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Preface

My work in migration modeling and regional population dynamics and projections 
began in 1965, shortly after I had started to work on two reports for the California 
State Development Plan, as a member of the Center for Planning and Development 
Research at the University of California at Berkeley. I had never taken a course in 
demography, and at that time was a post-doctoral student in operations research, 
having just completed an advanced course on stochastic processes, which included 
lectures on Markov chains.

Those lectures motivated and shaped my efforts to introduce a spatial dimen-
sion to the demographer’s non-spatial cohort-survival population projection 
model—efforts which culminated in the publication in 1966 of my first article 
on the subject in the journal Demography and in 1968 the publication of my first 
book: Matrix Analysis of Interregional Population Growth and Distribution 
(Rogers 1968).

Two years later, I moved to Northwestern University, and with the help of 
two superior doctoral students, Jacques Ledent and Frans Willekens, devel-
oped a formal demographic paradigm that I called multiregional demography. 
Soon thereafter, in 1975, my second book on population modeling: Introduction 
to Multiregional Mathematical Demography was published, and Willekens and I 
moved to Austria to join the International Institute for Applied Systems Analysis 
(IIASA), an East–West think-tank housed in a Habsburg palace, located just out-
side of Vienna, in a little town called Laxenburg. Shortly after, we were joined by 
Ledent and another graduate student of mine, Luis Castro, as well as a multina-
tional collection of scholars who joined us for varying periods of time at IIASA 
to contribute to our work on multiregional demography. In 1983, I moved to the 
Institute of Behavioral Science (IBS) and the Department of Geography at the 
University of Colorado in Boulder where, with the help of another collection of 
my graduate students, I continued to carry out research on topics related to multi-
regional demography, focusing especially on various applications of that method-
ology, publishing my third, fourth, and fifth books on multiregional demography. 
In 1995, John Wiley and Sons issued my sixth book on this particular topic, 
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Multiregional Demography: Principles, Methods and Extensions. Finally, in 2010 
Springer published my book on the indirect estimation of migration, co-authored 
with my former Ph.D. students Jani Little and James Raymer.

Nathan Keyfitz’s book Introduction to the Mathematics of Population in 1968 
introduced me to uniregional mathematical demography and led me to generalize 
his results to the multiregional case. In 1977, he came out with a second book, 
entitled Applied Mathematical Demography, which showed how the models of 
mathematical demography, presented in his earlier book, could be used to find 
answers to commonsense questions that would be serviceable to those working on 
population and related matters, whether or not they cared to go deeply into the 
mathematics behind the answers. Following Keyfitz, I attempt to do something of 
the same for multiregional demography in this book, which I view as a capstone of 
my 50 years of research in multiregional demography.

Because over the past 50 years of published research I co-authored so many 
articles with my graduate students, not surprisingly, this book draws heavily on 
those collaborations. In particular, I received a great deal of help from and collabo-
rations with first-rate students of different vintages, namely Luis Castro, Jacques 
Ledent, and Frans Willekens, who came to me at Northwestern in the early 1970s 
and then followed me to the International Institute of Applied Systems Analysis 
(IIASA) in Laxenburg, Austria. Then in the mid-1980s, during my early years at 
CU Boulder, I was helped by and collaborated with Alain Belanger, Jani Little, 
and John Watkins.

Finally, James Raymer, who began his graduate studies at Boulder in the mid-
1990s, co-authored 16 papers with me over the next 20 years and made extraor-
dinary contributions to the research reported in this book. All collaborators were 
essential to this book’s development. I also had help over the years from a num-
ber of other former Ph.D. students of mine, namely Jennifer Woodward, Sabine 
Henning, and Lisa Jordan, and a few Masters students, particularly Kathy Gard, 
Cecile Hemez, Robin Taylor Wilson, and Junwei Liu. To all, my sincerest thanks; I 
couldn’t have done it without you.

Other important sources of support were the various research grants I received 
from the National Science Foundation, the National Institute for Child Health and 
Human Development, and the National Institute of Aging, as well as a pilot grant 
from the Colorado University Population Center. Finally, I am thankful to have 
had the support of my institute directors both in Austria at IIASA (Roger Levien) 
and at the Institute of Behavioral Science (Dick Jessor and Jane Menken). Thanks 
also go to Rick Rogers, who followed me as Director of the IBS Population 
Program, for his support and valuable collaboration on our research project on 
active life expectancy in the 1990s, and for reviewing Chap. 7.

Finally, I wish to thank the various journal editors for permission to draw on 
my articles and to the large numbers of secretaries and staff members who collec-
tively were indispensable in assisting with the completion of the final manuscript: 
Elisa and Samantha Elvove, Nancy Thorwardson, and Lindy Shultz, as well as to 
the two faculty members at CU Boulder with whom I co-authored several articles: 

http://dx.doi.org/10.1007/978-3-319-22318-6_7
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Professors Richard Rogers and Robert McNown. Professor James Raymer, at the 
Australian National University, and Jani Little, Director of IBS Computing and 
Research Services, both read this work in manuscript form, for which I am most 
grateful. Any remaining errors are mine.

Boulder, CO, USA  Andrei Rogers
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Berkeley: University of California Press.
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Abstract This chapter sets the context, reviews the principal distinguishing 
 features of the sub-field of multiregional demography, and identifies the key role 
played by migration. The next 6 chapters deal with applications of multiregional 
demography; the final chapter, Chap. 8, concludes the book with a renewed argu-
ment about the importance of proper model specification. Although the first few 
chapters deal with “closed” models that ignore international migration, “open” 
models with international migration are introduced in later chapters. [Readers 
unfamiliar with the models referred to in this monograph should consult Rogers 
(Introduction to multiregional mathematical demography. Wiley, New York, 
1975 and Multiregional demography: principles, methods, and extensions. Wiley, 
Chichester, 1995)]

Keywords Multiregional demography · Uniregional demography · Migration 
age patterns

Formal demography is concerned with the mathematical description of human 
populations, particularly their structure with regard to age and sex, and the com-
ponents of change, such as births and deaths, which occur over time to alter that 
structure. Accordingly, demographers have focused their attention on population 
stocks and on population events. Formal multiregional demography extends that 
focus to include the flows that interconnect and weld several regional populations 
into a multiregional population system. It, therefore, is concerned with the math-
ematical description of the evolution of human populations over time and across 
space. The trifold focus of such descriptions is on the stocks of human population 
groups at different points in time and locations in space, the vital events that occur 
among these populations, and the flows of members of such populations across the 
spatial borders that delineate the constituent regions of the multiregional popula-
tion system.

Chapter 1
Introduction: What Is Multiregional 
Demography?
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2 1 Introduction: What Is Multiregional Demography?

1.1  Modeling the Age and Spatial Dynamics 
of Multiregional Populations

Two principal features distinguish the multiregional from the uniregional 
 perspective: the population being examined and the definition of rates of flow. The 
multiregional approach considers a population as an interacting system of subpop-
ulations; the uniregional approach instead examines each regional subpopulation 
one at a time. Moreover, the multiregional approach employs migration/transition 
rates that are associated with the appropriate populations at risk to yield outmi-
gration rates; the uniregional approach cannot do that because it considers only a 
single population at risk for both outmigration and inmigration, and therefore must 
rely on net or inmigration rates.

1.1.1  A Multiregional Perspective

A multiregional perspective in demographic analysis focuses simultaneously on 
several interdependent population stocks, on the events that alter the levels of such 
stocks, and on the gross flows that connect these stocks to form a system of inter-
acting populations. The perspective deals with rates that refer to true populations 
at risk, and it considers the dynamics of multiple populations exposed to multire-
gional growth regimes defined by such rates. All of these attributes are absent in a 
uniregional perspective of growth and change in multiple interacting populations.

The fundamental difference between the uniregional and the multiregional 
approaches to population analysis may be depicted by the illustration set out in 
Fig. 1.1. Imagine a barrel containing a continuously fluctuating level of water. At 
any given moment, the water level is changing as a consequence of losses due to 
two outflows, identified by the labels “deaths” and “outmigration,” respectively, and 
of gains introduced by two inflows labeled “births” and “inmigration,” respectively.

Fig. 1.1  Contrasting perspectives: uniregional versus multiregional models. a Uniregional 
model. b Multiregional model
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If it is assumed that each barrel’s migration outflow and its migration inflow, 
during a unit period of time, vary in direct proportion to the average water level 
in the barrel at that time, then the two flows may be consolidated into a single net 
flow (which may be positive or negative), and the ratio of this net flow to the aver-
age water level defines the appropriate rate of net flow. Such a perspective of the 
problem reflects a uniregional approach.

Now imagine an interconnected system of three barrels, say, where each bar-
rel is linked to the other two by a network of flows, as in Fig. 1.1b. In this system, 
the migration outflows from two barrels define the migration inflow of the third. 
A uniregional analysis of the evolution of water levels in this would focus on the 
changes in outflows and inflows in each barrel, one at a time. A multiregional per-
spective, on the other hand, would regard the three barrels as a system of three 
interacting bodies of water, with a pattern of outflows and inflows to be examined 
as a simultaneous system of relationships. Moreover the multiregional approach 
would focus on outflows; hence the associated rates would always be positive, 
and they would refer to the appropriate “populations exposed to the possibility of 
migration.”

To deal with the interlinkages that connect one population’s dynamics to anoth-
er’s, the uniregional perspective generally must resort to the use of ad hoc proce-
dures and unsatisfactory concepts such as the statistical fiction of the invisible net 
migrant. But does it really matter? What are the drawbacks of a view that ignores 
gross flows in favor of a focus on net changes in stocks? In what respects is a mul-
tiregional perspective superior to a regional one?

A focus on gross flows more clearly identifies the age and spatial regularities, 
illuminates the dynamics, and enhances the understanding of demographic pro-
cesses that occur within multiple interacting populations. Distinguishing between 
flows and changes in stock reveals regularities that otherwise may be obscured; 
focusing on flows and changes into and out of a region-specific stock to expose 
dynamics that otherwise may be hidden; and linking explanatory variables to dis-
aggregated gross flows permits a more appropriately specified causal analysis.

Net rates express differences between arrivals and departures as a fraction of 
the single population experiencing both. But net rates also reflect sizes of popula-
tion stocks. For example, if the gross rates of migration between urban and rural 
areas of a nation are held constant, the net migration rate will change over time 
with shifts in the relative population totals in each area. Accordingly, one’s infer-
ences about changes in net migration patterns over time will confound the impacts 
of migration propensities with those of changing population stocks, hiding regu-
larities that may prevail among the observed gross migration flows.

Gross flow data permit the construction of improved population projection 
models. It can be demonstrated that multiregional projection models based on 
gross flow statistics are superior to uniregional models in at least four respects. 
First, uniregional models can introduce a bias into the projections, and they can 
produce inconsistent results in long-term prognoses. Second, the impacts of 
changes in age compositions on movement patterns can be important, yet a unire-
gional perspective fixes these impacts at the start of a projection and thereby can 
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introduce an additional bias into the projection. Third, multiregional projection 
models have a decisive advantage over uniregional models in that they alone can 
follow subpopulations over time. Thus they can produce disaggregated projections 
that are impossible to obtain with uniregional models. Finally, causal explana-
tions brought forth by studies of population redistribution all too often have been 
founded on models of population dynamics that reflect inadequate statistical per-
spectives. For example, no reliable inferences about migration behavior can be 
made of the basis of cross-sectional tabulations of changing fractions of a popula-
tion defined to be net migrants. Data on gross flows are essential, and increasingly 
it is being recognized that such data must be available in disaggregated form.

Disaggregation into subgroups allows one to study the diverse demographic 
behavior of heterogeneous populations exhibiting temporally dependent chang-
ing patterns. To the extent that their differing propensities to experience events 
and movements can be incorporated into a formal macrodemographic analysis, 
illumination of the aggregate patterns of behavior is enhanced. For instance, our 
understanding of migration is enriched by information on the degree to which such 
movements occur among those who have previously migrated. In generating such 
information, a multiregional analysis can identify, for example, how much of a 
change in levels of migration in a country can be attributed to “chronic” migrants 
as opposed to “first-time” migrants.

Typical age-specific patterns of in-, out-, and net migration rates are set out in 
Fig. 1.2. The data come from observed migration schedules. Note the effects of the 
netting out process: similar age patterns of directional migration give rise to totally 
different age patterns of net migration. To use the latter in a regression causal 
model, for example, would create misspecification.

Age patterns of gross migration rates are similar in profile because migration 
is related to the life course. Notice that the top age profile in Fig. 1.2b depicting 
migration to Florida exhibits a typical migration schedule with three sequences of 
rising rates, two of which occur at the elderly ages. The first rise is triggered by a 
move away from the parental home, a move that reflects the transition from ado-
lescence to adulthood. Entry into the job or marriage markets, military enlistment, 
or university enrollment are all life course events that often generate migration. 
The first rise generally peaks at some age in the early twenties and then begins a 
monotonic decline until the start of the second rise around age sixty for males and 
earlier for females. The second upswing in the age pattern of migration reflects 
movement away from the family home, a move that if often motivated by amen-
ity-oriented retirement migration. Finally, the third rise in the schedules occurs at 
around age seventy-five and is migration away from the retirement home, a move 
that often is a consequence of entry into dependent status and the onset of illness, 
disability, or the death of a spouse.

Rates of migration for children, start at a peak during the first years of life and 
drop to a low point around age ten. The age patterns of these rates for children 
usually mirror that of their parents, that is, the patterns of rates occurring some 
twenty-five or thirty years later.
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Two classes of models are commonly used to examine how the growth and 
structure of a national multiregional population evolves from particular regimes 
of fertility, mortality, and migration: the life table model and the projection model. 
Both allow one to separate out the impacts, on population growth and structure, of 
the demographic processes prevailing at a particular moment, and of the age com-
position and spatial distribution of the national multiregional population at that 
moment (Rogers 1973a, b).

Fig. 1.2  Out-, in-, and net migration schedules for six U.S. states, 1975–1980. Source Rogers 
(1990). a Near zero net migration rate. b Positive net migration rate. c Negative net migration rate

1.1 Modeling the Age and Spatial Dynamics …
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1.1.2  Multiregional Life Tables

The life table is a central concept in classical uniregional demography. Its use to 
express the facts of mortality in terms of survival probabilities and their combined 
impact on the lives of a cohort of people born at the same moment has been so 
successful that demographers generally think of population change with the life 
table as a natural starting point. The natural starting point for thinking about mul-
tiregional population change, therefore, is the multiregional life table. The multi-
regional generalization of the conventional uniregional life table posits a life table 
with multiple radices, one for each of the regional populations in the system and 
follows each birth cohort as it redistributes itself spatially and eventually leaves 
the system through death (and emigration, in instances of systems experiencing 
international migration).

Uniregional life tables are derived from a set of probabilities of surviving from 
one exact age to another. Multiregional life tables do that also, but keep track, not 
only of age, but also of region of residence. Estimates of the required input prob-
abilities normally are developed from observed data on rates and/or conditional 
proportions surviving. The data are produced by an explicit or implicit observa-
tional plan that defines whether such data are prospective or retrospective in char-
acter, and whether they refer to individuals or to groups, to life history segments 
or to entire lifetimes, to the experiences of a cohort or to the events occurring dur-
ing a particular period. To ensure consistency, the data may be adjusted by basic 
accounting identities that are embedded in a set of demographic accounts.

Important variation in estimation procedures arise as a consequence of differ-
ences in how migration is observed and measured. Counts of moves call for dif-
ferent estimation procedures than do counts of movers; therefore, migration data 
obtained from population registers require a different method for estimating tran-
sition probabilities than do migration data obtained from national censuses. In 
a multiregional life table, expectancies at each age, and also conditional age-to-
age survivorship proportions (probabilities), are calculated. The former provide 
expected durations of residence in various regions; the latter may be entered into 
a projection model to generate expected future age- and region-specific population 
totals.

1.1.3  Multiregional Population Projections

Population projections are numerical estimates of future demographic totals and 
are often based on rates that are extrapolations of past and current trends. Such 
calculations are fundamental inputs to social and economic planning. They iden-
tify potential demographic futures, anticipate the needs that such futures are 
likely to create, and provide a basis for judging whether or not efforts should be 
launched to alter current population processes and trends.
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The mechanics of multiregional population projection typically revolve around 
three basic steps. The first ascertains the starting age-region distributions and the 
age-specific regional schedules of fertility, mortality, and migration to which the 
multiregional population has been subject during a past period; the second adopts 
a set of assumptions regarding the future behavior of such schedules; and the third 
derives the consequences of applying these assumed schedules to the initial popu-
lation stock.

The typical discrete model of multiregional demographic growth expresses the 
population projection process by means of a matrix operation in which a multi-
regional population, set out as a vector, is multiplied by a growth matrix that 
survives that population forward over time (Rogers 1975, 1995). The projection 
calculates the regional and age-specific survivors of a multiregional population 
of a given sex and adds to this total the new births that survive to the end of the 
unit time interval. As in the uniregional model, the survival of individuals from 
one moment in time to another, say five years later, is calculated by diminishing 
each regional population to take into account mortality and net migration. In the 
multiregional model, however, one needs to include both the decrement result-
ing from outmigration and the increment contributed by inmigration. In models 
“open” to international migration the decrement from emigration and the incre-
ment from immigration also need to be incorporated. Surviving children born dur-
ing the five-year interval, migrate with their parents or are born after their parents 
have migrated, but before the time interval has elapsed. Finally, implicit in every 
multiregional projection matrix is a stable distribution across ages and regions, 
expressible in terms of age compositions and regional shares. Deviations from 
these compositions and shares, in the initial age-by-region distribution, ultimately 
disappear, but in the short to medium run they create fluctuations and disturbances 
in age profiles and in population allocations over regions.

1.2  Estimating the Age and Spatial Structures 
of Migration Flows

The estimation of migration from aggregate and incomplete data generally has 
been carried out with a focus on net migration and approximated by the popula-
tion change that cannot be attributed to natural increase. Given data on population 
sizes at two points in time, and estimates of birth and death rates for the interval 
defined by those two points, net migration may be approximated by the difference 
between the observed population at the second point in time and the hypothetical 
projected population that would have resulted at that time if only natural increase 
were added to the initial population.

Methods for inferring gross (directional) migration streams have a more lim-
ited history and literature. In the early years, methods of indirect estimation were 
geared to particular missing data problems. Consequently, the methods had an 
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ad hoc character (as do many methods of indirect estimation in demography). 
More recently, however, the indirect estimation of migration has relied on the use 
of models and on the theory of statistical inference to infer the relevant param-
eters from available data. Some describe age patterns of migration, while others 
describe spatial interaction patterns (Rogers et al. 2010).

1.2.1  Model Migration Schedules and Spatial  
Interaction Models

Recognizing that most human populations experience rates of age-specific fertility 
and mortality that exhibit remarkably persistent regularities, demographers have 
found it possible to summarize and codify such regularities by means of math-
ematical expressions called model schedules. Although the development of model 
fertility and mortality schedules has received considerable attention in demo-
graphic studies, the use of model migration schedules has played a more limited 
role, even though the techniques that have been successfully applied to treat the 
former can readily extended to deal with the latter.

Several studies of regularities in age patterns of migration, over the past some 
45 years have demonstrated that the mathematical expression called the multiex-
ponential function provides a remarkably good fit to a wide variety of empirical 
interregional migration schedules (Rogers and Castro 1981). That goodness-of-fit 
has led a large number of demographers and geographers to adopt it in various 
studies of migration all over the world.

Models that describe and predict the numbers of migrations between two 
regions by relating them to variables describing the characteristics of the origin, 
the destination, and the “friction” associated with their separation are often called 
spatial interaction models. The problem of fitting spatial interaction models has 
been approached from different perspectives over the past decades. First formu-
lated as an analogy to Newton’s law of gravitation, the resulting purely mechanical 
approach was revised by some 35 years ago, when geographers recognized that 
models developed in the field of discrete multivariate analysis could be applied 
to express spatial interaction patterns. Foremost among these models has been the 
log-linear model (Willekens 1983).

1.2.2  The Indirect Estimation of Migration  
from Inadequate Data

In countries with well-developed data reporting systems, demographic estimation, 
typically is based on data collected by censuses and vital registration systems. 
Demographic estimation in countries with inadequate or inaccurate data report-
ing systems, on the other hand, often must rely on methods that are indirect. For 
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instance, the use of the proportion of children dead, among those ever borne by 
women 20–24 years of age, to estimate the probability of dying before age 2 is an 
example of indirect estimation. Such estimation techniques usually rely on model 
schedules (collections of age-specific rates that are based on patterns observed in 
various populations other than the one being studied) and select one of them on 
the basis of some data describing the observed population. The justification for 
such an approach is that age profiles of observed schedules of rates vary within 
predetermined bounds for most human populations. Rates for one age group are 
highly correlated with those of other age groups, and expressions of such interrela-
tionships are the basis of model schedule construction.

Unlike fertility and mortality, which involve single populations, migration 
links two populations: the population of the origin region and that of the destina-
tion region. This greatly complicates its estimation by indirect methods. What this 
means in practical terms is that a focus on age patterns (as in the case of fertility 
and mortality) is not enough—one also must focus on spatial patterns. The impo-
sition of observed regularities in both the age and spatial patterns of interregional 
migration to “discipline” inadequate data on territorial mobility holds great prom-
ise as a means for developing detailed age- and destination-specific migration flow 
data from inaccurate, partial, and even non-existent information on this most fun-
damental process underlying population redistribution.

Over the past two decades, a formal model-based approach to the indirect esti-
mation of migration has evolved (Rogers et al. 2010). The formal approach sug-
gests that rough estimates of interregional age-specific migration streams can be 
developed by indirect estimation methods applied to two age-region-specific popu-
lation counts, disaggregated by region of births, and some auxiliary information 
obtained from historical data. For example, robust estimates have been obtained 
using infant migration data of a current period and regression relationships pre-
vailing during an earlier period. Since children who have been born in region i, 
and who are, say, 0–4 years old at the time of the census and living in region j, 
must have migrated during the immediately preceding 5-year interval, we can 
obtain a “proxy” infant migration rate by “backcasting” them to their region of 
birth and then calculating their prospective propensity to migrate. Given their 
young age, and the fact that they were on average born 2½ years ago, it is unlikely 
that they experienced more than one migration. Regression equations and model 
migration schedules can be used to expand these child-migration levels and spatial 
patterns into the corresponding levels and patterns for every age.

1.3  Outline of the Rest of the Book

The organization of this book is straightforward. Chap. 2 focuses on model speci-
fication and uses a simple numerical illustration to show how net migration rates 
introduce a bias when used to represent the contribution of migration in a popula-
tion projection of urban growth. Chap. 3 examines the question of whether it is 

1.2 Estimating the Age and Spatial Structures …
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migration or aging-in-place that contributes most to regional elderly population 
growth. Chap. 4 considers birthplace dependence in migration patterns and shows 
that return migration to region of birth generally exhibits higher levels and dif-
ferent spatial patterns than non-return migration. Chap. 5 carries this topic a step 
further by separating the foreign-born and the native-born populations, identify-
ing the separate contributions made by each to regional elderly population growth. 
Chap. 6 addresses the issue of model performance in population projection efforts 
and accords special attention to the impact of uncertainty. Chap. 7 introduces 
regions that are status categories and demonstrates that the mathematical appara-
tus for tracing the demographic consequences of movements of people between 
regions (multiregional demography) is the same apparatus for modeling the transi-
tions of people between statuses (multistate demography). Finally, Chap. 8 con-
cludes the book with a return to its principal argument, namely, that incidence 
rates should be used in place of prevalence rates when modeling the growth and 
redistribution of several interacting populations.
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Abstract Multiregional demography stresses the importance of identifying the 
proper flows to enter as numerators in constant coefficient account models, and 
of relating these numerators to appropriate denominators measuring population 
stocks. When applied in demographic definitional and structural equations, such 
procedures lead to correctly specified “incidence” rates and the subpopulations at 
risk of experiencing the changes brought about by these particular rates. In this 
context, models of the determinants and consequences of migration that rely on 
inmigration rates and net migration rates are misspecified. So too are models, for 
example, that rely on the “labor force participation rate.” In both instances the 
denominators of the rates do not correspond to the subpopulations that are at risk 
of experiencing the events represented in the numerators. Demographic innumer-
acy produces a biased model.

Keywords Model specification · Net migration rates · Incidence rates ·  
Prevalence rates · Urbanization

2.1  Introduction

The principal arguments of this chapter are developed with the aid of a prototype 
biregional baseline model with constant rates, and in which simple contrived num-
bers are used to demonstrate the arguments. (After all, most of us learned how to 
solve quadratic equations by using only integer numbers.) However, an empirical 
illustration is also included later in the chapter for completeness.

The baseline model is used to generate spatial population dynamics that are 
described by a set of conventional indices, measured over time until stability. 
Sections 2.2 and 2.3 focus on the net migration rate as a representation of spatial 
population flows, and show how that introduces a projection bias. Section 2.4 uses 
the concept of Simpson’s Paradox to illustrate how the introduction of age-specific 
migration rates can produce counterintuitive reversals. Section 2.5 examines the 
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proximate sources of urban population growth. Finally, Sect. 2.6 concludes the 
chapter with a discussion of the principal results and an assessment of their signifi-
cance for the modeling of migration.

