (Toroidal Neural Processor) is a linear systolic neural accelerator engine developed at 
Loughborough University of Technology (Jones and Sammut 1993, Jones et a1 1990, 1991). The 
system is still under development although several prototype chips have been successfully fabricated 
and tested. 
HANNZBAL (Hardware Architecture for Neural Networks Implementing Backpropagation Algorithm 
Learning) was built at British Telecom. A dedicated HANNIBAL chip contains eight processing 
elements (Myers et a1 1991, Orrey et a1 1991, Naylor et a1 1993), each one with 9216 bits of local 
memory (configurable as 512 17-bit words, or 1024 9-bit words). Such a chip allows for high fan-in 
neurons to be implemented; up to four lower fan-in neurons can be mapped onto one processing 
element. The neuron activation function is realized by a dedicated approximation for area saving 
reasons. The chip uses reduced word length (8-bit in the recall phase and 16-bit when learning 
(Vincent and Myers 1992) and it was fabricated in a 0.7-wm CMOS technology. This has led to 
750 000 transistors in a 9 x 11.5 mm2 area. The clock frequency is 20 MHz and a single chip can 
reach 160 MCPS. 
MM32K (Glover and Miller 1994) is a SIMD having 32768 simple processors (bit serial). A custom 
chip contains 2048 processors. The bit serial architecture allows for the variation of the number of 
bits (variable precision). The processors are interconnected by a 64 x 64 full crossbar switch with 
5 12 processors connected to each port of the switch. 
SYNAPSE 1 and SYNAPSE X (Synthesis of Neural Algorithms on a Parallel Systolic Engine) from 
Siemens (Ramacher 1990, 1992, Ramacher et a1 1991b, 1993) are dedicated to operation on matrices 
based on the MA16 chip (Beichter et a1 1991), which has four systolic chains (of four multipliers 
and four adders each). The chip runs at 25 MHz and was fabricated in 1.0-pm CMOS. Its 610000 
transistors occupy 187 mm2. The MA16 alone has 800 MCPS when working on 16-bit weights. 
SYNAPSE neurocomputer is nothing else but a two-dimensional systolic array of MA16 chips 

0 

0 

0 

0 

0 

0 

E 1.4: 14 Hundbook of Neural Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

arranged in two rows by four columns. The weights are stored off chip in local memories. Both 
processor rows are connected to the same weight bus which excludes the operation on different input 
patterns. The MA16s in a row form a systolic array where input data as well as intermediate results 
are propagated for obtaining the total weighted sum. Multiple standard 68040s and additional integer 
ALUs are used as general purpose processors which complement the systolic processor array. The 
standard configuration has eight MA16s, two MC68040 for control and 128 Mbytes of DRAM. It 
performs at 5100 MCPS and 133 MCUPS. 
CNAPS (Connected Network of Adaptive Processors) is a SIMD array from Adaptive Solutions, Inc 
(Adaptive Solutions 1991, 1992, Hammerstrom 1990). X1 is a neural network dedicated chip with 
on-chip learning. It consists of a linear array of elementary processors, each one having a 32-bit 
adder and a 24-bit multiplier (fixed-point). The structure of an elementary processor is such that it 
can work with three different weight lengths: 1-bit, 8-bit and 16-bit weights (Hammerstrom 1990, 
Hammerstom and Nguyen 1991). X1 chips are fully cascadable, allowing the construction of linear 
arrays having arbitrary many elementary processors. Another chip, the N64000, was produced in 
0.8-pm CMOS and 80 elementary processors have been embedded in this design. N64000 is a large 
chip (one square inch) containing over 11 million transistors (Griffin et a1 1991) and due to defects in 
the fabrication process only 64 functioning processing elements are used from one chip (the 16 more 
being redundant). The same idea will be used at a higher level for the Hitachi’s WSI (wafer scale 
integration) to be discussed later. The maximum fan-in of one neuron is 4096 and there are 256K 
programmable synapses on the 26.2 x 27.5 mm2 chip. The chip alone can perform 1600 MCPS and 
256 MCUPS for 8- or 16-bit weights (12 800 MCPS for 1-bit weight). The CNAPS has four N64000 
chips running at 20 MHz on one board (256 processing elements). The maximum performance of the 
system is quite impressive: 5700 MCPS and 1460 MCUPS (Adaptive Solutions 1991, 1992, McCator 
1991), but these values are for 8- and 16-bit weights! Hammerstrom and Nguyen (1991) have also 
compared a Kohonen self-organizing map implemented on the CNAPS: 516 MCPS and 65 MCUPS, 
with the performance on a SPARC station: 0.11 MCPS and 0.08 MCUPS. 
MasPar MP-1 is a SIMD computer based on the MP-1 chip (Blank 1990, MasPar 1990). It is 
a general purpose parallel computer but it exhibits excellent performances when simulating neural 
networks. The core chip is MP-1 which has 32 processing elements working on 32-bit floating point 
numbers (each processing element can be viewed as a small RISC processor). MP-1 was fabricated 
in 1.6-pm CMOS on an area of 11.6 x 9.5 mm2 and has 450000 transistors. The chip works at 
a moderate clock frequency of only 14 MHz for minimizing the dissipated power. One board uses 
32 MP-1 chips, thus having 1024 processing elements which are arranged in a two-dimensional array. 
The connection scheme is different from others: 16 processing elements are configured as a 4 x 4 
array with an X-net mesh and form a ‘processor element cluster’. These clusters are again connected 
as an X-net mesh of clusters. The processors are connected together from the edges to form a torus. 
On top of that, a global communication between processing elements is realized by a dedicated 
1024 x 1024 crossbar interconnecting network having three stages for routing. MasPar can have from 
1 to 16 boards. The largest configuration has 16384 processing elements. Grajski e? a1 (1990) have 
simulated neural networks on a MasPar MP-1 with 4096 processing elements (MasPar MP-1 1100). 
A 900-20-17 backpropagation network obtained 306 MCUPS, but on the largest MasPar MP-1 1200 
(16384 processing elements) performance is expected to be on the order of GCUPS. 

Many other alternatives have also been presented and we shall shortly enumerate some of them here. 

WZSARD belongs to the family of weightless neural networks or the RAM model (Aleksander and c1.5.4 

Morton 1990) and has been used in image recognition. 
The PRAM (probabilistic RAM) is a nonlinear stochastic device (Gorse and Taylor 1989a, b, 1990a, c1.5.2 
1991a, c) with neuron-like behavior which-as opposed to the simple RAM model-an implement 
nonlinear activation functions and can generalize after training (Clarkson er a1 1993a). It is based on 
a pulse-coding technique and several chips have been fabricated. The latest digital PRAM has 256 
neurons per chip. The 16-bit ‘weights’ (probabilities) are stored in an external RAM in order to keep 
the costs at a minimum. Up to 1280 neurons can be interconnected by combining five chips. Learning 
(Clarkson and Ng 1993, Clarkson e? a1 1991a, b, 1992b, 1993b, c, Gorse and Taylor 1990b, 1991b, 
Guan e? a1 1992) is performed on-chip. The PRAM uses a 1-pm CMOS gate-array with 39000 
gates. A PC board has been designed and tested. A VMEbus-based neural processor board (using 
the PRAM-256) has also been recently built (El-Mousa and Clarkson 1996). The current VMEbus 

0 

0 

0 

0 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Cornputdon release 97/1 El .4: 15 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

version is being used for studying the various different architectures and advantages of hardware- 
based learning using PRAM artificial neural networks. For this purpose, the board relies heavily on 
the use of in-system programmable logic devices (ISPLD) to facilitate changing the support hardware 
logic associated with the actual neural processor without the need to rewrite and/or exchange parts 
of it. 
Intel has several neural network solutions (Intel 1992a, b). Two commercial chips are dedicated 
to radial basis functions (Watkins et a1 1992): the IBMZISCO36 (LeBouquin 1994) and Nil000 
(Scofield and Reilly 1991) build in cooperation with Nestor. The ZISCO36 (from Zero Instruction 
Set Computer) contains 36 prototype neurons, where the vectors have 64 8-bit elements and can be 
assigned to categories from 1 to 16384 (i.e., the first layer has 36 neurons fully connected by 8-bit 
weights to the 64 neurons of the second layer). Multiple ZISCO36 chips can be easily cascaded to 
provide additional prototypes, while the distance norm is selectable between city-block (Manhattan) 
or the largest element difference. The ZISCO36 implements a region of influence (ROI) learning 
algorithm (Verleysen and Cabestany 1994) using signum basis functions with radii of 0 to 16383. 
Recall is either according to the ROI identification, or via the nearest-neighbor readout, and takes 
4 ps for a 250-K sec-pattern presentation rate. 
The Nil000 was developed jointly by Intel and Nestor and contains 1024 prototypes of 256 5-bit 
elements (i.e., the first layer has 256 neurons, while the second layer is fully connected to the first layer 
by 5-bit weights and has 1024 neurons). The distance used is the city-block (Manhattan) distance. The 
third layer has 64 neurons working in a sequential way, but achieving higher precision. All the weights 
and the threshold are stored on board in a nonvolatile memory, as the chip is implemented in Intel’s 
0.8-pm EEPROM process. On the same chip a Harvard RISC is used to accelerate learning (Johnson 
1993b), and increases the overall number of transistors to 3.7 million. The chip implements two 
on-chip learning algorithms: restricted coulomb energy or RCE (Reilly et a1 1982) and probabilistic 
neural networks or PNN (Specht 1988). Other algorithms can be microcoded. In a pattern processing 
application the chip can process 40000 patterns per second (Holler et a1 1992). 
A generic neural architecture was proposed by Vellasco and Treleaven (1992). The idea is to tailor 
the hardware to the neural network to be simulated. This can increase the performance at the expense 
of reduced flexibility. The aim of such an approach is to automatically generate application-specific 
integrated circuits (ASICs). Several chips have been fabricated. Other authors have been working 
on similar approaches (Disante et a1 1990b, Fornaciari et a1 1991a, b), or have tried a mapping onto 
FPGAs (Beiu and Taylor 1995c, Botros and Abdul-Aziz 1994, Gick et a1 1993, Nigri et a1 1991, 
Nijhuis et a1 1991, Rossmann et a1 1996, Ruckert et a1 1991). 

ci.4 0 Several implementations of the Boltzmann machine have also been reported. A high-speed digital 
one is that of Murray et a1 (1992, 1994). The chip, realized in a 1.2-wm CMOS technology, has 32 
neural processors and four weight update processors supporting an arbitrary topology of up to 160 
functional neurons. The 9.5 x 9.8 mm2 area hosts 400000 transistors. This includes the 20480 5-bit 
weights stored in a dynamic RAM (the activation and temperature memories are static). Although 
clocked at 125 MHz, the chip dissipates less than 2 W. The theoretical maximum learning rate is 
350 MCUPS and the recall rate is typically 1200 patterns per second. An SBus interface board was 
developed using several reconfigurable Xilinx FPGAs. 
ArMenX is a distributed computer architecture (Poulain Maubant et a1 1996) articulated around a ring 
of FPGAs acting as routing resources as well as fine grain computing resources (Ltonhard et a1 1995). 
This allows for a high degree of flexibility. Coarse grain computing relies on transputers and DSPs. 
Each ArMenX node contains an FPGA (Xilinx 4010) tightly coupled to an Inmos T805 transputer 
and a Motorola DSP56002, but other processors could be used. The node has 4 Mbytes of transputer 
RAM and 384 Kbytes of DSP RAM and the FPGA connects to the left and right neighboring nodes. 
The sustained performance of a node is about 5 MCPS and 1.5 MCUPS, and it is expected that the 
scale-up will be linear for a 16-node machine: 80 MCPS and 24 MCUPS. 
A solution which uses on-line arithmetic has been proposed in Girau and Tisserand (1996) and 
should be implemented on an FPGA. A redundant number representation allows very fast arithmetic 
operations, the estimated speed being 5.2 MCUPS per chip. 
The use of stochastic arithmetic computing for all arithmetic operations of training and processing 
backpropagation networks has also been considered (Kollmann et a1 1996). Arithmetic operations 
become quite simple. The main problem in this case is the generation of numerous independent 
random generators. The silicon reported uses a decentralized pseudorandom generator based on the 

0 

0 

0 

0 

El .4:16 Hundbook of Neurul Compufufion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

principle of shifting the turn-around code for parities formed on partial stages of a feedback shift 
register. A 3.5 x 2.8 mm2 silicon prototype has been implemented in 1-pm CMOS technology. 
The prototype delivers a theoretical performance of 400 MCUPS for 12-bit weight length and 15-bit 
momentum length. It is estimated that a state-of-the-art 0.25-pm process would allow 4K synapses 
and 64 neurons should fit into 160 mm2 if standard cells are used; a custom design should increase 
these values to: 16K synapses and 128 neurons. 

Some of the latest implementations are pushing the performances even further and we shall vention 
here the most promising ones, even if by our classification some of them might also fall in another class. 

0 The RM-nc is a reconfigurable machine for massively parallel-pipelined computations and has 
been proposed in Erdogan and Wahab (1992). The reconfigurability is not only in the domain of 
communication and control, but also in the domain of processing elements. A fast floating point sum- 
of-products circuit using special carry-save multipliers (with built-in on-the-fly shifting capability and 
extensive pipelining) has been proposed and has to be implemented on FPGAs. The performance 
of an RM-nc256 machine (with 256 processing FPGAs) has been estimated for NETtalk (203-60- 
26 network with 13 826 connections) at a speed of 2000 MCUPS. No implementation has yet been 
reported. 
One interesting development is based on WSI (Mann et a1 1987, Rudnik and Hammerstrom 1988, 
Tewksbury and Hornak 1989). A first neural network WSI has been developed by Hitachi (Yasunaga 
et ul 1989, 1990). This first version was designed only for Hopfield networks without learning. 
Hituchi’s WSZ has 576 neurons with a fan-in of 64. Weights are represented on 10 bits. If larger 
fan-in is required, three neurons can be cascaded to increase the fan-in to 190 (this reduces the number 
of available neurons). A ‘small’ 5-inch wafer and a 0.8-p CMOS technology has been used to realize 
the designed 19 million transistors. The wafer has 64 chips of 12 neurons each; one redundant chip 
(Zorat 1987) is used to replace faulty neurons from the other chips. Up to 37K synapses are available 
on chip. For controlling the neurons and the buses there are eight more chips on the wafer. The 
only way to keep the power to a reasonable 5 W is a quite-slow clock rate: 2.1 MHz, but the actual 
performance is still around 138 MCPS. 

The same idea has been used by Hitachi (Boyd 1990) to design a WSI for multilayer feedforward 
networks including the backpropagation algorithm. The weights’ accuracy has been increased to 16 
bits to cope with the required precision of on-chip learning. One wafer has 144 neurons and eight 
wafers have been stacked together to form a very small neurocomputer with 1152 neurons (Yasunaga 
et a1 1991). The reported speed is 2300 MCUPS. Using a similar architecture and the present day 
state-of-the-art 0.3-pm CMOS technology it becomes clear that we can expect to have 10 000 neurons 
WSI in the very near future. 
For portable applications Hituchi has also developed a 1.5 V digital chip with 1048576 synapses 
(Watanabe et a1 1993). The chip can emulate 1024 fully connected neurons (fan-in of 1024 each) 
or three layers of 724 neurons. An on-chip DRAM cell array is used to store the 8-bit weights. A 
256 parallel circuit for summing product (Baugh parallel multiplier) pushes the processing speed to 
1370 MCPS. A scaled-down version of the chip was fabricated using a 0.5-pm CMOS design rule. 
It allowed an estimation of the full-scale chip: 15.4 x 18.6 mm2 and 75 mW. 
The new L-neuro 2.3 (Duranton 1996) is a fully programmable vectorial processor in a highly parallel 
chip composed of an array of twelve DSPs which can be used not only for neurocomputing, but also 
for fuzzy logic applications, real-time image processing and digital signal processing. Beside the 
twelve DSPs, the chip contains: a RISC processor, a vector-to-scalar unit, a 32-bit scalar unit, an 
image addressing module and several communication ports. All the DSPs are linked together: by a 
broadcast bus connecting all DSPs; by two shift chains linking the DSPs as a systolic ring; by fast 
neighbor-to-neighbor connections existing between adjacent DSPs; and also to an I/O port. All the 
internal buses are connected together through a programmable crossbar switch. The RISC processor 
of one chip can be used to control several other L-Neuro chips, allowing an expansion in a hierarchical 
fashion. The chip was fabricated in 0.6-pm technology and has 1.8 million transistors clocked at 
60 MHz. It can implement different learning algorithms such as backpropagation, Kohonen features 
map, radial basis functions and neural trees (Sirat and Nadal 1990). The peak performance is estimated 
at 1380 MCUPS and 1925 MCPS but no tests have yet been reported. 
One very interesting approach is the novel SMA (Sparse Memory Architecture) neurochip (Aihara et 
a1 1996) which uses specific models to reduce neuron calculations. SMA uses two key techniques 

0 

0 

0 

0 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 El .4:17 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

to achieve extremely high computational speed without an accuracy penalty: 'compressible synapse 
weight neuron calculation' and 'differential neuron operation'. The compressible synapse weight 
neuron calculation uses the transfer characteristics of the neuron to stop the calculation for the sum 
if it is determined that the final sum will be in the saturation region. This also cancels subsequent 
memory accesses for the synapse weights. The purpose of differential neuron operation is to do 
calculations only on those inputs whose level has changed. A dedicated processing unit having a 
22-bit adder, a 16-bit shifter, an EX-OR gate and two 22-bit registers has been designed. A test chip 
having 96 processing units has been fabricated in 0.5-pm CMOS and has 16.5 x 16.7 mm2. It runs 
at 30 MHz and dissipates 3.2 W. The chip can store 12228 16-bit synapse weights and has a peak 
performance of 30 GCPS (tested at 18 GCPS). 
SPERT (from Synthetic Perceptron Testbed) (AsanoviC et a1 1992, 1993d, Wawrzynek et a1 1993, 
1996) is a fully programmable single chip neuromicroprocessor which borrowed heavily from the 
experience gained with RAP (Morgan et a1 1990, 1992, 1993). It combines a general purpose integer 
data path with a vector unit of SIMD arrays optimized for neural network computations and with 
a wide connection to external memory through a single 128 VLIW instruction format. The chip is 
implemented in 1.2-wm CMOS and runs at 50 MHz. It has been estimated at a peak performance of 
350 MCPS and 90 MCUPS. The chip is intended to be a test chip for the future Torrent chip: the basic 
building block of CNS-1 (see below). Recent developments have led to SPERT-I1 (Wawrzynek et ai 
1996) which has a vector instruction set architecture (ISA) based on the industry standard MIPS RISR 
scalar ISA. 
NESPZNN (Neurocomputer for Spike-Processing Neural Networks) is a mixed SIMD/dataflow 
neurocomputer (Roth et a1 1995, Jahnke et a1 1996). It will allow the simulation of up to 512K 
neurons with up to lo4 connections each. NESPINN consists of the spike-event list (the connectivity 
of sparsely connected networks is performed by the use of lists), two connectivity units containing the 
network topology (a regular and a nonregular connection unit), a sector unit controlling the processing 
of sectors and the NESPINN chip. The chip has a control unit and eight processing elements; each 
processing element has 2 Kbytes of on-chip local memory and an off-chip neuron state memory. The 
chip has been designed and simulated and will be implemented in 0.5-km CMOS. It will operate 
at 50 MHz in either SIMD or dataflow mode. The estimated performance of the system with one 
NESPINN chip for a model network with 16K neurons of 83 connections each is 10" CUPS. 

0 CNS-1 from University of California Berkeley is the acronym from Connectionist Network 
Supercomputer-1 (AsanoviC et a1 1993a-c, 1994) and is currently under development. It is targeted 
for speech and language processing as well as early and high-level vision and large conceptual 
knowledge representation studies. The CNS- 1 is similar to other massively parallel computers 
with major differences in the architectural details of the processing nodes and the communication 
mechanisms. Processing nodes will be connected in a mesh topology and operate independently in a 
MIMD style. The processor node, named Torrent, includes: an MIPS CPU with a vector coprocessor 
running at 125 MHz, a Rambus external memory interface, and a network interface. The design is 
scalable up to 1024 Torrent processing nodes, for a total of up to 2 TeraOps and 32 Gbytes of RAM. 
The host and other devices will connect to CNS-1 through custom VLSI U0 nodes named Hydrant 
connected to one edge of the mesh and allowing up to 8 Gbytes of U0 bandwidth. A sketch of the 
future CNS-1 can be seen in figure E1.4.2. The goal set ahead is to be able to evaluate networks with 
one million neurons and an average of one thousand connections per unit (i.e., a total of a billion 
connections) at a rate of 100 times per second, or 10" CPS and 2 x 1O'O CUPS. 

Several of the implementations presented here have been plotted in figures E l  .4.3 (digital neurochips) 
and E1.4.4 (dedicated neurocomputers and supercomputers). As can be seen from these two figures, some 
architectural improvements are to be expected from the techniques used in designs like the SMA and the 
NESPINN, which could reach speed performances similar to the CNS-1. 

We shall not end this section before mentioning an interesting alternative that has recently emerged. 
To cope with the limited accuracy, new learning algorithms with quantized weights have started to appear 
(see also Section E1.2.4). One might call them 'VLSI-friendly learning algorithms', which was the topic 
covered in MicroNeuro'94. Such algorithms could be used to map neural networks onto FPGAs or 
to custom-integrate circuits. The first such learning algorithm (Armstrong and Gecsie 1979, 1991) is 
in fact synthesizing Boolean functions using adaptive tree networks whose elements-after training and 
elimination of redundant elements-perform classical (Boolean) logical operations (AND and OR). This 

0 

0 

E 1.4:18 Hundbook of Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

1 6 -  

\ w Four Torrent 
t i  

Mesh Network 

0 Human 

w 

2 10- 
0 
C 

Connections 

Hitachi 1 5V 
0 Fly 

MA-16 0 

Torrent 
Processor 
Hoops 

9 

YI 

p 6 -  

8 4 -  
a 

Hydrant I/O 
Hoop 

L-Neuro 1.0 ANZA+ 

X VAX 
x Symbolics 

Digital 

Quad Torrent Module To Disk Subsystem 

To Host Workstation 
To Analog I/O 

Figure E1.4.2. Connectionist Network Supercomputer CNS-1 (adapted from AsanoviC et a1 1993b). 

NESPINN 0 Bee 
SMA 0 

neurocomputers * t  I 
“0  2 4 6 8 10 12 14 16 

Number of synapses (exponent of 10) 

Figure E1.4.3. Different neurochips (circles) and classical computers (crosses) used for implementing 
artificial neural networks. 

line of research has been extended by using a combination of AND and OR gates after an initial layer of 
threshold gates (Ayestaran and Prager 1993, Bose and Garga 1993). New learning algorithms have been 
developed by quantizing other learning algorithms (Hohfeld and Fahlman 1991, 1992, Jabri and Flower 
1991, Makram-Ebeid et a1 1989, PCrez et a1 1992, Sakaue et a1 1993, Shoemaker et a1 1990, Thiran 
et a1 1991, 1993) or by devising new ones (Fiesler et a1 1990, Hohfeld and Fahlman 1991, Hollis and 
Paulos 1994, Hollis et a1 1991, MCzard and Nadal 1989, Nakayama and Katayama 1991, Oliveira and 
Sangiovanni-Vincentelli 1994, Walter 1989, Xie and Jabri 1992), a particular class being the one dealing 
with threshold gates (Beiu et al 1994a, Beiu and Taylor 1995a, b, 1996a, Diederich and Opper 1987, 
Gruau 1993, Krauth and MOzard 1987, Kim and Park 1995, Littlestone 1988, Raghavan 1988, Roy et a1 
1993, Tan and Vandewalle 1992, 1993, Venkatesh 1989). Four overviews have compared and discussed 
such constructive algorithms (Smieja 1993, Fiesler 1994, Moerland and Fiesler 1996, Beiu 1996~).  

The main conclusion is that a lot of effort and creativity has been used recently to improve digital 
solutions for implementing artificial neural networks. The many designs proposed over the years make 
this area a lively topic confirming its huge interest. Fresh proposals together with estimates and/or results 
already show impressive performances competing with analog chips and reaching towards an area which, 
not so long ago, was considered accessible only for future optical computing. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neuml Compururion release 9711 E l  .4:19 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

r=. 
v) 10- a 
0 

; 8 
$ 

c 

Q 

p 6 -  
GI 

16 I 

I 

-Special purpose B 
Supercomputers 

0 Human 

Leech o 
a 

0 2 4 6 8 10 12 14 16 
Number of synapses [exponent 01 10) 

Figure E1.4.4. Different neurocomputers and supercomputers used for implementing artificial neural 
networks. 

References 

Abu-Mostafa Y S 1988a Connectivity versus entropy Proc. Con$ on Neural Information Processing Systems pp 1-8 
-1988b Lower bound for connectivity in local-leaming neural networks J. Complexity 4 246-55 
-1989 The Vapnik-Chervonenkis dimension information versus complexity in leaming Neural Comput. 1 3 12-7 
Adaptive Solutions 1991 CNAPS Neurocomputing Information Sheet on the CNAPS Neurocomputing system (Adaptive 

Solutions Inc, 1400 NW Compton Drive Suite, 340 Beaverton, OR 97006, USA) 
-1992 CNAPS Server Preliminary Data Sheet (Adaptive Solutions Inc, 1400 NW Compton Drive Suite, 340 

Beaverton, OR 97006, USA) 
Aihara K, Fujita 0 and Uchimura K 1996 A digital neural network LSI using sparse memory access architecture Proc. 

Int. Con$ on Microelectronics for Neural Networks (1996) pp 13948 
Akers L A, Walker M R, Ferry D K and Grondin R 0 1988 Limited interconnectivity in synthetic neural systems 

Neural Computers eds R Eckmiller and C von der Malsburg (Berlin: Springer) pp 407-16 
Albrecht A 1992 On bounded-depth threshold circuits for pattern functions Proc. Int. Con6 on Artfzcial Neural 

Networks (1992) (Amsterdam: Elsevier) pp 135-38 
Aleksander I and Morton H B 1990 An overview of weightless neural nets Proc. Int. Joint Con$ on Neural Networks 

(Washington, 1990) vol I1 pp 499-502 
Alippi C 1991 Weight representation and network complexity reductions The Digital VLSI Implementation of Neural 

Nets Research Note RN/91/22 Department of Computer Science University College, London, February 
Alippi C, Bonfanti S and Storti-Gajani G 1990a Some simple bounds for approximations of sigmoidal functions 

Layered Neural Nets Report No 90-022 (Department of EE, Polytechnic of Milano) 
-1990b Approximating sigmoidal functions for VLSI implementation of neural nets Proc. Int. Con$ on 

Microelectronics for Neural Networks (1990) pp 165-170.4 
Alippi C and Nigri M 1991 Hardware requirements for digital VLSI implementation of neural networks Proc. Int. 

Joint Con$ on Neural Networks (1991) pp 1873-8 
Alippi C and Storti-Gajani G 1991 Simple approximation of sigmoidal functions realistic design of digital neural 

networks capable of leaming Proc. Int. Symp. on Circuits and Systems (Singapore, 1991) (Los Alamitos, CA: 
IEEE Computer Society Press) pp 1505-8 

Alla P Y, Dreyfus G, Gascuel J D, Johannet A, Personnaz L, Roman J and Weinfeld M 1990 Silicon integration of 
leaming algorithm and other auto-adaptive properties in a digital feedback neural network Proc. Int. Con& on 
Microelectronics for Neural Networks (1991) pp 341-6 

Allender E 1989 A note on the power of threshold circuits IEEE Symp. on the Foundation of Computer Science p 30 
Alon N and Bruck J 1991 Explicit construction of depth-2 majority circuits for comparison and addition Research 

Alspector J and Allen R B 1987 Neuromorphic VLSI Learning System Advanced Research in VLSI, Proc. 1987 

Alspector J, Allen R B, Hu V and Satyanaranayana S 1988 Stochastic learning networks and their electronic 

Report RJ 8300 (75661) (IBM Almaden, San Jose, CA) 

Stanford Con$ ed P Losleben (Cambridge MA: MIT Press) 

implementation Proc. Con$ on Neural Information Processing Systems (1987) pp 9-21 

El .4:20 Hundbook of Neurul Compurution release 9111 0 1997 IOP Publishing Ltd and Oxford University Pre\$ 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Amaldi E and Mayoraz E (eds) 1992 Mathematical Foundations of Artificial Neural Networks (Summer School, Sion, 
September 1992) (Swiss Federal Institute of Technology-Lausanne and Kurt Bosch Academic Institute-Sion 
1992) 

Annaratone M, Amould E, Gross T, Kung H T, Lam M, Menzilcioglu 0 and Webb J A 1987 The WARP computer 
architecture implementation and performance IEEE Trans. Comput. 36 1523-38 

Anderson J A and Rosenfeld E 1988 Neurocomputing: Foundations of Research (Cambridge, MA: MIT Press) 
Antognetti P and Milutinovic V (eds) 1991 Neural Networks: Concepts Applications and Implementations vol 2 

Arai M 1993 Bounds on the number of hidden units in binary-valued three-layer neural networks Neural Networks 6 

Armstrong W W and Gecsei J 1979 Adaption algorithms for binary tree networks IEEE Trans. Syst. Man Cybern. 9 

Armstrong W W, Dwelly A, Liang J, Lin D and Reynolds S 1991 Some results concerning adaptive logic networks 

Arnould E 1985 A systolic array computer Proc. IEEE Int. Con$ on Application Specific Signal processing (Tampa, 

AsanoviC K, Beck J, Callahan T, Feldman J, Irissou B, Kingsbury B, Kohn P, Lazzaro J, Morgan N, Stoutamire D 
and Wawrzynek J 1993a CNS-1 Architecture Specifcation, Technical Report TR-93-021 (International Computer 
Science Institute and Unviersity of California, Berkeley) 

AsanoviC K, Beck J, Feldman J, Morgan N and Wawrzynek J 1993b Development of a connectionist network 
supercomputer Proc. Int. Con$ on Microelectronics for Neural Networks (1993) pp 253-62 

-1993c Designing a Connectionist Network Supercomputer Int. J .  Neural Systems 4 317-26 
-1994 A supercomputer for neural computation Proc. IEEE Int. Con$ on Neural Networks vol 1 (Los Alamitos, 

AsanoviC K, Beck J, Kingsbury B E D, Kohn P, Morgan N and Wawrzynek J 1992 SPERT: A VLIW/SIMD neuro- 

AsanoviC K and Morgan N 1991 Experimental determination of precision requirements for back-propagation training 

AsanoviC K, Morgan N and Wawrzynek J 1993d Using simulations of reduced precision arithmetic to design a 

Atlas L E and Suzuki Y 1989 Digital systems for artificial neural networks IEEE Circuits and Devices Mag. 5 20-4 
Avellana N, Strey A, Holgado R, Fernhndez J A, Capillas R and Valderrama E 1996 Design of a low-cost and 

high-speed neurocomputer system Proc. Int. Con$ on Microelectronics for Neural Networks (1996) pp 221-6 
Ayestaran H E and Prager R W 1993 The Logical Gates Growing Network Technical Report I37 (Cambridge University 

Engineering Department, F-INFENG, July) 
Baker T and Hammerstrom D 1988 Modifications to artificial neural network models for digital hardware 

implementation Technical Report CS/E 88-035 (Department of Computer Science and Engineering, Oregon 
Graduate Center) 

Barhen J, Toomarian N, Fijany A, Yariv A and Agranat A 1992 New directions in massively parallel neurocomputing 
Proc. NeuroNimes '92 pp 543-54 

Baum E B 1988a Supervised leaming of probability distributions by neural networks Proc. Con$ on Neural Information 
Processing Systems (1987) pp 52-61 

-1988b On the capabilities of multilayer perceptrons J. Complexify 4 193-215 
Baum E B and Haussler D 1989 What size net gives valid generalization? Neural Comput. 1 151-60 
Beck J 1990 The ring array processor (RAP) hardware Technical Report TR-90-048 (International Computer Science 

Institute, Berkeley, CA, September) 
Beichter J, Bruels N, Meister E, Ramacher U and Klar H 1991 Design of a general-purpose neural signal processor 

Proc. Int. Con$ on Microelectronics for Neural Networks (1991) pp 31 1-5 
Beiu V 1989 From systolic arrays to neural networks Sci. Ann. Informatics 35 375-85 
-1994 Neural networks using threshold gates a complexity analysis of their area- and time-efficient VLSI 

-1996a Constant fan-in digital neural networks are VLSI-optimal 1st Int. Conf: on Mathematics of Neural Networks 

-1996b Entropy bounds for classification algorithms Neural Network World 6 497-505 
-1996c Optimal VLSI implementation of neural networks: VLSI-friendly leaming algorithm Neural Networks and 

-1997 VLSI components Complexity of Discrete Neural Networks (New York: Gordon and Breach) accepted for 

Beiu V, Peperstraete J A and Lauwereins R 1992 Using threshold gates to implement sigmoid nonlinearity Proc. Int. 

(Englewood Cliffs, NJ: Prentice Hall) 

855-60 

276-85 

Technical Report (Department of Computer Science, University of Alberta, Edmonton, Canada) 

FL, 1985) pp 232-5 

CA: IEEE Computer Society Press) pp 5-9 

processor Proc. Int. Joint Con$ on Neural Networks (1992) vol I1 pp 577-82 

of artificial neural networks Proc. Int. Con5 on Microelectronics for Neural Networks (1991) pp 9-15 

neuro-microprocessor J. VLSI Signal Processing 6 3-44 

implementations PhD Dissertation Katholieke Universiteit, Leuven, Belgium, x-27- 151 779-3 

and Applications (Oxford, 1995) (Ann. Math. Art$ Intell. to appear ) 

Their Applications ed T G Taylor (Chichester: Wiley) pp 255-76 

publication 

Conf: on Arti3cial Neural Networks (1992) vol I1 pp 1447-50 

~ 

@ 1997 IOP Publishing Ltd and Oxford University Press Hudbook of Neuml Compururion release 97f1 El .4:21 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Imdementations 

Beiu V, Peperstraete J, Vandewalle J and Lauwereins R 1993 Close approximations of sigmoid functions by sum of 
steps for VLSI implementation of neural networks Proc. Romanian Symp. on Computer Science (Jassy, Romania 

-1994a Learning from examples and VLSI implementation of neural networks Cybernetics and Systems '94, Proc. 
12th Euro. Meeting on Cybernetics and Systems Research (Menna, 1994) vol I1 ed R Trappl (Singapore: World 
Scientific) pp 1767-74 

-1994b VLSI Complexity reduction by piece-wise approximations of the sigmoid function Proc. Euro. Symp. on 
Artificial Neural Networks (Brussels) ed M Verleysen (Brussels: De facto) pp 181-6 

-1994c Area-time performances of some neural computations Proc. IMACS lnt. Sump. on Signal Processing 
Robotics and Artificial Neural Networks (Lille, France) ed P Borne, T Fukuda and S G Tzafestas (Lille: GERF 
EC) pp 664-8 

-1994d On the circuit complexity of feedforward neural networks Proc. Int. Confi on Artificial Neural Networks 
(1994) pp 521-4 

-1 994e Placing feedforward neural networks among several circuit complexity classes proceedings World Congr. 
on Neural Networks (San Diego, CA, 1994) vol I1 (Lawrence Erlbaum AssociatesANNS Press) pp 584-9 

Beiu V and Rosu I 1985 VLSI implementation of a self-testable real content addressable memory Proc. 6th Int. Con$ 
on Control System and Computer Science (Bucharest, Romania, 1985) vol 2 pp 400-5 

Beiu V and Taylor J G 1995a VLSI optimal learning algorithm ed D W Pearson, N C Steele and R F Albrecht Artificial 
Neural Nets and Genetic Algorithms, Proc. Int. Con5 on Artificial Neural Networks and Genetic Algorithms (Ales, 
France, 1995) (Berlin: Springer) pp 61-4 

-1995b Area-efficient constructive leaming algorithm Proc. 10th Int. Con$ on Control Systems and Computer 
Science (Bucharest, Romania, 1995) vol 3 pp 293-310 

-199% Optimal mapping of neural networks onto FPGAs-a new constructive algorithm From Natural to Art$cial 
Neural Computations Lecture Notes in Computer Science vol 930 eds J Mira and F Sandoval (Berlin: Springer) 

-1996a Direct synthesis of neural networks Proc. lnt. ConJ on Microelectronics for Neural Networks (1996) 

-1996b On the circuit complexity of sigmoid feedforward neural networks Neural Networks accepted 
Bengtsson L, Linde A, Svensson B, Taveniku M and Ehlander A 1993 The REMAP massively parallel computer 

platform for neural computations Proc. lnt. Con$ on Microelectronics for Neural Networks (1993) pp 47-62 
Blank T 1990 The MasPar MP-I architecture Proc. 35th IEEE Computer Society Int. Confi, Spring COMPCON '90 

(San Francisco) pp 20-4 
Blayo F and Hurat P 1989 A VLSI systolic array dedicated to Hopfield neural networks VLTIforArtificial Intelligence 

ed J G Delgado-Frias and W R Moore (New York: Kluwer) 
Bose N K and Garga A K 1993 Neural network design using Voronoi diagrams IEEE Trans. Neural Networks 4 

Boser B E, Sackinger E, Bromley J,  le Cun Y and Jackel L D 1992 Hardware requirements for neural network pattern 

Botros N M and Abdul-Aziz M 1994 Hardware implementation of an artificial neural network using field programmable 

Boyd J 1990 Hitachi's neural computer Electronic World News 10 December, 6-8 
Bruck J 1990 Harmonic analysis of polynomial threshold functions SIAM J. Discrete Math. 3 168-77 
Bruck J and Smolensky R 1989 Polynomial threshold functions, ACo functions and spectral norms Research Report 

-1992 Polynomial threshold functions ACo functions and spectral norms SIAM J. Comput. 21 33-42 
Bulsari A 1993 Some analytical solutions to the general approximation problem for feedforward neural networks 

Burr J B 1991 Neural network implementations Neural Networks Concepts: Applications and Implementations vol 2 

-1992 Digital neurochip design Digital Parallel Implementations of Neural Networks ed K W Przytula and V K 

Cameron S H 1969 An estimate of the complexity requisite in a universal decision network Bionics Symp. (Wright 

Clarkson T G, Gorse D and Taylor J G 1989 Hardware realisable models of neural processing Proc. 1st IEE Int. Confi 

-1990 PRAM automata Proc. IEEE Int. Workshop on Cellular Neural Networks and Their Applications (Budapest, 

-1991a Biologically plausible learning in hardware realisable nets Proc. Int. Con$ on Artificial Neural Networks 

-1992a From wetware to hardware reverse engineering using probabilistic RAMS J. Intell. Syst. 2 11-30 

1993) pp 31-50 

pp 822-9 

pp 257-64 

778-87 

classifiers IEEE Micro Mag. 12 32-40 

gate arrays (FPGA's) IEEE Trans. Indust. Electron. 41 665-8 

RJ 7410 (67387) (IBM Yorktown Heights, New York) 

Neural Networks 6 991-6 

ed P Antognetti and V Milutinovic (Englewood Cliffs, NJ: Prentice Hall) 

Prasanna (Englewood Cliffs, NJ: Prentice Hall) 

Airforce Development Division WADD Report 60-600) pp 197-212 

on Artificial Neural Nets, IEE Publication 313 (London: IEE) pp 242-6 

1990) pp 235-43 

(1991) pp 195-9 

El  .4:22 Hundbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Clarkson T G, Gorse D, Taylor J G and Ng C K 1992b Learning probabilistic RAM nets using VLSI structures IEEE 

Clarkson T G, Guan Y, Taylor J G and Gorse D 1993a Generalization in probabilistic RAM nets IEEE Trans. Neural 

Clarkson T G and Ng C K 1993 Multiple leaming configurations using 4th generation PRAM modules Proc. Int. Conf 

Clarkson T G, Ng C K, Gorse D and Taylor J G 1991b A serial update VLSI architecture for the learning probabilistic 

Clarkson T G, Ng C K and Guan Y 1993b The PRAM An adaptive VLSI chip IEEE Trans. Neural Networks 4 408-12 
Cohen S and Winder R 0 1969 Threshold gate building blocks IEE Trans. Computer 18 816-23 
Cover T M 1965 Geometrical and statistical properties of systems of linear inequalities with applications in pattern 

Craik K J W 1943 The Nature of Explanation (Cambridge: Cambridge University Press) 
Cruz C A, Hanson W A and Tam J Y 1987 Neural network emulation hardware design considerations Proc. Int. Joint 

Cybenko G 1988 Continuous valued neural networks with two hidden layers are sufficient Technical Report (Tufts 

-1989 Approximations by superpositions of a sigmoidal function Math. Control Signal Syst. 2 303-14 
DARPA 1989 DARPA neural network study final report October 1987-February 1988 Technical Report 840 (Lincoln 

Laboratory, MIT) 
Das Gupta B and Schnitger G 1993 The power of approximating a comparison of activation functions Con$ on Neural 

Information Processing Systems (1992) pp 615-22 
Dejean C and Caillaud F 1994 Parallel implementations of neural networks using the L-Neuro 2.0 architecture Proc. 

1994 Int. Con$ on Solid State Devices and Materials (Yokohama Japan) pp 388-90 
DelCorso D, Grosspietch K E and Treleaven P 1989 European approaches to VLSI neural networks IEEE Micro Mag. 

9 
Delgado-Frias J and Moore W R 1994 V U 1  for Neural Networks and Artificial Intelligence, An Edited Selection of 

the Papers Presented at the Int. Workshop on VLSI for Neural Networks and Artificial Intelligence (Oxford, 2 4  
September, 1992) (New York: Plenum) 

Dembo A, Siu K-Y and Kailath T 1990 Complexity of finite precision neural network classifier Proc. Conf on Neural 
Information Processing Systems (1989) pp 668-75 

Denker J S (ed) 1986 Neural network for computing Proc. AIP Conf on Neural Networks for Computing (Snowbird, 
Utah, 1986) (New York: American Institute of Physics) 

Denker J S and Wittner B S 1988 Network generality training required and precision required Proc. Con$ on Neural 
Information Processing Systems (1987) pp 219-22 

Deprit E 1989 Recurrent backpropagation on the connection machine Neural Networks 2 295-314 
Dertouzos M L 1965 Threshold Logic: A Synthesis Approach (Cambridge, MA: MIT Press) 
Deville Y 1993 A Neural implementation of complex activation functions for digital VLSI Neural Networks 

Diederich S and Opper M 1987 Learning of correlated patterns in spin-glass networks by local learning rules Phys. 

Disante F, Sami M G, Stefanelli R and Storti-Gajani G 1989 Alternative approaches for mapping neural networks 

-1990a A configurable array architecture for WSI implementation of neural networks Proc. IEEE IPCC Phoenix 

-1990b A compact and fast silicon implementation for layered neural nets Proc. Int. Workshop on VLSI for ArtiJicial 

Duranton M 1996 L-Neuro 2.3: a VLSI for image processing by neural networks Proc. Int. Con$ on Microelectronics 

Duranton M, Gobert J and Maudit N 1989 A digital VLSI module for neural networks Neural Networks from Models 

Duranton M and Maudit N 1989 A general purpose digital architecture for neural network simulation Proc. IEE h t .  

Duranton M and Sirat J A 1989 A general purpose digital neurochip Proc. Int. Joint Con$ on Neural Networks 

-1990 Learning on VLSI: a general-purpose digital neurochip Philips J .  Res. 45 1-17 
Eckmiller R, Hartman G and Hauske G (eds) 1990 Parallel Processing in Neural Systems and Computers (Amsterdam: 

Eckmiller R and von der Malsburg C (eds) 1988 Neural computers Proc. NATO Advanced Research Workshop on 

Trans. Computer 41 1552-61 

Networks 4 360-3 

on Microelectronics for Neural Networks (1993) pp 2 3 3 4 0  

RAM neuron Proc. Int. Con$ on ArtiJicial Neural Networks (1991) pp 1573-6 

recognition IEEE Trans. Electron. Computer 14 326-34 

Con$ on Neural Networks (1987) vol I11 pp 427-34 

University) 

Microelectron. J .  24 259-62 

Rev. Lett. 58 949-52 

onto silicon Proc. Int. Workshop on Artificial Neural Networks (Wetri sul Mare, Italy, 1989) pp 3 19-28 

A 2  March 

Intelligence and Neural Networks (Oxford) 

for Neural Networks (1996) pp 157-60 

to Applications, Proc. nEuro '88 (Paris, June 1988) (Paris: IDSET) pp 720-4 

Neural Network Con$ (1989) (London: IEE) pp 62-66 

(Washington, 1989) 

North-Holland) 

Neural Computers (Neuss, Germany) (Berlin: Springer) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 97/1 El .4:23 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

El-Mousa A H and Clarkson T G 1996 Multi-configurable PRAM based neurocomputer Neural Network World 6 

Erdogan S S and Wahab A 1992 Design of RM-nc a reconfigurable neurcomputer for massively parallel-pipelined 
computations Proc. Int. Joint Con5 on Neural Networks (1992) vol I1 pp 33-8 

Ernoult C 1988 Performance of backpropagation ona parallel transputer-based machine Pruc. Neuro Nimes '88 (Nimes, 
France) pp 31 1-24 

Emst H P, Mokry B and Schreter Z 1990 A transputer based general simulator for connectionist models Parallel 
Processing in Neural Systems and Computers ed G Hartmann and G Hauske (Amsterdam: North-Holland) 

Faggin F 1991 Hardware (VLSI) Implementations of Neural Networks. Tutorial 3(b) Int. Con5 on ArtGcial Neural 

Faggin F and Mead C A 1990 VLSI Implementation of neural networks An Introduction to Neural and Electronic 

Fiesler E 1994 Comparative bibliography of ontogenetic neural networks Pruc. Int. Con5 on Artijicial Neural Networks 

Fiesler E, Choudry A and Caulfield H J 1990 A universal weight discretization method for multi-layer neural 
networks IEEE Trans. Syst. Man Cybern. accepted (see also Fiesler E, Choudry A and Caulfield H J 1990 A 
weight discretization paradigm for optical neural networks Proc. Int. Congr. on Optical Science and Engineering 
(Bellingham, Washington) SPIE vol 1281 (SPIE) pp 164-73 

Fischler M A 1962 Investigations concerning the theory and synthesis of linearly separable switching functions PhD 
Dissertation Department EE, Stanford University, USA 

Flynn M J 1972 Some computer organization and their effectiveness IEEE Trans. Comput. 21 pp 948-60 
Fomaciari W, Salice F and Storti-Gajani G 1991a Automatic synthesis of digital neural architectures Proc. Int. Joint 

-1991b A formal method for automatic synthesis of neural networks Proc. Int. Con5 on Microelectronics for Neural 

Funahashi K-I 1989 On the approximate realization of continuous mapping by neural networks Neural Networks 2 

Funahashi K-I and Nakamura Y 1993 Approximation of dynamic systems by continuous time recurrent neural networks 
Neural Networks 6 801-6 

Furst M, Saxe J B and Sipser M 1981 Parity circuits and the polynomial-time hierarchy Pruc. IEEE Symp. on 
Foundations of Computer Science 22 260-70 (also in 1984 Math. Syst. Theory 17 13-27 

Gamrat C, Mougin A, Peretto P and Ulrich 0 1991 The architecture of MIND neurocomputers Proc. MicroNeuro Int. 
Con8 on Microelectronics for Neural Networks (1991) pp 463-9 

Gascuel J-D, Delaunay E, Montoliu L, Moobed B and Weinfeld M 1992 A custom associative chip used as building 
block for a software reconfigurable multi-networks simulator Proc. 3rd Int. Workshop on V U 1  for Artijicial 
Intelligence and Neural Networks (Oxford) 

Gick S ,  Heusinger P and Reuter A 1993 Automatic synthesis of neural networks to programmable hardware Pruc. Int. 
Con5 on Microelectronics for Neural Networks (1993) pp 115-20 

Girau B and Tisserand A 1996 On-line arithmetic-based reprogrammable hardware Implementation of multilayer 
perceptron back-propagation Proc. Int. Con5 on Microelectronics for Neural Networks (1996) pp 168-75 

Glesner M, Huch M, Ptichmilller W and Palm G 1989 Hardware implementations for neural networks Proc. IFIP 
Workshop on Parallel Architectures on Silicon (Grenoble, France) pp 65-79 

Glesner M and Pochmuller W 1991 Circuit Diagrams and Timing Diagrams of BACCHUS Ill (Darmstadt University 
of Technology, Institute for Microelectronic Systems, KarlstraBe 15, D-6100 Darmstadt, Germany) 

-1994 Neurocomputers-An Overview of Neural Networks in V U 1  (London: Chapman and Hall) 
Glover M A and Miller W T 1994 A massively-parallel SIMD processor for neural networks and machine vision 

applications Proc. Con$ on Neural Information Processing Systems (1993) pp 843-49 
Goldmann J and Karpinski M 1994 Simulating threshold circuits by majority circuits Technical Report TR-94-030 

(Intemational Computer Science Institute, Berkeley, California) (a preliminary version appeared in 1963 Proc. 
25th ACM Symp. on Theory of Computation (New York: ACM) pp 551-60) 

Gorse D and Taylor J G 1989a On the identity and properties of noisy neural and probabilistic RAM nets Phys. Lett. 
A 131 326-32 

-1989b An analysis of noisy RAM and neural nets Physica D 34 90-1 14 
-1990a A general model of stochastic neural processing Biol. Cybern. 63 299-306 
-1990b Hardware-Realisable Learning Algorithms Pruc. Int. Con5 on Neural Network (Paris, 1990) (Dordrecht: 

-199 la Universal associative stochastic learning automata Neural Network World 1 192-202 
-1991b Leaming sequential structure with recurrent PRAM nets Proc. Int. Joint Con5 on Neural Networks (1991) 

-1991c A continuous input RAM-based stochastic neural model Neural Networks 4 657-65 

587-96 

pp 283-6 

Networks 1991) 

Networks eds S F Zometzer, J L Davis and L Clifford (San Diego, CA: Academic Press) pp 275-92 

(1994) VOI I pp 793-6 

Con$ on Neural Networks (1991) pp 1861-6 

Networks (1991) pp 367-80 

183-92 

Kluwer) pp 8 2 1 4  

vol I1 pp 3 7 4 2  

E 1.4:24 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Goser K, Hilleringmann U, Ruckert U and Schumacher K 1989 VLSI Technologies for artificial neural networks IEEE 
Micro Mag. 9 28-44 

Graf H P and de Vegvar P 1987a A CMOS implementation of a neural network model Advanced Research in VLSI, 
Proc. Stanford Conk on Advanced Research on V U 1  ed P Losleben (Cambridge, MA: MIT Press) pp 35 1-67 

-1987b A CMOS associative chip based on neural networks Proc. IEEE Int. Solid-state Circuits Conk (New York, 
1987) pp 304, 305 and 437 

Graf H P, Hubbard W, Jackel L D and de Vegvar P 1987 A CMOS associative memory chip Proc. Int. Joint Con$ on 
Neural Networks (1987) vol I11 pp 461-8 

Graf H P, Jackel L D, Howard R E, Straughn B, Denker J S, Hubbard W, Tennant D M and Schwartz D 1986 
Implementation of a neural network memory with several hundreds of neurons Neural Network for Computing, 
Proc. AIP Conk on Neural Networks for Computing (Snowbird, Utah) ed J S Denker (New York: American 
Institute of Physics) pp 182-7 

Graf H P, Sackinger E, Boser B and Jackel L D 1991 Recent developments of electronic neural nets in USA and 
Canada Proc. Int. Conk on Microelectronics for Neural Networks (1991) pp 471-88 

Graf H P, Sackinger E and Jackel L D 1993 Recent developments of electronic neural nets in North America J. V U 1  
Signal Processing 6 19-3 1 

Grajski K A, Chinn G, Chen C, Kuszmaul C and Tomboulian S 1990 Neural Network Simulation on the MasPar MP-I 
Massively Parallel Computer, MasPar information sheet WO07 0690 (MasPar Computer Corporation, 749 North 
Mary Avenue, Sunnyvale, CA 94086, USA) 

Griffin M, Tahara G, Knorpp K, Pinkham P and Riley B 1991 An 11 million transistor neural network execution 
engine Proc. IEEE Int. Solid-state Circuits Conk (San Francisco, CA, 1991) pp 180-1 

Gruau F 1993 Leaming and pruning algorithm for genetic boolean neural networks Proc. Euro. Symp. on Artificial 
Neural Networks (Brussels, 1993) ed M Verleysen (Brussels: de facto) pp 57-63 

Guan Y, Clarkson T G, Gorse D and Taylor J G 1992 The application of noisy reward/penalty learning to pyramidal 
PRAM structures Proc. Int. Joint Conk on Neural Networks (1992) vol 111 pp 660-5 

Gunzinger A, Muller U, Scott W, Biiumle B, Kohler P and Guggenbuhl W 1992 Architecture and realization of a 
multi signal processor system Proc. Application Specifc Array Processors (1992) ed J Fortes, E Lee and T Meng 
(Los Alamitos, CA: IEEE Computer Society Press) pp 327-340.2 

Hajnal A, Maass W, Pudlik P, Szegedy M and Turin G 1987 Threshold circuits of bounded depth Proc. IEEE Symp. 
on Foundations of Computer Science 28 99-1 10 (also in 1993 J. Computing System Science 46 129-54) 

Halgamuge S K, Pochmuller W and Glesner M 1991 Computational hardware requirements for the backpropagation 
algorithm Proc. Int. Con$ on Microelectronics for Neural Networks (1991) pp 47-52 

Hammerstrom D 1988 The connectivity analysis of simple associations-or-how many connections do you need Proc. 
Conk on Neural Information Processing Systems (1987) pp 338-47 

-1990 A VLSI Architecture for high-performance low-cost on-chip leaming Proc. Int. Joint Conk on Neural 
Networks (1990) vol I1 pp 5 3 7 4 3  

-1995 Digital VLSI for neural networks The Handbook of Brain Theory and Neural Networks ed M A Arbib 
(Cambridge, MA: MIT Press) pp 304-9 

Hammerstrom D and Nguyen N 1991 An implementation of Kohonen’s self-organizing map on the adaptive solution 
neurocomputer Proc. Int. Conk on Artificial Neural Networks (1991) vol I pp 715-20 

Hassoun M H (4) 1993 Associative Neural Memories Theory and Implementation (New York: Oxford University 
Press) 

HPstad J 1986 Almost optimal lower bounds for small depth circuits Proc. ACMSymp. on Theory of Computing (1986) 

Heemskerk J N H Neurocomputers for brain-style processing. Design, implementation and application PhD Thesis 
Leiden University, The Netherlands (Chapter 3: ‘Overview of Neural Hardware’ is available via ftp from: 
ftp.mrc-apu.cam.ac.uk/pub/nn) 

Heemskerk J N H, Murre J M J, Hoekstra J, Kemna L H J G and Hudson P T W 1991 The BSP400: a modular 
neurocomputer assembled from 400 low-cost microprocessors Proc. Int. Conk on Artificial Neural Networks 

Hecht-Nielsen R 1987 Kolmogorov’s mapping neural network existence theorem Proc. Int. Joint Conk on Neural 

-1988 Neurocomputing picking the human brain IEEE Spectrum 25 3 6 4 1  
-1989 Neurocomputing (Reading, MA: Addison Wesley) 
-1991 Computers Information sheet on HNC neural network products (HNC Inc., 5501 Oberlin Drive, San Diego, 

Hirai Y 1991 Hardware implementation of neural networks in Japan Proc. Int. Conk on Microelectronics for Neural 

Hiraiwa A, Kurosu S, Arisawa S and Inoue M 1990 A two level pipeline RISC processor array for ANN Proc. Int. 

V O ~  18 pp 6-20 

(1991) V O ~  I pp 709-14 

Networks (1987) vol I11 pp 11-13 

CA 92121, USA) 

Networks (1991) pp 4 3 5 4 6  

Joint Conk on Neural Networks (1990) vol I1 pp 137-40 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 El .4:25 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Hochet B, Peiris V, Abdo S and Declercq M 1991 Implementation of a leaming Kohonen neuron IEEE J. Solid-state 
Circuits 26 262-7 

Hofmeister T, Hohberg W and Kdhling S 1991 Some notes on threshold circuits and multiplication in depth 4 Info. 
Processing Lett. 39 2 19-26 

Hdhfeld M 1990 Fixed point arithmetic in feedforward neural networks Technical Report FKS3-I08 (Siemens AG, 
Munich) 

Hdhfeld M and Fahlman S E 1992 Probabilistic rounding in neural network with limited precision Proc. Inr. Con$ on 
Microelectronics for Neural Networks (1991) pp 1-8 (also in 1992 Neurocomputing 4 291-9) 

-1 992 Learning with limited numerical precision using the cascade-correlation algorithm Technical Report CMU- 
CS-91-130 (School of Computer Science, Carnegie Mellon) (also in IEEE Trans. Neural Networks 3 602-1 1) 

Holler M A 1991 VLSI implementation of learning and memory systems: a review Proc. Con8 on Neural Information 
Processing Systems (1990) pp 993-1000 

Holler M A, Park C, Diamond J, Santoni U, The S C, Glier M, Scofield C L and Nliiiez L 1992 A high performance 
adaptive classifier using radial basis functions Proc. Government Microcircuit Application Con$ (Las Vegas, 
Nevada) 

Hollis P W, Harper J S and Paulos J J 1990 The effects of precision constraints in a backpropagation learning network 
Neural Comput. 2 363-73 

Hollis P W and Paulos J J 1994 A neural network learning algorithm tailored for VLSI implementation IEEE Trans. 
Neural Networks 5 784-91 

Hollis P W, Paulos J J and D'Costa C J 1991 An optimized learning algorithm for VLSI implementation Proc. Int. 
Con5 on Microelectronics for Neural Networks (1991) pp 121-6 

Holt J L and Hwang J-N 1991 Finite precision error analysis of neural network hardware implementations Technical 
Report FT-10 (University of Washington, Seattle) 

-1 993 Finite precision error analysis of neural network hardware implementations IEEE Trans. Computer 42 

Hong J 1987 On connectionist models Technical Report (Department of Computer Science, University of Chicago) 
Homik H 1991 Approximation capab 
-1993 Some new results on neural network approximation Neural Network 6 1069-72 
Homik K, Stinchcombe M and White H 1989 Multilayer feedforward neural networks are universal approximators 

-1990 Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks 

Hu S 1965 Threshold Logic (Berkeley and Los Angeles: University of California Press) 
Huang S-C and Huang Y-F 1991 Bounds on number of hidden neursons of multilayer perceptrons in classification 

Huch M, Pochmuller W and Glesner M 1990 Bacchus: a VLSI architecture for a large binary associative memory 

Hush D R and Home B G 1993 Progress in supervised neural networks IEEE Signal Proc. Mag. 10 8-39 
Ienne P 1993a Quantitative comparison of architectures for digital neuro-computers Proc. Int. Joint Con$ on Neural 

-1993b Architectures for neuro-computers: review and performance evaluation Technical Report no 21/93 (Swiss 

Immerman N and Landau S 1989 The complexity of integrated multiplication Proc. Structure in Complexity Theory 

Intel Corporation 1992a Intel Neural Network Solutions Order Number 296961-002 (Intel Corporation, 2200 Mission 

-1992b Intel Neural Network Products Price and Availability Order Number 296961-002 (Intel Corporation, 2200 

Iwata A 1990 Neural devices and networks Sixth German-Japanese Forum on Information Technology (Berlin, 1990) 
Jabri M A and Flower B 1991 Weight perturbation: an optimal architecture and learning technique for analog VLSI 

feedforward and recurrent multi-layer networks SEDAL Technical Report Department of EE, University of Sydney 
(1992 IEEE Trans. Neural Networks 3 154-7) 

Jackel L D 1991 Practical issues for electronic neural-nets hardware-tutorial notes Con8 on Neural Information 
Processing Systems ( 1  991) 

-1992 Neural nets hardware. Tutorial 4 CompEuro '92 (The Hague, The Netherlands, 1992) 
Jackel L D, Graf H P and Howard R E 1987 Electronic neural network chips A@. Opt. 26 5077-80 
Jackson D and Hammerstrom D 1991 Distributed back propagation networks over the Intel iPSC/860 hypercube Proc. 

Jahnke A, Roth U and Klar H 1996 A SIMD/DataflowArchitecture for a neurocomputer for spike-processing neural 

281-90 

es of multilayer feedforward networks Neural Network 4 251-7 

Neural Network 2 359-66 

Neural Network 3 55 1-60 

and recognition IEEE Trans. Neural Networks 2 47-55 

Proc. Int. Con8 on Neural Networks (Paris, 1990) vol I1 pp 661-4 

Networks (Nagoya, 1993) pp 1987-1990 

Federal Institute of Technology, Lausanne) 

Symp. pp 104-111 

College Boulevard, Mail Stop RN3-17, Santa Clara, CA 95052-81 19, USA) 

Mission College Boulevard, Mail Stop RN3-17, Santa Clara, CA 95052-81 19, USA) 

Int. Joint Conf: on Neural Networks (1991) vol I pp 569-74 

networks (NESPINN) Proc. Int. Con$ on Microelectronics for Neural Networks (1996) pp 232-1 

E l  .4:26 Hundbook of Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Johnson R C (ed) 1993a Siemens shows off its first neural network chip Cognizer Report 4 9-1 1 (Frontline Strategies, 

-(ed) 1993b InteVNestor Announce delivery of chip to DARPA Cognizer Report 4 17-19 (Frontline Strategies, 

Jones S R and Sammut K 1993 Leaming in systolic neural network engines Proc. Int. Con$ on Microelectronics for 

Jones S R, Sammut K and Hunter J 1990 Toroidal neural network processor architecture operation performance Proc. 

Jones S R, Sammut K, Nielsen C and Staunstrup J 1991 Toroidal neural network processor architecture and processor 

Judd J S 1988 On the complexity of loading shallow neural networks J. Complexity 4 177-92 
-1990 Neural network design and the Complexity of learning (Cambridge, MA: MIT Press) 
-1992 Constant-time loading of shallow 1 -dimension networks Proc. Con$ on Neural Information Processing 

Kat0 H, Yoshizawa H, Iciki H and Asakawa K 1990 A parallel neurocomputer architecture toward billion connection 

Kautz W 1961 The realization of symmetric switching functions with linear-input logical elements IRE Trans. Electron. 

Kham E R and Ling N 1991 Systolic Architectures for artificial neural nets Proc. Int. Joint Con$ on Neural Networks 

Kim J H nad Park S-K 1995 The geometrical learning of binary artificial neural networks IEEE Trans. Neural Networks 

Klir G J 1972 Introduction to the Methodology of Switching Circuits (New York: Van Nostrand) 
Kohn P, Bilmes J, Morgan N and Beck J 1992 Software for ANN training on a ring array processor Proc. Con$ on 

Koiran P 1993 On the complexity of approximating mappings using feedforward networks Neural Networks 6 649-53 
Kolmogorov A N 1957 On the representation of continuous functions of many variables by superposition of continuous 

functions of one variable and addition Dokl AM Nauk SSSR 114 679-81 (Engl. transl. 1963 Math. Soc. Transl. 

Kollmann K, Reimschneider K-R and Zeidler H C 1996 On-chip backpropagation training using parallel stochastic 

Krauth W and Mtzard M 1987 Leaming algorithms with optimal stability in neural networks J. Phys A: Math. Gen. 

Krikelis A 1991 A novel massively parallel associative processing architecture for the implementation of artificial neural 
networks Proc. Int. Con$ on Acoustics, Speech and Signal Processing (Toronto, 1991) vol I1 (Los Alamitos, CA: 
IEEE Computer Society Press) pp 1057-60 

Kuczewsk R, Meyers M and Crawford W 1988 Neurocomputer workstation and processors approaches and applications 
Proc. Int. Joint Con$ on Neural Networks (1988) vol I11 pp 487-500 

Kung S Y 1989 VLSl Array Processors (Prentice Hall Information and System Sciences Series) (Englewood Cliffs, 
NJ: Prentice Hall) 

Kung S Y and Hwang J-N 1988 Parallel architectures for artificial neural nets Proc. Int. Joint Con$ on Neural Networks 

-1989a Digital VLSI architectures for neural networks Proc. IEEE Int. Symp. on Circuits and Systems (Portland, 

-1989b A unified systolic architecture for artificial neural networks J.  Parallel Distrib. Comput. 6 358-87 
Kung H T and Webb J A 1985 Global operations on a systolic array machine Proc. IEEE Int. Con$ on Computer 

Landahl H D, McCulloch W S and Pitts W 1943 A statistical consequence of the logical calculus of nervous system 

Le Bouquin J-P 1994 IBM Microelectronics ZISC, zero instruction set computer Proc. World Congr. on Neural 

Le Cun Y 1985 A leaming procedure for asymmetric threshold networks Proc. Cognitiva '85 pp 599-604 
-1987 Models connexionistes de l'apprentisage MSc thesis Universitk Pierre et Marie Curie, Paris 
Lehmann C and Blayo F 1991 A VLSI Implementation of a generic systolic synaptic building block for Neural 

Networks VLSI for Artificial Neural Networks ed J G Delgado-Frias and W R Moore (New York: Plenum) 

Lehmann C, Viredaz M and Blayo F 1993 A generic systolic array building block for neural networks with on-chip 

Leiserson C E 1982 Area-EfJicient VLSI Computation (Cambridge, MA: MIT Press) 
Leshno M, Lin V Y, Pinkus A and Schocken S 1993 Multilayer feedforward neural networks with a nonpolynomial 

516 S E Chkalov, Drive Suite 164, Vancouver, WA 98684, USA) 

516 S E Chkalov, Drive Suite 164, Vancouver, WA 98684, USA) 

Neural Networks (1993) pp 175-85 

Int. Con$ on Microelectronics for Neural Networks (1990) pp 163-9 

granularity VLSI Design of Neural Networks ed U Ramacher and U Ruckert (New York: Kluwer) pp 2 2 9 4 4  

Systems (1991) pp 863-70 

updates per second Proc. Int. Joint Con$ on Neural Networks (1990) vol I1 pp 47-50 

Computer 10 

(1991) vol 1 pp 620-7 

6 237-47 

Neural Information Processing Systems (1991) pp 781-8 

28 55-59 

bit streams Proc. Int. Con$ on Microelectronics for Neural Networks (1996) pp 149-56 

20 L745-52 

(1988) V O ~  I1 pp 165-72 

Oregon, 1989) vol I (Los Alamitos, CA: IEEE Computer Society Press) pp 445-8 

Design VLSI in Computers (Port Chester, New York, 1985) pp 165-71 

Bull. Math. Biophysiology 5 135-7 

Networks (San Diego, CA, 1994) (supplement) 

pp 325-34 

leaming IEEE Trans. Neural Networks 4 400-7 

activation function can approximate any function Neural Networks 6 861-7 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9111 El .4:27 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Lewis P M I1 and Coates C L 1967 Threshold Logic (New York: Wiley) 
LBonhard G, Cousin E, Laisne J D, Le Drezen J, Ouvradou G, Poulain Maubant A and Thdpaut A 1995 ArMenX: 

a flexible platform for signal and image processing Field Programmable Gate Arrays (FPGAs) for Fast Board 
Development and Reconfigurable Computing ed J Schewel vol 2607 (SPIE) 

Linde A, Nordstrom T and Taveniku M 1992 Using FPGAs to implement a reconfigurable highly parallel processor 
Proc. 2nd Int. Workshop on Field Programmable Logic and Applications (Vienna) 

Lindsey C S and Lindblad T 1994 Review of hardware neural networks: a user’s perspective plenary talk given 
at the Third Workshop on Neural Networks: From Biology to High Energy Physics (Isola d’Elba, Italy, 
1994) (see also the following two WWW sites: http://wwwl.cern.ch/NeuralNets/nnwInHep.html and also 
http://www 1 .cem.ch/NeuralNets/nnwInHepHard. html) 

Linial N, Mansour Y and Nisan N 1989 Constant depth circuits Fourier transforms and leamability Proc. IEEE Symp. 
on Foundations of Computer Science p 30 

Lippmann R P 1987 An introduction to computing with neural nets IEEE ASSP Mag. 4 4-22 
Littlestone N 1988 Leaming quickly when irrelevant attributes abound a new linear-threshold algorithm Machine 

Losleben P (ed) 1987 Advanced research in VLSI Proc. Stanford Con. on Advanced Research on VLSI (Cambridge, 

Lupanov 0 B 1973 The synthesis of circuits from threshold elements Problemy Kibernetiki 20 109-40 
Maass W, Schnitger G and Sontag E 1991 On the computational power of sigmoid versus Boolean threshold circuits 

Mackie S, Graf H P, Schwartz D B and Denker J S 1988 Microelectronic implementations of connectionist neural 

Makram-Ebeid S, Sirat J-A and Viala J-R 1989 A rationalized error back-propagation leaming algorithm Proc. Int. 

Mann J, Berger B, Raffel J, Soares A and Gilbert S 1987 A generic architecture for wafer-scale nuromorphic systems 

MasPar 1990a MasPar 1100 series computer systems Information sheet P m 3  0490 (MasPar Computer Corporation, 

-1990b MasPar 1200 series computer systems Information sheet PU04 0490 (MasPar Computer Corporation, 749 

-1990c The MP- 1 family data-parallel computer Information sheet PuK)6 0490 (MasPar Computer Corporation, 

Maudit N, Duranton M, Gobert J and Sirat J A 1991 Building up neuromorphic machines with L-Neuro 1.0 Proc. Int. 

-1992 L-Neuro 1.0: a piece of hardware LEG0 for building neural network systems IEEE Trans. Neural Networks 

Mayoraz E 1991 On the power of networks of majority functions Proc. Int. Workshop on Artificial Neural Networks 

-1992 Representation of Boolean functions with democratic networks Internal Report (BPFL, Lausanne) 
McCator H 1991 Back propagation Implementation on the Adaptive Solution CNAPS neurocomputer chip Proc. Con$ 

McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Bzophysiol. 

Means E and Hammerstrom D 1991 Piriform model execution on a neurocomputer Proc. Int. Joint Con.  on Neural 

Means R W and Lisenbee L 1991 Extensible linear floating point SIMD neurocomputer array processor Proc. Int. 

MBzard M and Nadal J-P 1989 Leaming in feedforward layered networks the tiling algorithm J .  Phys. A: Math. Gen. 

Micro Devices 1989a Data Sheet MD1220 (Micro Devices 5695B Beggs Road, Orlando, FL 32810-2603, USA) 
-1989b Neural bit slice Data Sheet no DS1023OOP on circuit MDI200 (Micro Devices 5695B Beggs Road, Orland, 

-1989c Design Manual for the NBS Part No DM102500 (Micro Devices 5695B Beggs Road, Orland, FL 32810- 

-1990 Neural bit slice Data sheet no DS102301 on circuit MD120 (Micro Devices 5695B Beggs Road, Orland, 

Milosavlevich 12, Flower B G and Jabri M A 1996 PANNE: a parallel computing engine for connectionist simulation 

Minnick R C 1961 Linear-Input Logic IRE Trans. Electron. Comput. 10 6-16 
Minsky M L 1954 Neural nets and the brain-model problem PhD Dissertation (Princeton, NJ: Princeton University 

Learning 2 285-3 18 

MA: MIT Press) 

IEEE Symp. on Foundation of Computer Science (1991) 

networks Proc. Con$ on Neural Information Processing Systems (1987) pp 5 15-23 

Joint Con$ on Neural Networks (1989) 

Proc. Int. Joint Con$ on Neural Networks (1987) vol IV pp 485-93 

749 North Marry Avenue, Sunnyvale, CA 94086, USA) 

North Marry Avenue, Sunnyvale, CA 94086, USA) 

749 North Marry Avenue, Sunnyvale, CA 94086, USA) 

Joint Con$ on Neural Networks (1991) pp 602-7 

3 414-22 

(1991) (Berlin: Springer) pp 78-85 

on Neural Information Processing Systems (1990) pp 1028-31 

5 115-33 

Networks (1991) vol I pp 575-80 

Joint Con. on Neural Networks (1991) vol I pp 587-92 

22 2191-203 

FL 32810-2603, USA) 

2603, USA) 

FL 32810-2603, USA) 

Proc. Int. Con. on Microelectronics for Neural Networks (1996) pp 363-8 

Press) 

E 1.4:28 Hudbook of Neurul Computution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd

www1.cern.ch/
www1.cern.ch/
www1.cern.ch/
www1.cern.ch/


Digital integrated circuit implementations 

Minsky M L and Papert S A 1969 Perceptron: An Introduction to, Computational Geometry (Cambridge, MA: MIT 
Press) 

Moerland P D and Fiesler E 1996 hardware-friendly algorithms for neural networks: an overview Proc. Int. Conf: on 
Microelectronics for Neural Networks (1996) pp 11 7-24 

Morgan N 1995 Programmable neurocomputing systems The Handbook of Brain Theory and Neural Networks ed M 
A Arbib (Cambridge, MA: MIT Press) pp 264-8 

Morgan N, Beck J, Kohn P and Bilmes J 1993 Neurocomputing on the RAP Parallel Digital Implementations of 
Neural Networks ed K W Przytula and V K Prasanna (Englewood Cliffs, NJ: Prentice Hall) 

Morgan N, Beck J, Kohn P, Bilmes J, Allman E and Beer J 1990 The RAP: a ring array processor for layered network 
calculations Proc. IEEE Int. ConJ on Application Specific Array Processes (Los Alamitos, CA: IEEE Computer 
Society Press) pp 296-308 

-1992 The ring array processor (RAP) a multiprocessing peripheral for connectionist applications J .  Parallel 
Distrib. Comput. 14 248-59 

Muhlbein H and Wolf K 1989 Neural network simultation on parallel computers Parallel Computing (1989) ed D J 
Evans, G G Joubert and F J Peters (Amsterdam: North-Holland) pp 365-74 

Muller U A, BBumle B, Kohler P, Gunzinger A and Guggenbuhl W 1992 Achieving supercomputer performance for 
neural net simulation with an array of digital signal processors IEEE Micro Mag. 12 55-65 

Muller U A, Gunzinger A and Guggenbuhl W 1995 Fast neural net simulation with a DSP processor array IEEE 
Trans. Neural Networks 6 203-13 

Muller U A, Kocheisen M and Gunzinger A 1994 High performance neural net simulation on a multiprocessor system 
with ‘intelligent’ communication Proc. Con$ on Neural Information Processing Systems (1993) pp 888-95 

Muroga S 1959 The principle of majority decision logic elements and the complexity of their circuits Proc. Int. Con$ 
on Information Processing (Paris) 

-1961 Functional forms of majority decision functions and a necessary and sufficient condition for their realizability 
In switching circuit theory and logical design AIEE Special Publication SI34 pp 3 9 4 6  

-1962 Generation of self-dual threshold functions and lower bounds of the number of threshold functions and a 
maximum weight in switching circuit theory and logical design AIEE Special Publication SI34 pp 170-84 

-1971 Threshold Logic and Its Applications (New York: Wiley) 
-1979 Logic Design and Switching Theory (New York: Wiley) ch 5 
Muroga S, Toda I and Takasu S 1961 Theory of Majon’fy Decision Elements Journal vol 271 (Franklin Institute) 

pp 376-418 
Murray M, Burr J B, Stork D G, h u n g  M-T, Boonyanit K, Wolff G J and Peterson A M 1992 Deterministic Boltzmann 

machine VLSI can be scaled using multi-chip modules Proc. Int. Con$ on Application Specific Array Processors 
(Berkeley, CA) (Los Alamitos, CA: IEEE Computer Society Press) pp 206-17 

Murray M, h u n g  M-T, Boonyanit K, Kritayakirana K, Burr J B, Wolff G J, Watanabe T, Schwartz E and Stork 
D G 1994 Digital Boltzmann VLSI for constraint satisfaction and leaming Proc. Con$ on Neural Information 
Processing Systems (1993) pp 896-903 

Murre J M J 1993 Transputers and neural networks an analysis of implementation constraints and performance IEEE 
Trans. Neural Networks 4 284-92 

Murtagh P and Tsoi A C 1992 Implementation issues of sigmoid function and its derivative for VLSI digital neural 
networks IEE Proc.-E Computer and Digital Techniques 139 207-14 

Myers D J and Hutchinson R A 1989 Efficient implementation of piecewise linear activation function for digital VLSI 
neural networks Electron. Lett. 25 1662-3 

Myers D J, Vincent J M and Orrey D A 1991 HANNIBAL A VLSI building block for neural networks with on-chip 
backpropagation learning Proc. Int. Conf: on Microelectronics for  Neural Networks (1991) pp 171-81 

-1993 HANNIBALL A VLSI building block for neural networks with on-chip backpropagation learning 
Neurocomputing 5 25-37 

Myhill J and Kautz W H 1961 On the size of weights required for linear-input switching functions IRE Trans. Electron. 
Comput. 10 

Nakayama K and Katayama H 1991 A low-bit learning algorithm for digital multilayer neural networks applied to 
pattern recognition Proc. Int. Joint Con$ on Neural Networks (1991) pp 1867-72 

Naylor D, Jones S, Myers Dand Vincent J 1993 Design and application of a real-time neural network based image 
processing system Proc. Int. Conf. on Microelectronics for  Neural Networks (1993) pp 137-47 

Neciporuk E I 1964 The synthesis of networks from threshold elements Problemy Kibernetiki 11 49-62 (Engl. transl. 
1964 Automation Express 7 35-9 and 7 27-32 

Neibur E and Brettle D 1994 Efficient simulation of biological neural networks on massively parallel supercomputers 
with hypercube architecture Proc. Con$ on Neural Information Processing Systems (1993) pp 904-10 

Neuralogix 1992 NU420 Data Sheet Neurologix Inc (800 Charcot Avenue Suite, 112 San Jose, California) 
Nickolls J R 1990 The design of the MasPar MP-1: a cost effective massively parallel computer Proc. 35th IEEE 

Computer Society Int. Con$ Spring COMPCON ’90 (San Francisco, CA) pp 25-8 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 El .4:29 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Nigri M E 1991 Hardware emulation of back-propagation neural networks Research Note RN/91/21 (Department of 

Nigri M E, Treleaven P and Vellasco M 1991 Silicon compilation of neural networks CompEuro '91 ed Proebster W 

Nijhuis J,  Hofflinger B, NeuBer S, Siggelkow A and Spaanenburg L 1991 A VLSI implementation of a neural car 

Nilsson N J 1965 Learning Machines (New York: McGraw-Hill) 
Nordstrom T and Svensson B 1991 Using and designing massively parallel computers for artificial neural networks 

Technical Report TULEA 91: 1 (Division of Computer Engineering LuleHJniversity of Technology S-95 187 
LulelSweden) (also in J. Parallel Distrib. Comput. 14 260-85) 

Obradovic Z and Parberry I 1990 Analog neural networks of limited precision I: computing with multilinear threshold 
functions Proc. Cons on Neural Information Processing Systems (1989) pp 702-9 

Oliveira A L and Sangiovanni-Vincentelli A 1994 Learning complex Boolean functions algorithms and applications 
Proc. Con$ on Neural Information Processing Systems (1993) pp 91 1-8 

Orrey D A, Myers D J and Vincent J M 1991 A high performance digital processor for implementing large artificial 
neural networks Proc. IEEE Custom Integrated Circuits Con$ (San Diego, CA) 

Pacheco M and Treleaven P 1989 A VLSI word-slice architecture for neurocomputing Proc. 1989 Int. Symp. on 
Computer Architecture and Digital Signal Processing (Hong Kong) (IEEE) 

-1992 Neural-RISC a processor and parallel architecture for neural networks Proc. Int. Joint Con$ on Neural 
Networks (1992) vol I1 pp 177-82 

Palm G and Palm M 1991 Parallel associative networks the PAN-System and the BACCHUS-Chip Proc. Int. Conf. 
on Microelectronics for Neural Networks (1991) pp 41 1-6 

Papadopoulos C V and Andronikos T S 1995 Modelling the complexity of parallel and VLSI computations with 
Boolean circuits Microprocess. Microsyst. 19 43-50 

Parberry 1 1994 Circuit Complexity and Neural Networks (Cambridge, MA: MIT Press) 
Paterson M S (ed) 1992 Boolean function complexity London Mathematical Society Lecture Notes Series 169 

Paturi R and Saks M 1990 On threshold circuits for parity Proc. IEEE Symp. on Foundation of Computer Science 

Perez C J, Carrabina J and Valderrama E 1992 Study of a leaming algorithm for neural networks with discrete synaptic 

Personnaz L and Dreyfus G ( 4 s )  1989 Neural networks from models to applications Proc. nEuro '88 (Paris, 1988) 

Personnaz L, Johannet A and Dreyfus G 1989 Problems and trends in integrated neural networks Connectionism in 

Pesulima E E, Pandya A S and Shankar R 1990 Digital implementation issues of stochastic neural networks Proc. Int. 

Pippenger N 1987 The complexity of computations by networks IBM J. Res. Dev. 31 2 3 5 4 3  
Pochmuller W and Glesner M 1991 A cascadable architecture for the realization of large binary associative networks 

V U 1  for Artificial Intelligence and Neural Networks ed J G Delgado-Frias and W R Moore (New York: Plenum) 

Pomerleau D A, Gusciora G L, Touretzky D S and Kung H T 1988 Neural network simulation at warp speed how 
we got 17 million connections per second Proc. Int. Joint Conj on Neural Networks (1988) (Los Alamitos, CA: 
IEEE Computer Society Press) vol I1 pp 143-50 

Poulain Maubant A, Autret Y, Ldonhard G, Ouvradoui G and ThBpaut A 1996 An efficient handwritten digit recognition 
method on a flexible parallel architecture Proc. Int. Con$ on Microelectronics for Neural Networks (1996) pp 355- 
62 

Przytula K W 1988 A survey of VLSI implementations of artificial neural networks VLSI Signal Processing 111 ed R 
W Brodersen and H S Moscovitz (New York: IEEE Computer Society Press) pp 221-31 

Przytula K W and Prasanna V K 1993 Parallel Digital Implementations of Neural Networks (Englewood Cliffs, NJ: 
Prentice Hall) 

Raghavan P 1988 Leaming in threshold networks: a computational model and applications Technical Report RC 13859 
(IBM Research July 1988) (also in 1988 Proc. Workshop on Computational LRarning Theory (Cambridge, MA: 
Cambridge) pp 19-27 

Ramacher U 1990 The VLSI Kemel of neural algorithms Proc. 1st Int. Workshop on Cellular Neural Networks and 
their Applications (Budapest, 1990) pp 185-96 

-1992 SNAPSE-a neurocomputer that synthesizes neural algorithms on a parallel systolic engine J. Parallel Distrib. 
Comput. 14 306-18 

Ramacher U, Beichter J and Briils N 1991a Architecture of a general-purpose neural signal processor Pmc. Int. Joint 
Conj on Neural Networks (1991) vol I pp 443-6 

Computer Science, University College London) 

E and Reiner H (Los Alamitos, CA: IEEE Computer Society Press) pp 541-6 

collision avoidance controller Proc. Int. Joint Con5 on Neural Networks (1991) vol 1 pp 493-9 

(Cambridge: Cambridge University Press) 

(1990) 

couplings Network 3 165-76 

(Paris: IDSET) 

Perspective eds R Pfeifer, Z Schreter and F Fogelman-SouliC (Amsterdam: Elsevier) 

Joint Conj on Neural Networks (1990) vol I1 pp 187-90 

pp 265-74 

El .4:30 Hundbook of Neurui Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Ramacher U, Raab W, Anlauf J, Hachmann U, Beichter J, Briils N, WeBeling M and Sicheneder E 1993 Multiprocessor 
and memory architecture of the neurocomputer SYNAPSE- 1 Proc. Int. Con$ on Microelectronics for Neural 
Networks (1993) pp 227-31 

Ramacher U, Raab W, Anlauf J, Hachmann U and WeBeling M 1991b SYNAPSE-X a general-purpose neurocomputer 
Proc. Int. Con$ on Microelectronics for Neural Networks (1991) pp 401-9 (also in Proc. Int. Joint Con$ on 
Neural Networks (1991) pp 2168-76 

Ramacher U and Riickert U (eds) 1991 VLSI Design of Neural Networks (New York: Kluwer) 
Razborov A A 1987 Lower bounds for the size of circuits of bounded depth with basis {A, e) Math. Not. Acad. Sci. 

Red’kin N P 1970 Synthesis of threshold circuits for certain classes of Boolean functions Kibernetika 5 6-9 (Engl. 

Reilly D L, Cooper L N and Elbaum C 1982 A neural model for category learning Biol. Cybern. 45 35-41 
Reyneri L M and Filipi E 1991 An analysis on the performance of silicon implementations of backpropagation 

Rief J H 1987 On threshold circuits and polynomial computations Proc. 2nd Annual Structure in Complexiry Theory 

Roberts F and Wang S 1989 Implementation of neural networks on a hypercube FPS T20 Parallel Processing ed M 

Rosenblatt F 1958 The perceptron a probabilistic model for information storage and organization Brain Psych. Revue 

-1961 Principles of neurodynamics Perceptrons and the Theory of Brain Mechanism (Washington, DC: Sparton 

Rosenbleuth A, Wiener N and Bigelow J 1943 Behaviour, purpose and teleology Phil. Sci. 10 18-24 
Rosenbleuth A, Wiener N, Pitts W and Garcia Ramos J 1949 A statistical analysis of synaptic excitation J.  Cell 

Comput. Physiol. 34 173-205 
Rossmann M, Hesse B, Goser K, Biihlmeier and Manteuffel G 1996 Implementation of a biologically inspired neuron- 

model in FPGA Proc. Int. Con$ on Microelectronics for Neural Networks (1996) pp 322-9 
Roth U, Jahnke A and Klar H 1995 Hardware requirements for spike-processing neural network 1995 From Natural 

to Artificial Neural Computations Lecture Notes in Computer Science vol 930 ed J Mira and F Sandoval (Berlin: 
Springer) pp 720-7 

Roy A, Kim L S and Mukhopadhyay S 1993 A polynomial time algorithm for the construction and training of a class 
of multilayer perceptrons Neural Networks 6 535-45 

Roychowdhury V P, Orlitsky A and Siu K-Y 1994a Lower bounds on threshold and related circuits via communication 
complexity IEEE Trans. Info. Theory 40 467-74 

Roychowdhury V P, Siu K-Y and Orlitsky A (eds) 1994b Theoretical Advances in Neural Computation and Learning 
(Boston: Kluwer) 

Roychowdhury V P, Siu K-Y, Orlitsky A and Kailath T 1991a A geometric approach to threshold circuit complexity 
Proc. Workshop on Computational Learning Theory COLT (Santa Cruz, CA, 1991) pp 97-1 11 

-1991b On the circuit complexity of neural networks Proc. Con$ on Neural Information Processing Systems (1990) 

Ruckert U, Kleerbaum C and Goser K 1991 Digital VLSI implementations of an associative memory based on neural 
networks 1991 VLSI for Arti’cial Intelligence and Neural Networks ed J G Delgado-Frias and W R Moore (New 
York: Plenum) pp 275-84 

Rudnick M and Hammerstrom D 1988 An interconnecting structure for wafer scale neurocomputers 1988 Connectionist 
Models Summer School 1988 Proc. ed D S Touretzky and G Hinton (San Mateo, CA: Morgan Kaufmann) 

Ruping S and Ruckert U 1996 A scalable processor array for self-organizing feature maps Proc. Int. Con$ on 
Microelectronics for  Neural Networks (1996) pp 285-9 1 

Sanchez-Sinencio E and Lau C (eds) 1992 Artificial neural networks Paradigms Applications and Hardware 
Implementations (New York: IEEE Computer Society Press) 

Saucier G and Ouali J 1990 Silicon compiler for neuron ASICs Proc. Int. Joint Con$ on Neural Networks (1990) vol 

Sakaue S ,  Kohda T, Yamamoto H, Maruno S and Shimeki Y 1993 Reduction of required precision bits for back- 

Sami M (ed) 1990 Workshop on Silicon Architectures for Neural Nets (St Paul de Venice, France) (Amsterdam: Elsevier) 
Sammut K and Jones S R 1991 Implementing non-linear activation functions in neural network emulators Electron. 

Savran M E and Morgiil 0 1991 On the associative memory design for the Hopfield neural network Proc. Int. Joint 

Schwartz T J 1990 A Neural Chips Survey AI Expert 5 34-9 
Scofield C L, Reilly D L 1991 Into silicon real time learning in a high density RBF neural network Proc. Int. Joint 

Con$ on Neural Networks (1991) vol I pp 551-6 

USSR 41 333-8 

trans]. 1970 Cybernetics 6 540-4) 

algorithms for artificial neural networks IEEE Trans. Comput. 40 1380-9 

Symp. pp 11 8-23 

Cosnard M, M H Barton and M Vanneschi (Amsterdam: North-Holland) pp 189-200 

62 386-408 

Press) 

pp 953-59 

I1 pp 557-61 

propagation applied to pattern recognition IEEE Trans. Neural Networks 4 270-5 

Lett. 27 1037-8 

Cont on Neural Networks (1991) vol I1 pp 1166-71 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 El .4:31 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Sejnowski T J and Rosenberg C R 1986 NETtalk A parallel network that leams to read aloud Technical Report 

Shawe-Taylor J S, Anthony M H G and Kern W 1992 Classes of feedforward neural networks and their circuit 

Sheng C L 1969 Threshold Logic (New York: Academic) 
Shoemaker P A, Carlin M J and Shimabukuro R L 1990 Back-Propagation learning with coarse quantization of weight 

Siggelkow A, Nijhuis J, NeuBer S and Spaanenburg L 1991 Influence of hardware characteristics on the performance 

Singer A 1990a Exploiting the inherent parallelism of artificial neural networks to achieve 1300 million interconnects 

-1990b Implementations of artificial neural networks on the connection machine Parallel Comput. 14 305-1 5 
Sirat J A and Nadal J-P 1990 Neural trees: a new tool for classifrcation network: computation in neural systems 1 

Siu K-Y 1992 On the complexity of neural networks with sigmoid units Neural Networks for Signal Processing 11. 
Proc. IEEE-SP Workshop on Neural Networks and Signal Processing (1992) ed S Y Kung, F Fallside, J Aa 
Sorenson and C A Kamm (Helsingoer, Denmark) (Los Alamitos, CA: IEEE Computer Society Press) pp 23-28 

Siu K-Y and Bruck J 1990a On the dynamic range of linear threshold elements Research Report RJ 7237 (IBM, 
Yorktown Heights, New York) 

-1990b Neural computation of arithmetic functions Proc. IEEE 78 166-75 
-1990c On the power of threshold circuits with small weights Research Report RJ 7773 (71890) (IBM, Yorktown 

-1992 Neural computing with small weights Proc. Con$ on Neural Informution Processing Systems (1991) pp 944-9 
-1993 On the dynamic range of linear threshold elements SIAM J. Discrete Math. to appear 
Siu K-Y, Bruck J and Kailath T 1991a Depth efficient neural networks for division and related problems Research 

Report RJ 7946 (72929) (IBM, Yorktown Heights, New York) (see also Siu 1993b) 
Siu K-Y, Bruck J, Kailath T and Hofmeister T 1993a Depth-efficient neural networks for division and related problems 

IEEE Trans. Info. Theory 39 946-56 
Siu K-Y and Roychowdhury V P 1993 Optimal depth neural networks for multiplication and related problems Proc. 

Con$ on Neural Information Processing Systems (1992) pp 59-64 
-1994 On optimal depth threshold circuits for multiplication and related problems SIAM J. Discrete Math. 7 284-92 
Siu K-Y, Roychowdhury V and Kailath T 1990 Computing with almost optimal size threshold circuits Technical 

Report (Information System Laboratory, Stanford University) (also in Proc. IEEE Int. Symp. on lnfonnation 
Theory (Budapest, 1991)) 

JHU/EECS-86/01 (Johns Hopkins University, Electrical Engineering and Computer Science, Baltimore) 

complexity Neural Networks 5 971-7 

updates Proc. Int. Joint Con$ on Neural Networks (1990) vol I pp 573-6 

of a neural system Proc. Int. Con$ on Artifrcial Neural Networks (1991) vol 1 pp 697-702 

per second Proc. 1°C '90 (Paris) pp 656-60 

423-8 

Heights, New York) (see also SIAM J. Discrete Math. 4 423-35 1991) 

-1991b Depth-size tradeoffs for neural computations IEEE Trans. Comput. 40 1402-12 
-1993b Computing with almost optimal size neural networks Proc. Con$ on Neural Information Processing Systems 

-1994 Discrete Neural Computation; A Theoretical Foundation (Englewood Cliffs, NJ: Prentice-Hall) 
Sivilotti M A, Emerling M R and Mead C A 1986 VLSI architectures for implementation of neural networks Neural 

Smolensky R 1987 Algebraic methods in the theory of lower bounds for Boolean circuit complexity Proc. ACM Symp. 

Sontag E D 1990 On the recognition capabilities of feedforward nets Report SYCON (Rutgers Center for System and 

SouEek B and SouEek M 1988 Neural and Massively Parallel Computers-the Sixth Generation (New York: Wiley) 
Spaanenburg L, Hoefflinger B, NeuBer S ,  Nijhuis J A G and Siggelkow A 1991 A multiplier-less digital neural network 

Proc. lnt. Con$ on Microelectronics for Neural Networks (1991) pp 281-9 
Specht D F 1988 Probabilistic neural networks for classification, mapping, or associative memory Proc. Int. Joint 

Con$ on Neural Networks (1988) vol I pp 525-32 
Stevenson M, Winter R and Widrow B 1990 Sensitivity of feed-forward neural networks to weight errors IEEE Trans. 

Neural Networks 1 71-80 
Strey A, Avellana N, Hogado R, Femandez J A, Capillas R and Valderrama E 1995 A massively parallel neurocomputer 

with a reconfigurable arithmetical unit 1995 From Natural to Artifrcial Neural Computations Lecture Notes in 
Computer Science ed J Mira and F Sandoval vol 930 (Berlin: Springer) pp 800-6 

Szedegy M 1989 Algebraic methods in lower bounds for computational models with limited communication PhD 
Dissertation University of Chicago 

Smieja F 1993 Neural network constructive algorithm trading generalization for leaming efficiency? Circuits, Syst. 
Signal Processing 12 331-74 

Takahashi H, Tomita E and Kawabata T 1993 Separability of intemal representations in multilayer perceptrons with 
application to leaming Neural Networks 6 689-703 

(1992) pp 19-26 

Networks for Computing (New York: American Institute of Physics) pp 408-1 3 

on Theory of Computing (1987) vol 19 pp 77-82 

Control, 90-03 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA) 

E l  .4:32 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Digital integrated circuit implementations 

Tan S and Vandewalle J 1992 Efficient algorithm for the design of multilayer feedforward neural networks Proc. Int. 

-1993 On the design of feedforward neural networks Technical Report (National University of Singapore, 

Tewksbury S K and Hornak L A 1989 Wafer level system integration: a review IEEE Circuits and Devices Mag. 5 

Theeten J B, Duranton M, Maudit N and Sirat J A 1990 The L-Neuro chip: a digital VLSI with on-chip learning 
mechanism Proc. INNC '90 (Paris) ed B Angeniol and B Widrow (Dordrecht: Kluwer) pp 593-6 

Thiran P 1993 Self-organization of a Kohonen network with quantized weights and an arbitrary one-dimensional 
stimuli distribution Proc. Euro. Symp. on Artificial Neural Networks (Brussels) ed M Verleysen (Brussels: de 
facto) pp 203-8 

Thiran P, Peiris V, Heim P and Hochet B 1994 Quantization effects in digitally behaving circuit implementations of 
Kohonen networks IEEE Trans. Neural Networks 5 450-8 

Thole P, Speckmann H and Rosenstiel W 1993 A hardware supported system for Kohonen's self-organizing map 
Proc. Int. Con$ on Microelectronics for Neural Networks (1993) pp 29-34 

Treleaven P C 1989 Neurocomputers international J. Neuro-computing 1 4-31 
Treleaven P C, Pacheco M and Vellasco M 1989 VLSI architectures for neural networks IEEE Micro Mag. 9 8-27 
Treleaven P C and Rocha P V 1990 Towards a general-purpose neurocomputing system Workshop on Silicon 

Architectures for Neural Nets (St Paul de Venice, France, 1990) ed M Sami (Amsterdam: Elsevier) 
Trotin A and Darbel N 1993 A neocognitron for digits classification on a VLSI chip Proc. Int. Conf on Microelectronics 

for  Neural Networks (1993) pp 21-8 
Tryba V, Speckmann H and Goser K 1990 A digital hardware implementation of a self-organizing feature map as a 

neural coprocessor to a von Neumann computer Proc. Int. Conf on Microelectronics for Neural Networks (1990) 

van Keulan E, Colak S ,  Withagen H and Hegt H 1994 Neural network hardware performance criteria Proc. IEEE 
Con$ on Neural Networks (1994) vol 111 (Los  Alamitos, CA: IEEE Computer Society Press) pp 1885-8 

Vellasco M and Treleaven P C 1992 A VLSI architecture for the automatic generation of neuro-chips Proc. Int. Joint 
Con$ on Neural Networks (1992) vol I1 pp 171-6 

Venkatesh S S 1989 A new linear threshold algorithm for learning binary weights On-Line Workshop on Neural 
Network for Computing (Snowbird, Utah, 1989) 

Verleysen M and Cabestany J 1994 Project ESPRIT ELENA Realisation VLSI de reseau de neurones VLAGO, ISSN 
1243-4835 No 94-1: Les processeurs neuronaux 1994 

Vincent J and Myers D 1992 Weight dithering and wordlength selection for digital backpropagation networks BT 
Technology J. 10 124-33 

Viredaz M A, Lehmann C, Blayo F and Ienne P 1992 MANTRA a multi-model neural network computer Proc. 3rd 
Int. Workshop on VLSI for Neural Networks and Arti3cial Intelligence (Oxford) 

Walker M R and Akers L A 1992 Information-theoretic analysis of finite register effects in neural networks Proc. Int. 
Joint Con$ on Neural Networks (1992) vol I1 pp 666-71 

Walker M R, Haghighi S, Afgan A and Akers L A 1989 Training a limited-interconnect synthetic neural IC Proc. 
Con5 on Neural Information Processing Systems (1988) pp 777-84 

Watanabe T, Kimura K, Aoki M, Sakata T and Ito K 1993 A single 1 5-V digital chip for a 106-Synapse neural 
network IEEE Trans. Neural Networks 4 387-93 

Watkins S S, Chau P M and Tawel R 1992 Different approaches to implementing a radial basis function neurocomputer 
Proc. RNNS/IEEE Symp. on Neuroinformatics and Neurocomputing (Rostov-on-Don, Russia) pp 1 149-55 

Wawrzynek J, AsanoviC K, Kingsbury B, Beck J,  Johnson D and Morgan N 1996 SPERT-11: a vector microprocessor 
system and its applications to large problems in backpropagation training Proc. Int. Conf on Microelectronics 
for  Neural Networks (1996) pp 227-3 1 

Wawrzynek J, Asanovit K and Morgan N 1993 The Design of a neuro-microprocessor IEEE Trans. Neural Networks 
4 394-9 

Wegener I 1987 The Complexity of Boolean Functions (Chichester: Wiley) 
Weinfeld M 1989 A fully digital integrated CMOS Hopfield network including the learning algorithm VLSI forArtificia1 

-1990 Integrated artificial neural networks components for higher level architectures with new properties NATO 

White B and Elmasry M 1992 The digi-neocognitron: a digital neocognitron neural network model for VLSI IEEE 

Williams P and Panayotopoulos G 1989 Tools for neural network simulation Report ANNR04 from ESPRIT project 

Winder R 0 1962 Threshold logic PhD Dissertation Mathematics Department, Princeton University, Princeton, NJ 
-1963 Bounds on threshold gate realizability IRE Trans. Electron. Comput. 12 5 6 1 4  
-1969a Fundamentals of Threshold Logic AAT pp 235-318 

Joint Con$ on Neural Networks (1992) vol I1 pp 190-5 

Department of EE) (also in Neurocomputing 6 565-82) 

22-30 

pp 177-86 

Intelligence ed Delgado-Frias J G and Moore W R (Boston: Kluwer) pp 169-78 

Advance Workshop on Neurocomputing ed Fogelman-Soulit F and Htrault J (Berlin: Springer) 

Trans. Neural Networks 3 73-85 

2092 (ANNIE) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 El  .4:33 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

-1969b The status of threshold logic RCA Review 30 62-84 
-1971 Chow parameters in threshold J.  ACM 18 265-89 
Witbrock M and Zagha M 1990 An implementation of backpropagation learning on GFl l  a large SIMD parallel 

Works G 1988 The creation of delta: a new concept in ANS processing Proc. Znt. Joint Con5 on Neural Networks 

Xie Y and Jabri M A 1991 Analysis of the effect of quantization in multi-layer neural networks using statistical model 
SEDAL Technical Report 1991-8-2 (Department of EE, University of Sydney, Australia) 

-1992 Training algorithms for limited precision feedforward neural networks SEDAL Technical Report 1991-8- 
3 (Department of EE, University of Sydney, Australia) (also in Proc. Australian Con$ on Neural Networks 
(Canberra, Australia, 1992) pp 68-71 

Yao A C 1985 Separating the polynomial-time hierarchy by oracles Proc. ZEEE Symp. on Foundations Computer 
Science (1985) vol 26 pp 1-10 

-1989 On ACC and threshold circuits Proc. ACM Symp. on Theory of Computing pp 186-96 
Yasunaga M, Masuda N, Asai M, Yamada T, Masaki A and Hirai Y 1989 A wafer scale integration neural network 

utilizing completely digital circuits Proc. Znt. Joint Con5 on Neural Networks (1989) vol I1 pp 213-7 
Yasunaga M, Masuda N, Yagyu M, Asai M, Yamada T and Masaki A 1990 Design fabrication and evaluation of a 

5-inch wafer scale neural network LSI composed of 576 digital neurons Proc. Int. Joint Con$ on Neural Networks 

-1991 A self-learning neural net composed of 1152 digital neurons in wafer-scale LSIs Proc. Int. Joint Con$ on 
Neural Networks (1991) vol I11 pp 1844-9 

Yestrebsky J, Basehore P and Reed J 1989 Neural bit-slice computing element information Sheet No TP102600 (Micro 
Devices, 5695B Beggs Road, Orlando, FL, 32810-2603, USA) 

Yoshizawa H, Ichiki H K H and Asakawa K 1991 A highly parallel architecture for back-propagation using ring-register 
data path Proc. Int. Con$ on Microelectronics for Neural Networks (1991) pp 325-32 

Zhang X, Mckenna M, Mesirov J P and Waltz D L 1990 An Efficient Implementation of the back-propagation algorithm 
on the connection machine CM-2 Technical Report RL-89-1 (Thinking Machines Corp., 245 First St., Cambridge, 
MA 021 14, USA) (also in Proc. Con$ on Neural Information Processing Systems (1989) pp 801-9) 

Zorat A 1987 Construction of a fault-tolerant grid of processors for wafer-scale integration Circuits, Syst. Signal 
Processing 6 

Zornetzer S F, Davis J L and Clifford L (eds) 1990 An Introduction to Neural and Electronic Networks (San Diego, 
CA: Academic) 

computer Parallel Comput. 14 3 2 9 4 6  

(1988) VOI I1 pp 159-64 

(1990) V O ~  I1 pp 527-35 

El .4:34 Hundbook of Neurul Computution release 9711 @ I997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

E1.5 Optical implementations 

I Saxena and Paul G Horan 

Abstract 

An overview of neural network implementations using optics is presented in this section. 
To begin with, the motivations for using optical hardware are introduced. Some of the 
core techniques are described, and the suitability of particular neural network algorithms 
to optical implementation is discussed. For the nonspecialist reader, relevant basic 
optical physics is briefly reviewed, and the operation of the principal optical devices and 
techniques in use is described. Following this are a profile of major recent demonstration 
systems and innovations and some final comments. 

E1.5.1 Introduction and overview 

E l .  5.1.1 Why optics? 

To produce machines rivaling the processing capabilities of biological (human) brains with 108-10*o 
neurons and 1010-1012 interconnections is a daunting task (DARPA 1988, Caulfield et a1 1989). Following 
the astonishing success of silicon and the modern computer industry, it is natural to turn to this technology 
to make artificial 'neural' computers, and this approach is described in Sections E1.3 and E1.4. The ~ 1 . 3 ,  E1.4 
amazing computational power and speed of modern serial processors is well known. However, artificial 
neural networks (ANNs) are characterized by relatively low levels of computational complexity, but very 
high degrees of parallelism and interconnectivity. In electronic processors, the information channels are 
made of conducting material on a two-dimensional surface. Hence, surface area and power dissipation 
concerns limit very high interconnectivity or massive parallelism from being realized, which are essential 
for efficient neural network implementations. 

Optics offers the promising alternative of exploiting the third dimension by allowing free-space (three- 
dimensional) interconnections. Noninterference among intersecting optical channels (paths), essentially 
instantaneous transport over the short distances involved and insensitivity to electromagnetic interference 
are inherent advantages in choosing optics. Scaling of the number of processing elements without 
compromising speed appreciably, a decrease in cross-talk problems and a reduction in energy requirements 
as compared to electronics are further benefits offered by optical systems. Advantageous alternatives in 
optical technology are expected specifically for very-large-scale dedicated systems tackling such problems 
as real-time speech and vision processing, which have proved to be beyond the reach of the standard serial 
processor. 

A comparison of the interconnections and the processing speeds that are characteristic of the domains 
of electronics, optics and biology are illustrated in figure E1.5.1, adapted from earlier reviews by Alspector 
and a Defense Advanced Research Projects Agency report (DARPA 1988, Alspector 1991). Electronic 
neural network implementations in VLSI (i.e. two-dimensional structures) are limited by 10000 to 100000 
weighted interconnections per chip, whereas optical techniques offer the possibility of orders of magnitude 
improvement of up to 10" interconnections per cubic centimeter in photorefiactive crystals (Psaltis et 
a1 1988a). Furthermore, power dissipation in optical interconnections is lower (Feldman et a1 1988) as 
compared to electrical ones for the same data transmission rates. Optical neural networks form part of 
a greater effort in optical computing and photonic switching. Progress in this broader area is driven by 
developments in telecommunications, where optics already plays a major role, and in massively parallel 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of N e u r d  Computurion release 9711 El .5:1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

+ 
5 

Storage (intemnectbns) 

Figure E1.5.1. Computational resources, adapted from Alspector (after DARPA). 

processing to relieve the communications bottlenecks. These motivations have sustained research in optical 
neural networks for over a decade, and as this chapter reveals, encouraging advances have been made during 
this period. 

E1.5.1.2 Functional aspects 

Optics can perform many of the functions required in neural computing in a neat and elegant manner. 
A simple lens can provide fan-in (addition), fan-out, or image inversion. Anamorphic optics, such as 
cylindrical lenses, can perform two-dimensional t, one-dimensional transformations. Arrays of micro- 
optic components such as prisms can do shift-and-shuffle operations. Holographic and diffractive optical 
elements, as described later, can perform almost arbitrary input-to-output mappings. Multiplication is 
performed by passing an optical beam through a semitransparent medium; for example, photographic 
film. The intensity of the transmitted (or reflected) beam is the product of the original intensity times 
the medium’s transmittance (or reflectance). At the heart of most neural networks is the requirement to 
carry out a weighted sum of the inputs, which is the equivalent of a vector-matrix multiplication. This is 
usually followed by some sort of nonlinear transformation or thresholding operation, which is discussed 
later in this section. This basic process finds a very natural expression in optical hardware. 

The most common configuration is the so-called Stanford vector-matrix multiplier (Goodman et a1 
1978). This implements the product of an input vector and an interconnection weight matrix by means of 
the optical operations discussed above, and is illustrated in figure E1.5.2. A linear array of light sources, 
each encoding the input value in their intensity, are fanned out vertically by a cylindrical lens. In this way 
each input is smeared across a column of a two-dimensional array. By adjusting the transmission of each 
pixel of the two-dimensional array weight matrix, which is typically implemented by a light-modulating 
device (section E1.5.3), a unique weighted path or interconnection from each source to detector is defined. 
A second cylindrical lens does fan-in along the horizontal giving the total weighted summation at each 
detector in the array which corresponds to an element of the resultant product vector. 

In contrast to manipulations of interconnection arrays, much of the early interest in optical neural 
networks arose from the analogy between holography and associative memory. Essentially, a hologram 
can establish an arbitrary input-to-output mapping. The manner in which multiple holograms are stored in 
the same volume, and can be recalled by only a partial input, is very reminiscent of the distributed storage 
mechanism of associative memory. The continuous nature of the holographic media allows potentially 
astounding amounts of data to be stored per unit volume. It could be argued that holography currently 
offers the only viable route to matching the information storage and interconnection density of biological 
neural networks. 

The nature of the interconnection weight matrix is one of the most important issues in any 
implementation. Optical interconnections may be fixed for recall-only neural networks, or they may 

E l  .5:2 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

Figure E1.5.2. ‘Stanford’ optical matrix-vector multiplier. 

be adaptive for learning networks. Fixed interconnections are determined in advance, usually through 
simulation, and implemented in some permanent medium such as transparencies or fixed holograms. In 
adaptive optical neural networks the actual weights in hardware are updated or modified during the training 
process. These adaptive interconnections must be easy to change, must each be independent of the others, 
and must also be stable. Such adaptive interconnections call for far more complex optical hardware. They 
can be implemented either by making use of two-dimensional planar devices having spatially variable 
transmission or reflectivity, known as spatial light modulators (SLMs), or, alternatively, by using adaptive 
holographic interconnections. These individual technologies are discussed in section E l  21.3. The major ~1.5.3 
advantage of adaptive over fixed interconnections is the possibility of the network adapting to local 
nonuniformities or nonfunctioning units during the training phase, and so overcoming some of the inevitable 
limitations of real hardware. 

An essential function of the basic neuron is a nonlinear transform or thresholding of the weighted 
summations. Typically this is some type of sigmoidal function. Working with light, there are a number 
of possible avenues. One is to detect the light intensity corresponding to the weighted sum at each node, 
and transform it to an electrical signal. Any further processing can then be done with standard electronics. 
Arrays of optoelectronic optical4ectrical-optical devices benefit from VLSI techniques to readily engineer 
nonlinear and other desirable responses and bear the name ‘smart pixels’ (see section E1.5.3.2). An 
alternative or second approach is to do all-optical nonlinear processing. In the presence of suitable 
materials two light beams can be made to interact in a nonlinear fashion. Initial efforts in the 1970s 
and early 1980s were therefore directed toward an all-optical computer. However, the noninteracting 
properties of photons, which make them so suitable for dense interconnectivity, make nonlinear optical 
operations very difficult. The nonlinear material coefficients involved are so small that nonlinear effects 
can only be observed at high powers. Despite a concerted research effort, the energies involved in these 
processes have so far remained prohibitively large for processing with arrays of light beams. Nonlinear 
optical effects can be used to advantage in interference filters and in phase conjugate mirrors. In using 
nonlinear interference filters for thresholding, Wang and co-workers (Wang et a1 1988) found the major 
shortcomings to be nonuniformity of the threshold and the high optical powers required. A nonlinear gain 
in phase conjugate mirrors and alternative methods of thresholding have been proposed (Bergeron et a1 
1994). A good example of a third and middle ground between these two approaches is a liquid crystal 
light valve-based system (Hsu et a1 1988). In these types of devices (see section E1.5.3.2) which are 
spatially analog, the incoming light beam causes an electric field to be generated which controls a light- 
modulating material to allow a nonlinear response approximating a soft threshold. This approach opens 
up the possibility for multilayer optical neural networks in which recall takes place with light propagation 
uninterrupted by an electronic processing plane (Saxena and Fiesler 1995, Collings and Xue 1994). 

In optical neural networks where information is coded in light intensity, all variables, including the 
interconnection weight matrix (IWM) elements, have to be positive. Typically, neural network algorithms 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 El .5:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

are based on IWMs containing both negative and positive weights (referred to as bipolar weights). That 
is, the interconnections are inhibitory as well as excitatory. Three possible solutions are adopted when 
working with unipolar weights in multilayer optical neural networks. Bipolar weights may be separated 
into two sets of unipolar weights, which, after being photodetected separately, either (i) spatially (Kasama 
et a1 1990) or (ii) temporally (Yu 1990), are subtracted electronically. This method is typically used in 
two-layer systems (with no hidden layer), where the second (or final) layer is electronic. However, spatial 
separation into two sets of unipolar weights requires duplicating hardware and is not optimum use of 
expensive equipment. Alternatively, bipolar weights can be transformed to unipolar weights by adding a 
bias term and compensating accordingly (Jang et a1 1988), or by altering the algorithm to operate with 
unipolar weights (Shariv and Friesem 1989, Shariv et a1 1991). Orthogonal polarizations may also be 
used to encode the weights, given suitable hardware (Kranzdorf et a1 1989, Ittycheriah et a1 1990, White 
et a1 1988). 

It is far easier in optics to add light than to subtract. Although destructive interference of light may 
be used to give subtraction, this is intrinsically difficult, as it requires mutually coherent light beams, and 
requires very high physical stability of the components. The most fruitful approach in this area has been 
to use optoelectronic optical4ectrical-optical devices, as discussed in reference to a nonlinear response. 
The response of the light source or modulator, for example, can be electronically engineered to decrease 
as light intensity to the detector increases, thus giving an effective inversion, which can be construed as 
subtraction (Kelly et a1 1996). 

Almost all optical implementations of neural networks to date have been analog in nature. This rests 
on the inherent simplicity of analog representation, and the belief that a single analog device can perform 
a nonlinear transform that would require considerable complexity in electronics. This is often at the cost 
of technologically disparate optical hardware. The use of analog hardware also brings in effective limits 
on the available numerical resolution, as also discussed in section E1.5.1.2. The number of resolvable 
gray levels available in an analog system is often limited. Similar problems are experienced in electronic 
hardware implementations. This is particularly important in adaptive systems, where a far higher resolution 
is often required to arrive at a suitable set of weights than is needed in operation with the known weights. 
Thus it is crucial that the requirements of a given algorithm are matched to the available hardware. If 
hardware requirements are relaxed, such as by using pairs of sources and detectors in a differential format, 
lower contrast operation and a tolerance to local power nonuniformities is permitted, as values are then 
expressed as the difference in intensities of two optical beams. As optical systems become more complex 
it may become necessary to go to some form of signal coding. One possible approach is to use stochastic 
bit streams, where an analog value is represented by the relative probability of 1s and Os in a random 
digital bitstream. Multiplication is done by a bit-wise ‘AND-ing’ and the accuracy of a value increases 
with sampling time. Other interesting options for optical nonlinear thresholding also exist (Hands et a1 
1995) with this approach. 

E1.5.2 Neural network architectures for optics 

This section reviews and compares some neural network algorithms for which optical architectures have 
been examined. Many issues affect the suitability of an algorithm to optical implementation. The nature 
and density of the interconnection are of primary importance; whether it is fixed or adaptive, regular or 
random, local or global. Equally well, the number of neuron layers and the complexity of the individual 
neuron have to be considered. As must already be clear, the types of calculations that can be done optically 
are very specific. If an algorithm calls for complex arithmetic then it might be better to consider electronic 
hardware. Compared to silicon electronics, optical hardware is relatively expensive, so efforts should 
be made to make maximum use of the hardware. Thus algorithms that have an iterative procedure are 
attractive. The aim of the system designer should be to tailor the hardware to the algorithm, and vice 
versa, so as to make maximum use of the unique opportunities offered by optics, without trying to impose 
unsuitable tasks. 

E1.5.2.I Supervised optical neural networks 

c1.3.4 Hopfield neural networks. Much attention has been paid to the Hopfield network. This was due, in part, 
to the general interest in the network shown in the early 1980s. But more important is the fact that the 
network has very natural implementations in optics (Farhat et al 1985). The algorithm calls for a single 

El .5:4 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

layer, which acts as input and output, is globally and adaptively connected, and operates with a relatively 
simple learning rule (Hopfield 1982). Thus it involves all essential aspects of a neural network and yet 
has relatively low complexity. Furthermore, the ‘expensive’ optical hardware is repeatedly used in an 
iterative process. For these reasons, as can be seen later in the implementations section, this algorithm has 
provided a fertile testbed for many of the developments in the field. The algorithm itself has also been 
adapted to the limitations of optics. For example, a scheme called reversal-input superposing technique 
(RIST), which yields unipolar, all-positive interconnection weights, has been implemented (Hayasaki et a1 
1994). 

The Hopfield network functions as an autoassociative memory. A generalization on this theme is the 
bidirectional associative memory (BAM) network which is hetero-associative (Kosko 1987). This algorithm 
is remarkable for the manner in which it immediately evokes the idea of an optical cavity. Information 
(light) oscillates between two neural planes (mirrors) repeatedly passing through an intervening weight 
matrix. Although two neural planes are involved, the learning rule is simple and guarantees convergence. 
Like the Hopfield network, this is an iterative algorithm. As a result a number of optical implementations 
have been suggested (Guest and TeKolste 1987). 

Multilayer neural networks. Multilayer networks, and especially those trained by error backpropagation c1.2 

(BP) and its variations, have proved very popular to the neural network community due to their universal 
applicability (Hornik et a1 1989). Hence, in spite of the presence of multiple layers and the requirements 
for a fairly complex learning rule such as backpropagation, which make these algorithms difficult to c1.2.3 

implement, they are a much desired goal. A promising modular multilayer optical neural network design 
based on liquid crystal devices has 256 inputs, 256 hidden neurons and 64 outputs (Saxena and Fiesler 
1995). Alternatively, the use of the optical hardware is maximized by temporal multiplexing, where a two- 
layer structure is first configured as input and hidden layer, and the output of this stage is then electronically 
fed-back to become the input to a reconfigured hidden and output layer (Robinson and Johnson 1992). 
Methodologies proposed (Wagner and Psaltis 1987) to benefit from the bidirectionality inherent in optical 
interconnections and implement backpropagating multilayer networks using devices with a derivative-type 
response have yet to be realized. However, adaptations are required to backpropagation networks in order 
to implement the nonlinearity by optical thresholding devices (Moerland et a1 1995). 

Meanwhile there are ongoing efforts to search for new training algorithms which obviate the need for 
backpropagation of errors and/or bipolar weight matrices. See Section El .2 for an overview on this subject. 
A result of such effort is the work by Psaltis and Qiao (1990) who implemented a multilayer optical neural 
network which is a modification of the method based on Kanerva’s sparse distributed memory. The first c1.5.7 

IWM has fixed random values and the second IWM is updated by a simple rule. Wagner and Slagle 
(1993) suggest the use of unsupervised competitive learning between the input and hidden layer followed 
by (supervised) perceptron learning in the final layer to overcome error backpropagation and yet enable 
multilayer nonlinearly separable classifier optical neural networks. The anti-Hebbian local learning (or 
ALL) algorithm is applicable for three-neuron layer neural networks (two IWM layers). As compared to 
the BP algorithm, it does not require knowledge of the weights of the second IWM in order to determine 
the weight updates for the first IWM. (In that sense it needs less backward information flow than in BP.) 
Instead it does require the inputs and outputs at the output layer for determining the first IWM weight 
updates, and training time seems to be compromised as compared to backpropagation. Other hybrid 
approaches for special image processing applications, such as a vector feature extracting device (Kuratomi 
et a1 1993) are developed which avoid inhibitory synaptic interconnections that are otherwise considered 
essential for superior pattern recognition capabilities. 

Higher-order networks. Higher-order networks involve autocorrelation, to a given degree, of the input, 
before weighted summation (Psaltis et a1 1988~) .  The large increase in the number of weighted terms 
means that complex, input-output transforms, normally only possible in a multilayer structure, can be 
accomplished in a single layer. Thus, as there are no hidden layers, simple training rules can be used. 
In higher-order networks the complexity lies in the interconnection rather than in the processing, making 
it more attractive for optical implementations. This complexity can also be traded to give a network 
invariant to a prescribed transformation, e.g. translation (Giles and Maxwell 1987) which can be harnessed 
to simplify optical implementation (Horan et a1 1990). 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurution release 9711 El .5:5 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

E1.5.2.2 Unsupervised competitive and inhibitory networks 

Some problems lend themselves well to finding solutions by unsupervised neural networks, e.g. the traveling 
salesman problem (Collings et a1 1990). Competitive networks form the basis for most unsupervised 

c2.1 , I  learning algorithms, amongst which are MAXNET, Kohonen ’s selforganizing feature maps, generalized 
c2.2.1 competitive learning and adaptive resonance theory. Competitive networks are based on finding a 

maximum (or minimum) among a specified population, which is a nonlocal function, and thus well suited 
to parallel implementation. This is generally done by some form of mutual inhibition, where the strong 
(large) will inhibit the weak (small) and thus ‘win’ the competition. As mentioned, inhibition is difficult 
to do in an all-optical manner, and best carried out by optoelectronic device arrays, where the mutual 
inhibition signal may be either optical or electrical. 

E1.5.3 Hardware 

The optical implementation of neural networks is ultimately constrained by our ability to produce, direct, 
modulate and detect light. The technologies of light sources and detectors are reasonably well developed, 
especially when compared with the problems of light modulation or optical implementation of the weights 
(see section E1.5.1.2 and figure E1.5.2). In this section some of the basic physical effects used for light 
modulation will be outlined, and the manner in which these effects can be used in practical devices 
described. The use of holography and photo-refractive materials will also be introduced, and a brief 
mention made of some of the supporting technologies. For a more in-depth discussion of some of the 
issues in this section see Jahns and Lee (1993). 

E1.5.3.1 Materials for light modulation 

The weak nonlinear interaction of light with light means that almost all practical SLMs involve (opticalF 
electrical+ptical interactions. SLMs operate on a number of different physical effects, which will be 
briefly reviewed here, and can be studied in further detail in optics textbooks (Saleh et a1 1991, Bass 
1995). 

Electro-optic materials have an electric-field-dependent refractive index. This is an intrinsically fast 
effect, the speed usually being dictated by the capacitance of the devices. A linear dependence on the field is 
known as the Pockels effect, while a quadratic dependence is known as the Kerr effect. The induced phase 
change can be made apparent by including the electro-optic material in an interferometer. Alternatively, the 
electro-optic effect can be used to vary the coupling between two parallel optical waveguides. The electric- 
field-induced anisotropy in the material results in a fast and slow optical axis, so that when the modulator 
is placed between a pair of crossed polarizers, a voltage-dependent transmittance can be observed, as in 
figure E1.5.3. 

These have a natural 
polarization rotation ability. Under the influence of an applied electric field the orientation of the molecules 
can be changed to effect a change in polarization. Again, this is made visible as an intensity change using 

Liquid crystal materials consist of ordered elongated organic molecules. 

Figure E1.5.3. Electro-optic modulation with crossed polarizers. 

El  .5:6 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

external polarizers. Depending on the liquid crystal and the cell construction, continuous analog or bistable 
operation is possible. Speeds are slower than in crystalline solids, varying from seconds, 
Analogous to the electro-optic effect is the magneto-optic or Faraday effect. This effect is characterized by 
a rotation of the plane of polarization of a light beam in response to an applied magnetic field. Similar to 
the other polarization modulating materials, an intensity modulator can be made using external polarizers. 

The refractive index of a material is also affected by sound, known as the acousto-optic effect. The 
passage of a sound wave gives rise to a periodic refractive index change. Sound waves can be efficiently 
generated by electric transducers such as piezoelectric crystals. An incoming light beam, satisfying certain 
angular conditions, is diffracted from the acousto-optically induced periodic refractive index variation (or 
grating) in the piezoelectric crystal, and the diffraction efficiency is dependent on the intensity of the sound 
wave. Thus by varying the sound frequency and intensity, optical modulators, switches or scanners can 
be made. 

Semiconductor materials provide another optical modulation material. The most widely used materials 
are engineered alloys of 111-V semiconductors, such as gallium arsenide. The optical absorption in these 
materials can vary under the influence of an electric field. However, in materials engineered on the scale 
of 10s-100s of nm, where quantum mechanical effects come into play, the energy levels of the electrons 
and holes can be radically altered. This can give rise to an enhanced and qualitatively different change 
of the absorption in response to an applied electric field (Schmitt-Rink et a1 1989). For GaAs a contrast 
of 2:l is typically observed. This can be used in a dual rail logic system, where a pair of signals are 
compared, or alternatively, the contrast can be significantly enhanced by incorporating the material in an 
optical resonant cavity. The electric field can be efficiently applied by simultaneously incorporating the 
material in a pin diode structure. 

There are many other interesting and esoteric optical modulation materials. Physical deflection devices 
use arrays of micro-machined membranes or cantilevers, which deflect under electrostatic forces (Boysel 
199 1). Organic materials such as bacterio-rhodopsin have complex optical activation paths. Long-lived 
quasi-stable states are also important for electron trapping materials. 

to 

E1.5.3.2 Devices: spatial light modulators 

The many different (electro-) optical spatial light modulators that have been proposed and manufactured 
have been well reviewed (Fisher and Lee 1986, Neff et a1 1990) and will only be briefly described here. 
Many SLMs work by the direct application of an electric field. At its simplest this may be no more than 
a pair of electrodes on either side of a sheet or block of suitable material, making a variable attenuator 
or switch. Arrays of devices may be individually addressed, but this will only work for one-dimensional 
or small two-dimensional arrays. As the two-dimensional array size grows, wiring will consume most of 
the surface area. More commonly, rows of electrodes, vertical and horizontal, address an individual pixel. 
Only when a voltage is on both wires is a field applied at the point where they cross. Liquid crystal TV 
screens are typical of this approach. As this involves a serial raster scan of the array, a diode or transistor 
per pixel may be added to maintain the field at the pixel until the next address cycle. Liquid crystal TVs 
and modulators have been extensively used in demonstration systems, as these readily available TVs can 
be easily integrated with PCs and provide cheap and versatile spatial light modulators. The same approach 
can be used with magneto-optic materials, where currents flowing in the wires generate a local magnetic 
field (Farhat and Shae 1989). 

Many applications call for the direct control of one light beam by another. Optically addressed 
SLMs (OASLMs) use light to generate an electric field which is then applied to an electro-optic material. 
Figure E1.5.3 shows a typical electro-optic modulator configuration. A typical OASLM device is an 
LCLV, using a liquid crystal as the electro-optic material (Bleha et a1 1978), as shown in figure E1.5.4. 
Sandwiched between two transparent electrodes is a photoconductive layer (if needed, a light-blocking 
layer), an insulating mirror and the electro-optic or liquid crystal material. The device is charged up, and 
acts like a capacitor. Input light to the photoconductor locally discharges the capacitor, thus reducing the 
field across the modulation material. This can then be read out with a second beam. The OASLM can 
be used to perform an incoherent-to-coherent light transform, or a change of wavelength. Depending on 
materials and the applied voltages this device can also perform image inversion and thresholding operations 
(Armitage and Thackara 1989, Takimoto et a1 1991). In a related device the photoconductor is replaced 
by a photoemitter and a microchannel plate. In the MSLM (microchannel SLM) light incident on the 
photoemitter generates photoelectrons which are accelerated to a microchannel plate which amplifies the 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeurul Compururion release 9711 El .5:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Photoconduc 

c, 
Modulating material 

Figure E1.5.4. Basic structure of an OASLM (optically addressed spatial light modulator). 

charge which then modulates the electro-optic material (Warde et a1 1981). 
One of the most exciting developments in SLM technology has been the increasing pace of integration 

of SLMs with electronic circuitry. This allows for local detection and processing of the incoming light 
signal. This is especially relevant to neural network applications. Such ‘smart pixel’ processing can 
include operations such as weight updating, local maxima detection, image processing functions or packet 
routing. Silicon is the obvious choice for electronic circuitry, but because it is an indirect semiconductor 
it must be used in a hybrid combination with some optically active materials such as liquid crystals, 
PLZT (lead lanthanum zirconate titanate) or 111-V semiconductors (Wagner and Slagle 1993, Ersen et 
a1 1992, Goossen et a1 1995). The alternative approach is monolithic integration of light sources or 
modulators with electronics in 111-V group semiconductors, such as gallium arsenide alloys. Although the 
electronic technology is much less well developed in these materials, impressive performance has been 
demonstrated with integrated arrays of quantum well modulators and field-effect transistors, as can be 
seen in the technical digest on smart pixels (Smart 1994). Work on integrating LEDs with circuitry is 
proceeding apace (Grot et a1 1994). 

E1.5.3.3 Techniques: holography 

The natural analogies between holography and associative memory are very attractive. Associative 
memory benefits greatly from holographic techniques of recording images. Since the initial ideas on 
associative memory appeared, the field has expanded to include real-time holographic storage and fixed 
interconnections. A conventional photograph records only the amplitude of an optical wavefront at a 
point in space, and the phase (direction) information is lost. A hologram, on the other hand, stores the 
wavefront in detail, in that it transforms a specified incoming wave to fully reproduce an image wave 
in all details of both amplitude and phase, giving the now familiar three-dimensional image. Recording 
phase information is difficult as it is obtained by making an input beam interfere with a mutually coherent 
beam. The resulting amplitude interference pattern is recorded as the hologram shown in figure E1.5.5(a). 
Illuminating the hologram with the reference beam will recreate the original input beam as shown in 
figure El .5.5(b) (Caulfield 1979, Saxby 1994). Theoretically, an arbitrary input-to-output mapping can be 
established, thus acting as an associative memory (Collings 1988). Continuing the analogy, illuminating 
any one small part of the hologram can replay the full stored image; the hologram operates effectively 
as a distributed memory. By including a lens in the input beam the Fourier transform of the input may 

El  .5:8 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical imulementations 

Read Beam 
I I I I I I  
I I I I I I  

Virtual Conjugate 
image Image 

Figure E1.5.5. (a) Viewing a hologram. 

Reference 

Figure E1.5.5. ( b )  Recording a hologram. 

be holographically recorded. If an arbitrary input is presented, the output is the convolution of the input 
with the stored image. This configuration, shown in figure E1.5.6, is known as a Van der Lugt filter (Van 
der Lugt 1964). This system may also be configured to yield the correlation of the input and stored data, 
whereby the filter yields a large response only when the input matches one of the stored memories. If 
several reference holograms (stored memories) are located in different specific areas of one hologram, 
then the matching item can be identified. When a hologram is formed in a bulk material, a thick or 
volume hologram is formed. In this case the reading beam must satisfy certain angular constraints, known 
as the Bragg condition, before the output beam is reconstructed (Saleh and Teich 1991). Such angular 
selectivity offers the possibility of very high density data storage, as many holograms can be superimposed 
in the same volume, but selected individually by choice of angle. Photorefractives are a class of materials 
which produce a local electric field in response to light, which then modulates the refractive index by the 
electro-optic effect (see section E1.5.3.4). They provide a means to store rewriteable volume holograms. 
Methods of ameliorating problems of angular degeneracy and overwriting of volume holograms have been 
demonstrated (Lee et a1 1989). 

E1.5.3.4 Technology: sources and optics 

The above modulation technologies all rely on external optical sources. The field of optical sources is 
very mature, and laser, laser diode and incoherent sources are available at a range of wavelengths and 
output radiant powers. The output of conventional cathode ray TVs or electro-luminescent displays may 
be used directly or transformed to a coherent input using an OASLM. Many experiments have used one- 
and two-dimensional arrays of light-emitting diodes (LEDs) as input, where the input is intensity encoded 
on the LED outputs. One-dimensional arrays of edge emitting lasers have been available for some time. 
Recent developments (Jewel et a1 1989, 1990) in vertical cavity surface emitting lasers (VCSELs) have 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 El .5:9 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Input Fourier 
Transform 
Hologram 

Figure E1.5.6. A Van der Lugt filter. 

led to two-dimensional arrays of lasers emitting normal to the array plane being reported (Lear et a1 1995). 
These presently use direct electrical matrix-addressing schemes that are not sufficiently fast for parallel 
interconnections, thereby motivating the investigation of faster optical-addressing (Lee et al 1993). A 
16 x 16 VCSEL array of active laser area 4.5 x 3.7 mm2 and total chip size 1.1 x 1.1 cm2 is a promising 
step in this direction (Gulden et al 1995). Relatively high threshold currents, and hence power consumption, 
have limited the extent of the arrays. However, recent improvements in processing have seen threshold 
currents decrease from mA to PA. Further improvements in device characteristics, such as resistivity, are 
to be expected resulting in VCSELs proving to be very real alternatives to modulation technologies. 

The miniaturization and integration of optical sources has been accompanied by similar trends in the 
field of optics. The range and sophistication of arrays of micro-optical refractive and diffractive components 
is increasing rapidly (Jahns 1994). Typically, the components are produced using established lithographic 
techniques, making for cheap and reliable replication. Refractive components can be made by various 
methods, such as molding, melting, diffusion or micro-machining. Components based on diffraction rely 
on a complex surface profile, engineered on the scale of the wavelength of light, to produce the required 
optical field at a specified distance from the piece. In the related field of computer-generated holograms, the 
hologram of an arbitrary object is calculated using advanced numerical techniques. Again the hologram 
is manufactured using VLSI technology. Such holographic, or diffractive, optical elements (HOES or 
DOES) now find widespread use in optical interconnection and processing systems. For a general review 
see Taghizadeh and Turunen (1992) and references therein. They are mainly used for array illumination, 
fan-in, fan-out and interconnection. Array illuminators, where a single input is fanned out into an array 
of equal intensity spots, have been fabricated up to 256 x 256 spots. Two-dimensional arrays of HOE 
elements can provide almost arbitrary point-to-point interconnection, and fan-out elements can provide 
neighborhood interconnection. 

The problems of how to combine all these components, both active and passive, in a stable, robust 
yet compact package, are in the process of being solved (Jahns 1994). To date, most optical systems 
are primarily for demonstration and have been made using large, bulky, individual components, making 
systems that are measured in meters. For example, a globally interconnected 256 x 256 network using 
a 4-f imaging bulk optics system (Collings 1994) is just under a meter long. Special optical elements 
designed for optical interconnect applications, such as holographic optical elements and lenslet arrays, 
will yield more compact optical interconnect stages in the near future. Lithographic technology offers 
device arrays on the micron level; the opto-mechanics must match this scale and level of integration. 
Recent developments in slot-plate technology offer an intermediate scale of integration, producing stable 
and relatively cheap systems on the centimeter scale. On a more practical front, impressive progress 
has been demonstrated in integrating a liquid-crystal-based Van der Lugt comelator onto a PC expansion 
board to act as a co-processor in a standard PC (Bains 1995). For the future, approaches based on solid 
optics, where the space between components is a transparent solid such as glass, looks very promising 

E 1.5 : 10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

for the next level of miniaturization. Planar optics is a proposal to integrate component arrays on either 
or both sides of a glass block (Jahns 1994, Prongue and Herzig 1994). Optical interconnections zig-zag 
between elements, thereby preserving the three-dimensional advantage of free-space propagation while 
profiting from planar integrated circuit fabrication techniques. Stacked optics is a related idea that uses 
beam-splitters to maintain normal incidence (Brooke and DeWeerth 1993). Micro-optic components are 
fabricated in the solid glass substrate, and active components are attached by VLSI techniques, such as 
flip-chip solder bumps. Developments in opto-mechanics and packaging shall play a key role in the success 
of future optoelectronic systems. 

E1.5.4 Implementations 

The optical implementation of neural networks represents an interplay between algorithms, devices and 
the ingenuity of the researchers. Many different approaches and methodologies have been attempted, and 
we shall highlight some of the most significant of these. Work in this area can be said to begin with 
the seminal work of Psaltis and Farhat (1985). In this paper they describe two possible implementations 
of the Hopfield model (Hopfield 1982). One scheme is based on the Stanford vector-matrix multiplier c1.3.4 
(Goodman et a1 1978) with either electrical or optical feedback. An alternative approach using holography 
and coherent optics is also outlined. These two approaches indicate the main directions research was to 
undertake in the coming years. 

ELECTRONIC 
AMPLIFICATION & 
THRESHOLDING 

D HORIZONTALLY 

T -icn 
LLY 

ARRAY 

Figure E1.5.7. Hopfield neural network vector-matrix multiplier implementation, Farhat et a1 (1985). 

The vector-matrix approach was the first to be exploited. Using an LED array and two-dimensional 
detector arrays, Farhat et a1 (1985) made a system utilizing electronic thresholding, amplification and 
feedback, as shown in figure E1.5.7. Anamorphic optics (cylindrical lenses) spread the light from one LED 
across a row of the detector array. Bipolar weights are implemented on separate weight transparencies, with 
electronic subtraction of the detected totals. This system illustrates the strengths and weaknesses of optics. 
Complex interconnection is achieved, but bipolar values are difficult, and amplification and thresholding 
are done electrically. Although it is suggested that these elements can be replaced by all-optical devices, 
as discussed earlier, these present certain difficulties. 

The basic vector-matrix formalism was to prove very fruitful. Variations on the Hopfield model, 
(Athale et a1 1986) and other learning rules such as Widrow-Huff and Hebbian rules were implemented ~ 3 . 3 . 3 ,  83.3.1 
(Fisher et al 1987). Farhat (1987) introduced a scheme for partitioning the vector-matrix processor to 
implement multilayer networks, whereby the input and output are divided into blocks or sub-matrices, 
corresponding to input, hidden and output layers, as shown in figure E1.5.8. Thus if it is required that 
there be no interconnection between layers, the relevant sub-matrix is set to zero. All these implementations 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compuwtion release 9711 E 1.5: 11 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Imdementations 

Figure E1.5.8. Multilayer neural network scheme (Farhat 1987). 

n-electrode 

1 2 3  31 32 

Figure E1.5.9. Optical neuro-chip, (Ohta er a1 1989). 

were based on a one-dimensional input/output and two-dimensional (or 1 D-2D-lD) interconnection matrix. 
Very often it is required to have a two-dimensional-four-dimensional-two-dimensional (i.e. 2D4D-2D) 
interconnection. A raster decomposition to the easier lD-2D-lD format is always possible but not always 
attractive. Other than the direct implementation of the interconnection with optical fibers between two- 
dimensional arrays (It0 and Kitayama 1989), bulk holography (discussed below) offers the most obvious 
alternative. Caulfield (1987) proposed another approach whereby the two-dimensional interconnection 
matrix is itself composed of sub-matrices for each input-output coupling. An interesting alternative 
approach to this problem is demonstrated by Lee et al where a fixed random interconnection is implemented 
between the two-dimensional planes using a scatter plate, and local adaptive weightings are made at the 
inputs and outputs (Lee et a1 1993). 

Most of these implementations rely on anamorphic optics to provide fan-out and fan-in, thus resulting 
in moderately bulky systems. Athale and Stirk (1989) showed how compact inner product multiplications 
could be done using mutually orthogonal, finger-shaped one-dimensional arrays of light sources and 
detectors, with a two-dimensional interconnection matrix sandwiched between. The length of the light 
source fingers distributes the light to each element of the interconnection matrix, and the detector sums 

E 1.5: 12 Hundbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

Argon BS2 BS1 LCLV BS3 L1 Input 
Laser 

Figure E1.5.10. Hopfield neural network implementation with holographic interconnections (Paek and 
Psaltis 1987), @ 1990 IEEE. 

the components. The same ideas are adapted for outer product calculation. This compact scheme was 
exploited by Ohta et a1 (1989) in their optical neurochip, in which integrated arrays of light sources 
(LEDs) and photodetectors are combined in a hybrid crowbar configuration on either side of a fixed 
interconnection matrix, as shown in figure E1.5.9. The resulting 32-input chip had an area of 0.5 cm2 
and was used to demonstrate operation in a Hopfield network with external electronics. Bipolar weights 
were implemented on separate chips. In their next generation chip, excitatory and inhibitory connections 
were implemented on a single chip (Ohta et a1 1990). The 66 inputs on the 1 cm2 chip were organized 
in a three layer (35-29-26) topology to implement a backpropagation character recognition network. To 
implement dynamic interconnections and so allow for on-line learning Ohta et a1 (1991) introduced variable 
sensitivity photodiodes. These allow for analog bipolar weights and can exhibit a memory function (Nitta 
et a1 1993). Estimated densities of up to 2000 neurons cm-2 are possible with this particular technology. 
The use of fast, bipolar switching in dense array devices, such as multiplexed gray-scale devices, has 
been demonstrated (Burns et a1 1994). Variable sensitivity photodiodes have also been used by Rietman 
et a1 (1991). In particular, they have focused on the nonidealities introduced by the hardware, especially 
the limitations introduced by finite, quantized weights (Frye et a1 1991). Work on liquid crystalline, 
polarization modulation based systems by Robinson and Johnson (1992) have also explored the limits of 
nonideal hardware. They found nonlinearities in the weight mapping to be important, but were optimistic 
about the ability of on-line training to overcome nonuniformities. In a detailed analysis of an associative 
memory algorithm, again based on a vector-matrix processor, Neiberg and Casasent (1994) demonstrate 
impressive performance on nonideal hardware. 

In parallel with developments in vector-matrix machines, the power of holographic interconnection 
was also being investigated. The holographic implementation of the Hopfield network, first proposed by 
Psaltis and Farhat, was built (Paek and Psaltis 1987, Hsu et a1 1990). The system, as built, used two 
holograms. The input is first correlated with a number of stored memories stored in the first hologram, as 
shown in figure E1.5.10. Any strong correlation yields a bright spot of light. This spot is then incident on 
a second hologram and replays the stored image, which becomes the input to another iteration of the cycle. 
The optical loop is completed by use of a liquid crystal light valve. After a number of iterations the system 
settles to a state which represents the closest match between the input and the stored images. Variations on 
this theme were explored by Jang et a1 (1988) and White and Wright (1988). These examples used fixed 
two-dimensional holograms. Bulk photorefractive holography offers far greater potential storage capacity 
and the possibility of variable adaptive interconnection (Anderson and Lininger 1987). Furthermore, 
photorefractives can store their ‘memories’ for considerable time, giving one of the few viable forms of 
optical memory. Architectures for backpropagation and perceptron networks have been proposed (Psaltis 
et a1 1988a, Kitayama et a1 1989). An improved local learning rule for use in these systems has been 
proposed by Qiao and Psaltis (1992). Problems of degeneracy between the stored memories reduces the 
potential storage capacity. However, methods for achieving optimal storage have been found (Psaltis et 
a1 1988b). Placing a hologram in an optical resonant cavity gives rise to a rich field of possibilities. The 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurution release 9711 El .5:13 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

REFERENCE 
BEAM 

I I HOLOGRAM 

OUTPUT IMAGE ,EA,'/v I ~ ~ ~ ~ C T  

SPLlllER 

PHASE 
LENS CONJUGATOR 

\% BaTiO 

Figure E1.5.11. Soffer er al's associative memory implementation. 

stored information can be viewed as modes of the cavity. Using phase conjugate mirrors to form the 
cavity provides nonlinear gain in self-aligning format (Anderson 1986, Yariv and Kwong 1986). Soffer 
and Owechko (Soffer et a1 1986, Owechko et a1 1987) built a system, as in figure E1.5.11, where the 
individual holograms were angularly multiplexed and demonstrated recall of a partial input of one of the 
stored images. 

Choosing and adapting algorithms suited to optical implementation has been an on-going activity. 
ci.3 The bidirectional associative memory (BAM) proposed by Kosko finds a very natural expression in optical 

terms (Kosko 1987, Guest and TeKolste 1987). As mentioned, higher-order neural networks are attractive 
for optical implementation in that they trade-off complex interconnection for simple single-layer operation 
(Giles and Maxwell 1987, Psaltis et a1 1988~). These have been implemented using liquid crystal (Von 
Lehmen et al 1990, Zhang et a1 1991) and semiconductor quantum well devices (Jennings et a1 1994). 
Inhibition plays a major part in neural network models and, as discussed earlier, is especially difficult 
to implement optically. Jenkins and Wang (1988) proposed an incoherent optical neuron (ION) based 
on the response of a liquid crystal light valve. Kawakami et a1 (1989) demonstrated similar inhibitory 
behavior using the transfer function of a micro-channel plate SLM. This approach has been extended by 
Wang et al (1993) to model early visual processing. In further experiments Kawakami et a1 (1991) built 
integrated pnpn light source/detector devices having an inhibitory response. It has also been proposed that 
the inverted response observed with self-linearized SEED devices can be used for lateral inhibition (Horan 
1995). Inhibition is also at the heart of most competitive algorithms, which involve finding a maximum. 
Pattern recognition using Kohonen's self-organizing feature map algorithm has been implemented by 
Lu et a1 (1990) using LCTVs. Memory enhancement for the number of patterns stored was achieved by 
introducing forbidden regions for previously learned patterns, to prevent erasure during subsequent learning. 
Special devices for speeding the implementation of winner-take-all algorithms (Slagle and Wagner 1992) are 
under development. Investigations by Duvillier et a1 (1994) of a self-organizing architecture based on the 
Kohonen map model using two LC bistable optically addressed SLMs in a resonator configuration provides 
a way in which the optical loop can remain closed (uninterrupted by optical to electronic conversion) and 
allow neural decision, weight updating and spatial ordering of information. 

Recently, the increased integration of optics and electronics has led to some very exciting 
developments. Detecting the maximum among a number of outputs is crucial to many networks, such 
as MAXNET and many of the unsupervised networks. Radehaus et a1 (1992) have built arrays of pnpn 
photothyristors, which detect light signals, and only that pixel which receives the largest signal lights 
up, giving winner-take-all behavior. Great progress has been made with integrating liquid crystal (LC) 
directly with silicon electronics. In this technology the LC is laid directly on the silicon circuitry, and 
overlaid by a transparent conductor. Output pads in the silicon circuitry directly modulate the overlying 
LC (Johnson et a1 1993). The advanced state of silicon technology allows complex circuits to be easily 
and quickly developed. This has allowed smart pixel SLMs to be developed for such applications as 
early vision zero-crossing detection (Jared and Johnson 1991, 1992) or a winner-take-all SLM as part 
of an unsupervised learning holographic system (Wagner and Slagle 1993). The integration of PLZT on 
silicon has allowed similarly ambitious hybrid systems to be proposed (Krishnamoorthy et a1 1992). Most 

E l  .5: 14 Hundbook of Neurul Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

recently, the hybrid integration of 111-V materials on Si circuitry using solder bump technology (Goossen 
et a1 1995) and epitaxial lift-off (Camperi-Ginstet et a1 1991) has progressed rapidly, and looks very 
promising. Monolithic integration in gallium arsenide offers similar opportunities, although the technology 
is not so well developed. A sigmoidal neuron response has been implemented using LEDs integrated with 
detectors and electronics (Lin et a1 1993). A related promising approach is the integration of quantum 
well modulators with resonant tunneling diodes and transistors (Mehanian et a1 1991). For the future, 
though currently more experimental, is persistent spectral hole-burning, which offers the possibility of 
very high density holographic storage (Maniloff et a1 1995, Ollikainen 1993). Electron trapping materials 
combine detection, memory and light source in one material (Jutamulia et a1 1991), while the complex 
photochemical cycle of bacteriorhodopsin can reproduce an excitatory and inhibitory response (Takei et ai 
1991) having fast response times only a few picoseconds long. 

E1.5.5 Future directions 

The future for optical neural networks looks very promising. It is felt by many that optics can be justified 
only for large scale (> lo3 neuron) systems, as some of the current largest electronic neurocomputers (see 
Ramacher et ai 1993, SYNAPSE 93) can achieve the order of a few thousand neurons. The integration of 
optical technology into computing will, nevertheless, be a gradual evolutionary process. The advantages 
of optics for point-to-point communication have been illustrated by the dramatic shift from copper to 
fiber-optic cables for telecommunications. The advantage of optics for communication on a scale greater 
than centimeters drives interest in using optical interconnections in massively parallel computing; such 
as for data communication on an optical bus, or for low skew clock distribution. Such passive optical 
systems seem certain to be increasingly used in parallel computing systems. Many laboratory systems 
have demonstrated active optical switching, which is redirecting of optical signals as a function of time, 
but it has yet to make a major impact in the commercial arena. The impressive progress being made in 
the field of telecom switching makes it most likely that the first applications will be in the field of signal 
routing, where a switching network is actively configured in response to information carried by the signal 
packet itself. If established, such technology would be equally useful for reconfiguring the interconnections 
of a parallel processing system. Active data processing by means of reconfigurable interconnections, as 
represented by many of the examples discussed here, is a step further. 

Realization of the advantages 
and limitations of both optical and electronic technologies leads to a natural convergence, where both 
technologies can complement rather than compete. Smart pixel integration offers the possibility of local 
memory and weight updating. Liquid crystal on silicon device arrays benefit from advances in display 
technology. Recent developments in GaAs on silicon integration have produced impressive arrays of solid 
state devices. Other silicon with light source or modulator combinations all have their own attractions. 
Whether any one technology will win out, or individual technologies become specialized to particular 
applications, remains to be seen. 

Most demonstration optical systems built to date have been relatively modest in scale; the challenge, 
therefore, is to build large-scale optical systems with a clear operational advantage. Potential applications 
in associative memory and data retrieval would suggest holographic techniques as the most promising, 
while those requiring more complex learning or control paths might benefit from the flexibility offered 
by integration with silicon. Continuing progress towards advantageous optical neural networks requires 
coordinated development on both the algorithm and the hardware front. 

Many issues have yet to be explored in the optical implementation of neural networks. The field 
is still at a relatively immature phase. The full potential of such systems can really only be exploited 
by large-scale, parallel systems. The advantages of parallel input and output can only be exploited if an 
individual network layer is integrated into a larger system, perhaps comprising different layers of different 
functionality, with information flowing in many parallel paths; systems incorporating both feedforward 
‘bottom up’ propositions from the data and ‘top down’ feedback expectations from the output. Such 
multilayer systems, and how they can be interfaced to the world and other computing systems, remain as 
tasks for the future. 

The course of optoelectronic integration seems set to continue. 

Acknowledgements 

The authors are grateful to J Hegarty, N Collings, T C B Yu and P D Moerland for their helpful comments. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 E 1.5: 15 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

References 

Alspector J 1991 Parallel implementations of neural networks: electronics, optics, biology Technical Digest, Optical 

Anderson D Z 1986 Coherent optical eigenstate memory Opt. Lett. 11 56-8 
Anderson D Z and Lininger D M 1987 Dynamic optical interconnects: volume holograms as optical two-port operators 

Armitage D and Thackara J I 1989 Photoaddressed liquid-crystal edge-enhancing spatial light modulator Appl. Opt. 

Athale R and Stirk C W 1989 Compact architectures for adaptive neural nets Opt. Eng. 28 447-55 
Athale R, Szu H H and Friedlander C B 1986 Optical implementations of associative memory with controlled 

nonlinearity in the correlation domain Opt. Lett. 11 482 
Bains S 1995 Miniature optical correlator fits inside a PC Laser Focus World pp 17-8 
Bass M (ed) 1995 Handbook of Optics (New York: McGraw-Hill) 
Bergeron A, Arsenault H H, Eustache E and Gingras D 1994 Optoelectronic thresholding module for winner-take-all 

operations in optical neural networks Appl. Opt. 33 1463-8 
Bleha W P, Lipton L T, Wiener-Avnear E, Grinberg J,  Reif P G, Casasent D, Brown H B and Markevitch B V 1978 

Application of the liquid crystal light valve to real-time optical data processing Opt. Eng. 17 371-84 
Boysel R M 1991 A 128 x 128 frame-addressed deformable mirror spatial light modulator Opt. Eng. 30 1422-7 
Brooke M A and DeWeerth S P 1993 Merging optics and electronics in neural networks Opt. and Photonics News 

Bums D C, Underwood I, Murray A F and Vass D G 1994 An optoelectroninc neural network with temporally 

Camperi-Ginstet C, Hargis M, Jokerst N and Allen M 1991 Alignable epitaxial liftoff of GaAs material with selective 

Caulfield H J (ed) 1979 Handbook of Optical Holography (New York: Academic) 
-1987 Parallel n4 weighted optical interconnections Appl. Opt. 26 403940 
Caulfield H J,  Kinser J and Rogers S K 1989 Optical neural networks Proc. IEEE 77 
Collings N 1988 Optical pattern recognition using holographic techniques (Wokingham: Addison-Wesley) 
-1994 Design of a useful two-layered neural network Euro-American Workshop on Optical Pattern Recognition 

(La Rochelle) pp 14-17 
Collings N, Sumi R, Weible K J ,  Acklin B and Xue W 1990 The use of optical hardware to find good solutions of 

the travelling salesman problem. Proc. SPIE 1806 
Collings N and Xue W 1994 Liquid-crystal light valves as thresholding elements in neural networks: Basic device 

requirements Appl. Opt. 33 2829-33 
DARPA Neural Network Study 1988 AFCEA International Press, 4400 Fair Lakes Court, Fairfax, Virginia 22033-3899, 

USA 
Duvillier J,  Killinger M, Heggarty K, Yao K and de Bougrenet de la Tocnaye J L 1994 All-optical implementation of 

a self-organizing map: a preliminary approach Appl. Opt. 33 258-66 
Ersen A, Krishnakumar S, Ozguz V, Wang J,  Fan C, Esener S and Lee S H 1992 Design issues and development of 

monolithic silicodlead lanthanum zirconate titanate integration technologies for smart spatial light modulators 
Appl. Opt. 31 3950-64 

Farhat N H 1987 Optoelectronic analogs of self-programming neural networks: architectures and methodologies for 
implementing fast stochastic leaming by simulated annealing Appl. Opt. 26 5093-103 

Farhat N H, Psaltis D, Prata A, and Peak E 1985 Optical implementation of the Hopfield model Appl. Opt. 24 1469-75 
Farhat N H and Shae Z Y 1989 Scheme for enhancing the frame rate of magnetooptic spatial light modulators Appl. 

Feldman M R, Esener S C, Guest C C, and Lee S H 1988 Comparison between optical and electrical interconnects 

Fisher A D and Lee N J 1986 Current status of two-dimensional spatial light modulator technology SPIE Optical and 

Fisher A D, Lippincott W and Lee J N 1987 Optical implementations of associative networks with versatile adaptive 

Frye R C, Reitman E A and Wong C C 1991 Back-propagation leaming and nonidealities in analog neural network 

Giles C L and Maxwell T 1987 Leaming, invariance, and generalization in high-order neural networks Appl. Opt. 26 

Goodman J W, Dias A R and Woody L M 1978 Fully parallel, high-speed incoherent optical method for performing 

Computing '91 

Appl. Opt. 26 5031-8 

28 219-25 

PP 26-9 

multiplexed grey-scale weights MicroNeuro '94 pp 3-7 

deposition using polyimide diaphragms IEEE Trans. Photonics Technology Lett. 3 1123-6 

Opt. 28 4792-800 

based on power and speed considerations Appl. Opt. 27 1742-51 

Hybrid Computation ed H H Szu 634 352 

leaming capabilities Appl. Opt. 26 5039-54 

hardware IEEE Trans. on Neural Networks 2 110-7 

4972-8 

discrete fourier transforms Opt. Lett. 21-3 

El .5:16 Hundbook of Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

Goossen K W et a1 1995 Demonstration of a dense, high-speed optoelectronic technology integrated with silicon cmos 
via flip-chip bonding and substrate removal in optical computing Optical Computing, OSA Technical Digest series 
10 142-4 

Grot A C, Psaltis D, Shenoy K V and Constad C G 1994 Large scale integration of LEDs and GaAs circuits fabricated 
through Mosis Tech. Digest of the Int. Con$ on Optical Computing, OC ’94 (Edinburgh) pp 3 4  

Guest C C and TeKolste R 1987 Designs and devices for optical bidirectional assocative memories Appl. Opt. 26 
5055-60 

Gulden K H, Ruffieux D, Thelen K, Moser M, Leipold D, Epler J, Schweizer H P, Greger E and Riel P 1995 16 x 16 
individually addressable top emitting vcsel array with high uniformity and low threshold voltages Optics and 
Information, Topical Meetings Digest Series 6 p 6.1 

Hands M A, Peiffer W, Kirk A and Hall T J 1995 A case study for the implementation of a stochastic bit stream 
neuron; the choice between electrical and optical interconnects (Washington: IEEE Computer Society Press) 

Hayasaki Y, Tohyama I, Yatagai T, Mori M and Ishihara S 1994 Reversal-input superposing technique for all-optical 

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl 

Horan P, Uecker D and Arimoto A 1990 Optical implementation of second-order neural network discriminator model 

Horan P 1995, 1994 Optical Lateral Inhibition Networks Using Self-Linearised SEED’S pp 403-6 (Bristol: IOP 

Homik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural 

Hsu K, Brady D and Psaltis D 1988 Neural Information Processing Systems ed D Z Anderson (New York: IEEE, 

Hsu K-Y, Li H-Y, and Psaltis D 1990 Holographic implementation of a fully connected neural network Proc. IEEE 

Ito F and Kitayama K-I 1989 Optical implementation of the hopfield neural network using multiple fiber nets Appl. 

Ittycheriah A P, Walkup J F, Krile T F, and Lim S L 1990 Outer product processor using polarization encoding Appl. 

Jahns J 1994 Planar packaging of free-space optical interconnections Proc. IEEE 82 1623-31 
Jahns J and Lee S H 1993 Optical Computing Hardware (New York: Academic) 
Jang J-S, Jung S-W, Lee S-Y and Shin S-Y 1988 Optical implementation of the Hopfield model for two-dimentional 

associative memory Opt. Lett. 13 248-50 
Jared D A and Johnson K M 1991 Optically addressed thresholding very-large-scale-integratiodliquid-crystal spatial 

light modulator Opt. Lett. 16 967-9 
-1992 Early vision zero-crossing spatial light modulators Tech Digest of the IEEE LEOS Summer Topical Meeting 

on Smart Pixels, (Santa Barbara, CA) IEEE Catalog No 92THO42I-8 ISBN 0-7803-0522-1 Paper MB3 
Jenkins B K and Wang C H 1988 Model for an incoherent optical neuron that subtracts Opt. Lett. 13 8 9 2 4  
Jennings A, Horan P and Hegarty J 1994 Optical neural network with quantum well-devices Appl. Opt. 33 1469-76 
Jewell J L, Lee Y H, Scherer A, McCall S L, Olsson N A, Harbison J P and Florez L T 1990 Surface-emitting 

Jewell J L , Scherer A, McCall S L, Lee Y H, Walker S J, Harbison J P and Florez L T 1989 Low threshold electrically 

Johnson K M, McKnight D J and Underwood I 1993 Smart spatial light modulators using liquid crystals on silicon 

Jutamulia S, Storti G M, Lindmayer J and Seiderman W 1991 Use of electron trapping materials in optical signal 

Kasama N, Hayasaki Y, Yatagai T, Mori M and Ishihara S 1990 Experimental demonstration of optical three layer 

Kawakami W, Kitayama K I, Nakano Y and Ikeda M 1991 Lateral inhibitory action in an optical neural network 

Kawakami W, Yoshinaga H and Kitayama K-I 1989 Demonstration of an optical inhibitory neural network Opt. Lett. 

Kelly B, Horan P, Tooley F A P, Taghizadeh M R and Hegarty J 1996 Optical lateral inhibition networks that use 

Kirk A G and Kendall G D et a1 1991 An optical neural network with reconfigurable holographic interconnection 

pp 63-75 

neural networks Appl. Opt. 33 1477-84 

Acad. Sci. USA 79 2554-8 

Japan J. Appl. Phys. 29 1328-31 

Publishing) 

Networks 2 359-66 

American Institute of Physics) pp 377-386 

78 

Opt. 28 417681 

Opt. 29 275-83 

microlasers for photonic switching and interchip connections Opt. Eng. 29 210-4 

pumped vertical cavity surface emitting micro-lasers Electron. Lett. 25 1 1 2 3 4  

IEEE J. Quantum Electron. 29 

processing. 2: two-dimensional associative memory Appl. Opt. 30 2879-84 

neural network Japan J. Appl. Phys. 29 L1565-8 

using an internal-light-coupled optical device array Opt. Lett. 16 1028-30 

14 

self-linearized self-electro-optic-effect devices: theory and experiment Appl. Opt. 34 to appear 

Optical Memory and Neural Networks vol 1402 (Bellingham, WA: SPIE) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 97/1 El .5:17 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

Kitayama K-I, Yoshinaga H and Hara T 1989 Experiments of learning in optical perceptron-like and multilayer neural 
networks Proc. Int. J. Con5 on Neural Networks vol 2 (San Diego, CA: IEEE and INNS, IEEE TAB Neural 
Network Committee/SOS Printing) pp 465-71 

Kosko B 1987 Adaptive bidirectional associative memories Appl. Opt. 26 4947-60 
Kranzdorf M, Bigner B J, Zhang L and Johnson K M 1989 Optical connectionist machine with polarization-based 

Krishnamoorthy A V, Yayla G and Esener S C 1992 A scalable optoelectronic neural system using free space optical 

Kuratomi Y, Takimoto A, Akiyama K and Ogawa H 1993 Optical neural network using vector-feature extraction Appl. 

Lear K L, Choquette K D, Schneider R P, Kilcoyne S P and Geib K M 1995 Electron. Lett. 31 208 
Lee H-J, Lee S-Y and Shin S-Y 1993 Random interconnections with ground glass for optical TAG Neural Networks 

Lee H, Gu X-G and Psaltis D 1989 Volume holographic interconnections with maximal capacity and minimal crosstalk 

Lin S ,  Grot A, Luo J and Psaltis D 1993 GaAs optoelectronic neuron arrays Appl. Opt. 32 1275-89 
Lu T, Yu T S and Gregory D A 1990 Self-organizing optical neural network for unsupervised learning Opt. Eng. 29 

Maniloff E, Altner S B, Bernet S ,  Graf F R, Renn A and Wild U P 1995 Recording of 6000 holograms by the use of 
spectral hole burning Appl. Opt. 34 4140-48 

Mehanian C, Aull B F, and Nichols K B 1991 An optoelectronically implemented neural network for early visual 
processing Proc. SPIE 1469 275-80 

Moerland P, Fiesler E and Saxena I 1995 The effects of optical thresholding in backpropagation neural networks 
Proc. Int. Con5 on Artijicial Neural Networks (ICA”’95 and NeuroNimes ’95) vol 2, ed F Fogelman-Soulie and 
P Gallinari (ENNS) pp 3 3 9 4 3  

Neff J A, Athale R A and Lee S H 1990 Two-dimensional spatial light modulators: a tutorial Proc. IEEE 78 826-54 
Neiberg L and Casasent D 1994 High capacity neural networks on nonideal hardware Appl. Opt. 33 7665-75 
Nitta Y, Ohta J, Tai S and Kyuma K 1993 Optical learning neurochip with intemal analog memory Appl. Opt. 32 

Ohta J, Kojima K, Nitta Y, Tai S and Kyuma K 1990 Optical neurochip based on a three-layered feed-forward model 

Ohta J, Nitta Y and Kyuma K 1991 Dynamic optical neurochip using variable-sensitivity photodiodes Opt. Lett. 16 

Ohta J, Takahashi M, Nitta Y, Mitsunaga K and Kyuma K 1989 GaAdAlGaAs optical synaptic interconnection device 

Ollikainen 0 1993 Optical implementation of quadratic associative memory by use of persistent spectral hole burning 

Owechko Y, Dunning G J, Maron E and Soffer B H 1987 Holographic associative memory with nonlinearities in the 

Paek E G and Psaltis D 1987 Optical associative memory using fourier transform holograms Opt. Eng. 26 428-33 
Prongue D and Herzig H P 1994 Total internal reflection holography for optical interconnections Opt. Eng. 33 636-42 
Psaltis D, Brady D and Wagner K 1988a Adaptive optical networks using photorefractive crystals Appl. Opt. 27 1752-9 
Psaltis D and Farhat N H 1985 Optical information processing based on an assosiative-memory model of neural nets 

Psaltis D, Gu X-G and Brady D 1988b Fractal sampling grids for holographic interconnections Proc. I C 0  Topical 

Psaltis D, Park C H and Hong J 1988c Higher order associative memories and their optical implementations Neural 

Psaltis D and Qiao Y 1990 Optical neural networks Opt. and Photonics News 17-21 
Qiao Y and Psaltis D 1992 Local learning algorithm for optical neural networks Appl. Opt. 31 3285-8 
Radehaus C V, Pankove J I, Kuijk M, Heremans P and Borghs G 1992 Maximum detection with a two-dimensional 

Ramacher U, Raab W, Anlauf J, Hachmann U and Wesseling M 1993 SYNAPSE-1-a general purpose neurocomputer 

Rietman E A, Frye R C, and Wong C C 1991 Signal prediction by an optically controlled neural network Appl. Opt. 

Robinson M G and Johnson K M 1992 Noise analysis of polarization-based optoelectronic connectionist machines 

Saleh B E A and Teich M C 1991 Fundamentals of Photonics 2nd edn (New York: Wiley) 
Saxby G 1994 Practical Holography 2nd edn (New York: Prentice-Hall) 
Saxena I and Fiesler E 1995 Adaptive multilayer optical neural network with optical thresholding Opt. Eng. 34 243540 

bipolar weight values Opt. Eng. 28 844-8 

interconnects IEEE Trans. Neural Networks 3 4 0 4 1 3  

Opt. 32 5750-8 

Optical Society of America, Technical Digest Series, vol 7 pp 104-7 

J. Appl. Phys. 65 2 1 9 1 4  

1107-13 

1264-74 

Opt. Lett. 15 1 3 6 2 4  

744-6 

for neural networks Opt. Lett. 14 844-846 

Appl, Opt. 32 1943-7 

correlation domain Appl. Opt. 26 1900-10 

with thresholding and feedback Opt. Lett. 10 98-100 

Meeting on Optical Computing (Toulon) (SPIE) pp 963-70 

Networks 1 149-63 

optoelectronic winner-take-all network Appl. Opt. 31 6303-6 

Technical Report, Siemens AG, Corporate Research and Development Division (Munich) 

30 950-7 

Appl. Opt. 31 263-72 

El .5 :  18 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Optical implementations 

Schmitt-Rink S ,  Chemla D S and Miller D A B 1989 Linear and nonlinear properties of semiconductor quantum wells 

Shariv I and Friesem A A 1989 All-optical neural network with inhibitory neurons Opt. Lett. 14 485-7 
Shariv I, Gila 0 and Friesem A A 1991 All-optical bipolar neural network with polarization-modulating neurons Opr. 

Slagle T M and Wagner K 1992 Winner-take-all spatial light modulator Opt. Lett. 17 1164-6 
Smart 1994 Summer topical meeting digest on smart pixels (New York: IEEE) vol 94 TH 0606-4 
Soffer B H, Dunning G J, Owechko Y and Marom E 1986 Associative holographic memory with feedback using 

phase-conjugate mirrors Opt. Lett. 11 118-20 
Taghizadeh M R and Turunen J 1992 Synthetic diffractive elements for optical interconnection Optical Computing 

and Processing 2 221-42 
Takei H, Lewis A, Chen Z and Nebenzahl I 1991 Implementing receptive fields with excitatory and inhibitory 

optoelectrical responses of bacteriorhodopsin films Appl. Opt. 30 500-9 
Takimoto A, Akiyama K, Miyauchi M, Kuratomi Y, Asayama J and Ogawa H 1991 A new optical neuron device 

for all-optical neural networks Extended Abstracts of the 1991 Int. Con$ on Solid State Devices and Materials 

Advances in physics 38 89-188 

Lett. 16 1692-4 

pp 335-7 
Van der Lugt A B 1964 Signal detection by complex spatial filtering IEEE Trans. Information Theory 10 
Von Lehmen A, Paek E G, Carrion, L C, Pate1 J S and Marrakchi A 1990 Optoelectronic chip implementation of a 

Wagner K and Psaltis D 1987 Multilayer optical leaming networks Appl. Opt. 26 5061-76 
Wagner K and Slagle T 1993 Optical competitive leaming with VLSIAiquid-crystal winner-take-all modulators Appl. 

Wang C-H, Jenkins B K and Wang J-M 1993 Visual cortex operations and their implementation using the incoherent 
optical neuron model Appl. Opt. 32 1876-87 

Wang L, Esch V, Feinleib R, Zhang L, Jin R, Chou H M, Sprague R W, Macleod H A, Khitrova G, Gibbs H M, 
Wagner K and Psaltis D 1988 Interference filters as nonlinear decision making elements for three-spot pattern 
recognition and associative memories Appl. Opt. 27 1715-20 

Warde C, Weiss A M, Fisher A D and Thackara J I 1981 Optical information processing characteristics of the 
microchannel spatial light modulator Appl. Opt. 22 2066-74 

White H J, Aldridge N B and Lindsay I 1988 Digital and analogue holographic associative memories Opt. Eng. 27 
30-7 

White H J and Wright W A 1988 Holographic implementations of a Hopfield model with discrete weights Appl. Opt. 
27 331-8 

Yariv A and Kwong S-K 1986 Associative memories based on message-bearing optical modes in phase-conjugate 

Yu F T S ,  Lu T, Yang X, and Gregory D A 1990 Optical neural network with pocket-sized liquid-crystal televisions 

Zhang L, Robinson M G, and Johnson K M 1991 Optical implementation of a second-order neural network Opt. Lett. 

quadratic associative memory Opt. Lett. 15 279-81 

Opt. 32 1408-35 

resonators Opt. Lett. 11 186-8 

Opt. Lett. 15 863-5 

16 45-7 

Further reading 

1. 

2. 

Abu Mostafa Y S and Psaltis D 1987 Optical neural computers Scientific American pp 88-95 

Yu F T S ,  1993 Optical neural networks: architecture, design and models Progress in Optics ed E Wolf 
(Amsterdam: North-Holland) vol 32 

Psaltis D and Qiao Y 1993 Adaptive multilayer optical networks Progress in Optics ed E Wolf (Amsterdam: 
North Holland) vol 31 

Saleh B E A and Teich M C 1991 Fundamentals of Photonics ch 4, 18, 19, 20 and 21 (New York: Wiley) 

Neff J A, Athale R A and Lee S H 1990 Two-dimensional spatial light modulators: a tutorial Proc. IEEE vol 78 
pp 826-54 

Jahns J and Lee S H (eds) 1994 Optical Computing Hardware (San Diego: Academic Press) 

Krishnamoorthy A V, Yayla G, Esener S and Lee S H 1994 Free-space optoelectronic technology for neural 
networks Optical Memory and Neural Networks 3 261-89 

Caulfield H J (ed) 1979 Handbook of Optical Holography (New York: Academic Press) 

Saxby G 1994 Practical Holography 2nd edn (New York: Prentice Hall) 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

@ 1997 IOP Publishing Lid and Oxford University Press Handbook of Neural Computation release 9711 E l  .5:19 

Copyright © 1997 IOP Publishing Ltd



Neural Network Hardware Implementations 

10. Collings N 1988 Optical Pattem Recognition Using Holographic Techniques (Wokingham: Addison-Wesley) 

11. Bass M (ed) 1995 Handbook of Optics 2nd edn sponsored by the Optical Society of America (New York: 
McGraw-Hill). 

El  S:20 Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



PART F 

APPLICATIONS OF NEURAL 
COMPUTATION 

F1 NEURAL NETWORK APPLICATIONS 
F1.l 

F1.2 

F1.3 

F1.4 

F1.5 

F1.6 

F1.7 

Fl.8 

F1.9 

Introduction 
Gary Lawrence Murphy 
Pattern classification 
Thierry Deneux 
Combinatorial optimization 
Soheil Shams 
Associative memory 
James Austin 
Data compression 
Andrea Basso 
Image processing 
John Fulcher 
Speech processing 
Kari Torkkola 
Signal processing 
Shawn P Day 
Control 
Paul J Werbos 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



F1 

Neural Network Applications 

Contents 

F1 NEURAL NETWORK APPLICATIONS 
F1.1 Introduction 

Gary Lawrence Murphy 
F1.2 Pattern classification 

Thierry D e n m a  
F1.3 Combinatorial optimization 

Soheil Shams 
F1.4 Associative memory 

James Austin 
F1.5 Data compression 

Andrea Basso 
F1.6 Image processing 

John Fulcher 
F1.7 Speech processing 

Kari Torkkola 
F1.8 Signal processing 

Shawn P Day 
F1.9 Control 

Paul J Werbos 

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 
Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Fl.1 Introduction 

Gary Lawrence Murphy 

Neural networks have become a serious contender for real-world computing and industrial control. Neural 
techniques in nonlinear and associative problems have enabled automation of tasks that previously eluded 
mechanization, and in the next few years, the growing use of parallel processing and VLSZ will further Ei.1 

broaden the scope of neural network applications. Neural solutions, from telephone noise filters to process 
control, are becoming common in industry and commerce, and this expanding popularity is bringing the 
topic to new fields of application with intractable problems to solve. 

Neural technology has also become a complicated topic, and the scientists and engineers exploring 
these methods have lacked any clear view of the state of the art within their domain. The sections 
that follow address the needs of these practitioners by presenting detailed discussions of neural network 
applications in important problem domains. The case studies in Part G further refine this view to individual 
solutions, following each case from requirements and design through to training and evaluation. 

Several sections in this chapter discuss general solutions applicable to many industrial problems. 
There are, for example, networks used for stochastic modeling, control issues and function optimization. ~ 1 . 9 ,  ~ 1 . 3  

The survey of pattern classification may also find a wide audience. Other sections, such as the discussion 
on data compression and the survey on speech processing, are more focused on particular industries but ~ 1 . 5 ,  ~ 1 . 7  

contain aspects of interest for similar time-series synthesis and recognition problems in other domains. 
These studies offer a general guide and also a catalog of ideas. By showing many domains together, 

pictures emerge of the roles of neural networks and relationships between topology and task. Taken as a 
whole, the studies map the range from simple textbook networks to highly customized designs, and from 
generalized problems to highly specific applications. Any such presentation cannot hope to be complete or 
current, but from this chapter and the case studies which follow in Part G, neural network practitioners can 
survey their own or a similar domain and also view the design considerations in other worlds. The terms 
and objectives may be very different, but this multidisciplinary view may provide seeds for surprising 
cross-pollinations. 

Our computing world waS changed forever by the first neural solution of the classical XOR (exclusive 
OR) problem. Modern possibilities for massively parallel processing and integrated circuit networks have 
brought the connectionist’s machine into the industrial workplace, and new doors for automation and 
control are now open. 

@ 1997 1OP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 F1.1: 1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.2 Pattern classification 

Thierry Denizux 

Abstract 

Pattern classification consists in assigning entities, described by feature vectors, to pre- 
defined groups of patterns. When the statistical characteristics of the problem under 
consideration are perfectly known, minimal error probability can be achieved by means 
of the Bayes decision rule. In practice, however, a suboptimal classifier has to be con- 
structed from training data. Several neural network approaches to this problem have been 
proposed. Nearest-neighbor models are based on assessing the similarity between the 
input pattern and a set of reference patterns with known classification. The regression 
approach consists in predicting category from pattern by minimizing a certain error crite- 
rion. In the finite sample case, the definition of the structural complexity of these models 
is shown to have considerable influence on classification error. Finally, a taxonomy of 
the main neural network and alternative techniques of pattern classification are presented. 

F1.2.1 Introduction 

In many application domains such as character recognition, speech understanding, medical diagnosis, ~ 1 . 3 ,  FI .7, GS 
process fault detection or jinancial decision making, problems arise that consist of classifying entities, ~ 2 . 8 ,  ~ 6 . 3  
represented by feature vectors, into one of several groups of patterns, or classes. A classification system 
is typically composed of two parts (Duda and Hart 1973, Fukunaga 1990). A preprocessor transforms raw 
data produced by sensors or extracted from computer databases into vectors of observations or features. 
Features are defined so as to encode in compact form most of the information needed to discriminate 
between pattern categories. Feature vectors are then passed to a classijier that evaluates the evidence 
presented and makes a decision regarding the class assignment of the entity under consideration. 

Ever since the pioneering work of Rosenblatt (1958) and Widrow (Widrow and Lehr 1990), a large 
part of connectionist research has been devoted to the development and theoretical analysis of pattern 
classifiers having neural-network-like structure and learning capabilities. In recent years, the development 
of several new models with previously unequaled performance in real-world applications (Rumelhart et a1 
1986, Kohonen 1987) has generated a wave of interest in connectionism and pattern recognition in general. 
Although this enthusiasm was first considered with some skepticism by researchers in mainstream statistical 
pattern recognition (Duin 1994), artificial neural networks are now generally seen as particular types of 

In the next section, the basic notation and definitions underlying statistical pattern recognition will 
first be defined. The main neural network approaches to pattern classification will then be described, with 
an overview of their asymptotic and small-sample properties. In the last section, a taxonomy of statistical 
and neural network classifiers will be presented. 

statistical pattern classijiers (Schmidt 1993, Werbos 1991). 86 

F1.2.2 Problem description 

We consider a finite number M of populations or classes, w1, . . . , W M .  An entity of interest is assumed 
to belong to one and only one of these populations. Each entity is described by a feature vector z E Rd 
which is seen as a realization of a random vector X. The probability density function of X in class oi is 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of &euro1 Compufution release 9711 F1.2:1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

denoted by fx(zlwi). Each entity is generally assumed to be drawn from a mixture of the M populations, 
in proportions P ( o l ) ,  . . . , P ( o M ) ,  respectively, with CL, P(wi)  = 1. The mixture density of X is then 

(F1.2.1) 

P(wj )  can be seen as the prior probability that the entity belongs to wi .  Having observed feature vector 
z, the posterior probability P(o i  1%) can be computed by applying the Bayes theorem: 

(F1.2.2) 

If the class-conditional probability distributions and the priors are all known, then an optimal solution to 
the classification problem is provided by Bayes decision theory. Let us denote by A = ( a ~ ,  . . . , au} a 
finite set of actions; ai is often interpreted as the decision of allocating z to class wj.  However, other 
actions such as ambiguity or distance rejection (Chow 1970, Dubuisson and Masson 1993) can also be 
considered in the analysis. 

If, as a result of observing pattern z, we take action ai while the entity under consideration belongs 
to class w j ,  we incur a loss A(ai10,). The expected loss R(ai1z) is 

(F1.2.3) 

A decision rule is a function a : Wd I+ A that prescribes an action a ( z )  each time an observation vector 
z is encountered. The overall risk associated to a is 

(F1.2.4) 

The decision rule that minimizes the risk can be shown to be the Bayes rule, which selects for each vector 
z the action ai for which R(ailz) is minimum. 

In the particular case of a zero-one loss function A(ai lwj) = 1 - S i , ,  where 6 is the Kronecker symbol, 
we have 

R(ai12) = 1 - P ( W i 1 2 )  (F1.2.5) 

and the overall risk is the average probability of misclassification. Consequently, the Bayes rule consists 
in this case of selecting the class with the highest posterior probability. This rule has optimal classification 
performance in the sense that it minimizes the average probability of error. 

In practice, however, this rule cannot be applied because the exact posterior probabilities are unknown. 
However, approximations to that rule can be constructed if a training set T = {(d') ,  tc')), . . . , (de), t"))} 
of L patterns with known classification is available; t(j) denotes a vector of M zero-one indicator variables 
defining the known class of pattern d'): 

(F1.2.6) 
(F1.2.7) 

The construction of allocation rules based on a limited amount of training data is one of the fundamental 
problems in statistical pattern recognition and connectionism. 

F1.2.3 Neural network classifiers 

In the past thirty years, a large number of neural network models have been proposed for performing pattern 
classification tasks. Although these models are characterized by a variety of architectures and learning 
rules, most of them can be seen as instances of two main paradigms, the nearest-neighbor approach and 
the regression approach, which are summarized in the following sections. 

F1.2:2 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Pattern classification 

F1.2.3.1 The nearest-neighbor approach 

In the nearest-neighbor approach, the most probable classification of an unknown pattern is determined by 
assessing its similarity with a set of reference vectors or prototypes of each class. The pattern is assigned to 
the class of the nearest prototype. As a consequence, the surface separating the different decision regions is 
piecewise linear. In such models, learning is essentially a process of prototype formation and adaptation. 
Two important models in this category are the restricted Coulomb energy (RCE) network (Reilly et al c1.6.3.1 
1982) and the learning vector quantization (LVQ) network (Kohonen 1987). c1.1.5 

In the RCE model, each prototype of a given class is characterized by a weight vector and a receptive 
field size. The learning algorithm combines two mechanisms of prototype formation and receptive field 
modification. If input z belonging to class o, does not fall into the receptive field of any prototype of that 
class, then a new prototype of class U, is created at the location of x. If x falls inside the receptive field of 
some prototype of class c # U,, then the receptive field of that prototype is reduced so as to exclude z. This 
algorithm has been shown experimentally to be able to resolve class boundaries of arbitrary complexity. 
However, since no adaptation of prototype vectors is performed, the required number of prototypes may 
grow very large. Also, the learning process usually becomes unstable in regions where there is a strong 
overlap between classes. Some improvements to this basic model have been proposed (Reilly et a1 1982). 

The LVQ model introduced by Kohonen (1987, 1990) essentially differs from the previous one in that 
the number of prototypes is fixed, but their weight vectors are continuously updated in the course of the 
learning process by a competitive learning mechanism. Upon presentation of input vector x of class oj, 
the nearest prototype i is selected. If that prototype belongs to class c('), its weight vector p( ' )  is updated as 

(F 1.2.8) 
(F1.2.9) 

where q ( t )  is a time-decreasing scalar parameter (0 ~ ( t )  < 1). After training, the prototype vectors 
acquire values such that classification using the nearest-neighbor principle approximates the Bayes rule 
with zero-one costs. Variants of this basic scheme have been proposed by Kohonen (1990) and others 
(e.g. Poirier and Ferrieux 1991). 

Simulations performed with both models (RCE and LVQ) on a simple two-class problem are reported 
in figure F1.2.1. The LVQ algorithm can be seen to yield a smoother decision boundary with a 
comparatively smaller number of neurons, as a result of prototype adaptation during training. 

x 1 0 :  
x 

I I I I 
-1 4 . 6  0 0.5 I -1 4 . 5  0 0.5 1 

Figure F1.2.1. Prototypes (0)  and decision boundaries (- - -) obtained by RCE (left) and LVQ (right) 
networks in a two-class problem. The receptive fields of RCE prototypes are indicated as circles. 

Neural network classifiers based on the nearest-neighbor approach have the advantage of being fast 
during both training and operation. Experimentally, they are generally found to offer good performance 
as compared to other, more computationally demanding methods (Kohonen et al 1988). Although it is 
conjectured that the methods relying on competitive learning allow approximation to the Bayes rule for 
large sample sizes (Kohonen 1990), the determination of the quality of this approximation is a difficult 
theoretical problem. When classification is performed by considering the nearest neighbor among samples, 
the asymptotic error rate is known to be bounded between the Bayes error and twice the Bayes error 
(Cover and Hart 1967). This result can be seen as a heuristic justification of the good performance of 
nearest-neighbor techniques in large-sample problems. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurui Compururion release 9711 F1.2:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network ADDkatiOnS 

F1.2.3.2 The regression approach 

Classification by regression is certainly the most popular approach in the field of artificial neural networks. 
A regression classifier attempts to predict category from pattern by minimizing a measure of expected 
error between output and target pattems (Thomas and Mitiche 1994). 

More precisely, let us denote the input-output function implemented by a neural network with specified 
architecture by 

(F1.2.10) 
(F1.2.11) 

where U is the set of possible output values and w is the vector of weights of size W. 
In the case of multilayer perceptrons (MLPs) (Rumelhart et a1 1986) with one hidden layer and a 

logistic activation function in the hidden layer, the kth component Fk(x, w) of output vector F ( x ,  w) is 
defined as 

c1.2 

(F 1.2.12) 

where w):) is the weight from input unit i to hidden unit j ,  6;'' is the bias of hidden unit j ,  WE) is the 
weight from hidden unit j to output unit k, 6:' is the bias of output unit k ,  N2 is the size of the hidden 
layer, and U is a sigmoid function. 

In the case of radial basisfunction (RBF) networks (Poggio and Girosi 1988, Girosi 1994), the output 
from hidden unit j is defined as a function of the Euclidean distance between input x and a prototype 
vector p J .  As in the previous model, output units compute a weighted sum of the outputs from the hidden 
layer. The output Fk(x, ut) from unit k is given by 

c1.6.2 

(F 1.2.13) 

where wkj is the weight from hidden unit j to output unit k ,  uj is a parameter defining the size of the 
receptive field of prototype j ,  and N2 is defined as above. 

An important distinction between MLPs and RBF networks concerns the nature of the internal 
representation of input patterns. In MLPs, an input signal may activate an arbitrary number of hidden units, 
resulting in a distributed representation. In RBF networks, one input predominantly activates the hidden 
unit with the closest weight vector, which creates a local representation. From this point of view, RBF 
networks are related to the nearest-neighbor classifiers described in the previous section. A comparison of 
both models on the same two-class problem as above is shown in figure F1.2.2. 

1 . 4 ~ 1  

-021 , , x x , * ,  , , , X I , * .  , 1 -0.4 

- 0 0  

-1 -0.1 0 0.6 1 -1 -03 0 0 5  1 

Figure F1.2.2. Decision boundaries (- - -) obtained by an RBF network with three prototype units (left) 
and by an MLP with two hidden units (right) in a two-class problem. 

Both MLPs and RBF networks share the fundamental property of being universal approximators; 
that is, given enough hidden units, they can approximate any continuous mapping with arbitrary accuracy 
(Poggio and Girosi 1988, Homik 1991). 

In the MLP and RBF network models, training is performed by optimizing the performance on a 
training set 7 = {(d'), tc')), , . , , (de), t('))} ,  using some iterative procedure (Rumelhart et a1 1986). 

F1.2~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Pattern classification 

Performance is assessed by computing the mean of some error measure between the classifier output 
and target values. Different output coding schemes and error measures have been proposed. Typically, 
the desired output for training vector di) is taken as t ( i ) ,  and the error for that pattern is defined as 

- F ( z ( ' ) ,  w)1I2. The empirical performance on the training set is then 

(F1.2.14) 

During training, one seeks a weight vector we solution of the problem: 

min Je(w). (F1.2.15) 

However, in most cases, the ultimate goal of learning is in fact to minimize the overall performance for 
any possible input vector, which can be measured by 

W 

J(w)  = E(IIT - F ( X ,  w)1I2) (F1.2.16) 

where X is a random input vector and T is the corresponding random target vector. For large t ,  Je(w) 
can be seen as an approximation to J(w), and we approximates the solution w* to 

arg min J (w) . (F1.2.17) 
W 

If the training set is now seen as a realization of a random sample 

( ( X y  P), . . . , (X'? T't')) (F1.2.18) 

then Je(w) and we become realizations of random variables je(w) and &, respectively. White (1989) 
discusses conditions on which the sequence of real-valued random variables 2ire converges, in some strict 
mathematical sense, to w*. 

So far, we have assumed performance to be assessed by a measure of the distance between desired 
and obtained output patterns. Intuitively, a classifier whose outputs are close to target values for each z 
can be expected to have low error probability. As the number t of training vector becomes infinitely large, 
it is interesting to study the relationships of this approach with the Bayes rule. This has been done by 
many authors (White 1989, Hampshire and Pearlmutter 1991, Lee eta1 1991, Thomas and Mitiche 1994). 
The main result is that w* minimizes 

(F 1.2.19) 

By definition of T, E ( q l z )  = P(T,. = 11s) = P ( w j l z ) .  Consequently, Fj(w*, z) is a mean-squared 
approximation to the posterior probability P(q 12). A classifier trained by minimization of the mean- 
squared error criterion therefore approximates the Bayes rule asymptotically in t .  This result has been 
extended to other error functions by Hampshire and Pearlmutter (1991) and to more general output coding 
schemes by Thomas and Mitiche (1994). Note, however, that the quality of this approximation depends 
on the architecture of the network under consideration, as well as on the training procedure employed, 
which may not be able to reach a global minimum of the error function. 

F1.2.3.3 Small-sample problems 

As remarked by Raudys and Jain (1991a), the asymptotic classification error of a regression classifier, 
assuming a perfect training algorithm, cannot be increased by introducing new hidden units. If the 
classifier is made more complex, this can only result in a closer approximation to the Bayes classification 
rule. This remark also applies, to some extent, to nearest-neighbor classifiers, since increasing the number 
of prototypes results in a closer approximation to the 1-NN classifier, which is known to have near-optimal 
asymptotic performance. 

In practice, however, one is always in a situation where only a finite number of training samples is 
available. In such a case, numerical simulations reveal the existence of the so-called peaking phenomenon 
(Raudys and Jain 1991a). As the complexity of the classifier increases, classification error initially drops, 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 F1.2:S 

Copyright © 1997 IOP Publishing Ltd



Neural Network ADDlications 

then attains a minimum, and then begins to increase. Intuitively, this is due to the fact that inexact 
estimation of additional parameters increases classification error. At some point, this effect becomes 
larger than the gain resulting from greater flexibility of the classifier. For that reason, the design of 
patterns classifiers with optimal complexity is of the utmost importance in practical applications, and the 

~ 2 . 1 0  development of heuristic methods for automatic determination of a near-optimal number of hidden neurons 
has been the subject of very intensive research. A variety of techniques have been proposed, which can 
be categorized as relying on destructive, constructive or direct strategies. In the destructive approach, 
the complexity of the network is gradually reduced either by penalizing complexity through addition of a 
bias term to the error function, or by pruning the least relevant units in the course of the training process 
(Reed 1993). In the constructive strategy, a small initial network is gradually expanded until the task is 
considered to be solved. Examples of such techniques are described in Fahlman and Lebiere (1990, Hirose 
et a1 (1991), LengellC and Denoeux (1992, 1996), Platt (1991), Lee (1992). The direct approach consists 
in using prior information, acquired through preprocessing or readily available from domain knowledge, 
to design a neural network that can then be further trained using a standard learning procedure such as 

ci.z.3 backpropagation (Sethi 1990, Denoeux and LengellC 1993, Karouia et a1 1995). 
In all cases, the classification error of the classifier has to be either estimated, or derived from 

theoretical considerations. Raudys and Jain (199 lb) discuss several methods of error estimation including 
the resubstitution, hold-out, cross-validation and bootstrap methods. The hold-out method consists in 
dividing the available data into a training set and a test set used for independent error estimation. This 
method provides an unbiased error estimate, but it has the disadvantage of preventing the use of all the 
data for the learning process. The cross-validation and bootstrap methods are more efficient, but also more 
computationally demanding. 

As an alternative, an idea of the generalization performance of a classifier can sometimes be gained 
~ 2 . 5 . 2 . 2  as a result of some kind of theoretical analysis. Recent investigations based on the Vapnik-Chervonenkis 

theory (Vapnik 1982) and the PAC learning model (Valiant 1984) have led to the derivation of bounds 
for the true and estimated classification errors of minimum empirical error classifiers (Baum and Haussler 
1989, Anthony 1994, Kraaijveld 1993). However, these results are based on a worst-case analysis and 
lead to very pessimistic estimates of the number of samples needed to train a classifier (Raudys 1994). 
Nevertheless, some of the most recent results are already applicable with approximations as an initial 
aid to neural network design (Holden and Niranjan 1994). Further improvements are expected from the 
consideration of specific input distributions and training algorithms in this analysis (Kraaijveld 1993). 

F1.2.4 Alternative approaches 

Since the 1950s, substantial progress has been achieved in the design of statistical classifiers from empirical 
data. According to Raudys and Jain (1991b), the number of classification methods already published 
exceeds two hundred. These methods are described in a number of standard textbooks such as Duda and 
Hart (1973), Fukunaga (1990) and McLachlan (1992). 

A useful taxonomy of classification techniques, including statistical and neural network approaches, 
has been proposed by Lippmann (1994). Pattern classifiers can be seen as belonging to three main 
categories. Probability densityfunction classifiers estimate class-conditional probability densities separately 
for each class. They include parametric normal classifiers with different forms of covariance matrices, and 
nonparametric methods of density estimation such as the Parzen-window approach. Posterior probability 
class$ers estimate the posterior probability of each class, using all the available data simultaneously. 
Examples of such methods are MLPs and RBF networks, and the voting k-NN rule. The third category of 
classification method includes techniques for directly partitioning the feature space into decision regions, 
using binary indicator outputs. Examples of such boundary forming methods are the nearest-neighbor 
methods, such as RCE or LVQ networks, and tree-structured classifiers (Breiman et a1 1984). 

A further distinction can be drawn between model-based and data-driven approaches. In the model- 
based approach, a particular classifier is chosen among a predefined family of functions, or model. 
Parametric classifiers, MLPs and LVQ classifiers fall in this category. In contrast, the form of data- 
driven classifiers is not fixed in advance, but determined by the data. This is the case for Parzen-window, 

c1.7,c2.4 k-NN and tree-structure classifiers, as well as for ontogenic neural networks that adapt their structure 
during the learning process. 

This multiplicity of classification techniques obviously poses a serious problem to the practitioner. 
Many comparative studies have been made to assess the strengths and weaknesses of various methods 

F1.2:6 Handbook of Neurul Computution release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Pattern classification 

(e.g. Tsoi and Pearson 1991, Ng and Lippmann 1991, Brown er a1 1993, Blue et  a1 1994). In general, 
comparable error rates are achieved by several techniques, provided they are properly tuned. As noted by 
N g  and Lippmann (1991), the selection of a classifier for a particular task should primarily be  guided by 
practical considerations such as training and classification time, and memory storage requirements. Neural 
network classifiers usually offer a good compromise between performance and practical applicability. 

References 

Anthony M 1994 Probabilistic analysis of learning in artificial neural networks: the PAC model and its variants 

Baum E B and Haussler D 1989 What size net gives valid generalization Neural Comput. 1 151-60 
Blue J L, Candela G T, Grother P J, Chellappa R and Wilson C L 1994 Evaluation of pattern classifiers for fingerprint 

Breiman L, Friedman J H, Olshen R A and Stone C J 1984 Classification and Regression Trees (Belmont, CA: 

Brown D E, Cormble V and Pittard C L 1993 A comparison of decision tree classifiers with backpropagation neural 

Chow C K 1970 On optimum recognition error and reject tradeoff IEEE Trans. Inform. Theory 16 41-6 
Cover T M and Hart P E 1967 Nearest neighbor pattern classification IEEE Trans. Inform. Theory 13 21-7 
Denaeux T and Lengelld R 1993 Initializing back-propagation networks with prototypes Neural Networks 6 351-63 
Dubuisson B and Masson M 1993 A statistical decision rule with incomplete knowledge about classes Putt. Recog. 

Duda R 0 and Hart P E 1973 Pattern Classification and Scene Analysis (New York: Wiley) 
Duin R P W 1994 Superlearning and neural network magic Putt. Recog. Lett. 15 215-7 
Fahlman S E and Lebiere C 1990 The cascade-comelation learning architecture Advances in Neural Information 

Fukunaga K 1990 Introduction to Statistical Pattern Recognition 2nd edn (Berlin: Academic) 
Girosi F 1994 Regularization theory, radial basis functions and networks From Statistics to Neural Networks ed V 

Cherkassky, J H Friedman and H Wechsler (Berlin: Springer) pp 166-87 
Hampshire J B and Pearlmutter B 1991 Equivalence proof for multilayer perceptron networks and the Bayesian 

discriminant function Connectionist Models, Proc. 1990 Swnmer School ed D S Touretzky, J L Elman, 
T J Sejnowski and G E Hinton (San Mateo, CA: Morgan Kaufmann) pp 159-72 

Hirose Y, Yamashita K and Hijiya S 1991 Back-propagation algorithm which varies the number of hidden units Neural 
Networks 4 61-6 

Holden S B and Niranjan M 1994 On the practical applicability of VC dimension bounds Technical Report CUEDP- 
I N F E N G m l 5 5  Cambridge University Engineering Department, Cambridge CB2 lPZ, UK 

Homik K 1991 Approximation capabilities of multilayer feedforward networks Neural Networks 4 25 1-7 
Karouia M, Lengell6 R and Denceux T 1995 Performance analysis of a MLP weight initialization algorithm Proc. 

Kohonen T 1987 Self Organisation and Associative Memory 2nd edn (Berlin: Springer) 
-1990 The self-organizing map Proc. IEEE 78 1464-80 
Kohonen T, Bama G and Chrisley R 1988 Statistical pattern recognition with neural networks: benchmarking studies 

Proc. ICNN’88 Int. Con5 on Neural Networks vol I (IEEE Computer Society Press) pp 61-8 
Kraaijveld M A 1993 Small sample behavior of multi-layer feedforward network classifiers: theoretical and practical 

aspects PhD Thesis Delft University, Delft, The Netherlands 
Lee D-S, Srihari S N and Gaborski R 1991 Bayesian and neural network pattern recognition: a theoretical connection 

and empirical results with handwritten characters Artificial Neural networks and Statistical Pattern Recognition 
ed I K Sethi and A K Jain (Amsterdam: Elsevier) pp 89-108 

Lee S 1992 Supervised learning with Gaussian potentials Neural Networks for Signal Processing ed B Kosko 
(Englewood Cliffs, NJ: Prentice-Hall) pp 189-227 

Lengell6 R and Denaeux T 1992 Optimizing multilayer networks layer per layer without back-propagation Artificial 
Neural Networks II ed I Aleksander and J Taylor (Amsterdam: North-Holland) pp 995-8 

-1996 Training multilayer perceptrons layer by layer using an objective function for internal representations Neural 
Networks 9 83-97 

Lippmann R P 1994 Neural networks, Bayesian a posteriori probabilities, and pattern classification From Statistics to 
Neural Networks ed V Cherkassky, J H Friedman and H Wechsler (Berlin: Springer) pp 83-104 

McLachlan G J 1992 Discriminant Analysis and Statistical Pattern Recognition (New York: Wiley) 
Ng K and Lippmann R P 1991 A comparative study of the practical characteristics of neural networks and conventional 

pattern classifiers Advances in Neural Information Processing Systems vol 3 ed R L Lippman, J E Moody and 
D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 970-6 

Technical Report NC-TR-94-3 Royal Holloway, University of London, Egham, Surrey 1 w 2 0  OEX, UK 

and OCR applications Putt. Recog. 27 485-501 

Wadsworth) 

networks for multimodal classification problems Putt. Recog. 26 953-61 

26 155-65 

Processing Systems 2 ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 524-32 

ESANN’95 European Symp. on Artificial Neural Networks (Brussels: De facto) pp 347-52 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 F1.2:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Platt J C 1991 Learning by combining memorization and gradient descent Neural Information Processing 3 ed 
R P Lippman, J E Moody and D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 714-20 

Poggio T and Girosi F 1988 A theory of networks for approximation and learning Technical Report AI Memo No 
1140 MIT 

Poirier F and Femeux A 1991 DVQ: dynamic vector quantization-an incremental LVQ Artijicial Neural Networks 
vol 2 ed T Kohonen, M M&isara, 0 Simula and J Kangas (Amsterdam: Elsevier) pp 11-1333-1336 

Raudys S J 1994 Why do multilayer perceptrons have favorable small sample properties Pattem Recognition in 
Practice IV ed E S Gelsema and L N Kana1 (Amsterdam: Elsevier) pp 287-98 

Raudys S J and Jain A K 1991a Small sample problems in designing artificial neural networks Artijicial Neural 
networks and Statistical Pattern Recognition ed I K Sethi and A K Jain (Amsterdam: Elsevier) pp 33-50 

-1991 b Small sample size effects in statistical pattern recognition: recommendations for practitioners IEEE Trans. 
Putt. Anal. Machine Int. 13 252-64 

Reed R 1993 Pruning algorithms: a survey IEEE Trans. Neural Networks 4 140-7 
Reilly D L, Cooper L N and Elbaum C 1982 A neural model of category learning Biol. Cybern. 45 35-41 
Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol. 

Rumelhart D E, Hinton G E and Williams R J 1986 Learning internal representations by error propagation Parallel 

Schmidt W F 1993 Neural pattern classifying systems PhD Thesis Delft University, Delft, The Netherlands 
Sethi I K 1990 Entropy nets: from decision trees to neural networks Pmc. IEEE 78 1605-13 
Thomas D S and Mitiche A 1994 Asymptotic optimality of pattern recognition by regression analysis Neural Networks 

Tsoi A C and Pearson R A 1991 Comparison of three classification techniques CART C4.5 and multi-layer perceptrons 
Advances in Neural Information Processing Systems vol 3 ed R L Lippman, J E Moody and D S Touretzky (San 
Mateo, CA: Morgan Kaufmann) pp 963-9 

Rev. 65 386-408 

Distributed Processing ed D E Rumelhart and J McClelland (Cambridge, MA: MIT Press) 

7 313-20 

Valiant L G 1984 A theory of the learnable Commun. ACM 27 113442 
Vapnik V N 1982 Estimation of Dependences Based on Empirical Data (Springer Series in Statistics) (Berlin: Springer) 
Werbos P J 1974 Beyond regression: new tools for prediction and analysis in the behavioral sciences (Cambridge, 

-199 1 Links between artificial neural networks and statistical pattern recognition ArtiJcial Neural networks and 

White H 1989 Learning in artificial neural networks: a statistical perspective Neural Comput. 1 425-64 
Widrow B and Lehr M A 1990 30 years of adaptive neural networks: perceptrons, madaline and backpropagation 

MA: Harvard University) 

Statistical Pattem Recognition ed I K Sethi and A K Jain (Amsterdam: Elsevier Science) pp 1 1-3 1 

Proc. IEEE 78 1415-42 

F1.2:8 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.3 Combinatorial optimization 

Soheil Shams 

Abstract 

Combinatorial optimization problems are frequently encountered in a broad range of 
disciplines from economics to engineering. These problems are notoriously difficult to 
solve for many applications, especially when the number of free parameters is large. In 
many situations, high-performance computers are required to solve optimization problems 
in practical times. Many of the problems solved by neural networks (e.g. pattern 
recognition and associative memory) can be viewed as special forms of combinatorial 
optimization. Due to their inherent parallel computation and simple computational 
requirements, neural networks have the potential to solve difficult optimization problems 
while taking full advantage of parallel and simple processing hardware. The methodology 
for applying neural networks to combinatorial optimization problems will be discussed 
in this section. A brief summary of alternative optimization techniques is also presented. 

F1.3.1 Project overview 

Combinatorial optimization problems span a wide spectrum of application areas in such diverse fields 
as economics, biology, physics and engineering. Combinatorial optimization involves searching a large G6, G4, G3,l 
space of possible solutions to a problem for a specific solution which is in some sense an ‘optimum’ 
solution. Optimality of a specific solution is generally measured by an analytical function of the modifiable 
parameters of the problem. 

One of the most widely studied problems in combinatorial optimization is the traveling salesman 
problem (TSP) (Lawler et a1 1985). In this problem, a salesman is to visit M cities while passing through 
each city exactly once. In addition, the salesman has to end his tour in the city where he started, completing 
a full circuit. The inter-city distances for all pairs of cities are known a priori (usually specified in the 
form of an M x M matrix). The objective of the optimization process is to find the shortest tour among 
all valid tours (those which pass through each city exactly once). The solution space of this problem 
(number of possible valid tours) can be determined to be M ! / 2 M .  The rapid growth of the solution space 
can be explicitly demonstrated through an example. For a seven-city TSP ( M  = 7), the solution space 
consists of 360 valid paths. Therefore, it is reasonable to calculate the tour length associated with each 
of the 360 paths and select the shortest one. This solution is called the global optimum solution since we 
have explicitly determined that among all possible valid tours, no other tour has a shorter traversal length. 
However, with a slightly larger problem consisting of 20 cities ( M  = 20), the solution space explodes 
into greater than 6 x 10l6 possible valid tours. Even if one could calculate the length of each tour in 
100 ns (using a very fast processor) it would require more than 190 years to measure all the possible tour 
lengths. Obviously such an ‘exhaustive search’ of the solution space is impractical, especially since in 
most real-world applications, the number of cities is of the order of several thousand. The TSP belongs 
to the NP-complete class of problems, meaning that no polynomial time algorithm has yet been found 
that can find the global optimum solution. Therefore, most approaches to solving the TSP are heuristic 
techniques which tend to only sample the solution space in search of a ‘good’ solution. Since the entire 
solution space is not searched, there is no guarantee that the chosen ‘good’ solution is the global optimum. 
However, in many real-world applications, it is common to prefer solutions that are sufficiently optimal 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.3:1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

(as determined by the system designer) and can be found rapidly over more exhaustive search techniques 
which can find the global optimum solution but consume valuable computational resources. 

Many efficient heuristics have been developed to find good solutions to the TSP (Lawler et a1 1985, 
Lin 1965). In this section the TSP will be used to demonstrate how neural networks can be utilized to 
solve optimization problems. The TSP is a good exemplar of a large class of NP-complete combinatorial 
optimization problems (e.g. resource allocation and scheduling) since solutions for solving the TSP can 
also be applied to many of these other problems by noting that an NP-complete problem can be reduced 
into another NP-complete problem in polynomial time (Cormen et a1 1990). In addition, the wealth of 
information accumulated on the analysis of the TSP algorithms makes this problem a good baseline for 
comparing different optimization techniques. Numerous articles have been published on the application 
of neural networks to the TSP (e.g. Burke 1994, El Ghaziri 1991, Fritzke and Wilke 1991, Gelenbe et a1 
1994, Hopfield and Tank 1985, Mehta and Fulop 1993, Peterson 1990, Xu and Tsai 1991). In addition, 
many techniques have been proposed for a systematic application of neural networks to optimization 
problems (Fang and Li 1990, Gee et a1 1993, Looi 1992, Peterson and Soderberg 1989, Sun and Fu 1993, 
Tagliarini et a1 1991, Zhang and Constantinides 1992). In this section, the motivation as well as the 
benefits and shortcomings of the fundamental neural network approaches for combinatorial optimization 
will be described. Also included is a brief overview of alternative stochastic optimization methods, namely 

~ 2 . 1 ,  ci.4.2 genetic algorithms (GA) and simulated annealing (SA). The reader is cautioned that a general comparison 
of multiple optimization techniques cannot be performed on a single example problem (such as the TSP). 
The best method for solving an optimization problem is strongly dependent on the problem itself. 

F1.3.2 Neural network approaches 

The resurgence of interest in neural networks during the 1980s has been attributed in large part to the 
work of John Hopfield (Hopfield 1982, Hopfield and Tank 1985). Hopfield popularized the concept that 
a network of simple bistable (odoff) processing units can collectively perform complex computational 

ci.3, ~ 1 . 4  tasks, such as associative memory (Hopfield 1982). To see how an ensemble of simple processing units 
can implement complex computation we can examine many natural phenomena. Optimization processes 
occur naturally in a variety of systems, from natural selection to particle physics. For example, a particle 
traveling from point x to point y ,  in the absence of any external force field, will follow a trajectory of 
minimum distance. Similarly, a spring pulled or pushed away from its ‘optimum’ resting configuration 
will tend to bounce back into its optimum shape after the external force is removed. The optimum 
configuration of the spring is a global state which is realized by the ‘natural’ dynamics of the molecules 
within the spring. These molecules are implementing simple local computation, but the result (returning 
to the optimum resting configuration) is a global feature of the spring. 

The goal of neural network approaches to combinatorial optimization is to formulate the desired 
objective function being optimized, such that it can be viewed as a ‘natural’ energy minimization problem. 
This concept can be interpreted visually by imagining an energy landscape having a corresponding energy 
level for each possible solution state (see figure F1.3.1), with low energy levels indicating more optimal 
solutions. The global optimum solution will thus correspond to the lowest point in this energy space. 
The objective of the optimization algorithm will be to search the energy landscape for the lowest possible 
minima. This task can be performed using a local search technique by starting at some random state 
(a random point in the energy landscape) and making small local changes to the solution which tend to 
lower the energy. In other words, moving the solution in the direction opposite to the energy gradient. 

~ 5 . 2 . 2  This gradient descent approach can find the global optimum solution if the energy landscape is convex 
(see, for example, figure F1.3,1(a)). However, as shown graphically in figure F1.3.l(b), in most practical 
applications, the energy surface is cluttered with many locally optimum solutions that impede attempts 
to perform a direct gradient descent in energy space. I will describe a number of methods proposed to 
address the local minima issue later in this section. 

F1.3.2. I Hopfield network 

c1.3.4 The general approach to solving constrained optimization problems using the Hopfield network involves 
equating the problem objective function with the neural network energy function which has the form 

F1.3:2 Handbook of Neural Computation release 9711 @ 1997 10P Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Combinatorial optimization 

Figure F1.3.1. One-dimensional energy landscape. ( a )  Smooth surface with no local minima. (b )  Many 
local minima states are present. 

N l N  
E = ., wijnin, + eini (F1.3.1) 

i=l j=1 i = l  

where ni is one of the components of the state vector, and wi, and 8i are constants determined based on 
the objective function. In the neural network representation, a state variable ni corresponds to the output 
value of one of the N distinct neurons, w;, corresponds to the synaptic weight value of the connection 
between neurons i and j ,  and Bi corresponds to the bias value of neuron i .  The neuron output values 
can be either discrete binary-valued (Hopfield 1982), or a bounded continuous monotonically increasing 
function (e.g. sigmoid) (Hopfield 1984). In this section only the more general continuous output-valued 
neurons will be discussed. The output value of a neuron is determined by the sigmoid function, defined as 

1 
1 + e-bui nj = g ( u j )  = (F1.3.2) 

where j3 controls the gain (or steepness) of the sigmoid and ui is the total input to neuron i .  The dynamics 
of uj are designed such that the system converges to the closest local-minima state in energy space, 
following a direct gradient descent trajectory. In other words, dE/dt 5 0. These dynamics are given as 

(F1.3.3) 

The gain parameter j3 in (F1.3.2) is analogous to the inverse temperature (1/T) of a thermodynamic 
system. A method similar to simulated annealing (Kirkpatrick et a1 1983) (described in section F1.3.3.2 
below) can be used to skip over small local minima states and generate a close-to-optimum solution. 
In this process, the gain parameter starts at a small value (high temperature) and is gradually increased 
(annealed). In the low-gain configuration, the energy surface is smooth with only a single minimum state, 
such as the one shown in figure F1.3.l(a). As the gain value is increased more of the details of the energy 
surface are revealed, as shown in figure F1.3.l(b). 

In constrained optimization problems, such as the TSP, the energy function is generally constructed 
as the sum of two separate terms, 

E = EO+A.EC (F1.3.4) 

where E O  is the objective term having a global minimum at the optimum point of the objective function, 
and E' is the constraint term having a global minimum when all the problem constraints are satisfied. To 
illustrate this point, let us look at the TSP. The first issue is how to represent a tour using binary state 
variables. We can use an N x N array of neurons ni, to indicate a path traversal from city i to city a 
when ni, = 1 (Xu and Tsai 1991). Another more commonly used approach is to define nia = 1 when the 
salesman visits city i at the ath stop of the tour (Hertz er a1 1991, Hopfield and Tank 1985, Peterson and 
Soderberg 1989). The double indices (i and a)  on each neuron are used to simplify the formulation of the 
cost function, and in the implementation of the algorithm the nja matrix is unfolded into a long vector. In 
this formulation, the N-city TSP requires N2 neurons, since both 1 5 i 5 N and 1 5 a 5 N .  

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9111 F1.3:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

There are two constraints associated with the TSP. First, the salesman cannot be in two places at the 
same time. Second, each city is visited only once. These constraints can be stated mathematically as 

N 

Cni, = 1 (for each city i the tour passes through it only once at some stop a)  
a=l  

and 
N Enia = 1 (for each stop a the tour passes through only one city i). 

i = l  

Both of these constraints can be satisfied by minimizing the constraint energy term 

(F1.3.5) 

If the cost of travel between all pairs of cities i and j is given a priori as d i i ,  the total tour cost can be 
calculated as 

(F1.3.6) 

As stated previously, ni, = 1 indicates that the salesman is in city i at the ath stop of the tour. At the 
previous stop (a - l),  the salesman was in city j ,  as indicated by n,,a-l = 1, so the cost d i j  is added to 
the total cost. Similarly, at the next stop, (a + l),  the salesman visits a different city j ,  as indicated by 
n, ,a+~ = 1, so the cost d j j  is also added to the total. Since the cost of travel between two cities is added 
twice (once as the previous stop and once as the next stop), the true total cost is determined by dividing 
the accumulated sum by two, as shown in equation (F1.3.6). It should be noted here that this cost function 
represents the actual tour cost only when the neuron output values have been saturated to their zero/one 
limit and the constraint energy term EC = 0. 

The total energy function for the TSP can be arrived at by summing (F1.3.5) and (F1.3.6) according 
to (F1.3.4). The update equation (F1.3.3) can then be used to minimize the energy function iteratively, 
starting from a random (not necessarily valid) state. The synaptic weight matrix elements W i a j b  are 
determined by factoring the quadratic terms n i a n j b  of the energy function. Similarly, the bias values 
f3ia are determined by factoring the linear terms. As noted in Hertz er al (1991) the formulation of the 
TSP presented here requires only N 3  (as opposed to N 4 )  connections since the problem formulation does 
not require full interconnectivity of the neurons. The parameter h in (F1.3.4) is used to weight the cost 
of satisfying all the problem constraints against producing optimum tours. If h is very small (close to 
zero), the problem constraints are ignored in favor of optimizing the objective function. In such a case, 
a possible outcome is having all neurons converge to zero, thus yielding an invalid solution with a very 
good objective energy ( E O  = 0). On the other hand, if the h parameter is set very large, every valid tour 
(those satisfying the problem constraints) will represent deep local minimas in the energy landscape. This 
will cause the network to converge to the closest valid solution in solution space from the starting random 
state with little or no regard to the cost of the solution (as given by E O ) .  A method for addressing this 
issue has been proposed in Simic (1991), where h is set proportional to the annealing term /?. Therefore, 
the network starts with a small h value allowing it to move to an area with low-cost solutions, followed 
by a gradual increase in the h values. The high A values at the end of processing will push the network 
into a valid solution state. A different approach is proposed in Gee et al (1993) where all the problem 
constraints are lumped into a single constraint term. This greatly simplifies the analysis and processing of 
the network dynamics. 

The Hopfield network has demonstrated that a distributed system of simple processing elements can 
collectively solve optimization problems (Hopfield 1984, Hopfield and Tank 1985). However, the original 
Hopfield network has very poor scaling characteristics, in that systems using a moderately large number of 
neurons generate poor quality and/or invalid solutions (Wilson and Pawley 1988, Kunz 1991, Gee 1993). 
There have been a number of approaches proposed for improving the performance of the Hopfield network 
(Cuykendall and Reese 1989, Peterson and Soderberg 1989, Simic 1991, Van den Bout and Miller 1989, 
Yuille 1990). The fundamental problem with the Hopfield network is in its treatment of the problem 
constraints. As described in the previous section, the Hopfield network attempts to satisfy all the problem 
constraints by penalizing constraint violations via increasing the system energy (‘soft’ enforcement). What 

F1.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Combinatorial optimization 

is truly needed is a method of restricting the search space that the Hopfield network operates within 
(‘hard’ enforcement) (Simic 1990). There have been a number of methods proposed that incorporate hard 
constraints on the energy function (Peterson and Soderberg 1989, Simic 1991, Yuille 1990). In most cases, 
however, not all of the problem constraints can be implemented as hard constraints, so a mixture of hard 
and soft constraint enforcement strategies is used (Simic 1990, 199 1). Nevertheless, such approaches can 
lead to a significant improvement in system performance. In addition, the approach proposed by Gee et 
a1 (1993) forces the network state to fall onto a ‘valid subspace’ in the solution space during each step 
of the network evolution. This technique has also demonstrated significant improvement in performance 
over the generic Hopfield network. 

F1.3.2.2 Other neural network approaches 

In addition to the Hopfield-style dynamics, neural network models with self-organizing dynamics have 
also been used to solve combinatorial optimization problems. The elastic network algorithm (Durbin c2.1 , I  

and Willshaw 1987), the Kohonen self-organizing maps (SOM) (Kohonen 1987) and the multiple elastic c2.1.1 

modules (MEM) (Shams 1995a), are some examples of such models. It is interesting to note that most 
of these neural network approaches utilize a common energy minimization framework. For example, 
the elastic network algorithm can be viewed as a special case of the Hopfield network with certain 
constraints being strongly enforced (Simic 1990). The strong relations between Kohonen’s SOM and the 
elastic network have also been discussed in Wong (1994). In spite of these fundamental similarities, the 
self-organizing models exhibit a much superior scaling property than the Hopfield network, allowing 
these methods to solve 1000-city TSP problems (Angeniol et a1 1988). The main problem with 
using self-organizing dynamics for solving combinatorial optimization problems is their explicit use 
of geometric topology-preserving constraints. These models have been effectively applied to many- 
dimensional reduction problems (Goodhill and Willshaw 1994, Kohonen 1987, Sirosh and Miikkulainen 
1994, von der Malsburg and Willshaw 1977), but their application to general optimization requires a 
nontrivial transformation of the problem to a geometric representation. Nevertheless, these models are 
making progress in a wider realm of applications, such as object recognition (Lades et a1 1993, Sabourin 
and Mitiche 1993, Shams 1995a, 1995c), target tracking (Shams 1995b) and VLSI optimum cell placement 
(Hemani and Postula 1990). 

F1.3.3 Alternative approaches 

The field of combinatorial optimization has a deep and extensive history in applied mathematics. There 
are a number of well established techniques, such as integer, linear, quadratic and dynamic programming, 
which have been developed to solve many difficult optimization problems. Algorithms such as the simplex 
method and the Karmarkar method are widely used in many commercial applications, ranging from airline 
flight scheduling to aircraft design. Since there are many excellent sources for these methods, I will not 
discuss them in this section. In this section, I will give a brief discussion and comparison of the somewhat 
related stochastic search techniques of genetic algorithms and simulated annealing. 

F1.3.3. I Genetic algorithms 

As discussed in the introductory section, neural networks attempt to express a given combinatorial 
optimization problem as a ‘natural’ energy minimization process. Similarly, genetic algorithms (GAS) D2. I 

(Holland 1975) are used to express a given optimization problem as an objective of a ‘natural’ survival- 
of-the-fittest evolutionary process. A brief overview of GA processing will be presented here. 

Genetic algorithms utilize a ‘population’ of candidate solutions, referred to as chromosomes. This 
population is typically initialized with randomly generated solutions, which can be viewed as random 
points on the energy landscape. Three basic operations are performed iteratively on this population, namely 
reproduction, crossover and mutation. The reproduction operator selects members of the population which 
are best-fits, as determined by the objective function, to be mated in order to produce the next generation. 
The crossover operator interchanges a randomly selected portion of a pair of parent chromosomes to 
generate new offspring. The mutation operator is used to introduce a level of noise into the system by 
changing a randomly selected point on the chromosome. Function optimization is accomplished through 
repeated application of these operators to the population. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.35 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

The main advantage of genetic algorithms over neural networks is that they place no explicit restriction 
on the form of the objective function being optimized. As discussed earlier, when using neural networks 
of the Hopfield type, the objective function must be transformed into a quadratic energy function of the 
form specified by (F1.3.1). Therefore, an objective function such as f(z) = Ci,j  e-Xi tan(x,) is difficult 
to implement using a neural network, whereas it would not cause any difficulties for the GA approach. 
On the other hand, direct implementation of neural networks, using analog hardware, can offer a fast, 
low-power, small-size solution which is not possible with the GA technique. In general, the choice of an 
approach is primarily dependent on the specific problem being solved (Owechko and Shams 1994). 

F1.3.3.2 Simulated annealing 

ci .4 .2  Simulated annealing (SA) is yet another method, inspired by ‘natural’ processes, which is used for 
combinatorial optimization (Aarts and Korst 1989, Kirkpatrick et a1 1983). In physics, ‘annealing’ refers 
to a thermal process in which a solid material is heated to a molten state and then gradually cooled. If 
the cooling rate is sufficiently slow the molecules in the material will be aligned in a low-energy-state 
configuration (for example, in a crystal lattice) at the end of the cooling process. The use of simulated 
annealing in combinatorial optimization takes advantage of this fact and requires the interpretation of 
the problem objective function as an energy function. However, as opposed to neural networks where 
the objective function must be ‘transformed’ into an energy function of a specific form (as given by 
equation (F1.3.1)), the SA approach can accommodate a wide range of objective functions. Simulated 
annealing is a local search strategy, similar to gradient descent with the exception that state transitions 
causing an increase in system energy are allowed based on a specific ‘temperature’-dependent probability. 
This temperature parameter can be interpreted as a degree of noise injected into the system. The basic SA 
algorithm can be outlined as follows: 

(i) Start from a random initial state X at a high temperature T .  
(ii) Create a new state X’ by making a small local change to the current state (only change a few of the 

state parameters). 
(iii) Calculate the change in energy A E  = E(X’)  - E ( X ) .  
(iv) Accept the state X’ as the new state if A E  < 0, otherwise accept it with a probability e-AE’T. 
(v) Reduce the temperature T and go back to step (ii). 

If T is set constant to zero, the SA algorithm becomes equivalent to the simple gradient-descent 
method, since the probability e-bo = 0 means no uphill jumps. However, if the initial system temperature 
is above a critical value, and the cooling schedule is asymptotically slow, the final resting state will be 
the global optimum solution. Since this approach is too slow for practical applications, a faster cooling 
schedule is generally employed to find close-to-optimum solutions. 

The basic stochastic annealing idea of the SA algorithm has been incorporated in many neural network 
ci.4 models (e.g. the Boltzmann machine (Hinton et a1 1984, Aarts and Korst 1989)). The main advantage 

of the SA approach over neural networks is the greater flexibility in the form of the objective function. 
On the other hand, SA is inherently a serial algorithm which cannot effectively take advantage of parallel 
processing hardware to improve its throughput. 

F1.3.4 Conclusion 

As mentioned previously in this section, a general statement on the superiority of one optimization method 
over another is not possible since each technique offers a unique set of advantages as well as shortcomings. 
In general, however, neural network models applied to combinatorial optimization problems can offer a 
unique potential for a direct route to parallel implementations. Due to their inherently parallel structure, 

FI .3 neural network techniques are especially suitable for direct hardware implementation, using analog VUZ 
techniques (Mead 1989), or parallel simulations (Shams and Gaudiot 1993, 1995). On the other hand, 
great care must be taken in the formulation of the problem representation so that the number of possible 
network states closely corresponds to that of valid solutions. In addition, it is crucial to incorporate as many 
problem-specific constraints as possible into the structure of the neural network to improve scalability by 
limiting the search space. Furthermore, network parameters, such as the temperature cooling rate, which are 
usually set in a rather ad hoc manner, can significantly affect the network performance and must therefore 
be carefully determined. Nevertheless, with continued research in the area of neural computation, many 

F1.3:6 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Combinatorial optimization 

of these problems can be addressed in the future leading to a general method for efficient processing of 
difficult optimization problems via distributed computation. 

Acknowledgements 

I wish to  thank Dr Yuri Owechko for helpful discussions and comments on the original draft of this 
manuscript. 

References 

Aarts E and J Korst 1989 Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial 

Angeniol B, Vaubois G D L C and Texier J-Y L 1988 Self-organizing feature maps and the traveling salesman problem 

Burke L I 1994 Neural methods for the traveling salesman problem: insights from operations research Neural Networks 

Connen T H, Leiserson C E and Rivest R L 1990 Introduction to Algorithms (Cambridge, MA: MIT) 
Cuykendall R and Reese R 1989 Scaling the neural network TSP algorithm Biol. Cybem. 60 365-71 
Durbin R and Willshaw D 1987 An analogue approach to the traveling salesman problem using an elastic net method 

El Ghaziri H 1991 Solving routing problems by a self-organizing map ArtiJicial Neural Networks vol 1, ed T Kohonen, 

Fang L and Li T 1990 Design of competition-based neural networks for combinatorial optimization Int. J. Neural Syst. 

Fritzke B and Wilke P 1991 FLEXMAP-a neural network for the traveling salesman problem with linear time and 

Gee A H 1993 Problem solving with optimization networks Dissertation Cambridge University 
Gee A H, Aiyer S V B and Prager R W 1993 An analytical framework for optimizing neural networks Neural Networks 

Gelenbe E, Vassiluda K and Pekergin F 1994 Elektrik 2 1-9 
Goodhill G J and Willshaw D J 1994 Elastic net model of ocular dominance: overall stripe pattern and monocular 

Hemani A and Postula A 1990 Cell placement by self-organization Neural Networks 3 377-83 
Hertz J, A Krogh and R G Palmer 1991 Introduction to the Theory of Neural Computation (Reading, MA: Addison- 

Hinton G, Ackley D and Sejnowski T 1984 Boltzmann machines: constraint satisfaction networks that learn Technical 

Holland J H 1975 Adaptation in Natural and Artificial Systems (Ann Arbor, MI: University of Michigan Press) 
Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl 

-1984 Neurons with graded response have collective computational properties like those of two-state neurons Proc. 

Hopfield J J and Tank D W 1985 ‘Neural’ computation of decisions in optimization problems Biol. Cybem. 52 141-52 
Kirkpatrick S ,  Gelatt C D Jr and Vecchi M P 1983 Optimization by simulated annealing Science 220 671-80 
Kohonen T 1987 Self-organization and Associative Memory 2nd edn (Springer Series in Information Sciences) (New 

Kunz D 1991 Suboptimum solutions obtained by the Hopfield-Tank neural network algorithm Biol. Cybem. 65 129-33 
Lades M, Vorbruggen J C, Buhmann J, Lange J, von der Malsburg C, Wurtz R R and Konen W 1993 Distortion 

Lawler E L, Lenstra J K, Kan A H, Rinnooy G and Shmoys D B 1985 The Traveling Salesman Problem: a Guided 

Lin S 1965 Computer solutions of the traveling salesman problem Bell Syst. Tech. J.  44 2245-69 
Looi C-K 1992 Neural network methods in combinatorial optimization Comput. Ops Res. 19 191-208 
Mead C 1989 Analog VLSI and Neural Systems (Reading, MA: Addison-Wesley) 
Mehta S and Fulop L 1993 An analog neural network to solve the Hamilton cycle problem Neural Networks 6 869-81 
Owechko Y and Shams S 1994 Comparison of neural network and genetic algorithms for a resource allocation problem 

Peterson C 1990 Parallel distributed approaches to combinatorial optimization: benchmark studies on traveling 

Optimization and Neural Computing (New York: Wiley) 

Neural Networks 1 289-93 

7 681-90 

Nature 326 689-91 

K MUkisara, 0 Simula and J Kangas (New York: Elsevier) 

1221-35 

space complexity Proc. Int. Joint Con$ on Neural Networks (Singapore) vo l2  pp 929-34 

6 79-97 

deprivation Neural Comput. 6 615-21 

Wesley) 

Report CMU-CS-84-119 Camegie-Mellon University, Department of Computer science 

Acad. Sci., USA 79 2554-8 

Natl Acad. Sci., USA 81 3088-92 

York: Springer) 

invariant object recognition in the dynamic link architecture IEEE Trans. Comput. 42 300-1 1 

Tour of Combinatorial Optimization (New York: Wiley) 

Proc. Int. Con$ Neural Networks (Orlando, FL) 7 46-55-60 

salesman problem Neural Comput. 2 261-9 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.3:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Aoolications 

Peterson C and Soderberg B 1989 A new method for mapping optimization problems onto neural networks Int. J. 

Sabourin M and Mitiche A 1993 Modeling and classification of shape using a Kohonen associative memory with 

Shams S 1995a Multiple elastic modules for visual pattern recognition Neural Networks 8 1439-56 
-1995b A new self-organizing model for angle-only target deghosting and tracking Proc. World Congress on Neural 

-199% Simultaneous recognition of multiple objects using the MEM model Proc. Int. Workshop on Artificial 

Shams S and Gaudiot J-L 1993 Parallel implementations of neural networks Inf. J. Artificial Intelligence Tools 2 

- 1995 IEEE Trans. Neural Networks 6 407-21 
Simic P D 1990 Statistical mechanics as the underlying theory of ‘elastic’ and ‘neural’ optimisations Network 1 

-1991 Constrained nets for graph matching and other quadratic assignment problems Neural Compuf. 3 268-81 
Sirosh J and Miikkulainen R 1994 Cooperative self-organization of afferent and lateral connections in cortical maps 

Sun K T and Fu H C 1993 A hybrid neural network model for solving optimization problems IEEE Trans. Comput. 

Tagliarini G A, Christ J F and Page E W 1991 Optimization using neural networks IEEE Trans. Comput. 40 1347-58 
Van den Bout D E and Miller T K 1989 Improving the performance of the hopfield-tank neural network through 

von der Malsburg C and Willshaw D J 1977 How to label nerve cells so that they can interconnect in an ordered 

Wilson G V and Pawley G S 1988 On the stability of the traveling salesman algorithm of Hopfield and Tank Biol. 

Wong Y-F 1994 A comparative study of the Kohonen self-organizing map and the elastic net Computational bant ing 

Xu X and Tsai W T 1991 Effective neural algorithms for the traveling salesman problem Neural Networks 4 193-205 
Yuille A L 1990 Generalized deformable models, statistical physics, and matching problems Neural Comput. 2 1-24 
Zhang S and Constantinides A V 1992 Lagrange programming neural networks IEEE Trans. Circ. Syst-11: Ana. Dig. 

Neural Syst. 1 3-22 

selective multiresolution Neural Networks 6 275-83 

Networks ‘95 (Washington, DC) vol 2, pp 646-51 

Neural Networks ’95 (Malaga) ed J Mira and F Sandoval pp 919-25 

557-81 

89-103 

Biol. Cybern. 71 65-78 

42 2 18-27 

normalization and annealing Biol. Cybern. 62 129-39 

fashion Proc. Natl Acad. Sci., USA 74 5176-8 

Cybern. 58 63-70 

Theory and Natural Learning Systems vol 2, ed S J Hanson, T Petsche, M Keams and R L Rivest 

Sig. Proc. 39 441-52 

F1.3~8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.4 Associative memory 

James Austin 

Abstract 

This section considers how neural networks can be used as associative memory devices. It 
first describes what an associative memory is, and then moves on to describe associative 
memories based on feedforward neural networks and associative memories based on 
recurrent networks. The section also describes associative memory systems based on 
cognitive models. It also highlights the ability of neural-network-based systems to deal 
with uncertain data as compared with conventional associative memory systems. 

F1.4.1 Introduction 

This section describes the use of neural networks as associative memories (AMs). There has been 
significant interest in AMs for a long time. Thus it is only possible to cover the basic facts about 
their implementation and operation. 

It will be shown that neural-network-based A M s  are far more flexible, in terms of their ability to 
handle noisy and corrupt data, than conventional AMs. In addition, due to the way that they operate, they 
can operate at very high speeds and can be implemented at very low cost. 

The first section starts with a description of what an AM does. The next section describes how 
conventional non-neural AMs are constructed. The emphasis is on the construction of the memories, as a 
major factor in the design of AMs is the trade-off between the speed, cost and flexibility of the various 
implementations. The problems with conventional AMs are then described. The next section describes 
the difference between neural-network-based AMs and conventional AMs. It then goes on to sample the 
major neural network architectures in a comparative sense; it does not go into the detailed operation of ci.3 
the networks as this is discussed elsewhere in this handbook. The conclusion then identifies remaining 
weaknesses of AM design. 

F1.4.2 What is an associative memory? 

In its simplest form AM is a memory system that allows one data item to be associated to another, so 
that access to one data item allows access, by association, to the other. Note that the association can be 
one-to-one as in this example, one-to-many or many-to-many. A particular feature of AMs is the ability 
to allow or not to allow symmetrical referencing. That is, if the system stores the association of ‘A’ with 
‘B’ then in the symmetrical case the user can ask both what is associated with A (i.e. B) and what is 
associated with B (i.e. A). A nonsymmetrical AM would only allow associative recall in one direction. 

In the neural network literature, AMs are referred to as being autoassociative or heteroassociative 
(Kohonen 1977). An auto-AM allows recall of the same item that is input, i.e. a memory may store a 
picture of a car, so that when a wheel of a car is input to the memory the complete picture of the car is 
recalled. This type of network is sometimes called a ‘clean-up’ network as it can be used to remove noise 
from a corrupted piece of data. A hetero-AM allows recall of an associated item that is different from the 
input query, i.e. a picture of a wheel may recall the word ‘wheel’. Because conventional AM systems do 
not deal with incomplete or noisy inputs, these terms are not used in the conventional literature on AM. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computation release 9711 F1.4:1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.4.3 Implementing conventional associative memory systems 

Conventional memory systems access and store data by reference. This means that every data item has a 
number associated with it which is commonly known as a memory address. By going to, or referencing, 
that memory address the value associated with the address can be recalled. That is, if a variable ‘A’ 
has to have the value ‘B’ associated with it, the system allocates a memory cell to store the item ‘B’, 
The address of the location where B is to be found is held in a table next to a reference to A. When an 
associative access on A is required, the table is consulted and the address is ‘de-referenced’ to find the 
associated value or values. In computing systems the table which holds A with the address for B is only 
used at compile time, after which all references to A are replaced by the actual memory address for B. 
More complex arrangements are used that allow array indexing and memory management. 

It can be seen that a conventional memory is basically nonsymmetrical, and cannot implicitly cope 
with noise or errors in the item used to access the associated item. Furthermore, because the system must 
de-reference every time an access is made, it can be slow to perform access. Moreover, storing a new 
item requires a search of the memory allocation list to find an unused location. 

Many databases use AM methods to allow access of a record from a query. A conventional memory 
system used to do this would require a large list containing every query against the address where the 
data is stored. This large list is in effect another AM. This approach can be slow, because of the time to 
search the list. Because of this, complex indexing methods have been developed to allow fast access to the 
associated memory address from a query; the memory address is then used to access the associated record. 
Methods such as hashing, superimposed coding and B-trees (Knuth 1973) are used for this. Although 
applicable to conventional databases, these methods can be slow and cannot easily deal with large input 
queries (made up of many variables) or noise in the input field (such as that found when AMs are used 

A final, important class of AM is the content addressable memory (CAM). These are often confused 
with AM devices, but are just a means of implementing fast AM systems. A CAM memory is a method of 
speeding up the recall and storage of associated items. They are heavily used in computers in many cache 
memory systems (Hayes 1988) because of their speed. Instead of storage by reference, the memories store 
data by content, i.e. whereas in a conventional system each storage location has a separate address, in a 
CAM system the item that is stored is the address, thus the concept of content addressed memory. The 
most simple approach to CAM is to assume all data items are a binary address and store the associated 
item at that address, i.e. A associated with B would take the ASCII value for A and use that as the address 
of B. This means that the memory is unsymmetrical and potentially very large, but extremely fast. A 
more conventional approach to CAM systems is to hold the item to be used as the address in a list which 
is paired to the associated item. The list is supported by complex hardware that allows any query to be 
matched to all items in the list simultaneously and therefore very quickly. This allows both a fast memory 
and one that supports partial matches, as the hardware can allow similarity metrics to be built in. In 
addition, the memory need only be as big as the number of associated items to be stored. Unfortunately, 
it is very expensive to implement due to the dedicated hardware. For this reason it is only found in small 
AM systems, such as cache memories. However, many experimental machines have been built that have 
explored construction of large AMs (Krikelis and Weems 1994). But the construction of large, cheap and 
flexible associative memories is still a problem, to which neural networks may offer a solution. 

This short review has shown that although there are a wide variety of AM systems, it is very expensive 
to achieve fast response and an ability to associatively retrieve on noisy and incomplete examples. 

FI .2 for pattern recognidon). 

F1.4.4 Neural networks for associative memory 

~ 2 . 3  There are two major classes of neural-network-based AMs. These are based, respectively, on feedforward 
networks and recurrent networks. The feedforward AM networks operate by recalling data in one pass 
through a network where there are no recurrent connections. The recurrent AMs operate by presenting a 
piece of data and iterating the network until the associated item is recalled. 

A further major separation of neural-network-based AMs is those that use distributed representations 
and those that use local representations. In a local representation each weight in the network is responsible 
for holding one piece of information on one association. In a distributed AM, each weight is responsible 
for holding information on one or more associations. It will be shown later that almost all neural networks 

F1.4:2 Handbook of Neurul Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory 

1 
0 
0 

can be seen as AMs, and that some have only academic interest while others provide very useful and 
practical capabilities. 

While many conventional neural network architectures can be interpreted as AMs, there are a number 
of neural architectures that have been designed specifically to act as AM systems. These systems arise 
from work on models of human memory systems. These will be discussed under a separate heading. The 
major benefits of using neural networks as AMs are the ability of neural networks to cope with noise in 
the query data and also the speed at which a network can recall data. Peripheral benefits include efficient 
use of memory and an ability to cluster the data. 

, [  Neural Network 

0 
0 

Memory system. 

F1.4.5 Feedforward associative neural networks 

Any feedforward neural network that is capable of classifying data can, in principle, be used to build an 
AM. There are two ways in which this can be achieved, either through a two-stage or a one-stage process. 
In the case of a two-stage system they can be separated into systems that are purely neural-network-based 
and systems that are a hybrid of neural networks and conventional memory systems. 

F1.4.5.1 Hybrid two-stage associative memory neural network systems 

In a two-stage approach the first stage is a neural network classifier and the second stage is a simple 
conventional memory system. The front-end neural network is used to associate one half of the association 
with a pointer, which can be a single neuron output coupled to a memory location that stores a memory 
address. The second stage in this approach is then a conventional memory which can be accessed to find 
the associated item. The neural network front-end can be any network with a classification ability, as 
shown in figure F1.4.1. 

Input data Memory address 

Recalled Data 

Figure F1.4.1. Simple two-stage neural associative memory. The input data are fed to a network which 
returns a binary address that is then used to access a conventional random access memory to retrieve data. 

One can choose any of the existing networks for this, for example, CMAC, MLN (multilayer network), c1.2 
SLN (single-layer network), RBF (radial basis function network), and SOM (self-organizing map). They ci .1 ,  ci.6.2, 
all allow the ability to perform a partial match on the query to be used to access the association. The c2.1.* 
great advantage of this approach is the ability to select the network that you feel is most suitable for the 
problem you have. If a Kohonen network is used as the front-end network, and one or more units are 
used uniquely for each association, then the network is a nondistributed AM. 

To reduce the number of weights used to perform the front-end process, it is possible to let the 
front-end network output the memory address of the storage cell that contains the associated item. If the 
memory address contains 32 bits, then the 32-bit address of the associated item can be trained onto the 
output units of the front-end network. When an associative query is input to the network, the front-end 
network will directly recall the memory address. This is a faster approach than the first method. 

Although the second approach works well when the query is non-noisy, it starts to fail if the input is 
noisy. This is because in order to form an address to use in the conventional memory a binary number is 
required. If the query is noisy this can cause output units not to be fully on or off. This then requires a 

1 . 

~ _ _ _ _ _  

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.4:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

1 

0 - 
R e d l e d  

1 

threshold to be set which will decide when an output unit should be on or off. Unfortunately, there is no 
reliable way of setting this threshold. One method of overcoming this is to use an L-max representation 
of the memory address (Casasent and Telfer 1992, Austin 1987). In this approach, each memory address 
is associated with a binary pattern that is unique for each address and contains exactly L bits set to 1. 
When this is used, the front-end neural network is trained to recall the L-max code when the input query 
is presented. To recover the code when the input query is noisy, the L highest responding neurons in the 
output of the front-end network are selected and set to 1, all others are set to 0. Once recovered the code 
can be passed to a store which recalls the associated memory address. This secondary store can assume 
that the L-max code is non-noisy and so use conventional AM methods. 

When the output of the first-layer neural network is L-max coded or a binary code is used the AM 
is known to be partly distributed. This arises because the association between the input query and the 
address is distributed, in that each output unit shares its work between each association. However, the 
output neural network uses a local representation of the data. As long as the associated items are one-to- 
one this approach works well. Unfortunately, if the associations are one-to-many or many-to-many, then 
the system can fail, as any input query will need two addresses to be recalled, which is not possible. 

‘ Neural Network Neural Network 

0 0 
0 0 

1 

F1.4.5.2 Pure two-stage neural associative memories 

To increase the speed and flexibility of the AMs, the second stage of the neural AM can be replaced by 
a neural network as shown in figure F1.4.2. In effect, the system then becomes one large neural network, 
but it is initially simpler to view such a system as two neural networks. The second stage can take the 
‘address’ provided by the front-end network and associate this to the associated item. To do this, each 
output unit in the output network represents a single bit or byte of information in the associated data. The 
output network is then a distributed memory, making the whole network a distributed AM. As with the 
front-end network, the back-end network can be any network capable of classifying data. Thus it too can 
have an ability to perform partial matches. 

* 

Input data Address 

data 

Figure F1.4.2. A two-stage neural associative memory. The input data are fed to a network which returns 
a binary address that is then fed to a second neural network that is used to retrieve the associated data. 

Notable neural network AMs that use this approach are Kanerva’s sparse distributed AMs (SDMs) 
(Kanerva 1988), Austin’s advanced distributed AMs (ADAMs) (Austin 1987) and Albus’ CMAC (Albus 
1975). The first two are considered here. 

The SDM uses a simple front-end network that is similar to a Kohonen network and a back-end 
network that is basically an SLN. The system sets the input network neurons so that they can measure 
the amount by which they are similar to the input pattern using the Euclidean metric. During training 
the input data are presented, and a number of the best firing front-end units are selected and set to 1, all 
others are set to 0. This pattern is then sent to the second layer which is trained, using Hebbian learning, 
to recall the associated item. Recall works in a similar way. The input is presented and the best firing 
units in the first layer are selected and set to 1. This is then sent to the second layer which performs the 
conventional sum of products. The output pattern is then threshold4 to recover the associated data. The 
memory is quite costly to implement, as it requires each input unit to compute a Euclidean distance. 

F1.4:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Associative memory 

The ADAM system works in a similar way to the SDM. Its first stage is a binary correlation matrix 
memory (CMM) with an N-tuple preprocessor (Austin 1987) that allows nonlinearly separable patterns to 
be associated. The system uses L-max encoding of the address from the first network, which it passes to 
an output network which is also a CMM. The output network allows the assumption that the recovered 
‘address’ is free from any corruption and uses a Wilshaw type threshold to recover the associated data 
(Wilshaw et a1 1969). The network has the advantage of simple implementation in dedicated hardware 
(Kennedy and Austin 1994) and because it uses binary CMM it can learn associations in one presentation 
of the data. It does so at the cost of reduced generalization ability; AM networks that use MLN as a 
front-end network do not suffer from this. The ADAM does not suffer the implementation cost of the 
SDM as it uses CMM and N-tuple networks which, because they are RAM nets (Austin 1994), are simple 
to implement. 

In the SDM and ADAM the back-end network was not a conventional MLN. Although this provides 
speed of learning it is at the cost of recall reliability. To improve the performance of the networks, an 
MLN can be used in the second stage. There are a number of advantages of this approach. These relate 
particularly to the AM’s ability to recall associations in noisy situations. If the input data are very noisy 
the address formed at the output of the front-end network can be so corrupt that even the L-max process 
can fail. Since the back-end network is a neural network, this can recognize the address even in noisy 
conditions. Unfortunately, this is at the cost of learning time, which can be very large for large sets of 
associative data. 

The aim of the SDM and ADAM systems is to allow fast training of very large numbers of associative 
data. AM networks that incorporate MLNs using backpropagation learning work better on noisy data, but 
are very slow to train. Thus their use is restricted to situations where the number of associations is small 
and/or where a large amount of corruption in the input queries is expected. 

F1.4.5.3 One-stage neural associative memories 

The essential feature of the two-stage AM is the careful assignment of the ‘address’ used to link the two 
memory systems. It will be obvious to the alert reader that the pure two-layer networks are the same as 
multilayer networks, apart from their careful selection of the ‘address’ pattern. In the MLN the ‘address’ 
is the hidden-layer pattern which is not chosen by the user but determined through the use of a learning 
algorithm. As a result, the training times of MLNs using backpropagation can be very long because MLNs 
have to determine the pattern arrangement on the hidden-layer units (see figure F1.4.3). 

Input data Address on these lines 

Recalled data. 

Neural Network 

Figure F1.4.3. MLN as an associative memory. This combines the two stages in an MLN. The address 
would be present in the second hidden layer. 

In the two-stage approaches, the hidden-layer pattern (the address) is selected so that all associations 
can be reliably recalled. The MLN with backpropagation learning is designed to perform generalization 
over training class data. This allows any pattern that is ‘similar’ to the training data to be recognized. 
In the AM case this is the same as training the AM on a set of associations that are many to one (i.e. 
that many different inputs can elicit the same output). Such an AM would generalize well to example 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computurion release 9711 F1.45 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

inputs that are somehow similar to the trained associations. This aspect of the two-stage AMs has mt 
been considered in current research. of 

The final type of one-stage AM is one that has a single layer of units between the input query a@ 
the associated data. This type of system can be viewed as a simple perceptron-type network, or as b 
more complex correlation matrix memory. Because it is equivalent to an SLN the system only works 
well when the patterns to be associated have orthogonal query inputs (Palm 1980, Kohonen 1977). The 
networks of this type (Casasent and Telfer 1992) can be made to learn fast, and have been shown t@ 
be applicable to a number of problems including rule-based searches (Austin 1996). Many approaches 
to allow accurate recall from these types of memories have been described, including training through 

~ 3 . 3 . 1  the pseudo-inverse method (Kohonen 1984), through Hebb-ope learning (Kohonen 1972) and using the 
~3.3.2,  ~ 3 . 3 . 4  perceptron and Widrow-Hoff learning rules (Widrow et a1 1987). A number of studies have considered the 

capacity of such AMs (Nadal and Toulouse 1990, Casasent and Telfer 1992, Willshaw et a1 1969, Austin 
and Stonham 1987) as well as studies which have examined the possibility of sparse connectivity (Nadal 
and Toulouse 1990). 

Although one-stage AMs can generalize well, they suffer from slow learning or limited storage ability 
with respect to memory use. 

F1.4.6 Recurrent associative neural networks 

Recurrent AMs have been the subject of a great deal of study and mathematical analysis. In particular, 
ci.3.4 the Hopfield network has been studied the most and is also attributed to regenerating interest in neural 

networks at the beginning of the 1980s. This class of network operates through an iterative recall process, 
where the recall of one pattern through the presentation of another develops through time. The Hopfield 
neural network (1982) can only be used in the autoassociative mode as it is used for pattern completion. 
After being trained on a number of patterns, a part of any of the trained patterns can be presented and the 
network iterated to ‘rebuild’ a complete pattern of the part presented. The network architecture consists of 
a single layer of neurons which receive inputs from the outputs of all other neurons. All units have bipolar 
weights and bipolar inputs are used. To train a new pattern, the pattern is ‘clamped’ onto the neurons and 
the network trained by a simple learning rule. The process of recall uses an iterative technique where the 
output ‘evolves’ over time. Although the network has interesting properties, it suffers from limited storage 
ability and can only deal with autoassociative inputs. 

The bidirectional AM (Kosko 1987, 1988) can be seen as an extension to the Hopfield network 
because it allows the storage and recall of heteroassociated patterns by a recurrent network. It achieves 
this by using a two-layer architecture where the output of the second layer feeds back to the input of the 
first layer. The system uses iterative recall, but now the first layer is used to recall the first pattern of the 
associative pair and the second layer recalls the second pattern. For example, if pattern A were associated 
with pattern B, the network would recall B through the application of a part of pattern A to the first layer. 
This will evoke (some of)  pattern B which would be sent to the second layer. This would then evoke a 
more complete version of pattern A, which would then be reapplied to the input. This new input would 
yield a more complete version of pattern B, and so on. Through this iterative process the network would 
recall a complete version of both patterns A and B. 

These two examples of associative recurrent networks show the interesting property of pattern 
completion in an AM. 

F1.4.7 Associative memories used for automated reasoning 

This class of network requires a special mention. These AM systems are particularly designed to support 
reasoning based on association. The primary motivation for these systems is to understand the operation 
of the human mind-to generate a model of the human reasoning process. The most notable systems are 
those of Ajjangadde and Shastri (1991) and Dolan and Smolensky (1989). A review of such systems is 
presented in Sun (1994). 

These systems are motivated by a need to model the properties of human AM. This includes our 
ability to access associated information rapidly and independent of the number of associations stored. In 
addition, the memory systems allow associative reasoning, which implicitly allows one associated fact to 
trigger another. The simplest form of such AM systems is a semantic network, where an association is 

F1.4:6 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Associative memory 

formed through a single connection between two neurons. The meaning of the association (the data) is 
attached to the units through a separate system. 

F1.4.8 Conclusions 

This section has pointed out the advantages and disadvantages of neural associative memories compared to 
conventional computer associative memories. In particular, it has shown that associative memories based 
on neural networks are faster and more robust to noisy inputs than conventional associative memories. 
More details on the specific types of neural networks are given in other sections of the handbook. 

References 

Ajangadde V and Shastri L 1991 Rule and variables in neural network Neural Comput. 3 121-34 
Albus J S 1975 A new approach to manipulator control: the cerebellar model articulation controller Trans. ASME J. 

Austin J A 1987 ADAM: a distributed associative memory for scene analysis Proc. Ist Int. Con$ on Neural Networks 

-1994 Review of RAM based neural networks Proc. Fourth Int. Cont on Microelectronics for Neural Networks 

-1996 Distributed associative memories for high speed symbolic reasoning Int. J. Fuzzy Sets Syst. ed N Kasabov 

Austin J and Stonham T J 1987 An associative memory for use in image recognition and occlusion analysis Image 

Casasent D and Telfer B 1992 High capacity pattern recognition associative processors Neural Networks 5 687-98 
Dolan C P and Smolensky P 1989 Tensor product production system: a modular architecture and representation 

Hayes J P 1988 Computer Architecture and Organisation (New York: McGraw-Hill) 
Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl 

Kanerva P 1988 Sparse Distributed Memory (Cambridge, MA: MIT Press) 
Kennedy J and Austin J 1994 A hardware implementation of a binary neural network MicroNeuro 1994 (Los Alamitos, 

Knuth D E 1973 The Art of Computer Programming vol 3 (Reading, MA: Addison-Wesley) 
Kohonen T 1972 Correlation matrix memories IEEE Trans. Comput. 21 353-9 
-1977 Associative Memories: A System Theoretical Approach (Berlin: Springer) 
-1984 Self-organisation and Associative Memory (Berlin: Springer) 
Kosko B 1987 Adaptive bidirectional associative memories Appl. Opt. 26 4947-59 
-1988 Adaptive bidirectional associative memories IEEE Trans. Syst. Man Cybern. 18 49-60 
Krikelis A and Weems C C (ed) 1994 IEEE Computer 27 (Special issue on Associative Processors) 
Nadal J P and Toulouse G 1990 Information storage in sparsely coded memory nets Network 1 61-74 
Palm G 1980 On associative memory Biol. Cybern. 36 19-31 
Sun R 1994 Integrating Rules and Connectionism for Robust Commonsense Reasoning (New York: Wiley) 
Widrow B, Winter R G and Baxter R A 1987 Learning phenomena in layered neural networks IEEE Ist Int. Con$ on 

Willshaw D J, Buneman 0 P and Longuet-Higgins H C 1969 Non-holographic associative memory Nature 222 960-2 

Llynam. Syst. Measure. Cont. September 220-7 

vol IV ed M Caudill and C Butler (San Diego, CA: IEEE Press) p IV-285 

and Fuzzy Systems (Turin: IEEE Computer Society Press) pp 58-66 

(Special Issue on Connectionist and Hybrid Connectionist Systems for  Approximate Reasoning) to be published 

Vision Comput. 5 251-61 

Connect. Sci. 153-68 

Acad. Sci., USA 79 2554-8 

CA: IEEE Computer Society Press) 

Neural Networks ed M Caudill and C Butler pp 11-41 1, 11-429 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.4:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.5 Data compression 

Andrea Basso 

Abstract 

This section is devoted to the applications of neural paradigms on the domain of data 
and, in particular, still and motion picture compression. Neural networks are inherent 
adaptive systems, thus they are suitable for handling nonstationaries in image data. 
Artificial neural networks have been employed with success in at least three approaches to 
image compression, namely, predictive coding, transform coding, and vector quantization. 
In predictive coding compression is obtained by exploiting spatial and spatiotemporal 
redundancy by means of prediction methods, while in transform coding an image or a 
sequence of images is transformed and the coefficients of the transformation are coded. 
In vector quantization the data are organized in vectors. The space of vectors which is 
obtained is then divided into regions and a reproduction vector is calculated for each 
region. In this section these techniques will be briefly illustrated and for each of them 
the corresponding neural paradigms will be analyzed. The drawbacks and advantages of 
the neural techniques with respect to the more traditional ones will be outlined. 

F1.5.1 Introduction 

The exchange of visual information has become one of the crucial aspects in much of our daily life. 
The interests in digital television and high-definition digital television (HDTV), video telephone, video 
conference, and video on demand (VoD) are only some examples of the enormous effort that governments 
and research communities are making in the direction of video technologies. 

Images and image sequences, however, contain a large number of data. Their efficient handling 
requires the capability of compacting and decompacting such information. Storage technology and 
broadband network development, even with the recent advances, still require efficient image compression 
techniques. There are today a number of algorithms developed in the framework of international 
committees that allow still image compression. The algorithm proposed by the Joint Photographic Expert 
Group (JPEG) is a well known example of still image coding. As far as image sequence compression 
is concerned, the algorithm proposed by the Motion Picture Expert Group (MPEG) is largely used in 
multimedia applications. 

Artificial neural networks (ANNs) have been successfully employed in three approaches to image 
compression: predictive coding, transform coding, and vector quantization. 

In the area of predictive coding, compression is obtained by exploiting spatial and spatiotemporal 
redundancy by means of prediction methods that, on the basis of the values of neighboring pixels 
in space and/or in time, are capable of predicting the value of the current one. Linear prediction is 
somewhat limited as an approach because the dependences in image data are not restricted to correlation. 
Traditional nonlinear prediction methods are in general difficult to design and to handle. The neural 
network approach is successful in this area because its inherent structure is very well suited to the design 
and easy implementation of flexible nonlinear predictors. 

Another approach to the problem of image compression is the one of transform coding in which an 
image is transformed and the transform coefficients are coded. The goal of such an approach is to represent 
the image in terms of a smaller set of values. It is possible to minimize the number of transform coefficients 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.5:l 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

representing the image with a distortion not perceivable by the end-user. A common approach is the use 
of linear block transform coding in which a given image is partitioned into a set of nonoverlapping blocks 
and each block is transformed and coded separately. Different neural paradigms have been proposed in 
the area of transform and adaptive transform coding with results comparable to the traditional techniques 
such as discrete cosine transform (DCT). 

~ 1 . 6 ,  ~ 1 . 8  Vector quantization methods, widely studied in the area of signal and image processing, are closely 
c2.1.1 related to certain paradigms of self-organizingfearure maps (SOWS). Particular success has been obtained 

by the frequency-sensitive competitive learning paradigm. Vector quantization based on neural processing 
has also been applied to image sequences (Manikopoulos and Li 1989). 

This section is organized as follows. In section F1.5.2 a general introduction to the image compression 
problem will be given. Predictive coding, transform coding, and vector quantization methods will be 
briefly presented. In section F1.5.3 the neural approaches relative to predictive coding will be discussed. 
In section F1.5.4 the neural approaches relative to transform coding will be presented. In section F1.5.5 
neural approaches to the problem of vector quantization will be presented. Section F1.5.6 will give our 
conclusions. 

F1.5.2 Image compression approaches 

ANNs have been successfully employed in three approaches to image compression: predictive coding, 
transform coding, and vector quantization. In this section the basic principles of these approaches will be 
discussed. 

In predictive coding, spatial correlation among neighboring pixels of an image is exploited by means 
of linear or nonlinear prediction techniques. A given set of neighboring pixels is used to predict the value 
of the current pixel. The compression gain is obtained by the fact that only the prediction error (i.e. the 
difference between the real value of the pixel and the predicted one) is coded. The better the prediction, 
the better the coding gain. The traditional algorithm for linear prediction is the delta pulse code modulation 
(DPCM). Linear prediction is, however, a limited approach because dependences in image data often have 
a nonlinear nature. On the other hand, classical nonlinear prediction methods are difficult to design. The 
advantage of neural networks in this area is their inherent structure, which is very well suited to the design 
and easy implementation of nonlinear predictors. 

In another class of algorithms called transform coders, an image is mapped into a domain which 
is significantly different from the intensity domain, and the transform coefficients are coded. This 
transformation allows us to represent the image in terms of a smaller set of values with minimal distortion. 
A common approach is the use of linear block transform coding in which a given image is partitioned in 
a set of nonoverlapping blocks and each block is transformed and coded separately. The optimal linear 
transformation in terms of minimization of the mean square error (MSE) is the Karhunen-Ldve transform 
(KLT), which also has the property of decorrelating the input data. In practice it is very expensive to 
realize such a transformation because it is computationally intensive and it is dependent on the input data. 
In general the discrete cosine transform (DCT) is used. It does not perform a complete data decorrelation, 
but it is not computationally intensive and it is independent of the input image. The P E G  and MPEG 
standards are based on the DCT transformation. 

Neural paradigms such as the generalized Hebbian algorithm and the principal component extraction 
algorithm and its adaptive versions have been applied to the problem of transform coding. Furthermore, 
neural algorithms have been developed which are able to compute the optimal transformation coefficients 
for a given neural architecture. In this framework, known as autoassociation or identical mapping, a 
network with only one hidden layer is employed. The target pattern is identical to the input pattern, so 
that the network globally maps the input vector into itself. Because of the smaller number of neurons 
in the hidden layer, with respect to the number of neurons in the input and output layers, the network is 
forced to find an intermediate compressed representation of the input data. 

In order to represent an image with a finite number of bits, image intensities, transform coefficients, or 
model parameters must be quantized. Quantization involves assignment of the quantization (reconstruction) 
levels and decision boundaries. The quantization applied to individual real-valued samples is called scalar 
quantization. Scalar quantization is optimal only if the data source can be regarded as statistically 
uncorrelated. In practical coding schemes the DCT is used for decorrelating the data. It does not 
perform a complete data decorrelation and so scalar quantization results in suboptimal performances. 
Recently, another technique based on quantization of groups of samples organized in vectors, namely 

F1.5:2 Handbook ofNeural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Data compression 

vector quantization, has been developed. In the first place a set of vectors is generated starting from the 
data after transformation or directly from the image pixels. The space of vectors obtained is divided into 
regions and a reproduction vector is calculated for each region. For each data vector, the region in which 
the vector resides is calculated and the reproduction vector of this region is used in its place. Instead of 
coding the reproduction vector a symbol which represents it (often called an index) is used. 

F1.5.3 Neural prediction coding 

In traditional approaches the predictor design relies on autoregressive (AR) models. In such models the 
predicted value of the current pixel is obtained as a weighted sum of the values of the neighboring pixels. 
The minimization of the mean square error between the predicted and the current pixel value is obtained 
by computing the weighting coefficients in terms of autocorrelation of the neighboring pixels and cross 
variance, according to the principles of linear predictive coding (LPC). 

Multilayer perceptrons have been used by Dianat et a1 (1991) to implement nonlinear prediction. c1.2 

A three-layer perceptron (one input, one hidden, and one output layer) has been employed. The neuron 
structure used is the traditional weighted sum of the inputs followed by a sigmoidal function. Improvements 
with respect to the AR model both at reconstruction quality level with more than 4 dB signal-to-noise 
ratio (SNR), and at compression level with around 0.6 bits per pixel (bpp) gain, have been obtained. 
High-order nonlinear predictors showing comparable results have been proposed by Manikopoulos (Li and 
Manikopoulos 1990, Manikopoulos 1992) and Pa0 (1989). 

F1.5.4 Image transform coding based on neural networks 

In this section we will review some neural approaches related to principal values decomposition problems 
and the use of the autoassociative neural network paradigm for image compression. 

F1.5.4.1 Principal component extraction based on neural networks 

Several researchers in the neural network community have concentrated their efforts on developing new 
neural methods for optimal linear and nonlinear transformations that are similar to but less computationally 
expensive than the KLT. The basic neural paradigm employed is Hebbian learning (Hebb 1949) which ~ 3 . 3 . 1  
has been extended by Oja (1989) in order to extract a given number of principal components of the 
input data in parallel. Sanger (1989) improved the method by simplifying the computational procedure. 
Practical results show that even if these approaches show an interesting alternative to classical methods 
for computing the principal components of a set of data, their use is of less help for image compression 
purposes. 

F1.5.4.2 Autoassociation 

Multilayer perceptrons (MLPs) have been quite successfully employed in information processing and 
pattern recognition. The idea of using MLPs for feature space reduction was proposed by Rumelhart and 
McClelland (1989) and then applied in image compression by Cottrell et a1 (1989). In this framework, 
known as autoassociation or identical mapping, a network with only one hidden layer is employed. The 
target pattern is identical to the input pattern, so that the network globally maps the input vector into itself. 
Because of the smaller number of neurons in the hidden layer, with respect to the number of neurons in 
the input and output layers, the network is forced to find an intermediate compressed representation of 
the input data. The technique consists of two major steps: (i) vector formation in which the pixels of 
the image are grouped into vectors using a certain criterion and (ii) dimensionality reduction obtained by 
mapping the defined vector space in a lower-dimensional one. There are two important steps in the vector 
formation process: the vector formation strategy and the choice of the vector size. 

The goal of the vector formation strategy is to exploit the dependences among the elements of the 
input data set. These dspendences can be linear (correlations) or nonlinear (all the other dependences). 
Due to the nonstationarity of natural image sequences, it is difficult to give a precise definition of an 
optimal vector formation strategy. Furthermore it should be noted that there is a tradeoff between the 
feature space definition and the type of mapping. 

Experiments show that an autoassociative neural network performs a projection of the input data on 
a lower-dimensional space, but does not decorrelate (i.e. diagonalization of the output covariance matrix) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Compujution release 9711 F1.5:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

x1 xn 
input layer 

hidden layer 

image 

output layer 

t t 
Y1 Yn 

Figure F1.5.1. Three-layer perceptron for image compression. 

(Cottrell er a1 1989, Sicuranza et a1 1991, Mougeot er a1 1990). For natural images, a common vector 
formation strategy consists of forming vectors out of blocks of contiguous image pixels, exploiting in this 
way the inherent pixel-to-pixel dependence of the images. If the domain is different (subband, transform) 
the dependences among the data are usually different and, as a consequence, the vector formation strategy 
is also different (Gersho et a1 1980, Abut and Luse 1984, Makoul et al 1985). 

The vector size defines the dimensionality of the input feature space and so it is strictly related to the 
compression ratio and image quality that can be obtained. 

Once the n-dimensional vectors are formed they constitute elements of an n-dimensional space in 
which a certain norm is supposed to be defined. The particular task of the input and hidden layers of 
the neural network is to map this n-dimensional space onto a k-dimensional one, with k < n, while 
minimizing the MSE at the output layer. In autoassociative neural networks the teacher vector is identical 
to the input vector; thus the networks learn the identical mapping. Generally a three-layer perceptron in 
autoassociative mode is used (figure F1.5.1). An image is sampled in k x k blocks to form a vector of k2 
elements by row-wise raster scanning. The network performs data compaction of the input since there are 
fewer neurons in the hidden layer than in the input or output. The numbers of neurons in the input and in 
the output layers are identical. 

In the learning phase, which is unsupervised due to the autoassociative mode, the network is forced 
to compute a set of good hidden layer weighting factors for representing the input data. The output layer 
uses this internal representation for the reconstruction of the input pattern. The transmission channel can 
be assumed present immediately after the hidden layer neurons, with possible modulation. 

After the work of Cottrell et a1 (1989) which opened the exploration of a possible utilization of MLPs 
for image compression, many efforts (Sicuranza et a1 1991, Basso 1992, Sonehara er al 1989) have been 
made to clarify the behavior of the network and the role of the different parameters involved, such as 
the number of neurons in the hidden layer and the use of other norms than the L2 in error computation 
(Burrascano 1991). 

Experimental results (Sicuranza et a1 1991, Basso 1992) show that in the linear case the learning 
capabilities and the reconstruction quality of the coded images are higher than in the nonlinear case. 

F1.5.5 Vector quantization with neural networks 

c1.1.5 In the area of vector quantization (VQ) neural networks have been widely studied and compared with 
vector quantization techniques such as the Linde-Buzdray (LBG) algorithm. 

The LBG algorithm is an iterative method based on the Lloyd clustering algorithm (Linde et a1 1980). 
Given an initial partitioning of the set of training vectors, the goal of the algorithm is to classify them 
into clusters and to compute a centroid, that is, the representative of the elements of the cluster. The 

F1.514 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Data compression 

classification process is performed on the basis of a metric defined on the set of training vectors and the 
nearest-neighbor rule. The centroids are iteratively updated whenever a new element is added to the cluster 
that they represent. Each iteration goes through all the elements of the training set. The stopping criterion 
is based on a predefined distortion measure. If the average distortion at the current iteration is under a 
predefined threshold, the classification process is stopped. For image applications the L2 norm is used as 
the metric and MSE as the distortion measure. 

The possibility of applying self-organizing maps to the problem of vector quantization is discussed 
by Kohonen (1990). The self-organizing neural network architecture is based on a two-dimensional lattice 
formed by interconnected processing elements. Such a lattice receives its input through a relay layer. It 
is a simple fan-out of the input samples to each of the processing elements of the lattice. 

In the learning phase input vectors are presented one at a time, and the weights interconnecting the 
input signals to the neurons are adaptively updated so that the point density function of the weights tends 
to approximate the probability density function of the input vector. Once the learning is terminated, the 
synaptic strengths between the input and the output nodes represent the components of the centroids of 
the clusters. 

Such a neural network paradigm has been widely applied to still and sequence image compression. 
Nasrabadi and Feng (1988) present results for various coded images using the codebook designed with the 
self-organizing feature map. The results are compared to images coded by means of codebooks designed 
with the Linde-Buzo-Gray (LBG) algorithm. Results show that the neural technique gives a performance 
that is very close to optimal. 

One major problem of using the basic self-organization technique is that some neural units may be 
underutilized. Several variations of the algorithms have been proposed to solve the problem. One of these 
is the frequency-sensitive competitive learning neural network which is presented by Ahalt et al (1989). 

This neural paradigm has been successfully employed in the area of image sequence coding. The 
algorithm has been modified to handle variations in the image content due to scene changes. After an 
initial training of the codebook, the adaptation resumes in order to respond to scene changes and motion 
in the image sequence. The main advantage of the technique is the effective adaptation to motion content 
of scene changes and the ability to adjust the instantaneous bit-rate quickly in order to keep image quality 
constant. 

F1.5.6 Conclusions 

The use of neural paradigms for image compression is promising for several reasons. First of all, 
neural networks-because of their inherent parallel structure-are well suited to the processing of image 
data. Second, the ability of neural algorithms to compute nonlinear mappings exploiting spatial and 
spatiotemporal image redundancies shows great potential for new compression methods. Third, neural 
networks are inherent adaptive systems. This very important feature can be effectively employed for the 
handling of nonstationarities in image data. 

In this section we have shown how different neural paradigms such as multilayer perceptrons, self- 
organizing feature maps, and autoassociation networks can be efficiently used for image compression 
purposes with comparable or better results than more classical and well known techniques. Nevertheless, 
the full potential of the neural approaches will only be exploited completely when massively parallel 
implementations of such approaches are available. In this sense we share the opinion of Dony and 
Haykin (1995). 

References 

Abut H and Luse S A 1984 Vector quantization for sub-band coded waveforms Proc. IEEE Int. Con5 on Acoustics, 

Ahalt S ,  Chen P and Krishnamurthy A 1989 Performance analysis of two image vector quantization techniques Proc. 

Basso A 1992 A massively parallel implementation of autoassociative neural networks for image compression 
1992 Artijicial Neural Networks, Proc. I992 Conf: on Artificial Neural Networks (ICANN-92) (Brighton) vol 
2 (Amsterdam: Elsevier) pp 1465-8 

Burrascano P 1991 A multilayer perceptron in the Chebyshev norm for image data compression Proc. IEEE Int. Symp. 
on Circuits a d  Systems (Singapore) vol 3 (New York: IEEE Press) pp 1396-9 

Speech, Signal Processing (New York IEEE Press) 

IEEE 1 169-75 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.5:5 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Cottrell G W, Munro P and Zipser D 1989 Image compression by back propagation: an example of extensional 
programming ICs Report 8702 

Dianat S, Nasrabadi N and Venkataraman S 1991 A non-linear predictor for differential pulse-code encoder (DPCM) 
using artificial neural networks Proc. Int. Con$ on Acoustics. Speech and Signal Processing (ICASSP-91) (Toronto) 
vol 4 (New York: IEEE Press) pp 2793-6 

Dony R and Haykin S 1995 Neural network approaches to image compression Proc. IEEE 83 288-303 
Gersho A, Ramstad T and Versvik I 1980 Fully vector-quantized subband coding with adaptive codebook allocation 

Hebb D 0 1949 The Organization ofBehavior (New York: Wiley) 
Kohonen T 1990 The self-organizing map Proc. IEEE 78 1464-80 
Li J and Manikopoulos C 1990 Nonlinear predictor in image coding with ADPCM Electron. Lett. 26 1357-9 
Linde Y, Buzo A and Gray R M 1980 An algorithm for vector quantization design IEEE Trans. Commun. C-28 84-95 
Makoul J, Roucos S and Gish H 1985 Vector quantization in speech coding Proc. IEEE Int. Con& on Acoustics, Speech, 

Manikopoulos C 1992 Neural network approach to DPCM system design for image coding Proc. IEE-I 139 501-7 
Manikopoulos C and Li J 1989 Adaptive image sequence coding with neural network vector quantization IJCNN-89 

Mougeot M, Azencott R and Angeniol B 1990 Image compression with back propagation: improvement of the visual 

Nasrabadi N and Feng Y 1988 Vector quantization of image based upon a neural-network clustering algorithm SPIE- 

Oja E 1989 Neural networks principal components and subspaces Int. J .  Neural Syst. 1 61-8 
Pao Y H 1989 Adaptive Pattem Recognition and Neural Networks (Reading, MA: Addison-Wesley) 
Rumelhart D E and McClelland (eds) 1989 Parallel Distributed Processing (Cambridge, MA: MIT Press) 
Sanger T D Optimal unsupervised learning in a single-layer linear feedforward neural network Neural Networks 2 

Sicuranza G, Ramponi G and Marsi S 1991 Artificial neural networks for image compression Electron. Lett. 26 477-9 
Sonehara N, Kawato M, Miyake S and Nakane K 1989 Image data compression using a neural network model Proc. 

Int. Joint Con$ on Neural Networks (IJNN-89) (Washington, DC) vol 2 (New York: IEE Press) pp 3 5 4 1  

Proc. IEEE Int. Con& on Acoustics, Speech, Signal Processing (New York: IEEE Press) pp 1580-9 

Signal Processing (New York: IEEE Press) pp 720-38 

p 573 

restoration using different cost functions Neural Networks 4 467-76 

VCIP 1001 207-13 

459-73 

F1.5:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.6 Image processing 

John Fulcher 

Abstract 

This section introduces fundamental image processing concepts and follows with a 
discussion of how artificial neural network (ANN) techniques can be successfully applied 
to perform such tasks. This is illustrated by way of representative examples taken from 
classification, image enhancement, compression and face recognition. 

F1.6.1 Introduction 

Digital image processing is concerned with processing images via digital computer once they have been 
captured and converted into a suitable form. Digital image processing offers two main advantages over 
alternative techniques: precision and flexibility. The former means that image quality is maintained during 
subsequent processing of the image (by contrast, some photographic and electronic techniques degrade the 
image quality with each successive process). Flexibility results from working with digital versions of the 
image; once encoded, we are able to perform many and varied operations on them. 

Computer (machine) vision systems use information extracted from such images in order to assist in 
decision making. For example, we may want to develop a biometric recognition system (based on human 
facial images, iris information, handprints, fingerprints and the like). 

Images may originate from scanning a photograph or other hard copy image (via a process similar 
to that used in photocopiers), from a CCD camera or from some other source, such as X-ray, gamma ray, 
computer tomography scans, magnetic resonance imaging, or infrared or ultrasound devices. 

F1.6.2 Digital image resolution and quantization 

Digitizing an image necessarily yields a limited-resolution (quantized) version of the original. The digitized 
image is stored within the computer as a two-dimensional array of pixels (dots) in either integer or real 
form. vpical  image resolutions range from 1024 x 1024 down to 64 x 64 pixels. Obviously the finer the 
resolution, the more memory (storage) overhead this entails. 

We can represent digital images using between 2 and 32 bits per pixel. In the case of a 64 x 64 8-bit 
pixel image, this would necessitate 32 kbits (4 kbytes) of storage. Alternatively, a 256 x 256 16-bit pixel 
image would require 1 Mbits (12 kbytes) per image! It comes as no surprise then that images are often 
stored ofS-line (on disks and/or magnetic tape), rather than on-line in the computer’s memory (or hard 
disk for that matter). Moreover, the memory overhead can be reduced if images are compressed in some 
manner prior to storage. 

There is a direct relationship between the number of bits per pixel (precision) and the number of 
discrete quantization levels which can be represented within the computer. For example, 8 bits can 
discriminate 2* or 256 discrete levels in a gray-scale image. Obviously, a greater number of bits is 
required to represent color pixel information. For example, 12 bits could be allocated as three sets of 
4 bits (or 24 = 16 discrete intensity levels), one for each primary color-red, green, blue (RGB). By 
contrast, the same number of bits could represent 212 (4096) discrete gray-scale levels. Of course, if we 
are dealing with black (0) and white (1) images, this requires only 2-bit precision. 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.6:l 

Copyright © 1997 IOP Publishing Ltd



Neural Network Adications 

F1.6.3 Image storage and transfer 

We have already seen how bit precision is directly related to storage overhead. Entire images can be 
stored in numerous different formats, some of which are device specific (e.g. Sun raster file, Silicon 
Graphics, Microsoft BMP or X-Windows Dump formats) or software specific (e.g. MacPaint format on 
the Apple Macintosh), while others adhere to an interchange standard format (e.g. graphics interchange 
format-GIF-or  tagged image file format-TIFF as used with IBM PC images). 

The transfer of images between users, over networks or via magnetic disks and/or tape is usually in 
compressed form (typically 5-1095 of the original, using chain coding, run length encoding, or the JPEG 
standard, say). Such compression reduces both transfer time (over networks) and disk storage (capacity). 

F1.6.4 Qpical image processing tasks 

The purpose of digital image processing is either to enhance an image in some manner or to extract 
information from it. Common high-level operations include: 

enlarging, reducing or rotating the image 
deblurring the image (i.e. forming a sharper image) 
smoothing (to decrease graininess, speckle and/or noise) 
improving the contrast (or some other characteristic) prior to display 
removing warps or distortions (e.g. gamma correction, to compensate for a nonlinear camera lens) 
encoding (compressing) the image prior to storage and/or transmission 
segmenting the image into regions and characterizing these in terms of shape, size and orientation 
(e.g. objects and background) 
edge detection (as a prelude to object recognition) 
feature (or shape) extractions (as a preliminary to pattern recognition, say). 

In order to realize such high-level functionality, we require a repertoire of low-level (morphological) 
operations, typical ones being: 

erosiodskeletonizatiodthinning (or the stripping away of outer pixels) 
dilation (the addition of a new layer of pixels around an image) 
thresholding (clipping) 
edgeboundary enhancement 
linear (and nonlinear) pixel mappings 
statistical operations 
filtering 
transforms. 

An image histogram-such as the one in figure F1.6.l-shows the distribution of pixel values within an 
image, namely the proportion of pixels which fall within each gray-scale (or color) range. Either standard 
or specialized pattern analysis statistical techniques can be applied to such histograms (examples of the 
latter being scattergrams, template matching or nearest-neighbor techniques). 

Histogram equalization is a technique used to evenly redistribute concentrated gray-scale (intensity) 
values throughout the image, so that each range has roughly the same frequency of occurrence. Likewise 
histogram matching can be used to fit arbitrary shapes to an image histogram. For example, contrast 
enhancement could be achieved by superimposing a gradient on the histogram in order to compensate for 
uneven background lighting. 

Density slicing is a technique used to map pixel intensity ranges to specific (artificial) colors, in order 
to highlight patterns within an image. Conversely, color pixel information can be converted to gray-scale 
information, using the weighted mean of the RGB values. Moreover, the distance between adjacent color 
values can be used as the basis for color thresholding or region growing. 

Thresholding can be used, for example, to convert a gray-scale image into a black and white one in 
which all pixel intensities below the threshold are converted to black, and all those above to white. This 
could be a useful preprocessing stage in the recognition of printed text or objects. 

Linear pixel mappings, in which gray-scale values are translated (mapped) from one range to another, 
are appropriate when we wish to vary (enhance) the image brightness and/or contrast. A typical example 
of the latter would be in the production of sharper medical X-ray images. Apart from linear variations, 

F1.6:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Image processing 

Figure F1.6.1. (a)  mandrill; (b)  image intensity histogram and ( c )  dilation using the MatLab image 
processing toolbox. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.613 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

we could instead vary the mean and/or standard deviation. Piecewise linear adjustments may also be 
appropriate, as well as logarithmic or exponential ones. 

Now apart from global pixel mappings, local pixel mappings may be useful in some cases. For 
example, statistical differencing could be used to produce an even image contrast. Moreover, the 
relationship between individual pixels within small regions of an image (such as four- or eight-nearest 
pixel neighbors) can yield important information for subsequent higher-level processing. Typically such 
properties are thn degree of connectedness and the image geometry (characterized by area, perimeter, 
length, center of mass, and so forth). It can further lead to the recognition of simple geometric shapes 
(such as circles, rectangles, triangles and polygons), as well as holes and the degree of convexity (i.e. the 
number of indentations). 

Unwanted noise (introduced during the initial digitization process, transmission of the image via some 
medium, or by some other process applied to the image) can be reduced but never removed altogether. 
Noise may be either signal-independent (Gaussian, white or random, such as that produced by vidicon 
cameras), signal- (or level-) dependent (as with graininess in photographic films), or salt and pepper in 
appearance (as caused by thresholding a noisy black and white image). A common approach to removing 
noise is to use smoothing filters, based on the (arithmetic) mean (of a 3 x 3 pixel neighborhood, say), the 
weighted mean, mode (most common neighbor), or median (of k nearest neighbors). 

Apart from filtering, various transforms also find extensive use in digital image processing. The fast 
fourier transform (FFT), for instance, can be used to compensate for nonlinearities in an image capture 
subsystem. The discrete cosine transform (DCT) is used in image codingkompression (and forms part of 
the JPEG standard). The radon transform is used to compute the projected sum of intensities along a given 
orientation within an image. This enables principal components (preferred directions) to be extracted from 
an image, and is used in biomedical imaging. The Hough transform is used to detect straight lines, and 
can be readily extended to detect circles and other shapes. 

Edges occur at regions within an image where the intensity changes rapidly (in other words, the first 
derivative exceeds some threshold and the second derivative is zero). They represent boundaries between 
different image regions, and are reflected as abrupt changes of gray-scale within the digitized image. 
Commonly used edge detection methods include first- (and second-) derivative (gradient) techniques, 
surface fitting, and local energy methods. A common limitation with all these techniques is their sensitivity 
to noise and surface texture. This usually means that for practical computer vision systems, we need to 
restrict the environment and illumination conditions. 

Prior to edge detection proper, we may first need to perform edge enhancement in order to simplify 
this task. A typical edge enhancement technique involves convolving the image with a mask of some 
description. A Laplacian filter uses the following convolution: 

0 -1 (-; -; - % ) *  (F1.6.1) 

A Sobel filter, by contrast, uses two such convolution masks in order to detect horizontal and vertical 
edges: 

-1 -2 -1 -1 0 1 ( ; ; ;) (I: : ; ) *  (F1.6.2) 

Figure F1.6.1 shows a de facto standard (mandrill) image, together with its intensity histogram and 
the result of invoking the edges function within the MatLab image processing toolbox (Thompson and 
Shure 1993). 

F1.6.5 Artificial neural network approaches 

The upsurge of interest in the field since the mid-l980s, artificial neural networks (ANNs) have been 
applied to problems which previously proved difficult if not intractable. It is well known that ANNs 

~ 1 . 2 ,  ~6 perform particularly well at both pattern classification and pattern recognition. It comes as no surprise 
then that ANNs have been applied to image processing and computer vision problems (since what we are 
interested in here is essentially pattern classificatiodrecognition). 

F1.6~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Image processing 

Figure F1.6.2. Edge detection using a single-layer ANN and competitive learning: (a) original Lena image; 
(b) edges (reprinted from Bhatia et a1 1991, with permission of IEEE). 

Figure F1.6.3. Deblurring using a self-organizing neural network: (a) original blurred image; (b) deblurred 
image (reprinted from Dhawan and Dufresne 1990, with permission of IEEE). 

Figure F1.6.4. MLP applied to magnetic resonance image segmentation: (a) number of hidden layer 
nodes= I ;  (b)  3; (c) 5 ;  (d) 10 (reprinted from Ozkan et a1 1990, with permission of IEEE). 

Figure F1.6.5. (b) Recall of noisy and ( c )  incomplete images using a Hopfield network (reprinted from 
Muller et a1 1993, with permission of IEEE). 

@ 1997 IOP F'ublishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.6:5 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Figure F1.6.6. Depth recovery and surface reconstruction using a Boltzmann machine: ( U )  original image; 
(h )  noisy image; ( c )  initial estimate; ( d )  after 200 annealing iterations (reprinted from Mundkur er U /  1992, 
with permission of IEEE). 

The number of image processing and computer vision applications to which ANNs have already been 
applied is considerable and continues to grow. The first Intemational Joint Neural Networks Conference 
included image processing streams, as have all subsequent major ANN conferences. In recent times, 
we have even witnessed entire specialist conferences on ANN image processing ( 1  st IEEE Intemational 
Symposium on Speech, Image Processing and Neural Networks, Hong Kong, July 1994), as well as the 
emergence of specialized textbooks (Linggard et a1 1992, Kulkarni 1994). 

Prior to discussing specific image processing applications, we should first make brief mention of 
significant early developments with specialized image processing architectures: 

c1.5 0 WISARD (Aleksander et a1 1984) is a network of RAM discriminators, each of which is trained to 
recognize a different object class. It has been successfully applied to character recognition as well as 
security applications such as face recognition (see section F1.6.5.3 below). 

The Neocognitron (Fukushima and Wake 1991) is a hierarchical, feedforward ANN which boasts 
good generalization ability and enables it to perform deformation-invariant character recognition. 

The Silicon Retina (Mead 1989) comprises an array of photoreceptors modeled on the mammalian 
visual cortex and fabricated in analog VLSI form. It is capable of performing pattern recognition and 
motion detection operations in real time. 

c2.1.3 0 

E1.3 0 

A comprehensive survey of ANN image processing applications is beyond the scope of this section. 
Instead, we restrict ourselves to a few representative examples: image classification/recognition, image 
compression, and face recognition. 

F1.616 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Image processing 

F1.6.5.1 Image classijicariodrecognition 

As is common in many application areas, ANNs have commonly been used to replicate standard image 
processing functions, such as filtering (Pham and Bayro-Corrochano 1992). Other examples include edge 
detection and deblurring, as illustrated in figures F1.6.2 and F1.6.3, respectively. 

Pattern classification is another typical image processing application to which ANNs have been 
applied. Figure F1.6.4, for example, shows the effect of varying the number of nodes in the hidden 
layer of an MLP used in the classification of magnetic resonance images. A different medical imaging 
application-the application of LVQ to ultrasonic image processing-is discussed in Kotropoulus er a1 

Autoassociative memories are particularly good at recognizing noisy or incomplete images, providing 
they have been sufficiently well trained beforehand. The Hopfield network of figure F1.6.5 is able to c i . 3 . 4  

produce perfect recall for both noisy (32% Gaussian noise) and incomplete images presented to the network. 
Figure F1.6.6 shows the application of a Boltzmann machine to surface reconstruction in sparse (60% data c i . 4  

loss) and noisy (SNR= 8.5 dB) range data. 

(1994). Other interesting applications are discussed in Chapter G5 of this handbook. GS 

F1.6.5.2 image compression 

ANN techniques which have been successfully applied to image compression include multilayerperceptrons c 1 . 2  

The dimensionality reduction which results from applying MLPs to the encoder-decoder problem 
(e.g. 8:3:8), can also be exploited for image compression. For example, Cottrell er a1 (1987) compressed 
8 x 8 pixel images using a 64-16-64 MLP. MLPs were also favored by Sonehara et a1 (1989), Arduni er 
a1 (1 992) and Qui er a1 (1 993). 

Lu and Shin (1992) used a combination of an MLP classifier together with Kohonen self-organizing 
maps for the generation of codebook vectors. Thacore er a1 (1988), and Krovi and Pracht (1991), on 
the other hand, used self-organizing networks exclusively. Dunstone and Andrew (1994) reported success 
using a specialized ‘surface learning network’. 

(MLPs), Kohonen self-organizing maps, competitive learning and learning vector quantization. C2.1.1, C1.1.5 

F1.6.5.3 Face recognition 

Early attempts at the automatic recognition of human faces focused on distance measures (Goldstein er a1 
1971, Kaya and Kobayashi 1972, Nixon 1985). In more recent times, limited success has been achieved 
using algebraic extraction methods (or principal component analysis-Kirby and Sirovich 1990, Turk and 
Pentland 1991) and isodensity lines (Sakaguchi et a1 1989, Nakamura et a1 1991). Common limitations 
with most approaches are the limited number of faces able to be recognized, their inability to operate in 
real time, and the need for consistent lighting conditions. 

ANN approaches to face recognition include standard architectures like the MLP (Cottrell and Fleming 
1990, Perry and Carney 1990, Kosugi 1991), as well as specialized networks, such as Von der Malsburg’s 
dynamic link architecture, which uses multiple Kohonen SOMs (Konen et a1 1994). Crowley (1994) 
likewise favored a local rather than a global approach to the problem. The WISARD system mentioned 
earlier has also been applied to face recognition. 

F1.6.6 Conclusion 

ANNs are being used not only to replicate standard image processing functions, but also as alternative 
approaches to image enhancement, pattern classification, feature extraction, object recognition, computer 
vision and similar image processing tasks. 

Acknowledgements 

This work was a direct outcome of the Face Recognition Research Project for Airport Security, sponsored 
by Socittt Internationale de Telecommunications Aeronautiques SociBtB Cooperative (SITA). Financial 
assistance was also provided by the Australian Telecommunications Research Board ATERB through grant 
no N032/185 and by the Intelligent Systems Research Group within the University of Wollongong. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.6:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

References 

Aleksander I, Thomas W and Bowden P 1984 WISARD, a radical new step forward in image recognition Sensor Rev. 

Arduni F, Fioravanti S and Giusto D 1992 Adaptive image coding using multilayer neural networks Proc. ICASSP 2 

Bhatia P, Srinivasan V and Ong S 1991 Single-layer edge detector with competitive unsupervised leaming Proc. Int. 

Cottrell G, Munro P and Zipser D 1987 Image compression by backpropagation: an example of extensional 

Cottrell W and Fleming M 1990 Categorization of faces using unsupervised feature extraction Proc. Int. Joint Con$ 

Crowley J 1994 A local feature based human face recognition system Proc. 2nd Australian and New Zealand Con$ 

Dhawan A and Dufresne T 1990 Low-level image processing and edge enhancement using a self organising neural 

Dunstone E and Andrew J 1994 Super-high scale invariant image compression using a surface leaming neural network 

Fukushima K and Wake N 1991 Handwritten alphanumeric character recognition by the neocognitron IEEE Trans. 

Goldstein R, Harmon L and Lesk A 1971 Identification of human faces Proc. IEEE 597 48-60 
Kaya Y and Kobayashi K 1972 A basic study on human face recognition Frontiers of Patten Recognition ed 

Kirby M and Sirovich L 1990 Application of the Karhunen-Loeve procedure for the characterisation of human faces 

Konen W, Maurer T and Von der Malsburg C 1994 A fast dynamic link matching algorithm for invariant pattern 

Kosugi M 1991 Human-face identification using mosiac pattem and BPN Proc. ACNN’91 (Sydney) vol I1 pp 11 1-4 
Kotropoulos C, Magnisalis X, Pitas I and Strintzis M 1994 Nonlinear ultrasonic image processing based on signal- 

Krovi R and Pracht W 1991 Feasability of self organisation in image compression Proc. IEEELACM Int. Con$ on 

Kulkami A 1994 Artifrcial Neural Networks for Image Understanding (New York: Van Nostrand-Reinhold) 
Linggard R, Myers D and Nightingale C (eds) 1992 Neural networks for vision, speech and natural language (London: 

Lu C-C and Shin Y-H 1992 A neural network based image compression system IEEE Trans. Consumer Electronics 

Mead C 1989 Analog V U 1  and Neural Systems (Reading, MA: Addison-Wesley) 
Muller K-R, Stiefvater T and Lanben H 1993 Associative storage and retrieval of highly correlated natural pattem sets 

Mundkur P, Kapoor S and Desai U 1992 Boltzmann machines for depth recovery using a MRF model Proc. Znt. Joint 

Nakamura 0, Mathur S and Minami T 1991 Identification of human faces based on isodensity lines Patt. Recog. 24 

Nixon M 1985 Eye spacing measurement for facial recognition Proc. SPIE-Applications of Digital Image Processing 

Ozkan M, Hendrik G, Sprenkels M and Dawant B 1990 Multi-spectral magnetic resonance image segmentation using 

Perry J and Camey J 1990 Human face recognition using a multilayer perceptron Proc. Int. Joint Con$ on Neural 

Pham D and Bayro-Corrochano E 1992 Neural computing for noise filtering, edge detection and signature extraction 

Qiu G, Varley M and Terre11 T 1993 Image compression by edge pattem leaming using multilayer perceptrons Electron. 

Sakaguchi T, Nakamura 0 and Minami T 1989 Personal identification through facial images using isodensity lines 

Sonehara N, Kawato M, Miyake S and Nakane K 1989 Image data compression using a neural network model Proc. 

Thacore S ,  Pang V, Palaniswami M and Bairaktaris D 1988 Image data compression using a self-organking neural 

Thompson C and Shure L 1993 Image Processing Toolbox for use with Matlab (Natick, MA: The Mathworks Inc) 

4 120-4 

381-4 

Joint Con$ on Neural Networks (Singapore) vol I pp 634-9 

programming ICs Report 8702 University of California, San Diego, CA 

on Neural Networks (San Diego, CA) vol I1 pp 65-70 

on Intelligent Information Systems (Brisbane) 

network Proc. Inr. Joint Con$ on Neural Networks (San Diego, CA) vol I pp 503-10 

Proc. IEEE Int. Symp. on Speech, Image Processing and Neural Networks (Hong Kong) pp 397-400 

Neural Networks 2 355-65 

S Watanabe (New York: Academic) pp 265-89 

IEEE Trans. Patt. Anal. Mach. Intell. 12 103-8 

recognition Neural Networks 7 1019-30 

adaptive filters and self-organizing neural networks IEEE Trans. Image Proc. 3 65-77 

Developing and Managing Expert System Programs pp 210-4 

Chapman and Hall) 

38 25-9 

in diluted hopfield networks Proc. Int. Joint Con$ on Neural Networks (San Francisco, CA) vol I1 pp 889-94 

Con$ on Neural Networks (Baltimore) vol 111 pp 260-5 

263-72 

VIII 575 413-6 

neural networks Proc. Int. Joint Con$ on Neural Networks (San Diego, CA) vol I pp 429-34 

Networks (Washington) vol I1 pp 413-6 

J. Sysr. Eng. 2 111-22 

Lett. 29 601-2 

Proc. SPIE- -visual Communications and Image Processing IV 1199 643-54 

Int. Joint Con$ on Neural Networks vol I1 pp 35-41 

network with adaptive thresholds Proc. IEEE Int. Joint Con$ on Neural Networks vol I pp 646-51 

F1.6:% Handbook ojNeural Computation release 97/1 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Image processing 

Turk M and Pentland A 1991 Eigenfaces for recognition J.  Cog. Neurosci. 3 71-86 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.6:9 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.7 Speech processing 

Kari Torkkola 

Abstract 

Speech processing comprises automatic speech recognition, speech synthesis, 
speech coding, speech enhancement, speaker recognition and verification, language 
identification, and so on. This section discusses the application of artificial neural 
networks (ANNs) to these areas. The viewpoint will be that of an engineer; that is, 
the question we try to answer is, ‘How can ANNs be used to solve engineering problems 
in speech processing?’ We will present some conventional approaches to these problems 
and point out where ANNs could be applicable. As a lot of the ANN effort in speech 
processing seems to be concentrated around speech recognition, this will also be our 
focal point. Other areas will be briefly reviewed. Due to the breadth of the field and 
space limitations, this section can only remain superficial: more of a commented list of 
bibliographic references. 

F1.7.1 Introduction 

Speech is a medium for communication, and there is always a language behind it. While some speech 
processing applications can be regarded as pure ‘signal processing’, one usually cannot avoid taking into 
account that speech is a signal produced by human articulators. Furthermore, it may also be necessary 
to incorporate knowledge of the language to reach the best solutions. Thus, in addition to engineering, 
a successful speech processing application might need a combination of speech, hearing, and language 
sciences. 

Many kinds of characteristics of the speech signal can be learned by automated procedures using large 
databases. Statistical methods (including ANNs) rely on this fact. Some knowledge, especially linguistic, 
still needs to be obtained through manual coding and some needs to be taken into account implicitly. For 
instance, knowledge may be incorporated in the structure of a speech recognizer or a speech coder. 

Engineering problems in speech communication can roughly be placed in two categories: man-to-man 
communication and man-machine communication. Examples of the former category include speech coding 
for transmission and storage, speech enhancement, and speaker separation. Automatic speech recognition 
(ASR), speech synthesis, speaker identification and verification, and language identification would go in the 
latter category. Besides speech communication, another super-category is speech analysis, some aspects 
of which are necessary in every speech processing application. As here we can only touch the surface 
of these areas, the reader is encouraged to consult O’Shaughnessy (1987), Keller (1994), or Rabiner and 
Juang (1993) for background in speech processing. Some texts which concentrate on connectionist aspects 
of speech processing include Morgan and Scofield (1991), Bourlard and Morgan (1994), and Robinson 
(1993). 

Before going through the subcategories in detail, we will take a quick look at some of the generic 
capabilities of ANNs, and how they match problems in speech processing. It is well known that under some 
ideal conditions multilayer perceptrons (MLP) are universal approximators (Hornik et a1 1989). There are c1.2 
many function approximation (or relation approximation) tasks in speech processing, for example, many 
kinds of mappings in speech synthesis, probability estimation tasks in ASR, mappings for noise reduction, 
and nonlinear prediction of speech. Pattern classijication is another prominent capability of A N N s .  ~ 1 . 2  

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 F1.7:l 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

This is needed in ASR, though due to the sequential and dynamic nature of the speech signal, static 
pattern classifiers are insufficient except for the simplest problems. This has resulted in research in hybrid 
methods, where ANNs are combined with more traditional sequence processing methods including hidden 
Markov models (HMM) and dynamic time warping (DTW) (Rabiner and Juang 1993). The vast majority 
of speech processing applications only take advantage of the two above-mentioned capabilities of ANNs. 
Optimization capabilities of A N N s  have been used in some search problems, like in the Viterbi search in 

~ 1 . 5  ASR, and in codebook search for speech coding. Data compression capabilities of ANNs have not been 
used directly in speech coding very often; rather, ANNs appear as components in traditional speech coding 
methods. 

F1.7.2 Speech recognition 

Automatic speech recognition is one of the ‘grand challenges’ in engineering. In essence, the purpose is 
to find the linguistic content in a spoken message. The problem is made difficult by the variability in 
the speech signal: there are variations in the talking speed, enormous variations between the vocal tract 
characteristics of different people and consequently in the spectral characteristics of the uttered speech, 
there are dialectal variations, variations due to the origin of the speaker, and so on. 

A speech recognition device typically consists of a feature extraction module, a pattern matching 
and time warping module which uses an inventory of speech subunit models, and a language processing 
module, whose purpose is to reduce the search space of the pattern matcher according to a (limited) 
language to be recognized. Speech recognizers typically tackle the variability by statistical methods, most 
notably by using hidden Markov models (HMM) (Rabiner and Juang 1993). HMMs provide both the 
capability to absorb temporal variations and to model the speech variability at the feature vector level. 
In addition, they are trainable from large databases. Dynamic time warping (DTW) is another related 
method to match a speech feature vector sequence against a set of models (Rabiner and Juang 1993). Both 
DTW and the Viterbi algorithm (Rabiner and Juang 1993), which aligns speech with a set of HMMs, are 
instances of dynamic programming algorithms. 

One of the subtasks in speech recognition is pattern clmsijkation (Lippmann and Gold 1987, h u n g  
and Zue 1988, Makhoul 1991). ANNs are especially amenable to this, because many classification tasks 
require the construction of complex decision surfaces. In an extension to this classifying function, one can 
use artificial neural networks to estimate the posterior probabilities for the classes. This property permits 
the use of a network as a component in a system that incorporates other probabilistic evidence, such as an 
HMM system (Bourlard et a1 1992). 

In the case of speech, input to the network may be a short-time spectral representation of speech, 
which may include some context. A problem with this kind of a scheme is that the input, if it includes 
context, is a fixed-time window without any possibility for alignment or time stretching. 

To avoid the problem of fixed-time windows, one can introduce feedback into the network graph. 
This allows the network to keep information about past inputs for an amount of time that is not fixed a 

c1.2.3 priori, but that depends on weights and on the input data. Variations of the backpropagation algorithm 
have been developed to train this kind of recurrent ANN (Watrous and Shastri 1987, Robinson 1989). 

So-called time-delay neural networks (TDNNs) are MLPs that approximate recurrent networks (Waibel 
et a1 1989a, 1989b). Instead of a feedback connection from a unit to itself, a fixed number of delayed 
previous activation values are stored in a shift register, and they are all connected to the units in the above 
layer (a signal processing analogy is used to approximate an IIR filter by an FIR filter). 

In addition to MLPs many other ANN architectures are useful for classification tasks. Two examples 
c1.1.5 that can be mentioned briefly are learning vector quantization (LVQ) (Kohonen et a1 1988), which is an 
ci.6.2 algorithm to train a two-layer network for optimum discrimination between pattern classes, and radial 

basis function (RBF) networks (Moody and Darken 1989). 
Some ANN architectures are appropriate for producing new kinds of representations of complex 

c2.1.1 data, like speech data. An example of such a network is the Kohonen network which is also called the 
selforganizing map (SOM) (Kohonen 1990, 1995). This kind of network organizes itself automatically 
by so-called competitive learning, according to the structure of the input data (unsupervised training). 
Incoming speech can be mapped as the path of best-responding cells of the SOM. Such a mapping can be 
used as a basis of speech recognition (Kohonen 1988, Torkkola and Kokkonen 1991). In addition, SOMs 
can also be used to illustrate, analyze and characterize speech (Tognieri et a1 1992). One application of 
this is to diagnose phonation disorders (Leinonen et a1 1992). 

c1.2.8.3 

F1.7:2 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Speech processing 

F l .  7.2.1 How to cope with the time-sequential nature of speech: hybrid recognizers 

Although ANNs with delays and recurrent connections can, in theory, model any temporal structure, 
current architectures are inefficient in capturing some important aspects of temporal structure. Pure ANNs 
are currently at their best when recognizing short utterances or smaller speech subunits. A suitable 
ANN architecture to do the time-matching procedure still remains to be found. One attempt in this 
direction which replaces the Viterbi algorithm by using the optimization capabilities of Hopfield networks 
is presented in Aiyer and Fallside (1992). However, the mapping ability of ANNs can be used to derive 
new representations of the speech signal. Combinations of ANNs with other tools that have been proven 
useful in modeling the temporal structure of speech are thus of interest. Such combinations, in particular 
with DTW and HMMs, are discussed next. 

One possible hybrid configuration is to use ANNs instead of vector quantizers. While traditional 
vector quantizers aim to represent speech parameter vectors with minimum distortion, ANNs can be trained 
to discriminate specific features relevant to the task. For example, if the task is phoneme recognition, 
LVQ-type networks can be trained as frame-level or segment-level phoneme classifiers. These ANNs then 
provide a stream of information to HMMs consisting of phoneme labels (Iwamida et a1 1990, Torkkola et 
a1 1991), or distance information (Schmidbauer and Tebelskis 1992, Torkkola 1994). Since HMMs can 
combine the outputs of independent streams, information from other parallel networks computing some 
other relevant aspects of the task can be integrated (Mantysalo et a1 1994, Le Cerf et a1 1994). The 
topology-preserving properties of SOMs have also been useful together with discrete observation HMMs 
(Zhao 1992, Monte et a1 1992). 

Another hybrid approach is the use of multilayer perceptrons (MLPs) (Bourlard et a1 1992, Bourlard 
and Morgan 1994), recurrent networks (Robinson 1994), or radial basis function networks (Singer and 
Lippmann 1992) as discriminant local probability generators for HMMs, instead of using, for example, 
mixtures of Gaussians to generate observation probabilities. The training of HMMs is reduced to training 
transition probabilities. This kind of hybrid combines several advantages of ANNs and HMMs: HMMs 
furnish their temporal processing abilities and provide embedded training procedures (thus obviating the 
need to segment training data), while ANNs are employed for their strong discriminative abilities, and 
to eliminate the need to formulate assumptions about likely observation probability densities. Further, 
when an ANN uses context in addition to its current frame, the correlations between consecutive acoustic 
observations can be taken into account (factors that are ignored in pure HMMs). MLPs can also be used 
as local distance generators for DTW. In this architecture, the discrimination power of MLPs is combined 
with the time alignment abilities of DTW for word recognition (Sakoe et a1 1989). 

One step further from an ANN-DTW hybrid is to construct subword models by ANNs. The idea is to 
find out which concatenation of these subword models best matches incoming speech using either DTW or 
Viterbi-related search. So-called multistate TDNNs model the speech as a concatenation of TDNN phone 
models (Haffner et a1 1991, Haffner 1992, Tebelskis and Waibel 1993). Segmental models classify or 
model entire segments of speech, instead of short-time observations. It is possible to use MLPs or LVQ 
as the basis of such models (Leung et a1 1992, Cheng et a1 1992, Austin et a1 1992). This is one way to 
overcome the HMM assumption of independence between successive observations: to construct models 
that take a longer duration of speech signal into account. Predictive subword models aim at being able to 
predict the next frame of a particular subword unit (a phone, for example). MLPs can be used as such 
predictors using input that includes the phonetic context (Levin 1990, Is0 and Watanabe 1991, Tebelskis 
et a1 1991, Mellouk and Gallinari 1994). However, if a predictor for each speech unit is trained using 
examples of that particular speech unit only, this approach may result in poor discrimination. 

From a theoretical point of view, it has been shown that HMMs are a specific instance of a certain 
type of recurrent ANN (Bridle 1990). In this case, the forward-backward algorithm is equivalent to 
backpropagation. Inspired by error-driven training methods developed for ANNs, several researchers 
have applied the same philosophy to HMM training, as well as to the training of ANN-HMM and ANN- 
DTW hybrids. This involves finding a suitable cost or error function whose derivatives with respect to 
parameters can be easily computed. Gradient descent can then be used to minimize this function. For 
example, a cost function based on a maximum mutual information criterion is used to train pure HMMs 
(Young 1991). Furthermore, it is shown in Driancourt and Gallinari (1992) how different kinds of ANN 
modules can be combined with DTW and trained using similar principles. This training could even be 
extended to DTW templates. Similarly, ANN and HMM parameters can be trained within the same 
framework as presented in Bengio et a1 (1992). Also, the work of Juang and others on error-correcting 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 F1.73  

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

learning and generalized probabilistic descent (Juang and Katagiri 1992) is close to this spirit although 
ANNs are not directly involved. 

To account for the large variability between speakers, recognition systems intended for speaker- 
independent usage are trained using large databases. However, if such a system will mainly be used by a 
single individual for some period of time, the existing models of speech subunits within the system can 
be adapted to the particular speaker to improve the performance (Lee et a1 1991, Cox 1995). For some 
ANN-based architectures, adaptation of only a relatively small number of parameters may be sufficient 
(Schmidbauer and Tebelskis 1992, Hild and Waibel 1993). ANNs can also be used to construct a 
normalizing mapping for the new speaker (Watrous 1993). 

There has not yet been much work in language modeling using ANNs. Currently, the best working 
language models are statistical (Jelinek et a1 1992). Their purpose is to predict the next spoken word on 
the basis of the previous ones. As this is again an approximation task it may come as no surprise that 
MLPs have also been applied here. Using MLP-based word category prediction, better word recognition 
scores were reported than by using a standard trigam language model (Nakamura and Shikano 1989). 

F1.7.3 Speaker identification and verification 

Speaker identification and verification differ in the number of decision alternatives. Identification involves 
determining the identity of the speaker from a prespecified pool of speakers. Speaker verification entails 
either accepting or rejecting the claim on the speaker’s identity. A good review of the current technology 
is given in Furui (1994). 

As in any pattern recognition problem, feature extraction is followed by similarity comparison to 
speaker models, either to the whole pool (identification) followed by maximum selection, or only to the 
model of the claimed speaker (verification) followed by thresholding. Often, the models and the comparison 
methods are related to speech recognition algorithms. For example, in the text-dependent case the models 
could be just stored words of each speaker, against which the same word uttered by an unknown speaker is 
compared using dynamic time warping. Or in the text-independent case the models can be hidden Markov 
models of phonemes that are concatenated according to prompted text, after which the likelihood of the 
utterance having been generated by a particular speaker’s model can be evaluated. One can also construct 
a mixture Gaussian model for each speaker (Reynolds 1994). In this case the temporal modeling aspect 
of speech (as in ASR) can be avoided. 

A good overview of ANNs applied to these problems is given in Bennani and Gallinari (1994). A 
straightforward approach is that of pattern recognition: to train a single discriminative network for the 
speaker recognition problem (Bennani et a1 1990). Adding new speakers, however, requires retraining the 
whole network. The next obvious approach is to model each speaker by an ANN, be it an MLP or RBF 
network (Oglesby and Mason 1990, 1991, Tsoi et a1 1994). These two approaches work while the speaker 
population is small. For a larger number of speakers modular approaches have been proposed (Bennani 
1993). Modeling a speaker by a predictive ANN system also allows new speakers to be added easily, as 
not all of the networks need to be retrained (Hattori 1994). 

So far, it is not clear whether ANN-related methods have any edge over traditional ones, because 
comparisons on the same realistic task have not been performed. 

F1.7.4 Language identification 

Language identification is a classification problem, in which the difficulty lies in extracting suitable features 
from an utterance as the basis for this classification. Muthusamy and Cole (1992) describe a system that 
performs a broad class phonetic segmentation using an MLP, then derives various features from a sequence 
of the class labels, and performs the final classification using another MLP (Muthusamy and Cole 1992). 
The system has been developed further by replacing the broad classifier by a phonetic classifier (Berkling 
et a1 1994). Making use of linguistic knowledge is essential here to determine what kinds of features to 
use for the final language classification. 

As an example of a non-ANN system, Zissman describes a statistical model, where speakers of 
each language are modeled as a mixture of Gaussians. This configuration seems to work as well as the 
ANN-based systems (Zissman 1993). Again, as to which approach is better, there is no answer yet. 

~ 

F1.7:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Speech processing 

F1.7.5 Speech synthesis 

The classic approach to speech synthesis from text is synthesis by rule (Klatt 1987). This involves rules 
to map text into phonemes, phonemes to allophones, and allophones to control parameters of a sound 
generator, which may be waveform concatenation, a formant synthesizer, or an articulatory model. These 
mappings are extremely complex, and derivation of good sets of rules or other non-rule-based mappings 
is a tedious task. 

The most famous example in this area is NETTALK (Sejnowski and Rosenberg 1987). An MLP 
was used to implement a text-to-phoneme mapping. Though the performance fell short of hand-crafted 
rules (just using a dictionary is even better), NETTALK was a powerful and driving demonstration of the 
capabilities of ANNs. 

It is possible to use ANNs for other mappings, too. For instance, several researchers have used 
MLPs with or without recurrent connections to generate prosody-related parameters either from syllable, 
phoneme, or allophone representations. Examples of these parameters include pitch contours (Scordilis 
and Gowdy 1989, Sagisaka 1990, Traber 1992) and allophone durations (Scordilis and Gowdy 1990, 
Karjalainen 1991). NETTALK also generated stress-related parameters in addition to phoneme identities. 
Articulatory analysis/synthesis requires mapping of the speech signal or its spectra onto vocal tract shapes 
or other geometrical parameters. For this kind of work by ANNs see Rahim et a1 (1991) and Kobayashi 
et al (1991). 

Cohen and Bishop (1994) argue that the whole approach of synthesis-by-rule using linguistic notations 
is incorrect (as demonstrated by the failure of NETTALK). They propose to use self-organizing maps to 
derive new diphone-based subsymbolic intermediate forms. 

Another type of mapping is described by Fels and Hinton (1993, 1995). They implemented a mapping 
from hand gestures and hand movements to speech synthesizer parameters using several MLPs. 

Synthesis of intelligible speech is very viable today, but natural sounding speech from text seems 
to require far more use of linguistic knowledge than current synthesizers use. This is basically the same 
problem as with speech recognition: human knowledge about language is hard to capture and exploit. 

F1.7.6 Speech coding 

To be successful, low-bit-rate high-quality speech coding must involve taking into account the 
characteristics of the speech signal, like the fact that the speech signal stays stationary over short periods of 
time (about 25 ms). As a baseline, we describe the CELP coder (code-excited linear prediction) (Shroeder 
and Atal 1985). This coder typically involves linear waveform predictors to remove dependencies in the 
speech signal, both long-term (pitch) and short-term (stationarity). The excitation signal is then vector 
quantized and transmitted. CELP is ‘codebook excited’, because the best codebook vector is searched by 
reconstructing the signal through the predictors. The codebook vector resulting in the best match between 
the original and the reconstruction, perhaps through a perceptually weighted error criterion, is chosen and 
its code is transmitted. 

Recurrent networks have been used as nonlinear predictors in CELP resulting in better-quality speech 
at low bit rates (Wu et a1 1993). TDNNs can also be used for the same purpose (Thyssen et a1 1994). In 
this work it was noticed that pitch can be predicted by a nonlinear short-term predictor, instead of a linear 
long-term predictor. Experiments using hierarchical mixtures of experts as predictors of acoustic vectors 
are presented in Waterhouse and Robinson (1995). 

Vector quantizers can also be replaced by ANNs. It has been shown by Wang and Hanson (1993) 
and Li et a1 (1994) how a codebook search can be eliminated. They used an MLP to map an input vector 
directly to a code to be transmitted. A way to use the optimization capabilities of a Hopfield network to 
perform codebook search resulting in computational savings is presented in Easton and Goodyear (1991). 
It is also possible to make use of the topological organization in a SOM-trained codebook to reduce the 
bit rates (Hernhdez-Gomez and L6pez-Gonzalo 1993). 

Switched coders first try to classify the short-time speech frames into a small number of classes, and 
then use an appropriate coding scheme for each class. Here, the ANNs can be used to classify the frames, 
for example, as voiced, unvoiced, or silence (Bendiksen and Steiglitz 1990, Cohn 1991, Ghiselli-Crippa 
and El-Jaroudi 1991). 

So far, we have only discussed source coding. Channel coding entails wrapping the compressed speech 
bits into a suitable error correction and choosing a modulation scheme. These three steps have traditionally 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Compufution release 9711 F1.75 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

been done separately. Codebook design, error protection, and QAM modulation can be considered jointly 
using a SOM (Skinnemoen and Perkis 1994). By choosing the QAM modulation scheme corresponding 
to the topological organization of the SOM codebook, channel errors result in decoded vectors that are 
similar to the error-free ones. Considerable noise robustness was obtained using this scheme. 

F1.7.7 Speech enhancement 

Speech enhancement involves separation of the speech signal from unwanted noise, which can be a speech 
signal of another speaker, or more often, environmental noise such as car noise. 