2.2  The Net Migration Rate: How It Creates  
a Projection Bias

Net changes in regional population stocks are often dwarfed by the gross migra-
tion flows that help to produce them, hiding the spatial dynamics that are at work; 
a modest net contribution to regional population growth by migration may be gen-
erated by large gross flows in both directions. Demographers generally focus on 
demographic rates rather than counts, because analyses based on rates are superior 
to those based on counts. Demographic rates exhibit strong age-specific regulari-
ties and temporal stabilities that a projection based on rates can exploit to generate 
events through demographic accounting identities; a projection based on a count 
of events ignores this information. Moreover, it is much easier to assess and inter-
pret the reasonableness of results produced by forecasted rates. For instance, a set 
of one hundred numbers representing deaths by single year of age of decedent is 
not very informative; nor is a collection of thirty numbers representing number of 
births by single year of age of mother. Yet the meanings of the expectation of life 
at birth and the net reproduction rate implied by these two sets of numbers (both 
calculated using age-specific rates) are readily grasped, and unrealistic values for 
these two variables suggest possible sources of error in the data or in the forecast-
ing procedure.

The net migration rate, mj, for a particular region j is defined as the difference 
between the region’s inmigration rate, ij, and its outmigration rate, oj. The outmi-
gration rate is defined as a true rate because it divides the number of times that 
an event, outmigration, occurred during a year, say, by the number of persons 
exposed to the risk of experiencing that event. The inmigration rate, on the other 
hand, is a measure of prevalence rather than of propensity. It too has a numerator 
that is an occurrence count of a particular event, inmigration in this case, but its 
denominator is not a count of the number of persons that could have experienced 
the event. Rather, its denominator is the population in the region of destination that 
was at risk of experiencing the outmigration event. Since the net migration rate is 
the difference between a measure of prevalence and a true rate or propensity, its 
interpretation is necessarily ambiguous.

For each set of fixed outmigration rates, different spatial distributions of a 
population will give rise to different values of the net migration rate to a region. 
Also, for each fixed initial spatial distribution of a population, a given value of 
the net migration rate can be generated by a wide range of inmigration and outmi-
gration rates; but the long-term implications for the geography of the population 
may be quite different. Thus one must be wary of cross-sectional comparisons of 
net migration rates of different regions as well as comparisons of such rates for 
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the same region over time. In both instances the net migration rate will embody 
the influences of spatial population distribution along with those of movement 
propensities.

Consider, for example, how projections of urbanization might be carried 
out with uniregional (net migration) and multiregional (gross directional migra-
tion) models. In a uniregional model, the urban population is the central focus of 
interest and all rural-to-urban migration flows are assessed only with respect to 
the population in the region of destination, that is, the urban population. Changes 
in the population at the region of origin are totally ignored, with potentially seri-
ous consequences. For example, the rural population ultimately may be reduced to 
near zero levels, but a fixed and positive net migration into urban areas will never-
theless continue to be generated by the uniregional model.

To see the source of the problem more clearly, consider how the rural-urban 
migration specification is altered when a biregional model of urban and rural pop-
ulation growth is transformed into a uniregional model (Rogers 1990). Let urban 
population growth be described by the equation

Equation (2.1) states that next year’s urban population total, Pu(t + 1), may be cal-
culated by adding to this year’s urban population [Pu(t)] the increment due to the 
excess of births over deaths, that is, urban natural increase [(bu − du) Pu(t)], the 
decrement due to urban outmigration to rural (v = village) areas [ouPu(t)], and the 
increment due to rural-to-urban migration [ovPv(t)].

Now, multiplying the last term in the Eq. (2.1) by unity expressed as Pu(t)/Pu(t) 
transforms that equation into its uniregional counterpart

where

and U(t) is the fraction of the total national population that is urban at the time 
t. If all annual rates are assumed to be fixed in the biregional projection, then in 
the uniregional model iu, and therefore also mu, depend on U(t), which varies in 
the course of projection, thereby introducing a bias. The dependence of the urban 
net migration rate mu on the level of urbanization at the time t means that mu must 
decrease as the level of urbanization increases. Consequently, it seems inappropri-
ate to use such a model to answer, for example, the question whether it is natural 
increase or net migration that is the principal source of urban population growth 
over time, as did Keyfitz (1980).

(2.1)Pu(t + 1) = (1+ bu − du − ou)Pu(t)+ ovPv(t)

(2.2)

Pu(t + 1) = (1+ bu − du − ou)Pu(t)+ ovPu(t)

= (1+ bu − du − ou + iu)Pu(t)

= (1+ bu − du + mu)Pu(t) = (1+ ru)Pu(t)

iu = ov

[

Pv(t)

Pu(t)

]

= ov

[

1− U(t)

U(t)

]

,

mu = iu − ou,

2.2 The Net Migration Rate: How It Creates …
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2.3  The Uniregional Fallacy and Bias

The notion that the spatial dynamics of a system of multiple interacting regional 
populations can be analyzed profitably by a set of independent uniregional models, 
which apply net migration rates to each regional population, dies hard. The biases 
and inconsistencies that are created by such decompositions of multiregional 
population projection models are generally ignored. Thus despite decades of pub-
lished work on multiregional demography exposing the “uniregional fallacy,” it is 
unfortunately still common to find articles in prominent journals that ignore this 
literature.

2.3.1  Aggregation Bias

Imagine, once again, a closed two-region population system consisting of an urban 
population, Pu(t), and a rural population, Pv(t). In its discrete-time formulation

and

where, as before, U(t) = Pu(t)/P(t) is the fraction urban at time t.
By definition, the urban growth rate, ru, is equal to the birth rate, bu, minus the 

death rate, du, minus the outmigration rate, ou, plus the inmigration rate, iu:

If ru is to remain constant, then the component rates on the right-hand side of the 
Eq. (2.5) must sum to a constant, and

Note that instead of a chained multiplication of one-year at a time, one can simply 
raise the quantity in the parentheses to the power t. But we have earlier shown that

which means that iu (and therefore ru) changes over time as urbanization pro-
ceeds. Bias and inconsistency are therefore the probable result of viewing this 
biregional population system through a uniregional perspective. Changes in mag-
nitude of migration flows may occur apart from changes in the propensity to move. 
A biregional perspective can be used to distinguish between changes in rates that 

(2.3)

P(t) = Pu(t)+ Pv(t)

= (1+ ru)
t
Pu(0)+ (1+ rv)

t
Pv(0)

= (1+ ru)Pu(t − 1)+ (1+ rv)Pv(t − 1)

(2.4)r(t) = U(t − 1)ru + [1− U(t − 1)]rv

(2.5)ru = bu − du − ou + iu.

(2.6)Pu(t) = (1+ ru)
tPu(0)

(2.7)iu = ov

[

Pv(t)

Pu(t)

]

= ov

[

1− U(t)

U(t)

]
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reflect actual changes in propensity from changes in rates that are merely a conse-
quence of changes in compositions. The uniregional perspective does not have this 
ability. To see this, assume a behaviorally fixed and totally homogeneous popula-
tion in Eq. (2.5),

and, similarly,

where natural increase, n = b − d, A(t) = [1 − 2U(t)]/U(t), and B(t) =  
[2U(t) − 1]/[1 − U(t)].

Since all members of the population exhibit identical and constant behav-
ior, one might expect both regional growth rates ru(t) and rv (t), to be identical 
and to remain fixed at the value of the natural increase rate n = b − d; but this 
will only occur either if (i) the two regional populations do not interact with each 
other via migration (that is, o = 0), or (ii) the entire population is currently expe-
riencing stable growth, a condition that in this illustration can only arise if the 
two regional populations happen to be identical in size (that is, U(t) = ½, whence 
A(t) = B(t) = 0).

Unlike the case of the “perfect aggregation,” total homogeneity is not a suf-
ficient condition for “perfect deconsolidation,” that is, for avoiding a bias in trans-
formations of multiregional models to uniregional ones; indeed homogeneity is 
irrelevant and distributional stability is essential (Rogers 1969).

2.3.2  Decomposition Bias

The transformation of a multiregional model that describes interregional migra-
tions between the constituent regions of the population system into the corre-
sponding separate uniregional models can be viewed as a process of compensated 
decomposition in which net migration rates carry out the “compensation.” Before 
such a transformation, the population of the jth region, Pj(t + 1) for example, can 
be defined as

(2.8)

ru(t) = b− d − o+ o

[

1− U(t)

U(t)

]

= b− d +

[

1− 2U(t)

U(t)

]

o = n+ A(t)o

(2.9)

rv(t) = b− d − o+ o

[

U(t)

1− U(t)

]

= b− d +

[

2U(t)− 1

1− U(t)

]

o = n+ B(t)o

(2.10)
Pj(t + 1) = (1+ bj − dj − oj)Pj(t)+

∑

i �=j

oijPi(t).

2.3 The Uniregional Fallacy and Bias
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Denoting 1 + bj − dj − oj by ojj, and multiplying the last term in the equation by 
unity, in the form of Pj(t)/Pj(t), gives

2.3.3  Numerical Illustration: A Simple Projection Model  
of Urbanization

The urban population of the Pacific island of Mora-Bora increased by three quar-
ters last year (ru = 3

4
), while the rural population grew by an eighth (rv = 1

8
). At 

the start of the year the two populations were enumerated to be 16 and 32 thou-
sand, respectively. During the course of the year a half of the rural population 
migrated to urban areas (ov = 1

2
), while a fourth of the urban population moved 

to the rural areas (ou = 1
4
). Given these rates and the initial populations, it is a 

simple matter to define the growth process that will project the island’s biregional 
population forward two consecutive years. The island’s population increases from 
48 thousand to 64 thousand after a year, and then it grows to 82 thousand after the 
following year. The demographic accounting equations for the first year are:

and

where n denotes the natural increase rate. Notice that the urban population is 
experiencing replacement level fertility, that is, bu = du, and the rate of natural 
increase, nu, is zero. The natural increase rate of the rural population is a half.

The above disaggregated model produces a projected evolution of the national 
population that is: 48, 64, 82, …. Notice that the corresponding consolidated 
uniregional model for the national total [that is, P(1) = 4

3
 P(0)] leads to a higher, 

not lower, projected set of totals: 48, 64, 851
3
,…. Hence, Keyfitz’s (1977, p. 16) 

proof of a guaranteed overprojection by the more disaggregated model does not 
apply in this case.The above two fundamental equations define the biregional 

(2.11)

Pj(t + 1) = ojjPj(t)+





�

i �=j

oij
Pi(t)

Pj(t)



Pj(t)

=



ojj(t)+
�

i �=j

oij
Pi(t)

Pj(t)



Pj(t)

Pu(1) = [1+ (bu − du) − ou]Pu(0) + ovPv(0)

= (1− nu − ou)Pu(0) + ovPv(0)

= (1+ 0 −
1

4
)16+ (

1

2
)32 = 28

Pv(1) = ouPu(0)+ (1+ nv − ov)Pv(0)

= (
1

4
)16+ (1+

1

2
−

1

2
)32 = 36
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model. The corresponding uniregional models may be obtained by a compensated 
decomposition. In that event, the net migration rate for the urban region is

and correspondingly,

Thus

and

Similarly

and

The island’s population after the initial “calibration” period is overprojected by 
seven and a half thousand people relative to the biregional projection, with the 
rural population’s underprojection of two and a half thousand being over-compen-
sated by the urban population’s overprojection of ten thousand. Notice that the for-
mer was losing net migrants, whereas the latter was gaining net migrants.

Finally, consider the same growth process as before, but now imagine that the 
initial national population of 48 thousand is distributed equally among the two 
regions. Then the biregional projections give

and

mu = iu − ou = ov

[

Pv(0)

Pu(0)

]

− ou

=
1

2
[2]−

1

4
=

3

4

mv = −
3

8

Pu(1) = 28 = [1+ 0+
3

4
]16

Pv(1) = 36 = [1+
1

2
−

3

8
]32

Pu(2) = 49 = (
7

4
)28

Pv(2) = 40
1

2
= (

9

8
)36

Pu(1) = 30 = (
3

4
)24+ (

1

2
)24

Pv(1) = 30 = (
1

4
)24+ (1)24

2.3 The Uniregional Fallacy and Bias
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Similarly

and

The relevant net migration rates now are mu =
1
4
 and mv = − 1

4
, and the corre-

sponding uniregional projection becomes

and

Similarly,

and

Because the initial population has a stable initial distribution, perfect decomposi-
tion results. No bias is introduced by shifting to a uniregional model by means of 
compensated decomposition.

2.3.4  The Simple Projection Model Expressed  
in Matrix Form

Matrix algebra provides a compact and useful means for studying the demo-
graphic evolution of multiple interacting populations. Matrix notation makes the 
projection process more transparent, and matrix theory brings to demographic 
analysis results that have direct application to population questions. Expressing the 
population projection process in matrix form also leads to the derivation of results 
that would be virtually impossible to establish otherwise.

The reader should confirm that the simple biregional projection of Mora Bora’s 
urban and rural populations, described in Sect. 2.3.2 may be expressed in matrix 
form as

Pu(2) = 37
1

2
= (

3

4
)30+ (

1

2
)30

Pv(2) = 37
1

2
= (

1

4
)30+ (1)30

Pu(1) = 30 = (
5

4
)24

Pv(1) = 30 = (
5

4
)24

Pu(2) = 37
1

2
= (

5

4
)30

Pv(2) = 37
1

2
= (

5

4
)30

[

28

36

]

=

[

3/4 1/2

1/4 1

][

16

32

]
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and

Recall that the multiplication rule in matrix algebra is “row times column.”
A more transparent picture of the evolution to stable growth may be obtained 

by focusing on another numerical illustration in which an urban population of 
24 million each year sends a fourth of its population to rural areas and receives, 
in exchange, one-half of the rural population, which initially is also taken to stand 
at 24 million persons. Assume that a zero population growth regime prevails, such 
that the annual increment due to births, in each region, is exactly offset by the 
annual decrement due to deaths. Then we have that

and the projection to stability is

Note that once the initial urbanization level of ½ grows to 2/3, it remains at that 
level forever. The population has achieved stable growth; each of its subgroups is 
increasing exponentially and at the same rate. Its urban and rural growth rates both 
are zero, and its stable distribution is forever fixed in the proportions 2/3 and 1/3. 
These two fundamental attributes of the process of projection to stability are aug-
mented by a third; the independence of the stable growth results from the starting 
population distribution—a property of the process called “ergodicity.”

That the stable or intrinsic growth rate and corresponding stable distribution are 
independent of the starting population distribution and depend only on the growth 

[

39

43

]

=

[

3/4 1/2

1/4 1

][

28

36

]

G =

[

3/4 1/2

1/4 1/2

]

{P(t)} =

[

24

24

]

{P(t + 1)} =

[

30

18

]

=

[

3/4 1/2

1/4 1/2

] [

24

24

]

{P(t + 2)} =

[

311/2
161/2

]

=
3/4 1/2

1/4 1/2

[

30

18

]

=

[

11/16 5/8

5/16 3/8

] [

24

24

]

{P(t + 3)} =

[

317
/

8

161
/

8

]

=

[

3/4 1/2

1/4 1/2

] [

311/2
161/2

]

=

[

43/64 21/32

21/64 11/32

] [

24

24

]

.

.

.
.
.
.

.

.

.

{P(∞)} =

[

32

16

]

=

[

3/4 1/2

1/4 1/2

][

32

16

]

=

[

2/3 2/3

1/3 1/3

] [

24

24

]

2.3 The Uniregional Fallacy and Bias
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regime defined by the projection matrix, G may be illustrated by applying the 
same matrix to a different initial population distribution. For example the reader 
should confirm that

converges to the same stable state as was obtained before, and that the alternative 
projection matrix

ultimately brings about a level of urbanization with half of the national population 
living in rural areas and growing at 25/3= 8.3 % per annum.

2.3.5  Bias: A Summary

Aggregating the separate projections of several noninteracting heterogeneous pop-
ulations will give rise to a total greater than one that would be obtained by project-
ing the aggregate population at its average rate of growth at the outset (Keyfitz 
1977, p. 16). Aggregation prior to projection introduced an aggregation bias that 
is guaranteed to be negative, giving rise to an underprojection relative to the con-
solidation of the corresponding disaggregated projection. The aggregation of non-
interacting heterogeneous populations prior to projection, then, always produces 
an underprojection: the aggregate population never stabilizes, the aggregate rate 
of growth forever increases, and the population’s composition varies continuously.

Does the same guaranteed negative bias also arise in the aggregation introduced 
by the consolidation of interacting heterogeneous populations? The answer is no. 
Rogers (1985), for example, offers an illustration of a positive aggregation bias 
which is introduced by the consolidation of the Swedish female population across 
four “regions” that are marital status categories. The consolidated projection, in 
this instance, produces an overprojection relative to the aggregation of the decon-
solidated projection. So clearly, the answer in this situation is an ambiguous one; 
the aggregation bias can be positive or negative. This can be readily demonstrated 
by carrying out a projection across two time intervals with both the deconsolidated 
and consolidated models and then comparing the two projections, as in our simple 
numerical example. The aggregation of interacting heterogeneous multiregional 
populations prior to projection, it can be shown, produces either under- or overpro-
jection: the aggregate population ultimately stabilizes and both its aggregate rate 
of growth and its composition become fixed.

What about decomposition bias? The separation of each region from the others 
in a multiregional system by means of a net migration rate form of compensated 

[

34

14

]

=

[

3/4 1/2

1/4 1/2

][

40

8

]

[

5/6 1/4

1/4 5/6

]
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decomposition will always create a bias in the projected regional totals, except 
in the two relatively uninteresting cases of an interregionally immobile popula-
tion or one that is experiencing stable growth. Because net migration rates con-
found movement propensities with populations stocks, the conditions for “perfect 
decomposition” turn out to be even more stringent that those for “perfect aggrega-
tion” (Rogers 1969). A particularly simple, yet pervasive, form of decomposition 
bias is the relative overprojection of the population experiencing net gains from 
migration and the underprojection of the corresponding population that is the net 
loser of migrants.

2.4  Netting Out the Age Patterns of Directional  
Migration Rates

Crude rates are weighted averages of age-specific rates, where the rates are the 
proportional shares accorded to each age group to reflect that group’s relative 
size in the total population. For example, if one of two populations has a much 
older age structure (say, Sweden) than the other (for instance, Costa Rica), its 
crude death rate is higher than the corresponding rate in the other, even though 
its every age-specific death rate is lower than the corresponding rate in the other 
population. This counterintuitive reversal is an illustration of what demographers 
and statisticians call Simpson’s paradox–an apparent contradiction of two state-
ments that arises as a consequence of the stratification of the populations into two 
or more subgroups and the resulting reversal of the rank ordering of those popula-
tions on the variable of interest. Similar counterintuitive reversals may occur in 
comparisons of a wide array of demographic processes, including migration. The 
crude outmigration rate of one population may be higher than that of another, even 
though its every age-specific outmigration rate is lower than the corresponding 
rate of the other.

Most illustrations of Simpson’s paradox have focused until recently on cross-
sectional comparisons. The impacts of changes in the relative weights used in the 
averaging process typically have been examined across several populations at one 
moment in time. Vaupel and Yashin (1985) and others have broadened this per-
spective to include the demographic dynamics of selectivity and the impacts of 
the changes that they bring about in the relative weights themselves, over time. In 
this chapter, their perspective is widened even further, by focusing on interacting 
population subgroups linked by migration, and on the dynamic impacts that this 
linkage generates through its contribution of increments as well as decrements to 
each of these population subgroups. Because migration, unlike mortality, say, is a 
repeatable event that directly affects two populations (origin and destination) the 
spatial population dynamics that it creates may introduce counterintuitive demo-
graphic consequences, some of which apparently have not been studied either 
empirically or theoretically (Rogers 1992).

2.3 The Uniregional Fallacy and Bias
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Imagine a population of a million people in Country A and another of the same 
number in Country B. During the course of a year, ten thousand individuals die 
in the former and nine thousand die in the latter. A comparison of the mortality 
regimes prevailing in the two countries suggests that mortality is higher in Country 
A (1.0 % against 0.9 %).

Suppose that the population of Country A is equally divided among Young and 
Old people, half-a-million being in each age group. Country B, on the other hand 
has a younger age composition, with 70 % of its population being in the Young 
age group. Suppose, further, that of the thousand deaths in Country A a quarter 
occurred among the Young, whereas in Country B the corresponding total was 
4.2 thousand. Then the age-specific death rates in Country A were 0.5 % among 
the Young population and 1.5 % among the Old, both lower than the correspond-
ing percentages for Country B: 0.6 and 1.6 %, respectively. A comparison of these 
percentages indicates that mortality is lower in Country A at each age. The cause 
of this apparent contradiction with our earlier finding is the relatively younger age 
composition of Country B. Since crude rates are weighted sums of the constituent 
disaggregated rates, the relatively heavier weight accorded to the death rate of the 
Young population in Country B lowered its aggregate crude rate with respect to 
Country A:

What is true of crude mortality rates is, of course, also true of crude outmigration 
rates and, therefore, of crude net migration rates. Assume that the above figures 
now refer to emigration from one country to the other. The aggregate flows then 
reveal that Country B gains a thousand net migrants from the exchange. This total 
results from the combination of a net loss of Young people (−1.7 thousand) and a 
net gain of Old people (+2.7 thousand). Thus Country B gains net migrants, even 
though its rates of emigration are higher at each age than those of Country A. 
This compositional artifact could possibly be a contributing factor to the counter-
intuitive directional behavior of net interstate migrants that puzzled David Plane 
(1988, p. 10) who observed that in recent years something like two-thirds of all the 
net interstate streams of migration in the United States point in the direction of the 
lower average wage state.

But, of course, another contributing factor also could have been the decomposi-
tion bias introduced by a net migration perspective. Consider, for example, identi-
cal Young-Old age compositions of a half and a half, say, and the same directional 
age-specific emigration rates. But now assume that Country A has twice the popu-
lation of Country B, say two million to Country B’s one million. Then,

During the course of a year, then, twenty thousand individuals emigrate from 
Country A and only eleven thousand leave Country B. The result is that Country 
B shows a positive net migration rate of 0.9 %, while Country A exhibits a 

Country A : 0.5(0.5%)+ 0.5(1.5%) = 1.0%.

Country B : 0.7(0.6%)+ 0.3(1.6%) = 0.9%

Country A : 0.5(0.5%)+ 0.5(1.5%) = 1.0%.

Country B : 0.5(0.6%)+ 0.5(1.6%) = 1.1%.
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corresponding negative rate of 0.45. And Country B gains net migrants once 
again, even though its rates of emigration are higher at each age than those of 
Country A.

Our numerical illustration also clearly reveals how similar age profiles of gross 
migration rates may be hidden in the corresponding age profiles of net migration 
rates. For example, the age-specific immigration rates for Country A in the first 
illustration are

and for country B they are

Hence the corresponding net migration rates are

Figure 2.1 sets out these age-specific patterns of migration and illustrates how the 
netting out of similar age patterns of gross migration rates gives rise to totally dif-
ferent corresponding age patterns of net migration rates. Note that merely revers-
ing the Young-Old proportional relationship between the two nations, totally 
reverses the corresponding age pattern of net migration rates.

Net migration rates are often viewed as crude indices that reflect differences 
in propensities of movement. But as we have seen, net migration rates also reflect 
the relative sizes of population stocks. The consequence for age patterns of migra-
tion rates is the disintegration of a well-established regularity in age profile. To 
see this, imagine a migration exchange between two neighboring regions of a 
biregional system, regions i and j, say, that initially contain populations of equal 
size, Pi = Pj, say. Assume that the gross migraproduction rates (the areas under 
the migration schedules) are equal to unity in both directions, and that the age pro-
file of both flows is that of the top age profile in Fig. 2.2. Under these conditions, 
the net migration rate in region i is zero at all ages, as shown by the dotted line 
in Fig. 2.3. At each age, the number of migrants from region j to region i exactly 
equals the number in the reverse direction, and the equality also holds for the cor-
responding rates.

Now imagine that because of higher fertility and immigration levels, say, one 
population in region j grows more rapidly than the other, such that it becomes 

iA(Y) = 0.6(
7

5
) = 0.84%,

iA(O) = 1.6(
3

5
) = 0.96%,

iB(Y) = 0.5(
5

7
) = 0.36%,

iB(O) = 1.5(
5

3
) = 2.50%.

mA(Y) = 0.84− 0.5 = +0.34%,

mA(O) = 0.96− 1.5 = −0.54%,

mB(Y) = 0.36− 0.6 = −0.24%,

mB(O) = 2.5− 1.6 = +0.90%.

2.4 Netting Out the Age Patterns of Directional …
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twice as large as its neighbor, that is, Pj = 2Pi . Assume that the propensities 
to migrate in both directions and the associated age profiles remain the same as 
before for all ages of x. Then the resulting net migration rate schedule of one 
region becomes that of the solid line in Fig. 2.2, that is, the “standard” profile 
with a gross migraproduction rate of unity. We also include the corresponding net 
migration rate schedule when Pj = Pi /2 (the broken line in Fig. 2.2).

The three net migration schedules in Fig. 2.2 all reflect the same pair of gross 
migration schedules. In each instance the propensity to migrate in the two direc-
tions is the same, and so is the age profile. Yet the net migration rate for region 
i, say, varies directly with the relative sizes of the two populations, that is, with 
the ratio Pj/Pi. The net rate is zero at all ages when the ratio is unity, positive at 
all ages when the ratio exceeds unity, and negative at all ages when the ratio falls 

Fig. 2.1  Netting out the age patterns of directional migration rates: I. Two age groups. Source 
Rogers (1990)
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short of unity, in the latter two instances following the age profile of the migration 
schedule standard. Thus, in this illustration, net migration once again depends on 
relative populations sizes; the effects of flows are confounded with the effects of 
changes in stocks.