The function approximation capabilities of MLPs have found use in this problem, too. MLPs have 
been applied directly in the time domain to create a mapping from a noisy signal to a noiseless one 
(Tamura and Waibel 1988, Tamura and Nakamura 1990). Many researchers have done the same in the 
feature vector domain, either spectral or cepstral (Sorensen 1991, Barbier and Chollet 1991, Sorensen 
1992, Trompf 1992). Training the noise removal network jointly with the speech recognizer improves 
results over those obtained by training the networks separately (Moon and Hwang 1993, Gao and Haton 
1994). 

As these methods basically remove stationary noise, an adaptive version is presented in Xie and 
Compernolle (1994), and in Sorensen and Hartmann (1994) an extension to an HMM decomposition of 
speech and noise using radial basis function networks is presented. 

ANNs have also been used in blind separation problems (so-called cocktail party problems) (Jutten 
and Herault 1991, Burel 1992, Wang et a1 1995). In Bell and Sejnowski (1995) impressive results are 
presented with a network that is based on maximizing the information transferred through the nonlineanties 
of the network. 

F1.7.8 Discussion 

In most of the reviewed applications ANNs act as nonlinear approximators, and it is not clear whether in 
this role they offer an advantage over modern statistical tools (Ripley 1993, Sarle 1994). In many cases 
all that is being done is parameter estimation for nonlinear models. However, there are good reasons 
for using ANNs, as mentioned in Bourlard and Morgan (1994, p 88) (some of these properties apply, of 
course, to statistical methods, such as HMMs): 
0 ANNs can learn 
0 discriminative training can be used with ANNs 
0 ANNs have universal approximation capabilities 
0 ANNs can combine disparate data (e.g. symbolic and real-valued data) 
0 no strong assumptions about the statistics of the input data need be made 
0 some ANNs exhibit properties that cannot be replicated using any other methods 
0 some ANN architectures are amenable to parallel hardware implementations. 

Where one or several of these functional properties match the problem domain, it seems that ANNs 
are capable of adding some desired properties to an existing system. This, in turn, results in improved 
performance. 

How to make use of linguistic knowledge remains a substantial problem in many speech processing 
fields. This problem is most compelling in research for ASR and natural sounding speech synthesis, and 
remains a topic for active research, both in the traditional and ANN domains. 

References 

Aiyer S V B and Fallside F 1992 A Hopfield network implementation of the Viterbi algorithm for hidden Markov 

Austin S, Zavaliagkos G, Makhoul J and Schwartz R 1992 Speech recognition using segmental neural nets Proc. IEEE 

Barbier L and Chollet G 1991 Robust speech parameters extraxtion for word recognition in noise using neural networks 

Bell A J and Sejnowski T J 1995 An information-maximisation approach to blind separation and blind deconvolution 

Bendiksen A and Steiglitz K 1990 Neural networks for voicedunvoiced speech classification Proc. IEEE Int. Con$ 

models Technical Report CWED/F-INFENG/TR60 Cambridge University Engineering Department 

Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP92) (San Francisco, CA) vol I pp 625-8 

Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP91) (Toronto) pp 145-8 

Neural Comput. 7 1129-59 

on Acoustics, Speech and Signal Processing (ICASSP90) (Albuquerque, NM) pp 521-4 

F1.7:6 Handbook ofNeurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Speech processing 

Bengio Y, de Mori R, Flammia G and Kompe R 1992 Global optimization of a neural network-hidden Markov 
model hybrids IEEE Trans. Neural Networks 3 252-9 

Bennani Y 1993 Probabilistic cooperation of connectionist expert modules: validation on a speaker identification task 
Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP93) (Minneapolis, MN) vol I pp 541-4 

Bennani Y and Gallinari P 1994 Connectionist approaches for automatic speaker recognition Proc. ESCA Workshop 
on Automatic Speaker Recognition Identification Verification (Martigny) (European Speech Communication 
Association) pp 95-102 

Bennani Y, Soulie F F and Gallinari P 1990 A connectionist approach for automatic speaker identification Proc. IEEE 
Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP90) (Albuquerque, NM) pp 265-8 

Berkling K M, Arai T and Bamard E 1994 Analysis of phoneme-based features for language identification Proc. IEEE 
Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) vol I pp 289-92 

Bourlard H and Morgan N 1994 Connectionist Speech Recognition: a Hybrid Approach (Boston, MA: Kluwer) 
Bourlard H, Morgan N and Renals S 1992 Neural nets and hidden Markov models: review and generalizations Speech 

Bridle J S 1990 Alphanets: a recurrent neural network architecture with a hidden Markov model interpretation Speech 

Burel G 1992 Blind separation of sources: a nonlinear neural algorithm Neural Networks 5 937-47 
Cheng Y, O’Shaughnessy D, Gupta V, Kenny P, Lenning M, Mermelstein P and Parthasarathy S 1992 Hybrid 

segmental-LVQ/HMM for large vocabulary speech recognition Proc. IEEE Int. Con$ on Acoustics, Speech and 
Signal Processing (ICASSP92) (San Francisco, CA) vol I pp 593-6 

Cohen A D J and Bishop M J 1994 Self-organizing maps in synthetic speech Proc. World Congress on Neural Networks 
(San Diego, CA) vol 4 pp 544-9 

Cohn R P 1991 Robust voicedunvoiced speech classification using a neural net Proc. IEEE Int. Con$ on Acoustics, 
Speech and Signal Processing (ICASSP91) (Toronto) vol 1 pp 437-40 

Cox S 1995 Predictive speaker adaptation in speech recognition Comput. Speech Lang. 9 1-17 
Driancourt X and Gallinari P 1992 A speech recognizer optimally combining leaming vector quantization dynamic 

programming and multilayer perceptron Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing 
(ICASSP92) (San Francisco, CA) vol I pp 609-12 

Easton M G and Goodyear C C 1991 A CELP codebook and search technique using a Hopfield net Proc. IEEE Int. 
Con$ on Acoustics, Speech and Signal Processing (ICASSP91) (Toronto) vol 1 pp 685-8 

Fels S S and Hinton G E 1993 Glove-talk: a neural network interface between a data-glove and a speech synthesizer 
IEEE Trans. Neural Networks 4 2-8 

-1995 Glovetalk 11: mapping hand gestures to speech using neural networks Advances in Neural Information 
Processing Systems vol 7 (Cambridge, MA: MIT Press) 

Furui S 1994 An overview of speaker recognition technology Proc. ESCA Workshop on Automatic Speaker Recognition 
Identification Verification (Martigny) (European Speech Communication Association) pp 1-9 

Gao Y and Haton J-P 1994 A hierarchical LPNN network for noise reduction and noise degraded speech recognition 
Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) vol I1 pp 89-92 

Ghiselli-Crippa T and El-Jaroudi A 1991 A fast neural net training algorithm and its application to voiced-unvoiced- 
silence classification of speech Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSPBI) 
(Toronto) vol 1 pp 441-4 

Haffner P 1992 Connectionist word-level classification in speech recognition Proc. IEEE Int. Con$ on Acoustics, 
Speech and Signal Processing (ICASSP92) (San Francisco, CA) vol I pp 621-4 

Haffner P, Franzini M and Waibel A 1991 Integrating time alignment and neural networks for high performance 
continuous speech recognition Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP91) 
(Toronto) vol 1 pp 105-8 

Hattori H 1994 Text-independent speaker verification using neural networks Proc. ESCA Workshop on Automatic 
Speaker Recognition Identification Verification (Martigny) (European Speech Communication Association) 

Hemhdez-Gomez L A and Mpez-Gonzalo E 1993 Phonetically driven CELP coding using self-organizing maps Proc. 
IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP93) (Minneapolis, MN) vol I1 pp 628-3 1 

Hild H and Waibel A 1993 Multispeaker/speaker-independent architectures for the multistate time delay neural network 
Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP93) (Minneapolis, MN) pp 255-8 

Homik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural 
Networks 2 359-66 

Is0 K and Watanabe T 1991 Large vocabulary speech recognition using neural prediction model Proc. IEEE Int. Con$ 
on Acoustics, Speech and Signal Processing (ICASSP91) (Toronto) vol 1 pp 57-60 

Iwamida H, Katagiri S, McDermott E and Tohkura Y 1990 A hybrid speech recognition system using HMMs 
with an LVQ-trained codebook Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (lCASSP90) 
(Albuquerque, NM) vol 1 pp 489-92 

Commun. 11 237-46 

Commun. 9 83-92 

pp 103-6 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computation release 9711 F1.7:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Jelinek F, Mercer R L and Roukos S 1992 Principles of lexical language modelling for speech recognition Advances 
in Speech Signal Processing ed S Furui and M M Sondhi (New York: Dekker) 

Juang B H and Katagiri S 1992 Discriminative learning for minimum error classification IEEE Trans. Acoust. Speech 
Signal Processing 40 3043-54 

Jutten C and Herault J 1991 Blind separation of sources part I: an adaptive algorithm based on neuromimetic architecture 
Signal Processing 24 1-10 

Karjalainen M 1991 Neural networks for prosody control in speech synthesis ArtiJicial Neural Networks vol2 (Proc. Int. 
Con$ on Artificial Neural Networks (Espoo)) ed T Kohonen, K Mtikisara, 0 Simula and J Kangas (Amsterdam: 
North-Holland) pp 1 6 4 1 4  

Keller E (ed) 1994 Fundamentals of Speech Synthesis and Speech Recognition (Chichester: Wiley) 
Klatt D H 1987 Review of text-to-speech conversion for English J. Acoust. Soc. Am. 82 137-81 
Kobayashi T, Yagyu M and Shirai K 1991 Application of neural networks to articulatory motion estimation Proc. 

Kohonen T 1988 The ‘neural’ phonetic typewriter IEEE Comput. 21 11-22 
-1990 The self-organizing map Proc. IEEE 78 1464-80 
-1995 Self-organizing Maps (Berlin: Springer) 
Kohonen T, Bama G and Chrisley R 1988 Statistical pattern recognition with neural networks: benchmarking studies 

Le Cerf P, Ma W and Van Compernolle D 1994 Multilayer perceptrons as labelers for hidden Markov models IEEE 

Lee C H, Lin C H and Juang B H 1991 A study on speaker adaptation of the parameters of continuous density hidden 

Leinonen L, Kangas J, Torkkola K and Juvas A 1992 Dysphonia detected by pattern recognition of spectral composition 

Leung H, Hetherington I and Zue V 1992 Speech recognition using stochastic segmental neural networks Proc. IEEE 

Leung H C and Zue V W 1988 Some phonetic recognition experiments using artificial neural nets Proc. IEEE Int. 

Levin E 1990 Word recognition using hidden control neural architecture Proc. IEEE Int. Con$ on Acoustics, Speech 

Li X, Bodruzzaman M and Szu H 1994 Neural network codebook search for digital speech synthesis Proc. World 

Lippmann R P and Gold B 1987 Neural-net classifiers useful for speech recognition Proc. 1st Int. Con$ on Neural 

Makhoul J 1991 Pattern recognition proprerties of neural networks Neural Networks for Signal Processing (Proc. I991 

Mlntysalo J, Torkkola K and Kohonen T 1994 Mapping context dependent acoustic information into context 

Mellouk A and Gallinari P 1994 Discriminative training for improved neural prediction systems Proc. IEEE Int. Con5 

Monte E, Mariiio J B and Leida E L 1992 Smoothing hidden Markov Models by means of a self-organizing feature 

Moody J and Darken C 1989 Fast leaming in networks of locally tuned processing units Neural Compur. 1 281-94 
Moon S and Hwang J-N 1993 Coordinated training of noise removing networks Proc. IEEE Int. Con5 on Acoustics, 

Morgan D P and Scofield C L 1991 Neural Networks and Speech Processing (Boston, MA: Kluwer) 
Muthusamy Y K and Cole R A 1992 A segment-based automatic language identification system Advances in Neural 

Information Processing Systems vol 4 ed J E Moody S J Hanson and R P Lippmann (San Mateo, CA: Morgan 
Kaufmann) 

Nakamura M and Shikano K 1989 A study of English word category prediction based on neural networks Proc. IEEE 
I989 Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP89) (Glasgow) pp 731-4 

Oglesby J and Mason J S 1990 Optimisation of neural models for speaker identification Proc. IEEE Int. Conf on 
Acoustics, Speech and Signal Processing (ICASSP90) (Albuquerque, NM) pp 261-4 

-1991 Radial basis function networks for speaker recognition Proc. IEEE Int. Con5 on Acoustics, Speech and 
Signal Processing (ICASSP9I) (Toronto) vol 1 pp 393-6 

O’Shaughnessy D 1987 Speech Communication (London: Addison-Wesley) 
Rabiner L and Juang B-H 1993 Fundamentals of Speech Recognition (Englewood Cliffs, NJ: Prentice Hall) 
Rahim M G, Kleijn W B, Schroeter J and Goodyear C C 1991 Acoustic to articulatory parameter mapping using 

an assembly of neural networks Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP9I) 
(Toronto) vol 1 pp 485-8 

IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP9I) (Toronto) vol 1 pp 489-92 

Proc. IEEE Int. Con$ on Neural Networks (San Diego, CA) pp 61-8 

Trans. Speech Audio Processing 2 185-93 

Markov models IEEE Trans. Signal Processing 39 806-14 

J.  Speech Hear. Res. 35 287-95 

Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP92) (San Francisco, CA) vol I pp 613-6 

Con$ on Acoustics, Speech and Signal Processing (ICASSP88) (New York) pp 422-5 

and Signal Processing (ICASSP90) (Albuquerque, NM) vol 1 pp 433-6 

Congress on Neural Networks (San Diego, CA) vol 4 pp 512-7 

Networks (San Diego, CA) vol IV pp 417-25 

IEEE Workshop) (New York: IEEE) pp 173-87 

independent form by LVQ Speech Commun. 14 119-30 

on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) vol I pp 233-6 

map Proc. ICSLP’92 Int. Con$ on Spoken Language Processing (Alberta) vol 1 pp 5 5 1 4  

Speech and Signal Processing (ICASSP93) (Minneapolis, MN) vol I pp 573-6 

F1.7:8 Handbook of Neural Computation release 91i1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Speech processing 

Reynolds D A 1994 Speaker identification and verification using Gaussian mixture speaker models Proc. 
ESCA Workshop on Automatic Speaker Recognition Identification Verification (Martigny) (European Speech 
Communication Association) pp 27-30 

Ripley B D 1993 Statistical aspects of neural networks Networks and Chuos-Statistical and Probabilistic Aspects ed 
0 Barndorff-Nielsen, J Jensen and W Kendall (London: Chapman and Hall) pp 40-123 

Robinson A J 1989 Dynamic error propagation networks PhD Thesis Cambridge University Engineering Department, 
Trumpington Street, Cambridge, UK 

-1994 An application of recurrent nets to phone probability estimation IEEE Trans. Neural Networks 5 298-305 
Robinson T 1993 Artificial neural networks: the mole-grips of the speech scientist Visual Representations of Speech 

Signals ed M Cooke, S Beet and M Crawford (New York: Wiley) pp 83-94 
Sagisaka Y 1990 On the prediction of global FO shape for Japanese text-to-speech Proc. IEEE Int. Con$ on Acoustics, 

Speech and Signal Processing (ICASSP90) (Albuquerque, NM) vol 1 pp 325-8 
Sakoe H, Isotani R, Yoshida K, Is0 K and Watanabe T 1989 Speaker-independent word recognition using dynamic 

programming neural networks Proc. IEEE 1989 Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP89) 
(Glasgow) 

Sarle W S 1994 Neural networks and statistical models Proc. 19th Ann. SAS Users Group Int. Con$ (SAS Institute, 
Cary, NC) pp 1538-50 

Schmidbauer 0 and Tebelskis J 1992 An LVQ based reference model for speaker-adaptive speech recognition Proc. 
IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP92) (San Francisco, CA) vol I pp 441-4 

Schroeder M R and Atal B S 1985 Code excited linear prediction (CELP): High-quality speech at very low bit rates 
Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP85) (Tampa, FL) pp 937-40 

Scordilis M and Gowdy J N 1989 Neural network-based generation of fundamental frequency contours Proc. IEEE 
I989 Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP89) (Glasgow) 

-1990 Neural network control for a cascaddparallel formant synthesizer Proc. IEEE Int. Con$ on Acoustics, Speech 
and Signal Processing (ICASSP90) (Albuquerque, NM) vol 1 pp 297-300 

Sejnowski T and Rosenberg C R 1987 Parallel networks that learn to pronounce english text Complex Syst. 1 145-68 
Singer E and Lippmann R P 1992 A speech recognizer using radial basis function neural networks in a HMM 

framework Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP92) (San Francisco, CA) 

Skinnemoen H and Perkis A 1994 Efficient vector quantisation of LPC parameters for noisy channels Proc. IEEE Int. 
Con$ on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) vol I pp 497-500 

Sorensen H B D 1991 A cepstral noise reduction multilayer network Proc. IEEE Int. Con$ on Acoustics, Speech and 
Signal Processing (ICASSP91) (Toronto) pp 933-6 

-1992 Speech recognition in noise using a self-structuring noise reduction model and hidden control models Proc. 
Int. Joint Con$ on Neural Networks (Baltimore, MD) (New York: IEEE) vol I1 pp 279-84 

Sorensen H B D and Hartmann U 1994 Hybrid model decomposition of speech and noise in a radial basis function 
neural model framework Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) 

Tamura S and Nakamura M 1990 Improvements to the noise reduction neural network Proc. IEEE Int. Con$ on 
Acoustics, Speech and Signal Processing (ICASSP90) (Albuquerque, NM) pp 825-8 

Tamura S and Waibel A 1988 Noise reduction using connectionist models Proc. IEEE Int. Con$ on Acoustics, Speech 
and Signal Processing (ICASSP88) (New York) pp 553-6 

Tebelskis J and Waibel A 1993 Performance through consistency: MS-TDN”s for large vocabulary speech recognition 
Advances in Neural Information Processing Systems vol 5 (San Mateo, CA: Morgan Kaufmann) pp 696-703 

Tebelskis J, Waibel A, Petek B and Schmidbauer 0 1991 Continuous speech recognition using linked predictive neural 
networks Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP9I) (Toronto) vol 1 pp 61-4 

Thyssen J, Nielsen H and Hansen S D 1994 Nonlinear short-term prediction in speech coding Proc. IEEE Int. Con$ 
on Acoustics, Speech and Signal Processing (ICASSP94) (Adelaide) vol I pp 185-8 

Tognieri R, Alder M D and Attikiouzel Y 1992 Dimension and structure of the speech space IEE Proc. I 139 123-7 
Torkkola K 1994 LVQ as a feature transformation for HMMs Neural Networks for Signal Processing IV (Proc. I994 

IEEE Workshop (Ermioni)) (New York: IEEE) pp 299-308 
Torkkola K, Kangas J, Utela P, Kaski S, Kokkonen M, Kurimo M and Kohonen T 1991 Status report of the Finnish 

phonetic typewriter project Proc. Int. Con$ on Artijkial Neural Networks (ICANN-91) (Espoo) (Amsterdam: 
North-Holland) pp 771-6 

Torkkola K and Kokkonen M 1991 Using the topology-preserving properties of SOFMs in speech recognition Proc. 
IEEE I991 Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP91) (Toronto) 

Traber C 1992 FO generation with a database of natural FO patterns and with a neural network Talking Machines: 
Theories, Models and Designs ed G Bailly and C Benoit (Amsterdam: North-Holland) pp 287-304 

Trompf M 1992 Neural network development for noise reduction in robust speech recognition Proc. Int. Joint Con$ 
on Neural Networks (Baltimore, MD) vol IV (New York: IEEE) pp 722-7 

VOI I pp 629-32 

VOI I1 pp 657-60 

@ 1997 IOP Publishing Ltd and Oxford University F’ress Handbook ofNeural Computation release 9111 F1.7:9 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Tsoi A C, Shrimpton D, Watson B and Back A 1994 Application of artificial neural network techniques to speaker 
verification Proc. ESCA Workshop on Automatic Speaker Recognition Identification Verification (Martigny) 
(European Speech Communication Association) pp 143-52 

Waibel A, Hanazawa T, Hinton G, Shikano K and Lang K 1989a A phoneme recognition using time-delay neural 
networks IEEE Trans. Acoust. Speech Signal Processing 37 328-39 

Waibel A, Sawai H and Shikano K 1989b Consonant recognition by modular construction of large phonemic time-delay 
neural networks Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Glasgow) pp 112-5 

Wang L, Karhunen J,  Oja E and Vigario R 1995 Blind separation of sources using nonlinear PCA type leaming 
algorithms Proc. ICNNSP95 (Int. Con$ on Neural Networks and Signal Processing) (Nanjing) 

Wang 2 and Hanson J V 1993 Code-excited neural vector quantization Proc. IEEE Int. Conf: on Acoustics, Speech 
and Signal Processing (ICASSP93) (Minneapolis, MN) vol I pp 573-6 

Waterhouse S R and Robinson A J 1995 Nonlinear prediction of acoustic vectors using hierarchical mixtures of experts 
Advances in Neural Information Processing Systems vol 7 (San Mateo, CA: Morgan Kaufmann) pp 8 3 5 4 2  

Watrous R 1993 Speaker normalization and adaptation using second-order connectionist networks IEEE Trans. Neural 
Networks 4 21-30 

Watrous R and Shastri L 1987 Learning phonetic features using connectionist networks: an experiment in speech 
recognition Proc. 1st Int. Con$ on Neural Networks (San Diego, CA) vol 2 pp 619-27 

Wu L Niranjan M and Fallside F 1993 Nonlinear predictive vector quantisation with recurrent neural nets Neural 
Networks for  Speech Processing 111 (Proc. 1993 IEEE Workshop) (Linthicum, MD) (New York: IEEE) pp 372-81 

Xie F and Compemolle D V 1994 A family of MLP based nonlinear spectral estimators for noise reduction Proc. 
IEEE Int. Con& on Acoustics Speech and Signal Processing (ICASSP94) (Adelaide) vol I1 pp 53-6 

Young S 1991 Competitive training: a connectionist approach to discriminative training of hidden Markov models 
Proc. IEEE 138 61-8 

Zhao Z 1992 Integration of neural networks and hidden Markov models for continuous speech recognition Arttjicial 
Neural Networks ed I Aleksander and J Taylor (Amsterdam: North-Holland) vol I pp 779-82 

Zissman M A 1993 Automatic language identification using Gaussian mixture and hidden Markov models Proc. IEEE 
Int. Con$ on Acoustics, Speech and Signal Processing (ICASSP93) (Minneapolis, MN) vol I1 pp 399-402 

F1.7:lO Handbook of Neurul Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Amlications 

Fl.8 Signal processing 

Shawn P Day 

Abstract 

Many neural network models possess two significant properties that often allow them 
to outperform more conventional techniques in signal processing applications. Their 
ability to adapt continuously to new data allows them to track changes in a system 
over time, and their ability to learn arbitrary, nonlinear transfer functions permits them 
to solve problems that cannot be handled adequately with more conventional adaptive 
linear techniques. However, linear methods generally converge to a solution much 
faster than neural networks, and they currently have a stronger theoretical foundation 
for predicting their behavior. This section shows how neural networks can be used for 
channel equalization, signal prediction, and noise canceling tasks. 

F1.8.1 Introduction 

The area of signal processing encompasses much of what neural networks have been applied to over 
the past several years. Speech recognition, control, vision, image processing, pattern classification, data 
compression, and time-series analysis can all be viewed as signal processing applications. Most of these 
areas are thoroughly covered in other sections of the handbook, so this section will concentrate on the 
types of signal processing commonly employed in areas like communication and real-time data analysis. 

A key property of neural networks in signal processing applications is their ability to implement 
arbitrary nonlinear transfer functions. Many signal processing techniques employed in the past have 
been restricted to linear approximations of the desired solution. Conventional approaches that can handle 
nonlinear problems have typically been designed using a priori information about the problem at hand. 
Unfortunately, this type of information is not always available. Neural networks can learn to implement 
nonlinear functions without any prior knowledge about the problem domain. 

Another key property of neural networks in these applications is their ability to adapt continuously 
to incoming data, allowing them to track changes in the system over time. Conventional techniques like 
adaptive linear filtering (Widrow and Stearns 1985) can also adapt to new data, but they generally lack 
the full representational power of neural network solutions. 

The remainder of this section describes how continuous adaptation and the ability to learn nonlinear 
transfer functions make some forms of neural networks well suited to the tasks of channel equalization, 
signal prediction, and noise canceling. 

F1.8.2 Neural network approaches 

F1.8.2.1 Channel equalization 

Many communication channels have some degree of nonlinear frequency response or nonlinear phase 
response, leading to a corrupted version of the transmitted signal when it reaches the receiving end. Some 
channels (e.g. mobile radio) can even have a significant time-varying component to their transfer functions. 
In addition to the distortions caused by the channel transfer function, noise due to random sources may 
also get added to the signal during transmission. It is the goal of adaptive equalization to remove as much 
of the noise and distortion as possible to provide a clean signal at the receiving end (Quereshi 1985). 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.8:l 

Copyright © 1997 IOP Publishing Ltd



Neural Network ADDlications 

f 
/ - Equalization %t) ~ 

Network Channel x( r )  

f 

Figure F1.8.1. (a) Channel equalization. (b)  Decision feedback equalization. The network in (a) 
periodically adapts in response to a known training signal, x ( t ) ,  that is transmitted over the channel. 
If the channel transfer function does not vary significantly over short time scales, then useful data can be 
transmitted between training sessions. In (b) the transmitted signal is known to be binary, so a quantized 
version of the neural network output can be used as the ‘truth’ value for adaptation (0 is an adaptable 
threshold for the quantization). This technique works only if the initial network weights cause it to produce 
the correct output a significant fraction of the time. 

Figure F1.8.l(a) shows how a neural network can be trained to compensate for distortion in a 
communication channel. The channel imparts a distortion, and possibly an additive noise source, n ( t ) ,  on 
the input signal, x ( t ) .  The neural network takes the corrupted signal and transforms it into a new signal, 
i ( t ) ,  which is intended to be a close representation of the original signal, x ( t  - T), with some time lag, T. 
One of the most common techniques for applying neural networks to this problem is to pass the signal 
through a series of time-delay elements, and take taps off these elements as the inputs to a conventional 

c1.2 multilayer perceptron (Chen et al 1990). If the delays are each of length d, then the input to the network 
will be the set of signals x ( t ) ,  x ( t  - d), x ( t  - 2 4 ,  etc. In the absence of noise, and for certain types of 
linear channel transfer functions, the network must learn to implement the inverse of the channel transfer 
function. For most channels, however, the inverse transfer function is not optimal for reducing the error 
between f ( t )  and x ( t  - T). 

During adaptation, the difference between the output signal, i ( t ) .  and a delayed version of the input 
signal, x ( t  - T), forms an error signal, e ( t ) .  For multilayer perceptrons, the backpropagation algorithm can 
be employed to minimize e2( t ) .  As the network adapts to reduce the squared error, it learns to reproduce 
x ( t  - T) using observations of the corrupted signal up to time t .  Obviously, if x ( t  - T) were continuously 
available at the receiving end of the channel, there would be no need for the transmission. In practice, 
x ( t )  can be a prerecorded signal that is played back periodically at both ends of the channel to permit the 
network to adapt to slowly changing channel conditions. Useful data can be transmitted between these 
short periods of adaptation. 

For digital. signals, figure F1.8.l(b) shows a technique known as ‘decision-feedback’ equalization 
(Lucky 1966) which decides whether the output of the network represents a high or a low binary value 
by comparing it against an adaptable threshold. Based on the decision, the threshold and the parameters 
of the network adapt to minimize the difference between the actual output of the network and the value 
of the decision. Of course, the decision can be wrong occasionally, and the network weights will adapt 
in the wrong direction. However, by starting with an appropriate initial threshold and network weights, 
most decisions near the beginning of operation will be correct, leading to fewer wrong decisions as the 
network adapts. 

F1.8:2 Handbook of NeuraI Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Signal processing 

Adaptive linear filters (Widrow and Stearns 1985) often work well in the configurations shown in 
figure F1.8.1, but their accuracy suffers when the channel distortion is nonlinear. Recently, feedforward 
neural networks with internal time delays have been applied to channel equalization. These networks can 
be viewed as a nonlinear generalization of the adaptive linear filter. However, unlike the adaptive linear 
filter, they can implement arbitrary nonlinear transfer functions, and therefore learn to compensate for 
nonlinear channel distortions. There are many neural network models with such delays, and some of the 
most useful for signal processing applications have been described in Waibel et a1 (1989), Wan (1990), 
Lin et a1 (1992), Day (1993) and Day and Davenport (1993). Radial basisfunction networks have also ci.6.2 

been used for equalization (Chen et a1 1991, 1993), and more recently, recurrent neural networks have 
shown promise in this area (Kechriotis et a1 1994). 

Other related areas where neural networks have been successfully applied are in blind deconvolution 
(e.g. the cancellation of the effects of an unknown filter) and blind separation of sources (Jutten and Herault 
1991, Bell and Sejnowski 1995), where a mixture of several signals must be separated into its constituent 
parts. 

F1.8.2.2 Signal prediction 

Accurate predictions about future values of a signal can be useful in many engineering applications. Often, 
the process generating the signal is either completely unknown or far too complex to permit a practical 
predictive model, leaving only the observed behavior of the system for use in making predictions. 

Slave $(t+T) 
Network 

/ COPY I 
Weights 1 

I 

Prediction 
Network 

I /  I 

Figure F1.8.2. (a) Signal prediction with a slave network. (b) Signal prediction with a single network. 
In (a) the leaming network adapts to predict x ( t )  by using a delayed version of x ( t )  as its input, and the 
present value of x ( r )  as its desired output. A slave network, whose weights are continuously copied from 
the leaming network, performs a true prediction by using the present value of x ( t )  as its input. In (b), the 
delay is placed at the output of the network, and the network adapts to reproduce x ( t )  at the output of the 
delay element. A tap taken before the delay element produces a prediction of x ( t ) ,  T time units into the 
future. In this diagram, x ( t )  is the input signal, and f ( t )  is the reproduced signal. 

0 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 9711 F1.8:3 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Figure F1.8.2(a) shows one method for training an adaptive network to predict a signal T time units 
into the future. The same types of neural network topologies and training techniques used for channel 
equalization can be employed here as well. The delay, T, at the input allows the undelayed signal, x ( t ) ,  to 
be used as the target during training. Minimizing the squared error, e2( t ) ,  by adapting the weights causes 
the network to 'predict' the current value of the input signal based on its values up to time t - T .  This 
configuration is often used in time-series prediction tasks. For real-time prediction, a second 'slave' copy 
of the network can use the undelayed input signal and a copy of the weights from the learning network to 
provide a true prediction T time units into the future. The weights must be continuously copied from the 
learning network to the slave network. 

Unfortunately, the slave network may require additional hardware, and the continuous weight copying 
presents a high-bandwidth communication problem between the two networks. Figure F1.8.2(b) shows 
another technique, where the delay has been moved to the output of the network. As the network adapts 
to minimize the difference between i ( t )  and x ( t ) ,  the tap taken off before the fixed delay will provide 
a true future prediction of x ( t  + T ) .  To adapt through the time delay, the temporal training techniques 
described in Wan (1990), Lin er a1 (1992), Day et al (1992), and Day and Davenport (1993) can be used. 

FI.8.2.3 Noise canceling 

Another interesting application of neural networks is in the area of adaptive noise canceling. Adaptive 
noise cancellation received much attention in the late 1960s (Widrow et a1 1975), primarily using adaptive 
linear filters. 

Figure F1.8.3 shows the system configuration. Once again, the same types of networks used for 
channel equalization can be employed in noise canceling applications. The input is a signal, s ( t ) ,  with 
uncorrelated additive noise, n(t) .  The output from the neural network is subtracted from the corrupted 
signal in an attempt to remove the noise. If the output of the network is identical to the additive noise, 
then the output from the system will be the noise-free signal. 

For the neural network to learn to reproduce the noise, its input must be correlated with the noise 
in a way that permits its reconstruction. Qpically, a localized noise source will generate noise that gets 
coupled into the communication channel and added to the signal, and that also propagates through another 
path to a sensor that can be used as a reference noise source. The relationship between the noise added to 
the signal and the reference noise source may be unknown, and possibly time-varying or nonlinear. It is 
the task of the adaptive neural network to learn the mapping between the reference noise source and the 
unwanted additive noise. 

If all the signals involved are statistically stationary and have zero means, then minimizing the power 
will maximize the output signal-to-noise ratio (Widrow et al 1975). Thus, the system 
can be used as the error signal which the adaptive noise canceler learns to minimize. 

in the system output 
output power, e 2 ( t ) ,  

l F 1  

Figure F1.83. Adaptive noise cancellation. The input to the adaptive system is a signal, s ( t ) ,  with additive 
noise, n(t ) .  A noise source generates n ( t )  by coupling into the communication channel with an unknown, 
and possibly time-varying transfer function, F ( t ) .  The noise source can also be observed via a sensor with 
transfer function G ( t ) .  The noise picked up by the sensor is correlated with n ( t ) ,  but the exact relationship 
is unknown and often time-varying. The network attempts to reproduce n ( t )  by learning to implement 
F ( G - ' ( t ) ) .  

F1.8:4 H Q ~ O O ~  of "mi Computation release wi1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Signal processing 

Much of the early work in adaptive noise canceling employed adaptive linear filters, but more general 
nonlinear neural network models can be more effective when the mapping between the reference noise 
source and the additive noise is nonlinear. A recent tutorial on the use of neural networks for adaptive 
noise cancellation (among other applications) was presented in PichB (1994). In addition to adaptive 
noise cancellation, neural networks can also be used for active noise cancellation, where the output of 
the network is a signal that is out of phase with the original noise. When injected back into the original 
system via an appropriate transducer, this synthesized noise can cancel out the undesired noise through 
destructive interference. 

F1.8.3 Alternative approaches 

This brief introduction to the use of neural networks in signal processing applications has shown how they 
can be applied to problems in channel equalization, signal prediction, and noise canceling. The ability 
of multilayer neural networks to learn nonlinear mappings is mediated by the fact that they often take 
much longer to converge to a solution than conventional linear techniques. In nearly all of the applications 
described in this section, the neural network can be replaced with an adaptive linear filter (Widrow and 
Steams 1985), which will usually converge much faster at the expense of reduced representational capacity. 
In fact, the techniques presented here were first investigated using adaptive linear filters, and only recently 
have neural networks been substituted for them in applications where a linear approximation to the solution 
is not acceptable. 

Two early papers describing linear techniques for adaptive channel equalization are Lucky (1966) and 
Gersho (1969). Much of the subsequent work in this area has been concerned with increasing the speed 
of convergence of these adaptive filters, using techniques like the Kalman estimation algorithm (Falconer 
and Ljung 1978) and least-squares lattice algorithms (Satorius and Pack 1981). An excellent tutorial on 
linear techniques for signal prediction was presented in Makhoul (1975). A more recent investigation of 
the performance of linear adaptive filters was given in Zeidler (1990), and Widrow and Stearns (1985) is 
a good introductory text on the subject. 

Nonlinear techniques based on polynomial approximations of unknown functions have also been 
investigated, starting in the early 1960s (Gabor et a1 1961). Unfortunately, many nonlinear functions 
require high-order polynomials which do not interpolate well to data points between those encountered 
during adaptation. Related techniques rely on the Volterra series expansion of the nonlinear function 
(Biglieri et a1 1984, Falconer 1978). 

Probably the best approach to many signal processing problems is to use an adaptive linear filter 
whenever possible, because of its fast convergence and the large body of accumulated knowledge that can 
help predict its behavior. However, when linear techniques cannot provide a sufficiently accurate solution, 
adaptive nonlinear neural networks offer a promising alternative. 

References 

Bell A J and Sejnowski T J 1995 An information maximisation approach to blind separation and blind deconvolution, 
Technical report no INC-9501, Institute for Neural Computation, UCSD, San Diego, CA (to appear in Neural 
Computation) 

Biglieri E, Gersho A, Gitlin R D and Lim T L 1984 Adaptive cancellation of nonlinear intersymbol interference for 
voiceband data transmission IEEE J. Sel. Areas Commun. 2 765-77 

Chen S ,  Gibson G J, Cowan C F N and Grant P M 1990 Adaptive equalization of finite nonlinear channels using 
multilayer perceptrons Signal Proc. 20 107-19 

-1991 Reconstruction of binary signals using an adaptive radial-basis-function equalizer Signal Proc. 22 77-93 
Chen S ,  Mulgrew B and Grant P M 1993 A clustering technique for digital communications channel equalization 

using radial basis function networks IEEE Trans. Neural Networks 4 570-79 
Day S P 1993 Dispersive neural networks for adaptive signal processing PhD Dissertation University of British 

Columbia, Vancouver, Canada 
Day S P and Davenport M R 1993 Continuous-time temporal back-propagation with adaptable time delays IEEE 

Trans. Neural Networks 4 348-54 
Day S P and Davenport M R and Camporese D S 1992 Dispersive networks for nonlinear adaptive filtering Neural 

Networks for Signal Processing 11-Proc. 1992 IEEE Workshop ed S Y Kung, F Fallside, J Aa Sorenson and C 
A Kamm (Piscataway, NJ: IEEE) pp 540-49 

Falconer D D 1978 Adaptive equalization of channel nonlinearities in QAM data transmission systems Bell Syst. Tech. 
J. 57 2589-61 1 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Computation release 9711 F1.8~5 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Falconer D D and Ljung L 1978 Application of fast Kalman estimation to adaptive equalization IEEE Trans. Commun. 

Gabor D, Wilby W P L and Woodcock R 1961 A universal nonlinear filter, predictor and simulator which optimizes 

Gersho A 1969 Adaptive equalization of highly dispersive channels for data transmission Bell Syst. Tech. J. 48 55-70 
Jutten C and Herault J 1991 Blind separation of sources part I: an adaptive algorithm based on neuromimetic architecture 

Signal Proc. 24 1-10 
Kechriotis G, Zervas E and Manolakos E S 1994 Using recurrent neural networks for adaptive communication channel 

equalization IEEE Trans. Neural Networks 5 267-78 
Lin D-T, Dayhoff J E and Ligomenides P A 1992 Adaptive time-delay neural network for temporal correlation and 

prediction SPIE Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3 - 0  Methods 1826 
pp 170-81, Boston 

Lucky R W 1966 Techniques for adaptive equalization of digital communication systems Bell Syst. Tech. J. 45 255-86 
Makhoul J 1975 Linear prediction: a tutorial review Proc. IEEE 63 561-80 
PichC S W 1994 Steepest descent algorithms for neural network controllers and filters IEEE Trans. Neural Networks 

Quereshi S 1985 Adaptive equalization Proc. IEEE 73 1349-87 
Satorius E H and Pack J D 1981 Application of least squares lattice algorithms to adaptive equalization IEEE Trans. 

Waibel A, Hanazawa T, Hinton G and Shikano K and Lang K 1989 Phoneme recognition using time-delay neural 

Wan E A 1990 Temporal backpropagation for FIR neural networks Int. Joint Con$ on Neural Networks I (San Diego, 

Widrow B, Glover J R Jr, McCool J M, Kaunitz J, Williams C S ,  Heam R H, Zeidler J R, Dong E Jr and Goodlin R C 

Widrow B and Steams S D 1985 Adaptive Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 
Zeidler J R 1990 Performance analysis of LMS adaptive prediction filters Proc. IEEE 78 1780-806 

26 1439-46 

itself by a learning process IEEE Proc. B 108 422-38 

5 198-212 

Commun. 29 136-42 

networks IEEE Trans. Acoustics, Speech, Signal Proc. 37 328-39 

CA) pp 575-80 

1975 Adaptive noise cancelling: principles and applications Proc. IEEE 63 1692-71 6 

Further reading 

Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: Maxwell Macmillan) 

A good introduction to the theory and application of neural networks, with several examples relating to signal 
processing applications. 

Kosko B 1992 Neural Networks for Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 

Discusses the application of neural networks to signal processing problems such as speech recognition, spectral 
estimation, and robotics, and discusses the implementation of neural networks using analog VLSI technology 
and optical devices. 

Masters T 1994 Signal and Image Processing with Neural Networks: A C++ Sourcebook (New York: Wiley) 

Explores signal and image processing techniques using complex-domain neural networks. Includes software on 
disk. 

F1.8:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.9 Control 

Paul J Werbost 

Abstract 

Neurocontrol is a subset of the larger field of control theory, which designs systems 
for a broad spectrum of applications, ranging from simple regulators (like thermostats 
or muscle neurons) to optimal decision-making in complex environments (as in the 
brain as a whole system). Neurocontrol, like classical control and artificial intelligence, 
includes general designs for three basic types of task: cloning, tracking and optimization. 
Neural cloning systems copy the input-output behavior of human experts or automatic 
controllers. Tracking systems may be regulators, or systems to make a robot arm follow 
(track) a desired path in space, etc. Optimization over time may be used to solve 
tracking problems, with improved stability, or to solve planning problems which require 
real intelligence. This section compares the practical advantages and disadvantages of 
a wide variety of control designs, neural and otherwise, ranging from simple regulators 
through to designs which begin to provide an explanation of intelligence in brain circuits. 

F1.9.1 Overview 

Control theory encompasses any system whose outputs control or recommend overt, physical actions, 
like movements of motors, muscles or dollars. Neurocontrol-a subset of control theory-offers the 
cost, learning and simplicity advantages discussed in Chapter A2, plus specific new capabilities in three ~2 
areas-cloning, tracking and optimization-plus methods to blend multiple capabilities. 

Conventional artificial intelligence or fuzzy control ‘clones’ experts by implementing what the experts 
say in a database of rules. Neural networks can imitate what experts do as a function of sensor inputs and 
past information. Similarly, they can clone the input-output behavior of existing automatic controllers; 
this may not improve controller performance, but it may allow a vast reduction in implementation cost, 
for example, by permitting the use of high-throughput neural chips in place of large computers. 

Conventional adaptive control maintains a desired set point or tracks a reference model, using direct or 
indirect (i.e. model-based) designs. (For example, a thermostat tracks or maintains a desired temperature.) 
Neural adaptive control does likewise, but offers: (i) generalized nonlinearity and (ii) the ability to learn 
the parameters of the adaptation process itself, thereby permitting rapid response to changes in familiar 
variables such as center of gravity, mass and friction. Many stability theorems exist for conventional and 
neural adaptive control, but delays or sign changes over time easily destabilize both; however, designs 
based on optimization over time can overcome such instabilities. 

If a system can learn to maximize any arbitrary utility function summed over future time in an 
arbitrary environment, then logically it should automatically have the ability to ‘plan’, to solve problems, 
etc. The field of neurocontrol includes designs which enhance conventional deterministic optimization 
methods, like calculus of variations or model-predictive control. It also includes designs which approximate 
dynamic programming and promise truly brain-like capabilities. Critical applications include, among 
others, minimizing fuel consumption, pollution or product loss in the chemical process, automotive and 
aerospace industries. 

t The views presented in this section are those of the author, and are not necessarily those of the National Science Foundation. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 9711 F1.9: 1 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.9.2 The problem domain 

The field of control encompasses a vast and heterogeneous collection of applications, designs and 
fundamental theory. Some historians claim that the field began in earnest when James Watt developed 
a very elaborate feedback control mechanism to keep a steam engine within its operating range. The 
simple thermostat-a feedback mechanism designed to keep temperature close to a desired set-point (a 
point set by the consumer)-served as a dominant paradigm in the early days of the field. As the field 
developed, it focused more and more on two fundamental design challenges, which permeate a wide variety 
of application domains: 
0 The challenge of tracking-making systems settle down into a fixed desired set-point, or into a moving 

set-point (a desired trajectory or a ‘reference model’). 
0 The challenge of optimization over time-finding a strategy or policy which maximizes the sum 

of some utility function over future time (Von Neumann and Morgenstern 1953, Raiffa 1968). 
Utility functions can be formulated which represent a wide variety of concepts-maximizing profit, 
minimizing cost, pollution or energy use, maximizing throughput, maximizing satisfaction of particular 
long-term goals, etc. In principle, the user formulates the utility function (Werbos 1990a); the control 
system only maximizes it. (In some designs, the system or the control engineer must devise a kind 
of secondary utility function, as will be discussed.) 

Furthermore, success in these tasks often depends on one’s ability to model or predict the environment or 
plant that one is trying to control; therefore, research into ‘system identification’ (Ljung 1987) and ‘system 
dynamics’ (Peterson 1991) has become a large part of the control field. 

As the field evolved, it became apparent that engineers and economists were both studying different 
applications of the same underlying mathematical challenges. Therefore, these groups came together in 
large conferences and university programs on ‘decision and control’. It also became apparent that control 
was a central issue both in engineering and in biology (Wiener 1961). Wiener’s term ‘cybernetics’ was 
perhaps a better name for this field than ‘control’, but the word lost favor in the United States several 
decades ago because of its popularization and misuse by enthusiasts and consultants who were ignorant of 
the underlying mathematics. Despite the semantic problems, the field of decision and control began, by 
1970, to view itself as a unified approach to all problems involving the design or understanding of systems 
which output ‘control signals’-signals to control or recommend actions such as the movement of motors 
or muscles or levels of investment. 

Note that the human brain itself is a ‘control system’ in this broad sense. The entire brain-not just 
the ‘motor centers’-is part of a unified computing system, whose purpose is to calculate control signals- 
signals to control muscles or glands. (Many would argue that there are other, more spiritual purposes 
of the brain; however, even that does not invalidate this paradigm, see Levine and Elsberry (1996).) In 
describing the wiring of this system, Nauta and Feirtag (1986) have shown very concretely how futile and 
misleading it is to try to separate out the parts of the brain which support motor control and those which 
do not; they all do. 

Circa 1970, the emerging field of artificial intelligence (AI) challenged the existing paradigms of 
control theory, by suggesting alternative ways to solve control problems, most notably the following: 
0 To optimize goal-satisfaction over time; formal task-oriented planning designs will sometimes work 

on problems that are too nonlinear and too complex to respond to conventional control techniques 
(Miller et a1 1990). Typically, such designs involve complex hierarchies of discrete goals, subgoals, 
tasks, subtasks and so on (Albus 1991). 
As an alternative to tracking and optimization, one may simply ‘clone’ a human expert. One may 
ask a human expert for if-then rules which state how to perform a complex decision or control task. 

0 

F1.9.3 Functions performed by neural networks in control 

The field of neurocontrol includes generic designs to perform all three fundamental tasks described above- 
cloning, tracking and optimization over time. These designs are generic in the sense that a single computer 
program could be used, in principle, on a wide variety of applications, without changing anything but a 
few parameters like the number of inputs and outputs; the other differences between applications could be 
handled by the program itself, as it learns the dynamics of the plant or environment it is trying to control. 
Thus the underlying program or design is not application specific. (There are, however, a variety of tricks 
for exploiting whatever application-specific information may be available.) 

F1.9:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Control 

Neural networks can also be used to perform subordinate tasks-such as pattern recognition, sensor ~ 1 . 2  

fusion, diagnostics and system identification-within a larger control system; however, in neurocontrol ~ 2 . 7 ,  ~ 2 . 9  

proper, the actual control signals are output directly from a neural network. (See Werbos (1989) and 
Miller et a1 (1990) for the first published definition of neurocontrol; the latter book was the result of the 
1988 National Science Foundation conference which essentially created neurocontrol in the United States 
as an organized, self-conscious field.) This section will focus mainly on neurocontrol proper. 

This definition does not exclude the possibility of using a fixed, nonadaptive postprocessor to provide 
a buffer between the decisions of the neural network and the low-level actuators. For example, many 
people have used standard neurocontrol designs to output ‘actions’ which set the parameters of a simple 
classical PID controller, which, in turn, controls an industrial plant. This is similar to what the human 
nervous system does, in using signals from the brain as inputs to low-level ‘spindle cells’ and ‘gamma 
efferents’ which provide low-level feedback control of human muscles. 

Unlike AI, neurocontrol is logically a subset of control theory. The basic designs now used in 
neurocontrol can all be understood completely within the broad framework of control theory. Nevertheless, 
there is significant novelty in these designs. For example, classical control theory included only two popular 
methods to perform optimization over time in a noisy (stochastic) environment: (i) linear-quadratic (LQ) 
methods (Bryson and Ho 1969); (ii) dynamic programming (Howard 1960). Neither was suitable for 
solving complex planning problems, because the first required linearity, and the second was computationally 
infeasible for problems with many possible states. Neurocontrol contains new methods for approximate 
dynamic programming (ADP) which overcome both problems, and provide an alternative to the more rigid 
rule-based methods used in AI planning. Useful designs for reinforcement learning-described in Chapter 
A2 of this handbook-are a special case of ADP. Simple forms of reinforcement learning, developed in 
a neurocontrol context, have been widely popularized and reassimilated into the AI field, largely through 
the efforts of Andrew Barto and collaborators (See chapters by Barto in Miller et a1 1990 and in White 
and Sofge 1992). Tesauro at IBM has demonstrated that such designs can be very effective in solving 
classical, difficult AI problems such as beating human beings in board games like backgammon. 

Complex neurocontrol designs typically do not consist of a single neural network. Typically, they 
consist of a higher-level recipe for how to combine several neural networks (and/or non-neural networks) 
to perform a higher-level task. Usually, there is at least one module in the design which can be filled in 
by any supervised learning design. Successful research teams usually begin by implementing very simple 
designs, of limited power, in a modular software system. Then, when the simple designs fail on harder 
problems, they gradually enhance their software system, and progress to more sophisticated, optimization- 
based designs. They usually make it easy to switch the choices of supervised learning methods used in 
the various component modules, so as to accommodate different types of applications. 

There are some applications in the control field which are even more difficult than the previous 
paragraph suggests. For example, consider the problem of balancing three poles, one on top of the other, 
like a team of acrobats in a circus. There is probably no neural network system which could learn to 
perform this task, starting from zero prior information. Logically, this is an example of the ‘local minimum’ 
problem. 

Local minimum problems are far more serious, in practice, in complex decision and control tasks than 
in applications like pattern recognition. Random search techniques like genetic algorithms can be useful ~ 2 . 1  

in small problems of this sort. But for large problems, the most valuable technique by far is something 
which Barto calls ‘shaping’ (White and Sofge 1992). In shaping, one first adapts an entire neural network 
system to solve a simplified version of the task at hand. One then uses the resulting network and weights 
as the initial values of a network trained to solve a more realistic version of the task. One may construct 
a graded series of tasks, ranging from the easiest through to the most realistic, and adapt a series of neural 
systems to solve them. In a similar fashion, one may initialize a neural network with a fuuy  controller, ~i 

and so on (Werbos 1993a). One may use cloning techniques, at an early stage, to stabilize a system, and 
then use optimization at a later stage to improve performance while retaining stability. The parallels with 
human learning are many. (In practice, shaping requires the use of flexible learning rules, such as the 
adaptive learning rate given in Chapter 3 of White and Sofge (1992), to avoid locking in a new network 
to the old problem.) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.93 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

F1.9.4 Neural network approaches 

F1.9.4.1 Neural network approaches to cloning experts 

Probably the first example of neurocontrol actually working in simulation was the original broom balancer 
developed by Widrow in the 1960s (Widrow 1987). Widrow’s approach has been reinvented many times 
in the past decade, in part because it seems very obvious to people who know nothing about control theory. 

Widrow began by training human students to balance a broom. Then he recorded how the humans 
did it. At each sampling time, for each student, he recorded two things: (ij what the student saw (the state 
of the broom); (ii) what the student did (the correct action). He built a database or ‘training set’ out of 
these records. He then trained a simple neural network to learn the mapping from what the student saw to 
what the student did. This was a straightforward application of supervised learning. This particular work 
was later refined by Guez and Selinsky (1988). 

Most of the people reinventing this approach did not place great emphasis on the human expert. They 
simply reported that they had trained a neural network to input sensor data and to output the correct control 
action. Clearly, the performance of this approach depends critically on how one constructs the database 
containing the ‘correct actions’, This must unavoidably come from some other existing controller-either 
a human expert, or an animal expert or a computer program. 

High-quality human operators of chemical plants or high-performance aircraft typically do not base 
their actions solely on sensor data at the current time. Like good automatic controllers, they typically 
account for things like trends, or experience over multiple time periods, or a sense of how the underlying 
system parameters are changing. Therefore, one cannot capture their expertise in a static supervised 
learning exercise. A better approach to cloning is to treat it as a task in dynamic modeling or system 
identification. As McAvoy has said, it is an exercise in ‘modeling the human operator’ (White and Sofge 
1992). The first step in this approach is to collect a time series of what the expert sees and what the expert 
does; then, one may simply apply neuroidentification techniques to build a model of this data-using more 
difficult and more advanced techniques (White and Sofge 1992, Chapter 10) only if the simpler ones do 
not perform well enough. 

An instructive example of this approach came from the Accurate Automation Corporation (AAC) 
circa 1992. AAC proposed that optimizing neurocontrol could be used to solve the critical efficiency and 
weight problems in controlling the National Aerospace Plane (NASP), a prototype under design for a future 
airplane fast enough to reach earth orbit as an airplane, at airplane-like costs. Before exploring the neural 
option, the NASP program office first challenged AAC to prove that it could even stabilize this craft-a 
highly nontrivial, nonlinear control problem, for which the conventional solution had required a great deal 
of development work. AAC first built a simple but credible simulation of the vehicle, running on a Silicon 
Graphics machine, at a slowed-down rate so that humans could stabilize the simulation. AAC recorded the 
vehicle states and human actions for those few humans able to control the simulation. Then they modeled 
the human response pattern, using a simple time-delay neural network to perform the neuroidentification. 
The result-within just a few weeks-was a well-defined algorithm, able to perform at electronic speeds. 
The resulting neural network was also suitable for use as the initial state of a network to be improved 
on, later, via optimization designs. Because of this and later successes, AAC is now the prime contractor 
on the follow-up to NASP (LoFlyte), and is currently flight-testing a physical prototype which they have 
built. 

Another, more proprietary example from the robotics industry is also interesting. In 1994, a major 
corporation considered using neural networks to replace human workers in a very difficult process which 
had resisted conventional techniques. They did not know where the real problem was-in the robots 
themselves, or in the computer programs, or whatever. I proposed that they begin with a kind of ‘virtual 
reality’ exercise4quipping human beings with visual displays showing only what the robot would see 
and dressing them up in data gloves to directly control the robot arms. Naturally, the humans would be 
permitted to take their time, and would be rewarded if successful. The virtual reality approach would not 
be of direct economic benefit here, because it would not reduce labor costs. However, it would make it 
possible to test whether the given sensors and actuators might be good enough, in principle. If the exercise 
were in fact successful, one might then simply ‘clone’ the successful operators based on data recorded 
during this exercise. (In other kinds of plants, such as big chemical plants or electric utilities, there is 
often enough data recorded already to permit cloning without such a special exercise.) 

The two-step strategy of cloning followed by improvement does have a crude analogy to what happens 
in human learning. The phenomenon of imitation is amazingly pervasive in early learning by human beings 

F1.9:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



in natural settings. Nevertheless, the phenomenon of imitation in human children is far more complex and 
subtle than the cloning approaches described above. I would speculate that it involves new, higher-order 
capabilities which can only be understood at the most advanced level (see Chapter 10 of Werbos 1994). 

F1.9.4.2 Neural network approaches to tracking 

There are two main approaches to solving tracking problems, both in classical adaptive control and in 
neurocontrol: the ‘direct’ approach, and the ‘indirect’ approach. In the direct approach, one tries to learn 
the mapping from the location of the plant back to the actuator settings which could move the plant to that 
location. In the indirect approach, one constructs a model of the plant (e.g. by using neuroidentification) 
and one then uses optimization techniques to train a neural network to minimize the tracking error. 

Robot arm control is the classic paradigm of the direct approach. Suppose that the location of your 
robot hand is specified by three spatial coordinates-xl , x2 and x3 ,  forming a three-dimensional vector z. 
Suppose that you control three joint angles in the robot arm-131, 192 and 63, forming a vector 8. Then we 
would expect z to be a function f of 8. However, if the function f is a one-to-one invertible function, 
then 8 is also a function f-’ of z. Our goal, in tracking, is to calculate the joint angles 8” which would 
move the robot hand to some desired location in space, 2”. To solve this problem, we can simply train a 
neural network to approximate the function f-’ . We can do this simply by moving the robot arm around, 
and recording actual values of z and 8, and training the neural network to learn the mapping from z to 8. 
Any supervised learning design can be used to learn this mapping. 

The first working example of direct neural adaptive control was a physical robot developed by 
Kuperstein (1988). Kuperstein used a very elaborate, fixed, biologically based preprocessor as his neural 
network, topped off by a simple adaptive output layer trained by Widrow’s LMS algorithm. Kuperstein’s ~ 3 . 3 . 3  
tracking error was approximately 3%-enough to be interesting scientifically, but not enough to be useful 
in practice. Miller (Miller et a1 1990) later used a similar approach, but with a CMAC network augmented 
by time- delayed inputs. In other words, Miller treated this as a problem in neuroidentification, rather than 
a problem in static supervised learning. This led to tracking errors of less than 0.1%. Miller produced 
an impressive video of his robot arm, pushing an unstable cart around a figure-of-eight track with great 
accuracy. Even after he put a heavy new weight on the cart, it would re-adapt and return to high accuracy 
within three trips around the track. Similar accuracies have been achieved by a few researchers using 
static supervised learning, but not with this real-time readaptation capability. 

One disadvantage of Miller’s approach is that it uses real-time learning to adapt to simple, routine 
changes like changes in mass. Whenever the mass or the friction change, the network acts as if it is learning 
a totally new problem, unrelated to anything experienced before. This is similar to the behavior of primitive 
organisms when confronted with pattern reversals (Bitterman 1965). Werbos (1990b) proposed a different 
approach: to use a time-lagged recurrent network (TLRN) here. If powerful enough neuroidentification 
methods were used, then the recurrent nodes themselves should learn to detect changes in familiar variables 
like mass and friction, so long as these variables do, in fact, vary during the training period. This kind 
of detection-tuned to specific variables and exploiting past experience-should be much more rapid than 
real-time learning. We could even use this approach to build systems which ‘learn offline to be adaptive 
online’. To my knowledge, no one has applied this approach, as yet, to direct tracking designs; however, 
Feldkamp of Ford Motor (in Narendra 1994) reports great success with this general approach, plus a few 
additional features, which he calls ‘multistreaming’ , applied to model-based designs. 

An advantage of real-time methods, like Miller’s, is the ability to cope with unfamiliar, fundamental 
structural changes in the plant to be controlled. It is possible to combine real-time learning with TLRNs 
in an efficient way, but no one has done this yet, to my knowledge (see Chapter 13 of White and Sofge 
1992). 

Indirect tracking designs are more complicated than direct designs, but also more powerful. There 
is no need to assume that f is a one-to-one function. Direct designs have been developed which do not 
become invalid when the number of controls (components of 8 )  exceed the number of state variables 
(5); however, they generally waste the additional degrees of freedom. Indirect designs can make good 
use of such additional controls, especially if they are adapted to minimize a sum of tracking error plus 
some measure of jerkiness or energy consumption (see Kawato in Miller et a1 1990). In the US, classical 
adaptive control is dominated by the indirect approach, in part because of the well known work of Narendra 
(Narendra and Annaswamy 1989). The same is true of neural adaptive control. (See the papers by Narendra 
in Miller et a1 1990, in White and Sofge 1992, Narendra 1994.) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.9:5 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Most of the neural tracking systems in the literature today are indirect systems which fit the following 
general description. At every time t ,  there are M sensor inputs X , ( t ) ,  . . . , X M ( ~ ) ,  forming a vector X. 
The desired set-point or trajectory can be represented, for all practical purposes, as a set of desired values 
Xf( t ) ,  . . . , X & ( t )  for the first m components of X ;  they form a vector z (usually m = M ,  but not 
always). The control signals at time t form a vector ~ ( t ) .  Sometimes the neural system is represented as 
a time-sampled system (proceeding from time t to t + 1 to t + 2, etc) and sometimes (as in Narendra’s 
case) it is represented in terms of ordinary differential equations (ODES). The neural system consists of 
three components: (i) a function v ( X ,  z*) representing tracking error-usually just a square error; (ii) a 
model of the plant-either a neural network or a first-principles model-which predicts changes in X as 
a function of X and U ;  (iii) an action network (or ‘controller’) which inputs X ( t ) ,  z*(t) and (in many 
cases) other information from the model network, and outputs u(t). 

In true adaptive control, the model network and the action network are both adapted in real time. 
The model network is usually adapted by one of the neuroidentification methods described by Narendra. 
The action network is adapted so as to minimize v in the immediate future; this is done by using some 
form of backpropagation and adapting the weights in the action network in proportion to the derivatives 
of U. (Werbos (1994) and White and Sofge (1992) explain these forms of backpropagation, which predate 
the simplified versions popularized in the 1980s.) This is a straightforward generalization of classical 
adaptive control, where the model and action networks are usually just matrices (section F1.9.5 discusses 
exceptions). 

When the plant to be controlled is truly linear, or when it stays so close to a desired set-point that 
it can be treated as linear, then conventional adaptive control can perform just as well as the neural 
version. The latter tends to stabilize nonlinear plants more effectively, but stability is harder to prove 
in the nonlinear case. Many stability theorems have been proved both for classical adaptive control and 
for neural adaptive control; however, all of these theorems involve stringent assumptions which are often 
violated in practical applications. The problem for practical applications here is not that the mathematics 
is hard (though it is) or that we need more theorems (though we do). The problem is that all forms of 
adaptive control can become unstable in practical applications, either when learning rates are too high or 
when effects like deadtimes or sign reversals exist. 

The underlying problem with deadtimes and sign reversals is that actions which reduce tracking error 
in the immediate future (or which have no immediate effect) may actually result in greater error over 
time. We can call this the problem of ‘myopia’. Myopia is a central issue in many control problems. 
For example, consider the problem of deciding how many fish to harvest, so as to maximize long-term 
profits. The myopic strategy is simply to harvest the largest possible number of fish, using all the boats 
and networks available, in order to maximize profits in the immediate future. However, this strategy could 
actually wipe out the fish population, and zero out profits in future years. The bioreactor benchmark 
problem in Miller et a1 (1990) exemplifies this issue; it is an excellent first test for neurocontrol designs. 
This test has been passed by designs which explicitly perform optimization over time (Prokhorov et a1 
1995). When classical adaptive control led to unstable results in the chemical industry, in the 1970s, the 
industry moved towards model-predictive control-an explicit design for optimization over time-which 
is now a mainstay of the industry. 

Strictly speaking, there is reason to believe that neural adaptive controllers could be devised which 
could stabilize almost any plant which can, in fact, be stabilized. The challenge lies in finding a loss 
function u ( X ,  2, etc) which is appropriate for the particular plant. It can be extremely difficult to find 
good enough loss functions simply by ‘guessing’; however, several approximate dynamic programming 
(ADP) designs can be used to lean the optimal function v for specific plants (see Chapter 2 in Pribram 
1994). The Wunsch-Prokhorov work can be interpreted in this way. This is a difficult but promising area 
for future research. Prokhorov and Wunsch (1996) have developed some preliminary stability theorems 
for a hybrid optimal control scheme, in which an ADP design acts as a kind of supervisor, sending value 
signals to a lower-level classical linear controller. 

In addition to the usual direct and indirect designs, several alternative arrangements have been 
tried. Probably the most important is the use of a neural network to estimate the current parameters 
of the plant to be controlled, followed by use of a controller-neural or non-neural-which inputs these 
estimates. Lapedes and Farber, and Farrell (White and Sofge 1992) used this approach previously. Urnes 
of McDonnell-Douglas is using this approach for a Phase I reconfigurable flight control system, which 
helps F-15s to recover from ‘involuntary configuration changes’ (like being hit in combat). This approach 
has some of the same advantages as ‘learning offline to be adaptive online’, if the controller is properly 

F1.9~6 Handbook of Neural Computafion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Control 

designed. Offline training also simplifies the process of flight qualification-the rigorous testing process 
by which new aircraft and aircraft controllers are certified as reliable enough to permit their routine use, 
with human lives at stake. C Jorgensen of NASA Ames has stated that NASA flight testers have certified 
a neural network controller (trained offline) which was recently used to land a huge MD-11 aircraft with 
all of its hydraulic actuators disabled. 

Also significant is Kawato’s feedback error learning (Miller et a1 1990), which is really just a way to 
blend a classical feedback controller with a neural network. It is formally equivalent to a particular ADP 
design (DHP) with the critic network hard-wired in advance. Less interesting are ‘model-free’ indirect 
designs which, instead of a model network or matrix, use a kind of correlation matrix, explicitly or 
implicitly; such designs are not truly model-free, because the correlation matrix (or equivalent) is simply 
a naive form of plant model. 

F1.9.4.3 Neural networks f o r  optimization over time 

Optimization over time accounts for a smaller share of the published academic literature on neurocontrol 
than do cloning or basic tracking designs. However, it probably accounts for the bulk of the dollar value 
of neurocontrol products actually working in industry. In some cases, optimization over time is used to 
minimize tracking error plus some measure of cost, accounting for linkages over time. There is reason to 
believe that the human brain itself is a member of this family of designs (Pribram 1994, Chapter 31). 

There are two major approaches to optimization over time: (i) the explicit approach, involving a 
backpropagation of utility; (ii) an implicit approach, based on approximate dynamic programming (ADP). 

The explicit approach is similar to indirect adaptive control, discussed in the previous section. The 
control system usually consists of a model (neural or non-neural), a utility function U(X), and an action 
network. The main difference is that we pick actions U ( ? )  so as to maximize the sum of U ( X ( r ) )  over 
future times r 2 t .  To do this, we must choose between two forms of backpropagation: (i) backpropagation 
through time (BTT), a method which I first implemented in 1974 (Werbos 1994) and (ii) a forwards 
propagation of derivatives. BTT is exact and efficient, like simple backpropagation, but-because it uses 
calculations which proceed backwards through time through an explicit record of past experience-it is not 
even remotely plausible as a model of biology. The latter operates in a more real-time mode, but the cost 
of calculating derivatives is proportional to m N ,  where N is the number of neurons in the network and m 
is the total number of weights; this, too, is biologically implausible, because the cost rises substantially 
with the size of the network, and the calculations do not even remotely resemble anything found in the 
brain. 

By 1988, there were already four working examples of explicit optimization based on BTT: Widrow’s 
truck-backer-upper, the simulated robot arm controllers of Kawato and of Jordan, and an official (nonneural) 
Department of Energy model of the natural gas industry, which the author had previously developed 
(Miller et a1 1990). In recent years, Widrow’s system has demonstrated ever more interesting capabilities, 
outperforming human experts both on simulated trucks and on a physical model of a two-trailer truck. 
Hrycej (1992) of Daimler-Benz and Feldkamp of Ford (in Narendra 1994) have reported many important 
applications, some of them leading to proprietary products still in the pipeline. McAvoy used this approach 
in a nonlinear generalization of model predictive control (MPC), for use in the chemical process industries 
(White and Sofge 1992, Chapter 10). MPC is not a ‘real-time’ technique, in a formal sense; however, 
because special-purpose chips can perform calculations very quickly (compared with changes in chemical 
plants), it can still provide real-time control in a practical sense in these applications. McAvoy’s neural 
network club includes more than twenty large corporate sponsors who have deployed a variety of the 
techniques he has developed in profit-making applications, albeit on a proprietary basis. Feldkamp and 
Narendra have also worked with the time-forwards propagation of derivatives, but less so now than in the 
past, because of the cost issue (and perhaps because of some stability questions). 

Explicit optimization methods depend critically on the assumption that the user’s model is an exact, 
deterministic model of the plant to be controlled. Subject to this assumption, they yield exact answers, 
at least for the planning horizon used in the training process. Implicit designs, based on ADP, provide 
a true real-time capability; however, the solutions they provide are approximate. ADP-like dynamic 
programming itself-is explicitly designed to control stochastic plants, and to use a stochastic plant model 
(if such a model is available). 

The ADP family of designs is far too complex to review thoroughly here. These designs form a 
kind of ladder, rising up from the simplest but least powerful designs, up to more complex designs like 

@ 1997 IOP Publishing Ltd and Oxford University F’ress Handbook of Neural Computation release 9711 F1.9:7 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

the human brain itself. The simplest reinforcement learning designs work very well on small problems, 
especially when the choice of actions is small and discrete; however, their learning speed becomes quite 
slow on larger, more continuous problems. The most powerful designs in operation today are ‘brain- 
like’ designs which include at least three components, in addition to the utility function V(X): (i) a 
Critic network, which provides a kind of ‘emotional system’, or strategic assessment system; (ii) a Model 
network, which may be thought of as an ‘expectations’ system; (iii) an Action network, adapted at least 
in part by the backpropagation of ‘value’ signals computed by the critic and backpropagated through the 
model to the action network. Between late 1993 and late 1994, five groups reported working systems of 
this sort, including Wunsch and Prokhorov (Prokhorov et al 1996), Santiago and I, AAC, Balakrishnan 
(Balakrishnan and Biega 1995) and Jameson. AAC claims that these designs provide unique capabilities 
crucial to solving the problems of hypersonic flight, as discussed above. Balakrishnan reports far less error 
than with the usual methods used on missile interception problems. The other three groups also report 
substantial improvements in performance, relative to various alternatives, on the bioreactor benchmark 
problem an autolander benchmark problem and a robot arm simulation. Most of this work was presented 
at a recent NASA Ames workshop organized by Jorgensen and Pellionisz; the papers are still at press. 
The underlying principles are described in White and Sofge (1992) and in Pribram (Pribram 1994, Chapter 
31). For some additional information see Narendra (1994). 

F1.9.5 Nonneural alternatives 

The major classical alternatives to these methods have already been discussed. The neurocontrol designs 
~2 themselves can be applied directly to adapt nonneural networks as well, as discussed in Chapter A2 of 

this handbook. This section will mention only a few additional fine points. 
In cloning, the neural network copies what an expert does, while the AI approach implements what 

an expert says to do. As an example, consider what would happen if you asked a child how to ride a 
bicycle; the resulting rules would not be enough to keep the bicycle from falling over. But the child may, 
nevertheless, know how to ride a bicycle on a nonverbal level. Usually, what an expert does will work 
better than what he says; however, when there is a local minimum problem-as discussed above-then 
fuzzy logic or simpler neural designs may be crucial to providing a good enough starting point for the 
neural system. When there is very complex reasoning required, then classical AI systems may often be 
adequate in some applications and far simpler to set up (depending on software availability) than neural 
networks with similar capability. 

In tracking control, there are two techniques often used to keep the classical systems from blowing 
up when applied to nonlinear systems-gain scheduling and feedback linearization. 

In gain scheduling, we try to patch together a nonlinear control rule, by switching back and forth 
between different linear controllers, designed to operate in different regions of space. Similar improvements 
in capability can be had with neural networks, by using ‘mixture of experts’ networks-see, for example, 
Jordan and Jacobs (Jacobs et al 1991), or recent work by Neurodyne (Long 1993), or some proposals I 
have made for ‘syncretism’ (Werbos 1993b). (Intuitively, ‘syncretism’ involves remembering observations 
in real time, adapting a generalized model by a combination of ordinary real-time learning and learning 
from memory, and making predictions based on a combination of memory association and a generalized 
model.) With classical systems, gain scheduling patches together linear domains to try to approximate a 
smooth surface; however, the same sort of additional complexity allows neural networks to patch together 
smooth nonlinear surfaces to represent the harder idea of fundamental structural change across different 
regions of space. See White and Sofge (1992) for a more detailed criticism of gain scheduling. 

In feedback linearization, we try to make a plant behave as if it were linear, by canceling out simple 
forms of linearity in restricted parts of a plant model. This process only works on a limited class of plants. 
Furthermore, Slotine of MIT has shown how neural networks can be useful even in feedback linearization 
(Sanner and Slotine 1992). Baras and Natel (1995) have developed a more general classical technique to 
stabilize nonlinear plants, requiring the solution of a nonlinear stochastic optimization problem; adaptive 
critics an be used in the implementation of this technique. 

In optimization over time, I have neglected to mention many methods which are less well known but 
of serious practical value. Balakrishnan, for example, tests his designs against a variety of methods found 
(after much investment) to be useful in the missile interception area. The missile interception work has yet 
to be published, but similar (albeit simpler) work in aircraft control is in the open literature (Balakrishnan 
and Biega 1995). The explicit methods used most often with B l T  are equivalent, in some sense, to the 

F1.9:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Control 

calculus of variations (Bryson and Ho 1969) or to differential dynamic programming (Jacobson and Mayne 
1970). True backpropagation simply reduces the cost of calculating derivatives in these applications. The 
use of a neural network as an action network provides a greater degree of open-loop flexibility than the 
usual alternatives (a fixed action schedule or a fixed-form policy). DDP is an explicit method which 
nevertheless does use stochastic models, in a very interesting way; however, for reasons beyond the scope 
of this discussion, its convergence rate grows worse than that of well designed ADP systems when the 
effective planning horizon goes further into the future. 

F1.9.6 Preprocessing 

Because decision and control are such all-pervasive tasks, drawing on inputs from a multitude of sources, 
it is not possible here to review all the many forms of preprocessing which can be useful. However, there 
is one form of preprocessing which is especially crucial-the effort to build up a representation, R, of the 
true state of the plant or environment to be controlled. 

Many neural network papers do not emphasize the difference between the current state of the world, 
R(t), and the state of the variables observed or sensed by the control system, X ( t ) .  However, virtually 
all of the designs in neurocontrol implicitly assume that the controller does in fact ‘see’ the true state 
of the world. They assume that there is an approximately one-to-one relationship between states of the 
world and states of the vector input to the network. As a result, the performance of neurocontrol systems 
depends critically on obtaining such inputs. 

There are three common ways to obtain such inputs: (i) simply obtain more sensor inputs when 
necessary; (ii) use Kalman filtering (Bryson and Ho 1969) or extended Kalman filtering to calculate an 
estimated state vector, which is then fed into the network and (iii) use neuroidentification methods (White 
and Sofge 1992, Chapter 10, Werbos 1994) to adapt a TLRN model of the plant, and then feed in the 
outputs of the recurrent nodes of the TLRN as additional inputs to the control system. The third is the 
most brain-like approach. 

References 

Albus J S 1991 Outline for a theory of Intelligence IEEE Trans. Syst. Man Cybem. 3 473-509 
Balakrishnan S N and Biega V 1995 Adaptive critic based neural networks for aircraft control AIAA-95-3297 Proc. 

AIAA GNC Con$ (Washington, DC: AIAA) (a more complete version of this paper is at press in J.  Guidance, 
Control Dymm.) 

Baras J and Pate1 N 1995 Information state for robust control of set-valued discrete time systems IEEE Con5 on 
Decision and Control (New York: IEEE Press) 

Bitterman M E 1965 The evolution of intelligence Sci. Am. January 
Bryson A E and Ho Y C 1969 Applied Optimal Control (Waltham, MA: Ginn) 
Guez A and Selinsky J 1988 A trainable neuromorphic controller J. Robot. Syst. 5 363-88 
Howard R 1960 Dynamic Programming and Markhov Processes (Cambridge, MA: MIT) 
Hrycej T 1992 Model-based training method for neural controllers Artificial Neural Networks vol 2 ed I Aleksander 

Jacobs R A, Jordan M I, Nowlan S J and Hinton G E 1991 Adaptive mixtures of local experts Neural Comput. 3 

Jacobson D and Mayne D 1970 Dzjferential Dynamic Programming (New York: Elsevier) 
Kuperstein M 1988 Neural model of adaptive hand-eye coordination for single postures Science 239 1308-1 1 
Levine D and Elsberry W (eds) 1996 Optimality in Biological and ArtiJicial Networks (Hillsdale, NJ: Erlbaum) 
Long T W 1993 A learning controller for decentralized nonlinear systems American Control Con$ (New York: IEEE 

Ljung L 1987 System IdentiJication Theory for the User (Englewood Cliffs, NJ: Prentice-Hall) 
Miller G A Galanter E H and Pribram K 1960 Plans and the Structure ofBehuvior (New York: Holt, Rinehart and 

Miller W T, Sutton R and Werbos P (eds) 1990 Neural Networks for Control (Cambridge, MA: MIT) 
Narendra K and Annaswamy A 1989 Stable Adaptive Systems (Englewood Cliffs, NJ: Prentice-Hall) 
Narendra K S (ed) 1994 Proc. Eigth Yale Workshop on Adaptive and Learning Systems (New Haven, CT: Department 

of Electrical Engineering, Yale University) 
Nauta W and Feirtag M 1986 Fundamental Neuroanatomy (San Francisco, CA: Freeman) 
Peterson I 1991 Ribbon of chaos Sci. News 139 60-1 
Pribram K (ed) 1994 Origins: Brain and Self-organization (Hillsdale, NJ: Erlbaum) (IEEE, 1995) 
Prokhorov D, Santiago R and Wunsch D 1995 Neural Networks 8 1367-72 

and J Taylor (Amsterdam: North-Holland) pp 455-8 

79-87 

Press) 

Winston) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 F1.9:9 

Copyright © 1997 IOP Publishing Ltd



Neural Network Applications 

Prokhorov D and Wunsch D 1996 Stability of control with adaptive critic IEEE Trans. Neural Networks 
Raiffa H 1968 Decision Analysis: Introductory Lectures on Making Choices Under Uncertainty (Reading, MA: 

Sanner R M and Slotine J J 1992 Gaussian networks for direct adaptive control IEEE Trans. Neural Networks 3 

Von Neumann J and Morgenstem 0 1953 The Theory of Games and Economic Behavior (Princeton, NJ: Princeton 

Werbos P 1989 Backpropagation and neurocontrol Proc. Int. Joint Con$ on Neural Networks (New York: IEEE Press) 
-1990a Rational approaches to identifying policy objectives Energy: Int. J. 15 171-85 
-1 990b Neurocontrol and related techniques Handbook of Neural Computing Applications ed A Maren (Orlando, 

-1993a Elastic fuzzy logic: a better fit to neurocontrol and true intelligence J. Intell. Fuuy Syst. 1 365-77 
-1993b Supervised leaming: can it escape its local minimum? Proc. WCNN93 (Hillsdale, NJ: Erlaum) 
-1994 The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting 

-1995 Optimization methods for brain-like intelligent control Con$ on Decision and Control (New York: IEEE 

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control: Neural, F u u y  and Adaptive Approaches (New 

Widrow B 1987 The original adaptive broom balancer IEEE Con$ on Circuits and Systems (New York: IEEE Press) 
Wiener N 1961 Cybernetics, or Control and Communications in the Animal and the Machine 2nd edn (Cambridge, 

Addison- Wesley) 

837-63 

University Press) 

FL: Academic) 

(New York: Wiley) 

Press) 

York Van Nostrand) 

MA: MIT) 

F1.9:10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



PART G 

NEURAL NETWORKS IN PRACTICE: 
CASE STUDIES 

G1 PERCEPTION AND COGNITION 
G1.l 

G1.2 

G1.3 

G1.4 

G1.5 

G1.6 

G1.7 

Unsupervised segmentation of textured images 
Nigel M Allinson and Hu Jun En 
Character recognition 
John Fulcher 
Handwritten character recognition using neural networks 
Thomas M Breuel 
Improved speech recognition using learning vector quantization 
Kari Torkkola 
Neural networks for alphabet recognition 
Mark Fanty, Etienne Barnard and Ron Cole 
A neural network for image understanding 
Heggere S Ranganath, Govindaraj Kuntimad and John L Johnson 
The application of neural networks to image segmentation and way-point identification 
James Austin 

G2 ENGINEERING 
G2.1 

G2.2 

G2.3 

G2.4 

G2.5 

G2.6 

G2.7 

G2.8 

G2.9 

Control of a vehicle active suspension model using adaptive logic networks 
William W Armstrong and Monroe M Thomas 
ATh4 network control by neural network 
Atsushi Hiramatsu 
Neural networks to configure maps for a satellite communication network 
Ninvan Ansari 
Neural network controller for a high-speed packet switch 
M Mehmet Ali and Huu Tri Nguyen 
Neural networks for optimal robot trajectory planning 
Dan Simon 
Radial basis function network in design and manufacturing of ceramics 
Krzysztof J Cios, George Y Baaklini, Laszlo Berke and Alex Vary 
Adaptive control of a negative ion source 
Stanley K Brown, William C Mead, P Stuart Bowling and Roger D Jones 
Dynamic process modeling and fault prediction using artificial neural networks 
Barry Lennox and Gary A Montague 
Neural modeling of  a polymerization reactor 
Gordon Lightbody and George W Irwin 

G2.10 Adaptive noise canceling with nonlinear filters 

G2.11 A concise application demonstrator for pulsed neural VLSI 
Wolfgang Knecht 

Alan F Murray and Geoffrey B Jackson 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 

Copyright © 1997 IOP Publishing Ltd



(32.12 Ontogenic CID3 algorithm for recognition of defects in glass ribbon 
Krzysztof J Cios 

G3 

G4 

G5 

G6 

G7 

G8 

PHYSICAL SCIENCES 
G3.1 

G3.2 

G3.3 

Neural networks for control of telescope adaptive optics 
T K Barrett and D G Sandler 
Neural multigrid for disordered systems: lattice gauge theory as an example 
Martin Baker, Gerhard Mack and Marcus Speh 
Characterization of chaotic signals using fast learning neural networks 
Shawn D Pethel and Charles M Bowden 

BIOLOGY AND BIOCHEMISTRY 
(34.1 

G4.2 

(34.3 

G4.4 

A neural network for prediction of protein secondary structure 
Burkhard Rost 
Neural networks for identification of protein coding regions in genomic DNA sequences 
E E Snyder and Gary D Stonno 
A neural network classifier for chromosome analysis 
Jim Graham 
A neural network for recognizing distantly related protein sequences 
Dmitrij Frishman and Patrick Argos 

MEDICINE 
(35.1 

G5.2 

(35.3 

G5.4 

G5.5 

(35.6 

Adaptive logic networks in rehabilitation of persons with incomplete spinal cord injury 
Aleksandar Kostov, William W Armstrong, Monroe M Thomas and Richard B Stein 
Neural networks for diagnosis of myocardial disease 
Hiroshi Fujita 
Neural networks for intracardiac electrogram recognition 
Manvan A Jabri 
A neural network to predict lifespan and new metastases in patients with renal cell cancer 
Craig Niederberger, Susan Purse11 and Richard M Golden 
Hopfield neural networks for the optimum segmentation of medical images 
Riccardo Poli and Guido Valli 
A neural network for the evaluation of hemodynamic variables 
Tom Pike and Robert A Mustard 

ECONOMICS, FINANCE, AND BUSINESS 
G6.1 

G6.2 

G6.3 

G6.4 

Application of self-organizing maps to the analysis of economic situations 
F Blayo 
Forecasting customer response with neural networks 
David Bounds and Duncan Ross 
Neural networks for financial applications 
Magali E Azema-Barac and A N Refenes 
Valuations of residential properties using a neural network 
Gary Grudnitski 

COMPUTER SCIENCE 
G7.1 Neural networks and human-computer interaction 

Alan J Dix and Janet E Finlay 

ARTS AND HUMANITIES 
G8.1 

G8.2 

Distinguishing literary styles using neural networks 
Robert A J Matthews and Thomas V N Merriam 
Neural networks for archaeologicd provenancing 
John Fulcher 

Handbook ofNeuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



G1 

Perception and Cognition 

Contents 

G1 PERCEPTION AND COGNITION 
G1.1 

G1.2 

G1.3 

G1.4 

(31.5 

(31.6 

(31.7 

Unsupervised segmentation of textured images 
Nigel M Allinson and Hu Jun En 
Character recognition 
John Fulcher 
Handwritten character recognition using neural networks 
Thomas M Breuel 
Improved speech recognition using learning vector quantization 
Kari Torkkola 
Neural networks for alphabet recognition 
Mark Fanty, Etienne Bamard and Ron Cole 
A neural network for image understanding 
Heggere S Ranganath, Govindaraj Kuntimad and John L Johnson 
The application of  neural networks to image segmentation and way-point identification 
James Austin 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.l Unsupervised segmentation of textured images 

Nigel M Allinson and Hu Jun Yin 

Abstract 

This section describes the use of a hierarchy of neural networks, in association with 
nonneural techniques, for the accurate segmentation of natural textured images. The 
segmentation is unsupervised as only the total number of different textures is prespecified 
for a particular input image and no exemplars of the expected textures are provided. The 
system uses a model estimator, based on a Markov random field model, for texture 
parameter extraction. Two unsupervised neural networks, a Kohonen self-organizing 
map and a local-voting network, are employed to produce a ‘clean’ segmented image. 
A further refinement to improve on the detailed positioning and form of the texture 
boundaries is provided by a boundary relaxation algorithm. Typical results and details 
of operational parameters are provided. 

G1.l.l Project overview 

There are numerous applications where the automatic and accurate segmentation of images, based on the ~1.6 
identification of textured regions, is important. Remote sensing and microtomed biological samples are 
just two such applications. Textures can be vaguely defined as the repetition of some elementary, usually 
small-scale, pattern of pixel intensities. They can conveniently, but not unambiguously, be delineated into 
two main types: natural (distinguished by their inherent randomness) and artificial (distinguished by their 
more deterministic periodic appearance). The difficulty in defining texture, and the wide variety in textural 
properties, means that numerous approaches to texture segmentation have been investigated-each with 
varying success over a different restricted scope of texture types. Approaches to texture image analysis 
have progressed along two different main routes: feature-based and model-based approaches. Most earlier 
work in texture analysis sought to discover useful features that would characterize textures and so establish 
specific discriminating measures. Later work has concentrated on a model-based approach which seeks a 
deeper understanding of the interpixel relationships by employing stochastic models. More recently still, 
multiscale signal processing, using Gabor or wavelet transformations, has received considerable attention 
(Tuceryan and Jain 1993). One of the most popular statistical feature-based approaches has been based 
around the spatial grayscale co-occurrence matrix. This texture measure uses the relative frequencies or 
probabilities of transition from one gray level to another at defined spatial distances. The co-occurrence 
matrix method has proved successful over a wide range of texture types and applications. A good review 
of much of this activity is provided by Haralick and Shapiro (1992). 

On the other hand, the model-based approach aims to describe textures by a mathematical model from 
which a set of parameters can be extracted as texture features for description and discrimination. Such 
models can be used to regenerate the textures and so provide us with a physical (and visual) comparison. 
The practicality of a model is a combination of its generality and its complexity. Markov random field 
(MRF) models and the Gibbs distribution (GD), an MRF equivalence, have received considerable attention 
for the analysis of natural textures. The textures of interest in this project were primarily natural. MRF 
models have been shown to be powerful descriptors of such statistical textures (Cross and Jain 1983, 
Lakshmanan and Derin 1989, Manjunath and Chellappa 1991) and these form the basis of the initial stage 
of information reduction through representing the spatial textures by a small number of parameters. A 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G 1.1 : 1 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

further requirement of the project was that the segmentation process should be unsupervised. Most texture 
segmentation systems employ known, explicitly-labeled texture samples (for example, representative 
samples of ‘deciduous woodland’ or ‘muscular tissue’) and the system acts as a conventional classifier 
using these representative samples as its sought classes. The chief difficulty for unsupervised segmentation, 
where no representative samples are available, is the obvious lack of a priori knowledge. The system is 
merely presented with an image and given the task of segmenting it into a predefined number of textured 
regions or some other general criterion. So the model parameters for the different regions are unknown 
or have to be estimated using the state of the evolving segmentation as the system learns. These initial 
estimates will be inaccurate and incomplete. 

This section, hopefully, not only describes a practical solution to a particular processing task, namely, 
textured image segmentation, but also indicates how a number of neural networks can successfully 
cooperate within a single integrated system together with other nonneural pattern processing techniques. 

G1.1.2 Design process 

The underlying design philosophy can be summarized as follows: 

0 Unsupervised learning for large data sets 

0 Reduce network sizes to promote efficient 

0 Natural textured image input 

0 Little a priori knowledge, crude initial 
parameter estimates 

0 Detailed segmentation 
0 Accurate and smooth region boundaries 

0 Computationally efficient unsupervised 
network (Kohonen self-organizing map) 

0 Use texture parameter estimation operation 

0 Use appropriate estimator (Markov random 

0 Use large input image window 

0 Reduce input window size during training 
0 Second-level network and boundary 

smoothing (second unsupervised network 
and boundary relaxation) 

operation 

field model) 

G1.1.2.1 System description 

The general structure of the system is shown in figure GI. 1.1. The data input to the parameter estimator are 
the pixel intensity values from a square region of the input image (the estimator window). The parameter 
estimator’s function is to derive a limited set of parameters that can usefully describe the textured nature of 
the current estimator window. A variety of estimator types could be used here, but in the current example 
a Markov random field model estimator is employed. These models describe the statistical interactions 
between the intensity values of neighboring image pixels. The output of the estimator forms the input to 
a one-dimensional self-organizing map. The number of neurons in this map is set by the required number 
of different texture regions in the input image. The winning neuron from this map indicates which texture 
type the current window is most like and forms the input to the next-level network, which estimates the 
underlying region texture type. This final network layer is based on the computationally simple local 
voting network. The effects of the shrinking window and this second network are to reduce noise, and 
so assist in clear image segmentation. After this first phase of segmentation, the textured regions are 
essentially well separated but there will be some pixel errors at the texture boundaries. It is not possible to 
implement any form of single-pixel-based correction as the texture type of a single pixel is a meaningless 
concept. Boundary improvement is based on the supposition that region boundaries are more likely to be 
smooth. To achieve this final stage of the segmentation process, a simple relaxation algorithm is employed 
to smooth out boundary irregularities over small spatial distances. The following paragraphs describe each 
element of the system in further detail. 

Estimator window. In an image consisting of many different texture regions, it is most likely that the 
individual regions will be concentrated into patches (of very variable spatial extent, but texture only has a 
meaning when considered over some meaningful spatial region) and that the boundaries between texture 

G 1.1 :2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised segmentation of textured images 

Segmented Image 

Self-organising chain 

Figure 61.1.1. Schematic of texture segmentation system. The circled Roman numerals refer to the 
appropriate immediate and final segmented images as shown in figure G1.1.2. 

regions will often be smooth. During the initial part of the learning, the system needs to examine a large 
fraction of the image at one time so that the overall arrangement of textures and their parameters are fed, via 
the parameter estimator, to the subsequent neural networks. This window shrinks in size during learning in 
order to reduce the effects of noise and to provide distinct segmentation of the patchlike textured regions 
(of possibly very small spatial extent). The window is positioned randomly for each learning iteration as 
this ensures that consecutive inputs to the SOM are uncorrelated. 

Parameter estimator. Each image pixel can be assigned a state, s k , ~  (where k ,  1 are its coordinates), that 
represents which region it belongs to. The task is to determine the set of states for all pixels that possess 
the largest probability. If Y is the set of all observed pixel intensities and S is the total set of states, then 
the goal is to determine S so that Pr[SIY] is a maximum. This is equivalent to determining the maximum 
a posteriori estimate: 

PYls(YIS) * WSI * (G1.l.l) 

The expression for Pr[S] can be decomposed into its constituent terms using a Markov random field (MRF). 
The underlying concept of the MRF, in the context of two-dimensional images, is that the conditional 
probability for the state s k , ~ ,  given all other states in the entire image, is the same as the conditional 
probability of sk ,~ given only the states in the local neighborhood. In more formal terms, the condition for 
a Markov process can be expressed as 

where Sk,l denotes the set of states for pixels within some local neighborhood and S’ denotes the set of all 
states in the image except s k , l .  An important class of MRF models is known as Gibbsian random fields 
(GRFs), where the conditional probabilities of equation (Gl.l.2) are assumed to be Gaussian in profile. 
Assuming that all the neighbors of sk.1 have the same state as s k , ~ ,  the conditional probability density of 
the intensity of this pixel is given by 

(G1 .1.3) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 GI. 1 :3 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

where Ns,,l is the symmetric neighborhood of a site sk.1 and L,,,, is the corresponding texture label of the 
site; and 

(G1 . 1.4) 

where U(-) is the summation of the neighborhood functions over all possible neighborhoods and is termed 
the Gibbs measure and Z ( . )  is a normalizing constant termed the partition function. The parameters 01 

and 0' are the GRF model parameters of the lth texture class. In practice, only simple functions (such 
as the linear sum of products) over small neighborhoods are employed. There are several methods which 
can be employed to estimate these parameters. One of the simplest, certainly in terms of computational 
effort, is to use the least-squares algorithm. 

c2.1.1 Self-organizing map. Kohonen's self-organizing map (SOM) (Kohonen 1984), when used as a data 
clustering method, will converge to minimize the mean-square error in its D2-dimensional approximation 
of the D1-dimensional input space, at least locally (where D1 > 02).  For a D1-dimensional input space, 
X, the SOM consists of a D2-dimensional array of neurons, Y ,  so that it forms a D1 + 0 2  quantization 
map. Each of these neurons is connected in parallel to the input by its D1 synaptic weights, that is, 
w,(t) = [ w , l ( t ) ,  w C 2 ( t ) ,  . . . , w C ~ l ( t ) l T ,  c E Y .  The number of neurons is set by the number of predefined 
texture types expected in the input image, and the dimension of the input weight vector, 0 2 ,  is set by the 
number of output parameters from the model estimator. The synaptic weights are initially set to random 
values. At each time step, an input vector, z(t) ,  is applied to the network. The best-matching neuron, 
termed the winner, is found by comparing the inner products wf(t)z(t), c E Y and identifying the largest. 
It is often more convenient to normalize the weight vectors to a constant Euclidean norm. Hence the 
matching condition becomes 

argmin Ilz(t) - w,(t)II c E Y (GI. 1.5) 

where 11 . 11 is the Euclidean norm of the argument vector. The weight vectors of all neurons are updated 
according to 

C 

(Gl.  1.6) 

where N , ( t )  is the neighborhood around the winner, v ,  and a ( t )  is the scalar adaptation gain. Both N , ( t )  
and a( t )  decrease monotonically during training. There are no theoretical foundations that can be used 
to determine the selection of these two parameters, and in practice a certain amount of trial and error is 
required. However, the following general observations can be made (Yin and Allinson 1995). 
0 Adaptation gain, a(t) ,  must satisfy certain essential conditions in order that the network will converge, 

namely: 

(G1.1.7) 

a( t )  should start with a value close to unity and then fall gradually to about 0.1 for the first part of 
the training sequence. This initial phase is often referred to as the ordering phase as this is when 
the global topological ordering of the map occurs. For the fine tuning of the map, or convergence 
phase, a ( t )  can be kept at a small value-typically 0.01. The detailed nature of reduction of a(t)  is 
not critical. 
The shrinking rate of the neighborhood function, N,(t) ,  does have a major effect on the final 
topological order of the map. It usually starts with a radius that encompasses all, or nearly all, 
of the neurons in the map and then shrinks with time during the ordering phase to a radius that 
includes only one or two neighboring neurons. During the convergence phase, the neighborhood can 
be held constant with a radius of one or none neighbors. For the present application, the ordering of 
the texture region categories is not critical and so careful consideration of the shrinking rate of N , ( t ) ,  
or its detailed extent, is unnecessary. 

As long as the adaptation gains meet the conditions of (Gl.l.7), then the minimum mean-square-error 
estimate for the parameters of each of the texture regions will be achieved. Though a variety of clustering 
algorithms could be employed in place of the SOM, the SOM does offer a number of advantages. It is a 
relatively fast algorithm and the use of a neighborhood function will increase the possibility of escaping 

0 

GI. 1 :4 Handbook ofNeurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised segmentation of textured images 

from local minima during the learning process. This latter point is particularly important in this application 
as the initial parameters generated by the estimator are very noisy. 

Local voting network. The second-level neural network is a local voting network (LVN). This second 
network could be another SOM, but for computational ease it is preferable to employ this simpler network. 
The essential difference between an SOM and an LVN is that the former will converge to the mean of the 
input distribution, while the latter converges to the time average. When the distribution of the estimator 
noise is symmetrical, which is always the case, the final result will be equivalent. Every pixel, s, in the 
image plane possesses a voting neuron, and each of these neurons possesses an N-dimensional weight 
vector corresponding to the labels for each of the N textured regions, i.e. [lf ( t ) ,  l?(t) ,  . . . , l;(t)]. These 
weights are set to zero at the commencement of the training sequence. If the winning neuron in the SOM 
is U, then the LVN weight vectors are updated according to the learning rule 

for s E a(?) and Vk # U 
l;(t + 1) = l;( t)  + 1 

I f (?  + 1) = I f ( ? )  
(Gl. 1.8) 

where a(?) is the estimating window at time t .  This updating is restricted to the area within the current 
estimating window. The largest element of the LVN weight vector (voting number) for each pixel indicates 
its texture type. 

Boundary relaxation. After both the networks have been trained, the different texture regions will be 
essentially delineated; but, as can be seen by examining the results given in figure G1.1.2, there will be 
some segmentation errors. These are more likely at the boundaries between texture regions. It is not 
possible to use some form of single-pixel-based correction as textures only have a meaning over a patch 
of pixels. Region boundaries can, of course, take any shape but over a limited spatial extent they can be 
assumed to be linear or, at least, smooth in profile. A relaxation algorithm can be used to improve the 
boundary profiles. A small window is moved along the texture boundaries produced by the trained LVN, 
and a short straight boundary with random orientation is generated within this window. It is accepted or 
rejected on the basis of the energy change (error) within this small region. The result is then fed forward 
to the LVN and the resulting voting numbers changed. The local energy, u ~ ( x /  W, t + 1) in the window is 
calculated using (G1.1.8). If the previous local energy was u1(x /  W, t )  then this new boundary is accepted 
or rejected according to the energy change, A u  = u2 - u1, that is 

(G1 -1.9) 

This is an example of a Metropolis algorithm (Metropolis et a1 1953) where T is a parameter similar to 
a temperature and can be slowly decreased during the learning. 

G1.1.3 Training methods 

G1.1.3.1 Test data 

The complete system has been extensively tested on both synthetic binary and natural textured images. It 
is essential to employ both types of images during testing as the former possess predictable and specified 
statistical properties while, of course, the latter does not. It is also an advantage to use natural textures that 
are commonly available to the research community as this allows some degree of comparison between the 
results and those published previously. The textured images contained in Brodatz’s photographic album 
(Brodatz 1966), originally intended for artists and graphic designers, have become the de facto standard for 
examining the performance of texture segmentation techniques. The test images are 128 x 128 pixels and 
composed (for the tests discussed here) of two different textured regions but with a variety of boundaries 
(as indicated in figure G1.1.3). 

G1.1.3.2 Training schedule 

For the purposes of initial testing a second-order MRF model was used, together with LMS estimation of 
the model parameters. This is about the simplest model possible and so possesses a low computational 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G 1.1 15 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Figure G1.1.2. Spica1 segmentation results for two-region test images. The four images in each block are 
(I) input image, (11) output of fully trained SOM, (111) output of fully trained LVN, i.e. completion of first 
phase of segmentation, and (IV) output after boundary relaxation. Images ( a ) .  ( b )  and (c) are synthetic 
texture images, and images ( d ) ,  ( e )  and (f) are combinations of natural images from Brodatz (1966). 

cost. The estimating window, a, is set to be large (e.g. 70 x 70 pixels) at the start of training and then 
shrinks linearly with training time to a small prespecified size. The size of these windows is a tradeoff 
between two competing factors. The larger the window size, the more accurate the parameter estimation 
will be as textures are better represented by a block of pixels rather than, in the limiting case, a single pixel. 
However, for an accurate resolution of the texture boundaries, that is good segmentation, the opposite is 
required. The minimum practical size of the estimating window is also a factor of the texture types. For 
synthetic images, where the homogeneity of even small regions can be maintained, this minimum size 
is typically 5 x 5 pixels. For natural textures, local characteristics of the textures can be very variable 
so a minimum window size greater than about 10 x 10 pixels is required so that local homogeneity is 
maintained. During the latter part of the training schedule the LVN will assist in reducing the effects of 
noise and the large window sizes. 

The relaxation window for boundary improvement has been found to provide optimum results with a 
fixed size between 10 x 10 and 25 x 25 pixels. The window may be repeatedly placed randomly on the 
image or it may be moved in a sequential scan. The number of possible straight-line orientations can be 
reduced dramatically if a priori information concerning the allowable boundary orientations is assumed. 

G 1 . 1 :6 tlundhook of Neurul Compurution release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Unsupervised segmentation of textured images 

Figure G1.1.3. Qpical segmentation boundaries for two-region test images. 

G1.1.4 Preprocessing 

There is little need to provide any form of input preprocessing other than ensuring that the images have 
a sufficient grayscale dynamic range. Standard histogram equalization methods can be usefully employed 
for this. 

G 1.1.5 Output interpretation 

The system differs from many neural network classifiers in that there are no separate training and application 
phases. The number of required texture regions is prespecified, an input textured image is applied and the 
system adapts to produce the required segmentation of this image. The resulting regions are not explicitly 
classified as no class labels are provided. They may, of course, be postclassified manually. 

G1.1.6 Development 

The system was developed using C and conventional programming support tools in an MS Windows 
environment. This was appropriate as the eventual use of the system would employ a similar software 
environment. 

G1.1.7 Performance 

A typical set of results is shown in figure G1.1.2. Images (a), ( b )  and ( c )  are synthetic binary textures, 
while the images ( d ) ,  ( e )  and (f) are natural grayscale textures taken from Brodatz (1966). The following 
should be read using the identifying key for this figure. The general form of the segmentation is visible if 
the system’s output is taken directly from the output of the SOM layer. However, the region boundaries 
are ill-formed with occasionally very broken outlines. There are also some instances where small isolated 
regions are wrongly classified. The system’s output after the LVN layer (but without applying the boundary 
relaxation algorithm) shows a considerable improvement. There are no isolated regions misclassified and 
the boundaries are much smoother-in some cases, too smooth. 

Finally, the results of incorporating the boundary relaxation provide a substantial improvement in 
boundary placement and profile. For these six test images, the resulting misclassified pixel errors for the 
complete system are given in table G 1 . 1 . 1 .  It should be noted that these test images are small in relation to 
the estimating and relaxation window sizes. This is a more critical situation than in the practical application 
of the system for unsupervised texture segmentation. The system has been extensively tested on a very 
diverse range of textured images with similar excellent results. 

Table G1.l.l. Pixel errors for test images of figure (31.1.2. 

Image 
Boundary relaxation ( a )  ( b )  (c) ( d )  ( e )  c f )  
Not used 3.14% 5.78% 9.20% 3.42% 5.44% 8.1 1% 
Used 1.01% 2.37% 2.30% 0.72% 3.25% 2.79% 

For two-region texture images, the neighborhood function of the SOM neurons is not important as long 
as both neurons are active. For multiregion textures, all the neurons must be sufficiently active otherwise 
one neuron may represent two or more texture regions or two or more neurons may share one region. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Compurarion release 97/1 G 1.1 :7 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Maintaining a large neighborhood for a longer than normal time produces a correct global segmentation. 
The SOM neighborhood is held constant for the first 1000 iterations, with the amplitude of this function 
for the nearest and next-nearest neighbors being initially set to 0.6 and 0.2, respectively, and decreasing 
linearly to zero. The segmentation process can be halted by monitoring the changes in the final layer or 
simply by setting a sufficiently large number of iterations. A typical iteration cycle for four-region textures 
is 5000. 

System validation was conducted by maintaining a fixed number of SOM neurons and varying the 
number of distinct texture regions in a series of test images. The validation criterion was to calculate the 
total mean-square error (MSE) between the actual texture labels and the derived ones on a pixel by pixel 
basis. Plots of log(MSE) as a function of the region number consistently showed a minimum at the correct 
match between number of regions and SOM neurons. Further work involved using real images (aerial 
photographs) and excellent results have been obtained. 

G1.1.8 Conclusions 

The section has shown how a number of techniques, both neural and nonneural, may be integrated to 
produce a computationally robust system for the unsupervised segmentation of two-dimensional images 
based on the predefined number of textured regions. It is important to appreciate that a solution of this 
apparent complexity will often provide a superior solution, from a number of perspectives, than a solution 
which attempts to use a single network with the minimum of data preprocessing. 

It is impossible to state that an approach using neural networks (let alone our own work) for texture 
segmentation is superior to all other approaches. This difficulty arises from several factors: the inability 
to produce a formal universal definition of textures (i.e. their inherent variability makes the possibility of a 
universal segmentation system very unlikely), differing functionality for a delineated range of images, and 
the absence of agreed standardized test data and procedures. However, neural networks do offer advantages 
in terms of computational ease (particularly so for SOM and LV networks), flexibility of operation (e.g. 
in our work, specifying the number of region types is simply a case of modifying the number of SOM 
neurons), increased probability of escaping local minima during training (the neighborhood function of the 
SOM assists in this), and the potential for parallel implementation. 

Ref e re n c e s 

Brodatz P 1966 Textures: a Photographic Album for Artists and Designers (New York: Dover) 
Cross G R and Jain A K 1983 Markov random field texture models IEEE Trans. Patt. Recogn. Mach. Intell. 5 25-39 
Haralick R M and Shapiro L G 1992 Computer and Robot Vision (Reading, MA: Addison-Wesley) ch 7 
Kohonen T 1984 Self-organisation and Associative Memory (Berlin: Springer) 
Lakshmanan S and Derin H 1989 Simultaneous parameter estimation segmentation of Gibbs random fields using 

Manjunath B S and Chellappa R 1991 Unsupervised texture segmentation using Markov random field models IEEE 

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 Equations of state calculations by 

Tuceryan M and Jain A K 1993 Texture analysis Handbook ofPattent Recognition ed C H Chen, L F Pau and 

Yin H and Allinson N M 1995 On the convergence and distribution of feature space in self-organizing networks 

simulated annealing IEEE Trans. Patt. Recogn. Mach. Intell. 11 799-813 

Trans. Patt. Recogn. Mach. Intell. 13 478-82 

fast computing machines 1. Chem. Phys. 21 1087-91 

P S P Wang (Singapore: World Scientific) ch 2.1 

Neural Comput. 7 1178-87 

G 1 . 1  :8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.2 Character recognition 

John Fulcher 

Abstract 

Handwritten character recognition is discussed from both a conventional and an artificial 
neural network (ANN) perspective. Reference is also made to printed character 
recognition. The importance of segmentation and other forms of preprocessing is 
emphasized. Several ANN systems are described, from which it is seen that special 
purpose, hierarchical networks are most suited to this task, with recognition accuracies 
of around 95% being commonplace. 

G1.2.1 Introduction 

Interest in optical character recognition (OCR) predates the era of electronic computers (Mori et a1 1992). 
In more recent times, much attention has been paid to on-line handwritten rather than printed character 
recognition (Nouboud and Plamondon 1990, Tappert et a1 1990). We concern ourselves in this paper with 
both types of automated character recognition but devote more attention to the former because it is the 
more difficult of the two problems to solve. 

G1.2.1.1 Printed characters 

We can consider a printed character as comprising a two-dimensional array (matrix) of pixels (dots) similar 
to that formed by a dot matrix printer or a computer terminal screen (be it CRT or LCD). Obviously, the 
more dots (pixels) we use to represent the character, the better resolution we are able to achieve. Moreover, 
more dots enable different font types and styles to be represented. 

Character recognition amounts to the ability to discriminate among a finite number of patterns; for 
example, 62 for the alphanumeric character set (both upper and lower case). It is a straightforward matter to 
reformulate these two-dimensional patterns into one-dimensional vectors (63-element vectors if we assume 
7 x 9 dot matrices). Our task then becomes one of distinguishing 62 different vectors. This task can be 
performed using either conventional pattern class$cation techniques, or artificial neural networks (since ~ 1 . 2  

ANNs are widely known to excel at pattern classification and recognition tasks). 

G1.2.1.2 Handwritten characters 

Handwritten characters likewise will be captured, either directly or by way of a digitizing tablet, in pixel 
matrix form. However, in order to cater to the wide variety of handwriting styles, a larger-size (higher- 
resolution) dot (pixel) matrix will usually be necessary. For example, the handwritten zip codes used in 
the study of LeCun et a1 (1989) were first stored as 40 x 60 pixel images, then reduced to 16 x 16 images 
prior to presenting them to the ANN for classification-and this was only for the digits 0 through 9, not 
the entire alphanumeric character set! 

It should be emphasized at this point that a human classifier cannot classify such handwritten characters 
with anything like 100% accuracy. Thus, it is unreasonable to expect machine (computer) classifiers to 
perform perfectly. The best we can hope for (the ‘bottom line’ as it were) is that the machine (computer, 
ANN or whatever) will perform at least as well as a human classifier. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.2: 1 

Copyright © 1997 IOP Publishing Ltd



PerceDtion and Cognition 

G1.2.2 Conventional character recognition techniques 

Some form of preprocessing will usually be required prior to handwritten character recognition proper. 
Typical preprocessing operations are segmentation (using a sliding window, say, to isolate characters), 
smoothing, line thinning, noise filtering, and correction for size and orientation (in other words, 
normalization). 

Template matching is a technique that works well with printed character recognition but is not 
particularly suited to handwritten character recognition due to the much more extensive shape and size 
variation encountered with the latter. Curve matching is more appropriate for handwritten characters, 
especially elastic matching techniques, which can be further enhanced by incorporating local affine 
transformations (Wakahara 1994). 

By analyzing the strokes that comprise handwritten characters, we can determine their number, order 
and direction. Such characteristics can then be stored as stroke codes. More specifically, chain codes 
(a standard image processing technique for representing objects within images) are a useful method for 
encoding handwritten characters. Boundaries can be specified in terms of segments of specified length 
and direction (the latter in terms of 1-of-n nearest pixel neighbors, with n being typically 4, 6 or 8). Such 

c1.1.5 an (efficient) encoding scheme can be likened to Huffman or run length coding. Alternatively, vector 
quantization can be used to encode these strokes. 

Feature extraction is another popular handwritten character recognition technique (e.g. ascend- 
erddescenders, dots, cusps, closures, and so on, but note that the choice of features is somewhat critical). 
Alternatively, if we represent the character image in algebraic form, we can apply standard image processing 
transforms, such as the Karhunen-Loeve expansion (Mori et a1 1992). Conversely, by considering the 
x -  and y-coordinates of the image, we can apply Fourier series techniques. Other standard approaches 
include decision trees, dictionary lookups and Bayesian classifiers. 

Statistical (stochastic) techniques appropriate for handwritten character recognition include k-nearest 
neighbors (Kovacs et a1 1993) and hidden Markov models (HMMs), respectively (Kundu et a1 1989, 
Chen et a1 1994, Veltman and Prasad 1994). In the latter approach, the sequence of character segments 
(symbols) which comprise a word is likened to the intermediate states traversed within the HMM. 

G1.2.3 Non-English character recognition 

So far we have concentrated on English-language character recognition. There has also been a considerable 
amount of effort devoted to non-English character recognition, especially Chinese/Japanese (Kanji) 
characters, and to a lesser extent Arabic. Once again we are faced with problems of scaling, orientation 
and variability between writers. Furthermore, we often need to deal with larger numbers of more complex 
characters-this is especially true of the Chinese (Japanese) language, in which over 5000 (3000) characters 
are encountered in everyday usage. This means we need to be able to discriminate between more mutually 
similar characters. 

GI .2.3. I Chinese/Japanese character recognition 

Typical of Chinese character recognition systems is the two-stage one described by Huang (1993Fthe 
first stage involves stroke extraction, achieved using thinning and curve fitting; the second stage performs 
structural matching, achieved using either deterministic or probabilistic means. 

Alternative approaches include dynamic programming (Nouboud and Plamondon 1990), Euclidean 
distance, graph matching (Chen and Lieh 1990), and local affine transformations (Wakahara 1994). The 
importance of preprocessing is covered by Chang and Wang (1993). 

G1.2.3.2 Arabic character recognition 

The Arabic alphabet comprises 29 characters, whose shape depends on their position in a word. Moreover, 
each character can be formed by between one and four strokes, each of which can occupy one of three 
zones: on, over or under the center (base) line. These strokes can be augmented by the presence of dots 
or hazma, which render different meanings to the character. 

Stroke segmentation and thinning are common preprocessing stages performed in Arabic character 
recognition. A variety of techniques can then be employed for classification proper. For example, El- 
Desouky et a1 (1992) used chain codes and reported up to 94% correct classification in around 3 seconds 

G1.22 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Character recognition 

on an IBM PC. El-Sheikh and Guindi (1988), on the other hand, use feature extraction. They represent 
isolated characters by their outer contour and stress marks, and store these contours as a series of x ,  y 
coordinates. Fourier series coefficients are, in turn, derived from these coordinate series (only three of 
which are necessary to accurately reconstruct the characters). They reported a 99% classification rate using 
this approach. A decision tree approach was followed by El-Sheikh and El-Taweel (1990), utilizing an a 
priori classification (into four subsets: isolated, end, beginning and middle characters) in their real-time 
system, which delivered a recognition rate of 99.6%. 

G1.2.4 Artificial neural network character recognition techniques 

Despite efforts using single-layer feedforward networks for isolated handwritten digit recognition (Knerr c i ,  1 

et a1 1992), the most common approach to handwritten character recognition has been with multilayer, 
feedforward (backpropagation) networks or multilayer perceptrons (MLPs). More specifically, specialized ci .2 
hierarchical, layered MLPs have been found to be especially suited to character recognition (Jackel et 
a1 1988, LeCun et a1 1989, Sabourin and Mitchie 1992). We shall describe a couple of representative 
systems in section G1.2.4.2. 

Work has also been reported using associative memories, both the familiar Hopfield type, as well c1.3 
as more specialized ones such as the one based on Chua attractors reported by Baird et a1 (1993). 
Unsupervised Kohonen SOM networks have also been applied to this task &isboa 1992), as has Kohonen’s c2.1.1 
supervised LVQ algorithm (Idan and Chevallier 1991). Moreover, the Sharp Corporation has recently ci . i .5  
developed a multilayer ANN which uses LVQ to recognize Japanese Kanji characters (Hammerstrom 
1993). 

Apart from research projects, commercial neural network based products have also appeared in the 
marketplace in recent years. Typical of such products are OmniTools and Nestor Reader from Nestor Inc, 
Providence, Rhode Island. 

G1.2.4.1 Printed character recognition 

Zurada (1992) compared the performance of several MLP configurations in classifying a full set (95) 
of lowercase letters, uppercase letters, digits and punctuation 7 x 10 dot matrix (Apple Imagewriter) 
characters. The output patterns were classified either as 95 discrete pattern classes (characters) or %bit 
ASCII, depending on the target application. Best classification results were obtained using two hidden 
layers, each comprising 70 neurons (in fact any number between 25 and 80 performed well). Moreover, 
the eight-output-node networks performed better than the 95-output ones. 

Autoassociative memories are also good candidates for printed character recognition, since they are 
well known to be able to recall perfect characters when presented with noisy or incomplete inputs. 
Figure G1.2.1 shows the correct recall of a 10 x 12 pixel ‘3’ corrupted by 25% random noise using 
a 120-node (14400 weight) Hopfield network trained to recognize eight different characters, as indicated 
(Lippmann 1987). 

Figure G1.2.1. ( U )  Eight exemplar pattems. (b) Output pattems for noisy ‘3’ input. Hopfield network 
autoassociator for printed character recognition. (Reprinted from Lippmann 1987, with permission of IEEE.) 

~ 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook ofNeurul Computution release 9711 G1.2:3 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

........ E 

F 

G1.2.4.2 Handwritten character recognition 

ARNIE is an MLP simulator developed for the Apple Macintosh (Cheng 1993). Both the number of 
hidden layers and the number of nodes in each layer are user selectable via dialog boxes. Handwritten 
characters can be generated either dynamically using the mouse, or from previously created files with the 
inbuilt graphical editor. Figure G1.2.2 shows both the main window used for training and recall and a 
session report window. New character classes are added by selecting the 'new' button. Different training 
exemplars for each respective class are added using the 'add' button (like the uppercase character 'A' in 
figure G1.2.2(a)). 

In the study by LeCun et a1 (1989) of handwritten zip codes, a three-hidden-layer feedforward network 
with the following configuration was used: 

input layer = 256 neurons (16 x 16 pixel images) 
hidden layer##l = 768 neurons (12 x 64) 
hidden layes2 = 192 neurons (12 x 16) 
hidden layer#3 = 30 neurons 
ouptut layer = 10 neurons (one for each digit). 

Each hidden layer searches for (small-sized) features in the previous layer. For example, each neuron 
in the first hidden layer is connected to a 5 x 5 window of the 16 x 16 input layer image. This 5 x 5 
window is translated by two pixels for neighboring neurons in the hidden layer, which enables this first 
hidden layer to detect certain predefined features. In a similar manner, the second hidden layer searches 
for features within a 5 x 5 window of the first hidden layer pattern. 

The network of LeCun et al was trained using 7291 of the 9298 available handwritten zipcode training 

Inet  W 

4 
..... ........ 

N 
...fm~ -1 

.......... ...................... 

B A H I J 

. . . . .  /." ..a.*' ...... I T r h w  .............................. 

I I 

A 

B 
C 
D 
E 

F 
G 
H 

I 

J 

K 

L 

Shows the cumnt class name being displayed (eg. as in this document 
the current class name is "A"). 
Shows the cumnt class numtcr being displayed. 
Shows the total number of classes in the document. 
The "Clear" button is for deleting a sample from the current class. 
The "Add" button is used to add a new sample into the current class 
(sec adding samples to a class). 
Shows the total numbcl of samples in the currently shown class. 
Shows the cumnt sample number that is being displayed. 
The "New" button is used to create a new clasq after this button is 
selected, a dialog box will allow entering of a class name (sct inscning a 
~lcw c l a s  into the network). 
The "Delete" button is used to delete the currently shown class. the 
current class will be removed from the list of classes. 
The "Create MLP" button is for creating a new multilayered 
perceptron network using backpropagation. 
The "Train MLP" is used to m i n  the multilayered percepuon 
network that has been m t c d .  

?his moll bar is used to scroll through all the classes in the documcnr 

Figure 61.2.2. (a) ARNIE user interface. 

G1.2:4 Hundbook of Neurul Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Character recognition 

A 

A 
B 
C Convergence errors. 
D 
E TimttaltentowintheMLenetwork. 
F 

0 

Maxi” number d wining iterations that were set for the training. 
Learning m e  used in the wining of the Mtp network. 

Iterations taken for the training of the Mtp netwak. 

The highest value given by the MLP network to detcxmine the class 
which the imagelpaacm belongs to. 
The image used for recall. 

Figure G1.2.2. Continued. (b) ARNIE user interface. 

exemplars. Following training, the network performed with a recognition accuracy of 95%. However, 
if there are marginal characters (those which human classifiers have trouble distinguishing, and which 
account for 12.1% of the zipcode database), then this accuracy rises to 99%. 

In the system presented by Jackel et a1 (1988) gray-scale character images are initially converted into 
(40 x 60 pixel) black and white ones and then reduced to 16 x 16 pixels prior to skeletonization. These 
skeletonized black and white images are then converted into 20 different 16 x 16 feature maps, which are 
then compressed into 3 x 3 arrays in order to form a 180-element output vector. This vector is then used 
to classify the handwritten digit into one of 10 categories. The recognition accuracy of this system varied 
between 95% and 99% when tested on the same zipcode database used by LeCun et al. 

generalization ability that enables it to perform deformation-invariant character recognition. However, 
this ability is heavily reliant on the choice of training set. Figure G1.2.3 shows the neocognitron structure 
organized in alternate S-cell and C-cell layer pairs (Fukushima and Wake 1991, Fukushima 1992). The 
number of layer pairs is dictated by the complexity of the patterns to be recognized. Four stages are 
required for alphanumeric character recognition (35 different characters in this study, the letter ‘0’ and 
the number ‘0’ being regarded as the same pattern). 

The S-cells perform (preselected) feature extraction, while the C-cells compensate for positional shift 
(translation) of these features within layers. Each such S -  or C-cell layer is divided into subgroups (cell 
planes) which correspond to the specific features of interest. Connections to S-cells are variable (and 
reinforced by training), whereas connections are fixed between S -  and C-cells. Local features extracted in 
the earlier stages become gradually integrated into more global features in the later stages. Figure G1.2.4 
shows some of the digits used to test this network, which gives an idea of how well the network is able to 
tolerate deformation, changes in scale, translation and additive noise (the digits on the left being correctly 
recognized, those on the right not). 

Average recognition time was around 3.3 seconds (on a Sun SPARCstation). Training took around 13 
minutes, compared with around 3 days in the study by LeCun er al. A neocognitron simulator is available 
via anonymous ftp from unix.hensa.ac.uk (129.12.21.7). 

The neocognitron is a special purpose, hierarchical, feedforward network which has a good c2.1.3 

@ 1997 IOP Publishing Ltd and Oxford University F’ress Hundbook of Neurul Computution release 9711 G1.2~5 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Figure G1.2.3. 
IEEE.) 

Neocognitron architecture. (Reprinted from Fukushima et al (1983) with permission of 

( a )  
Figure 61.2.4. Deformed character test patterns. (Reprinted from Fukushima et a1 (1983) with permission 
of IEEE.) 

G1.2.4.3 Chinese character recognition 

ANN approaches to handwritten Chinese character recognition include MLPs (Lua and Gan 1990, Joe et a1 
1990), the neocognitron (Fukushima 1992), and Hopfield networks (Liao et a1 1993). In the latter network, 
the rows connect to the test character and the columns to the training exemplar (character). Preprocessing 
comprises both thinning and the removal of undesirable holes and noise. The stroke extraction process 
utilizes the k-curvature method to locate turning points in the straight-line segments which constitute a 
curve. The method presented by Liao et a1 (1993) is flexible (able to handle differing numbers of rows 
and columns), and is able to recognize characters even if the number of strokes in the test and exemplar 
characters differ. It can also cater to positional translations and rotations. They report a recognition 
accuracy of around 90%. 

G1.2~6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Character recognition 

G1.2.5 Conclusion 

Unconstrained handwritten character recognition remains a difficult problem. Nevertheless, typical state- 
of-the art systems are capable of emulating human classifiers, with recognition accuracies of  around 95% 
commonly being reported. Some form of preprocessing is usually required, however, to  achieve such 
recognition accuracy (such as partitioninghegmentation into isolated characters, noise filtering, thinning 
and the like). 

Feedforward ANNs are most often employed, with most success being reported for special-purpose 
hierarchical networks (LeCun er a1 1989, Fukushima and Wake 1991). For readers interested in 
investigating handwritten character recognition for themselves, the following CD-ROM databases are 
recommended: Cedar CD-ROM1 (State University of New York at  Buffalo) and the NIST Special 
Database 3 (US National Institute of Standards and Technology). Samples of the latter are available 
via anonymous ftp from sequoyah.ncsl.nist.gov. 

References 

Baird B, Hirsch M and Beckman F 1993 A neural network associative memory for handwritten character recognition 

Chang H-D and Wang J-F 1993 Preclassification for handwritten Chinese character recognition by a peripheral shape 

Chen L-H and Lieh J-R 1990 Handwritten character recognition using a 2-Layer random graph model by relaxation 

Chen M-Y, Kundu A and Zhou J 1994 Off-line handwritten word recognition using a hidden Markov model type 

Cheng G 1993 ARNIE-neural network simulator Preprint 93-3 University of Wollongong, Department Computer 

El-Desouky A, Salem M, El-Gwad A and Arafat H 1992 A handwritten Arabic character recognition technique for 

El-Sheikh T and El-Taweel S 1990 Real-time arabic handwritten character recognition Putt. Recog. 23 1323-32 
El-Sheikh T and Guindi R 1988 Computer recognition of Arabic cursive scripts Putt. Recog. 21 293-302 
Fukushima K 1992 Character recognition with neural networks Neurocomput. 221-33 
Fukushima K, Miyake S and Ito T 1983 Neocognitron: a neural network model for a mechanism of visual pattern 

Fukushima K and Wake N 1991 Handwritten alphanumeric character recognition by the neocognitron IEEE Trans. 

Hammerstrom D 1993 Neural networks at work IEEE Spectrum 30 26-32 
Huang J-S 1993 Optical handwritten Chinese character recognition ed C Chen, L Pau and P Wang Handbook of 

Idan Y and Chevallier R 1991 Handwritten digits recognition by a supervised kohonen-like leaming algorithm Proc. 

Jackel L, Graf H, Hubbard W, Denker J and Henderson D 1988 An application of neural net chips: handwritten digit 

Joe K, Mori Y and Miyake S 1990 Construction of a large-scale neural network: simulation of handwritten Japanese 

Knerr S, Personnaz L and Dreyfus G 1992 Handwritten digit recognition by neural networks with single-layer training 

Kovacs Z, Raggazoni R, Rovatti R and Guerrieri R 1993 Improved handwritten character recognition using second- 

Kundu A, He Y and Bahl P 1989 Recognition of handwritten word: first and second order hidden Markov model 

LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W and Jackel L 1989 Backpropagation applied to 

Liao H-Y, Huang J-S and Huang S-T 1993 Stroke-based handwritten Chinese character recognition using neural 

Lippmann R 1987 An introduction to computing with neural nets IEEE ASSP Magazine April 4-22 
Lisboa P 1992 Single layer perceptron for the recognition of handwritten digits Int. J. Neural Networks 3 17-22 
Lua K T and Gan K W 1990 Recognising Chinese characters through interactive activation and competition Patt. 

Mori S, Suen C and Yamamoto K 1992 Historical review of OCR research and development Proc. IEEE 80 1029-58 

using multiple Chua characters IEEE Trans. Circuits Syst. 40 667-74 

coding method Putt. Recog. 26 71 1-19 

matching Putt. Recog. 23 1189-205 

stochastic network IEEE Trans. Patt. Anal. Mach. Intell. 16 481-93 

Science 

machine reader Int. J. Mini Microcomput. 14 57-61 

recognition IEEE Trans. Syst. Man Cybern. 13 826-34 

Neural Networks 2 355-65 

Pattern Recognition and Computer Vision (Singapore: World Scientific) pp 595-624 

Int. Joint Con& on Neural Networks (Singapore) 111 pp 2576-8 1 

recognition Proc. Int. Joint Con& on Neural Networks (San Diego, CA) 11 pp 107-15 

character recognition on ncube Concurrency Practice Exp. 2 79-107 

IEEE Trans. Neural Networks 3 962-8 

order information from training set Electron. Lett. 29 1308-10 

based approach Putt. Recog. 22 283-97 

handwritten zip code recognition Neural Comput. 1 541-51 

networks Putt. Recog. Lett. 14 833-40 

Recog. 23 1311-21 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 97f1 G 1.2:7 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Nouboud F and Plamondon R 1990 On-line recognition of handprinted characters: survey and beta tests Patt. Recog. 

Sabourin M and Mitchie A 1992 Optical character recognition by a neural network Neural Networks 5 843-52 
Tappert C, Suen C and Wakkahara T 1990 The state of the art in on-line handwriting recognition IEEE Trans. Putt. 

Veltman S and Prasad R 1994 Hidden Markov models applied to on-line handwritten isolated character recognition 

Wakahara T 1994 Shape matching using LAT and its application to handwritten numeral recognition IEEE Trans. Patt. 

Zurada J 1992 Introduction to ArtiJcial Neural Systems (St Paul, MN: West) section 8.2 

23 1031-44 

Anal. Mach. Intell. 12 787-808 

IEEE Trans. Image Proc. 3 314-8 

Anal. Mach. Intell. 16 618-29 

G1.23 Handbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

61.3 Handwritten character recognition using neural 
networks 

Thomas A4 Breuel 

Abstract 

Automating the transcription of handwriting on forms and mail pieces can result in 
significant cost savings. Neural networks have proven to be a robust and reliable 
component of handwriting recognition systems. In this paper, we review some of the 
major concepts and approaches to handwriting recognition using neural networks. 

G 1.3.1 Introduction 

Despite the widespread availability of computers, or perhaps because of it, an ever increasing amount of 
data is obtained in handwritten form on paper. The offline handwriting recognition problem is the problem 
of transforming this data into machine readable form, accurately and quickly. 

A typical application for computer-based capture of handwritten data is the tax forms issued by 
the US Internal Revenue Service. Forms contain preprinted instructions and outlines of response fields. 
Respondents fill alphanumeric information (name, address, income, deductions, etc) into the preprinted 
response fields. Each of these responses needs to be transcribed into machine readable form and stored 
in an online database. There exist numerous similar applications in business, banking, health care and 
government. 

Currently, most of these data capture problems are solved manually, sometimes by small secretarial 
staffs and sometimes by large, offshore service companies. However, while manual data capture is still 
competitive, computer and pattern recognition technology holds the promise of greatly reducing costs. 

The goal of this article is to give the practitioner who wants to build a working isolated handwritten 
character recognizer a useful starting point, and to give neural network researchers who are looking to 
isolated handwritten character recognition as a benchmark for new architectures an idea of what has 
already been accomplished. The paper is based on the experience that the author has gained building 
neural-network-based handwriting recognition systems for US Census applications (Breuel 1994). 

G1.3.2 Issues 

We start our discussion assuming that we get an image of an isolated handwritten string consisting of 
multiple characters. This might, for example, be the contents of a forms field given in response to a 
question like ‘Please state your name in the space provided’. 

G1.3.2. I Segmentation 

In order to recognize and transcribe the handwritten input contained in a complete field image (field-level 
recognition as opposed to character recognition), two problems need to be solved1 : 

t A few systems and approaches attempt to recognize whole words or do not overtly try to isolate individual characters before 
attempting word recognition; examples of such systems are Martin and Rashid (1992). Martin et a1 (1993), Fukushima (1992), 
lmagawa and Fukushima (1993). Bunke and Roth (1993). Giloux et a1 (1993), Mulgaonkar eta1 (1994). Such systems fall outside 
the scope of this paper. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.3 : 1 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.3:2 

0 

0 

There are two major approaches to the segmentation problem. 

the image of the string needs to be segmented into images of individual characters 
the individual characters need to be recognized. 

(9 

(ii) 

Have the respondent write isolated characters into preprinted boxes and extract them based on a 
geometric forms model. Such an approach is easy to implement, fast and makes segmentation errors 
unlikely. It helps resolve some of the inherent ambiguities in Western handwriting. However, user 
acceptance for writing long responses in preprinted per-character boxes tends to be low, and preprinted 
boxes require more space on forms, possibly increasing printing costs. 
Unconstrained fields consist of a single blank space for a complete response (one or more words). 
Recognition is carried out by generating multiple, possibly overlapping candidate isolated character 
images. These are then assembled into a complete interpretation of the input (see Burges et a1 1992, 
Giloux et al 1993 and Breuel 1994 for examples of systems that use such an approach). Unconstrained 
fields have higher user acceptance, accommodate long responses better, and require less space on the 
form. But a system for the recognition of responses in unconstrained fields requires more computation 
and is inherently more susceptible to unresolvable ambiguities. 

Both approaches have their place in practice. Preprinted character boxes are best reserved for responses 
that are difficult to verify and where low-perplexity language models are not available. Examples are bank 
check amounts, social security numbers, telephone numbers and personal names. 

Fields without preprinted character boxes are best used where space is at a premium, high user 
acceptance is desirable, or where low-perplexity language models or small dictionaries are available. 
Examples are fields for occupation, city names, street names, race, etc. 

Regardless of which of the two approaches we use, we need an isolated character recognizer that 
takes the output of the segmentation step and recognizes the individual characters. 

G1.3.2.2 Variability 

Isolated character recognition is a difficult problem because inputs exhibit considerable variability. The 
most common way of compensating for this variability is by using normalization steps. Normalization steps 
attempt to remove the variability in a model-independent, bottom-up way. Major sources of variability in 
handwriting recognition and corresponding normalization steps are: 

0 noise and dropouts: scanning hardware adds noise and dropout pixels and may affect image contours 
* morphological filtering to remove salt-and-pepper noise 
* two-dimensional image processing or mathematical morphology to compensate for aliasing and 

pixelization 
0 translation: characters are not always written in the same position relative to the enclosing box 

* 
* 
size: characters can be written in many different sizes without changing their meaning 
* force the character image inside a fixed-size bounding box 
* alternatively, normalize the second moments of the character image by scaling 
writing instrument: a variety of writing instruments are in use, differing in thickness, color and stroke 
quality 
* normalize for stroke thickness by skeletonization (thinning) 
* normalize for stroke texture by two-dimensional image processing or mathematical morphology 
slant: different writers and the same writer under different conditions will slant their letters differently; 
that is, their handwriting undergoes a shear along the horizontal axis (note that characters are not, in 
general, invariant under rotation, namely ‘6’ versus ‘9’) 
* normalize at the character level by forcing the x y  moment of the character image to zero by 

shearing 
* normalize at the field level by identifying likely vertical strokes and forcing them to be vertical 

by shearing 

move the centroid of the character image to the origin 
move the character into a given bounding box 

0 

0 

0 

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

e writing style: we find significant variations in writing style with nationality, region of origin, age, 
education, profession, physiological state, forms type, size and writing instrument. 

A normalization step for translation and size will allow us to use a recognition method that is not 
invariant under translation and size for the recognition of handwritten characters. Normalization methods 
are described and referenced in more detail in the literature, both in surveys and evaluations (e.g. Blue 
et a1 1994, Wilkinson et a1 1994, Geist et a1 1994, Kasturi and O’Gorman 1992, Davis and Lyall 1986, 
Chatterji 1986) and in specific recognition systems (Caesar et a1 1993, Grother 1992, Shustorovich 1994, 
Guillevic and Suen 1993, among many others). 

However, normalization is not the only possible approach. Several other approaches have been used 
in the literature. 

We can base recognition on a feature set that is invariant. This is closely related to applying 
normalization steps, but the focus is different. Common techniques that yield invariant feature sets 
are based on Fourier transforms, moments and topological descriptors. For some typical examples 
see Lu et a1 (1993), Chatterji (1986), Davis and Lyall (1986). 
We can make the recognition method itself invariant. Translation-invariant recognition has been the 
subject of extensive research in neural networks and computer vision. Such methods tend to be more 
computationally intensive, but can give lower error rates (Drucker and LeCun 199 1, Simard et a1 1992, 
Breuel 1993). There are two main reasons for this. First, normalization during preprocessing might 
throw away important information that is important for recognition (image processing sometimes 
closes small loops in characters like ‘e’), although this can be overcome by passing on both the 
normalized input along with information about the normalization step, e.g. the centered character 
image plus the translation. Second, multiple normalization steps can interact in deleterious ways. 
Instead of implementing invariants directly in the recognition algorithms, we treat them as 
idiosyncratic variations. That is, we simply apply a noninvariant recognition method to a problem 
that we happen to know has some invariants. We can still take advantage of our knowledge of 
invariants by increasing the size of the training set through generating transformed (translated, scaled, 
thickened, etc) instances of characters artificially. Since invariants in character recognition tend to 
be only approximate and apply over only limited ranges of parameter values, such an approach can 
work quite well in practice. 
We can also simply note the normalizing transformation (e.g. letter slant) and pass this on to the 
classifier as an additional feature of the input, alongside the unnormalized input. 

GI.3.2.3 Probability estimates 

For most applications, it is not sufficient for a recognizer to retum a ‘hypothesis’ of what character an 
unknown input represents, but also some degree of ‘confidence’. This confidence is usually used for 
two purposes: rejection of characters or fields, and integration of character hypotheses into a complete 
transcription of a whole field. 

Bayesian decision theory (see Berger 1985, Kiefer 1987) has been a useful tool for implementing 
theoretically well founded methods for rejection and integration. For example, for implementing rejection, 
Bayesian decision theory tells us that under a zeroone loss function, we should return as a hypothesis 
the class with the highest posterior probability P(wlZ) (where w is the class and I is the input image), 
and that the probability of error is 1 - P(w1Z). For an example of integration of character hypotheses in 
a Bayesian framework, see Breuel (1994). 

In order to use probabilities for rejection and integration, we need to estimate them. An important 
result about conditional probabilities and neural networks is that the standard multilayer perceptron 
(MLP), when trained on a classification problem, actually estimates conditional probabilities (Bourlard 
ar.d Wellekens 1989). This is a special instance of a number of more general results about using 
regression methods for probability estimates in classification problems. For a simple MLP, the outputs 
only approximate posterior probabilities and are not guaranteed to sum to 1, as would be expected for 
exact posterior probabilities (Ewen P(wlx)  = 1, where R is the set of all character classes). This can be 
remedied by using a slightly different network architecture. 

Many non-neural-network architectures, as well as some neural network architectures, return 
‘confidence measures’ that are not directly related to posterior probabilities. The most common way of 
using such confidences for the purposes of rejection or integration is to use a simple binning or thresholding 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computarion release 9711 G1.3:3 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

strategy; this second step can be viewed as a simple kind of classifier, yielding a system that is very similar 
to stacked classifiers (see below). 

G1.3.2.4 Input representation 

We have already addressed questions of normalization of the two-dimensional input signal to a handwritten 
character recognizer. What remains is the question of how to transform this two-dimensional signal into 
a feature vector that can serve as input to a neural network. An annotated bibliography alone of all the 
different kinds of representations tried for handwritten character recognition would be longer than this 
whole paper. We limit ourselves here to some general points, some starting points for reading and some 
simple recommendations. 

An important distinction is between topographic and nontopographic representations. In a topographic 
representation, the components of the feature vectors correspond in some simple way to the two- 
dimensional locations in the input image. An example of a topographic representation is a two- 
dimensional representation of the local orientations found in an input image (perhaps inspired by the 
existence of topographically organized orientation-selective cells in early biological visual processing); a 
nontopographic representation would be a moment-based representation. 

Some systems attempt to learnfeature extraction methods, starting only with a raw image, while others 
rely on sophisticated hand-coded feature extraction methods. Two important examples of learning feature 
extraction methods applied to handwritten character recognition are the Karhunen-Loeve transformation 
(KLT; e.g. Grother 1992), and the topographic feature maps obtained through weight sharing in the system 
described by Burges et a1 (1993) and LeCun et a1 (1989). 

To get a feel for the kinds of representations in use in working handwritten character recognition 
systems, the reader should start with several of the available practical comparisons and surveys (e.g. Davis 
and Lyall 1986, Govindan and Shivaprasad 1990, Kasturi and O’Gorman 1992, Blue et a1 1994). It 
appears that seemingly very different representations can give very similar performance. There are several 
reasons for this. First, the quality of a chosen representation is only one of a large number of factors 
determining overall system performance; as long as a representation is ‘reasonable’ and well matched 
to the classifier used, a system based on it may still outperform other systems. Second, seemingly very 
different representations may actually be closely related on closer inspection; for example, moment-based, 
Fourier-based and KLT-based techniques can all be viewed as expansions of an input image in terms of 
two-dimensional basis functions. 

For MLP-based handwritten character recognizers, hand-coded topographic representations of local 
orientation and the presence of features such as endpoints, junctions, holes and bays are a common and 
proven choice. 

G1.3.3 Neural network architectures 

The output of preprocessing is a representation of the unknown character as a high-dimensional feature 
vector. For a typical topographic representation (Breuel 1994), each two-dimensional feature map is 
10 x 10 pixels in size, and there may be as many as eight such feature maps (four for gradient features, 
and another four for structural and topological features). Perhaps surprisingly, the high dimensionality of 
this feature vector does not appear to pose a significant problem for many neural network architectures. 

The theory and implementation of the networks described below can be found elsewhere in the 
handbook. Here, we mention only general properties that specifically relate to isolated character 
recognition. 

G1.3.3.1 Multilayer perceptrons 

c1.2 Perhaps the most widely used neural network architecture is the three-layer perceptron with sigmoidal 
ci.2.3 activation function trained using the backpropagation algorithm. Performance of such three-layer 

perceptrons on raw images appears not to be competitive. However, when proper normalization and 
feature-extraction steps precede the three-layer perceptron, performance becomes competitive. Several 
successful systems have used such neural network architectures for recognition. 

Additional layers can be added before the input layer of a basic three-layer perceptron for isolated 
character recognition if we wish to carry out feature extraction itself using a neural network architecture; 

G 1.3:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

such a network would then be presented essentially with a raw input image. The system described by 
Burges et a1 (1993) and LeCun et a1 (1989) takes such an approach. It adds two additional layers before a 
fully interconnected three-layer perceptron. In order to reduce the number of free parameters and training 
time, the first two layers in that network use shared or replicated weights. 

We can think of these two input layers as performing convolutions of the input image with specific 
two-dimensional pattems (patterns that are learned automatically using the backpropagation algorithm), 
followed by a nonlinear (i.e. sigmoidal) transformation of the resulting values. The first two layers 
of such an architecture can easily perform a computation similar to that of hand-coded feature maps 
representing the magnitude of directional derivatives. However, features like the detection of ‘interior 
regions’ can easily be hand-coded but would be difficult to compute reliably from raw images using the 
two feedforward perceptron layers at the input of the five-layer perceptron. 

G1.3.3.2 Classif er combination 

A method of increasing importance is classifier combination, in which the outputs of multiple neural 
networks and statistical classifiers are combined, generally resulting in a significantly improved overall 
recognition rates. Linear combination of classifiers has been advocated in Perrone (1993) and applied to 
handwritten character recognition; similar methods have been used in Bayesian statistics (Berger 1985). 
Stacking classifcation or sequential classifiers refers to combining the outputs from several first-stage 
classifiers into a single feature vector and using that as input to a second-stage classifier (see Wolpert 
1992), often a neural network (linear combination methods can be viewed as a special kind of stacking, 
with a kind of perceptron as the second classifier). Boosting refers to a technique that compares and 
combines the outputs from several neural networks. For a description and application of the technique 
to character recognition, see Drucker et a1 (1993, 1994). Examples of classifier combination can also be 
found in Geist er a1 (1994), Xu et a1 (1992), Loncelle et a1 (1992), Breuel (1993), Ho et a1 (1994), Breuel 
(1994), Battiti and Colla (1994), and Xu er a1 (1994). 

G1.3.3.3 Other neural network techniques 

Probabilistic neural networks (PNN; Specht 1990) are similar to kernel density estimators (see Duda and ~ 1 . 4  

Hart 1973). They are noteworthy because they have performed well in tests conducted by NIST (Blue 
et a1 1994), and because a free implementation is available from NIST (see the appendix for contact 
information). 

Radial basis&nctions have been studied extensively from a theoretical point of view (e.g. Powell c1.6.z 

1987) and applied successfully to problems in handwritten character recognition (e.g. Lee 1991, Lemarie 
1993). 

All the neural network techniques mentioned above are inherently not invariant under translation or 
skew. Some architectures have tried to address invariance directly as part of the network architecture. An 
interesting example of this is given in Bottou and Vapnik (1992) and Simard et al (1992). 

Isolated handwritten character recognition has become somewhat of a benchmark for neural networks, 
perhaps due to the wide availability of large amounts of training data, the challenges involved in coping 
with input variability and implementing invariances and the high dimensionality of the input. Numerous 
methods have therefore been applied; a taxonomy can be found in Blue et a1 (1994). 

G1.3.4 Alternative approaches 

Perhaps the most important and basic non-neural-network method is k-nearest-neighbor classification. It is 
easy to implement and train, requires no ‘parameter tuning’, tends to be robust, has asymptotic performance 
guarantees, and in many cases performs well in practice (see, for example, Weideman et a1 1989, Lee 
1991, Yan 1994). Its main disadvantage is that recognition is slow compared to other approaches. Nearest- 
neighbor methods are also important because of close ties to several neural network methods, including 
radial basis functions, multilayer perceptrons (both of which can be interpreted as a kind of ‘weighted 
nearest-neighbor classifier’), and probabilistic neural networks, among others. 

Classical and modern statistical approaches are plausible alternatives to neural network models. In 
fact, there is often considerable similarity between methods independently conceived in the statistical 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G 1.35 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

community and the neural network community. Examples of statistical methods closely related to neural 
ci.1 .s network techniques are additive models, vector quantization, mixture models and logistic regression. 

Direct geometric matching of geometric character models to images of unknown characters is a 
technique borrowed from computer vision and achieves high recognition rates (Breuel 1993). Like Drucker 
and LeCun (1991) and Simard et a1 (1992), this method achieves invariance under translation not through 
normalization, but by incorporating it directly into the matching step. 

Hidden Markov models (HMMs) were originally mainly applied to speech recognition, but have 
become popular for offline handwriting recognition as well (e.g. Giloux et a1 1993). HMMs integrate 
the segmentation and recognition steps. HMMs can be combined with neural network techniques (e.g. 
Bourlard and Wellekens 1989). 

~ 1 . 7  

G1.3.5 Training and evaluation 

~3 The general concepts of neural network training and validation are described elsewhere in the handbook 
(see also Grother 1993). 

Several standard databases exist for training and testing handwriting recognition systems (Garris 
1992; for information on how to obtain the NIST database of handwriting taken from US Census forms 
and the CEDAR database of handwriting taken from live US mail pieces, see the appendix). These 
databases are easily available, and their use should be considered almost a prerequisite for publishing 
performance results on specific handwriting recognizers. 

It must be stressed again that in order to obtain accurate estimates of real-world performance, a strict 
separation between training and test sets must be scrupulously maintained. In fact, even repeated use of a 
test set solely for evaluating different versions or revisions of a single recognition system can easily lead 
to an overestimation of the performance of a particular method. For this reason, retaining multiple test 
sets is prudent. 

Rather than modifying or improving the recognition algorithm, simply using mure training data is 
often an easy way of improving recognition performance of an isolated character recognizer. In order to 
determine and extrapolate how well a system might perform when given more training data, the system 
can be trained on different size subsets of the available training set and the test set error can be plotted 
against the training set size. 

An important property of handwriting is that there is considerable variation in writing styles, often 
correlated with factors like writer origin, age and education. This has several important consequences. 
Most importantly, the writing style of a training set may be different from the writing style actually 
encountered in an application. A particularly severe example would be trying to use a system trained on 
US American digit fields for recognition of ZIP codes written by European writers: even some of the basic 
letter shapes are different. But even within a particular population, we will encounter some systematic 
variation. This can even be observed in particular training and test sets. For example, some clusters of 
consecutive writers found in the NIST databases seem to be sometimes significantly easier and sometimes 
more difficult to recognize than the database as a whole. This means that when selecting a test set, it 
should probably be drawn randomly from a database, and it may be useful even to randomize the order 
of fields in the training set. 

The issue of ground truth for training and test sets is itself thorny, and which definition we pick 
depends on the particular use that we put the resulting error rate to. The basic distinction is whether 
we want to measure the error rate relative to the character that the writer intended to write, or relative 
to the character that the writer actually wrote. (It should be noted that the ‘intention’ of the writer can 
usually be inferred or verified for training and testing purposes from other sources, even if those sources 
are not available or too costly to take advantage of in the actual application.) The problem with the first 
approach is that it penalizes recognition systems for errors made by the writer (but, of course, error rates 
are still comparable between recognizers and between man and machine). The problem with the second 
approach is that a certain fraction of characters cannot be classified unambiguously even by careful human 
inspection. 

Another important distinction is between measuring character-level and field-level accuracy. If 
our training and test sets already consist of isolated, transcribed characters, this is not an important 
issue. However, if systems can take advantage of field-level information, both measuring and comparing 
character-level accuracy between systems becomes difficult. As a simple example, in the results reported 
in Geist et a1 (1994), character-level and field-level errors were not always proportional. 

G 1.3:6 Handbook of Neural Compuration release 9711 @ 1997 IOP Publishing Lid and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

G1.3.6 Recommendations and conclusions 

For the practitioner, perhaps the most instructive reference available on handwritten character recognition 
is Wilkinson et a1 (1994). In it, 57 different handwritten character recognition systems were tested on 
the same database of handwritten digits. The top ten performers in that comparison all used either some 
form of MLP or k-nearest-neighbor method (MLP was quite popular overall: a little less than a third of 
the entries used some form of MLP). The reader is referred to the report for detailed analysis and data. 
MLP-based character recognition was also popular and successful in Geist et a1 (1994), where systems 
were tested on field-level handwritten word recognition. 

Results like these as well as the extensive literature suggest that MLP-based handwritten character 
recognizers are both proven and practical. Compared to methods like k-nearest neighbors, which also 
have low error rates, they also have practical advantages in terms of throughput and the ability to estimate 
probabilities well. 

For the neural network researcher looking for benchmark tasks, the ‘standard’ handwritten character 
recognition task (isolated, truthable characters, large available training and test sets) may not be very 
rewarding: it appears that current systems perform close to, and in some cases may even surpass, human 
performance; the best existing systems primarily fail on input that is genuinely ambiguous or was not 
well represented in their training data. But while ‘standard’ handwritten character recognition may not 
leave much room for breakthroughs, demonstrating state-of-the-art performance on it is still an important 
achievement indicating that a new neural network architecture is at least no worse than existing methods. 

However, handwritten character recognition and connected-handwriting recognition still offers a rich 
field for future research. Some important research topics are: 

0 

0 

0 

0 

0 

0 word-level recognition. 

Progress in these areas will require far more than a simple extension of the classifier paradigm that has 
proven so successful for isolated handwritten character recognition. 

achieving robustness to background, dropouts, underlining, manual corrections, etc 
on-the-fly adaptation to new writing styles 
recognition of symbols, diacritics, and non-European writing systems 
better integration of segmentation and recognition in connected handwriting recognition systems 
better integration of linguistic and domain knowledge into the recognition process; automatic 
acquisition of such knowledge 

G1.3.7 Databases 

Further information on the NIST (National Institute of Standards and Technology) databases for training 
and testing handwriting recognition systems, as well as the freely available NIST reference character 
recognition system, can be obtained by contacting: 

Standard Reference Data 
National Institute of Standards and Technology 
22 1lA323 
Gaithersburg, MD 20899 

(301) 926-0416 (fax). 

The CEDAR (Center for Excellence in Document Analysis and Recognition) database derived from postal 
addresses can be obtained from: 

Jonathan J Hull 
Associate Director, CEDAR 
226 Bell Hall 
State University of New York at Buffalo 
Buffalo, NY 14260 
7 16-636-3 195 (voice) 

hull @cs.buffalo.edu (email). 

(301) 975-2208 

716-636-3966 (fax) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G1.317 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

References 

Battiti R and Colla A M 1994 Democracy in neural nets: voting schemes for classification Neural Networks 7 691-707 
Berger J 0 1985 Statistical Decision Theory and Bayesian Analysis (Berlin: Springer) 
Blue J L, Candela G T, Grother P J, Chellappa R and Wilson C L 1994 Evaluation of pattem classifiers for fingerprint 

Bottou L and Vapnik V 1992 Local learning algorithms Neural Compur. 4 888-900 
Bourlard H, Wellekens C J 1989 Links between Markov models and multilayer perceptrons ed D S Touretzky 

Advances in Neural Information Processing Systems vol 1 (San Mateo, CA: Morgan Kaufmann) pp 502-10 
Breuel T M 1993 Recognition of handprinted digits using optimal bounded error matching Int. Con$ on Document 

Analysis and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: IEEE Computer Society Press) 

- 1994 Design and Implementation of a system for the recognition of handwritten responses on US census forms 
Document Analysis Systems ’94 (DAS ’94) (Kaiserslautern) (Los Alamitos, CA: IEEE Computer Society Press) 

Bunke H and Roth M 1993 Off-line recognition of cursive handwriting using hidden Markov models Acres des 
Journkes Sur le Tratement d’lmage, la Reconnaissance des Formes et L a r s  Application ed R Ingold (Laboratoire 
d’hformatique de 1’UniversitC de Fribourg) 

Burges C J C, Matan 0, LeCun Y, Denker J S ,  Jackel L D, Stenard C E, Nohl C R and Ben J I 1992 Shortest path 
segmentation: a method for training a neural network to recognize character strings IJCNN Inr. Joint Con5 on 
Neural Networks (Cat. No. 92CH3114-6) (New York: IEEE Press) pp 165-72 

Burges C J C, Ben J I ,  Denker J S ,  Lecun Y and Nohl C R 1993 Off line recognition of handwritten postal words 
using neural networks Int. J .  Patr. Recog. Art$ Int. 7 689-704 

Caesar T, Gloger J M and Mandler E 1993 Preprocessing and feature extraction for a handwriting recognition system 
Inr. Con$ on Document Analysis and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: IEEE 
Computer Society Press) pp 408-1 1 

and OCR applications Patt. Recog. 27 485-501 

pp 493-6 

pp 109-34 

Chatterji B N 1986 Feature extraction methods for character recognition IEEE Tech. Rev. 3 9-22 
Davis R H and Lyall J 1986 Recognition of handwritten characters-a review Image Ks. Comput. 4 208-18 
Drucker H, LeCun Y 1991 Double backpropagation increasing generalization performance IJCNN-91-Seattle: Int. 

Drucker H, Schapire R and Simard P 1993 Boosting performance in neural networks Inr. J.  Patt. Recog. Art$ Inr. 7 

Drucker H, Cortes C, Jackel L D, LeCun Y and Vapnik V 1994 Boosting and other ensemble methods Neural Comput. 

Duda R 0 and Hart P E 1973 Pattern Classification and Scene Analysis (New York: Wiley) 
Fukushima K 1992 Character recognition with neural networks Neurocomputing 4 221-33 
Gams M D 1992 Design and collection of a handwriting sample image database Social Sci. Compur. Rev. 10 196-214 
Geist J, Wilkinson R A, Janet S ,  Grother P J, Hammond B, Larsen N W, Near  R M, Matsko M J, Burges C J C, Creecy 

R, Hull J J, Vogl T P and Wilson C L 1994 The Second Census Optical Character Recognition Systems Con5 
NISTIR 5452 US Department of Commerce, National Institute of Standards and Technology (NIST), Computer 
Systems Laboratory, Gaithersburg, MD 20899, USA 

Giloux M, Leroux M and Bertille J-M 1993 Strategies for handwritten word recognition using hidden Markov models 
Int. Conf on Document Analysis and Recognition (Los Alamitos, CA: IEEE Computer Society Press) pp 299-304 

Govindan V K and Shivaprasad A P 1990 Character recognition-a review Patt. Recog. 23 671-83 
Grother P J 1992 Karhunen Loeve feature extraction for neural handwritten character recognition Proc. SPIE 155 

- 1993 Cross validation comparison of NIST OCR databases Proc. SPIE 296 296-307 
Guillevic D and Suen C Y 1993 Cursive script recognition: a fast reader scheme Inr. Con5 on Document Analysis 

and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: IEEE Computer Society Press) pp 31 1-4 
Ho T K, Hull J J and Srihari S N 1994 Decision combination in multiple classifier systems IEEE Trans. Parr. Anal. 