Because net rates confound flows with changes in stocks, they hide regulari-
ties that prevail among gross flows. Although the latter tend to always follow the 
conventional age profile, the former exhibit a surprisingly wide variety of shapes, 
a few of which appeared earlier in Fig. 1.2.

2.5  The Proximate Sources of India’s Urban Population 
Growth: Mostly Migration or Mostly Natural 
Increase?

2.5.1  Introduction

The urban population of India increased by 3.7 % a year during the late 1960s and 
early 1970s. The urban growth rate, ru, was the outcome of a birth rate bu of 30 per 
1000, a death rate du of 10 per 1000, an inmigration rate iu of 27 per 1000, and an 
outmigration rate ou of 10 per 1000 (Rogers 1982, 1985). Expressing these rates 
on a per capita basis leads to the fundamental identity

ru = bu − du + iu − ou

= 0.030− 0.010+ 0.027− 0.010

= 0.037

Fig. 2.2  Netting out the 
age patterns of directional 
migration rates: II. Eighty 
age groups. Source Rogers 
(1990)

2.4 Netting Out the Age Patterns of Directional …
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The corresponding identity for the rural population was

The total national population of India in 1970 was about 548 million, of which 
roughly 109 million (20 %) was classified as urban. Multiplying this latter total by 
the urban growth rate gives 109(0.037) = 4.03 million as the projected increase 
for 1971. An analogous calculation for the rural population gives 7.46 million for 
the corresponding projected increase in the rural population. These changes imply, 
for 1971, an urban population of 113 million, a rural population of 446 million, 
and a rate of national population increase of

What would be the immediate contributions of net migration and natural increase 
to urban population growth if rates either of net migration or of natural increase 
were suddenly to drop to zero? This reveals that urban natural increase in 1970 
India contributed 0.020/0.037 = 0.54, or just over a half of the urban population 
growth rate. But this is a static cross-sectional view that ignores the evolution of 
the changing contributions of migration and natural increase to urban growth over 
time. The long-run impacts of current patterns of natural increase and migration on 
urban population growth and urbanization levels can only be assessed by popula-
tion projection. And, according to Keyfitz (1980), the results indicate that migra-
tion is the principal contributor at first, but then is overcome by natural increase. 
Following Keyfitz, imagine a hypothetical population, initially entirely rural, that 
experiences the annual national rate of natural increase of r., say, and a net rural 
outmigration rate of mv. Then the projected evolution of the rural populations 
should follow the path defined by

whereas that of the national population exhibits the path set by

Clearly, one can obtain Pu(t) as a residual.
On the Indian data, this gives the following uniregionally projected totals for, 

say, 1980:

and

Once again, notice that instead of a chained multiplication of one-year at a time, 
one can simply raise the quantity in the parentheses to the tenth power.

rv = bv − dv + iv − ov

= 0.039− 0.017+ 0.002− 0.007

= 0.017

r. = 0.20ru + 0.80rv = 0.021

Pv(t) = (1+ r.− mv)
tPv(0)

P.(t) = Pu(t)+ Pv(t) = (1+ r.)tP.(0).

Pv(10) = (1+ 0.021− 0.005)10439 = 515million

P.(10) = (1+ 0.021)10548 = 665million

Pu(10) = P.(10)− Pv(10) = 665− 515 = 150million
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Alternatively, one could project the urban and rural populations at their own 
rates of growth instead of the national, and then obtain the latter population by 
simple addition. In this event,

and

or 12 million more persons than in the previous projection for India as a whole. 
Continuing on with the latter equation to the target year 2000, say, gives an urban 
population of 324 million and a corresponding rural population of 728 million for 
the uniregional specification. Clearly, model specification matters.

A uniregional perspective must rely on the notion of net migration. An immedi-
ate consequence of such a perspective in this application is an ultimate and total 
urbanization, that is India’s initial urbanization level of U(0) = 20 % in 1970, is 
headed toward an ultimate level of 100 %. And, correspondingly, the absolute con-
tribution of urban net migration must, of necessity tend toward zero in the long-
run… a somewhat problematic situation for an analysis that seeks to answer the 
question of whether it is net migration or natural increase that contributes most to 
urban population growth over time.

2.5.2  The Problematic Net Migration Rate

Recall the crude rates listed earlier to specify the corresponding biregional compo-
nents-of-change model

where, for example,

and

Projecting to the target year 2000 with the biregional model defined by Eqs. (2.14) 
and (2.15) produces different future population totals than before: an urban popu-
lation of 285 million and a corresponding rural population of 753 million, for a 
grand total of P(2000) = 1.038 billion.

Pu(10) = (1+ 0.037)10109 = 157million

Pv(10) = (1+ 0.017)10439 = 520million

P.(10) = Pu(10)+ Pv(10) = 157+ 520 = 677million

(2.12)Pu(t + 1) = (1+ bu − du − ou)Pu(t)+ ovPv(t)

(2.13)Pv(t + 1) = (1+ bv − dv − ov)Pv(t)+ ouPu(t)

(2.14)
Pu(1971) = (1+ 0.030− 0.010− 0.010)109+ (0.007)439

= 113.0million persons

(2.15)
Pv(1971) = (1+ 0.039− 0.017− 0.007)439+ (0.010)109

= 446.5million persons

2.5 The Proximate Sources of India’s Urban …
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2.5.3  A Disaggregation by Age

Having examined the sources of urban growth in India—first using the uniregional 
and then the biregional model, with both models ignoring age and both assum-
ing a fixed rate of natural increase, nu, and fixed outmigration rates, ou and ov, we 
saw that, because the level of urbanization U(t) increased over time, the urban net 
migration rate, mu(t) was certain to decline over time, thereby guaranteeing that 
the relative contribution of migration to the urban growth rate would decline as 
well. A more realistic model is needed, one that allows natural increase to decline 
also. Introducing age-specific rates is a first step in that direction.

To illustrate the problematic nature of the net migration rate, consider next a 
biregional (and still closed to international migration), constant-coefficient, base-
line projection to the target year 2000, say. Such a projection of India’s urban and 
rural total population growth, using the age-specific rates of 1970 in Appendix B 
of Rogers (1985), projects a total urban population of 291 million and a corre-
sponding rural population of 760 million.

The introduction of age favors migration as a contributor to urban growth. In 
the Indian illustration it increases migration’s ultimate (stable growth) contribution 
threefold. In other illustrations it can reverse the ranking itself, making migration 
the principal source of urban growth (Rogers 1985, p. 75). What accounts for this 
reversal?

The disaggregation by age does not change the pattern of evolution of the 
aggregate urban net inmigration rate, mu(t). In the Indian illustration it declines 
sharply from its initial level. But now the aggregate rate of natural increase no 
longer remains constant, dropping from 2 to 1.5 %. The cause of this decline in 
the aggregate rate is, of course, the gradual aging of the population and the associ-
ated shifts in its age composition. This shift alters the relative weights with which 
the fixed age-specific rates are consolidated to form the aggregate crude rates. The 
result is an increased relative contribution of net migration as a source of urban 
population growth, a consequence apparently of the fact that, as with mortality (but 
not with fertility), the risks of migration are experienced by individuals of all ages.

In conclusion, it appears that the principal effect of introducing age composition 
into the fixed-rate projection model is to decrease the aggregate rate of natural increase 
over time, while slowing down the decline of the urban net migration rate. Because 
these two contributors to urban growth now can exhibit different rates of decline over 
time, their relative importance as sources of urban growth also can change.

2.6  Discussion and Conclusion

Much of literature on aggregate, cross-sectional behavioral models of internal 
migration continue to exhibit a curiously ambivalent position with regard to the 
measurement of geographical mobility. This ambivalence is particularly surprising 
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because it stands in striking contrast to the corresponding studies of mortality and 
fertility, which often devote considerable attention to measurement problems.

Models that seek to explain patterns of net migration are founded on inadequate 
perspectives. Net migration rates confound movement propensities with relative 
population stock levels. They hide well-established regularities in the age pattern 
of geographical mobility. They can lead to misspecified explanatory models, and 
they make it virtually impossible to consider properly the impacts of important 
violations of the basic assumptions underlying many spatial demographic studies: 
homogeneity, stationarity, and temporal independence.

Gross migration stream (multiregional) models, on the other hand, more real-
istically depict the phenomenon being modeled (since there are no net migrants). 
The rates they use to represent directional movements are linked to the popula-
tions at risk of moving and therefore measure true propensities of migrating (a fea-
ture that net migration rates lack). Gross migration models can generate changes 
in migration streams that arise out of changes in the sizes of the various popula-
tions at risk of moving (something that net migration models cannot do since they 
only consider the size of the destination population). And, finally, gross migration 
models permit their users to keep track of important population attributes such as 
places of birth and places of former residence, a feature that for example, allows 
one to differentiate the migration rates of return migrants from those of nonreturn 
migrants.
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Abstract Changes in the elderly population of a region arise from net migration 
and net aging-in-place (the number of persons becoming elderly minus elderly 
deaths). This chapter shows that the relative contributions of these two sources of 
change vary over time, as the numbers of elderly outmigrants, inmigrants, deaths, 
and people aging into the elderly population fluctuate. Elderly populations grow-
ing mostly from net migration generally exhibit different demographic and socio-
economic characteristics than do those that grow mostly, or indeed entirely, from 
net aging-in-place. This is because elderly non-migrants generally exhibit different 
attributes than do elderly outmigrants, and because the latter often also have differ-
ent attributes than do elderly inmigrants.

Keywords Elderly Population Growth · Aging-in-Place · Net Migration

Concerns about an aging population in the United States will continue to increase 
over the next several decades as fertility rates remain low, life expectancies 
increase, and the large Baby-Boom cohort continues to age. Evidence of an aging 
population was already apparent in the United States by 1980, when 11 % of the 
total national population was 65 years of age and older. By 2025, this percent-
age could increase to about double that number. Projected rates of growth for the 
elderly population, that is, those aged 65 and older, reveal a distinctive nonlinear 
trend. The rates were at a low point at the end of the century as a direct conse-
quence of the low birth rates 65 years ago (Fig. 3.1). The growth of the elderly 
population will continue to increase until the Baby Boom cohort completely exits 
the elderly age groups.

Changes in the elderly population of a region arise from net elderly migration 
and net aging-in-place (the number of people becoming elderly minus elderly 
deaths). The contributions of these of these two sources of change vary over time 
as the numbers of elderly inmigrants, outmigrants, deaths, and the people aging 
into the population fluctuate. Changes in the numbers of elderly may be dominated 
by either net migration or the net aging-in-place. These two sources of change 
should be identified, because an elderly population that grows due to migration 
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may have very different socioeconomic and demographic characteristics than an 
elderly population that has primarily aged in place.

3.1  Introduction: An Aging Population

Historically five states have played a major role in the redistribution of the elderly 
US population with Florida, California, and Arizona as the three principal des-
tination states, and New York and Illinois as the primary origin states for aged 

Fig. 3.1  Annual rates of elderly population growth and of births in the United States a (top) 
Elderly growth rates, 1980–2020 b (bottom) Birth rates, 1915–1955. Source Rogers and  
Woodward (1988)
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migrants. Elderly interstate migrants tend to be younger, better educated, healthier, 
and wealthier than the elderly nonmigrants. Migrants are predominantly white and 
more likely to be married than their nonmigrant counterparts. Trends in the previ-
ous selectivity patterns will continue to receive a positively selected group of older 
people and the social and economic characteristics of these migrants may have 
important consequences for the public health and social service demands.

Although migration plays an important role in the changing geography of the 
elderly, typically only about 5 % of the elderly change their state of residence. 
Aging-in-place must therefore be the more important factor fueling elderly popu-
lation growth. The aging-in-place population is generally older, less healthy, more 
disabled, and poorer than are the elderly interstate migrants. A shrinking tax base 
and an aged population, with many dependent on local service institutions, is the 
likely result. States in which the elderly population grows mostly by net migration, 
however, may benefit from the expenditures of retirement pensions that increase 
local demands for retail goods and services, without adding significant demands 
to the collective public welfare burden or to the pressure for social services for the 
aged. The Older Americans Act, however, allocates federal funds for state run pro-
grams on the basis of the number of people aged 60 and over, without reference 
to the differences in the average socioeconomic characteristics of the elderly resi-
dents in the states. Thus principal origin states, such as New York, may be “short 
changed” compared to important destination states, such as Florida. Therefore, 
both sources of growth of the elderly population should be examined jointly in 
studies of the policy impacts of the changing interstate geography of the elderly.

This chapter develops a method that quantifies the changing sources of elderly 
population’s growth over time. It differs from past research on the sources of 
population change over time in that it adopts a truly dynamic multiregional per-
spective. The projected components of such growth are quantified to assess their 
implications for the future interstate geography of the U.S. elderly population. The 
method is illustrated for the five states prominent in the interstate migration of the 
elderly.

3.2  Methods of Analysis

Recall the balancing equation introduced in Chap. 2. In a population “closed” to 
international migration, future population five years hence, say, is equal to the pre-
sent population total P(t) plus the net contribution over the time interval made by 
births (B), deaths (D), inmigrants (I) and outmigrants (O):

Equation (3.1) is applicable to each five year age group except the first, the pop-
ulation of which is defined simply as the number of births surviving to the end 
of the time interval within which the babies were born. For all other age groups 
“births” are the new entrants into that age group. Aggregating the populations in 

(3.1)P(t + 5) = P(t)+ B(t)− D(t)+ I(t)− O(t)

3.1 Introduction: An Aging Population

http://dx.doi.org/10.1007/978-3-319-22318-6_2


34 3 The Proximate Sources of Regional Elderly …

all age groups beyond the age 65 relates the elderly population at time t + 5 to 
the population alive at time t. For the elderly population in such an expression, 
all components in Eq. (3.1) refer to the population aged 65 and over, for which 
the “births” now denoting the “new elderly,” that is, the number of people into 
65–69 year age group, say, during the five-year time interval. Note that the Ps 
refer to a population stock at a moment in time, whereas the other variables denote 
totals for a time interval, t to t + 5, say.

The contributions of net aging-in-place and net migration to elderly population 
growth in a five-year time interval can be determined from Eq. (3.1).

The total change is thus apportioned to the two sources of change. The calcula-
tions can be carried out for all projected time intervals.

Over a specific time interval, the number of people aging into the projected 
elderly population, the number of elderly inmigrants and of elderly outmigrants, 
can be calculated by applying observed age-specific survivorship proportions to 
the appropriate age-specific population totals.

The number of people who age into an elderly population in the time interval t 
to t + 5, say, can be found by the multiplication:

where Pi(60–64) is the number of people in region i who are 60–64 years of age at 
time t; sii(60–64) is the 60–64 year old survivorship proportion for the people liv-
ing in region i who survive and stay in region i from t to t + 5, and Pii(65–69) is 
the number of people entering the aged 65–69 population in region i, of those who 
were aged 60–64 in region i at time t.

Elderly outmigrants can be determined by applying the appropriate age- 
specific survivorship proportion for region i to the appropriate age-specific elderly 
population:

where sij(65–69) is the survivorship proportion for people moving from region i 
to region j and becoming 5 years older; Pi(65–69) is the age-specific population 
in region i; and Pij(70–74) is the corresponding total number of age-specific out-
migrants who move from region i to region j and survive the five year period. 
The total number of elderly outmigrants can be found by summing all elderly age 
groups.

Age-specific survivorship proportions and populations aged 60 and over 
are used to calculate the number of elderly inmigrants. The 60–64 year olds are 
included in this equation, because this group survives to be 65–69 years of age and 
joins the elderly population in region i:

(3.2)
P(t + 5)− P(t) = [B(t)− D(t)]+ [I(t)− O(t)]

= Net Aging-in-place+ Net Migration

Pii(65−69) = Pi(60−64)sii(60−64)

Pij(70−74) = Pi(65−69)sij(65−69)

Pji(65−69) = Pj(60−64)sji(60−64)
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where sji(60–64) is the age specific survivorship proportion for people mov-
ing from region j to region i; Pj(60–64) us the age-specific population in region 
j at time t; and Pji(65–69) is the number of age-specific migrants from region j 
to region i over the five year interval. Total elderly inmigrants can be found by 
summing age-specific inmigrants for each elderly age group, i.e., the total elderly 
population for each projection period is obtained by summing the projected age-
specific populations from ages 65 to 90 and above.

The analysis can profitably be extended a step further to comprehend more 
fully the individual contributions of net aging-in-place and of net migration to the 
growth of the elderly population. The growth rate of elderly population, g(t), over 
the five-year time interval is the sum of the associated net aging-in-place rates, n(t)
, and the net migration rates, m(t), calculated by dividing all terms in Eq. (3.2) by 
the initial population, P(t):

The corresponding average annual growth rate of the elderly is then given by:

and since

In Eq. (3.3) both n(t) and m(t) refer to a five-year time interval. To estimate the 
corresponding one-year rates, x and y, say, assume that the relative proportional 
relationships in Eq. (3.3) also hold for each single year from t to t + 5, whence

where

and

(3.3)

g(t) =
P(t + 5)− P(t)

P(t)

=
[B(t)− D(t)]

P(t)
+

[I(t)− O(t)]

P(t)

= n(t)+ m(t)

r =
1

5
ln

[

P(t + 5)

P(t)

]

=
1

5
ln
[

1+ g(t)
]

(3.4)P(t + 5) =
[

1+ g(t)
]

P(t) = (1+ r)5P(t)

(3.5)
g(t)

r
=

n(t)

x
+

m(t)

y

(3.6)r = x + y

(3.7)x =

[

n(t)

g(t)
r

]

(3.8)y =

[

m(t)

g(t)

]

r

3.2 Methods of Analysis
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Thus, x is the average annual net aging-in-place component and y is the average 
annual net migration component that together define the average annual growth 
rate, r.

3.3  Results

Decomposing the projected annual growth rates of the elderly populations of 
Arizona, California, Florida, Illinois, and New York, using the above procedure, 
yields the observed and projected evolution of the net aging-in-place and net 
migration components set out for the nation in Fig. 3.1 (top) and for the five states 
in Fig. 3.2.

The patterns of change of the net aging-in-place contribution to elderly popu-
lation growth over the projection period are similar in all five states (Fig. 3.2a). 
The profiles closely mirror the national V-shaped pattern. The contribution of net 
aging-in-place to the total elderly growth rate is largest for California over the 
entire projection period, and smallest for Florida over much of the 40-year period. 
All states except California exhibit periods of negative net aging-in-place during 
the period. Negative net aging-in-place occurs when the number of elderly deaths 
exceeds the number of people aging into the elderly population. Florida shows 
negative net aging-in-place for part of the period. Arizona, Illinois, and New York 
show approximately ten years of negative net aging-in-place. The specific periods 
of net aging-in-place vary among the four states. However, each of them has neg-
ative net aging-in-place during the 1995–2005 decade, when the small cohort of 
Depression babies of the 1930s entered the elderly population.

Patterns of elderly net migration rates vary considerably among the five states 
(Fig. 3.2b). The profile over time of the elderly net migration component is nearly 
a straight line for California, Illinois, and New York; California’s remain positive 
over the entire projection period. Arizona and Florida exhibit large initial positive 
net migration components that decrease until the end of the century and then level 
off. The projected result is from a constant coefficient multiregional projection.

An examination of the combined effects of net aging-in-place and net migration 
reveals the influence that each has on the overall growth rate of a state’s elderly 
population. Growth of the elderly population in Florida, for example, is domi-
nated by net migration over the entire projection period. A comparison of the net 
migration component (Fig. 3.2b) with the total elderly growth rate (Fig. 3.3) for 
Florida reveals that from 1990 to 2005 the net migration contribution exceeded 
the total annual elderly growth rate. Elderly migration is expected to continue to 
be important to the growth of the elderly population in Florida. Net migration also 
is the principal source of elderly population growth in Arizona until the 2010–
2015 period, when net aging-in-place became the dominant source of growth. 
California’s elderly population growth is dominated by net aging-in-place over 
most of the period (Fig. 3.3).
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So, the evolution of the growth rate of the elderly population in each state 
resembles that of the nation, but each state’s curve is suitably positioned to reflect 
the contribution of the net migration component. Variations among the projected 
rates are substantial. Arizona’s elderly growth rates range from an initial high of 
4.7 % to a low of 0.9 % around the turn of the century and then a subsequent high 

Fig. 3.2  Decomposition of the annual growth rate of the elderly population in five key U.S. 
states: 1975–2020 a (top) Net aging-in-place rate b (bottom) Net migration rate. Source Rogers 
and Woodward (1988)

3.3 Results
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of 2.9 % at the end of the projection period. The corresponding rates for New York 
are 0.4, −1.3 and 0.8 %, respectively. The ranges for the remaining three states lie 
inside of these two extremes.

3.4  Discussion and Conclusion

The sources-of-growth method presented in this chapter contributes to current 
elderly research in two major ways. First, it allows a researcher to determine how 
much each of the two sources of growth contributes to the total elderly growth 
rate. The method also allows the researcher to examine the components of elderly 
population growth over time, illuminating the temporal and regional variations in 
the two sources. Our illustrations of the sources-of-growth method show that the 
growth of the elderly population in Arizona and Florida will be dominated by a 
migrant population that is more likely to have more money, be in better health, and 
be more independent than its elderly nonmigrant counterparts. These qualities may 
be beneficial for Arizona and Florida, because the elderly inmigrants will increase 
demands for retail goods, and they probably will not have high demands for jobs 
and public health social services in the near future.

Illinois and New York probably will continue to lose many of their wealthier 
and healthier elderly. Communities experiencing outmigration of elderly are left 

Fig. 3.3  Projected annual growth rate of the elderly population in the United States and five key 
states: 1980–2020. Source Rogers and Woodward (1988)
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with a population comprised of many dependent on local service institutions. 
Therefore, during periods of positive elderly population growth in these states, that 
growth will be dominated by a net aging-in-place population that can be expected 
to have higher demands for public health and social services than do the elderly 
populations in Arizona and Florida.

Although the net migration component is negative over all years in Illinois and 
New York, these states will continue to receive elderly inmigrants, primarily return 
migrants from the “amenity states.” Return migrants are typically older, with lower 
incomes, and in poorer health than the migrants moving to the amenity states. 
Therefore, return migrants could further increase the needs and demands for pub-
lic services in Illinois and New York.

The elderly populations in Illinois and New York are also affected by the out-
migration of the younger population. These states have been principal origin states 
for general migrants. Not only are they losing their wealthier and healthier elderly, 
they may also continue to lose a large portion of their younger population. The 
outmigration of both subpopulations may decrease the tax base and thereby limit 
the funding available for needed services.

Differences in demands for services between states are not revealed by simply 
examining the total projected growth rates for the elderly populations, however. 
Were this the case, Florida’s and California’s large and quickly growing elderly 
populations would have relatively equal per capita demands for services in the 
future. By examining the sources of elderly population growth in each state, how-
ever, and by considering the socioeconomic and demographic differences among 
elderly migrants and nonmigrants, a more accurate conclusion about future ser-
vice demands between states can be obtained. Thus, the sources-of-growth method 
contributes to the current methodological apparatus of formal population geogra-
phy and is an important tool for assessing future state service needs in the nation.
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Abstract Migration is usually more than a one-time event in the lives of most 
migrants, and scholars of migration histories have repeatedly found that the pre-
vious migration experiences of individuals significantly influence their subse-
quent migration patterns. Individuals who have migrated before are more likely 
to do so again, and to destinations that they have visited earlier in life. Among 
the most important of these regional dependencies are to their birthplaces. This 
chapter refers to this influence as a special case of origin dependence, and focuses 
on its most important consequence, which is that the migration propensities of 
persons returning to their region of birth are significantly higher than those of 
the average individual, and that they also differ in their fundamental age profiles. 
Consequently, the introduction of origin dependent outmigration rates into mul-
tiregional life tables and population projections produces a substantial impact on 
life measures and projected regional totals.

Keywords Birthplace specificity · Return migration · Origin dependent summary  
measures

4.1  Introduction

A common finding in social science research is that the evolution of each individ-
ual’s life course is shaped by that person’s attributes at birth or childhood. Such 
initial “endowments” include social class, levels of family income and education, 
race and, for human geographers interested in issues related to migration and 
spatial population dynamics, location of birth.

This chapter focuses especially on the most important consequence of the loca-
tional influence of origin dependence, which is that the migration propensities of 
persons returning to their region of birth are substantially higher than those of the 
average individual, and that they also differ in their age profile.
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This chapter begins with a brief discussion of definitions and calculations, 
issues of measurement and specification, and age patterns of migration. This is fol-
lowed by a brief exposition of the construction of origin-dependent multiregional 
life tables and migration life histories drawing on an application based on U.S. 
census data. Finally, the chapter ends with a review of the principal argument and 
a conclusion.

4.2  Origin-Dependent Migration Streams: Primary, 
Return, and Onward Flows

4.2.1  Definitions

The simplest illustration of birthplace-specific migration flows is set out in 
Fig. 4.1. For the 1985–1990 interval, for example, the two U.S. macro-regions: the 
North (comprised of the Northeast and Midwest) and the Southwest (comprised 
of the South and the West) constitute the biregional system; hence, there are no 
onward migrants: migrants are either leaving or returning to the macro-region of 
birth. About 3670 + 1022 = 4692 thousand persons migrated from the Northeast 
and Midwest (North) to the South and West (Southwest) during the preceding 

Fig. 4.1  Birthplace-specific migration outflows: Biregional example, U.S. 1985–1990. Source 

Rogers and Raymer (unpublished) 
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five year interval (and survived there to report that move). Of those leaving the 
North, 1022 thousand were Southwestern-borns returning to their region of birth, 
and the remaining 3670 thousand were Northern-borns leaving their region of 
birth. Since the Southwestern-born population living in the North in 1985 (and 
surviving to report it in 1990) totaled 8367 the conditional probability of return 
migration to the Southwest was 0.122. Analogously, the conditional probability of 
primary migration out of the North, calculated as the quotient of 3670 to 86,647, 
was 0.042. Thus the ratio of return to primary outmigration probabilities from the 
North was 2.9; the corresponding ratio from the Southwest was 6.0. The result-
ing conclusion is inescapable: probabilities of return migration were several times 
as high as the corresponding primary migration probabilities. The conditional pri-
mary migration probability out of the North was about three times that out of the 
Southwest (0.042 vs. 0.014), and the conditional return migration probability of 
the Southwestern born was about one-and-a-half times that of the Northern born 
(0.122 vs. 0.083). Figure 4.2 illustrates the age-specific schedules, which show 
comparable differences, but by age.

Fig. 4.2  Birthplace-specific 
migration age patterns: 
Biregional example, U.S. 
1985–1990. Source Rogers 
and Raymer (unpublished)

4.2 Origin-Dependent Migration Streams: Primary, Return, and Onward Flows
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4.2.2  Fundamental Calculations

Disaggregating the above two macro-regions into their constituent Census Bureau 
Regions of Northeast, Midwest, South, and West adds the third type of migration 
stream consisting of onward migrants. If birthplace-specificity is retained, three 
distinct categories of migrants arise: (1) persons leaving their region of birth: pri-
mary migrants; (2) persons returning to their region of birth: return migrants; and 
(3) persons moving neither from nor to their region of birth: onward migrants. 
Such categories have in the past been used to successfully differentiate the patterns 
of motivations of return migrants from those of non-return migrants. The arith-
metic underlying such calculations becomes considerably more intricate as the 
number of regions is increased. Moreover, the size of the areal unit influences the 
relative values of probabilities.

Consider the 1,603,751 migrants moving from the Northeast to the South; 
1,216,170 were Northeastern-born primary migrants, 262,102 were Southern-born 
return migrants, and the remaining 125,479 were Midwestern- and Western-born 
onward migrants (Table 4.1, the South column). Dividing each of these flows by 

Table 4.1  Primary, return, and onward migrants by region of birth: 1985–1990

Birthplace Residence in 
1985 age 0+

Residence in 1990 

Northeast Midwest South West Total

Northeast Northeast 196,845 1,216,170 328,882 1,741,897

Midwest 104,326 98,778 43,969 247,073

South 373,282 70,341 111,329 554,952

West 160,569 32,037 109,849 302,455

U.S.A. 638,177 299,223 1,424,797 484,180 2,846,377

Midwest Northeast 94,936 90,654 42,448 228,038

Midwest 195,792 1,147,230 702,016 2,045,038

South 66,137 583,488 178,520 828,145

West 36,885 362,617 170,765 570,267

U.S.A. 298,814 1,041,041 1,408,649 922,984 3,671,488

South Northeast 26,775 262,102 36,777 325,654

Midwest 30,958 370,392 70,905 472,255

South 292,059 473,966 575,246 1,341,271

West 31,622 58,486 388,443 478,551

U.S.A. 354,639 559,277 1,020,937 682,928 2,617,713

West Northeast 11,291 34,825 61,177 107,293

Midwest 12,844 56,014 130,105 198,963

South 28,820 52,251 256,946 338,017

West 110,666 205,141 383,712 699,519

U.S.A. 152,330 268,683 474,551 448,228 1,343,792
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the corresponding birthplace-specific 1985 population at risk of moving, gives 
the following three conditional migration probabilities from the Northeast to the 
South:

1. 0.0323 for primary migration,
2. 0.1096 for return migration, and
3. 0.0758 for onward migration.

Their simple sum does not give the corresponding aggregate non-birthplace-
specific probability of 0.0385. This is because what is needed instead is their 
weighted sum, in which the weights reflect the share of the total population living 
in the Northeast that is at risk of primary (Northeastern-borns), return (Southern-
borns), and onward migration (Midwestern- and Western-borns). Since these 
shares were, respectively, 90.29, 5.74, and 3.97 % of the total Northeast popula-
tion in 1985, the appropriate weighted sum takes the form:

Thus we see that the total conditional probability of migration from the Northeast 
to the South (that is, 0.0385) can be expressed as an appropriately weighted sum 
of the underlying primary, return, and onward migration probabilities. But one 
also could direct the focus of the analysis more on the types of outmigrants, with-
out considering destination-specificity. For example, one could augment the above 
decomposition of the Northeast to the South migration flow with the correspond-
ing decompositions of the other two Northeast migration flows (that is, those 
directed to the Midwest and the West). This would produce the following condi-
tional probabilities:

Northeast to 
midwest

Northeast to 
south

Northeast to 
west

Northeast 
total

Primary 0.0052 0.0323 0.0087 0.0463

Return 0.0793 0.1096 0.1333 0.1033

Onward 0.0134 0.0758 0.0221 0.0600

Weighted sum (total) 0.0079 0.0385 0.0113 0.0577

All row sums and all column sums are the result of weighted summations in 
which the weights reflect the shares of the total population that are accounted for 
by the relevant “at risk” subpopulations. Equation (4.1) illustrates an example of 
a weighted column sum calculation. Equation (4.2), below, offers an example of a 
weighted row sum calculation in which the weights reflect the proportional distri-
bution of those living in the Northeast but born in one of the other three regions:

a number that appears in percentage form in the lower right panel of Table 4.2.

(4.1)
pNE,S(total) = (0.9029)0.0323+ (0.0574)0.1096+ (0.0397)0.0758

= 0.0385

(4.2)
pNE.(return) = (0.2957)0.0793+ (0.5909)0.01096+ (0.1134)0.1333

= 0.1033

4.2 Origin-Dependent Migration Streams: Primary, Return, and Onward Flows
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Finally, Eq. (4.3) below, shows how the weighted sum of the three probabilities 
in the last column (primary, return, and onward) yields the aggregate conditional 
probability of the total outmigration from the Northeast:

4.2.3  A Historical Time Series

The disaggregation of the aggregate national patterns of primary, return, and 
onward inmigration and outmigration among the four Regions in the United States 
for the five censuses shows a complex mosaic (Table 4.2). The percentages of 
primary inmigrants coming into the Northeast, Midwest, and West declined over 
time, whereas in the South they remained much the same. Among the correspond-
ing patterns of outmigration, the Midwest and South regions had smaller propor-
tions of primary outmigrants over time. In the Northeast, the proportions remained 
relatively stable, whereas in the West they increased. The net results of all these 
patterns were negative net primary migration for the Northeast and Midwest, 
essentially zero for the South, and positive for the West.

The patterns for return inmigration were generally the reverse: the propor-
tions increased in all regions except the South. For return outmigration they 
increased in the South, decreased in the West, and stayed relatively constant in 
both the Northeast and Midwest. The net results here were the reverse of those for 

(4.3)
pNE.(total) = (0.9029)0.0463+ (0.0971)[0.1033+ 0.0600]

= 0.0577

Table 4.2  Conditional probabilities [×1000] of primary, return, and onward outmigration by 
region: 1935–1940, 1955–1960, 1965–1970, 1975–1980, and 1985–1990

Migration by type Region 1935–40 1955–60 1965–70 1975–80 1985–90

Primary Northeast 12.8 37.0 38.4 53.4 46.3

Midwest 27.8 45.0 40.4 48.5 44.2

South 21.3 37.0 31.4 22.5 22.8

West 11.9 23.6 31.7 27.4 26.7

U.S.A. 20.6 38.1 35.9 37.9 34.5

Return Northeast 58.2 86.8 77.7 111.5 103.3

Midwest 52.0 91.1 90.3 96.7 85.8

South 83.8 136.2 131.5 97.9 92.8

West 36.2 62.5 73.4 69.4 69.1

U.S.A. 52.6 87.4 90 88.9 84.3

Onward Northeast 24.7 51.0 47.7 67.0 60.0

Midwest 24.7 41.6 43.5 47.8 44.5

South 40.0 64.3 57.3 44.7 38.8

West 13.8 24.1 33.1 30.9 33.3

U.S.A. 23.3 39.9 43.1 43.1 40.2
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primary migration: positive net return migration for the Northeast and Midwest, 
essentially zero for the South and negative for the West. Finally, the percent-
ages of onward inmigration and outmigration showed similar patterns, generally 
increasing slightly over time (except during the 1935–1940 period in the West). 
The net results of these patterns were essentially zero net onward migration for 
the Northeast and Midwest and slightly negative net migration for the South and 
West.

The conditional probabilities of outmigration and inmigration further illuminate 
the observed structure of migration flows. For example, historical probabilities of 
return outmigration have been many times higher than those of primary migration. 
Examining again the conditional probabilities in Table 4.2, one finds that, over 
the past five decades, regional return outmigration probabilities have ranged from 
a high of 136.2 per thousand to a low of 36.2 per thousand, and in all but two 
instances they have been two to four times as high as the corresponding primary 
outmigration probabilities (Fig. 4.3).

Most interregional migrants are persons who have moved before. Consequently, 
a disaggregation that reflects their prior mobility experiences can answer funda-
mental questions that clarify the dynamics of migration. For example, do particu-
lar regions grow because they are able to attract a significant number of the natives 
of other regions, or because they send out relatively few of their own natives? Are 
regions that attract a disproportionately large number of return migrants ones with 
high conditional inmigration probabilities, or are they simple unable to attract 
many persons other than their own natives?

Fig. 4.3  A history of primary and return migration outflows across five censuses. Source Rogers 

and Raymer (unpublished)

4.2 Origin-Dependent Migration Streams: Primary, Return, and Onward Flows
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4.3  Return Migration: Measurement and Spatial 
Dynamics

If the migration patterns of return migrants are significantly different from those 
of non-return migrants, then an incorporation of such differentials in spatial pro-
cesses can sometimes produce surprising and illuminating results. This is illus-
trated next by considering two questions of interest to migration researchers.

4.3.1  The Positive Correlation: Why Do Attractive Regions 
Lose so Many Migrants?

A number of studies have consistently identified a strongly positive correlation 
between rates of outmigration and inmigration across different regions. This seems 
paradoxical to economic demographers because the aggregate data on migra-
tion are expected to reflect opportunities that motivate migration. Thus attractive 
regions (i.e., those with attractive opportunities) should draw a sizable numbers 
of inmigrants, while at the same time retaining many of their own residents. Less 
attractive regions should exhibit the reverse pattern. Consequently, the expected 
correlation between inmigration and outmigration rates should be negative; yet it 
turns out to be positive. Why?

Several explanations have been put forward in the literature. For example, it 
has been argued that regional populations growing as a consequence of large flows 
of inmigrants tend to become more migration prone and therefore more likely to 
lose their members to other regions. Others have argued that a region’s attractive 
(economic) opportunities have a much smaller impact on its residents than on the 
residents of other regions. Still others have argued that a region’s attractions may 
draw inmigrants at the same time that they repel some of its residents. Patterns of 
primary and return migration offer yet another explanation.

Attractive regions that draw a large number of primary outmigrants from other 
regions accumulate a sizable pool of potential return outmigrants. Since this popu-
lation at risk of returning home typically exhibits much higher than average proba-
bilities of outmigration, one finds that its growth generates a corresponding growth 
in outmigration levels.

Consider, once again, the biregional population system illustrated earlier in 
Fig. 4.1. According to the preference index proposed by Liaw and Rogers (1999), 
the Southwest region has been the more attractive region, and therefore it has accu-
mulated a higher number of non-local-borns (i.e., persons born elsewhere) than 
has the North. With a total population that is 21.3 % larger than that of the North, 
it nevertheless exhibits a non-local-born population that is more than twice the 
size of the North’s (its non-local fraction is 18 % compared to the North’s 9 %). 
Consequently, even though both of its birthplace-specific conditional outmigration 
probabilities are significantly lower than the North’s (0.014 compared with 0.042, 
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and 0.083 compared with 0.122) the much larger non-local fraction weights the 
lower return migration probability so as to create the surprisingly high aggregate 
conditional outmigration probability out of the Southwest of 26 per thousand:

The North’s much higher probabilities give it a corresponding aggregate condi-
tional outmigration probability that is slightly more than twice as large:

4.3.2  Origin Dependence and the Vintage Effect:  
Are the Elderly More Likely to Return Home?

Do people exhibit a greater tendency to return to their region of birth after reach-
ing retirement age than before? Some scholars believe that they do (Serow 1978; 
Serow and Charity 1988). Others have argued that they do not (Rogers 1990). The 
answer depends on the index used to assess the relative importance of the return 
flow. If that index contrasts the relative size of return migration in the migration 
streams of the elderly to that of the non-elderly (Serow 1978) then its definition as 
a prevalence rather than an incidence measure ensures that a compositional bias 
will be introduced into the comparison.

The numerical size of return migration clearly depends on the number of per-
sons living outside of their region of birth. The higher that number, the higher will 
be the numerical value of the return flows. And regions with a relatively recent 
period of settlement, such as the West, will have relatively fewer such older per-
sons living “away from home” and will be populated by relatively more people 
whose birthplace was elsewhere. This latter feature is very evident in states such as 
California, which in 1980, for example, was found to have only 20.3 % local-borns 
among its elderly population, while New York and Illinois, on the other hand, 
showed comparable percentages of 76.6 and 68.9 %, respectively (Rogers 1990).

The regional “vintage” effect will influence the value of any index that relates 
return migration levels to the corresponding levels of total migration. Thus, Serow’s 
(1978, p. 288) conclusion that return migration is more important in the migration 
flow of the elderly than in the total migration flow may be partly a consequence of 
the particular spatial distributions of the two populations rather than an indication 
that elderly persons are more prone to return “home” than are non-elderly.

The general mobility level of the non-elderly, for return as well as non-return 
migration, is about twice as high as that of the elderly. To develop an appropri-
ate comparison that answers the above question regarding elderly return migration, 
one should, first, focus on probabilities (incidence measures) and not on rela-
tive sizes of flows (prevalence measures). Second, to avoid the vintage effect one 
should not contrast directly the return migration probabilities of elderly people to 

(4.4)
pSW .(total) = 0.18(0.083)+ (1− 0.18)(0.014)

= 0.026

(4.5)
pN .(total) = 0.09(0.122)+ (1− 0.09)(0.042)

= 0.049

4.3 Return Migration: Measurement and Spatial Dynamics
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those of non-elderly (or total) persons, but rather one should contrast the return 
migration propensities of elderly persons with those of their non-return (or total) 
propensities. That contrast when compared to the corresponding such contrast 
among non-elderly (or total) persons should indicate whether the elderly are more 
likely to return home than are the non-elderly (or the total population). Such com-
parisons may be examined using data such as are set out in Table 4.3.

In Table 4.3 we discover that the ratios of return to non-return (or in this case 
total) migration probabilities of elderly persons are uniformly greater than unity 
and range from 0.8 to 4.7. For the non-elderly (or, more exactly, in this case total 
population once again) the corresponding range is from 1.3 to 3.4. And, of par-
ticular interest to us, a comparison of the two sets of ratios reveals that, with two 
exceptions in the 1965–1970 migration data, the elderly ratio is never the larger 
of the two ratios. There is, therefore, no indication that elderly persons are more 
prone than non-elderly persons to return “home” to their region of birth.

In conclusion, research on return migration patterns has shown that those 
returning “home” after retirement make up a significant component of total elderly 
migration streams but not of the aggregate migration streams for the population 
at large. Past research also has suggested that elderly persons are more likely to 
return home than are the non-elderly (Serow 1978; Serow and Charity 1988). 
Further study, however, has shown such a conjecture to be false (Rogers 1990). 
When the ratios of return to total migration propensities toward region of birth are 
compared for the elderly and the general population: the ratio for the elderly is 
almost never higher than the one for the general population. The conclusion sug-
gested by this that elderly persons are not more likely to return home than are the 
non-elderly.

Table 4.3  The significance of return migration among elderly and nonelderly [total] persons: 
ratios of return to total conditional outmigration probabilities: 1935–1940, 1955–1960, 1965–
1970, 1975–1980, and 1985–1990

Region 1935–1940 1955–1960 1965–1970 1975–1980 1985–1990

A. Elderly (age 60+) migration

Northeast 2.9 1.4 1.0 1.1 1.2

Midwest 0.8 1.2 1.5 1.2 1.1

South 3.0 2.6 4.7 2.4 2.1

West 0.9 0.9 1.7 1.0 1.0

U.S.A. 1.4 1.2 1.7 1.2 1.1

B. Total migration

Northeast 3.4 1.9 1.6 1.7 1.8

Midwest 1.6 1.6 1.7 1.6 1.5

South 3.2 2.7 2.7 2.4 2.2

West 1.3 1.3 1.2 1.3 1.3

U.S.A. 2.0 1.7 1.7 1.6 1.7
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4.4  Multiregional Life Tables: Migration Histories

4.4.1  Multiregional Life Tables and Origin Dependence

Imagine following a hypothetical cohort of 100,000 babies, born in the South say 
until they all have died: some in the South, others in the Northeast, Midwest, or 
West. Assume that these babies are continuously exposed to the risks of migration, 
and also of dying, according to the regional migration and mortality schedules of 
a particular period. Decrementing this age-specific population to take into account 
departures from the South (due to death or to outmigration) and, at the same time, 
incrementing it to account for return inmigration flows entering the South, gener-
ate a series of regional population stocks and interregional migration flows that 
together define the life history of that Southern-born synthetic cohort. With that 
life history one can calculate such useful measures as the life expectancy at birth 
of a Southern-born baby, expressed as a sum of region-of-residence-specific com-
ponents of that total. Such a disaggregation, calculated using migration data pro-
vided by the 1990 census, for example, reveals that a Southern-born baby could 
at that time have expected to live, on average, 76.0 years with 55.3 years of that 
total to be lived in the South (Table 4.4). The quotient of these two numbers, i.e., 
55.3/76.0 = 0.73, is known as that region’s retention expectancy.

The above numbers for South were calculated without an introduction of ori-
gin-dependence into the analysis. Doing so would increase the value of the state’s 
retention expectancy because of the influence of the higher than average probabili-
ties of return migration. Origin-dependence acts to reduce the numbers of years 
lived outside of an individual’s region of birth. This is clearly evident in Table 4.4, 
in which the life expectancies are presented calculated both with and without ori-
gin-dependent probabilities. Note the significantly larger retention expectancies 
that are associated with the origin-dependent version. For example, according to 

Table 4.4  The impact of origin dependence on life expectancies [in years], United States: 1955–
1960 and 1985–1990

Period Region of residence at 
census

Regional life expectancies

Origin independent Origin dependent

NE MW S W NE MW S W

1955–60 Northeast 48.6 3.6 5.2 3.7 56.7 1.5 2.8 1.0

Midwest 5.2 45.7 8.6 7.8 2.7 54.2 5.5 2.2

South 10.0 10.3 46.8 10.6 5.6 4.6 55.1 2.6

West 6.0 10.4 8.5 47.8 4.5 9.9 5.5 64.4

Total 69.7 70.0 69.1 69.9 69.6 70.1 69.0 70.2

1985–90 Northeast 48.8 3.5 5.0 4.2 58.1 1.5 2.0 1.2

Midwest 4.9 50.1 8.0 7.7 2.1 59.8 3.5 2.7

South 16.6 14.6 55.3 13.3 11.8 8.7 66.5 5.2

West 6.0 8.3 7.8 51.5 4.2 6.6 3.9 67.7

Total 76.3 76.5 76.0 76.6 76.2 76.6 75.9 76.9

4.4 Multiregional Life Tables: Migration Histories
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the 1985–1990 data, almost 11 (66.5–55.3) years are added to the years expected 
to be lived in the South in the origin-dependent calculation, and the retention 
expectancy associated with the Southern-born population, which was 0.73 in the 
origin-independent life table increased to 66.5/75.9 = 0.88 in the origin-dependent 
version. Note that the same additional number of years to be lived in the South 
also differentiate the 1985–1990 life expectancy from that of 1955–1960, a dra-
matic increase when compared to those calculated for the other three regions.

4.4.2  Migration Life Histories

Life table measures are derived from information about the life histories of syn-
thetic regional birth cohorts. Such life histories are generated by applying age-spe-
cific probabilities of dying and out-migrating to the regional radices, which may 
be set any number, say 100,000. These synthetic origin dependent aggregate life 
histories of 100,000 babies born in one of the four regions allow one to calcu-
late several summary measures from multiregional life tables of the U.S. popu-
lation calculated using migration data reported in the 1960 and 1990 censuses: 
mean ages of outmigrants, probabilities of surviving to age 60 in each region, 
and life and mobility expectancies (Table 4.5). All of these measures derive from 
the region-specific expected number of survivors at exact ages from 0 to 85 (not 
shown).

The mean ages set out in Table 4.5 reveal the following findings: (1) that of the 
three groups, primary migrants in general exhibit the youngest mean ages while 
onward migrants show the oldest, (2) that the mean of ages of migrants leaving 
the Northeast and Midwest are older than those of migrants leaving the South and 
West, and (3) that migrants in 1990 were a few years older in average age than 
migrants in 1960.

The probabilities of surviving from birth to age 60 also are illuminating. They 
show that the general increase of about 6 years of life expectancy from 1960 to 
1990 produced a corresponding increase of about 10 % in the survival probabil-
ity to age 60. Moreover, the probabilities identify two significant shifts in regional 
destination preferences. First, the probability of survival in the region of birth 
increased dramatically (from 0.572 to 0.726) in the South—a consequence both of 
the decline in death rates and the emergence of the South as an attractive region of 
destination. The growing attraction of the South also sharply increased the corre-
sponding probabilities of non-Southern-born babies living in the South at age 60: 
from 0.081 to 0.177 for the Northeast, from 0.063 to 0.128 for the Midwest, and 
from 0.026 to 0.069 for the West.

The second significant shift over the 30-year period is the decline in the 
Midwest to West migration and a corresponding increase in Midwest to South 
migration—a shift that produced a corresponding drop in the birth-to-60 probabil-
ity from 0.159 to 0.104.
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Finally, the mobility expectancies at birth presented in Table 4.5 also reflect the 
shifts described by the survival probabilities—for example, the South’s retention 
expectancy increases from 79.9 to 87.6 % over the 30 years, while the percentage 
of a Northeastern-born baby’s lifetime that is expected to be lived in the South 
grows from 8.1 to 15.5 %.

4.5  Discussion and Conclusion

Researchers on migration have increasingly interpreted geographical mobility 
as more than a one-time event in the lives of most people. They have shown that 
migration begets migration. This perspective has elevated the relative importance 
of previously observed migration patterns of individuals as variables in explana-
tions of currently observed migration patterns. The role of migration away from 
and toward the place of birth has, in particular, received considerable attention. 
The migration propensities of people returning to their region of origin are consid-
erably higher than those of the average individual (and they differ in age profile). 

Table 4.5  Summary measures from origin dependent multiregional life tables of the U.S-born 
population: 1960 and 1990

Region of 
residence

Region of birth

1960 1990

Northeast Midwest South West Northeast Midwest South West

A. Mean age of primary, return, and onward outmigrants by region

Primary 24.2 24.0 20.7 15.0 29.7 27 22.9 18.9

Return 26.0 25.0 23.9 25.8 29.2 29.6 27.3 29.3

Onward 28.5 28.0 26.5 27.1 30.2 30.7 29.4 31.2

Total 24.9 24.6 22.1 23.0 29.7 27.9 25.7 26.2

B. Probability of surviving from birth to age 60 in each region

Northeast 0.599 0.02 0.041 0.011 0.590 0.020 0.026 0.014

Midwest 0.039 0.554 0.078 0.025 0.029 0.618 0.047 0.032

South 0.081 0.063 0.572 0.026 0.177 0.128 0.726 0.069

West 0.072 0.159 0.082 0.732 0.066 0.104 0.056 0.754

Total 0.791 0.797 0.773 0.794 0.862 0.870 0.855 0.870

C. Life expectancies at birth (in years)

Total 69.6 70.1 69.0 70.2 76.2 76.6 75.9 76.9

D. Mobility expectancies at birth (in percent)

Northeast 81.5 2.1 4.1 1.4 76.2 1.9 2.6 1.6

Midwest 3.9 77.3 8 3.1 2.8 78.1 4.6 3.5

South 8.1 6.5 79.9 3.7 15.5 11.4 87.6 6.8

West 6.5 14.1 8.0 91.8 5.5 8.6 5.2 88.0

U.S.A. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4.4 Multiregional Life Tables: Migration Histories
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Consequently, the introduction of origin-dependent migration rates into multire-
gional demographic models produces a significant impact on life table measures 
and population projections.
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Abstract This chapter illustrates a general method for analyzing the demographic 
processes that contribute to population growth and distribution in a multiregional 
population system that is “open” to international migration. The method incor-
porates a historical perspective that can be used to trace dynamic population pro-
cesses as they evolve over time and space. It uses an open multiregional projection 
model framework for identifying the contributions to regional growth rates made 
by each of the principal demographic components of change: fertility, mortal-
ity, outmigration, inmigration, emigration, and immigration. At the same time, the 
method recognizes the importance of disaggregating the native-born and foreign-
born populations. Publically available data and indirect estimation techniques are 
used to develop the inputs for the projection model, with which the regional popu-
lation changes are reconstructed for each five-year period between 1950 and 1990. 
Regional growth rates for the native-born and foreign-born populations are parti-
tioned into the separate demographic components of change, and the projection 
model also identifies the separate contributions made by each of the sub-popula-
tions. This allows a direct comparison of the impacts of immigration with those of 
native-born contributions effected through internal migration and natural increase.