Mach. Int. 16 66-75 
Imagawa T and Fukushima K 1993 Character recognition in cursive handwriting with the mechanism of selective 

attention Syst. Comput. Japan 24 89-97 
Kasturi R and O’Gorman L 1992 Document image analysis: a bibliography Mach. Vision Appl. 5 2 3 1 4 3  
Kiefer J C 1987 Introduction to Starisrical Inference (Berlin: Springer) 
LeCun Y, Boser B, Denker J S,  Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation 

Lee Y 1991 Handwritten digit recognition using k nearest-neighbor radial-basis function, and backpropagation neural 

Lemarie B 1993 Radial basis function network for handwritten digit recognition Proc. SPIE 645 645-52 

Joint ConJ on Neural Networks (Cat. No. 91CH3049-4) (New York: IEEE Press) pp 145-50 

705-19 

6 1289-301 

155-66 

applied to handwritten zip code recognition Neural Compur. 1 541-51 

networks Neural Comput. 3 440-9 

G1.3~8  Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

Loncelle J, Derycke N and Soulie F F 1992 Cooperation of GBP and LVQ networks for optical character recognition 

Lu Y, Schlosser S and Janeczko M 1993 Fourier descriptors and handwritten digit recogition Mach. Vis. Appl. 6 

Martin G L and Rashid M 1992 Recognizing overlapping hand-printed characters by centered-object integrated 
segmentation and recognition Advances in Neural Information Processing Systems vol4 ed J E Moody, S J Hanson 
and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 504-1 1 

Martin G L, Rashid M and Pittman J A 1993 Integrated segmentation and recognition through exhaustive scans or 
leamed saccadic jumps Int. J .  Putt. Recog. Artif: Int. 7 8 3 1 4 7  

Mulgaonkar P G, Chen C H and DeCurtins J L 1994 Word recognition in a segmentation-free approach to OCR Proc. 
SPIE 135 135-41 

Perrone M P 1993 Improving regression estimation: averaging methods for variance reduction with extensions to 
general convex measure optimization PhD Thesis Brown University, RI, USA 

Powell M J D 1987 Radial basis functions for multivariable interpolation: a review Algorithms for Approximation ed 
J C Mason and M G Cox (Oxford: Clarendon) 

Shustorovich A 1994 A subspace projection approach to feature extraction: the two-dimensional Gabor transform for 
character recognition Neural Networks 7 1295-301 

Simard P, LeCun Y, Denker J and Victorri B 1992 An efficient algorithm for leaming invariance in adaptive classifiers 
Proc. 11th IAPR Int. Con$ on Putt. Recog. Vol 11. Conference B: Pattem Recognition Methodology and Systems 
(Los Alamitos, CA: IEEE Computer Society Press) pp 651-5 

IJCNN Int. Joint Con$ on Neural Networks (Cat. No. 92CH3114-6) (New York: IEEE Press) pp 694-9 

25-34 

Specht D F 1990 Probabilistic neural networks Neural Networks 3 109-18 
Weideman W E, Manry M T and Yau H C 1989 A comparison of a nearest neighbor classifier and a neural network 

for numeric handprint character recognition IJCNN: Int. Joint Con$ on Neural Networks (Cat. No. 89CH2765-6) 
(New York: IEEE TAB Neural Network Committee) pp 117-20 

Wilkinson R A, Geist J, Janet S ,  Grother P J, Burges C J C, Creecy R, Hammond B, Hull J J, Larsen N J, Vogl T P and 
Wilson C L 1994 The First Census Optical Character Recognition Systems Con$ NISTIR 4912 US Department of 
Commerce, National Institute of Standards and Technology (NIST), Computer Systems Laboratory, Gaithersburg, 
MD 20899, USA 

Wolpert D H 1992 Stacked generalization Neural Networks 5 241-59 
Xu L, Krzyzak A and Suen C Y 1992 Methods of combining multiple classifiers and their applications to handwriting 

-1994 Associative switch for combining multiple classifiers J. Artif: Neural Networks 1 77-100 
Yan H 1994 Handwritten digit recognition using an optimized nearest neighbor classifier Putt. Recog. Lett. 15 207-1 1 

recognition IEEE Trans. Syst., Man Cybem. 22 418-35 

Further reading 

I have tried to  compile a list of references that will be useful to  the reader interested in implementing 
their own handwriting recognition system using neural network technology. The reading list is divided by 
topic into sections. Within each section, papers are listed in the suggested order for reading. References 
already cited in the paper are usually not repeated here. 

The following publications frequently contain papers on  handwriting recognition, preprocessing and 
systems, both using neural networks and ‘classical’ approaches: 

0 

0 

Neural Networks 

0 Pa t t em Recognition Letters 
0 

Furthermore, there are a number of  conferences and conference proceedings that are of interest: 

0 

Document Analysis Systems (DAS). 

IEEE Pattern Recognition and Machine Intelligence (PAMI) 
Pattern Recognition (Journal of the Pattern Recognition Society) 

IEEE Transactions on Neural Networks 

International Journal of Pattern Recognition. 

Neural Networks for Signal Processing (NNSP) 
International Conference on Document Analysis and Recognition (ICDAR) 
International Joint Conference on  Neural Networks (IJCNN) 
International Conference on Pattern Recognition (ICPR) 
Neural Information Processing Systems (NIPS) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G1.3:9 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

General surveys of character recognition systems 

1. Kasturi R and O’Gorman L 1992 Document image analysis: a bibliography Mach. Vis. AppZ. 5 231-43 

A comprehensive biliography covering the period from 1986-1991. 

Govindan V K and Shivaprasad A P 1990 Character recognition-a review Putt. Recog. 23 671-83 

Davis R H and Lyall J 1986 Recognition of handwritten characters-a review Image Vis. Comput. 4 208-18 

Gives a review of classical techniques for handwritten character recognition. 

Mori S ,  Suen C Y and Yamamoto K 1992 Historical review of OCR research and development Proc. IEEE 80 

2. 

3. 

4. 
1029-58 

A general survey of OCR, both handwritten and printed. 

Tappert C C, Suen C Y and Wakahara T 1990. The state of the art in on-line handwriting recognition IEEE 
Trans. Putt. Anal. Machine Int. 12 787-808 

A review of online handwriting recognition techniques that has some relevance to offline work as well. 

5 .  

Comparative evaluations 

6. 

7. 

8. 

9. 

10. 

11, 

Blue J L, Candela G T, Grother P 1, Chellappa R and Wilson C L 1994 Evaluation of pattern classifiers for 
fingerprint and OCR applications Putt. Recog. 27 485-501 

Evaluation of several approaches by a single group. Also contains a readable survey and taxonomy of 
preprocessing and recognition methods. 

Wilkinson R A, Geist 1, Janet S ,  Grother P J ,  Burges C J C, Creecy R, Hammond B, Hull J 1, Larsen N J, Vogl T P 
and Wilson C L 1994 The first census optical character recognition systems Con$ NISTIR 4912 US Department of 
Commerce, National Institute of Standards and Technology (NIST), Computer Systems Laboratory, Gaithersburg, 
MD 20899, USA 

A comprehensive evaluation of 57 isolated handwritten character recognition systems on a standard database. 

Geist J, Wilkinson R A, Janet S ,  Grother P J, Hammond B, Larsen N W, Klear R M, Matsko M J, Burges C 
J C, Creecy R, Hull J J, Vogl T P and Wilson C L 1994 The Second Census Optical Character Recognition 
Systems Con$ NISTIR 5452 US Department of Commerce, National Institute of Standards and Technology 
(NIST), Computer Systems Laboratory, Gaithersburg, MD 20899, USA 

A comprehensive evaluation of 3 1 field-level handwriting recognition systems on a standard database. 

Lee Yuchun 1991 Handwritten digit recognition using k nearest-neighbor, radial-basis function, and 
backpropagation neural networks Neural Comput. 3 440-9 

Useful comparison between MLP, k”, and RBF. Suggests that MLP does not have a significant advantage 
over MLP in terms of error rates, but that it is usually faster at classification time. RBF has some advantages in 
being able to reject noncharacters. 

Baker T and McCartor H 1992 A comparison of neural network classifiers for optical character recognition Proc. 

Weideman W E, Manry M T and Yau H C 1989 A comparison of a nearest neighbor classifier and a neural 
network for numeric handprint character recognition Int. Joint Con$ on Neural Networks (Cat. No. 89CH2765-6) 
(New York: IEEE TAB Neural Network Committee) pp 117-20 

SPIE 191 91-202 

Preprocessing and feature extraction 

12. Chatterji B N 1986 Feature extraction methods for character recognition IEEE Tech. Rev. 3 9-22 

Presents an extensive review of classical preprocessing and feature extraction methods. 

13. Caesar T, Gloger J M and Mandler E 1993 Preprocessing and feature extraction for a handwriting recognition 
system Int. Con& on Document Analysis and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: 
IEEE Computer Society Press) pp 408-1 1 

G1.3 :lo Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23 I 

Lu Y, Schlosser S and Janeczko M 1993 Fourier descriptors and handwritten digit recogition Mach. vis. Appl. 6 
25-34 

Description and evaluation of using different Fourier transformations of character boundaries for digit recognition. 

Grother P J 1992 Karhunen Loeve feature extraction for neural handwritten character recognition Proc. SPIE 
155 155-66 

Shustorovich A 1994. A subspace projection approach to feature extraction: the two-dimensional Gabor transform 
for character recognition Neural Networks 7 1295-301 

Describes and compares various feature extraction methods based on integral transformations, including Gabor 
wavelets, Gaussians, and sine transforms. Uses quality of reconstruction as an evaluation criterion. 

Guillevic D and Suen C Y 1993 Cursive script recognition: a fast reader scheme Int. Con$ on Document Analysis 
and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: IEEE Computer Society Press) pp 31 1 4  

The paper mainly talks about morphological methods for feature extraction. 

Roberts A and Yearworth M 1992 A comparison of pre-processing transforms for neural network classification 
of character images Int. ConJ on Image Processing and its Applications (Con$ Publ. 354) (London: IEE) pp 
189-92 

Brief paper describing applications of Fourier, sine, cosine, and Hadamard transforms for feature extraction and 
preprocessing of handwritten digits for MLPs. 

Jameel A and Koutsougeras C 1993 On features used for handwritten character recognition in a neural network 
environment Proc. 1993 IEEE Con$ on Tools with A1 (TAI-93) (Los Alamitos, CA: IEEE Computing Society 
Press) pp 280-4 

Kageyu S ,  Ohnishi N and Sugie N 1991 Augmented multi-layer perceptron for rotation- and scale-invariant 
hand-written numeral recognition IEEE Int. Joint Con$ on Neural Networks (Cat. No. 91CH306.5-0) (New York: 
IEEE Press) pp 54-9 

Uses Fourier transform and compleflog representation to achieve invariance. 

Perantonis S J and Lisboa P J G 1992 Translation, rotation, and scale invariant pattem recognition by high-order 
neural networks and moment classifiers IEEE Trans. Neural Networks 3 241-51 

Awwal A A S and Ahmed F 1993 Complex associative memory neural network model for invariant pattem 
recognition Proc. NAECON '93-National Aerospace and Electronics Con$ (New York: IEEE Press) pp 892-6 

Demonstrates use of Fourier descriptors of character boundary as an invariant representation. 

Lisboa P J G and Perantonis S J 1991 Invariant pattem recognition using third-order networks and Zemike 
moments IEEE Int. Joint Con$ on Neural Networks (Cat. No. 91CH3M.5-0) (New York: IEEE Press) 1421-5 

A simple example of designing invariant feature sets for handwriting recognition. 

Character segmentation 

24. Fenrich R 1992 Segmentation of automatically located handwritten numeric strings From Pixels to Features 111: 
Frontiers in Handwriting Recognition (Amsterdam: North-Holland) pp 47-59 

Describes several segmentation methods. 

25. Shridhar M and Badreldin A 1987 Context-directed segmentation algorithm for handwritten numeral strings 
Image vis. Comput. 1 3-9 

26. Holt M J J, Mohammad Beglou M and Datta S 1992 Slant independent letter segmentation for off-line cursive 
script recognition From Pixels to Features 111: Frontiers in Handwriting Recognition (Amsterdam: North-Holland) 
PP 41-6 

0 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G 1.3 11 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

MLP-based recognizers 

21. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation 
applied to handwritten zip code recognition Neural Comput. 1 541-51 

A widely cited reference on handwritten character recognition using MLPs. The network uses multiple hidden 
layers. The use of weight sharing and local receptive fields in the first two layers means that those layers perform 
feature extraction functions, similar to handcoded feature extraction methods in other systems. 

Casey R G and Takahashi H 1992 Experience in segmenting and classifying the NIST data base From Pixels to 
Features Ill: Frontiers in Handwriting Recognition (Amsterdam: North-Holland) pp 5-16 

Describes a successful system for isolated character recognition using MLPs, geometric and topographic features. 

Lee H Y, Lee Y C and Chen H H 1989 Hand written letter recognition with neural networks IJCNN: Int. Joint 
Confi on Neural Networks (Cat. No. 89CH2765-6) vol 2 (New York: IEEE TAB Neural Network Committee) pp 
61 8 

Martin G L and Pittman J A 1991 Recognizing hand-printed letters and digits using backpropagation learning 
Neural Comput. 3 258-61 

Hepp D J 1991 An application of backpropagation to the recognition of handwritten digits using morphologically 
derived features. Proc. SPIE 228 228-33 

Huang S C, Huang Y F and Jou I C 1991 Analysis of perceptron training algorithms and applications to 
hand-written character recognition ICASSP 91 Int. Confi on Acoustics, Speech and Signal Processing (Cat. No. 
91CH2977-7) (New York: IEEE Press) pp 2153-6 

Rovner R M, Gillies A M, Ganzberger M J and Hepp D J 1994 Strategies for the automatic interpretation of 
handwritten addresses Proc. SPIE 174 174-85 

Wang P S P, Nagendraprasad M V, and Gupta A 1992 A neural net based ‘hybrid’ approach to handwritten 
numeral recognition From Pixels to Features Ill: Frontiers in Handwriting Recognition (Amsterdam: North- 
Holland) pp 145-54 

Yan Hong 1994 Handwritten digit recognition using an optimized nearest neighbor classifier Patt. Recog. Lett. 
15 207-1 1 

Uses MLPlBP for optimizing nearest-neighbor classifier. 

Blue J L and Grother P J 1992 Training feed-forward neural networks using conjugate gradients Proc. SPIE 179 
179-90 

Jean J S N and Jin Wang 1994 Weight smoothing to improve network generalization IEEE Trans. Neural Networks 
5 752-63 

Describes one method for modeling local correlations among neighboring pixels in the image of an input character 
(cf methods like KLT and Fourier transforms, which achieve a similar goal). 

Lin J T and Inigo R 1991 Hand written zip code recognition by back propagation neural network IEEE Proc. 
SOUTHEASTCON ’91 (Cat. No. 91CH2998-3) (New York: IEEE Press) pp 731-5 

Uses MLPs with more than three layers and local receptive fields for some units. 

Sabourin M and Mitiche A 1992 Optical character recognition by a neural network Neural Networks 5 843-52 

Printed omnifont OCR. Interesting for its use of hierarchical architectures and momentum term adjustment. 

Other neural network recognizers 

40. Drucker H and LeCun Y 199 1 Double backpropagation increasing generalization performance IJCNN-91 -Seattle: 
Int. Joint Con$ on Neural Networks (Cat. N0.91CH3049-4) (New York: IEEE Press) pp 145-50 

Presents double backpropagation, a method related to notions of invariant recognition. 

Specht D F 1990 Probabilistic neural networks Neural Networks 3 109-18 

PNNs performed best when a number of different methods (LNN, MLP, PNN, and others) were implemented at 
NIST and applied to the same database. Closely related to classical density estimation methods. 

41. 

G1.3: 12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

Flachs B and Flynn M 1994 Sparse adaptive memory and handwritten digit recognition Proc. Int. Con$ on Neural 
Networks (ICNN’94) (New York: IEEE Press) pp 1098-102 

Uses a BP-like algorithm to generate prototypes for a modified k-nearest neighbor classifier. 

Lemarie B 1993 Practical realization of a radial basis function network for handwritten digit recognition New 
Trends in Neural Computation. International Workshop on Artificial Neural Networks. IWANN ’93 Proc. ed J Mira 
and J Cabestany and A Prieto (Berlin: Springer) pp 131-6 

Knerr S, Personnaz L and Dreyfus G 1991 A new approach to the design of neural network classifiers and its 
application to the automatic recognition of handwritten digits Int. Joint Con$ on Neural Networks (New York: 
IEEE Press) pp L91-6 

Trains and uses pairwise linear discriminants between character classes in the first layer. 

Bottou L and Vapnik V 1992 Local leaming algorithms Neural Comput. 4 888-900 

Suggests that, at classification time, the nearest neighbors of an unknown input are used to train a MLP that then 
performs the final classification step. 

Hinton G E, Williams C K I and Revow M D 1992 Adaptive elastic models for hand-printed character recognition 
Advances in Neural Information Processing Systems (San Mateo, CA: Morgan Kaufmann) pp 512-9 

Elastic models have a long tradition in computer vision and an application to handwritten character recognition 
seems natural. It remains to be seen whether they can be competitive. 

Solaiman B and Autret Y 1994 Application of the HLVQ neural network to hand-written digit recognition Proc. 
IEEE Workshop on Neural Networks for  Signal Processing ed J Vlontzos, J-N Hwang and E Wilson (New York: 
IEEE Press) pp 384-93 

Sabourin M and Mitiche A 1993 Modeling and classification of shape using a Kohonen associative memory with 
selective multiresolution Neural Networks 6 275-83 

Printed omnifont OCR. Users contour based features. Interesting for its use of multiresolution techniques and 
Kohonen associative memory. 

Non-neural-network recognizers 

49. Kimura F, Shridhar M and Chen Z 1993 Improvements of a lexicon directed algorithm for recognition of 
unconstrained handwritten words Int. Con$ on Document Analysis and Recognition (ICDAR) (Tsukuba Science 
City) (Los Alamitos, CA: IEEE Computer Society Press) pp 18-22 

Description of a complete system, sources of errors, and how to go about improving performance. These are 
very important lessons for any recognition system. 

50. Kimura F and Shridhar M 1992 Segmentation-recognition algorithm for zip code field recognition Mach. vis. 
Appl. 5 199-210 

The paper describes important preprocessing and segmentation steps; recognition uses a non-neural classifier. 

51. Breuel T M 1993 Recognition of Handprinted Digits using Optimal Bounded Error Matching Int. Con$ on 
Document Analysis and Recognition (ICDAR) (Tsukuba Science City) (Los Alamitos, CA: IEEE Computer Society 
Press) 493-6 

Describes a character recognizer based on computer vision techniques and decision trees with low error rate. 
Interesting because invariance under translation is part of the matching process itself. 

52. Downton A C, Tregidgo R W S,  Leedham C G and Hendrawan 1992 Recognition of handwritten British 
postal addresses From Pixels to Features III: Frontiers in Handwriting Recognition (Amsterdam: North-Holland) 
PP 130-44 

Description of a complete system. 

0 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.3:13 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Classijer combination 

53. 

54. 

55.  

56. 

57. 

58. 

59. 

60. 

61. 

Ho T K, Hull J J and Srihari S N 1994 Decision combination in multiple classifier systems IEEE Trans. Patt. 
Anal. Mach. Int. 16 6 6 7 5  

An important paper on classifier combination applied to OCR. 

Drucker H, Cortes C, Jackel L D, LeCun Y and Vapnik V 1994 Boosting and other ensemble methods Neural 
Comput. 6 1289-301 

Interesting and well-founded method for classifier combination based on computational leaming theory. 

Xu Lei, Krzyzak A and Suen C Y 1994 Associative switch for combining multiple classifiers J. Art$ Neural 
Networks 177-100 

Xu L, Krzyzak A and Suen C Y 1992 Methods of combining multiple classifiers and their applications to 
handwriting recognition IEEE Trans. Syst., Man Cybem. 22 418-35 

Perrone M P 1993 Improving regression estimation: averaging methods for variance reduction with extensions 
to general convex measure optimization PhD Thesis, Brown University, RI, USA 

Classifier combination using linear methods. 
Wolpert D H 1992 Stacked generalization Neural Networks 5 241-59 

The paper is about achieving classifier combination by merging the outputs of a multiple classifiers into a new 
feature vector and using that feature vector as input to a second classification stage. 
Soulie F F, Viennet E and Lamy B 1993 Multi-modular neural network architectures: applications in optical 
character and human face recognition Int. J. Patt. Recog. Art$ Int. 7 721-55 

Battiti R and Colla A M 1994 Democracy in neural nets: voting schemes for classification Neural Networks 7 
691-707 

Ho T K, Hull J J and Srihari S N 1992 On multiple classifier systems for pattem recognition Proc. l l t h  IAPR Int. 
Con$ on Patt. Recog. vol I1 Conference B: Pattern Recognition Methodology and Systems vol 2 (Los  Alamitos, 
CA: IEEE Computer Society Press) pp 84-7 

Describes methods for classifier combination based on rankings. 

Integrated segmentation and recognition 

These systems generate a large number of possibly overlapping character hypotheses, recognize each 
hypothesis using neural or non-neural classifiers, and find globally optimal interpretations using a Viterbi- 
or 'best-path' algorithm. Such methods are analogous to the generation and interpretation of phone lattices 
in speech recognition. 

62. Bozinovic R M and Srihari S N 1989 Off-line cursive script word recognition IEEE Trans. Patt. Anal. Mach. 
Int. 5 265-91 

Describes an early but complete non-neural integrated segmenter and recognizer. 

63. Breuel T M 1994 Design and implementation of a system for the recognition of handwritten responses on US 
census forms Document Analysis Systems '94 (DAS '94) (Kaiserslautem) pp 109-34 

Successful integrated segmentation and recognition system using MLPs as a module for character recognition. 
Discussion of probabilistic foundations of integrated segmentation and recognition methods. 

64. Burges C J C, Ben J I, Denker J S ,  Lecun Y and Noh1 C R 1993 Off line recognition of handwritten postal 
words using neural networks Int. J. Patt. Recog. Art$ Int. 7 689-704 

Describes a system for integrated segmentation and recognition using MLPs for isolated character recognition. 
65. Matan 0, Burges C J C, LeCun Y and Denker J S 1992 Multi-Digit recognition using a space displacement 

neural network Advances in Neural Information Processing Systems (San Mateo, CA: Morgan Kaufmann) pp 
488-95 

An integrated segmentation and recognition method using Viterbi algorithm for selecting optimal segmentation. 
Note the use of shared weights and avoidance of recomputation of feature values for each segment hypothesis. 

66. Mulgaonkar P G, Chen C-H and DeCurtins J L 1994 Word recognition in a segmentation-free approach to OCR 
Proc. SPIE 135 135-4 1 

G1.3: 14 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Handwritten character recognition using neural networks 

Neural network models that integrate segmentation and recognition 

Unlike the methods referenced in the previous section, these methods do not attempt t o  generate isolated 
character hypotheses, but use a neural network architecture to  perform segmentation and recognition 
simultaneously . 
67. 

68. 

69. 

70. 

Keeler J D, Rumelhart D E and KI Leow W 1992 Integrated segmentation and recognition of hand-printed 
numerals Advances in Neural Information Processing Systems (San Mateo, CA: Morgan Kaufmann) pp 557-63 

Interesting idea for how a neural network can integrate recognition and segmentation with possible extensions 
to visual object recognition. 

Senior A W and Fallside F 1992 Off-line handwriting recognition by recurrent error propagation networks Proc. 
BMVC ’92. British Machine Ksion Con5 ed D Hogg and R Boyle (Berlin: Springer) pp 453-61 

Fukushima K and Imagawa T 1993 Recognition and segmentation of connected characters with selective attention 
Neural Networks 6 33-41 

Integrated segmentation and recognition using neural networks. 

Martin G L, Rashid M, and Pittman J A 1993 Integrated segmentation and recognition through exhaustive scans 
or leamed saccadic jumps Int. J .  Putt. Recog. Art$ Int. 7 8 3 1 4 7  

A neural-network-based approach reminiscent of HMMs with contextual modeling. 

Pattern recognition 

71. Duda R 0 and Hart P E 1973 Pattern Classifcation and Scene Analysis (New York: Wiley) 

A classic reference for pattem recognition techniques. Good introduction to k-nearest neighbor methods, density 
estimation, Bayesian methods, and clustering. A greatly expanded and updated version is due to be published. 

72. Bourlard H and Wellekens C J 1989 Links between Markov models and multilayer perceptrons Advances in 
Neural Information Processing Systems ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 502-10 

An important paper on speech recognition using neural networks; describes link between probabilities and network 
outputs. 

73. Kiefer J C 1987 Introduction to Statistical Inference (Berlin: Springer) 

Readable and useful introduction to Bayesian methods. 

74. Berger J 0 1985 Statistical Decision Theory and Bayesian Analysis (Berlin: Springer) 

Comprehensive description of Bayesian methods. 

75. Breiman L et a1 1984 Classification and Regression Trees (Belmont, CA: Wadsworth) 

Important non-neural pattem recognition method used in some handwriting recognizers. 

Other literature 

76. Baird H S 1988 Feature identification for hybrid structuraYstatistica1 pattem classification Comput. W o n ,  
Graphics, Image Proc. 42 3 18-33 

A paper on omnifont OCR, but the methods and the approach are worth reading about. 

77. Edelman S,  Flash T and Ullman S 1990 Reading cursive handwriting by alignment of letter prototypes Int. J. 
Comput. vis. 3 303-31 

Geometric, model-based approach to script recognition inspired by visual object recognition; very different from 
standard neural network approaches. 

78. Bromley J and Denker J S 1993 Improving rejection performance on handwritten digits by training with ‘rubbish’ 
Neural Comput. 5 367-70 

Presents a useful idea used by a number of recognition systems. Rejection of known bad shapes is particularly 
important for integrated segmentation and recognition systems. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.3: 15 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

79. 

80. 

81. 

82. 

83. 

84. 

Casey R, Ferguson D, Mohiuddin K and Walach E 1992 Intelligent forms processing system Mach. Vis. Appf. 5 
143-55 

Description of system architecture for forms processing. Further information on each module is found in the 
references. 

Guyon I, Vapnik V, Boser B, Bottou L and Solla S A 1992. Structural risk minimization for character recognition 
Advances in Neural Information Processing Systems (San Mateo, CA: Morgan Kaufmann) pp 471-9 

Addresses, in the context of character recognition, questions related to how large a network to choose in order 
to achieve good generalization. 

Simon J-C 1992 Off-line cursive word recognition Proc. IEEE 80 1150-61 

Gupta A, Nagendraprasad M V, Liu A, Wang P S P and Ayyadurai S 1993 An integrated architecture for 
recognition of totally unconstrained handwritten numerals Int. J. Putt. Recog. Art$ Int. 7 757-73 

Bischoff A and Wang P S P 1992 Handwritten digit recognition using neural networks Proc. SPIE 436 436-47 

Yanikoglu B A and Sandon P A 1994 Recognizing off-line cursive handwriting Proc. IEEE Conf on Comput. 
vis. and Part. Recog. (Los Alamitos, CA: IEEE Computer Society Press) 397-403 

GI .3: 16 Handbook of Neurnl Computarion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.4 Improved speech recognition using learning vector 
quantization 

Kari Torkkola 

Abstract 

We present a case study where neural networks are used to improve the performance 
of a hidden-Markov-model-based speech recognition system. The improvement stems 
from viewing learning vector quantization (LVQ) as a nonlinear feature transformation 
to enhance phonetic discriminations. Classwise quantization errors of LVQ are modeled 
by continuous density hidden Markov modeling (HMM). As decision-making at frame 
level is suboptimal for speech recognition, more information can be preserved for the 
HMM stage than in schemes where LVQ is used as classifier. Experiments in both 
speaker-dependent and speaker-independent phoneme spotting tasks show that significant 
improvements are attainable over continuous-density HMMs, and over the hybrid of LVQ 
and discrete HMMs. 

G1.4.1 Introduction 

Hidden Markov modeling (HMM) is the most successful technique in automatic speech recognition today 
with well-studied and mature training algorithms (see Rabiner 1989 for a tutorial). These techniques can be 
roughly divided into two main categories: continuous observation density HMMs (CHMMs) and discrete 
observation HMMs (DHMMs) with semicontinuous (tied mixture) HMMs in between. Either continuous 
or discrete, the aim of the models is to learn a faithful representation of the feature vector sequence 
derived from the speech signal, either directly by mixtures of multivariate Gaussian or other distributions, 
or through vector quantization (VQ). Both the maximum likelihood training algorithms of the HMMs, and, 
in the discrete case, also the codebook construction algorithms aim at good representations. These learnt 
representations of various speech units (e.g. phones or words) serve as models against which unknown 
speech is compared. Usually, the model sequence that most likely could have produced the unknown 
speech is chosen as the recognition result. 

As representation is not necessarily optimal for recognition, enhancement of the discrimination 
capabilities of HMMs has received some attention. These enhancement methods include, among others, 
training criteria other than maximum likelihood (Bahl et a1 1986, Young 1991, Chou eta1 1992, Kapadia et 
a1 1993) and hybrids of some discriminative methods with the HMMs. The latter types of system have 
recently been dominated by artificial neural networks (ANNs). These hybrids can further be grouped 
into two main clusters: ANNs as probability estimators for HMMs (Bourlard et a1 1992, Robinson 1994, 
Dugast et a1 1994), or ANNs as codebooks or labelers for DHMMs (Iwamida et af 1990, Torkkola et a1 
1991, Mantysalo et a1 1994, LeCerf et af 1994). (See also Section F1.7 in this handbook for a discussion ~ 1 . 7  

of ANNs in speech processing). 

quantization (LVQ) as the ANN (Kohonen et a1 1988, 1992). The goal is to improve an existing CHMM- 
based phonetic speech recognition stage using LVQ in a novel way as a feature transformation. As such, 
a phonetic speech recognition system is not a complete application. However, subunit-based recognition 
is the basic component in every large vocabulary automatic speech recognition system. 

This work is concerned with a combination falling into the latter category using learning vector c1.1.5 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 G 1.4: 1 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.4.2 Learning vector quantization codebooks in speech recognition 

The role of conventional vector quantization algorithms in speech recognition, such as the Linde-Buzo- 
Gray algorithm, or the K-means algorithm, is to represent speech feature vectors with the smallest possible 
distortion. This is not the case with the LVQ methods, which try to aim at discrimination of pattern classes, 
whatever they may be (Kohonen et a1 1988, 1992). In an LVQ network, the weight vectors (also called 
codebook vectors) directly define the class borders in the feature space according to the nearest-neighbor 
rule. The learning algorithm of the LVQ modifies the weight vectors adaptively so that the borders between 
classes will approximate Bayes’ decision surfaces. Quantization error (distortion) is of secondary interest. 

LVQ has been employed in speech recognition as a substitute to conventional vector quantization. 
Short time feature vectors act as the basis for classification, most commonly to phoneme classes. DHMMs 
are then employed to combine local classification decisions by treating the stream of classification labels 
just as the stream of VQ codebook indices is treated with DHMMs. In phoneme-related tasks, training 
has been done either by single frames (Kimber et a1 1990), or by concatenating several frames together 
to represent some context (Yu et a1 1990, Iwamida et a1 1990, Torkkola et a1 1991, Iwamida et a1 1991). 
When the task has been speaker-dependent and phoneme oriented, significant improvements have been 
observed due to LVQ when compared against ordinary VQ (Iwamida et a1 1990, Torkkola et a1 1991). 

In addition to enhanced discriminative properties, another advantage of the LVQ over conventional 
VQ is that the discrete alphabet in phonetically motivated classification, that is, the number of classes, is 
smaller than the number of codebook vectors in usual VQ (a few tens as opposed to a few hundreds). 
This results in an order of magnitude smaller number of output probability parameters to be estimated for 
the DHMMs. Probability smoothing schemes are thus usually unnecessary. 

G1.4.3 Extracting more information from the LVQ 

As already mentioned, the previous work on LVQ codebooks in speech recognition has concentrated on 
making use of the class label ofthe closest codebook vector only. To decode this label stream, discrete 
observation HMMs have been employed. 

However, the normal practice with pattern classifiers, extracting only the final decision of the 
classification (the class label) is desirable only when that really is the final decision stage of the whole 
task. This is not the case with the LVQ/HMM hybrids in speech recognition; the final decision is made by 
the Viterbi search at the HMM stage. It is suboptimal to resort to hard classification decisions too early 
at the frame level. 

In addition to the classification label, also the distance to the closest vector in the whole codebook 
(i.e. the quantization error) was utilized in Mantysalo et al (1994) and modeled by a CHMM. Torkkola 
(1994b) discards the label, but the classwise quantization errors are preserved. This is the approach we 
use in this work. Distances between the feature vector and all the codebook vectors need to be computed 
first, as in normal vector quantization and in LVQ. Now, instead of choosing the closest vector in the 
whole codebook, the closest vectors are searched within each pattern class, that is, among those codebook 
vectors that bear the same label (phonetic, in this work). Retaining these minimum distances to each 
pattern class gives an idea of how close the pattern vector is to all the classes, not just the closest class. A 
new feature vector is constructed by concatenating these distance values. Continuous observation density 
HMMs can then be applied to model a stream of these vectors. Figure G1.4.1 illustrates the computation 
of the classwise quantization errors. 

G1.4.4 Experiments 

G1.4.4.1 Speaker-dependent phoneme spotting with high-quality speech 

We will now describe experiments to compare the performance of the LVQ-CHMM hybrid with some 
established algorithms. A comparison between four architectures is presented in table 1. The architectures 
are as follows: 

(i) conventional CHMMs modeling a stream of cepstral vectors; 
(ii) LVQ-DHMM hybrids, where LVQ produces a stream of best class labels, which is modeled by 

discrete observation HMMs; 
(iii) the new approach proposed in this paper, where LVQ produces a stream of classwise quantization 

error vectors, which is modeled by CHMMs; 

G1.4:2 Hundbook of Neurul Compufution release 9711 @ 1997 IOP Publishing Lid and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Improved speech recognition using learning vector quantization 

le/ 
/i/ 
. .  . .  

Feature vectors 
10 ms apart 

0.5 4-:.,‘’ Choose the minimum 
0. t distance for each group of 

codebook vectors carrying 
the same class label 

Com ute distances to all 
codelook vectors 
<&,& 

y’ ,&p: I 

L J  

A new transformed feature vector 

Figure G1.4.1. An illustration of the feature transformation. The stream of resulting new feature vectors 
is then modeled by HMMs. (From Torkkola 1994a, copyright IEEE Press.) 

(iv) parallel use of the classwise quantization error with the cepstral vectors. 

Table G1.4.1. Comparison between CHMMs (i) LVQ-DHMM hybrids (ii), and LVQ-CHMM hybrids (iii, 
iv) in a speaker-dependent task. ‘MFCC’ refers to 20-component mel-scale cepstral vectors, A refers to 
difference coefficients, ‘context’ denotes the 220 ms context vector described in Mantysalo et a1 (1994), 
‘qerr’ refers to classwise quantization errors computed from the LVQ stage, ‘mixtsistream’ denotes the 
largest number of Gaussian mixtures used in HMMs to model each stream, after which adding new mixtures 
did not improve the results significantly. In all cases the HMMs had three emitting states. (From Torkkola 
1994a, copyright IEEE Press.) 

Combination LVQ input HMM input Streams Mixtdstream Covariance Error rate 

- MFCC+A 2 5,3 Diagonal 3.2 
- MFCC+A 2 2,1 Full 2.9 

0) 

(ii) MFCC LVQ-best label 1 - 8.5 
4.6 Context LVQ-best label 1 

- 
- - 

(iii) Context LVQ-qerr+A 
Context LVQ-qerr+A 
MFCC LVQ-qerr+ A 

2 7,7 Diagonal 5.4 
2 2,1 Full 2.5 
2 2,l Full 4.9 

(iv) Context MFCC+A+LVQ-qerr+A 4 2,1,2,1 Full 1.8 

The task in this comparison is speaker-dependent phoneme spotting in the Finnish language 
(Mantysalo et al 1994, Torkkola et a1 1991). The database contains four repetitions of a set of 311 
utterances spoken by three male Finnish speakers. Each set consists of 1737 phonemes. In the original 
Finnish language, there are only 21 different phoneme classes: 8 vowels and 13 consonants. Four additional 
phonemes have been adopted with loan words from other languages, but none of these were represented in 
the database. There were thus 22 phonemic classes for the LVQ to differentiate (21 phonemes and silence), 
which was also the dimensionality of the classwise quantization error vectors. Three of the repetitions 
were used each time for training, and the remaining one for testing. Four independent runs were made 
for each speaker by leaving one set at a time for testing. Thus all speaker-dependent recognition results 
presented in this work are averages of 12 test runs, and based on 20844 phoneme spotting scores. 

Speech analysis conditions were the following: 12.8 kHz sampling rate, pre-emphasis coefficient 0.95, 
25.6 ms Hamming window every 10 ms, and 20-component mel-frequency cepstral coefficients (MFCC) 
computed for every window. Where difference coefficients (A) have been used, they were computed from 
a period of 40 ms. This applies also to the quantization error vectors. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compufurion release 9711 GI .4:3 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Where context vectors were used as LVQ input, the codebook size was 2000. For the single MFCC 
vector as input, it was 500. The context vectors had a time span of 220 ms (Mantysalo et a1 1994). The 
LVQ training procedure was exactly the same as described in Mantysalo et a1 (1994): using only phoneme 
centers, initialization by K-nearest-neighbor, OLVQl for 10000 iterations with a(0) = 0.3, and LVQl 
using a(0) = 0.2. In the LVQl stage, the number of iterations was 100 times the number of codebook 
vectors. An example of the output is presented in figure G1.4.2. Phoneme center locations can be clearly 
distinguished in the stream of quantization errors of the LVQ. 

Figure G1.4.2. An example of the output of the LVQ stage. From top to bottom: the speech signal (a 
Finnish word /johdosra/), its spectrogram, classwise quantization errors with the phoneme labels on the 
left (darker shade denotes small values), and the manual labeling of the utterance.(From Torkkola 1994a, 
copyright IEEE Press.) 

Looking at the results in table G1.4.1, it is obvious that exploiting all classwise quantization errors 
instead of using only the class identity of the closest codevector preserves more information for the 
latter decision stages. This is reflected in the difference between the LVQ-DHMM hybrid (ii) and the 
LVQ-CHMM hybrid (iii). We can also see that the classwise quantization errors are interdependent, since 
modeling them by diagonal covariances for the Gaussians in CHMMs produces poorer results. We obtained 
our best results by using full covariance matrices. 

Although the LVQ-CHMM hybrid (iii) is better than plain CHMMs (i), the difference is barely 
significant. On the other hand, the LVQ + MFCC-CHMM hybrid (iv) surpasses plain CHMMs by a clear 
margin. Due to a relatively large number of tests, the confidence limits (99%) are relatively tight: f0.23% 
for the best result (1.8%). This enables us to state that the proposed architecture is significantly better than 
a CHMM system (2.9%), or an LVQ-DHMM hybrid (4.6%) in this task. In the case of plain CHMMs, 
using second-order derivatives, increasing the number of mixtures, or using diagonal covariance matrices 
with a larger number of mixtures did not improve our best CHMM result. 

In the LVQ-DHMM hybrid we used only the label sequence produced by LVQ, not any other 
information suggested in Mantysalo et a1 (1994). Including another LVQ codebook for phoneme 
centerltransition classification, or the whole codebook quantization error, would no doubt improve the 
performance of the LVQ-DHMM hybrid, as it did for Mantysalo et a1 (1994). 

G1.4.4.2 Speaker-independent phoneme spotting with telephone speech 

In this experiment, our aim was to find out whether this LVQ-HMM hybrid is applicable to the speaker- 
independent case. The database consisted of Swiss-French telephone speech with 56 speakers (about two 

G 1.414 Ilundbook of Neurul Computufion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Improved speech recognition using learning vector quantization 

hours of speech). Half of the speakers were used for training and the other half for testing. The vocabulary 
also varied across the speakers. 

Speech was sampled at 8 kHz, and 12-component mel-scale cepstra were computed each 10 ms. As 
the input to LVQ, we used slightly narrower context windows whose duration was 140 ms. The LVQ 
codebook size remained as 2000. 36 context-independent HMM phoneme models were used with four 
emitting states and full covariances throughout this experiment. 

Table G1.4.2. Comparison between CHMMs (i) and LVQ-CHMM hybrids (iii, iv) in a speaker-independent 
task with telephone speech.(From Torkkola 1994a, copyright IEEE Press.) 

Combination HMM input Streams Mixtdstream Error rate 
(0 MFCC + A 2 2,1 46.6 

LVQ-qerr + A + A A  3 1,1,1 42.6 
(iv) MFCC + A + LVQ-qerr + A 4 2,1,2,1 42.0 

MFCC + A + LVQ-qerr + A + A A  5 1,1,1,1,1 40.6 
MFCC + A + LVQ-qerr + A + A A  5 3,1,1,3,1 40.0 
MFCC + A + (LVQ-qerr) + A + A A  4 3,10),3,1 38.3 

(iii) LVQ-qerr + A 2 2,1 44.2 

The gain of using LVQ in this (much harder) task is not as dramatic as in the first one, but comparing 
the baseline CHMM recognizer (the first row of table G1.4.2) to the result on the last row we can see 
that the improvement is anyway very significant. In addition to A coefficients we also tried second- 
order difference coefficients for the quantization error stream, which turned out to be advantageous. In 
addition, it seems that the actual quantization errors are less important than their difference and second- 
order difference coefficients. In the result of the last row of table G1.4.2 we only retained the A and A A  
streams, and the results improved. 

G1.4.5 Discussion 

We have reviewed ways of employing LVQ-based codebooks with HMMs in speech recognition. We have 
demonstrated that modeling classwise quantization errors of LVQ by continuous-density hidden Markov 
models leads to a significant improvement over the mainstream HMM techniques. The resulting system 
could well serve as a phonetic recognition engine in a large-vocabulary continuous-speech recognition 
system. How the technique would work with context-dependent phone models remains a topic for further 
research. 

It should be noted that, throughout these comparisons, exactly the same training conditions and 
algorithms (embedded Baum-Welch training) have been used. A phoneme bigram model was used in both 
experiments as the language model. The basic phoneme model structure was also been the same throughout 
each experiment. Both comparisons are thus actually made between different input representations, and 
not, for example, between different HMM software packages. In all of the experiments we used a public 
domain software package LVQ-PAK (Kohonen et a1 1992), and a commercial package HTK (Young 1992) 
for the HMMs. A discrete-observation version of the HTK was written for DHMM experiments. 

On the downside, one should mention increased computational cost, as we are in fact combining the 
computationally intensive parts of both vector quantization and CHMMs. 

References 

Bahl L, Brown P, de Souza P and Mercer R 1986 Maximum mutual information estimation of hidden Markov model 
parameters for speech recognition Proc. IEEE Int. Confi on Acoustics, Speech and Signal Processing (Tokyo, 
Japan) (Piscataway, NJ: IEEE Press) pp 49-52 

Bourlard H, Morgan N and Renals S 1992 Neural nets and hidden Markov models: review and generalizations Speech 
Commun. 11 23746 

Chou W, Juang B and Lee C 1992 Segmental GPD training of HMM based speech recognizer Proc. IEEE Int. Conf 
on Acoustics, Speech and Signal Processing (San Francisco, CA)  vol I (Piscataway, NJ: IEEE Press) pp 473-6 

Dugast C, Devillers L and Aubert X 1994 Combining TDNN and HMM in a hybrid system for improved continuous- 
speech recognition IEEE Trans. Speech Audio Proc. 2 217-23 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computunon release 9711 G 1.4:s 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Iwamida H, Katagiri S and McDermott E 1991 Speaker independent large vocabulary word recognition using an 
LVQIHMM hybrid algorithm Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Toronto) vol 1 
(Piscataway, NJ: IEEE Press) pp 553-6 

Iwamida H, Katagiri S ,  McDermott E and Tohkura Y 1990 A hybrid speech recognition system using HMMs with 
an LVQ-trained codebook Proc IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Albuquerque, NM) 
vol 1 (Piscataway, NJ: IEEE Press) pp 489-92 

Kapadia S ,  Valtchev V and Young S J 1993 MMI training for continuous phoneme recognition on the TIMIT database 
Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Minneapolis, MN) vol I1 (Piscataway, NJ: 
IEEE Press) pp 491-4 

Kimber D G, Bush M A and Tajchman G N 1990 Speaker-independent vowel classification using hidden Markov 
models and LVQ2 Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Albuquerque, NM) vol 1 
(Piscataway, NJ: IEEE Press) pp 497-500 

Kohonen T, Bama G and Chrisley R 1988 Statistical pattem recognition with neural networks: Benchmarking studies 
Proc. IEEE Int. Conf: on Neural Networks (San Diego) (Piscataway, NJ: IEEE Press) pp 61-8 

Kohonen T, Kangas J, Laaksonen J and Torkkola K 1992 LVQ-PAK: A program package for the correct application 
of Leaming Vector Quantization algorithms Proc. Int. IEEE Joint Con$ on Neural Networks (Baltimore) vol I 
(Piscataway, NJ: IEEE Press) pp 725-30 

Le Cerf P, Ma W and Van Compemolle D 1994 Multilayer perceptrons as labelers for hidden Markov models IEEE 
Trans. Speech and Audio Proc. 2 185-93 

Mlntysalo J, Torkkola K and Kohonen T 1994 Mapping context dependent acoustic information into context 
independent form by LVQ Speech Commun. 14 119-30 

Rabiner L R 1989 A tutorial on Hidden Markov Models and selected applications in speech recognition Proc. IEEE 

Robinson A J 1994 An application of recurrent nets to phone probability estimation IEEE Trans. Neural Nenvorks 5 

Torkkola K 1994a LVQ as a feature transformation for HMMs Neural Networks for Signal Processing Iy Proc 1994 
IEEE-SP Workshop (Ermioini, Greece, 6-8 September 1994) (Piscataway, NJ: IEEE Press) pp 299-308 

-1994b New ways to use LVQ-codebooks together with hidden Markov models Proc. IEEE Int. Con$ on Acoustics, 
Speech and Signal Processing (Adelaide) (Piscataway, NJ: IEEE Press) pp 401-4 

Torkkola K, Kangas J, Utela P, Kaski S ,  Kokkonen M, Kurimo M and Kohonen T 1991 Status report of the Finnish 
phonetic typewriter project Proc. Int. Con$ on Art$cial Neural Networks (Espoo, Finland) (North-Holland) 

Young S 1991 Competitive training: a connectionist approach to discriminative training of hidden Markov models 

-1992 HTK: Hidden Markov model toolkit VI.4 - Reference Manual (Cambridge: Cambridge University 
Engineering Department) 

Yu G, Russel W, Schwartz R and Makhoul J 1990 Discriminant analysis and supervised vector quantization for 
continuous speech recognition Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing (Albuquerque, 
NM) vol 1 (Piscataway, NJ: IEEE Press) pp 685-88 

77 257-86 

298-305 

pp 771-6 

PWC. IEE 138 61-8 

G 1.4:6 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.5 Neural networks for alphabet recognition 

Mark Fanty, Etienne Barnard and Ron Cole 

Abstract 

In a system which performs name retrieval from spellings, neural networks were used 
for three components: a pitch tracker, a broad phonetic classifier used to find letters and 
letter-internal segment boundaries, and a letter classifier. The broad phonetic classifier 
uses spectral features in a fixed window around each 3 ms frame of the utterance. Its 
output is a score for each of several broad phonetic classes (e.g. voiced stop, iy-the 
vowel in E). A Viterbi search finds the most likely letter segment sequence based on 
these scores. This defines the letter boundaries and internal segmentation of each letter. 
The letter classifier uses carefully selected features from the whole letter based on our 
knowledge of the acoustic differences between the letters. The features are anchored by 
segment boundaries because they are especially useful in fine phonetic distinctions (e.g. 
‘By versus ‘D’). A neural network classifier is trained using these features extracted from 
letters spoken by 120 different speakers. We achieved 96% accuracy on an independent 
test set from 30 new speakers. When searching a database of 50 000 names, we achieved 
95% first-choice name retrieval for 1020 spelled names. This section describes all three 
neural networks briefly, but focuses on the broad phonetic and letter classifiers. 

G1.5.1 Project overview 

We have used neural networks for classijication ofspeech dura extensively since 1989. They are the major ~ 1 . 7  

tool for virtually all speech recognition research at the Center for Spoken Language Understanding (Fanty 
et a1 1993, Cole et a1 1994, Muthusamy et a1 1994). 

For several years, our major focus was alphabet recognition. Alphabets are interesting scientifically 
because they require fine phonetic distinctions, such as M/N, B D ,  BN,  SE, G/J. They are interesting 
commercially because spelling may be the only practical way to communicate with an automatic spoken 
language system in many situations, such as when callers are giving their names. 

Figure G1.5.1 is a schematic of the system. The complete system performs name retrieval from a 
database based on the spoken spelling of the name. For example, the user might spell ‘ S  M I T H E 
R S’ and thereby retrieve the telephone extension for the employee Smithers. Speech is captured and 
digitized (via a microphone, telephone, or the like), For the pitch tracker, the signal is filtered to remove 
high-frequency components and peaks in the waveform are classified as to whether they begin a pitch 
period or not. These pitch marks are used to create features for the other classifiers. 

Spectral analysis of the waveform is used to provide features for the broad phonetic classifier and 
letter classifier. In early versions of the system, we used FFT but switched to PLP (Hermansky 1990) 
because it is more compact and yields results as good as or better than FFT (Fanty er a1 1991). A number 
of other features are derived from the waveform, such as the zero-crossing rate and peak-to-peak amplitude. 

Before a letter can be classified, it must be located in the signal and its internal phonetic boundaries 
must be defined. To this end, every 3 ms frame of the signal is phonetically classified using a mixture of 
22 broad and fine phonetic classes. After every frame receives a score for the 22 broad phonetic classes, 
a Viterbi search finds the optimal alignment of those scores with the pronunciation models of the letters. 
Every letter consists of some sequence of phonemes. For example, a T has some number of ‘ptk’ frames 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G1.5~1 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

speech 

name 
search 

t 
name & 

data 
Figure G1.5.1. Schematic of the name retrieval system. 

followed by some number of ‘iy’ frames. Because we do not do fine classification of the stop, this is also 
the model for a P. 

For each letter, the segment boundaries are used to compute features based on pitch, spectral analysis, 
zero crossing, and peak-to-peak amplitude. These features are the inputs of a neural network which 
classifies the letter. The output of this net is a score for each letter of the alphabet. These scores are used 
to search the database of names. The name with the highest score, and any associated data, is retrieved. 

G1.5.2 Design process 

Our guiding philosophy is to study speech in order to discover which acoustic features provide the best 
evidence for correct classification. We then build a system which measures those features and uses them 
as input to a neural network classifier. We believe this is the optimal compromise between knowledge 
intensive, rule-based approaches and simple automated learning approaches. We have found, as have many 
others, that purely rule-based approaches are too fragile. There are too many interactions and special cases 
to capture in hand-crafted rules. Purely automatic approaches, which use simple frame-based input features, 
have had a good deal of success in speech recognition. However, we believe that by using knowledge to 

84.4 preprocess the input before classification we can create an input space in which the class boundaries are 
much easier to learn and thereby enhance the performance. In practice, all speech recognition systems do 
this to some extent, for example, by using spectral coefficients instead of the raw speech samples. The 
letter classifier described here goes much further. 

All of the networks used have the same topology: all input units are connected with all hidden units. 
All hidden units are connected with all output units. Hidden and output units take a weighted sum of their 
inputs and apply a sigmoid function to produce their output. There is no bias. Rather, there is an ‘extra’ 
input which has the constant value 1.0. 

G1.5.3 Pitch tracker 

Pitch tracking is achieved through a network which classifies each peak in the waveform as to whether it 
begins a pitch period (Bamard et a1 1991). The waveform is low-pass filtered at 700 Hz and each positive 
peak is classified using information about it and the preceding and following four peaks. For each of the 
nine peaks, the following information is provided: (i) the amplitude, (ii) the time difference between the 
peak and the candidate peak, (iii) a measure of the similarity of the peak and the candidate peak (point- 
by-point correlation), (iv) the width of the peak, and (v) the negative amplitude or most negative value 
preceding the peak. The network was trained on the TIMIT database, and agrees with expert labelers 
about 98% of the time, compared to 99% agreement among human labelers. It perfoms well on our 
high-bandwidth data without retraining. The pitch tracker does not perform as well for telephone speech 
because the waveform characteristics are so different; pitch is not yet a feature in the telephone systems. 

G1.5:2 Handbook ojNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for alphabet recognition 

G1.5.4 Frame-based phonetic classification 

The recorded speech is divided into letters and broad phonetic segments within the letters by first 
phonetically classifying every 3 ms frame. The neural network which does this classification has 22 
outputs. Some correspond to phonemes, such as ‘eh’, the vowel in M, N, F and S ;  others are collections 
of phonemes, such as the output we call ‘ptk’ which includes the voiceless stops in P, T and K. The 
motivation was to have enough discrimination to separate letters and find their internal boundaries, but 
to avoid making difficult phonetic distinctions at this stage. We found that by forcing the network to 
choose between easily confused classes the score for each of these classes might be low in some cases, 
allowing some other class to win and produce an incorrect segmentation. Research showed that grouping 
acoustically similar classes into broad categories produced more accurate classification of these segments 
(Roginski 1991). 

The inputs for the frame-based phonetic classifier consist of the spectrum of the frame to be classified, 
as well as frames before and after it so the classifier is provided with information about the acoustic context. 
The total window size is 170 ms. In addition to the spectrum in this window, there are waveform features 
representing the zero-crossing rate and peak-to-peak amplitude, and a binary feature indicating the presence 
of consistent pitch peaks. 

Training data were created by hand-labeling the phonetic boundaries in recorded letters. Frames of 
these letters were selected as training data. Limited resources precluded using every frame of training 
data. The short frame size means adjacent frames are very similar in any case, and largely redundant. 
Also, some categories are much more prevalent than others. We found it worked best to sample these less 
densely so that approximately the same number of each category are in the training sett. 

Our first strategy was to pick frames at random with the desired density, but this resulted in very 
poor performance near certain boundaries, especially those following background silence. The reason for 
this was the sampling strategy. Because there is so much silence surrounding each letter, only a very 
small number of training data were selected near speech boundaries. Thus, the classifier was misled by the 
presence of speech in the look-ahead features. The solution to this problem was to pick extra frames near 
boundaries (Roginski 1991). The more general lesson is that if there are sparse but especially important 
regions of the input space, random sampling of training data is not enough. 

G1.5.5 Letter classification 

After segmenting the signal, features must be extracted based on segment boundaries. Every letter in the 
English alphabet has a single sonorant segment except W, which is treated as a special case. In F, this is 
the ‘eh’; in M this is both the ‘eh’ and the ‘m’. This segment always exists, and provides the temporal 
anchor for most of the feature measurements. The previous consonant is the stop or fricative (e.g. B or 
C) before the sonorant. If there is no stop or fricative (e.g. E), the 200 ms interval before the sonorant is 
treated as a single segment for feature extraction. After dozens of experiments, we arrived at the following 
feature set: 
0 FFT coefficients from the consonant preceding the sonorant. The consonant is divided into thirds 

temporally; from each third, 32 averaged values are extracted linearly from 0 to 8 kHz. All FFT 
inputs are normalized locally so that the largest value from a given time slice becomes 1.0 and the 
smallest becomes 0.0 (96 values). 
FFT coefficients from the sonorant. From each seventh of the sonorant, 32 averaged values are 
extracted linearly from 0 to 4 kHz (224 values). 
FFT coefficients following the sonorant. At the point of maximum zero-crossing rate in the 200 ms 
after the sonorant, 32 values are extracted linearly from 0 to 8 kHz-for F, S ,  X and H (32 values). 
FFT coefficients from the second and fifth frames of the sonorant-32 values from each frame 
extracted linearly from 0 to 4 kHz. These are not averaged over time, and will reflect formant 
movement at the sonorant onset (64 values). 

0 

0 

0 

t Bourlard and Morgan (1994) have explained why this should be so. It can be shown that when all the data are used, the classifier 
estimates the probability of each phoneme given the data from a frame. These are to be blended with the pronunciation models to 
estimate the probability of an observed sequence of frames according to each model. Under a Markov assumption, the probability 
of the sequence is the product over frames of the probability of each frame given the phoneme in the model. These are the Bayes’ 
rule inverses of the classifier outputs. Given a uniform prior distribution over frames, the Bayes inversion can be accomplished (up 
to a constant factor) simply by dividing the classifier outputs by the unconditional probabilities of their corresponding classes. It is 
easy to show that this is equivalent to subsampling the training data to equalize the unconditional class probabilities they represent. 

@ 1997 IOP Publishing Ltd and Oxford University F’ress Handbook of Neural Computation release 9711 G1.53 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.5:4 

FFT coefficients from the location in the center of the sonorant with the largest spectral difference 
(amount of frame-to-frame change in spectrum) extracted linearly from 0 to 4 kHz. This samples the 
formant locations at the vowel-nasal boundary in case the letter is M or N (32 values). 
Zero-crossing rate in 11 18 ms segments (198 ms) before the sonorant, in 11 equal-length segments 
during the sonorant and in 11 18 ms segments after the sonorant. This provides an absolute time 
scale before and after the sonorant which could help overcome segmentation errors (33 values). 
Amplitude from before, during, and after the sonorant represented the same way as zero crossing (33 
values). 
Low-pass-filtered amplitude represented the same way as amplitude (33 values). 
Spectral difference represented like zero crossing and amplitude except the maximum value for each 
segment is used instead of the average, to avoid smoothing the peaks which occur at boundaries (33 
values). 
Inside the sonorant, the spectral center of mass from 0 to 1000 Hz, measured in 10 equal segments 
(ten values). 
Inside the sonorant, the spectral center of mass from 1500 to 3500 Hz, measured in 10 equal segments 
(ten values). 
Median pitch, the median distance between pitch peaks in the center of the sonorant. This correlates 
with vocal tract length, which determines characteristic formant locations (one value). 
Duration of the sonorant (one value). 
Duration of the consonant before the sonorant (one value). 
High-resolution representation of the amplitude at the sonorant onset: five values from 12 ms before 
the onset to 30 ms after the onset (five values). 
Abruptness of onset of the consonant before the sonorant, measured as the largest two-frame jump in 
amplitude in the 30 ms around the beginning of the consonant (one value). 
The category of the segment before the sonorant: closure, fricative, or stop (three values). 
The largest spectral difference value from 100 ms before the sonorant onset to 21 ms after, normalized 
to accentuate the difference between B and V (one value). 
The number of consistent pitch peaks in the previous consonant (one value). 
The number of consistent pitch peaks before the previous consonant (one value). 
The presence of the segment sequence closure fricative after the sonorant (an indicator of X or H) 
(one binary value). 

Later networks, including those used for telephone speech, replaced the 32 FET coefficients with eight 
PLP coefficients, considerably reducing the size of the network (Cole et a1 1992). Each of these features 
was designed with some discrimination(s) in mind. Care must be taken that all features have reasonable 
values for all letters, even those for which the feature makes no sense. Thus, letters with no preceding 
consonant still need values for features which represent attributes of the consonant. These are extracted 
from a fixed interval of silence preceding the letter. 

All inputs to our network were normalized: mapped to the interval [O.O, 1.01. We attempted to 
normalize so that the entire range was well utilized. In some instances, the normalization was keyed to 
particular distinctions. For example, the center of mass in the spectrum from 0 to lo00 Hz was normalized 
so that E was low and A was high. Other vowels, such as 0, would have values ‘off the scale’ and would 
map to 1.0, but the feature was added specifically for WA distinctions. 

G1.5.6 Results 

All results are for letters spoken with pauses between them. Using high-quality speech (16 kHz sampling; 
Sennheiser noise-canceling microphone) in the ISOLET spoken letter corpus (Cole et a1 1990), we achieved 
96% correct on 30 spoken alphabets from 30 different speakers after training on alphabets from 120 different 
speakers. We did a separate study for the especially difficult E-set (B, C, D, E, G, P, T, V, Z) in which 
we added a few more specialized features. For just this set, we achieved 95% correct (Fanty and Cole 
1990). Name retrieval performance for 1020 test callers was 95% when searching a list of the 50000 most 
common names (Cole et a1 1991). 

When we retrained the system using telephone speech and the CSLU Whitepages corpus (Cole et a1 
1992), performance on the alphabet dropped to 89.1% (compared to 93% for human listeners). Bandwidth 
limitations of the telephone channel make recognition of some letters especially difficult (e.g. S and F). 

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for alphabet recognition 

G1.5.7 Development 

All neural networks were trained using OFT, which is based on conjugate gradient optimization (Barnard 
and Cole 1991). OPT is an implementation of backpropagarion which eliminates the learning rate and c1.2.3 
momentum parameters. It is available as part of the OGI speech tools. For more information, ftp 
speech.cse.ogi.edu:pub/tools/ANNOUNCE or see our WWW home page: http://www.cse.ogi.edu/CSLU. 

For information about acquiring OGI speech corpora, send email to Mike Noel: noel@cse.ogi.edu. 

G1.5.8 Comparison with traditional methods 

The most popular traditional approaches to speech recognition are based on dynamic time warping (DTW) 
and hidden Markov models (HMMs). Since English alphabet recognition has been a popular task domain 
in computer speech recognition for a number of years, several results using these approaches have been 
published. Unfortunately, many different corpora have been used to test the various methods, so direct 
comparison is generally not possible. 

Early work, reviewed by Cole et a1 (1984), used template matching with DTW to perform frame-by- 
frame matching of an input utterance to reference templates. This approach produced speaker-dependent 
recognition rates of 60% to 80% on the alphabet and alphadigit (letters and digits) vocabularies. 

A substantial improvement in recognition accuracy was demonstrated in the FEATURE system, which 
combined knowledge-based feature measurements and multivariate classifiers in a hierarchical decision 
tree (Cole et al 1983). FEATURE performed speaker-independent recognition of spoken English letters at 
89.5% accuracy, a substantial improvement over speaker-dependent, DTW-based approaches. 

More recently, increased recognition accuracy has been obtained by applying HMMs to the letter 
recognition problem. HMMs construct a more detailed statistical model of the speech sounds to be 
recognized. A first-order Markov model is typically used to describe the temporal evolution of the speech 
signal, and mixtures of multivariate Gaussians describe the density function of the observed acoustic signals 
in each of the states of the Markov model. 

Brown (1987) obtained 92% correct classification of the E-set on a multispeaker task using 100 
speakers. (For a multispeaker task, as opposed to a speaker-independent task, the same speakers occur 
in the training and test sets.) Researchers at AT&T Bell Labs have applied HMM-based approaches to 
multispeaker recognition of a 39-word vocabulary of letters, digits, and the words ‘stop,’ ‘error’, and 
‘repeat’. Using whole-word continuous density HMMs, the best result obtained for 100 speakers was 
89.5% (Rabiner and Wilpon 1987). The addition of acoustic segmentation and probabilistic word modeling 
resulted in multispeaker recognition rates of 92 to 93% (Euler et a1 1990). 

In principle, neural network systems that classify segments of speech rather than single frames should 
be able to outperform HMMs, since they are not constrained by the Markovian assumption (namely that 
the differences between successive frames in the same state are uncorrelated with one another). However, 
this theoretical advantage has not yet been translated to substantial improvements in performance for neural 
networks-possibly since the technology based on HMMs is more mature. It is thus widely believed (see 
e.g. Bourlard and Morgan 1994) that it is possible to obtain comparable results with HMM-based systems 
and systems based on neural networks, and the results on alphabet classification seem to confirm this 
trend. Currently, the main advantage of neural networks seems to be that they can achieve this level of 
performance with much lower system complexity (Cohen et a1 1993), which is extremely important for 
real-time implementations. 

Our work on alphabet recognition, and that of Waibel and his colleagues at CMU (Hild and Waibel 
1993, Bregler et a1 1993) is consistent with that view. 

G1.5.9 Conclusions 

The use of neural networks in the name retrieval system has been a great success. The results on 
high-quality speech are the best reported in the literature, and the telephone implementation has been 
implemented on a DSP board, licensed commercially, and ported to other languages. It was used in the 
spring of 1995 by the Bureau of the Census in a technology pretrial for automated name entry. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.5 :5 

Copyright © 1997 IOP Publishing Ltd

www.cse.ogi.edu
www.cse.ogi.edu


Perception and Cognition 

Acknowledgements 

The authors wish to  thank Richard Rohwer for his assistance. This research was supported by the National 
Science Foundation, US West, Apple Computer, the Office of Naval Research and Digital Equipment 
Corporation. 

References 

Bamard E B and Cole R A 1991 A neural-net training program based on conjugate-gradient optimization Oregon 

Bamard E B, Cole R A, Vea M and Alleva F 1991 Pitch detection with a neural net classifier IEEE Trans. 39 298-307 
Bourlard H A and Morgan N 1994 Connectionist Speech Recognition (Boston, MA: Kluwer) 
Bregler C, Hild H, Manke S and Waibel A 1993 Improving connected letter recognition by lipreading IEEE Proc. Int. 

Bourlard H A and Morgan N 1994 Connectionist Speech Recognition (Boston, MA: Kluwer) 
Brown P F 1987 The acoustic-modeling problem in automatic speech recognition PhD Thesis Camegie Mellon 

University, Department of Computer Science 
Cohen M, Franco H, Morgan N, Rumelhart D and Abrash V 1993 Context-dependent multiple distribution phonetic 

modeling with MLPs Advances in Neural Information Processing Systems 5 ed S J Hanson, J D Cowan and L 
C Giles (San Mateo, CA: Morgan Kaufmann) pp 649-57 

Cole R A, Fanty M, Gopalakrishnan M and Janssen R D T 1991 Speaker-independent name retrieval from spellings 
using a database of 50000 names Proc. Int. Con$ on Acoustics, Speech and Signal Processing pp 325-8 

Cole R A, Fanty M and Roginski K 1992 A telephone speech database of spelled and spoken names Proc. Int. Con$ 
on Spoken Language Processing pp 891-3 

Cole R A, Muthusamy Y K and Fanty M 1990 The ISOLET spoken letter database Oregon Graduate Institute of 
Science and Technology Technical Report CSE 90-004 

Cole R A, Novick D, Fanty M, Vermeulen P, Sutton S, Bumett D and Schalkwyk J 1994 A prototype voice response 
questionnaire for the US census Proc. IEEE Int. Conf on Acoustics, Speech and Signal Processing pp 683-6 

Cole R A, Stem R M and Lasry M J 1984 Performing fine phonetic distinctions: templates vs. features Invariance 
and VariabiliQ of Speech Processes ed J S Perkell and D H Klatt (Lawrence Erlbaum) pp 3 2 5 4 5  

Cole R A, Stem R M, Phillips M S, Brill S M, Pilant A and Specker P 1983 Feature-based speaker-independent 
recognition of isolated English letters Proc. IEEE Int. Con$ on Acoustics, Speech and Signal Processing pp 73 1- 
4 

Euler S A, Juang B H, Lee C H and Soong F K 1990 Statistical segmentation and word modeling techniques in isolate 
word recognition Proc. IEEE Int Con$ on Acoustics, Speech and Signal Processing pp 745-8 

Fanty M and Cole R A 1990 Speaker-independent English alphabet recognition: experiments with the E-set Proc. 
1990 Int. Con$ on Spoken Language Processing pp 1361-4 

Fanty M, Cole R and Slaney M 1991 A comparison of DFT, PLP, and cochleagram for alphabet recognition Proc. 
25th Asilomar Con$ on Signals, Systems and Computers pp 326-9 

Fanty M, Schmid P and Cole R A 1993 City name recognition over the telephone Proc. IEEE Int. Conf on Acoustics, 
Speech and Signal Processing pp 1-549-552 

Hermansky H 1990 Perceptual linear predictive (PLP) analysis of speech J.  Acoust. Soc. Am. 87 1738-52 
Hild H and Waibel A 1993 Speaker-independent connected letter recognition with a multi-state time delay neural 

Muthusamy Y, Bamard E and Cole R 1994 Reviewing automatic language identification IEEE Signal Proc. Mag. 11 

Rabiner L and Wilpon J 1987 Some performance benchmarks for isolated word, speech recognition systems Computer 

Roginski K 1991 A neural network phonetlc classifier for telephone spoken letter recognition Masters Thesis Oregon 

Graduate Institute of Science and Technology Technical Report CSE 89-014 

Con$ on Acoustics, Speech, and Signal Processing (Minneapolis, MN) pp 1-557-560 

network Proc. Eurospeech '93 pp 1481-5 

3 3 4 1  

Speech and Language pp 343-51 

Graduate Institute of Science and Technology, Department of Computer Science and Engineering 

G1.5:6 Had"? of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University FTess 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

G1.6 A neural network for image understanding 

Heggere S Ranganath, Govindaraj Kuntimad and John L Johnson 

Abstract 

The pulse-coupled neuron, which is significantly different from the conventional artificial 
neuron, is a result of recent research conducted on the visual cortex of cats and monkeys. 
Pulse-coupled neural networks (PCNNs) are modeled to capture the essence of recent 
understanding of image interpretation processes in biological neural systems. Our 
study indicates that the PCNN is capable of image smoothing, image segmentation and 
feature extraction. The PCNN reduces noise in digital images better than traditional 
smoothing techniques. As an image segmenter the PCNN performs well even when 
the intensity varies significantly within regions, and adjacent regions have overlapping 
intensity ranges. This article describes the theory, design and implementation of an image 
segmentatioddetection system based on the PCNN. 

G1.6.1 Project overview 

The primary objective of the project was to design, implement and study the pulse-coupled neural network, 
in order to determine its potential for use in real-time image understanding applications. The task was 
accomplished by developing an automatic target-detection system shown in figure G1.6.1. The system 
consists of five functional modules: a smoothing module, segmentation module, evaluation module, 
detection module and knowledge base. The smoothing and segmentation modules are implemented as 
pulse-coupled neural networks in which there is a neuron corresponding to each pixel in the image. The 
smoothing network reduces the random noise present in the input image. The segmentation network 
partitions the image into several regions. The evaluation module checks each segment and, if satisfied 
with the overall segmentation result, forwards the segmented image to the detection module. Otherwise, 
neurons corresponding to regions of no interest are disabled, the network parameters are modified, and the 
image is resegmented. The detection module, with the help of the knowledge base, identifies all subsets 
of regions that can potentially form a target for further processing by the recognition system. 

G1.6.2 Design process 

The development of a PCNN-based target-detection system was motivated by the recent results published 
by Eckhorn et a1 (1990) and Johnson (1994). Eckhorn has modeled the cat visual cortex by using a network 
of pulse-coupled neurons. His simulations show that the PCNN has associative memory embedded in its 121.3, ~ 1 . 4  

architecture and is capable of filling in the missing spatial and temporal information. Johnson has studied 
the effects of linking in a single-layer laterally connected network. The primary objective of his research 
is to map 2D spatial distributions to 1D temporal patterns called time series. 

Eckhom's neuron was modified to suit the needs of image understanding applications (figure G1.6.2). 
The neuron, Nk, consists of a linking receptive field comprising several leaky integrators and a spike 
generator. A leaky integrator is a first-order linear time-invariant system with an exponentially decaying 
output. Its impulse response is given by 

(G1.6.1) 

@ 1997 IOP Publishing U d  and Oxford University Press Handbook of Neurul Computation release 97/1 G 1.6: 1 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Image 

Smoothing 
Module 

F 

v 

Se mentation 
%odule 

D - Evaluation 
Module Knowledge Base 

I 

Detection 
Module 

To Recognition System 1 
Figure G1.6.1. PCNN-based automatic target recognition system. Smoothing and segmentation modules 
utilize PCNN-based algorithms. 

where V, is the amplification factor and q is the decay time constant of the leaky integrator. Therefore, 
the output of a leaky integrator is the convolution of its impulse response and its input. 

The linking receptive field consists of Q linking leaky integrators (LLIk1, . . . ,LLI~Q). The input to 
LLIkj is Y,,(t), the output of the linking neuron N,,. Each leaky integrator LLIk, is connected to a different 
linking neuron. The network linking input to Nk, Lk( t ) ,  is the weighted sum of the outputs of all the leaky 
integrators in the neuron’s linking receptive field. The weighting factor between the neurons Nk and N,, 
is inversely proportional to the square of the distance between them. 

The feeding input Xk, the intensity of the associated pixel in the image, is modulated by the linking 
input to yield the neuron’s internal activity, Uk(t):  

where p k  is a positive constant referred to as the linking coefficient. 
The spike generator consists of a step-function generator and a threshold generator. The output of 

the step-function generator is the output of neuron Yk( t ) .  When the internal activity exceeds the threshold 
value, Yk(t)  goes to 1; otherwise Yk( t )  is zero. The output of the threshold generator, &(t) ,  is set to 
a predetermined value, Vo, whenever Y k ( t )  goes to 1. When Yk(t)  is zero, & ( t )  decays exponentially 
with decay time constant to. We have chosen Ve to be much greater than the highest possible value of 
Uk(t ) .  Therefore, when Yk(t)  goes high, the threshold value exceeds the internal activity of the neuron 
instantaneously, forcing Yk( t )  to zero. Thus, ideally, the neuron Nk generates an impulse on Y k ( t )  every 
time Uk(t) exceeds & ( t ) .  If the charging of the threshold generator is not instantaneous, Yk(t)  will be a 
pulse of finite width. 

The PCNN used in image understanding applications is a single-layer network in which there is a 
neuron corresponding to every pixel in the image. The value of the linking coefficient is the same for all 
neurons ( B k  = p ,  for all k ) .  A neuron Nk in the network receives linking input from every neuron in the 

(21.1 

G1.6:2 Handbook of Neural Compuration release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for image understanding 

I X k  

Figure G1.6.2. Image processing neuron. 

circular neighborhood of radius r centered about Nk. In an unlinked network (linking coefficient @ is zero) 
the firing rate of Nk is determined by its primary input x k .  If @ is greater than zero the neuron's primary 
input is modulated by the linking input from its neighbors. As a result, if Uk(t) exceeds & ( t ) ,  Nk will 
fire synchronously with its neighbors. Now, we say that Nk is captured by its neighbors. This property 
of the PCNN where a group of firing neurons capture other neighboring neurons in a similar environment 
forms the foundation for image smoothing, image segmentation and feature extraction algorithms. 

G1.6.2.1 Image smoothing 

Image smoothing is the process of removing or reducing the random noise present in images (Gonzalez 
and Wintz 1977). The image to be smoothed is applied as an input to a weakly linked PCNN. The 
intensity of a noisy pixel is significantly different from the intensities of its surrounding pixels. Therefore, 
most neurons corresponding to noisy pixels do not capture neighboring neurons or get captured by the 
neighboring neurons. Image smoothing is accomplished by adjusting the intensity of each pixel based on 
the neuron firing pattern in its neighborhood. If a neuron fires sooner than a majority of its neighbors 
fire, its intensity is adjusted downwards. If a neuron fires after the majority of its neighbors have fired, 
its intensity is adjusted upwards. If a neuron fires with the majority of its neighbors no change is made. 
After completing the firing cycle (all neurons fire exactly once) the network may be reset by forcing the 
threshold values of all neurons to zero and the smoothing process may be repeated. 

G1.6.2.2 Image segmentation 

Image segmentation is the process of partitioning an image into its component regions. Consider an image 
consisting of two regions R and B. Spatially connected object pixels form R and background pixels form 
B. Perfect segmentation is possible if there exist a linking radius r and linking coefficient @ which force 
all neurons belonging to a region to pulse together periodically. Of course, different regions need to pulse 
at different rates. 

Let [ I1 ,Z2]  and [13,Z4] be the intensity ranges of background and object pixels, respectively. When 
I3 < 12 thresholding techniques do not produce a perfect result. On the other hand, PCNN can produce 
perfect segmentation i f  (i) object neurons of intensity Z4 pulsing at TR capture all the remaining object 
neurons and (ii) background neurons of intensity 12 pulsing at TB capture all the remaining background 
neurons. We have shown that perfect segmentation occurs when the following inequalities are satisfied 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computution release 9711 G 1.6:3 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

(Ranganath and Kuntimad 1994): 

(G1.6.3) 
(G1.6.4) 
(G1.6.5) 

In the above inequalities L,-,,jn,(T') is the minimum of all the linking inputs received by object neurons 
at TR, L m a x b ( & )  is the maximum of all the linking inputs received by background neurons at TR and 
L f i n h ( T B )  is the minimum of all the linking inputs received by background neurons at TB. The values 
of Lminr, Lm,, and Lminb increase as r increases and the rates of increase are determined by the object- 
background boundary geometry. When perfect segmentation is not possible, the challenge is to find optimal 
parameters (@*, r * )  which minimize the error. 

G1.6.2.3 Feature extraction and target detection 

Assume that an image is connected to primary inputs of a pulse-coupled neural network. Initially, at 
time t = 0, all neurons pulse together. The subsequent pulsing of a neuron is determined by the neuron's 
primary input, linking input and network parameters. The plot of the number of neurons firing as a function 
of time is referred to as the time series. Johnson is of the opinion that if the network is allowed to pulse, 
it will eventually converge producing a periodic time series. He further believes that the resulting time 
series characterizes the image, and when normalized, is invariant to rotation, translation and scaling. He 
has demonstrated this property of the PCNN through simulation using simple test images (Johnson 1994). 
However, there is no mathematical proof for the existence of periodic time series. 

Also, by making slight modifications to the current version of the PCNN, it is possible to obtain 
geometric features such as the size, centroid and radius of gyration of each pulsing region. The features 
so obtained may be utilized for target detection or recognition in the postprocessing stage. 

Figure G1.6.3. An example of image smoothing: (a) noisy image; (b)  result of PCNN processing; (c) 
result of neighborhood averaging; ( d )  result of median filtering. 

- 
G1.6:4 Handbook ojNeuml Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for image understanding 

G1.6.3 Development 

To the best of our knowledge there are no PCNN software or hardware packages available commercially. 
Therefore, we implemented all modules of the PCNN-based target-detection system in C language on a 
SUN workstation running a UNIX operating system. 

61.6.4 Comparison with traditional methods 

The ability of PCNN to smooth images was compared with that of neighborhood averaging and median 
filtering methods. The neighborhood averaging method blurred edges. The median filtering method 
often suffered from the problem of edge erosion and dilation. However, simulation results indicated that 
PCNN smoothed images without blurring, eroding or dilating edges. These facts are well illustrated in 
figure G1.6.3. 

A number of artificial and real images were segmented using the PCNN and several known 
segmentation methods such as optimal thresholding, region growing and probabilistic relaxation. The 
performance of the PCNN was far superior to that of optimal thresholding and region-growing techniques. 
The PCNN was better than the relaxation technique in segmenting regions with fuzzy edges. 

We also verified the perfect segmentation property of the PCNN through simulation. Figure G1.6.4(a) 
shows a 64 x 64 image consisting of two regions. The intensity ranges of the background and object are 
[loo, 1751 and [150,250], respectively. For r = 1 ,  it can be shown that L,,,jnr = 2, L,,,jnb = 2 and 
L-b = 1 .  Perfect segmentation is possible when the value of B is in the range [3/8,3/7]. The image 
was segmented using PCNN with B = 0.4. The regions of the image as determined by the synchronous 
firing of neurons are shown in figures G1.6.4(b) and G1.6.4(c). 

Figure 61.6.4. An example of perfect segmentation: (a) noisy image; (h)  segmented region; ( c )  segmented 
background. 

The PCNN-based target-detection system, shown in figure G1.6.1, was implemented in C on a SUN 
workstation. The 128 x 128 input image shown in figure G1.6.5(a) was smoothed using PCNN. The 
smoothed image was iteratively segmented until satisfactory results were obtained, as determined by the 
evaluation module. A low value of B (0.1) was chosen initially to ensure over-segmentation. For each 
segment, size, radius of gyration and centroid were computed. Any segment whose attributes violated the 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundhook of Neurul Computunon release 9711 G 1.6:s 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

size and elongation constraints specified in the knowledge base was eliminated from further consideration. 
This was accomplished by disabling the neurons corresponding to the eliminated segment. If the number of 
remaining segments was greater than a predetermined number (18), the value of B was increased by 0.05, 
and the remaining image was resegmented. After successful segmentation, all groups of spatially connected 
segments which satisfied the constraints in the knowledge base were detected as potential targets for further 
processing by a target recognition system. A graph-theoretic approach was used to reduce computation 
during grouping. For the image shown in figure G1.6.5(a) the system detected one candidate group, shown 
in figure G1.6.5(b), as a potential target. 

Figure G1.6.5. Image detection system: ( a )  noisy image containing tank; ( h )  detected tank. 

G1.6.5 Summary and conclusions 

Single-layered, laterally linked pulse-coupled neural networks, being fairly insensitive to noise and local 
intensity variations in digital images, are highly effective for image smoothing, segmentation and feature 
extraction applications. 

A comparison of the PCNN with Markov random fields and relaxation methods is relevant. The 
smoothing method based on the Markov random fields modifies the intensity of each pixel in the image, 
but the PCNN selects and modifies a small group of pixels which do not pulse with their neighbors. 
Also, the PCNN-based smoothing yields much sharper edges than the Markov random fields method. 
The segmentation performance of the relaxation method is comparable to that of the PCNN. However, 
unlike the relaxation method, the PCNN does not require prior knowledge of the number of regions in the 
image. Simulation has shown that the PCNN segments boundary pixels more accurately than the relaxation 
method. 

Several optical devices capable of implementing the linking receptive field efficiently have been 
developed. For example, the optically addressed spatial light modulator developed by SY Technology Inc. 
facilitates large-scale electro-optical implementation of the PCNN. As a result, the PCNN has potential in 
real-time image processing. 

Acknowledgement 

This project, led by Ranganath and Johnson, was funded in part by the US Army Missile Command and 
supported by three graduate students. 

References 

Eckhom R, Reitboeck H J, Amdt M and Dicke P 1990 Feature linking via synchronization among distributed 

Gonzalez R C and Wintz P 1977 Digital Image Processing (Reading, MA: Addison-Wesley) 
Johnson J L 1994 Pulse-coupled neural networks Adaptive Computing: Mathematics, Electronics and Optics vol CR55 

Ranganath H S and Kuntimad G 1994 Image segmentation using pulse coupled neural networks Proc. IEEE Int. ConJ: 

~ 1 . 5  

assemblies: simulations of results from cat visual cortex Neural Comput. 2 293-307 

(Proceedings of a conference held on 4-5 April 1994 Orlando, FL) 

on Neural Networks (Orlando, FL) vol 11. pp 1285-90 

G1.6~6 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

61.7 The application of neural networks to image 
segmentation and way-point identification 

James Austin 

Abstract 

The analysis of images of the ground taken from aircraft and satellites is of immense 
importance. This case study describes work using the ADAM neural network aimed 
at finding way-points, roads, towns and rural areas in infrared line scan images of the 
ground. The network is capable of on-line, single-pass training and simple computer 
implementation, making it particularly applicable in image processing tasks. In addition, 
no image preprocessing is needed, and images may be very large, which makes the 
approach particularly simple to adopt. 

G1.7.1 Project overview 

This project was aimed at finding way-points, roads, towns and rural areas (segmentation) in infrared line 
scan (IRLS) images of the ground taken from aircraft. The problem of finding way-points is vital for 
airborne vehicles (i.e. landmarks that are used to guide a vehicle) and can be useful in many other image 
processing tasks. In this work we were particularly interested in a system that could be trained rapidly 
on new features and way-points. The more conventional network architectures, based on gradient descent 
learning, could not be used in the problem because they could not be rapidly trained on the large and 
complex data sets used in the work. The use of the advanced distributed associative memory (ADAM) ci.5.8 

(Austin 1987) combined the fast feature-recognition ability of the network with the large capacity of the 
network so that a large number of way-points could be stored. Section G1.7.2 describes the feature- 
recognition system that could find roads and segment town areas in maps from rural areas. Section G1.7.3 
builds on this and describes how way-points can be trained into the network. Due to space limitations, 
the neural network methods used are not described in detail, but can be found in other sections of the 
handbook and in the papers cited. 

G1.7.2 First stage processing: feature recognition 

GI. 7.2. I Design process 

The IRLS problem involved the use of an ADAM to recognize a small feature in an image; from this 
a label could be recalled to indicate the type of feature found. To perform feature recognition a small 
square window is scanned over the image in regular steps. At each step the image data in the window are 
passed to the inputs of the neural network. The network is tested and the classification of the data in the 
window outputs from the network. This can be passed to the second stage of the network which outputs 
a label used to indicate the type of feature found, so that the user can assess the quality of the recognition 
performance. Figure G1.7.1 shows a typical output showing how the network can recognize the roads in 
the image in figure G1.7.4. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G 1.7: 1 

Copyright © 1997 IOP Publishing Ltd



Perceution and Cognition 

Figure 61.7.1. The result of finding roads using ADAM. 

GI.  7.2.2 Network architecture 

The approach used the ADAM network with ranked gray-scale preprocessing. This network is described 
fully in Austin and Stonham (1987). 

G1.7.2.3 Training methods 

Prior to the recognition phase the ADAM network is trained on image data. This is achieved by the 
following process. A training image was selected from areas which contain typical data of the class of 
interest. The data were separated into a training set and a validation set. In the road example, we selected 
the training set shown in figure G1.7.2. There were four classes of road representing four road orientations. 
The fifth class was the nonroad class. For each class, an idealized version of the feature was to be recalled 
from the network, so that once the feature was recognized a ‘clean’ image of the data could be built up. 
The training process was as follows. 
(i) Set the initial parameters of the neural network. These can be set to N-tuple size 4, number of 

N-tuples to about 100, and ranks set to 2. 
(ii) Place the sampling window at the first position to be trained. 
(iii) Train the example into the network. 
(iv) Evaluate the performance of the network (see section G1.7.2.4). 
(v) Is the current performance better by an amount T than that achieved so far? If it is, place the training 

window at the next point to be trained and go to step (iii). If the performance is not better than an 
amount T, stop training. 
This process was extremely fast, taking less than one second to train on a UNIX-based 68040 

workstation. Because of this, the search for the set of optimal parameters for the network is very quick. In 
this problem the typical ranges of values that would be examined were: a range of N-tuple sizes between 
4 and 8, the number of tuples from 10 to 200 and rank sizes from 2 to the size of the N-tuple. These 
apply for the image size of 8 x 8 pixels used in this problem. 

G1.7.2.4 Validation process 

This was done by recording the average recognition success over all window positions in the validation 
set. The recognition success is taken as the average response of the class bits that are on (see Austin and 
Stonham 1987). In this case the validation set consisted of a complete scan of the example image. 

G1.7~2 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Application of neural networks to image segmentation and way-point identification 

Figure G1.7.2. The road training examples used for finding roads. 

GI. 7.2.5 Preprocessing 

A particular feature of the ADAM network is its ability to use data that have not been extensively 
preprocessed. Because the network is capable of training large amounts of pattern data without long 
training times, the image data can be fed directly to the network. Had an MLP network been used, this 
would have necessitated the use of preprocessing to reduce the size of the image that is fed to the network. 

GI. 7.2.6 Output interpretation 

The interpretation of the output was shown in figure (31.7.1. At each point in the input image, the ADAM 
memory recalled the ‘ideal’ image for that feature. This was placed into the output image at the same 
point as the image feature was found in the input image. The example given here is covered in detail in 
Austin and Buckle (1995). 

61.7.3 The segmentation of towns and rural areas 

The same approach was used to segment images into town areas and rural areas. The results of this work 
are shown in figure G1.7.3. The white areas indicate urban areas, the black areas are rural regions. Details 
of this are also given in Austin and Buckle (1995). 

GI.7.3.1 

This work used the network‘s ability to recognize image segments to find known locations in unknown 
images (a way-point). This built on the ADAM network’s ability to store many thousands of image 
segments for subsequent matching, allowing it to be used effectively in a vehicle guidance system. The 
work examined methods needed to achieve accurate way-point finding. The capacity of the memory 
has been examined in Austin and Stonham (1987). An example of a way-point to be found is given in 
figure (31.7.4. Because the image feature is small, and not particularly salient, it could match in many 
positions. To allow such small features to be accurately found the method used a multi-image resolution 
approach to provide context for the recognition process. 

GI.7.3.2 Training the network 

To solve the problem five ADAM networks were used. Each ADAM network received an input image at a 
different resolution, as shown in figure (31.7.5. These images were gathered by first selecting a feature that 
was to be trained, then taking a window of pixels centered on the feature of size 21 x 21 pixels for window 
5 4 2  x 42 for window 4, 84 x 84 for window 3, 168 x 168 for window 2, and 336 x 336 for window 1. 
Window 1 is the ‘high-resolution’ window, window 5 is the ‘low-resolution’ window. All these images 
were then reduced in resolution to match the size of the highest-resolution image (i.e. 21 x 21 pixels) that 
is, by 2, 4, 8 and 16, respectively. This ensures that all ADAMs have the same input image size. Each 
image was then trained into an ADAM network specific to each resolution. If other examples of the same 

Finding a way-point feature in a large image 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G1.73 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Figure G1.73. The segmentation of images into town and rural areas. 

Figure G1.7.4. Way-points in an IRLS image. 

feature in different images were available (different days or time of year) these could be trained in the 
same way. If the feature is to be recognized invariant to rotation, the procedure is repeated, using rotated 
image data. Further way-points (features) are trained in the same way. 

GI.  7.3.3 Preprocessing 

Again, no preprocessing was used other than the ranked gray-scale N-tuple process. 

G 1.714 Handbook of Neural Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Application of neural networks to image segmentation and way-point identification 

Figure G1.7.5. Way-point ‘A’ trained into the networks. 

G1.7.3.4 Finding the feature in another image 

The five networks were used to find the way-point position in an unknown image. The initial image to 
be searched was reduced in resolution by 16, to match the resolution of window 5 in the trained data. 
The ADAM trained on this resolution was then scanned over the image. At each point the class and the 
confidence of the class were recorded (this is obtained from the class pattern). After a complete scan the 
position where the best response was obtained was recorded (position p, q). Because the image is small, 
this operation is fast. 

Next, a scan area around the position p, q was defined, equal to about twice the image area covered 
by window 4, in this case 336 x 336 pixels. This area was scanned by the ADAM trained on resolution 4, 
and the point at which the best response was found is noted. The scan area around this point is defined as 
before. The process is repeated for the remaining three ADAM networks. The final position of the feature 
will identify the way-point. 

If two equally likely way-points were found during the scanning process, the selection of way-points 
will be random (the method could have been altered to allow both way-points to be recorded). If the 
image is expected to be very noisy or the way-points are unreliable, many way-points can be trained in 
a local area. The system will have a better chance of finding at least one of these. An example of the 
system finding way-point ‘B’ is shown in figure G1.7.6. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G1.75 

Copyright © 1997 IOP Publishing Ltd



Perception and Cognition 

Figure G1.7.6. The result of testing the hierarchical ADAM with the memory trained to recognize position 
‘B’ shown in figure G1.7.4. 

GI.  7.3.5 Comparison with traditional methods 

There are many methods available for segmenting images. The approach described here has the unique 
ability of fast training coupled to the absence of any image preprocessing. This not only makes the system 
simple to use, but provides recognition at very high speed. However, this must be traded against the quality 
of the final result. If your problem requires high accuracy then you should select a method that uses a 
more robust (and slower) training method, or you should resort to a careful selection and preprocessing 
of the image. We have recently constructed a dedicated parallel processor that can perform the operations 
given above hundreds of times faster than conventional workstations (Austin et a1 1995) 

G1.7.4 Conclusions 

The work described here has shown how way-points and image segmentation can be achieved very easily 
using the ADAM network. Because the network trains rapidly, the optimal parameters used by the network 
can be easily found. 

G1.7:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Application of neural networks t o  image segmentation and way-point identification 

Acknowledgement 

This work was partly supported by a grant Gm36330 from the Department of Trade and Industry and 
by UK Science and Engineering Research Council. 

References 

Austin J 1987 ADAM: A Distributed Associative Memory For Scene Analysis Pmc. First Int. Cons on Neural Networks 

Austin J and Buckle S 1995 Segmentation and matching in infrared airborne images using a binary neural network 

Austin J, Kennedy J, Buckle S, Moulds A and Pack R 1995 The cellular neural network associative processor, C-NNAP 

Austin J and Stonham T J 1987 An associative memory for use in image recognition and occlusion analysis Image 

(San Diego, CA) vol IV ed M Caudill and C Butler (New York: IEEE) p 285 

Neural Nerworks ed J Taylor (Waller) pp 95-1 18 

IEEE Monograph on Associative Computers (to be published) 

and %ion Computing 5 251-61 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeuml Computation release 9711 G1.7:7 

Copyright © 1997 IOP Publishing Ltd



6 2  

Engineering 

Contents 

G2 ENGINEERING 
(32.1 

G2.2 

G2.3 

(32.4 

(32.5 

(32.6 

(32.7 

G2.8 

G2.9 

Control of a vehicle active suspension model using adaptive logic networks 
William W Armstrong and Monroe M Thomas 
ATM network control by neural network 
Atsushi Hiramatsu 
Neural networks to configure maps for a satellite communication network 
Nirwan Ansari 
Neural network controller for a high-speed packet switch 
M Mehmet Ali and Huu Tri Nguyen 
Neural networks for optimal robot trajectory planning 
Dan Simon 
Radial basis function network in design and manufacturing of ceramics 
Krzysztof J Cios, George Y Baaklini, Laszlo Berke and Alex Vary 
Adaptive control of  a negative ion source 
Stanley K Brown, William C Mead, P Stuart Bowling and Roger D Jones 
Dynamic process modeling and fault prediction using artificial neural networks 
Barry Lennox and Gary A Montague 
Neural modeling of  a polymerization reactor 
Gordon Lightbody and George W Irwin 

G2.10 Adaptive noise canceling with nonlinear filters 

G2.11 A concise application demonstrator for pulsed neural VLSI 

G2.12 Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

Wolfgang Knecht 

Alan F Murray and Geoffrey B Jackson 

Krzysztof J Cios 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.1 Control of a vehicle active suspension model using 
adaptive logic networks 

William W Armstrong and Monroe M Thomas 

Abstract 

Adaptive logic networks (ALNs) were used to control a nonlinear mechanical model of a 
vehicle active suspension system. An ALN consists of a tree of logic gates having linear 
threshold units (simple perceptrons) at its leaves. ALNs learned to predict future states 
based on relationships among values of variables recorded during operation. Piecewise 
linear functions were extracted from trained ALNs, and executed with the aid of a 
decision tree so that only a small number of linear pieces had to be evaluated to compute 
any output value. A 486DX2-66 PC was able to produce a control output in 250 ps, 
much faster than was required to control the test system in real time. The results are 
applicable to a broad range of real-time control problems. 

G2.1.1 Project overview 

An active suspension system may be used to improve the ride and handling qualities of a vehicle. Actuator 
struts exert forces controlling the position and orientation of the vehicle body with respect to the road. 
Because terrain and the characteristics of a vehicle vary, it is desirable to use an adaptive controller for 
the task. Several approaches to using neural networks in control, including their application to active ~ 1 . 9  
suspension systems, are discussed by Hampo and Marko (1992). The dynamic analysis in a paper by 
Sunwoo and Cheok (1991) served as a useful starting point for the present study. 

The vehicle used was a Bombardier Iltis 1/4 ton truck at the Defence Research Establishment Suffield 
(DRES) in Alberta, Canada. It was equipped with two on-board 386DX-33 computers, one dedicated to 
processing ultrasound measurements of the height of the front bumper above ground (preview), and one 
dedicated to controlling the active suspension system. 

The study was carried out under the direction of the authors working for Dendronic Decisions Limited. 
The Department of Computing Science, University of Alberta, constructed some of the electronics, and 
mechanical tests were done at the Department of Mechanical Engineering. A special ALN accelerator 
board was designed and constructed by the Alberta Microelectronic Centre in Edmonton. Testing used a 
1/4-vehicle mechanical model consisting of a mass (approximately 90 kg) supported by a coil spring and 
an actuator strut (see figure G2.1.1). The simulated road disturbance was provided by a modified MTS 
vibration tester able to generate about 5 cm of motion at 5 Hz. 

G2.1.2 Design process 

A radically different approach to control was adopted with this project. The approach taken was to 
develop two predictors for the dynamic state of the U4-vehicle model 10 ms into the future. One predictor 
was for the future vertical displacement of the sprung mass (represented by its difSerence from the present 
displacement), and one predictor for the future velocity (represented by the difSerence of two displacements 
at 5 and 10 ms into the future). The use of neural networks allows one to depart significantly from the 
paradigm of differential equations, and to use representations capturing the desired information but which 
are possibly difficult to analyze mathematically. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 (32.1 :I 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Figure G2.1.1. 114-vehicle model of the active suspension system. 

Extensive computer simulations were first carried out. It was assumed that the goal of control was 
to put the sprung mass into a desired state of displacement and vertical velocity one time step into the 
future. Inversion of predictors of these quantities gave two values for the strut force U that would, if used 
separately, give the correct vertical displacement (force U 1 )  or vertical velocity (force u2) ,  respectively. A 
strategy of combining the two calculated forces by taking their average worked about as well as taking an 
optimal convex combination. The optimal mixture for a linear problem is given by 

1 B  1 
Uopt  = 1 B 2 2  [ ;;z (; - ;) U 2  + u l ]  ;;T(; - 7 )  + 1  

where m is the mass, B is the damping coefficient, T is the prediction time, and w is the natural circular 
frequency. Since, for the system under test, the masses, stiffnesses and damping factors were not measured, 
the use of an average of the two calculated control forces seemed appropriate. 

G2.1.2.1 Inputs and outputs 

following inputs were available as raw 12-bit integers from the NI-DAC data acquisition card: 

Vertical position of the mass. 
Extension of the actuator strut. 
Downward force exerted on the actuator strut. 
Vertical position of the ‘road’. 
10 ms preview of the vertical position of the ‘road’. 

preview signal of the ‘road’ was not used in most trials, since the ultrasound preview on the vehicle 
felt to be unreliable over some types of terrain. The output expected from thk control software was 

a 12-bit integer representing the desired downward force of the actuator strut. This output value from the 
control software was filtered through a nonlinearity before being passed to the NI-DAC card to guarantee 
a nonlinear system. Wooden blocks attached to the coils of the spring surrounding the actuator performed 
the same function. 

G2.1:2 Hundbook of Neural Computation release 9711 
~ 

@ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Control of a vehicle active suspension model using adaptive logic networks 

G2.1.2.2 Applying an artijicial neural network 

In applying a neural network to any real-time problem, speed of execution is an issue. In the present case, 
5 ms was allowed for computing each control output. The multilayerperceptron (MLP) with differentiable c1.2 
squashing functions is a widely used type of neural network; however, for real-time use it may require 
special hardware to accelerate evaluation. Inversion of MLPs is a difficult problem, requiring training of a 
separate MLP. MLPs are also difficult to test for conformity to a specification, since in high-dimensional 
problem domains testing MLPs other than by statistical methods becomes mathematically intractable. A 
different technique was called for, and a suitable form of adaptive logic network was developed during c1.8 
the course of the work on this project which had the following advantages compared to the usual MLPs: 

(i) ALNs use hard limiters instead of sigmoids in the first hidden layer, and logic gates AND or OR in 
the remaining hidden layers and the output layer. This allows fast training and evaluation through 
use of efficient flow of control in the simulation, whereby large parts of an expression can simply 
be omitted from most computations without changing the result. This is often referred to as lazy 
evaluation, and is to be contrasted with the usual massive parallelism approach to neural networks. 

(ii) ALNs represent relations among the inputs and outputs of the system. That is, the same ALN can 
be used for representing a function and its inverse without any retraining. 

(iii) ALNs permit the use of a priori knowledge in the form of convexity and slope constraints on the 
learned function. This can enhance learning performance when training data are sparse, and specifying 
convexity diminishes the influence of noise on the results of training. 

(iv) A piecewise linear function can be extracted from an ALN in the form of a decision tree which 
partitions the input space so that, for any input, only a small number of linear expressions have to 
be computed and the resulting values combined by maximum and minimum operations. Besides the 
potential for great speed of evaluation, this also makes it possible to understand what the system is 
doing and check it for safety. 

G2.1.3 Training methods 

ALNs were trained by having the system undergo simulated road motions in the form of a sum of sinusoids 
while the actuator strut was driven with random forces within the limits of safety. (Perturbations around 
the output of an existing control system would have been chosen if random inputs had been dangerous.) 
Based on the sampled data, ALNs were trained to learn the relationships among past and present values 
of sprung mass displacement, as well as values 10 ms into the future (velocities were represented by 
differences, so differential equations were not an exact model of the process). 

A priori knowledge of the monotonicities of the future quantities with respect to strut force was used 
to constrain the result of training. For example, an increase in downward strut force will cause an increase 
in vertical mass displacement (over a short period of time), all other things being equal. This ensures that 
the predictor for vertical displacement can be inverted to yield a value used in control. 

G2.1.4 Output interpretation 

ALNs produce logical values as outputs; they only represent functions from reals to reals, they do not 
compute them directly. It is possible to extract from the trained ALN a function which combines linear 
functions by maximum and minimum operations to compute a piecewise linear output. To greatly increase 
speed of computation, the input space is partitioned by a decision tree, whereby in each block of the 
partition only a few of the linear pieces have to be evaluated. This does not cause the function to change; 
it is simply an efficient way of evaluating it. 

Decision trees computing inverse functions were extracted from two trained ALNs predicting cab 
vertical displacement and cab vertical velocity, respectively. The decision trees partitioned the input space 
so that sometimes only one linear piece had to be evaluated, and, in general, at most six linear pieces had 
to be evaluated, corresponding to the dimension of the space of ALN inputs. The two values obtained 
from the decision trees were averaged to give the final control signal sent to the NI-DAC card which then 
developed the analog control force signal for the hydraulic actuator. No calibrations were performed to 
assign any meaningful physical units to the input or output values of the ALN. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computurion release 9711 G2.1:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

_ _  
control - NI-DAC 

w d  computer c 
1 

G2.1.5 Development of platform and hardware tools 

The ALNs and decision trees used for the project were trained, tested, and evaluated using proprietary 
software for MS Windows developed by Dendronic Decisions Limited. Software embodying similar 
training algorithms, Atree 3.0, is now commercially available, and a free Educational Kit is available 
from CompuServe (GO DENDRONIC) or from ftp.cs.ualberta.ca in pub/atree/atree3/atree3ek.exe9 Data 
acquisition software for MS Windows was supplied by National Instruments with their data acquisition 
hardware. The remainder of the hardware used in the project was (see figure G2.1.2): 

Actuator strut: TRW Active Control System Inc, Model #P30XC46A08. 
Strut LVDT: Moog Inc, Model #BAO4-039- 1 (integrated). 
Strut valve: Moog Inc, Model #E773404 (integrated). 
Strut load cell: Eaton Model #I39564 (integrated). 
Servo amplifier card: Moog Inc, Model #F122-202. 
Control computer: 486DX2/66. 
NI-DAC card: National Instruments AT-MIO- 16F-5. 
MTS machine: MTS vibration tester, modified to use larger pump for greater motion capability. 
ALN accelerator board: Alberta Microelectronic Centre designed card with Altera FLEX EPF81188 
FPGA. 

The objective of the accelerator board was to rapidly compute the index of the region of the input space 
where an input vector lies. Such hardware may be useful, perhaps combined with DSP or D/A chips, in 
very demanding applications. 

LVDT 
sprung mass 
displacement 

' 
displacement 

m A  

force 
1 command load 

V 

Figure G2.1.2. Schematic of the hardware test system. 

ALN 

G2.1.6 Conclusions 

In many trials, the sprung mass could be held motionless to within about 2 mm, eliminating all but about 
4% of the simulated road disturbance at low frequency (7 Hz). It was also possible to control the sprung 
mass to execute a slow sinusoidal motion independent of the disturbance of the ground. Experiments 
were successful both with and without the simulated ultrasound preview. The system showed no signs of 
instability during ALN control, even when a system trained at low frequency was tested at high frequency 
(29 Hz) or when the sprung mass was roughly doubled by someone putting his weight on it. An update 
rate of 200 commands per second was specified, but the 486DX2-66 PC was shown to be capable of 
computing 4000 commands per second. This rendered the accelerator board unnecessary. The feasibility 

cell strut 
Sen0 

G2.1:4 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress  

Accelerator 1 
i 
i 

preview j 

1 Board 
force load 

C a r d  cell 

valve position acnrator/ 
~"i > valve/ 

LVDT 

- amplifier 

=NO- 

(notalways 1 extension l * r o d n  

displacement used) 

computer 
generating 
"road" 

W S  
machine 

motion command 

Copyright © 1997 IOP Publishing Ltd



Control of a vehicle active suspension model using adaptive logic networks 

of using ALNs to derive piecewise linear functions for real-time control of a vehicle active suspension 
system has been demonstrated. The use of a priori knowledge in training, and the relational approach used 
by ALNs, allow predictors of the future dynamic state to be easily inverted to provide control outputs. 

Acknowledgements 

This research was conducted for DRES, under SSC contract W7702-2-R328/01XSG. The authors wish to 
acknowledge the guidance and support of the late Alan McCormac, which led to successful adaptation 
algorithms for logic trees combined with linear threshold elements. We also wish to thank Nicole 
Armstrong, John Evans, Bernie Faulkner, Doug Hanna, Rene Leiva, Debi Owens, Harold Peacock, Steve 
Sutphen, Roger Toogood and Hong Zhang. 

References 

Hampo R and Marko K 1992 Neural Network Architecturesfor Active Suspension Control vol 2 (Seattle, WA: IJCNN) 

Sunwoo M and Cheok K C 1991 Investigation of adaptive control approaches for vehicle active suspension systems 
pp 765-70 

American Control Con$ vol2, pp 1542-7 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 G2.15 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.2 ATM network control by neural network 

Atsushi Hiramatsu 

Abstract 

Application of neural networks to asynchronous transfer mode (ATM) network traffic 
control has been proposed. ATM is a key technology for building a broadband 
integrated services digital network (B-ISDN), which gives users universal high-speed 
communication channels for all kinds of communications services. One important 
issue in ATM networks is the design of an efficient traffic control architecture that 
guarantees quality of service (QoS) for all network users. However, in future networks 
for multimedia communication, it will be impossible to model user activity and to 
exhaustively analyze the network traffic dynamics by mathematical calculations and 
computer simulations. A neural network is an important technology for deriving an 
unknown nonlinear function for estimating QoS from the network status by real-time 
training. The advantage of this method is that the QoS can be accurately estimated 
without detailed user action models or knowledge about the switching system architecture. 
This section gives an overview of neural network applications in ATM traffic control, 
and describes ATM connection admission control as a typical example. 

G2.2.1 Project overview 

G2.2.1.1 ATM network 

Asynchronous transfer mode (ATM) is a high-speed packet switching technology for the broadband 
integrated services digital network (B-ISDN), in which various kinds of communications services such as 
voice, video and data are transferred over common high-speed links. Users send all kinds of information 
as a series of 53-byte packets called ‘cells’ (consisting of a 5-byte header plus 48 bytes of user data). The 
cell format and various interfaces and protocols have been standardized at ITU-TS and the ATM Forum. 
For details about ATM architecture and applications, see Kawarasaki and Jabbari (1991), Newman (1992), 
Write et a1 (1992) and Armbriister and Wimmer (1992). 

Figure G2.2.1 shows a typical image of an ATM network, where two nodes are connected by a 
high-speed link. Typically the capacity of the link is 150 or 600 Mbps. Audio, video and data terminals 
are represented as Ai, vi and Di, respectively. Here terminals A1,V2 and D1 are sending cells to A4, V3 
and D2. An ATM node (node 1) multiplexes cells from the terminals into an ATM link through output 
buffers. When another ATM node (node 2) receives these cells, it distributes them to the proper terminals 
according to the header information. 

G2.2.1.2 ATM trafJic control and the problem 

In the ATM network, users can send cells with arbitrary timing on demand; an output buffer in node 1 is 
used to keep cells temporarily when many cells arrive at one time at a node. -This means that, when cells 
are sent from many users at a time, the cell waiting time (cell delay) in the output buffer will increase and 
some of the cells may even be discarded (cell loss) when the buffers are full. Users usually set certain 
values for the cell delay and cell loss probability to keep their communications services at a proper level 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.2~1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Terminals ATM node 1 ATM Terminals 

U 

Terminals 

CAC: Call admission control, QoS: Quality of service 

Figure G2.2.1. ATM traffic control using a neural network. 

of quality. Thus an ATM node must control the cell traffic to guarantee users’ QoS parameters such as 
cell delay time and cell loss probability. 

Various traffic control functions have been proposed for the ATM network (for example, see Eckberg 
1992): they can be categorized into the following three classes by control period: 
(i) cell transfer level: priority control, cell discard (ws order); 
(ii) call admission level: call admission control, routing (ms order); 
(iii) network level: link capacity assignment, network design (more than several minutes). 

The biggest problem in traffic controller design is the diversity of traffic characteristics in a multimedia 
network. Each user has different cell generation characteristics, and each communications service has 
different QoS requirements, like cell delay and cell loss probability. This diversity complicates the 
traffic control system to the extent that it is almost impossible to design an effective and efficient traffic 
control system based on traditional mathematical calculations and computer simulations employed in the 
conventional communications networks. Also, the traffic controller should have the flexibility to handle 
the traffic for new communications services which may be installed at any time in the future. 

G2.2.1.3 Neural network applications in the ATM network 

Neural networks are thought to have many potential applications in ATM traffic control, because a neural 
network can extract an unknown nonlinear curve from a set of examples (Takahashi and Hiramatsu 1990). 
The following gives some examples in this field. 

Call admission control (CAC) is one of the main topics in ATM traffic control using neural networks, 
where the neural network is used to determine whether the network can accept a new user connection 
under a certain required QoS (described later). This method was first proposed in Hiramatsu (1990), and 
then further studied in Tran-Gia and Gropp (1992) and Hiramatsu (1994b). It was also combined with 
other traffic control functions like link capacity control in Hiramatsu (1991). Hiramatsu (1994a) gives a 
review of this topic. 

Okuda er a1 (1994) are trying to estimate QoS from a traffic descriptor declared by users in CAC, 
but it is difficult to describe cell generation exactly with a small set of parameters, so there is always a 
difference between the declared traffic and the actual traffic. Tarraf er a1 (1993, 1994) are trying use a 
neural network to derive the characteristic parameters from the history of the number of arrived cells. 

G2.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP hblishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



ATM network control by neural network 

Other related topics are cell rate control, like priority control (Schwartz 1994, Chen and Leslie 1991). 
Examples of neural-network-based switching network control can also be seen in Brown (1989, 1994). 
Traffic prediction is another topic in this field. 

G2.2.1.4 Call admission control 

The inputs to and outputs from a neural network depend on the application, and the neural network 
capability and training method also vary. In the following part of this section, a neural network application 
for call to admission control is described in detail as an example. 

Connection admission means that an ATM node allows a user to start a new call only when the node 
judges that the QoS does not degrade the QoS required by all of the users already connected. In figure 
G2.2.1, when terminal A2 starts to talk with terminal A3, A2 has to send a call set-up request to a traffic 
controller of ATM node 1. The call set-up request declares information like the destination terminal ID, 
the required QoS values, and a ‘traffic descriptor’ to define the cell generation characteristics of the call. 
The ATM node 1 estimates the post-connection QoS from the information, and if the estimated value 
does not violate the QoS requirements for all users, it allows A2 to start the call. Otherwise it rejects the 
request. When the QoS estimation is accurate, the guaranteed QoS for all users is maintained. 

G2.2.2 Design process 

G2.2.2.1 Motivation for a neural network solution 

Accurate QoS estimation requires a nonlinear curve mapping the network status to the QoS value, but 
the curve is usually unknown and hard to obtain by calculation or exhaustive computer simulation. The 
motivation for using a neural network is the expectation of extracting the nonlinear curve by learning and ~ 3 . 5  
the extrapolation of the curve by generalization. 

Theoretically, accurate QoS estimation requires all detailed information about the statistical 
characteristics of cell arrival to the buffer, which means that the accurate cell generation characteristics of 
each user should be known. However, users do not send cells at constant intervals, but send them with 
arbitrary timing, so many parameters like the average cell generation interval, the minimum interval and 
the variance of the interval are required in order to define the cell generation characteristics. The ATM 
Forum standards propose a set of four parameters as a ‘traffic descriptor’. 

Accurate QoS estimation is, however, still difficult for the following reasons. 

(i) Users have to declare the traffic descriptor before they start their call. There is always a big difference 
between the declared and actual values. 

(ii) Since many users share a buffer at a time, the total number of parameters to be considered in the 
QoS estimation is very large. 

G2.2.2.2 General description of the neural network function 

To solve the problems in the QoS estimation described above, various ways of using a neural network 
have been proposed. 

The simplest way is to use a neural network as a compact nonlinear curve generator. First, computer 
simulations are done to evaluate the QoS for a set of preselected buffer statuses. Then a neural network 
is trained with the simulation results to teach it the relationship between the buffer status and the QoS. 
It is expected that the neural network will not only memorize the relationship for the training status, but 
also extrapolate the relationship to the unexperienced buffer status, since it is impossible to simulate the 
possible situations exhaustively. After the training, the neural network is installed in a traffic controller 
and used to estimate the QoS when a traffic controller receives a call for request setup. 

Another approach is real-time training. A neural network trained as above is trained again with the 
QoS observed in a running ATM node to adjust for the difference between the simulations and the actual 
situation. This process eliminates the error in the traffic descriptor declared by a user as well as the error 
in the simulation model. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.2:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.2.2.3 Black-box description 

The input to the neural network is a set of parameters that define the output buffer capability and buffer 
status; the output is the QoS or the judgement of whether or not the estimated QoS exceeds the required 
value. 

The buffer capability is represented by parameters like buffer size and link capacity, which are usually 
constant but may be changed by the network operator. The buffer status is represented by the combination 
of traffic descriptors declared by all users. When the number of users multiplexed is large, however, it 
is inconvenient to feed all of the traffic descriptors to the neural network. Thus the traffic descriptors are 
categorized into groups, and the buffer status is usually represented by the set of the numbers of users in 
the group. The simple way to define the groups is categorization by the communication services used. In 
the case shown in figure G2.2.1, for example, the buffer status is represented by (nA,  n v ,  n D )  = ( 1 ,  1 ,  l ) ,  
where n A ,  nv and no represent the number of users using audio, video and data communication services at 
that time. When terminal A 2  sends a call setup request for audio communication and the traffic controller 
estimates the postconnection QoS, the input to the neural network will be (2, 1,  1) .  

The history of the buffer status may be useful for estimating QoS much more accurately, since the 
buffer status is always changing and the observed status usually has some delay relative to the actual 
status (Hiramatsu 1990); the performance difference between these two inputs is analyzed in Tran-Gia and 
Gropp (1992). The following section considers only the present buffer status. 

(32.2.2.4 Requirements and constraints 

The number of inputs of the neural network is mainly determined by the number of traffic descriptor 
categories, and at this moment it is thought that the number of categories is less than 100. The number of 
outputs is the same as the number of QoS parameters considered. 

The requirement for the forward calculation speed is determined by the number of call setup requests 
arriving at a node in one second. The typical target is 1 ms so as to handle loo0 requests per second. The 
required training speed is rather slow, because the target curve does not change quickly. 

There is another constraint in this application: ‘safe-side control’. Suppose that the traffic controller 
overestimates the QoS and accepts more calls than it can actually accept while maintaining the QoS. In 
this case, all users multiplexed into the same buffer experience QoS worse than required, and none of the 
users can continue their communications. On the other hand, if the traffic controller underestimates the 
QoS, more calls are rejected than necessary. In this case, all users can continue their communications, 
although the link utilization is low. This is much better than the acceptance of too many calls. The 
safe-side control policy requires the neural network to estimate the QoS to be worse than the actual value 
when it makes errors. This is especially important for public communications networks. 

G2.2.2.5 Topology 

121.2 For QoS estimation in CAC, only the conventional three-layer backpropagation neural network with 
c i . 6 . 2  sigmoid function has been reported. If the number of inputs is small, the radial basis function (RBF) 

neural network is useful. 

G2.2.3 Training methods 

ci .2 .3  The training algorithm used is conventional backpropagation. Usually a neural network is trained in two 
steps: the first step is training with data from computer simulations to determine the initial weights for 
the second step. The second step is real-time training to improve the estimation accuracy by adjusting the 
initial weights according to the training data observed from output buffers in a running ATM node. 

G2.2.3.1 Training data 

It is easy to prepare the training data for the first step. We can choose any buffer status and simulation 
period. It is easy to get a very accurate QoS value by a very long-period simulation, but the QoS data 
obtained may be very different from an actual situation. 

It is not easy to obtain the training data for the second training step, because buffer status, like the 
number of connections, is always changing and cannot be set to an arbitrary status from outside. It is 

G2.2~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



ATM network control by neural network 

impossible to monitor the average QoS over a long period for a constant status. Also the ‘safe-side control 
policy’ requires that the number of observations at the worse QoS should be at a minimum. 

G2.2.3.2 Pattern table method 

In the real-time training, the QoS observation period is set very short. A typical observation period is 
100 ms. With such a short observation period, the QoS data actually observed are distributed widely around 
the average. The cell loss probability typically ranges from 10-l’ to lo-’. For example, an observed data 
set for the average cell loss probability of may consist of 99 zeros and just one 0.001. Thus a neural 
network must estimate the average from many data observed. This is the reason why a large memory 
called a ‘pattern table’ is used to store the data observed. When a new datum is observed, an entry in the 
table is randomly chosen and an old datum in the entry is overwritten by the new one. 

Here it should be noticed that both good and bad QoS data are needed to train a neural network but 
that observed QoS that is worse than required is very rare when the QoS is well controlled. Then it is 
proposed to use separate pattern tables for good and bad QoS data so as to prevent rare bad QoS data from 
being replaced with the more frequent good QoS data (Hiramatsu 1990). For example, suppose that the 
target cell loss probability is loT4. The observed buffer status is stored in the pattern table for bad QoS 
when the cell loss probability observed exceeds and in the table for good QoS otherwise. Another 
advantage of this method is that the training ratio of bad QoS data can easily be weighted by the table 
selection rate in the training phase. 

G2.2.3.3 Virtual output buffer method 

Even with the pattern table method, it is very hard for a neural network to estimate QoS accurately, 
because the target cell loss probability is very small, the data contain much noise, and the number of bad 
QoS data is small. The ‘virtual output buffer method’ is a novel approach to estimating a very small cell 
loss probability from virtual cell loss data (Hiramatsu 1994b). A virtual buffer is a set of counters that 
simulates an imaginary cell buffering process, where the cell arrival at the virtual buffer is entirely the 
same as the actual probability, but the capability to transfer cells is less than the actual. Thus the cell 
loss probability at each virtual buffer is much larger than the actual probability, and the accuracy in the 
observed data is high. By extrapolating QoS data from virtual buffers with smaller capability, we can 
accurately estimate QoS for the actual buffer. For example, when an actual output buffer is connected to a 
150 Mbps link, four virtual output buffers connected to 30, 60, 90, and 120 Mbps links, respectively, are 
simulated in parallel with the actual, and the virtual cell loss probabilities for these virtual buffers being 
observed. We can estimate the cell loss probability for the 150 Mbps buffer by extrapolating these virtual 
cell loss probabilities. 

G2.2.4 Preprocessing and output interpretation 

Suppose that the output from a neural network is the cell loss probability for the buffer status fed to the 
neural network. Each time a new call setup request arrives at a node, the QoS after accepting the call is 
estimated using a neural network. The cell loss probability range, from lo-’’ to lo-’, is too wide for a 
sigmoid function to handle linearly. Therefore the logarithm of the cell loss probability is used in both 
training and estimation phases to map the probability to a 0-1 range. Also, a smoothing technique is used 
to obtain the average of the logarithm of the cell loss probability (Hiramatsu 1994b). 

G2.2.5 Comparison 

G2.2.5.1 Performance 

The advantages of the neural-network-based approach are summarized as follows. 

(i) A neural network is compact hardware for representing a nonlinear curve. The neural network VLSI 
will make the hardware much more compact and reduce the calculation time. 

(ii) The traffic controller designer is not required to know the detail characteristics of users and services. 
The real-time training absorbs the difference between the actual traffic and the model used to determine 
the initial weights. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.25 

Copyright © 1997 IOP Publishing Ltd



Engineering 

(iii) It is easy to install a new service on the traffic controller, because it can be accommodated simply 

QoS control using neural networks has shown good performance in preliminary computer simulations. 
However, practical comparison between the conventional CAC and CAC using neural networks is still in 
progress, since practical ATM network services have just started. 

by adding the number of calls for the new service as an input to the neural network. 

G2.2.6 Conclusions 

In ATM traffic control, the conventional mathematical calculations and computer simulations do not 
work effectively in the controller design process because of the diversity and the ambiguity of traffic 
characteristics of the users and services. It is thought that there are many potential applications of neural 
networks in ATM traffic control other than the call admission control described in this section. The 
neural-network-based approach will be particularly welcome in private ATM networks, where users have 
a very strong interest in the efficiency of their network. For example, when a high-speed link is leased 
between two remote private networks, the gateways at the two ends should have a traffic control function 
to efficiently use the calls on the link. There is a big difference between a private network and a public 
network, where safe control is the first priority. The ATM network service has just started, and the 
performance of QoS estimation using neural networks will be tested in a real network. It can be said that 
the expectations for neural networks are very large. 

References 

Armbriister H and Wimmer K 1992 Broadband multimedia applications using ATM Networks: high-performance 
computing, high-capacity storage, and high-speed communication IEEE J.  Sel. Areas Commun. 10 1382-96 

Brown T X 1989 Neural networks for switching IEEE Commun. Mag. 27 72-81 
-1994 Neural networks for switching Neural Networks in Telecommunications ed B Yuhas and N Ansari (Boston, 

Chen X and Leslie I M 1991 A neural network approach towards adaptive congestion control in broadband ATM 

Eckberg A E 1992 B-ISDN/ATM traffic and congestion control IEEE Network September 1992 pp 28-37 
Hiramatsu A 1990 ATM communications network control by neural networks IEEE Trans. Neural Network 1 122-30 
-1991 Integration of aTM call admission control and link capacity control by distributed neural networks IEEE J. 

-1994a ATM traffic control using neural networks Neural Nemorks in Telecommunications ed B Yuhas and N 

-19941, ATM call admission control using a neural network trained with a virtual output buffer method Int. Con$ 

Kawarasaki M and Jabbari B 1991 B-ISDN architecture and protocol IEEE J.  Sel. Areas Commun. 9 1405-15 
Newman P 1992 ATM technology for corporate networks IEEE Commun. Mag. 30 90-101 
Okuda T, Anthony M and Tadokoro Y 1994 A neural approach to performance evaluation for teletraffic system IEEE 

Schwartz D B 1994 Learning from rare events: dynamic cell scheduling for ATM networks Neural Networks in 

Takahashi T and Hiramatsu A 1990 Integrated ATM traffic control by distributed neural networks Int. Switching Symp. 

Tarraf A A, Habib I W and Saadawi T N 1993 Characterization of packetized voice traffic in ATM networks using 

-1994 A novel neural network traffic enforcement mechanism for ATM networks IEEE Inl. Con$ on 

Tran-Gia P and Gropp 0 1992 Performance of a neural net used as admission controller in ATM systems IEEE Global 

Wright D J, Wright M, Verbiest W, Shimasaki N and Prycker M D 1992 (eds) B-ISDN applications and economics 

MA: Kluwer) pp 11-36 

networks IEEE Global Telecommunications Con$ (Phoenix) pp 1 15-9 

Sel. Area Commun. 9 113 1-8 

Ansari (Boston, MA: Kluwer) pp 63-89 

on Neural Networks 94 (Orlando) pp 361 1-6 

Int. Con$ on Communications (New Orleans) pp 774-8 

Telecommunications ed B Yuhas and N Ansari (Boston, MA: Kluwer) pp 91-108 

90 (Stockholm) vol 111 pp 59-65 

neural networks IEEE Global Telecommunications Con$ 93 (Houston) pp 996-1000 

Communications 94 (New Orleans) pp 779-83 

Telecommunications Con$ '92 (Orlando) pp 1303-9 

IEEE J. Sel. Areas Commun. 10 

G2.2:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.3 Neural networks to configure maps for a satellite 
communication network 

Ninvan Ansari 

Abstract 

This article reports and summarizes a neural-network-based approach that was used to 
dynamically configure maps of a satellite communication network, and was incorporated 
with a state-dependent routing scheme to manage the network traffic. We modified 
Kohonen’s self-organization paradigm to automate the map configuration task. The 
modified algorithm consisted of three phases: (i) pattern recognition for selecting an 
exemplar map which most resembled the input traffic, (ii) a learning phase for fine 
tuning the chosen exemplar map, and (iii) a decision-maker for replacing the original 
exemplar map. The intrinsic properties of the proposed unsupervised learning allowed 
efficient tracking of the random traffic. The proposed traffic management scheme was 
effective in reducing the block rate of the network, as demonstrated through simulations. 

G2.3.1 Project overview 

The objective of traffic management is to best meet the communication requirement of users under the 
constraint of a fixed network capacity. That is, the probability of having users blocked from accessing 
the network should be at a minimum. A satellite communication network is flexible-as opposed to 
the rigidity of a terrestrial communication network-and can be configured to various maps. To take 
advantage of the flexibility of a satellite communication network, neural networks can be applied naturally 
to configure a satellite communication network adaptively. We (Ansari and Chen 1990, 1991) first reported 
the initial results of configuring maps of a satellite communication network using self-organization learning; 
subsequent results, in combination with a routing module, were reported later (Ansari and Liu 1991, 1995). 
Further improvements using a different approach and concept by means of annealing procedures (Balasekar 
and Ansari 1993, Arulambalam and Ansari 1994, Ansari et al 1996) were also investigated. The traffic 
management scheme employed in this project, shown in figure G2.3.1, consisted of two components: 
a map configuration module and a routing module. An assignment of channels to links of a satellite 
communication network constitutes a map. The map configuration task was achieved with a modified 
Kohonen selforganization learning algorithm, while simple state-dependent routing was used for the c2.1.1 

routing module. 

G2.3.2 Design process 

Reducing operational costs and improving quality of service while maximizing network utilization of a 
communication network are the major goals and reasons cited in justifying a traffic management scheme. 
The map configuration task, also known as demand assignment (Pritchard et a1 1993), allows the network 
to assigdallocate a varying number of channels to each link of the network according to the changing 
traffic loads of the satellite network. The primitive approach still employed in many systems involves a 
network operator manually assigning channels to each link of the network via a monitoring console. Most 
of the systems deployed today use a fixed set of ‘canned’ or stored plans to achieve the task. Aiming at 
reducing the operational costs and improving network efficiency, we proposed self-organization learning 
to automate the map configuration task. 

@ 1997 IOP Publishing Ltd aud Oxford University Ress Handbook of Neuml Computation release 9711 G2.3:l 

Copyright © 1997 IOP Publishing Ltd



Engineering 

+j 3 * 
0 0 0 0 

0 0 0 0 * . a  

O O O O S * '  

0 0 0 0 ... . . . . * .  . . . . .  
e . . .  

Figure G2.3.1. The proposed traffic management scheme. 

G2.3.2. I Why self-organization? 

Kohonen's self-organization (Kohonen 1989), summarized below in figure G2.3.2, is an unsupervised 
learning scheme known for clustering, topographical mapping, and learning familiarity. These desirable 
characteristics, with a slight modification to the algorithm, enable tracking and monitoring of the random 
and non-coincident nature of the telephone or data traffic. Note that this type of learning involves selection 
of a winner (analogous to pattern recognition) and modification of the parameters associated with the 
winner. The array shown in the figure is simply a graphical representation of the output of the neural 
network. It is a feature mapping (clustering) from the input vector to the output array. If the input to this 
neural network is the traffic load of the satellite network and the winner is one of the pre-planned maps, 
this neural paradigm essentially conducts a pattern recognition task, selecting the map that best meets the 
input traffic load, and tunes the selected winner to better fit the input. 

Inputs: i Weights Output nodes: j 

I Randomly initialize weights I 
I For each input vector presentation I 

U 

U 
Choose the winner-the output node whose associated weight 

vector resembles the input most. " , ' " x ( x i ( t )  - wU)* 

U 
Update the weight vectors associated with its winner and 

its neighborhood N : wii (t + 1) = wii (t) + a( t ) (x ,  ( t )  - wii ( t ) )  

Figure 62.3.2. Kohonen's self-organization. 

G2.3.2.2 The map configuration module 

Assume that the original N exemplar maps are given. The exemplar maps have functions similar to the 
'canned' plans deployed in most of today's systems to reduce the block rate when employed at appropriate 

G2.3~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks to configure maps for a satellite communication network 

schedules. However, as opposed to the canned plans, these maps are dynamically configured to better fit 
the underlying traffic, and thus better results are expected. The state of the network is also assumed to 
be updated constantly from the common signaling channel (CSC) of the satellite system, and quantified 
as Ri(?) ,  which denotes the number of channels in link i required by users at time t .  The capacity of 
the satellite communication network, which is fixed, is denoted by T. Note that the notations N ,  L, i and 
j are used within the context of this section (G2.3). Similarly to Kohonen’s self-organization, the map 
configuration task is carried out in three stages, as shown in figure G2.3.3. The algorithm can thus be 

input traffic load pattern 

.U. 

Pattern recognition: select the winner, i.e. the examplar 
mau which resembles the inuut traffic most 

v 

Learning: update the chosen winner, i.e. fine tune 
the chosen mau closer to the input traffic 

U 

I New map generator: decide whether the original chosen 
winner should be replaced by the tuned map 

Figure 62.3.3. The map configuration module. 

summarized according to the three stages (Ansari and Liu 1995) depicted in the figure: 

Pattern recognition @rst stage). Compute the distance (metric) between the input data and each of the 
exemplar maps: 

j = 1 ,2 , .  . . , N I Di j ( t )  I Dj( t )  = - 
L 

i = l  Ri ( t )  

where Di,(t) = R i ( t )  - Cij(t) ,  (i = 1,2 ,  . , . , L and j = 1,2,  . . . , N ) .  The total number of links in the 
network is denoted by L, C i j ( t )  is the total number of channels assigned to link i of the j t h  exemplar 
map at time t ,  and Dij(t)  indicates the busyness (load) of link i of the network if the j th  exemplar map 
is used. Dij(t)  > 0 implies that link i of the network is overloaded when map j is used. Dij(t)  < 0 
means that link i of map j provides more than enough channels required by the users in link i. Thus 
Dj(t)  indicates the resemblance between the input data R i ( t )  and exemplar map j .  

Select the best exemplar map, j ( j  : min{ D j ( t ) } ) ,  that most resembles the input traffic load. 
I 

Learning (second stage). Modify the chosen exemplar map to better meet the network demands according 
to the following updating rule: 

Cij(t + 1) = C:j(t) + ,B(n( j ) )Dij( t )  ( i  = 1,2 , .  . . , L and j = 1 ,2 , .  . . , N) 
where Dij( t )  = Ri( t )  - C;j(t), Ci j ( t )  is the number of channels assigned to link i of map j being 
modified, n(j) is the number of occurrences of exemplar map j being selected, and B ( n ( j ) )  is a gain 
factor, 0 < p ( n ( j ) )  < 1. 

The ‘prime’ is used to distinguish the map which is being modified from the original exemplar map 
chosen in the first stage. The function B ( n ( j ) )  is monotonically decreasing with respect to n ( j ) :  

-W)+h)  B ( n ( j > >  = k ,  

where kl and k2 are nonnegative constants. When a new exemplar map j is generated by the third stage, 
n(j) is reset to 0. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.3:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

New map generator (third stage). Compute a convergence factor: 

E ( j )  = m v  IB(n(j))Djj(t)l ( i  = 1,2,. . . , L). 
I 

A new map is generated according to: 

If E 2 r, Cij(t + 1) = Cij(t)  (i = 1,2,. . . , L) 
T 
B Cij(t + 1) = -cij(t) else, 

where B = Cjj( t )  is the total number of channels assigned to the modified map j at time (iteration) t ,  
and r is the threshold set to define whether a new ‘channel assignment’ is made. 

It is readily seen that E ( j )  is getting smaller when the j th  map is selected more often, indicating that 
the modified map j is approaching the network requirement more closely. A new map is more likely to 
be generated. If the j t h  map has been selected often enough (i.e. B(n(j)) is small enough to make E less 
than r), the self-organization model generates a new map j to replace the original chosen exemplar map. 
Since the value of /?(n(j))  also depends on the other two parameters, kl and k2, the rate of generating a 
new map is also affected by these two parameters. A larger k2 causes a faster rate of map change. On the 
other hand, with a fixed k2 and r ,  a larger kl requires the system to adapt a few more iterations before a 
new map may be generated. These parameters, k l ,  k2 and r, were determined empirically. 

G2.3.2.3 The routing module 

We adopted a simple state-dependent routing scheme and restricted to two-link routing; that is, each routing 
could consist of up to two links: 

(i) Route an A-B call over: 
(a) The direct route from A to B, if the A-B link has an available channel. 
(b) An alternate two link path, A-M-B, if CAM + CMB < CAI + C ~ B  and the A-M link and the M-B 

link have available channels, where i is any other third node in altemate routes and CAB is the 
cost of using the A-B link. 

(ii) Block the call in all other cases. 
Here, we referred to an A-B call as a call originating from A and destined for B, and an A-B link as 
the link between node A and node B. The cost of using a particular path was computed based on its path 
length and busyness (Ansari and Liu 1995). 

G2.3.3 Simulation and comparison results 

The viability of the proposed concept was demonstrated through various simulations. A network consisting 
of 10 links with a capacity of lo00 channels and different traffic loads was simulated. The network was 
characterized by seven traffic conditions corresponding to seven different time slots. Corresponding to 
each time slot, the traffic of each link was defined by a specific arrival rate (callshime unit) and a specific 
service time (time units). The traffic condition of the network not only varied from time slot to time slot, 
but also in links. Calls were generated according to a Poisson process. All simulations were written in 
C and run on a Sun Sparc 11 workstation. The performance was evaluated and quantified by the average 
block rate at time t (Ansari and Liu 1991, 1995), defined as: 

where U(-) is a unit-step function, and L is the number of links in the network. Without any traffic 
management, the block rate of the raw traffic is shown in figure G2.3.4. Since all channels were available 
initially, no call was blocked, and thus the block rate was zero until the traffic started to peak at t = 120. 
The peak block rate in the graph occurred in the period between t = 480 and t = 720, which corresponded 
to the peak traffic condition (higher arrival rates and longer service times). The block rate was tapering 
off at the end because the traffic in the last time slot was low. 

G2.3~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks to configure maps for a satellite communication network 

TIME(t) 

Figure 62.3.4. The block rate of the raw traffic. (Reprinted from Ansari and Liu (1995), with permission 
of Elsevier Science BV, Amsterdam.) 

h Map configuration - Routing - Map configuration 

0.09 

0.06 

0.03 

0.00 
0 240 480 720  960 1200 1 10 

TIME(t) 

Figure G2.3.5. Block rates of the network managed by the map configuration module alone, the routing 
module alone, and the proposed scheme, respectively. 

Instead of comparing the scheme with the demand assignment approach using canned plans, which 
was quite subjective, the proposed scheme was compared with those using the self-organization mechanism 
without routing and the 'status quo' approach with the dynamic routing mechanism only. Figure G2.3.5 
shows the average block rate of the network managed by the map configuration module without routing, the 
routing module only, and the proposed scheme combining the map configuration module and the routing 
module, respectively. Compared with the raw traffic, the overall block rate using the map configuration 
module without routing had been reduced, and in particular, the block rate at peak traffic was reduced 
from 0.13 to 0.1. As seen from the figure, the routing algorithm sacrificed the communication facility 
efficiency by routing calls through various paths, and thus the block rate was slightly higher than that 
of the raw traffic at the peak load. The combined scheme provided the best compromise performance at 
different load conditions. It also inherited the merits of the two aspects of traffic management: demand 
assignment and routing. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Computation release 9711 G2.3:5 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.3.4 Conclusions 

We may conclude from the simulation results that self-organization learning was successfully applied to 
automate and dynamically modify the demand assignment of a satellite network, thus reducing the blocking 
rate, especially in cases where the traffic in various links varied significantly in the transition from one time 
slot to another. In combination with a state-dependent routing algorithm, the best compromise performance 
was achieved compared to schemes with either demand assignment alone or routing only. Many other 
neural network applications to telecommunications can be found in Yuhas and Ansari (1994). The reader 
is also referred to Sections G2.2 and G2.4 of this handbook. 

References 

Ansari N and Chen Y 1990 A neural network model to configure maps for a satellite communication network Proc. 

-1991 Configuring maps for a satellite communication network by self-organization J. Neural Network Compur. 

Ansari N, Arulambalam A and Balasekar S 1996 Traffic management of a satellite communication network using 
stochastic optimization IEEE Trans. Neural Network (to appear) 

Ansari N and Liu D 1991 The performance evaluation of a new neural network based traffic management scheme 
for a satellite communication network Proc. IEEE GLOBECOM '91 (Phoenix, AZ) pp 1 1 0 4  (also published in 
Neurocomput. 1995 8 263-82) 

Arulambalam A and Ansari N 1994 Traffic management of a satellite communication network using mean field 
annealing Proc. IEEE Int. Con& on Neural Networks (Orlando, FL) pp 1777-82 

Balasekar S and Ansari N 1993 Adaptive map configuration and dynamic routing to optimize the performance of a 
satellite communication network Proc. IEEE GLOBECOM '93 (Houston, TX) pp 986-90 

Kohonen T 1989 Self-organization and Associative Memory 3rd edn (Berlin: Springer) 
Pritchard W L, Suyderhoud H G and Nelson R A 1993 Satellite Communication Systems Engineering 2nd edn 

Yuhas B and Ansari N 1994 Neural Networks in Telecommunications (Boston, MA: Kluwer) 

IEEE GLOBECOM '90 (San Diego, CA) pp 1042-6 

2.4 11-7 

(Englewood Cliffs, NJ: Prentice-Hall) 

G2.3:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.4 Neural network controller for a high-speed packet 
switch 

M Mehmet Ali and Huu Tri Nguyen 

Abstract 

A neural network input access scheme in a high-speed packet switch for broadband 
ISDN is presented. In this switch each input port maintains a separate queue 
for each of the outputs, thus there are n2 queues in an (n x n) switch. Using 
synchronous operation at most one packet per input and output port will be transferred 
in any slot in such a way as to maximize the throughput of the switch. The high 
transmission rates in broadband ISDN, with slot durations of the order of microseconds, 
demand that the choice of the packets be performed in real time. A conventional 
solution of this optimization problem cannot meet timing constraints. We propose a 
recurrent neural network maximizing the throughput of the switch, and determine the 
corresponding energy function, its optimized parameters, and the connection matrix. 
The energy function has linear cost terms with excellent convergence properties. 
The neural network has null programming complexity that avoids readjusting the 
parameters before presenting new inputs. From the hardware implementation point 
of view, because the neural network has O(n2) neurons and O(n3) connections, the 
sparse connection matrix will help in implementation. Finally, comparing simulation 
results with analytically derived upper and lower bounds we show close to optimal 
throughput. 

G2.4.1 Project overview 

As explained in Asatani (1988), the asynchronous transfer mode (ATM) has been accepted as the transfer 
mode for the broadband integrated services digital networks (B-ISDN). According to this concept, all 
information is digitized and formed into small packets (referred to as cells) and transmitted over a 
synchronous network. Since the implementation of the ATM requires a fast packet switch, a number 
of switching fabrics have been studied which have the characteristics of being modular, easily expandable 
to a large number of inputs-utputs, and nonblocking, meaning no contention within the switch. 

As has been described in Hluichyj and Karol (1989) and Hui and Arthurs (1988) several queuing 
mechanisms have been proposed for these switches, such as input and output queuing. We considered 
such a queuing discipline with multiple queues at each input port and synchronous operation where each 
input will have a separate queue for each output. Thus in the switching fabric of size (n x n) there were 
n queues at each input port, one per output, or a total of n2 input queues (figure G2.4.1) each operating 
according to the FCFS discipline. During each slot at most one packet per input port would be transferred 
and the packets chosen in such a way as to maximize the throughput of the switch. The choice of packets 
to be transmitted during a slot has to be performed in real time. Because of the high transmission rates 
in broadband ISDN, with slot durations of the order of microseconds, this choice is too time critical for 
conventional solutions; in this work, we propose a neural network for the implementation of this queuing 
discipline. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 (32.4: 1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

1 
2 

n 

1 
2 

n 1- 

n 

nxn 

Figure 62.4.1. Architecture of the input access scheme in an (n x n )  switching fabric. (A single queue 
per output at each input.) 

G2.4.2 Design process 

This design uses a total of n2 input queues, each operating according to the FCFS discipline. At the 
beginning of each slot, the status of all input queues (busy or idle) is used to determine the packets to be 
transferred by the switch. Let q1.i denote the number of packets in the queue from input 1 to output i ,  then 
the status of the input queues may be given by a matrix V defined as 

a1,2 

a2,2 

a1,2 

an.2  

where 

During each slot the input access scheme will choose, if possible, a single packet per input port to 
be transmitted to an output. Since an output may receive from only one input port at a time, no two 
packets may be chosen simultaneously for the same output. In matrix V, any row or column with at least 
a single nonzero element is a candidate for the selection of a packet. Thus the objective was to maximize 
the number of packets chosen per slot under the above switching constraints. The neural network was 
designed to solve this optimization problem. 

G2.4.2. I Motivation f o r  a neural solution 

Neural networks can achieve high computation rates through massive parallelism. As shown in Hopfield 
(1982, 1984) and Hopfield and Tank (1985) they provide good solutions to difficult optimization problems. 
Those applications that require fast, good solutions reliably (but not necessarily the best solutions) are 
considered very good candidates for neural networks. Certainly, choice of the packets under the studied 
queuing discipline fell into this domain. This problem also belongs to a class of optimization problems 
that are best suited for neural network applications. As argued in Protzel (1990), Brandt et  a1 (1988) and 
Moopenn et  a1 (1990) optimization problems which can be formulated with linear (as opposed to quadratic) 
cost terms in the energy function are most congruous for a neural network approach. Furthermore, the 
neural network corresponding to this problem has null programming complexity. This means that the neural 
network parameters do not need to be modified each time before presenting new inputs, thus avoiding a 
significant overhead. 
~~ ~~ 

G2.4:2 Handbook of Neural Computation release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural network controller for a high-speed packet switch 

The choice of the packets during a slot is a type of discrete optimization problem, known as assignment 
problems, and as described in Stenoy (1989) there exist conventional algorithms for solving these problems; 
such as the branch-and-bound technique and network flow algorithms. However, the computational time 
complexity of these algorithms is third-order polynomial, O(n3).  Table G2.4.1 presents times required 
with different polynomial complexity functions to compute the solutions for different problem sizes, n,  
from Garey and Johnson (1979). It is assumed that size 1 takes 1 ps to execute, which is quite reasonable. 
As may be seen, the computation times of the O(n3) algorithm for problem sizes of n = 40 and n = 60 
are 64 and 216 ms, respectively. These will be unacceptable for B-ISDN since it has slot durations of the 
order of microseconds. 

Table G2.4.1. Comparison of several polynomial time complexity functions. (We assume that the problem 
of size 1 takes 1 p s  to compute.) . 

Time Problem size (n) 
complexity 
function 10 20 30 40 50 60 

n 0.01 ms 0.02 ms 0.03 ms 0.04 ms 0.05 ms 0.06 ms 
n2 0.1 ms 0.4 ms 0.9 ms 1.6 ms 2.5 ms 3.6 ms 
n3 1 ms 8 m s  27ms 64ms 125ms 216ms 

On the other hand, the computation time of neural networks is not expected to grow rapidly with 
problem size, as has been argued in Takeda and Goodman (1986), because the larger the problem size, 
the more neurons participate in solving the problem and the higher the parallelism. Finally, as Kosko 
(1992) shows, opto-electronic implementations promise very large neural networks ( lo5 neurons, with ~ 1 . 5  

1 O ' O  interconnections) and exceedingly high bandwidths (100 MHz). As a result of these advantages, our 
input access scheme is implemented with neural networks. 

G2.4.2.2 General description of the neural function 

The recurrent type of neural networks from Hopfield (1982, 1984) were considered for implementation c1.3.4 

of this input access mechanism. In this network, neurons are arranged in a matrix where each neuron 
is identified by a set of double indices 1 and i indicating its row and column number, respectively. The 
input-output voltage relationship of a neuron on row 1 and column i is given as ar,i = g(ul,i). There is a 
feedback path among pairs of neurons, designated as w ~ , , ~ ,  and referred to as a connection matrix. Further, 
there is an external bias 4 , i ,  supplied to each neuron. The differential equation describing the dynamics 
of a neuron is given by 

(G2.4.1) 
U1 c m=l j = l  

where t = RC is the time constant of the neuron. It has been shown that the quadratic energy function 
defined as 

. n  n n n n n  

(G2.4.2) 

for a neural network operates in the interior of the n-dimensional hypercube defined by aI,i = 0 or 1 .  
Further, it has been proven that the local minima of this energy function occur only on the 2" corners of 
this hypercube. 

In expressing an optimization problem through neural networks, we construct an energy function in 
the form of the above equation, where local mimima correspond to the solutions of the particular problem. 
Then from the correspondence between the constructed energy function and equation (G2.4.2), the values 
of the neural network's parameters are determined. 

G2.4.2.3 Topology 

At the beginning of each slot, the status of all input queues (busy or idle), would be fed to a neural 
network which would determine the packets to be transferred. The status of each input queue would be 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Computution release 9711 G2.413 

Copyright © 1997 IOP Publishing Ltd



Engineering 

given as an initial condition to a neuron; thus for an (n x n )  switching fabric n2 neurons were needed. 
The initial output voltages of the neurons would reflect the status of the input queues, or the matrix V 
defined in section (32.4.2. Then the neural network would choose the maximum number of packets to be 
transferred with no more than one per row and column. Let us define x and y as the number of rows and 
columns with at least a single nonzero element, then the maximum number of nonzero elements that may 
be chosen is bounded by min(x, y ) .  The energy function of the switching problem is given by 

(G2.4.3) 

where A, B ,  C and D are positive parameters. 
In the above, the first (second) term is minimized when a solution has at most a single nonzero 

element per row (column) and makes sure that at most a single packet per input (output) is chosen. Thus 
any solution satisfying this requirement is a feasible solution and meets the physical constraints of the 
switching fabric. The third term is minimized when the number of nonzero elements in the solution 
is maximized. Further, it makes sure that the trivial solution of all zero rows and columns, which is 
permissible by the first two terms, is not chosen. Finally, the fourth term was added to ensure that the 
final solution consists of only binary values. The comparison of equation (G2.4.3) with (G2.4.2) gives the 
elements of the connection matrix and external biases as 

where 

The drawbacks of this neural network were that the biases were input dependent, and the connection 
matrix was fully connected, i.e. (n4 - n 2 )  connections. Therefore, we tried the same energy function with 
a linear third term, 

el,i = - 
2 

((32.4.5) 

(G2.4.6) 

This resulted in the desired sparse connection matrix, with only (2n3 - n2) nonzero connections. 
However, now the third term could be negative if the number of nonzero elements in the initial input 
matrix was greater than n. As the neural network searched for a solution, the value of this term would be 
increasing while the first two terms would be decreasing. Fortunately, the conversion of a nonzero input 
element to zero resulted in a greater change in the first two terms than the third term: 

i = l  m=l  
i # j  m#l 

Further, we chose A ,  B > C to ensure a monotonically decreasing energy function which is needed 
for convergence. The analog circuit of this neural network is shown in figure G2.4.2 for a (4 x 4) switch. 
As may be seen, only connections among the neurons in the same row and column are nonzero, reflecting 
the fact that only a single element from every row and column is chosen. 

G2.4:4 Handbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural network controller for a high-speed packet switch 

I 

I 

I 

Figure G2.4.2. The neural network for the input access control in a (4 x 4) switching fabric. 

G2.4.2.4 Peeormanee features of the chosen topology 

The above energy function has a number of nice properties. First, it has linear (as opposed to quadratic) 
cost terms in the energy function. Also, this type of neural network has been found to exhibit excellent 
convergence properties. In addition, there may be a large number of optimal solutions, each of which 
forms a valid basin of attraction, also known as a local energy attractor, and each of these local attractors is 
a candidate for the final stable state of the neurons. Thus for our application, the neural network searched 
for one among the many valid solutions-‘getting the optimal solution’ was not a concern for us. 

From a hardware point of view, the complexity of our neural network approach is O(n2) neurons and 
O(n3)  connections and the sparse connection matrix will be helpful in the implementation as a fundamental 
limitation of the VLSI neural networks is the large number of connections. Since, in general, the number 
of connections increases quadratically with that of neurons, the silicon area is mainly occupied by the 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 G2.45 

Copyright © 1997 IOP Publishing Ltd



Engineering 

I I I I I I - _ _  - - -- - - -- _ . _ . _ . - . - . - . -  
~ e- - -- - 

c c 

- Upper bound 
-.- Neural Net 
- - Lower bound 

il 

20.3- i‘ 
I 

I 
0.2 - i 

I 
0.1 . 

I 

m 
E 

OO OIl 012 Of3 014 Of5 016 017 0;s of9 

connections. 
One salient feature of the proposed neural architecture is that it has a configuration which is problem- 

independent, in the sense that neither the connection matrix, ~ l ~ , ~ ~ ,  nor the input biases Ol,i, depend on the 
problem data. Thus, there is no need to readjust the weights every time a new set of inputs is presented 
to the neural network. The data were fed into the neural network as an initial state condition, rather 
than being stored in the weights or the input biases. As explained earlier, our neural network has a null 
programming complexity. 

1 

G2.4.3 Performance 

The performance of this neural network was studied through simulation. In this section, we present these 
results as well as determine the optimized values of the neural network parameters. The simulation used the 
simultaneous solution of n2 first-order differential equations describing the dynamics of neurons, given by 
equation (G2.4.1) and was done by examining and updating the output voltages of neurons, concurrently, 
at the intervals S t .  Let U!:’ and a;;) denote the input and output voltages, respectively, of neuron (I, i )  
at the end of the crth interval. Substitution of equation (G2.4.6) into (G2.4.1) resulted in the following 
differential equation describing a neuron during the crth interval: 

(G2.4.7) 

/ # I  m#i 

For the input-output characteristic of a neuron, we made the following assumption: 

(G2.4.8) 

where ho is the gain-width parameter of the amplifier. 

P 

Figure G2.43. Neural network simulation results and theoretical bounds of the normalized throughput as 
a function of the probability, p ,  that an input queue for an output is busy (for a switch size (n x n)). 

G2.4:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural network controller for a hiah-swed Dacket switch 

From Wilson and Pawley (1988), the input voltages of neurons were updated using the following rule 
at each step: 

(G2.4.9) 

In the above equations t was set to 1 without any loss of generality and 6t  was chosen to be lov4, smaller 
values of 6t do not improve the results but increase the simulation run time. The output voltages of the 
neurons may be updated simultaneously by using equations (G2.4.7)-(G2.4.9). During this process the 
value of the energy function dropped down monotonically. At each update, the new values of the neuron 
output voltages were compared to the previous ones. If no two consecutive values differed by more than 
a threshold of then the system was assumed to have reached a stable state and the simulation was 
stopped. At the stable state, if the output voltage of a neuron was greater than 0.5, then the neuron was 
ON were given 
values of (+ho) or (-/IO) depending on whether the corresponding elements in the input matrix V had 
values of 1 or 0, respectively. Following a number of trial runs, the following parameter values were 
found to give accurate results: A = 100, B = 100 and C = 40. 

A typical example for a (4 x 4) switch is shown in table G2.4.2 where the elements in the rectangle 
are the ones chosen by the neural network. The input row 1 and columns 2 and 3 each have a single 
non-zero element and the optimal solution should contain these elements, then for the last row and column 
there is a single choice, their common element. As may be seen, the neural network solution is indeed 
this. 

= 1)  and otherwise the neuron was OFF (a1,i = 0). The initial input voltages 

Table G2.4.2. An example input/output matrix. 

I 1  2 3 4 

4 1 1  0 o ( I I  

In a large number of simulations for a switch size of 16 x 16 with random matrices as inputs, each 
element of the random input matrices was chosen as an independent identically distributed Bernoulli 
random variable with parameter p .  Then in a similar way random biases were chosen. For every value 
of p ,  200 independent runs were made and their averages were determined. Figure G2.4.3 shows the 
throughput per input port as a function of p from the simulation results together with the theoretical upper 
and lower bounds for the same switch size from Mehmet Ali and Youseffi (1991). The simulation results 
fall in between the bounds, but closer to the upper bound. Unfortunately, due to long run times we could 
not obtain any simulation results for larger switch sizes. 

References 

Asatani K 1988 Network node interface for new synchronous digital network-concept and standardization Globecom’88 

Brandt R D et a1 1980 Altemative networks for solving the traveling salesman problem and the list-matching problem 

Garey M R and Johnson D S 1979 Computers and Intractability: A Guide to the Theory of NP-Completeness (San 

Hluichyj M G and Karol M J 1988 Queuing in high performance packet switching IEEE J.  Select. Areas Commun. 

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Nut1 

-1984 Neurons with graded response have collective computational properties like those of two-state neurons Proc. 

Hopfield J J and Tank D W 1985 ‘Neural’ computation of decisions in optimization problems Biol. Cybem. 52 141-52 

4.5.1-7 

Int. Joint Con5 on Neural Networks vol I1 pp 333-40 

Francisco, CA: Freeman) 

6 1587-97 

Acad. Sci. 79 2554-8 

NatlAcad. Sci. 81 2554-8 

@ 1597 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 G2.4:7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Hui J and Arthurs E 1987 A broadband packet switch for integrated transport IEEE J. Select. Areas Commun. 5 

Kosko B 1992 Neural Networks for Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 
Mehmet Ali M and Youseffi M 1991 The performance analysis of an input access scheme in a high-speed packet 

Moopenn A, Duong T and Thakoor A P 1988 Digital-analog hybrid synapse chips for electronic neural networks 

Protzel P P 1990 Comparative performance measure for neural networks solving optimization problems Int. Joint Conj 

Stenoy G V 1989 Linear Programming Methods and Applications (New York: Wiley) 
Takeda M and Goodman J W 1986 Neural networks for computation: number representations and programming 

Wilson G Y and Pawley G S 1988 On the stability of the travelling salesman problem algorithm of Hopfield and Tank 

1264-73 

switch Infocom 454-61 

Advances in Neural Information Processing Systems vol 2 ed D S Touretzky (Morgan Kaufmann) pp 769-76 

on Neural Networks vol I1 pp 523-6 

complexity Appl. Opt. 25 3033-45 

Bioi. Cybem. 58 63-70 

G2.4:8 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.5 Neural networks for optimal robot trajectory 
planning 

Dan Simon 

Abstract 

This case study discusses the interpolation of minimum-jerk robot joint trajectories 
through an arbitrary number of knots using a hard-wired neural network. Minimum-jerk 
joint trajectories are desirable for their similarity to human joint movements and their 
amenability to accurate tracking. The resultant trajectories are numerical functions of 
time. The interpolation problem is formulated as a constrained quadratic minimization 
problem over a continuous joint angle domain and a discrete time domain. Time is 
discretized according to the robot controller rate. The outputs of the neural network 
specify the joint angles (one neuron for each discrete value of time) and the Lagrange 
multipliers (one neuron for each trajectory constraint). An annealing method is used to 
prevent the network from getting stuck in a local minimum. We show via simulation 
that this trajectory planning method can be used to improve the performance of other 
trajectory optimization schemes. 

62.5.1 Project overview 

G2.5.1.1 Robot trajectory planning 

The industrial robot is a highly nonlinear, coupled multivariable system with nonlinear constraints. For 
this reason, robot control algorithms are often divided into two stages: path planning and path tracking 
(Craig 1989). Path planning is often done without much consideration for the robot dynamics, and with 
simplified constraints. This reduces the computational expense of the path planning algorithm. The output 
of the path planning algorithm is then input to a path tracking algorithm. 

There are algorithms for the robot control problem which do not separate path planning and path 
tracking. These algorithms take source and destination Cartesian points as inputs, and determine optimal 
joint torques. Shiller and Dubowsky (1989) provide a concise review of such algorithms. While such 
methods are attractive in that they provide optimal solutions to some robot control problems, they result in 
impractically complicated algorithms and a large computational expense. A simpler approach to the robot 
control problem is to generate a suboptimal joint trajectory, and then track the trajectory with a controller. 
This approach ignores most of the dynamics of the robot. So the resultant trajectories do not take full 
advantage of the robot’s capabilities, but are computationally much easier to obtain. In this approach, 
a number of knot points are chosen along the desired Cartesian path. The number of knots chosen is a 
tradeoff between exactness and computational expense. The Cartesian knots are then mapped into joint 
knots using inverse kinematics. Finally, for each robot joint, an analytic interpolating curve is fit to the 
joint knots. Some of the initial and final derivatives of the curve are constrained to zero so as to ensure 
that the robot begins and ends its motion smoothly. ‘Smoothness’ is a concept which combines the ideas 
of derivative continuity and derivative magnitudes. 

The most popular type of interpolation is algebraic splines (Lin and Chang 1983, Lin et a1 1983, 
Thompson and Pate1 1987). Higher-order splines result in continuity of higher-order derivatives, which 
reduces wear and tear on the robot (Craig 1989) but this is at the expense of large oscillations of the 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computation release 9711 G2.5: 1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

trajectory. Trigonometric splines can be used to provide a less oscillatory interpolating curve (Simon and 
Isik 1993). 