Keywords Immigration · Foreign-borns · Native-borns · Sources of growth

The multiregional projection is normally used in a prospective mode, forecasting the 
likely future populations of a multiregional system. However, it also can be used in 
retrospective mode, to analyze the past population dynamics that produced current 
age-specific regional population totals, for example, the evolution of today’s regional 
elderly populations disaggregated into native and foreign-born numbers. In either 
case, it needs as inputs data on the components of change: births by age of mother, 
age-specific deaths, internal and international migration flows. This chapter begins 
with models in a retrospective mode to trace the evolution of the elderly regional 
populations of the U.S. from 1950–2010, continues on with migration patterns, and 
concludes with a discussion of the sources of regional population growth.

Chapter 5
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Are Their Elderly Migration and Settlement 
Growth Patterns Different?
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5.1  Introduction

The U.S. population is aging rapidly and an increasing fraction of the older 
adults are immigrants, many of whom arrived relatively recently. A recent report 
produced by the Center for an Urban Future (Gonzalez-Rivera 2013), and sum-
marized in the New York Times (August 13, 2013), focuses on the need to take 
steps to plan for this growing, rapidly diversifying population, pointing out 
that not enough attention is being paid to this particularly vulnerable subset of 
seniors.

What the article and the report ignore is the influence of age and date of entry 
of the immigrants. Obviously, those immigrants who entered long ago and have 
assimilated are likely to exhibit quite different degrees of vulnerability than the 
relative newcomers. Grouping the various cohorts together and referring to all of 
the U.S. foreign-borns as immigrants creates its own form of diversity.

The CUF (Center for an Urban Future) report states that the foreign-borns are 
one of the fastest growing population subgroups in the city of New York. Is this 
the case nationally and regionally? Have the internal elderly migration patterns of 
the foreign-borns shown a sharp difference with the corresponding migration pat-
terns of the native-borns? How significant have been the differences on regional 
population growths? What have been the relative contributions of migration, 
aging-in-place, and immigration? How have the contributions of the foreign-born 
differed from those of the native-born?

To examine such questions and some of the more important underlying 
population dynamics, one needs to have assembled available census data, indi-
rectly estimated missing data (such as emigration flows), and built a multire-
gional cohort-survival model of the U.S. population, focusing especially on 
the evolution of the foreign-born elderly population during the last half of the 
20th century and paying particular attention to the sources-of-growth of that 
population.

The CUF report focused on internal migration and did not consider the usually 
more significant contribution of “aging-in-place” to elderly migration growth and 
settlement patterns. This chapter does and asks whether it was migration or aging-
in-place that was driving regional elderly population growth during the last half of 
the 20th century.

These questions and their answers constitute the core of this chapter. It first 
introduces a disaggregation of the U.S. population into foreign-born and native-
born subpopulations, because of the differences in their respective migration 
patterns. But before addressing the above questions, it is useful to describe the 
historical immigration context within which the principal demographic processes 
took place. This part of the chapter, then, is followed by a description of the mod-
els used, and an analysis of the obtained results.
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5.2  Historical Context, Data, and Models

5.2.1  Historical Context

The elderly population of the United States has assumed ever larger shares of the 
total national population during the past century. Whereas, persons 60 years and 
older constituted about 6 % of the national population in 1900, they accounted for 
over 16 % of that population at the century’s end. Driving this March toward an 
older population have been the remarkable increases in average life expectancy 
(from 47 years in 1900 to 76 years in the year 2000), and corresponding decreases 
in the birthrate (from 32 per thousand to about 15 per thousand).

The temporal pattern for the foreign-born elderly population during this same 
period, however, has been quite different. The 20th century began with immigrants 
accounting for 31 % of the elderly (60+ years) population and for 14 % of the 
total U.S. population (Rogers and Raymer 2001). It ended with these two per-
centages taking on close to identical values: about 12 and 13 %, respectively. The 
dynamics that have produced this evolution over the past century are particularly 
interesting because of particular immigration laws passed by the federal govern-
ment over the past century—laws which collectively have influenced immigration 
numbers and compositions (Fig. 5.1).

Recognizing that many of the old immigration laws were outdated, Congress 
passed the Immigration and Nationality Act of 1952 and Amendments to it in 
1965 and 1976. These were followed in the 1980s and 1990s by the Immigration 
Reform and Control Act (IRCA) of 1986, the Immigration Act of 1990, and the 
Illegal Immigration Act of 1996. These pieces of legislation produced rather dra-
matic demographic consequences for levels of immigration, age structures, and 
spatial patterns of settlement. Figure 5.2 presents the changes in national age 
composition over time that arose partly as a consequence of the changes in the 
regional immigration levels over time and spaces. (The regional age distributions, 
too numerous to exhibit here, generally show the same profiles.) Figure 5.3 exhib-
its the changing regional geographies of the elderly foreign-born and native-born 
populations.

For the first 90 years of the 20th century, the growth rate of the elderly foreign-
born population in the United States was lower than that of the elderly native-born 
population (Fig. 5.4b). Indeed, between 1950 and 1990, the elderly foreign-born 
population actually declined in size and exhibited a negative growth rate for 
almost 30 years. Only in the 1990s did the elderly foreign-born population begin 
to exhibit higher annual growth rates than its native-born counterpart, a conse-
quence of the immigration reforms of 1965 and the relative low fertility levels of 
the native-born population during the Depression years.

The impacts on the elderly foreign-born population of contracting or expanding 
levels of immigration have tended to be felt some thirty years later. Whereas the 
impacts of contracting and expanding levels of fertility on the elderly native-born 

5.2 Historical Context, Data, and Models



58 5 The Foreign-Born and the Native-Born: Are Their Elderly …

population become manifest some sixty years later. Thus the dramatic drop in the 
elderly foreign-born growth rates that began in the 1950s occurred roughly thirty 
years after the Immigration Act of 1924, and the increases in elderly foreign-born 
growth rates that occurred during the 1990s happened some thirty years after the 

Fig. 5.1  Percentage foreign-born of a elderly (age 60+ years) and b total (age 0+ years) U.S. 
populations: 1900–2010. Source Raymer and Rogers (2014)
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Immigration and Nationality Act Amendments of 1965. Among the elderly native-
born, however, growth rates fell to near zero in the early 1990s, sixty years after 
the very low birth rates of the Depression era.

In addition to the differences by nativity observed for the elderly population in 
the U.S., substantial regional variations also developed over time (Fig. 5.5). The 
elderly foreign-born populations of the South and West regions increased in size 
during the entire 20th century. Moreover, the South showed no major declines in 
annual growth rates between 1940 and 1970, such as occurred in the other three 
regions.

In contrast to the elderly foreign-born population, the elderly native-born pop-
ulation grew at a relatively stable rate until the 1980s, at which point the rates 
began to decline. Indeed, the elderly native-born populations in the Northeast and 
Midwest were smaller in the 1990s than they were in the 1980s. The relatively 
high rates of growth of the elderly native-born populations in the West and of the 
elderly foreign-born populations in the South arose partly as a consequence of the 
relatively small initial populations in those two regions during the first half of the 
century.

The race/ethnic composition of the U.S. immigrants was significantly altered 
by the immigration reforms introduced by Federal legislation passed in 1965. A 
major feature of the Immigration Nationality Act Amendments of 1965 was that 
the number of immediate family members of U.S. citizens eligible for immigra-
tion was no longer subject to numerical limits. A consequence of this provision 

Fig. 5.2  Age compositions by nativity: 1900–2010. a Millions, b proportions. Source: Raymer 
and Rogers (2014)

5.2 Historical Context, Data, and Models
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was a dramatic increase in immigration from Asian to Latin American countries. 
With this increase came a sharp decrease in immigration from Europe and Canada. 
Whereas almost two-thirds of all immigrants to the United States during the 1950s 
originated in these two countries, by the 1990s, their contribution dropped to 
14 %. At the same time, Asia, which contributed only 6 % in the 1950s, increased 
its share to 44 % in the 1980s, and immigration from Latin America increased 
from 26 % in the 1950s to 40 % in the 1960s, a share that it has maintained since 
then.

Fig. 5.3  Spatial concentrations: Percentage distributions of elderly (age 60+ years) foreign-born 
and native-born U.S. populations, by region: 1900, 1950, and 2010. Source Raymer and Rogers 
(2014)
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5.2.2  Data and Models: Identifying the Sources  
of Elderly Population Growth, 1950–1990

The 1940 Census was the first national census count to report origin-destination-
specific migration flow data for the United States. Already by that time, elderly 
migrants were moving to the Sunbelt and exhibiting the two major national 
“elderly migration sheds” identified by Friedsam (1951, p. 238), with “migration 
to the Pacific region coming in large part from west of the Mississippi and most of 
that to the South Atlantic coming from east of the Mississippi.”

Elderly migration patterns since the 1940 census most often have been studied 
using the question regarding the respondent’s location of residence five years ear-
lier. (The sole exception was the 1950 census, which adopted a one-year interval 
instead so as to avoid the immediate post-World War II period of readjustment.) 
In Rogers and Raymer (2001) these data were used to study the elderly migra-
tion patterns in the periods 1955–60, 1965–70, 1975–80, 1985–90, and 1995–00. 
The migrants in each of the time periods were reallocated back to their regions 
of origin of five years earlier. Thus, the at-risk population of migrating from any 
region is the population that lived their five years earlier. A younger age threshold 

Fig. 5.4  Decadal a elderly 
(age 60+ years) and b total 
(age 0+ years) growth rates 
by nativity: 1900–2010. 
Source Raymer and Rogers 
(2014)

5.2 Historical Context, Data, and Models
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was adopted to define the elderly population, namely, 60 years and over, instead 
of the more conventional 65 years and over. This, first, increased the sample size; 
second, recognized that most married men, who migrate at retirement, take along a 
younger wife; and, third, acknowledged the trend toward earlier retirement.

The elderly population was disaggregated into native-born and foreign-born 
subpopulations by separating those who were born in the United States and its 
territories (or born abroad to at least one American parent) from those who were 
not. For the projection exercises the necessary input data on mortality, fertility, 
and migration were obtained from the standard Vital Statistics and Census Bureau 
sources. Where necessary, (e.g., the case of emigration) conventional methods of 
indirect estimation were adopted. For details, the reader should consult Rogers 
et al. (1999), Rogers and Raymer (2001), and Raymer and Rogers (2014).

To identify in greater detail the demographic sources of regional increases or 
decreases in the elderly population, the reconstruction of the regional demographic 
dynamics of the elderly foreign-born and native-born populations in the United 
States from 1950 to 2010 were reconstructed. These estimated dynamics help to 
answer a number of interesting questions about the evolutions of these elderly 
populations during the last half of the 20th century. An “open” multiregional 

Fig. 5.5  Decadal regional 
elderly (age 60+ years) 
growth rates by nativity: 
1900–2010. a Foreign-born, 
b native-born. Source Raymer 
and Rogers (2014)
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projection model framework was used to identify the contributions to regional 
population growth made by each of the principal demographic components of 
change: fertility, mortality, international migration (immigration and emigration), 
and internal migration (inmigration and outmigration). An earlier study (Rogers 
et al. 1999) describes this framework in some detail and uses it to illuminate the 
demographics of the total (not elderly) U.S. multiregional population. This chapter 
updates that work by including more recent data, obtained from the 2000 Census 
and the 2010 American Community Survey.

With data drawn largely from the U.S. Census Bureau’s published and unpub-
lished records, including various Public Use Microdata Sample (PUMS and 
IPUMS) files of the Censuses of Population, an empirical multiregional projection 
model was developed that begins with the population counts for each age group in 
each region that are reported by a decadal census at time t, and then survives that 
population forward five years at a time. The projection model accounts for emigra-
tion by combining emigration rates with death rates to make use of the standard 
methods for decrementing the population in a multiregional life table. In addition, 
the open multiregional projection model is adapted to simultaneously project the 
foreign-born and native-born population total. That is, the foreign-born population 
generates births, but these births are treated as increments to the first age group of 
the native-born population in each region.

The population projection represents the age- and period-specific fertility, mor-
tality, emigration, and internal migration processes of the foreign-born population 
and the immigration distribution represents the foreign-borns entering the country 
during the period. But the projected population distribution is not the true foreign-
born population because it includes the foreign-born contribution to native-born 
births. One therefore needs to extract the foreign-born births from the appropriate 
region-specific element of the projected population distribution that represents the 
first age group in each region and then to increment the appropriate elements of 
the native-born population to include the contributions of these births contributed 
by the foreign-born population. Of course, this problem does not appear if the evo-
lution of only the elderly population is of interest. The “birth” component then 
becomes the “aging-in” component, i.e., total births are replaced in the accounting 
equation by the number of persons aging-into enter the first elderly age group, i.e., 
those becoming 60 to 64 years of age during the 5-year time interval. For example, 
consider the growth of a region’s elderly population from t to t + 1. This growth 
can be expressed in the following manner:

where P represents the total elderly regional population, A the numbers of total 
persons aging-into the elderly population, D the numbers of total persons dying 
out of the elderly population, I the inmigration from the other regions in the sys-
tem, O the outmigration from the region in question to the other regions, IM the 
immigration component, and EM the number of emigrants. The last four terms 
identify the contribution of net migration, whereas the difference between A and D 
defines the contribution of net aging-in-place.

(5.1)P(t + 1) = P(t)+ A(t)− D(t)+ I(t)−O(t)+ IM(t)−EM(t)

5.2 Historical Context, Data, and Models
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Equation (5.1) describes total regional population growth as a summation of the 
initial population and the increments and decrements contributed by the principal 
demographic sources of growth. Each nativity-specific population is treated sepa-
rately. However, one difference in the two accounting equations needs to be noted. 
To describe the growth of the elderly native-born population in each region, the 
I and E components are set to zero by assumption, because of the relatively insig-
nificant contributions made by these two components to the growth of that popula-
tion. Thus, we have

Equation (5.2) may be contrasted with the corresponding accounting equation 
for the foreign-born population, which retains the immigration and emigration 
components:

The numbers that correspond to each source of growth, except for EM and IM, 
may be obtained in the process of projecting the population distribution forward 
and then identifying and summing over the appropriate elements.

5.3  What Drives Regional Elderly Population Growth: 
Migration or Aging-in-Place?

5.3.1  Have Interregional Elderly Migration Patterns 
Changed?

Consider the temporal patterns of interregional elderly migration described in 
Tables 5.1 and 5.2. Three principal findings are indicated: (1) that the levels 
increased, at the national scale, for interregional migration; (2) that before the 
1985–90 period, the percentages of elderly persons migrating to the South from 
the other three regions had been steadily increasing, and (3) that after identifying 
the net migration contributions made by these changing migration patterns (see 
Table 5.2) one notes that over the 1985–90 period the migration patterns did not 
deviate sharply from pre-1980 trends, as argued by Golant (1990). At the national 
scale, interregional migration levels held steady, falling between 2.4 and 2.7 % 
over four succeeding censuses. With the exception of the South, generally the 
same pattern was exhibited by each of the other three regions—a peak in 1975–80 
and not thereafter.

The Northeast’s peak was especially pronounced, and according to Fig. 5.6, it 
appeared in both the elderly foreign-born and native-born migration patterns. In 
general, elderly foreign-born outmigration flows from the four Census Regions 
over time exhibited different levels from those of the elderly native-born outflows. 
For example, they seem to have been more reluctant to leave the West, and it was 

(5.2)PNB(t + 1) = PNB(t)+ ANB(t)− DNB(t)+ INB(t)− ONB(t)

(5.3)PFB(t + 1) = PFB(t)+ AFB(t)− DFB(t)+ IFB(t)− OFB(t)+ IMFB(t)− EMFB(t)
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not until after 1975 that their corresponding levels from the South declined below 
the national level. But, in the aggregate, their national levels always exceeded the 
corresponding levels for the elderly native-born population.

5.3.2  The Proximate Sources of Regional Elderly  
Population Growth

A country’s elderly population is not distributed evenly across a nation’s territory. 
Geographic concentrations of elderly persons arise at destinations with high amen-
ities, as elderly migrants move across longer distances in search of amenity-rich 

Table 5.1  Percentage elderly (60+) regional residents who migrated to particular regional desti-
nations in the US: 1955–60 to 1995–2000

Source Raymer and Rogers (2014)

Origin region Destination region

Period Northeast Midwest South West Total

Northeast 1955–60 0.27 1.97 0.5 2.75

1965–70 0.24 2.46 0.48 3.18

1975–80 0.22 3.32 0.69 4.23

1985–90 0.23 3.25 0.54 4.01

1995–00 0.22 3.06 0.55 3.83

Midwest 1955–60 0.21 1.66 1.26 3.13

1965–70 0.17 1.84 1.11 3.12

1975–80 0.15 2.14 1.16 3.45

1985–90 0.15 1.93 0.91 2.98

1995–00 0.15 2.07 0.95 3.18

South 1955–60 0.40 0.61 0.47 1.48

1965–70 0.40 0.58 0.39 1.36

1975–80 0.42 0.54 0.48 1.44

1985–90 0.44 0.64 0.50 1.58

1995–00 0.49 0.62 0.56 1.68

West 1955–60 0.19 0.76 0.69 1.65

1965–70 0.20 0.76 0.82 1.78

1975–80 0.21 0.68 1.06 1.95

1985–90 0.23 0.67 1.04 1.94

1995–00 0.23 0.64 1.16 2.03

Total 1955–60 0.20 0.35 1.16 0.66 2.37

1965–70 0.20 0.35 1.31 0.56 2.42

1975–80 0.21 0.35 1.53 0.63 2.71

1985–90 0.22 0.39 1.42 0.52 2.56

1995–00 0.26 0.39 1.38 0.54 2.56

5.3 What Drives Regional Elderly Population Growth …
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communities with sunnier and warmer climates and recreationally diverse envi-
ronments. But such concentrations also arise as a consequence of net aging-in-
place—the “natural increase” component of elderly population change that is the 
numerical difference between pre-elderly persons and who remain in the region 
and enter the first elderly age group there (i.e. elderly “births”) and elderly persons 
who die during the unit time interval.

Earlier, this chapter set out a multiregional projection model that is “open” 
to international migration streams and that is responsive to historical changes in 
each demographic process. The output of that model permits a contrast between 
the foreign-born and native-born contributions to population growth. To do this 
one needs to add together their respective components of growth and obtained 
the total for each region. To simplify the presentation of the analysis, the growth 
components for each pair of adjacent five-year periods have been added together 
to describe the historical growth by decade. For a particular region, such as the 
Northeast, say, over a given decade, for example from t to t + 1, total elderly pop-
ulation growth, GNE(t, t + 1), can be partitioned as follows:

Table 5.2  In-, Out-, and net-migration patterns of the US elderly (60+) population, by region 
and nativity: 1955–60 to 1995–2000

Source Raymer and Rogers (2014)

Period Region Foreign-born 
migrants

Native-born migrants All-born migrants

In Out Net In Out Net In Out Net

1955–60 Northeast 7 40 −33 25 81 −56 32 121 −89

Midwest 9 31 −21 46 125 −79 55 156 −100

South 45 9 36 140 55 85 185 64 121

West 27 6 19 81 31 50 105 37 68

1965–70 Northeast 8 47 −38 31 121 −90 39 167 −128

Midwest 8 25 −17 61 156 −95 69 181 −112

South 52 9 43 209 70 139 261 79 182

West 20 7 13 92 46 46 112 53 59

1975–80 Northeast 10 55 −45 45 204 −159 55 259 −204

Midwest 9 23 −14 81 210 −130 90 233 −144

South 59 15 44 335 108 226 394 123 271

West 24 9 15 138 76 62 162 85 77

1985–90 Northeast 9 42 −33 61 245 −185 69 287 −218

Midwest 7 17 −11 114 216 −102 121 233 −113

South 49 14 36 392 150 242 441 164 277

West 19 11 8 143 98 45 162 109 53

1995–00 Northeast 16 56 −40 104 319 −215 120 375 −225

Midwest 15 25 −10 164 321 −156 179 346 −167

South 70 28 42 560 248 312 630 276 354

West 32 23 8 221 162 60 253 185 68
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In Eq. (5.5) the foreign-born contribution is disaggregated into the net aging-in-
place, net internal migration, and net immigration components. Each of the net 
components is calculated as the difference between the respective incremental 
and decremental contributions. The native-born disaggregation is dealt with in a 
similar way, but the net immigration component is set to zero by assumption. The 
results of such a decompositional analysis for the elderly foreign-borns are illus-
trated in Fig. 5.7.

(5.4)

GNE(t, t + 1) = {Foreign-Born Contribution} + {Native-Born Contribution}

= PFB(t + 1)− PFB(t)+ {PNB(t + 1)− PNB(t)}

(5.5)

= {(AFB(t)− DFB(t))+ (IFB(t)− OFB(t))+ (IMFB(t)− EMFB(t))}

+ {(ANB(t)− DNB(t))+ (INB(t)− ONB(t))}

(5.6)

= {FB Net Aging-in-Place+ FB Net Internal Migration+ FB Net Immigration}

+ {NB Net Aging-in-Place+ NB Net Internal Migration}

Fig. 5.6  Percentage of elderly (age 60+ years) and total (age 0+ years) residents migrating to a 
different region by nativity: 1955–1960 to 1995–2000. Source Raymer and Rogers (2014)

5.3 What Drives Regional Elderly Population Growth …
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The three demographic components illustrated in Fig. 5.7 changed in rela-
tive importance over the 1950–2010 period and across the four regions. Except 
in the Midwest, aging-in-place was the dominant positive contributor to growth 
in the South and West since the 1990s, and mostly a negative contribution in the 
Northeast and Midwest (except in the 2000–2010 interval). Net internal migration 
was largely a positive contributor in the South and West and a negative one in the 
Northeast and Midwest. Its role, however, was a relatively modest one compared 
to the other two components (except in the South). Finally, immigration’s contri-
bution was always a positive one, but it did not begin until the 1970s, and affected 
the Midwest’s elderly foreign-born population very little. Overall, the most impor-
tant recent component of change was aging-in-place; its influence on the growth or 
decline of the regional elderly foreign-born populations was a significant one.

Although a multiregional “sources of growth” projection model was used to 
identify the importance of both positive and negative contributions to the evolu-
tion of regional populations during a past period, it may also be used to gener-
ate counterfactual scenarios that allow one to calculate the contribution made by 
immigration to the growth of the United States total national population, along the 
lines followed by Passel and Edmonston (1992). Their procedure can be adapted 
to carry out the same calculations for elderly regional populations over the period 
1950–2000. For an example see Rogers and Raymer (2001) and Raymer and 
Rogers (2014).

Fig. 5.7  Components of decadal foreign-born elderly population change. Source Raymer and 
Rogers (2014)
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5.4  Discussion and Conclusion

During the last half of the 20th century, the elderly population in the United States 
experienced many changes as a consequence of shifts in internal migration pro-
pensities, declines in mortality and fertility levels, and fluctuations in immigra-
tions flows. These changes have led a number of scholars to study the underlying 
population dynamics. Some have focused on internal migration patterns. Others 
have analyzed the significance of the other important component of the dynamics: 
aging-in-place. Still others have examined the impacts of immigration. All three 
were considered in this chapter, leading to several interesting conclusions.

First, on the subject of changing internal elderly migration patterns, little evi-
dence exists that the 1980s heralded a break with the past trends and introduced a 
new migration spatial structure, as was argued by Golant (1990), for example. An 
analysis of the data shows no evidence of such a break and, if one did occur ear-
lier, then a return to past trends came surprisingly quickly. Indeed, if a mild break 
were to be identified, it likely would be the 1975–80 period and not later.

If migration trends did not change significantly, what drove the demograph-
ics of elderly growth and redistribution? Using available data, indirect estima-
tion techniques, and a multiregional projection model, one can reconstruct elderly 
population changes for each five-year period between 1950 and 2010, for the four 
U.S. Census regions. In carrying out this reconstruction, historical elderly regional 
growth rates maybe partitioned in several ways. First, these rates maybe decom-
posed to separately identify the contributions of the foreign-born and native-born 
populations. Second, total regional growth rates for each of the four decades were 
decomposed into increments and decrements that were attributable to the foreign-
born and to the native-born populations. This then permits an assessment of the 
importance of the three sources of elderly population growth, and analysis of the 
data reveals that the driving force behind the changes was net aging-in-place.
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Abstract During the past 70 years, the U.S. Bureau of the Census has been 
producing population projections that over time have become both methodo-
logically more sophisticated and demographically more detailed. Yet this added 
complexity has not invariably led to increased accuracy. This chapter reviews 
some of the debate on the simple versus complex modeling issue and links it to 
questions of model bias and distributional momentum impacts. It introduces a 
probabilistic time series dimension to the projection exercise, and it focuses on 
a three-region illustration. Finally, it outlines how parameterized model sched-
ules and projection models may be adopted to provide a strategy for simplifying 
models with a large number of variables that come with the adoption of age-
specific rates.

Keywords Simple versus complex projection models · Probabilistic projections ·  
Model migration schedules

6.1  Introduction

Inventories and projections of human populations are a necessary input for most 
planning activities. First, populations are the clients whose welfare the planning 
efforts are designed to improve. Second, they are a primary resource used to pro-
duce the goods and services that lead to higher levels of welfare. Third, they con-
sume resources that could be used elsewhere and contribute to the environmental 
degradation that is evident everywhere.