G2.5.1.2 Motivation for a neural solution 

Consider a sequence of knots through which an interpolating curve is required to pass. A human could 
create an interpolating curve, but in a different way than a computer algorithm would. Computer algorithms 
can calculate analytic functions which pass through given knots. A human can draw a smooth curve through 
a given set of knots, but without performing any mathematical calculations. In contrast with the computer 
algorithm, the interpolating curve drawn by the human would not be an analytic function of time. In 
addition, the human would not satisfy the constraints exactly, but only approximately. For example, if 
the human was requested to maintain a zero slope at the endpoints, the resulting slope would not be zero, 
but would be very small. Such a result would be satisfactory for most robot path planning applications. 
These facts indicate that an artificial neural network may be able to do well at interpolation. 

Of course, artificial neural networks are still quite far from any biological neural networks. Further 
motivation for seeking a neural solution to the robot trajectory optimization problem is obtained from the 

EM possibility of implementation in parallel hardware. This would give the advantage of quick solutions to 
large problems which would not otherwise be practical using more conventional optimization methods. 

The robot path planning problem can be viewed as an optimization problem: given a desired set of 
knots and endpoint constraints, find the 'best' interpolating curve such that the knot errors and endpoint 
derivatives are not too 'large'. Several researchers have solved continuous optimization problems using 
neural networks (Zhao and Mendel 1988, Jeffrey and Rosner 1986a, b, Jang et a1 1988). Platt and 
Barr (1988) formulate a neural network which can calculate a minimum of a general function subject 
to inequality or equality constraints. Their network has the important property of local stability for the 
problem considered in this section. Due to its stability and generality, this is the network which is used 
to determine a minimum-jerk robot joint path through a given set of knots. 

In order to plan an optimal robot trajectory, the measure of optimality must be defined. Human arm 
movements satisfy some optimality criterion, and this would seem to be a desirable criterion to adopt 
when planning trajectories for robot arms. Flash and Hogan (1985) suggest that human arm movements 
minimize a measure of Cartesian jerk, while Flanagan and Ostry (1990) present evidence that a function 
of joint jerk is minimized. Uno et a1 (1989) and Kawato et a1 (1990) argue that the objective function is a 
measure of the derivative of the joint torques, and propose a neural network to learn such a trajectory. In 
this section, a joint jerk objective function is used. While this choice ignores the dynamics of the robot, 
it reduces the error of the path tracker (Kyriakopoulos and Saridis 1988) and thus is suitable for robotics 
applications. 

G2.5.2 Design process 

G2.5.2.1 Topology 

Platt and Barr (1988) formulate a neural network which can be used for constrained minimization. Their 
algorithm, along with some straightforward extensions, is summarized in the following paragraphs. 

Consider the following constrained minimization problem: 

min f(z) subject to g(z) = 0 (G2.5.1) 

where f ( a )  is a scalar functional, x is an n-vector of independent variables, and g(-) is a vector-valued 
function mapping R" += R". 

Lagrange multipliers can be used to convert the constrained problem of (G2.5.1) into the following 
unconstrained problem: 

(G2.5.2) 

where X is an m-vector of Lagrange multipliers associated with the constraints g(.). A necessary condition 
for the solution of (G2.5.2) is 

min[f(z> + XTg(z>l 

(G2.5.3) 

G2.5:2 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for optimal robot trajectory planning 

Now consider a neural network with dynamics of the form 

((32.5.4) 
( j  = 1, ..., m )  i j  = cjgj 

where c is an m-vector of constants. Assume that the constraints g( . )  of the original problem (G2.5.1) are 
linear functions of 2. Then differentiating i i  in (G2.5.4) gives 

Now consider the candidate Lyapunov energy function 

((32.5.5) 

((32.5.6) 
i=l ,=I 

The derivative of this energy function is a quadratic function 

E = -XTAX . (G2.5.7) 

It has been shown in the literature (Platt and Barr 1988, Arrow et a1 1958) that there exists a finite 
vector c such that matrix A is positive definite at the constrained minima of (G2.5.1). If A is continuous, 
then it is positive definite in some region surrounding each constrained minimum. Therefore, if the dynamic 
system defined by (G2.5.4) begins in that region and remains in that region, the system will settle into the 
zero-energy state where 

X = O  

g ( 2 )  = 0 .  
((32.5.8) 
((32.5.9) 

Now g(z) = 0 implies that the original constraints are satisfied, and X = 0 implies (G2.5.4) that 

(G2.5.10) 

which satisfies the necessary conditions for a local minimum of the original constrained problem (G2.5.3). 
To sum up, equation (G2.5.4), with an appropriately chosen c, converges to a solution of the original 

constrained minimization problem of (G2.5.1). Equation (G2.5.4) is in the form of first-order differential 
equations, which implies that it could be implemented in parallel hardware to yield a very quick solution. 

G2.5.2.2 Development details 

When interpolating the path of a robot joint between a set of joint space knots, it is desirable to obtain as 
smooth a solution as possible. This results in an appearance of coordination (Flanagan and Ostry 1990), 
reduces wear on the robot joints and prevents the excitation of resonances (Craig 1989), and improves the 
accuracy of the path tracker (Kyriakopoulos and Saridis 1988). Therefore, in robot trajectory generation, 
the interpolation problem for each joint can be stated as follows. 

Given a set of L knots for a robot joint, determine a function e( t )  which 

is as ‘smooth’ as possible 
has ‘small’ errors at the knots 
has ‘small’ derivatives at the endpoints. 

Smoothness can be defined as the integral of the square of the jerk of the position trajectory (Flanagan 
and Ostry 1990). In order for the robot joint to start and stop its motion in a smooth manner, the first 
three derivatives at the endpoints should be small. If the path length is T s, and the desired knot angles 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compufufion release 9711 G2.5:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

are e@,) = +j ( j  = 1, , . , , L ) ,  then the optimization problem for each joint can be written as 

T 
min [e”’(t)]2 dt (G2.5.11) 

subject to e( t j )  = 6, ( j  = 1 , .  .. , L )  
er(o) = o 

eqo)  = o 
e y o )  = o 

#(T) = 0 

W(T) = 0 

8”’(T) = 0 .  

If the L knots are equally spaced in time, then the knot times ti satisfy 

ti = (i - l)T/(L - 1) (i = 1, . . . , L )  . (G2.5.12) 

The joint trajectory at the endpoints is exactly constrained. That is, the joint angles at t = 0 and t = T 
are fixed constants. But the joint angles at the interior knot times are not truly equality constraints; the 
interior knot angles are more like centers of tolerance near which the joint trajectory is required to pass. 
Also, the first three endpoint derivatives do not need to be exactly zero. As long as they are very small, 
the robot motion will begin and end smoothly. Therefore, the constraints O ( t 1 )  = 61 and = 6~ can 
be considered ‘hard’ constraints, while the remaining ( L  + 4) constraints in (G2.5.11) can be considered 
‘soft’ constraints. 

Since the joint trajectory is input to the path tracker at discrete values of time, the trajectory does not 
need to be a continuous function of time. It can be a discrete set of joint angles, defined only at times kh 
(k = 0, 1, . . . , N )  where h is the sample period of the path tracker (typically on the order of 0.01 s), and 
N h  is the length of the trajectory. 

The angle di is input to the path tracker every h s, starting at t = 0 and ending at t = T. There are 
exactly M discrete times per knot, so each knot angle is separated from its neighboring knots by M h  s. 
Thus, the path length T satisfies 

T = M ( L  - 1)h. (G2.5.13) 

Also, from t = 0 to t = T, there are exactly N + 1 discrete time steps. Thus, the number of discrete time 
steps satisfies 

N + 1 = M ( L  - 1 ) +  1 .  (G2.5.14) 

These relationships are depicted graphically in figure G2.5.1. 

knot angles - 61 6 2  ” *  6 L  

angles input to - 
path tracker eo el . . . eM . . . eM(L-l)=N ’ 

time- t = O  t = M h  f = M ( L  - 1)h = T 

Figure 62.5.1. Relationships between network variables. 

So the optimization problem of (G2.5.11) can be discretized (using the the trapezoidal integration 
rule) into the following problem: 

r N-1 1 
(G2.5.15) 

G2.5:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for optimal robot trajectory planning 

subject to OM(j-1) = +j ( j  = 1, . . . , L) 
e; = o 
e; = o 
e; = o 
e; = o 
0; = 0 
0; = 0 

where 00 = $1 and OM(L-1) = 4~ are hard constraints, and the rest of the constraints are soft. 
Since the values of 00 and &I are hard constraints, they can be considered constants. Then the 

independent variables of the optimization problem are Oi (i = 1, . . . , N - 1). Note that since we are 
constraining 6; and 6; to zero, they can be omitted from the objective function of (G2.5.15). Then, using 
finite-difference expressions for the first three derivatives of 8 ( t ) ,  the optimization problem of (G2.5.15) 
can be converted into the equivalent problem 

N-1 
min C(-ei-2 + 2ei-l - 20i+1+ 8i+2l2 (G2.5.16) 

i=l 

subject to B M ( j - 1 )  = q5j ( j  = 2, . . . , L - 1) 
61 = 41 
e2 = 91 

ON-2 = 4 L  
ON-1 = 4 L  

where we have defined 8-1 00 and 8N+1 = ON.  Now (G2.5.16) can be written as 

min(BTA8 + bT8) subject to g(8) = 0 (G2.5.17) 

where 8 = [el . . . B N - ~ ] ~ ,  g(8) is the ( L  + 2)-element constraint vector defined by (G2.5.16), and A and 
b are, respectively, an (n  - 1)  x (n  - 1) matrix and an (n  - 1)-vector. Matrix A is a positive semidefinite 
matrix of bandwidth 4 (Golub and Van Loan 1989) whose diagonal and first through fourth upper and 
lower diagonals are given as follows: 

diagonal = (5 9 10 10 . . .  10 10 9 5) 
first upper and lower diagonal = (-2 -4 -4 .. . -4 -4 -2) 

third upper and lower diagonal = (4 4 .. . 4 4) 
second upper and lower diagonal = (-4 -4 . . . -4 -4) (G2.5.18) 

fourth upper and lower diagonal = (- 1 - 1 . . . - 1 - 1) . 

Vector b is given by 

b =  (-441 -441 641 -241 0 0 . . .  0 0 - 2 4 ~  6 4 ~  - 4 4 ~  - 4 4 ~ ) ~ .  (G2.5.19) 

According to the results given by (G2.5.4), (G2.5.17) is solved by the dynamic system 

as 
ae b = -2A8 - b - -(A + c o 9) 

(G2.5.20) 
A = c o g  

where c o g is the ( L  + 2)-vector Hadamard product of c and g whose ith element is given by cigi. The 
element in the ith row and j th  column of ag/a8 is given by agj/aei. 

If matrix A were positive definite, we could set c equal to the zero vector and still be guaranteed 
convergence. However, if A is only positive semidefinite, we need to use a nonzero c. Even if A is 
positive definite, a nonzero c will improve the convergence properties of the neural network. 

Note that the neural net may converge to a local minimum rather than a global minimum. Some sort 
of simulated annealing technique can be used in conjunction with the network (Jeffrey and Rosner 1986a, ci.4.2 
b). This idea results in the long computational time characteristic of annealing, but it also enables the 
network to find the best solution among many local minima. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G2.5:5 

Copyright © 1997 IOP Publishing Ltd



Engineering 

The annealing-type method which is suggested is as follows. Once the network converges to a local 
minimum, the network state is perturbed in a random direction and by a random magnitude. Then the 
network dynamics are reactivated, and another local minimum is found. During this process, the algorithm 
keeps track of the best solution. After a predetermined number of local minima are found, the algorithm 
terminates and the solution with the lowest energy is accepted as the best solution. 

G2.5.3 Comparison with other methods of robot trajectory planning 

Two methods were used to generate minimum-jerk robot joint trajectories: a minimum-jerk trigonometric 
spline method was used by Simon and Isik (1993), and the neural network proposed above was used. The 
trigonometric spline method is analytical and was coded using MATLAB on a Sun-4 workstation. The 
neural network is a numerical method and was simulated on a Sun-4 workstation in the C programming 
language. The neural net dynamics were integrated using a basic fourth-order Runge-Kutta method with 
an integration step size of 5 ms. 

Six multiple-knot, 35-second joint trajectories were calculated using the trigonometric spline method 
and the simulated neural network. Each joint trajectory has eight evenly spaced knots, corresponding to 
the examples given in previous work (Lin et al 1983, Thompson and Pate1 1987). 

Plots of the six neural-network-based trajectories which pass through the six sets of knots are given 
by Simon (1993). The trajectory corresponding to joint 2 (a typical example) is reproduced here in 
figure G2.5.2. The initial state of the neural nets consisted of the minimum-jerk trigonometric trajectories 
(Simon and Isik 1993), X was initialized to the zero vector, and c was a vector in which each element 
was 1. Note from figure G2.5.2 that the neural-network-based trajectory does not pass exactly through the 
knots. The neural network trajectories have small nonzero derivatives at the endpoints. The trigonometric 
splines have zero velocity, acceleration and jerk at the endpoints, and pass exactly through the knots. 

Table G2.5.1 shows the decrease of the jerk objective function due to the evolution of the network 
dynamics. It is seen that the use of the neural network for this typical example gives an average 
improvement of almost 20% in the objective function. Although we cannot quantify the result of this 
decrease at this point in time, we can state that two results are a corresponding decrease in the error of 
the path tracker, and robot arm movement which appears more smooth and coordinated. 

"1 

Figure G2.5.2. Minimum-jerk trajectory for joint 2. 

G2.5.4 Conclusions 

Minimum-jerk joint trajectories have the properties of similarity to human joint movements (Flanagan and 
Ostry 1990) and amenability to tracking (Kyriakopoulos and Saridis 1988). This makes them attractive 
choices for robotics applications in spite of the fact that the dynamics are not taken into account. 

In this section, the minimum-jerk joint trajectory formulation problem is posed as a constrained 
quadratic optimization problem. A hard-wired neural network is proposed to solve the problem numerically. 

G2.5:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural networks for optimal robot trajectory planning 

Table G2.5.1. Jerk objective function values. 

Minimum jerk 
Joint Trigonometric Neural net Decrease (8) 

1 127 106 16.5 
2 44 28 36.3 
3 558 462 17.2 
4 765 662 13.5 
5 252 206 18.3 
6 38 33 13.2 

Averages 297 250 19.2 

The network may converge to a local minimum rather than the global minimum. The solution obtained by 
the network depends on the initial state of the network. An annealing-type technique is used in conjunction 
with the network to climb out of local minima and find the best among many solutions. This prevents 
the algorithm from being appropriate for real-time use, but significantly improves the quality of the final 
solution. The simulation results presented verify that the network can be successfully applied to robot 
trajectory generation. 

The neural-network-generated trajectories pass near but not exactly through the specified knots. If 
it is important that the trajectory pass exactly through the knots, this method may not be suitable for 
joint interpolation. While this section has dealt specifically with minimum-jerk joint trajectories, there 
are no theoretical limitations to applying this method to other objective functions. More specifically, 
minimum-energy or minimum-torque-change trajectories could be generated with the network discussed 
in this section. 

Acknowledgements 

Much of this section has been adapted from the article by Simon (1993) where additional details can be 
found, and the permission of the publisher is gratefully acknowledged. 

References 

Arrow K, Hurwicz L and Uzawa H 1958 Studies in Linear and Nonlinear Programming (Stanford, CA: Stanford 

Cohen M and Grossberg S Absolute stability of global pattern formation and parallel memory storage by competitive 

Craig J 1989 Introduction to Robotics (Reading, MA: Addison-Wesley) 
Flanagan J and Ostry D 1990 Trajectories of human multi-joint arm movements: evidence of joint level planning 

Flash T and Hogan N 1985 The coordination of arm movements: an experimentally confirmed mathematical model 

Golub G and Van Loan C 1989 Matrix Computations 2nd edn (Baltimore, MD: Johns Hopkins University Press) 
Jang J et a1 1988 An optimization network for matrix inversion Neural Information Processing Systems ed D Anderson 

Jeffrey W and Rosner R 1986a Optimization algorithms: simulated annealing and neural network processing Astrophys. 

-1986b Neural network processing as a tool for function optimization Neural Networks for Computing ed J Denker 

Kawato M et a1 1990 Trajectory formation of arm movement by cascade neural network model based on minimum 

Kyriakopoulos K and Saridis G 1988 Minimum jerk path generation IEEE In?. Con$ on Robotics and Automation vol 

Lin C and Chang P 1983 Joint trajectories of mechanical manipulators for Cartesian path approximation IEEE Trans. 

Lin C, Chang P and Luh J 1983 Formulation and optimization of cubic polynomial joint trajectories for industrial 

University Press) 

neural networks IEEE Trans. Systems, Man, Cybern. 13 815-26 

Experimental Robotics I, 1st Int. Symp. ed V Hayward and 0 Khatib (New York: Springer) 

J. Neurosci. 5 1688-703 

(New York: American Institute of Physics) pp 397401 

J. 310 473-81 

(New York: American Institute of Physics) pp 241-6 

torque-change criterion Biol. Cybern. 62 275-88 

1, pp 364-9 

Syst. Man Cybern. 13 1094-102 

robots IEEE Trans. Automatic Control 28 106673 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Computution release 9711 G2.5:7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Platt J and Barr A 1988 Constrained differential optimization Neural Information Processing Systems ed D Anderson 

Shih L 1984 On the elliptic path of an end-effector for an anthropomorphic manipulator Int. J. Robot. Res. 3 51-7 
Shiller Z and Dubowsky S 1989 Robot path planning with obstacles, actuator, gripper, and payload constraints Inr. J. 

Simon D 1993 The application of neural networks to optimal robot trajectory planning Robot. Autonomous Syst. 11 

Simon D and Isik C 1993 A trigonometric trajectory generator for robotic arms Int. J. Control 57 505-17 
Thompson S and Pate1 R 1987 Formulation of joint trajectories for industrial robots using B-splines IEEE Trans. 

Uno Y et a1 1989 Formation and control of optimal trajectory in human multijoint arm movement Biol. Cybern. 61 

Zhao X and Mendel J 1988 An artifical neural minimum-variance estimator IEEE Con$ on Neural Networks vol 2, 

(New York: American Institute of Physics) pp 612-21 

Robot. Res. 8 3-18 

23-34 

Indust. Electron. 34 192-9 

89-101 

pp 499-506 

G2.5 :8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.6 Radial basis function network in design and 
manufacturing of ceramics 

Krzysztof J Cios, George Y Baaklini, Laszlo Berke and Alex Vary 

Abstract 

This case study has two goals. One is to show the application of the radial basis 
function (RBF) neural network in aiding in all aspects of design and manufacturing of 
advanced ceramics, where it is desirable to find which of the many processing variables 
contribute most to the desired properties of the material. The second goal of the chapter 
is to compare the RBF network results with those obtained by using fuzzy sets on the 
same data collected at the NASA Lewis Research Center. To set the RBF hidden layer 
centers and to train the output layer weights the nodes at data points and the gradient 
descent methods were used, respectively. The RBF network predicted strength with an 
average error of less than 12% and density with an average error of less than 2%, and 
demonstrated a potential for accelerating the development and processing of emerging 
ceramic materials. 

G2.6.1 Project overview 

In this case study our intent is to show how RBF networks could be used in the design and fabrication of c1.6.z 
ceramics. RBF networks were utilized to identify trends indicating which input variable contributed most 
to the increase of a desired output parameter, say strength. Such identification could potentially speed up 
the process of designing a new material. Although human designers could easily notice such trends for a 
few variables, it becomes difficult to do so for a large number of variables. 

This case study is based on our previous work (Cios et a1 1994a, b) in which we utilized the data 
originally collected by Sanders and Baaklini (1986). Silicon nitride ceramics were chosen for our study 
since it is an important material for heat engine applications due to its high operating temperature, reduced 
weight, resistance to oxidation, thermal shock resistance, and good high-temperature strength (Klima and 
Baaklini 1984). Their scatter in strength and low toughness are generally attributed to discrete defects 
such as voids, inclusions, and cracks introduced during processing (Sanders and Baaklini 1986). Current 
cost-effective fabrication procedures also frequently produce ceramics containing bulk density variations 
and microstructural anomalies that can adversely affect performance (Klima and Baaklini 1984). 

Scatter in mechanical properties of ceramics is a great drawback from a designheliability standpoint. 
This scatter is attributed to defects and inhomogeneities occurring during processing of silicon nitride 
powder compositions and during part fabrication. From the research work on silicon nitride composition 
at the NASA Lewis Research Center it was evident that density gradients were strongly dependent upon 
sintering conditions (Sanders and Baaklini 1986, Klima and Baaklini 1984). The results of an investigation 
of one silicon nitride composition involving sintering trials of several batches of material were described 
by Sanders and Baaklini (1986), and these particular data were utilized to show that RBF neural networks 
were a useful tool which could provide much needed information to advanced materials designers. 

Sanders and Baaklini (1986) were concerned with the problem of designing a silicon nitride ceramic 
with the goal of achieving fully dense material that possesses high strength with the lowest amount of 
scatter. In the process of manufacturing they tried to optimize several variables such as milling time, 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hadbook  of Neural Computation release 9711 G2.6:l 

Copyright © 1997 IOP Publishing Ltd



Engineering 

sintering temperature, sintering time, nitrogen pressure and setter contact. In addition, they investigated 
the effects of sintering and temperature variations and whether wet powder sieving was superior to dry 
sieving. They were also trying to optimize the manufacturing process by using sound engineering judgment 
coupled with trial and error methodology. 

From the data collected at the NASA Lewis Research Center we selected three input variables, namely 
the milling time of the silicon nitride powder, the sintering time, and the nitrogen pressure employed 
during sintering of the modulus of rupture (MOR) test bars. From the output variables we selected flexural 
strength and density. Only the above-mentioned variables were used since there were not enough training 
pairs (outputs associated with inputs) for processing variables such as temperature and sieving. In our 
investigation we concentrated on determining how effectively an RBF neural network can be trained to 
predict the resultant strength and density of a batch of MOR bars. 

G2.6.2 Data used 

RBFs were trained using the data from 273 silicon nitride modulus of rupture bars (MOR) that were 
tested at room temperature and 135 MOR bars that were tested at 1370°C. For the room temperature, 
18 different combinations of milling time, sintering time, and nitrogen pressure yielded the composition 
strengths and densities listed in table G2.6.1. Also listed in table G2.6.1 are the strengths and densities 
for nine combinations at 1370°C. 

In order to determine the validity of the network predictions for the previously untried compositions, 
it was necessary to test the RBF network using known test vectors and then calculate the error of the 
predictions. Of particular interest was the ability of the network to predict the output values for batch 
number 6Y25, as this batch number represented the optimum combination for the processing variables 
from the available data set. Batch 6Y25 was considered optimal because although the average value (of 

Table G2.6.1. Strength and density at room temperature for different processing and sintering conditions. 

Sintering Nitrogen Actual Actual 
No of Milling time time pressure strength density 

Batch No specimen (h) (h) (MPa) (MPa) (g ~ m - ~ )  

6Y1B 30 
6Y2B 30 
6Yll 15 
6Y12 15 
6Y13 15 
6Y14 14 
6Y15, 6Y16 19 
6Y17 10 
6Y18 10 
6Y19 10 
6Y20 10 
6Y23 15 
6Y24A 15 
6Y24B 15 
6Y25 10 
6Y26A 15 
6Y26B 15 
6Y28 10 
1370'C 
6Y9B 29 
6Yll 13 
6Y12 14 
6Y13 15 
6Y14 14 
6Y15, 6Y16 20 
6Y17 10 
6Y18 10 
6Y25 10 

24 
24 

100 
300 
100 
300 
24 

100 
100 
100 
100 
100 
100 
100 
300 
100 
100 
100 

24 
100 
300 
100 
300 
24 

100 
100 
300 

1 
1 
1 
1 
1 
1 
2 
2 
1.5 
1.5 
2 
1.25 
1.25 
2 
2 
1 
1 
2 

1 
1 
1 
I 
1 
2 
2 
1.5 
2 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
5 
5 
5 
5 
5 
5 
3.5 
3.5 
5 
3.5 
5 
5 

2.5 
2.5 
2.5 
2.5 
2.5 
5 
5 
5 
5 

556 
532 
490 
579 
684 
746 
664 
646 
608 
570 
650 
63 1 
586 
619 
714 
479 
503 
67 1 

382 
445 
417 
405 
424 
402 
441 
460 
467 

3.12 
3.18 
3.23 
3.25 
3.24 
3.24 
3.22 
3.23 
3.21 
3.22 
3.22 
3.24 
3.26 
3.26 
3.28 
3.20 
3.18 
3.21 

3.12 
3.23 
3.25 
3.24 
3.24 
3.22 
3.23 
3.21 
3.28 

G2.6:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Radial basis function network in design and manufacturing of ceramics 

ten specimens, table G2.6.1) of strength is 714 MPa, it is accompanied by low scatter (not shown in 
table G2.6.1). Batch number 6Y14 had higher (746 MPa) average strength but it was accompanied by 
much higher scatter. 

Batch number 6Y25 was first removed from the data sets. The data sets were then pseudorandomly 
divided into a ratio of 70% training to 30% testing. Batch number 6Y25 was then inserted into the test 
data set. This was repeated five times in order to have five different pairs of training and test data sets. 
This entire process was then repeated using a ratio of 60% training to 40% testing. The 60% proportion of 
training data was used in order to give an indication as to how much processing information was required 
to make accurate predictions. 

Next, a training data set consisting of all the batch numbers (100%) except 6Y25 was created. Batch 
number 6Y25 was placed in the test data set as the sole vector. Finally, all the batch numbers were placed 
in a training data set and the test data set was constructed using vectors for which the outputs were not 
known in order to demonstrate the capability of the RBF network in material process optimization. This 
gave a total of 12 pairs of training and test data sets for the room-temperature-tested materials, and another 
12 for materials tested at 1370°C. 

Third, several new combinations of the three input parameters were used to determine whether a 
material having equal or higher values of flexural strength and density, close to the optimal (6Y25) value, 
could be obtained. Thus, a training data set consisting of all the batch numbers (100%) except 6'1125 was 
created. Batch number 6Y25 was then placed in the training data set and we made predictions for different 
combinations of the input vectors not tried in previous experiments (Cios et a1 1994a). 

G2.6.3 Radial basis functions 

For details of RBF networks the reader is referred to section C1.6.2 of the handbook and Cios er a1 (1994a). ci.6.z 
Here we only very briefly summarize the main ideas of the radial basis function (RBF). It is a three-layer 
network with locally tuned processing units in the hidden layer. RBF neurons are centered at the training 
data points, or some subset of them, and each neuron only responds to an input which is close to its center. 
The output layer neurons are linear or sigmoidal functions and their weights may be obtained by using a 
supervised learning method, such as a gradient descent method. 

Figure G2.6.1 shows a general RBF network with n inputs and one linear output. This network 
performs a mapping f : R" + R given by the following equation: 

n. 

where z E R" is the input vector, #(.) is a function from R" + R, 1 1  denotes the Euclidean norm, Ai 
(0 f i f n,) are the weights of the output node, ci (0 I i I n,) are the RBF centers, and n, is the 
number of the RBF centers. 

One of the most common functions used for @ ( e )  is the Gaussian function: 

where crl is a constant which determines the width of the ith node. This function has a maximum value 
of 1 when 112 - ci 11 is 0, and drops off to 0 as I(z - c i  11 approaches infinity. The centers of the RBF 
functions, ci ,  are usually chosen from the training data points z i  (1 I i I N). This method is known as 
the neurons at data points method. 

G2.6.4 Results of the radial basis function 

The RBF networks were trained using several training data sets described above. The neurons at data 
points method was used to set up the hidden layer, and the gradient descent method was used to train the 
output layer neurons which use the sigmoidal function. The RBF networks consisted of three input neurons 
and two output neurons which corresponds to the number of input and output variables, respectively. The 
number of neurons in the hidden layer depended on the number of training vectors. 

Table G2.6.2 shows the detailed results for the 70% training and 30% test data set, for one of the 
combinations, at room temperature. The overall results for five combinations, and for 6Y25, are shown 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G2.6~3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

I Hidden Laver I 

Figure 62.6.1. Radial basis function network with single output. 

in Table G2.6.3 for 70% training, at room temperature. Table G2.6.4 shows the same for 60% training. 
Table G2.6.5 shows predictions made for selected, not tried, combinations of milling and sintering values 
that resulted in strengths and densities similar to that of the optimum batch 6Y25. Table G2.6.6 and 
table G2.6.7 show the overall results obtained for 1370°C. 

Relatively large errors occurred in several cases. In table G2.6.2, the error of 29.84% on the predicted 
strength can be explained by the fact that the training vector from batch 6Y14 biased the results of 6Y12 
and this was totally due to a sintering variable that was not included as an input feature. In table G2.6.6, 
the 16.45% error can be attributed to the absence of training vectors with 300 h grinding time. 

The information in table G2.6.5 and table G2.6.7 suggested that there might be other combinations 
of sintering and processing variables that would produce results almost as good as that obtained for 6Y25, 
but more efficiently. For example, in table G2.6.5, using a milling time of 250 h, a sintering time of 1.5 h, 
and a nitrogen pressure of 3 MPa, the RBF network predicted that a strength of 709 MPa could have been 
obtained. This was only slightly less than the 6Y25 value of 712 MPa, but with a reduction in milling 
time of 50 h. 

Table G2.6.2. Predicted room-temperature strength with 70% training. 

Actual Predicted Actual Predicted 
Batch strength strength density density 
No (MPa) (MPa) % error (g ~ m - ~ )  (g ~ m - ~ )  % error 
6Y2B 556 544 2.26 3.18 3.17 0.46 
6Y12 579 752 29.84 3.25 3.24 0.27 
6Y17 646 660 2.13 3.23 3.21 0.49 
6Y18 608 616 1.37 3.21 3.24 0.91 
6Y24A 586 507 13.51 3.26 3.23 0.88 
6Y25 714 681 4.85 3.28 3.21 2.28 

Average error 8.95 0.88 

Table 62.63. Overall results for room temperature strength and density with 70% training. 

Strength-average % error for all test 
vectors (and 6Y25) 

Density-average % error for all test 
vectors (and 6Y25) 

10.54<10.17) 0.98 (2.50) 

G2.6~4 Handbook of Neural Compufation release 9711 0 1997 1OP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Radial basis function network in  design and manufacturing of ceramics 

Table 62.6.4. Overall results for room temperature strength and density with 60% training. 

Strength-average % error for all test 
vectors (and 6Y25) 

Density-average % error for all test 
vectors (and 6Y25) 

11.34 (5.96) 1.03 (1.74) 

Table G2.6.5. Prediction of input variables for highest strength and density for 100% plus 6Y25 training 
data. 

Milling Sintering Nitrogen Predicted Predicted 
time (h) time (h) pressure (MPa) strength (MPa) density (g ~ m - ~ )  

150 1.5 
175 1.5 
200 1.5 
200 1.75 
250 1.5 
250 1.5 
250 1.75 
300 1.5 
300 1.75 
300 2 

3 
3 
3 
4 
3 
4 
4 
4 
4 
5 

692 
700 
706 
689 
709 
705 
705 
71 1 
713 
712 

3.28 
3.28 
3.28 
3.27 
3.28 
3.28 
3.28 
3.28 
3.28 
3.28 

Table G2.6.6. Overall results for 1370°C, 70% training. 

Strength-average Density-average 
% error for all Strength-% error % error for all Density-% 
test vectors for 6Y25 test vectors error for 6Y25 

8.77 5.80 0.83 1.28 
7.61 11.88 1 .so 2.71 
7.22 11.17 1.69 1.14 

10.36 16.45 1.62 2.34 
6.69 3.80 1.52 2.82 

Combined average error 8.21 9.82 1.43 2.06 

Table 62.6.7. Prediction of selected processing and sintering variables for optimum density and strength 
at 1370°C with 100% plus 6Y25 training. 

Milling Sintering Nitrogen Predicted Predicted 
time (h) time (h) pressure (MPa) strength (MPa) density (g cm-’) 

150 1.5 4 466 3.24 
175 1.5 4 469 3.25 
200 1.5 4 470 3.26 
200 1.5 5 47 1 3.25 
200 1.75 5 47 1 3.27 
250 2.0 5 467 3.27 
300 1.5 4 468 3.27 
300 1.5 5 470 3.26 
300 1.75 5 47 1 3.27 
300 2.0 5 467 3.27 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G2.65 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Similarly, table G2.6.7 indicated that a slightly higher value than optimal for 6Y25 of 471 MPa could 
be achieved with milling time of 200 h, sintering time of 1.5 h, and nitrogen pressure of 5 MPa, which is 
a 100 h saving in milling time over 6Y25. A word of caution here: these predictions need to be confirmed 
by manufacturing of ceramics using the same input parameters. 

Using even the smaller training data set of 60% did not increase the prediction errors in a significant 
way. This suggested a potential for speeding up the optimization of ceramics processing by using RBF 
neural networks. 

G2.6.5 Comparison of radial basis function results with those obtained using fuzzy sets 

G2.6.5.1 Basics offuzzy sets 

Fuzzy sets allow us to deal with phenomena that are vague or too ill defined to be analyzed by conventional 
DI mathematical tools. For more information on fuzzy sets the reader is referred to Chapter D1 of this 

handbook, Cios et a1 (1991), and Cios et a1 (1994b). Definitions essential for subsequent explanation of 
the method used follow. Let R be the set of real numbers and U be the conventional (crisp) set. Let U 
be a generic element of U. A fuzzy subset A of U is defined by a membership function p : U + [0, 11. 
The fuzzy subset A of U can be expressed as (Klir and Folger 1988): 

where p~ is referred to as the grade of membership of U in A.  

positive: 
The support of A is the set of elements in U whose memberships in fuzzy subset A, ~ A ( u ) ,  are 

SUpp(A) = {U I U E U ,  CLA(U)  > 0 ) .  

Aggregation of fuzzy sets is an operation by which several fuzzy sets are combined into a single set. In 
general, any aggregation operation is defined by the function 

h : [O, 13" --f [O, 11 

for some n 2 2. When applied to n fuzzy sets defined on U, h produces an aggregate fuzzy set A by 
operating on the grades of membership of each element of U in the sets being aggregated. 

From the several classes of averaging operations we chose generalized means defined as follows: 

where a! E R (a! = 0) is a parameter by which different means are distinguished: a! = 2 was used. 
The data shown in table G2.6.1 were used to define fuzzy sets for each batch for both input and output 

variables. The input fuzzy sets were defined for three support values: nitrogen pressure (p), sintering time 
( s t ) ,  and milling time (mr), while the output fuzzy sets had support of two elements: flexural strength 
(s) and density (d). The grades of memberships were normalized elementwise, and the normalization 
was repeated for every step of prediction. The resulting membership grades were combined by means of 
generalized mean operation. After that, a dissimilarity measure (Cios et a1 1994b) was used to calculate 
the difference between the actual and generalized fuzzy sets of input parameters. Next, the k-fraction of the 
measure, where k E (0, l ) ,  was either added to or subtracted from the generalized grades of memberships 
of the output parameters. The graphical explanation of the method is shown in figure G2.6.2, for the 6Y 12 
test batch. The generalized input fuzzy set consisted of grades of membership obtained by generalized 
mean operation performed on normalized values of input parameters: mt ,  s t ,  and p. The dissimilarity 
measure was then used to calculate the sum of the elementwise differences between grades of membership 
of actual and generalized input fuzzy sets. The k-fraction of the measure was then added to the grades 
of membership of the generalized output fuzzy set. The generalized output fuzzy set was obtained by 
generalized mean operation performed on normalized values of output parameters: s and d. Addition of 
the k-fraction of the dissimilarity measure results in the predicted fuzzy set. The latter was then compared 
with the actual grades of membership obtained by normalization of the values of the 6Y12 batch output 
thus yielding a measure of error for strength and density. 

G2.6~6 Handbook ofNeuml Computation release 9711 @ 1997 IOP Publishing U d  and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Radial basis function network in design and manufacturing of ceramics 

P 

Actual input Generalized 
4 fuuy set * input fuuy set 

AP A 
A 2  

Ast 4 
I 

Dissimilarity measu 

A Generalized I Predicted output 
fuuy set 

V I I 1,s 
a S d 

Figure 62.6.2. Explanation of the fuzzy prediction method. 

Table G2.6.8. Overall results for strength and density for room temperature. 

Density-average % error for all test 
vectors (and 6Y25) 

Strength-average % error for all test 
vectors (and 6Y25) 

5.7 (4.4) 2.4 (0) 

G2.6.5.2 Results offizzy sets 

The method described above for fuzzy sets was used to predict, for randomly chosen values of input 
variables, the values for output variables, namely flexural strength and density of batch samples at room 
temperature. The overall results are shown in table G2.6.8. Since the errors were reasonably small, 
predictions were made for selected new combinations of processing and sintering variables. Table G2.6.9 
shows the results. We could notice that the resultant strengths and densities were lower than those for 
the optimum batch (6Y25), which can be explained by the fact that fuzzy sets are bounded by the values 
lo, 11. 

G2.6.6 Discussion 

If, in the process of designing new ceramics, the designers were to use RBF networks in order to notice 
the correlations between the input and output variables, it might greatly shorten the fabrication cycle. We 
have shown (Cios et ai 1994a, b) that this is true for even a small number of input variables. If a larger 
number of input variables could be used, that would certainly improve the reliability of predictions and 
their accuracy. 

Comparison of results obtained by using fuzzy sets with those obtained by using RBF neural networks 
indicates that both were successful in modeling relationships existing between the processing variables and 
output variables. This is shown graphically in figure G2.6.3. As could be seen, there were small differences 
in terms of errors. When we tried to predict the untried combinations of input variables which might yield 
higher values for strength and density, the results were again only slightly different. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.6~7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Table 62.6.9. Prediction of input variables for highest strength and density for 100% plus 6Y25 training 
data. 

Milling Sintering Nitrogen Predicted Predicted 
time (h) time (h) pressure (MPa) strength (MPa) density (g 

150 1.5 
175 1.5 
200 1.5 
200 1.75 
250 1.5 
250 1.5 
250 1.75 
300 1.5 
300 1.75 
300 2 

3 
3 
3 
4 
3 
4 
4 
4 
4 
5 

596 
604 
61 1 
634 
619 
634 
649 
649 
656 
686 

3.15 
3.18 
3.21 
3.28 
3.25 
3.28 
3.28 
3.28 
3.28 
3.28 

Error in strength Error in density 
3 

2.5 
ORBF l2 
.FS 10 

f 8  $ 2  

f 1  $ 4  

L 

0 ,  E 1.5 
0) % 

3 3 
0.5 2 

0 0 
60% 70% 60% 70% 60% 70% 60% 70% 

Room temperature 1370 'C  Room temperature 1370 "C 

Figure G2.63. Average errors in predicting strength and density using 60% and 70% of data for training. 

G2.6.7 Conclusions 

The radial basis function network was found to be applicable for learning silicon nitride processing 
and consequently for predicting strength and density using three processing variables as input features. 
Predicting strength and density values for the 30% or 40% of the modulus of rupture batches subsets 
which were not used for training was successful with an average error of less than 12% for strength and 
2% for density, for both room and high temperatures. Predicting strength for the optimum batch was 
successful when the training set reflected a reduced gradient and less biased regions. Predicting bulk 
density of ceramics was more successful than predicting strength. This may be explained by noting that 
bulk density was more directly related to milling time, sintering time, and pressure, whereas the flexural 
strength was additionally dependent on pore morphology, on microstructure, and on the presence of failure 
causing defects. Our work (Cios et a1 1994a) showed that RBF neural networks had a great potential for 
accelerating improvements in ceramic material processing. 

We have shown that RBFs, if they were part of the design process, could help in optimizing the 
process of fabricating ceramics with high strength, accompanied by low scatter. We concentrated on three 
input variables and two output parameters. The available data set was divided into training and test parts. 
The former was used for training RBF neural networks and defining fuzzy sets, and the second to validate 
them on the test part as to how accurately they can predict the strength and density of new 'unknown' 
inputs. 

Then, we showed that it was possible to indicate combinations of input variables, other than those 
tried, which resulted in at least as strong material as the one from the known training data (6Y25), but 
more optimal in terms of either shorter milling and sintering times, or lower pressure. RBF networks may 
not necessarily yield the optimal solution, but in many situations, a robustly obtained 'acceptable' solution 
is preferred to an optimal solution which may take a lot of time to compute. 

The obtained results indicated that RBF networks could be a powerful tool for both process modeling 
and process control. They can speed the development and fabrication of emerging ceramic materials by 
capturing imprecise relationships between the input variables and output parameters. In turn, these learned 

G2.6:S Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Radial basis function network in design and manufacturing of ceramics 

relationships can be used for predicting strength and density for new combinations of the input variables. 
The reliability of our predictions was validated by calculating the errors on the test data encompassing 
30% or 40% of available data. The maximum combined error, between the two methods, was less than 
or equal to 5.7% for strength and 0.98% for density. The latter clearly shows that by using a hybrid 
neuro-fuzzy approach one could achieve even better results. 

References 

Cios K J, Baaklini G Y, Vary A and Tjia R E 1994a Radial basis function leams ceramic processing and predicts 

Cios K J, Baaklini G Y, Vary A and Sztandera L M 1994b Fuzzy sets in the prediction of flexural strength and density 

Cios K J, Shin I and Goodenday L S 1991 Using fuzzy sets to diagnose artery coronary stenosis ZEEE Comput. Mag., 

Klima S J and Baaklini G Y, 1984 Ultrasonic characterization of structural ceramics NASA CP-2383 
Klir G J and Folger T A 1988 F u u y  Sets, Uncertainty and Znfonnation (Englewood Cliffs, NJ: Prentice-Hall) 
Sanders W A and Baaklini G Y 1986 Correlation of processing and sintering variables with the strength and radiography 

related strength and density J. Testing Evaluation 22 343-50 

of silicon nitride ceramics Mater. Evaluation 52 600-6 

special issue on Computer-Based Medical Systems 24 57-63 

of silicon nitride Ceram. Eng. Sci. Proc. 7 839-60 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.6~9 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.7 Adaptive control of a negative ion source 

Stanley K Brown, William C Mead, P Stuart Bowling and Roger D Jones 

Abstract 

We describe a project in which we developed an automated adaptive controller based 
on the CNLS artificial neural network and evaluated its applicability for the tuning 
and control of a small-angle negative ion source on the discharge test stand at Los 
Alamos. The controller processes information obtained from the beam current waveform 
to determine beam quality. The controller begins by making a sparse scan of the four- 
dimensional operating surface. The independent variables of this surface are the anode 
and cathode temperatures, the hydrogen flow rate, and the arc voltage. The dependent 
variable is a figure of merit that is composed of terms representing the magnitude of the 
beam current, the stability of operation, and the quietness of the beam. Once the sparse 
scan is finished, the neural network formulates a model from which it predicts the best 
operating point. The controller takes the ion source to that operating point for a reality 
check. The operating data are compared with the predicted data to determine the validity 
of the model. As real data are fed in, the model of the operating surface is updated until 
the neural network model agrees with reality. The controller then uses a gradient ascent 
to optimize the operation of the ion source. Initial tests of the controller indicate that it 
is remarkably capable. It has optimized the operation of the ion source on six different 
occasions bringing the beam to excellent quality and stability. 

G2.7.1 Project overview 

The design of this ion source evolved at Los Alamos from an initial Russian design. Its internal processes 
are so complicated that no one has been able to model them. Consequently, control has always required 
human operators. This project was to develop a model of the operation of the ion source using experimental 
data and a neural network. Once the model was developed it would be used to optimally control the ion 
source in normal operation. All of this was accomplished. 

G2.7.2 Design process 

G2.7.2.1 Motivation for a neural solution 

Several attempts at control of this ion source using classical linear techniques as well as some using 
statistical pattern recognition techniques were only partially successful. Several characteristics combine to 
present a difficult control problem: 
0 large multidimensioned control space 
0 

0 non-linear responses 
0 

0 

0 relatively long settling times. 

complex relationships between diagnostics and required control actions 

multiple operating modes with strong history dependence 
substantial drifts within operating and maintenance cycles 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Computation release 9711 G2.7:l 

Copyright © 1997 IOP Publishing Ltd



Engineering 

The multidimensional nature of the source translates to a large complicated control surface that is 
time consuming to map. Because of this and the aforementioned characteristics, especially the nonlinear 
responses, conventional control theory methodology will not work. A more sophisticated controller based 
on a neural network has characteristics that allow it to deal adequately with these issues. 

G2.7.2.2 General description of the ion source 

A cut-away schematic of the ion source is shown in figure G2.7.1. The important parts of the ion source 
that should be noted are the small (0.37 mm) dimension of the gap between the anode and the cathode 
where a 600 V arc occurs, the emission slit where the ion beam emerges as a result of a large (35000 V) 
electric pulse being applied to the source, the small hole in the center of the anode where the hydrogen is 
introduced into the arc region, and the presence of a fairly substantial magnetic field that is used to trap 
electrons in the arc region. These electrons interact with the hydrogen to produce a plasma. Interaction of 
hydrogen molecules with the plasma and with the walls of the arc region form the negative hydrogen ions 
that will make up the ion beam. The ions inside the plasma can be extracted from the source through the 
emission slit by applying a large electric pulse. 

Emhiin Slit > 

Figure G2.7.1. Cutaway schematic through the center of the negative hydrogen ion source. 

The operation of the source is dependent on a proper temperature for both the anode and the cathode, 
the proper amount of hydrogen introduced into the arc region, and the proper voltage applied between 
the anode and cathode to produce an arc. These four variables, the control variables, make up the four 
independent variables of the control function. The dependent variable is a figure of merit that includes 
the quietness of the produced beam, the reproducibility of the beam from pulse to pulse as the arc voltage 
is pulsed, and the total amount of current in the beam produced. This figure of merit is an expression of 
what human operators indicated to us were the important things they looked for when they operated this 
device. 

G2.7.2.3 General description of the neural network controller 

The controller that uses the neural network performs process identification, retains a history of both 
training and operating data, controls the ion source during identification, tuning, and operation, and keeps 
the operator fully informed of the status of the process as it proceeds. The neural network module and the 
controlloperator interface module were set up to reside on two different Sun workstations on our local area 
network. Communication was accomplished through files that were passed between the two processes. 

The various computational blocks showing their relationships can be seen in figure G2.7.2. As with 
most process control, the control system is the heart of it. Requests are made of the control system to 
take a control variable to a new setpoint, to read a data channel, to set a controller to manual, and so 
on. In our experiment, the control system contained setpoint control, PID control, alarm enunciators, data 
logging, and all data readouts. The neural network controller was able to communicate with the control 
system using the same connections as the operator interface. When it decided a change should be made 
in one of the four control variables, it sent a request to the control system and the control system carried 
out the task. The neural network controller block provided for sequencing through the plant identification 
phase, maintaining the database of training and operating data, requesting training of the neural network 

G2.72 Handbook of Neural Computation release 9l i1 0 1997 IOP Publishing Ltd and Oxford Univenity Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive control of a negative ion source 

A 

Figure 62.73. Block diagram of the controller and control system. 

module when required, and reading ion source data from the control system as well as sending changes 
to the setpoints for the control variables. 

G2.7.2.4 Requirements of the neural network controller 

We noted early in the study that changing one of the variables, cathode temperature for example, 
caused changes in other variables. We forced independence of variables by connecting PID 
(proportionalhntegrddifferential) controllers to the two temperatures and the hydrogen gas flow. A PILI 
controller will control the cathode temperature, for example, by changing the corresponding voltage on 
the cathode heater to maintain the temperature on the setpoint. We now felt confident that if the model 
generated by the neural network required a change in cathode temperature, the cathode temperature alone 
would change. 

G2.7.2.5 Mathematical description of the neural network 

The neural network we used was developed at Los Alamos in the Center for Non-Linear Science and 
named the connectionist normalized local spline (CNLS) neural network. It is based on a modified radial c1.6.z 
basis function. 

Consider the identity: 

(G2.7.1) 

where g(z) is the unknown multivariable function that represents the output variable we are attempting to 
control. The modified radial basis function is represented by pj(x)  which is defined by 

pj (2) = pj e[-PjIz-ai 1’1 

where pj is related to the inverse of the width and the center of the function is at xj. Note that the vector 
notation x indicates a vector of all of the independent variables (dimensions), in our case the anode and 
cathode temperatures, the arc voltage, and the hydrogen gas flow. The g(a) we are trying to approximate is 
a figure of merit based on the quality of the beam current waveform and will be discussed in a subsequent 
section. Expanding g(z) in (G2.7.1) as a Taylor series yields 

(G2.7.2) 

The reason that g(z) is approximated by #(x) is that all of the terms of order greater than one 
have been dropped from the Taylor expansion. Note that this is a mathematical approximation rather than 
a heuristic approximation. In equation (G2.7.2), fi is the zero-order term and dj is the gradient term. 
Written this way, we see that these terms can also be regarded as adaptive weights and since they are 
linear the ‘training’ is very fast. We also will not get caught in a local minimum. The widths and centers 

@ 1997 IOP Publishing Lnd and Oxford Univasity Press Handbook of Neural Computation release 9711 G2.7~3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

show up in the exponent and consequently are difficult to train. In our work, choosing widths to extend 
over the full space (i.e. setting the /3 equal to 1) and setting the centers randomly throughout the space 
seemed to work well. The iterative fitting algorithms become: 

and 

(G2.7.3) 

(G2.7.4) 

where OL is a ‘learning’ rate. We set this to 0.1. 
In practice, one uses the training data-in our case all the vectors of independent variables-and 

applies equation (G2.7.2) to obtain corresponding approximate values of the dependent variable. The fj 
and dj are found by applying (G2.7.3) and (G2.7.4) over and over for each value calculated from (G2.7.2) 
until the difference from one superscript p to the next is minimized in a least-squares sense. 

G2.7.2.6 Petfonnance features 

Although one wants to react to changes in operation within a control cycle (200 ms for the ion source) 
in this case we realized that the long settling times for temperatures would allow us to perform whatever 
calculations were required between the times when the controller could make decisions. The control 
system that we were interfaced with provided us with an environment that removed the problems of 
interacting directly with the device hardware. Even reading operating data was a matter of issuing a call 
for data to the network through subroutine calls. Our only problem was working out a semaphore-like 
method to indicate when the neural network calculations were finished. There were no real performance 
constraints. 

G2.7.3 Preprocessing of data 

We derived the figure of merit from measurements of the beam current waveform. A Faraday cup 
intercepted the entire beam and the beam current waveform was recorded by the EPICS control hardware. 
Once it was transferred to the workstation, we calculated a figure of merit by summing three terms extracted 
from a time window in the middle of the pulse. The first term, which is positive, is the average of the 
beam current in the time window, The remaining two terms were negative, being formulated as penalties 
for adverse beam qualities. Beam noise was evaluated by taking the difference between the actual and 
a low-pass-filtered version of the waveform. We evaluated the pulse-to-pulse variation by computing the 
rms variation of the beam current integral. These three terms were combined with coefficients that made 
the controller about equally sensitive to each factor for typical source operation conditions. 

G2.7.4 Training methods 

Before the ion source could generate a beam the anode and cathode temperatures had to be brought to 
the proper point. Following this step, the hydrogen valve was opened and the gas was pulsed into the 
arc region. This was followed shortly afterwards by pulsing of the arc power supply. Once an arc was 
established, the extraction pulser was slowly ramped to operating level. These steps normally produced 
a beam, although it was not optimized. An automated recipe was implemented for this sequence. We 
performed sparse scans of the operating space to initialize the controller after major ion source maintenance. 
At other times when the machine had been shut down and idle for a short period, e.g. overnight, we were 
able to use operating data from preceding runs to initiate the optimization. 

The fist  problem was how to cover the space without generating so many data that training and 
operating would take excessively long. To address this, we fist  decided to bound each of the variables 
with a maximum and minimum value determined from operators’ experience. Second, each of the variables 
was ‘discretized‘. Discretization was probably critical to the success of the project. We divided the ranges 
of each of the variables into seven discrete parts, numbered from zero to six. The values of our independent 
variables could only take on the values associated with the zero to six on their scale. This arrangement 
still contained 2041 (74) different coordinates on the control map. Consequently, for training, we also 
chose to scan the control surface sparsely. 

G2.7:4 Handbook of Neural Compurafion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive control of a negative ion source 

We began the identification phase by generating a set of 36 fairly evenly spaced points on the control 
surface. This was done by using discrete points 1 ,  3, and 5 for anode temperature and arc voltage and 
1 and 5 for cathode temperature and hydrogen flow rate. We did this by holding three of the variables 
constant while the fourth was stepped through its discrete points. The next variable was stepped and the 
first was then backed to its starting point. Since the changes to the arc voltage and the hydrogen flow 
were effectively instantaneous, a typical identification scan required no more than two hours. 

A trial model of the process was built by the neural network using the identification data. Next, the 
controller asked the network to predict the coordinates for the best figure of merit. The controller then 
adjusted the control variables to those coordinates. After the ion source was allowed to settle, waveforms 
of the beam current were taken and a new figure of merit was calculated. This was compared with the 
prediction. If the difference between the two was greater than a preset convergence criterion, this new 
observed figure of merit, along with its independent variables, was added to the database and a new model 
was generated. This iteration cycle from (i) model training to (ii) predicting a new operating point to (iii) 
data acquisition was repeated until adequate convergence between the measure and predicted figures of 
merit was obtained. The computation time required to train the network with a set of data was much less 
than 30 s on a Sun 3 workstation, giving us enough time to generate models from networks configured 
with centers spread in three different random patterns. We used the network that produced the best result 
at each step. 

Once the network had produced a model that agreed with the data obtained from the ion source 
(rms error over the whole data set of less than 0.05) the control variables were adjusted to provide the 
largest figure of merit. Then, to optimize the operation the control variables were adjusted again, using 
a gradient ascent approach until the figure of merit was maximized. To remove problems of long-term 
drifts the control variables were occasionally dithered and the maximum figure of merit was again sought 
by gradient ascent. 

G2.7.5 Interpretation of the network output 

By using an ordered set of four numbers to indicate the coordinates of each of the independent variables 
(anode temperature, cathode temperature, arc voltage supply, hydrogen gas flow rate) we can identify an 
operating point on the control surface. Thus, the set (6352) indicates that the anode temperature is at its 
highest operating point of discretized values, the cathode temperature is at its median value, the arc voltage 
is at the second-highest value, and the hydrogen flow rate is two from the lowest. Using this method, 
on the six different runs we found that the best operating points were at (6641), (6633), (4464), (6133), 
(6134), and (6160). With so few runs it is difficult to see any trends in these operating points. These 
six points seem not to be related. However, each of these points was a good operating point from the 
standpoint of the figure of merit and provided a very acceptable beam. The figures of merit were 0.692, 
0.691, 0.691, 0.696, 0.694, and 0.682, respectively. Between the fifth and sixth runs, the ion source was 
disassembled, cleaned, and reassembled. One might have expected, therefore, that the first and sixth runs 
would have had figures of merit that would have been much closer to each other. 

Figure G2.73. Single waveform of the beam current on the Faraday cup. 

Figure G2.7.3 shows a single waveform of the beam current. For comparison purposes figure G2.7.4 
shows a suboptimal waveform with some noise on the beam current. This waveform would be graded 
down due to this noise. Figure G2.7.5 shows the six optimized waveforms from six different days plotted 
on top of one another. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.75 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Figure 62.7.4. Single waveform from a suboptimally tuned ion source. 

Figure 62.7.5. Six optimized waveforms overplotted. 

It is easy to see from this figure that the waveforms produced by the controller optimizing the ion 
source are quite similar. In fact, there is a less than 10% deviation in these six waveforms. At the end of 
these six runs the ion source was preempted for ion source development work. 

G2.7.6 Development environment 

G2.7.6. I Description of the real-time control system 

The real-time control system we used is a software toolkit known as EPICS (experimental physics and 
industrial control system). The toolkit contains drivers for the various hardware interface modules in 
use, a graphical operator interface builder, a graphical database builder, and a set of library routines that 
allow application type programs (C, Fortran, and the like) to interface directly with the control system 
to obtain data or issue commands, independent of where on the network the device exists. A graphical 
operator interface window is automatically connected to the control and monitor points that are defined 
when it is built. The actual interface to the ion source is contained in a W E  crate and is controlled by 
a Motorola 68020. The operating system it uses is the VxWorks system. The crate is connected to an 
ethemet backbone to which the Sun workstations are also connected. This provides a modular method 
of connecting various pieces of large experiments together and providing for operator monitoring and 
supervisory control. 

G2.7.6.2 Description of the user inteface environment 

Several operator interface windows were built for this project using the EPICS graphical interface builder. 
These provided for operator setpoint changes as well as operator monitoring facilities. These could be 
tiled on and off the operator workstation. 

Another type of user interface was built for the neural network controller that uses the X-window 
library. This controller performed the actual identification and optimization. Using this interface, the 
controller is started and stopped. The various phases *at the controller moves through are monitored. It 
was also set up to run in simulation mode. This tumed out to be very beneficial when it came to ensuring 
that the controller was running properly prior to attempting control of the ion source. 

G2.7:6 Handbook ofNeuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive control of a negative ion source 

G2.7.7 Conclusions 

The neural network controller that was built to tune and optimize the operation of a negative hydrogen 
ion source at Los Alamos has proved itself to be remarkably capable. We have been able to quantitatively 
map the operating space and detect and compensate for both small and large drifts in source operation. 
It has tuned the ion source from first arc to a good stable beam in an average time of 2.5 hours on six 
different days. It has also shown itself capable of recovering from faults (usually a system crash) quickly 
and with little difficulty. Once it has optimized ion source operation it has maintained good beam quality 
for 5 hours with no apparent limit. Further experimental effort might provide some indication of why, on 
subsequent runs, the operation does not end up at the same or a neighboring spot in the operating space. 
Further work would also undoubtedly uncover many questions that would benefit from further research. 

Acknowledgement 

This project was funded from internal laboratory research and development funds. The authors are very 
grateful for that support. 

Further reading 

1. Hiskes J R, Karo A and Gardner M 1976 Mechanism for negative-ion production in the surface-plasma negative- 
hydrogen-ion source J. Appl. Phys. 47 3888-95 

A fairly detailed description of the processes that occur in the surface plasma source that produce the charged 
species. It also contains a description of the ion source itself. 

Jones R D et a1 1990 Nonlinear adaptive networks: a little theory, a few applications Los Alamos National 
Laboratory Report LA-UR-91-273 

This text contains much of the theory behind the formulation of the CNLS net along with its relationship to other 
networks. Some interesting applications are also discussed. 

2. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G2.7~7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.8 Dynamic process modeling and fault prediction 
using artificial neural networks 

Barry Lennox and Gary A Montague 

Abstract 

This case study presents two practical applications where artificial neural networks 
(ANNs) have been used to solve difficult process engineering problems. Firstly, ANNs 
are shown to provide a more accurate process model of a vitrification process than was 
possible using linear techniques. In the second application ANNs are applied in a novel 
way in which the residuals of the models are monitored in order to detect the imminent 
failure of a vessel used in the vitrification process. 

G2.8.1 Introduction 

Two applications of ANNs are demonstrated in this case study using real process data. Firstly, in 
section G2.8.3, the methodology followed to develop an accurate ANN model of a vitrification process 
is demonstrated. Vitrification is the process which encapsulates highly active liquid waste in glass to 
provide a safe and convenient method of storage. The second application, detailed in section G2.8.4, again 
employs ANNs, but this time they are applied in a novel way in which they are used to capture nonlinear 
system characteristics and then recalled to provide a means of detecting the imminent failure of a vessel 
used in the same vitrification process. 

The following section provides a detailed description of the process which has been studied in this 
work. 

G2.8.2 Process description 

The system under investigation in this work concerns a vitrification process operated by British Nuclear 
Fuels Limited at their Sellafield site in Cumbria. This process encapsulates highly active liquid waste 
obtained in the reprocessing of spent nuclear fuel elements in glass to form solid blocks of waste for safe 
and convenient storage. 

The process is a two-stage semicontinuous operation. The liquid waste is initially fed continuously 
into the first stage of the process, known as the calciner. The calciner is a long, cylindrical vessel which is 
rotated inside a heated furnace. As the liquid waste flows down this vessel it is successively evaporated, 
dried, and partially denitrated. The resulting dry powder, known as calcine, is then discharged under 
gravity into the second stage, the melter vessel. This vessel is elliptically shaped and heated by electrical 
induction coils. After every 10 minute period the wall temperatures in the melter are compared to a high 
and low preset temperature limit. The power supplied to the induction coil is then adjusted accordingly 
using a PLC controller. 

Glass frit is also fed continuously into the melter vessel, in which it forms a molten mixture with 
the calcine. The level in the melter rises steadily until a certain point when the contents of the vessel are 
discharged into a product storage container positioned below the melter. This container is then sealed, 
cleaned, and moved to the vitrification product store. The operation of discharging the melter contents is 
known as ‘pouring’. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neural Computution release 9711 G2.8:l 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Heat transfer mechanisms in the melter are complex and highly dependent upon the contents of the 
vessel. During pouring, molten waste will be drained from the vessel resulting in an increase in the heat 
transfer from the vessel walls to the melt. This causes a sudden increase in the melter power requirement. 
Unfortunately, the response of the control system to the increased power requirement is slow and therefore 
the melter wall temperature falls sharply. 

This large thermal disturbance exerts significant thermal stresses on the walls of the melter vessel. 
These periodic stresses are thought to have been responsible for a small number of these vessels fracturing 
before their full life expectancy had been reached. These fractures resulted in increased downtime costs 
as well as extra costs incurred in the disposal of the radioactive vessel itself. 

In an attempt to reduce these costs BNFL is investigating techniques for improving the present control 
strategy for this process by utilizing both linear and nonlinear models. 

The objectives of this study were firstly to attempt to develop an accurate model of the process and 
secondly to provide a technique which could allow the detection of imminent vessel failure. The next 
section in this paper describes, in detail, the procedure which was followed to develop a model capable 
of predicting the wall temperature of the melter vessel. 

G2.8.3 Model development 

G2.8.3.1 Process data 

The raw data supplied for this modeling exercise were the temperature of the melter, the power supplied 
to the induction coil, and the level of waste in the vessel. Previous studies by BNFL had shown that the 
vessel temperature was dependent upon the power supply and also the level of waste in the vessel. These 
measurements were supplied from the histories of three melter vessels. 

G2.8.3.2 Modeling results using artificial neural networks 

The objective of this study was to develop an ANN model of the process which could then be compared 
to the prediction accuracy of a linear model. 

The term artijicial neural network encompasses a massive range of model structures and architectures 
(Lippman 1987). The choice of architecture is very much problem specific; however, for the mapping of 
nonlinear systems a layered architecture is used ordinarily. This form of architecture is commonly referred 

~ 2 . 3  to as afeedfonvard network and comprises an input layer, which introduces the input variables into the 
network, the output layer, from which the network outputs are obtained, and one or more hidden layers 
located in between the input and output layers. 

Since the melter vessel is clearly a dynamic system, a dynamic element must also be incorporated 
into the neural network. This is typically achieved by utilizing a time series of input variables in the same 
manner as used in linear modeling. This technique can, however, lead to large numbers of input variables 
and network weights, which in turn leads to very long and inefficient training times. A more elegant 
approach to introducing dynamics into the ANN model is to pass the output of the input and hidden layer 
nodes through a first-order low-pass filter. A discrete time representation of these filters transforms the 
neuron output as follows: 

yf(t) = SZyf(t - 1) + (1 - SZ)y(t). 

The values of the filter time constants SZ are not known a priori and must therefore be determined along 
with the network weights, when the network is trained. 

Once the network architecture and topology have been selected the network is trained on actual 
process data. The aim of the training procedure is to reduce the sum of the squared difference between 
predictions of the network and the desired output over the training data set. The training algorithm used 
in this study was the Levenberg-Marquardt search direction method. This was used in preference to the 

c1.2.3 more commonly used backpropagation training algorithm because it has been shown that this algorithm 
can significantly reduce training times (Demuth and Beale 1994). 

When training an ANN it is possible, due to the efficiency of the training algorithm, to minimize 
prediction errors greatly and hence fit training data sets with extreme accuracy. This can occur to such a 
degree that the ANN model will begin to fit secondary system characteristics such as noise and measurement 
errors. A network trained to such accuracy will be too specific to the training data set and will generalize 

G2.8:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F'ress 

Copyright © 1997 IOP Publishing Ltd



Dynamic process modeling and fault prediction using artificial neural networks 

poorly when applied to other plant data. In order to prevent this occurrence some form of model validation 
is typically employed during the training procedure. 

In this study, the prediction accuracy of the network was measured over a validating data set at 
periodic intervals during the training procedure. The training procedure was terminated when the prediction 
accuracy of the model over the validating data set began to increase. At this point the network weights 
were stored. The network was then finally tested by measuring the prediction accuracy over a testing data 
set. It is important that within the training data set all the system characteristics are represented and that 
the testing and validating data sets contain a similar quality of data as used to train the model and at least 
half the quantity of data. 

To summarize, the network architecture used to model this process was a feedforward network with 
dynamic processing in the nodes. The inputs into the model were the power supplied to the induction coil 
and the level of waste in the melter vessel and the output of the model was the temperature of the melter. 
The best ANN modeling results were obtained using five nodes in a single hidden layer. The prediction 
errors over the training, validating, and testing data sets obtained using this model were 8.8 "C, 9.5 "C, 
and 9.9 "C, respectively. 

These figures compare with 11.4 "C, 9.7 "C, and 11.3 "C obtained using a simple linear autoregressive 
model with exogeneous signal (ARX). Figure G2.8.1 compares the actual wall temperature of the vessel 
with that predicted using both the ARX and the ANN models. It is evident from this graph and also 
from the error statistics that the neural network is slightly better able to model this system than the linear 
technique. Other linear modeling techniques, such as autoregressive with moving average and exogeneous 
models, were also investigated and found to be outperformed by the ARX model. 

Testing data 
I I I 

I 1 I 

2600 2800 3Ooo 3200 3400 
Sample Number 

Figure G2.8.1. Comparison of linear and ANN model predictions. 

The objectives of this work were not only to develop an accurate model of the process but also to 
investigate whether it was possible to detect signs of imminent vessel failure by analyzing the process 
data. This next section details the development of a condition monitoring system for just such a purpose. 

@ 1997 IOP Publishing Ltd and Oxford University Press H a W o k  ofNeural Computation release 9711 G2.8:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.8.4 Application of neural networks to condition monitoring 

As described earlier in this case study, as a result of the thermal stresses the melter vessels are subjected 
to, a small number of vessels failed before their full life expectancy had been reached. These unexpected 
melter failures incur large disposal and handling costs for BNFL and it is therefore desirable for a system 
to be developed which could predict when these failures may occur. 

It was postulated that by studying the thermal Characteristics of the melter an indication of the present 
condition of the melter vessel could be obtained. As a melter aged it was expected that due to the distortion 
of the melter vessel the thermal characteristics of the melter would possibly change. This distortion should 
bring the vessel walls closer to the induction heating coils, thereby improving heat generation and hence 
similar temperatures are achieved with apparently less power. It was therefore believed that if an accurate 
temperature prediction model could be generated to model the early thermal characteristics of the vessel, 
then as the thermal characteristics changed the prediction accuracy of the model would begin to deteriorate 
until the point of melter failure. This model or, rather, the prediction error obtained using this model, 
could be used as an indication of forthcoming melter failure. 

The previous section illustrated the suitability of ANNs for modeling the melter process. It identified 
a feedforward neural network with localized dynamics as the most suitable network architecture with which 
to model the process. Therefore, this is the model which was used throughout this condition monitoring 
study. 

To investigate the relationship between the age of the melter and the melter’s thermal characteristics, 
ANN models were trained using data collected from the early stage of a melter life; the melter used for 
this initial work was known as melter 2. The prediction accuracy of these models was then tested on data 
collected later in the vessel’s life. The prediction errors produced by these models were determined for 
each individual pour in the melter’s life. These error statistics were then analyzed to see whether there 
were any signs of the vessel aging present in the prediction errors of the model. 

The methodology used in this work was to train the ANN on a series of 12 ‘pours’ collected at the 
start of the melter life. This model was then tested using the following six pours and finally the RMS 
errors obtained using this model were monitored over the life of the vessel. Initially, this hypothesis was 
tested on a melter vessel which actually failed before its full life expectancy was reached. It was found 
that by plotting the average of the last five melter batch RMS errors calculated throughout the life of the 
melter vessel, as shown in figure G2.8.2, it became clear that there was a trend in the error profile towards 
the end of the melter lifetime. The performance of the ANN model deteriorates as the point of vessel 
failure is approached. Investigations on two more melter vessels confirmed that signs of melter failure 
could be detected using this methodology. 

In summary, it would appear from the investigation of three melter vessels that signs of imminent 
melter failure are visible in the error trends of the temperature prediction. It is also evident that this vessel 
failure seems to occur when the RMS error profile reaches approximately twice the error obtained over 
the training and testing data sets. 

G2.8.5 Conclusions 

This contribution has shown that the thermal characteristics of the melter vessel used in the vitrification 
process can be modeled successfully by utilizing the techniques of artificial neural networks. Prediction 
errors were found to be lower when using ANNs to model the process rather than a linear ARX model. 
This is due to the ability of ANNs to capture the system nonlinearities present in this process. 

This contribution has also described a novel condition monitoring method which was devised for the 
melter vessel. This procedure involved training an ANN model on the early thermal characteristics of the 
melter vessel and then monitoring the prediction error produced by this model later in the lifetime of the 
melter. The prediction accuracy of this model was found to deteriorate significantly towards the end of 
the life of two melter vessels, clearly indicating a change in thermal characteristics. 

The potential for using ANNs as a condition monitoring tool for the melter process has been illustrated. 
Further development work is now required in the form of testing the developed condition monitoring 
procedure on data collected from other melter vessels. 

G2.8:4 Hudbook of Neurul Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Dynamic process modeling and fault prediction using artificial neural networks 

I I I I I 1 I I I I 

. . . . . Average Traininwesting Error 

~ ~ _ _ - _ _ - - - _ _ _ _ _ _ _ _ - - _ _ _ _ _ - _ _ - _ _ _ _ _ -  
40- - 

s 
w 3 5 -  
v) 

- 

10 20 30 40 50 60 70 80 90 100 
Pour Number 

Figure G2.8.2. RMS error profile for melter 2. 

Acknowledgements 

The authors would like to acknowledge the financial assistance of the Department of Trade and Industry 
and the industrial members of the NeuroControl Club. The authors are also grateful to the contribution 
made by the Department of Chemical and Process Engineering at Newcastle University and to Bill Harper 
and Craig Haughin at BNFL. 

References 

Demuth H and Beale M 1994 Neural Network Toolbox for MATLAB (Mathworks) 
Lippman R P 1987 An introduction to computing with neural nets IEEE ASSP Mag. 4-22 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neurul Computution release 9711 G2.8:5 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.9 Neural modeling of a polymerization reactor 

Gordon Lightbody and George W Irwin 

Abstract 

Model predictive control techniques such as generalized predictive control (GPC) (Clarke 
et al 1987) and dynamic matrix control (DMC) (Rovlak and Corlis 1990) have proven 
successful when applied to the control of industrial processes. It has been demonstrated 
that such linear predictive control techniques can be improved by including nonlinear 
system models (Morningred er a1 1990). In particular, both GPC (Montague et a1 1991) 
and DMC (Hernandez and Arkun 1990) have been extended by utilizing a nonlinear 
neural predictive model of the process. This industrial case study focuses on the 
application of neural modeling to improve the control of a polymerization reactor. The 
industrial system is introduced, highlighting the problems of accurate polymer viscosity 
control, based on a delayed measurement. This work presents a nonlinear predictor 
developed around the multilayer perceptron that can be used to remove this measurement 
delay. Finally, a platform is proposed to allow for the on-line implementation of neural- 
network-based predictive controllers. 

G2.9.1 Project overview 

The polymerization reactor is essentially a continuously stirred tank reactor, into which a number of 
constituent ingredients are fed. The contents of this reactor are continuously stirred, using a variable- 
speed drive, for which both measurements of speed and torque are available. On-line measurements 
are also provided for all the flow rates and the viscosity of the polymer product. It is the objective of 
the control system to regulate the product viscosity, keeping it constant and immune from disturbances, 
particularly those due to feed-rate changes. B o  catalysts are added to the reactor, a compound CA which 
promotes polymerization and a compound CB which acts to inhibit polymerization. Hence by increasing 
the ratio of the flow rate of CA to that of Cg, the probability of longer polymer chains is higher and hence 
the viscosity is increased. For this plant the flow rate of catalyst CA and the flow rates of all the other 
constituent compounds along with the speed of the variable-speed drive are set for specific feed rates, 
with the flow rate of the inhibitor catalyst CB manipulated to regulate the viscosity. A cascaded PID 
control structure is used here, with the faster inner loop operating from the motor torque measurement 
(which essentially is a measure of viscosity) and the outer loop utilizing the slower and more accurate 
measurement of viscosity provided by an on-line viscometer. The present viscosity control system is as 
shown in figure G2.9.1. 

From a detailed analysis of plant data within the Matlab package, the reactor could be represented 
by two separate subsystems (figure G2.9.1). The first subsystem, S1, represents the process within the 
reactor itself and how the torque depends on the flow rate of catalyst CB and on the various disturbances 
affecting the plant. The second subsystem, S2, represents the change in viscosity between the reactor and 
the viscometer and the transformation of torque to viscosity. As such, all the disturbances affect the first 
subsystem and are reflected by fluctuations in the torque which are then passed into the second subsystem 
to cause fluctuations in the viscosity. 

It was determined that there was present in S2 a significant pure time delay which was recognized 
as being primarily responsible for the problems in providing accurate control for this system. In order to 

@ 1997 IOP Publishing Ltd and Oxford University F'ress Handbook of Neural Computation mlcasc 9711 G2.9: 1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Figure G2.9.1. The polymer viscosity control structure. 

obtain a value for this time delay the linear A M  model structure of (G2.9.1) was assumed to model the 
dynamic relationship between the torque signal and the measured viscosity. Here, y ( k )  and u ( k )  represent 
the viscosity and torque, respectively, with e (k )  being the prediction error: 

A ( z - ' ) Y ( ~ )  = Z - ~ B ( Z - ~ ) U ( I C )  + e ( k ) .  (G2.9.1) 

The A and B polynomials in the delay operator are assumed to be both of fixed order m.  The data 
are split into a modeling and a test set. The dead time d ,  which resulted in the optimum generalization 
results over the test data set, was then assumed to be the best estimate of the actual system dead time. In 
this particular problem, with a sample time of one minute, and with the order m = 6, a system dead time 
of three minutes resulted. 

G2.9.2 Predictor design process 

G2.9.2.1 Neural predictive modeling 

c1.2 Due to the nonlinear nature of the plant, it was proposed that a multilayerperceptron (MLP) be trained 
to predict polymer viscosity from past torque and viscosity data and hence remove the three minute time 
delay. Data were collected from the distributed control system (DCS) and then analyzed using Matlab. The 
viscosity and torque data were conditioned using a third-order low-pass Butterworth filter, then normalized 
so that both torque and viscosity sequences were constrained to the range [ - 1 .O, 1 .O]. These normalized, 
filtered data were then decimated by a factor of six to yield a sample time of one minute. The model 
structure of (G2.9.2) was proposed, with a multilayer perceptron utilized to form the nonlinear function. 
Here T ( k )  and u(k) represent the normalized torque and viscosity measurements: 

(G2.9.2) 

G2.9.2.2 Training algorithms 

The training of the multilayer perceptron network to approximate this function represents a nonlinear 
ci.2.3 optimization problem. Steepest-descent-based algorithms, such as backpropagation, have been shown 

83.4.4.4 to be restrictively slow and subject to local minima. Second-order techniques, such as the Levenberg- 
83.4.4.4 Marquardt method (Ruanno et a1 1991) or the Broyden-FZetcher-GoZdmrb-Shanno (BFGS) method 

(Battiti and Masulli 1990), have been found to provide a significant acceleration of the training process 

G2.9:2 Hundbook ojNeuml Computation release 97t1 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural modeling of a polymerization reactor 

over backpropagation. In this work the memoryless version of the BFGS algorithm was used. This is a 
batch method in which the cost is as determined in (G2.9.3), where w(k) represents the present weight 
vector for the network, N T ~  is the size of the training set with 6 ( i )  and u( i )  the estimated and actual 
viscosities, respectively: 

(G2.9.3) 

The weight update equation, utilizing the memoryless BFGS algorithm, is as summarized below, 
where the gradient of the cost is determined at each instant using batch backpropagation. 

(G2.9.4) 

The step size q ( k )  is chosen on each iteration using an efficient single-line search technique. In 
extended tests for a wide variety of nonlinear approximation example problems this training algorithm 
was found to be typically 20 times faster than standard batch backpropagation and was less subject to 
the problems of local minima, Likewise, this algorithm was found to provide consistently comparable 
performance to the Fletcher-Reeves conjugate gradient technique with optimal reset value (Irwin et al ~3.4.4.4 

1994). The choice of this reset value is not straightforward and has been found to greatly affect the 
performance of conjugate gradient algorithms. As such, the use of the memoryless version of the BFGS 
algorithm is to be recommended, due to its speed and its ease of use, as it requires no reset value and the 
gain choice is automatic. 

A parallel version of the memoryless BFGS algorithm was then devised, taking advantage of the 
concurrency present in the training set. To improve the processing efficiency, a novel parallel single-line 
search routine was developed. This training algorithm was mapped efficiently onto a pipeline of six TSOO 
transputers mounted on a Niche platform connected to a Sun 4/330 server. It was found that this parallel 
algorithm could typically reduce the training time of the multilayer perceptron to 1 per cent of that achieved 
using standard batch backpropagation (Lightbody and Irwin 1992). 

152.9.2.3 Neural predictive modeling of viscosity 

From the data available, a range of training and test sets was generated, corresponding to a number of 
possible model orders. It was assumed that the number of hidden units was fixed as ten hyperbolic 
tangent nodes. A model structure was selected with orders n = 6 and m = 3, that provided the lowest 
generalization cost. For this model structure, the number of hidden units was selected in a similar manner 
by training a wide range of networks and selecting the one that best balanced generalization performance 
against network size. Using this technique a network with an MLP(9:14:1) structure was decided upon, 
with a linear output neuron. Figure G2.9.2 shows the response of the resultant neural model over the 
training set. 

When the network was applied to the test data, it was found that although the high- and middle- 
frequency dynamics were accurately reproduced, there was a low-frequency or DC offset. Figure G2.9.3 
shows the response of the neural predictor over the test set. This was compensated for by utilizing the 
present output of the plant, U@), and the predicted estimate of the viscosity, 6(klk - 3), to generate a 
correction term d ( k ) ,  as in (G2.9.5): 

d ( k )  = ~ ( k )  - 6(klk - 3 ) .  (G2.9.5) 

This correction d ( k )  was filtered to increase immunity to noise and to ensure that it reflected unmodeled 
low-frequency errors. The correction term can then be expressed as in (G2.9.6). where T ( z - ' )  represents 
a suitable filter: 

i&(k + 31k) = O(k + 31k) + T ( z - ' ) d ( k ) .  (G2.9.6) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 G2.9~3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

actual viscosity 
I I 

- predicted viscosity 
I t I 

0.4 I 
0.2 

.- J o  

€ 
g -0.2 

> 

-0.4 

-0.6 

Figure G2.9.2. The response over the training set. 

lt 1 
0.51 d 1 4  

.- $ 0  

€ 
> 

-0.5 

-1.5 I 1 - actual viscosity 

- predictedviscosity I I I  
-0 200 400 600 800 1000 1200 1400 

sample number 

Figure 62.93. Response of the neural predictor over the test set. 

The complete neural predictive estimator is given in figure G2.9.4, including low-pass Butterworth filters 
and normalization at the inputs, tapped delay lines to provide the past window of data, and a multilayer 
perceptron with structure MLP(9:14:1), to provide the nonlinear function, and a correction filter to remove 
DC and low-frequency offsets. The filter T(z- ' )  was chosen to be the simple first-order filter of (G2.9.7): 

(G2.9.7) 

When applied to the data of the test set this corrected predictor provided excellent results, predicting 
accurately over the measurement delay as shown in figure G2.9.5. 

G2.9:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural modeling of a uolymerization reactor 

Figure 62.9.4. The complete neural Smith predictor for viscosity. 

i 
0.5 

.- i o  
€ 
> 

' "7 
2 -0.5 

-1.5 I actual viscosity 1 
I -. predicted viscosity 

I I 

200 400 600 800 1000 1200 1400 
sample number 

Figure 62.9.5. The response of the corrected predictor over the test set. 

G2.9.2.4 On-line implementation of a neural viscosity predictor 

Many distributed control systems (DCSs) do not have the capability to allow the implementation of 
sophisticated algorithms, such as neural network models. To facilitate the development of on-line predictive 
models and for on-line training of neural networks, a hardware platform was developed. This was based 
on a personal computer, running Lab-Windows software and connected to the DCS system using a data 
acquisition board. This software offered a powerful environment for the development of neural models 
and also allowed for control in software of the data acquisition board. The structure is as described in 
figure G2.9.6. 

In this manner, it was not necessary either to add or to break connections between the DCS and 
the plant. Separate channels were set up in software within the DCS, so that key measurements could 
be copied onto these channels and hence accessed, via the interface, by the software on the development 
platform. Similarly, outputs from the development platform could appear both on the screen of the personal 
computer and via the extra DCS channels, set up as inputs, on the operating console. In this way, they 
would be treated and logged as if they were process variables. 

@ 1997 IOP Publishing Ud and Oxford University Press Hundbook of Neurul Computution release 9711 G2.95 

Copyright © 1997 IOP Publishing Ltd



Engineering 

4 - 2 0 d  . 

Figure 62.9.6. The development platform structure. 

G2.9.3 Conclusions 

This work has presented an industrial polymerization reactor as a suitable case study to demonstrate the 
potential of neural modeling. The viscosity control structure was discussed, highlighting the problems 
introduced by the measurement delay at the viscometer. A neural network was trained to predict over 
this three minute measurement delay, using past torque and viscosity measurements. The importance of 
a correction filter was demonstrated for the removal of errors caused by the presence of low-frequency 
unmodeled system dynamics. Finally, this predictor was implemented on-line, interfaced to the plant DCS 
using a commercial data acquisition board. 

Acknowledgement 

The financial support of du Pont (UK) PLC and the Industrial Research and Technology Unit (IRTU), is 
gratefully acknowledged. 

References 

Battiti R and Masulli F 1990 BFGS optimisation for faster and automated supervised learning Proc. Int. Neural Net. 

Clarke D W, Mohtadi C and Tuffs P S 1987 Generalised predictive control-Part 1. The basic algorithm Automatica 

Hernandez H and Arkun Y 1990 Neural network modelling and an extended DMC algorithm to control nonlinear 

Irwin G W, Lightbody G and McLoone S F 1994 Offline training of feedforward neural networks Proc. Irish DSP 

Lightbody G and Irwin G W 1992 A parallel algorithm for training neural network based nonlinear models Proc. 2nd 

Montague G A, Willis M J, Tham M T and Moms A J 1991 Artificial neural network based control Proc. IEE Int. 

Morningred J D,  Paden B E, Seborg D E and Mellichamp D A 1990 An adaptive nonlinear predictive controller Proc. 

Rovlak J A and Corlis R 1990 Dynamic matrix based control of fossil power plants Proc. Int. Joint Power Gen. Con$ 

Ruanno A E B, Fleming P J and Jones D I 1991 A connectionist approach to PID auto-tuning Proc. IEE Int. Con$ on 

Con5 vol 2, pp 757-60 

23 137-48 

systems Proc. ACC vol 2, pp 2454-9 

and Control Con$, IDSPCC'94 (Dublin) 

IFAC Symp. on Algorithms and Architectures for Real-Time Control (S  Korea) 

Con5 on Control vol 1, pp 266-71 

ACC vol2, pp 1614-9 

(Boston, MA) 

Control vol 2, pp 762-8 

m 9 : 6  Hundbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.10 Adaptive noise canceling with nonlinear filters 

Wolfgang Knecht 

Abstract 

Standard adaptive noise canceling uses linear filters to minimize the mean-squared 
difference between the filter output and the desired signal. For non-Gaussian signals, 
however, nonlinear filters can further reduce the mean-squared difference, thereby 
improving signal-to-noise ratio at the noise canceler output. This work investigates a 
two-microphone beamformer for suppressing directional background noise-an important 
task in, for example, radar, seismic or hearing aid applications. The beamformer includes 
an adaptive noise canceler with a nonlinear filter. Two nonlinear filters are examined: the 
Volterra filter (a specific sigma-pi neuron) and the multilayer perceptron. In the case of a 
single noise source emitting an independent, identically distributed (IID) random process, 
optimum linear and nonlinear performance limits are known for uniformly distributed 
noise. These limits were compared to the actual performance of the two nonlinear 
filters adapted off-line. The third-order Volterra filter and the perceptron with 20 hidden 
neurons performed equally well. For on-line adaptation, convergence speed and steady- 
state performance were scrutinized. In these experiments, the RLS-adapted Volterra filter 
outperformed the perceptron adapted with on-line backpropagation. 

G2.10.1 Introduction 

The Bayes conditional mean is the optimum filter for the mean-squared error (MSE) criterion. Generally, 
the optimum filter output is a nonlinear function of the observed data. An important exception exists: 
when the observed data and the data to be estimated are jointly Gaussian then the Bayes filter is linear 
(Papoulis 1991). In the following, we note several equations from Bayes estimation theory which are 
relevant to our application. 

Suppose we measure a random data vector 

X ( k )  = ( X ( k ) ,  X ( k  - l) ,  . . * , X ( k  - M))T (G2.10.1) 

at time k .  The data vector X ( k )  consists of successive components of the stochastic process X(-). The 
number M is called the filter length. The task is to find an estimate $(k) of a random variable S ( k )  based 
on the data vector X ( k )  such that 

MSE = E [ ( S ( k )  - $(k) )2]  (G2.10.2) 

is minimized. The symbol E[.]  denotes the expectation operator. To simplify notation, the time argument 
k is omitted in the following discussion. If the conditional probability density function p s l x ( . l z )  is known, 
the optimum (Bayes) filter estimates S from a given data vector X = x by 

(G2.10.3) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 9711 G2.10:1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

c1.1.1 

C1.2.8 

G2.10:2 

I , 

Adaptive Noise Canceler 

Figure G2.10.1. Two-microphone beamformer for suppressing directional background noise. 

The Bayes estimator yields the minimum mean-squared error (MMSE) defined by 
+W 

MMSE = / ds / dx  (s - ; B ( Z ) ) ~  p s , x ( s ,  2) (G2.10.4) 
-W RN+l 

where p ~ , x ( - ,  .) is the joint probability density function. 
Adaptive noise canceling and adaptive beamforming will now be viewed within the framework of 

Bayes estimation theory. Consider the adaptive beamformer (Griffiths and Jim 1982) with microphones 
M1 and M2 in figure G2.10.1. The target source emitting the signal T ( . )  is equidistant from M1 and 
M2. An off-axis jammer signal .I(-) impinges on the microphones with a time delay A between M1 
and M2. We model both signals T ( . )  and J ( . )  as stochastic processes. The scaled difference between 
the two microphone signals X(.) = T(J(.) - J ( ,  - A)) contains no target components and is the 
reference input to the adaptive noise canceler (Widrow and Stearns 1985). The scaled sum of the signals 
S(.) = T ( . )  + [(.I(.) + .I(. - A)]/2 is the primary input to the noise canceler. Assuming that T ( . )  and 
.I(.) are independent, the beamformer produces a target estimate ?(.) by minimizing its output power 
E [ ( S ( k )  - Y(k))2] for all k, where Y(.) is the output of the adaptive filter. The signal ?(.) is called 
the ‘minimum variance distortionless estimate’ of the target signal because the beamformer attenuates the 
interference without affecting the target. It must be emphasized, however, that this holds true only when no 
target components exist in the reference channel. A misalignment of the target location, or a microphone 
gain mismatch, will violate this condition and, consequently, the system will partially cancel the target. 

1 

G2.10.2 Nonlinear filtering 

The conditional probability density required for the calculation of the Bayes filter (G2.10.3) is usually 
not available for real signals. Consequently, the (unknown) Bayes filter function must be approximated. 
This work employs the perceptron and the VulterraJilter as the adaptive filter of the beamformer in 
figure G2.10.1. Recently, these two filter architectures have been chosen quite often for approximating 
nonlinear functions. Both filters will attempt to approximate the Bayes filter. For non-Gaussian signals, 
the Bayes filter is generally nonlinear so that a nonlinear filter architecture is required to reach the MMSE. 

The perceptron filter is a simplified version of the time-delay neural network (TDNN) proposed by 
Waibel et a1 (1989). The Volterra filter can be considered as a single sigma-pi or higher-order neuron 
employing the identity function to its weighted and summed inputs. Replacing the activation function 
of the perceptron filter by a polynomial leads to the Volterra filter for which optimum weights can be 
calculated (Knecht 1994). 

G2.10.2.1 The perceptron filter 

We use a fully interlayer-connected perceptron with one hidden layer. It has one output neuron whose 
activation function is the identity function. For the input vector X(k), the output of the perceptron filter 
at time k is 

Y W  = e3 + WZi,3 t a n h [ ~ ; , ~ ~ X ( k )  + e2,ii (G2.10.5) 
N2 

i=l 

~ 

Handbook of Neurul Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Adaptive noise canceling with nonlinear filters 

where the weight vector 201,2~ contains the weights from the input layer 1 = 1 to the ith neuron in the 
hidden layer 1 = 2 and the superscript T denotes the matrix transpose. The weights connecting the hidden 
layer to the output are denoted by WZi,3 .  The biases of the hidden neurons are designated by 02,i and the 
bias of the output neuron is 03. Finally, the total number of hidden neurons is N2. 

In the off-line experiment, the perceptron filter was adapted with the Levenberg-Marquardt algorithm. 
This technique has been shown to be more efficient than backpropagation with adaptive learning rate or 
conjugate gradient backpropagation provided that the total number of weights is limited to a few hundred 
(Hagan and Menhaj 1994). In the on-line experiment, we adapted the perceptron filter with standard 
backpropagation without momentum and with a fixed learning rate. Note that both off-line and on-line 
algorithms cannot guarantee finding the global minimum of the mean-squared error surface in weight 
space. 

G2.10.2.2 The Volterrafilter 

The polynomial or Volterra filter is one of the most popular nonlinear filter realizations. It has been used 
in various applications including channel equalization, echo or noise cancelation, and distortion analysis 
in semiconductor devices. For tutorials on this filter and its training, see Mathews (1991) and Sicuranza 
(1 992) which also list references for these applications. 

For the input vector X(k) ,  the Pth-order Volterra filter of length M yields the output 

P M M  M 
Y ( k ) = h o + C C  e . .  h(n1, ..., n , ) X ( k - n l ) . . . X ( k - n , )  (G2.10.6) 

with no = 0. The kernels or weights are denoted by ho and h(n1, . . . , n,). The filter output depends 
linearly on the weights such that the mean-squared error surface in weight space is a hyper-paraboloid 
with a single minimum. This fact has a very useful consequence, that is, adaptive Volterra filters can be 
described by linear adaptive filter theory. 

The off-line calculation of the optimum Volterra weights for a given order P is as follows. We rewrite 
((32.10.6) as 

Y ( k )  = hTX,(k) (G2.10.7) 

p=l nl=0n2=nl np=n,-I 

where 

hT = [ho, hi(O), . . . , h i ( W ,  h 2 ( 0 , 0 ) ,  . . . , h p ( M , .  . . I MI1 ((32.10.8) 
(G2.10.9) X,(k)  = [ l ,  X ( k ) ,  . . * , X ( k  - M ) ,  X ( k ) 2 , .  . . , X ( k  - 

Analogously to linear filter theory, the optimum weights solve the ‘extended’ Wiener-Hopf equations: 

E[X,Xz]  h = E[X,S] .  (G2.10.10) 

In section (32.10.3, the expectation E [ . ]  was approximated by averages over time assuming ergodicity. 
The Volterra filter was adapted on-line with the standard LMS and RLS algorithms described in Mathews 
(1991). 

G2.10.3 Experiments and results 

For all experiments in this section, we chose the jammer delay A = 1 between microphones. The jammer 
signal J ( . )  consisted of independent, identically distributed (i.i.d.) samples with a uniform probability 
density function. For this particular jammer, we calculated the Bayes filter and the corresponding MMSE 
according to (G2.10.3) and (G2.10.4). The Bayes filter achieves MMSE = 12/(N + 3 ) ( N  + 4), while the 
best linear filter reaches only the suboptimal MSE = 2/(N + 2). The derivations of these formulas can 
be found in Knecht (1995). They are not included here because they are quite complex and would not 
contribute to the understanding of the main concepts of this section. Note that all mean-squared errors are 
normalized to the variance of the primary signal which is one half of the jammer variance. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computution release 9711 G2.10:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G2.10:4 

loo 

E 
1 -  4 lo 
E 
2 5 hidden 

x x x 10 hidden 
1 1 20hidden 

- 2 2  
4 8 12 16 20 

Filter length M 
lo 0 

Figure 62.10.2. Normalized jammer power (MSE) at the beamformer output for perceptron filters with 5 ,  
10 and 20 hidden neurons versus the filter length M = N I  - 1. 

Filter length M 

Figure G2.10.3. Normalized jammer power (MSE) at the beamformer output for 
filter versus the filter length M = N I  - 1. 

G2.10.3.1 Of-line experiment 

We examined the ideal situation where the target signal remains unaffected by 

the third-order Volterra 

the beamformer. Because 
no target components exist in the reference channel, the optimum linear and nonlinear filters do not depend 
on the target. Therefore, the target signal was set to zero. 

The weights and biases of the perceptron filter were initialized with a simple and effective method 
described in Nguyen and Widrow (1990). The MATLABTM routine TRAINLM implements the Levenberg- 
Marquardt algorithm and was used in this experiment to adapt the weights and biases. The training set 
consisted of 6000 input vectors X(1),  . . . , X(6OOO). For each number of hidden neurons NZ and for each 
number of input neurons N I ,  the filter was adapted over 80 epochs. After training, a test set of 1OOOOO 
input vectors was filtered by the perceptron and the test MSE was determined by averaging the squared 
beamformer output samples. The results are summarized in figure G2.10.2. 

The optimum weights of the third-order ( P  = 3) Volterra filter were calculated according to (G2.10.10) 
with 6OOO extended input vectors X,(l) ,  . . . , X,(6000). Note that for i.i.d. jammers with symmetric 
probability density functions, the Volterra weights belonging to even order components of X, vanish. 
Hence, the third-order Volterra filter was used without second-order terms. As for the perceptron, a test 
set of 1OOOOO input vectors was processed by the beamformer with the fixed optimum Volterra weights. 
The normalized test MSE is depicted in figure G2.10.3. 

Handbook of Neural Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Adaptive noise canceling with nonlinear filters 

Table 62.10.1. Maximum learning rates, steady-state on-line and off-line normalized MSEs of the linear 
and various nonlinear filters. For the perceptron, the entries represent ‘quasi’ steady-state MSEs (see text). 
The off-line results were taken from the off-line experiment in the previous section. The filter length was 
M = 8. 

Maximum Steady state 
Filter learning rate MSE Offline MSE 
Linear FIR, LMS 0.02 0.2068 0.2000 
Perceptron, Nz = 5 0.01 0.1866 0.1519 
Perceptron, Nz = 20 0.005 0.1962 0.1136 
Volterra, LMS 0.01 0.1129 
Linear FIR, RLS - 0.2050 0.2000 
Volterra, RLS - 0.1131 0.1129 

a 

a The LMS-adapted Volterra filter did not converge within the sample 
index interval 110 000,30 0001. 

G2.10.3.2 On-line experiment 

In a beamforming hearing aid, for example, the adaptive filter must converge sufficiently fast to adapt to the 
changing environment and to compensate for head movements. The experiments in this section compare 
the convergence speed and steady state performance of the on-line adapted perceptron and Volterra filter. 
Although the test involved only one particular jammer (uniform i.i.d. noise) at filter length M = 8, the 
results reflect a typical filter behavior which was also observed in other simulations with different filter 
lengths and signals. 

The delay between the microphones was again set to A = 1. The target signal was female speech 
(one sentence) sampled at 8 kHz and the input target-to-jammer ratio was zero dB. The perceptron was 
adapted with on-line backpropagation and the third-order (without second-order terms) Volterra weights 
were adjusted with the standard LMS and RLS algorithms. Because the jammer was stationary, the RLS 
forgetting factor A was set to unity. 

When the target is present, the learning rate in the backpropagation (or LMS) algorithm must stay 
below a certain limit to avoid target cancelation. Note that this limit is generally not identical with the 
maximum learning rate which would render the adaptive filter unstable. For linear filters, this form of 
target cancelation is discussed in more detail in Widrow and Stearns (1985). 

The maximum learning rates for the linear finite-impulse-response (FIR) filter, for the perceptron 
with 5 and 20 hidden neurons and for the LMS-adapted Volterra filter were determined as follows. The 
beamformer was run with a series of different learning rates. For each learning rate, we listened to the 
filter output (not the beamformer output) and chose the maximum rate for which the target signal was not 
audible in the output. The maximum learning rates are shown in table G2.10.1. Using these learning rates 
ensured an undistorted target signal at the beamformer output. Larger learning rates would have allowed 
a faster adaptation at the expense of some target distortion. 

Because the beamforming did not affect the target, it was set to zero in the subsequent experiments. 
The beamformer was run ten times employing ten different sets of initial weights and ten different 
uniformly-distributed jammer signals for each filter in table G2.10.1. For the perceptron, the weights 
were initialized again with Nguyen and Widrow’s method. The linear FIR and the Volterra coefficients 
were chosen from a normal distribution with zero mean and one-quarter variance. Figure G2.10.4 depicts 
the ensemble-averaged learning curves as a function of the sample index. The steady-state normalized 
MSEs in table G2.10.1 were estimated from these curves by time-averaging the instantaneous squared 
errors from sample index 10000 to index 30000. For the RLS algorithm, the averages were calculated 
between the indices lo00 and 20000. 

The perceptron learning curves in figure G2.10.4 seem to have reached the steady state after about 
loo00 iterations. In a test simulation of 60000 iterations, however, the MSE decreased further. For 
example, between the indices 40000 and 60000, the MSE of the perceptron with N2 = 20 declined to 
0.1843, Because the perceptron error decayed very slowly over many iterations, the entries in table G2.10.1 
are called ‘quasi’ steady-state MSEs. With a sampling rate of 8 kHz, the perceptron required more than 
one second to reach a quasi-stationary state. It is striking that the perceptron did not perform significantly 
better than the linear FIR filter. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9111 (32.105 

Copyright © 1997 IOP Publishing Ltd



Engineering 

G 2 . 1 0 5  

( a  ) Linear FIR LMS ( b )  Linear FIR RLS 

I 
1 2 3 

io4 Sumples 
( C ) Perceptron N2=5 

IO-':, 

. , , . , I  , 
0 I 2 3 

( e )  Volterra LMS 
Samples IO' 

I 
0 I 2 3 

Samples lo4 

I 

0 0.5 1 1.5 2 

( d  Perceptron N2-20 
Samples IO' 

I I 

1 2 3 
x IO' Samples 

(f) Volterra RLS 

I 

T . . I  I 

.- 
0 0.5 I 1.5 2 

Samples x IOJ 

Figure G2.10.4. Ensemble averaged learning curves for various on-line adaptive linear and nonlinear filters. 
Note the different abscissa scaling for the RLS-adapted filters. 

The LMS-adapted Volterra filter converged extremely slowly, i.e. the MSE (measured in blocks 
of 20000 samples) still decreased after 1OOOOO iterations. The RLS Volterra filter converged after 
approximately 1000 iterations with a steady-state MSE close to its optimum value. Simultaneously, the 
computational burden of this algorithm is the highest of all algorithms in this section. For the linear filter, 
the RLS algorithm requires O ( M 2 )  operations per iteration. The third-order Volterra filter has O ( M 3 )  
coefficients and thus, it requires O ( M 6 )  operations per iteration. Backpropagation with N2 hidden neurons 
entails O(N2M + 2N2) operations per iteration. 

G2.10.4 Summary 

The results of this work can be summarized as follows. 
0 For small filter lengths N < 20, the perceptron with 20 hidden neurons and the third-order Volterra 

filter could approximate the optimum Bayes filter. 
0 For N > 20, the memory requirements of the Levenberg-Marquardt routine TRAINLM exceeded our 

computer capacity. A similar effect was observed for the Volterra filter. 
0 Backpropagation could not adapt the perceptron appropriately in the on-line experiment. The Volterra 

filter could be adjusted fast enough with the RLS algorithm and attained a satisfactory steady-state 
MSE. The computational load of the third-order Volterra RLS, however, was prohibitive. 

References 

Griffiths L J and Jim C W 1982 An alternative approach to linearly constrained adaptive beamforming IEEE Trans. 

Hagan T H and Menhaj M B 1994 Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural 

Knezht W G 1994 Nonlinear noise filtering and beamforming using the perceptron and its Volterra approximation 

- 1995 On nonlinear filtering for noise reduction using a sensor array PhD Thesis Swiss Federal Institute of 

Mathews V J 1991 Adaptive polynomial filters IEEE Signul Processing Magazine vol 8, no 3, pp 10-26 
Nguyen D and Widrow B 1990 Improving the learning speed of 2-layer neural networks by choosing initial values of 

the adaptive weights Int. Joint Conj on Neural Networks (IEEE Publishing) vol 111 pp 21-6 

Antenn. Propag. 30 27-34 

Networks 5 989-93 

IEEE Trans. Speech Audio Proc. 2 55-62 

Technology, Zurich 

Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive noise canceling with nonlinear filters 

Papoulis A 199 1 Probability, Random Variables and Stochastic Processes (New York: McGraw-Hill) 
Sicuranza G L 1992 Quadratic filters for signal processing Proc. IEEE 80 1263-85 
Waibel A, Hanazawa T, Hinton G, Shikano K and Lang K J 1989 Phoneme recognition using time-delay neural 

networks IEEE Trans. Acoustics Speech and Signal Processing 37 328-39 
Widrow B and Steams S D 1985 Adaptive Signal Processing (Englewood Cliffs, NJ: Prentice-Hall) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G2.10:7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.11 A concise application demonstrator for pulsed 
neural VLSI 

Alan F Murray and Geoffrey B Jackson 

Abstract 

Current research at the University of Edinburgh has developed pulse-stream neural 
systems to operate on the boundary between the analog sensory environment and that 
of conventional digital processors. The issues of where, how and why pulse stream 
neural hardware should be applied are examined in this section. We present here a chip, 
EPSILON I1 (Edinburgh Pulse Stream Implemenation of a Learning Oriented Network) 
and a processor card incorporating it that have been designed to bring pulse stream neural 
hardware to bear on real applications. As an example, an autonomous mobile robot is 
described. 

G2.11.1 Introduction 

Applications of analog neural hardware have been few and slow to emerge despite the success of neural 
networks in many diverse applications areas. For example, in the DARPA (Defence Advanced Research 
Projects Agency) neural networks study of 1988, of the 77 neural network applications investigated, none 
of the field-tested systems (Widrow 1988) used dedicated neural network hardware. The situation has not 
changed dramatically in the subsequent five years. While this handbook shows that there is an increase 
in ‘real’ use of neural networks, it is our view that the reasons for the dearth of hardware demonstration 
systems can be summarized as follows: 

a 

e 

e 

Most neural applications will be served optimally by fast, generic digital computers. 
Dedicated digital neural accelerators have a limited lifetime as ‘the fastest’ neural networks, since 
standard computers are developing so rapidly. 
Analog neural VLSI is a niche technology, optimally applied at the interface between the real world 
and higher-level digital processing. 

This attitude has some profound implications with respect to the size, nature, and constraints we 
place on new hardware neural designs. After several years of research into hardware neural network 
implementation, we are now concentrating on the areas in which analog neural network technology has ~ 1 . 3  

Clearly, neural network technology must compete with more conventional digital techniques in solving 
real-world problems, and neural networks must concentrate on areas where their advantages are most 
prominent and their disadvantages (the inability to interrogate a solution fully, for example) are least 
problematic. 

Within the pulse stream neural network research at the University of Edinburgh, the EPSILON chip’s 
areas of strength can be summarized as: 
a analog or digital inputs, digital outputs 
a compact, low power 
a modest size 

scaleable and cascadeable design. 

an ‘edge’ over well established digital technology. E1.4 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Computution release 97/1 G2.11: 1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

This list points naturally and strongly to problems on the boundary of the real, analog world and digital 
processing, such as preprocessinghteretation of analog sensor data. Here a modest neural network can 
act as an intelligent analog-to-digital converter presenting preprocessed information to its host. It is our 
conclusion that this is an area where analog neural networks will make the most significant impact. We are 
now engaged in a two-pronged approach, whereby development of technology to improve the performance 
of pulse stream neural network chips is occurring concurrently with a search for and development of 
applications to which this technology can be applied. 

The key requirements of this technological development are that devices must: 
0 work directly with analog signals 
0 provide a moderate size network to process data for further digital processing 
0 have the potential for a fully integrated solution. 

The next subsection describes the EPSILON I1 chip (specifically, the features of the chip that have 
been developed to make the hardware more amenable to use in real applications) and examines the system- 
level considerations and the specifics of the EPSILON processor card (EPC), a flexible environment for 
applications and chip-level development. Finally, the nature of appropriate applications is discussed and 
a demonstration application of an autonomous mobile robot is presented. 

62.11.2 The EPSILON I1 chip 

The EPSILON I1 chip has been designed around the requirements of an application-based system. It 
follows from an earlier generation of pulse stream neural network chips, the EPSILON chip (Mumay et a1 
1992). 

The EPSILON I1 chip represents neural states as a pulse-encoded signal. These pulse-encoded signals 
have digital signal levels which make them highly immune to noise and ideal for inter- and intrachip 
communication, facilitating efficient cascading of chips to form larger systems. The EPSILON I1 chip can 
take as inputs either pulse-encoded signals or analog voltage levels, thus facilitating the fusing of analog 
and digital data in one system. Internally the chip is analog in nature allowing the synaptic multiplication 
function to be carried out in compact and efficient analog cells (Jackson et a1 1994). 

Table G2.11.1. EPSILON I1 specifications. 

No of state input pins 32 
Input modes Analog, PW or PF 
Input mode programmability Bit programmable 
No of state outputs 32 pinned out 
Output modes PW or PF 
Digital recovery of analog UP Yes-PW encoded 
No of synapses 1024 
Additional autobias synapses 4 per output neuron 
No of weight load channels 1 
Weight load time 2.3 ms 
Weight storage Dynamic 
Programmable activity voltage Yes 
Maximum speed (cps) 102.4 Mcps 
Technology ES2 1.5 p m  CMOS 
Die size 
Packaging 120-pin PGA 
Maximum power dissipation 320 mW 

6.9 mm x 7 mm 

Table G2.11.1 shows the principal specifications of the EPSILON I1 chip which is based around a 
32 x 32 synaptic matrix allowing efficient interfacing to digital systems. A plot of the layout of the chip 
(figure G2.11.1(a)) shows the structure of and the signal flow within the chip. Several features of the 
device have been developed specifically for applications-based usage. The first of these is a programmable 
input mode. This allows each of the network inputs to be programmed as either a direct analog input or 
a digital pulse-encoded input. We believe that this is vital for application-based usage where it is often 
necessary to fuse real-world analog data with historical or control data generated digitally. The second 
major feature is a pulse recovery mode. This allows conversion of any analog input into a digital value 

(32.1 1 :2 Handbook ofNeuml Computurion release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



A concise application demonstrator for pulsed neural VLSI 

for direct use by the host system. Such a facility is necessary if learning is to be done with the system in 
operation using, for example, the backpropagation algorithm as input state values are needed for learning. 

Other concurrent work in the neural group in Edinburgh seeks to make future chips more ‘application 
friendly’ by using amorphous silicon for nonvolatile weight storage (Holmes et a1 1993) and developing 
on-chip learning circuits to render chips more autonomous (Woodburn et a1 1994). 

An example of the characteristics of the EPSILON I1 device is shown in figure G2.11.l(b). This 
plot shows the characteristics of an individual synapseheuron on the chip as a plot of output pulse width 
against the input range for various weight values. This characteristic represents a significant improvement 
over the earlier EPSILON pulse stream neural network chip (Murray et a1 1992). This improvement arises 
from careful layout and architecture changes while still using the same basic circuits. 

20 

I6 

IO 

I 

0 

Figure G2.11.1. EPSILON 11 layout and synapse characteristics. 

G2.11.3 The EPSILON processor card 

The need to embed the EPSILON chip in a processor card is driven by several considerations. Firstly, 
working with pulse-encoded signals requires substantial processing to interface directly to digital systems. 
If the neural processor is to be transparent to the host system and is not to become a substantial processing 
overhead, then all pulse support operations must be carried out independently of the host system. Secondly, 
to respond to further chip-level advances and allow rapid prototyping of new applications as they emerge, 
a certain amount of flexibility is needed in the system. It is with these points in mind that the design of 
the flexible EPSILON processor card (EPC) was undertaken. 

G2. 11.3.1 Design specification 

The EPC has been designed to meet the following specifications. The card must: 
operate on a conventional digital bus system 

0 be transparent to the host processor, that is, carry out all the necessary pulse encoding and decoding 
0 carry out the refresh operations of the dynamic weights stored on the EPSILON chip 
0 generate the ramp waveforms necessary for pulse width coding 
0 support the operation of multiple EPCs 
0 allow direct input of analog signals. 

As all data used and generated by the chip are effectively of 8-bit resolution, the STE bus. an industry 
standard 8-bit bus, was chosen for the bus system. This is also cost effective and allows the use of readily 
available support cards such as processors, DSP cards, and analog and digital signal conditioning cards. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeurul Computution release 9711 G2.11:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

- - 
Pulse to Dig. coov. B u s i n ~ c t r l .  - Neural Bus - 

Dig.topulscconv. - Control State Machine. 

2 
E - 

Weight refresh Ctrl. 

To allow the transparency of operation the card must perform a variety of functions. A block diagram 
indicating these functions is shown in figure G2.11.2. 

Figure G2.11.2. EPSILON processor card. 

A substantial amount of digital processing is required by the card, especially in the pulse conversion 
circuitry. To conform to the Eurocard standard size of the STE specification an FPGA device is used to 
‘absorb’ most of the digital logic. A twin motheddaughter board design is also used to isolate sensitive 
analog circuitry from the digital logic. The use of the FPGA makes the card extremely versatile as it is now 
easily reconfigurable to adapt to specialist applications. The dotted box of figure G2.11.2 shows functions 
implemented by the FPGA device. An onboard EPROM can hold multiple FPGA configurations such that 
the board can be reconfigured ‘on the fly’. All EPSILON support functions, such as ramp generation, 
weight refresh, pulse conversion, and interface control are carried out on the card. Also, the use of the 
FPGA means that new ideas are easily tested as all digital signal paths go via this device. Thus a card 
with new functionality can be designed without the need to design a new PCB. 

G2.11.3.2 Specialist buses 

The digital pulse bus is buffered under control of the FPGA to the neural bus along with two control 
signals. Handshaking between EPCs is done over these lines to allow the transfer of pulse stream data 
between processors. This implies that larger networks can be implemented with little or no increase in 
computation time or overhead. A separate analog bus is included to bring analog inputs directly onto the 
chip. 

G2.11.3.3 Future extensions 

As all control and pulse stream signals are generated by the FPGA, the EPC stands ready to accept the 
next generation of the EPSILON chipset. By judicious chip design, chips incorporating on-chip learning 
or nonvolatile analog storage currently being developed at Edinburgh (see Murray et a1 1994) will readily 
plug into the EPC for evaluation in a stable environment. 

G2.11.4 Applications 

The overriding reason for the development of the EPC is to allow the easy development of hardware neural 
network applications. We have already indicated that we believe that this form of neural technology will 
find its niche where its advantages of direct sensor interface, compactness, and cost-effectiveness are of 
prime importance. As a good and intrinsically interesting example of this genre of application, we have 
chosen autonomous mobile robotic control as a first test for EPSILON 11. The object of this demonstrator 
is not to advance the state of the art in robotics. Rather, it is to demonstrate analog neural VLSI in an 
appropriate and stimulating context. 

G2.11:4 Handbook of Neurul Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A concise application demonstrator for pulsed neural VLSI 

G2.11.4. I 

The ‘instinct rule’ robotic control philosophy is based on a software-controlled exemplar from the 
University’s Department of Artificial Intelligence (Nehmzow 1992) (see figure G2.11.3). The robot 
incorporates an EPC which interfaces all the analog sensor signals and provides the programmable neural 
link between sensorhnput space and the motor drive actuators. 

‘Instinct rule ’ robot 

Figure G2.11.3. (a) Controller architecture. (b) ‘Instinct rule’ robot. 

The controller architecture is shown in figure G2.11.3. The neural network implemented on the EPC 
is the plastic element that determines the mapping between sensory data and motor actions. The majority 
of the monitor section is currently implemented on a host processor and monitors the performance of 
the neural network by regularly evaluating a set of instinct rules. These rules are simple behavior-based 
axioms. For example, we use two rules to promote simple obstacle avoidance competence in the robot, as 
listed in column one of table G2.11.2. 

Table G2.11.2. Instinct rules. 

Simple obstacle avoidance Wall following 
1. Keep crash sensors inactive. 
2. Move forward. 

1. Keep crash sensors inactive. 
2. Keep side sensors active. 
3. Move forward. 

If an instinct rule is violated the drive selector then chooses the next strongest output (motor action) 
from the neural network. This action is then performed to see if it relieves the violation. If it does, it 
is used as a target to train the neural network. If it does not, the next strongest action is tried. Using 
this scheme the robot can be initialized with random weights (i.e. no mapping between sensors and motor 
control) and within a few epochs obtains basic obstacle avoidance competence. 

It is a relatively easy matter to promote more complex behavior with the addition of other rules. 
For example, to achieve a wall-following behavior a third rule is introduced as shown in column two 
of table G2.11.2. Navigational tasks can be accomplished with the addition of a rule to ‘maximize the 
navigational signal’. An example of this is a light sensor mounted on the robot producing a behavior 
to move towards a light source. Equally, a signal from a more complex, higher-level, navigational 
system could be used. Thus the instinct rule controller handles basic obstacle avoidance competence and 
motor/sensory interface tasks leaving other resources free for intensive navigational tasks. 

G2.11.5 Conclusions 

This case study has discussed the use of pulse stream neural networks in practical applications. We 
have presented new results from a novel analog neural chip, EPSILON 11. and offered reasoned opinions 
regarding the optimal use of neural analog VLSI. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook ofNeuml Computution release 9711 G2.11:5 

Copyright © 1997 IOP Publishing Ltd



Engineering 

To aid the development of practical application the EPSILON II chip and the EPSILON processor 
card have been designed. These resources have been designed to process data on the boundary between 
the analog real world and the digital world of conventional computing. The analog VLSI nature of the 
neural hardware makes it extremely versatile for this type of purpose. Reasons for this include: 

(i) Direct interfacing to analog signals. 
(ii) The ability to fuse direct analog sensor data with digital sensor data processed elsewhere in the system. 
(iii) Distributed processing. Several EPCs may be embedded in a system to allow multiple networks 

and/or multilayer networks. 
(iv) Speed. Guaranteed calculation times (as per table G2.11.1). The speed of software solutions is not 

so readily defined or achievable in a compact unit. This has implications for real-time applications. 
(v) The EPC represents a flexible system-level development environment. 
(vi) The EPC requires very little computational overhead from the host system and can operate 

independently if needed. 
(vii) The flexibility of the EPC with major digital functions carried out in programmable logic means that 

it is easily reconfigured for new applications or improved chip technology. 

In conclusion, we believe that the immediate future of neural analog VLSI is in small applications- 
based systems that interface directly with the real world. We see this as the niche area where VLSI neural 
networks can compete most effectively with conventional digital systems. The EPSILON II chip and 
processor card are now of a form that can prototype real-world applications in the analog domain rapidly 
and efficiently. The example of the instinct rule robot readily demonstrates this. 

References 
Caudell M and Butler C 1990 Naturally Intelligent Systems (Cambridge, MA: MIT Press) 
Holmes A J et a1 1993 Use of a-Si:H memory devices for non-volatile weight storage in artificial neural networks 

Jackson G, Hamilton A and Murray A F 1994 Pulse stream VLSI neural systems: into robotics Proc. ISCAS’94 vol 6 

Maren A, Harston C and Pap R 1990 Handbook of Neural Computing Applications (San Diego, CA: Academic) 
Murray A F, Baxter D J, Churcher S, Hamilton A, Reekie H M and Tarassenko L 1992 The Edinburgh pulse stream 

implementation of a leaming-oriented network (EPSILON) chip Neural Information Processing Systems (NIPS) 
Con$ 

Murray A F, Churcher S, Hamilton A, Holmes A J, Jackson G B and Woodbum R 1994 Applications of pulsed neural 
VLSI IEEE MICRO 

Nehmzow U 1992 Experiments in competence acquisition for autonomous mobile robots PhD Thesis University of 
Edinburgh 

Widrow B 1988 DARPA Neural Network Study (AFCEA) 
Woodbum R, Reekie H M and Murray A F 1994 Pulse stream circuits for on-chip learning in analogue VLSI neural 

15th Int. Con$ on Amorphous Semiconductors 

(New York: IEEE) pp 375-8 

networks Proc. ISCAS’94 vol4 (New York: IEEE) pp 103-6 

G2.11:6 Handbook of Neural Computution release 91/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Engineering 

62.12 Ontogenic CID3 algorithm for recognition of 
defects in glass ribbon 

Krzysztof J Cios 

Abstract 

This case study describes an ontogenic CID3 algorithm and its application to recognition 
of defects in a floating glass ribbon. The structure of this case study is as follows. First, 
the CID3 algorithm is described in sufficient detail to give the reader the feeling of how 
ontogenic algorithms generate their architectures. Second, a step-by-step application of 
the algorithm to a problem of distinguishing true defects (bubbles, stones and tin drops) 
from surface anomalies (water droplets and water spots) is provided. The second step 
also includes a description of the preprocessing steps crucial for achieving high accuracy 
of recognition. Finally, the ontogenic CID3 algorithm results are compared with those 
obtained by RBF and backpropagation algorithms on the same data. 

G2.12.1 Motivation 

A commercial system for detection of defects in manufactured glass was unable to distinguish between 
actual defects and the glass surface anomalies, usually caused by airborne debris. These anomalies were 
detected by a commercial system as defects and the section of glass containing them must have been 
discarded thus resulting in the loss of usable glass. It was estimated that 2-3% of net glass production 
was lost due to this problem. If it were possible to distinguish between permanent defects and correctable 
surface anomalies the company could recover a significant portion of glass production that was normally 
discarded. We believed that neural network analysis of defect images in the float glass ribbon could 
achieve that goal. 

G2.12. I .  I The ontogenic CID3 algorithm 

The continuous ID3 (CID3) algorithm (Cios and Liu 1992) utilizes inductive machine learning to specify ~ 1 . 4  

conversion of a decision tree into a hidden layer of a neural network. The algorithm is representative 
of a host of ontogenic algorithms which are very similar to one another. One of the first ones was the 
tiling algorithm of Nadal (1989); the cascade-correlation algorithm of Fahlman and Lebiere (1990) was a 
variation of it. CID3 is similar to the algorithm of Bischel and Seitz (1989) although it was developed 
from a very different perspective. It was based on the machine learning ID3 algorithm (Quinlan 1983, 
1990). The CID3 algorithm creates a hidden layer in a manner similar to the ID3’s generation of a decision 
tree. In a learning process new hidden layers are being added to the network until a learning task becomes 
linearly separable at the output layer. By combining machine learning algorithms with neural networks, the 
CID3 algorithm not only generates a feedforward neural network architecture but also enables translation 
of the knowledge embedded in the connections and weights into decision rules. Another machine learning 
algorithm is described in Cios and Liu (1995a, b). 

In order to explain the main ideas of the CID3 algorithm, let us briefly introduce the ID3 algorithm. 
The latter generates decision rules from a set of training examples. Each example is represented by a list of 
features. The idea is to examine training examples and find the minimum number of original features that 
suffice in determining class memberships. ID3 uses information theory to select features which give the 

@ 1997 IOP Publishing Ltd and Oxford University Ress  Hundbook of Neurol Computution release 9711 G2.12: 1 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Figure G2.12.1. Seventeen training examples belonging to two classes. 

“1 “2 “3 “4 “5 “6 ‘7 “8 x1 

Figure G2.12.2. Five decision regions covering nine positive training examples. 

greatest information gain, or decrease of entropy. Entropy is defined as - p  log, p ,  where probability p 
is determined from the frequency of occurrence. To generate decision rules that correctly classify training 
examples, a feature test is performed by first selecting a feature, and then dividing examples into subclasses 
using the selected feature. Next, information entropy is calculated to determine how significant the feature 
is. The ID3 algorithm requires features to have discrete values. 

The drawback of knowledge representation based on a feature test is that the correlations between 
features are ignored. Also, it is not easy to detect features yielding the minimum entropy when training 
examples are represented by continuous data. Let us repeat here after Cios and Liu (1992) an example of 
distinguishing nine positive examples from eight negative examples, shown in figure G2.12.1. 

When the ID3 algorithm is applied to this problem, the thresholds are represented as vertical and 
horizontal lines in the two-dimensional space. Figure G2.12.2 shows five rectangular decision regions to 
cover the nine positive examples. 

However, the decision region covering the same positive training examples can be formed by using 
c1.1.3 hyperplanes defined by adalines (Widrow et a1 1988). The output of an adaline, which defines a hyperplane 

wixi + xo = 0 is given by 

I { 0, C W i W i  +WO ( 0  . 
1, ~ W i X i + W O > O  output = 

Thus thefeature test performed by ID3 can be treated as a special case of an adaline with its hyperplane 
parallel to an axis; that is, the weight vector is a base vector. Thus, the decision region covering nine 

G2.122 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

positive training examples can be described by three hyperplanes, figure (32.12.3, where arrows indicate 
positive sides of the hyperplanes. 

Figure 62.12.3. Decision region specified by hyperplanes. 

To describe a decision region in terms of decision rules, Featurei in a decision rule will correspond 
to a hyp,, i = 1,2 ,  3. If an example is on the positive side of a hyperplane then Featurei = 1 ;  otherwise 
Featurei = 0, which is an abbreviation of a statement: {Vx = (XI,  x2) : wjxj  + WO < 0).  Thus, a 
decision rule can be simply specified as 

IF Featurel = 0 and Feature2 = 0 and Features = 1 THEN class = positive. 
IF Feature2 = 1 and Feature3 = 0 THEN class = positive. 
IF Featurel = 1 and Feature2 = 1 THEN class = positive. 
The above example will be used to illustrate conversion of a decision tree into a hidden layer. First, 

if an example is tested on the positive side of hyp,, then that example will be classified along edge 1 ,  
as shown in figure (32.12.4, otherwise that example will be classified along edge 0. Starting at the root 
node a, the training examples are divided, by adaline #1,  into two nodes, b and c. The corresponding 
entropy of 0.861 is shown. At the second level of the decision tree, the examples from nodes b and c 
are tested against hyp2 (adaline #2). The second hyperplane is obtained with minimum entropy of 0.567. 
The training examples on the positive side of the second hyperplane will be classified along edge 1 to a 
node descending from their parent node. Those on the negative side will be classified along edge 0. Now, 
class memberships of training examples in nodes d and e are already correct so only one more (third) 
hyperplane (adaline #3) is needed to divide the examples at nodes f and g. As a result, a hidden layer 
with three nodes is generated, as shown on the left-hand side of figure G2.12.4. The directional vector 
of a hyperplane is taken as the weight vector of an adaline. For hyp,, the weights w 1  and w2 are the 
connection strengths of inputs X I  and x2 to adaline #I (node #l ) .  

In order to derive CID3’s learning rule let us introduce the following notation after Cios and Liu 
(1992). There are N training examples, Ni  examples belonging to class ‘+’, and N -  examples belonging 
to class ‘-’. A hyperplane divides the examples as lying either on its positive (1) or negative (0) side, 
with four possible outcomes: 

0 

0 

0 

0 

The following relations hold: 

N: denotes the number of examples from class + on side 1; 
N$ denotes the number of examples from class + on side 0; 
N ;  denotes the number of examples from class - on side 1; 
N; denotes the number of examples from class - on side 0. 

((32.12. la) 
(G2.12.16) 
(G2.12. IC) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook o jNeuml  Computation release 9711 G2.12:3 

Copyright © 1997 IOP Publishing Ltd



Engineering 

Adaline #I : 
Entropy, = 0.861 

Adaline #1:  
Entropy2 = 0.567 

Adaline #3: 
Entropy, = 0.0 

Entropyl = - E 1 [ (1 *log2 - 1 &*log2 -) 4 + (4*log2- 4 +8*log2 L)] = 0.861 bit 
5 5 12 12 

1 1 1 2 Entropy2 = - - [ (0 + 0) + (0 4) + ( l*log2 7 + 2 x log2) +( I*log2- + 2 x log -)] = 0.567 bit 17 3 2 9  

1 
17 

Entropyg = - - [ (0 + 0) + (0 +0) + (0 + 0) + (0 +O)] = 0.0 bit 

Figure G2.12.4. Hidden layer corresponding to a decision tree and entropies calculated using (G2.12.3). 

At a certain level of a decision tree we assume that Nr examples are divided by node r into N:, 
belonging to class +, and Nr-, belonging to class -. Relations analogous to (1) follow: 

(G2.12.2~) 
(G2.12.2b) 
(G2.12.2~) 

The information entropy at level L of a decision tree is an average of entropies of all R nodes in this 
layer: 

Nr 
N 

R 
E = - -entropy(l, r )  

r=1 

This formula is obtained by employing the mutual dependency of positive and negative examples given 
by (G2.12.2b) and (G2.12.2~).  

The values of N: and N ,  can be calculated as follows: 

N ,  
N: = Diouti = 

i=l i = l  
(G2.12.4) 

G2.12:4 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

where Di stands for the desired output of a training example, and outi is a sigmoid function of inputs to 
a node: 

((32.12.6) 
/ L  

The partial derivatives of information entropy with respect to the number of examples on the positive 
and negative sides of a hyperplane are 

N,- - NIT - = -- l R  N ;  
a E  [log, -log’ N ,  - NZ - N ,  

N r=l NZ f NG 

Thus, the change in information entropy is stated as 

A E  = [ m ~ ~ :  a E  + - A N ; ] .  a E  

r=l a N ;  

(G2.12.7) 

(G2. 

(G2. 

2.8) 

2.9) 

Although the values for N: and N ;  may not come out as integers from ((32.12.4) and (G2.12.5), 
the analytic approximations make it possible to calculate the partial derivatives, (G2.12.7) and (G2.12.8), 
representing the relation between the change in the number of examples on both sides of a hyperplane 
with respect to the weights: 

i = l  j = l  

N .  dim 

(G2.12.10) 

(G2.12.11) 

Relations (G2.12.10) and (G2.12.1 1) make it possible to define a learning rule which minimizes the entropy 
function: 

((32.12.12) 

where p is a learning rate. Thus, the learning process for adjusting the weights can be stated in vector 
form as follows: 

w k + l  = w k  A W .  (G2.12.13) 

When the rule specified by equation ((32.12.13) is used the learning process might converge to a local 
minimum. The gradient method does not guarantee constant information gain while generating a hidden 
layer. In order to increase the chance of finding the global minimum the learning rule was combined 
(Cios and Liu 1992) with Cauchy training. The Cauchy training method (Szu and Hartley 1987) uses c1.4.z 
statistically determined steps to converge to a global minimum 

A w  = T ( t )  tan[nP(AW 5 A w )  - n/2] (G2.12.14) 

To calculate the size of this weight change, a random number is selected from a uniform distribution 
over [0, 11, and substituted for Cauchy distribution P ( . ) .  Artificial temperature T ( t )  changes, from initial 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neural Compurution release 9711 G2.12:S 

Copyright © 1997 IOP Publishing Ltd



Engineering 

DI .4 

G2.12:6 

high value TO down to zero, with time t ,  according to T ( t )  = To/(l + t ) .  To determine whether to accept 
the weight change, Boltzmann distribution was used (Cios and Liu 1992). The probability of the error, 
err, was calculated using equation (G2.12.13, where k is the Boltzmann constant. 

P(err> = exp ( T )  (G2.12.15) 

The final learning rule of the CID3 algorithm Cios and Liu (1992) is stated in equation (G2.12.16), 
where the random weight vector AWrandom is calculated from (G2.12.14) and q is a control parameter, 

wk+l = wk -k (1 - q>Aw -k f7Awrandom (G2.12.16) 
0 5 q l l .  

The random weight change wrandom in (G2.12.16) enables the algorithm to escape from local minima 
and hopefully achieve the global minimum, which would ensure that a hidden layer will be created with 
the smallest possible number of nodes. 

Pseudocode for the CID3 algorithm follows: 

For a given problem with N training examples, follow the notations given in (G2.12.la)-(G2.12.1~) 
and (G2.12.2u)-(G2.12.2~). Start with a random initial weight vector WO. 
Utilize learning rule (G2.12.13) and search for a hyperplane that minimizes the following entropy 
function: 

Nr -entropy(l, r ) .  
N 

R 
min E = - 

w t  r=l 

If the minimized entropy is not zero, but smaller than the previous value, add a node to the current 
layer and return to step (ii). Otherwise, go to step (iv). 
If a hidden layer consists of more than one node, generate a new layer that utilizes inputs from both 
the original training data and the outputs from all previously generated layers, and go to step (ii). If 
the hidden layer consists of only one node, then the problem is reduced to a linearly separable one; 
stop. 

The CID3 algorithm generates a multilayer network with a single node at the output. To solve multiple- 
category classification problems one can easily build a network consisting of many such subnetworks. 

After a hidden layer is generated the outputs from all the generated hidden layers, together with the 
original inputs, are used to generate a new hidden layer. For instance, if a hidden layer with three adalines 
were generated the dimension of an input vector to the second hidden layer would be five and could be 
specified as follows: 

1x1 9 x2 .  1,0, 11 

where the last three values are the outputs from the first hidden layer. The usage of the information 
from both the original training data and the outputs from the previously generated hidden layers allows a 
learning process to converge faster because of the increase of the dimensionality of training data (Nilsson 
1 990). 

The connections between nonadjacent layers are called shortcuts. The use of shortcuts plays a vital 
role in the convergence of the algorithm. The learning which uses the knowledge from both original 
training examples and the outputs from hidden layers is actually a generalization process. The process of 
adding new hidden layers can be seen as a process of knowledge refinement. A single decision rule is 
specified at the end of learning and it gives the most general description of all training examples. 

Analysis of the complexity of the CID3 algorithm shows that in contrast to backpropagation, where 
correct classification of training examples is achieved only at the output layer, training examples are 
correctly recognized by CID3 at a hidden layer for which the information entropy is for the first time 
reduced to zero. 

For a description of the ontogenic neuro-fuzzy CID3 (F-CID3) algorithm, which after reducing entropy 
to zero switches to efficient operations on fuzzy sets (Cios and Sztandera 1992, 1996), see also Section 
D1.4 of this handbook. In it we describe how all the subsequent layers can be eliminated. 

In the next section we shall describe a problem, mentioned already at the beginning of the section, 
that the CID3 algorithm has already been applied to. 

Hudbook ofNeurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

G2.12.2 Definition of defects in glass ribbon 

A commercial laser imaging system was used to obtain gray-scale images of a number of true defects 
and surface anomalies (Cios et a1 1991a, b) in glass ribbon. The basic types of defects were defined as 
follows. 

True defects. Permanent structures that degraded the homogeneity and optical quality of the glass. They 
were divided into: 
0 bubble-round or elongated gaseous inclusions within the glass; sometimes open at top or bottom 

surface; 
0 stone-a variety of crystalline or amorphous inclusions within the glass; might be opaque or slightly 

translucent; 
0 tin drop-a depression on the surface caused by a drop of molten tin adhering to the glass surface 

during forming; the solidified tin drop remained in the depression. 
Surface anomalies. Nonrejectable, temporary marks or spots on the glass surface. They were divided into: 

water droplet-a more or less hemispherical drop of liquid water; might occur on either surface; 
water spot-mineral residue from a dried drop of water; again, might occur on either surface. 

G2.12.2. I Data acquisition 

Samples of glass with defects were collected and the defect categories determined by a factory expert. 
Due to their transitory nature surface anomalies, such as water droplets and water spots, were recreated in 
the laboratory. 

Images of the defects were then obtained using an imaging system at a resolution of 133 pixels per 
inch horizontally and 40 lines per inch vertically, with gray-scale of eight bits per pixel. These images 
were placed in a database along with information on the imaged defects including: size, type, sample 
number and so on. The sizes of the images obtained by the imaging system varied in proportion to the 
size of the actual defect. Images ranged from 30 x 20 pixels to 250 x 200 pixels in size. 

G2.12.2.2 Data processing 

In order to use the defect images as input for neural networks the following preprocessing steps were 
performed. 
(i) The first line of an image was used as a baseline to normalize the image. The intensity values of the 

first line were subtracted from each line of the image, thus zeroing out the effects of normal glass. 
This step also compensated for anomalies in image illumination. 

(ii) The image was smoothed using a standard low-pass filtering technique. 
(iii) The region of interest was found by cutting out a rectangular region around the defect in order 

to eliminate parts of the image that depicted normal (nondefective) glass. The normal glass was 
distinguished as being near zero in value. 

(iv) The large number of pixels in the defect images prohibited direct neural network analysis of raw 
image data. In addition, the major problem in applying neural networks to real life problems, like this 
one, was that the dimension of the input data must be the same. Therefore, the image data needed to 
be reduced and the number of features (pixels) normalized. The following four methods were used 
to accomplish this goal. 

Zlvo-feature datu. This method involved finding the defect width and the maximum intensity for each line 
of the defect. Then the number of lines was normalized to 30. Each defect having fewer than 30 image 
lines was expanded by duplicating lines, while a defect having greater than 30 lines was compressed by 
omitting lines. For example, for a large defect having 90 horizontal lines, the reduction to 30 lines was 
done by calculating for the first row line-the average of the first 3 original lines, and so on. Data created 
using this reduction technique resulted in a 60 element input vector. 

Three-feature datu. This technique was identical to the two-feature data except that the position of the 
maximum intensity was also included for each line. This resulted in a 90-element input vector. 

Image reduction. This method was not only the most interesting but also, as we shall see later, resulted 
in best recognition results. It reduced two-dimensional defect images into 10 x 10 pixels x amplitude 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 G2.12:7 

Copyright © 1997 IOP Publishing Ltd



Engineering 

(intensity), three-dimensional images. The image was scaled down to a 10 x 10 array using the same 
scaling factor for the length and width. This scaling factor was such that the larger of the length or 
width would just fit into the 10 x 10 array. The amplitude values were not scaled. In terms of a three- 
dimensional object this had the effect of scaling the length and width but keeping the height, or intensity 
of the image, unchanged. The original data were thus reduced to an input vector of length 100, each 
element corresponding to an intensity value (amplitude). 

FFT image reduction. A fast Fourier transform (FFT) was performed on each line of the 10 x 10 reduced 
image. An FIT algorithm for an arbitrary number of samples per period was used (Brigham 1974). Ten 
points in the time domain resulted in 10 points in the frequency domain. Again, the image data were 
reduced to a 100 element input vector. 

G2.12.2.3 Preparation of training and learning data 

Neural networks which learn in a supervised mode, and only those were studied, require a number of 
known inpudoutput examples for training. Thus the available data were divided into training and testing 
data sets using the standard in machine learning ratio of 7/3. That is, 70% of the collected examples were 
used as training data, with the remaining 30% used as testing data. 

After preprocessing, it was found that amplitude of some of the defect images was so small that it was 
impossible to distinguish them from noise. Thus, although a larger number of samples was collected, the 
neural network analysis was performed on 293 usable samples, 88 of which were chosen as test samples. 
Breakdown of measurements into training and testing data was as follows. 

Table G2.12.1. Number of training and testing samples. 

True defects Surface anomalies 
Training 121 84 
Testing 52 36 

As described above, four different types of preprocessed data were obtained. For the neural network 
using two-feature data each vector in the training file consisted of 61 elements; the first 60 were the inputs 
and the last was the desired output (1 for true defects and 0 for surface anomalies). Likewise, for the 
three-feature data, 10 x 10 image, and 10 x 10 FFT image, the training files consisted of 91, 101 and 101 
element vectors, respectively. 

G2.12.3 Results 

The goodness of the four kinds of input data for recognition purposes was tested by analyzing the accuracy 
of the classification results obtained by the CID3 algorithm. After training the CID3 algorithm with 205 
samples, it was applied to the test data of 88 samples. The predicted outputs were compared with the 
desired output and the results of classification were as follows. 

As can be seen, the best results were achieved by using the 10 x 10 image data. That result warrants 
a comment. As all practitioners know very well, any successful application of a neural network depends 
more on careful preparation, or preprocessing, and proper choice of training data than on a particular 
algorithm used. All would work on ‘good’ data and none would work on ‘bad’ (difficult) data. The more 
time one spends on studying the process which generated the data and on data preprocessing (often over 
50% of the entire effort), the better the results. 

When a dimension of the input data varies from sample to sample, like in this application problem, 
some clever schemes have to be used to keep the input dimension constant, which is an input requirement 
of any neural network. The biggest lesson to be learned from this study was that by transforming the 
original two-dimensional defect data, a collection of signals each having a single spike representing, for 
example, a stone, into a three-dimensional image, was that only the 10 x 10 image data representation 
made it possible to distinguish between true defects and surface anomalies with acceptably high accuracy. 
Without using that transformation of the data there would be no success. The defect data application 

(32.12:s Handbook of Neurul Computution release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

Table 62.12.2. Results of the CID3 algorithm for different kinds of input data. 

CID3 algorithm results 

2-feature data 
true defects 44152t 
surface anomalies 30136 
3-feature data 
true defects 45/52 
surface anomalies 30136 
10 x 10 image data 
true defects 50152 
surface anomalies 35/36 
10 x 10 FFT image data 
true defects 46/52 
surface anomalies 34/36 

t (correct recognition)/(total number of test examples). 

Table G2.12.3. Comparison of results of different algorithms and their architectures. 

Method True defects Surface anomalies Total 

CID3 50152 (96.15%) 35/36 (97.22%) 85/88 (96.59%) 
(100:7:6:6:1) 
RBF 47/52 (90.38%) 34/36 (94.44%) 81/88 (92.04%) 
neurons at data points 
(100:205:2) 
RBF 45/52 (86.54%) 35/36 (97.22%) 80188 (90.90%) 
neurons at cluster centers, R < 75, 
(100:89:2) 
RBF 49/52 (94.23%) 32/36 (88.89%) 81/88 (90.90%) 
neurons at cluster centers, R < 100, 
( 100:54:2) 
Backpropagation 51/52 (98.07%) 34/36 (94.44%) 85/88 (96.59%) 
(100:20:1) 

Table G2.12.4. Comparison of training times. 

Method Normalized CPU time 

CID3 161 

RBF-neurons at cluster centers, R < 75 18 
RBF-neurons at cluster centers, R < 100 10 
Backpropagation 615 

RBF-neurons at data points 333 

clearly showed the importance of data preparation, or preprocessing. It simply could not be overstated in 
any real application. 

After performing the above analysis the next step was to compare the results achieved by the CID3 
algorithm with a powerful radial basisfunction (RBF) network on the same 10 x 10 image data. RBFs c1.6.2 
were used with two different methods of selecting the RBF centers: ‘neurons at data points’ and ‘neurons 
at clusters’ centers’ (Zahirniak et a1 1990). The latter method was tested with two different radii, shown 
in the table below. For comparison, a popular backpropagation network was also run on the data. The c1.2 
table below shows the architecture, in parenthesis below the name of a method, for each network used. 

The normalized CPU times required to train these networks were also calculated and were as shown 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 9711 G2.12:9 

Copyright © 1997 IOP Publishing Ltd



Engineering 

in table G2.12.4. 

G2.12.4 Discussion 

The classification results indicate that the CID3 algorithm gave almost a 97% correct recognition rate. 
Using the RBF network with the neurons at data points method, in which all 205 training examples were 
used, the recognition rate was 92%. When training vectors which were close together (within a radius R )  
were clustered to reduce the number of training examples to 89 ( R  < 75) and 54 ( R  < 100) the resulting 
recognition rate was almost 91% for both cases. 

The time required to train the networks varied greatly. An RBF network using 205 neurons in the 
hidden layer required a training time twice as long as that of the CID3 algorithm, but almost half of that 
required by backpropagation. However, when clustering was performed to reduce the number of training 
vectors in the RBF networks, the training time dropped considerably, at the cost of accuracy. 

The CID3 algorithm did not require the network architecture to be a priori  specified. Based on the 
information entropy function, the algorithm added the necessary number of layers and nodes to correctly 
recognize all the input-output pairs in the training data. The RBF network using the neurons at data points 
method also had its architecture determined by the size of the data set. With backpropagation, the number 
of hidden layers and the number of nodes in each layer had to be guessed. 

As a result, the CID3 algorithm might be useful in situations where the neural networks are to be 
generated automatically, and in real time, while backpropagation networks could not be used. There might 
also be situations where there is a time constraint on the training time, like in many control problems. 
Then the choice of the CID3 algorithm would be appropriate. 

G2.12.5 Conclusions 

The goal of the case study described above was to determine whether it was possible to distinguish 
between true defects and surface anomalies by using ontogenic neural networks. The results using the 
CID3 algorithm show that the correct recognition rate, depending on the input data (2 and 3 features, 
10 x 10 image and FFT), was in the range of 84% to 97%. 

As far as data preprocessing techniques were concerned, the best results of classification were obtained 
using the 10 x 10 reduced image data. The results show that in spite of the drastic reduction of the original 
image, from (in an extreme case) 250 x 200 pixels to 10 x 10 pixels, the reduced image retained most of 
the key original features. The 10 x 10 matrix containing the reduced image was well-filled, as opposed to 
the matrix containing the FFT image, which was sparse with most of the information clustered about the 
center. This was probably why FFT was not as good as the 10 x 10 image. 

Acknowledgement 

This research was partially supported by the National Science Foundation, grant no DDM-901533. 

References 

Bischel M and Seitz P 1989 Minimum class entropy: a maximum information approach to layered networks Neural 

Brigham E 0 1974 The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall) 
Cios K J, Langenderfer R A, Tjia R and Liu N 1991a Recognition of defects in glass ribbons using neural networks 

Cios K J and Liu N 1992 A machine learning method for generation of neural network architecture: a continuous ID3 

-1995a An algorithm which learns multiple covers via integer linear programming, part I-the CLILP2 algorithm 

-1995b An algorithm which learns multiple covers via inter linear programming, part II-experimental results and 

Cios K J and Sztandera L 1992 Continuous ID3 with fuzzy entropy measures First IEEE Int. Con$ on Fuzzy Systems 

Cios K J and Sztandera L 1996 Ontogenic neuro-fuzzy algorithm: F-CID3 Neurocomputing in press 
Cios K J, Tjia R, Liu N and Langenderfer R A 1991b ‘Study of continuous ID3 and radical basis function algorithms 

for the recognition of glass defects’ Proc. Int. Joint. Con$ on Neural Networks (Seattle, WA) vol 1 149-54 

Networks 2 133-41 

Proc. 1991 NSF Design and Manufacturing Systems Conf. (Dearborn, MI: SME Publishing) 203-200 

algorithm IEEE Trans. Neural Networks 2 280-91 

Kybernetes 24(2) 29-50 

conclusions Kybernetes 24(3) 28-40 

(San Diego, CA) (New York: IEEE Press) pp 469-76 

G2.12:10 Hundbook of Neural Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Ontogenic CID3 algorithm for recognition of defects in glass ribbon 

Fahlman S and Lebiere C 1990 The cascade-correlation leaming architecture Technical Report CMU-CS-90-100 

Nadal J P 1989 New algorithms for feedforward networks Neural Networks and SPIN Glasses ed Theumann and 

Nilsson N J 1990 The Mathematical Foundations of Learning Machines (Los Altos, CA: Morgan Kaufmann) 
Quinlan J R 1983 Leaming efficient classification procedures and their application to chess end-games Machine 

Learning: An Artificial Intelligence Approach vol I ed R S Michalski, J G Carbonnell and T M Mitchell (Palo 
Alto, CA: Tioga) pp 463-82 

-1990 Probabilistic decision trees Machine Learning: An Artificial Intelligence Approach vol 111 ed Y K Kodratoff 
and R S Michalski (Los Altos, CA: Morgan Kaufmann) pp 140-52 

Szu H and Hartley R 1987 First simulated annealing Phys. Lett. A 122 157-62 
Widrow B, Winter R G and Baxter R A 1988 Layered neural nets for pattem recognition 1EEE Trans. Acoust., Speech, 

Zahimiak D R, Chapman R, Rogers S K, Suter B W, Kabrisky M and Pyati V 1990 Pattem recognition using radial 

Camegie Mellon University 

Koberle (Singapore: World Scientific) pp 80-8 

Signal Process. 36 1109-18 

basis function networks Sixth Annual Aerospace Appl. of AI Conference (Dayton, OH) pp 249-60 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofhreurul Computution release 9711 G2.12111 

Copyright © 1997 IOP Publishing Ltd



6 3  

Physical Sciences 

Contents 

G3 PHYSICAL SCIENCES 
G3.1 Neural networks for control of telescope adaptive optics 

T K Barrett and D G Sandler 
G3.2 Neural multigrid for disordered systems: lattice gauge theory as an example 

Martin Bliker, Gerhard Mack and Marcus Speh 
G3.3 Characterization of chaotic signals using fast learning neural networks 

Shawn D Pethel and Charles M Bowden 

@ 1997 IOP hblishing Ud and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

G3.1 Neural networks for control of telescope adaptive 
optics 

T K Barrett and D G Sandler 

Abstract 

We report on the use of artificial neural networks to estimate phase distortion in 
astronomical telescopes using focused images of a stellar source or an artificial laser 
guide star. The method was first developed as a means of measuring distortion induced 
by atmospheric turbulence and controlling an adaptive optics system for compensation 
of this atmospheric aberration. The method was then extended for use as a means of 
estimating static aberrations in the Hubble Space Telescope. We have tested the neural 
network aberration estimates against wavefront measurements of a Hartmann sensor, one 
of the traditional means of aberration measurement in adaptive optics systems, and have 
found good agreement. We have also compared the neural network with traditional high- 
resolution phase-retrieval methods with good agreement. The neural network approach 
offers a simple inexpensive way to implement adaptive optics in astronomical telescopes. 
It can also provide a quick and easy diagnostic tool for astronomical telescopes by 
providing estimates of static aberrations without any modification or disassembly of the 
telescope. 

G3.1.1 Project overview 

During the last five years we have investigated the application of artificial neural networks to the task of 
estimating aberrations in astronomical telescopes. The majority of our effort has been directed towards the 
development of neural networks suitable for use in optical systems designed to compensate in real time for 
the effects of aberrations induced by atmospheric turbulence in large monolithic astronomical telescopes 
(Sandler et a1 1991a, 1991b). We have, however, also extended the method for use as an off-line (non-real- 
time) tool for estimating the static aberration in the Hubble Space Telescope (Barrett and Sandler 1993) 
and other authors have used the neural network method for controlling atmospheric compensation systems 
in astronomical array telescopes (Angel et a1 1990, Wizinowich er a1 1992, Lloyd-Hart er a1 1992). 

The objective of the networks which we developed was to use intensity images formed from aberrated 
wavefronts to determine the actual phase aberrations of that wavefront. This is a form of phase-retrieval 
or phase-recovery problem which has been studied by other authors who have used iterative techniques 
to obtain solutions (Fienup 1982, 1987) or have used a linearized curvature sensing technique based on 
intensity measurements taken in two out-of-focus planes (Roddier 1988). Specifically, the inputs to our 
neural networks were pixelized intensity measurements of two point-spread functions (PSF) taken at two 
different image planes near the best focus of the optical system. The light source for the PSF is either 
a natural guide star, or an artificial laser guide star created by scattering of a laser beacon from particles 
high in the atmosphere or resonant excitation of sodium atoms in the mesosphere (Gardner 1989). The 
output of the networks was an estimate of phase aberration in terms of coefficients for orthogonal fitting 
polynomials. 

In general, the development team involved in designing and building a complete adaptive optics 
system can be quite large; including optical scientists, physicists, and mechanical, software and electrical 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computurion release 9711 G3.1: 1 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

engineers. However, the development of the neural network portion of such a system can be achieved 
with a much smaller group. In our work, the actual development and training of the neural network has 
been accomplished by ourselves, with significant support in the form of suggestions and analysis from our 
coauthors and sponsors. 

Ground-based imaging of objects in space is hampered by the blurring effects caused by non- 
uniformities in the index of refraction of the Earth’s atmosphere. These fluctuations in the index of 
refraction are stirred and randomized by atmospheric turbulence and, as a result, an optical wavefront 
passing through the atmosphere becomes aberrated in a random way. Images formed from the light 
are distorted, blurred and often scintillated. To further complicate the problem, the turbulence and the 
prevailing wind convect the fluctuations across the field of view of a telescope, tending to induce rapid 
changes in the magnitude and shape of the atmospheric distortion. Adaptive optics systems attempt to 
measure the distorted wavefront reaching a telescope and manipulate a specialized optical component 
designed to compensate or flatten the wavefront. The measurements need to be made quickly in order to 
keep up with the changing atmospheric aberrations and the typical optical component used for compensation 
consists of a mirror with a deformable surface (Ealey and Wellman 1994). Figure G3.1.1 is a block diagram 
which illustrates how the neural network fits into a generic adaptive optics system. The neural network 
receives intensity data from two image planes and estimates the residual aberration remaining after the 
incoming light reflects from the surface of the deformable mirror. This results in a closed-loop-type system 
in which the neural network is always trying to estimate and correct for the error between the mirror surface 
and the wavefront surface. The error is due to inaccuracies in the computation of actuator positions and 
by the changing atmospheric distortion. Each loop, the network’s estimate of aberration is passed to a 
postprocessor which converts the estimate of residual aberration into electronic commands which drive the 
deformable mirror’s surface to a new shape. 

I I ABERRATED WAVEFROKT 

ECTED WAVEFROM DEFORMABLE MIRRO 

Figure G3.1.1. Simplified schematic diagram showing where the neural network fits into a generic adaptive 
optics system. The beam paths are indicated by full lines, with light traveling down through the atmosphere 
and off the primary mirror. Electronic information travels from the neural network imaging sensors to the 
neural network processor and then to the postprocessor and deformable mirror. 

The neural networks we developed to estimate static aberrations in telescopes worked in basically the 
same manner as those suitable for the adaptive optics systems. However, these networks were tuned to 
measure the low spatial frequency aberrations in telescopes which are caused by faulty or misaligned optical 
components. This made the neural network method useful to NASA’s Jet Propulsion Laboratory (JPL) 
during its effort to determine the exact aberration in the primary mirror of the Hubble Space Telescope. 
Our neural network estimates of the aberration were combined with estimates obtained with several other 
methods, to produce a prediction of the Hubble aberration which could be regarded with a high degree of 
confidence (Barrett and Sandler 1993). 

G3.1:2 Handbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for control of telescotx adaDtive oDtics 

G3.1.2 Design process 

As an optical scientist gains experience with imaging systems he or she often begins to develop the ability 
to recognize the presence of certain optical aberrations by the characteristic shapes and features which 
the phase distortion induces in the PSF. This process is analogous to the learning which occurs in many 
neural network methods. The ability to learn a mapping or correlation from features in observed data 
to a quantitative description of the data is a property of neural networks which has been exploited for 
many applications, and motivated us to use this method for the phase-retrieval problem. The ability of 
the optical scientist is qualitative at best and often fails when the aberration is complicated. The neural 
network, however, can be trained to accurately recognize complicated aberrations even in the presence of 
high spatial frequency distortion which scintillates the image (Sandler et ul 1991a). 

For each of our optical phase-recovery applications we employed neural networks consisting of 
multilayer perceptrons (Rosenblatt 1962). Each network consisted of an input layer, a single hidden layer c1.z 
and an output layer. Adjacent layers were fully connected. The transfer functions of the input and output 
layer were linear and the transfer function of the hidden layer was a sigmoid. The number of input and 
output nodes for each network was related to the desired resolution of the predicted aberration in terms 
of spatial frequency across the telescope aperture. The higher the resolution the greater the number of 
nodes required. For any given application the number of nodes in the hidden layer of each network was 
determined empirically by testing networks with increasing numbers of hidden nodes until the performance 
of the network no longer increased with increasing nodes. A typical network would have 128 input nodes, 
64 hidden nodes and 18 output nodes. 

Several considerations affected our choice of neural network architecture. First, phase r e c o v y  from 
stellar image data is a nonlinear problem since the angular distribution of intensity in the PSF, Z(@, of an 
astronomical telescope may be approximated by the following nonlinear equation (Goodman 1968): 

2ni - 
A 

I ( ; )  0: I/ W ( T )  exp[i4(r)] exp[--8 - T ]  d r  (G3.1.1) 

In (G3.1.1), @ ( r )  is the phase distortion of the system projected onto the entrance pupil, r is a position 
vector in the plane of the pupil, w ( r )  is the pupil function and A is the wavelength. In order to 
learn the required nonlinear input-output mapping, at least one of our layers needed a nonlinear transfer 
function. Secondly, supervised training algorithms, such as backpropagation, have so far proved superior to 
unsupervised or self-organizing networks in learning complex functional relationships. Also, after training, 
this architecture can be implemented quite efficiently using digital hardware and is therefore appropriate 
for a real-time control system. 

Examination of (G3.1.1) reveals one final factor influencing our design for the neural network. Notice 
that for an even pupil function ( w ( r )  = w ( - r ) )  the PSF intensity is the same for the two phase distortions 
4( r )  and -4( -r ) .  Thus, any single PSF may be caused by a pair of related but different phase distortions. 
Without added information the neural network processing architecture cannot resolve the ambiguity of the 
mapping from image data to phase distortion. One possible solution, and the one which we utilized, 
consists of using data from two images obtained at two distinct image planes slightly out of focus. The 
added information in the second image plane breaks the ambiguity of the problem making the mapping 
from input intensity data to phase distortion unique (Gonsalves 1982, Paxman and Fienup 1988). 

G3.1.3 Preprocessing 

Specific applications of the phase-recovery neural network required different preprocessing procedures. In ~ 4 . 4  

general, only one preprocessing step was required for all applications. In every case, we normalized each 
input intensity image by the magnitude of the brightest pixel within that image. 

Other preprocessing depended upon the individual circumstances of the application. For instance, the 
preprocessing for the Hubble data consisted of centroiding each PSF image, subtracting off the background 
pedestal intensity introduced by the camera electronics, binning adjacent pixels of the image to decrease 
the resolution of the image and the number of inputs into the neural network and, as discussed before, 
normalizing the resultant image to the brightest pixel. 

Our experience has shown that the neural network does not require high-resolution input data to 
recover low spatial frequency distortion. We have found (Sandler et a1 1991b) that the lowest 18 
spatial distortion modes can be recovered from input pixels with angular resolution three times larger 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neuml Computation release 9711 G3.1:3 

Copyright © 1997 IOP Publishing Ltd



Phvsical Sciences 

than diffraction-limited. Therefore, we typically used pixels much larger than is common for imaging. 
The ability to use large input pixels increased the signal-to-noise ratio of the input data. It also reduced 
the number of inputs to the neural network allowing the size and computational complexity of the network 
to be reduced; shortening the training time required, and increasing the throughput of the system. 

G3.1.4 Training methods 

c1.2.3 The network was trained by adjusting the synaptic weights using the externally supervised buckpropugation 
algorithm (Rumelhart 1986). In principle, the training data can be generated either with numerical 
simulations or direct optical measurements, but for all the applications which we investigated it was 
more practical to use the former method. 

Our experience has shown that our neural networks typically converged to a small residual error 
after a few 100000 training iterations. Generally, this was sufficient for the real-time adaptive optics 
applications. However, when estimating static aberrations an extremely high degree of accuracy was 
desired, and approximately 1 000OOO training iterations were used. Since the generation of training data 
requires the computation of a two-dimensional FIT, and was therefore quite time consuming, the generation 
of 100 OOO to 1 OOO 000 sets of training data was prohibitive. Instead, a smaller number of training patterns 
were generated and passed through the network several times. There is a limit to the minimum size of 
the training set though. Care must be taken to include enough independent realizations of distortion to 
ensure that the network learns a general functional input-output mapping for the phase-retrieval problem 
as opposed to ‘memorizing’ the mapping for only a few patterns. By testing the neural network with data 
not in the original training set, we have found that approximately 4000-6000 individual input patterns are 
all that are required to ensure that no memorization occurs and that a general mapping is learned for the 
phase-retrieval problem. 

G3.1.5 Output interpretation 

The neural network may be trained to estimate phase aberration in terms of a variety of representations. 
For example, we have generated networks which determine average phase and wavefront slopes over 
small subapertures of the entrance pupil, or alternatively, we have trained networks which determine 
the phase aberration with respect to orthogonal functions defined over the entrance pupil. The former 
representation can sometimes be useful, but for problems such as the recovery of the low spatial frequency 
static aberrations of the Hubble Space Telescope, the latter representation has conspicuous advantages since 
most low-order optical aberrations may be described with only a few orthogonal functions. Therefore, we 
chose to train most of our neural networks to estimate phase distortion in terms of a finite number of the 
well known Zernike polynomials (Born and Wolf 1970). In this configuration each output node of the 
network produced a coefficient, Z i ,  such that the phase aberration was approximated by 

N 

(G3.1.2) 

In (G3.1.2), Pi ( r )  is a radial Zernike polynomial orthogonal over a circular entrance pupil. 

G3.1.6 Development 

Our neural network development was accomplished on a PC compatible 386 computer hosting a general 
purpose digital signal processing (DSP) board. The DSP board was manufactured by Atlanta Signal 
Processing and contained a single Texas Instruments TMSC302OC30 DSP microprocessor running at 
33 MHz. All source code was written in C and was developed by ourselves. The software ran under the 
DOS operating system with a minimal real-time kernel running on the DSP board. The development tools 
required were minimal and consisted only of a C compiler and debugger for the PCDOS environment and 
the standard Texas Instruments C compiler and assembler for the TMSC302OC30. 

The performance of the network was quite good despite the minimal nature of the software and 
hardware required to develop the system. For a typical phase-recovery network as described here the 
process of generating 4000-6000 training data sets and then training the network could be accomplished 
in a 36 hour period. 

G3.1:4 Handbook of Neurul Computurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for control of telescope adaptive optics 

Although our inherently nonparallel development system was not the most efficient for the real-time 
implementation of the neural network, we tested the throughput rate of a phase-retrieval neural network on 
our system in order to estimate the rate at which a single modest processor could measure phase distortion. 
The network was designed to estimate eight Zernike coefficients per cycle and could complete one cycle in 
122 ps. An adaptive optics system compensating the lowest eight Zernike modes at a few hundred Hertz 
is sufficient for a modest telescope at a good astronomical site with relatively small atmospheric aberration, 
so even our modest computing power is sufficient for this case. A more sophisticated processor could 
easily implement a network designed for sites with more atmospheric turbulence or a larger telescope, 
where it is necessary to estimate more coefficients at similar or faster rates. 

G3.1.7 Comparison with traditional methods 

Conventional methods of estimating wavefront aberration in adaptive optics systems measure local slopes 
of the wavefront over subapertures within the larger telescope aperture (Hardy et a1 1977). A linear 
least-squares algorithm is then used to reconstruct the phase profile from the slope data. Conventional 
sensors require complicated beam-train optics, which tend to add extra distortion to the wavefront, lead 
to photon losses, and introduce uncommon and therefore hard to measure optical aberrations between the 
sensor and viewing camera. The neural network approach eliminates these difficulties. It operates directly 
on the quantity of primary interest for astronomical imaging, namely the point spread function (PSF) of 
the system. The optical requirements are much simpler and allow the PSF sensor to be located near the 
telescope aperture and the astronomical viewing camera, minimizing the uncommon optics. The approach 
is also flexible because the network can be optimized for a variety of different conditions. 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

c 1 

I 1 I I I I I I I 1 
f 3 4 5 6 7 8 9 1 0 1 1 1 2  

MODE NUMBER 

Figure G3.1.2. Experimental statistics comparing Hartmann sensor measurements of atmospheric 
turbulence with neural network estimates. (A), average squared phase aberration per Zemike mode measured 
by a Hartmann sensor. (O), average squared difference between a Hartmann sensor measurement and a 
neural network estimate per Zemike mode. Mode 4 is focus, 5 and 6 are astigmatisms, 7 and 8 are coma, 
and 11 is third-order spherical aberration. (Reprinted with permission from Nature vol. 351, 23 May 1991, 
page 302. Copyright 199 1 Macmillan Magazines Limited.) 

With the assistance of our collaborator R Q Fugate, director of the Starfire Optical Range (SOR) at 
the Phillips Laboratory located on Kirtland Airforce Base, we were able to test the performance of a neural 
network system by making simultaneous measurements of atmospheric aberrations with a Hartmann sensor 
and a neural network (Sandler et a1 1991b). The measurements were obtained with the 1.5 m telescope 
located at SOR. Figure (33.1.2 shows the mean-squared magnitude of the phase aberration per Zemike 
mode as reconstructed by the Hartmann sensor and the mean-square difference between the reconstructed 
phase and the neural network estimates of phase for modes 4 (focus) through 11 (spherical aberration). 
Note that the difference between the network’s predictions and the Hartmann sensor reconstructions for 

@ 1997 IOP Publishing Ltd and Oxford University hess Hundbook of Neural Computation release 9711 (33.1 :5 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

modes 4-7 inclusive differ by less than 1/14 rms. These data indicate that if used in an adaptive optics 
system, the network would reduce the mean-square wavefront error from 1.77 rad2 to at most 0.78 rad2, 
corresponding to an increase in effective image resolution by a factor of approximately 3 (Fried 1966, 
Angel et a1 1990). For Zernike modes 1. 8 there is less power in the turbulent aberration spectrum, 
making it difficult to compare results. The measurement uncertainties introduced by Hartmann-sensor 
noise, unshared optical paths, alignment errors and aberrations in the static beam train are of the same 
order as the phase distortions induced by the atmosphere. 

The Hubble Aberration Recovery Project (HARP) mentioned earlier provided us with a chance to 
compare the neural network method with traditional iterative techniques for phase retrieval. The iterative 
nature of the traditional algorithms and their computational complexity make these methods unsuitable for 
real-time systems, but they can be used to produce very accurate estimates of static telescope aberrations. 
During the HARP effort the neural network was tested on simulated images produced by the Space Science 
Telescope Institute. The network performed quite well and was able to estimate the aberration to within 
0.3%. On real Hubble Space Telescope data the neural network estimates of aberration agreed with the 
average of the estimates of other algorithms to within the 5% scatter found in the estimates made by all 
the investigators. 

G3.1.8 Conclusions 

We have demonstrated that a simple optical sensor with a neural network processor can measure low-order 
aberrations created by atmospheric turbulence. We have also proven the method as a simple and quick 
means of estimating the static aberration in an astronomical telescope. Good agreement between the neural 
network method and more conventional methods of estimating optical wavefront distortion show that the 
neural network can be an effective tool for both adaptive optics and testing of large optics. The quick 
throughput of the technique along with the ease with which it may be implemented make it an attractive 
means of checking and adding supplementary data even when other, more traditional algorithms, are used. 

References 

Angel J R P, Wizinowich P, Lloyd-Hart M and Sandler D G 1990 Adaptive optics for array telescopes using neural- 

Barrett T K and Sandler D G 1993 Artificial neural network for the determination of the Hubble Space Telescope 

Bom M and Wolf E 1970 Principles of Optics (New York: Pergamon) pp 464-6 
Ealey M A and Wellman J A 1994 Xinetics low cost deformable mirrors with actuator replacement cartridges Adaptive 

Fienup J R 1982 Phase retrieval algorithms: a comparison Appl. Opt. 21 2758 
-1987 Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support 

Fried D L 1966 Optical resolution through a randomly inhomogeneous medium for very long and very short exposures 

Gardner C S 1989 Sodium resonance fluorescence lidar applications in atmospheric science and astronomy Proc. IEEE 

Gonsalves F A 1982 Phase retrieval and diversity in adaptive optics Opt. Eng. 21 829-32 
Goodman J W 1968 Introduction to Fourier Optics (San Francisco, CA: McGraw-Hill) pp 57-76 
Hardy J W, Lefebvre J E and Koliopoulous C L 1977 Realtime atmospheric compensation J. Opt. Soc. Am. 67 36&9 
Lloyd-Hart M, Wizinowich P, McLeod B, Wittman D, Colucci D, Dekany R, McCarthy D, Angel J R P and Sandler D 

G 1992 First results of an on-line adaptive optics system with atmospheric wavefront sensing by an artificial 
neural network Astrophys. J.  Lett. 390 U14 

Paxman R G and Fienup J R 1988 Optical misalignment sensing and image reconstruction using phase diversity J. 
Opt. Soc. Am. A 5 914 

Roddier F 1988 Curvature sensing and compensation: a new concept in adaptive optics Appl. Opt. 27 1223-5 
Rosenblatt F 1962 Principles of Neurodynamics (Washington, DC: Spartan) 
Rumelhart D E, Hinton G E and Williams R J 1986 Parallel Distributed Processing: Explorations in the Microstructure 

of Cognition vol 1 (Massachusetts: MIT Press) pp 318-62 
Sandler D G, Barrett T K and Fugate R Q 1991a Recovery of atmospheric phase distortion from stellar images using 

an artificial neural network Active and Adaptive Optical Components (Proc. SPIE 1543) ed M A Ealey pp 491-9 
Sandler D G, Barrett T K, Palmer D A, Fugate R Q and Wild W J 1991b Use of a neural network to control an 

adaptive optics system for an astronomical telescope Nature 351 300-2 

network techniques Nature 348 221 

aberration from stellar images Appl. Opt. 32 1720-7 

Optics in Astronomy (Proc. SPIE 2201) ed M A Ealey and F Merkle pp 680-7 

constraint J. Opt. Soc. Am. A 4 118 

J. Opt. Soc. Am. 56 1372-9 

77 408-1 8 

G3.1:6 Handbook of Neuml Computution release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural networks for control of telescope adaptive optics 

Wizinowich P, Lloyd-Hart M, McLeod B, Colucci D, Dekany R, Wittman D, Angel J R P, McCarthy D, Hulburd W G 
and Sandler D G 1991 Neural network adaptive optics for the multiple-mirror telescope Active Md Adaptive 
Optical Co.rnponents (Proc. SPIE pp 1542) ed M A &ley pp 148-58 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 G3.1:7 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

63.2 Neural multigrid for disordered systems: lattice 
gauge theory as an example 

Martin Baker, Gerhard Mack and Marcus Speh 

Abstract 

Multigrid relaxation algorithms for discretized partial differential equations require 
learning steps when disorder is present. They have to determine the interpolation 
operators from coarse to fine grids (disordered ‘wavelets’). The matrix elements of these 
operators are considered as connection strengths of a neural net. Learning by backward 
propagation is too slow. An efficient alternative algorithm is presented. It is based on 
the multiscale philosophy where objects on larger scales are built from objects of smaller 
scales. Applications include gauge-covariant propagators in lattice gauge theory, fissures 
in materials, and so on. 

G3.2.1 Project overview 

G3.2. I ,  1 Scope of application: lattice gauge theory as a special case 

The multigrid method is an extremely efficient method for solving discretized partial differential equations, 
especially linear ones such as the Laplace equation or Maxwell’s equations (Brandt 1984). It fails, however, 
in the disordered case, that is, when there is no approximate translational invariance. In this case, the 
interpolation operators from coarse to fine grids cannot be guessed a priori. These operators must be able 
to approximate the poorly converging (‘smooth’) parts of the error. They can be regarded as wavelets. 
(By ‘wavelets’ we mean a set of localized objects out of which every function can be generated. As the 
problem is not translationally invariant, the usual notion of wavelets is not appropriate here. To be more 
specific, the operators correspond to the scaling functions of multiresolution analysis.) We use a neural 
network design to compute them. 

There are many potential applications: propagation of fissures in materials, low-lying states and their 
localization properties in continuous spin glasses, growth of snowflakes, and gauge-covariant propagators 
in lattice gauge theory. In the last case, the disorder is in the gauge field, see below. In hybrid Monte 
Carlo simulations of lattice gauge theories with dynamical fermions (Montvay and Munster 1994) the 
computation of the Dirac propagator is the most time consuming step. 

G3.2.1.2 Differential equations and lattice gauge theory 

Consider (real or) complex vector-valued functions f, c , #  on a d-dimensional hypercubic lattice A0 of 
lattice spacing a0 = 1. The value of 6 at site z E A0 is denoted by c(z), etc. 

Given a linear operator L, we consider the inhomogeneous linear equation and the associated 
eigenvalue problem for the associated positive operator D, D = L if L > 0; D = L’L otherwise: 

(G3.2.1) 
(G3.2.2) 

We are interested in sparse matrices L which come from discretizing partial differential equations, especially 
elliptic ones. To be more specific, we consider lattice gauge theory as an example. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G3.2:l 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

SU(2) lattice gauge theory. We define a link as a pair b = ( w ,  z)  of nearest-neighbor sites; -b = (z, w )  
is the link in the opposite direction. A lattice gauge field assigns an SU(2)-matrix U ( b )  to every link b of 
the lattice, with U ( - b )  = U ( b ) - ' .  SU(2)-matrices are unitary complex 2 x 2 matrices of determinant 1. 
These matrices are distributed randomly with a Boltzmannian probability distribution a exp( -BSw( U ) ) ,  
completely analogous to a thermodynamical problem. SW is the standard Wilson action of lattice gauge 
theory (Creutz et a1 1983): 

Sw(U) = E T r ( 1  - U ( 8 p ) )  with U ( 8 p )  = U(b4)U(b3)U(b2)U(bl) 

for an elementary square p of the lattice with links b l ,  . . . , b4 at its boundary. Note that variables U ( z ,  w) 
at different links are correlated. 

The SU(2) matrices act on the lattice functions f, 6 ,  4,  which therefore have to be two-component 
complex vectors. The matrices are used as parallel transporters-whenever two vectors ~ ( z I ) ,  t ( z 2 )  have 
to be compared (to calculate their difference), a path C = b, o . + . o b2 o b~ leading from z1 to 22 has to be 
chosen. The vector ~ ( z I )  is transported along the path using the matrix U(C) = U(b,)U(b,-l)  U @ ) .  
The result of this transport is path-dependent. The equations of lattice gauge theory are, for instance, gauge- 
covariant. They involve discretized versions of covariant differential operators in the continuum. These 
discretized versions are obtained from their noncovariant relatives by including a parallel transporter into 
finite differences between nearest neighbors: t (z )  - t ( w )  gets replaced by t (z )  - U ( z ,  w ) t ( w ) .  Standard 
discretized differential operators have to be changed accordingly. The negative covariant Laplacian -A 
is a positive operator defined by 

P 

-At(z> = a i 2  c [6(z) - U ( z ,  w > t ( w > I *  
w n.n. z 

Summation is over all nearest neighbors w of z.  

G3.2.1.3 Criticality and the multiscale principle 

Consider the inhomogeneous equation (G3.2.1) with 

L = -A + (6m2 - €*In > 0. (G3.2.3) 

e A  is the lowest eigenvalue of -A so that the lowest eigenvalue of L is am2. 
The problem is ill-posed when there is an eigenvalue of zero. When the lowest eigenvalue 6m2 is very 

close to zero the problem is called critical and traditional local relaxation algorithms and the conjugate 
gradient algorithm suffer from critical slowing down-the time needed for the solution of the equation 
grows when am2 decreases because the convergence of this algorithm is determined by the condition 
number, the quotient between the largest and the smallest eigenvalue. Local algorithms are not able to 
address the parts of the error corresponding to low eigenmodes. In ordered systems this is due to the fact 
that these modes are the smoothest, i.e. they do not change appreciably on a small length scale of order ao. 

The multiscale approach consists in using nonlocal updating steps of the form 

W Z )  = C X W X ( 2 )  (G3.2.4) 

(or 6 $ ( z )  = c,L*w,(z) if D = L*L ). Herein w, is an appropriate set of functions (called interpolation 
operators or wavelets), having supports [ x ]  of diameter of order 2k lattice spacings, k = 1,2,3,  . . . These 
functions have to be able to approximate the low eigenmodes of D, which are not affected by the relaxation. 
In a multigrid method we define a sequence of lattices Ak, k = 1,2, 3, . . . , N ,  of increasing lattice spacing 
a k  = 2 k a ~  and we label these functions by the sites x E Ak of the kth layer. After doing some relaxation 
steps to eliminate the high-frequency parts of the error, the equation is transported to the coarser layers 
of the multigrid where the appropriate weights c, are determined, usually by performing a relaxation on 
these layers. 

G3.2.1.4 Features of disordered systems: localized states 

The covariant Laplace operator (G3.2.3) contains disorder through the randomly distributed gauge fields. 
As stated above, the low-lying modes have to be approximated well by the functions w,. Frequently, low- 
lying states in disordered systems show localization properti,es. An example is shown in figure G3.2.1. 

G3.2~2 Handbook of Neuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural multigrid for disordered systems 

It shows the ground state of the gauge-covariant Laplacian in a fairly disordered SU(2) lattice gauge 
field on a two-dimensional square lattice with periodic boundary conditions. The figure is for a particular 
gauge-field configuration from the ensemble with ,9 = 1. 

30.0 

20.0 

10 0 

0.0 

0.0 10.0 20.0 30.0 

Figure G3.2.1. Lowest mode of the two-dimensional covariant Laplace operator in an SU(2)-gauge field 
at p = 1 as a 3D plot. 

G3.2.2 Design 

G3.2.2.1 Motivation for a neural network solution 

Necessity for the computation of accurate wavelets for disordered systems. In standard local relaxation 
algorithms, the slow-to-converge modes are the smooth modes. The iterative solution of the inhomogeneous 
equation (G3.2.1) will converge quickly only if all smooth modes #,, can be well approximated by a 
superposition of just a few wavelets. This motivates the prescription to make the wavelets as smooth as 
is consistent with their support properties. In disordered systems the differential operator D defines an 
appropriate notion of smoothness. The smoothest functions are those obtained by superposition of the 
lowest eigenmodes of D. Smooth functions are not known a priori, instead they have to be calculated by 
the neural network. 

Let [XI C A0 be a hypercube of sidelength of the order of ak = 2kao which is determined by a site 
x E Ak. [ x ]  is called a block. Demand that w, is restricted to this block 

w,(z) = 0 for z 4 [XI. (G3.2.5) 

Extremalization of {w,, Dw,) = E, G,(z)Dw,(z) subject to (G3.2.5) and to the normalization 

DD'[X1wX(~) = w X ( z ) e ( x )  z E [XI (G3.2.6) 

of the eigenvalue problem with Dirichlet boundary conditions on the boundary of [XI. wX (z) are matrices, 
as they are used to transport vector-valued functions between the layers of the network. In our example, 
f ,  6 etc are two-component vectors, and each eigenvalue problem has two degenerate two-component 
vector-valued functions as solutions. They are combined into one 2 x 2 matrix. In other problems, an 
appropriate number of nearly degenerate vector-valued eigenvectors are to be combined into a matrix. 

For large hypercubes [XI this eigenvalue problem looks just as hard as the original one. The iteratively 
smoothing unigrid algorithm (ISU) (B&er et a1 1992, B&er 1995a, b) is designed to solve it. This 
algorithm can be considered as a neural net-the coefficients w,(z)  are naturally identified with connection 
strengths between nodes x ,  z in a neural network whose nodes are the sites of the layers Ao, . . . , AN of 
the multigrid; their iterative determination amounts to a learning process. In contrast to standard neural 
networks these connection strengths are matrices rather than numbers because they map vectors (the field 
on one layer of the grid) on other vectors (the field on another layer). 

constraint (w,, w,) = 1 is equivalent to finding the lowest eigenmode 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G3.2~3 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

Example of localized states and its decomposition into wavelets. In figure G3.2.2 we show the modulus 
IIw,(z)1I2 of the solutions of the eigenvalue problem equation (G3.2.6) for the problem whose ground 
state was shown in figure G3.2.1. The solution for the four largest overlapping blocks [XI is shown; the 
eigenvalues E ( X )  are also indicated. One clearly sees how this furnishes a decomposition of the ground 
state into separate patterns. The patterns in different blocks [XI have slightly different eigenvalues. The 
contribution to the ground state of those patterns with slightly larger eigenvalues appear to be significantly 
suppressed. The example shows that the determination of the wavelets is really a problem in cognition. 
One determines constituent parts of objects. Here, the objects are the low-lying modes of D. 

3 0 0  

20 0 

E = 0.00215 

0 0  

E = 0.01047 

300 

W O  

10 0 

0 0  

30.0 

200 

10 0 = 0.00168 

0 0  

0 0  100 200 300 0 0  100 200 3 0 0  

. ................ ...................... .......................... ............... ............. ..... 1 ..,. irb!qf;:;::.. ........ ........ ............... ... ................ ..... I........... 
.......I......... 

. I. 
.............. : ........................... ; i :::... ................... ............................. 

300 

200 

10 0 

00 

1 
1 

E = 0.00912 

00 100 20.0 300 0 0  100 200 300 

Figure G3.2.2. Solutions of the eigenvalue problem (G3.2.6) for the same gauge-field configuration as in 
figure G3.2.1. Comparing with this figure, it can be clearly seen that the modes with the lowest eigenvalues 
contribute most to the eigenmode with periodic boundary conditions. 

Black box description. During the learning phase, the algorithm does not need the input of test patterns. It 
uses the given connection strengths on layer A0 (the problem operator) to generate the connection strengths 
w,(z) and Dk(x,, xa) ,  see below. As a byproduct one obtains the ground state r$o(z). It comes out as the 
strength of the connection from the single node x in the last layer AN to node z of the inputloutput layer 
Ao. The algorithm can be generalized to yield several lowest-lying eigenmodes of D (Baker 1995b). 

Afterwards, the right-hand side f ( z )  is given as an input pattern to node z E Ao. After the 
computation, node z furnishes the result ( ( z ) .  This step can be repeated for arbitrarily many right-hand 
sides without any need to compute the connection strengths anew. 

G3.2.2.2 Topology 

Neural multigrid, implementation of wavelets as connection strengths. The topology of the neural network 
in the simplest case of a three-grid is shown in figure G3.2.3. The bottom layer A0 is the inputloutput layer. 
The top layer consists of a single node. The connections whose strength determines the wavelets are shown 
in black. They are determined by a learning process. The input connections which define the problem 
(i.e. D) are the dotted lines between nodes of Ao. The other dotted lines are auxiliary connections. The 
nonhorizontal ones are computed anew in every iteration step of the learning process, each as a solution 
of a quadratic equation. The dotted horizontal lines stand for connections which define coarse-grained 
relatives Dj  of the basic operator D on scale a,. They are determined by D and by the wavelets. 

In general, there are N layers and the wavelets w,(z)  connect sites x of these layers AJ to sites z in 
the overlapping blocks [XI of sidelength 2j+' - 1 lattice spacings inside the fundamental layer ha. 

G3.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural multigrid for disordered systems 

> periodically continued e- - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Figure G3.2.3. Topology of the neural network for the case of a one-dimensional three-grid. The 
fundamental grid consists of four points, the intermediate of two. Full lines denote the connections of 
the network w t ( z ) ,  dotted lines are auxiliary connections used for the updates and the connections on the 
input/output layer are given by L. 

All neural connections are bidirectional because they are used to transport functions back and forth 
between the layers of the network. If w, (z )  is the connection strength from x to z then the adjoint matrix 
w,(z)* gives the connection strength from z to x .  

G3.2.2.3 Learning 

Necessity to deviate from textbook learning rules. The layers of the neural network correspond to the layers 
of the multigrid. Their number increases logarithmically with the lattice size. We are interested in very 
large lattices, that is, many layers. The absence of critical slowing down means that the convergence rate 
should not increase much faster than the lattice volume. However, learning by a standard backpropugation ci.z.3 
algorithm deteriorates quickly with the number of layers. Tests confirmed that it is totally useless for our 
purpose. 

From scale to scale. For clarity we write w;(z)  in place of w,(z)  for the strength of the connection from 
node x in layer Ak to z E Ao. These wavelets (or interpolation operators) are matrices to be determined 
as solutions of the eigenvalue equations (G3.2.6). 

These solutions are determined recursively for k = 0, 1 ,2 ,  . . . , using the wavelets (connection 
strengths) w; for j < k which were determined previously. This is the crucial point of the learning 
process-the larger the blocks become, the harder it is to determine the eigenvectors on the blocks. Only 
by using all the information about slowly-converging modes (smooth wavelets) already gained on the 
smaller scales are we enabled to solve the problem on the larger scale in a reasonable amount of time. 
On the larger scales there are fewer functions smooth on this scale and therefore we need fewer wavelets, 
that is, fewer grid points. 

We will now describe the learning process in greater detail: let the effective operators Dk be defined 
bv 

ZEAO 

Only the diagonal part x1 = x2 is needed. The eigenvalue problem (G3.2.6) is equivalent to the extremality 
condition 

t rDk(x ,  x )  = extr 

subject to the constraint E, w;(z) *w; (z )  = 1. It is solved by an iterative procedure as follows. 

(i) Layer Ao: 
w , O ( Z )  = n&,, ( x  E Ao). 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G3.25 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

(ii) Layer A k ,  k > 0: start with w:(z) = 16,+,, where P is the central site of hypercube Ex]. Use the 
already known wavelets w; for j < k to perform updatings of the following form. Sweep through 
all j < k, y E Aj and update the connection strengths w:(z) for all z E [ y ]  by 

6w:(z)  = w ; m  

with a matrix c c ( y ,  x )  which is determined from the extremality condition trDk(x, x )  = extr 
subject to the constraint. 

c ( y , x )  are the auxiliary connection strengths mentioned above. They can be determined by the 
Lagrange multiplier method in terms of the solution of a quadratic equation (Meyer 1987). The neurons 
y have to perform two tasks. They must add up inputs E, wy(z)q(z) linearly, and they must solve the 
quadratic equations to determine c( y , x )  . 

An alternative approach is also possible-the connection strengths are directly calculated as a solution 
to the eigenvalue equation (G3.2.6) via inverse iteration (Press et a1 1989). This is done in the standard 
unigrid manner: first we relax the equation on the fundamental layer, afterwards it is transported to the 
next coarser layer, relaxed there to smoothen the error on this scale, and so forth going through all layers 
j < k. Finally, the error will be smooth on layer Ak and there seems to be a problem because the 
connection strengths to this layer are not yet known-we are trying to compute them. However, the error 
now has exactly the shape we are looking for, namely that of the lowest mode on this block; therefore a 
simple rescaling suffices to fulfill the normalization condition. This latter implementation is the one we 
actually used for the calculations. 

G3.2.3 Performance 

G3.2.3.1 

In the example, about six sweeps through all the layers j < k, y E Aj sufficed to determine the wavelets 
wr(z) sufficiently accurately, irrespective of k ,  i.e. irrespective of the size of the support [ X I .  The larger 
the lattice, the larger k can be. In total, this gives a computational workload for computing the connection 
strengths w,(z)  which goes like V ln2 V with the volume V of the lattice. Afterwards, the iteration of the 
inhomogeneous equation by updates (G3.2.4) converged with asymptotic convergence time (time needed 
to reduce the error by a factor e )  of about one V-cycle sweep through the multigrid irrespective of the 
lattice size and irrespective of how critical the problem is, that is, of how small 6m2 is (see figure G3.2.4). 
In a V-cycle sweep, each site of the multigrid is visited twice. The total computational workload goes 
with the volume like V In V. For large lattices, the network takes longer (by a factor of order In V )  to 
learn how to do the job of solving the inhomogeneous equation than to finally do it. 

Critical Laplace equation in an external non-Abelian gauge field. 

1 
1 4  

1 2  

1 0  

0 8  

06 

0 4  

0 2  "" " " '  

1 0 4  10-4 1 0 - 3  10-2 10-1 100 

6mZ 

Figure G3.2.4. Performance of the ISU algorithm for the critical Laplace equation in an SU(2)-field. 
The inverse asymptotic convergence time t is shown for different grid sizes as a function of the critical 
parameter am2. All configurations were equilibrated at = 1.0. Lines are drawn only to guide the eye. 

G3.2:6 Handbook of Neural Computarion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural multigrid for disordered systems 

G3.2.4 Generalization to general problem solving strategies 

The solution of equations like (G3.2.1) and (G3.2.2) can be viewed as an extremalization task, 
(Le - f ,Le - f )  = min. Inspection of the algorithm reveals that two basic pieces of structure are 
made use of to solve such a task. 
(i) Composability of the connections. Given a connection with some strength c(y, x )  from node x to 

node y and a connection of strength w , ( z )  from node y to node z, a connection from x to z is 
specified. 

(ii) Linearity is used to add strengths of connections between the same two nodes. 
The second of these requirements could be relaxed, although this is fairly complicated and cannot be 
explained here. Moreover, here we used a priori chosen block shapes (hypercubes). This can be relaxed 
and replaced by an optimizing strategy for block shapes. Taking all of this for granted, one sees that the 
algorithm appears to be capable of generalization to a general multiscale strategy for solving optimization 
problems of general complex adaptive systems. A general framework was developed in Mack (1994, 
1995a, b). 

References 

Baker M 1995a Localization in two-dimensional lattice gauge theory and a new multigrid method Znt. J. Mod. Phys. 

-1995b A multiscale view of propagators in gauge fields PhD Thesis Hamburg, DESY-95-134 
Btiker M, Kakreuter T, Mack G and Speh M 1992 Neural multigrid for gauge theories and other disordered systems 

Proc. Physics Computing '92 (Prague) ed R A de Groot and J Nadrchal (River Edge, NJ: World Scientific) 
Brandt A 1984 Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics GMD-Studie Nr. 85, Bonn 
Creutz M, Jacobs L and Rebbi C 1983 Phys. Rev. 95 201 
Mack G 1994 Gauge theory of things alive and universal dynamics DESY-94-184 Preprint; also from the Los Alamos 

-1995a Gauge theory of things alive Nucl. Phys. (Proc. Suppl.) B 42 923 
-1995b Gauge theory of things alive: Universal dynamics as a tool in parallel computing Prog. Theor. Phys. 

Meyer A 1987 Modem Algorithms for Large Sparse Eigenvalue Problems (Berlin: Academic) 
Montvay I and Munster G 1994 Quantum Fields on a Lattice (Cambridge Monographs on Mathematical Physics) 

Press W H, Flannery B P, Teukolsky S A and Vetterling W A 1989 Numerical Recipes (Cambridge: Cambridge 

C 6 85 

electronic bulletin board hep-lat@ ftp.scri.fsu.edu 941 1059 

(Suppl.) in press 

(Cambridge: Cambridge University Press) 

University Press) 

Further reading 

Briggs W L 1987 A Multigrid Tutorial (Philadelphia, PA: SIAM) 

An excellent introduction into the multigrid method. 

Creutz M 1983 Quarks, Gluons, and Lattices (Cambridge: Cambridge University Press) 

A short but thorough introduction to lattice gauge theory. For more recent results see 1994 Montvay and Munster 
(references). 

Farge M 1992 Ann. Rev. Fluid Mech. 24 395 

This article explains the basics of wavelet transforms and explores some of their applications to fluid dynamics. 

Hackbusch W 1985 Multigrid Methods and Applications (Springer Series in Computational Mathematics 4 )  

Another multigrid introduction, broader-ranged and more mathematical than the book by Briggs. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 G3.2:7 

Copyright © 1997 IOP Publishing Ltd



Phvsical Sciences 

G3.3 Characterization of chaotic signals using fast 
learning neural networks 

Shawn D Pethel and Charles A4 Bowden 

Abstract 

The characterization of nonlinear and chaotic systems has become increasingly important 
in many areas of science and engineering (Campbell and Rose 1983). Features such 
as broadband power spectra and a lack of long-term predictability often make chaotic 
phenomena difficult to distinguish from purely random processes. In characterizing data, 
the most basic question to ask is whether or not the data is deterministic, and if so, 
what dimensionality? To this end, we show that neural networks can be used to detect 
determinism and to estimate dimensionality. Furthermore, we show that neural networks 
are capable of detecting multiple processes with different dimensionality in the same 
data set. Model-generated chaotic time series from the Mackey-Glass systems (Raisband 
1990) are used to measure performance and robustness. The procedure is applied to the 
analysis of experimental results of spontaneously generated Brillouin signals from intense 
laser-field-excited single-model fibers (Harrison et a1 1990). 

G3.3.1 Background 

A neural network trained on a time series of a single dynamical variable, say x ( t ) ,  can become a functional 
realization of the time series, and more profoundly, a global characterization of the chaotic attractor. It 
does this by the process of embedding. Using the embedding theorem of Takens (198 1) with an embedding 
time, t, between samples, a delay coordinate map may be constructed in the form: 

f [ X ( t ) ,  * . . , x ( t  + nr ) ]  = x [ t  + (n  + 1)t l  . (G3.3.1) 

The argument of f is a delay coordinate vector which constitutes a point in a reconstructed phase space 
of embedding dimension de. The allowable range of embedding dimensions is governed by the Hausdorf- 
Besechovitch fractal dimension df (Raisband 1990) such that df + 1 5 de 5 2 df + 1 and is sufficient to 
completely unfold the chaotic attractor in a subspace of the full phase space associated with the dynamical 
system. The embedding time t is chosen to be small compared to the mean orbital period of the system and 
can be taken as e-' of the peak of the correlation function for the variable x ( t ) ,  or alternatively as the first 
minimum of the average mutual information (Abarbanel et a1 1994). Characterization of a dynamically 
chaotic system from a time series of a single dynamical variable is contingent upon the determination of 
the function f ,  equation (G3.3.1). There are several well known techniques which have been developed 
to model f from a single time series (Abarbanel 1993). These methods involve fitting data points in 
a reconstructed phase space using polynomials (Farmer and Sidorowich 1987), radial basis functions ci .6.2 
(Casdagli 1989), or neural networks (Lapedes and Farber 1987, Albano et a1 1992). Only neural networks 
offer a global approximation, i.e. the data need not be partitioned into small regions to be fitted separately. 
Global fitting is superior to local fitting in that it avoids discrepancies between neighborhoods and provides 
a smoother fit in the presence of noise (Casdagli 1989). A neural network trained accurately on a window 
of a time series becomes a functional approximation, in the form of (G3.3.1), of that time series. We 
show that the neural network can also answer basic questions about determinism and dimensionality in a 

@ 1997 IOP Publishing Lid and Oxford University Press Hundbook of Neurul Computution release 9111 G3.3: 1 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

data set. Of primary importance is the ability to distinguish pure noise from chaos. Both are aperiodic 
and broadband in frequency. Methods of calculating dimensionality, such as box-counting or correlation 
(Grassberger and Procaccia 1993), can be fooled by pure noise. In addition, a prohibitively large amount 
of data is required to make an estimate of dimensionality using these methods. We demonstrate that a 
neural network can make estimates of dimensionality using much smaller data sets and can distinguish 
between chaos and noise. 

G3.3.2 Architecture 

c1.2 The topology is best represented by considering the equation for a single hidden layer neural network, 

(G3.3.2) 

where i = 1, . . . , n; j = 1, . . . , m ;  and k = 1, . . . , q. Here, we take A and B to be weight matrices, Z and 
0 are input and output vectors, respectively, and G is a threshold function, [G(x) ] i ,  = i (1  + tanh(xij)). 
Input nodes are represented by Zi, hidden layer nodes by [G(ZjAij)Ij and output nodes by @ k .  We also 
define a sequence of 'patterns' labeled by P = 1, . . . , p ,  where P refers to the pattern number, and @ p k  
is a matrix of correct or target outputs associated with an input matrix of patterns Zpi. In our case, Z p i  
is a matrix whose rows are delay coordinate vectors. Since equation (G3.3.1) has a scalar output, k = 1 
and @ p k  is a column vector of outputs of (G3.3.1) associated with the delay coordinate vectors Z , i .  For 
a given set of training patterns Z p i ,  the process of learning is done by comparing the actual output, @pk 

with the ideal target output @ p k  and adjusting the weight matrices A and B such that the cost function 

(G3.3.3) 
P 

is minimized. 
Training a neural network to model chaotic systems is extremely time consuming using conventional 

c1.2.3 methods based upon steepest-descent procedures such as backpropagation (Rumelhard and McClelland 
1987). A common feature of steepest-descent algorithms is an asymptotic approach to a global minimum. 
This feature makes it computationally difficult to obtain the high-accuracy fits that are mandatory when 
building a predictive model. For this reason, backpropagation typically requires the use of a supercomputer. 
Further complications arise from the presence of local minima. 

G3.3.3 Training 

We have introduced a new training procedure and applied it to the analysis of nonlinear dynamical systems 
that achieve the high-accuracy, global approximation needed in modeling chaotic systems, while using 
computational resources such as a PC or workstation (Pethel et a1 1993a, to be published). We note 
from (G3.3.2) that multilayer, feedforward neural networks are essentially several linear maps, separated 
by a simple and, in our case, invertible nonlinear function. Least-squares solutions for linear systems 
suffer none of the problems mentioned above and are well known through the Moore-Penrose generalized 
inverse formalism (Penrose 1955, Rao and Mitra 1971). We take advantage of the mostly linear structure of 
multilayer neural networks by using linear algebraic techniques to produce training. We call our method 
generalized inverse learning (GIL). Training neural networks using GIL makes the global modeling of 
chaotic systems practical. 

The principal concept of GIL is based upon the application of a Moore-Penrose generalized inverse 
of a matrix M (Rao and Mitra 1971), defined as 

ZL(M) = (MTM)- - 'MT (G3.3.4~) 

where M T  is the transpose of M for the left generalized inverse, and as 

Z,q(M) = M T ( M M T ) - '  (G3.3.4b) 

for the right generalized inverse. When used to calculate the solution to systems of linear equations, the 
generalized inverse provides the solution that minimizes the mean square error (Rao and Mitra 1971). For 
a given set of target elements @ p k  for the output corresponding to a set, Z, i ,  of input patterns, we drop the 

G3.3:2 Handbook of Neurul Compurution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Characterization of chaotic signals using fast learning neural networks 

subscripts for convenience and define the zeroth-order hidden-layer output as CO G(IAo) ,  where A. is 
a random matrix. Thus, 

COB = @ ((33.3.5) 

constitutes a linear system of equations for which a first-order, least-squares solution of B can be written 
as B1, where 

B1 = (c;Co)-'c;@ ((33.3.6) 

with an associated root mean square error, (equation (G3.3.3)). A reduction in the error E is possible by 
modifying the weight matrix Ao. This is done by first calculating a new hidden-layer output, C1, from 
which A1 can be determined. Substituting B1 into (G3.3.5), we calculate C1 = @BT(BlBT) - ' .  Using 
C1 = G ( I A l ) ,  a new weight matrix can be calculated, 

A I  = ( Z T Z ) - l Z T G - l ( C ~ )  (G3.3.7) 

where the left generalized inverse of I has been used in (G3.3.7). Thus we have defined an iterative 
algorithm-generalized inverse learning (G1L)-for the calculation of weight matrices of multilayer neural 
networks. The algorithm can be written as follows: 

((33.3.8) 
(G3.3.9) 

In practice, we find convergence to a high-accuracy solution to be extremely fast-usually one or two 
iterations. GIL is generalizable to any number of hidden layers, but for most applications we find one 
hidden layer to be sufficient. Shepanski (1988) has developed optimal estimation theory (OET) for training 
single hidden-layer neural networks. OET is equivalent to GIL for the single hidden-layer case in which the 
hidden and input layers are the same size. An equivalent learning algorithm was developed independently 
by Biegler-Konig and BLmann (1993) and tested using a simple nonlinear mapping example. 

G3.3.4 Examples 

We have used a variety of model equations to demonstrate that the neural network approach, together 
with GIL, can be a powerful new tool in the characterization and analysis of time series information from 
chaotic dynamical systems (Pethel et a1 to be published, 1993a). The neural network trained on an arbitrary 
chaotic time series using GIL becomes a functional realization of the entire series and thus forms a global 
approximation to the chaotic attractor. Using the ability of neural networks to form accurate functional 
approximations with small sets of data, we have demonstrated how data window extension, for stationary 
time data, can provide short-term prediction as well as long-term statistical properties (Pethel et a1 1993b). 
The introduction of the fast and accurate training method, GIL, renders this powerful new method practical. 
Here we apply this new method to distinguish noise from chaos in an experimental data signal output. We 
have used GIL and the functional realization property of the neural network equation (G3.3.1) to show 
that the training error as a function of the embedding dimension undergoes a dramatic reduction above 
the fractal dimension of the chaotic signal, in strong contrast to the smooth response for a stochastic 
signal (Pethel et a1 1993a). The algorithm was shown to train, with high accuracy, on low-dimensional 
chaotic signals, whereas the response of the training algorithm to stochastic signals is a least-squares 
coarse graining (Pethel et a1 1993a). As a test, we trained a neural net using GIL on data generated from 
numerical integration of the Mackey-Glass delay differential equation (Raisband 1990) for three different 
sets of parameters in the region of chaotic dynamical evolution, 

ax(t - s) 

1 + [ X ( t  - f ) ] ' O  
- bx( t )  _ -  - dx 

dt 
(G3.3.10) 

where a = 0.2 and b = 0.1, with s = 18, 30 and 50. The dimensionality of the chaotic attractor increases 
with the parameter s. The neural net was trained using GIL with 30 hidden-layer nodes and 500 data 
points. The training error E versus embedding dimension de is displayed in figure G3.3.2 for the Mackey- 
Glass system as well as for white noise. The dramatic dips in training error for the Mackey-Glass system 
indicate determinism as well as the increasing dimensionality with the parameter s. There are no significant 
dips in training error for the white noise. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Camputorion release 9711 G3.3:3 

Copyright © 1997 IOP Publishing Ltd



Physical Sciences 

This method was recently applied to the analysis of stimulated Brillouin scattering under CW laser 
pump conditions, involving a single Stokes and pump signal in a single-mode optical fiber (Pethel et a /  
1993a), as shown in figure (33.3.1. The Stokes signal data generated from a standard model was used 
to correlate the training performance of GIL with statistical and dynamical characteristics of the system 
determined by other calculational means. This procedure was applied to the temporal Stokes signal, using 
parameters which represent recent experiments (Harrison et a1 1990, Gaeta and Boyd 1991) to show that 
the signal is largely the result of noise-generated phase waves (Englund and Bowden 1990, 1992) in  the 
nonlinear strong-pump regime, whereas in the linear regime the signal is simply an amplification of the 
stochastic initiation process. 

Figure G3.3.1. Experimental setup used by Harrison et al ( 1990) to measure Stokes output in a single-mode 
optical fiber under CW laser pump conditions. 

Figure G3.3.2. Training error versus embedding dimension for Mackey-Glass U = 0.2, h = 0.1, and 
( a )  s = 18, ( h )  s = 30, ( c )  s = 50 and ( d )  for white noise. 

Here, we demonstrate confirmation of these results by applying the procedure to experimental data 
(Harrison et a1 1994). Subsequent to their initial experiments (Harrison et a1 1990, Gaeta and Boyd 1991), 
where great care was taken to ensure the absence of feedback, the experiments were repeated with less 
than 3% reflectivity from the pump output end of the fiber (Harrison et a1 1994). We report here, for the 
first time, the results of our method using GIL applied to 500 data points of the experimental time trace 
(Harrison et a1 1994). The topology used here is a feedforward neural network with a single hidden layer 
of 30 nodes and a single output node (see equation (G3.3.2)). The number of input nodes is commensurate 
with the prescribed state space dimensionality d.v. Figure G3.3.3 shows the training error using GIL, E ,  

versus the prescribed state space dimensionality, d,, for two separate experimental conditions. The open 
circles in figure (33.3.3 show the result of the response of the neural network training for the Stokes time 
trace for the condition without any reflectivity. The error E as a function of d, is approximately invariant, 
indicating a high-dimensional system characteristic of a stochastic process. For a Gaussian process with 
zero mean, the average of the training error over d, is an index of the variance of the noise. In strong 
contrast are the results for the response to training using Stokes signal data observed with approximately 
3% reflectivity at the end of the fiber. This is exhibited by the open squares in figure (33.3.2, which clearly 
indicate two strong dips, one at dimension d = 3 and another at dimension d = 6. This indicates the 
coexistence of two distinct, weakly coupled, chaotic dynamical processes, one process at low embedding 

G3.3:4 Handbook ofNeural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Characterization of chaotic signals using fast learning neural networks 

0.1 1 
n 

C 
0.10 

0.09 

I 

g 0.00 
L e 0.07 
L 

0.06 
C 
c 0.05 

t- 0.04 

I - 
E 

" m U E 
0.03 , # 1 1 1 # 1 ,  I 

1 2 3 4 5  6 7  0 8 10 

Em bedding Dimension 

Figure G3.3.3. Training error versus embedding dimension for experimental Stokes data with ( a )  no 
reflectivity at the fiber end, and ( b )  with 3% reflectivity at the fiber end. 

dimension (de 3) and another process of higher dimensionality (de = 6 ) .  This is unexpected from 
the standard model, but subsequent recent analysis of the polarization sensitivity of the fiber used in the 
experiment revealed a significant qualitative difference in the Stokes signal for orthogonal polarizations 
for the incident pump field. The results have led to further study of the polarization properties of the 
single-mode fibers used in the experiments (Harrison and Lu, private communication). 

G3.3.5 Conclusion 

The accuracy and speed of GIL combine to facilitate a powerful new method to distinguish chaos from 
noise, as well as global characterization of chaotic attractors (Pethel et al to be published). In addition 
to providing an estimate of the fractal dimension (Raisband 1990) of arbitrary chaotic time signals, 
the procedures described allow the detection and characterization of multiple processes with different 
dimensionality . 

References 

Abarbanel H D J 1993 Rev. Mod. Phys. 65 1331 
Abarbanel H D J, Carroll T A, Pecora L M, Sidorowich J L and Tsimring L S 1994 Phys. Rev. E 49 1840 
Albano A M, Passamonte A, Hediger T and Farrell M E 1992 Physica 58D 1 
Biegler-Ktinig F and BBrmann F 1993 Neural Networks 6 127 
Campbell P and Rose H 1983 Order in Chaos (Amsterdam: North-Holland) 
Casdagli M 1989 Physica 35D 335 
Englund J C and Bowden C M 1990 Phys. Rev. A 42 2870 
-1992 Phys. Rev. A 46 578 
Farmer J D and Sidorowich J L 1987 Phys. Rev. Lett. 59 845 
Gaeta A L and Boyd R W 1991 Phys. Rev. Lett. 44 3205 
Grassberger P and Procaccia 1993 J.  Phys. Rev. Lett. 50 346 
Hamson R G and Lu W Private communication 
Harrison R G, Ripley P M and Lu W 1994 Phys. Rev. A 49 R24 
Harrison R G, Uppal J S ,  Johnstone A J and Moloney J V 1990 Phys. Rev. Lett. 65 167 
Lapedes A and Farber R 1987 Technical Report LA-UR-87-2662 Los Alamos National Laboratory 
Penrose R 1955 Proc. Camb. Phil. Soc. 51 406 
Pethel S D, Bowden C M and Scalora M 1993a Chaos in optics SPIE 2039 129 
Pethel S D, Bowden C M and Sung C C 1993b US Army Missile Technical Report TR-RD-WS-93-5 Redstone 

- 1996 Global characterization of chaotic attractors: a novel, high-speed neural network approach (to be published) 
Raisband S 1990 Chaotic Dynamics of Nonlinear Systems (New York: Wiley) 
Rao C R and Mitra S K 1971 Generalized Inverse of Matrices and Its Applications (New York: Wiley) 

Arsenal, AL 

@ 1997 IOP Publishing Ltd and Oxford University hess  Handbook of Neurul Computation release 9711 G3.3:5 

Copyright © 1997 IOP Publishing Ltd



Phvsical Sciences 

Rumelhart D E and McClelland J L (ed) 1987 Parallel Distributed Processing vol 2 (Cambridge, MA: MIT Press) 
Shepanski J F 1988 Proc. IEEE Int. Con$ on Neural Networks A 1-464 
Takens F 1981 Dynamical systems and turbulence Lecture Notes in Muthematics vol 898 ed D Rand and L S Young 

(Berlin: Springer) p 366 

G3.3:6 Hundbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



6 4  

Biology and Biochemistry 

Contents 

G4 BIOLOGY AND BIOCHEMISTRY 
G4.1 A neural network for prediction of protein secondary structure 

Burkhard Rost 
G4.2 Neural networks for identification of protein coding regions in genomic DNA sequences 

E E Snyder and Gary D Stonno 
G4.3 A neural network classifier for chromosome analysis 

Jim Graham 
G4.4 A neural network for recognizing distantly related protein sequences 

Dmitrij Frishman and Patrick Argos 

@ 1997 IOP Publishing Ltd and Oxford University F’ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

64.1 A neural network for prediction of protein 
secondary structure 

Burkhard Rost 

Abstract 

Currently, the prediction of a three-dimensional protein structure from a protein sequence 
poses insurmountable difficulties. As an intermediate step, a much simpler task has been 
pursued extensively: predicting one-dimensional strings of secondary structure. Here, 
a composite neural network is described which predicts three secondary-structure states 
(helix, strand, loop). The network system comprises two levels of feedforward networks 
(one hidden layer each) and a final jury decision over differently trained networks. 
Training is done by an adaptive-like backpropagation. An important key feature of 
the system is that the input is not only the sequence of one protein but the profile 
of a set of sequences from proteins which have the same three-dimensional structure. 
The combination of the problem-specific topology and the preprocessing of the input 
improve prediction accuracy from 62% to 72%. Furthermore, the specific topology and 
training procedure successfully correct for shortcomings of both simpler neural network 
and classical methods. Over the last few years, the network system has been the best 
automatic predictor in a very competitive area of research. 

G4.1.1 Introduction to protein structure prediction 

G4.1.1.1 Protein folding 

Proteins are formed by joining amino acids into a long stretched chain, the protein sequence. They differ 
in length (from 30 to 30 000 amino acids) and in the arrangement of the amino acids (called residues, when 
joined in proteins). In water, the chain folds into a unique three-dimensional structure. The main driving 
force for folding is the need to pack residues for which a contact with water is energetically unfavorable 
(hydrophobic residues) into the interior of the molecule. This is only possible if the protein forms regular 
patterns of a macroscopic substructure called secondary structure (figure G4.1.1); for an introduction see 
BrhdBn and Tooze (1991). 

G4.1.1.2 Sequence-structure gap 

Today the sequence is known for more than 40000 proteins (Bairoch and Boeckmann 1992), but the three- 
dimensional structures for only 3000 have been determined by crystallography (Bernstein et a1 1977). 
Large-scale gene sequencing projects increase this sequence-structure gap further (Oliver et a1 1992). 

G4.1. I .3 Protein structure prediction 

Protein three-dimensional structure determines protein function. It is well established that the three- 
dimensional structure is uniquely determined by the sequence (Anfinsen 1973). Thus, in principle, three- 
dimensional structure could be predicted from first principles. Unfortunately, the CPU time required is 
many orders of magnitude beyond today’s scope (van Gunsteren 1993, Yun-yu er a1 1993). However, it 
is of practical importance to know the three-dimensional structure, for example, for rational drug design. 

0 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neurul Computation release 9Ii1 G4.1: 1 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.1.1.4 Protein structure prediction by alignment 

The evolutionary pressure conserves protein function. Thus, protein structure is more conserved than 
sequence. Evolution has created pairs of proteins which have similar structure but only 25% identical 
residues (Sander and Schneider 199 1). Therefore, three-dimensional structure can be predicted accurately 
by homology if a protein with sufficient sequence identity and known three-dimensional structure is found 
in the databank. Homology modeling reduces the sequence-structure gap by about 10 OOO proteins (Sander 
and Schneider 1993, Rost and Sander 1994d). 

G4.1.1.5 Drastic simplification of the prediction problem 

If homology modeling is not applicable, that is, for about 30000 of the known sequences, the prediction 
problem has to be simplified. An extreme simplification is the prediction of one-dimensional strings of 
secondary-structure assignment (figure G4.1.1). One tool that has been applied to various aspects of the 
protein structure prediction problem is the artificial neural network (ANN) (McGregor et a1 1989, Bengio 
and Pouliot 1990, Bohr et a1 1990, Bossa and Pascarella 1990, Holbrook et a1 1990, Kneller et a1 1990, 
Petersen et a1 1990, Brunak 1991, Friedrichs et a1 1991, Hirst and Stemberg 1991, Bohm et a1 1992, 
Ferrdn and Ferrara 1992b, Ferrdn and Ferrara 1992a, Frishman and Argos 1992, Goldstein et a1 1992a, 

P 
Q 
I 
T 
L 
w 
Q 
R 
P 
L 
V 
T 
I 
K 
I 
G 
G 
Q 
L 
K 
E 
A 
L 
L 
D 
T 
G 
A 
D 
D 
T 
V 
L 

PP P 
QQQY 
FFQVI 
SSIVR 
LLSTL 
WWQED 
RKQAX 
RRRPQ 
PPPPP 
VVTKF 
W L I I  
TTKEK 
AAL IV 
HYKKF 
IILVI 
EENGG 
GGGTG 
Q Q K M  
PPLWW 
VVFKV 
EESKK 
W G L G  
LLILL 
L L L W  
DDDDD 
TTTTT 
GGGGG 
AAAAA 
DDDDD 
DDAXE 
SSTTV 
IIVIV 
W I V L  

E 
E 
E 
E 
E 

E E  
E E  
E E  
E E  
E E  

E 

E E  
E E  
E E  
E E  
E E  
E E  

E 

E E  
E E  

Figure G4.1.1. Structural representation of HIV-I protease with PDB (a databank of proteins with known 
three-dimensional structure) code lHHP (Bemstein et a1 1977)) in one and three dimensions. (a) Amino 
acids for the first 33 residues (one letter code, first column); alignment of five proteins with the same 
three-dimensional structure as HIV- 1 protease (second column): secondary structure computed from three- 
dimensional structure using the program DSSP (dictionary of secondary structures of proteins, a program 
that computes secondary-structure segments from three-dimensional coordinates, Kabsch and Sander 1983a), 
H: strand = E, rest = blank (third column); and a typical prediction by the neural network program most and 
Sander 1994b) for secondary structure (in italics, fourth column). (b) The protein chain in three-dimensions 
is plotted schematically as a ribbon. Strands are indicated by arrows; the short helix is on the right towards 
the end of the protein. Graph by Christos Ouzounis (European Molecular Biology Laboratory) using the 
program MOLSCRIPT (Kraulis 1991). 

G4.1:2 Handbook of Neurai Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for prediction of protein secondary structure 

1992b, Hayward and Collins 1992, Muskal and Kim 1992, Pancoska et a1 1992, Xin et a1 1992, Andrade 
et a1 1993, Dubchak er a1 1993, Fariselli et a1 1993, Ferriin and Pflugfelder 1993, M a c h  and Shavlik 
1993, Metfessel et a1 1993, Presnell and Cohen 1993, Rost and Sander 1993c, Rost and Sander 1993a, 
Sasagawa and Tajima 1993, Tchoumatchenko er a1 1993, Dombi and Lawrence 1994, Radomski er a1 
1994, Rost and Sander 1994a, 1994c, Tolstrup e? al 1994). 

G4.1.2 Design process 

G4.1.2.1 Motivation for a neural network solution 

Even the simplified task of predicting secondary structure is a difficult problem. Thus, secondary-structure 
prediction became a playground to apply any fancy new pattern classification techniques, for example, 
neural networks (Bohr et a1 1988, Qian and Sejnowski 1988, Holley and Karplus 1989). The hope was 
that neural networks could use higher-order correlation in the data. However, this failed-neural networks 
with and without a hidden layer were equally accurate (Holley and Karplus 1989). The motivation to 
try again was twofold: first, evolutionary records provide a rich resource of structural information which 
should contain higher orders of correlation; and second, some disadvantages of both neural network and 
non-neural network predictions should be correctable by alternatives to backpropagation training (Stolorz ci.z.3 
er a1 1992) or composite neural networks. 

G4.1.2.2 General description of the neural function 

The task is to classify residues from a protein into three secondary-structure types. A window of a adjacent 
residues is taken from a protein sequence and input to the network. The output consists of three units for 
the secondary structure of the residue in the center of the input window. The window is shifted through 
the whole protein, such that a protein with R residues provides R classification examples. 

G4.1.2.3 Topology 

Helices extend over at least four residues; the average length of a helix is typically some ten residues. 
A simple neural network as described in the previous paragraph does not capture the correlation between 
secondary-structure states of adjacent residues. Thus, for example, the average length of a predicted helix 
is about four instead of ten residues. Correlations between adjacent residues can be introduced by using 
a second level of structure-to-structure neural network (figure G4.1.2). Such a second level of neural 
network improves overall prediction accuracy only marginally (Qian and Sejnowski 1988), but the average 
length of predicted secondary-structure segments is more similar to observed averages than for the first- 
level sequence-to-structure neural network (Rost and Sander 1992, 1993b, 1994b). A further difficulty 
with a simple neural network is that different training procedures result in different predictions. Which 
one to take? A simple solution is to compute an arithmetic average over differently trained networks ('jury 
decision or committee machine, Hansen and Salamon 1990). Such a third level improves overall accuracy 
and tends to combine the advantages of differently trained networks. 

G4.1.3 'lkaining methods 

G4.1.3.1 Balanced training 

Neural networks trained by backpropagation (Rumelhart er a1 1986) in an on-line mode (updated for each 
training pattern) typically result in a three-state accuracy of around 62% Rost and Sander 1993b, Rost 
et a1 1993). The accuracy is very unbalanced between the three secondary-structure types (helix 56%, 
strand 41%, loop 76%). This reflects the typical distribution of secondary structure in the data set: 32% 
helix, 21% strand, 47% loop (Rost and Sander 1992, Rost and Sander 1994a). A simple way to balance 
the prediction and thus to more accurately predict the most abundant class of strand is an adaptive-like 
training: instead of choosing the training samples at random from all examples, now at each time step an 
example is chosen at random from each of the three classes (helix, strand, loop): 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G4.1:3 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

i- 1 

i 

i t 1  

N 
K 
D 
W 
W 

K 
D 
W 
W 
K 

D 
W 
W 
K 
V 

sec str (i-1) 

sec str (i) 

sec str ( i t l )  

-b sec str (i-1) 

sec str (i) 

-+ sec str ( i t l )  

Figure 64.1.2. Three-level system for prediction of secondary structure. (a) First level, sequence-to- 
structure network: a window of a = 13 adjacent residues is shifted through all proteins. For each window 
the task of the network is to predict the secondary-structure state of the central residue (D, W, W). Neural 
network: unidirectional connections. Number of units (see figure (34.1.4): NI = 536, N2 = 15, N3 = 3. 
(b)  Second level, structure-to-structure network: a window of a = 17 adjacent residues is shifted through 
all proteins. Again the task is to predict the secondary structure for the central residue. But now the input 
are the output values (i.e. the predictions) of the first-level network (as shown, the second level predicts 
the secondary structure for W at position i ) .  Neural network: unidirectional corrections. Number of units 
(see figure G4.1.3): NI = 627, N2 = 15, N3 = 3. (c)  Third level, jury decision: the output from differently 
trained networks (figure G4.1.4) for the same sequence position is summed. The secondary-structure 
prediction for residue W at sequence position i is assigned to the unit with the maximal sum. 

with the learning rate E (set to 0.05), the momentum term a (set to 0.2), the algorithmic time t ,  and error 
Esum3 : 

(G4.1.1) 

where U[ is the value of output unit k (helix, k = 1; strand, k = 2; loop, k = 3) for pattern p, and d[ the 
desired value for unit k (e.g. for k = 1 and p = 1, i.e. the first output unit of the helix example; d = 1 if 
the central residue of pattern /.L in helix, and = 0 otherwise). The three patterns p are chosen such that, 
for example, p = 1 represents a helix; p = 2 a strand, and p = 3 a loop. Training is stopped when the 
accuracy has reached 76%. This empirical value reflects a flat curve for overtraining; that is, stopping at 
values of 7 6 8 5 %  resulted in only marginal differences in terms of generalization). Such a training results 
in a more balanced prediction accuracy (helix 59%, strand 58%, loop 61%). 

G4.1.3.2 Training and testing set 

83.5 To evaluate the generalization performance, multifold cross-validation experiments have to be performed: 
the data set containing 126 proteins is split into seven partitions 108 + 18 proteins. The 108 are used 
for training, the 18 for testing. This is repeated seven times (i.e. seven neural networks are trained 
independently) until each protein has been used once for testing. Two problem-specific constraints are 
imposed on the data set. First, sequence similarity between any two proteins used has to be lower than 
25% (Sander and Schneider 1991), as above 25% sequence identity homology modeling is applicable and 
is clearly superior to any ab initio prediction; Rost et a1 (1994b). Second, the size of the set should 
be sufficiently large as prediction accuracy differs between proteins (Rost and Sander 1993a, Rost et a1 
1993). Sets are taken from PDB, the databank of known three-dimensional structures (Bernstein et a1 

G4.1:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for prediction of protein secondary structure 

1977). Currently, there are more than 200 unique proteins of known three-dimensional structure with 
more than 60000 residues (i.e. patterns) in total (Hobohm and Sander 1994). Secondary structure can 
be compiled automatically from three-dimensional structure and is stored in databases such as DSSP 
(Kabsch and Sander 1983a) or HSSP (a database of the homology-derived structures of proteins, Sander 
and Schneider 1993). 

G4.1.4 Input preprocessing 

G4.1.4.1 Input coding, single sequences 

Each residue is coded by 20 input units for 20 different amino acids. Binary coding (19 units = 0; one 
unit = 1) is as good as or better than any alternative coding scheme (Cherkauer and Shavlik 1993, Rost 
1993, Rost and Sander 1993b, Maza 1994). To allow the first and last residues of a protein to be used as 
the central residue in a window, an additional 21st input unit is used as a spacer. 

G4.1.4.2 Input coding, multiple alignment profiles 

The elaborated neural network system described so far is still limited to a performance accuracy of 
about 65%. The input information is not sufficient. As stated above, naturally evolved proteins can 
exchange about 75% of their residues without changing the three-dimensional structure. Such evolutionary 
information is highly specific for three-dimensional structure (figure G4.1.3) and can thus be used 
for prediction (Dickerson et a1 1976, Maxfield and Scheraga 1979, Zvelebil et a1 1987). Profiles of 
evolutionary exchanges are taken from HSSP, a database of homology-derived predictions (Sander and 
Schneider 1993). 

Input local in sequence 

Sequences Alignment Prof i 1 e 

Input global in sequence 
Amino acid content in whole protein = 20 units 
Length of protein = 4 units 
Distance of window to beginning and end of protein = 2 x 4 units 

Figure G4.1.3. Preprocessing input data. First, a protein is taken from PDB (Bemstein et a2 1977), then 
proteins with similar sequence are searched in SWISSPROT (a databank of known protein sequences, 
Bairoch and Boeckmann 1992). For naturally evolved proteins it is possible to select proteins of 
homologous three-dimensional structure purely on the basis of sequence identity (Sander and Schneider 
1991). Homologues (three here) are aligned with the alignment program MAXHOM (Sander and Schneider 
1991). At each residue position the occurrence (percentage) of each amino acid (given in one-letter code) 
is compiled along with the number of insertions (Nins) and deletions (Ndel) necessary to render an optimal 
alignment. Such a profile is fed as input into the neural network, instead of just the sequence of the first 
protein. Acids E and D are mutually more similar in terms of their biochemical properties than E and 
C. The conservation weight (Cons) reflects the degree of similarity of the residues found at a particular 
position of the alignment (Rost and Sander 1993b). In addition to the information locally available from, 
for example, 13 adjacent residues, global information can be compiled, such as the content of each amino 
acid in the whole protein, the length of the protein, or the distance of the window from the beginning and 
end of the protein. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computation release 9711 G4.1:5 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.1.4.3 Further preprocessing of input 

Alignments of homologous proteins contain further details (figure G4.1.3). First, the more insertions and 
deletions necessary to render an optimal alignment the more likely this region occurs in a loop. Second, 
consecutive stretches of high conservation of physicochemical properties of exchanged amino acids often 
indicate the presence of either a helix or a strand. Third, the amino acid composition of the whole protein 
is specific for certain types of proteins (e.g. all-helical proteins). Information about the protein class (e.g. 
all-helical) can improve prediction accuracy further (Kneller et a1 1990); however, in practice this marginal 
gain is lost by the inaccuracy in predicting the class (Rost and Sander 1993~).  

G4.1.5 Output interpretation 

G4.1.5.1 Jury decision over various neural networks 

The final output of the composite neural network is an arithmetic average over 12 second-level structure- 
to-structure neural networks (figure G4.1.2) which differ both in the training method and the input 
preprocessing (figure G4.1.4). 

First level: sequence-to-structure Second level: structure-to-structure 

input: profiles 
+ conservation weights 
+ number of indels 
+ amino acid content 

balanced trainine: in: out 1st + conservation ;eights 
+ amino acid content 

unbalanced training; in: out 1st 
+ conservation weights 
+ amino acid content 

input: profiles 
+ conservation weights 
+ number of indels 
+ amino acid content 
+ length of protein 
+ distance of window to 

begin and end of protein 'balanced training; in: out 1st 
with balanced training + conservation weights 

+ amino acid content + length 
+ distance to begin and end of protein 

Third level: 
jury decision 

PHDsec 

2*6 
networks 

unbalanced training; in: out 1st 
+ conservation weights 
+ amino acid content + length 

Figure 64.1.4. Generating different networks for jury decision. The final prediction of the composite 
neural network as an arithmetic average (jury decision) over 12 different neural networks. The neural 
networks differ in training procedure (unbalanced and balanced training (see section G4.1.3) and different 
preprocessing of the evolutionary information (see section G4.1.4), both in the first- and second-level neural 
networks (figure G4.1.2). 

G4.1.5.2 Output to prediction 

The final prediction is derived by a winner-take-all decision, that is, the unit with the largest sum after 
the jury decision is chosen as the neural network prediction. An additional filtering is applied: helices 
shorter than three and strands shorter than two residues are elongated or interpreted as loops, depending 
on the strength of the prediction. The final composite neural network using evolutionary information as 
input-dubbed PHDsec, a profile neural network system from Heidelberg, Germany, for prediction of 
secondary structure-has an expected overall accuracy greater than 72% (Rost and Sander 1994b). 

G4.1~6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for prediction of protein secondary structure 

G4.1.5.3 Reliability index 

The strength of the prediction correlates with prediction accuracy. An empirically reasonable index for 
the reliability of the prediction is 

RI = INTI10 x (a- - aneXt} (G4.1.2) 

where a- is the output value of the output unit with highest value and anext that of the unit with the next 
highest value. The factor 10 normalizes RI to integer values from 0 to 9. 

G4.1.6 Comparison with traditional methods 

G4.1.6.1 Neural network versus traditional predictions of secondary structure 

Prediction accuracy, direct comparison from literature. Predictions of neural networks have been reported 
to yield a three-state prediction accuracy of better than 66% (Zhang et a1 1992). This is comparable to non- 
neural network methods (Biou et a1 1988, Munson et a1 1994) as shown in table G4.1.1. Predictions using 
multiple alignment information as input are, in general, significantly more accurate than those using single 
sequences only (table G4.1.2). For most methods the comparisons are problematic, as results are based 
on different evaluation sets, and most data sets used were too small or contained proteins of significant 
pairwise sequence identity (see table G4.1.3). For example, a simple neural network, if evaluated on 
126 unique proteins, scores at some 62% accuracy (Rost and Sander 1993b), and at greater than 64% if 
evaluated on 15 proteins with homologies to the training set (Qian and Sejnowski 1988). For an appropriate 
comparison the accuracy has to be evaluated on identical, sufficiently large, and unique data sets. 
Prediction accuracy, identical data sets. Laborious comparisons based on identical data sets have revealed 
two results. First, the composite neural network PHDsec is clearly superior to any other prediction method 
published so far. Second, comparisons have to be based on identical data sets; for example, for a ‘favorable’ 
data set (such as used by Levin et a1 1994) prediction accuracy PHDsec had an accuracy of about 75% 
(see also the comparison between Biou et a1 1988 in table G4.1.2 and in table G4.1.3). 

G4.1.6.2 Specific improvements of the network system PHDsec 

Improvements on the network side. The composite neural network improves performance in three ways 
(Rost and Sander 1994b). First, balanced training (see section G4.1.3) yields more accurate strand ~ 4 . 1 . 3  

predictions than most traditional methods (exception Gascuel and Golmard 1988). Second, the second- 
level structure-to-structure neural network (figure G4.1.2) results in more protein-like predictions than most 
published traditional methods. Third, the final jury average (see section G4.1.5) improves overall accuracy ~ 4 . 1 . 5  

by about one to two percentage points, and finds a compromise between unbalanced (overall more accurate) 
and balanced (strands more accurate) neural networks. The latter improvement is comparable to classical 
‘joint prediction methods’ (Biou et a1 1988, Nishikawa and Noguchi 1991, Viswanadhan er a1 1991). 
Improvements by using biological information. Using only profiles as input improves prediction accuracy 
by more than five percentage points (table G4.1.2). The composite neural network successfully uses 
further important input information. For all steps of adding relevant input information, the composite 
neural network has, so far, outperformed traditional methods (table G4.1.2). 

G4.1.6.3 Practical impact of the neural network system PHDsec 

How good is the prediction for a protein of unknown three-dimensional structure? Prediction accuracy 
varies with the protein, thus the expected prediction accuracy of PHDsec is 72 f 9% (one standard 
deviation). This implies that users cannot deduce from the prediction whether it is 45% or 95% correct. 
Here, the definition of a reliability index (equation (G4.1.2)) proves to be of immense practical importance 
as it correlates with prediction accuracy; that is, residues predicted with higher reliability are on average 
predicted more accurately. Comparable indices exist for traditional methods but the composite neural 
network is significantly more accurate: half the residues are predicted at an expected accuracy of 88% 
(Rost and Sander 1994b). 
How can the neural network predictions be obtained? Predictions from the composite neural network 
system PHDsec are available via a fully automatic prediction service (Rost et a1 1994a). The user sends 
a sequence or an alignment and the prediction is returned. (Send the word ‘help’ by electronic mail 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G4.1:7 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Table G4.1.1. Secondary structure prediction accuracy (from the literature). Methods are abbreviated as in 
the reference list (‘Rost and Sander 1993-reference’ is a simple neural network used as reference point for 
the performance on a large unique data set). All methods given use single sequences as input. Abbreviations 
used: ‘accuracy’, percentage of correctly predicted residues in three states; ‘number of proteins’, number 
of proteins used for evaluation; ‘unique set’, a set allowing for painvise sequence identity greater than 25% 
is dubbed ‘not unique’. For more recent methods more than 100 proteins is a sufficiently large data set. 
KS, Kabsch and Sander (1983b); subKS, subset of KS; QS, Qian and Sejnowski (1988) (unfortunately this 
completely inadequate set allowing for painvise identities greater than 50% is widely used); subQS, subset 
of QS; RS, globular proteins of Rost and Sander (1993b). 

Method Accuracy Number of proteins Unique set? 

Non-neural network predictions 

Asai et a1 (1993) 66.0 
Biou et a1 (1988) 65.5 
Garratt et a1 (1991) 61.0 
Gascuel and Golmard (1988) 58.7 
Geoujon and DelCage (1994) 69.0 
King and Stemberg (1 990) 60.0 
Leng et a1 ( 1994) 68.2 
Munson et a1 ( 1994) 65.9 
Nishikawa and Noguchi (1991) 64.8 
Salzberg and Cost (1992) 65.1 
Viswanadhan et a2 (1991) 64.0 
Yi and Lander (1993) 68.0 

Neural network predictions 

120 
62KS 

62KS 
239 
18 
74 
67 
27 
128 
45 
110 

g3subKS 

Fariselli et a2 (1993) 
Fogelman-SouliC and Mejia (1990) 
Holley and Karplus (1989) 
Kneller et a1 (1990) 
M a c h  and Shavlik (1993) 
Qian and Sejnowski (1988) 
Rost and Sander (1994) reference 
Sasagawa and Tajima (1993) 
Stolorz et a1 (1992) 
Zhang et a1 (1992) 
Zhang et a1 (1 992) 

64.0 
58.8 
63.2 
65.0 
63.4 
64.3 
62.1 
60.1 
64.4 
63.1 
66.4 

62 
62KS 
14subQs 
105QS 
1 06Qs 
14subQs 
1 26RS 
29 
14subQs 
107 
107 

Table G4.1.2. Prediction accuracy for alignment-based methods (from the literature): all methods given 
use multiple alignments as input and are evaluated on unique data sets. Only the PHDx methods use neural 
networks. The following abbreviations indicate different stages of input preprocessing (section G4.1.4): 
PHDO, alignment profiles; PHD1, PHDO+ conservation weight; PHD2, PHDl + insertions and deletions; 
PHDsec, PHD2 + amino acid content. The following data sets are labeled to indicate identical sets: LPAG, 
Levin et a2 (1993); RS, Rost and Sander (1993b); and superRS, a super set of RS = RS + RS2 (Rost and 
Sander 1994b). Further abbreviations used as in table G4.1.1. 

Method Accuracy Number of proteins 

Rost and Sander (1994) reference 
Boscott et a1 (1993) 
Levin et a1 (1993) 
Rost and Sander (1994 j P H D O  
Rost and Sander (1994 j P H D 1  
Rost and Sander (1994)-PHD2 
Rost and Sander (1994FPHDsec 
Wako and Blundell (1 994) 
Zvelebil et a2 (1987) 

62.1 
64.0 
68.5 
69.7 
70.8 
71.41 
72.1 
69.0 
66.1 

1 26RS 
31 

1 26RS 
1 26RS 
26RS 
25ppcrRS 
13 
11 

60LPAG 

G4.1:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for prediction of protein secondary structure 

Table G4.1.3. PHDsec versus other methods evaluated on identical data sets: abbreviations used as in 
table G4.1.1 and table G4.1.2. For comparison results on set RS are given. 

Method Accuracy Number of proteins 

Chou and Fasman (1974) 49 62KS 
Gascuel and Golmard (1988) 58.7 62KS 
Rost and Sander (1994)-PHDl 72.5 62KS 
Rost and Sander (1994)-PHDl 70.81 26RS 

Rost and Sander (1994bPHD2 74.8 60LPA0 
Rost and Sander (1994)-PHD2 71.4 1 26RS 
Gibrat er a1 (1987) 58.9 1 24Rsz 
Biou et al (1988) 60.9 1 24RS2 

Rost and Sander (1994hPHDsec 71.6 126RS 

Levin er a1 1993 68.5 6oLPAO 

Rost and Sander (1994bPHDsec 72.5 124RS2 

to the intemet address ‘PredictF’rotein@EMBL-Heidelberg.de’, or use the WWW site ‘http://www.embl- 
heidelberg.de/predictprotein/predictprotein.html’ .) Both improved prediction accuracy and rigorous testing 
procedures have led to about 100 prediction requests per day. 

424.1.7 Conclusions 

Neural networks can easily be tailored to the problem. The three improvements on the network side (see 
above) illustrate that a deeper understanding of the stochastic behavior of the ‘black-box pattern classifier 
neural network’ can be used to avoid problem specific disadvantages of a simple neural network. 
Highest gain from preprocessing input data by biological expertise. It is not enough to tailor the composite 
network system to the problem. Instead, the most significant improvement of the prediction accuracy 
stems from the incorporation of biological knowledge (evolutionary information). 
Composite system superior to any other prediction method, Often neural networks are shown to be the 
second-best solution of a problem. The composite Neural network described here, today, is clearly better 
than any other prediction method. Further improvements of the method appear possible. Thus, the neural 
network for secondary-structure prediction is likely to remain one of the best tools in a very competitive 
field of research. 
Appropriate evaluation and availability of methods is the key to applications. Most methods developed 
in the field of ‘biocomputing’ rely upon time-consuming literature searches (step l), appropriate testing 
procedures (step 2) and making the program available (step 3). ,However, theoretical tools for the prediction 
of protein structure can influence research in molecular biology only if these simplifications are avoided. 
Perspectives for the future? The goal is to predict protein three-dimensional structure. The explosion of 
protein databases may bring this goal in reach in the near future. Neural networks have a fair chance to 
be part of a hybrid system that will first predict three-dimensional structure. But even if one heads for 
less ambitious projects, there are many problems for which sufficiently tested, available neural network 
solutions would be highly welcomed by experimentalists. 

References 

Andrade M A, Chac6n P, Merelo J J and Morh F 1993 Evaluation of secondary structure of proteins from UV circular 

Anfinsen C B 1973 Principles that govem the folding of protein chains Science 181 223-30 
Bairoch A and Boeckmann B 1992 The SWISS-PROT protein sequence data bank Nucleic A c i h  Res. 20 2019-22 
Bengio Y and Pouliot Y 1990 Efficient recognition of immunglobulin domains from amino acid sequences using a 

neural network Comput. Appl. Biol. Sci. 6 319-24 
Bemstein F C, Koetzle T F, Williams G J B Meyer E F Brice M D Rodgers J R Kennard 0 Shimanouchi T and 

Tasumi M 1977 The protein data bank: a computer based archival file for macromolecular structures J. Mol. 
Biol. 112 535-42 

Biou V, Gibrat J F, Levin J M, Robson B and Gamier J 1988 Secondary structure prediction: combination of three 
different methods Protein Eng. 2 185-91 

dichroism spectra using an unsupervised leaming neural network Protein Eng. 6 383-90 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G4.119 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Bohm G, Muhr R and Jaenicke R 1992 Quantitative analysis of protein far UV circular dichroism spectra by neural 

Bohr H, Bohr J, Brunak S, Cotterill R M J, Lautrup B, N~rskov L Olsen 0 H and Petersen S B 1988 Protein secondary 

Bohr H, Bohr J,  Brunak S, Fredholm H, Lautrup B and Petersen S B 1990 A novel aroach to prediction of the 

Bossa F and Pascarella S 1990 PRONET a microcomputer program for predicting the secondary structure of proteins 

BrSindCn C and Tooze J 1991 Introduction to Protein Structure (New York: Garland) 
Brunak S 1991 Non-linearities in training sets identified by inspecting the order in which neural networks learn Neural 

Networks From Biology to High Energy Physics ed 0 Benhar, C Bosio P Del Giudice and E Tabet (Italy: Elba) 

Cherkauer K J and Shavlik J W 1993 Protein Structure Prediction: Selecting Salient Features from Large Candidate 
Pools Proc. First Int. Con$ on Intelligent Systems for  Molecular Biology (Bethseda, MD: AAA1 Press) in press 

Dickerson R E, Timkovich R and Almassy R J 1976 The cytochrome fold and the evolution of bacterial energy 
metabolism J. Mol. Biol. 100 473-91 

Dombi G W and Lawrence J 1994 Analysis of protein transmembrane helical regions by a neural network Prot. Sci. 
3 557-66 

Dubchak I, Holbrook S R and Kim S-H 1993 Prediction of protein folding class from amino acid composition Prot.: 
Struct. Func. Gen. 16 79-91 

Fariselli P, Compiani M and Casadio R 1993 Predicting secondary structures of membrane proteins with neural 
networks Europ. Biophys. J. 22 41-51 

Ferrtin E and Ferrara P 1992a Clustering proteins into families using artificial neural networks Comput. Appl. Biol. 
Sci. 8 39-44 

-1992b A neural network dynamics that resembles protein evolution Physica 185A 395-401 
Ferran E A and Pflugfelder B 1993 A hybrid method to cluster protein sequences based on statistics and artificial 

Friedrichs, M S Goldstein R A and Wolynes P G 1991 generalized protein tertiary structure recognition using associative 

Frishman D and Argos P 1992 Recognition of distantly related protein sequences using conserved motifs and neural 

Gascuel 0 and Golmard J L 1988 A simple method for predicting the secondary structure of globular proteins: 

Goldstein R A, Luthey-Schulten Z A and Wolynes P G 1992a Optimal protein-folding codes from spin-glass theory 

-1992b Protein tertiary structure recognition using optimized Hamiltonians with local interactions Proc. Natl Acad. 

Hansen L K and Salamon P 1990 Neural Network Ensembles IEEE Trans. Patt. Anal. Machine Intell. 12 993-1001 
Hayward S and Collins J F 1992 Limits on a-helix prediction with neural network models Proteins 14 372-81 
Hirst J D and Stemberg M J E 1991 Prediction of ATP-binding motifs a comparison of a perceptron-type neural 

Hobohm U and Sander C 1994 Enlarged representative set of protein structures Prot. Sci. 3 522-4 
Holbrook S R, Muskal S M and Kim S-H 1990 Predicting surface exposure of amino acids from protein sequence 

Holley H L and Karplus M 1989 Protein secondary structure prediction with a neural network Proc. Natl Acad. Sci. 

Kabsch W and Sander C 1983a Dictionary of protein secondary structure: pattem recognition of hydrogen bonded 

-1983b how good are predictions of protein secondary structure? FEBS Lett. 155 179-82 
Kneller D G, Cohen F E and Langridge R 1990 Improvements in Protein Secondary Structure Prediction by an 

Enhanced Neural Network J .  Mol. Biol. 214 171-82 
Kraulis P 1991 MOLSCRIFT: a program to produce both detailed and schematic plots of protein structures J. Appl. 

Crystallogr. 24 946-50 
Levin J M, Pascarella S Argos P and Gamier J 1993 Quantification of secondary structure prediction improvement 

using multiple alignments Pint. Eng. 6 849-54 
Maclin R and Shavlik J W 1993 Using knowledge-based neural networks to improve algorithms: refining the Chou- 

fasman algorithm for protein folding Machine Leaning 11 195-215 
Maxfield F R and Scheraga H A 1979 Improvements in the prediction of protein topography by reduction of statistical 

errors Biochemistry 18 697-704 
Maza M d 1 1994 Generate, test, and explain: synthesizing regularity exposing attributes in large protein databases 

27th Hawaii Int. Con5 on System Sciences ed L Hunter (Wailea, Hawaii: IEEE Society Press) pp 123-32 

networks Prot. Eng. 5 191-5 

structure and homology by neural networks FEBS Lett. 241 223-8 

3-dimensional structures of protein backbones by neural networks FEBS Lett. 261 43-6 

with a neural network Comput. Appl. Biol. Sci. 5 319-20 

pp 277-88 

neural networks Comput. Appl. Biol. Sci. 9 671-80 

memory Hamiltonians J. Mol. Biol. 222 1013-34 

networks J. Mol. Biol. 228 951-62 

implications and accuracy Comput. Appl. Biol. Sci. 4 357-65 

Proc. Natl Acad. Sci. 89 4918-22 

Sci. 89 9029-33 

network and a consensus sequence method Prot. Eng. 4 615-23 

Prot. Eng. 3 659-65 

86 152-6 

and geometrical features Biopolymers 22 2577-637 

G4.1 :lo Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



A neural network for prediction of  protein secondary structure 

McGregor M J, Flores T P and Stemberg M J E 1989 Prediction of -tums in proteins using neural networks Pmt. 
Eng. 2 521-6 

Metfessel B A, Saurugger P N Connelly D P and Rich S S 1993 Cross-validation of protein structural class prediction 
using statistical clustering and neural networks Prot. Sci. 2 1171-82 

Munson P J, Di Francesco V and Porrelli R 1994 Prediction of protein secondary structure using linear and quadratic 
logistic models with penalized maximum likelihood estimation 27th Hawaii Int. Con$ on System Sciences ed L 
Hunter (Wailea, HI: IEEE Computer Society Press) pp 375-84 

Muskal S M and Kim S-H 1992 Predicting protein secondary structure content. A tandem neural network approach J. 
Mol. Biol. 225 713-27 

Nishikawa K and Noguchi T 1991 Predicting protein secondary structure based on amino acid sequence Meth. Enz. 
202 31-44 

Oliver S et a1 1992 The complete DNA sequence of yeast chromosome I11 Nature 357 38-46 
Pancoska P, Blazek M and Keiderling T A 1992 Relationships between secondary structure fractions for globular 

proteins. Neural network analyses of crystallographic Data sets Biochemistry 31 10 250-7 
Petersen S B, Bohr H, Bohr J, Brunak S ,  Coterill R M J, Fredholm H and Lautrup B 1990 Training neural networks 

to analyse biological sequences TIBTECH 8 304-8 
Presnell S R and Cohen F E 1993 Artificial Neural Networks for Pattem Recognition in Biochemical Sequences Ann. 

Rev. Biophys. Biomol. Struct. 22 283-98 
Qian N and Sejnowski T J 1988 Predicting the secondary structure of globular proteins using neural network models 

J.  Mol. Biol. 202 865-84 
Radomski J P, van Halbeek H and Meyer B 1994 Neural network-based recognitioin of oligosaccharide 1H-NMR 

spectra Nature Struct. Biol. 1 217-8 
Rost B 1993 Neural networks and evolution-advanced prediction of protein secondary structure Doctoral Thesis 

Department of Physics and Astronomy, University of Heidelberg, Germany 
Rost B and Sander C 1992 Exercising Multi-layered Networks on Protein Secondary Structure Neural Nefworks: From 

Biology to High Energy Physics ed 0 Benhar, S Brunak, P DelGiudice and M Grandolfo (Italy: Elba) Int. J. 
Neural Systems 209-20 

-1993a Improved prediction of protein secondary structure by use of sequence profiles and neural networks Pmc. 
Natl Acad. Sci. 90 7558-62 

-1993b Prediction of protein secondary structure at better than 70% accuracy J.  Mol. Biol. 232 584-99 
-1993c Secondary structure prediction of all-helical proteins in two states Prot. Eng. 6 831-6 
-1994a 1D secondary structure prediction through evolutionary profiles Prot. Struct. Distance Analysis ed H Bohr 

-1994b Combining evolutionary information and neural networks to predict protein secondary structure Proteins 

-1994c Conservation and prediction of solvent accessibility in protein families Proteins 20 216-26 

Rost B, Sander C and Schneider R 1993 Progress in protein structure prediction? Trends in Biochem. Sci. 18 12&3 
-1994a PHD-an automatic server for protein secondary structure prediction Comput. Appl. Biol. Sci. 10 53-60 
-1994b Redefining the goals of protein secondary structure prediction J. Mol. Biol. 235 13-26 
Rumelhart D E, Hinton G E and Williams R J 1986 Learning representations by back-propagating error Nature 323 

Sander C and Schneider R 1991 Database of homology-derived structures and the structurally meaning of sequence 

-1993 The HSSP data base of protein structure-sequence alignment Nucleic Acids Res. 21 3105-9 
Sasagawa F and Tajima K 1993 Prediction of protein secondary structures by a neural network Comput. Appl. B id .  

Sci. 9 147-52 
Stolorz P, Lapedes A and Xia Y 1992 Predicting protein secondary structure using neural net and statistical methods 

J. Mol. Biol. 225 363-77 
Tchoumatchenko I, Vissotsky F and Ganascia J-G 1993 How to Make Explicit A Neural Network Trained to Predict 

Proteins Secondary Structure ACASA, LAFORIA-CNRS, Universitt Paris VI, 4 Place Jussieu, 75 252 Paris, 
CEDEX 05, France 

Tolstrup N, ToftgArd J, Engelbrecht J and Brunak S 1994 Neural network model of the genetic code is strongly 
correlated to the GES scale of amino acid transfer free energies J. Mol. Biol. submitted 

van Gunsteren W F 1993 Molecular dynamics studies of proteins Current Opinion in Strucf. Biol. 3 167-74 
Viswanadhan V N, Denckla B and Weinstein J N 1991 New Joint Prediction Algorithm (Q7-JASEP) Improves the 

Prediction of Protein Secondary Structure Biochemistry 30 11 164-72 
Xin Y, Carmeli T T, Liebman M N and Wilcox G L 1992 Use of the backpropagation neural network algorithm for 

prediction of protein folding pattems Second Int. Con$ on Bioinfonnatics, Supercomputing and Complex Genome 
Analysis ed H A Lim, J W Fickett, C R Cantor and R J Robbins (St Petersburg Beach, FL: World Scientific) 
pp 360-76 

and S Brunak (Amsterdam, Oxford, Washington: 1 0 s  Press) pp 257-76 

19 55-72 

-1994c 

533-6 

alignment Proteins 9 56-68 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 97/1 G4.1:11 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Yun-yu S, Mark A E, Cun-xin W, Fuhua H, Berendsen H J and van Gunsteren W F 1993 Can the stability of protein 

Zhang X, Mesirov J P and Waltz D L 1992 Hybrid system for protein secondary structure prediction J. Mol. Biol. 225 

Zvelebil M J, Barton G J, Taylor W R and Stemberg M J E 1987 Prediction of protein secondary structure and active 

mutants be predicted by free energy calculations? Pmt. Eng. 6 289-95 

1049-63 

sites using alignment of homologous sequences J. Mol. B i d .  195 957-61 

(34.1 :12 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.2 Neural networks for identification of protein 
coding regions in genomic DNA sequences 

E E Snyder and Gary D Stormo 

Abstract 

We have developed a system which uses neural networks and dynamic programming 
(DP) to identify protein coding regions in genomic DNA sequences. Nine scores are 
calculated on all subintervals of the sequence which evaluate the likelihood that the 
subinterval belongs to one of four classes; first, last or internal exon or intron. These 
scores are weighted by a neural network and used as input to a DP algorithm. DP is 
used to find the highest scoring combination of introns and exons subject to a few simple 
constraints on gene structure. The neural network weights are optimized by training 
on input vectors which measure the difference between the predicted optimal solution 
by DP and the biologically correct solution. The system is trained by maximizing 
the difference between the correct parse and a sample of incorrect parses. On a test 
set of genomic sequences from GenBank, we obtained correlation coefficients for exon 
nucleotide prediction as high as 0.94. This is superior to the results obtained by purely 
rule-based systems. 

G4.2.1 Project overview 

The DNA molecule is the storage media of the genetic information in every living thing. At its most 
fundamental level, this media consists of a linear arrangement of nucleotide base pairs which are the rungs 
of the DNA double-helical ladder. At each position, there are four possible bases which can be symbolized 
as A, C, G, or T. In the human being, there are about 3 x IO9 base pairs (bp) per haploid genome. There 
are estimated to be some 50000 genes, most of which code for a single protein. Assuming an average 
protein consists of 300 amino acids, coded for by three base pairs each or a total of about 1000 bp of 
DNA, it is clear that only a small fraction (< 2%) of the genome codes for protein. With rapid advances 
in DNA sequencing technology and the initiation of projects such as the Human Genome Initiative, the 
ultimate goal of which is to sequence the entire human genome, the problem of identifying coding regions 
in uncharacterized DNA sequences is of central importance. 

In addition to being a small fraction of the total DNA, the identification of coding regions in higher 
organisms is complicated by the presence of intervening sequences or introns which can separate the coding 
region of a gene into several parts. These parts are called exons. There are additional constraints which 
dictate how exons can be joined together to form a continuous reading frame from which the encoded 
protein can be translated. These constraints are illustrated in figure G4.2.1. 

We have developed a computer program called GeneParser which addresses both of these problems 
simultaneouslyt. There are a number of tests which can be used to evaluate the likelihood that a sequence 
interval belongs to the class exon, intron or neither. These tests are applied to all subintervals in a 
sequence. Separate neural networks are used to weight these tests to yield a composite score which 
reflects the likelihood that the interval belongs to a particular class. The weighted scores are the input to 

t This work was done as part of the doctoral research of E E Snyder in the laboratory of G D Stormo at the University of Colorado, 
Boulder, USA. This work was supported by DOE grant ER61606. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computufion release 9711 G4.2: 1 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

splice splice splice Genomic 

c 
Catenated 
Exons 

Exon (coding) 
0 Intron (non-coding) 
- Intergenic DNA (non-coding) 

Figure G4.2.1. Eukaryotic gene structure. Part ( a )  shows the arrangement of coding sequences in genomic 
DNA. Exons which contain protein-coding DNA are separated from one another by intervening sequences 
called introns which are non-coding. After transcription into RNA, these introns are spliced out. This 
yields a messenger RNA (mRNA) shown in (b)  in which the exons are joined together, allowing the gene’s 
protein product to be translated. The successful prediction of gene structure requires both identifying the 
gene in genomic DNA and the correct prediction of its intron-exon structure. 

a dynamic programming (DP) algorithm which finds the highest scoring combination of introns and exons 
subject to the constraints of eukaryotic gene structure. Figure G4.2.2 illustrates the flow of information in 
GeneParser. 

I Parsed 
U 1 Sequence 1 

f Traceback 

Dynamic 
Programming T 

Classification 1 Tests 

Subinterval 
Matrix Sequence 

Figure G4.2.2. Information flow in Geneparser. Each operation is shown with its associated data. The 
DNA sequence is represented by the string of characters, S, of length N .  All N 2 / 2  subintervals of S are 
scored ( S i j ,  i < j )  for the c classification statistics. This gives rise to t T-matrices, one for each test. For 
each of the c interval types, a network-weighted score is calculated, LFj, which represents the likelihood 
that interval Sij belongs to class c.  This information serves as input to the dynamic programming algorithm 
which parses the sequence into the c sequence types. 

G4.2:2 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for identification of protein coding regions in genomic DNA sequences 

G4.2.2 Design process 

G4.2.2.1 Motivation 

Our motivation for using a neural approach to solve this problem was threefold. First, it was clear from 
the outset that the properties which distinguish coding from non-coding DNA are at best only poorly 
understood. Thus, we expected that the methods available for coding sequence identification may be 
insufficient to yield an exact solution. For example, mRNA splicing can occur using different factors 
depending on the mRNA substrate or the tissue in which it is expressed. Optimization techniques such 
as the simplex method for solving linear inequalities were eliminated in favor of neural network methods 
which exhibit more graceful failure when confronted with contradictory training data. Our experience with 
using the simplex method on a similar problem involving protein secondary structure prediction (Batra 
1993) had shown that training sets quickly evolved to which no exact solution existed. 

Error tolerance was the second property of neural networks which made them attractive in this project. 
Previous gene identification methods suffer severe degradation in performance when confronted with test 
data containing even small numbers of sequencing errors (0.5% indels, 0.5% substitutions errors). Because 
the cost of sequencing increases dramatically as the required accuracy increases, it was very desirable to 
build an error-tolerant system from the beginning. 

Finally, we hoped to exploit the scalability of neural networks to deal with more complex relationships 
between classification statistics. Our initial development used only a simple network with one layer of 
weights and no hidden units. We hoped that increasing the complexity of the network might increase its 
predictive power. 

G4.2.2.2 Dynamic programming 

To provide background for the following sections, a brief introduction to the application of DP for sequence 
parsing will be presented here. A more detailed description can be found in Snyder and Stormo (1993, 
1995), Snyder (1994). Given a DNA sequence s, let all subintervals in s be represented as elements of 
the matrix S such that the sequence starting at si and ending at s, is represented by the element Si j .  We 
postulate a function L c ( S i j )  which calculates the log-likelihood that the interval Sij  belongs to sequence 
class c (i.e. is either a first, internal or last exon or intron). The score of a solution is defined as the sum of 
the L-matrix values of the intervals which compose it. A valid solution is one which meets the following 
constraints on gene structure: introns and exons must be adjacent, alternating and nonoverlapping; first 
and last exons, if present, must be the extreme left (5’-) and extreme right (3’-) exons, respectively, in 
the solution. The space of valid solutions can be searched for the optimum by evaluating the following 
recursion over all c and on j : 1 < j < N when N is the length of sequence S: 

(G4.2.1) 

and D,C = 0. Thus, Dj is the score of the best solution ending in an interval of type c which ends at 
position j .  N is the set of valid transitions between sequence types. To find the end of the optimum parse 
of the entire sequence, D is scanned for the highest value. Knowing the position and sequence type, the 
parse which led to that score can be derived. 

G4.2.2.3 Network design 

The neural networks in GeneParser are simple feedforward classz)3ers, serving as approximations to the 82.3 
likelihood function Lc.  Each network takes as input an array of floating-point numbers which describe the 
interval with respect to one of the four sequence classes. Each network returns a scalar, the magnitude of 
which is proportional to the log-likelihood that the interval belongs to that particular class. 

Several network topologies were evaluated. The first network consisted of a single layer of input 
units connected to a single sigmoidal output unit. This corresponds to the network shown in figure G4.2.3. 
A variety of multilayered networks were also evaluated. Figure G4.2.4 shows one such design. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computution release 9711 G4.2:3 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

First Exon 

IF-hexamer 
Complexity 
Splice Donor 

Bias 

Intron 
IF-hexamer 
Complexity 
Splice Donor 

Bias 
Last Exon 
IF-hexamer 
Complexity 
Splice Donor 

... 

... 
Bias 

IF-hexamer 

Suh Network 

Figure G4.2.3. A simple linear network used to predict gene structure. Each sequence type (first, internal, 
last exon or intron) is assigned to one subnetwork. These statistics are the values of the gray input units. 
Given the outputs of the classification statistics for an interval of a particular sequence type, the likelihood 
that the interval belongs to that sequence type can be calculated using the appropriate subnetwork. For each 
subnetwork, there is a bias unit (shown in black), the value of which is clamped to unity. The network 
is trained as a whole to maximize the difference between correct and incorrect gene parsings as described 
in the text. The values of the input units are calculated as the sum of the intervals of each type in the 
correct solution less the sum of the values of the intervals in an incorrect solution. The bias units represent 
the difference between the number of intervals of each type between the correct solution and the incorrect 
solution. 

G4.2.3 Training methods 

Figure G4.2.5 illustrates the basic training procedure. The neural network in GeneParser is initialized with 
random weights. The program is asked to predict the structure of all the genes in the training set based on 
these weights. Each solution is compared to the correct solution and a single training vector is calculated 
from each target-predicted pair. These vectors are used to train the delta network described below. After 
training, the four subnetworks are extracted from the delta network and used to update the weights in 
Geneparser. The cycle is repeated until performance reaches a plateau. Generalization performance is 
tested using the weights that performed best on the training data. 

Because the number of possible training vectors is so large (exponential in terms of the length of the 
training sequences), we adopted an ‘exploratory learning’ approach to training vector collection. Random 
weights are used only in the first pass of Geneparser through the training sequences. Following that, 
training vectors are recruited using the weights which give the best parsing based on the data acquired up 
to that training cycle. As the training progresses, the predicted solutions are closer to the actual solutions 
and thus the magnitude of the training vectors decreases with training iteration. 

G4.2:4 Hundbook of Neurul Computation release 9711 @ 1997 IOP Publishing Lld and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for identification of protein coding regions in genomic DNA sequences 

-- 
First Exon 

I IF-hexamer 

~ Complexity 

’ Splice Donor 

I ’ * ’  
Bias 

Internal Exon 
IF- hexamer 

Complexity 

Splice Donor 

L... 

.,, 

Bias 

Intron 
1 F-hexamer 

Complexity 

Splice Donor 

Bias 

Last Exon 
IF- hexamer 

Complexity 

Splice Donor 

I.. 

. .  
Bias 

Figure G4.2.4. A multilayered network. Like the linear network, the multilayered network is divided into 
parts which represent the four sequence classes. Each unit in the hidden layer is connected to all input 
units within its respective subnetwork. 

G4.2.3. I Error propagation through dynamic programming 

Each subnetwork calculates a score based on the properties of a single sequence interval. We considered 
training each network separately on randomly chosen sequence intervals from many different genes, 
assigning a target of 1.0 to members of the class, a target of 0.0 to nonmembers. Training would yield 
weights optimized to identify members of a particular class, leaving DP to implement the structural 
constraints. This approach was tried with only marginal success (data not shown). We cite two possible 
reasons for this failure. First, it is known that different genes can have exons and introns with very different 
statistical properties. It is probably unreasonable to expect these features to be recognized without reference 
to the background in which they occur. Second, picking a negative population of subintervals at random is 
not a realistic simulation. The biological constraints on gene structure make certain choices incompatible 
with others. Indeed, the whole notion of considering exons and introns in isolation seems absurd in the 
larger context of mRNA splicing. Since exons define the locations of introns (and vice versa), it is best to 
model the system as a whole. 

To this end, we sought to train the neural network in the context of DP. An approach which alleviates 
these two major problems involves training the neural network on complete solutions instead of single 
intervals. Let Dw+ be the score of a correct (+) solution for sequence p and Dfi- be the score of an 
incorrect (-) solution. A perfect set of network weights would make 

Dpi > Dw- (G4.2.2) 

for all for all possible Dw-. Subtracting Dw- from DFi yields the inequality 

D” - Dw- > 0. (G4.2.3) 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neuml Computution release 9711 (34.2:s 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Figure G4.2.5. Training cycle. The neural network in Geneparser is initialized with random weights and 
used to predict the structure of the genes in the training set. The predictions are compared to the known 
structures, generating the first set of training vectors. These vectors are used to train the network. The 
weights are subsequently copied into the Geneparser network. Geneparser makes predictions again on the 
training set and the cycle is repeated. Each time, the newly calculated training vectors are added to the list 
of those previously used in training. Each pass through this cycle is referred to as one ‘training iteration’. 

At this point, it is useful to introduce a notation which makes the classification statistics and their 
weights explicit: 

((34.2.4) 

where T/Ck is the score for classification statistic k for the j t h  interval of type c. The term w; is the 
corresponding weight for that statistic and B‘ is a bias term. P c  is the number of classification statistics 
used for sequence type c and N‘ is the number of intervals of type c in the solution. A neural network is 
used to find weights which satisfy the following inequality: 

1 N‘ P‘ 

D = c [x x Tc. j ,kWc,k  + N C B C  
c s ( f . e . i . / )  j = l  k = l  

AN 

. ((34.2.5) 

. --I Dfi+ - Dfi- = c [FFw;g TC”*+ - c N C -  .;t.)l+ ( N C , f i +  - N C . f i - ) B C  

J.k 
c G [ f . e . i . / )  k=l  j =  I j = l  

AT 

When written in this form, one can see a simple network implementation to solve this inequality. The 
inputs are simply T +  - T -  for each statistic for each sequence type ( A T )  and the difference between the 
number of each sequence type in the actual and predicted solutions ( A N ) .  This network design is referred 
to as the delta network because the network is trained on the difference between the actual solution and an 
incorrect solution for a particular sequence. If the right-hand side of equation (G4.2.5) is passed through 
a squashing function such as the symmetrical sigmoid 

((34.2.6) 
1 1 

1 +e-X 2 
g ( x )  = ~ - - 

then training to a target of 0.5 will maximize the difference between correct and incorrect solutions. 

G4.2.3.2 Training and test sets 

The training set used for Geneparser was based on the collection of human genes used in the development 
of the program GeneID (Guig6 et al 1992). These loci are genomic DNA sequences for which the 

G4.2:6 Hundbook of Neurul Compurution release 9711 @ 1997 IOP F’ublishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for identification of protein coding regions in genomic DNA seauences 

sequence of the mRNA have been independently determined. Thus, there is experimental evidence to 
confirm the sequence of the gene product and thus the structure of the gene contained within. In addition, 
loci containing examples of alternative splicing (for which there is not a unique gene product), have been 
culled from the set. The test data were taken from the test sets for the programs GeneID (Guig6 et a1 
1992) and GRAIL (Uberbacher and Mural 1991) with several examples of alternative splicing removed. 

There are several properties of this data set which are noteworthy and typical of human DNA 
sequences. First, the number of coding nucleotides (i.e. nucleotides that are in exons of any type) is 
small compared to the total length of the sequences. Second, there are large differences between loci in 
base composition (G + C content). These differences are much larger than would be expected of a random 
distribution. There are also large variations in the number and size of introns and exons in different loci. 
These properties combine to make human gene identification a particularly difficult signal recognition 
problem. 

Performance 

0.3 
0.2 
0.1 
0 

-0 .1  0 0 0 0 
7- cu m * U) 

Training Iteration 

Performance 
0.7 

0.4 
0.3 

o.2 t I v Training Error 
0.1 

0 
0 -0. I ri % d 

0 

Training Iteration 

Figure G4.2.6. Learning curves for (a) single and (b)  multilayered networks. The Geneparser-network 
performance (full squares) is measured as the correlation coefficient for predicting exonic nucleotides. The 
training error (open triangles) is the fraction of the training set that is not correctly assigned following the 
network training session. 

G4.2.3.3 Per3Pomuznce 

The single-layered architecture proved to be the best in terms of both speed and accuracy. Figure G4.2.6(a) 
shows a typical learning curve plotting predictive accuracy as a function of training iteration. Starting 
with random weights, the correlation coefficient for prediction of exon nucleotides in the training set is 
approximately zero. As training progresses, the performance increases until a plateau is reached after 10 
to 15 training iterations. Performance on test data mirrors that on the training data, generalization being 
90% to 95% that of the training data. In every instance, the beginning of the plateau phase coincides with 
the change in slope of the residual training error. This measure is the fraction of training vectors which 

~~ 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G4.2:7 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

cannot be correctly classified following the neural network training procedure. Typically, the network is 
trained until a bail-out criterion is reached (99% of vectors correctly classified) or the maximum number 
of training epochs is reached. 

Figure G4.2.6(b) shows a learning curve for a network with six hidden units per sequence class (24 
hidden units total). In practice, the more complex network architectures have proven unsatisfactory due to 
increased training times. More complex networks increase the run time for each sequence considerably. In 
addition, the increase in the number of free network parameters results in a corresponding increase in the 
quantity of training data required to obtain good generalization performance. These factors taken together 
have limited our ability to train and evaluate multilayer networks. 

The performance of Geneparser has been measured and compared to other gene identification programs 
including rule-based and other neural network approaches. These results have been presented elsewhere 
(Snyder and Stormo 1994, 1995). In summary, Geneparser performs at least as well as other methods 
and often significantly better when an exhaustive search of the solution space is advantageous. Such 
cases include the ability to predict very short exons and to correctly parse a sequence in the presence of 
sequencing errors. 

G4.2.4 Conclusions 

We have found GeneParser a useful tool for the identification of coding regions in genomic DNA sequences. 
In addition to being an accurate and sensitive gene identification tool on the benchmark data sets, the neural 
network architecture allows it to evolve rapidly in a production environment. The system can be retrained 
to take advantage of new statistics or optimized for the identification of specific sequence targets. Finally, 
optimization for error tolerance gives the promise of reduced costs by decreasing the coverage required to 
accurately identify genes in large-scale shotgun sequencing projects. 

References 

Batra S 1993 A new algorithm for protein structure prediction: using neural nets with dynamic programming Master’s 

Guig6 R, Knudsen S, Drake N and Smith T 1992 J. Mol. Biol. 226 141-57 
Snyder E E 1994 Identification of protein coding regions in genomic DNA PhD Thesis University of Colorado, 

Snyder E E and Stormo G D 1993 Nucl. Acids Res. 21 607-13 
-1994 Nucleic Acid and Protein Sequence Analysis: A Practical Approach 2nd edn (Oxford: IRL Press) at press 
-1995 Identification of protein coding regions in genomic DNA J. Mol. Biol. 248 1-18 
Uberbacher E C and Mural R J 1991 Proc. Natl Acad. Sci., USA 88 11 261-5 

Thesis Department of Computer Science, University of Colorado, Boulder, CO, USA 

Boulder, CO 80309-0347 

G4.2:8 Handbook of Neural Compufurion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.3 A neural network classifier for chromosome 
analysis 

Jim Graham 

Abstract 

Analysis of chromosomes is an important and time-consuming task in the diagnosis of 
inherited or acquired genetic abnormality. Machine vision systems can contribute to 
the visual inspection of microscope images and the assignment of chromosomes to 24 
classes is a critical stage in this analysis. A multilayer perceptron classifier has been 
developed for use in an automated chromosome analysis system. The inputs to the 
classifier are chromosome size, centromere position and a representation of the banding 
pattern measured from microscope images of dividing cells. The outputs are likelihoods 
of class membership. Optimum performance was obtained by factoring the classifier into 
two networks, one using size and centromere position alone to provide a first assignment 
into seven groups, followed by a second step in which the banding information was 
incorporated to give a final classification. The network is trained by backpropagation 
and considerable advantage is obtained by using a strategy of gain reduction using both 
total error and classification accuracy as network monitoring parameters. Classifier 
performance was tested on fairly large sets of chromosome measurements covering a 
representative range of data quality. Overall classification accuracy was found to equal 
or exceed that of a well developed statistical classifier applied to the same data. 

G4.3.1 Introduction 

In a normal human cell there are 46 chromosomes which, at an appropriate stage of cell division 
(metaphase), can be observed as separate objects using high-resolution light microscopy. Appropriately 
stained they show a series of bands along their length and a characteristic constriction called the centromere. 
Figure G4.3.l(a) shows a typical metaphase cell, stained to produce the most commonly used banding 
appearance (G-banding). Chromosome analysis, which involves visual examination of these cells, is 
routinely undertaken in hospital laboratories, for example, for diagnosis of inherited or acquired genetic 
abnormality or monitoring of cancer treatment. 

This visual analysis, known as karyotyping, involves counting the chromosomes and examining them 
for structural abnormalities. To determine the significance of both numerical and structural abnormality it 
is necessary to classify the chromosomes into 24 groups on the basis of their relative size, the pattern of 
bands and the centromere position (see figure G4.3.1). Twenty-two of these groups normally contain two 
homologous (structurally identical) chromosomes. The other two groups contain the sex chromosomes X 
and Y. In the case of a normal male cell, the X and Y groups contain one chromosome each; in a female 
cell there is a homologous pair of X chromosomes and the Y group is empty. 

The time-consuming nature of chromosome analysis has resulted in considerable interest in the 
development of automated systems based on machine vision. A number of such systems are now in 
routine use in many hospitals (e.g. Graham 1987, Graham and Pycock 1987, for a review see Lundsteen and 
Martin 1989). The processing stages in analyzing the microscope images are illustrated in figure G4.3.2. 
Chromosomes are isolated from the images, measurements are made of chromosome size, shape and 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G4.3: 1 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Figure G4.3.1. Chromosomes and chromosome features. (a) A cell at metaphase. The individual 
chromosomes show the banding pattern (G banding) produced by staining. (b) Schematic drawing of 
a chromosome showing the position of the centromere. The density profile (below) is formed by projecting 
the density onto the curved centerline. 

banding pattern, these measurements are used in a classifier to assign the chromosome to appropriate groups 
and the information is displayed to the user, usually in the form of a karyogram in which the chromosomes 
are arranged in a tabular array of their classes (see Graham and Piper 1994). The chromosome classification 
performance of these systems depends on the type of material used, but at best the misclassification rate 
is 6 1 8 %  (Piper and Granum 1989) which compares poorly with visual classification by a cytotechnician 
(Lundsteen and Granum 1976). All automated systems in clinical use operate interactively, allowing an 
expert operator to correct machine errors in image segmentation, feature extraction and classification, 
resulting in useful performance (Graham and Piper 1994). However, there is clear scope for improvement 
in automatic classification. The objective of this study was to investigate the use of a neural network in 
the classification module. 

Figure G43.2. Classification of 
chromosomes follows segmentation and measurement modules, and is implemented in this study as a 
neural network. The display and interaction module permits correction of errors in machine analysis and 
diagnostic decision making. 

Block diagram of an automated chromosome analysis system. 

(34.3 :2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network classifier for chromosome analysis 

G4.3.2 Design process 

G4.3.2.1 Design constraints 

An important issue for automatic classification is the representation of the banding pattern. Several different 
classifiers have been reported using statistical or syntactic approaches (e.g. Granlund 1976, Granum 1982, 
Groen et a1 1989, Thomason and Granum 1986). Each of these involves the extraction of a number 
of intuitively defined features, usually associated with the chromosome’s density profile. The density 
profile is a one-dimensional pattern obtained by projecting the chromosome’s density onto its center line 
(figure G4.3.l(b)), and reflects the largely linear organization of the chromosome structure. The processing 
involved in extracting features from the profiles involves the risk of losing information, a risk which may be 
eliminated by using the density profile itself as the banding representation. This type of one-dimensional 
pattern is a natural form of input for an artificial neural network. The potential advantage of neural 
network classifiers lies in their flexibility; they can be readily retrained for classification of new types of 
data. This property is likely to be useful for chromosome classification as specimen preparation techniques 
in routine use evolve very rapidly, resulting in changes in chromosome appearance. In particular, there 
is an increasing clinical requirement to use higher-resolution banding for diagnostic purposes, resulting 
in routine examination of longer (prometaphase) chromosomes. This will result in the need for greater 
adaptability in automated karyotyping systems. 

Figure G4.3.2 indicates that the classification module is easily isolated from the rest of the system. 
The outputs of the classifier are the probabilities of membership of each of the 24 classes corresponding 
to the inputs for each chromosome. The inputs are the chromosome size, the centromeric index and the 
banding profile. 
Size. This may be measured either as the length of the chromosome or its area; the two measures are very 
highly correlated. In the datasets used in this study, the length was used. 
Centromeric index. The centromere divides the chromosome into long and short ‘arms’ (figure G4.3.l(b)). 
The centromeric index (CI) is the ratio of the length of the short arm to that of the whole chromosome, 
and gives a measure of shape. 
Banding proBle. The number of samples representing the banding profile can vary between 10 and 140 
depending on the class of the chromosome and the state of contraction of the cell in which it occurred. 
The classification module requires a consistent input vector and all banding patterns must therefore be 
represented by the same number of samples. Considerable experimentation (Jennings and Graham 1993, 
Errington and Graham 1993) gave the result that a constant number of samples could be used to represent 
the profile, irrespective of the original chromosome length, and that this number could be quite small (as 
low as 15 samples for all profiles) with very little loss of classification accuracy. The use of a uniform 
number of samples meant that the profiles of long chromosomes had to be subsampled by local averaging, 
and the short chromosomes oversampled by interpolation. 

The principal requirement of the classifier module is classification accuracy. The overall system 
performance is closely dependent on presenting the clinical user with a classification of the chromosomes 
in a cell which requires minimal interactive correction. Statistical classifiers give (barely) acceptable 
performance and it would be desirable to improve on this using a neural network classifier, although 
similar performance would be acceptable in view of the potential benefits in adaptability. 

G4.3.2.2 Network topology 

In this application we have a classification problem using continuous-valued inputs, where the classes are 
well defined and expert classification of the training data is available. It is a clear case for a multilayer c1.2 

perceptron (MLP). A preliminary study (Jennings and Graham 1993) compared the suitability of the MLP 
topology with the Kohonen self-organizing map, and confirmed the expected result that significantly better c2.1.1 
classification was obtained using the supervised training regime of the MLP. Optimum network parameters 
(starting gain, momentum, number of hidden nodes) were determined empirically (Errington and Graham 
1993). 

In principle, it is possible to classify chromosomes on the basis of the banding pattern alone. However, 
the size and centromeric index are extremely powerful classification features, and must be included for the 
most accurate results. These features might be used as inputs to the network in addition to the banding 
features as shown in figure G4.3.3(a). It is known, however, that size and centromeric index can classify 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G4.3:3 

Copyright © 1997 IOP Publishing Ltd



Biologv and Biochemistrv 

chromosomes into seven groups in the absence of banding information (the ‘Denver’ classification, Denver 
Conference 1960). An alternative form of input was therefore investigated, in which these two features 
were processed by a preclassifier, also an MLP, and trained to produce outputs corresponding to the 
‘Denver’ classes. The seven outputs of the preclassifier were then used along with the banding features as 
inputs to the main classifier (figure G4.3.3(b)). The main classifier consisted of a network with 15 input 
nodes for banding features, plus the nodes necessary for the size and centromeric index features, 100 hidden 
nodes and 24 output nodes (one for each class), as illustrated in figure G4.3.3. The classification results 
in the three sets of chromosome data (see below) are given in table G4.3.3. It is clear that preprocessing 
the centromeric index and size features gave a considerable advantage. 

size CI 

density profile inputs ‘IDenver“ U Classifier 

( a )  -‘ l l 1 1 , l  ( b )  si 
density profile inputs size CI 

24 class outputs 24 class outputs 

Figure 64.3.3. Two possible configurations for including size and centromeric index features in the input 
vector. ( U )  The two features are simply additional features along with the banding profile samples. (b )  
The features are processed to produce seven values corresponding to the probability of membership of the 
‘Denver’ groups. The banding profile then provides information to refine the classification to 24 classes. 
In either case there are 24 outputs corresponding to the membership likelihoods of each of the classes. 

G4.3.3 Training methods 

The network was trained and tested using three data sets of annotated measurements from G-banded 
chromosomes. The characteristics of these data sets are summarized in table G4.3.1. The data in 
the Copenhagen set were obtained by densitometry of photographic negatives of selected cells of 
good appearance. The other two data sets were digitized directly from microscope images of routine 
material. The preparation techniques in chorionic villus sampling results in poor visual quality of the 
chromosome images in the Philadelphia set. The three data sets give a reasonably large number of 
data for network training and testing covering a range of quality representative of that found in a real 
implementation. 

Table G4.3.1. Summary of the data sets of chromosome measurements. 

Data set Tissue of origin Data acquisition Number of ‘Quality’ of 

Copenhagen Peripheral blood Densitometry 8106 High 
Edinburgh Peripheral blood TV camera 5469 Medium 

method chromosomes chromosome images 

Philadelphia Chorionic villus Linear CCD array 5817 L O W  

ci.2.3 The training algorithm employed was the classical backpropagation method (Rummelhart et a1 1986), 
using a strategy of progressive reduction in gain (learning rate) during the training. Two measures were 
used to monitor performance: total network error and classification accuracy on the training data. These 
measures are not identical due to the fact that the classification result is determined only by the highest 
output, but they are both useful measures of performance. During training, the gain was halved if the total 
network error had increased by more than lo%, or the classification performance had not improved over 

G4.3 :4 Hundbook of Neuml Computation release. 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network classifier for chromosome analvsis 

the previous presentation of the training data. Training was halted when the value of gain dropped below 
The gain reduction strategy proved extremely valuable in this application. Table G4.3.2 shows the 

misclassification rates on training data after convergence of networks trained to classify banding features 
alone in the preliminary study (Jennings and Graham 1993). There is a clear advantage in using gain 
reduction and in using two performance characteristics to monitor the network. 

Table 64.3.2. The effect on classification performance of gain reduction during training, monitored using 
total network error and accuracy of classification of the training data. 

Training strategy No gain reduction Gain reduction Gain reduction 
(network error only) (network error and 

classification accuracy) 

Misclassification rate 53 (%) 12 (%) 4 

In the classification experiments, the network was trained using approximately half of each data set, 
the remainder being used for ‘unseen’ testing. The roles of the training and test sets were then reversed, 
and the classification rate obtained as the average of the two unseen tests. In all classification experiments 
the initial gain value used was 0.1 and the momentum value 0.7. 

G4.3.4 Preprocessing 

As noted above, the banding profiles were represented by 15 sample values, obtained by averaging or 
interpolation from the ‘raw’ profiles. The relative sizes and overall densities of chromosomes in a cell 
are fairly consistent; however, absolute lengths and densities can vary between cells. Length and density 
measures were therefore normalized to a constant value for each cell before classification. 

The size and CI features were preprocessed using an MLP with two inputs, seven outputs and a 
hidden layer of 14 nodes (see figure G4.3.3(b)). 

G4.3.5 Output interpretation 

The network output is a vector of 24 class assignment values for each chromosome, approximating the 
Bayesian probabilities of the chromosome belonging to each class. The class to which the chromosome is 
assigned is that with the highest output. Classification results are shown in table G4.3.3. It is worth noting 
here that the classification of chromosomes is constrained by the fact that (in a normal cell) each class 
contains exactly two chromosomes (or one in the case of the sex chromosomes in a male cell). Application 
of this constraint can significantly improve the classification accuracy over ‘context-free’ classification of 
individual chromosomes (Tso etal 1991). Network approaches can give good results in applying constraints 
(Errington 1994), but consideration of these methods is beyond the scope of this chapter which is restricted 
to considering the classification of isolated chromosomes. 

Table 643.3. Classification performance of two MLP configurations compared with that of a parametric 
statistical classifier (Piper and Granum 1989). 

Data set 

Classifier Copenhagen Edinburgh Philadelphia 

MLP, banding, length and centromeric index 6.9% 18.6% 24.6% 

Parametric classifier 6.5% 18.3% 22.8% 
Significance of MLP improvement 2% level 5% level not significant 

MLP, ‘Denver’ preclassifier 5.8% 17.0% 22.5% 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 97t1 G4.3:5 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.3.6 Development 

As we were required to carry out a number of experimental investigations using the network, and to arrive 
at a configuration which could be incorporated with other software modules, we implemented our own 
network simulators. They were programmed in Pascal and ran on UNIX workstations. 

G4.3.7 Comparison with traditional methods 

A feature of developing a neural network classifier for chromosome analysis is the possibility of comparing 
a network solution to classical statistical methods. There have been a number of approaches to chromosome 
classification, but the most successful prior to this study was that of Granum (1982), subsequently greatly 
refined by Piper (Piper and Granum 1989). This method extracts banding features using ‘weighted density 
distributions’ ; essentially, the banding profile is multiplied by a number of intuitively defined weighting 
functions, approximating a set of basis functions for the banding pattern. The features extracted from the 
density profiles in this way are combined with length and CI features, and classified using a parametric 
classifier. Table G4.3.3 compares the best network performance with the statistical method of Piper 
and Granum (1989) in performing context-free classification of individual chromosomes. The network 
performance is significantly better for the Copenhagen and Edinburgh data sets and identical for the 
Philadelphia data set. 

The results show that a network classifier can give higher classification accuracy than a classical 
technique. While the improvement is statistically significant, however, it is not overwhelming. The 
classification performance of both types of classifier is good for Copenhagen data, probably acceptable for 
data of routine quality, such as is found in the Edinburgh set, and inadequate in the case of the poor-quality 
Philadelphia data. The development costs of the network classifier are arguably appreciably smaller, since 
the time from proposing the concept to arriving at a final configuration was considerably shorter and 
involved less manpower than was the case for the conventional classifier. From an implementation point 
of view, the network classifier is likely to be more adaptable. Our experience is that the best network 
parameters (topology, gain, momentum) are stable in the face of wide variation in the quality of data. It 
seems likely then that a single ‘hard-wired’ network would be adequate for any implementation, requiring 
only a mechanical training process to adapt to the properties of the chromosome data in a new installation. 
Training ‘on the fly’ could be applied to account for slow changes in chromosome appearance arising from 
changes in the nature of the preparation techniques, etc. 

G4.3.8 Conclusions 

Chromosome classification is an important element in automated cytogenetic analysis. The classification 
problem in this case is far from trivial; there are few applications where there is a requirement to assign 
objects to as many as 24 classes. We have constructed a chromosome classifier using a multilayer 
perceptron network whose performance equals or betters that of a well developed classifier using traditional 
statistical methods. The form of the network is standard, with the exception that known properties of the 
classification features allowed the network to be ‘factored’ into two steps to achieve optimum classification 
performance. Equivalent performance can be obtained with a single network composed of many more 
nodes (Errington 1994). 

In this study we have had the luxury, not afforded to many network implementations, that data sets 
have been available with fairly large quantities of expertly classified real-world examples. The data were 
made available within the Concerted Action of Automated Cytogenetics Groups supported by the European 
Community (project no 11.1.1.13). An interesting feature of this application is that we have been able to 
make a direct comparison with a statistical classifier applied to the same data. 

References 

Denver Conference 1960 A proposed standard system of nomenclature of human mitotic chromosomes Lancet 1 

Errington P A 1994 Application of neural network models to chromosome classification PhD Thesis University of 

Errington P A and Graham J 1993 Application of artificial neural networks to chromosome classification Cytometry 

1063-5 

Manchester 

14 627-39 

G4.3:6 Hundbook of Neural Computution release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network classifier for chromosome analysis 

Graham J 1987 Automation of routine clinical chromosome analysis I, Karyotyping by machine Anal. Quantit. Cyt. 

Graham J and Piper J 1994 Automatic karyotype analysis Chromosome Analysis Protocols ed J R Gosden (Totowa, 

Graham J and Pycock D 1987 Automation of routine clinical chromosome analysis 11, Metaphase finding Anal. Quantit. 

Granlund G H 1976 Identification of human chromosomes using integrated density profiles IEEE Trans. Biomed. Eng. 

Granum E 1982 Application of statistical and syntactical methods of analysis to classification of chromosome data 
Pattern Recognition Theory and Application ed J Kittler, K S Fu and L F Pau, NATO AS1 (Dordrecht: Reidel) 

Groen F C A, tenKate T K, Smeulders A W M and Young I T 1989 Human chromosome classification based on local 

Jennings A M and Graham J 1993 A neural network approach to automatic chromosome classification Phys. Med. 

Lundsteen C and Granum E 1976 Visual classification of banded human chromosomes I, Karyotyping compared with 

Lundsteen C and Martin A 0 1989 On the selection of systems for automated cytogenetic analysis Am. J. Med. Genet. 

Piper J and Granum E 1989 On fully automatic measurement for banded chromosome classification Cytometry 10 

Rummelhart D E, Hinton G E and Williams R J 1986 Leaming internal representations by error propagation Parallel 
Distributed Processing: Explorations in the Microstructures of Cognition vol 1 Foundations ed D E Rummelhart 
and J L McCelland (Cambridge, MA: MIT Press) pp 318-62 

Thomason M G and Granum E 1986 Dynamically programmed inference of Markov networks from finite sets of 
sample strings IEEE Trans. 8 491-501 

Tso M K S ,  Kleinschmidt P, Mitterreiter I and Graham J 1991 An efficient transportation algorithm for automatic 
chromosome karyotyping Putt. Recog. Lett. 12 117-26 

Hist. 9 383-90 

NJ: Humana) pp 141-85 

Cyt. Hist. 9 391-7 

23 183-92 

pp 373-98 

band descriptors Putt. Recog. Lett. 9 21 1-22 

Biol. 38 959-70 

classification of isolated chromosomes Am. J.  Human Genet. 40 87-97 

32 72-80 

242-55 

@ 1997 1OP Publishing Ltd and Oxford University Ress Handbook of Neural Compufafion release 9711 G4.3:7 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.4 A neural network for recognizing distantly related 
protein sequences 

Dmitrij Frishman and Patrick Argos 

Abstract 

A sensitive technique for protein sequence motif recognition based on neural networks 
has been developed by Frishman and Argos, and by Vogt e? al. It involves three major 
steps. (i) At each alignment position of a set of N matched sequences, a set of N 
aligned oligopeptides is specified with preselected window length. N neural networks 
are subsequently and successively trained on N - 1 amino acid spans after eliminating 
each ith oligopeptide. A test for recognition of each of the ith spans is performed. 
The average neural network recognition over N such trials is used as a measure of 
conservation for the particular windowed region of the multiple alignment. This process 
is repeated for all possible spans of given length in the multiple alignment. (ii) The M 
most conserved regions, delineated by significance thresholds, are regarded as motifs and 
the oligopeptides within each are used to train extensively M individual neural networks. 
(iii) The M networks are then applied in a search for related primary structures in a large 
databank of known protein sequences. The oligopeptide spans in the database sequence 
with strongest neural net output for each of the M networks are saved and then scored 
according to the output signals and the proper combination which follows the expected 
N- to C-terminal sequence order. The motifs found from the database search with 
highest similarity scores can then be used to retrain the A4 neural nets which can be 
subsequently utilized for further searches in the databank, thus providing even greater 
sensitivity to recognize distant familial proteins. This technique was successfully applied 
to the integrase, DNA-polymerase and immunoglobulin families. 

G4.4.1 Project overview 

Comparison and alignment of protein amino acid sequences can provide important biological information 
(compare Argos 1990) which can substantially reduce experimental effort. The degree of sequence 
variability in different parts of the protein molecule is determined by complex functional and structural 
constraints. The most conserved subsequence regions (motifs or patterns) can often be delineated from 
several aligned protein sequences of a given molecular type, especially if the proteins are distantly related. 
The most conserved amino acids within the motifs are often the most important functionally; they may form 
receptor and nucleic acid binding regions or active sites for enzymes. These regions are also very useful 
for identifying very distant members in a molecular family as their conservation is required to maintain 
function. Their collection can, in turn, shed further light on protein structure/function relationships. 

The objective of the present algorithm was to act as an automatic and sensitive procedure to delineate 
motifs in multiply aligned sequences and then to use these patterns in a search for other distantly related 
primary structures. The latter problem is of particular importance for the human genome project which is 
expected to produce massive quantities of sequence data. The total number of different molecular families 
is expected to be of the same order of magnitude as the number of genes contained in the bacterial 
chromosome, but the number of sequences determined will be several orders of magnitude greater. This 
vast quantity of data can be handled easily if each sequence can be quickly and sensitively assigned to its 
molecular family from its characteristic sequence patterns. 

8 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G4.4:l 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

G4.4.2 Design process 

G4.4.2.1 Motivation for a neural solution 

When very similar sequences are considered with only a limited number of amino acid substitutions, the 
problem of defining a protein pattern becomes trivial as all possible exchanges can be enumerated. For 
more diverged sequences, with many and distributed residue exchanges, derivation of subsequence patterns 
or motifs becomes a more sophisticated task in pattern recognition (see figure G4.4.1 for an example of a 
motif). One of the powerful techniques for dealing with poorly determined and noisy patterns are artificial 
neural networks, which can extract essential features from a set of variable, imperfect objects (see, for 
example, Wasserman 1989). 

P2 H A L R H S F A T H F M I N G  
186 H V L R H T F A S H F M M N G  
P22 H D L R H T W A S W L V Q A G  
P1 H S A R V G A A R D M A R A G  
h H E L R S L S A - R L Y E K Q  
4 H D M R R T I A T N L S E L G  
P4 H G F R T M A R G A L G E S G  

- L I  LI - + - + a -  

Figure G4.4.1. Example of a conserved region in the integrase protein family (modified from Argos et a1 
1986). A short region of aligned integrase sequences from bacteriophages P2, 186, P22, P1, A,  480 and 
P4 are shown. Amino acids are in one letter code. Symbols +, -, - and . denote positions with different 
degrees of amino acid conservation, from high to low, respectively. 

G4.4.2.2 General description of the algorithm 

Protein sequence pattern recognition based on neural networks requires a database of sequences known 
to belong to a family; i.e. the mapping between sequences in the training set and patterns is known in 
advance. The trained network is used to search for additional representatives of the same pattern in a 
large database of known primary structures. Here a more difficult task is addressed. From a multiple 
alignment of protein sequences, the relevant subsequence motifs are first delineated. This is achieved 
by training individual neural networks for every possible set of matched oligopeptides with given length 
over the entire multiple alignment. The subsequence regions that are best identified by their associated 
neural networks are defined as the conserved motif regions in the overall alignment. An entire sequence 
database can subsequently be searched by submitting every database oligopeptide of given length to the 
motif networks and the network outputs recorded. Those sequences with sufficient positive response from 
the individual pattern networks taken in the proper sequential order from the N- to C-termini are then 
identified as distantly related members of the original family. The motif networks can then be retrained 
and made more sensitive in the light of the newly found subsequences. A database search can then be 
re-initiated in an attempt to discover even more distant family members. This process can be repeated as 
often as necessary. 

G4.4.2.3 Data, preprocessing and neural network topology 

It is assumed that a set of aligned sequences is available. Such techniques as CLUSTAL (Higgins and 
Sharp 1989) or PILEUP in the GCG program suite (Genetics Computer Group 1991) can be utilized 
for such purposes. Figure G4.4.2 illustrates the neural network architecture. In each position k of a 
multiple alignment of total length L over N protein sequences (k = 1, L - c + l), all N alignable 
oligopeptides of chosen but constant length c are used as positive (observed) examples of a possible 
consensus pattern. Negative examples of the pattern are randomly generated oligopeptides with amino 
acid composition corresponding to that of the N alignable peptides of length c starting at position k of 
the multiple alignment. A 20-bit binary code is used to represent each of the 20 amino acid types such 
that only one bit is assigned unity and the rest null values. A different position with value 1 is chosen 
for each of the residue types. This coding scheme for protein sequences was first proposed by Qian and 

G4.4:2 Handbook of Neuml Compurarion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for recognizing distantly related protein sequences 

Sejnowski (1988) and Bohr e? a1 (1988). There is no special code for gaps. For the sake of simplicity, 
gaps are substituted by randomly generated amino acids. 

The neural networks used consisted of one input, one hidden and one output level. The output level 
consists of only one neuron, the state of which is compared to the desired response for each particular 
presentation (1 for a positive output and 0 for a negative one). Backpropagarion procedures were used for c1.2.3 
network training (Rumelhart e? a1 1986, Wasserman 1989, White 1989). 

Position 1 2 3 4 5 6  

Sequence 1 A B C C B A  
Sequence 2 B A C C A B  
Sequence 3 C A B C B A  
Sequence 4 B [m 

7 Output neuron 

output 

Figure G4.4.2. Illustration of the neural network architecture for calculating the profile of conservation. 
The figure depicts a multiple alignment of four sequences of length 6 consisting of a three-letter alphabet 
(A, B and C). A tripeptide segment of the alignment acts as input to a neural network. In this case, the 
window length c is 3 and the start alignment position k for the fourth oligopeptide is 2. The input layer 
receives three bits of information representing each of the three symbols A, B and C. The input layer would 
then consist of nine neurons with binary input values. Outputs from all these neurons act as inputs to each 
neuron of the hidden layer; the hidden neuron outputs are, in turn, inputs to the single output neuron. In 
reality, each amino acid is represented by a 20-bit vector such that the number of units in the input layer is 
20 x n where n is the number of amino acids in the oligopeptide. The number of units used in the hidden 
layer for protein sequences was 10. 

G4.4.3 Training and recognition methods 

The method used for protein pattern recognition consists of three main procedures (figure G4.4.3). Every 
possible span of alignment positions with given window length is scanned with a neural network. For 
each aligned oligopeptide in a particular alignment span, a neural network is trained over the remaining 
peptides and its response for the given peptide recorded. These responses are then averaged for all 
oligopeptides in the alignment span. A plot of the mean response versus the overall alignment position 
number of the start point of the span under consideration represents a profile of sequence conservation for 
a particular protein family. Peaks on this curve correspond to the most conserved regions of the primary 
structures. In the second step several individual networks selected from the first procedure are intensively 
trained to recognize only the most conserved regions or motifs of the alignment where all oligopeptides 
in the corresponding amino acid positions are used as a training set. In the third procedure these resulting 
networks are applied sequentially to all sequences and all possible oligopeptides in a large protein sequence 
database, and the best hits are determined. The newly discovered motifs can be used to retrain and further 
sensitize the networks, subsequently applied to a second search of the database with resultant recognition 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ojNeural Computation release 9711 G4.4~3 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Protein sequence alignment 

Input parameters: 1 
window size, 

number of hidden units, 
number of cycles of 

training 
Conserved motifs 

Network topologies 
corresponding to the best conserved 

regions 

Figure G4.4.3. Flowchart for the procedure to recognize protein sequence motifs. Three consecutive steps 
of the analysis are implemented as computer programs NEURONl, NEURON2 and NEURON3 (see the 
text for details). 

of even more distantly related sequences. The parameters and thresholds of the analysis may be modified 
and the analysis repeated until some optimal decision boundaries are achieved (e.g. the number of false 
positives minimized). In the following sections, the three major steps are described in detail. 

G4.4.3.1 

To make the training process robust, we adopted a jackknife procedure similar to that described by Hirst 
and Sternberg (1991). An ith peptide ( i  = 1, N )  is taken from the subalignment and an ith network is 
trained on the set of N - 1 remaining peptides used as positive examples and N - 1 randomly generated 
peptides acting as negative examples. The training is repeated Ncycl times (Ncycl = 60) for each of the ith 
oligopeptides such that the total number of input presentations to the network associated with alignment 
position k is 2 x ( N  - 1) x Ncycl. The number of times each of the N - 1 peptides is presented to the 
neural network differs according to the similarity of the oligopeptides associated with position k (Sibbald 
and Argos 1990) such that subsequences with high similarity are not allowed to bias the training. After 
training of the ith network the removed peptide is presented for recognition and the output of the network 
REC(i, k) (which lies in the range 0-1) is stored. This procedure is repeated for all N peptides of the 
subalignment associated with the start position k of the overall alignment. To build a numerical curve 
characterizing the regions or motifs with primary structure conservation along the protein alignment, the 
average recognition of all N networks was taken as the measure of conservation in each position of the 
alignment k :  

Search for unknown protein patterns 

Each network is trained until the fractional change of the error becomes very small. 
In order to derive the most conserved motifs from the resultant plot, it is necessary to define some 

cutoff level such that, if REC(k) is greater than this threshold, then the alignment span, which is c amino 
acids in length and begins at position k ,  is declared well conserved. It was found from several protein 
examples that 12-residue spans with a mean recognition peak value above 0.7 constituted significant motifs. 
This implies that 70% of the N subsequences associated with start site k will be recognized given that 
REC(i, k )  = 1.0 or 0.0 represents, respectively, complete or no recognition. 

G4.4:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for recognizing distantly related protein sequences 

The number of units in the hidden layer has little effect on the results at this step of the analysis 
provided that it is not less than 10. Since the optimal window size was found to be in the range 10-15 
for the protein examples, 12 was selected as representative. 

G4.4.3.2 Generation of final topologies for search neural networks 

The M most conserved regions in the multiple alignment were used as input to train several individual 
neural networks and to generate final sets of weights. Randomly generated peptides were used as negative 
examples. As the jackknife procedure is not used in this step, many more cycles of training (120-150) 
were required to reach the same level of recognition accuracy. 

Although use of an ensemble of networks based on variable length motifs would certainly improve 
sensitivity for recognizing distantly related sequences in a full database search, the computer processing 
time is prohibitive. However, sensitivity can be improved considerably by increasing the number of units 
in the hidden layer which are optimally more than 10 times greater (100-150) than the number used during 
the profile calculation. Further increase of the number of hidden units did not improve the results in the 
protein sequence examples tested here. 

G4.4.3.3 Large database searches 

The resulting networks were used in an attempt to find distant members of a protein family in a large 
database of known protein sequences. Release no 21 of the SWISS-PROT database (Bairoch and Bockmann 
1991) consisting of over 23 OOO individual sequences was searched in the protein examples considered. 
All oligopeptides of each database sequence are presented to all M networks and the R best recognitions 
(BESTREC(p, q ) ,  q = 1, R)  for each pth (p  = 1, M) network as well as the starting sequence positions 
of these peptides of length c (POS(p, 4)) were stored. It is also possible to specify the maximal number 
NSUB of subunits or domains, each with the M motifs, which are expected in the proteins belonging to the 
family under question. Then the number of best recognized peptides for each of the M networks can be 
R' = R x NSUB. All possible combinations (NCHAIN) of successive peptides, taken from the recognition 
set of each of the M networks, are considered. It must be emphasized that only those combinations are 
allowed that contain the motifs in the proper N- to C-terminal order as they appear in the multiple sequence 
alignment. For each combination, a score is calculated: 

where q for each network p is in the range 1 5 4 5 R+,POS(p,q) + c < POS(p + l , q ) ,  and 
BESTREC(p,q) is the qth output value for pth network. The largest SCORE(i) among all possible 
paths is stored as the final score for the database sequence under consideration. 

If new motifs in distantly related family members are discovered, then they can be used as additional 
inputs to retrain the networks of step 2 and then a database search re-initiated as in step 3. Alternatively, 
to conserve computing effort, the sequences associated with the highest scores from the initial step 3 
process (e.g. the first 1000 or so) can be searched after retraining. Obviously the process can be iteratively 
repeated as appropriate. 

G4.4.4 Interpretation of output and comparison with traditional methods 

A sliding neural network over each stretch of a multiple alignment in conjunction with a jackknife procedure 
found conserved motifs in integrases (Argos et a1 1986, Abremski and Hoess 1992), DNA-directed DNA 
polymerases (It0 and Braithwaite 1991) and proteins sharing the immunoglobulin fold (Williams and 
Barclay 1988). For example, the profile of conservation calculated from the sequence alignment of DNA- 
polymerases clearly reveals the location of the four catalytic and DNA-binding motifs (figure G4.4.4). 
These four motifs were utilized in a search for other members of the DNA-polymerase family in SWISS- 
PROT. 

The resolving power of the database search with the program NEURON3 is illustrated by figure G4.4.5. 
In scanning the protein sequence database with neural networks trained to recognize conserved integrase 
motifs, 24 out of 25 sequences with scores three standard deviations above the average were members of 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G4.4:5 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

1 

0.8 

'1 0.6 

0.4 
4 

U 1  I I I I I 

0 100 200 300 400 500 
Amino acid position 

Figure G4.4.4. Profile of conservation of the partial alignment of DNA-dependent DNA polymerases. Four 
peaks (average recognition above 0.7) show the location of the catalytic and DNA-binding motifs. 

200 

150 

!I 
i 
i * 100 

I z 
5 0  

0 I 
-4.5 -3.5 -2 .5 - 1 . 5  -0.5 0.5 1.5 2.5 3.5 4.5 

The number of standard deviations above the average score 

Figure 64.4.5. Statistical distribution of similarity scores for all database sequences after a search for 
distant members of the integrase family with the program NEURON3. The arrow indicates the border 
between the 25 highest scoring sequences (24 of which are integrases) and other sequences of the database. 

G4.4~6 Handbook of Neural Computation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for recognizing distantly related protein sequences 

the integrase family. In this and other examples studied, the neural network motif technique performed 
more sensitively than the present most successful and widely used profile analysis method in detecting 
distantly related familial sequence members (Gribskov eta1 1987, 1990). The profile approach relies on the 
frequency of appearance of each amino acid type at all alignment positions. For example, utilization of the 
PROFILESEARCH routine (Genetics Computer Group 1991) to detect proteins with an immunoglobulin 
fold in a large database from an initial set of 32 aligned familial sequences yielded 66 false positives 
in the top 400 best hits while the neural network motif search had only 12 errors. In the top 600 hits, 
the profile technique recognized only 18 of 49 immunoglobulin-like molecular types (T-cell receptors, 
histocompatibility antigens, proto-oncogene tyrosine kinase, etc) while the neural network motifs pointed 
to 37 members, over twofold more. Furthermore, retraining the networks with the first 250 best hits of 
the first search resulted in only three missed immunoglobulin family types and no false positives in the 
400 best hits of the second search. 

The methodology described here is intended for sensitive sequence comparisons where little overall 
similarity is detectable except for a few conserved regions. For alignments of closely related sequences, 
the motifheural network procedure has no advantages over profile analysis or other comparable search 
techniques based purely on sequence statistics. In these cases the conservation is distributed over practically 
the entire sequences and it is not possible to distinguish conserved regions. For very distantly related 
proteins, conserved segments ‘float’ atop the background noise of a multiple alignment. In such cases, 
searching a large database with neural networks trained to recognize only motifs results in better recognition 
of distant sequences as compared with profile-like algorithms which are vulnerable to difficulties in correctly 
aligning largely dissimilar structures, reliant on the constrained size of insertions and deletions, sensitive to 
selected gap penalty values required to find the optimal alignment, and which yield alignment assessments 
based considerably on nonconserved regions in the distant sequences. The motifheural network method 
is independent of these factors providing the multiple alignment procedures or the researcher can at least 
recognize the conserved subsequences. This is not the first indication that neural networks can perform 
more sensitively in sequence analysis than statistical methods (to which profile-like techniques belong). 
Lapedes et a1 (1990) investigated the effectiveness of various neural network, machine learning and 
information theory techniques in DNA sequence pattern searches and found that neural networks provided 
the highest accuracy. The effectiveness of the networklmotif method described here lies in its ability to 
delineate the motif regions automatically, the sensitivity of the neural networks, the proper weighting of 
the input subsequences, and the reliance only on motif segments in database searches avoiding problems 
associated with insertionsldeletions and noisy assessments of significance. 

The motif search technique has not only been implemented on a single processor computer (Frishman 
and Argos 1992) but also on a DEC massively parallel machine (Vogt et a1 1994) referred to as a 
MASPAR computer. The algorithm is particularly amenable for the multiprocessor environment (4096 in 
the MASPAR) since motif searches can be performed on individual sequences simultaneously. The 12- 
hour processing time required on a VAX 9000 mainframe to search about 30000 sequences was reduced 
to 0.5 hours on the MASPAR. 

References 

Abremski K E and Hoess R H 1992 Evidence for a second conserved arginine residue in the integrase family of 

Argos P 1990 Computer analysis of protein structure Methods Enzymol. 182 751-76 
Argos P, Landy A, Abremski K, Haggard-Ljungquist E, Hoess R H, Khan M L, Kalionis B, Narayana S V L, 

Pierson L S 111, Stemberg N and Leong J M 1986 The integrase family of site-specific recombinases: regional 
similarities and global diversity EMBO J. 5 433-40 

recombination proteins Prot. Eng. 5 87-91 

Bairoch A and Bockmann B 1991 The SWISS-PROT protein sequence data bank Nucl. Acids Res. 19 2247-9 
Bohr H, Bohr J, Brunak S ,  Cotterill R M J, Lautrup B, Noorskov L, Olsen 0 H and Petersen S B 1988 Protein 

Frishman D I and Argos P 1992 Recognition of distantly related protein sequences using conserved motifs and neural 

Genetics Computer Group 1991 Program Manual for rhe GCG Package, Version 7 April 1991, 575 Science Drive, 

Gribskov M, Luthy R and Eisenberg D 1990 Profile analysis Merh. Enzymol. 183 146-59 
Gribskov M, McLachlan A D and Eisenberg D 1987 Profile analysis: detection of distantly related proteins Proc. Narl 

secondary structure and homology by neural network FEBS Lett. 241 223-8 

networks J.  Mol. Biol. 228 951-62 

Madison, Wisconsin, USA 5371 1 

Acad. Sci., USA 84 4355-8 

@ 1997 IOP Publishing Ltd and Oxford University Ress H a d o o k  of Neural Computation release 9711 G4.4~7 

Copyright © 1997 IOP Publishing Ltd



Biology and Biochemistry 

Higgins D G and Sharp P M 1989 Fast and sensitive multiple sequence alignments on a microcomputer Comput. Appl. 
Biosci. 5 151-3 

Hirst J D and Stemberg M J 1991 Prediction of ATP-binding motifs: a comparison of a perceptron-type neural network 
and a consensus sequence method Prot. Eng. 4 615-23 

Ito J and Braithwaite D K 1991 Compilation and alignment of DNA polymerase sequences Nucl. Acids Res. 19 
4045-57 

Lapedes A, Bames C, Burks C, Farber R and Sirotkin K 1990 Application of neural networks and other machine 
leaming algorithms to DNA sequence analysis Computers and DNA, SFI Studies in the Sciences of Complexiry 
vol V11 ed G Bell and T Marr (New York: Addison-Wesley) pp 157-81 

Qian N and Sejnowski T J 1988 Predicting the secondary structure of globular proteins using neural network models 
J. Mol. Biol. 202 865-84 

Rumelhart D E, Hinton G E and Williams R J 1986 Leaming intemal representations by error propagation Parallel 
Distributed Processing. Explorations in the Microstructure of Cognition Vol 1:  Foundations ed D E Rumelhart 
and J L McLelland (Cambridge, MA: MIT Press) pp 318-62 

Sibbald P R and Argos P 1990 Weighting aligned protein or nucleic acid sequences to correct for unequal representation 
J. Mol. Biol. 216 813-8 

Vogt G, Frishman D and Argos P 1994 A parallel processor implemementation of an algorithm to delineate distantly 
related protein sequences with conserved motifs and neural networks Information Systems and Data Analysis 
Proc. 17th Annual Con$ of the Gesellschafrfiir Klassifcation ed H H Bock, W Lenski and M M Richter (Berlin: 
Springer) pp 397-408 

Wasserman P D 1989 Neural Computing. Theory and Practice (New York Van Nostrand Reinhold) 
White H 1989 Leaming in artificial neural networks: a statistical perspective Neural Comput. 1 425-64 
Williams A F and Barclay A N 1988 The immunoglobulin superfamily-domains for cell surface recognition Ann. Rev. 

Immunol. 6 381405 

G4.4:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



G5 

Medicine 

Contents 

G5 MEDICINE 
G5.1 Adaptive logic networks in rehabilitation of persons with incomplete spinal cord injury 

Aleksandar Kostov, William W Armstrong, Monroe M Thomas and Richard B Stein 
G5.2 Neural networks for diagnosis of myocardial disease 

Hiroshi Fujita 
G5.3 Neural networks for intracardiac electrogram recognition 

Manvan A Jabri 
G5.4 A neural network to predict lifespan and new metastases in patients with renal cell cancer 

Craig Niederberger, Susan Purse11 and Richard M Golden 
G5.5 Hopfield neural networks for the optimum segmentation of medical images 

Riccardo Poli and Guido Valli 
G5.6 A neural network for the evaluation of hemodynamic variables 

Tom Pike and Robert A Mustard 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



G5.1 Adaptive logic networks in rehabilitation of 
persons with incomplete spinal cord injury 

Aleksandar Kostov, William W Armstrong, Monroe M Thomas and 
Richard B Stein 

Abstract 

Persons with spinal cord injury are generally at least partially paralyzed and are often 
unable to walk. Some are able to use manually controlled electrical stimulation to act 
upon nerves or muscles to cause movement of a paralyzed leg so functional walking 
is achieved. They use crutches or a mobile walker for support, and control stimulation 
by pressing a switch, usually installed on the walking aid. Machine learning techniques 
are now making it possible to automate this control. Supervised training can be based 
on samples of correct stimulation given by the user (e.g. the subject or a resercher), 
accompanied by data from sensors indicating the state of the person’s body and its 
relation to the ground during walking. A major issue is generalization: whether the 
result of training can still be used for automatic control after the passage of time or 
in somewhat different circumstances. As it becomes possible to increase the number 
and variety of sensors used and to easily implant more numerous stimulation channels, 
the need is increasing for fast and powerful learning systems to automatically develop 
effective and safe control algorithms. In the present study, adaptive logic networks were 
used to develop an experimental walking prosthesis. Successful generalization has been 
observed up to several days after training. 

G5.1.1 Project overview 

Today it is possible to apply advanced mechanical, electronic and computing technology to problems of 
rehabilitation of persons with spinal cord injury (SCI). One of the major thrusts has been in the area of 
functional electrical stimulation (FES) to cause paralyzed limbs to move and thereby restore a measure of 
walking capability (Stein et a1 1992). FES can enable the person to walk reasonably long distances and 
enter places where a wheelchair does not fit but other means of mechanical support can be used. He or 
she thereby enjoys a more independent life, with the concomitant benefit of a better blood supply to the 
paralyzed extremities. The most common and the most reliable method to control stimulation is with hand 
switches, but this is not appropriate for incomplete quadriplegics or stroke victims who lack adequate hand 
function. Another problem is that operating a hand switch requires repetitive voluntary action, which can 
introduce delays and variability. Automatic control of FES is therefore desirable or necessary for some 
persons. This system for automatic control of FES for locomotion is designed for subjects who have one 
leg paralyzed after an incomplete SCI, and who have some remaining capability in the other leg. It was 
developed at the University of Alberta by a team of researchers from a variety of areas under the leadership 
of Richard B Stein (neuroscience). Much of the work was done by Aleksandar Kostov (biomedical and 
rehabilitation engineering) to prepare a PhD dissertation in neuroscience. Adaptive logic network (ALN) c1.8 
software was specially designed and implemented by William W Armstrong (computing science) and 
Monroe M Thomas (software development). The system was integrated around a desktop PC. Thus, the 
subjects were electronically linked to the computer for the experiments. During a period of training, an 

@ 1997 1OP Publishing Ltd and Oxford University Press Hanahok of Neural Compuration release 9711 G5.1: 1 

Copyright © 1997 IOP Publishing Ltd



1 BIOLOGICAL CONTROL 
(VOLUNTARY AND REFLEX CONTROL) 

(I) 

G 

z 1 

3 

i3 

3 
W z 
0 w 

3 
0: a 

I .  

+ 
STIMULATION CONTROL 

ALN 
CONTROL ' 

1 
CONTROL OF 

THE ACTUATOR ' 

1 
STIMULATOR 
AND BRACING 

1 1 1 1 1  1 I BIOMECHANICAL AND SENSORY 
SYSTEM 

M E R N A L  INFLUENCE 

Figure GS.l.l. Control of FES-assisted walking after spinal cord injury in a human-machine system. n o -  
level machine control takes its inputs from traditional or natural sensory sources and sends its decisions to 
the assistive system employing FES and mechanical bracing. 

artificial neural system learns to copy the stimulation control skill of the physiotherapist or subject. After 
satisfactory training, the adaptive logic network can take over control of stimulation. It is assumed that 
the capabilities of the still intact neural pathways are sufficient to enable the subject to move so as to 
initiate and terminate the swing phase of the stimulated leg. The block diagram in figure G5.1.1 illustrates 
the hierarchical structure of the automatic stimulation controller. It operates together with control via the 
preserved neural pathways and uses sensory feedback information in the control loop. 

G5.1.2 Design process 

G5.1.2.1 Background 

After healing from the injury and surgical procedures has occurred, FES-assisted walking is gradually 
introduced into the rehabilitation program of selected SCI subjects. First, the subject becomes familiar 
with basic FES principles and learns how an appropriate FES system operates. Then the subject learns how 
to operate the switch or switches to start and stop stimulation to do simple exercises with an appropriate 
mechanical aid (parallel bars, harness, frame, four-point walker). Finally, gait training extends the walking 
distance from a few steps between parallel bars to as many steps as the subject finds comfortable using 
a mobile mechanical walking aid (a metal frame on wheels). A therapist will begin controlling the walk, 
but the subject is encouraged to take over as soon as possible. 

Taking a step, which is an automatic process for people having normal voluntary control over their 
extremities, is a very complex process for someone whose extremities are paralyzed. For example, a 
subject with one leg completely disabled and the other partially disabled has to perform more than ten 
distinct actions to ensure that body posture and walking aid position result in a safe movement. The two 
most hazardous phases are the shifts of weight to and from the disabled leg, and need the greatest attention 
during walking, no matter how walking is controlled. During these phases it is not always obvious to the 
subject which leg is in charge of supporting most of the body weight. 

Despite its many advantages, manual control of FES has a few disadvantages. Even when it becomes a 
routine motor action presenting little or no cognitive difficulty to the subject, manual switching still requires 
constant checking to ensure a safe physical movement. Locomotion can be improved by stabilizing the 
stance phase and reducing its duration, which can be achieved by means of electromechanical sensors and 
automatic control. 

G5.1:2 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks in rehabilitation of persons with incomplete spinal cord injury 

The goal in designing an automatic control system for FES-assisted walking is to preserve or even 
improve the reliability and safety of a manual system, and to bring more functionality and more efficiency 
to the disabled gait. A major task in automating control of walking for stroke or incomplete SCI subjects 
is automatic recognition of the intention to take a step with a disabled leg and to provide the required 
control signals to the stimulator. 

Basic research in neurophysiology suggests a hierarchical structure of natural motor control in 
vertebrates (Prochazka 1993). This scheme is roughly analogous to the proposed automatic control structure 
for FES-assisted movement. The external control of FES should consist of at least two major parts: an 
upper (coordination) level controller should make decisions about the movements to be performed to 
accomplish a certain task, and a lower (actuator) level controller should initiate actions required to perform 
a particular movement (see figure G5.1.1). Of course, there is always a third level in the movement control 
hierarchy-voluntary control. In the present human-machine system, the subject’s control of less impaired 
body parts is assumed to be adequate for this purpose. 

One of the first uses of automatic control in the case of foot-drop used a heel switch, which activated a 
single channel of stimulation to assist in the swing phase whenever the heel came off the ground (Liberson 
et a1 1961). This simple system does not work reliably in subjects where contractions or spasticity prevent 
a good heel contact with sufficient weight bearing, or in subjects who suffer from clonus (rapid involuntary 
contraction and relaxation of a muscle) which can cause the heel to lift and touch the ground several times 
during the stance phase. A rule-based system using hand-crafted threshold logic applied to the signal from 
a force sensor installed under the toe of the normal leg has been proposed as an alternative method to 
detect the subject’s intention to take a step. The duration of stimulation was either preset or determined 
by means of another force sensor installed under the toe of the stimulated leg (Kostov et a1 1994). 