The “complex” cohort-component method, used (in various implementations) 
by the Bureau since 1945, has become the dominant population projection model 
used virtually everywhere, because it takes advantage of the built-in momentum of 
age structure effects. It is this age momentum, for example, that created the con-
cern about the expected rising growth rate of the 65 year and older population as 
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the Baby Boomers continue to join the elderly population. However, despite this 
advantage over simple aggregate exponential growth models, Long (1987) of the 
Bureau found that little correlation existed between methodological innovation 
and the accuracy of the resulting projections. Apparently, the constant growth sce-
nario, in the majority of cases, did as well or better than the more complex models 
in predicting future total growth rates and population projections.

6.2  The Problematic Model Assessment Procedure

The debate over projection performance considers the advantages held by com-
plex cohort-component models over the corresponding simple models derived 
by aggregation or decomposition, and examines the past record of official pro-
jections. Since assessments of model performance in the literature are expressed 
in terms of such ill-defined words as simple, complex, naive, sophisticated, 
crude, and elegant, it becomes necessary to clarify the issue of assessment from 
the start.

6.2.1  The Assessment of Model Performance

Most assessments of the performance of alternative models have focused on the 
differences between observed population totals and growth rates and those pre-
dicted by the particular models being evaluated. All efforts focus on the differ-
ence between the average annual growth rate implied by the projection and the 
one subsequently observed. Such a statistic has the virtues of being independent of 
population size and of the length of the projection interval, whereas the difference 
between the absolute numbers of people depends on population size, and percent 
error doesn’t take into account the length of the time period over which the projec-
tion is carried out.

Keyfitz (1981) studied the average annual growth rates of some 1100 projec-
tions, developed by different agencies, at different times, and for different coun-
tries. Comparing the ex-post performance of these projections, generated by 
cohort-component methods, with that of the corresponding projections produced 
by the simple exponential growth model, he concluded that the former models out-
performed those based on simple geometric increase. Stoto (1983), on the other 
hand, examining many of the same projection efforts, and also focusing on the 
same indicator of accuracy, came to the opposite conclusion.

What accounts for the opposite conclusions reached? Both scholars adopted 
the same indicator of accuracy. But Keyfitz used a fixed base period of five years 
(1950–1955) and focused on the root-mean-square error, whereas Stoto adopted 
a “floating” base period, which at times was a five-year base period and at other 
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times a ten-year period, and he focused on the standard deviation as the indicator 
of accuracy. Although these differences are unlikely to totally explain the oppo-
site conclusions reached, they undoubtedly had a significant impact and illustrate 
the need for a fair competition, or tournament, in which a common set of proce-
dures are applied throughout, particularly with regard to the choice of length of 
base period and of the error index. Beaumont and Isserman (1987, p. 1005), for 
example, found that the accuracy of a projection could be affected as much by the 
choice of length of base period as by the choice of method.

Observed ex-post forecast errors, of course, depend not only on the projection 
methodology used, but also on the particular historical periods selected for exami-
nation. As John Long pointed out, Census Bureau projections have had difficulties 
in anticipating periods of rapid rises or rapid falls in fertility. The first 25 years 
of Census Bureau forecasting activity, corresponding to the “Baby Boom” and 
the following “Baby Bust” produced projections (made before 1955 and between 
1966 and 1970) that were uniformly worse than the models with the simple 
assumption of constant growth rates. However, projections made by the Bureau for 
1955 through 1966 and after 1970 were generally better than the projection with 
the simple models (Long 1987).

The accuracy of the Census Bureau’s national population forecasting efforts 
apparently has improved during the past decades. One wonders how much of this 
improvement is due to improved projection methods and how much is due to the 
decreased variability in the components of change?

If a population is experiencing close to stable growth, then even the simplest 
model will perform about as well as complicated alternatives in forecasting that 
population’s evolution. Τo conclude in such instances that simple models out-
perform complex models obviously is not a rigorous test. And to accord this per-
formance the same weight as one in which the assessment involved a population 
experiencing an unexpected baby boom is unfair. Obviously one needs a way of 
introducing the dimension of “degree of difficulty” into each assessment. In diving 
competitions, the degree of difficulty for a swan dive is considerably lower than 
for a double somersault. The assessment of the diver’s performance is weighted by 
that degree of difficulty. Perhaps an analogous weighting should enter assessments 
of forecasting performance.

6.2.2  When Simple Models Outperform Complex Models

The simple growth models used by Keyfitz (1981), Stoto (1983), and others are 
general in nature and could be used as readily to project national incomes or auto-
mobile sales. They do not take advantage of an important attribute of human popu-
lations, namely, that individuals age one year at a time. And they do not consider 
that fundamental demographic events and associated accounting identities that 
underlie population change. How is it, then, that in short-run projections they often 
produce reasonable results and, on a number of occasions, results that are more 

6.2 The Problematic Model Assessment Procedure
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accurate than those produced by more complex age-specific extrapolative models, 
which are built on the basic demographic accounting relationships familiar to us all?

Studies of the accuracy of past Census Bureau population forecasts present a 
clear message: simple models have outperformed complex models at major turn-
ing points in U.S. demographic trends. For example, the forecasters did not antici-
pate the Baby Boom, and after it began they expected it to continue. Thus their 
early forecasts were too low and their later ones were too high.

At times of relative stability in demographic trends, on the other hand, the more 
complex (cohort-component) models outperformed the simple models. For exam-
ple, during the relatively stable periods of high fertility following 1957 and 1963 
and of low fertility following 1974, 1976, and 1982, the Bureau’s complex models 
outperformed the simple models. The reduced variability in fertility rates allowed 
the cohort-component method to take advantage of its ability to incorporate age 
momentum effects by tracing the impacts of changing age compositions in the 
childbearing ages on aggregate fertility levels.

It appears, then, that complex models have outperformed simple models in 
times of relative stable demographic trends, when the degree of difficulty has been 
relatively low, and have been outperformed by simple models in times of signifi-
cant unexpected shifts in such trends, when the degree of difficulty has been rela-
tively high. Why has this been so? One would expect the opposite to have been the 
case.

Why, for example, should it be easier to forecast changes in the evolution of 
the annual aggregate growth rate, which by definition is a function of the basic 
components of demographic change, than to forecast the underlying changes in 
the evolution of those components? Moreover, in the assessments carried out by 
Keyfitz (1981) and Stoto (1983) no trend extrapolation of the aggregate growth 
rate was carried out. In each instance an average across the preceding five or ten-
year base period was adopted and assumed to remain fixed across the forecasting 
period. This suggests the following conjecture: when simple models have outper-
formed complex models, it has been a consequence of a serendipitous averaging of 
aggregate trends during times of relative demographic instability.

Because an average growth rate is more conservative in its growth impact than 
is an extrapolation of past trends (whether increasing or decreasing), its use gener-
ally leads to a lower error for times that experience a turning point. For example a 
simple projection in 1945 of the future U.S. population, using the average fertil-
ity regime that prevailed during the preceding five years, would underproject that 
population less than one based on an extrapolation of the decline. Conversely, a 
similar projection exercise carried out a dozen years later would find the simple 
model overprojecting the U.S. population less than the one based on an extrapola-
tion of the Baby Boom fertility. However, since neither the proponents of simple 
or complex models can anticipate such changing times, it behooves a public pro-
vider of forecasts, such as the Census Bureau, to “expect the unexpected,” adopt 
the complex model, and strive to improve the quality of the input assumptions, 
rather than resort to simple growth models, even in those few situations that only 
need an accurate forecast of total population.
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Of course, most uses of population forecasts require accuracy for subgroups of 
the total population. Plans for future schools and of future nursing homes, after all, 
depend on forecasts of different population subgroups. And in such efforts, cohort-
component models generally outperform simple growth models.

Finally, the accuracy of a forecast is not the only dimension on which forecast-
ing models should be judged. Long (1987) suggests the additional dimensions of 
face validity, internal consistency, and level of detail. Face validity refers to the 
reasonableness and “believability” of the model and assumptions that were used 
to generate the forecast. Internal consistency refers to the inclusion in the mod-
eling process of accounting mechanisms for ensuring that standard demographic 
identities are satisfied. And, of course, level of detail refers to the disaggregations 
needed to satisfy the particular needs of the users of the forecasts. All three point 
to the desirability of age-sex disaggregated cohort-component models.

Simplifying complex models is an art. Regrettably, relatively few research stud-
ies have addressed the issues surrounding this activity. As a result, few “rules-
of-thumb” have been developed to aid professional demographers entrusted with 
the task of regularly issuing population forecasts. What is clear from the limited 
research findings now available is that the process of simplifying a demographic 
projection model comes with a price in the form of bias and absence of some 
built-in momentum effects.

6.2.3  Simplifying Complex Models and the Loss  
of Built-in Momentum Effects

Shrinking a large complex extrapolative model in order to simplify it typically 
involves the two processes of aggregation and decomposition. The former reduces 
the scale of a model by a consolidation across population subgroups, time inter-
vals, and spatial units. The latter partitions the total population system in order 
to exploit the possibility of treating parts of the system separately from the rest. 
The use of age-specific net migration rates in place of the corresponding origin-
destination-specific migration rates would be a prime example of decomposition. 
Consolidating net migration rates into a single crude rate would be an example of 
aggregation.

Since net-migration-based representations produce a decomposition bias, and 
because simple exponential growth models must adopt that form of specification, 
it is difficult to understand why such simple models should outperform the more 
complex multiregional cohort-survival models that deal with migration flows, 
except for reasons related to the serendipitous cancellations of errors.

Age specific rates of demographic events vary in a predictable way. The current 
age distribution of a population tells us about demographic changes that were expe-
rienced in the past, as well as those that are likely to occur in the future. The likely 
future changes are commonly referred to as age momentum effects.

6.2 The Problematic Model Assessment Procedure
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Α particularly powerful illustration of the projection impact of age momen-
tum effects occurs when the age distribution of a rapidly growing population is 
favorable to further increase. Whenever an initial population distribution differs 
from the stationary distribution that would arise were the current fertility regime to 
immediately drop to bare replacement level, a “momentum” is associated with that 
population’s projection, its magnitude defined by the ratio by which the ultimate 
stationary population exceeds the current one. Typically, if the initial age distribu-
tion is that of a “young” population whose high fertility level is assumed to imme-
diately drop to bare replacement level, then population growth will nevertheless 
continue on for some time (about 60–70 years) before zero population growth (i.e., 
stationarity) is achieved.

Fig. 6.1  Past birth rates, elderly growth rates, and the temporal evolution of the elderly popula-
tion in the United States: 1980–2060. Source Rogers (1989)
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An analogous result holds with respect to an initial divergence from the sta-
tionary spatial distribution. For example, India’s urban population would con-
tinue to grow for several generations, even if fertility levels throughout India 
were miraculously to drop immediately to bare replacement levels. Age momen-
tum would be one source of continued growth; spatial momentum, in the form of 
continued rural-to-urban migration, would be another. Age momentum and spa-
tial momentum effects are suppressed when an aggregation across all age groups 
and a decomposition of all regional subpopulations are carried out simultane-
ously. Simple exponential growth models, therefore, carry no momentum impacts 
in their forecasting applications, and the loss of that impact can produce serious 
biases which contribute to inaccurate forecasts. Consider, for example, the prob-
lem of projecting the U.S. elderly population with simple and complex models. 
The 66-year-old population of next year will consist of the survivors of this year’s 
65-year-olds, who were 64-years-old last year, 63-years-old the year before that, 
and, of course, who were born 65 years ago. Figure 6.1 reflects this relationship 
between today’s elderly and yesterday’s births in its plot of the curve of crude 
birth rates from 1915 onward and the corresponding curve of the elderly popula-
tion’s annual growth rate 65 years later, i.e., from 1980 onward, including a pro-
jection to 2020. Not surprisingly, the latter curve is almost a perfect mirror image 
of the former. Cohort component models have such a relationship embedded in 
their formal dynamics, simple exponential growth models do not. Thus the former 
will anticipate the forthcoming turning point in the elderly growth rate, whereas 
the latter will not.

6.3  Multiregional Population Projection Models  
with Uncertainty: An Example

6.3.1  Introduction

Although population futures are uncertain, some forecasted futures are more 
likely outcomes than others. To identify these, statistical agencies increasingly are 
bracketing their projected population futures with “low” and “high” values. More 
recently, they have issued ranges of possible outcomes, along with the probabili-
ties associated with each forecasted value for the variables of interest.

A number of models and procedures have been put forward in the literature 
on probabilistic forecasting but the general absence of reliable time series data 
on migration often have forced analysts to adopt uniregional specifications with 
a focus on time series analysis of fertility and mortality rates, supplementing 
them with rather crude estimates of future migration patterns. An exception is the 
explorative study carried out by Raymer et al. (2012), in which vector autoregres-
sive (VAR) models were used to forecast future rates of birth, death, and direc-
tional outmigration for the three macroregions of England’s national territory.

6.2 The Problematic Model Assessment Procedure
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There are a number of ways to specify subnational population projection mod-
els. Raymer et al. (2012) focus on four: (a) the simplest possible projection model 
that relies totally on the evolution of the annual growth rate, (b) the components-
of-change growth model that breaks down the annual growth rate into its compo-
nents birth, death, and net migration rates, (c) the same components-of-change 
growth model but with the net migration rate replaced by the corresponding in- 
and outmigration rates, and (d) the multiregional model with three regions and 
only destination-specific outmigration rates and no inmigration rates. Three more 
alternatives are added to “open-up” the model to international migration. The three 
options are net international migration rates, immigration and emigration rates, 
and immigration counts along with emigration rates.

6.3.2  A Three-Region Projection Model of England’s 
Subnational Population Growth and Distribution: 
1976–2008

Consider the three-region map of England that is set out in Fig. 6.2. Data obtained 
from the Office for National Statistics for the years 1976–2008 revealed that 
the North’s population stayed around 14.6 million during that period, the 1976 
Midlands population grew slightly from 9.0 to 9.8 million in 2008, and the popula-
tion of the South increased from 23 to 26.9 million over the same periods (Raymer 
et al. 2012).

Recall the simplest uniregional aggregate population projection model of a 
region’s total number of residents, first defined in Chap. 2, Eq. (2.6):

This aggregate population projection model, in its multiregional version, first 
appears in Chap. 2 as a two-region illustration that in matrix form is expressible 
as:

where G(t) is the growth matrix that survives and grows the vector of regional 
populations at time t into the corresponding vector at time t + 1.

This model can be expanded to include flows of international migration. Of the 
three ways of accomplishing the latter, examined in Raymer et al. (2012), only 
the third option is considered here: immigration is introduced as a count, whereas 
emigration appears as a rate in the diagonal elements of the growth matrix G. Thus 
Eq. (6.2) then becomes

(6.1)Pi(t + 1) = (1+ ri(t))Pi(t)

(6.2){P(t + 1)} = G(t){P(t)}

(6.3){P(t + 1)} = G(t){P(t)} + {I(t)}

http://dx.doi.org/10.1007/978-3-319-22318-6_2
http://dx.doi.org/10.1007/978-3-319-22318-6_2
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6.3.3  Forecasting Uncertainty in Component Rates

Two important issues need to be addressed in any effort to generate multiregional 
population forecasts:

First, one must consider the spatial correlation between component rates across regions. 
Second, one must develop a parsimonious method of modeling and forecasting a larger 
number of migration rates. (Gullikson 2001, p. 2).

The first issue is addressed next. The second issue is dealt with in Sect. 6.4, 
when a disaggregation by age is introduced via parameterized model schedules.

Fig. 6.2  Map of regions in England. Source Raymer et al. (2012)

6.3 Multiregional Population Projection Models with Uncertainty: An Example
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The three-region model of England’s population exhibits significant cor-
relations among the demographic variables that are the inputs to a probabilistic 
population projection. Not all of the correlations were significant. Raymer et al. 
(2012) elected to include the correlations among the regional rates of each demo-
graphic component, as well as between the separate components of migration. 
The correlations among other demographics variables, birth rates, and death rates 
were not included because they exhibited weak associations and no clear patterns 
(Table 6.1).

Once the future uncertainties in the demographic components of change were 
established, the analysis turned to the problem of how to account for them over 
time and across regions.

Simulations of the results from the models fitted to the crude rates were used to 
quantify the future uncertainty in the forecasts based on the historical patterns in 
the demographic components. The projection models were initially closed to inter-
national migration to simplify the exposition. The effects of international migra-
tion were added later on.

In the familiar multiple regression model, the variable of interest is predicted 
by a linear combination of predictor variables. In an autoregressive model (AR), 
the predictor variables are past values of the variable of interest. Vector autoregres-
sive models (VAR) allow for more than one evolving variable and may be used 
to introduce linear dependencies among multiple time series, e.g., correlations. In 
the three-region example presented in this section, vector autoregressive (VAR) 
time series models were used to account for correlations both over time and across 
regions. An AR model of order 1, denoted AR(1), is defined as

(6.4)yt = µ+ βy(t − 1)+ ut

Table 6.1  Correlations among crude regional demographics rates, 1976–2008

Birth (B), death (D) and destination-specific outmigration (O) rates
Note: Italics = not significant at 0.05 level; N North, M Midlands, S South
Source Raymer et al. (2012)

B D O

N M S N M S N-M N-S M-N M-S S-N 

B M 0.99

S 0.82 0.83

D N 0.52 0.52 0.03

M 0.50 0.49 0.06 0.98

S 0.48 0.48 −0.01 0.99 0.97

O N-M −0.53 −0.53 −0.08 −0.57 −0.46 −0.56

N-S 0.33 0.31 0.32 0.37 0.44 0.35 0.37

M-N −0.56 −0.53 −0.11 −0.61 −0.51 −0.61 0.82 0.09

M-S −0.47 −0.47 −0.18 −0.40 −0.35 −0.39 0.86 0.50 0.64

S-N −0.12 −0.09 0.16 −0.26 −0.16 −0.28 0.45 0.14 0.79 0.25

S-M −0.40 −0.39 −0.01 −0.59 −0.52 −0.61 0.77 0.21 0.83 0.66 0.73
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where y denotes a particular demographic rate, t denotes time period, μ repre-
sents the mean level of the process, β is the autoregressive coefficient represent-
ing the correlation between observations y(t) and y(t − 1) and u(t) is assumed to 
be independently normally distributed with zero mean and constant variance, σ2. 
Predictions from this model can be obtained as

where T is the last observation of y(t). The 95 % prediction intervals for this value 
are calculated in the normal way. Once fitted, AR models can be used to forecast 
future values of the time series process.

When observations are taken simultaneously on two or more time series, a mul-
tivariate model to describe the interrelationships among several series of data can 
be developed. In other words, VAR models are the multivariate equivalent of the 
AR model outlined above. A VAR model describes the evolution of m variables as 
a linear function of their past observed values. The variables can be arranged into 
a set of m × 1 vectors. A VAR model of order 1, denoted VAR(1), when m = 3 is 
defined as:

This can be expressed in matrix notation as:

where C is a m × 1 vector of constants, A is a m × m matrix and u(t) is an m × 1 
vector of error terms. The matrix A captures the correlations over time and among 
regions. As the regional data are highly correlated, the VAR models are used 
to predict all of the crude rates used in the projection model. These include the 
crude rates of birth, death, destination-specific outmigration, and immigration and 
emigration.

For simplicity, only VAR(1) models were considered in the study. Most of the 
patterns are explained by the first lag, although alternative specifications with 
longer lags may be used. However, given the relatively short time series, it is dif-
ficult to test what the best model may be. The structure of the VAR model is not 
restricted and some parameters which might not be significant are included in the 
projection model. One major advantage of this approach is that the forecasts of the 
demographic inputs are predicted, not only based on past trends, but also by trends 
exhibited simultaneously in other regions.

(6.5)yT+1|T = µ+ αyT ,
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(6.6){y(t)} = {C} + A{y(t − 1)} + {u(t)}

6.3 Multiregional Population Projection Models with Uncertainty: An Example
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6.3.4  Results: Forecasted Regional Closed and Open 
Populations

The conventional procedure for producing regional population forecasts generally 
is one of first obtaining probabilistic forecasts of the component rates and, then, 
second, of drawing on those rates to produce probabilistic forecasts of the associ-
ated projected population. Generally, it is convenient to first forecast the regional 
populations, ignoring international migration and then adding emigration and 
immigration to follow that up with the corresponding “open” projections.

Figure 6.3 presents vector autoregressive (VAR) probabilistic forecasts of 
the six crude destination-specific internal outmigration rates from the North, 
Midlands, and South regions, for the years 2009–2021. The predicted rates and 
corresponding predicted intervals are revealing. For example, the outmigration 
rates from the North and Midlands are, in general, significantly higher than those 
for the South, as are the predicted intervals for the North to South and Midlands 
to South flows. The narrowest prediction interval is that of the North to Midlands 
flow.

The forecasted rates of the demographic components were used as inputs into 
the multiregional population projection model, and simulations produced the 
desired median forecasts and associated prediction intervals up to the year 2021. 

Fig. 6.3  Vector autoregressive forecasts of crude destination-specific outmigration rates from 
the North, Midlands, and South regions: 2009–2021. Source: Raymer et al. (2012)



83

Details of the methodology and results are described in Raymer et al. (2012). 
Figure 6.4 contrasts the results of the “closed” multiregional model forecasts with 
those obtained for the simplest probabilistic uniregional growth rate model for 
each of the three regions. In each instance, the median forecasted totals produced 
by the uniregional model are higher and the prediction intervals are generally 
wider. Model specification clearly makes a difference, and the overall results chal-
lenge the argument that simple models outperform complex models. Specification 
matters, even with a small and relatively stable example.

It is quite likely that the differences exhibited in Fig. 6.4 would be significantly 
larger if more regions were considered, especially if a disaggregation by age were 
introduced as well. As Raymer et al. (2012) observe, if the numbers of regions 
were increased, say, to the 9 Government Office Regions in England, the multi-
regional model would contain 72 interregional migration flows to be modelled 
instead of the 6 flows modelled by the three-region model. If a disaggregation by 
age or age groups were introduced, the variation would be considerably greater 
and the VAR models used in this example would become inappropriate. The VAR 
models used above are not designed to handle large matrices of time series flows. 
To overcome this obstacle, one could change the focus from component rates to a 
focus on the time-varying parameters of model schedules describing the changing 
levels and age patterns fitted to those component rates. The next section of this 
chapter illustrates such a strategy by describing parameterized population models 
and forecasts (Table 6.2).

Finally, in comparison with recent subnational projections produced by the 
Office for National Statistics (ONS), the Raymer et al. (2012) median (and 
even 25th percentile) results are somewhat higher. They projected that in 2021 
there would be 15.70 million persons in the North, 10.69 million persons in the 
Midlands and 30.03 million persons in the South. The ONS utilizes a cohort-
component projection model with a combination of recent trends (5–10 years) and 
expert judgements, whereas the above multiregional model forecasts were based 
solely on historical data aggregated over age and sex.

Both age and sex are very important for producing more accurate population 
projections. However, to include age and sex in a subnational probabilistic frame-
work, the correlations across age groups, between sexes, as well as over time/
space and between demographic components would have to be considered. Since 
this would multiply the number of parameters considerably, alternative speci-
fications to reduce the dimensionality of the age-specific data would have to be 
considered.

Extending the approach used in Raymer et al. (2012) to include more regions, 
such as the nine Government Office Regions in England, let alone the nearly fifty 
counties, would require a different approach. The VAR models, used in this chap-
ter, are not designed to handle so many different series. One idea would be to 
include some structure in the VAR models. Another would be to focus on model-
ling just the time-dependent structures in the migration flow tables, as Sweeney 
and Konty (2002) did for regions in California. Finally, yet another approach 
would be to introduce parameterized model schedules (Rogers 1986). By reducing 

6.3 Multiregional Population Projection Models with Uncertainty: An Example
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Fig. 6.4  Two closed regional 
population forecasts (in 
thousands) for the North, 
Midlands, and South regions: 
2009–2021. Source Raymer 
et al. (2012)
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the dimensionality of the migration flow tables, the modelling of the migration 
flow tables would be greatly simplified. For example, a multiregional region with 
nine subpopulations requires 72 origin-destination-specific flows. If one were to 
just focus on the time-dependent model schedule parameters, one would model 
just 27 time series instead of 72 time series.

6.4  Parameterized Multiregional Forecasting Models:  
Α Time Series Approach

6.4.1  Introduction

Disaggregated multiregional population projections generally need to keep track 
of enormous amounts of data. The disaggregations incorporated in such projec-
tions are introduced either because forecasts of the specified population sub-
groups are important in their own right, or because it is believed that simple 
and regular trends are more likely to be discovered at relatively higher levels of 
disaggregation.

High levels of disaggregation permit a greater flexibility in the use of the pro-
jections by a wide variety of users; they also often lead to a detection of greater 
consistency in patterns of behavior among more homogeneous population sub-
groups. But greater disaggregation requires the estimation of ever greater numbers 
of data points, both those describing initial population stocks and those defin-
ing the future rates of events and flows that are expected to occur. The practical 

Table 6.2  Closed and open multiregional population forecasts (in thousands) for the North 
(top), Midlands (middle) and South (bottom) regions, 2009–2021

Note: IM immigration, EM emigration
Source Raymer et al. (2012)

Region Percentile Closed model Open model: IM counts and EM 
rates

North 25 15.08 16.6

50 15.15 16.7

75 15.21 16.79

Midlands 25 10.32 11.36

50 10.36 11.41

75 10.40 11.47

South 25 28.07 32.97

50 28.17 33.12

75 28.27 33.28

Total 25 53.47 60.93

50 53.67 61.23

75 53.88 61.54

6.3 Multiregional Population Projection Models with Uncertainty: An Example
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difficulties of obtaining and interpreting such data soon outstrip the benefits of 
disaggregation.

Mathematical descriptions of schedules of demographic rates, here called 
parameterized model schedules, offer a means for condensing the amount of infor-
mation to be specified as assumptions. They also express this condensed informa-
tion in a language and in variables that are more readily understood by the users of 
the projections, and they provide a convenient way of associating the variables to 
one another, extrapolating them over time, and relating them to variables describ-
ing the economic environment that underlies the projections.

The use of parameterized model schedules in the population projection process 
allows one to develop an effective description of how the components of demo-
graphic change (for example, mortality, fertility, and migration) are assumed 
to vary over time, in terms of a relatively few parameters. To the extent that the 
assumptions correctly anticipate the future, the projection foretells what indeed 
comes to pass. And insofar as the parameters are readily interpretable by nonde-
mographer users of the projection, they make possible the assessment of the rea-
sonableness of a set of assumptions instead of a set of projected population totals.

Finally, a trend extrapolation of each and every age-specific rate in a population 
projection is an excessive concession to flexibility that can readily produce erratic 
results. On the other hand, to assume that change in a set of rates occurs uniformly 
at all ages is to go against experience. Parameterized model schedules offer a way 
of introducing flexibility while retaining the interdependence between the rates of 
a particular schedule.

6.4.2  Parameterized Model Schedules

Parameterized model schedules describe the remarkably persistent regularities in 
age pattern that are exhibited by many empirical schedules of age-specific rates. 
Mortality schedules, for example, normally show a moderately high death rate fol-
lowing birth, after which the rates drop to a minimum between ages 10 and 15, 
then increase slowly until about age 50, and thereafter rise at an increasing pace 
until the last years of life. Fertility rates generally start to take on nonzero val-
ues at about age 15 and attain a maximum somewhere between ages 20 and 30; 
the curve is unimodal and declines to zero once again at some age close to 50. 
Similar unimodal profiles may be found in schedules of first marriage, divorce, 
and remarriage.

The most prominent regularity in age-specific schedules of migration is the 
high concentration of migration among young adults; rates of migration also are 
high among children, starting with a peak during the first year of life, dropping 
to a low point at about age 16, turning sharply upward to a peak near ages 20–22, 
and declining regularly thereafter, except for a possible slight hump or upward 
slope at the onset of the principal ages of retirement.
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Fig. 6.5  An assortment of model schedules. Source Rogers (1986)

6.4 Parameterized Multiregional Forecasting Models: Α Time Series Approach
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Figure 6.5 illustrates a number of typical age profiles exhibited by schedules of 
rates in multistate demography. All were fitted with various reduced forms of the 
model migration defined in Eq. (6.7) below.

The shape, or profile, of a schedule of age-specific rates is a feature that may be 
usefully examined independently of its intensity, or level. This is because there are 
considerable empirical data showing that although the latter tends to vary signifi-
cantly from place to place, the former remains remarkably similar.

Α large number of model schedules have been developed by actuaries, demog-
raphers, and statisticians over the past decades. In general, such schedules take 
one of two distinct approaches to summarizing a demographic schedule of rates 
in terms of a relatively few parameters: functional (analytical) representations 
and relational representations. Functional representations describe the age pat-
tern of the entire schedule by a mathematical curve whose shape depends on 
the particular function that is adopted and on the values assumed by the several 
parameters that appear in this function. The Heligman and Pollard (1980) model 
mortality schedule and the Rogers and Castro (1981) model migration schedule 
are examples of this class of model schedules. Because the age patterns of most 
demographic schedules involve, at the very least, indices that position the math-
ematical curve along the age axis (location), establish its level (height), and deter-
mine its upward and downward slopes (shape), functional representations of such 
schedules necessarily require several parameters to describe most age patterns. 
This need for multiple parameters has led many demographers to adopt the more 
economical relational representations instead. Relational representations describe 
an observed age pattern by associating it with a “standard” pattern and specifying 
the observed schedule’s particular deviations from this standard pattern in terms 
of, typically, one or two parameters. The Brass (1974) and Lee and Carter (1992) 
model mortality schedules, the Coale and Trussell (1974) model fertility schedule 
are members of this class of model schedules.

6.4.3  A Parameterized Forecasting Model

McNown et al. (1995) set out parameterized forecasting models of the U.S. popu-
lation that emphasize model selection over demographic accounting and that do 
so by focusing on the temporal evolution of model schedule parameters for the 
schedules used in the projection process.

The application of such a methodology to fertility and mortality provides a 
unified forecasting system for two key sources of demographic change. Because 
of the absence of adequate data over time on migration, the contribution of this 
demographic component of change often are dealt with by assuming a fixed 
annual level or rate of net migration. This forecasting system yields unconditional 
or conditional forecasts of age-specific vital rates, and the populations implied by 
these rates. Reliance on time series methods, rather than on expert opinion, yields 
forecasts that are replicable and based on transparent assumptions. The use of time 
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series methods also yields interval forecasts of the model schedule parameters, 
and, indirectly, interval forecasts of the demographic rates, populations, and other 
summary measures of demographic change.

When the vector autoregressive models (VAR), used in the preceding section 
of this chapter, are unsuitable for models of larger scale, autoregressive integrated 
moving average (ARIMA) models may be more appropriate alternatives. If plots 
of the times series suggest nonstationary behavior, first or higher order differenc-
ing may be required.

The use of parameterized schedules provides a compact representation of the 
vast quantity of data involved in projections of age-specific rates. Summarizing 
complete age profiles with a small number of parameters yields a transparent 
description of historical and projected changes in these profiles. Age profiles of 
mortality, fertility, and migration may be represented by variants of the multiexpo-
nential model,

where x indicates years of age, and yx, is a rate or probability at age x. The other 
elements in this function are parameters that collectively define the age profiles. 
In previous research, for example, in Rogers and Little (1994) and it was demon-
strated that variants of the multiexponential model can satisfactorily represent age 
profiles of mortality, fertility, and migration across a number of populations. In 
modeling mortality, the individual terms of the function are included to represent, 
respectively, a constant term, infant and childhood mortality declining exponen-
tially through the early years of age, the “accident hump” of young adult mortality, 
and senescent mortality following an upward sloping curve (McNown and Rogers 
1992). For fertility, only the third term of the function is retained, with the four 
parameters estimated over the childbearing ages (Knudsen et al. 1993). Migration 
schedules, on the other hand, typically involve the entire multiexponential model. 
Projections made at five year intervals normally follow the standard equation

where, as before, {P(t)} is a vector of populations by age at year t, G(t) is the 
growth matrix of fertility and survivorship rates, and {I(t)} is a vector of net immi-
grants by age.

The question regarding the relative performance of simple versus complex 
models is often addressed by presenting the issue in ex ante terms. Recognizing 
that every population projection starts out without a “track record,” with which 
to evaluate performance, a conventional approach focuses on two indices of such 
performance: the plausibility of the point forecast produced and the range of 

(6.7)

f (x) = a1 exp (−α1x)

+ a2 exp
{

α2(x − µ2)− exp
[

−�2(x−µ2)
]}

+ a3 exp
{

α3(x − µ3)− exp
[

−�3(x − µ2)
]}

+ a4 exp (�4x)

+ c

(6.8){P(t + 1)} = G(t){P(t)} + {I(t)}

6.4 Parameterized Multiregional Forecasting Models: Α Time Series Approach
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uncertainty surrounding that point forecast. The latter calls for the development 
of a stochastic forecasting methodology. Model schedule representations of past 
age-specific fertility and mortality rates, ARIMA models of their parameterized 
representations over time, and Monte-Carlo simulations of their associated future 
stochastic population projections form the core of this methodology.

6.5  Discussion and Conclusion

In considering the question of whether simple models outperform complex mod-
els it is essential to recognize that there is not merely one simple model against 
which the complex cohort component model can be compared. Rather there are 
many different simple methods—growth rate extrapolations, trend extrapola-
tions, ARIMA models, etc.—from which to choose. Furthermore, within each of 
these categories there are subsequent modeling decisions that can substantially 
affect the results produced by the simple projections. For example, after choos-
ing trend extrapolation as a simple projection framework, one must then decide 
on the base period over which to establish the trend. In the case of fertility projec-
tions, for example, it is clear that a choice from among the most recent five years, 
the past ten years, or the past thirty years will lead to three vastly different values 
for the trend in fertility. Yet another example is offered within the ARIMA mod-
eling framework, in which the projections of total population may demonstrate the 
sensitivity of the point and interval forecasts to judgmental issues of model speci-
fication. A true measure of forecasting uncertainty needs to incorporate both the 
uncertainty over the choice of technique and that of model specification.

Experiments carried out with simple models, have revealed an apparent trade-
off between plausible point forecasts and narrower interval forecasts. Methods 
that base trend estimates on long historical periods tend to produce narrower con-
fidence intervals. The smaller confidence intervals of the methods that rely on 
longer time series result from the inverse relation between dispersion and the num-
ber of observations, as implied by standard statistical formulas. The implausibility 
of the point forecasts result from the use of historical trends that are no longer 
relevant to current and future demographic changes.

The particular integration of time series methods, parameterized model sched-
ules, and the cohort component projection framework presented, for example, in 
McNown et al. (1995) provides a compromise within the trade-off between narrow 
interval forecasts and plausible central forecasts. For forecast horizons of thirty 
years or less, this projection methodology produces point and interval forecasts 
that appear reasonable in relation to those developed by others. Although consum-
ers of demographic projections would prefer even narrower forecast intervals, the 
uncertainty described by these projections is a reflection of the historical variation 
in the components of demographic change.

In conclusion, a number of observations are suggested by this review of the 
simple versus complex models debate. They are listed here, in no particular order, 
to stimulate further informed debate on the issue.
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First, whether simple models outperform complex models is an empirical issue 
that depends on the particular historical period observed and the degree of demo-
graphic variability exhibited during this period. In consequence, it is imperative to 
somehow control for the relative degree of difficulty associated with each histori-
cal period. Rigorously developed forecasting tournaments could be a useful vehi-
cle for introducing such control.

Second, paralleling the degree of difficulty of the phenomenon is the degree 
of robustness of the model adopted to forecast that phenomenon. Although many 
argue that “there is no single best model for all occasions,” that proposition is 
unconvincing because forecasters usually cannot anticipate the likely occasions 
that are in prospect. They are in the position of couples at a ballroom dancing 
competition, drawing dancing assignments out of a hat. To be best at waltzing 
does them no good, if the selection is to dance a tango. Thus of what ex ante use 
are findings such as: “…exponential extrapolation was found to be most accurate 
for rapidly growing or declining areas, whereas linear extrapolation was most 
accurate for moderately growing areas.” (Isserman 1977, p. 247)

Third, accuracy is a multidimensional notion for which aggregate indices, such 
as root-mean-square errors, are an inadequate measure. Such indices are subject to 
the ruses of heterogeneity. For example, they weight equally the errors contributed 
by populations of vastly different sizes. And they are highly susceptible to com-
pensating errors generated by fertility, mortality, and migration forecasts that err 
in opposing directions, thereby according to a spurious sense of accuracy for the 
forecasting exercise.

Fourth, the simple versus complex classification has been viewed as a dichotomy 
when in fact it is a continuum. If, simple exponential growth models with no age or 
locational disaggregation represent one end of the continuum, among the extrapola-
tive linear forecasting models, and detailed multiregional growth models the other, 
then what can be said of the relative accuracy of models that lie in between these 
extremes? Should their performance indices lie in between those of the two defining 
the continuum? And if they do not (which is likely), then what conclusions can one 
legitimately draw about the simple versus complex model issue?

Fifth, model performance is a multifaceted concept that involves much more 
than forecasting accuracy alone. Additional attributes such as transparency, utility, 
and face validity all play an important role in the presentation of official popula-
tion forecasts. Even though simple models may have predicted last year’s popula-
tion more accurately, would one bet one’s earnings that they will do so again for 
next year’s population?

Much of demographic analysis has focused on the appropriate specification and 
accurate measurement of the dependent variables at the center of population fore-
casting activities. This body of work has helped to identify regularities that may 
have been obscured by earlier inappropriate representations and measurements. 
The modeling strategy that this suggests for population forecasting efforts may 
be summarized in the motto: forecast only changing behavior, taking appropriate 
advantage of well-established regularities and accounting relationships, and do not 
forecast “de novo” relationships that are stable enough to not need forecasting. 
Exploiting observed regularities in the relative age patterns of demographic rates 

6.5 Discussion and Conclusion
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and adopting the standard age-specific demographic accounting equations are prom-
inent examples of such an approach, and it is a strategy that still offers the best hope 
for marginally reducing the error made in past forecasts.

Finally, demographic forecasts should fit the needs of users, particularly with 
regard to level of detail and age disaggregation. Forecasts of the total population 
are of little use to school boards or health care providers, who are more concerned 
with future populations of specific age groups. Users of demographic forecasts 
should also understand that projections come with some degree of uncertainty. 
Conditional confidence intervals offer estimates of the extent of uncertainty, and 
these are particularly useful if they are statistically based intervals.

The particular integration of time series methods, parameterized model sched-
ules, and the cohort-component projection model presented in this chapter pro-
vides a framework for demographic forecasting that is consistent with these 
objectives. The simple models that may be employed as benchmarks in evaluating 
the plausibility of forecasts do not fare well according to these ex ante criteria, 
however. But the demonstrated success of simple extrapolations in ex post forecast 
accuracy studies establishes a role for these methods, in tracking the performance 
of complex methods that do meet the criteria of face validity, internal consistency, 
and level of detail.
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Abstract An average individual’s remaining life expectancy free of  disability—
referred to as healthy or active life expectancy—is a popular measure of popu-
lation’s state of health. Such expectancies are often calculated to address the 
question whether the currently observed increases in total life expectancy are 
accompanied by increases in active life expectancy. Past studies used to conclude 
that the positive trends in the prolongation of life had not been matched by similar 
trends in the extension of healthy life. Typical of their assessments was the pessi-
mistic conclusion that Americans were not living longer healthy lives. Additions to 
life expectancy, it was argued, were concentrated in the disabled years—primarily 
years of long-term disability. This chapter challenges such conclusions and dem-
onstrates that a reliance on prevalence rather than incidence rates in the analysis 
leads to the pessimistic assessment.

Keywords Active life expectancies · Dependent elderly populations · Activities 
of daily living · Multistate demography

7.1  Introduction

A number of past studies of longevity and health among the elderly that have com-
pared changes in total life expectancy with corresponding changes in disability-
free life expectancy have concluded that the positive trends in the prolongation 
of life have not been matched by similar trends in the extension of healthy life. 
Many reached the relatively pessimistic conclusion that Americans were not liv-
ing longer healthy lives. Additions to life expectancy, it used to be argued, were 
mostly concentrated in the disabled state.

A representative sample of answers to the question appeared in the May 1991 
special issue of the Journal of Aging and Health, entitled “Living Longer and 
Doing Worse? Present and Future Trends in the Health of the Elderly” (Haan et al. 
1991). The answers to this question were mostly on the pessimistic side. Common 
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to almost all such studies was a reliance on prevalence rather than incidence rates 
for the analysis (e.g., Crimmins et al. 1989).

7.2  The Problematic Prevalence Rate Once Again

Can prevalence rates be increasing even while incidence rates for dependency and for 
recovery remain unchanged or are improving? Consider, for example, the transitions 
between independent (healthy) and dependent (disabled) statuses set out in Fig. 7.1. 
These numbers came from a longitudinal data set: the 1986 Longitudinal Study of 
Aging (LSOA) collected by the U.S. Department of Health and Human Services 
(Rogers et al. 1990). This data set is the result of a reinterview of 5151 individuals, 
aged 70 and over, in an earlier survey, the 1984 Supplement on Aging (SOA).

Classifying the respondents as dependent or independent on the basis of their 
responses, and appropriately weighting the sample flows to approximate national 
totals, gave rise to the aggregate flows set out in Fig. 7.1. Respondents were con-
sidered dependent if they were institutionalized (in 1986) or needed assistance 
with any one of the following seven tasks (called Activities of Daily Living, or 
ADLs for short) eating, bathing, dressing, transferring (getting in or out of a bed 
or chair), walking, toileting (getting to or using the toilet), and getting outside.

7.2.1  A Simple Illustration

According to Fig. 7.1, about 11,629,247/13,081,356 = 88.9 % of the U.S. elderly popu-
lation aged 70 and over was independent in 1984 and 1,452,109/13,081,356 = 11.1 % 

Fig. 7.1  Transitions among active life statuses: United States, 1984–1986. Source Adapted from 
Rogers et al. (1989)
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was dependent. Two years later, only 84.65 % of the populations was independent and 
15.35 % was dependent. Those institutionalized between 1984 and 1986 were added to 
the dependent category, thereby inflating it somewhat. Because no data on the institu-
tionalized population in 1984 were collected by the survey, one could not adopt a three-
way status disaggregation and had to either add the institutionalized population to the 
dependent total or to delete it altogether. After experimenting with both alternatives, and 
concluding that the general “story” told by both versions was the same, the first alterna-
tive was adopted.

Applying the proportions describing the interstatus transitions, set out in 
Fig. 7.1, to the 1984 two-status population, and adding the “new” entrants (i.e., the 
population aged 70–72) into the elderly population during the 1984–1986 interval, 
one obtains the 1986 population distribution:

Dependent population
(0.53119)1,452,109 + (0.10378)11, 629,247 + 302,179 = 2,280,388

Independent population
(0.19405)1,452,109 + (0.80059)11,629,247 + 2,982,821 = 12,574,861

where

0.53119 = 634,640/(136,711 + 634,640)
0.10378 = (277,729 + 929,129)/11,629,247
0.19405 = 281,780/1,452,109
0.80059 = 9,310,260/11,629,247.

A comparison of the 1986 % dependent with its 1984 counterpart reveals that 
the prevalence of dependence increased over the two years. (This occurs even if 
the institutionalized population is left out of the 1986 dependent total.) The per-
spective of the prevalence-rate life table model would lead one to conclude that the 
population was experiencing a deterioration in its health status. But this pessimis-
tic view is unwarranted; data over a single unit time interval are insufficient to pro-
duce such a finding. What one needs are comparable data for the second unit time 
interval (1986–1988) and a comparison of the interstatus transition proportions.

Alternatively, consider the hypothetical scenario of no change. Keeping the 
proportions fixed at their 1984–1986 values, gives the projection:

Dependent population
(0.53119)2,280,388 + (0.10378)12,574,861 + 306,540 = 2,822,859

Independent population
(0.19405)2,280,388 + (0.80059)12,574,861 + 3,099,460 = 13,609,276

The prevalence of dependency increases once again (from 15.35 to 17.18 %), 
yet the projection assumed that health status transition proportions did not change 
over time. How can health conditions become worse if the probabilities of becom-
ing dependent, recovering to independent status, and dying are all held constant? 
The answer lies in the measure of health conditions: the prevalence index. By 
combining both subpopulations in its denominator, it biases the findings in the 

7.2 The Problematic Prevalence Rate Once Again



98 7 When Regions Are Status Categories …

direction of increased dependency, whenever the independent population is very 
much larger than the corresponding dependent population. The much heavier 
weighting that it accords to the transition to dependency virtually guarantees that 
the subsequent percentage dependent figure will increase. For example, in the 
above numerical illustration, the independent population is approximately eight 
times the size of the dependent population. Consequently, the probability of the 
transition to dependency (0.10378) receives eight times the “weight” received by 
the corresponding probability of transition to independence (0.19405). The result 
is an increase in the percentage of the population that is dependent.

The above discussion has ignored the effects of age composition. But the same 
result occurs in a unistate age-specific analysis, as the results of a full-blown age-
specific analysis that produces a prevalence-based life table demonstrates.

7.2.2  The Prevalence Rate Life Table Model

Imagine a normal life table that starts with a cohort of, say, 100,000 70-year olds 
and survives them age-by-age until the last member dies. Because the LSOA data 
span a 2-year interval (1984–1986), consider a life table that deals with 2-year age 
groups: 70–72, 72–74, and so on, until the last open-ended age group of 96 years 
and older. The mortality regime is that which existed during 1984–1986, and the 
two sexes are combined. Standard calculations, using 1986 prevalence rates, give 
rise to a remaining life expectancy of 12.88 years at age 70 and of 7.74 years at 
age 80 (Rogers et al. 1990).

The LSOA data reveal that 9.1 % of 70- to 72-year olds in 1986 were in the 
dependent status, as indicated by their need for assistance in carrying out at least 
one of the seven ADLs recorded by the survey. The life table lists 192,942 per-
sons as being members of the stationary life table population aged 70–72 years 
at last birthday, the first entry in the usual L(x) column. Applying the prevalence 
rate of 9.1 % to that figure yields 17,562 dependent persons, with the remaining 
175,380 individuals classified as independent. Continuing on in this manner gives 
rise to a total life table dependent population of 276,716 and a corresponding total 
independent population of 1,011,476. Dividing each of these two figures by the 
size of the initial cohort of 100,000 results in a life expectancy free of depend-
ency, of 10.11 years and a corresponding expectation of life with dependency of 
2.77 years. Thus, according to this 1986 life table, a 70-year old individual can 
expect to live 78.49 % of his or her expected remaining lifetime in the independ-
ent state. This index is the active life percentage. Because this form of life table 
does not distinguish between independent and dependent individuals in the start-
ing cohort, no separate active life expectancy percentages can be calculated for the 
two subpopulations: those independent and those dependent at age 70. Moreover, 
note that a projection from 1986 to 1990 shows a decline in the Active Life 
Expectancy to 74.69 % (Table 7.1).
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The idea of combining mortality and morbidity or disability data to analyze 
expected disability-free years of life within the life table perspective is not new, 
having been already proposed, for example, by statisticians almost over a cen-
tury ago (DuPasquier 1912). Yet a number of studies continue to use Sullivan’s 
(1971) particular formulation of the Expectation of Life Without Disability Index, 
obtained from what for convenience may be called “the prevalence rate life table 
model.” The use of incidence rates in a computational sequence that produces an 
empirically based multistate life table is relatively more recent, however, with the 
first such empirical model appearing in Rogers et al. (1989). Both forms of life 
table develop estimates of the number of remaining disability-free years of life.

According to Sullivan (1971), for example, this expectation of disability is an 
estimate of the number of years of disability a member of a life table cohort would 
experience if current age-specific rates of mortality and disability prevailed through-
out the cohort’s lifetime. Two features characterize the Sullivan method of calculat-
ing a life table. First, the age-specific disability rates referred to are prevalence rates 
and not incidence rates. That is, they do not define the rate at which healthy individ-
uals become disabled individuals. Second, only cross-sectional data for one point in 
time—on the age-specific fractions disabled at time t—are needed to fit the model. 
Both features are dropped in the multistate life table, which needs panel-type data 
that describe movements between two distinct points in time, t to t + 1, say.

7.2.3  When Regions Are Status Categories: A Multistate 
Model of Active Life

A multistate life table analysis of active life expectancy begins with a derivation 
of age-specific transition probabilities that describe the interstate movements of 
the two state-specific subpopulations—independent and dependent persons—and 
their respective probabilities of dying within the age interval. Starting with a radix 
of arbitrary size for each of the two subpopulations, the computational procedure 
both survives persons in their current status and also moves persons from one 

Table 7.1  A comparison of the unistate prevalence life table model results

Source Rogers et al. (1990)

Model Active life expectancy for the independent population  
at age 70

1. Prevalence-rate life table model (1986)

Life expectancy at 70 12.88

Active life expectancy at 70 10.11

Active life % 78.49

2. Prevalence-rate life table model (1990)

Life expectancy at 70 12.88

Active life expectancy at 70 9.62

Active life % 74.69

7.2 The Problematic Prevalence Rate Once Again
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status to the other. Adding up the number of person-years that are lived in each 
status by those originally in each of the two radices gives rise to expectations of 
remaining life lived in each of the two statuses (independent and dependent).

By way of illustration, consider the health data collected by the first and sec-
ond waves of the Massachusetts Health Care Panel Study and used by Katz et al. 
(1983). Calculating a standard multistate life table model using that data set that 
allowed returns to independence, Rogers et al. (1989), found that active life expec-
tancy for those initially independent decreased with age, from 14.7 years for those 
aged 65 years to 5.6 years for those aged 80 years and to 3.8 for those aged 85 
and older. The single-year-of-age multistate analysis outlined in that article also 
provides a set of active life expectancies for those initially dependent—the corre-
sponding numbers for this group being 11.1, 2.5, and 0.9 years, respectively.

Returning next to the LSOA data illustrated in Fig. 7.1, consider the results of 
a standard multistate life table of that data, set out in Table 7.2, which records the 
active life expectancies for the total United States population, according to initial 
independent and dependent functional statuses. The results are reported for the 
total population only, and age is in even-numbered years, beginning at age 70, 
because the LSOA began at age 70 and reinterviewed respondents two years later. 
Therefore, the risk of an occurrence of an event was calculated over a two-year 
interval. Overall, life expectancies decrease with increasing age, and the propor-
tion of time spent in an independent status decreases correspondingly. Further, life 
expectancies are higher for the independent than the dependent population.