The current study investigated an approach to automatic FES switching based on machine learning 
of the switching actions of a skilled subject or physiotherapist. It is intended for persons already trained 
to step periodically by manual switching. This method of cloning a human skill from sensory and output 
control signals was proposed by Kirkwood and Andrews (1989) and our research team (Stein et a1 1992). 
Feedback information describing the state of the body is derived from force sensors installed in the subject’s 
shoe insoles, though it could also be recorded from biological sensory paths (Popovic et a1 1993). An 
adaptive logic network learns the control signal in a supervised mode based on the manual control signal. 
If training succeeds, the result can then be used to transform input sensory signals into output control 
signals for stimulation. Automatic control can then be used in conjunction with manual control to enable 
the subject to concentrate on other functions during walking, such as shifting the body weight from one 
leg to the other, avoiding obstacles, moving assistive devices and carrying objects. Manual control or the 
person’s remaining capabilities after an incomplete SCI may be used for safety override functions and to 
initiate and terminate walking. 

During a preliminary feasibility study, ALNs were evaluated offline. The ability of ALNs to learn to 
generate control signals based on manually controlled stimulation was demonstrated. In addition, it was 
demonstrated that the quality of ALN learning depends on the number of sensory feedback channels, and 
that the use of more sensory inputs can reduce errors. To introduce the time dimension into the learning 
and prediction process, previous sensory signal samples, differences of sensor values and measured time 
delays were also used. An important feature for control was introduced: early prediction of stimulation 
events, which provides feedback to the subject about impending stimulation. ALNs were successful in 
predicting stimulation events up to two seconds in advance (Kostov 1995). 

G5.1.2.2 Motivation for a neural network solution 

The traditional way to design a rule-based or finite-state control system for FES-assisted locomotion is 
to apply expert knowledge in generating rules linking sensory feedback information to system actions. 
This is very labor-intensive and such expertise is in short supply, so it would be feasible to use on a 
large scale only if the same rules could be applied to many subjects. However, even with very similar 
physical injuries to the spinal cord, injured persons have functional disabilities that are very specific to 
the individual. Furthermore, any set of rules must change as the subject advances through rehabilitation. 
These factors were our main motivation for using machine learning in a system which can generate control 
functions automatically. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ojNeural Computation release 9711 G5.1:3 

Copyright © 1997 IOP Publishing Ltd



Medicine 

G5.1.2.3 General description of a neural network function 

c1.8 An ALN, which is a feedforward network computing a logical output (see Section C1.8 of this handbook) 
is used for supervised training based on manual control signals. The goal is to provide initiation of the 
stimulus and control of its duration based on data coming from force sensors installed in the subject’s 
shoes. The ALN was used to learn the relationship between sensor data and the manual odoff signals. It 
actually represented a real-valued function whose output expresses the level of ‘confidence’ in ‘on’ and 
‘off as the right decision. For control purposes, that real value was thresholded to produce an odoff 
decision. Any ‘on’ decision was then sent to the restriction rule checker (see section G5.1.2.10) which 
could allow the actual stimulation to take place or not. 

G5.1.2.4 Requirements and constraints 

A practical automatic FES control system is subject to constraints on size, weight, reliability, power 
consumption and cost. It must permit upgrades when technology advances. The cost factor suggests using 
inexpensive off-the-shelf components, while the need for real-time control means that a very efficient 
computational approach is required. Safety is a primary concern of the system’s design. The stimulus 
control function should have a simple form so that a limited number of test samples is sufficient to ensure 
that the system will not give an unexpected stimulus, which could cause the person to fall. In order to 
make it extremely unlikely that stimuli are delivered when that is counterindicated by a priori knowledge, 
restriction rules are used to postprocess ALN decisions. 

G5.1.2.5 Topology 

The form of the control function was assumed to be convex-up, a simple shape that does not allow for 
any spikes (unless the function is just a single spike) thus the topology could be reduced to just one AND 
node and several LTUs. Larger ALNs were tried but did not give significantly different results, so the 
simplest system that worked was chosen. Generally, a convex function will not be appropriate, and a more 
elaborate network topology will be required. 

G5.1.2.6 Comparison to other methods 

Inductive learning (IL) was also tested for control of FES (Kostov et al 1995b). It was used to measure 
the relative importance of sensors, and to eliminate all but the most useful ones. IL was then evaluated for 
cloning the control rules for walking of a subject with complete spinal cord injury. It was demonstrated 
that IL is capable of cloning the skill of skilled subjects in controlling two-channel stimulation for FES- 
assisted walking. ALN and IL techniques were compared on six subjects (Kostov e? a1 1995a). It was 
demonstrated that, although IL generates its decision trees faster and with lower error on a training set, the 
ALNs have better generalization. A practical implication of this result is that IL may be better suited for 
use in control systems where the training set represents the domain very well. It is obvious that training 
sets acquired during walking of subjects with SCI cannot represent all possible situations, because some 
high-risk situations that could be valuable for training could give rise to possible injuries (e.g. instability 
leading to a fall). Both ALN and IL techniques give better results if previous samples are used as inputs 
together with current ones. Also, both techniques were capable of predicting future stimulation events. 

G5.1.2.7 Sources 

The ALN system used was specially built in the form of a Windows-based DLL (dynamic link library) to 
permit interfacing to other parts of the data acquisition and control system. It was based on the Atree 3.0 
software of Dendronic Decisions Limited, though Atree 2.7 was used in early trials. An Atree 3.0 ALN 
Educational Kit is available online that has all of the features of the Atree 3.0 software but is limited to 
two-input functions (Armstrong and Thomas 1995). 

G5.1.2.8 The training set 

Three force sensors (Interlink Electronics Inc) installed in insoles were put into each shoe. This set of 
sensors was chosen on the basis of the following criteria: ability to represent biomechanical measurements 

G5.114 Handbook of Neural Compurarion release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks in rehabilitation of persons with incomplete spinal cord iniury 

useful for describing the state of walking, accuracy, reliability, production of fairly reproducible values 
(a high signal-to-noise ratio), easy donning and doffing and noninterference with other functions, low 
cost, easy availability and low power consumption. For the training set, vectors were used consisting of 
quantized sensor signals together with derived quantities, including values of earlier signal samples and 
differences. From 1000 to 1500 contiguous data samples were selected, which constituted part of a single 
walking trial. 

G5.1.2.9 Preprocessing 

The original sensor signals were amplified and filtered to remove noise before calculation of the derived 
quantities. During the early development process, ALNs with fixed thresholds and adaptive nodes 
(Atree 2.7) were used (see Section C1.8 of this handbook) which required a reversible encoding from ci.8 

quantized real numbers to Boolean vectors. This was done using random-walk or thermometer encoding. 
In later experiments, ALNs with LTUs were used, eliminating the need for an encoding step. 

G5.1.2.10 Output interpretation 

The ALNs were trained to produce a value which was thresholded to obtain a logical signal indicating 
whether the stimulation was to be on or off. Before stimulation, the ALN-derived decision was checked 
by the restriction rules. For example, one rule prevented restimulation until a certain time had elapsed. 
The alternative of separate control of initiation and duration by two ALNs was tried, but was not found 
useful. 

65.1.3 Development platform and tools 

The control system was developed on a desktop IBM-compatible 486DX-50 computer having a 
multifunctional U 0  board (National Instruments Inc). A compatible software development platform 
(LabView for Windows) was used to integrate signal acquisition, preprocessing, ALN-LabView interfacing, 
ALN training, output interpretation and stimulator control. ALN-related functions were embodied in special 
DLLs invoked by the LabView program. Microsoft Visual C t +  was used to develop the DLLs. 

TRAINING (Subject: L . W .  Date 14/03/19951 

R.Y.d.Yet 
fo r te  

R.Li1.Y.t. 
Force 

R. n n l  
?orcm 

L.Med.Met 
?orcm 

Iltmulitlon 
Control 

(Uinurl) 

ALN 
Control 

0 10 20 30 40 5 0  BO 70 
Time ( 5 )  

Figure 65.1.2. ALN training and its evaluation: an example of signals from force sensors and manual 
stimulation recorded during manually controlled FES-assisted walking. ALN + Restriction Rules control 
is the result of training shown upon replay. Excellent agreement must still be checked for generalization. 

0 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G5.15 

Copyright © 1997 IOP Publishing Ltd



WALKING TEST (Subject: L.W., Date: 14/03/1995) 

R.Med.Met. 
Force 

R. nwi 
Force 

L.Med.Met. 
Come 

L.L.t.Met. 
Force 

L. Heel 
Force 

E 
Control I 

(Manu#) z 
8 
f 

Stlmuldlon 

ALN + 
Restflctlon Rules 

Control g 
0 50 100 150 200 250 300 

Time (5)  

Figure G5.13. ALN generalization on a test set: a manually controlled walking sequence is used to test 
generalization of trained ALNs. An example shows good performance not only during straight-line walking, 
but also during tuming, a process not presented to the ALNs during training. 

WALKING CONTROL (Subject: L.W.. Date: 14m3/1995) 

R.Med.Met. 
Force 

R.Lat.MU. 
rorce 

R. n n i  
rorce 

L.Med.Met. 
rorce 

I 
1 

f 

Stlmulatlen 
Control 

ALII + i Restllclion Rules 
Control 

0 20 40 60 BO 100 120 140 160 

Time (I) 

Figure G5.1.4. ALN real-time control of FES-assisted walking: the subject stood up from the chair, took 
two manually controlled steps with the stimulated leg (represented by two high pulses in the seventh trace) 
and then walked under automatic ALN control (low pulses in the seventh trace). 

G5.1.4 Experimental procedure and results 

The results reported below are taken from Kostov (1995). Training data were accumulated during a walking 
session from the sensors and the switching actions. The subject stood up from the wheelchair supporting 
herself by a four-point wheeled walker and proceeded to walk using manual control of the stimulation. 
The walking distance per trial was between 10-12 m with a 180" turn at the half-way point. 

The data were then preprocessed according to the procedure described above and analyzed using 
ALN learning, a process requiring about thirty seconds to finish on a 486DX-50 PC. Figure G5.1.2 
shows six signal traces of the force sensors in the shoes, the stimulation control signal produced manually 
(trace seven), the automatic control signal produced by the ALN decision tree (trace eight) and the signal 
produced by ALNs plus the restriction rules (trace nine), all evaluated on the same data. 

If the output of the ALN decision tree did not contain any functional errors (extra or missing stimuli) 

G5.1~6 Handbook @Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Adaptive logic networks in rehabilitation of persons with incomplete spinal cord injury 

when tested on the training data, the tree was tested on new data which were not used during training. 
Again, if there were no functional errors in predicted output control signals, a similar test was repeated, 
but this time during real-time, manually controlled walking (figure G5.1.3). The subject still controlled the 
stimulation manually, but this time she heard a buzzing sound whenever the decision was that stimulation 
should be on. 

After this test was passed without any functional errors, the ALN decision tree was applied in real- 
time control of stimulation for FES-assisted walking. The subject, after standing up from the wheelchair, 
took one or more manually controlled steps to check if the whole system was connected and turned on. 
Then the ALN control was switched on and put in parallel with the manual control, which remained active 
as a functional override (figure G5.1.4). 

G5.1.5 Discussion 

The primary target of this work was the design of a coordination level controller for a neuroprosthetic 
device to control FES for walking in subjects with SCI. To prepare for automatic generation of control 
rules, manually controlled FES-assisted walking of subjects with incomplete spinal cord injury was studied. 
Manually controlled stimulation for walking is important in the rehabilitation of SCI subjects as it provides 
a way for the subject to learn how muscles react to different stimulation conditions. Manual control also 
remains the backup control system for stimulation during the development of more sophisticated control 
systems. Various sensors were evaluated for use as sources of sensory feedback information. It was 
concluded that an affordable array of force sensors built into the subjects' shoe insoles can provide a 
reliable and reproducible source of feedback information for design of control rules. 

Results obtained so far demonstrate the capability of ALNs to control FES-assisted walking 
successfully. It was also demonstrated that generalization is satisfactory up to several days later (Kostov 
1995). Although the 180" turn was excluded from the training set, the subject was able to do the turn under 
automatic control too. This result implies that an ALN-based control system might be quite robust, and 
frequent retrainings of the ALNs for calibration may not be necessary. It remains to be seen how fast the 
walking pattern changes, requiring new ALN training or retraining of the existing ALNs. In case ALNs 
can generalize over long periods of time, an integrated control system (ICs) can be built consisting of two 
parts: an FES control fitting station and the FES controller itself. The FES controller can be miniaturized 
and built into a portable neuroprosthetic device. The control functions can be learned in the laboratory or 
at home using an FES control fitting station, which can be based on a small notebook computer with data 
acquisition capability. After the control algorithm is produced, it can be downloaded to the portable FES 
controller, which can then be used independently. 

G5.1.6 Conclusions 

ALNs were evaluated for cloning the manual skill of a skilled subject in controlling one channel of 
stimulation for FES-assisted walking. The ability of ALNs to generate control functions from training 
based on manually controlled stimulation was demonstrated. After ALN training, the result was tested on 
the training set, on a new test set, and in real-time walking, whereby stimuli were initiated by the subject 
and the ALN automatic stimulation was indicated by a buzzer. After these tests were passed without any 
functional errors, the ALN was used in real-time control of stimulation for FES-assisted walking. ALN 
control was used in parallel with the manual control, which remained active as a functional override. The 
subject, after standing up from the wheelchair, took one or more manually controlled steps to check the 
system; then ALN control was switched on and the subject walked under ALN control. ALN control has 
been demonstrated to be very robust allowing for the passage of several days between training and test 
and allowing use in circumstances not presented in training, such as turns. 

References 

Armstrong W W and Thomas M M 1995 Atree 3.0 A W  Educational Kit for Windows from ftp.cs.ua1berta.ca in 

-1996 Adaptive logic networks Handbook of Neural Computation (New York: Oxford University Press) 
pub/atree/atree3/atree3ek.exe (binary mode, 900 kilobytes). 

section C 1.8 

0 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.1:7 

Copyright © 1997 IOP Publishing Ltd



Medicine 

Kirkwood C A and Andrews B J 1989 Finite-state control of FES systems: application of AI inductive learning 
techniques Pmc. 11th IEEE-EMBS Con$ (Seattle, WA) (Piscataway, NJ: IEEE Engineering in Medicine and 
Biology Society) pp 1020-1 

Kostov A 1995 Machine learning techniques for the control of FES-assisted locomotion after spinal cord injury PhD 
Thesis Department of Neuroscience, University of Alberta, Edmonton, Alberta, Canada 

Kostov A, Andrews B J, Popovic D B, Stein R B and Armstrong W W 1995a Machine learning in control of functional 
electrical stimulation systems for locomotion IEEE Trans. Biomed. Eng. 42 541-5 1 

Kostov A, Andrews B J and Stein R B 1995b Inductive machine learning in control of FES-assisted gait after spinal 
cord injury Proc. 5th Vienna Int. Workshop on Functional Electrical Stimulation (Henna) (Sendai: Sendai FES 
Research Project) pp 59-62 

Kostov A, Stein R B, Armstrong W W and Thomas M M 1992 Evaluation of adaptive logic networks for control of 
walking in paralyzed patients Proc. 14th ZEEE-EMBS Con5 (Paris) vol 4 (Piscataway, NJ: IEEE Engineering in 
Medicine and Biology Society) pp 1332-4 

Kostov A, Stein R B, Popovic D B and Armstrong W W 1994 Improved methods for control of FES for locomotion, 
Proc. IFAC Symp. Modeling and Control in Biomedical Systems (Galveston, TX) (Galveston, TX: Intemational 
Federation of Automatic Control) pp 422-7 

Liberson W T, Holmquest H J,  Scott D and Dow M 1961 Functional electrotherapy, stimulation of the peroneal nerve 
synchronized with the swing phase of the gait of hemiplegic patients Arch. Phys. Med. Rehabil. 42 101-5 

Popovic D B, Stein R B, Jovanovic K L, Dai R, Kostov A and Armstrong W W 1993 Sensory nerve recording for 
closed-loop control to restore motor functions IEEE Trans. Biomed. Eng. 40 1024-31 

Prochazka A 1993 Comparison of natural and artificial control of movement IEEE Trans. Rehabil. Eng. 1 7-17 
Stein R B, Kostov A, Belanger M, Armstrong W W and Popovic D B 1992 Methods to control functional electrical 

stimulation Proc. First Int. Symp. FES (Sendai) (Vienna: Department of Biomedical Engineering and Physics, 
University of Vienna) pp 13540 

Further reading 

1 .  Stein R B, Peckham H P and Popovic D (eds) 1992 Neural Prostheses: Replacing Motor Function Afrer Disease 
or Disability (New York: Oxford University Press) 

Tomovic R, Popovic D and Stein R B 1995 Nonanalytical Methods for Motor Control (Singapore: World 
Scientific) 

2. 

G5.1~8 Handbook ojNeural Computation release 9711 @ 1997 IOP Publishing Ud and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



G5.2 Neural networks for diagnosis of myocardial 

Hiroshi Fujita 

Abstract 

A neural network approach to computer-aided diagnostic systems for coronary artery 
diseases is described as one of the case studies in cardiac nuclear medicine. Recently, 
we have been developing a computerized system by using artificial neural networks, 
called ‘BULLsNET’, which can aid the physician in the detection and classification 
of coronary artery diseases in 201Tl myocardial SPECT bull’s-eye images. Three-layer 
feedforward neural networks with a backpropagation algorithm were employed, in which 
whole or partial images were fed into the input layer. The BULLsNET system, which 
includes two major neural-network-based elements for the analysis of ‘EXTENT’ and 
‘SEVERITY’ bull’s-eye images, was trained using pairs of training input images and 
the desired output data (‘correct’ diagnosis). The system classified the input image data 
into eight cases, that is, one normal case and seven different types of abnormal cases. 
The results showed that the recognition performance of the system was comparable to 
that of a two-year RI-experienced physician. Our study suggests that the neural network 
approach is useful for developing a computer-aided diagnostic system for coronary artery 
diseases in myocardial SPECT bull’s-eye images. 

G5.2.1 Project overview 

The nuclear imaging technique is one of the most effective methods of examination for the diagnosis of 
myocardial disease. However, visual interpretation of nuclear images is subject to substantial variability 
even by experienced observers. Thallium-201 (201Tl) myocardial SPECT (single-photon emission computed 
tomography) imaging (Fischer 1990) has been reported to offer major improvements over planar imaging 
and to be a sensitive and specific examination for the diagnosis of coronary artery disease. However, 
to overcome the difficulties of interpretation of the myocardial SPECT images, a polar map display, 
called a bull’s-eye image, has been developed to characterize the three-dimensional images of the left 
ventricle in two dimensions (Garcia et a1 1985). Even with this technique, many problems have been 
indicated. Also, the number of experienced physicians or radiologists in this field is substantially limited. 
The development of a computer-aided diagnostic system or expert system, therefore, is considered to be 
helpful for the diagnosis of bull’s-eye images. 

We have been developing a computerized system, which can aid the physician’s diagnosis in the 
detection and classification of coronary artery diseases in ”‘T1 SPECT bull’s-eye images, by employing 
several artificial neural networks for different tasks. One of the advantages of the neural network approach 
is its powerful ability to analyze the physician’s complicated decision-making or pattern-recognizing 
process in diagnosis without any need to write a special computer program. As a pilot study, we 
investigated the applicability of the neural network technique in developing the computerized system 
for the diagnosis of coronary artery diseases only when the bull’s-eye ‘EXTENT’ images were used for 
the analysis (Fujita et a1 1992a), and also studied the effects of image processing and neuro parameters 
on the system performance (Shinoda et a1 1993). We also developed an improved system, in which 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 97J1 G5.2:1 

Copyright © 1997 IOP Publishing Ltd



Medicine 

‘EXTENT’ and ‘SEVERITY’ images were used for the analysis with composite neural networks, and 
reported the results of the system performance comparing it with physicians’ recognition rates (Fujita et 
a1 1992b, 1993a, 1994, Katafuchi et al 1993). The overall flow of our system, called a ‘BULLsNET’, is 
shown in figure G5.2.1. Here we present our recent work from these studies, all of which were done as 
cooperative works with coworkers at the Department of Radiology, National Cardiovascular Center and at 
the Biomedical Research Center, Osaka University Medical School (Suita, Osaka, Japan). 

SEVERITY NEURO 

* 
‘‘DIAGNOSIS” 

Figure G5.2.1. Processing elements of the BULLsNET system in which two major neural-network-based 
elements for EXTENT and SEVERITY images are included (Fujita et a2 1993a, 1994). 

G5.2.2 Database 

Thirty-six planar images of a 64 x 64 matrix with 64 gray levels were obtained with a gamma camera 
(Shimadzu LFOV dual head) and these data were transferred to a data processing system (Shimadzu 
SCINTIPAC-2400) at the Department of Radiology, National Cardiovascular Center. This system produces 
three different types of bull’s-eye images, that is, ‘PIXEL CT’, ‘EXTENT’ and ‘SEVERITY’ images, 
which, respectively, represent the original bull’s-eye image, the image simply showing the extent of the 
diseased area relative to the averaged normal case (in two colors), and the image showing the severity of 
the disease within the extent area (in several colors). In our study, we used both EXTENT and SEVERITY 
images. Actually, when physicians interpret the bull’s-eye images, they first look at the EXTENT image, 
and then at the SEVERITY image carefully. 

Coronary artery territories in the bull’s-eye display are illustrated in figure G5.2.2, where the regions 
of three main coronary arteries, left anterior descending coronary artery (LAD), left circumflex coronary 
artery (LCX), and right coronary artery (RCA), are segmented (Garcia et a1 1985). It should be noted that 
this figure shows approximate territories and many variations, overlaps and exceptions in each territory 
can exist, preventing the design of a simple artificial intelligence rule-based expert system. The coronary 
artery diseases can therefore be classified into seven different types due to the existence of single-, double- 
and triple-vessel diseases, A total of 74 bull’s-eye images were collected. Because we selected the cases 
that had also been examined by coronary angiography (CA), in which a coronary artery of more than 75% 
stenosis was diagnosed as ‘diseased’ according to the criteria of the American Heart Association (AHA), 
these CA results were employed as a gold standard or ‘correct diagnosis’ in this study. 

G5.2.3 Neural network software employed 

At an initial stage, we employed a personal ‘neuro-computer’ system (Neuro-07, NEC), which consists 
of a personal computer (PC-9801 VX21, NEC) a neuro-engine board (PC-98XL-02, NEC) and a neuro- 
software package (‘Michi-Zane’, NEC). The neural network software was written in the C language and 

B2.3 was based upon a feedforward layered model with an input layer, one to three middle or hidden layer(s), 
and an output layer. Lately, a SUN-type workstation has been employed. 

G5.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for diagnosis of myocardial disease 

Figure 65.2.2. Coronary artery territories in the bull’s-eye image (Fujita et a1 1993a, 1994). 

G5.2.4 Preprocessing 

A preprocessing of the image data was required due to the limited memory capacity of the neuro-engine ~ 4 . 4  

board. This was also important to save computation time. The effects of the matrix size of the EXTENT 
images on the system performance were investigated (Shinoda et a1 1993); a 16 x 16 matrix image was 
judged to be enough by considering the recognition rate, training time and data volume. Therefore, all of 
the bull’s-eye images studied were compressed to produce the images of 16 x 16 matrices by averaging the 
neighboring pixel values and also to produce binary gray-level images for the EXTENT and six gray-level 
images for the SEVERITY. As an example, preprocessed images are shown in figure G5.2.3, which is a 
case of LAD + LCX double-vessel disease. 

Figure G5.2.3. Preprocessed bull’s-eye images in the case of LAD + LCX double-vessel disease. (a) 
EXTENT image of 16 x 16 matrix size with binary gray levels. (b) SEVERITY image of 16 x 16 matrix 
size with six gray levels (Fujita et a1 1993a, 1994). 

65.2.5 Network structure and training method 

As shown in figure G5.2.1, the BULLsNET system includes two major image-analysis parts, ‘EXTENT 
neuro’ and ‘SEVERITY neuro’, and the latter consists of three neural networks for separately analyzing 
three artery regions in the bull’s-eye image. The architecture of each neuro is shown in figure (35.2.4. The 
number of input units in the EXTENT neuro was 256 because the whole compressed image was fed into 
the input layer. On the other hand, the ones for the networks in the SEVERITY neuro were 61, 41 and 57 
for LAD, LCX and RCA regions, respectively. The number of neurons in the output layer in the EXTENT 
neuro was fixed at eight units, corresponding to the eight different types of diagnoses including normal. 
The SEVERITY neuro had two units corresponding to normal or abnormal. Three output results from 
each network in the SEVERITY neuro were combined to determine the final diagnosis (eight outputs). 
The neural network was trained using pairs of training input images (compressed images) and the desired 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.2:3 

Copyright © 1997 IOP Publishing Ltd



output data (the ‘correct diagnosis’ based on the gold standard). The numbers of training iterations for 
the EXTENT and SEVERITY neuros were 200 and 150 for each region with 100 and 50 units in the 
hidden layer, respectively. We varied combinations of image data for the training (58 cases) and testing 
(16 cases) processes in the neural network and made three different combinations, cases A, B and C, in 
which all images were chosen at random from a database of 74 images. 

Ax 
AR 
XR 
AXR 

NORIADLCXRCA AX AR XR AXR 
:LAD+LCX 
:LAD+RCA 
:LCX+RCA 
:LAD+LCX+RCA 

EXTENT IMAGE 

NORMAL ABNORMAL 
I A  

SE-=%% IMAGE 
(LAD,LCX OR RCA REGION) 

OUTPUT LAYER 
(8 cells) 

HIDDEN LAYER 
(100 cells) 

INPUT LAYER 
(256 cells) 

( b )  

OUTPUT LAYER 
(2 cells) 

HIDDEN LAYER 
(50 cells) 

INPUT LAYER 
LAD:Glcells 
LCX4lcells I RCA57cells 

Figure G5.2.4. Architecture of (a) the EXTENT neuro and (b)  the SEVERITY neuro. 

652.6 Output interpretation 

In the case where the confidence level (CL) of the ‘extent neuro’ was lower than 0.9, the ‘severity neuro’ 
was performed (figure G5.2.1), in which each part of the vessel regions based upon the territories in 
figure G5.2.2 was examined by LAD, LCX and RCA neural networks, then the output result from the 
severity neuro was used as a diagnosis. The CL was determined from the weight values in the output 
layer of the network. On the other hand, in the case where the confidence level was equal to or larger 
than 0.9, the output result from the extent neuro was simply used as a diagnosis. The percentage of the 
~~ 

G5.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for diagnosis of myocardial disease 

cases where the confidence level of the extent neuro was smaller than 0.9, that is, the severity neuro was 
necessary for analysis, was approximately 35%. 

65.2.7 Performance 

In the case where only the extent neuro was performed, the following results were obtained. The recognition 
rates (percentage of correct recognition) determined by the neural network for image data never used in the 
training process are listed in table G5.2.1, together with those by one resident (I) and two physicians (I1 and 
111) for comparison. This table demonstrates that the recognition rate depends on the image combinations, 
which can be explained from two different viewpoints. One is that image data used for the training may 
be insufficient to recognize image data for testing. The other is that the inclination of image data in terms 
of their category in the training process and the degree of difficulty in diagnosis in the recognition process 
may cause variances in the recognition rate. These effects may be decreased by increasing the image data 
for training as well as for recognition. By comparing the averaged results, the performance of the neural 
network is better than that of the resident, and comparable to that of the two-year experienced physician, 
but worse than that of the ten-year experienced physician. The pure computation time for training was 
approximately 23 minutes in the case of a personal-computer-based procedure; however, the time for 
training is not so important, because the user at the hospital may simply utilize the results obtained from 
the training process. On the other hand, the recognition of one image data in the testing process, including 
the preprocessing procedure, was performed in ‘real time’. 

Table G5.2.1. Recognition rates for three different combinations of image data and their average for three 
observers and the BULLsNET system, only when the extent neuro was employed (Fujita et a1 1993a, 
1994). NN: neural network, I: three-month RI-experienced resident, 11: two-year RI-experienced physician, 
111: ten-year wexperienced physician 

Case A Case B Case C Average 

NN 69% 75% 88% 77% 
I 56% 81% 69% 69% 
I1 75% 75% 88% 79% 
I11 75% 88% 88% 83% 

It is worthwhile including the SEVERITY image for analysis, because it can help to differentiate 
lesions from artifacts. Actually, in the case of the physicians, we observed that the recognition rate with 
both EXTENT and SEVERITY images results in a 6 1 0 %  higher rate relative to that with only EXTENT 
images. The recognition rate determined by the neural networks using both images when the confidence 
level from the extent neuro is lower than 0.9 was 85%. It is considered to be comparable to that of the 
two-year experienced physician. 

G5.2.8 Summary 

The approach of using artificial neural networks for a computer-aided diagnostic system of coronary 
artery disease in stress SPECT examinations appears to show considerable promise. The recognition 
performance of our present system (BULLsNET) is comparable to that of the two-year RI-experienced 
physician. However, in order to improve our system, it is required to increase the number of image data 
for training and testing processes. Moreover, we are now extending our system to redistribution (rest) 
bull’s-eye images so as to interpret ischemia and infarction (Fujita et a1 1993b). Finally, other clinical 
information, such as sex, temperature and electrocardiogram data, have to be included in the overall 
analysis. 

Acknowledgements 

The author would like to thank all his coworkers, Mr T Katafuchi, Professor T Nishimura, Dr T Uehara, 
Dr Y Ishida, Mr H Iida, Mr M Horio, Mr M Shinoda, Mr T Hara and Mr Y Torisu. 

@ 1997 IOP Pubhshing Ltd and Oxford University Press Hancibook of Neural Computation release 9111 G5.2:5 

Copyright © 1997 IOP Publishing Ltd



Medicine 

References 

Fischer K C 1990 Qualitative SPECT thallium imaging: technical considerations and clinical applications Nuclear 
Cardiovascular Imaging: Current Clinical Practice ed M J Guiberteau (New York: Churchill Livingstone) 
pp 133-66 

Fujita H, Katafuchi T, Shinoda M, Uehara T, Hara T and Nishimura T 1993a Neural network approach for the 
computer-aided diagnosis of coronary artery diseases in myocardial SPECT bull’s-eye images Proc. Int. Symp. 
CAR’93 Computer Assisted Radiology ed H U Lemke, K Inamura, C C Jaffe and R Felix (Berlin: Springer) 
pp 606-11 

- 1994 Neural network approach for the computer-aided diagnosis of coronary artery diseases in myocardial SPECT 
bull’s-eye images Radiof. Diagnost. 35 15-8 

Fujita H, Katafuchi T, Shinoda M, Uehara T, Ishida Y and Nishimura T 1993b Computer-aided diagnostic system for 
interpretation of myocardial SPECT bull’s-eye images Radiology 189(P) 237 (abstract) 

Fujita H, Katafuchi T, Uehara T and Nishimura T 1992a Application of artificial neural network to computer-aided 
diagnosis of coronary artery disease in myocardial SPECT bull’s-eye images J. Nucf. Med. 33 272-6 

- 1992b Neural network approach for the computer-aided diagnosis of coronary artery diseases in nuclear medicine 
Proc. Znt. Joint Con$ Neural Networks ’92 (Baltimore, OH) vol 111, pp 215-20 

Garcia E V, Train K V, Maddahi J, Prigent F, Friedman J, Areeda J, Waxman A and Berman D S 1985 Quantification 
of rotational thallium-201 myocardial tomography J. Nucf. Med. 26 17-26 

Katafuchi T, Fujita H, Uehara T and Nishimura T 1993 Development of a computer-aided diagnostic system for cardiac 
nuclear medicine using multi-neural networks Trans. Inst. Electron., Znfo. Commun. Eng. J76-D-I1 2436-9 (in 
Japanese, with figure captions in English) 

Shinoda M, Fujita H, Katafuchi T, Uehara T and Nishimura T 1993 Development of a computer-aided diagnostic 
system for myocardial SPECT images: effects of image processing and neuro parameters Med. h a g .  Info. Sci. 
10 38-45 (in Japanese, with abstract and figure captions in English) 

G5.2:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University h s s  

Copyright © 1997 IOP Publishing Ltd



G5.3 Neural networks for intracardiac electrogram 
recognition 

Manvan A Jabri 

Abstract 

Implantable cardioverter defibrillators are life-saving devices for people with heart 
disease. They sense the electrical activity of the heart through leads attached to its 
tissue. The sensed signals are called intracardiac electrograms and their interpretation 
is in many instances still a challenging pattern recognition task. This is especially the 
case because the defibrillators are battery powered, and most conventional recognition 
techniques are computationally intensive. We present here neural network techniques for 
electrogram recognition and describe their application to the detection of two rhythms that 
cannot be recognized by present day defibrillators. The implementation of such networks 
in micropower very large-scale integration is also described. A method for resolving the 
problem of morphology changes due to tissue growth is addressed by a method in which 
the neural network continuously learns using patterns that are automatically labeled. 

G5.3.1 Introduction 

Cardiac arrest is responsible for the death of about half a million people in the USA alone every year. The 
automated detection of abnormal heart conditions has considerably improved over the last two decades 
thanks to advances in many aspects of pattern recognition and integrated circuit technologies. 

Heart diseases are reflected in cardiac electrical activities. This is illustrated in figure G5.3.1 where 
electrical signals are shown and are related to the region of the heart where they could be observed. 
The electrical activity represents the contraction and relaxation of the heart muscle and can be observed 
in a near-field scheme where electrodes are attached to the actual heart tissue (intracardiac electrograms 
or ICEG), or in a far-field scheme where electrodes are attached to the surface of the body (external 
electrocardiograms or ECG). 

ECG recognition is performed by Holter monitors, ambulatory systems and coronary care units. 
ICEG recognition is performed by implantable pacemakers and cardioverter defibrillators. Because of the 
difference in the sensing distance, far-field (ECG) and near-field (ICEG) observation of the heart activity 
yield different signal morphologies. Hence, signal processing and recognition techniques developed for 
ECG may not necessarily be applicable to ICEG and vice versa. 

In figure G5.3.2 we show examples of the ICEG for the normal sinus rhythm (NSR) and four common 
arrhythmia, supraventricular tachycardia (SVT), ventricular tachycardia (VT), ventricular fibrillation (VF) 
and sinus bradycardia (SRE3). 

In general, there are over 17 arrhythmia of interest to cardiologists, and they are grouped under four 
classes defined by the type of therapy they require: 

0 NSR: this is the normal operation of the heart and no therapy is required 
0 SVT: present single-channel intracardiac cardioverter defibrillators (ICDs) cannot detect this and so 

deliver no therapy; however, experiments have shown that pacing of the atrium can terminate SVT 
0 V T  generally VT is treated with pacing and if not successful then eventually shocking 
0 VF: VF is usually treated with shock therapy. 

@ 1997 IOP Publishing Ltd and Oxford Universiry Ress Handbook of Neural Computation release 9711 G5.3: 1 

Copyright © 1997 IOP Publishing Ltd



t 

I 
I 

I 

I 

I 

I 
I 
I I 

I 

I 

-! 

I 

Figure G5.3.1. Diagram of the heart and corresponding electrical activities. 

t SVT 

Figure G53.2. Examples of KEG signals. 

G5.32 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for intracardiac electrogram recognition 

Note we have listed above the tachycardia-based groups only. The bradycardia-based group which 
corresponds to arrhythmia with heart rates slower than 60 bpm (beats per minute) is not considered in this 
section. An 'implantable pacemaker' commonly refers to a device implanted in patients with bradycardia 
conditions whereas intracardiac cardioverter defibrillators (ICDs) are devices implanted in patients with 
tachycardia conditions. 

RR intrvd I 

-".,.".w ... "." I ... "..... I ........ I .._..... G-"- "........ 
I :Q S l  : 

-.. .-.. -- 
I 

I 
I + Ti?! I 

1 QRS f 1 segmslt I 
"pbx ! 

Figure G5.3.3. QRS complex. 

Each heart beat in the ECG or ICEG trace is labeled as a QRS complex as shown in figure G5.3.3. 
The R point corresponds to the peak of the beat. RR is a measure of the interval between two beats and 
is used to compute the heart beat rate. Most automated ECG and ICEG interpretation systems rely on the 
beat rate to detect arrhythmia. Some arrhythmia, however, cannot be reliably detected using the heart beat 
rate alone and other features, such as the signal morphology (e.g. shape of the sensed signal), need to be 
used for reliable diagnosis. 

Morphology analysis is mainly used in ECG recognition, in particular in ambulatory monitoring 
systems and CCUs. ICD devices rarely use morphology analysis because of its high computational 
requirements. ICDs are battery operated and because battery replacement is costly, morphology recognition 
tends to be avoided. 

The present section is mainly concerned with morphology recognition techniques for ICDs. We 
discuss, in particular, the application of multilayer perceptrons to the recognition of dangerous arrhythmia c1.2 

by the means of morphology analysis. Although we consider only the case of detecting a type of VT, the 
technology described can be applied to other arrhythmia detection problems which necessitate morphology 
recognition. 

G5.3.2 Neural computing for intracardiac electrogram classification 

ICDs monitor the heart's electrical activity through leads attached to its internal surface. There are two 
types of ICD: single chamber and dual chamber. In a single-chamber ICD, a single lead is attached to 
the heart's right ventricular apex (RVA). In a dual-chamber ICD, an additional lead is attached to the 
heart's high-right atrium (HRA). Single-chamber ICDs are aimed at recognizing the NSR, VT and VF 
arrhythmia. They do that mainly by detecting the QRS complex, computing the RR interval and making 
use of pattern classifiers to recognize the heart condition. Arrhythmias like SVT are impossible to detect 
using a single-chamber ICD because atrial and ventricular information is required for reliable detection. 

Figure G5.3.4 shows a schematic diagram illustrating the inputs and outputs of an arrhythmia classifier 
in single- and dual-chamber ICD schemes. Here we describe the signal flow in figure G5.3.4 for the case 
of a single-chamber ICD. The flow for a dual-chamber ICD is similar. QRS detection is performed on the 
RVA signal providing events for the RR interval and timing feature extractor. Timing features and RVA 
samples are passed into the classifier for detection of arrhythmia. The classifier outputs the arrhythmia 
class to an X out of Y filter which is used to filter out spurious classifications which may be due to 
noise, QRS detection failures, or misclassifications. The X out of Y produces a decision that is based on 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.3:3 

Copyright © 1997 IOP Publishing Ltd



Medicine 

a ‘majority’ (at least X) vote over a number ( Y )  of classifications. The therapy logic block assigns the 
therapy that corresponds to the recognized arrhythmia class. 

fromRVA QRS bl Feature 

attached to 
lead Detector Extraction 

heart I- - 
lead Extraction 

attached to 
heart -- 

CLASSIFIER 

Inputs: 
Features andor samples 

from RVA 
and HRA in case of dual 

chamber ICD 

outputs: 
Arrhythmia classes 
corresponding to 

therapies 

Figure G5.3.4. Inputs and outputs of an ICEG classifier in single- and dual-chamber schemes. The 
processing enclosed in the dotted box is only used in a dual-chamber ICD. 

As stated earlier, the fundamental features used by present ICDs are timing-based, that is the heart 
rate as computed using the RR interval. Some ICDs do perform some limited forms of morphology 
analysis. Present ICDs (single and dual chamber) cannot be used to classify several types of arrhythmia. 
For instance, patients with ventricular tachycardia with one-to-one retrograde conduction (VT 1 : 1) may 
develop arrhythmia with heart rates close to their fast NSR rates (or sinus tachycardia, ST) when they are 
exercising vigorously. In these cases, it is impossible to properly diagnose their conditions on the basis of 
the heart rate alone and a more elaborate morphology analysis is required (Leong and Jabri 1992). These 
patients cannot presently take advantage of an ICD solution to their disease and have to rely on other 
forms of medication. 

The research described in this article shows that neural computing can provide an effective morphology 
analysis which can be implemented in ultra-low-power microelectronics to provide a solution to problems 
such as the STNT 1: 1 recognition. Before we describe the neural-computing-based morphology analysis, 
we present the database used in the research as well as the preprocessing applied to it. 

G5.3.3 Training and evaluation data 

The data used in the studies were collected from electrophysiological studies (EPS) performed in Australian 
and British hospitals. EPS is performed by introducing temporary probes into the internal surface of the 
patient’s heart, and artificially inducing arrhythmia through these probes. Once induced, the arrhythmia 
can then be monitored through the same probes. Our database includes over 150 EPS sessions from 
different patients. For each patient, data from at least the RVA and HRA leads is available. All data have 
been classified and labeled by cardiologists. Data are stored as digitized wave forms at a 250 Hz sampling 
rate. Although cardiologists in some circumstances, and on the basis of the RVA signal alone, may label 
the data differently, the availability of the signals from the other lead and the history of the patient provide 
sufficient information for highly reliable labeling. 

G5.3.4 Data preprocessing 

Most ICDs perform some form of bandpass filtering, with lower cutoff frequencies of a few hertz and 
a higher cutoff frequency of about 45 Hz. The low-pass filtering is aimed at eliminating rapid baseline 
‘wandering’ of the sensed signal and the high-pass filtering is aimed at eliminating noise and any extemal 
interferences. Our classification system makes use of the RVA signal which has already been filtered 
before storage into our database. 

G5.3~4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Neural networks for intracardiac electrogram recognition 

As indicated earlier, the section of the electrical signal associated with each heart beat is termed the 
QRS complex (see figure G5.3.3). In the last several decades, there have been many implementations 
of QRS detectors (see Friesen et a1 1990 for a recent review). The QRS detection algorithm used in 
our experiments is based on an exponentially decaying threshold and is proprietary to our commercial 
collaborator. 

G5.3.5 VT 1:1/ST morphology classification 

The STNT 1:l morphology recognition neural network is implemented using a simple multilayer 
perceptron (MLP) as shown in figure G5.3.5. The input to the MLP is a window of RVA samples 
centered around the R peak as detected by the QRS detection algorithm. As our data were sampled at 
250 Hz (4 ms) and QRS complexes are typically about 30 to 40 ms long, a window size equivalent to 
80 ms was chosen by skipping every second RVA sample. The MLP has a single output which indicates 
whether the input morphology belongs to the VT 1:l or ST class. 

I""' l:' Output layer 
Layer 2 

Hidden layer 
Layer 1 

0 0 0 0 0 0  e Inputlayer 
9 

(Pin neurons) A 0 

Figure G5.3.5. The morphology recognition MLP. It has ten inputs, six hidden units and one output. The 
ten inputs are the QRS samples and its output indicates whether the morphology is that of an ST or VT 
1:l. 

The MLP was implemented using micropower complementary metal oxide semiconductor (CMOS) 
technology. The actual chip, called Snake, is described in Coggins et a1 (1995). We briefly review the 
multilayer perceptron architecture here. 

The synapses are implemented as multiplying analog-to-digital converters with the weights represented 
as 6-bit signed numbers. An unusual aspect of the network is that its synapses operate as nonlinear 
multipliers. The outputs of the synapses are differential currents which are summed at the input of the 
neurons. Neurons are implemented as current-to-voltage converters operating mainly in their linear regions. 
Hence, the nonlinearities of the network are implemented in the synapses and not the neurons as is usually 
the case with multilayer perceptrons, but without any degradation in the nonlinear classification capabilities 
of the MLP (Coggins et a1 1995). 

The MLP chip was interfaced to a commercial ICD. The defibrillator provided its filtered version of 
the RVA signal as well as the QRS event detection. The RVA samples provided by the defibrillator are 
provided to the MLP chip which has a built-in analog shift register. These samples are stored on the chip 
and are shifted every time there is a new sample to be stored. The analog shift register is 10 samples long 
and provides the MLP with its 10 inputs. 

The MLP chip is trained in an in-loop fashion. The response of the chip (its outputs in response to an 
input pattern) are provided to a personal computer which orchestrates the training. The training algorithm 
used in the experiments is called summed-weight neuron perturbation (Flower and Jabri 1993) which is a 
semiparallel version of the weight perturbation algorithm described in Jabri and Flower (1992). 

The training of the MLP chip has proven to be a challenging task because: 
~~ 

@ 1997 IOP Pubhshing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G5.35 

Copyright © 1997 IOP Publishing Ltd



Medicine 

(i) the QRS detection is not perfect, and 
(ii) the inputs to the MLP are the outputs of the analog shifted samples. 

Nevertheless, the two issues above did not affect the training and generalization of the MLP chip. 
The experimental setup (MLP chip and ICD) was used on the data of all relevant patients in our 

database (seven patients had VT 1:l). We show the training and generalization performance of the chip 
in tables G5.3.1 and G5.3.2, respectively. 

Table G53.1. Training performance of the Snake chip on seven patients with ICD in-loop. 

Training % correct 
Patient iterations ST VT 

P45 56 100 100 
p55 200+ 100 87.5 

p651 200+ 87.5 100 
P76 46 100 100 

p81a2 200+ 100 100 
p81 140 100 100 

p862 14 100 100 

The power consumption of the Snake chip, assuming 120 bpm heart rate and 3 V supply, was 
around 186 nW. The ultra-low power consumption and good performance make possible the inclusion of 
a Snake-like device in ICDs enabling their use for VT 1 : 1 patients. 

Table G5.3.2. Classification performance of the Snake network on seven patients with ICD in-loop. 

Patient No of complexes % correct 

ST VT ST VT 

p45 440 61 100 98.3 

p651 67 146 77.6 99.3 
p55 94 57 100 95 

p76 166 65 91 99.3 
p81a2 61 96 97 93 

p81 61 99 97 100 
p862 28 80 96 99 

G5.3.6 Tissue growth, patient dependence and integrated learning 

The morphology recognition scheme described above may suffer from morphology changes due to the 
growth of tissue on the ICD lead tips. The growth has the effect of changing the sensing characteristics 
which lead to variations in the sensed signal morphology. This means that a neural network targeted 
to classify morphology has to be either insensitive to tissue-growth-based variations, would require the 
patient’s morphology classifier to be regularly adjusted, or has to be capable of adapting to them. 

Making a neural network insensitive to morphology changes due to tissue growth is a difficult if not 
impossible task. Regular tuning of the patient’s morphology classifier is possible but is not as economical 
as making the classifier adapt to morphology changes. 

The method we will present below, for the training and adaptation of the morphology classifier, 
not only allows a network to adapt to morphology changes, but also simplifies the initial training of a 
morphology classifier to fit the requirements of a patient. Because the training of a snake-like chip takes 
a matter of tens of minutes, the easiest (but not necessarily the most economical) approach would be to 
train the network in an EPS session. However, a scheme where the network could learn and adapt with 
no morphology labeling supervision would be desirable. Two obstacles need to be overcome to achieve 
this: 

G5.3 :6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for intracardiac electrogram recognition 

(i) integrated on-chip learning has to be implemented and has to be economical from a power consumption 
and hardware overheads point of view, and 

(ii) supervisory signals have to be derived, somehow, to replace the labeling of the morphology which 
has been done so far by a cardiologist in EPS sessions. 

On-chip learning has been demonstrated recently in our laboratory (Flower et a1 1995) and is no 
longer a serious obstacle or challenge. As for the supervisory signals, it can be resolved as described in 
the next section. 

G5.3.7 A scheme for the automatic labeling of morphology for supervised training 

Although the morphologies of ICEG and ECG signals are different, the heart beat rate is the same (assuming 
reliable QRS detection) whether sensed internally or externally. The beat rate can be used to automatically 
label morphologies that are ‘definitely’ NSWST or VT 1:l. This is better illustrated by figure G5.3.6. The 
distributions of NSR and VT 1:1, as functions of the RR interval, are shown here in an abstract fashion 
to illustrate the existence of what we call the TN region. The TN region is the ‘gray’ region where the 
heart beat rate alone cannot reliably determine an arrhythmia. If we define the ‘high confidence decision’ 
regions of these distributions as being those where the heart beat rate can definitely determine an NSR 
or VT 1:1, then we can use the rate to indicate whether the corresponding RVA samples (morphology) 
are those of NSR or VT 1:l. That is, we can label the RVA QRS samples as being NSR or VT 1:l by 
measuring the heart beat and if it is within the ‘high confidence decision’ regions, the signal morphology 
can be labeled and used for supervised learning. Note that our scheme is different from the approach 
where the ICD would apply a VT 1:l therapy whenever the heart beat rate is outside a safe NSR region. 
Such an approach leads to excessive use of valuable battery energy, is uncomfortable to the patient and 
can induce an arrhythmia. 

f 

Figure 65.3.6. Distributions of NSWST and VT 1:l with respect to the RR interval. Note that the TN 
region is where the heart beat rate cannot confidently determine the condition of the heart. Outside of the 
TN region we can confidently classify the condition to be NSR or VT 1:l. 

We have simulated our proposed scheme using the data of the seven VT 1 : 1 patients in our database. 
The simulation system consisted of two modules, a timing-based classifier and an MLP similar to that 
implemented by the Snake chip. The timing-based classifier provides an enabling signal for the training 
of the MLP every time that a high confidence region of the heart beat rate is met. Of course, the MLP 
need not be trained at every enabling signal. The rate at which QRS samples are considered for training 
could be programmable. 

The results of our simulated system show that the MLP can be trained in an on-line fashion, every 
time there is a high-confidence timing-based decision. The on-line aspect of the training is essential and 
is performed once through the data of a particular patient (the data were split into training and testing 
sets). A summary of the performance of the simulated system on the test sets which includes data from the 
TN and non-TN regions is shown in table G5.3.3. Note that the number of test patterns is different from 
those used for the testing of the Snake chip as the number of training patterns in the present experiment 
is larger. This also explains why some patients used in the present simulations are different from those 
shown in tables G5.3.1 and G5.3.2. The network tends to make more ‘false positives’ than it does ‘false 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.3:7 

Copyright © 1997 IOP Publishing Ltd



Medicine 

negatives' which is desirable for a life-saving device. Also note that the simulated system described here 
is implemented in floating-point arithmetic. When mapped to an architecture such as that of Snake, some 
marginal degradation is expected. 

Table G5.3.3. Summary of classification performance for the automatically labeled and on-line-trained 
morphology classifier. 

Patient No. of Comdexes % Correct 
ST VT ST VT 

p25 7 99 100 100 

p55 80 45 100 100 

p76 87 53 100 100 
p81 30 80 loo 100 

p45 428 49 79.2 100 

p650 8 80 62.5 82.5 

p862 25 68 100 97.1 

G5.3.8 Conclusions 

In this article we have described neural computing techniques for ICEG morphology classification. The 
research shows that multilayer perceptrons implemented in ultra-low-power microelectronics provide 
solutions to ICEG pattern recognition problems that have not been solved using conventional techniques 
because of power constraints. We have also described a method which can take advantage of integrated 
on-chip learning to provide adaptation of the neural network to patient morphology. This adaptation can 
be used in the initial implantation stage to train the neural network on the patient morphology, and at later 
stages to adapt to patients' morphology variations due to tissue growth on the ICD's lead tips. 

The neural computing techniques described in this section can be applied to other ICEG pattern 
recognition problems. In particular, low-power pattern analysis of the P-wave can be of assistance in 
better detection of other arrythmia and will be the subject of future investigations. 

Acknowledgements 

A part of the work presented in this article was funded by Telectronics Pacing Systems Ltd and the 
Australian Federal Government under a GIRD project led by the author. Other team members who have 
contributed to the project are Z Chi, R Coggins, B Flower, P Leong, S Pickard and E Tinker. A Chan has 
assisted the author with some of the experiments. 

References 

Coggins R, Jabri M, Flower B and Pickard S 1995 A hybrid analog and digital VLSI neural network for intracardiac 

Flower B and Jabri M 1993 Summed weight neuron perturbation: an O ( N )  improvement over weight perturbation 

Flower B, Jabri M and Pickard S 1995 An analogue on-chip supervised learning implementation of an artificial neural 

Friesen G, Jannett T, Jadallah M, Yates S, Quint S and Nagle H 1990 A comparison of the noise sensitivity of nine 

Jabri M and Flower B 1992 Weight perturbation: an optimal architecture and learning technique for analog VLSI 

Long P and Jabri M 1992 MATIC-An intracardiac tachycardia classification system Pacing Clin. Electrophys. 15 

morphology classification IEEE J. Solid State Circuits 30 542-50 

NIPS5 5 pp 212-9 (San Mateo, CA: Morgan Kauffmann) 

network IEEE Trans. Neural Networks re-submitted 

QRS detection algorithms IEEE Trans. Biomed. Eng. BE-37 85-98 

feedforward and recurrent multilayer networks IEEE Trans. Neural Networks "-3 154-7 

13 17-3 1 

G5.3:8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



G5.4 A neural network to predict lifespan and new 
metastases in patients with renal cell cancer 

Craig Niederberger, Susan E Purse11 and Richard M Golden 

Abstract 

The natural history of patients with renal cell cancer is bizarre: many patients succumb 
soon after diagnosis, while others live for decades. The lack of an accurate model to 
predict lifespan and the occurrence of new metastases has hampered the proper selection 
of therapy. In this project, a neural network programming environment (neUROn) was 
designed so that compiled neural networks could be tailored to specific medicahrological 
applications. Using neUROn, neural networks were built for data sets containing lifespan 
and disease progression outcomes for renal cell cancer patients. After these networks 
were trained, the Wilks’ generalized likelihood ratio test was used to determine which 
input variables were significant to the network’s prediction. An inspection of the results 
of this statistical test yielded information relevant to the current clinical treatment of 
renal cell cancer. 

G5.4.1 Project overview 

For centuries, physicians and medical researchers have attempted to make sense of cancer outcomes by 
assigning a set of carefully chosen heuristic rules to patient features, a system known as ‘staging’. For 
example, in the current ‘TNM’ system of staging kidney cancer, a tumor smaller than 2.5 cm in diameter 
limited to the kidney is termed ‘stage T1’ (de Kernion 1986, Williams 1987). A cancer larger than 2.5 cm 
limited to the kidney is labeled ‘stage T2’. A tumor invading the adrenal, renal vein, vena cava, or tissue 
outside the kidney without spreading beyond the fatty capsule surrounding the kidney known as Gerota’s 
fascia is termed ‘stage T3’. Tumor extending beyond Gerota’s fascia is ‘stage T4’. Frequently these 
rules are posited at international conferences where epidemiologists and cancer specialists present expert 
opinions. Unfortunately, many cancers do not behave according to a logical progression of stages. Many 
kidney and prostate cancers ‘jump’ stages to significantly more aggressive tumors, while others remain 
quiescent in one stage for years (de Kernion 1986, Williams 1987). If a computational system could 
be built that accurately modeled cancer outcomes from raw clinical features, such a system would be 
of invaluable assistance to physicians counseling patients and, by altering features and predicting future 
outcomes, planning therapeutic strategies. We thus chose to investigate neural computation as an outcome 
modeling system for renal cancer. 

Data were collected from patients entering treatment for renal cancer at a large public hospital in 
Chicago, and entered into a database. On completion of data entry, it was known whether 341 patients 
were alive or deceased, and whether or not a patient developed a new metastasis, or new tumor at a site 
remote from the kidney, in 232. Features tracked in the database were patient ethnicity, gender, date of 
birth, date of diagnosis, whether or not a nephrectomy was performed, date of surgery, presence of lung or 
bone metastases at diagnosis (separate features), histologic cell type of tumor, tumor size, chosen therapy, 
and date of follow-up. In addition, T, N and M stage were also entered into the database, thus allowing 
both derived and raw data to be tracked simultaneously. Outcomes recorded were whether the patient was 
alive or deceased at follow-up, and if new metastases were noted. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computarion release 9711 G5.4~1 

Copyright © 1997 IOP Publishing Ltd



G5.4.2 Design 

We built a neural programming environment to generate neural networks to model urological data analysis 
problems. We refer to the environment as neUROn for Neural computational Environment for UROlogical 
Numericals. We designed neUROn, shown schematically in figure G5.4.1, to be a general purpose neural 
programming environment in C rather than a single compiled program. In the environment, network 
architecture features are coded in preprocessor directives specified by a single header file, neura1net.h. 
In this way, users of neUROn define preprocessor variables in neura1net.h and generate machine code 
tailored to a specific medical data set, thus reducing computing cost. 

NeUROn’s programs include: 

bigJotto.c, which randomizes the initial data set into training and test sets, and maintains the proportion 
of outcome data types between sets to ensure representative test sets 
randomize.c, which randomizes initial connection weights and biases at each network node 
prepare.c, which normalizes the input and output values of testing and training data sets 
train.c, the training engine, using files generated by randomize.c and prepare.c to produce files 
containing network trained weights for each node and 

test.c, which use the trained weights for each node to predict outcomes from either an individual 
input sample or a file containing multiple samples, respectively. Test. c also calculates classification 
accuracy of the network in training and test sets. 

0 

0 predict.c and 

Ftand0mize.c weights, bioses 

I 
minima d mca’mo 

‘minima’ 

new weights, 
new biates 

tmining-set 

I I t I 

Figure G5.4.1. NeUROn: Neural computational Environment for UROlogical Numericals. 

Data were encoded in the input layer as shown in table G5.4.1. Values were either encoded with 
Q or Q + 1 nodes, where Q = number of representational raw data values, and the (Q + 1)th node 
signifies whether or not its companion values are present in the database. Categorical variables were 
encoded with Q = number of categories. For example, ethnicity was encoded in the input layer as 
African-American = [Oool], Caucasian = [OOlO], Hispanic = [OlOO], and other = [lOoo]. 

Two neural networks were built: one which classified whether a patient was alive at follow-up, and 
one which classified if new metastases developed. These targets were encoded as binary. In the network 
which modeled mortality, 0 represented a patient who was deceased, and 1 represented a patient who was 
alive at follow-up. The network which modeled new metastases was encoded with 0 if no new metastases 
were noted, and 1 if new metastases developed. 

The two networks implemented in neUROn for the renal cancer data sets are characterized as follows. 
B2.5 The topology was fully interlayer connected with 1 input, 1 hidden, and 1 output layer. Bias nodes were 

B3.2.4 included on both input and hidden layers. The activation function was sigmoidal and the learning rule 
C1.2.3 was backpropagation, with the exception that at the output node the error function was selected to be the 

G5.4:2 Handbook of Neural Computation release 9711 @ 19sn IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



A neural network to predict lifespan and new metastases in patients with renal cell cancer 

Table G5.4.1. Input-layer preprocessing for the renal cancer data set. 

Number input nodes Variable Value@) 
4 Ethnicity Categorical 
1 Gender Binary 
1 Diagnosis date available (Yes, No) Binary 
1 Numerical 
1 T stage available (Yes, No) Binary 
1 T stage Numerical 
1 N stage available (Yes, No) Binary 
1 N stage Numerical 
1 M stage available (Yes, No) Binary 
1 M stage Numerical 
1 Nephrectomy (yes, no) Binary 
1 Nephrectomy date available (yes, no) Binary 
1 Date of surgery - Date of birth Numerical 
1 Lung metastases information available (yes, no) Binary 
1 Lung metastases (yes, no) Binary 
1 Bone metastases information available (yes, no) Binary 
1 Bone metastases (yes, no) Binary 

10 Histologic subtype Categorical 
1 lbmor size (cm) Numerical 
7 Treatment choice Categorical 

Age = Date of diagnosis - Date of birth 

cross-entropy error function since the targets were binary-valued: 

M 

q(W) = -(l /M) log[t'o' + (1 - t')o'] 
i = l  

(G5.4.1) 

where M is the number of training stimuli, t i  is the desired activation for stimulus i ,  and oi is the neural 
network's output activation level given that stimulus i has been presented (Baum and Wilczek 1988). Input 
values were normalized to [-0.9 --f f0.91, and all initial weights were randomized to [-0.5 + +0.5]. 
The learning rate was initially set to 0.05, and increased as the network neared a local minimum during 
training. Network training was terminated if the reduction in error between iterations was less than 1 x 
or if the network error increased over a window chosen to be 6000 iterations. The number of hidden nodes 
was initially set to 10, and overlearning was noted by the divergence of training and test set classification 
errors. The number of hidden nodes was then reduced until training and test set classification error curves 
were nondivergent, which occurred at six hidden nodes for both the network which modeled mortality as 
well as the network which modeled new metastases. 

Classification accuracy (CA) was defined as 

(G5.4.2) 

where C is the number of correct network classifications in the data set and I the number of incorrect 
classifications. The n1/n2 cross-validation method was used, so that the network was not trained using 
datu sequestered in the test set. The classification accuracy of the neural network which modeled the 
development of new metastases was 92.5% in the training set and 84.5% in the test set. Classification 
accuracy in the training set was 90.3% for the network which modeled mortality, and 71.4% in the test 
set. 

G5.4.3 Statistical analysis of network behavior 

Golden has noted that, on completion of network training, Wilks' generalized likelihood ratio test may 
be used to determine if its final error is statistically different than another network of dissimilar topology 
(Golden to appear, Wilks 1938). By removing input nodes to alter the topology of the network, the 
contribution of individual input features to the network's model may be studied. This capability is of 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.4~3 

Copyright © 1997 IOP Publishing Ltd



Medicine 

particular interest to medical researchers who desire to ‘open the black box’ and dissect the importance of 
specific clinical parameters. 

Use of Wilks’ generalized likelihood ratio test begins with the training of a network on a particular 
data set, and recording the network error vl(W’). One or more input node@) corresponding to a specific 
feature are then removed from the network by setting the r weights in this first network connected to those 
input nodes to zero. The network is then retrained on the same data set and the network error r/2(W2) 
is recorded. The procedure requires that both error estimates are associated with strict local minima of 
their respective error surfaces and the same strict local minimum of the ‘true’ error function. The error for 
network r/2(W2) should be greater than or equal to the network 111 (W’)  since the second model has fewer 
free parameters. The question one wishes to test is whether the increase in error is statistically significant 
(i.e. if the r weights in the original network were really equal to zero). 

Using Wilks’ classical generalized likelihood ratio test, the null hypothesis that the two networks are 
equally effective (aside from sampling error) in classification can be rejected if: 

2M[r/2(W2) - rll(W’)I ’ (G5.4.3) 

where K, is a constant with the property that a chi-squared random variable with r degrees of freedom 
exceeds K, with probability a (Wilks 1938). 

NeUROn was programmed so that variables could be specified in a file classdefine by the position 
of their corresponding input nodes. For example, the first three variables in the renal cancer data set, 
ethnicity (four nodes), gender (one node), and age (two nodes) were specified by 

1 - 4 ,  5 ,  6 - 7 ,  . . . .  
In this way, groups of nodes corresponding to one variable are held to zero simultaneously to generate 
subnetworks for comparison to the full network using Wilks’ generalized likelihood ratio test. NeUROn 
was programmed to retrain subnetworks automatically with combinations of variables removed from the 
full network by holding their corresponding input node@) to zero; for the renal cancer network trained on 
the new metastases data set, the variables were removed singly. The resulting p-values for each variable 
are shown in table G5.4.2. 

Table G5.4.2. Wilks’ generalized likelihood ratio test p-values for individual variables removed to produce 
feature-deficient subnetworks. 

~ 

Variable removed p-value 
Ethnicity 
Gender 

T stage 
N stage 
M stage 
Nephrectomy 
Surgery Date 
Lung metastases 
Bone metastases 
Histologic subtype 
Tumor size 
Treatment Choice 

Age 

1 .WO 
0.009t 

< 0.Wlt 
O.oo4t 
0.007t 
0.428 
1 .WO 
1 .WO 
0.807 
1 .WO 

0.739 
1 .WO 

< 0.Wlt 

t p  t0.05 

As shown in table G5.4.2, patient gender, age, T stage, N stage and histologic type were all found 
to be significant features in predicting the development of new metastases. Interestingly, the presence of 
lung or bone metastases did not predict the development of new metastases. This observation supports 
the currently controversial practice of surgically removing a single metastasis, for one metastasis does not 
absolutely predict future metastases. 

G5.4.4 

Network performance was compared to the Bayes’ classifiers linear-discriminant function analysis (LDFA) 
and quadratic-discriminant function analysis (QDFA) (James 1985, Duda and Hart 1973). Each divides 

Comparison with discriminant function analysis 

G5.4:4 Handbook ojNeuml Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network to predict lifespan and new metastases in patients with renal cell cancer 

M-dimensional decision hyperspace with a single (M - 1)-dimensional hyperplane in the 2-class case. 
Linear-discriminant function analysis can be considered to be a special case of quadratic-discriminant 
function analysis in which covariance is equal among classes. Classification accuracy of the network in 
comparison to discriminant function analysis applied to the data set which recorded the development of 
new metastases is shown in table G5.4.3. Comparison to discriminant function analysis in classifying 
patient mortality is detailed in table G5.4.4. In both cases, the neural network outperformed linear- and 
quadratic-function analysis, with the classification accuracies for discriminant function analysis applied to 
the mortality data set no better than chance. 

Table G5.4.3. Classification accuracies of the neural network, linear- and quadratic-discriminant function 
analysis in modeling new metastases in the renal cancer data set. 

Data set LDFA QDFA Neural network 
Training 68.4% 69.0% 92.5% 
Test 67.2% 69.0% 84.5% 

Table G5.4.4. Classification accuracies of the neural network, linear- and quadratic-discriminant function 
analysis in modeling mortality in the renal cancer data set. 

Data set LDFA QDFA Neural network 
Training 40.1% 39.3% 90.3% 
Test 40.5% 39.3% 71.4% 

G5.4.5 Discussion 

Physicians commonly encounter classification tasks. Although most physicians and medical researchers 
encounter statistics only once during training, learning to design studies and employ tests of discrimination 
such as analysis of variance, the most common problem encountered in the practice of medicine is 
classification. Diagnosis, choice of therapy and outcome prediction are all classification tasks. Tumor 
staging systems were devised to serve as algorithmic systems to model the latter task, outcome prediction, 
in cancer. Unfortunately, simple decision trees are insufficient to accurately model many types of tumors. 
Predicting tumor behavior in individual patients with renal cancer is, to date, an intractable modeling 
problem (de Kernion 1986, Williams 1987). 

We chose to investigate neural computation as a modeling system for renal cancer outcomes. The 
two outcomes tracked in our database were patient mortality, i.e. whether or not patients were alive at 
follow-up, and the development of new metastases. In both cases, the trained neural network outperformed 
linear- and quadratic-discriminant function analysis. We do not know if other Bayesian modeling systems 
would necessarily perform more poorly than the neural computational system. In fact, we are actively 
investigating many types of classifiers to find the most accurate model. At present, the neural computational 
approach yields the most accurate classifier in our renal cancer data set. 

Although the neural network’s performance in modeling new metastases yielded an 84.5% 
classification accuracy in the test set, its performance in modeling mortality was lower at 71.4%. We 
expect this is due to critical missing features. Patients may die of many causes, such as cardiac events, 
that are not related directly to the variables that we tracked in our database. 

Simply building an accurate classifier is not enough for medical researchers who need to know which 
features are important to the model. The use of Wilks’ generalized likelihood ratio test allows such a 
dissection of the neural computational ‘black box’. 

Finally, medical classifiers are only useful if actually used by physicians. Many physicians have 
limited experience with computational systems, requiring highly ‘user-friendly’ interfaces. We have chosen 
to investigate the World Wide Web as a front-end for neUROn. Via a set of PERL scripts which allows the 
use of forms to submit input vectors to compiled and trained neural networks, World Wide Web browsers 
may efficiently access our trained networks for use in classifying remote patient data. At the time of 
writing, neUROn trained networks may be accessed at http://godot.urol.uic.edu. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G5.4:5 

Copyright © 1997 IOP Publishing Ltd

http://godot.urol.uic.edu
http://godot.urol.uic.edu


Medicine 

Acknowledgements 

The authors would like to acknowledge the substantial contributions of the members of the neUROn team: 
Luke Cho, Patrick Guinan, Joe Jovero, Vinod Kutty, Dolores Lamb, Larry Lipshultz, Lawrence Ross, Sue 
Ting, and Yuan Qin. 

References 

Baum E B and Wilczek F 1988 Supervised learning of probability distributions by neural networks Neural Information 

de Kemion J B 1986 Renal tumors Campbell’s Urology ed P C Walsh, R F Gittes, A D Perlmutter and T A Stamey 

Duda R 0 and Hart P E 1973 Pattern Classification and Scene Analysis (New York: Wiley) pp 17-20 
Golden R M Fundamentals of Neurocomputer Analysis and Design (Boston, MA: MIT Press) to appear 
James M 1985 Classification Algorithms (London: Collins) pp 15-29 
Wilks S S 1938 The large sample distribution of the likelihood ratio for testing composite hypotheses Ann. Math. Stat. 

Williams R D 1987 Renal, perirenal, and ureteral neoplasms Adult and Pediatric Urology ed J Y Gillenwater, 

Processing Systems ed D Z Anderson (New York: American Institute of Physics) pp 52-61 

(Philadelphia, PA: Saunders) pp 1294342 

9 60-2 

J T Grayhack, S S Howards and J W Duckett (Chicago, IL: Year Book Medical Publishers, Inc) pp 513-54 

G5.4:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



G5.5 Hopfield neural networks for the optimum 
segmentation of medical images 

Riccardo Poli and Guido Valli 

Abstract 

In this section we present a general-purpose neural architecture for segmenting two- 
dimensional and three-dimensional medical images. The architecture is based on a 
continuous Hopfield neural network including one or more sets of two-dimensional layers 
of neurons with local connections. This architecture can be specialized to perform the 
segmentation of two-dimensional images, the multiscale segmentation of two-dimensional 
images and the segmentation of three-dimensional images by simply changing the number 
of such sets and/or the size of the component layers. By changing synaptic weights the 
architecture can adapt to the differences existing between tomographic and radiographic 
images. The segmentation produced by this architecture is optimum with respect to a 
‘goodness’ criterion which establishes the tradeoff between sensitivity and robustness. 
The section describes the derivation of the architecture and some experimental results 
obtained with synthetic and real medical images. 

G5.5.1 Introduction 

The general objective of the segmentation of medical images is to find regions which represent single F1.6, G1.7 

anatomical structures. The availability of such regions not only makes tasks such as interactive visualization 
and automatic measurement of clinical parameters directly feasible, but is also the starting point for using 
more sophisticated computer vision techniques and performing higher-level tasks such as three-dimensional 
shape comparison and recognition (Poli e? a1 1994). 

Unfortunately, due to the presence of image noise, masking structures, biological shape variability, 
tissue inhomogeneity, imaging-chain anisotropy and variability, etc, the segmentation of medical images 
is a very hard problem. Therefore, to obtain reliable segmentation algorithms researchers have almost 
invariably been obliged to exploit as much a priori information as possible. 

Knowledge of statistical properties of the gray levels of the image is a kind of a priori information 
that has been extensively exploited in the case of magnetic resonance (MR) and computed tomography 
(CT) images (see, for example, Raya 1990, Lei and Sewchand 1992, Gerig et a1 1992, Amartur et a1 
1992, Ozkan et a1 1993). Despite the differences existing among these methods, they share the idea of 
considering each pixel as a separate entity to be classified, thus neglecting the spatial correlation between 
measurements due to cohesion of matter. 

Spatial correlation is considered as more important in other methods, such as those based on 
mathematical morphology operators (Higgins et a1 1990, Klingler e? a1 1988, Thomas et a1 1991, Joliot 
and Mazoyer 1993), on rule-based expert systems (Catros and Mischeler 1988, Manos et a1 1993, Li et a1 
1993), on special-purpose computer vision techniques (Raman et a1 1993, Coppini eta1 1993, Deklerck et 
a1 1993) or on neural networks trained with the backpropagation algorithm (Silverman and Noetzel 1990, ci.2.3 

Toulson and Boyce 1992, Coppini et a1 1993). However, in addition to the spatial correlation between 
measurements all these methods exploit another kind of a priori information: the anatomical knowledge 
about which structures are present in the image, where they usually are, what they usually look like, etc. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 5711 G5.5: 1 

Copyright © 1997 IOP Publishing Ltd



Medicine 

Whereas on one hand this information considerably improves the robustness of segmentation algorithms, 
on the other hand it drastically reduces their generality and their applicability to different kinds of images 
or anatomical districts. Therefore, anatomical-information-based methods do not seem good candidates to 
build general purpose segmentation systems for medical images. 

To overcome these problems and build a general-purpose segmentation system for medical images, 
we adopted a different approach inspired by biological vision. 

65.5.2 Approach and objectives 

Vision is ruled by principles, such as perceptual grouping, selection and discrimination, which mostly 
depend on regularities of nature such as cohesiveness of matter or existence of bounding surfaces (Marr 
1982, Reuman and Hoffman 1986). As these properties are also valid for the anatomical structures present 
in medical images, they can be exploited to build segmentation systems for such images. If no other source 
of information is used, the resulting segmentation algorithms are independent of the imaging modality, of 
the scanning parameters, of the imaged district, and so on and therefore can be used for general-purpose 
medical-image segmentation. 

Regularities of nature can be exploited in a very simple way by using grouping or discrimination 
criteria based, for example, on the idea that pixels which are close to each other and have similar gray 
levels have a high probability of representing the same object and therefore should be grouped together. 
However, even if the strategy is simple, in order to design a general-purpose segmentation algorithm for 
medical images a number of requirements must be met which can make the actual implementation of the 
strategy quite complex. Let us analyze these requirements. 
0 The segmentation algorithm should be maximally sensitive to small structures or to structures with a 

low contrast (possible lesions or tumors in early stages). 
0 The algorithm should be maximally robust with respect to the noise, texture and slow intensity changes 

typically present in medical images. 
0 The algorithm should be able to adapt to the differences existing among the processes of generation 

of images obtained from different imaging devices. Therefore, it should be able to process not only 
two-dimensional tomographic images but also three-dimensional and x-ray projective ones. 
A segmentation algorithm to be integrated in more complex analysis systems should be able to 
perform multiscale segmentation as, in many applications, segmentation is analyzed by multiple 
modules requiring different levels of detail. 
An algorithm to be used with imaging devices (e.g. cine-CT scanners) which can produce hundreds 
of images per patient should be suitable for parallel, high-speed implementation. 
The first two requirements counteract each other and, therefore, any segmentation algorithm can only 

produce results that represent a tradeoff between them. In order to achieve optimum compromises it is 
first necessary to define a quantitative criterion of goodness of segmentation which takes sensitivity and 
robustness into account, and then to optimize it for any specific image. Therefore, the problem of medical 
image segmentation can be seen as a problem of combinatorial optimization. 

Unfortunately, for any given image the space of possible solutions to this optimization problem is 
huge and conventional optimization techniques tend to fail on it. Therefore, following recent approaches 
in the field of natural scene segmentation (Darrell et a1 1990, Reed 1992, Wang er a1 1992) we decided 
to solve it by using an architecture based on continuous Hopfield neural networks (Hopfield 1984), a 
computational paradigm which can effectively search huge solution spaces. 

Hopfield networks can be seen as dynamical systems which tend to relax into states which minimize 
the following energy function 

0 

0 

ci.3.4 

N N  N 

(G5.5.1) 
i=l  

where U; is the output of neuron i, ii is its external input and Tj is the weight of the connection from 
neuron j to neuron i .  Thanks to this minimum-seeking behavior, Hopfield networks can be used to solve 
optimization problems (Hopfield and Tank 1985, 1986). The basic strategy is as follows: (i) to preprocess, 
when needed, the input data, (ii) to find a binary representation for the solutions of the problem so that 
they can be mapped into the stable states of the neurons of a Hopfield network, (iii) to define a quadratic 
(symmetric) energy function whose minimization leads to an optimum solution of the problem and then 

G5.5:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Hopfield neural networks for the optimum segmentation of medical images 

calculate weights and external inputs, (iv) to initialize and let the network relax into a stable state to then 
be mapped back into a solution for the original problem. 

In the following we describe how these steps, applied to the problem of medical-image segmentation, 
lead to an architecture that not only provides the optimum sensitivity/robustness tradeoff but also meets 
the other requirements listed above. 

G5.5.3 Segmentation of tomographic images 

In this case the input data of the segmentation algorithm is a two-dimensional tomographic image denoted 
with the symbol Z(x, y). Normally these data need no preprocessing and, therefore, the first step for 
solving the segmentation problem is finding a binary representation for its solutions. 

G5.5.3.1 Binary representation 

We adopted a representation suggested by the analogy of the segmentation process with that of coloring 
geographic maps (Bilbro et a1 1987). This analogy indicates that, in order to represent the regions (‘states’) 
obtained from the segmentation of an image, only a reduced number of labels (‘colors’) are needed, as 
long as different labels are associated to connected regions (‘bordering states’). Therefore, as shown in 
figure G5.5.1, a segmentation can be represented with a small set of two-dimensional layers of neurons 
(each layer represents a different label). 

Figure G5.5.1. Synthetic 8 x 8 image (top left), a possible labeling with four colors (top right), and the 
related binary representation with four layers of neurons (bottom). (Active neurons are represented as filled 
circles.) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.5~3 

Copyright © 1997 IOP Publishing Ltd



G5.5.3.2 Energy function 

The next step is the definition of a quadratic energy function Enel whose minimization gives an optimal 
solution to the segmentation problem. We adopted an energy function partially inspired by the one 
suggested in Hopfield and Tank (1985, 1986) for the solution of the traveling-salesman problem and the 
one proposed in Bilbro et a l ( l987)  for the segmentation of signals with simulated annealing. As the fixed 
points of Hopfield networks tend to be the vertices of the hypercube [0, 1 I N ,  we were able to design En,, 
on the hypothesis of binary neurons, i.e. uXyc E {O,  I } .  

Enet includes two parts: the syntax energy Esyntax which enforces the syntactic correctness of the 
solutions (i.e. prevents the network from settling into nonbinary states or states which cannot be mapped 
back to solutions of the segmentation problem), and the semantics energy which is our criterion 
of goodness of segmentation. The two parts are added SO that E,,, = Esyntax + Egoodness. 

Syntax energy. The syntactic correctness of the solutions requires that one and only one neuron is active 
among the neurons which represent a given pixel, i.e. 3!c : uXyc = 1. This constraint can be enforced by 
including in Esyntax terms such as E,, Cczzc, uxgcl uXyc2 and (Cc uxyc - 1) (the latter prevent the network 
from settling in the nonvalid null solution uXyc = 0, c = 1,2,  . . .). By summing these terms for all the 
pixels in the image we obtain 

2 

(G5.5.2) 

where K1 and K2 are constant values. 

Semantics energy. The goal of the semantics energy is that of driving the network towards segmentations 
that represent an optimum compromise between sensitivity and robustness. Therefore the semantic energy 
includes two terms, the sensitivity energy Esensitivity and the robustness energy Erobustness, which are summed 
U P  to give Esemantics = Esensitivity f Erobustness. 

Sensitivity energy. The sensitivity energy should force the network to perform a segmentation revealing 
any transition between different tissues; that is, any change in the image gray levels. In order to 
obtain this effect, Esensitivity must include terms which increase when neighboring pixels lying across a 
boundary have the same label. We used terms such as Cc uxyc vigc[dZ(x, y)]/[dn(x, y ,  i ,  ; ) I  where 
n(x, y ,  2, 5) = [(i, 9) - (x, y)]/[ll(2, j l )  - ( x ,  y)II], and ( x ,  y )  and (2, j l )  are neighboring pixels. These 
terms must be present for all pixels lying in a neighborhood BxY which does not contain pixels too 
close to or too far from (x, y) .  (We adopted the simplest neighborhood satisfying these requirements: 
Bxy = {(i, 5) I 2 5 [(2 - x ) ~  + ( j l  - Y ) ~ ] ' / ~  5 2(2)'/2}.) Thus, the complete expression of the sensitivity 
energy is 

(G5.5.3) 

where K4 is a constant value. 

Robustness energy. The aim of Erobustness is to reduce the effects of noise and texture. Since noise 
and texture tend to produce very small regions, Erobustness should favor the construction of large regions 
which have a high probability of representing single anatomical structures. This can be obtained using 
the constraint: pixels which are close to each other should have the same label. The constraint can be 
implemented using terms of the form - Cc u x y c u ~ g c ,  for all the pixels (i, j )  in a 4-connected neighborhood 
N"Y of any given pixel ( x ,  y ) .  The total robustness energy becomes 

where K5 is a constant value. 

example by comparing the expression of E,,, with the left-hand side of equation (G5.5.1)). 
Once Enet is defined, the weights and the external inputs of the network can be computed easily (for 

G5.5 :4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Hopfield neural networks for the optimum segmentation of medical images 

GS.S.3.3 Network initialization 

Hopfield networks can be simulated by simply integrating numerically their motion equation until a stable 
state is reached. However, before doing that the state of the network has to be initialized. As the standard 
random initialization method in the present case gives poor segmentation results, we adopted the strategy 
suggested in Chen et a l  (1991) which consists of initializing the network in an area of state space where a 
good solution is present. In this way the network has only to improve on the solution instead of looking 
for it in the whole state space. As an initial solution we used the segmentation produced by the following 
algorithm: 
(i) Let Zmax = max Z(x, y) and Zmin = min Z(x, y). 
(ii) For each pixel ( x ,  y) do: 

(a) let 2. be the nearest integer which is less than or equal to [Z(x, y) - Z,,,in]/(Zm - Z,,,in) + 1. 
(b) For each color c = 1, . . , do: 

X . Y  X.Y 

i f c = t - l o r c = i + l  
i f c = 2 .  
otherwise. 

G5.5.3.4 Extensions to three-dimensional and multiscale segmentation 

The extension of the method to the segmentation of three-dimensional images can easily be obtained by 
introducing three-dimensional neighborhoods and three-dimensional image derivatives as well as by adding 
an extra sum in equations (G5.5.2), (G5.5.3) and (G5.5.4). 

The extension to multiscale segmentation requires a preprocessing step as segmentation has to be 
performed simultaneously on multiple, smoothed and decimated versions of the original image. Such 
images, denoted with the symbol Z(x, y,  s), are built recursively from one another according to the 

After preprocessing, the various components of the energy function can be separately defined for each 
scale and summed. However, in order for the segmentation performed at a given scale to influence and 
to be influenced by the segmentation being performed at other scales, additional energetic terms such as 

Derivation of weights and inputs, initialization and relaxation are performed as in the case of two- 
- v x y c s v ( x / 2 ) ( y / 2 ) c ( s + l )  and - ~ , y c , v ( 2 r + i ) ( 2 y + j ) c ( s - l )  (for i = 0, 1 j = 0, 1) are needed- 

dimensional segmentation. 

G5.5.4 Segmentation of x-ray images 

The general criteria of goodness of segmentation introduced in the previous sections are valid also for 
projective x-ray images. However, the peculiarities of the physical process of generation of this kind of 
image imposes a few changes. 

G5.5.4.1 Preprocessing 

The approximate linearization of the image generation process is a preprocessing step needed for x-ray ~ 4 . 4  

image segmentation. This is obtained by performing an appropriate logarithmic transformation of the gray 
levels of the original image after which we can express 

d ( v )  

I ( x ,  Y )  = Jd p(x ,  Y t  z)dz 

where p(x, y, z) is the linear absorption coefficient of the tissue at coordinates ( x ,  y, z )  and d ( x ,  y) the 
thickness of the body in ( x ,  y). As any anatomical district contains a discrete number of structures of 
interest, if we denote with d i ( x ,  y) the thickness of the ith structure and with pi the absorption coefficient 
of such a structure. we can rewrite 

(G5.5.5) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G5.55 

Copyright © 1997 IOP Publishing Ltd



Medicine 

G5.5.4.2 Binary representation 

Anatomical structures which are overlaid or inside one another are represented by the same pixels in an 
x-ray image and, therefore, regions are no longer constrained to form a tessellation of the image but can 
overlap. 

To represent in binary form a segmentation with overlapping regions we adopted a set of two- 
dimensional layers of neurons like those used for the segmentation of tomographic images, with the 
important difference that each layer does not represent a different ‘color’ but a different anatomical 
structure. 

G5.5.4.3 Energy jhnction 

Syntax energy. The syntactic correctness of solutions does not require any more that one and only one 
neuron inside the set of neurons which represent a given pixel be active, as this would mean that a pixel 
cannot represent more than one anatomical structure. However, syntax requires that, in stable states, each 
neuron of the network be completely excited (uxYc = 1) or inhibited (uxYc = 0). To obtain this effect we 
used a term of the form uxyc(l - uxyc)  for each neuron. As a result: 

where K1 is a constant value. 

Sensitivity energy. The function of Esensitiviry is maximizing the consistency of segmentation with respect 
to the image gray levels expressed by equation (G5.5.5). Unfortunately, to obtain a quadratic Esensitivity 
we had to add the hypothesis (only approximately valid) that the thickness of the structures shown in the 
x-ray image is constant; that is, di(x, y )  = di. On this hypothesis we can define the quantity Di = pidi 
(estimated on the basis of the typical density and thickness of the structures of interest) and express 
I ( x ,  y )  = Cc uX4.,Dc. To force the network to settle into solutions (approximately) consistent with this 
eauation we defined 

K2 being a proper constant value. 

Robustness energy. The robustness energy for x-ray image segmentation includes the same terms as in 
equation (G5.5.4). Unfortunately, in this case these terms alone can induce the diffusion of the activation 
of the neurons representing a given structure outside the boundaries of that structure. This happens because 
Esensitivity does not include any terms which force the neurons of a region to change their state in proximity 
of the boundaries of the structure represented by that region. This can be overcome by also including 
the constraint: i f a  structure is not present in a given pixel, it is also not present nearby. The resulting 
robustness energy turns out to be 

Erobustness = -K3 u x y c  u@c - ’ 7 x(1 - uxyc)(l - ufgc) 
2 x y ( i . i , & Y  c 2 x y ( i ,$ ,&Y c 

where K 3  and K4 are constant values. 
Weights and external inputs can be easily obtained in the standard way. In order to ensure the 

convergence of the network to good solutions, we initialized it to a point of state space which represents 
a good segmentation. The initialization algorithm is similar to that used for tomographic images. 

G5.5.5 Experimental results 

The networks described in the previous sections have been tested both on synthetic images and on real 
tomographic and x-ray ones. Synthetic images were generated by simulating the operation of a real 
tomographic device on an ellipsoidal organ surrounded by a homogeneous tissue. In order to test the 
robustness of the method, in addition to the blurring caused by the finite thickness of the slices (partial- 
volume effect) Gaussian white noise with zero mean and increasing standard deviation CT was included 

G5.5:6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Hopfield neural networks for the optimum segmentation of medical images 

in the images. The resulting images were segmented using both the single-scale and multiscale networks 
described in the previous sections and then compared with the exact segmentation obtained manually with 
images in which noise and partial-volume effect were absent. Table G5.5.1 shows the average errors 
obtained in these experiments for several different values of a and for 1-4 interacting scales. 

Scales 
Noise U 1 2 3 4 

0 1.05 1.20 1.49 1.61 
5 1.17 1.68 1.81 1.81 

10 1.32 1.93 2.05 1.95 
20 1.46 1.95 1.98 1.93 
40 16.38 4.59 4.17 4.13 
80 52.88 51.81 53.71 55.59 

Table 65.5.1. Segmentation of synthetic tomograms: wrong assignments (per cent) versus noise standard 
deviation and number of interacting scales. 

The table reveals that, in the presence of noise with relatively small standard deviation, there are no 
advantages in using multiscale segmentation. Actually, for a = 0-20, using 2-4 scales produces 0.15% to 
0.73% more wrong assignments than in the single-scale case. However, in the presence of noise of higher 
intensity (a = 40) multiscale segmentation is much more reliable than a single-scale one. Results are not 
satisfactory only when noise standard deviation is extremely high (a = 80). 

The accuracy shown by the method in the experiments with synthetic images has been confirmed by 
numerous experiments with real tomograms. For example, figure G5.5.2 illustrates how, in segmenting an 
MR image of the thorax, the network has correctly identified most of the anatomical districts of clinical 
interest (e.g. lungs, subcutaneous fat, muscular tissue, right atrium, right ventricle, backbone and pulmonary 
artery). Another example is represented by figure G5.5.3 which shows an MR slice of the head along with 
the multiscale segmentation produced by the network. Segmentation has been performed jointly at three 
different scales: 128 x 128, 64 x 64 and 32 x 32. At the lowest resolution there are only eight regions, 
the largest five of which represent the most significant anatomical structures: white matter, gray matter, 
cerebrospinal fluid (CSF) in the ventricles, fat with bone, and background. These regions can be easily 
recognized and used to guide a complete interpretation of the image. At 64 x 64 resolution the boundaries 
of white matter, gray matter and CSF become more complex and new regions are present to represent the 
difference between fat and bone and between thin and thick areas of the ventricles. Maximum accuracy 
is reached at the highest resolution where, despite noise and texture the most important structures are still 
represented by a single or a small number of large regions. 

Figure 65.5.2. Segmentation of an MR image of the thorax. 

The method has also been tested on x-ray images. For example, figure G5.5.4 (left) shows a cine- 
angiographic x-ray image of the left ventricle of the heart. The largest structures inside the circular area 
representing the borders of the image intensifier are: the left ventricle with the descending aorta (center), the 
diaphragm muscle (lower left) and a metallic filter (upper right). To perform the segmentation of this kind 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Compurarion release 9711 G5.5:7 

Copyright © 1997 IOP Publishing Ltd



Medicine 

Figure G5.5.3. multiscale segmentation of an MR image of the head. 

Figure G5.5.4. Segmentation of a cine-angiographic image of the left ventricle. 

Figure 65.5.5. Segmentation of a radiogram of a tract of a finger. 

of images we utilized three layers of neurons: one to represent the image intensifier, one for the background 
(soft tissues with a low density) and one for the structures just mentioned (they have approximately the 
same value of 0,). Figure G5.5.4 (right) shows the activation of this last layer. Diaphragm muscle, 
left ventricle with aorta and metallic filter have been correctly represented as disjunct regions. Another 
example is given in figure G5.5.5 which illustrates the segmentation of a radiogram of a finger. Although, 
in this case, the network has not been capable of splitting the bone part of the finger into its anatomical 
components because of the very limited inter-bone space, the important discrimination between soft tissue 
and bone is correct, even where bone and soft tissue overlap. 

65.5.6 Conclusion 

In this section we have described a neural architecture for the segmentation of medical images. With 
simple topology and parameter changes the architecture can be adapted to perform the two-dimensional, 
three-dimensional and multiscale segmentation of tomographic and x-ray images. Thanks to its broad 

G5.5~8 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Hopfield neural networks for the optimum segmentation of medical images 

applicability, to  the robustness and sensitivity shown in the experiments and t o  its implementability with 
fine-grained parallel hardware, this architecture seems to meet the requirements to  be considered a possible 
general-purpose solution to  the problem of medical image segmentation. 

Acknowledgements 

This work has been partially supported by the Italian Ministry for University and Scientific and 
Technological Research (MURST). 

References 

Amartur S C, Piraino D and Takefuji Y 1992 Optimization neural networks for the segmentation of magnetic resonance 

Bilbro G L, White M and Snyder W 1987 Image segmentation with neurocomputers Neural Computers ed R Eckmiller 

Catros J Y and Mischeler D 1988 An artificial intelligence approach for medical picture analysis Part. Recog. Lett. 8 

Chen C T, Tsao E C K and Lin W C 1991 Medical image segmentation by a constraint satisfaction neural network 

Coppini G, Demi M, Poli R and Valli G 1993 An artificial vision system for X-ray images of human coronary trees 

Coppini G, Poli R, Rucci M and Valli G 1992 A neural network architecture for understanding 3D scenes in medical 

Darrell T, Sclaroff S and Pentland A 1990 Segmentation by minimal description IEEE Int. Con$ Computer Vision I l l  

Deklerck R, Comelis J and Bister M 1993 Segmentation of medical images Image Vis. Comput. 11 486-503 
Gerig G, Martin J,  Kikinis R, Kubler 0, Shenton M and Jolesz F A 1992 Unsupervised tissue type segmentation of 

Higgins W E, Chung N and Ritman E L 1990 Extraction of left-ventricular chamber from 3D CT images of the heart 

Hopfield J J 1984 Neurons with graded response have collective computational properties like those of two-state 

Hopfield J J and Tank D W 1985 ‘Neural’ computation of decisions in optimization problems Biofog. Cybem. 52 

- 1986 Computing with neural circuits: a model Science 233 625-33 
Joliot M and Mazoyer B M 1993 Three-dimensional segmentation and interpolation of magnetic resonance brain image 

IEEE Trans. Med. Imag. 12 269-77 
Klingler J W Jr, Vaughan C L, Franker T D Jr and Andrews L T 1988 Segmentation of echocardiographic images 

using mathematical morphology IEEE Trans. Biomed. Eng. 35 925-35 
Lei T and Sewchand W 1992 Statistical approach to X-ray CT imaging and its applications in image analysis-Part 

11: a new stochastic model-based image segmentation technique for X-ray CT image IEEE Trans. Med. Imag. 11 

Li C, Goldgof D B and Hall L 0 1993 Knowledge-based classification and tissue labeling of MR images of human 

Manos G, Caims A Y, Ricketts I W and Sinclair D 1993 Automatic segmentation of hand-wrist radiographs Image 

Marr D 1982 Vision (New York Freeman) 
Ozkan M, Dawant B M and Maciunas R J 1993 Neural-network-based segmentation of multimodal medical images: 

a comparative and prospective study IEEE Trans. Med. Imag. 12 534-44 
Poli R, Coppini G and Valli G 1994 Recovery of 3D closed surfaces from sparse data Comput. Vis. Graphics Image 

Proc.: Image Understanding 60 1-25 
Raman S V, Sakar S and Boyer K L 1993 Hypothesizing structures in edge-focused cerebral magnetic resonance 

images using graph-theoretic cycle enumeration Computer Vision, Graphics, and Image Processing: Image 
Understanding 57 81-98 

Raya S P 1990 Low-level segmentation of 3D magnetic resonance brain images-a rule-based system IEEE Trans. 
Med. Imag. 9 327-37 

Reed T R 1992 Region growing using neural networks ed H Wechsler Neural Networks for  Perception vol 1 (San 
Diego, CA: Academic) pp 386-97 

Reuman S R and Hoffman D D 1986 Regularities of nature: the interpretation of visual motion From Pixels to 
Predicates ed Alex P Pentland (Norwood, NJ: Ablex) pp 201-26 

images IEEE Trans. Med. Imag. 11 2 15-20 

and C v d Malsburg (Berlin: Springer) 

123-30 

IEEE Trans. Nucl. Sci. 38 678-86 

IEEE Trans. Patt. Anal. Mach. Int. 15 156-62 

imaging Comput. Biomed. Res. 25 569-85 

(Osaka) (Osaka: IEEE Press) pp 112-6 

3D dual-echo MR head data Image Vis. Comput. 10 349-60 

IEEE Trans. Med. Imag. 9 384-95 

neurons Proc. Natl Acad. Sci. 81 3088-92 

141-52 

62-9 

brain IEEE Trans. Med. Imag. 12 740-50 

Vis. Comput. 11 100-11 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G5.5:9 

Copyright © 1997 IOP Publishing Ltd



Medicine 

Silverman R H and Noetzel A S 1990 Image processing and pattem recognition in ultrasonograms by backpropagation 

Thomas J G, Petersx R A I1 and Jeanty P 1991 Automatic segmentation of ultrasound images using morphological 

Toulson D L and Boyce J F 1992 Segmentation of MR images using neural nets Image and vision Computing 10 

Wang T, Zhuang X and Xing X 1992 Robust segmentation of noisy images using a neural network model Image and 

Neural Networks 3 593-603 

operators IEEE Trans. Med. Imag. 10 180-86 

324-8 

vision Computing 10 2 3 3 4  

G5.5 : 10 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Medicine 

65.6 A neural network for the evaluation of 
hemodynamic variables 

Tom Pike and Robert A Mustard 

Abstract 

A standard feedforward backpropagation network was used to perform automated 
integrity evaluation of arterial pressure waveforms. Our goal was to automatically 
and reliably read hemodynamic variables directly from patients with our existing lab 
equipment (Mustard et a1 1990). The most difficult part turned out to be validating the 
signals were not corrupted (i.e. suitable for measurement). 

G5.6.1 Introduction 

Our goal for this study was to automate the collection of arterial pressure data. Whenever a human 
observer takes a measurement, there is unconscious effort put forward to check the measurement’s validity. 
In a medical environment this effort is often critical since incorrect information could lead to incorrect 
decisions regarding patient care. When measuring hemodynamic (blood in motion) variables, medical 
staff automatically compare the measured value with a normal range to ensure the values are reasonable. 
Another verifying tool is the real-time trace of the variable being measured. In our case an arterial pressure 
waveform shows the blood pressure as it changes over time. This allows full inspection of the variable 
over a short time period. Poor catheter positioning and patient movement are common occurrences that can 
affect signal shape and arterial pressure measurements. A quick glance at the waveform trace is usually 
enough to verify it is free from external artifacts. If external artifacts occur, measurements should be 
rejected until the signal returns to a normal state. 

Removing the human element from measuring arterial pressure causes a problem. The validation 
step is not the trivial task that it seems. Checking that the measurement is within normal parameters is 
not the problem. The huge variability of peak shapes that occur from patient to patient and even within 
a single patient make it difficult to validate the waveform through pattern matching or screening through 
characteristics based on shape. Whether the measurement was for an intensive care unit alarm or direct 
unsupervised support in an animal model, a way is needed to validate signal integrity. 

G5.6.1. I Motivation 

A neural approach looked promising since much success had been reported in similar, seemingly more 
complex, signal processing problems (e.g. speech recognition). The only alternative was an exhaustive ~ 1 . 7  
tinkering with statistical methods based on waveform parameters. This would have to be redone for each 
new signal we wished to study. We hoped the knowledge gained from this initial work could be used 
towards other types of signal data. 

G5.6. I .2 Classifier 

The role of the network was to determine the integrity of the input signal. Each peak input would 
be classified as either clean, contaminated or damped. By definition a clean peak would be suitable 
for measuring hemodynamic variables. A contaminated peak contained some local shape-distorting 
phenomenon making measurement inaccurate. Damped peaks are normal peaks with dull features 
representing some global undesirable signal damping. 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G5.6: 1 

Copyright © 1997 IOP Publishing Ltd



Medicine 

G5.6.1.3 Black box description (diagram) 

The system consisted of an input module that fed 30 second waveform signal segments into our neural 
network module. If the output from our neural network module indicated a clean signal, measurements 
would be recorded and passed to subsequent modules in the experiment. A network output indicating a 
dirty signal would cause the system to disregard the current waveform. A network output of ‘damped’ 
could sound an alarm to alert a technician of equipment malfunction. 

G5.6.1.4 Requirements and constraints 

Two conditions had to be met: speed and accuracy. We required real-time performance since the network 
would be monitoring the patient continuously for days at a time. This posed little problem since even a 
slow personal computer inspects signals using our method more quickly than a human operator. The more 
difficult constraint involved comparable accuracy with a human expert. 

G5.6.1.5 Topology 

c1.2 The final network used was a three-layer (one hidden layer) backpropagation network. The input layer 
consisted of 70 neurons. Each neuron in the input layer was unidirectionally connected to each neuron 
in the hidden layer. The hidden layer contained 20 neurons unidirectionally connected to three output 
neurons. 

G5.6.1.6 Other topologies investigated 

Many combinations of the following three-layer network dimensions were tried: 

0 input neurons: 10,20,30,40,45,55,60,65,70,75,80,85,90, 100 
0 

0 output neurons: 1 ,2 ,3 ,5 .  
On some network architectures we had two extra output neurons (five in total). They represented 

the segmentation errors occasionally made by our preprocessing algorithm. We hoped this might convey 
additional information on which the network could generalize. We thought this might also counterbalance 
the negative effect of having improperly segmented peaks. The network was able to detect these errors 
with some success but it did not increase the overall accuracy of the network. 

A few four-layer configurations were tried. Using straight backpropagation the connection strengths 
between the second and third layers were found to grow very large in magnitude compared to the input 
to second-layer connections. Training never produced acceptable performance when this occurred. An 
alternative approach was tried. Initially the network was treated as a three-layer network. After reasonably 
good performance was achieved, the third hidden layer was inserted, inheriting the output connections and 
starting with random second- to third-layer connections. Training continued as a four-layer backpropagation 
network. Performance approached that of the three-layer network but progress seemed to be slower and 
more erratic. 

hidden neurons: 3 ,5 ,6 ,7 ,8 ,9 ,  10, 12, 15, 17, 18, 19,20,21,22,23,25,30 

G5.6.1.7 Sources 

Our main resource was Rumelhart and McClelland (1986). In addition we used notes from a graduate 
course on neural computing offered by Professor Geoffrey Hinton at the University of Toronto. All 
software used was custom-written. A special-purpose database engine was constructed for keeping track 
of recorded signals, segmenting and labeling peaks, and creating training and testing sets. For network 
training we designed and implemented a flexible backpropagation system. 

G5.6.1.8 Performance features of topology 

A feedforward three-layer backpropagation network has two major advantages in applications with a large 
number of inputs. Firstly, it has a simple training method. Secondly, the training method is fast enough 
to be used in software. Additionally, backpropagation networks are quite fast executing in software. 

G5.6:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for the evaluation of hemodynamic variables 

G5.6.2 Methods 

G5.6.2.1 Training sets 

The recorded signal was segmented into peaks (Ellis 1985, Hinton 1986, Klee et a1 1974, Mustard et a1 
1990). Each peak was manually labeled as overdamped, clean or dirty by the authors. Clinical information 
about the patient as well as the entire 15 second signal tracing was used to provide the ‘correct’ label 
for each peak. This represented the ‘gold standard’ with which the network was trained and tested. 
Overdamped indicates inaccuracy due to an obstructed catheter or other problem with the signal collection 
equipment. Clean denotes an acceptable shape and dirty denotes an irregular or corrupted shape. A 
corrupted shape may result from patient movement, catheter slippage and so on. Once a large number of 
patient tracings had been recorded and labeled, two groups were formed with the first 19 patients in one 
group and the next 19 patients in the second group. Selected peaks from the two groups were used to 
train two neural networks using backpropagation (Rumelhart et al 1986). Then each network was tested 
on the entire patient group to which it had not been exposed. Our original experiment design was flawed 
in one important aspect. The peaks recorded in the first 10 patients were any patient and included a large 
percentage of clean peaks. As we collected, the trend was to record from a more diverse set of signal 
types, particularly very corrupted signals. This tends to give the first network less experience than the 
second network. This can be seen in the large false negative error represented in the table. Later we 
separated the groups into odd and even patient numbers. The performances of these networks were much 
closer in accuracy. 

Patient p h Infusion Pumps 

Dirty Signals Ignored 

i I 
Analyze clean 

signals and 
provide 

drug/fluid support 
to patient 

Clean 

Neural Network 1 and segmentation 
~ 

i 
I 1 I 
I Nursing Station ! i 

I I 

reported to nurse 

Figure 656.1. Data flow diagram. 

G5.6.2.2 Preprocessing 

The network architecture consisted of a 70-element input array fully connected to a 20-element hidden 
layer which was then fully connected to a 3-element output layer. The hidden units and the output units 
all had thresholds learned in the backpropagation step (Rumelhart et a1 1986). The mapping from an 
arterial pressure waveform to a decision on its peak’s validity is as follows. The waveform is recorded 
as positive integers at 100 Hz. The signal is then segmented into peaks using the zero crossing algorithm 
as previously described (Burger 1980, Pike and Mustard 1992). Each peak is then analyzed individually. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 G5.6:3 

Copyright © 1997 IOP Publishing Ltd



Medicine 

The number of points representing the peak is reduced by a factor l / n .  n is an integer value defined by 

n = ceil[(# of points in peak)/50] + 1 

and has a minimum (and typical) value of 2.  The number of points in the peak is reduced by replacing each 
n consecutive values with their average. The calculated averages are then normalized to a range of 0.05 to 
0.95 (approximately corresponding to the 40 mmHg to 300 mmHg range). The normalized values are then 
centered in a 50-element array and empty array positions are set to 0.05. This array representation is used 
as input to the neural network. Along with this representation of the individual peak, 20 input neurons are 
used to represent the average and standard deviation of the peaks within the 15 second recording currently 
being analyzed. All peaks within this recording are transformed into their ‘array representation’. All the 
array representations are split into 10 segments of 5 elements each. The average and standard deviation 
are calculated for the 10 segments for all peaks in the waveform. The 50 element peak representation, the 
10 element average shape representation and the 10 element shape variability representation are used as 
input to the network. 

G5.6.2.3 Training method 

The input neurons simply take on the data input as their activations. The equations governing all the 
remaining neurons are as follows: 

1 
OPJ = 1 + ,-(E, ~ p , , o c p - l , d + e p , )  
s p j  = ( t j  - O p j ) O p j ( 1  - 0,) 

e p j  = o p j ( I  - O p j )  z a ( p + l ) k w p k j  
k 

W p j r  (n  + 1) = a ( 8 p j O p i )  + B w p j i ( n )  

where 0, = output activation for the pth row and the j th column; wpi, = weight connecting the neuron 
in the ( p  - 1)th row and the ith column with the neuron in the pth row and the j th column; 6,j = error 
signal for O p j ;  spj = threshold for O p j ;  a = the learning parameter; B = the momentum parameter. 

The training was carried out on a 16 MHz 80386 computer system as follows. The backpropagation 
step (learning step) was initiated after every 10 cases (peaks). The alpha and momentum learning 
parameters were both fixed at 0.1 until 10000 epochs (1 epoch = 10 cases). At this point the alpha 
parameter was set to 0.02 until training was concluded at approximately 15 000 epochs. The sequence of 
cases was skewed to increase the exposure of problematic peaks. The procedure was as follows. After 
every 10 passes of the entire training set, each case is used to train the network. In the remaining passes, 
the network is only trained on cases where the network’s output neurons’ activations (in the range of 0.0 
to 1.0) are incorrect by 0.3 or more. Towards the end of the training cycle the network was evaluated on 
peaks in its training set. The network is saved if it beats the current best network. When training stops, 
the current best network is used. 

G5.6.2.4 Output 

On being exposed to a peak, the network flags, via its output neurons, one of three conditions: acceptable, 
shape error, or overdamped. The acceptable condition signals the peak is of the correct shape and 
can be considered (locally) uncorrupted. Shape error implies peak shape is incorrect and should be 
considered corrupted. The overdamped condition implies shape features are dull and could indicate non- 
local corruption. 

G5.6.2.5 Development 

Development of the software took a considerable t ime-on the order of seven months. When the project 
began there was little in the way of commercial software for neural computation. What did exist was very 
inflexible and quite expensive. In addition it was of great benefit to have the neural network simulator 
tied directly to the signal database. 

G5.6:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A neural network for the evaluation of hemodynamic variables 

G5.6.2.6 Comparison with traditional methods 

Originally we considered hand-coding statistical methods as being a viable approach. While creating the 
training data, we were greatly surprised at the difficulty we had classifying a large subset of the peaks. On 
reflection it would have been an extremely difficult job to embed the huge varieties and interdependent 
characteristics using traditional coding techniques. Each additional rule or characteristic added to an expert 
system or fuzzy logic algorithm would have to be balanced with the previously established programming. 
This makes development difficult and maintenance almost unworkable. In contrast, as other neural network 
approaches appear they can be tried using the now available commercial network simulators. Of course 
finding someone specializing in neural networks may, for some time, remain a problem. It would probably 
be just as difficult as recruiting experienced expert system programmers or fuzzy mathematicians. 

G5.6.3 Results 

Two basic errors can be made by the network. A false positive error incorrectly indicates a corrupted 
arterial pressure signal is valid and measurable. The measured hemodynamic variables will be invalid 
since the signal is corrupted; a very serious error if treatment is based directly on the measurement. A 
false negative error rejects peaks that would yield accurate parameters, and either decreases availability 
of derived parameters or increases the number of signals that must be visually inspected. The accuracy 
of our networks is shown in table G5.6.1. Note that the ‘testing’ data sets are derived from patients not 
used in the ‘training’ data. We found that by allowing the network to learn for longer or shorter periods 
we could adjust the ratio of false positive errors to false negative errors. Running the learning procedure 
longer typically reduced the false positive error rate at the expense of a greater false negative error rate. 
With experimentation, a trade-off can be reached between accuracy and the number of cases that have 
to be visually inspected. Table G5.6.1 contains results for our initial experiment. Subsequently with an 
improved segmentation algorithm and better subdivision of traininghesting set patients we achieved the 
results in table G5.6.2. 

Table 65.6.1. Published error rates for the two networks. 

False positive False negative 
Network 1 
Group 1 (training) 0.008816 0.03 1370 
Group 2 (testing) 0.012307 0.198583 
Network 2 
Group 1 (testing) 0.032258 0.054401 
Group 2 (training) 0.004662 0.041488 

Table G5.6.2. Subsequent error rates with improved segmentation and balanced training sets. 

False positive False negative 
Network 1 
Group 1 (training) 0.010425 0.047360 
Group 2 (testing) 0.022101 0.126603 
Network 2 
Group 1 (testing) 0.030570 0.098210 
Group 2 (training) 0.008376 0.039841 

65.6.4 Conclusions 

We found neural networks well suited to evaluating peak integrity. We only realized how subtle and 
fuzzy this problem is through manually labeling our data. Some of the mistakes made by the network 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97’11 G5.65 

Copyright © 1997 IOP Publishing Ltd



Medicine 

were difficult to  explain (a  perfect shape rejected). But many were in the gray zone and difficult even 
for us to  classify as clean or dirty. While researching our experiment we  found n o  literature examining 
continuous hemodynamic variables at high resolution. Except for the studies involving sleep, continuous 
high resolution monitoring of disease mechanisms remains a vast unexamined field. 

References 

Burger D 1980 Analysis of electrophysiological signals: a comparative study of two algorithms Computers and 

Ellis M 1985 Interpretation of beat-to-beat blood pressure values in the presence of ventilatory changes J.  Clincal 

Hinton G E 1986 Leaming distributed representations of concepts, Proc. Eighth Ann. Conf. of the Cognitive Science 

Klee G, Ackerman E and Leonard A 1974 Computer detection of distortion in arterial pressure signals IEEE Trans. 

Korten J B, Haddad G G 1989 Respiratory waveform pattern recognition using digital techniques Computers in Biology 

Marshall R J 1986 The determination of peaks in biological waveforms Computers and Biological Research 19 319 
Mustard R, Cos010 A, Fisher J, Pike T, Shouten D and Swanson H 1990 PC-based system for collection and analysis 

of physiological data Computers in Biology and Medicine 20 2 
Pike T and Mustard R 1992 Automatic recognition of corrupted arterial waveforms using neural network techniques 

Computer in Biology and Medicine 22 3 
Rumelhart D E, Hinton G E and Williams R J 1986 Leaming intemal representations by error propagation Parallel 

Distributed Processing: Explorations in the Microstructures of Cognition vol 1 ed D E Rumelhart and J L 
McClelland (Cambridge, MA: MIT Press) pp 3 18-62 

Rumelhart D E and McClelland J L (eds) 1986 Parallel Distributed Processing: Exploration in the Microstructures of 
Cognition (Cambridge, MA: MIT Press) 

Biological Research 13 73 

Monitoring 1 

Society (Amhearst, MA) 

Biomed. Eng. January 

and Medicine 19 

G5.66 Hundbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



6 6  

Economics, Finance, and Business 

Contents 

G6 ECONOMICS, FINANCE, AND BUSINESS 
G6.1 Application of self-organizing maps to the analysis of economic situations 

F Blayo 
G6.2 Forecasting customer response with neural networks 

David Bounds and Duncan Ross 
G6.3 Neural networks for financial applications 

Magali E Azema-Barac and A N Refenes 
G6.4 Valuations of residential properties using a neural network 

Gary Grudnitski 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

G6.1 Application of self-organizing maps to the analysis 
of economic situations 

F Blayo 

Abstract 

The Kohonen map is a reduction dimension method which can be used for representation 
of high-dimensional problems. In this case study, we use the Kohonen map for the 
analysis of economic situations, and we make a comparison with a classical data analysis 
method: principal component analysis. 

66.1.1 Project overview 

Simple observation of a phenomenon cannot be compared to knowledge of a phenomenon, for example, the 
deep understanding of the relationships (structure, causality, and such) between all the elements involved. 
The observations provide a set of data, which constitute an image of the phenomenon. The analysis of this 
image, and its synthesis, constructs our understanding of the phenomenon, transforming the pure data into 
information. This transformation cannot be easily achieved on multiple and complex data. It requires a 
reduction of the complexity, using suitable techniques. The different techniques (linear regression, canonic 
analysis, discriminant analysis) constitute the field of data analysis. Typically, economic data involving a 
large number of high-dimensional samples are quite difficult to represent and require expertise to extract 
relevant information to be given to managers. Classical data analysis methods are very efficient in many 
cases, but generally apply a linear transformation on original data. In this project, we have tried to use a 
neural method to perform an extraction of characteristics from a set of economic data in order to discover 
possible relationships between countries described by six economic values. We have also performed 
a comparison with the principal component analysis (PCA) method which is one of the most classical 
dimension reduction methods. 

G6.1.2 Design process 

The most important reason to apply a neuronal solution is the possibility of easily performing a nonlinear 
dimension reduction on available data. The self-organizing map, proposed by Kohonen (1982), is able c2.1.1 

to perform such a dimension reduction, providing a possible bi-dimensional representation of high- 
dimensional data. For this application, we have chosen to use an 8 x 8 map, trained with a finite set 
of 52 examples. The original version of the algorithm has been used, without any improvement. The 
design process started with the development of the algorithm, in a classical C language. The input/output 
code was only developed for the purpose of visualization. The general architecture of the network is given 
in figure G6.1.1. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 G6.1: 1 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

Figure G6.1.1. General architecture of the network. Only three neuron connections are shown. 

G6.1.3 Training method 

The self-organization algorithm performs a projection onto a subspace spanned by a discrete lattice of 
formal neurons. The map establishes a correspondence between input data and the neurons of the lattice, 
such that the topological relationships among the inputs are reflected as faithfully as possible in the 
arrangement of the corresponding neurons of the lattice. This provides a nonlinearly flattened and bi- 
dimensional version of the input space (Ritter 1988). The algorithms consist of two steps: for an input 
vector x, find the neuron whose activity is maximum. Then, in a defined subset of neurons around this 
maximum V( i ,  l ( t ) ) ,  the weight vectors are moved in the direction of the input vector x according to the 
equation 

Wi(t + 1) = Wj(t)  + a( t ) ( z ( t )  - Wj(t))  

Wj(t + 1) = Wj(t)  
i E V(i ,  l ( t ) )  (G6.1 . l )  

i # V ( i ,  l ( t ) ) .  

In equation (G6.1.1), the function l ( t )  controls the width of the neighborhood, and a(t)  controls the 
amplitude of the weight modification. These two functions are decreasing over the time t .  Numerous 
iterations of these steps build an organized network, where the weights are ordered and quantify the input 
space. After the convergence of the algorithm, each country, represented by a vector x ( k ) ,  is presented 
to the network, and the unit whose activity is maximum is labeled with the name of the country. A 
two-dimensional representation is obtained, where relationships built by this data analysis appear clearly. 

G6.1.4 The training set 

The data of the training set are values of economic variables which characterize the state of 52 countries 
for the year 1984. The gross internal product of a country (GIP) per inhabitant concerns the countries with 
a planned economy. The infant mortality rate is the number of infants who died before the age of one 
year, compared to the number of living infants born during the year. The illiteracy ratio is the fraction of 
illiterate people older than 15 years, except for some countries for which the ratio is estimated compared to 
people older than 10 years. The school attendance index is the ratio of the education registration for people 
between 11 and 17 years old. In the example chosen, 52 countries are taken into account. Each one is 
represented by a six component vector z = [xl, x2,  x3, x4, x5,  xb] .  The components represent, respectively, 
the annual economic growth, the infant mortality, the illiteracy ratio, the school attendance index, the GIP, 
and the GIP annual increase. Typical vectors are shown in table G6.1.1. 

The entire set of data is then represented by a matrix, with 52 lines and 6 columns. The learning 
process is done on a square network, with 8 x 8 neurons. 

G6.1.5 Preprocessing 

For this application, the input data are normalized. This means that, for each variable, the mean value is 
~ 4 . 4  equal to zero, and the variance is equal to one. This preprocessing is important to give an equal importance 

to the variables. It is also necessary for a correct comparison with the normalized principal component 
analysis. 

G6.1:2 Handbook of Neural Computation release 9711 @ 1997 1OP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Auplication of self-organizing maps to the analysis of economic situations 

Table G6.1.1. Some values associated with each country. All the values are percentages (%) except the 
gross intemal product (GIP). 

Annual Infant Illiteracy School Annual GIP 
Country increase mortality ratio attendance GIP increase 

Canada 1 .o 1 .o 0.9 93.0 9857 3.0 
France 0.4 0.9 1.2 86.0 11326 0.5 
Mali 2.8 15.2 86.5 16.7 0190 1.5 
South Africa 2.9 8.9 50.0 19.0 2690 -2.9 

G6.1.6 Output interpretation 

After the adaptation phase, the weights are fixed. Each six-dimensional example, among the 52 available, 
is presented to the network and the winning unit is labeled with the name of the corresponding country. 
After presentation of all the 52 examples, a map is obtained (see figure G6.1.2). It reflects a certain order 
which is representative of the similarities and the differences between the countries. 

..d" 
. I' ...-.* 

....... 0 ...... / 

Figure G6.1.2. Organization of an 8 x 8 map of neurons, with the six-dimensional examples. 

As we can see in figure G6.1.2, the countries are clustered in a way that emphasizes the socio-economic 
similarities and differences. Opposite regions correspond to countries with strongly different economic 
situations. The main clusters correspond to the most industrialized countries, the oil producing countries, 
the former communist countries, the South American countries and the African countries. Generally 

@ 1997 IOP Publishing Ltd and Oxford University press Handbook of Neural Computation release 9711 G6.1:3 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

speaking, it is easy to see in this example that economic information is extracted from the direct measures. 
But it is also important to make an economic interpretation of this representation. This task is relevant for 
an expert in economics whose main task is to define the meaning of the two axes. 

G6.1.7 Comparison with traditional methods 

The principal component analysis (PCA) method is designed to draw high-dimensional vectors in a lower 
subspace (generally two dimensions). The main constraint in obtaining the representation is to maintain 
as much information as possible in the transformation. The transformation performed by the Kohonen 
algorithm is strongly similar, but essential differences exist and can be valuable in some applications 
(Blayo 1991). 

First of all, the projection obtained with the PCA is continuous, as shown in figure G6.1.3. This is 
not the case with the Kohonen algorithm. Only discrete locations of the countries are available because 
there is only a discrete lattice of neurons (8 x 8 in this example). 

Kuwait Saudi Arabia 
BShiO 

orecce 

Spain 
&lMd 

Argentina 
United 

Kingdom 
USSR Hungrry 

Poland 
Cuba 

DRG S O U t b  
Korea 

Niger 
seoeml 

Figure G6.13. Projection of the data onto a plane spanned by the two first eigenvectors of the covariance 
matrix. 

The PCA is a linear method. It performs an orthogonal projection on a plane spanned by eigenvectors 
of the covariance matrix. As we can see in figure G6.1.3, the PCA makes clusters which are significant for 
economists. The distances between countries, and also between clusters, can contain some information on 
the relative distances of the countries in the six-dimensional space. This is not always true, and adequate 
statistical tests can confirm the representation obtained. 

The Kohonen algorithm realizes a projection on a surface spanned by the network topology. This is 
completely defined by the relation of order between the neurons: a simple one-dimensional relation or a 
bi-dimensional one, square or hexagonal. Other relations (three or higher) can be considered but they are 
not necessarily useful for representation purposes. 

From a computational point of view, the PCA requires the inversion of a covariance matrix. This is 
a global operation, which can be very costly when applied to large matrices. The Kohonen algorithm is 

G6.1:4 Handbook of Neural Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Application of self-organizing maps to the analysis of economic situations 

sequential, and does not require any global information. Only local modification occurs, and after a small 
number of iterations, the global order between data appears in the map. 

G6.1.8 Conclusion 

From a statistical point of view, the method of self-organizing maps is an original dimension reduction 
method. It has no real statistical analog, and thus can be very useful for specific applications where a 
linear method fails. Current research is developing in this direction (Demartines and HBrault 1993), and 
will reinforce the cross-fertilization of the statistical and neural network fields. 

References 

Blayo F 1991 Data analysis: how to compare Kohonen neural network to other techniques Artificial Neural Networks 

Demartines P and HBrault J 1993 Representation of non-linear data structures through a fast VQP neural network 

Kohonen T 1988 Self-organization and Associative Memory 2nd edn ed T S Huang and M R Schroeder (Berlin: 

Ritter H 1988 Kohonen’s self-organizing maps: exploring their computational capabilities Pmc. Int. Con& on Neural 

(kcture Notes in Computer Science 540) ed A Prieto (Berlin: Springer) 

Proc. Int. Con& NeuroNimes93 pp 41 1-24 

Springer) 

Networks 1 109-16 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G6.1:5 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

66.2 Forecasting customer response with neural 
networks 

David Bounds and Duncan Ross 

Abstract 

This case study looks at the application of neural computing to commercial problems. It 
highlights an area where neural computing has been shown to provide a direct commercial 
advantage for a company, and indicates why neural networks were the preferred approach. 
Elements of preprocessing, preparatory work, and network design are discussed. 

G6.2.1 Introduction 

Since the early 1980s, developments in neural computing have given neural networks the capability to solve 
complex ‘real world’ problems. However, it is only more recently that the benefits of neural computing 
have been applied to commercial and business areas. 

This is perhaps surprising given the amount of money and effort that has been put into information 
technology systems in the last decade, often for relatively small returns. An article in the Financial 
Emes made the dangers of this position very clear: ‘US service companies spent at least $750 billion 
on communication systems, computer hardware and software during the 1980s. During this period, their 
annual productivity gain was a mere 0.7%’ (Financial rimes 1994). 

The existence of large corporate databases, built up over this period, provides an ideal opportunity 
for using neural networks to gain a business benefit, and many companies are now routinely using the 
technology. 

The application of neural computing to corporate data analysis has been given further impetus in the 
United Kingdom through the Department of Trade and Industry’s Neural Computing: Learning Solutions 
program. This two-year-long, 5.7 million campaign drew to a close in 1995, and has enabled many 
UK companies to use neural computing solutions within their businesses. One of the cornerstones of the 
campaign has been the work done by six applications demonstrator clubs, each of which has produced 
examples of practical ways in which neural computing can give an organization a business advantage. 
Recognition Systems has run one of these clubs, the NeuroData Club, in conjunction with Logica plc. 
NeuroData has successfully investigated the application of neural computing to corporate data analysis- 
creating applications in the fields of customer response, database completion, and sales forecasting. 

This case study looks at the application of neural networks to customer response and customer 
targeting-predicting whether a customer will respond to a particular offer, and providing a strategy for 
maximizing the profit from a customer database. Customer targeting is of great importance to companies. 
As the amount of money spent on direct marketing continues to rise, the potential savings produced by 
accurate customer targeting also grow. This article shows that neural networks provide a considerable 
benefit over conventional approaches for this type of problem. 

Although this case study looks in detail at a direct marketing problem, it is worth emphasizing that 
the benefits of neural computing have been successfully demonstrated in many fields-their success is due 
to their being an efficient and flexible approach to model building, not to a particular type of problem. 

@ 1997 IOP Publishing Ltd and Oxford University Press Hancibook of Neural Computation release 9711 G6.2~1 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

G6.2.2 Project overview 

A typical response rate for a mailing campaign, where an offer is posted directly to a potential customer, 
is in the region of one to two per cent. If people who want to respond to the offer can be identified in 
advance, then people who will not respond can be removed from the mailing. This has a double benefit: 
the cost of the campaign is reduced, and people who are not interested in this product (but who may be 
interested in other products from the company) are not annoyed by junk mail. 

The problem described in this case study was provided by a company that had a large customer 
database and approached its customers by direct mail with offers for new products. As a result, they had 
built up a history of individual customers and how each had responded to certain campaigns. Associated 
with each customer were a range of parameters, examples of which are listed in table G6.2.1. In addition, 
each customer had a parameter that indicated whether they had been a respondent or a nonrespondent to 
a previous campaign. 

Table 66.2.1. 

Parameter Description 

AGE The customer’s age 
PREMIUM 
MOSAIC Geodemographic classification 
SEX The customer’s sex 
TVREGN The customer’s TV region 

The premium paid by the customer 

G6.2.2.1 Visualization 

The complexity of the problem can be demonstrated by visualizing the data. This has often proved to be 
a useful first step in determining the best approach for a particular problem. 

Figure 66.2.1. The 3D+ tool. 

G6.2~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Forecasting customer response with neural networks 

‘The purpose of computing is insight, not numbers’, wrote Richard Hamming (1962). Visualization 
is concerned with exploring data and information in such a way as to gain understanding and insight 
into the data. The goal of visualization is to promote a deeper level of understanding of the data under 
investigation and to generate new insight into the underlying processes. 

Visualization is inherently application-dependent and many techniques only make sense within a 
particular context. An important point to note is that data that are fed into a visualization tool are typically 
sampled from some underlying phenomenon. It is this underlying phenomenon that we are aiming to 
visualize and hence understand-not the data themselves. This distinction is fundamental. 

Figure G6.2.2. The 3D+ tool showing the distribution of age. 

The initial visualization for this study was done using a tool known as the 3D+ tool. This allows 
input data distributions to be examined for any three input variables at a time. The data distribution across 
additional input variables can also be examined for subranges of the first three inputs. Such functionality 
allows the user to become more familiar with trends and clusters in their data. In addition, the response 
of the customer can be overlaid on the tool display as a color map. This allows conclusions to be drawn 
about the nature of the data. The use of the 3D+ tool has been described more fully elsewhere (Bounds 
and Barrett 1995). 

A three-dimensional room (two walls and a floor) is displayed on the screen. Three input variables 
are displayed on the x ,  y and z axes with the response being overlaid as color on each data point. Each 
individual wall or floor has two variables plotted on it as a scatter plot. The variables that are chosen to 
be displayed on the graph are chosen automatically according to the amount of variance they contain. The 
first three variables that are used are those that contain the most variance (figure G6.2.1). 

This tool is referred to as 3D+, as more than three dimensions can be explored. This is done by the 
user drawing a cube or probe around an area of points and inspecting them further in relation to the next 
three most variant variables, thus establishing which variables affect the response rate the most. For each 
subspace, a window containing subspace information is displayed, which gives the names of the variables 
being displayed, the axis on which each variable is displayed and the ranges of each variable. The window 
also contains the ranges that the probe is currently covering. 

Rules can be generated from these tools by inspecting the distribution of the data points on the walls 
and floor and by looking at the colors with which the points have been overlaid. One rule that can be 
formulated is that the older the clients are, the fewer times they have been sent mail, and the more policies 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G6.2~3 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

of type x they hold, then the more likely they are to respond. 
Other useful information can also be extracted from these plots. For example, from the plot in 

figure G6.2.2 it can be seen that there is an even distribution of age: clients of all ages exist within the 
database; it is not biased towards any age range. 

The results from the data exploration allow new insight into the database, the data distribution and 
the nature of the customers currently on file. They even allow simple rules to be derived that may improve 
the ability to target customers more accurately, for example: 

(i) The older a customer is the more likely they are to respond. 
(ii) The higher the premium they are paying, or the richer they are, the more likely they are to respond. 
(iii) The more policies of type x they hold, and in general the more policies of any type they hold, the 

more likely they are to respond. 
(iv) The fewer times the customer has been sent mail, the more likely they are to respond. 

However, these rules demonstrate one of the limitations that conventional approaches to targeting 
customers suffer from, and that neural computing can overcome-they are a linear approximation of a 
nonlinear problem. As can be seen from the 3D+ plots the problem is highly non-linear, and a non-linear 
technique is required to gain the maximum benefit from these data. 

G6.2.3 Preparatory work 

Before a neural solution can successfully be deployed it is essential that there is a large enough pool of 
historical data relating to the problem of training (model building) and testing data sets to be constructed. 
It is also vital that the data have been prepared in such a way that the neural networks can make maximum 
use of the information that they contain. Data fields that contained unreliable information and those that 
were set entirely to one value were removed from the database before model building began. Fields were 
examined for inconsistencies, and records that were thought to contain too many errors were dropped. 

Another preprocessing technique that can improve the results produced by modeling the problem is 
that of weighting input data fields. By applying specific functions to individual fields data distributions 
can be made more uniform, and extreme values can be limited. The data available then had to be split 
sensibly between a training set (used to build the model) and a test set that would be used to verify the 
success of the model. 

84.4 

G6.2.4 Neural network design 

c1.6.2 The neural network model chosen for this application was the radial basisfunction network. The radial basis 
c1.2 function is a supervised neural network that differs from the more commonly used multilayer perceptron 

in that it will produce a solution in one pass of the data, rather than through an iterative process. 
Radial basis functions build classifications from ellipses and hyperellipses that partition the input data 

space. These hyperellipses are defined by radial functions 4 of the type 

where 1 I - I is a distance measure between an input pattern x and a center y that is positioned in the 
input data space. These centers are defined by the weights associated with the inputs to the nodes in the 
hidden layer of the radial basis function. 

The function f in k-dimensional space that partitions the space is composed of elements f k ,  where 

m 

Since this equation requires only the solution for the linear coefficients A, the technique is rapid, and 
requires only one pass of the data to produce a solution. 

G6.2~4  Handbook of Neural Compurarion release. 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Forecasting customer response with neural networks 

G6.2.4.1 Training data 

A frequently used rule of thumb is that the number of records needed to train a system is equal to at 
least ten times the number of weights in the system. For this application, after data encoding there were 
approximately 50 input fields for the model. Taking the above rule of thumb this means that approximately 
5000 records would be required to train the model. 

However, it is important that the training data set has an equal number of respondents and 
nonrespondents in it. If the set is biased towards nonrespondents it will weaken the model’s ability 
to identify respondents correctly. Unfortunately, this is the case in the real world where the response 
rate of direct marketing campaigns is about 1%. So if 2500 respondents are required for the training set, 
then we need to have historical data for approximately 250000 customers to be able to build a model 
successfully. It is rare for this number of data to be available, and so other techniques need to be adopted 
in order to reduce the number of training data required. 

One approach which has been found to be effective in reducing the quantity of training data needed 
is partitioning tasks. To do this, the problem is broken into a number of smaller subproblems, each of 
which uses only a subset of the input fields to learn the problem. In this problem the input data were split 
into three subproblems, each of which related a group of input features with the customer’s likelihood to 
respond to a campaign. The groups of input features were: 

0 personal information 
0 policy information 
0 mailing history information. 

P Personal RBFl. / Text1 

inputL Poiicy RBF?’ RBF4 

History RRF3 Gains 
Curve1 

Figure G6.2.3. The topology. 

Neural models were built to learn the correlations between these groups and the likelihood of 
responding. To prevent correlations between these groups from being lost, the outputs from these models 
are used as the input to another neural network (figure G6.2.3). It is the output from this final network 
which gives the likelihood that any given customer will respond to a mailing. In the figure, the arrows 
indicate the flow of data, the icons personal, policy, and history allow data fields outside these groups to 
be blocked, and the icons RBFl to RBF4 are the radial basis functions that model the problem. 

G6.2.5 Outputs from the neural networks 

When the neural networks had been trained, and experimentation had been undertaken to find the best 
parameters for the neural models used, the test data were passed through the application to establish the 
success of the models. The test data set had not been seen during model building, but contained customer 
records where the outcome of a previous campaign (whether or not the customer had responded) was 
known. When each customer record was passed through the application a value ranging between 0 and 1 
was produced, indicating the probability of that customer responding to the mailing. The records in the 
test data set were then ranked, with the most likely to respond placed first, and the least likely to respond 
placed last. 

The most important measure of success for the company involved is the financial advantage that can 
be gained from using a neural network model. To evaluate this a gains. chart was used and linked to a 
simple cost-benefit analysis. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G6.2~5 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

G6.2.5.1 Gains charts 

The gains curve is useful because it enables a direct calculation of the impact that an application will 
have if used in a direct marketing campaign. By comparing the results produced by a model to those that 
would be achieved if customers were mailed at random, it is possible to evaluate the improvements that 
have been achieved. The test data are scored using the predicted outputs from the application. The scored 
data are then ranked and compared with the targets. A plot is then produced which shows the proportion 
of the total database against the number of customers that would have responded if that percentage of the 
database had been mailed (figure G6.2.4). 

If the customers were mailed by random selection from the database, rather than using the model, the 
equivalent plot would be a straight diagonal line. The difference between the two lines if a certain 
proportion of the database is mailed is the gain. The gains curve shown in figure G6.2.4 clearly 
demonstrates the benefits that the model provides. However, the company was also interested in how 
this related to financial benefits. This was done using a cost-benefit analysis (figure G6.2.5). 

Gains plot 

lailing to m% 01 the dambass gives m. response 

Figure G6.2.4. A gains curve. 

Darnbass 

%Moiled j3863% 
Numbarol Mailings 

COSID 

Cost PBI Mailing. On P 
Cos1 psr Respoass. Cr E 
Cost per Eyer.  Cb L 
Incoma par Eyer. Ib P 
Buying Rde, B 

rResponse 

RaponoeRavs 

j193% 1 Lost Response m% 

Figure G6.2.5. A typical cost-benefit analysis. 

The cost-benefit analysis simply calculates the number of respondents that would be achieved by 
mailing a proportion of the ranked database, and associates this with the costs of sending each piece of 
mail. By factoring in the benefit to the company for each purchase, the costs of handling each response 
and each purchase, and the known buying rate for respondents, a net benefit can be calculated for running 
the campaign. This is inevitably only an approximation, but has nevertheless proved effective as a means 
of quickly establishing the relative value of different strategies. 

From analysis of the gains curve and cost-benefit analysis a strategy can be chosen for a forthcoming 
mailing campaign. Two potential strategies that are often deployed are conservative and cherry picking 
strategies. In a conservative strategy the aim is to reduce the size of a mail shot, while retaining almost 

G6.2:6 Handbook of Neural Computation release 9111 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Forecasting customer response with neural networks 

all of the respondents. For example, you could mail 80% of your database hoping to reach 95% of the 
actual respondents-thus saving one fifth of your mailing costs. In a cherry picking strategy the aim is 
to send offers only to those few customers who have a significant likelihood of responding to the offer. 
In this scenario the size of the mail shot is reduced dramatically, but at the cost of losing more of the 
potential respondents. The strategy used in each case depends on the success of the model and the financial 
requirements of the company. 

(26.2.6 Conclusions 

Neural computing has been shown to be a successful way of increasing the value of corporate data. By 
applying the unique pattern learning capabilities of neural networks a significant advantage can be gained 
when compared to previous methods of data analysis. Although this article deals with one particular use of 
the technology, many other applications have been successfully developed in business areas that include: 
0 

0 database completion 
0 segmentation of databases 
0 demand forecasting 
0 fraud detection. 
Those companies and organizations that are willing to make use of neural computing are gaining a 
significant advantage over their competitors throughout the world. 

predicting customer attrition in the insurance industry 

References 

Bounds D and Barrett P 1995 Neural networks and data visualization Neural Networks ed J G Taylor (Oxford: Waller) 
Financial Times 19 July 1994 
Hamming R W 1962 Numerical Methodsfor Scientists and Engineers (New York: McGraw-Hill) 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9111 G6.2:7 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

66.3 Neural networks for financial applications 

Magali E Azema-Barac and A N Refenes 

Abstract 

Modeling of financial systems using neural network techniques has attracted a great 
deal of attention in the past few years. Neural networks, because of their inductive 
nature, can infer complex nonlinear relationships between input and output variables, 
and thus bypass the step of theory formulation. This paper reviews the state of the art in 
financial modeling using neural networks and describes applications in key areas, such 
as foreign exchange and fixed income. It shows that with careful network design, the 
backpropagation learning procedure is an effective way of training neural networks for 
time-series prediction. 

G6.3.1 Introduction 

Modeling and prediction of financial systems has traditionally attracted a lot of attention. The basic 
methodology has been statistical, enabling a limited number of determinants of any given asset price to be 
analyzed at the same time (Ross and Ross 1990, Peters 1991). Because of their inductive nature, neural 
networks can infer complex nonlinear relationships between input and output variables. Neural networks 
have thus been applied to a number of financial applications and have demonstrated better performance 
than conventional approaches (Hoptroff 1993, Diamond er a1 1993). 

In this paper, we review financial modeling using neural networks and describe applications in two 
key financial areas: foreign exchange and fixed income. The foreign exchange application deals with 
univariate time-series prediction. The bond application deals with multivariate time series. 

G6.3.2 Finance and neural networks 

G6.3.2.1 Modeling jnancial systems using neural networks 

The development of systems for modeling and predicting financial indicators has traditionally received a 
great deal of attention, but success in both long-term and short-term forecasting has been somewhat limited 
(Burns 1986). Three main reasons can be identified. Firstly, classical statistical techniques have been used, 
and these techniques enable only a limited number of determinants of any given asset price to be analyzed 
at the same time. The financial markets, however, operate on a large number of factors at any one time. 
Secondly, the relationship between an asset price and its determinants changes over time. These changes 
can be abrupt: for example, in the currency markets a rise in interest rate can strengthen a currency one 
month and weaken the same currency the next month. Neural networks can, in principle, deal with the 
problem of structural instability. Thirdly, many of the rules which govern asset price are qualitative or at 
best fuzzy, requiring judgement and hence by definition are not susceptible to purely quantitative analysis. 

Because of their inductive nature, dynamical systems such as neural networks can infer complex 
nonlinear relationships between input and output variables. For example, neural networks can be used to 
determine the structural relationship between a given asset (e.g. bond price) and potential determinants 
(e.g. government interest rate, inflation). 

Typical applications of neural networks in financial modeling include time-series prediction; for 
example, forecasting foreign exchange rates and classification such as stock ranking (Refenes er al 1992). 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G6.3 : 1 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

The development of successful applications of neural networks in finance involves two areas: financial 
engineering and neural network engineering. 

Knowledge of the financial application is required in order to achieve good generalization performance. 
For example, when analyzing the structural relationship between an asset and its determinants, one needs 
to know the potential economic variables and/or indicators, their significance and correlation. In the case 
of time-series predictions, it is necessary to be aware of the econometric methods for preprocessing and 
normalizing data sets. 

Concerning neural networks, awareness of the interrelations between ‘network engineering’ parameters 
and network performance metrics is essential for successful application development. The next section 
outlines neural network performance (e.g. convergence, generalization and stability) and control (e.g. 
activation function, cost function) parameters. 

G6.3.2.2 Backpropagation performance and control parameters 

This section outlines the performance and control parameters associated with the design and use of 
ci.z.3 backpropagation neural networks. The reader is assumed to be familiar with the backpropagation algorithm. 

The backpropagation neural network is generally believed to be an effective learning procedure when 
the mapping from input to output contains both regularities and exceptions (LeCun 1989) and it is, in 
principle, capable of solving virtually any nonlinear classification problem. There are three main problems 
and thus metrics to evaluate the performance of a backpropagation network in nontrivial applications: 

(i> 

~ 3 . 5  (ii) 

(iii) 

Convergence concerns the learning process, and whether or not this process is capable of learning the 
classification defined in the data set, under what conditions it does so, and what are the computational 
requirements for convergence. Fixed-topology networks prove convergence by showing that in the 
limit, as training time tends to infinity, the error minimized by the gradient descent method will tend 
to zero. 
Generalization measures the ability of a network to recognize patterns outside the training set. 
Frequently, an analogy is made between learning and curve fitting. There are two problems in 
curve fitting: finding the order of the polynomial, and finding the coeficients of the polynomial 
(once the order has been established). For example, given a certain data set on a second order 
polynomial, ax2 + bx + c, the values for a ,  b ,  c are computed normally by minimizing the sum of 
the squared differences between required and predicted f ( x i )  for xi in the training set. Once both 
the order and the coefficients have been computed, the value of f ( x i )  can be calculated for any xi  
including those not present in the training data set. Choosing orders lower than is appropriate leads 
to a poor approximation even for the points in the data set. 
On the other hand, choosing a higher order implies fitting a high-degree polynomial to the low-order 
data. Furthermore, in practice the high-order terms do not end up with a zero coefficient. Typically, 
this leads to a perfect fit for the points in the data set but very bad f ( x i )  values for xi out of the 
training data, i.e. the system generalizes poorly. 
By analogy, a backpropagation network with a structure (network topology and layer size) simpler 
than necessary cannot give good approximations even to patterns in the training set. On the other 
hand, a network with a structure more complicated than necessary ove@ts, that is, it gives a good fit 
for the training set but performs poorly on unseen patterns. 
Stability concerns the consistency of the results produced by neural networks when varying the 
values of the parameters that influence their performance. Neural networks are known to produce 
wide variations in their predictive features (Gorman and Sejnowski 1988). That is, small changes in 
network design, learning times, initial conditions, and so on might produce large changes in network 
behavior. For the types of application considered here, it is important to identify intervals of values 
for these parameters which give statistically stable results, and to demonstrate that these results persist 
across various training and test sets. 

Controlling and thus improving the performances of a neural network is done using four main control 
parameters. 

~ 3 . 2 . 4  (i) Activation function. This parameter controls the choice of activation function for the neurodunit. The 
activation function is nonlinear, such as a hard limiter, or a sigmoid. The simple hard limiter functions 
produce values of either 0 or 1 depending on whether the total input of a unit exceeds a certain 
threshold value. Sigmoid functions are the most widely used (Refenes and Alipi 1991) in all types 

G6.3~2 Handbook of Neural Computation release 9713 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for financial applications 

(ii) 

(iii) 

(iv) 

of learning. They are more complex and differentiable. There are two types of sigmoid functions: 
asymmetric and symmetric (e.g. scaled hyperbolic tangent). It has been shown that symmetric sigmoid 
functions are capable of improving the speed of convergence over the commonly used asymmetric 
sigmoid (Refenes and Alipi 1991). 
Costfunction. The choice of the cost function is believed to play an important role in determining the 
convergence and generalization characteristics of neural networks (Hinton 1987). The most commonly 
used function is the family of quadratics, e.g. the least-mean-square error. Several researchers 
suggested changing the cost function from the quadratic measure (e.g. Fahlman and Lebiere 1990), 
but the exact relationship between cost function and performance measures is somewhat undefined 
and is currently the subject of intensive research. In the applications described in the next section it 
is the standard quadratic cost function that is used. 
Network architecture. The architecture of a neural network is determined by the topology of the 
units and the connections between them. The network's topology is the main parameter controlling 
the generalization capability. Theoretical studies (Denker 1987) have shown that the likelihood 
of correct generalization depends on the size of the hypothesis space (i.e. the total number of 
architectures considered), the size of the solution space (i.e. the number of architectures producing 
good generalization) and the number of training examples. In our applications, multiple architectures 
are tested. 
Gradient descendascent. The most important parameter for controlling the gradient descent is A, 
the learning rate. Several researchers have experimented with additional parameters, such as the 
momentum terms, second derivative, etc, but the learning rate is the parameter controlling both the 
speed of convergence and the stability. In principle, there are two approaches to adjusting the learning 
rate. The simplest one is to use the same learning rate for the whole network and thus experiment to 
optimize both convergence speed and stability. The second one is to use one learning rate for each 
weight, and thus use a heuristic rule to adapt each learning rate (Refenes and Azema-Barac 1993). In 
our applications we use one learning rate for the whole set of connections. We also use a momentum 
term (Fahlman and Lebiere 1990). 

G6.3.3 Neural networks applied to foreign exchange markets 

G6.3.3. I Application environment 

Univariate time-series prediction is a core component of many financial modeling systems (Denker 1987). 
The system described here is designed and trained to predict the exchange rate between the US$ and 
the DM. Non-model-based techniques such as neural networks rely heavily on the identification of strong 
empirical regularities in a system which is often contaminated by noise. A common method for identifying 
such regularities is windowing (Refenes and Azema-Barac 1993). That is, two windows W' and WO of 
fixed sizes n and m are used to analyze the data set. For a given window size the assumption is that the 
sequence of values Wh, . . . , Wi is somehow related to the following sequence: W i ,  . . . , Wt, and that this 
relationship, although unknown, is defined entirely within the data set. Various methods can then be used 
to correlate the two sets of values. In the case of neural networks W' + WO is used as a training vector. 
Both windows are shifted along the time series using a fixed step size s. The choice of window and step 
sizes is critical to the ability of any prediction system to identify regularities and thus approximate the 
hidden relationship accurately. For our simulations, the parameter values were n = 12, m = 1 and s = 4 
(Refenes and Azema-Barac 1993). 

G6.3.3.2 Neural network system 

The architecture of the neural network system at the inputloutput level is determined by the application 
sizes, n and m described above, The internal topology of the network is more difficult to determine 
a priori. In this application, a single hidden-layer fully connected backpropagation network was used. 
This type of network was used principally because of its proven capability in various fields (Gorman and 
Sejnowski 1988). The neural networks used in this application correspond to a (12, x ,  1) fully connected 
backpropagation network with a learning rate A set at 0.6 and a momentum term equal to 0.25. A large 
number of experiments have been done while varying the number of hidden units, x ,  in order to achieve 
stability. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G6.3:3 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

G6.3.3.3 Training and test sets 

The training and test sets consist of currency exchange data for the period 1988-9, with on-hourly updates 
for a complete year, that is, 260 trading days. The first 200 items of the data set were used for training, 
while the remaining 60 data items were used for testing the network performance, and, in particular, its 
generalization capability. With the windowing mechanism described earlier, the resulting training test 
consists of overlapping snapshots of the time series, each of 12 hours length, moving along the curve at 
an interval of four hours. The overall size of the training set is therefore equal to 8236 training vectors. 
This overall size allowed us to conduct extensive tests on learning speed and generalization performance 
(Refenes and Azema-Barac 1993). 

Furthermore, in order to thoroughly test the generalization performance of the network, two types of 
forecasting were tested: single-step and multi-step prediction. 
0 Multi-step prediction allows the network to be tested for long-term forecasting which aims to identify 

general trends and major turning points in a currency exchange rate. In a multi-step prediction, the 
neural network uses a set of current values to predict the value of the exchange rate over a fixed 
period, i.e. the prediction at time t is fed back to the network for forecasting at time ( t  + 1). 
Single-step prediction allows the network to predict the exchange rate only one step ahead of time. 
This serves two purposes. Firstly, it is a good mechanism for evaluating the adaptability and robustness 
of the prediction system by showing that even when its prediction is wrong, it is not dramatically 
wrong and the network can use the actual value to correct itself for the next single-step prediction. 
Secondly, it can act as an alarm generator and would allow traders to buy or sell in advance of a 
price increase or decrease, respectively. 

0 

exchange rate exchange rate 

i I I I I 1.92 1 1 .  1 

1.90 
1.88 
1.86 
1 .84 
1.82 
1 .80 
1.78 
1.76 
1.74 
1.72 
1.70 
1.68 
1.66 

1.92 
1.90 
1.88 
1.86 
1.84 
1.82 
1.80 
1.78 
1.76 
1.74 
1.72 
1.70 
1.68 
1.66 

1.58 
1.56 izz 0.00 50.00 100.00 150.00 200.00 250.00 

V Y I V  I I I I , 

1.64 1.62 1 
1.60 1 
I._" , , 

0.00 50.00 100.00 150.00 200.00 250.00 

Figure 66.3.1. (a) Multi-step prediction-the full curve shows the whole time series while the dotted 
curve shows the forecasted exchange rate produced by the neural network from days 200 to 260 and using 
only forecasted values. (b) Single-step prediction-the full curve shows the whole time series while the 
dotted curve shows the forecasted exchange rate produced by the neural network for days 200 to 260. 

G6.3.3.4 Results 

As shown in figure G6.3.1 ( a ) ,  the results for the multi-step prediction for the general trend in the exchange 
rate is very accurate. The network predicted a sharp fall and then a rise in the exchange rate. For the first 
30 days, it is very accurate both in terms of trends, and also in terms of absolute values. The network 
predicted a turning point at approximately the time it took place, and estimated quite accurately the pace 
of the recovery. 

Figure G6.3.1(6) displays the result for the single-step prediction in which the input values are the 
values of the observed time series. The prediction is quite accurate in that it follows the actual prices 

G6.3 :4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for financial applications 

closely. When the network makes a mistake with respect to predicting a turning point, it is still capable 
of adjusting itself as soon as the actual price is made available at the next step. This type of performance 
is often cited as indicative of robustness; it is, however, of little use in practical terms. 

G6.3.4 Neural networks applied to the bond markets 

This application deals with the prediction of a set of bond returns on a month-to-month basis. Each 
variable in the system is, in fact, a (lead) time series which is treated in the same way as the time series 
in the previous application, i.e. using windowing. 

G6.3.4. I Application environment 

The aim of this application is to perform quantitative asset allocation between bond markets and US cash 
to achieve returns in dollars significantly in excess of any industry benchmark (e.g. the JP Morgan bond 
index). Assets are allocated in seven markets (United States, Japan, United Kingdom, Germany, Canada, 
France and Australia) chosen on the basis of capitalization. 

Each market is modeled on an individual basis using local (e.g. interest rates) and global (e.g. oil 
prices) parameters. The system is developed in two stages. In the first stage, each local market is modeled 
with the aim of producing a local portfolio (i.e. local market and USA cash) which out-performs a standard 
local benchmark (50% in the market and 50% in cash). In the second stage the results for the individual 
markets are integrated in the global portfolio (seven markets). 

G6.3.4.2 Neural network system 

The architecture of the neural network and portfolio system are shown in figure G6.3.2. For each market 
the dollar-adjusted bond return is predicted one month ahead. The predicted returns are then passed through 
a portfolio management system which imposes constraints on the allocation to minimize the risk. 

F 
U 
N 
D 
A 
M 
E 
N 
T 
A 
L 
S 

PORTFOLIO MANAGEMENT 
LOCAL NEURAL LOCAL NEURAL 

PREDICTORS -1 PREDICTORS F 

US CASH 

Figure G63.2. Neural network and portfolio system. 

Each local neural network corresponds to a two-hidden-layer backpropagation network. Each uses 
past bond-return time series and also market-related parameters, for example, oil prices to predict the next 
month’s bond return. Each local network typically uses between four and eight inputst. It should be noted 
that the neural networks described here have been extensively validated with various values for network 
control parameters, and in particular network architecture. Stability of the results has been achieved for 
networks with two hidden layers and trained for loo00 to 20000 iterations. 

G6.3.4.3 Training and test sets 

The data are returns derived from government bond yields of the longest maturity for each market, using 
a fixed elasticity factor as given in table G6.3.1. 

t These leading indicators are proprietary to Econstat Ltd. 

@ 1997 IOP Publishing Lid and Oxford University Ress Handbook of Neural Computation release 9711 G6.3:5 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

Table G6.3.1. Elasticity factors. 

Maturity Elasticity 
USA 30 8.25 
Japan 10 6.78 
UK 15 6.49 
Germany 10 5.90 
Canada 10 7.12 
France 10 6.61 
Australia 10 5.26 

The training data used for each local market are bond returns from 1974-1988, updated monthly. A 
typical training vector ri has the following format: 

ti = v;. .. v;, v; .. . vi, . .. , v,". . . v; --f y (G6.3.1) 

where 0 through n are fundamental or technical leading indicators, each containing up to six items denoting 
the rate of change of that indicator over the past six months. The right-hand side, y, is the target or test 
value, that is, the bond return at time (t + 1). In this application and in addition to the training and 
test data sets, there is a cross-validation data set composed of 10% of the whole data set. These data are 
excluded from both the training data set and test data set. The cross-validation data set is used for stopping 
the training prematurely; this allows the network to avoid overfitting and leads to better generalization 
performance. 

G6.3.4.4 Results 

The results obtained by the neural-network-based system are compared to a global benchmark calculated 
according to the proportion of the global market capitalization represented by each market: United States 
42%, Japan 23%, United Kingdom 13%, Germany 11%, Canada 3% France 4% and Australia 4% (this 
benchmark is not dissimilar from the JP Morgun index). When comparing the cumulative return of the 
neural-based system versus the global benchmark, the neural portfolio outperforms the benchmark by a 
factor of 3.6 (Diamond et ul 1993). But more important is the consistency of the outperformance, that 
is, in fund management one is willing to trade off some outperformance for short-term consistency-the 
neural system never under-performs the benchmark for two consecutive months. Figure G6.3.3 displays 
the relative outperformance of the neural-network-based system versus the global benchmark and shows 
that the neural system has outperformed the benchmark consistently. 

6 6 
E 5  5 E  

4 $  B 4  
3 e  E 3  

.- c 2  2 .9 

(i -1 
6 -2 

c : ,  
1989 1990 1991 1992 

Figure 66.3.3. Neural portfolio relative outperformance versus global benchmark. 

G6.3.5 Conclusion 

We have reviewed financial modeling using neural networks and described two applications in key areas 
of forecasting, that is, foreign exchange and asset allocation. We have shown that simple neural learning 
procedures such as the backpropagation algorithm outperform traditional approaches. In foreign exchange, 
the backpropagation was applied to the prediction of univariate time series. The resulting neural network 

G6.3~6 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks for financial applications 

is able to predict the general trend and turning point. In the bond markets, backpropagation was applied 
to  the prediction of multivariate time series. The resulting neural-based portfolio consistently outperforms 
a traditional benchmark in the field: the JP Morgan index. 

References 

Bums T 1986 The interpretation and use of economic predictions Proc. R. Soc. A 103-25 
Denker J 1987 Large automatic leaming. Rule extraction and generalization Complex Systems 1 
Diamond C, Shadbolt J, Azema-Barac M and Refenes A 1993 Neural network system for tactical asset allocation in 

Fahlman S and Lebiere C 1990 The cascade correlation leaming architecture cmu-cs-90-I00 Camegie Mellon 

Gorman R and Sejnowski T P 1988 Analysis of hidden units in a layered network trained to classify sonar targets 

Hinton G 1987 Connectionist Learning Procedures Camegie Mellon University 
Hoptroff A 1993 The principles and practice of time series forecasting and business modeling using neural nets Neural 

LeCun Y 1989 Generalization and network design strategies Technical Report CRG-TR-89-4 University of Toronto 
Peters E 1991 Chaos and Order in the Capital Markets (New York: Wiley) 
Refenes A N, Zapranis A and Azema-Barac M E 1992 Stock ranking using neural networks Proc. ICNN (San Fransisco, 

Refenes A N and Alipi C 1991 Histological image understanding by error backpropagation Microprocess. Microprog. 

Refenes A N and Azema-Barac M 1993 Currency exchange rate prediction and neural network design strategies Neural 

Ross R L and Ross F 1990 An empirical investigation of the arbitrage pricing theory J. Finance December 

the global bond market IEEE 3rd Int. Con$ Neural Networks 

University 

Neural Networks 1 

Comput. Appl. 25-32 

CA) 

32 18-35 

Comput. Appl. 46-58 

@ 1997 IOP Publishing Ltd aad Oxford University Press Handbook of Neural Computation release 9711 G6.3~7 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

G6.4 Valuations of residential properties using a neural 
network 

Gary Grudnitski 

Abstract 

With the advent of large computerized databases, computational techniques are being 
relied on more frequently to estimate residential property values. As an alternative to the 
most commonly used computational technique of multiple regression, this application 
describes how a neural network was applied to estimate the selling price of single- 
family residential properties in one area of a large California city. For the holdout 
sample of 100 properties, the average absolute difference between the actual selling price 
and the estimated selling price generated by the neural network was 9.48%. In terms 
of comparative accuracy, the network was able to achieve, on average, more accurate 
valuations of properties than the multiple regression model in the holdout sample. The 
network also produced more accurate valuations than the multiple regression model for 
57 out of the 100 residential properties in the holdout sample. 

G6.4.1 Design process 

Accurate, economical and justifiable valuation of residential property is of great importance to mortgage 
holders who wish to value their portfolios, to prospective lenders who are contemplating the issuance of 
new mortgages, and to local government authorities who must know the worth of their tax base. As large 
computerized databases become increasingly more common, computational techniques, especially multiple 
regression, are being relied on more frequently to assess residential property values. 