Panel A in Table 7.2 records that individuals who were independent at age 
70 could expect to live another 13.4 years, on average, of which 75 % could 

Table 7.2  Expectations of remaining life for individuals aged 70 and over: two functional 
 statuses, United States, 1984a

Source: Calculations based on LSOA data (U.S. Department of Health and Human Services 1988)
aBased on 7ADLs. (dependent is defined as limited in 1 or more ADLs)
Percentages may vary due to rounding

A. Independent at age x B. Dependent at age x

Age x Total 
remaining 
years

Remaining 
independent 
years

Remaining 
dependent 
years

Total 
remaining 
years

Remaining 
independent 
years

Remaining 
dependent 
years

70 13.4 10.1 (75 %) 3.4 (25 %) 12.5 6.4 (51 %) 6.1 (49 %)

72 12.2 8.9 (73) 3.3 (27) 11.3 5.5 (48) 5.8 (52)

74 11.1 7.8 (71) 3.3 (29) 10.1 4.1 (41) 6.0 (59)

76 10.0 6.8 (68) 3.2 (32) 8.9 2.8 (32) 6.1 (68)

78 9.0 5.9 (66) 3.1 (34) 8.0 2.4 (29) 5.7 (71)

80 8.1 5.2 (63) 3.0 (37) 7.2 2.0 (28) 5.2 (72)

82 7.3 4.5 (61) 2.8 (39) 6.5 1.6 (25) 4.9 (75)

84 6.6 3.9 (59) 2.7 (41) 5.9 1.4 (24) 4.5 (76)

86 6.0 3.4 (57) 2.6 (43) 5.3 1.1 (21) 4.2 (79)

88 5.5 3.1 (56) 2.4 (44) 4.8 0.9 (18) 4.0 (82)

90 5.2 2.9 (56) 2.3 (44) 4.5 0.8 (19) 3.7 (81)

92 4.9 2.6 (53) 2.3 (47) 4.3 0.8 (19) 3.5 (81)
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be expected to be spent in the active status and 25 % in the dependent status. 
Individuals who were independent at age 90 could expect to live another 5.2 years, 
of which 56 % could be expected to be spent in the active status and 44 % in the 
dependent status.

Panel B in Table 7.2 records that individuals who were dependent at age 70 
could expect to live another 12.5 years, on average. Such individuals could expect 
to live about one-half of their remaining years in active life (i.e., by a “recovery”). 
Individuals in the United States who were dependent at age 90 could expect to live 
another 4.5 years, of which 80 % would be spent in the dependent status. With 
increasing age, the chances of experiencing life in a dependent status increases 
and the chances of experiencing a recovery decreases.

In conclusion, an individual who was independent at age 70 could expect to 
live an additional 10.1 years in an active status. An individual who was independ-
ent at age 70 could expect to spend 3.3 years in the dependent status (13.4 year 
minus 10.1 years). Overall, individuals who were dependent at age x relative to 
those who were dependent at age x could expect longer, more active lives, with a 
smaller proportion of time spent in a dependent status (compare panels A and B).

7.3  Changes in Active Life Among the Elderly  
in the United States: 1984–1988

In a later study, Rogers et al. (1991) turned to the data produced by the 
Longitudinal Study of Aging (LSOA) in its second wave. At the time of the study, 
the LSOA data included interviews in 1984, 1986, and 1988. Because it origi-
nally began as a survey of the noninstitutionalized population, the 1984 survey 
included only the civilian population. The LSOA in 1986, however, also included 
those elderly who became institutionalized between 1984 and 1986. Moreover, the 
LSOA in 1988 included those who remained institutionalized between 1986 and 
1988, and those who were institutionalized but who “recovered” and reentered the 
civilian population in 1988. Therefore, this latter data set permitted the calculation 
of transitions into and out of institutions between 1986 and 1988.

In this study, respondents were classified as independent, dependent, or institu-
tionalized based on their ADL responses and on whether they reported spending 
time in an institution. For consistency with the earlier research, life-table results 
were once again based on the seven ADLs used earlier. Individuals who were 
institutionalized were included in the multistate analysis. Those who were neither 
institutionalized nor dependent were coded as being independent.

Figure 7.2 displays the static and dynamic aspects of individuals and their 
statuses for and transition patterns between 1986 and 1988. The estimates are 
weighted to represent the U.S. population aged 72 and above. The numbers in 
parentheses show the 1986 population. The numbers along the curved arrows rep-
resent the number of individuals who remained in their status between 1986 and 

7.2 The Problematic Prevalence Rate Once Again
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1988. Finally, the numbers along the straight arrows show transitions between sta-
tuses occupied in 1986 and 1988.

Several important points emerge from this illustration. First, the independ-
ent population is much larger than either the dependent or the institutionalized 
population—for example, the 1986 independent population is almost six times 
larger than the corresponding dependent population. Second, the independent and 
dependent populations display a greater propensity to retain their status than to 
transfer to any other status—for instance, between 1986 and 1988, some 83 % 
of the independent respondents remained independent and 39 % of the depend-
ent respondents remained dependent. Third, most of the institutionalized popula-
tion either remained institutionalized or died—of those who were institutionalized 
in 1986, 44 % died in 1988, and 36 % remained in an institution. Fourth, among 
those who were dependent or institutionalized in 1986, a relatively large percent-
age were able to regain a more active status—for example, over one-quarter of 
those who were dependent in 1986 became independent in 1988, and almost 20 % 
of those who were institutionalized in 1986 became independent in 1988. This 
latter finding, that a larger proportion of the elderly institutionalized population 
became independent rather than dependent, is surprising. These results may be 
due to elderly who have short “spells” of institutionalization because of physical 
ailments; once these ailments are remedied, the elderly can become independent 
again. Or, it may be that these transitions do not represent a “true” picture because 
they do not control for the age structure of the population. A more useful and pre-
cise set of results, is possible with an age-specific multistate analysis (Rogers et al. 
1991). Such an analysis revealed a number of interesting findings. First, as might 
be expected, persons who were initially independent were projected to have longer 
lives than those in the other two statuses. For example, those who were independ-
ent at age 72 could expect to live almost 12 more years, to age 84; those in the 

Fig. 7.2  Transitions among active life statuses: United States, 1986–1988. Source Adapted from 
Rogers et al. (1991)
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dependent status could expect to live an additional 10 years, to 82; and those in 
institutions could expect to live 7 more years, to 79 (Table 7.3).

Perhaps of greater importance than total life expectancy, however, are the 
expected years to be spent in active life. Those who were independent at age 72 

Table 7.3  Expectations of remaining life for individuals aged 72 and over: United States, 1986a

Source Calculations based on I.SOA data (U.S. Department of Health and Human Services 1990)
aBased on 7 ADLs (dependent is defined as limited in 1 or more ADLs)
Percentages may vary due to rounding

Age x Total remaining 
years

Remaining 
independent

Remaining 
 dependent years

Remaining 
 institutionalized years

A. Independent at age x

72 11.7 9.6 (83 %) 1.4 (12 %) −6 (6 %)

74 10.6 8.6 (81) 1.4 (13) −6 (5)

76 9.6 7.6 (80) 1.4 (14) −6 (6)

78 8.7 6.7 (78) 1.3 (16) −6 (7)

80 7.8 5.9 (76) 1.3 (17) −6 (8)

82 7.0 5.1 (74) 1.3 (18) −6 (8)

84 6.4 4.6 (71) 1.3 (20) −5 (8)

86 5.8 4.0 (69) 1.3 (22) −5 (9)

88 5.2 3.5 (67) 1.2 (23) −5 (10)

90 4.9 3.3 (67) 1.2 (25) −4 (8)

B. Dependent at age x

72 10.3 6.0 (58 %) 3.7 (37 %) 0.7 (6 %)

74 9.3 5.0 (54) 3.6 (38) 0.7 (7)

76 8.4 4.2 (50) 3.5 (42) 0.7 (8)

78 7.5 3.5 (47) 3.3 (44) 0.7 (10)

80 6.8 3.0 (45) 3.0 (44) 0.7 (11)

82 6.1 2.5 (41) 2.9 (47) 0.7 (12)

84 5.6 2.0 (35) 2.8 (51) 0.8 (14)

86 5.1 1.6 (31) 2.7 (54) 0.8 (15)

88 4.8 1.5 (31) 2.6 (55) 0.7 (14)

90 4.5 1.4 (31) 2.5 (56) 0.7 (13)

C. Institutionalized at age x

72 7.2 4.6 (64 %) 0.7 (10 %) 1.9 (27 %)

74 5.0 2.3 (47) 0.4 (8) 2.3 (46)

76 4.2 1.6 (38) 0.3 (7) 2.4 (55)

78 4.1 1.7 (41) 0.3 (8) 2.1 (51)

80 3.9 1.6 (40) 0.3 (9) 2.0 (51)

82 3.3 1.0 (31) 0.3 (8) 2.0 (61)

84 3.0 0.9 (31) 0.3 (9) 1.9 (63)

86 3.0 0.8 (26) 0.4 (12) 1.8 (62)

88 2.7 0.6 (21) 0.4 (13) 1.8 (66)

90 2.3 0.4 (16) 0.2 (9) 1.8 (75)

7.3 Changes in Active Life Among the Elderly in the United States: 1984–1988



104 7 When Regions Are Status Categories …

could expect to live ten of their 12 remaining years, or over 80 % of their lives, in 
an active state; another 1.4 years (12 %) in the dependent, and 0.6 years (6 %) in 
an institution.

Even for those who were initially dependent, especially at the younger ages, 
it was projected that a large percentage of their lives would be spent in an active 
state. For example, those who were dependent at age 7 could expect to spend 
almost 60 % of their lives active; 36 % of their lives as dependent, and only 6 % of 
their lives as institutionalized. However, with increasing age, the chance of trans-
iting to an independent state decreased, and the chance of remaining dependent 
increased, as did the chance of becoming institutionalized.

Among those who were institutionalized, the general trend was to remain insti-
tutionalized. However, a chance to become active or to return to a dependent state 
was evident. For example, at age 74, those who were institutionalized could expect 
to live an additional five years, half of which would likely be spent in an institu-
tion, but with almost half projected to be spent in an active state.

Multistate life table models assume homogeneity of the population at each age 
with respect to the probabilities of making a transition from one status to another. 
A disaggregation by sex, for example, reduces heterogeneity. So does a disag-
gregation of those in the dependent status. The sample size of the LSOA permits 
only a few such disaggregations. In Table 7.4, are set out the life expectancies of 
elderly persons (aged 72 and over) disaggregated into three functional statuses: 
independent, less (minor) dependent, and more (major) dependent. The calcula-
tions were based on data collected by the Longitudinal Study of Aging (LSOA) for  
1984–1986 and 1986–1988.

In Rogers et al. (1991) the less-dependent status is viewed as a transitional 
rather than a permanent state of being; it is likely that individuals pass from inde-
pendence first to less and then to more dependence, or from independence to less 

Table 7.4  Comparisons of expectations of remaining life for individuals at age 72: United 
States, 1984 and 1986a

Source Rogers et al. (1991)
aBased on 7 ADLs (less dependent persons are those limited in 1 or 2 ADLs; the more dependent 
have more limitations)
Percentages may vary due to rounding

Initial survey Year Total remaining 
years

Remaining 
independent 
years

Remaining 
less dependent 
years

Remaining 
more dependent 
years

A. Independent at age 72

1984 12.0 8.7 (72 %) 1.3 (11 %) 2.0 (17 %)

1986 12.4 10.0 (81 %) 1.0 (8 %) 1.4 (12 %)

B. Less dependent at age 72

1984 10.9 5.4 (49 %) 2.8 (26 %) 2.7 (25 %)

1986 11.2 6.6 (59 %) 2.4 (22 %) 2.1 (19 %)

C. More Dependent at age 72

1984 10.0 3.6 (36 %) 1.3 (13 %) 5.1 (51 %)

1986 10.7 5.7 (53 %) 1.2 (11 %) 3.9 (36 %)
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dependence and then back to independence. The more dependent status is apt to be 
more permanent, with relatively few individuals recovering from this status. After 
some experimentation, a definition of minor dependence as dependence in at most 
two out of seven activities of daily living was adopted.

Table 7.4 shows that according to the 1984–1986 data, individuals who were 
independent at age 72 could look forward to a relatively long, active life: 72 % of 
their 12.0 expected remaining years of life were likely to be lived in the independ-
ent status, 11 % in the less-dependent status, and 17 % in the more-dependent sta-
tus. Those with minor dependencies at age 72 were projected to end up balancing 
active lives with years of dependency: 49 % of their 10.9 expected remaining years 
of life being spent in the independent status, 26 % in the less dependent status, and 
25 % in the more dependent status. Finally, persons with major dependencies at 
age 72 generally were expected to remain more dependent, but with a chance of 
returning to independent status: only 36 % of their expected average remaining 
lifetime of 10.0 years were projected to be spent in the independent status, 13 % in 
the less-dependent status, and 51 % in the more-dependent status.

Table 7.4 also allows contrasts to be made of these expectations of remaining 
life at age 72 with the corresponding life expectancies calculated using data for the 
1986–1988 period. Because those interviewed in the earlier 1986 survey aged over 
the ensuing two-year time interval, the results are necessarily based on persons 
aged 72 years and over. To provide controlled comparisons, the mortality rates of 
the earlier periods were retained. Thus changes in status-specific life expectancies 
resulted entirely from changes in health status transition propensities.

Although mortality rates were held constant, the total life expectancies at age 
72 increased over the two-year interval, purely as a consequence of changes in 
health status transition probabilities. Even with fixed mortality rates, longevity 
increased. Had mortality rates been allowed to follow observed trends, longevity 
probably would have increased even more.

The life expectancies presented in Table 7.3 indicate that elderly individuals 
in the United States are leading longer lives and longer lives free of dependen-
cies. For example, persons aged 72 and independent in 1984 could expect, on the 
then current rates, to live 72 % of their remaining lives in the independent state, 
whereas comparable individuals two years later could expect to experience the 
even larger fraction of 81 %. Active life was apparently increasing along with 
longevity.

It appears, then, that longer life is not necessarily being accompanied by more 
years of disability and functional dependence. In fact it is much more likely that 
the reverse is the case, and that the pessimistic literature on the subject is simply 
wrong. A reason for the pessimistic conclusions that have appeared in past pub-
lished studies of active life was their use of prevalence rather than incidence rates 
in their life table calculations.

7.3 Changes in Active Life Among the Elderly in the United States: 1984–1988
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7.4  Another Application of Multistate Demography

The preceding application of multiregional demography to health statuses has 
demonstrated that the mathematical apparatus for tracing the demographic conse-
quences of movements of people between regions is the same as that for assess-
ing the impacts of their movements between other states of existence: for example 
married to non-married, employed to unemployed, and in school to out of school.

This recognition has had a profound impact on formal demography as it has 
produced a powerful generalization of what were conventional techniques for ana-
lyzing the transitions that people experience over their lifetime, as they progress 
from birth to death. For a second application of multistate demography, consider 
the illustration in which the “migration” of people between regions that are transi-
tions between the four marital statuses of single, married, widowed, and divorced.

Consider the female population of Sweden in 1974 (Rogers 1985 p. 86). 
It increased by 14,446 people during 1974. Starting the year with a total of 
4,098,535 women, the population experienced 53,200 births of baby girls and 
38,754 female deaths during the ensuing year (international migration is ignored 
in this illustration). Thus the total at the end of the year stood at 4,112,981 per-
sons. Expressed in crude birth and death rates, then,

During the year, 97,436 women, 2.38 % of the female population, changed their 
marital status with marriages accounting for 45.68 % of the changes, widowhoods 
for 25.62 %, and divorces for 28.70 %. First marriages amounted to 84.85 % of 
the total number of marriages. The Swedish data on marital status changes may be 
expressed in the form of the matrix projection model defined in Chap. 2. Instead of 
migrations between regions, one has movements between states. The accounting 
equations now assert that the population in each marital state at the end of the year 
is equal to the population at the start of the year, minus deaths and movements out 
of the state, plus movements into the state. In the case of the single (never-mar-
ried) population, Ps(t) say, there is also the increment due to births. For example,

which expressed in rates is

P(1975) = (1+ b− d) P(1974)

= (1+ r) P(1974)

= (1+ 0.003525) 4,098,535

= 4,112,981

PS(1975) = (1,659,430− 7,562− 37,768+ 15,257)

+ 36,519+ 119+ 1,305

= 1,667,300

PS(1975) = (1− 0.004557− 0.022760+ 0.009194) 1,659,430

+ 0.019318(1,890,436)+ 0.000309(385,070)

+ 0.007977(163,599)

= 1,667,300

http://dx.doi.org/10.1007/978-3-319-22318-6_2
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Collecting the four subpopulations into a vector {P(t)}, one may define the familiar 
matrix projection model (Rogers 1985, p. 87):

or

Classifying the Swedish female population by marital status is a useful form of 
disaggregation because it illuminates patterns of marital status change. Classifying 
the same population by residential status identifies patterns of spatial redistribu-
tion. In 1974, for example, 766,565 of the 4,098,535 Swedish women lived in 
Stockholm, the capital city (Rogers 1985 p. 88). Among these 14,726 migrated to 
the rest of Sweden during the year and 12,858 migrated in the reverse direction. 
The Stockholm population experienced 6640 deaths and 9991 births; the corre-
sponding totals for the rest of Sweden were 32,114 and 43,209, respectively. The 
following bioregional projection model describes population redistribution during 
that period:

Combining the classification by marital status with that of location gives rise to 
eight states and an 8 by 8 projection matrix. All of the preceding has ignored age. 
Incorporation of that added dimension into the analysis is straightforward and is 
described in Rogers (1985, pp. 88–90).

7.5  Discussion and Conclusion

Common to most topics in mathematical demography is an underlying concern 
with the transitions that people experience over time in the course of passing from 
one state of existence to another: for example, transitions from being healthy to 
being sick, from being single to being married, from being employed to being 
unemployed, and from being alive to being dead. The study of transition patterns 
generally begins with the collection of data and the estimation of missing obser-
vations, continues with the calculation of the appropriate rates and correspond-
ing probabilities, and often ends with the generation of simple projections of the 
future conditions that would arise were these probabilities to remain unchanged. In 
short, much of mathematical demography deals with the problems of measurement 
and dynamics in multistate population systems.

{P(t + 1)} = G{P(t)}
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Multistate demographic analysis has produced a generalization of classical 
demographic techniques that unifies most of the methods for dealing with transi-
tions between multiple states of existence. For example, in the 1970s it became 
clear that multiple decrement mortality tables, tables of working life, nuptiality 
tables, tables of educational life, and multiregional life tables were all members 
of a general class of increment-decrement life tables called multistate life tables 
(Hoem and Fong 1976; Rogers 1973a, b, 1975, 1995; Rogers and Ledent 1976; 
Schoen and Nelson 1974). It also became evident that projections of popula-
tions classified by multiple states of existence could be carried out using a com-
mon methodology of multistate projection, in which the core model of population 
dynamics is a multistate generalization either of the continuous age-time model 
of Lotka (LeBras 1971; Rogers 1975) or of the discrete age-time model of Leslie 
(Rogers 1966, 1968).

Finally, multistate demography adopts matrix algebra to express, in compact 
form, a number of relationships that would be very difficult to identify and study 
using scalar (nonmatrix) arguments. Conceptualizing a multidimensional demo-
graphic process in matrix form confers advantages that are both notational and 
analytical in character. Matrix notation often leads to insights that otherwise may 
have been obscured by the more complicated nonmatrix formulations. And for-
mulating a demographic problem in matrix terms places at our disposal a large 
mathematical apparatus on matrices and their properties. As a result, what at 
first is introduced as a purely pragmatic and notationally elegant conceptualiza-
tion can ultimately become the vehicle for insights that are not readily obtainable 
otherwise.
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Abstract Our understanding of patterns and behavior of mortality, fertility, 
 migration, nuptiality, education, and labor force participation is enhanced by 
a focus on occurrences of events and transfers, and on their association with the 
populations that are exposed to the risk of experiencing them. A multiregional 
perspective permits such an association; a uniregional perspective does not. For 
example, there is no such individual as a net migrant, and attempts to explain 
the behavior of net migrants are likely to lead to misspecified models and biased 
findings. The propensity to experience various events and transfers differs across 
sub-populations; analyses and projections that can take this inhomogeneity into 
account can identify the contribution made by each sub-population to the total. A 
multiregional perspective permits such an association; a uniregional perspective 
does not. Furthermore, our understanding of migration propensities is enriched by 
information regarding the degree to which current migration occurs among those 
who have migrated previously. Such information reveals, for example, how much 
of the current increase in levels of migration can be attributed to “repeaters” as 
opposed to “first-timers”.

Keywords Double entry bookkeeping · Incidence rates · Prevalence rates

8.1  Double Entry Bookkeeping

In the late stages of preparing this monograph, I came upon a book, written by 
Gleeson-White (2013), entitled Double Entry, a story about how a new kind of 
financial record-keeping system of accounts was developed in 1494 by Luca 
Pacioli, the “father” of double-entry bookkeeping. As I read her book, I real-
ized that the very same bookkeeping principles were relevant for the accounting 
of migration flows. Instead of credits and debits, we have inmigrants and outmi-
grants. Just as a credit in one account must be offset by a debit in another, so too 
must inmigrants to one region be offset by outmigrants from another region. And 
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most importantly, just as the sum of all credits to all accounts must be exactly 
equal to the sum of all debits from all accounts, so too must the sum of all inmi-
grants equal to the sum of all outmigrants. Net migration for the total population 
system must exactly equal zero. This condition is not met by uniregional popula-
tion projections (recall Chap. 2, for example). Adding the 50 net migrant totals 
produced by uniregional population projections for each state of the USA, one 
does not get a sum of zero. Carrying out the corresponding multiregional 50-state 
population projection, however, does.

As I have argued in Chap. 2, the culprit is the inmigration rate embedded in the 
net migration rate, a measure of prevalence and not incidence. Prevalence rates 
confound migrant flow totals with population totals; the “wrong” population is 
in the denominator. To correct this misspecification one needs to use only outmi-
gration rates in the population projection: one needs a multiregional (multistate) 
model.

8.2  Incidence not Prevalence

When faced with the task of modeling the dynamics of two or more interdepend-
ent population subgroups, demographers, economists, geographers, and sociolo-
gists, in the past, adopted one of two distinct approaches. They either (1) examined 
each subpopulation apart from the others by appending to it a “net migration” rate 
to express its exchanges with the rest of the total population, or (2) disaggregated 
the total population into subgroups by means of a “prevalence” rate that ignored 
those exchanges and focused only on their redistributional consequences, (i.e., 
changes in relative shares of the total stock of individuals). The migration and spa-
tial population dynamics literature adopted the first strategy; the labor force par-
ticipation and dynamics literature adopted the second (Bureau of Labor Statistics 
1982). Both approaches introduced population composition biases into the anal-
ysis of behavior. With the development and diffusion of multiregional/multistate 
demographic methods, neither modeling strategy is warranted unless dictated by 
the unavailability of transition data.

Although the fundamental idea of a multistate perspective had an earlier history 
outside of demography, appearing in the statistical literature earlier in the twen-
tieth century (e.g., DuPasquier 1912), that literature did not attract the attention 
of mathematical demographers until the 1960s, probably because the languages 
used by the two disciplines were quite different. Mathematical demographers were 
brought up on life tables and cohort-survival population projection models, not 
stochastic process models. They began to develop their own kind of multiregional 
(and, shortly later multistate) models. A conference convened in Washington, DC 
and supported by IIASA and the National Science Foundation, sought to “marry” 
the two perspectives by bringing together the two groups (Land and Rogers 1982), 
and the ultimate result was the flourishing remarkable growth of contributions 
to the theory and applications of multistate demography. A search on Google for 
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“Applications of Multistate Demography” brings up a list of over 34 thousand 
items. Clearly it is impossible to summarize here a prospective view of the likely 
future evolution of the field. Nonetheless, it may be useful to identify a few of the 
applications that are of particular relevance for demographers.

In addition to the early applications to, for example, migration (Rogers 1968), 
marital status change (Schoen and Nelson 1974), labor force participation (Hoem 
and Fong 1976), annuity and insurance calculations (Keyfitz and Rogers 1982), 
and active life expectancy studies (Rogers et al. 1989), we now have applications 
in the public health literature, in education and human capital formation, in agent-
based modeling in historical demography and, indeed, even in ecological studies 
of non-human populations, for example, of birds and animals (Westerberg and 
Wennergren 2005).

8.3  A Final Word

The six principal questions considered in this monograph have been drawn from 
empirical applications of multiregional/multistate demography that I have con-
tributed to during the past half century. A unifying thread throughout these appli-
cations is the use of that perspective to clarify issues that sometimes tend to be 
obscured or inappropriately addressed in studies that have used a traditional 
uniregional/unistate perspective. The fundamentals have become widespread and 
are now receiving attention from scholars in a large number of countries. The 
active period of methodological development of the past has continued to prove 
the power of a fruitful new idea. This monograph has been assembled in the hope 
that a simple presentation of that idea will reach an even wider audience.

The development of multiregional/multistate life table and population projec-
tion models has brought the demographic tradition much closer to the statistical/
causal one, and a marriage between the two perspectives has been developed suc-
cessfully (e.g., Willekens 2014). An important consequence of such a merger is 
the further development of the micro and macro branches of formal demography, 
with microdemography increasingly devoted to the formal causal analysis of the 
behavior of decision-making agents, such as the individual or the family, and mac-
rodemography continuing to examine the behavior of aggregates, for example, the 
relationships between various population subgroups and different measures of eco-
nomic performance and well-being.
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