Residential property, like many other commodities, can be viewed as bundles of attributes. A problem 
in valuing residential property exists, however, because the prices of a property’s individual components 
are both unobservable and devoid of an implicit market. Empirically, the choice of pricing equations that 
value a property’s individual components often appears to be dictated by the nature of the available data 
and the tendency of those providing the estimates to fixate on ‘goodness of fit’ criteria. On one hand, 
this is understandable because pricing equations for residential property represent, in reduced form, an 
interaction between both supply and demand, and thus make the specification of an exact functional form 
difficult. On the other hand, however, housing price estimates that critically depend on the functional form 
chosen can be negatively impacted by this imprecision in the specification of pricing equations. 

In an attempt to mitigate the negative effects on estimates of property values due to imprecision in the 
specification of the valuation equation, what follows is a description of how a standard backpropagation c1.2 

neural nemork (Rumelhart and McLelland 1986) is applied to estimate the selling price of single-family 
residences. To measure the relative performance of the network, prices produced are compared to 
estimations generated by a multiple regression model. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G6.4~1 

Copyright © 1997 IOP Publishing Ltd



Economics, Finance, and Business 

Table G6.4.1. An example of data downloaded from the MLS describing a sales transaction. 

PT1 SINGLE FAMILY-DETACHED 08/28/93 03:49 PM 
LP: 189,000 STATUS: SOLD MT: 82 LD: 01/12/93 XD: 06/12/93 REF# 69 
S P  186,000 OLP: 189,000 FIN: OMD: 05/27/93 LNO: 93 6000909 
AD: 13131 OLD WEST DR ZIP: 92129 APN: 3151703700 
MC: 30F3 XST: TED W M S  PRWY COM: RP NCD: CRM YB: 1987 ZN: NONE 
BR: 3 OPBR: BATH: 2.5 ESF: 1638 SSF: ASSES TRM: 
LR : 11x17 FP : F PTO: SLAB HOF: 101 TLB: 0 
DR : 10x10 TV : C EXT: STUCO HFP: MONTHLY TD1: 0 
FAM: 12x14 WO: WO ELEC RF : CNSHK HFI: GTC INl: 0.0 AS1: 
KIT: 11x10 DW : DISHWASH SWR: SEWER OF : 0 LT1: 
MBR: 13x20 MW : MICRO BI SPA: NONE OFP: NONE KNO TD2: 0 
BR2: 11x10 TC : IRR: SPRINKLE TOF: NONE KNO IN2: 0.0 AS2: 
BR3: 11x11 HT : FAG FLR: SLAB LDY: GAR LT2: 
BR4: 0 WH : ALU: NONE KNO LSZ: 8500 AST NONE KNOWN 
BR5: 0 SEC: EQPT OWN GUEST: NONE ACS: 0.00 BF : NONE KNOWN 
XRM: 0 VU : NK AGEREST: NONE LSF: 0 EQP: D,E,F,G,K 
STY: 2 STO PL: YES CL: CFA PKG: 2G 
REMARKS: THIS PLAN 3 CAMBRIDGE HAS IT ALL! MINT CONDITION WITH NEW BERBER CARPET 
NEW WINDOW TREATMENTS, NEW FLOORING IN BATHROOMS SEC SYS, 2 PATIOS, PATIO COVER, 

AUTO SPRINKLERS. SHOWS TERRIFIC! GATE CODE * 0289 
BUILT-IN GAS BRICK BBQ, SOm WTR SYS, REFINISHED KITCHEN CABINETS, LANDSCAPED WITH 

G6.4.1.1 Description 

Source data representing the sale of a residential property were obtained from the San Diego Board of 
Realtors’ multiple listing service (MLS). For this application, data on single-family homes sold during 
1992-93 in Rancho Penasquitos, a northern suburb of San Diego County, California, were electronically 
downloaded. A typical entry for one of these properties is shown in table G6.4.1. 

From the downloaded MLS residential sales data, a parser, written in C, extracted the following nine 
descriptors for each property (these descriptors are shown in bold in table G6.4.1): SP is the actual selling 
price, YB is the age of the structure in years, derived by subtracting the year the house was built from 
1992, BR is the number of bedrooms, BATH is the number of bathrooms in increments of 1/4 baths, ESF 
is estimated total square footage of the house, LSZ is the lot size measured in square feet, STY is the 
number of stories, PL/SPA indicates if a pool or spa existed (0 otherwise) and PKG is the number of 
car-garages. 

For the sample, descriptive statistics for the continuous variables are presented in table G6.4.2. In 
addition, for the PL/SPA variable, 31% of the houses in the sample had either a pool or spa. Data from 
the parser were then passed to an Excel spreadsheet. Using the spreadsheet, each of the values of the 
variables was normalized according to equation (G6.4.1) and output to the neural network software. 

inom = (i - min)/range (G6.4.1) 

where i n o m  is the vector of normalized values of the variable, i is the vector of original values of the 
variable, min is the minimum original value of the variable, and range is the range of the original values 
of the variable. 

G6.4.1.2 Topology 

The topology of the network to estimate the selling price of a house is depicted in figure G6.4.1. This 
standard backpropagation network consisted of an input layer of eight neurons, a hidden layer of N 
neurons, and an output layer of a single neuron. The eight neurons in the input layer of the network 
captured the attributes believed to determine a property’s value. The single neuron in the output layer 
represented the network’s determination of the selling price of a house. Values estimated by the network 
fell within a range of 0 to 1 to achieve comparability to the previously transformed (also according to 
equation (G6.4.1)) actual selling prices of these houses. 

G6.4~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Valuations of residential properties using a neural network 

Table G6.4.2. Descriptive statistics of the continuous variables in the sample. 

Variable Variable Overall mean Minimum 
abbreviation definition (std. deviation) (maximum) 

SP Selling price ($) 214 112 150 000 
(32 997) (365 000) 

YB Age (yrs) 9.19 0 
(5.32) (22) 

BR Number of bedrooms 3.72 2 
(0.67) (6) 

BATH Number of bathrooms 2.51 2 
(0.41) (4) 

ESF Total square footage 1991 1100 
(413) (3009) 

LSZ Lot size (sq. ft.) 8246 3746 
(4464) (44 866) 

STY Number of stories 1.75 1 
(0.43) (2) 

PKG Number of 2.16 1 
car-garages (0.37) (3) 

8 
input layer 

N 
hidden layer 

Figure 66.4.1. Topology of the neural network. 

G6.4.2 Training methods 

The data set was randomly divided into three subsets. The first subset of the data, made up of 119 
properties, was used to train the network. The second subset of the data, called the training-test set, 
consisted of 30 properties. It was used to check the ability of the supposedly trained neural network to 
generalize (i.e. to prevent overtraining), and to select the optimal number of hidden-layer neurons (Masters 
1993, p 183). The third subset of the data consisted of 100 properties, and was used to assess the ability 
of the network to estimate property values accurately. 

The neural network software was written in C for a personal computer and is available as shareware 
from Roy W Dobbins (Eberhart and Dobbins 1990). The network was run on a 33MHz 486DX. With 
random starting weights between f5.0, and a learning coefficient and momentum factor of 0.1 and 0.6, 
respectively, networks employing a logistic activation function and having from two to four neurons in 
their hidden layer were trained. Figure G6.4.2 graphs the average absolute error4i.e. (estimated selling 
price - actual selling price)/actual selling price)--of the training set against the average absolute error 
of the training-test set for from two to four hidden-layer neurons at 2000, 4000, 6oO0, 8000 and 10000 
training iterations. 

Figure (36.4.2 indicates for this training and training-test sample the superiority of a network with 
two neurons in its hidden layer. Specifically, contrast the plot of the error of the network with two neurons 
in its hidden layer to the plot of the error of the network with three neurons in its hidden layer. While 
the error of the network with two neurons in its hidden layer moves consistently down and to the left as 

B3.5 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G6.4~3 

Copyright © 1997 IOP Publishing Ltd



Economics. Finance. and Business 

.om- 

##I.. 

- 
t 4 hidden neurons 
* 3 hidden neurons 

,080, X 2 hidden neurons 

E 
Q 

a3 
5i .m- - 
.- z 
.E .w- E + 

- 
- 

.035 .a36 .037 ,038 ,038 ,040 .M1 .M2 

Training error 

Figure 66.4.2. Average absolute error for the training set and training-test set when the number of hidden- 
layer neurons is varied from 2 to 4. 

the number of iterations increases from 2000 to 10000, the plot of the training-test error for the network 
with three neurons in its hidden layer initially declines from 0.0844 at 2000 iterations to 0.0831 at 4000 
iterations, but then begins to rise fairly uniformly to 0.0848 at 10000 iterations. 

G6.4.3 Output interpretation 

In terms of overall estimation of the selling price of the 100 properties in the test sample, the trained 
network with two neurons in its hidden layer resulted in an average absolute error of 9.48%. The smallest 
and largest individual absolute errors in estimating the selling price of the test sample residential properties 
were 0.3% and 38.7%, respectively. Figure G6.4.3 graphs the absolute error of the network's prediction, 
ordered by the size of the absolute error, for the test sample of 100 properties. It shows that 28% of the 
determinations were in error by less than 5%, 65% of the determinations were in error by less than lo%, 
and 12% of the determinations of the network were in error by more than 20%. 

0.4 

0.35 1 
8 0.3 

i o.2 

8 0.25 
t 

0.15 

3 0.1 

0.05 

0 

i i 

Figure G6.4.3. Absolute error for the 100 test-set properties. 

G6.4:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Valuations of residential properties using a neural network 

G6.4.4 Comparison with multiple regression 

A linear multiple regression model was derived based on the 119 properties in the training sample. The 
regression coefficients and their corresponding t values are given in table G6.4.3. 

Table G6.43. Statistics for the multiple regression model. 

Variable Variable Coefficient t value 
abbreviation definition (std. error) (Prob > It1 ) 

YB 

BR 

BATH 

ESF 

LSZ 

STY 

PUSPA 

PKG 

Intercept 

Age (yrs) 

Number of bedrooms 

Number of bathrooms 

Total square footage 

Lot size (sq. ft.) 

Number of stories 

Existence of 
a pool or spa 
Number of 
car-garages 

132 422 
(125 042) 

(208) 
2878 

( 1964) 

(5227) 
36 
(4) 

0.73 
(0.29) 
-1337 
(3349) 

5502.23 
(3788.47) 

3281 
(4238) 

- 1769 

-1789 

11.00 
(0.0001) 
-8.51 

(0.0001) 
1.47 

(0.1458) 
-0.34 

(0.7328) 
8.95 

2.56 
(0.01 18) 

(0.6909) 
1.45 

(0.1505) 
0.77 

(0.4405) 

(0.0001) 

-0.40 

In terms of statistical performance, the multiple regression model had an adjusted R-squared of 0.689 
and an F value of 33.7. In terms of estimation performance, the multiple regression model resulted in an 
average absolute error of 11.6% in estimating the selling price of the test sample properties. Thirty-six 
per cent of the determinations of the multiple regression model were in error by less than 5%,  54% of the 
determinations were in error by less than lo%, and 9% of the determinations were in error by more than 
20%. Further, for 57 out of 100 test sample properties, the absolute error of the multiple regression model 
exceeded that of the network. 

G6.4.5 Conclusion 

While for this sample of residential properties the network produced more accurate overall estimates of 
selling prices than the multiple regression model, the network’s average absolute error was still relatively 
high and some of its errors were unacceptably large. These weaknesses are likely to be attributable to 
two sources. First and most importantly, a number of potentially significant variables have been omitted 
from the pricing equation. These include view characteristics of the property such as canyon, mountain, 
and ocean; specific neighborhood location parameters, such as those that might be obtained by reference 
to the Thomas Guide 0.25 square-mile grid identifier; and other physical attributes of a house such as the 
existence of air conditioning, the type of roof, and the presence of a security system. 

A second factor that contributed to the size of the network error was the source data. The source data 
describing a property were supplied by the listing agent and are subject to buyer verification. Although 
these agents attempt to describe the property as completely as possible, frequently the data were incomplete 
or erroneous. 

References 

Eberhart R C and Dobbins R W (eds) 1990 Neural Network PC Tools (San Diego, CA: Academic) 
Masters T 1993 Practical Neural Network Recipes in C++ (San Diego, CA: Academic) 
Rumelhart D E and McLelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT Press) 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G6.45 

Copyright © 1997 IOP Publishing Ltd



6 7  

Computer Science 

Contents 

G7 COMPUTER SCIENCE 
G7.1 Neural networks and human-computer interaction 

Alan J Dix and Janet E Finlay 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Comauter Science 

G7.1 Neural networks and human-computer interaction 

Alan J Dix and Janet E Finlay 

Abstract 

There has been much interest over several years in the use of neural networks within 
human-computer interaction. However, this promise has led to surprisingly few 
published results. This article reviews those applications which have been addressed 
by neural networks or similar techniques. It also describes the use of the ADAM neural 
network for task recognition from traces of user interaction with a bibliographic database. 
This achieved high accuracy rates in training and in some on-line use. However, there 
were significant problems with its use. These problems are of interest not just for this 
system, but for any which is attempting to analyze trace data. The two main problems 
were due to the continuous sequential data and the presence of literal input (personal 
names, file names, dates and so on). Those systems which have achieved success in 
this area have not used neural techniques, but instead more traditional (although often 
ad hoc) methods. However, it is expected that recurrent networks may be suitable but 
probably only within a hybrid approach. 

G7.1.1 Context 

The use of neural networks in human-computer interaction (HCI) is largely pragmatic. They are used if 
they do their job well. The applications to which they are suited are also tackled by other statistical and 
machine learning techniques. It would be nice to report that the choice between these techniques is based 
on sound principles, but in fact the choice is usually based on familiarity with a particular technique. So, 
when considering those applications within HCI it is better to consider neural networks under the wider 

There has been considerable interest in the application of neural networks and pattern recognition 
within HCI. There have now been several well-attended workshops dedicated to the theme, the results 
of two of which have been collected in a book (Beale and Finlay 1992). However, despite the apparent 
interest there are relatively few published articles on actual neural network applications (although there 
are many on more traditional artificial intelligence techniques). This may be because few researchers have 
skills in both areas and thus do not achieve their desired results. 

banner of pattern recognition techniques. B6 

G7.1.1.1 Applications in human-computer interaction 

In common with other domains, applications of neural networks in HCI can be divided into those which 
require only a behavioral or black-box method and those which care about the manner in which the solution 
is represented (and perhaps even derived). Also, HCI applications differ in the extent to which the network 
must mimic human behavior-the network either satisfies a purely computational role or else must be to 
some extent anthropomorphic. 

First consider purely computational uses, that is where there is no requirement that the behavior is in 
any way human. Some will be pure black-box applications. One example of this is the use of real-time 
electrocardiogram data by British Aerospace to detect whether pilots are becoming drowsy.This is basically 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Computution release 9711 G7.1: 1 

Copyright © 1997 IOP Publishing Ltd



Computer Science 

~ 1 . 7 ,  ~ 1 . 3  a matter of signal processing (see Section F1.8). Other applications include speech, handwriting and gesrure 
recognition. Of special note is the use of gesture recognition among the disabled. Normally recognition 
systems have to be very accurate to be acceptable. However, where normal verbal communication is very 
difficult, even relatively low recognition rates may be acceptable. 

In other cases the system must give some explanation of its behavior-the traditional problem of expert 
systems. An example of this is Query-by-Browsing (QbB) an intelligent database front-end developed by 
one of the authors (Dix and Patrick 1994). From examples of required records, the system generates a 
database query. Although the process of reasoning does not have to resemble that of a human expert, it is 
important that the query is in a form comprehensible to the user so that it can be verified. For this reason 
the present version of QbB uses decision tree induction rather than a neural network to perform pattern 
matching. Similar uses include the vetting of credit and job applications. In both cases explanations may 
be required for both legal and ethical reasons (Dix 1992). 

Now consider the anthropomorphic uses. These uses include various forms of task analysis and 
recognition (described below) and various forms of simulation where the network takes the place of 
the user in the testing of software. An example of the latter is in the evaluation of the readability of 
computer and paper form layouts. In this case human-like behavior is sufficient, so long as the system 
gives similar responses to humans (especially if it can pinpoint the problem parts of the layout) it needs 
no further explanation. However, other researchers require that the network models more faithfully the 
process of human reasoning. For example, McGrew (1992) uses the interconnection weights of a parallel 
distributed processing (PDP) network to generate a task analysis graph. Also, Booth (1992) models the 
way misunderstandings give rise to errors in HCI. An important part of this analysis is an understanding 
of the way different areas of knowledge are used during (incorrect) reasoning. 

G7. I .  1.2 Trace analysis and task recognition 

An important class of HCI applications are those based on trace analysis, that is, where a record of the 
user’s interaction with a system is analyzed to recognize or uncover patterns. The data for this process 
may be collected automatically, often by keystroke or event logs, or may be generated as the result of 
observation. This raw data can be recorded for later analysis or used on-line to guide the system during 
interaction. 

The off-line data can be used to aid task analysis. Task analysis involves the identification of patterns 
of behavior used to accomplish particular goals. Self-organizing networks can be used to find repeated 
patterns of behavior which can then be examined by the human analyst as possible task sequences. A 
particular task may often be accomplished by several sequences of actions and so the use of a network 
does not replace the human analyst. However, hand analysis is very tedious as the logs are often very 
long and repetitive and so this is an application where the automatic tools truly augment human skills. 

On-line data can be used in various ways. 

To identify a particular user (Stacey et a1 1992). This may be used to recall user-specific preferences 
or for security purposes. 
To classify the user, for example as novice/expert (Finlay 1990), in order to adapt the interaction to 
suit the user’s knowledge and ability. 
To learn repeated sequences of actions so that they can be offered as potential macros (Hassell and 
Harrison 1994, Crow and Smith 1992) or as a predictive accelerator (Cypher 1991, Schlimmer and 
Hermens 1993). 
To recognize known task sequences (which may themselves be the result of human or automatic task 
analysis). Uses of this include driving a user model during computer-based learning and offering 
context-sensitive help. 

The system we will describe in the rest of this article addresses the last of these, automatic task 

0 

0 

0 

0 

identification. 

G7.1.1.3 Whose error? 

Throughout this article we talk about various user errors, but in most software such errors are inevitable 
because of the design of the system. Hence, the error is most often not so much the users but the designers. 
However, to constantly use phrases and language to emphasize this important point would detract from 

G7.112 Hundbook of Neural Computution release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks and human-comuuter interaction 

the rest of the description. Hence whenever we talk of the user’s error please bear in mind that this is a 
gross simplification. 

G7.1.2 System description 

G7.1.2.1 Problem domain 

We now describe a system designed to recognize tasks in a menu-driven bibliographic database program 
called REF. More detailed descriptions of this work can be found elsewhere (Finlay 1990, Finlay and Beale 
1992, Finlay and Harrison 1990). The program supported a fixed number of tasks and was therefore a very 
constrained environment in which to examine the issues of task recognition. However, it was a far from 
trivial domain. The sequence of user commands to accomplish a task varied from 3 to 16 and so the neural 
network had to cater for time-series data with variable length patterns. The trace was complicated by the 
fact that some user actions involved typing literal inputs: names, titles, dates etc. For the purposes of 
event logging such literals were reduced to a single user action. However, this was based on the system’s 
idea of whether the user was entering literal input rather than menu commands. Of course, if the user and 
system got out of sync-a major incident-the logging did not accurately reflect the user’s understanding 
of the interaction. 

G7.1.2.2 System overview 

Users interacted with the bibliographic database on an IBM-compatible PC. The event trace was transmitted 
along a serial link to a SUN workstation which performed the network calculations. In order to deal with 
the time-series data, the trace was windowed on two or six characters (although two sounds small, many 
tasks were easily identified by their two initial events). The windowed data was then n-tupled and passed 
through an ADAM (Advanced Distributed Associative Memory) array. The output was thresholded to give ci.5.8 
a task code and associated confidence. Finally this task code was displayed on the experimenters terminal. 
For example, in figure G7.1.1, the input trace ‘SsM#eM’ is passed through the ADAM array giving an 
output of (8, 5 ,6 ,2 ,  8 ,0 ,6 ,  2), this is thresholded at a level of 6 to yield (1, 0, l,O, 1,0, 1, 0). Finally this 
binary pattern is recognized as representing the ‘exit’ task, but is obviously not an exact match and gets 
a confidence rating of 70%. 

G7.1.2.3 Input format 

Both the event logs and the training set included both the user’s actions and some system responses. The 
system responses were also coded as single characters. Since the selection of menu options in REF was 
case-insensitive all the user’s commands were translated into lowercase and uppercase letters and digits 
were used to code the system responses. 

An example trace is ‘MsSn?2’. This translates to: (M) system shows main menu, (s) user types ‘s’, 
( S )  system shows select sub-menu, (n) user types ‘n’, (?) user types a name to find, (2) system responds 
that there are two or more matching records. 

Of course, in the user’s event log such sequences are appended one after the other. Also, whereas 
this trace represents correct activity, event logs may also include various forms of user error. 

G7.1.2.4 Training set 

The REF system has 11 main task types (e.g. selecting a set of references, altering existing references, 
exiting the program). A complete description of the system was produced in CSP (Hoare 1985) and this 
was used to enumerate all possible correct task sequences. This gave rise to 529 traces which were used 
for training (including the example above). As these traces varied in length they were padded to a fixed 
size. In subsequent experiments traces of some known common problems were added to the training set. 

G7.1.2.5 Topology 

The neural component in the system was the ADAM binary associative network (Austin 1987). This was 
chosen mainly because of its speed in learning and recall. This consists of an n-tupling stage followed by 
a form of Willshaw network. The output if the network was n-point thresholded yielding a class code and c1.5.4 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computurion release 9711 G7.113 

Copyright © 1997 IOP Publishing Ltd



ComDuter Science 

bibliographic 
database 

window n-tuple ADAM a m  

1 0 1010 I 0 

decode taskJ 

Figure G7.1.1. System components. 

a confidence measure. 

G7. I .2.6 Preprocessing 

As described earlier, the user’s entry of literal input was reduced to a single character in the trace, also the 
sequence of characters was reduced to a finite length by using a moving window. The ADAM network 
requires binary input and two representations were used, one using the normal ASCII coding and one 
using one bit for each possible character. The former led to an input size of 2 x 8 or 6 x 8 depending on 
the window size. The latter was much bigger and was expected to give a better performance because of 
the sparser representation. However, there was no measurable difference in performance, possibly because 
the latter representation effectively duplicated the job of the n-tupling. 

G7.1.3 Evaluation 

G7.1.3.1 Results 

The system showed very high accuracy and generalization on the training set. With 50% of the full set of 
tasks used for training the recognition on the complete set was perfect, and stayed high even when only 
10% of the examples were used in training. 

However, when used on actual traces the picture was more complicated. When the small window size 
of 2 was used, the accuracy was around 99%. However, this dropped to 65% when the larger window of 
6 was used. Apparently the problems with variable length patterns were getting in the way with the larger 
window. The smaller window did not have this problem (it was smaller than the shortest task sequence). 
However, it is likely that it was simply recognizing the user’s initial main menu choice-acceptable when 
the user does it right, but not much help when the user and system are out of sync. 

G7.1.3.2 Comparison with traditional methods 

~ i . 4 , ~ 2 . 1 2  The results using ADAM were compared with those obtained using a variant of 103 (Quinlan 1979), a 
machine learning algorithm which builds decision trees by induction. When tested on the training set 
it too obtained 100% accuracy using 50% of the full set of tasks, and was highly accurate, but slightly 

G7.114 Hundbook of Neurul Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks and human-computer interaction 

worse than ADAM on smaller training sets. When used on the actual logs of user interaction, its accuracy 
was substantially lower than ADAM, although following the same pattern attaining 85% accuracy with a 
window size of 2 but only 35% on a window size of 6 .  

G7.1.3.3 General problems 

This application highlights several problems which must be tackled if neural techniques are to be applied 
within the human-computer interface. 

Matching varying length subsequences within an event trace was clearly a substantial problem. There 
are various issues connected with this. The segmentation problem is well known in other fields, for 
example in separating words within continuous speech. Recall how the accuracy rate for recognizing the 
training set (which was already segmented) was high, but that it fell off dramatically when faced with 
continuous user traces. For some kinds of task recognition it is possible to use information from the state 
of the computer dialogue, for example, when the REF system was at the main menu. However, as we 
saw, an important class of interface errors occur when this does not concur with the user’s notion of the 
task state. 

Assuming we have segmented the trace, we still face problems due to the omission of required actions 
or where the task sequence is split by irrelevant or erroneous actions. This is similar to the problems of 
spelling correction. Windowing techniques are very fragile in the face of changes in the relative position 
of parts of a sequence. 

These problems are also faced by systems (as discussed earlier) which look for repeated sequences in 
the user input and other sequence-based problems. To our knowledge none of these use neural techniques, 
but instead rely on symbolic artificial intelligence techniques (Cypher 1991), inductively-built finite-state 
machines (Schlimmer and Hermens 1993), hidden Markov models (Hanlon and Boyle 1992) or special 
purpose algorithms (Crow and Smith 1992). However, it seems likely that recurrent neural networks could 
also be used for this purpose. Indeed, many representations of user interaction can be transformed into 
some form of finite-state representation which could be used to train recurrent networks such that the 
network’s internal representation matches that of the analyst (Dix et a1 1992). 

In fact, the sequences we dealt with were not as difficult as they could be. The REF system was an 
old-fashioned DOS application, with only a single thread of control. Consider a windowed application. 
These typically allow the user to perform several tasks in parallel, even within one window. From the 
recognition system’s point of view, these appear rather like insertion errors. A typical insertion error is 
caused by the user accidentally typing an extra character which breaks the original pattern in two. In the 
case of multiple windows the user may begin to perform a task in one window, then swap to another and 
perform one or more tasks in the second window, and finally return to the first window to complete the 
initial task. Just like a mis-typing, the original task is broken in two. However, in contrast to simple 
insertion errors caused by mis-typing, the breaks in a windowed application may often be substantial. 
Neither is it sufficient to regard each window or application separately; part of the power of windowed 
systems is that tasks involve interaction with multiple applications. 

The other major problem we discussed was literal inputs, such as the typing of author names to search 
for in the bibliography. These cause three problems. 

First, they act as variable-length insertions in the trace. The method used in our system to code them 
works only when the user and system are in agreement. If the user starts to type a name when the system 
is expecting further menu choices, then the trace will record the full name. At just the moment when the 
user is confused and needs help, we find that the network is equally confused! 

Second, the values of the literal inputs matter. Although the particular value is typically unimportant 
it is often important whether the same name is used several times. For example, in an operating system 
consider the following commands. 

copy onefile.txt another.txt 
delete onefile.txt 

It is very important that the two commands in this sequence refer to the same file. The Query- 
by-Browsing system mentioned earlier uses variable matching techniques, but this is in the context of 
inductively learned decision trees where it is easier to add symbolic constraints (Dix and Patrick 1994). 

Third, the insertions resulting from literal input often have a completely different syntactic form to 
that of the rest of the interaction. This can make it easy to detect and so segment, although the exact start 

@ 1997 IOP Publishing Ltd and Oxford University Press Hundbook of Neurul Compurution release 9711 G7.115 

Copyright © 1997 IOP Publishing Ltd



Computer Science 

of the insertion may be less clear. However, this suggests that the pattern recognizer needs to have, either 
explicitly or implicitly, several modes. A similar problem arises when dealing with multiple applications 
in a windowed system. As with literal input it is no good relying on the system’s interpretation of where 
input belongs-an important error is precisely when the user mistakenly inputs data to the wrong window. 

G7.1.4 Conclusions 

For this application, the ADAM neural network performed better than an alternative machine learning 
algorithm. However, there were fundamental problems that arose which need to be tackled by anyone 
wishing to apply neural networks to on-line or off-line trace analysis. The  nature of these suggests that a 
hybrid rather than pure neural approach will be required. 

References 

Austin J 1987 ADAM: a distributed associative memory for scene analysis Proc. First Int. Con5 on Neural Networks 
(San Diego) IEEE 

Beale R and Finlay J (eds) 1992 Neural Networks and Pattern Recognition in Human-Computer Interaction 
(Chichester: Ellis-Horwood) 

Booth P A 1992 Modelling misunderstandings using artificial neural networks Neural Networks and Pattern Recognition 
in Human-Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) pp 301-19 

Crow D and Smith B 1992 DB-Habits: comparing minimal knowledge and knowledge-based approaches to pattern 
recognition in the domain of user computer interactions. Neural Networks and Pattern Recognition in Human- 
Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) pp 39-63 

Cypher A 1991 Eager: programming repetitive tasks by example. Proc. CHI’9I (New Orleans, LA: ACM Press) 
Dix A 1992 Human issues in the use of pattern recognition techniques Neural Networks and Pattern Recognition in 

Dix A, Finlay J and Beale R 1992 Analysis of user behaviour as time series Proc. HCI’92: People and Computers 

Dix A and Patrick A 1994 Query By Browsing Proc. IDS’94: The 2nd International Workshop on User Interfaces to 

Finlay J 1990 Modelling users by classification D. Phil. Thesis University of York 
Finlay J and Beale R 1992 Pattern recognition and classification in dynamic and static user modelling Neural Networks 

and Pattern Recognition in Human-Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) 

Finlay J E and Harrison M D 1990 Pattern recognition and interaction models Human-Computer Interaction 
INTERACT90 (Amsterdam: North-Holland) pp 149-54 

Hanlon S J and Boyle R D 1992 Syntactic knowledge in word level text recognition Neural Networks and Pattern 
Recognition in Human-Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) pp 173-93 

Hassell J and Harrison M 1994 Generalisation and the adaptive interface. Proc. HCI’94: People and Computers IX,  
(Glasgow) (Cambridge: Cambridge University Press) pp 223-38 

Hoare C A R 1985 Communicating Sequential Processess (Englewood Cliffs, NJ: Prentice-Hall) 
McGrew J K 1992 Task analysis, neural nets, and very rapid prototyping Neural Networks and Pattern Recognition 

in Human-Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) pp 91-102 
Quinlan J R 1979 Discovering rules by induction from large collections of examples. Expert Systems in the Micro- 

Electronic Age ed D Michie (Edinburgh: Edinburgh University Press) pp 168-201 
Schlimmer J C and Hermens L A 1993 Software agents: completing patterns and constructing user interfaces. J. Art$ 

Intell. Res. 161-89 
Stacey D, Calvert D and Carey T 1992 Artificial neural networks for analysing user interactions Neural Networks 

and Pattern Recognition in Human-Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) 

Human Computer Interaction ed R Beale and J Finlay (Chichester: Ellis-Horwood) pp 429-5 1 

VII (Cambridge: Cambridge University Press) pp 429-44 

Databases (Lancaster) (Berlin: Springer) pp 236-48 

pp 65-89 

pp 103-13 

Further reading 

1. Beale R and Finlay J (eds) 1992 Neural Networks and Pattern Recognition in Human-Computer Interaction 
(Chichester: Ellis-Horwood) 

A collection of papers from two workshops held in the US and UK, covering both neural networks and related 
pattern recognition techniques. 

Finlay J and Beale R 1993 Neural networks and pattern recognition in human-computer interaction SIGCHI 
Bulletin 25 25-35 

2. 

G 7 . 1 ~ 6  Hundbook of Neuml Computution release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Neural networks and human-comwter interaction 

3. Finlay J E and Dix A J 1994 Pattern recognition in human-computer interaction a viable approach? SIGCHI 
Bulletin 26 23-7 

4. Reports on the CHI91 and CHI94 workshops of the same names. 

There is also a moderated mailing list; interested parties should send a request to be added to 
prhci @zeus.hud.ac.uk 

@ 1997 IOP Publishing Ltd and Oxford University Press H u W o k  of Neurul Computorion release 9711 G7.1:7 

Copyright © 1997 IOP Publishing Ltd



G8 

Arts and Humanities 

Contents 

G8 ARTS AND HUMANITIES 
G8.1 Distinguishing literary styles using neural networks 

Robert A J Matthews and Thomas V N Merriam 
G8.2 Neural networks for archaeological provenancing 

John Fulcher 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



68.1 Distinguishing literary styles using neural 
networks 

Robert A J Matthews and Thomas V N Merriam 

Abstract 

Scholars in the humanities have long argued over the authorship of works ranging from 
Elizabethan histories to religious texts. Most of the debate has been essentially subjective 
and qualitative. However, the advent of computer technology has led to the development 
of stylomerry-the quantitative analysis of literary style based on, for example, frequency 
of words used by different authors. With their ability to cope with both nonlinear and 
noisy data sets, neural networks are well suited to the stylometric problem. Here we 
show that they out-perform linear methods of identifying authors, and illustrate their 
power with studies of disputed works from the era of William Shakespeare. 

G8.1.1 Project overview 

Scholarship thrives on debates, and there is no shortage of debates in the study of historical and literary 
texts. Among the most intriguing are those centering on the authorship of such texts. Is it possible 
to identify the correct authors of each of The Federalist Papers, written pseudonymously in 1787-8 to 
persuade voters to ratify the US Constitution? Were the divine Mormon texts actually the work of Joseph 
Smith, founder of the Mormon Church? Did Shakespeare always write masterpieces in isolation, or were 
some the result of collaboration with contemporaries? 

Until recently, the evidence in such debates has been primarily in the form of scholarly opinion, 
founded on extensive knowledge of both the texts and their putative authors. However, such an approach 
is inevitably subjective and may (indeed, has) been subject to changing fashion. Nevertheless, questions 
of authorship are objective ones: ultimately, they do admit a single, correct answer. 

Attempts to apply objective and quantitative methods to questions of authorship have their origins 
in the 19th Century (see Matthews and Merriam 1994a for a popular-level historical review). Only 
relatively recently, however, with the advent of powerful computer technology, have these methods found 
much application. Collectively, they belong to a branch of statistical analysis known as stylometry. This 
is founded on the premise that one can extract quantitative features-usually certain word frequencies 
in texts-which discriminate between the style of one author and another. As such, these ‘stylometric 
discriminators’ can be used to cast light on the authorship of a disputed work. The procedure, in principle 
at least, is simple: extract suitable discriminators for each author from their undisputed texts, and then see 
which author’s discriminators best fit the stylometric data for the disputed works. 

Inevitably, capturing literary style is not so simple. First, humans are not automatons, and stylometric 
discriminators are typically statistically ‘noisy’. Second, language involves complex interactions between 
its components, and attempts to capture its essence by simple discriminators involves dimensionality 
reduction and feature extraction, an inevitably nonlinear process. 

Despite this, stylometry has traditionally tended to rely on parametric linear methods. Neural networks, 
in contrast, are well known for their abilities to classify data in the face of both nonlinearities and 
noise. This raises the possibility that the power of conventional stylometry may be boosted by using 
discriminators as the inputs to neural networks. Here we show that this is indeed possible: after extracting 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G8.1: 1 

Copyright © 1997 IOP Publishing Ltd



Arts and Humanities 

suitable discriminators, neural networks can be trained to recognize the characteristic features of an author’s 
style. When tested on undisputed texts to which the neural network has not previously been exposed, it 
typically out-performs conventional linear stylometric methods. This suggests that neural networks may 
be a valuable new source of evidence in literary disputes. 

G8.1.2 Design process 

The basic approach in any stylometric study is to extract discriminators from large amounts of undisputed 
text from the likely authors, and then see which provides the best fit to the stylometric ‘signature’ of the 
disputed text. In what follows, we use the discriminators as inputs to a neural network. 

The design of a stylometric neural network (SNN) then consists of two stages: 
(i) determination of suitable stylometric discriminators capable of distinguishing between author A and 

author B; 
(ii) determination of a suitable SNN topology, such that it is complex enough to capture the stylometric 

features of each author, but not so complex that it cannot be fully trained. 

G8.1.2.1 Determination of discriminators 

A wide range of stylometric measures has been investigated as potential discriminators of literary style. 
However, the relative frequencies of so-called ‘function words’-conjunctions, prepositions and the definite 
and indefinite articles-have often been found to be sufficiently different between authors to constitute 
discriminators (Matthews and Merriam 1994b). For a specific authorship dispute, the relative frequencies 
(i.e. raw number of occurrences in a sample text, divided by sample length-typically 1-2000 words) of 
a wide variety of such words can be calculated for many extracts from undisputed texts by authors A and 
B. Those function words showing the largest separation in relative frequency between A and B (typically 
2-3 standard deviations) can then be taken as potential discriminators. 

The task of performing this analysis has been greatly eased by the publication of machine-readable 
versions of many important literary works, such as the entire corpus of Shakespeare by the Oxford 
University Computing Service. 

G8.1.2.2 Determination of suitable topology 

ci .2 Our first investigations of neural computation in stylometry centered on the multilayer perceptron (MLP), 
the most widely used form of neural network. Other techniques can be, and have been, used (Lowe and 
Matthews 1995); the design considerations that follow will, however, apply to most neural approaches. 

The classical MLP consists of three layers: an input layer of N1 neurons and an output layer of N3 
neurons, the two being linked by a hidden layer of N2 neurons. For a stylometric MLP, N1 will be the 
number of function word discriminators used to classify a text as the work of one of various authors. In 
general, the more discriminators that are used, the better the reliability of the classification. However, a 
limit is set on the number of discriminators by the fact that if an MLP has too many inputs relative to 
the amount of training data, it loses its ability to generalize to new data. (Essentially, there are too many 
unknowns for the data to support.) A useful rule of thumb for setting the topology of a stylometric MLP 
follows from the requirement of having sufficient undisputed text to both extract discriminators and train 
the MLP, while still having sufficient text left over to test the MLP (Matthews and Merriam 1994b) 

N1 + N3 e 10-4C 

where C is the total amount, in words, of undisputed text for each author. Thus for a binary authorship 
dispute concerning plays of the Elizabethan era, which are typically around 20 000 words long, the number 
of input neurons should be less than around 2 P  - 2, where P is the number of plays available for each 
author. For Shakespeare and many of his contemporaries, P > 5 ,  so N I  - 8 .  In practice, we have found 
N I  = 5 sufficient to achieve excellent classification results (Matthews and Merriam 1993, Merriam and 
Matthews 1994). 

The size of the hidden layer is set by the competing requirements of capturing as many features in 
the data as possible while ensuring that the MLP can generalize to new data. The optimal hidden layer 
size can be found by training with different values of N2 and seeing which gives the best results during 
cross-validation (i.e. the use of part of the training data for testing purposes). For plays by Shakespeare 

G8.1:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Distinguishing literary styles using neural networks 

and his contemporaries, our experience has been that N2 = 3 neurons gives very acceptable results. This 
leads to the topology for an SNN shown in figure G8.1.1. 

Weights 
Discriminator 

Discriminator 

Discriminator 

Discriminator 

Discriminator 

Input Hidden output 
layer layer layer 

Figure G8.1.1. Qpical topology for a stylometric neural network (SNN). 

G8.1.3 

We now consider the training, testing and application of an SNN suitable for investigating texts associated 
with Shakespeare and John Fletcher (1579-1625), Shakespeare’s successor as chief dramatist to the King’s 
Men company. Specifically, we address questions concerning the plays Henry VIII ,  The Two Noble 
Kinsmen, The Double Falsehood and The London Prodigal. All have been associated with Shakespeare 
and Fletcher at some time; the central question concerns the balance of contribution of each playwright. 
Current scholarly opinion on Henry VIII and The Two Noble Kinsmen is that both may contain some 
contribution from Fletcher, but nevertheless are sufficiently Shakespearean to merit inclusion in any 
collection of the Bard’s work. In contrast, the evidence for Shakespeare’s involvement in The Double 
Falsehood and The London Prodigal has generally been deemed insufficient for either to merit inclusion 
in his works, with Fletcher being seen by some scholars as a substantial, if not principal, contributor to 
each. 

Training of a specific stylometric neural network 

G8.1.3.1 The training set 

The first task is to gather sufficient undisputed works by both playwrights for training the SNN. This has 
to be done with care: there are, for example, two different versions of King Lear, three of Hamlet and 
six of Richard I I I .  Fortunately, there is general agreement among scholars as to which works constitute 
essentially undisputed ‘core canon’ works by Shakespeare and Fletcher, and these can be used for training 
purposes. For Shakespeare we took Antony and Cleopatra, As You Like If, Henry IV Part 1 , Henry V ,  
Julius Caesar, Love’s Labour’s Lost, A Midsummer Night’s Dream, Richard I I I ,  Twelfth Night, and The 
Winter’s Tale. Collectively, these give a representative sample of Shakespeare’s work on different themes 
throughout his career. Similarly, for Fletcher we took: Bonduca, The Chances, Demetrius and Enanthe, 
The Island Princess, The Loyal Subject and The Woman’s Prize. 

G8.1.3.2 Preprocessing inputs 

In order to train the SNN to associate undisputed texts with their correct author, function-word frequencies 
capable of discriminating between Shakespeare and Fletcher must be extracted from core canon plays. 
Research by Horton (1987) suggests that the function-word frequency ratios 

a r e / N  i n / N  n o / N  o f / N  t h e / N  

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 G8.1:3 

Copyright © 1997 IOP Publishing Ltd



Arts and Humanities 

(where N is the total number of words in a sample) can act as suitable discriminators for a Shakespeare- 
Fletcher SNN; these formed the inputs for our SNN. We then extracted 100 sets of these five discriminators 
from the core canon plays of each dramatist, with each set of five being preprocessed to give zero mean 
and unit standard deviation; this ensures that each discriminator contributes equally in the training process. 

G8.1.3.3 Output interpretation 

The target pattern for training purposes was an output pattern of (1,O) for Shakespeare and (0, 1) for 
Fletcher. For ease of interpretation, these were then converted to a so-called Shakespearean characteristics 
measure (SCM), defined as 

SCM = os/(@ -k OF) 

where 0 s  and OF are the values of the outputs from the Shakespeare and Fletcher nodes of the SNN, 
respectively. Thus the stronger the Shakespeare output signal relative to the Fletcher signal, the higher the 
SCM. Strongly Fletcherian classifications, on the other hand, give SCM closer to zero, and those on the 
borderline (OS = OF) give SCM = 0.5. 

G8.1.3.4 Development 

Given the small size of the SNN topology, the development platform can be very modest. The Shakespeare- 
Fletcher SNN was trained on a 286/12 MHz PC running the MS-DOS version of NetBuilder software 
provided by Recognition Systems Ltd of 140 Church Lane, Marple, Stockport, SK6 7LA, Cheshire, UK. 

G8.1.4 Comparison with traditional methods 

During training we achieved cross-validation accuracy of 96%, with the 4% misclassified text being 
equally divided between the two dramatists. This is considerably better than the results achieved by linear 
stylometric methods: for example, an optimum linear transformation using the Horton ratios gives a 9% 
misclassification rate, three-quarters of which comprises Fletcher samples wrongly ascribed to Shakespeare. 
The greater success of the SNN reflects its ability to cope with both the noise and nonlinearity in the data 
set. 

The power of the SNN is, however, most impressive when it is applied to core canon texts to which it 
has not previously been exposed. This gives a measure of its ability to generalize to new data. Table G8.1.1 
shows the results for the eight remaining core canon plays of Shakespeare and two of Fletcher. 

Table G8.1.1. SNN results for core canon Shakespeare and Fletcher. 

Dramatist Play SCM Verdict 

Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Fletcher 
Fletcher 

Much Ado 
All’s Well 
Comedy of Errors 
Coriolanus 
King John 
Merchant of Venice 
Richard II 
Romeo and Juliet 
Va lentinian 
Monsieur Thomas 

0.7 1 
0.92 
0.91 
0.98 
0.91 
0.97 
0.92 
0.87 
0.30 
0.29 

Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Fletcher 
Fletcher 

As can be seen, the SNN correctly classified every one of the ten remaining core canon plays on which it 
was tested. This impressive success rate is somewhat higher than that obtained during cross-validation, a 
reflection of the fact that entire plays are now being used, which are less noisy than the samples used for 
cross-validation. 

Of course, the most interesting results come from the application of the trained and tested SNN 
to disputed works. This permits comparison between the conclusions of the SNN and the subjective 

G8.1:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Distinguishing literary styles using neural networks 

assessments of conventional literary scholarship. For each of the four disputed plays in the Shakespeare- 
Fletcher debate, discriminator values were extracted from the entire play and from its individual acts, and 
these were then used as inputs to the SNN. The results are shown in table G8.1.2. 

Table G8.1.2. SNN results for disputed plays. 

Play SCM SNN verdict 

Henry VIII 
As whole play 
Act I 
Act I1 
Act I11 
Act IV 
Act V 
Two Noble Kinsmen 
As whole play 
Act I 
Act I1 
Act I11 
Act IV 
Act V 
Double Falsehood 
As whole play 
Act I 
Act I1 
Act I11 
Act IV 
Act V 
London Prodigal 
As whole play 
Act I 
Act I1 
Act I11 
Act IV 
Act V 

0.94 
0.98 
0.85 
0.97 
1 .oo 
0.57 

0.65 
0.93 
0.30 
0.32 
0.60 
0.91 

0.37 
0.60 
0.87 
0.29 
0.73 
0.29 

0.30 
0.89 
0.29 
0.34 
0.28 
0.30 

Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 
Shakespeare 

Shakespeare 
Shakespeare 
Fletcher 
Fletcher 
Shakespeare 
Shakespeare 

Fletcher 
Shakespeare 
Shakespeare 
Fletcher 
Shakespeare 
Fletcher 

Fletcher 
Shakespeare 
Fletcher 
Fletcher 
Fletcher 
Fletcher 

The SNN results for the plays taken in their entirety support the qualitative opinions of contemporary 
scholars, that is, that Henry VZIZ and The Two Noble Kinsmen merit inclusion in the Shakespeare canon, 
while The Double Falsehood and The London Prodigal do not. More interesting, however, are the results 
for individual acts. While the SNN gives strong Shakespearean classifications for Acts I to IV of Henry 
VZZZ, the low SCM for Act V supports claims that this was largely the work of Fletcher (Hoy 1956). 
Similarly, the SNN classifies Acts I and V of The Two Noble Kinsmen as Shakespearean, Acts I1 and 
I11 to Fletcher, and Act IV as borderline. This detailed breakdown is again in broad agreement with 
contemporary scholarship (Proudfoot 1970). Taken as an entire play The Double Falsehood emerges as 
predominantly Fletcherian in style, agreeing with contemporary scholarship summed up by Metz (1989). 
Similar remarks apply to the S N N  findings with The London Prodigal: we find an overall Fletcherian 
attribution, but with some Shakespearean influence, especially in Act I (cf Hope 1994). 

GS.1.5 Conclusions 

The results presented here suggest that neural networks can make a valuable contribution to stylometry. 
With their ability to deal with both noisy and nonlinear data sets, they amplify the power of standard 
stylometric discriminators. 

The principal limitation on the use of SNNs appears to be the demand for sufficient undisputed 
texts on which to train and test the networks. (This would seem to rule out the use of SNNs in forensic 
applications, such as the analysis of alleged confessions.) Nevertheless, the recent growth in the number of 
machine-readable texts of important authors gives plenty of scope for further research. We have ourselves 
used SNNs to study the influence of Marlowe on Shakespeare’s early career, finding evidence that the 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9111 G8.1:5 

Copyright © 1997 IOP Publishing Ltd



Arts and Humanities 

young Bard leaned heavily on works by his gifted contemporary (Merriam and Matthews 1994). Tweedie, 
Singh and Holmes have applied a multilayer perceptron SNN to The Federalist Papers (Tweedie et al 

c1.6.2 1995), while investigations using other network techniques such as the radial basis function are also being 
started (Lowe and Matthews 1995). Experience to  date on all these projects suggests that neural networks 
provide a valuable new source of evidential weight on which literary scholars may draw. 

References 

Hope J 1994 The Authorship of Shakespeare’s Plays: A Socio-linguistic Study (Cambridge: Cambridge University 

Horton T B 1987 The effectiveness of the stylometry of function words in discriminating between Shakespeare and 

Hoy C 1956 The shares of Fletcher and his collaborators in the Beaumont and Fletcher canon (VII) Studies in 

Lowe D and Matthews R A J 1995 Shakespeare vs Fletcher: A stylometric analysis by radial basis function Computers 

Matthews R A J and Merriam T V N 1993 Neural computation in stylometry I: an application to the works of 

- 1994a A Bard by any other name New Scientist 22 January 23-7 
- 1994b Using neural networks to cast light on literary mysteries Applications and Innovations in Expert Systems 

II  (Proc. Expert Systems 94; 14th Ann. Conf British Computer Sociev Special Interest Group on Expert Systems, 
Cambridge) ed R Milne and A Montgomery (Oxford: SGES Publications) pp 2 3 7 4 7  

Merriam T V N and Matthews R A J 1994 Neural computation in stylometry 11: an application to the works of 
Shakespeare and Marlowe Literary and Linguistic Computing 9 1-6 

Metz G H (ed) 1989 Sources of Four Plays Ascribed to Shakespeare (Columbia: University of Missouri Press) 
Proudfoot G R (ed) 1970 The Two Noble Kinsmen (London: Edward Amold) 
Tweedie F J, Singh S and Holmes D I 1995 Neural network applications in stylometry: The Federalist Papers 

Press) p 11 5 

Fletcher Doctoral Thesis University of Edinburgh 

Bibliography 15 1 2 9 4 6  

and the Humanities 29 449-61 

Shakespeare and Fletcher Literary and Linguistic Computing 8 203-9 

Computers in the Humanities submitted 

G8.1~6 Handbook of Neurai Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



A r t s  and Humanities 

68.2 Neural networks for archaeological provenancing 

John Fulcher 

Abstract 

Artificial neural networks (ANNs) are applied to the problem of classifying obsidian 
rock samples taken from the West New Britain region of Papua New Guinea. Multilyer 
perceptrons, self-organizing maps and learning vector quantization are found to be the 
most appropriate models for this task. A somewhat surprising result is that ANNs are 
able to yield good results (at least comparable with a human expert) with very few 
training exemplars. 

G8.2.1 Introduction 

Provenancing is the study of ancient artifacts, in order to determine their time and place of origin. In 
doing so, we also hopefully learn something of the culture of the people of that era. An associated 
study-archaeometry-is the mathematical analysis of archaeological artifacts and data. 

In the present study we concern ourselves with obsidian artifacts collected from the Talasea (northern) 
region of West New Britain, Papua New Guinea. Preprocessing is performed on data samples gathered 
from several sites in the region, by way of proton-induced x-ray emission (PIXE) analysis. ANNs are then 
used to classify these samples in terms of their sites of origin. 

G8.2.2 Obsidian samples 

Obsidian is a glass-like substance produced by rhyolitic flow in ermpting volcanos. It is found in several 
locations around the world, including both sides of the Pacific, namely Papua New Guinea (Torrence et a1 
1992), Oregon (Nelson et a1 1975, Hughes 1986, Godfrey-Smith et a1 1993) and Ontario (Godfrey-Smith 
and Haywood 1984). Obsidian possesses excellent flaking properties, and is readily split into thin slices, 
which in turn can be used to fabricate knives, axes and other implements. Indeed, it has been traded and 
used for toolmaking since prehistoric times. In modem times some forms are regarded by many cultures 
as semiprecious gemstones. 

Obsidian has been quarried by the indigenous people of Papua New Guinea for around 20000 years. 
By undertaking provenancing studies, we hope to gain insight into the trading practices of these people, 
from prehistoric times onwards. 

The color, translucency and texture of obsidian varies considerably depending on the site from which 
it is collected. For example, the rhyolitic flows from the Kutau and Bao regions of West New Britain 
are usually banded (and therefore not as a rule translucent) and range in color from gray or gray green 
to black. In contrast, obsidian from the Mount Baki and Garala Island regions is usually deep black and 
translucent, whereas samples from the Mount Hamilton region invariably contain high concentrations of 
small white phenocrysts. Moreover, Talasea obsidian has been unearthed at archaeological sites over an 
8000 km area of the western Pacific, extending from Sabah in the west to Fiji in the east (Torrence et a1 
1992). 

It is not possible to identify different obsidian samples solely on the basis of such broad characteristics; 
further detailed analysis is required, and this is where electron and x-ray techniques come into play (Nelson 
et a1 1975, Barton and Krinsley 1987). Proton-induced x-ray emission (PIXE) is used in the present study. 

@ 1997 IOP Publishing L.td and Oxford University Ress Handbook ofNeural Computation release 9711 G8.2~1 

Copyright © 1997 IOP Publishing Ltd



Arts and Humanities 

PIXE quantifies 14 elements and 7 oxides, as indicated in table G8.2.1. Normalized major and trace 
element data is used in order to remove any small, correlated parameter variations, thereby improving 
variable independence (two detectors are typically used, one normalized to iron, and the other to sodium). 
The use of ratios also leads to lower dimensionality of independent variables. Moreover, elemental ratios 
are commonly used in statistical cluster analysis (provided they are ratios of independent variables). 

Table GS.2.1. Element and oxide data resulting from PIXE analysis. 

Major elements Na A1 Si K Ca Fe 
Trace elements F Ti Mn Rb Sr Y Zr Nb 
Normalized ratios AUNa F/Na MdFe W e  Ca/Fe Rb/Fe Y/Fe Zr/Fe NblFe 
Oxides Na2O A1203 Si02 K20 
Sum of oxides CaO Ti20 Fe203 Oxide sum 

G8.2.3 Neural network classification 

Traditional statistical approaches to obsidian classification include dendograms and cluster analysis. In 
practice, such techniques are used as aids for experts in order to perform manual classification of the data. 
The motivation for using artificial neural networks to perform obsidian rock classification automatically 
was twofold: 
(i) could ANNs perform comparable classification to that currently performed by experts, and 
(ii) would ANNs be able to arrive at any meaningful classifications, given the small number of training 

data available? 
The first of these will be dealt with in section G8.2.4. As regards (ii), there has been some work done on 
minimum training sets for A N N s .  Hepner et a1 (1990) were concerned with the classification of satellite 
image data. They found that even with minimal training sets, the performance of ANNs matched that of 
conventional techniques, and moreover was far superior in terms of generalizability. 

As a result of their study, Eaton and Oliver (1992) derived an empirical formula in which the learning 
rate is reduced in proportion to the size of the data set (we shall be making reference to this finding again in 
section G8.2.3.1). Yan (1992) has suggested that by ‘judicious’ selection of training data, ‘protoypes’ can 
be produced which effectively average the relevant features of each sample class. This approach appears 

c2.1.1 to work well with nearest-neighbor techniques, such as Kohonen’s self-organizing map (SOM). The use of 
thresholds was proposed by Tom and Tenorio (1991), in order to lower the incidence of misclassifications. 
They further found that increasing the size of the training set increases the likelihood of correct recognition 
(of short speech utterances, in their case). 

The data we had available for the present study were gathered from the eight different sites in the West 
New Britain area of papua New Guinea indicated in figure G8.2.1 (Potter et a1 1994). There were a total 
of 200 training exemplars, 122 of which were obsidian rock samples (which had previously been classified 
manually); the remainder were artifacts. These artifacts (knives and other such tools) were known to have 
come from essentially the same source. However, since this source remained unknown to us, these artifact 
data were removed to avoid the likelihood of cross-training. 

Of the remaining sources, two did not yield sufficient numbers of training exemplars, and so were 
not used. The six sites we used in the end were: Kutau, Gulu, Garala, Baki, Hamilton and Mopir. In 
the present study, we only have a few (between four and seven) training exemplars from each source, but 
each sample contains a considerable amount of information. 

The obsidian data was preprocessed using PIXE analysis, in order to provide element and oxide (ratio) 
information. The data had been manually classified by an expert (but not perfectly-some samples were 
only classified as coming from a particular source in terms of probability, not certainty). This manual 
classification was the benchmark (yardstick) against which our ANN approach was to be appraised. 

We have certain a priori knowledge about the data at our disposal. For example, we know that all 
sources (sites) are close geographically, and that the obsidian samples have similar physical characteristics. 
As a result, the data can be grouped into four distinct classes. However, apart from this characteristic, the 
data are well spread. 

G8.2:2 Handbook of Net” Computation mlease 9711 @ 1997 IOP Publishing Ltd md Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural networks for archaeological provenancing 

Figure G8.2.1. Obsidian sources in West New Britain, Papua New Guinea. 

G8.2.3.1 Multilayer perceptron 

Our starting point for this study was the familiar multilayer feedforward network-multilayer perceptron ct.2 

(MLP) or backpropagation network. We began training MLPs using the public domain PlaNet X- 
Windows ANN simulator (Myata 1991) but soon switched to a commercial ANN simulator-Neuralworks 
Professional-11+ (Neuralware 1993). This latter software simulator had been previously adjudged to be 
one of the best available from our experiences with other ANN projects (Fulcher 1994). Furthermore, 
it could support many more ANN models than PlaNet, which we required for the present study (see 
sections G8.2.3.2 and G8.2.3.3 below). 

The MLP configuration was as follows: 

Input layer = 31 neurons (all 31 PIXE characteristics) 
Hidden layer = 8 neurons 
Output layer = 6 neurons (one for each of the 6 sources). 

A preliminary investigation used five MLPs, one for each of the five rows in table G8.2.1. Initial results 
were disappointing, however. The networks confused samples from Garala and Baki (but these had also 
been misclassified on occasion by the human expert). Of more concern was the confusion between Gulu 
and Hamilton samples. This prompted the use of unsupervised networks, in an attempt to arrive at 
independent classifications (see section G8.2.3.2 below). 

The next step involved grouping tables together, to determine whether higher dimensionality would 
improve classification. The training set was normalized to seven samples only from each site. A new 
MLP, with a learning rate of 0.15 and a momentum term of 0.8, was trained on this combined data set, 
and yielded 9% misclassification error (most of which could be attributed to samples from either Garala 
or Baki). 

Further exemplars were removed from the training set and placed in the test set. The MLP was 
randomized then retrained using only four samples from each site. As can be seen from figure G8.2.1 
(row 2), the effect on classification error was only marginal (but only for MLP). This is a rather surprising 
result, given that we had sofew training exemplars with which to work. 

At this juncture we compare our results with the empirical formula developed by Eaton and Oliver 
(1992) for optimum learning rate: 

@ 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Compurorion release 97/1 G8.2:3 

Copyright © 1997 IOP Publishing Ltd



A r t s  and Humanities 

Table G8.2.2. Effect of sample size on misclassification. 

ANN model % incorrect % incorrect 
(7 samples) (4 samples) 

MLP 9.0 10.5 
SOM 13.1 25.4 
LVQ 16.4 39.3 

where nl is the number of patterns in class 1. In our case, for six distinct classes of four training patterns 
each, this yields a learning rate of 0.1531 (compared to the value of 0.15 used in the present study, and 
which had been independently arrived at). The momentum was slightly lower than that used by Eaton- 
0.8, instead of 0.9. We conclude that our results are consistent with Eaton’s assertion that the learning 
rate should be reduced as the number of exemplars in the training set is decreased. 

G8.2.3.2 Self-organizing map 

As with MLPs, the starting point for using self-organizing maps (SOMs) was separate networks for each of 
the five major tables. Once again, misclassification of Garala and Baki samples accounted for the majority 
of errors, which were higher than those obtained using MLPs. This is not a surprising result in a way, 
since no one table contains sufficient information to identify adequately the site from which the sample 
came. Moreover, since SOMs form boundaries within the training data, outlying samples from each class 
will run the risk of being misclassified. 

The real value of SOMs in the present study was to examine overlap between different classes. 
Actually, a modification of Kohonen’s original SOM-SOM with classification-was used here (as 
implemented within Neural Works Professional-II+). We were able to verify that Gulu and Hamilton 
samples could indeed be discriminated. 

The fundamental behavior of an SOM network is to perform dimensionality reduction of the training 
data onto a two-dimensional feature map. The Mexican hat function is used to group neighborhoods of 
neurons into classes. In the case of sparsely distributed data, subgroups will be formed, which together 
constitute wider neighborhoods (or classes). Different classes will be defined by similar distributed 
neighborhoods. Thus it is no surprise that SOMs are able to distinguish Gulu and Hamilton classes, 
given the uneven distribution of training samples. 

SOMs did not perform as well as MLPs when the size of the training set was reduced, however. 
Retraining the SOM using four samples per class instead of seven saw the misclassification error almost 
double (rising from from 13% to 25%-see table G8.2.2). 

G8.2.3.3 Leaming vector quantization 

ci.i.5 Leaming vector quantization (LVQ) was even more sensitive to reducing the number of training samples 
from seven to four, with the overall error increasing from 16% to 39% (table G8.2.2). Samples from 
Hamilton, Kutau and Mopir are still able to be correctly discriminated; the misclassification occurs between 
Baki, Garala and Gulu (and more especially Baki and Gulu with four training samples). 

G8.2.4 Results 

Table G8.2.2 summarizes the performance of the three A N N s  used in the present study as a function of the 
number of training exemplars. We conclude that all three networks yield acceptable performance with seven 
training samples per class (comparable, at least, with manual classification by a human expert). However, 
when the number drops to four per class, only MLPs yield acceptable performance. The characteristics of 
each ANN are summarized in table G8.2.3. 

The addition of thresholding reduces the number of misclassified samples, as indicated in table G8.2.4 
(four samples per network). The term ‘decision rate’ refers to the proportion of time the output is greater 
than the threshold. 

G8.2:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd



Neural networks for archaeological provenancing 

Table GS.23. ANN characteristics. 

Transfer Learning Convergence 
ANN model Summation function rule threshold 
MLP 
Input layer 
Hidden layer 
Output layer 
SOM 
Input layer 
Kohonon layer 
SOM with 
categorization 
Input layer 
Kohonen layer 
Output layer 
LVQ 
Input layer 
Kohonen layer 
Output layer 

Linear 
Linear 
Linear 

Linear 
SOM 

c 
SOM 
Linear 

Linear 
LVQ 

Linear 

0.01 
Linear - 

Sigmoid Cumulative 
Sigmoid Widrow-Hoff 

0.0 
Linear - 
Linear SOM 

0.0 
Direct transfer + 

Linear SOM 
Linear Widrow-Hoff 

0.01 
Linear - 
Linear LVQl for 5000 epochs, thence LVQ2 
Linear - 

Table GS.2.4. ANN performance with thresholding. 

% incorrect % incorrect 
ANN model (threshold = 0) (threshold = 0.6) Decision rate 

MLP 10.5 7.4 90.98 
SOM 25.4 12.7 82.25 
LVQ 39.3 39.7 100.00 

In the case of SOM, for example, the percentage of correctly classified samples with thresholding 
increases from 74.6% to 87.3%, but at the expense of lowering the decision rate from 100% to 82.25%. 
These results confirm the earlier findings of Tom and Tenorio (1991) that the incidence of misclassifications 
can be reduced by using thresholds. The surprising general finding of this study was that meaningful 
classifications were obtained using such small training sets (Potter 1993). 

G8.2.5 Conclusion 

The obvious next step is to repeat the above study using much larger training sets. Apart from this obvious 
extension, another promising avenue for future research would be to use some form of hybrid ANN, in 
which an unsupervised network such as an SOM is used to form broad classifications. MLPs would then 
be used to provide finer discrimination using these preclassifications as part of their training. In doing so, 
we would be aiming to remove the need for manual (pre)classification using the human expert. 

Acknowledgements 

This work was made possible by financial assistance from the Australian Telecommunications and 
Electronics Research Board (grant no 32/1 85), the Advanced Telecommunications and Intelligent Software 
Research Programs within the University of Wollongong, as well as the Sociiti d’ Informatique et 
Tilicommunications ABronautiques (who funded the Face Recognition Project for Airport Security at 
the University of Wollongong). Thanks are also due to Michael Potter who trained the A N N s ,  Roger Bird 
(our ‘human expert’) and Eric Clayton, of the Australian Nuclear Science and Technology Organization, 
Lucas Heights, who provided the (preprocessed) obsidian data. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 G8.25 

Copyright © 1997 IOP Publishing Ltd



Arts and Humanities 

References 

Barton J and Krinsley D 1987 Obsidian provenance determination by backscattered electron imaging Nature 326 

Eaton H and Oliver T 1992 Learning coefficient dependence on training set size Neural Networks 5 283-8 
Fulcher J 1994 A comparison of commercial ANN simulators Computer Standards and Integaces 16 241-51 
Godfrey-Smith D and Haywood N 1984 Obsidian sources in Ontario prehistory Ontario Archaeology 41 29-35 
Godfrey-Smith D, Kronfeld J, Strull A and D'Auria J 1993 Obsidian provenancing and magmatic fractionation in 

Hepner G, Logan T, Ritter N and Bryant N 1990 Artificial neural network classification using a minimal training set: 

Hughes R 1986 Energy dispersive x-ray fluorescence analysis of obsidian from Dog Hill and Bums Butte, Oregon 

Myata Y 1991 PlaNet Neural Network Simulator University of Colorado, Boulder, CO 
Nelson D, D'Auria J and Bennett R 1975 Characterisation of Pacific northwest coast obsidian by x-ray fluorescence 

Neural Ware Inc 1993 Neural Computing and Reference Guide 
Potter M 1993 Minimal training sets for neural networks B. Comput. Sci. (Honours) Thesis University of Wollongong, 

Potter M, Fulcher J, Bird R and Clayton E 1994 Training artificial neural networks for obsidian provenancing studies 

Tom M and Tenorio M 1991 Short utterance recognition using a neural network with minimum training Neural 

Tonence R, Specht J. Fullagar R and Bird R 1992 From Pleistocene to present: obsidian sources in west new Britain, 

Yan H 1992 Building a robust nearest neighbour classifier containing only a small number of prototypes Int. J. Neural 

585-7 

central Oregon Geoarchaeology 8 385-94 

comparison to conventional supervised classification Photogramm. Eng. Remote Sens. 56 

Northwest Sci. 60 73-80 

analysis Archaeometry 17 85-97 

Department of Computer Science 

Proc. Australian Cons Amhaeometry (Armidale) 

Networks 4 71 1-22 

P a p  New Guinea Records Australian Museum (Supplement) 15 83-98 

SyW. 3 361-9 

G8.2~6 Handbook of Neural Compuration release 97tI @ 1997 IOP Publishing Ltd and Oxford Uninrsity Pnss 

Copyright © 1997 IOP Publishing Ltd



PART H 

THE NEURAL NETWORK RESEARCH 
COMMUNITY 

H1 FUTURE RESEARCH IN NEURAL COMPUTATION 
H1.l Mathematical theories of neural networks 

Shun-ichi Amari 
H1.2 Neural networks: natural, artificial, hybrid 

H John Caulfield 
H1.3 The future of neural networks 

J G Taylor 
H1.4 Directions for future research in neural networks 

James A Anderson 

@ 1997 IOP Publishing Ltd and Oxford University Ress Hundbook of Neural Computan’on release 9711 
Copyright © 1997 IOP Publishing Ltd



H1 

Future Research in Neural Computation 

Contents 

H1 FUTURE RESEARCH IN NEURAL COMPUTATION 
H1.l Mathematical theories of neural networks 

Shun-ichi Amari 
H1.2 Neural networks: natural, artificial, hybrid 

H John Caulfeld 
H1.3 The future of neural networks 

J G Taylor 
H1.4 Directions for future research in neural networks 

James A Anderson 

@ 1997 IOP Publishing Ltd and Oxford University R e s s  Handbook of Neural Computation release 9711 
Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

H l S  Mathematical theories of neural networks 

Shun - ich i Amari 

Abstract 

The brain is an enormously complex system having a rich structure and flexible 
information processing ability. It is a highly parallel, distributed and modifiable system 
different from the modern computer architecture. It is important to understand the system- 
theoretic aspects of the brain, such as how information is represented in the brain and 
what algorithms the brain uses to solve specific tasks of mental activities. The brain 
should have realized principles of information processing other than those of modern 
computers through a long history of evolution. Such principles should be analyzed 
mathematically by using abstract and idealized models of neural networks. The present 
section remarks on historical efforts and recent trends in mathematical approaches to (i) 
multilayer networks, (ii) recurrent networks and (iii) information geometry. 

H1.l.l Multilayer perceptrons 

Rosenblatt (1961) proposed simple and multilayerperceptrons in the late 1950s and early 1960s and proved c1.1, c1.2 
the convergence theorem of simple perceptrons (actually single neurons), having opened a new paradigm 
in neural learning. Widrow (1966) used analog linear neurons (adaline) and proposed the gradient descent c i . i . 3  
learning rule, the so-called delta rule. However, their methods could not be applied directly to multilayer ~ 3 . 3 . 3  
networks. It was a very old but still not well known paper (Amari 1967) in the late 1960s that proposed 
the stochastic descent learning rule for multilayer perceptrons including hidden units. This idea is called 
the generalized delta rule which has been rediscovered many times and is now implemented by the error ci.2.3 
backpropagation algorithm (Rumelhart er al 1986). There is research on modification and acceleration of 
the method as well as on its application in various fields. Recently, structural learning has been paid much 
attention and new learning algorithms have been proposed on the basis of statistical ideas (Jordan and 
Jacobs 1994, Amari 1995). In addition to the learning algorithm, learning performances and capacities of 
feedforward networks should be elucidated. 

A network is trained by examples, which represent the structure to be learnt. Amari (1967) studied 
the dynamical process of on-line learning, showing how fast the parameters converge to the desired target 
and how large the fluctuating error around the optimal value is. The dynamics of on-line learning is now 
an active area revived by a new statistical-physical method (Heskes and Kappen 1991, Sompolinski et 
a1 1995). When the number of available examples is limited, the criterion of minimizing the training 
error does not necessarily imply minimization ofthe generalization error. There are a number of ideas ~ 3 . 5 . 2  
which overcome this difficulty. They are, for example, early stopping by cross-validation, introduction of 
regularization terms, model selection by statistical and information-theoretic methods (see, for example, 
Amari and Murata 1993, Murata et a1 1994, Opper and Haussler 1991, Moody 1992, Watkin et a1 1993, 
Amari et a1 1996). 

Concerning the capacity, it is known that a one-layer perceptron can realize only a very limited class 
of functions. However, when a network has one additional hidden layer, it has the universal property 
that any continuous function can be approximated by it sufficiently well provided the number of hidden 
neurons is sufficiently large. This is good but not so surprising. The problem is how well a given function 
can be approximated as the number of hidden units increases. A function can be approximated by many 

@ 1997 IOP Publishing Ltd and Oxford University Press Handbook ofNeural Computation release 9711 H 1.1 : 1 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

analytical methods, for example, the Taylor series expansions, Fourier expansions, spline functions and 
so on. It is known that these expansions are not free of the curse of dimensionality: in order to attain 
an approximation of error E for a function f(z) of an n-dimensional input 5, the number of modifiable 
parameters increases in the order of ( 1 / ~ ' / ~ ) " .  This is intractable if n = 100. The surprising fact was 
revealed recently by Jones (1992) and then Banon (1993), that a neural network has an ability of function 
approximation which is free of the curse of dimensionality, that is, the number of required modifiable 
parameters does not increase exponentially as the input dimensions increase. Neural networks research 
opens a new approximation scheme of functions. 

H1.1.2 Neurodynamics in recurrent networks 

Neural networks of recurrent connections have been studied intensively for a long time. Behavior of such a 
network is represented by the dynamics of state transition; differential equations in the continuous case and 
difference state update equations in the discrete time case. Macroscopic behavior of networks of random 
recurrent connections have been analyzed mathematically since the early 1970s (Amari 1972a, Harth et 
af 1970, Wilson and Cowan 1972). Theoretical foundations of such dynamics were studied (Amari et af 
1977, Rozoner 1969). The autocorrelation associative memory model was studied in the early 1970s by a 
network of recurrent connections (Nakano 1972, Anderson 1972, Amari 1972b). It was Hopfield (1982) 
who introduced the asynchronous state transition to the model and the concept of the energy function by 

c1.3.4 the spin-glass analogy. Hence, a recurrent network is sometimes called the Hopfield network. Dynamics 
of recalling processes were proposed by Amari and Maginu (1988) and then by many others (Okada 1996, 
Coolen and Sherrington 1993). The network can memorize and recall temporal pattern sequences when 
the asymmetric connections are permitted (Amari 1972b). 

A recurrent neural network of symmetric connections has a Lyapunov function (energy function) so 
that it shows no oscillatory or chaotic behavior (Cohen and Grossberg 1983). Such a network is called an 
attractor neural network because of this property. Much richer dynamical behaviors also emerge in neural 
fields (Wilson and Cowan 1973, Amari 1977). Self-organization of neural fields has the ability to generate 
topological maps, as was proposed by Willshaw and von der Malsburg (1976). Kohonen (1982) proposed 
powerful algorithms of formation of self-organizing topological maps. Takeuchi and Amari (1979) studied 
dynamical stability and instability of such maps, showing spatial instability of topological maps which 
generates patch or columnar structures (see also Ritter and Schulten 1988). Much attention has been paid 
recently to temporal encoding of information and chaotic behaviors. 

H1.1.3 Information geometry of manifolds of neural networks 

We have so far treated mostly the information processing ability of various types of neural networks. 
However, it is important to search for the geometry of the set of all neural networks of a fixed architecture. 
Let w = (w1, . . . , w p )  be the set of structural or modifiable parameters (connection weights) of networks. 
Then, the set is regarded as a manifold and called the manifold of neural networks or, in short, the neural 
manifold, where w is a coordinate system to specify each network in the set. 

It is important to study the intrinsic geometry of the neural manifold. For example, we consider a 
c1.2 feedforward network (multilayer perceptron) where the input-output relation is written as z = f(z; w) 

where w summarizes all the modifiable parameters. Let S be the set of all the smooth functions S = (cp(z)). 
Then, the set of functions M = { f (z; w)} realizable by neural networks corresponds to the neural manifold. 
It is embedded in S as a curved submanifold. Given a function cp(z), it is important to find W O  such that cp 
is optimally approximated by f(z; WO). The capacity of M shows how well a function is approximated. 
On the other hand, learning is the problem of finding 200 from examples. When M is curved in S to fill 
most parts of S, the capacity is large. However, this curvature produces many local minima and learning 
capability decreases. All of these are related to the intrinsic geometry of M. When the behavior of neurons 
is stochastic or noise-contaminated, the output x of the network is specified by the conditional distribution 
p ( r l z ;  w) conditioned on input z. In this case, M is the set of all the conditional probability distributions 
parametrized by w. Information geometry (Amari 1985) gives an intrinsic structure to the manifold of 
probability distributions. It is a Riemannian manifold with a dual pair of affine connections and serves 
as a fundamental basis of statistics. Information geometry provides a geometrical insight for analyzing 
neural manifolds (Amari 1991, Amari et a1 1992). 

This is related to c1.4 Stochastic neural networks provide nonlinear modeling of multivariate data. 

HI. 1 :2 Handbook of Neural Computation release 9711 0 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Mathematical theories of neural networks 

nonlinear multivariate statistical analysis so that neural modeling is  a recent hot topic in  statistics. On the 
other hand, statistical techniques give neural network researchers powerful methods of analysis. They are, 
for example, projection-pursuit, EM algorithm, asymptotic theories, learning curves, Bayesian priors and 
overtraining. 

All of  these are related to  information geometry. The geometrical foundation of the EM algorithm 
and dual minimization procedures are given by Amari (1995). Information geometry will grow as an 
indispensable method of  mathematical theories of neural networks. 

References 

Amari S 1967 Theory of adaptive pattem classifiers IEEE Trans. Electr. Comp. 16 299-307 
-1972a Characteristics of random nets of analog neuron-like elements IEEE Trans. Syst. Man Cybem. 2 643-57 
-1972b Learning pattems and pattem sequences by self-organizing nets of threshold elements IEEE Trans. Comp. 

-1977 Dynamics of pattem formation in lateral-inhibition type neural fields Biol. Cybem. 27 77-87 
-1985 Differential-Geometrical Methods in Statistics (New York: Springer) 
-1991 Dualistic geometry of the manifold of higher-order neurons Neural Networks 4 443-51 
-1995 Information geometry of EM and em algorithms for neural networks Neural Networks 8 1379-408 
Amari S, Kurata K and Nagaoka H 1992 Information geometry of Boltzmann machines IEEE Trans. Neural Networks 

Amari S and Maginu K 1988 Statistical neurodynamics of associative memory Neural Networks 1 63-73 
Amari S and Murata N 1993 Statistical theory of learning curves under entropic loss criterion Neural Computation 5 

Amari S ,  Murata N, MSlller K R, Finke M and Yang H 1996 Asymptotic statistical theory of overtraining and cross- 

Amari S, Yoshida K and Kanatani K 1977 A mathematical foundation for statistical neurodynamics SIAM J. Appl. 

Anderson J A 1972 A simple neural network generating interactive memory Math. Biosci. 14 197-220 
Barron A R 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. In$ Theory 

Cohen M A and Grossberg S 1983 Absolute stability of global pattem formation and parallel memory storage by 

Coolen A C C and Shemngton D 1993 Dynamics of fully connected attractor neural networks near saturation Phys. 

Harth E M, Csermely T J, Beek B and Lindsay R D 1970 Brain functions and neural dynamics J. Theor. Biol. 26 

Heskes T M and Kappen B 1991 Leaming processes in neural networks Phys. Rev. A 440 2718-26 
Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Nail 

Jones L K 1992 A simple lemma on greedy approximation in Hilbert space and convergence rates for projection 

Jordan M I and Jacobs R A 1994 Hierarchical mixtures of experts and the EM-algorithm Neural Comput. 6 181-214 
Kohonen T 1982 Self-organized formation of topologically correct feature maps Biol. Cybem. 43 59-69 
Moody J E 1992 The effective number of parameters: An analysis of generalization and regularization in nonlinear 

systems Advances in Neural Information Processing Systems ed J E Moody, J Hanson and J Kangas (Amsterdam: 
Elsevier) pp 847-54 

Murata N, Yoshizawa S and Amari S 1994 Network information criterion-Determining the number of hidden units 
for an artificial neural network model IEEE Trans. Neural Networks 5 865-872 

Nakano K 1972 Association-A model of associative memory IEEE Trans. Syst. Man Cybem. 2 381-8 
Okada M 1996 Notions of associative memory and sparse coding Neural Networks 9 to appear 
Opper M and Haussler D 1991 Calculation of the leaming curve of Bayes optimal classfication algorithm for learning 

a perceptron with noise Pmc. 4th Ann. Workshop on Computational Leaming Theory (San Mateo, CA: Morgan 
Kaufmann) pp 75-87 

Ritter H and Schulten K 1988 Convergence properties of Kohonen’s topology conserving maps: fluctuation, stability 
and dimension selection Biol. Cybem. 60 59-71 

Rosenblatt F 1961 Principles of Neurodynamics (New York: Spartan) 
Rozonoer L I 1969 Random logical nets I Automat. Telemekh. 5 13747 
Rumelhart D, Hinton G E and Williams R J 1986 Learning intemal representation by error propagation Parallel 

Distributed Processing vol 1 Foundations ed Rumelhart D and McClelland J L (Cambridge, MA: MIT Press) 

21 1197-206 

3 260-77 

140-53 

validation IEEE Trans. Neural Networks to appear 

Math. 33 95-126 

39 930-945 

competitive neural networks IEEE Trans. Syst. Man Cybem. 13 815-25 

Rev. Lett. 71 3886-9 

93-120 

Acad. Sci. 79 2445-2458 

pursuit regression and neural network training The Annals of Statistics 20 608-613 

pp 318-62 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 HI. 1 :3 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

Sompolinski H, Barkai N and Seung H S 1995 On-line learning dichotomies: Algorithms and learning curves Neural 
Networks: The Statistical Mechanics Perspectives ed J H Oh Ch Kwon and S Cho (Singapore: World Scientific) 

Takeuchi A and Amari S 1979 Formation of topographic maps and columnar microstructure B i d .  Cybem. 35 63-72 
Watkin T L H, Rau A and Biehl M 1993 The statistical mechanics of learning a rule Rev. Mod. Phys. 65 499-556 
Widrow B 1966 A Staristical Theory of Adaptation (Oxford: Pergamon) 
Willshaw D J and von der Malsburg C 1976 How pattemed neural connections can be set up by self-organization 

Wilson H R and Cowan J D 1972 Excitatory and inhibitory interactions in localized populations of model neurons 

-1973 Stationary states and transients in neural populations J. Theor. Biol. 40 77-106 

pp 105-30 

Proc. R. Soc. B 194 431-45 

Biophys. J .  12 1-24 

H 1.1 :4 Handbook of Neural Compufation release 97/1 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

H1.2 Neural networks: natural, artificial, hybrid 

H John Caulfield 

Abstract 

A personal reflection on the future of neural network research. 

The direction of my future neural network research and that of many of my colleagues is to achieve 
mammalian functionality: the olfactory capabilities of a dog, the visual world of a primate, the brilliant 
intellect and intuition of a human. These are easily expressed, easily understood goals. Achieving them 
would be of immense practical value, In addition, reflexively, it will help us understand what nature is 
doing. Humans habitually project their technology onto nature. At one time or other the brain has been 
viewed as a fluidic system, a telephone switchboard, a digital computer, a hologram, a set of attractor neural 
networks and arrays of pulse-coupled neural networks. Some of these (pumps, switchboards, holograms) 
are obviously wrong. Yet even they had enough truth to have been useful. The neural models are surely 
more nearly correct, so they can teach us more. Let us look at the areas just noted in a little more detail. 

The olfactory system seems simple, but we know it is not. Real mammalian olfactory neural networks 
involve chaotic attractors in a way yet to be sorted out in detail. But we do know the functions carried out. 
Each sniff identifies and notes the strength of one of N possible chemical components. For the next sniff, 
that component is suppressed and the process is repeated. Thus a feature vector is generated sequentially. 
The order as well as the magnitudes are encoded, so this is a syntactic description. This, in turn, can be 
recognized by a more conventional neural network. Thus the power of syntactic pattern recognition is 
available with the simplicity of statistical pattern recognition. My own version of this is optical. It is a 
NOSE (neural optical sequencing engine), which, when coupled to available chemical sensor arrays, can 
be helpful in detecting such things as drugs, chemical agents and explosives. 

The mammalian visual system is very complex. The optics (cornea and lens) are followed by an 
exuberantly complex sensor-preprocessor called the retina. In every meaningful sense, the retina is part 
of the brain. It is parallel and pipelined through multiple layers to present the various visual layers in the 
brain with a cleaner edge-enhanced, bandwidth-compressed scene description than an ordinary detector 
array on the retina would. We are developing an optical multilayer artificial retina which exhibits the 
same functionality as our RETINA (retinally inspired architecture). RETINA should simplify the task 
for subsequent processors, for example, for machine vision. RETINA hooked up to a lens system could 
produce signals which might be directly input to the optic nerve or to V1 to give sight to the blind or 
create hypervision (better-than-normal vision). 

The most exciting venture, to me, is to emulate the functionality of the human brain. Humans have 
language. They have intention, emotion, meaning. Computers, on the other hand, function like very 
large look up tables. They can be viewed as symbol manipulators. But they intend nothing, feel nothing, 
mean nothing. My greatest current interest is to use the pulse-coupled neural network (PCNN) to answer 
questions such as the following: 
0 

0 

0 

How can a computer mean something? How can it intend anything? 
Can there be a ‘language of the mind’? How do we learn language? 
How do instincts get inherited? Do birds have song genes, beavers have dam genes and primates 
have snake genes? Or is there an inherited neural basis for behavior? How would that work? 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook ofNeural Computation release 9711 H1.2:l 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

0 

0 

0 What is ‘consciousness’ ? Is consciousness, attention to attention? Do mystics attend to 

In each case, the PCNN appears to offer unexpected and plausible answers which should allow artificial 
systems to exhibit those features (albeit crudely, compared to a human). What are my future directions? 
The answer is: to achieve biological functionality without directly imitating biological methodologies. 
Imitation is too difficult to understand or implement. Similar functionality is within our grasp. My 
approaches will be different from yours. My goals and vision, however, are ones I commend strongly to 
others. 

What I hope the reader has not missed is the fact that I am not modeling the mammalian nervous 
system. Rather, I am trying to follow the procedure shown in figure H1.2.1. 

What is ‘attention’? What would an attention organ do? How would it connect with the rest of the 
visual system? 
What is ‘subconscious thought’ ? Can and/or should we create a computer subconscious? 

consciousness? 

SEEK TO UNDERSTAND 
WHAT THE 

MAMMALIAN NERVOUS 
SYSTEM IS DOING, NOT 

INVENT ARTIFICIAL 
NEURAL SYSTEMS 

WHICH DO THE 
SAME THING 

(HOWEVER CRUDELY) 

APPLY TO ENGINEERING 
PROBLEMS 

GET MONEY FOR 
APPLICATIONS 

SEE HOW OUR 
NEURAL NET 

MAY EXPLAIN 

BEHAVIOR 

Figure H13.1. A flowchart describing my research. 

H1.2:2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural ComDutation 

H1.3 The future of neural networks 

J G Taylor 

Abstract 

A personal reflection on the future of neural network research. 

It is difficult to predict the future of a subject experiencing such a fast rate of growth as is now occurring 
in neural networks. Their use is expanding into an increasing number of applied areas-finance, business, 
industrial process control, energy control, human resource management such as personnel selection, and 
many areas in which the fast pattern recognition powers of the systems are able to handle difficult template 
matching problems, and where the template itself is not well defined. Solutions to problems such as credit 
card fraud detection (accomplished by noting the special temporal pattern of each credit card use, or by 
voice or other identification approaches to secure recognition) are difficult to achieve at the present success 
levels and speed with any other method. However, neural networks are not only going to provide ever 
better applications to hard problems in business and industry but also to help uncover some of the higher 
powers of the cognitive processes of the human brain. It is through exploration of these higher processes 
that there is a chance that really hard problems about intelligence, as it actually is in humans, may be 
solved and moved onto artificial systems (with expected improvements?). 

It is clear that neural networks are now part of the toolkit of the adaptive information processor. 
The applications mentioned above are only a small part of the many that are now being investigated with 
ever greater power and success. At the same time it is also clear that the use of hybrid techniques can 
make a neural approach much more effective. Thus the combination of the use of constraint satisfaction 
(such as arc consistency) and a neural (relaxation) network allows a neural network solution to a hard 
optimization problem (the radio links frequency assignment problem) to be far more effective than if the 
neural approach were used on its own (Bouju et al 1995). Ever more use of hybridization can be expected 
and multihybrid solutions are already well developed for some problems. As the understanding of the 
nature of neural systems grows, then I expect a similar deepening of the understanding of how, when, 
why, and where to hybridize. Thus it may be appropriate to determine a good solution to a problem by 
an expert system or an exact solution technique, but then to develop a neural system based on the exact 
solution which will be more robust to external perturbations or small changes in the parameters of the 
problem. Having said that I expect neural applications to become ever more ‘thick on the ground’ over the 
next few years, I have also said that I assume that there will be a corresponding deepening of the nature 
of neural network theory. This is a strong trend already, with the advance of the statistical community 
to our aid (Cherkassky 1995)-and learning something in the process-as well as the use of information 
theory and related techniques to give a deeper understanding of the nature of optimal learning algorithms 
(Amari 1991). I will also not forget the enormous insights which have come to neural networks from the 
use of statistical mechanics techniques (Amit 1989); this is still giving an increased understanding of the 
nature of learning laws and the manner in which sudden changes in the weight space usually observed 
in training arise from phase changes of the corresponding statistical mechanical system. There is also an 
increasing insight from dynamical systems, in which the above phase change corresponds to a bifurcation 
of the dynamical system in the space of weights, of one of the classical and well-classified sorts. Thus 
the nature of temporary minima is explained in these terms. Furthermore, the avoidance of local minima 
is also slowly being achieved, using techniques of simulated annealing or by tunneling methods which c1.4.2 

deform the total energy surface itself so as to make the problem simple, and then change it back smoothly 
so as to avoid falling into the basins of attraction of the local minima as they start to grow and become 
putatively dangerous. 

@ 1997 IOP Publishing Ltd and Oxford University Ress Handbook of Neural Computation release 9711 H 1.3: 1 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

All of these techniques are sometimes said to be producing ‘intelligent’ systems. However, the 
intelligence involved is still remote from that of ourselves. To predict further it is necessary to give 
a definition of intelligence itself. I favor that which states that intelligence is the ability to manipulate 
internal (neural) representations so as to aid the achievement of a goal of importance to the system. 
Such a process clearly occurs in the human brain, and it is my claim that we are now in the process of 
beginning to understand what the neural underpinning might be for such processing. There are already 
several simple models of frontal lobe processing to solve simple tasks, such as the Wisconsin card sorting 
task (Levine and Prueitt 1989) or the recency task (Monchi and Taylor 1995). It now appears feasible 
to attempt to model the global structure of the frontal system, in terms of the great anatomical loops, 
of the ventrolateral, dorsolateral, orbitofrontal, eye fields, and motorhpplementary cortices discussed by 
Alexander eta1 (1986). Such architectures present a specific and finite problem to neural modelers to solve 
as follows: how does the observed architecture enable executive function to be achieved, and intelligence 
to thereby be supported? 

The answers to this might not be so far away. The ACTION network has been suggested (Alavi and 
Taylor 1995) as having the abilities that are crucial: to carry representations of inputs over periods of time 
in a working or active memory, to be able to make choices between different schemata by some form of 
lateral inhibition, and to allow for the learning of temporal sequences of actions, so developing schemata 
and higher-order chunking. The interactions between the various frontal loops given by Alexander et a1 
(1986) are clearly where the most important features of executive and intelligent function might lie. There 
is no reason why such processes cannot be amenable to analysis by both dynamical systems theory and 
simulation. Both are part of the neural networks toolkit presently available, and they are being improved 
all the time. 

This leads us to one of the mysteries of mankind-the nature of consciousness and the mind. There 
are increasing numbers of groups now working seriously on that question. Especially with the advent of 
noninvasive techniques it is possible to contemplate constructing large-scale simulations of the brain at 
a global level (Taylor 1995). It may be possible in this manner to build an ever more precise artificial 
laboratory to allow for improved understanding of the brain and mind. The next century will surely lead 
to the computing power necessary to crack the problem; how far after the year 2000 we will need to go 
to properly understand the principles of mind is not clear to me now, but it may not be so far away as all 
that. 

References 

Alavi F and Taylor J G 1995 A basis for long-range inhibition across cortex Lateral Interactions in the Cortex ed J 
Sirosh, R Mikkulainen and Y Choe, sited at http:/www.cs.utexas.edu/users/nn/lateralinteractions-~o~cover.ht~ 

Alexander G E, DeLong M R and Strick P L 1986 Parallel organization of functionally segregated circuits linking 
basal ganglia and cortex Ann. Rev. Neurosci. 9 357-81 

Amari S-I 1991 Dualistic geometry of the manifold of higher order neurons Neural Networks 4 443 
Amit D 1989 Models of Brain Function (Cambridge: Cambridge University Press) 
Bouju A, Boyce J F, Dimitropolous C H D, vom Scheidt G, Taylor J G, Likas A, Papageorgiu G and Stafylopatis 

A 1995 Intelligent search for the radio links frequency assignment problem Proc. Int. Con5 on Digital Signal 
Processing DSP95 (New York: IEEE Press) 

Cherkassky V 1995 Neural network and statistical methods for function estimation WCNN95 Short Course 
Levine D S and Prueitt P S 1989 Modelling some effects of frontal lobe damage: novelty and perseveration Neural 

Monchi 0 and Taylor J G 1995 A model of the prefrontal loop that includes the basal ganglia in solving the recency 

Taylor J G 1995 Modules for the mind of psyche. Invited Talk World Congress on Neural Networks WCNN95 vol I1 

Networks 2 103-16 

task World Congress on Neural Networks WCNN95 vol 111 (Erlbaum) pp 48-51 

(Erlbaum) pp 967-72 

H1.3~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Ress 

Copyright © 1997 IOP Publishing Ltd

http://www.cs.utexas.edu
http://www.cs.utexas.edu


Future Research in Neural Computation 

H1.4 Directions for future research in neural networks 

James A Anderson 

Abstract 

Neural network hardware is sometimes claimed to be inspired by the design of the 
brain, that is, it is neuromorphic. However, the operations of the resulting systems 
only occasionally act psychomorphic, that is, working like the mind. In this article we 
point out some places where neural network technology must be significantly extended 
if it is to act more like minds. (1) There is little understanding of intermediate level 
organization above the level of single units and below the level of the entire system. (2) 
The theoretical formulation of neural network learning needs to advance beyond 1920s 
behaviorism. (3) Flexibility of operation and control of the direction of a computation 
are probably more important to behavior than retrieval accuracy. (4) Neural networks 
are almost always special purpose devices. Successful system performance lies in the 
details of the architecture and the data representation. 

H1.4.1 Introduction 

When neural networks regained popularity in the mid-l980s, a term that was sometimes used to describe 
systems containing them was ‘neuromorphic’ . ‘Brain-like computing’ was another way of saying about 
the same thing. When one of these terms was used in engineering the implication was that the artificial 
devices being built were following at least some of the design principles of the mammalian brain. 

To those of us professionally concerned with behavior, a parallel set of names might be proposed: 
‘psychomorphic’ systems and ‘mind-like computing’. Artificial intelligence, as classically defined, is 
describable by these names, though when AI first developed in the 1950s and 60s it deliberately paid 
little attention to the substantial amount known about the facts of human behavior, believing that sheer 
cleverness was capable of overcoming ignorance. The field of neural networks may be making the same 
mistake. 

A major conceptual problem in the future of neural networks is that, even if neural networks are in 
some vague architectural sense neuromorphic, they are rarely psychomorphic. Even though there is a large 
body of lawful, regular and reproducible experimental results in the behavioral sciences, these ideas have 
rarely had much influence in the neural network community, outside of a small number of researchers who 
specifically try to model human cognition. Let me state several reasons for this neglect. 

H1.4.2 Missing levels of organization: neuroscience 

Neural network models are built from elementary computing units. The largest neural network simulations 
used in practice contain perhaps a few thousand units. The human brain contains billions of neurons. 
Current neural network models have a severe problem using or even acknowledging the intermediate 
levels of organization that must exist in this numerical gap in scale between the properties of single units 
and the coordinated activity of the whole brain. 

Consider a large business organization like IBM. We can follow an individual employee during the 
course of a day. Or we can follow the health of the company as a whole by looking at the annual report. 
It would be difficult to infer from either of these sources of information the presence of workgroups, 

@ 1997 IOP Publishing Ltd and Oxford University Ress ~undbook  ofNeural Computution release 97/1 H1.4: 1 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

departments and divisions, that is, groups of employees and groups of groups of employees, where in fact 
most of the work of the company is organized and performed. Similarly, government has complex and 
essential intermediate-level structures, for example, in rough order of size, neighborhood, city, county, 
state and federal. 

Experimental techniques in neuroscience currently allow us to look at single-unit recordings for the 
behavior of single neurons and gross electrical activity (EEG, evoked responses, imaging) for overall 
activation levels, roughly the lowest and highest levels of neural organization. As many have pointed out, 
there are several orders of magnitude of grouping that must exist, have been conjectured to exist, are felt 
to be important, but about which almost nothing is known. For a large functional neuromorphic system, 
there is surely much more important structure present than is currently assumed and the details of this 
additional structure will strongly affect the overall behavior of the system. 

H1.4.3 

The most commonly used formulations of network learning are limited and often misleading from the 
point of view of a psychomorphic system. Neural network theory has been strongly influenced, for better 

86 and worse, by the mathematics of classical puttem recognition. Typically, pattern recognition assumes that 
sensors have provided a set of input data connected to a classification, say a set of pixels corresponding to 
the written letter ‘A’. A network is presented with a number of examples of the classification in a training 
set and the weights in the network are adjusted by various learning algorithms so as to make it classify 
more accurately in the future. 

It can be shown-see the many examples in this book-that properly designed neural networks can 
do this operation effectively enough for many useful applications. However, a psychomorphic engineer 
might ask if this is all that we want to do. This structure, with an input pattern transformed in the network 
to an output pattern, reproduces in form classical stimulus-response (S-R) learning from psychology. S-R 
learning was proposed by the behaviorists in the 1920s and 30s as the only true basis of a scientific 
psychology. Essentially, we can solve the problem of animal behavior when we make lists of externally 
observable stimuli, the associated observed responses, and assume the brain is there to make links between 
them. No hidden mental processes need be invoked. 

Clearly there is some truth behind this analysis. Association has been known to be a primary 
mechanism of learning since Aristotle. Even Aristotle, however, was quite aware, and it has been amply 
confirmed by work in psychology and cognitive science over the past decades, that such a limited definition 
of association cannot explain many aspects of behavior. It is therefore distressing to see neural network 
theorists deliberately, or even worse, unconsciously, reproduce a severely limited and inadequate view of 
mental operation. 

Missing levels of organization: cognitive science 

H1.4.4 Controllability, accuracy and flexibility 

Focus on the formation of accurate associations has distracted attention from a number of other important 
requirements for a psychomorphic system. Controllability, flexibility and teachability are at least as 
important in human cognition as accuracy in retrieval, probably more so. For example, consider the pixel 
pattem that a letter recognizer classifies as a letter ‘A’. Depending on the context this pattem can be 
labeled as a capital ‘A’, a grade in a college class, an indefinite article in English, and so on. 

The switch between one possible association of the pattern and another is extremely rapid. For 
example, in a psychological experiment, an ‘A’ can be first associated with pressing a button on the left. 
Time to respond to the presentation of the ‘A’ will become faster with repeated presentations, even though 
responses have been error-free since the beginning of the experiment. Suppose a verbal instruction now 
tells the subject to respond to an ‘A’ by pressing the button on the right. Suddenly the subject is making 
a different response. The responses may be a little slower at first, but performance is still error-free. This 
flexibility is common and so trivial that we hardly even think about how difficult it must be to get a neural 
network to completely and correctly shift its input-output relationships in a matter of milliseconds. My 
guess is that the need for this flexibility places much more stringent constraints on possible neuromorphic 
architectures than accurate learned association. The psychomorphic system can constantly and quickly 
reprogram itself. 

Somehow 
presentation of properly structured inputs can speed up learning by orders of magnitude. In this 

This example also suggests the importance of ‘teachability’ for network operation. 

H1.4~2 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University F’ress 

Copyright © 1997 IOP Publishing Ltd



Directions for future research in neural networks 

case, the inputs causing a change in association were not even examples of the association but verbal 
instructions recombining past learning. Learning in school would be a painful and slow process if it 
were purely associative. Learning does not proceed by a random pairwise accretion of facts in knowledge 
space. Something much more complex is occurring, involving the formation of mental structures, use of 
interlocked concepts and detailed mental models and the presentation of specific factual examples which 
are explained by a teacher. 

The time course of real learning is often strikingly unlike the time course of simple neural network 
learning. Neural network learning typically starts with a tabula ram, learns the first associations quickly 
and accurately, and then gets slower and less accurate as it learns more and more. 

Real learning often starts slowly-for example, learning the times tables in grade school-and then 
accelerates, so college mathematics courses provide an immense amount of information very rapidly, once 
the foundations are built. As William James commented, ‘. . . the more other facts a fact is associated with 
in the mind, the better possession of it our memory retains . . . . Let a man early in life set himself the 
task of verifying such a theory as that of evolution and facts will soon cluster and cling to him like grapes 
to their stems. Their relations to the theory will hold them fast . . .’ (James 1892/1984). The point here is 
that real memory has strong high-level structure that uses simple association as an elementary mechanism. 
Past information can aid in the learning and retrieval of later information. 

One of the best critiques of simple neural networks is in the well known paper by Jerry Fodor and 
a n o n  Pylyshyn (1988), who, among other points, observed that simple association is such an inefficient 
way to build an information processing and retrieval system that an engineer would be strongly advised 
to use something else if the system was to be in any way useful. 

An obvious and practical task for future research is to take today’s relatively well understood simple 
neural network systems and try to combine them in such a way as to reproduce at least a little of the 
flexibility and controllability observed in human memory. 

H1.4.5 Generality versus specificity 

Because the history of the field is tied to pattern recognition and computer science, there is a tendency 
to believe that neural networks form general computing systems in the sense that Turing machines form 
universal computers. There is absolutely no reason to believe that this is true. The biological nervous 
system is concerned with specificity and not generality: specific sensory systems, specialized structures, 
specific kinds of computation. 

Although we like to think the human brain is very general, when mental operations are looked at in 
detail striking limitations appear. For example, the simple logic operation XOR, the b2te noire of neural 
networks, can be incorporated into a puzzle. This puzzle can be solved by humans, though often with some 
difficulty. The same logical structure when instantiated in a different problem often does not generalize. 
There is a substantial body of research on this observation in cognitive science. 

Successful computation in neural networks is dependent on details of the data representation, that is, ~4 

on how the pattern of input and output unit activation relates to the world. Neural networks are extremely 
sensitive to representations. In a real sense, the data representation is the mechanism by which networks 
are programmed. The choice of a good data representation is of far more value toward the solution of a 
problem than is the choice of the learning rule or network. 

For various reasons, including the fact that neural structures tend to be noisy, and that small errors can 
propagate and amplify, it is not possible to have psychomorphic computers perform in sequence the very 
large number of accurate elementary computational steps that characterize operation of digital computers. 
A small sequence of computational operations combined with an effective input and output neuromorphic 
data representation comprises the entire psychomorphic computation. John von Neumann pointed out this 
essential characteristic of neural computation in 1958. 

The biological brain contains true marvels of data representation, using details of neuroanatomy and 
neurophysiology to respond to useful properties of the world. However, data representations tend to be 
very problem specific. The more that is known about a given problem, the less general adaptability is 
needed. Learning requires ignorance; if everything is known, nothing need be learned. Learning and 
adaptation are dangerous for an animal because they involve rewiring the nervous system and should be 
used only when necessary. It has been suggested that normal learning is one end of a continuum with 
pathology lying at the other. Here, perhaps more than in many fields, God is in the details. 

0 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9711 H1.4:3 

Copyright © 1997 IOP Publishing Ltd



Future Research in Neural Computation 

I suppose the point of this discussion is that our field, the field presented in this handbook, knows only 
a little about the earliest stages of intelligent system design. The outlines of intermediate-level network 
organization and the rules, if there are any, for designing data representations for specific problems remain 
to be discovered. It is not even clear what is the best way to analyze complex intelligent systems; proper 
analysis may start with traditional statistics and its extensions to pattern recognition but is unlikely to end 
that way. 

The most important future developments for both intelligent machines and for the understanding of 
our own mental processes may arise when the constraints and the abilities seen at the highest levels of 
cognitive function can be connected with low- and intermediate-level neural network architectures. 

References 

Fodor J A and Pylyshyn Z W 1988 Connectionism and cognitive architecture: a critical analysis Cognition 28 2-72 
James W 1892/1984 Psychology: Briefer Course (Cambridge, MA: Harvard University Press) pp 257-9 
von Neumann J 1958 The Computer and the Bruin (New Haven, CT: Yale University Press) pp 75-82 

HI .4:4 Handbook of Neural Computation release 9711 @ 1997 IOP Publishing Ltd and Oxford University Press 

Copyright © 1997 IOP Publishing Ltd


	Cover
	Handbook of Neural Computation
	©
	Contents
	Preface
	Foreword
	How to Use This Handbook
	List of Contributors
	PART A: INTRODUCTION
	Chapter A1: Neural Computation: The Background
	A1.1 The historical background
	Abstract
	A1.1.1 Introduction
	A1.1.2 Living neurons
	A1.1.3 Difficulties to be faced
	A1.1.4 Reawakening
	A1.1.5 Forms of networks and their training
	A1.1.6 Strengths of neural networks
	A1.1.7 Hybrids and the future
	References

	A1.2 The biological and psychological background
	Abstract
	A1.2.1 Biological motivation and neural diversity
	A1.2.2 Psychological motivation and learning rules
	Acknowledgement
	References


	Chapter A2: Why Neural Networks?
	Abstract
	A2.1 Summary
	Abstract
	References

	A2.2 What is a neural network?
	Abstract
	A2.2.1 Introduction
	A2.2.2 The US National Science Foundation neuroengineering program: a case study
	A2.2.3 Artificial neural networks as sixth-generation computers
	A2.2.4 Artificial neural networks as brain-like designs or circuits
	References

	A2.3 A traditional roadmap of artificial neural network capabilities
	Abstract
	A2.3.1 Hard-wired designs
	A2.3.2 Static optimization
	A2.3.3 Designs based on learning
	A2.3.3.1 Supervised learning
	A2.3.3.2 Unsupervised learning
	A2.3.3.3 Reinforcement learning
	References




	PART B: FUNDAMENTAL CONCEPTS OF NEURAL COMPUTATION
	Chapter B1: The Artificial Neuron
	Abstract
	B1.1 Neurons and neural networks: the most abstract view
	Abstract
	References

	B1.2 The McCulloch-Pitts neuron
	Abstract
	References

	B1.3 Hopfield networks
	Abstract
	References

	B1.4 The leaky integrator neuron
	Abstract

	B1.5 Pattern recognition
	Abstract

	B1.6 A note on nonlinearity and continuity
	Abstract
	References

	B1.7 Variations on a theme
	Abstract
	B1.7.1 Integrate-and-fire neurons
	B1.7.2 Polynomial neurons
	B1.7.3 Radial basis functions
	B1.7.4 Stochastic neurons
	B1.7.5 Learning vector quantization and Kohonen maps
	References


	Chapter B2: Neural Network Topologies
	Abstract
	B2.1 Introduction
	Abstract
	References

	B2.2 Topology
	Abstract
	B2.2.1 Neural framework
	B2.2.2 Interconnection structure
	References

	B2.3 Symmetry and asymmetry
	Abstract

	B2.4 High-order topologies
	Abstract
	References

	B2.5 Fully connected topologies
	Abstract
	B2.5.1 Connection counting
	B2.5.1.1 Counting symmetric first-order connections
	B2.5.1.2 Counting high-order connections
	References


	B2.6 Partially connected topologies
	Abstract
	B2.6.1 Connectivity metrics
	B2.6.2 A classification of partially connected neural networks
	References

	B2.7 Special topologies
	Abstract
	References

	B2.8 A formal framework
	Abstract
	B2.8.1 Layer counting
	B2.8.2 Weight notation
	B2.8.3 Connectivity matrices
	B2.8.4 Neural networks as graphs
	References

	B2.9 Modular topologies
	Abstract
	B2.9.1 Introduction
	B2.9.2 The complexity problem
	B2.9.3 Modular topologies
	B2.9.3.1 Modular systems
	B2.9.3.2 Modular models
	B2.9.3.3 Modular topologies

	B2.9.4 A need for further research
	References

	B2.10 Theoretical considerations for choosing a network topology
	Abstract
	B2.10.1 Introduction
	B2.10.2 Measures of fit and generalization
	B2.10.3 Denseness
	B2.10.4 Consistency
	B2.10.5 Cross-validation
	B2.10.6 Related procedures
	B2.10.6.1 Complexity regularization
	B2.10.6.2 Nonconvergent methods

	References


	Chapter B3: Neural Network Training
	Abstract
	B3.1 Introduction
	Abstract
	References

	B3.2 Characteristics of neural network models
	Abstract
	B3.2.1 Biological and applications-oriented modeling
	B3.2.2 The neuron
	B3.2.3 Neuron signal propagation
	B3.2.4 Neuron inputs and outputs
	B3.2.5 Neuron connections
	References

	B3.3 Learning rules
	Abstract
	B3.3.1 Hebbian rule
	B3.3.2 Perceptron rule
	B3.3.3 Delta rule
	B3.3.4 Generalized delta rule
	B3.3.5 Kohonen rule
	B3.3.6 Outstar rule
	B3.3.7 Drive reinforcement rule
	B3.3.8 Comparison of learning rules
	References

	B3.4 Acceleration of training
	Abstract
	B3.4.1 Data preprocessing
	B3.4.2 Initialization of weights
	B3.4.3 Updating schemes
	B3.4.4 Adaptive learning rate methods
	B3.4.4.1 The unconstrained minimization problem
	B3.4.4.2 The neural network optimization framework
	B3.4.4.3 Adaptive learning rate algorithm
	B3.4.4.4 Neural network minimization algorithm
	B3.4.4.5 Algorithm efficiency
	B3.4.4.6 Quasi-Newton and conjugate gradient methods
	B3.4.4.7 Low-storage methods
	B3.4.4.8 Other optimization methods

	B3.4.5 Weight constraints
	B3.4.6 Implementation issues
	References

	B3.5 Training and generalization
	Abstract
	B3.5.1 Importance of appropriate training data
	B3.5.2 Measuring and improving network generalization
	B3.5.2.1 Measures of generalization
	B3.5.2.2 The Vapnik-Chervonenkis dimension
	B3.5.2.3 The generalized prediction error
	B3.5.2.4 Cross validation
	B3.5.2.5 The ‘leave one out’ approach
	B3.5.2.6 Reducing the number of weights
	B3.5.2.7 Early training termination
	B3.5.2.8 Adding noise to the data
	B3.5.2.9 Weight decay and weight pruning

	References


	Chapter B4: Data Input and Output Representations
	Abstract
	B4.1 Introduction
	Abstract
	References

	B4.2 Data complexity and separability
	Abstract
	References

	B4.3 The necessity of preserving feature information
	Abstract
	References

	B4.4 Data preprocessing techniques
	Abstract
	B4.4.1 Normalization
	B4.4.2 Normalization algorithms
	B4.4.3 Principal component analysis
	References

	B4.5 A ‘case study’ review
	Abstract
	References

	B4.6 Data representation properties
	Abstract
	References

	B4.7 Coding schemes
	Abstract
	B4.7.1 Local versus distributed schemes
	References

	B4.8 Discrete codings
	Abstract
	B4.8.1 Simple sum scheme
	B4.8.2 Value unit encoding
	B4.8.3 Discrete thermometer
	B4.8.4 Group and weight scheme
	B4.8.5 Bar coding
	B4.8.6 Nonlinear thermometer scales
	B4.8.7 N-tupling preprocessing
	References

	B4.9 Continuous codings
	Abstract
	B4.9.1 Simple analog
	B4.9.2 Continuous thermometer
	B4.9.3 Interpolation coding
	B4.9.4 Proportional coarse coding
	B4.9.5 Computational complexity of distributed encoding schemes
	References

	B4.10 Complex representation issues
	Abstract
	B4.10.1 Introduction
	B4.10.2 Representing time in neural systems
	B4.10.2.1 Transforming between time and spatial domains
	84.10.2.2 Time-delay neural networks
	B4.10.2.3 Time sensitivity through recursion

	B4.10.3 Representation of symbolic information
	References

	B4.11 Conclusions
	Abstract
	References
	Further reading


	Chapter B5: Network Analysis Techniques
	B5.1 Introduction
	B5.2 Iterative inversion of neural networks and its applications
	Abstract
	B5.2.1 Introduction
	B5.2.2 Introduction to inversion as an optimization problem
	B5.2.3 An example: iterative inversion for network analysis
	B5.2.4 Applications of knowledge reformulation by inverting forward models
	B5.2.4.1 From transition knowledge to control knowledge
	B5.2.4.2 Inverse kinematics

	B5.2.5 Other applications of search in the input space of neural networks
	B5.2.5.1 Function optimization
	B5.2.5.2 Active leaming
	B5.2.5.3 Converting evaluation knowledge into actionable knowledge

	B5.2.6 The problem of unconstrained search in input space
	B5.2.7 Alternative approaches
	Acknowledgements
	References
	Further reading

	B5.3 Designing analyzable networks
	Abstract
	B5.3.1 Introduction
	B5.3.2 Probabilistic neural network model
	B5.3.3 Optimization criterion
	B5.3.4 Least upper bound trick
	B5.3.5 Vector quantizer model: single neuron approximation
	B5.3.6 Topographic mapping model: single cluster approximation
	B5.3.6.1 Optimization of the n = 1 case

	B5.3.7 Topographic mapping model: multiple cluster approximation
	B5.3.8 Related research
	References


	Chapter B6: Neural Networks: A Pattern Recognition Perspective
	Abstract
	B6.1 Introduction
	Abstract
	References

	B6.2 Classification and regression
	Abstract
	B6.2.1 Polynomial curve fitting
	B6.2.2 Why neural networks?
	B6.2.3 Statistical pattern recognition
	References

	B6.3 Error functions
	Abstract
	B6.3.1 Error functions for regression
	B6.3.2 Error functions for classification
	B6.3.3 Error backpropagation
	References

	B6.4 Generalization
	Abstract
	References

	B6.5 Discussion
	Abstract
	References



	PART C: NEURAL NETWORK MODELS
	Chapter C1: Supervised Models
	C1.1 Single-layer networks
	Abstract
	C1.1.1 The perceptron
	C1.1.1.1 Introduction
	C1.1.1.2 Purpose
	C1.1.1.3 Topology
	C1.1.1.4 Learning

	C1.1.2 The perceptron theorem and its proof
	C1.1.2.1 Pseudocode representation of the perceptron algorithm
	C1.1.2.2 Advantages
	C1.1.2.3 Disadvantages
	C1.1.2.4 Hardware implementations
	C1.1.2.5 Variations and improvements

	C1.1.3 Adaline
	C1.1.3.1 Introduction
	C1.1.3.2 Purpose
	C1.1.3.3 Topology
	C1.1.3.4 Learning
	C1.1.3.5 Pseudocode representation of the LMS algorithm
	C1.1.3.6 Advantages
	C1.1.3.7 Disadvantages

	C1.1.4 Madaline
	C1.1.4.1 Introduction
	C1.1.4.2 Purpose
	C1.1.4.3 Topology
	C1.1.4.4 Learning
	C1.1.4.5 Pseudocode representation of Madaline 1
	C1.1.4.6 Advantages
	C1.1.4.7 Disadvantages
	C1.1.4.8 Hardware implementations

	C1.1.5 Learning vector quantization
	C1.1.5.1 Introduction
	C1.1.5.2 Purpose
	C1.1.5.3 Topology
	C1.1.5.4 Learning
	C1.1.5.5 Pseudocode representation of the LVQ algorithm
	C1.1.5.6 Variations and improvements

	C1.1.6 Instar and outstar
	C1.1.6.1 Introduction
	C1.1.6.2 Purpose
	C1.1.6.3 Topology
	C1.1.6.4 Learning

	C1.1.7 CMAC
	C1.1.7.1 Introduction
	C1.1.7.2 Purpose
	C1.1.7.3 Topology
	C1.1.7.4 Learning
	C1.1.7.5 Advantages
	C1.1.7.6 Disadvantages
	References


	C1.2 Multilayer perceptrons
	Abstract
	C1.2.1 Introduction
	C1.2.2 Network architectures
	C1.2.3 The backpropagation algorithm for feedforward networks
	C1.2.3.1 The basic algorithm
	C1.2.3.2 Stochastic backpropagation
	C1.2.3.3 Local minima
	C1.2.3.4 Universal approximation property

	C1.2.4 Accelerated training
	C1.2.4.1 Momentum technique
	C1.2.4.2 Adaptive step sizes
	C1.2.4.3 Robustness
	C1.2.4.4 Other acceleration techniques

	C1.2.5 Implementation
	C1.2.5.1 Sigmoids
	C1.2.5.2 Output units and target values
	C1.2.5.3 Weight initialization
	C1.2.5.4 Input normalization and decorrelation
	C1.2.5.5 Shared weights

	C1.2.6 Generalization
	C1.2.6.1 Network size
	C1.2.6.2 Stopped training and cross-validation
	C1.2.6.3 Pruning and constructive techniques
	C1.2.6.4 Regularization

	C1.2.7 Application examples
	C1.2.8 Recurrent networks
	C1.2.8.1 Nonsequential networks
	C1.2.8.2 Sequential networks
	C1.2.8.3 Time-delay neural networks

	Acknowledgement
	References

	C1.3 Associative memory networks
	Abstract
	C1.3.1 Feedback models: associative memory networks
	C1.3.1.1 Introduction

	C1.3.2 Fundamental concepts and definitions
	C1.3.2.1 Statement of the associative memory problem
	C1.3.2.2 Neural network architectures for associative memories
	C1.3.2.3 Characteristics of high-performance DAMs

	C1.3.3 Static models and simple recording recipes
	C1.3.3.1 The LAM model and correlation recording
	C1.3.3.2 A simple nonlinear associative memory model
	C1.3.3.3 The OLAM model and projection recording

	C1.3.4 Dynamic models: the autoassociative case
	C1.3.4.1 The Hopfield model
	C1.3.4.2 Capacity of the Hopfield DAM
	C1.3.4.3 The brain-state-in-a-box DAM

	C1.3.5 Dynamic models: the heteroassociative case
	C1.3.5.1 The heteroassociative DAM

	C1.3.6 Other models
	References

	C1.4 Stochastic neural networks
	Abstract
	C1.4.1 Introduction
	C1.4.2 Simulated annealing
	C1.4.2.1 State-generating probability density
	C1.4.2.2 Local and distributed acceptance criteria
	C1.4.2.3 Annealing cooling schedules

	C1.4.3 Applications
	C1.4.3.1 Constraint specifications
	C1.4.3.2 Image processing and pattern recognition

	C1.4.4 Summary
	Appendix A. Proofs of both cooling schedules
	Appendix B. Cauchy annealing algorithm (Macintosh QuickBasic version)
	References

	C1.5 Weightless and other memory-based networks
	Abstract
	C1.5.1 Introduction
	C1.5.2 The RAM neuron
	C1.5.3 A discriminator of RAM neurons
	C1.5.4 The WISARD
	C1.5.5 Probabilistic and generalizing weightless neurons
	C1.5.6 The general neural unit
	C1.5.7 Kanerva's sparse distributed memory methods
	C1.5.8 Correlation matrices and ADAM
	C1.5.9 Conclusions on memory-based networks
	References

	C1.6 Supervised composite networks
	Abstract
	C1.6.1 Introduction
	C1.6.2 Radial basis function neural networks
	C1.6.2.1 Introduction
	C1.6.2.2 Purpose of the model
	C1.6.2.3 Topology
	C1.6.2.4 Choice of function
	C1.6.2.5 Learning
	C1.6.2.6 Related neural network models

	C1.6.3 Kernel density estimators
	C1.6.3.1 Introduction
	C1.6.3.2 Purpose
	C1.6.3.3 Topology
	C1.6.3.4 Learning
	C1.6.3.5 Advantages

	C1.6.4 Other composite networks for classification
	C1.6.4.1 Restricted Coulomb energy neural network
	C1.6.4.2 Neural trees

	References

	C1.7 Supervised ontogenic networks
	Abstract
	C1.7.1 Introduction
	C1.7.2 Classification of ontogenic neural networks
	C1.7.3 Methods for layered neural networks
	C1.7.4 Tree-based methods
	C1.7.5 Summary
	C1.7.5.1 Methods based on layered networks

	References

	C1.8 Adaptive logic networks
	Abstract
	C1.8.1 Introduction
	C1.8.2 Uses of adaptive logic networks
	C1.8.2.1 Logic networks as classifiers
	C1.8.2.2 The relational approach to function representation
	C1.8.2.3 Functions that may be approximated using adaptive logic networks
	C1.8.2.4 Qualitative properties of functions versus logic tree shape
	C1.8.2.5 Using adaptive logic networks to compute fuzzy sets

	C1.8.3 Adaptive logic network training
	C1.8.4 Adaptive logic network decision trees
	C1.8.4.1 Adaptive logic network decision tree computation
	C1.8.4.2 Function inversion using adaptive logic network decision trees

	C1.8.5 Adaptive logic networks with adaptive nodes
	C1.8.5.1 Lazy evaluation
	C1.8.5.2 The role of monotonicity
	C1.8.5.3 Insensitivity to perturbations of inputs
	C1.8.5.4 All-or-nothing credit assignment

	C1.8.6 Advantages of adaptive logic networks
	C1.8.6.1 Speedup based on lazy evaluation
	C1.8.6.2 Bounds on rates of change
	C1.8.6.3 Easy invertibility
	C1.8.6.4 Usefulness of expert knowledge
	C1.8.6.5 Narrowly targeted credit assignment
	C1.8.6.6 Availability of educational software

	C1.8.7 Disadvantages of adaptive logic networks
	C1.8.7.1 Relatively little has been published
	C1.8.7.2 Reinforcement learning needs work

	References


	Chapter C2: Unsupervised Models
	C2.1 Feedforward models
	Abstract
	C2.1.1 Kohonen’s self-organizing map
	C2.1.1.1 Introduction
	C2.1.1.2 Purpose of the model
	C2.1.1.3 Biological origin
	C2.1.1.4 Topology
	C2.1.1.5 Operation of the network
	C2.1.1.6 Learning
	C2.1.1.7 Convergence of the algorithm
	C2.1.1.8 Examples of results
	C2.1.1.9 Kohonen map and principal component analysis
	C2.1.1.10 Related neural network models

	C2.1.2 Neural gas
	C2.1.2.1 Introduction
	C2.1.2.2 Purpose of the model
	C2.1.2.3 Topology
	C2.1.2.4 Learning
	C2.1.2.5 Examples of results
	C2.1.2.6 Related neural network models

	C2.1.3 Neocognitron
	C2.1.3.1 Introduction
	C2.1.3.2 Purpose of the model
	C2.1.3.3 Topology
	C2.1.3.4 Learning
	C2.1.3.5 Related neural network models

	References

	C2.2 Feedback models
	Abstract
	C2.2.1 Adaptive resonance theory: self-organizing networks for stable learning, recognition, and prediction
	Abstract
	C2.2.1.1 Introduction
	C2.2.1.2 Some key ART properties
	C2.2.1.3 Adaptive resonance theory topology and learning
	C2.2.1.4 The link between matching, hypothesis testing and attention
	C2.2.1.5 The link between attention, resonance, and learning
	C2.2.1.6 The link between intentionality and the stability of learning
	C2.2.1.7 Vigilance control of category generalization
	C2.2.1.8 Memory consolidation and direct access to the globally best category
	C2.2.1.9 Some biological applications
	C2.2.1.10 Neural dynamics of multisource audition
	C2.2.1.11 Neural dynamics of variable-rate speech categorization
	C2.2.1.12 Neural dynamics of boundary and sulface representation
	C2.2.1.13 Neural dynamics for multimodal control of saccadic eye movements
	C2.2.1.14 Fuzzy adaptive resonance theory
	C2.2.1.15 Fuzzy ARTMAP
	C2.2.1.16 Some technological applications
	C2.2.1.17 Two Applications of fuzzy ARTMAP
	C2.2.1.18 Concluding remarks
	Acknowledgement

	C2.2.2 Resonance correlation network
	Abstract
	C2.2.2.1 Introduction
	C2.2.2.2 Purpose
	C2.2.2.3 Topology
	C2.2.2.4 Learning
	C2.2.2.5 Learning rule
	C2.2.2.6 Related neural network models
	C2.2.2.7 Advantages
	C2.2.2.8 Disadvantages
	C2.2.2.9 Typical applications
	C2.2.2.10 Variations and improvements

	C2.2.3 Boundary and feature contour systems
	Abstract
	C2.2.3.1 Introduction
	C2.2.3.2 The hierarchical resolution of uncertainty
	C2.2.3.3 Model architecture
	C2.2.3.4 Filling-in of surface representations within the FCS
	C2.2.3.5 Typical application
	Acknowledgements
	References


	C2.3 Unsupervised composite networks
	Abstract
	C2.3.1 Introduction
	C2.3.2 The counterpropagation network
	C2.3.2.1 Topology
	C2.3.2.2 Learning
	C2.3.2.3 Related neural network models
	C2.3.2.4 Advantages
	C2.3.2.5 Disadvantages
	C2.3.2.6 Typical applications
	C2.3.2.7 Hardware implementations
	C2.3.2.8 Variations and improvements
	C2.3.2.9 State of the art

	C2.3.3 Adaptive critic networks
	C2.3.3.1 Purposes

	C2.3.4 Dynamic programming adaptive critics
	C2.3.4.1 HDP adaptive critic
	C2.3.4.2 DHP adaptive critic

	C2.3.5 The adaptive critic element
	C2.3.5.1 Purposes
	C2.3.5.2 Topology
	C2.3.5.3 Learning
	C2.3.5.4 Learning rule
	C2.3.5.5 Related neural network models
	C2.3.5.6 Advantages
	C2.3.5.7 Disadvantages
	C2.3.5.8 Typical applications
	C2.3.5.9 Hardware implementations
	C2.3.5.10 Variations and improvements

	References

	C2.4 Unsupervised ontogenic networks
	Abstract
	C2.4.1 Introduction
	C2.4.2 Growing cell structures
	C2.4.2.1 Introduction
	C2.4.2.2 Purpose
	C2.4.2.3 Topology
	C2.4.2.4 Learning rule
	C2.4.2.5 Examples
	C2.4.2.6 Related neural network models
	C2.4.2.7 Advantages
	C2.4.2.8 Disadvantages
	C2.4.2.9 Typical applications
	C2.4.2.10 Variations and improvements

	C2.4.3 Competitive Hebbian learning, neural gas and topology-representing networks
	C2.4.3.1 Introduction
	C2.4.3.2 Purpose
	C2.4.3.3 Topologies
	C2.4.3.4 Learning rules and examples
	C2.4.3.5 Related neural network models
	C2.4.3.6 Advantages
	C2.4.3.7 Disadvantages
	C2.4.3.8 Typical applications

	C2.4.4 Growing neural gas
	C2.4.4.1 Introduction
	C2.4.4.2 Purpose
	C2.4.4.3 Topology
	C2.4.4.4 Learning rule
	C2.4.4.5 Examples
	C2.4.4.6 Related neural network models
	C2.4.4.7 Advantages
	C2.4.4.8 Disadvantages
	C2.4.4.9 Typical applications

	References


	Chapter C3: Reinforcement Learning
	Abstract
	C3.1 Introduction
	Abstract
	C3.1.1 Example: navigating a robot
	C3.1.2 Delayed reinforcement learning algorithm
	References

	C3.2 Immediate reinforcement learning
	Abstract
	References

	C3.3 Delayed reinforcement learning
	Abstract
	C3.3.1 Example: navigating a robot with dynamics
	C3.3.2 Example: playing backgammon
	C3.3.3 Example: pole balancing
	References

	C3.4 Methods of estimating V and Q
	Abstract
	References

	C3.5 Delayed reinforcement learning methods
	Abstract
	C3.5.1 Model-based methods
	C3.5.1.1 Value iteration
	C3.5.1.2 Policy iteration

	C3.5.2 Model-free methods
	C3.5.2.1 Actor-critic method
	C3.5.2.2 Q-learning

	C3.5.3 Extension to continuous spaces
	References

	C3.6 Use of neural and other function approximators in reinforcement learning
	Abstract
	References

	C3.7 Modular and hierarchical architectures
	Abstract
	C3.7.1 Other techniques
	References



	PART D: HYBRID APPROACHES
	Chapter D1: Neuro-fuzzy Systems
	Abstract
	D1.1 Introduction
	Abstract

	D1.2 Fuzzy sets and knowledge representation issues
	Abstract
	D1.2.1 Sets versus fuzzy sets
	D1.2.2 Membership functions: types and elicitation methods
	D1.2.3 Logical operations on fuzzy sets
	D1.2.4 Frame of cognition: toward a unified data representation
	References

	D1.3 Neuro-fuzzy algorithms
	Abstract
	D1.3.1 Fuzzy inference schemes and their realizations as neural networks
	D1.3.1.1 Fuzzy backpropagation
	D1.3.1.2 Fuzzy basis functions

	References

	D1.4 Ontogenic neuro-fuzzy F-CID3 algorithm
	Abstract
	References

	D1.5 Fuzzy neural networks
	Abstract
	D1.5.1 Logic-based neurons
	D1.5.1.1 Aggregative logic neurons

	D1.5.2 Computational enhancements of fuzzy neurons
	D1.5.2.1 Representing inhibitory information in fuzzy neurons
	D1.5.2.2 Nonlinear processing element

	D1.5.3 Logic-based neurons with feedback
	References

	D1.6 Referential logic-based neurons
	Abstract
	D1.6.1 Fuzzy threshold neuron
	References

	D1.7 Classes of fuzzy neural networks
	Abstract
	D1.7.1 Approximation of logical relationships: development of the logic processor
	D1.7.2 Referential processor
	D1.7.3 Learning
	D1.7.4 Learning of a single neuron
	D1.7.5 General policies for parametric learning: reductions and expansions
	References

	D1.8 Induced Boolean and core neural networks
	Abstract


	Chapter D2: Neural-Evolutionary Systems
	Abstract
	D2.1 Overview of evolutionary computation as a mechanism for solving neural system design problems
	Abstract
	D2.1.1 Stochastic search
	D2.1.2 Basic evolutionary computation methodologies and intrinsic differences
	D2.1.2.1 Basic evolutionary computation algorithm

	References

	D2.2 Evolutionary computation approaches to solving problems in neural computation
	Abstract
	D2.2.1 Training
	D2.2.1.1 Stochastic methods versus traditional gradient methods
	D2.2.1.2 Case studies

	D2.2.2 Topology selection
	D2.2.2.1 Traditional methodology versus self-adaptive approaches
	D2.2.2.2 Case studies

	References

	D2.3 New areas for evolutionary computation research in neural systems
	Abstract
	D2.3.1 Transfer function selection
	D2.3.2 Input feature selection
	References



	PART E: NEURAL NETWORK IMPLEMENTATIONS
	Chapter E1: Neural Network Hardware Implementations
	E1.1 Introduction
	Abstract

	E1.2 Neural network adaptations to hardware implementations
	Abstract
	E1.2.1 Introduction
	E1.2.2 Quantization effects
	E1.2.2.1 Quantization effects in multilayer neural networks
	E1.2.2.2 Quantization effects in other neural network models
	E1.2.2.3 Some remarks on commonly used schemes

	E1.2.3 Hardware nonidealities
	E1.2.3.1 Component nonuniformity
	E1.2.3.2 Nonideal response

	E1.2.4 Hardware-friendly learning algorithms
	E1.2.4.1 Perturbation algorithms
	E1.2.4.2 Local learning algorithms
	E1.2.4.3 Networks with Heaviside functions
	E1.2.4.4 Robustness
	E1.2.4.5 Other hardware-friendly neural network models

	E1.2.5 Summary and conclusions
	References

	E1.3 Analog VLSI implementation of neural networks
	Abstract
	E1.3.1 Introduction
	E1.3.2 Characteristics of analog signal processing
	E1.3.3 Basic components of analog complementary metal oxide semiconductor very large-scale integration
	E1.3.3.1 Transistors
	E1.3.3.2 Passive components
	E1.3.3.3 Basic combinations of transistors

	E1.3.4 Analog functional blocks
	E1.3.4.1 Local operators
	E1.3.4.2 Collective operators
	E1.3.4.3 Resistive diffusion networks
	E1.3.4.4 Storage of synaptic weights
	E1.3.4.5 Neuron circuit

	E1.3.5 Communication of analog data
	E1.3.6 Conclusion
	References

	E1.4 Digital integrated circuit implementations
	Abstract
	E1.4.1 Introduction
	E1.4.2 Circuit complexity issues
	E1.4.3 Digital VLSI
	E1.4.4 Different implementations
	E1.4.4.1 General comments
	E1.4.4.2 Typical and recent examples

	References

	E1.5 Optical implementations
	Abstract
	E1.5.1 Introduction and overview
	E1.5.1.1 Why optics?
	E1.5.1.2 Functional aspects

	E1.5.2 Neural network architectures for optics
	E1.5.2.1 Supervised optical neural networks
	E1.5.2.2 Unsupervised competitive and inhibitory networks

	E1.5.3 Hardware
	E1.5.3.1 Materials for light modulation
	E1.5.3.2 Devices: spatial light modulators
	E1.5.3.3 Techniques: holography
	E1.5.3.4 Technology: sources and optics

	E1.5.4 Implementations
	E1.5.5 Future directions
	Acknowledgements
	References
	Further reading



	PART F: APPLICATIONS OF NEURAL COMPUTATION
	Chapter F1: Neural Network Applications
	F1.1 Introduction
	F1.2 Pattern classification
	Abstract
	F1.2.1 Introduction
	F1.2.2 Problem description
	F1.2.3 Neural network classifiers
	F1.2.3.1 The nearest-neighbor approach
	F1.2.3.2 The regression approach
	F1.2.3.3 Small-sample problems

	F1.2.4 Alternative approaches
	References

	F1.3 Combinatorial optimization
	Abstract
	F1.3.1 Project overview
	F1.3.2 Neural network approaches
	F1.3.2.1 Hopfield network
	F1.3.2.2 Other neural network approaches

	F1.3.3 Alternative approaches
	F1.3.3.1 Genetic algorithms
	F1.3.3.2 Simulated annealing

	F1.3.4 Conclusion
	Acknowledgements
	References

	F1.4 Associative memory
	Abstract
	F1.4.1 Introduction
	F1.4.2 What is an associative memory?
	F1.4.3 Implementing conventional associative memory systems
	F1.4.4 Neural networks for associative memory
	F1.4.5 Feedforward associative neural networks
	F1.4.5.1 Hybrid two-stage associative memory neural network systems
	F1.4.5.2 Pure two-stage neural associative memories
	F1.4.5.3 One-stage neural associative memories

	F1.4.6 Recurrent associative neural networks
	F1.4.7 Associative memories used for automated reasoning
	F1.4.8 Conclusions
	References

	F1.5 Data compression
	Abstract
	F1.5.1 Introduction
	F1.5.2 Image compression approaches
	F1.5.3 Neural prediction coding
	F1.5.4 Image transform coding based on neural networks
	F1.5.4.1 Principal component extraction based on neural networks
	F1.5.4.2 Autoassociation

	F1.5.5 Vector quantization with neural networks
	F1.5.6 Conclusions
	References

	F1.6 Image processing
	Abstract
	F1.6.1 Introduction
	F1.6.2 Digital image resolution and quantization
	F1.6.3 Image storage and transfer
	F1.6.4 Typical image processing tasks
	F1.6.5 Artificial neural network approaches
	F1.6.5.1 Image classification/recognition
	F1.6.5.2 Image compression
	F1.6.5.3 Face recognition
	F1.6.6 Conclusion
	Acknowledgements
	References


	F1.7 Speech processing
	Abstract
	F1.7.1 Introduction
	F1.7.2 Speech recognition
	F1.7.2.1 How to cope with the time-sequential nature of speech: hybrid recognizers

	F1.7.3 Speaker identification and verification
	F1.7.4 Language identification
	F1.7.5 Speech synthesis
	F1.7.6 Speech coding
	F1.7.7 Speech enhancement
	F1.7.8 Discussion
	References

	F1.8 Signal processing
	Abstract
	F1.8.1 Introduction
	F1.8.2 Neural network approaches
	F1.8.2.1 Channel equalization
	F1.8.2.2 Signal prediction
	F1.8.2.3 Noise canceling

	F1.8.3 Alternative approaches
	References
	Further reading

	F1.9 Control
	Abstract
	F1.9.1 Overview
	F1.9.2 The problem domain
	F1.9.3 Functions performed by neural networks in control
	F1.9.4 Neural network approaches
	F1.9.4.1 Neural network approaches to cloning experts
	F1.9.4.2 Neural network approaches to tracking
	F1.9.4.3 Neural networks for optimization over time

	F1.9.5 Nonneural alternatives
	F1.9.6 Preprocessing
	References



	PART G: NEURAL NETWORKS IN PRACTICE: CASE STUDIES
	Chapter G1: Perception and Cognition
	G1.1 Unsupervised segmentation of textured images
	Abstract
	G1.1.1 Project overview
	G1.1.2 Design process
	G1.1.2.1 System description

	G1.1.3 Training methods
	G1.1.3.1 Test data
	G1.1.3.2 Training schedule

	G1.1.4 Preprocessing
	G1.1.5 Output interpretation
	G1.1.6 Development
	G1.1.7 Performance
	G1.1.8 Conclusions
	References

	G1.2 Character recognition
	Abstract
	G1.2.1 Introduction
	G1.2.1.1 Printed characters
	G1.2.1.2 Handwritten characters

	G1.2.2 Conventional character recognition techniques
	G1.2.3 Non-English character recognition
	G1.2.3.1 Chinese/Japanese character recognition
	G1.2.3.2 Arabic character recognition

	G1.2.4 Artificial neural network character recognition techniques
	G1.2.4.1 Printed character recognition
	G1.2.4.2 Handwritten character recognition
	G1.2.4.3 Chinese character recognition

	G1.2.5 Conclusion
	References

	G1.3 Handwritten character recognition using neural networks
	Abstract
	G1.3.1 Introduction
	G1.3.2 Issues
	G1.3.2.1 Segmentation
	G1.3.2.2 Variability
	G1.3.2.3 Probability estimates
	G1.3.2.4 Input representation

	G1.3.3 Neural network architectures
	G1.3.3.1 Multilayer perceptrons
	G1.3.3.2 Classifier combination
	G1.3.3.3 Other neural network techniques

	G1.3.4 Alternative approaches
	G1.3.5 Training and evaluation
	G1.3.6 Recommendations and conclusions
	G1.3.7 Databases
	References
	Further reading

	G1.4 Improved speech recognition using learning vector quantization
	Abstract
	G1.4.1 Introduction
	G1.4.2 Learning vector quantization codebooks in speech recognition
	G1.4.3 Extracting more information from the LVQ
	G1.4.4 Experiments
	G1.4.4.1 Speaker-dependent phoneme spotting with high-quality speech
	G1.4.4.2 Speaker-independent phoneme spotting with telephone speech

	G1.4.5 Discussion
	References

	G1.5 Neural networks for alphabet recognition
	Abstract
	G1.5.1 Project overview
	G1.5.2 Design process
	G1.5.3 Pitch tracker
	G1.5.4 Frame-based phonetic classification
	G1.5.5 Letter classification
	G1.5.6 Results
	G1.5.7 Development
	G1.5.8 Comparison with traditional methods
	G1.5.9 Conclusions
	Acknowledgements
	References

	G1.6 A neural network for image understanding
	Abstract
	G1.6.1 Project overview
	G1.6.2 Design process
	G1.6.2.1 Image smoothing
	G1.6.2.2 Image segmentation
	G1.6.2.3 Feature extraction and target detection

	G1.6.3 Development
	G1.6.4 Comparison with traditional methods
	G1.6.5 Summary and conclusions
	Acknowledgement
	References

	G1.7 The application of neural networks to image segmentation and way-point identification
	Abstract
	G1.7.1 Project overview
	G1.7.2 First stage processing: feature recognition
	G1.7.2.1 Design process
	G1.7.2.2 Network architecture
	G1.7.2.3 Training methods
	G1.7.2.4 Validation process
	G1.7.2.5 Preprocessing
	G1.7.2.6 Output interpretation

	G1.7.3 The segmentation of towns and rural areas
	G1.7.3.1 Finding a way-point feature in a large image
	G1.7.3.2 Training the network
	G1.7.3.3 Preprocessing
	G1.7.3.4 Finding the feature in another image
	G1.7.3.5 Comparison with traditional methods

	G1.7.4 Conclusions
	Acknowledgement
	References


	Chapter G2: Engineering
	G2.1 Control of a vehicle active suspension model using adaptive logic networks
	Abstract
	G2.1.1 Project overview
	G2.1.2 Design process
	G2.1.2.1 Inputs and outputs
	G2.1.2.2 Applying an artificial neural network

	G2.1.3 Training methods
	G2.1.4 Output interpretation
	G2.1.5 Development of platform and hardware tools
	G2.1.6 Conclusions
	Acknowledgements
	References

	G2.2 ATM network control by neural network
	Abstract
	G2.2.1 Project overview
	G2.2.1.1 ATM network
	G2.2.1.2 ATM traffic control and the problem
	G2.2.1.3 Neural network applications in the ATM network
	G2.2.1.4 Call admission control

	G2.2.2 Design process
	G2.2.2.1 Motivation for a neural network solution
	G2.2.2.2 General description of the neural network function
	G2.2.2.3 Black-box description
	G2.2.2.4 Requirements and constraints
	G2.2.2.5 Topology

	G2.2.3 Training methods
	G2.2.3.1 Training data
	G2.2.3.2 Pattern table method
	G2.2.3.3 Virtual output buffer method

	G2.2.4 Preprocessing and output interpretation
	G2.2.5 Comparison
	G2.2.5.1 Performance
	G2.2.6 Conclusions

	References

	G2.3 Neural networks to configure maps for a satellite communication network
	Abstract
	G2.3.1 Project overview
	G2.3.2 Design process
	G2.3.2.1 Why self-organization?
	G2.3.2.2 The map configuration module
	G2.3.2.3 The routing module

	G2.3.3 Simulation and comparison results
	G2.3.4 Conclusions
	References

	G2.4 Neural network controller for a high-speed packet switch
	Abstract
	G2.4.1 Project overview
	G2.4.2 Design process
	G2.4.2.1 Motivation for a neural solution
	G2.4.2.2 General description of the neural function
	G2.4.2.3 Topology
	G2.4.2.4 Performance features of the chosen topology

	G2.4.3 Performance
	References

	G2.5 Neural networks for optimal robot trajectory planning
	Abstract
	G2.5.1 Project overview
	G2.5.1.1 Robot trajectory planning
	G2.5.1.2 Motivation for a neural solution

	G2.5.2 Design process
	G2.5.2.1 Topology
	G2.5.2.2 Development details

	G2.5.3 Comparison with other methods of robot trajectory planning
	G2.5.4 Conclusions
	Acknowledgements
	References

	G2.6 Radial basis function network in design and manufacturing of ceramics
	Abstract
	G2.6.1 Project overview
	G2.6.2 Data used
	G2.6.3 Radial basis functions
	G2.6.4 Results of the radial basis function
	G2.6.5 Comparison of radial basis function results with those obtained using fuzzy sets
	G2.6.5.1 Basics of fuzzy sets
	G2.6.5.2 Results of fuzzy sets

	G2.6.6 Discussion
	G2.6.7 Conclusions
	References

	G2.7 Adaptive control of a negative ion source
	Abstract
	G2.7.1 Project overview
	G2.7.2 Design process
	G2.7.2.1 Motivation for a neural solution
	G2.7.2.2 General description of the ion source
	G2.7.2.3 General description of the neural network controller
	G2.7.2.4 Requirements of the neural network controller
	G2.7.2.5 Mathematical description of the neural network

	G2.7.3 Preprocessing of data
	G2.7.4 Training methods
	G2.7.5 Interpretation of the network output
	G2.7.6 Development environment
	G2.7.6.1 Description of the real-time control system
	G2.7.6.2 Description of the user interface environment

	G2.7.7 Conclusions
	Acknowledgement
	Further reading

	G2.8 Dynamic process modeling and fault prediction using artificial neural networks
	Abstract
	G2.8.1 Introduction
	G2.8.2 Process description
	G2.8.3 Model development
	G2.8.3.1 Process data
	G2.8.3.2 Modeling results using artificial neural networks

	G2.8.4 Application of neural networks to condition monitoring
	G2.8.5 Conclusions
	Acknowledgements
	References

	G2.9 Neural modeling of a polymerization reactor
	Abstract
	G2.9.1 Project overview
	G2.9.2 Predictor design process
	G2.9.2.1 Neural predictive modeling
	G2.9.2.2 Training algorithms
	G2.9.2.3 Neural predictive modeling of viscosity
	G2.9.2.4 On-line implementation of a neural viscosity predictor

	G2.9.3 Conclusions
	Acknowledgement
	References

	G2.10 Adaptive noise canceling with nonlinear filters
	Abstract
	G2.10.1 Introduction
	G2.10.2 Nonlinear filtering
	G2.10.2.1 The perceptron filter
	G2.10.2.2 The Volterra filter

	G2.10.3 Experiments and results
	G2.10.3.1 Off-line experiment
	G2.10.3.2 On-line experiment

	G2.10.4 Summary
	References

	G2.11 A concise application demonstrator for pulsed neural VLSI
	Abstract
	G2.11.1 Introduction
	G2.11.2 The EPSILON II chip
	G2.11.3 The EPSILON processor card
	G2.11.3.1 Design specification
	G2.11.3.2 Specialist buses
	G2.11.3.3 Future extensions

	G2.11.4 Applications
	G2.11.4.1 ‘Instinct rule ’ robot

	G2.11.5 Conclusions
	References

	G2.12 Ontogenic CID3 algorithm for recognition of defects in glass ribbon
	Abstract
	G2.12.1 Motivation
	G2.12.1.1 The ontogenic CID3 algorithm

	G2.12.2 Definition of defects in glass ribbon
	G2.12.2.1 Data acquisition
	G2.12.2.2 Data processing
	G2.12.2.3 Preparation of training and learning data

	G2.12.3 Results
	G2.12.4 Discussion
	G2.12.5 Conclusions
	Acknowledgement
	References


	Chapter G3: Physical Sciences
	G3.1 Neural networks for control of telescope adaptive optics
	Abstract
	G3.1.1 Project overview
	G3.1.2 Design process
	G3.1.3 Preprocessing
	G3.1.4 Training methods
	G3.1.5 Output interpretation
	G3.1.6 Development
	G3.1.7 Comparison with traditional methods
	G3.1.8 Conclusions
	References

	G3.2 Neural multigrid for disordered systems: lattice gauge theory as an example
	Abstract
	G3.2.1 Project overview
	G3.2.1.1 Scope of application: lattice gauge theory as a special case
	G3.2.1.2 Differential equations and lattice gauge theory
	G3.2.1.3 Criticality and the multiscale principle
	G3.2.1.4 Features of disordered systems: localized states

	G3.2.2 Design
	G3.2.2.1 Motivation for a neural network solution
	G3.2.2.2 Topology
	G3.2.2.3 Learning

	G3.2.3 Performance
	G3.2.3.1 Critical Laplace equation in an external non-Abelian gauge field.

	G3.2.4 Generalization to general problem solving strategies
	References
	Further reading

	G3.3 Characterization of chaotic signals using fast learning neural networks
	Abstract
	G3.3.1 Background
	G3.3.2 Architecture
	G3.3.3 Training
	G3.3.4 Examples
	G3.3.5 Conclusion
	References


	Chapter G4: Biology and Biochemistry
	G4.1 A neural network for prediction of protein secondary structure
	Abstract
	G4.1.1 Introduction to protein structure prediction
	G4.1.1.1 Protein folding
	G4.1.1.2 Sequence-structure gap
	G4.1.1.3 Protein structure prediction
	G4.1.1.4 Protein structure prediction by alignment
	G4.1.1.5 Drastic simplification of the prediction problem

	G4.1.2 Design process
	G4.1.2.1 Motivation for a neural network solution
	G4.1.2.2 General description of the neural function
	G4.1.2.3 Topology

	G4.1.3 Training methods
	G4.1.3.1 Balanced training
	G4.1.3.2 Training and testing set

	G4.1.4 Input preprocessing
	G4.1.4.1 Input coding, single sequences
	G4.1.4.2 Input coding, multiple alignment profiles
	G4.1.4.3 Further preprocessing of input

	G4.1.5 Output interpretation
	G4.1.5.1 Jury decision over various neural networks
	G4.1.5.2 Output to prediction
	G4.1.5.3 Reliability index

	G4.1.6 Comparison with traditional methods
	G4.1.6.1 Neural network versus traditional predictions of secondary structure
	G4.1.6.2 Specific improvements of the network system PHDsec
	G4.1.6.3 Practical impact of the neural network system PHDsec

	G4.1.7 Conclusions
	References

	G4.2 Neural networks for identification of protein coding regions in genomic DNA sequences
	Abstract
	G4.2.1 Project overview
	G4.2.2 Design process
	G4.2.2.1 Motivation
	G4.2.2.2 Dynamic programming
	G4.2.2.3 Network design

	G4.2.3 Training methods
	G4.2.3.1 Error propagation through dynamic programming
	G4.2.3.2 Training and test sets
	G4.2.3.3 Performance

	G4.2.4 Conclusions
	References

	G4.3 A neural network classifier for chromosome analysis
	Abstract
	G4.3.1 Introduction
	G4.3.2 Design process
	G4.3.2.1 Design constraints
	G4.3.2.2 Network topology

	G4.3.3 Training methods
	G4.3.4 Preprocessing
	G4.3.5 Output interpretation
	G4.3.6 Development
	G4.3.7 Comparison with traditional methods
	G4.3.8 Conclusions
	References

	G4.4 A neural network for recognizing distantly related protein sequences
	Abstract
	G4.4.1 Project overview
	G4.4.2 Design process
	G4.4.2.1 Motivation for a neural solution
	G4.4.2.2 General description of the algorithm
	G4.4.2.3 Data, preprocessing and neural network topology

	G4.4.3 Training and recognition methods
	G4.4.3.1 Search for unknown protein patterns
	G4.4.3.2 Generation of final topologies for search neural networks
	G4.4.3.3 Large database searches

	G4.4.4 Interpretation of output and comparison with traditional methods
	References


	Chapter G5: Medicine
	G5.1 Adaptive logic networks in rehabilitation of persons with incomplete spinal cord injury
	Abstract
	G5.1.1 Project overview
	G5.1.2 Design process
	G5.1.2.1 Background
	G5.1.2.2 Motivation for a neural network solution
	G5.1.2.3 General description of a neural network function
	G5.1.2.4 Requirements and constraints
	G5.1.2.5 Topology
	G5.1.2.6 Comparison to other methods
	G5.1.2.7 Sources
	G5.1.2.8 The training set
	G5.1.2.9 Preprocessing
	G5.1.2.10 Output interpretation

	G5.1.3 Development platform and tools
	G5.1.4 Experimental procedure and results
	G5.1.5 Discussion
	G5.1.6 Conclusions
	References
	Further reading

	G5.2 Neural networks for diagnosis of myocardial disease
	Abstract
	G5.2.1 Project overview
	G5.2.2 Database
	G5.2.3 Neural network software employed
	G5.2.4 Preprocessing
	G5.2.5 Network structure and training method
	G5.2.6 Output interpretation
	G5.2.7 Performance
	G5.2.8 Summary
	Acknowledgements
	References

	G5.3 Neural networks for intracardiac electrogram recognition
	Abstract
	G5.3.1 Introduction
	G5.3.2 Neural computing for intracardiac electrogram classification
	G5.3.3 Training and evaluation data
	G5.3.4 Data preprocessing
	G5.3.5 VT 1:1/ST morphology classification
	G5.3.6 Tissue growth, patient dependence and integrated learning
	G5.3.7 A scheme for the automatic labeling of morphology for supervised training
	G5.3.8 Conclusions
	Acknowledgements
	References

	G5.4 A neural network to predict lifespan and new metastases in patients with renal cell cancer
	Abstract
	G5.4.1 Project overview
	G5.4.2 Design
	G5.4.3 Statistical analysis of network behavior
	G5.4.4 Comparison with discriminant function analysis
	G5.4.5 Discussion
	Acknowledgements
	References

	G5.5 Hopfield neural networks for the optimum segmentation of medical images
	Abstract
	G5.5.1 Introduction
	G5.5.2 Approach and objectives
	G5.5.3 Segmentation of tomographic images
	G5.5.3.1 Binary representation
	G5.5.3.2 Energy function
	G5.5.3.3 Network initialization
	G5.5.3.4 Extensions to three-dimensional and multiscale segmentation

	G5.5.4 Segmentation of x-ray images
	G5.5.4.1 Preprocessing
	G5.5.4.2 Binary representation
	G5.5.4.3 Energy function

	G5.5.5 Experimental results
	G5.5.6 Conclusion
	Acknowledgements
	References

	G5.6 A neural network for the evaluation of hemodynamic variables
	Abstract
	G5.6.1 Introduction
	G5.6.1.1 Motivation
	G5.6.1.2 Classifier
	G5.6.1.3 Black box description (diagram)
	G5.6.1.4 Requirements and constraints
	G5.6.1.5 Topology
	G5.6.1.6 Other topologies investigated
	G5.6.1.7 Sources
	G5.6.1.8 Performance features of topology

	G5.6.2 Methods
	G5.6.2.1 Training sets
	G5.6.2.2 Preprocessing
	G5.6.2.3 Training method
	G5.6.2.4 Output
	G5.6.2.5 Development
	G5.6.2.6 Comparison with traditional methods

	G5.6.3 Results
	G5.6.4 Conclusions
	References


	Chapter G6: Economics, Finance, and Business
	G6.1 Application of self-organizing maps to the analysis of economic situations
	Abstract
	G6.1.1 Project overview
	G6.1.2 Design process
	G6.1.3 Training method
	G6.1.4 The training set
	G6.1.5 Preprocessing
	G6.1.6 Output interpretation
	G6.1.7 Comparison with traditional methods
	G6.1.8 Conclusion
	References

	G6.2 Forecasting customer response with neural networks
	Abstract
	G6.2.1 Introduction
	G6.2.2 Project overview
	G6.2.2.1 Visualization

	G6.2.3 Preparatory work
	G6.2.4 Neural network design
	G6.2.4.1 Training data

	G6.2.5 Outputs from the neural networks
	G6.2.5.1 Gains charts

	G6.2.6 Conclusions
	References

	G6.3 Neural networks for financial applications
	Abstract
	G6.3.1 Introduction
	G6.3.2 Finance and neural networks
	G6.3.2.1 Modeling financial systems using neural networks
	G6.3.2.2 Backpropagation performance and control parameters

	G6.3.3 Neural networks applied to foreign exchange markets
	G6.3.3.1 Application environment
	G6.3.3.2 Neural network system
	G6.3.3.3 Training and test sets
	G6.3.3.4 Results

	G6.3.4 Neural networks applied to the bond markets
	G6.3.4.1 Application environment
	G6.3.4.2 Neural network system
	G6.3.4.3 Training and test sets
	G6.3.4.4 Results

	G6.3.5 Conclusion
	References

	G6.4 Valuations of residential properties using a neural network
	Abstract
	G6.4.1 Design process
	G6.4.1.1 Description
	G6.4.1.2 Topology

	G6.4.2 Training methods
	G6.4.3 Output interpretation
	G6.4.4 Comparison with multiple regression
	G6.4.5 Conclusion
	References


	Chapter G7: Computer Science
	G7.1 Neural networks and human-computer interaction
	Abstract
	G7.1.1 Context
	G7.1.1.1 Applications in human-computer interaction
	G7.1.1.2 Trace analysis and task recognition
	G7.1.1.3 Whose error?

	G7.1.2 System description
	G7.1.2.1 Problem domain
	G7.1.2.2 System overview
	G7.1.2.3 Input format
	G7.1.2.4 Training set
	G7.1.2.5 Topology
	G7.1.2.6 Preprocessing

	G7.1.3 Evaluation
	G7.1.3.1 Results
	G7.1.3.2 Comparison with traditional methods
	G7.1.3.3 General problems

	G7.1.4 Conclusions
	References
	Further reading



	Chapter G8: Arts and Humanities
	G8.1 Distinguishing literary styles using neural networks
	Abstract
	G8.1.1 Project overview
	G8.1.2 Design process
	G8.1.2.1 Determination of discriminators
	G8.1.2.2 Determination of suitable topology

	G8.1.3 Training of a specific stylometric neural network
	G8.1.3.1 The training set
	G8.1.3.2 Preprocessing inputs
	G8.1.3.3 Output interpretation
	G8.1.3.4 Development

	G8.1.4 Comparison with traditional methods
	G8.1.5 Conclusions
	References

	G8.2 Neural networks for archaeological provenancing
	Abstract
	G8.2.1 Introduction
	G8.2.2 Obsidian samples
	G8.2.3 Neural network classification
	G8.2.3.1 Multilayer perceptron
	G8.2.3.2 Self-organizing map
	G8.2.3.3 Learning vector quantization

	G8.2.4 Results
	G8.2.5 Conclusion
	Acknowledgements
	References



	PART H: THE NEURAL NETWORK RESEARCH COMMUNITY
	Chapter H1: Future Research in Neural Computation
	H1.1 Mathematical theories of neural networks
	Abstract
	H1.1.1 Multilayer perceptrons
	H1.1.2 Neurodynamics in recurrent networks
	H1.1.3 Information geometry of manifolds of neural networks
	References

	H1.2 Neural networks: natural, artificial, hybrid
	Abstract

	H1.3 The future of neural networks
	Abstract
	References

	H1.4 Directions for future research in neural networks
	Abstract
	H1.4.1 Introduction
	H1.4.2 Missing levels of organization: neuroscience
	H1.4.3 Missing levels of organization: cognitive science
	H1.4.4 Controllability, accuracy and flexibility
	H1.4.5 Generality versus specificity
	References






