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Preface

Vehicular Ad hoc Networks (VANETs) are emerging as a new technology to
provide a wide spectrum of safety, efficiency, and comfort applications to the
public and governments. It has been immensely successful and naturally attracted
considerable attention from both academia and industry since its introduction
about one decade ago. Numerous publications and projects have been devoted to
this topic. However, the realistic behavior of the network at a large scale is still
unavailable today, due to the initial stage of VANET deployments. The goal of this
book is to offer some fundamental observations of node and network behavior
when the network scale reaches over 10,000 vehicles and demonstrates mobile
sensing applications based on VANETs in urban scenarios. The target audiences
are researchers interested in getting to know VANETs, in particular graduate
students. It is also our hope that this book can be useful to experts as quick
reference.

This book starts with an introduction on VANETs and representative experi-
mental work in the world such as the MIT CarTel project, the UMASS DieselNet
project, and the GM DSRC Fleet. We then introduce the empirical studies con-
ducted in SJTU, which are based on three realistic GPS data sets collected from
taxies and buses in Shanghai and Shenzhen, two metropolises in China.

In Chap. 2, we describe the characteristics of the trace data and main challenges
and issues in data analysis. In Chap. 3, we extensively study the distribution of
inter-contact time (ICT) between a pair of vehicles and establish a general
vehicular mobility model in urban settings which follows the observed ICT dis-
tribution. Some of the proofs are involved and can be safely skipped at first
reading. Nevertheless, we decided to include them because they either illustrate
useful analytical skills or provide details that are missing in the original papers.
Due to the limited time, space, and of course our knowledge and ability, the
content of this book is far from extensive.

Chapter 4 covers two opportunistic data forwarding strategies in VANETs. In
this chapter, first, the temporal correlations between pairwise contacts are analyzed
and further utilized to predict future contact information between vehicles. As data
are relayed in VANETs in a store-carry-forward fashion, such estimated future
contact information can be leveraged to improve routing performance. Moreover,
the sociality of vehicular networks is also examined and we have the observation
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that vehicles do have clear social relationships that can further stimulate the
routing performance. We describe two proposed opportunistic routing schemes in
VANETs which utilize such knowledge and gain better performance in terms of
end-to-end delay and network traffic cost.

Chapter 5 introduces a distributed online vehicle tracking scheme in large
cities. RFID systems are deployed to capture vehicles and location information
about vehicles is locally stored among a large number of nodes distributed in the
city. The main challenge is to guarantee that the response time of a query issued
from anywhere in the city meets a given real-time requirement and meanwhile to
minimize the network cost for location updating and query forwarding in the
network. We describe a scheme which organizes the nodes into different regions.
With this organization, location information updating is restricted within a small
scale and still keeps the whole network updated. In addition, the query can be
forwarded to the most up-to-date node within the given time requirement.

Chapter 6 covers a mobile sensing application which uses commuting vehicles
as mobile sensors to sample the traffic condition on surface roads and analyzes
these sensory data to infer the traffic condition on those roads with insufficient
sample data. The main challenge is to remove noise embedded in the data and
recover the traffic condition information from lossy sensory data.

We would like to express our greatest appreciation to Prof. Xuemin (Sherman)
Shen for providing the opportunity to write this brief book for Springer. Espe-
cially, Hongzi is greatly indebted to Prof. Lionel Ni for introducing him to the field
and guiding him in his research. Hongzi also owes deep gratitude to his post-
doctoral supervisor Prof. Xuemin (Sherman) Shen for his continuous support and
guidance. Hongzi would like to acknowledge his wife, Dr. Shan Chang, who not
only provided valuable comments on the writing of the book but also encouraged
him throughout the process. We are grateful to all our collaborators and col-
leagues, in particular, Dr. Yanmin Zhu, Dr. Guangtao Xue, Dr. Xinbin Wang, and
his Ph.D. student Luoyi Fu, who made great contribution in our published papers
and this book. We also would like to thank Springer, especially Ms. Melissa
Fearon and Ms. Courtney Clark, for their support in various aspects in the editing
and publishing of this book.

Shanghai, People’s Republic of China, Hongzi Zhu
May 1, 2013 Minglu Li
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Chapter 1
Overview

1.1 Introduction to Vehicular Ad-hoc Network

Vehicular Ad hoc Networks (VANETs) are emerging as a new landscape of
mobile ad hoc networks, aiming to provide a wide spectrum of safety and comfort
applications to drivers and passengers. In VANETs as illustrated in Fig. 1.1,
vehicles equipped with wireless communication devices can transfer data with
each other (inter-vehicle or V2V communications) as well as with the roadside
infrastructure (vehicle-to-roadside or V2I communications). Combined with vari-
ous sensors, such as image/xxx sensor, accelerometer, GPS receiver and radar, and
an embedded processing unit, vehicles appear ‘‘smarter’’ than ever, having a better
understanding about the surrounding environment and other vehicles on the move.
Both the new sensing and wireless communication technologies enable the
promising applications of VANET in the future with respect to safety, efficiency of
infrastructure and comfort. Foreseeing this trend, both academia and industry put
great efforts in investigating the new possibilities that can be brought by VANETs.
During the past two decades, a vast number of projects and institutes related to
VANET have sprung up, trying to study research problems as follows:

• Short range wireless communication technology: focuses on providing fast
wireless links for both V2V and V2I communications in VANETs, devised to
work on a dedicated spectrum. For example, in October 1999, the United States
Federal Communications Commission (FCC) allocated in the USA 75 MHz of
spectrum in the 5.9 GHz band for Dedicated Short-Range Communications
(DSRC) [1] to be used by Intelligent Transportation Systems (ITS). In August
2008, the European Telecommunications Standards Institute (ETSI) also allo-
cated 30 MHz of spectrum in the 5.9 GHz band for ITS [2]. The reason of using
the spectrum in the 5 GHz range is due to its spectral environment and prop-
agation characteristics, which are suited for vehicular environments. Specifi-
cally, waves propagating in this spectrum can offer high data rate
communications for pretty long distance (up to 1000 m) with low weather
dependence. With the dedicated spectrums, new MAC protocols operating on
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these spectrums are designed in order to provide fast and robust links between
mobile devices. How such MAC protocols perform in complicated vehicular
environments should be carefully studied and verified before it can be applied
into real applications.

• Mobility model analysis: studies how vehicles move in the network. As the
entities in VANETs are highly mobile vehicles, the fundamental characteristics
of vehicular mobility, such as how vehicles rendezvous in terms of frequency
and duration, how they visit a location and how wide they can cover a region of
interest in both space and time dimensions, are therefore crucial to the design
and ultimate performance of network protocols. In the literature, most studies
focus on theoretical models, such as random walk, random way point. While
theoretical mobility models facilitate problem analysis, they are far beyond
reality and not practical in designing networking protocols for real systems and
their performance analysis. Realistic vehicular mobility model analysis has
therefore become a recent hot research area.

• Opportunistic DTN routing: considers only V2V communications to forward
data between mobile vehicles with the goal of eventually reaching a destination.
As two vehicles need to geographically ‘‘meet’’ (i.e., within each other’s
communication range) before any data exchange, data transfer, therefore, arises
in a store-carry-forward fashion, which results in long end-to-end delay as in
Delay-Tolerant Networks (DTNs). Because establishing an optimal forwarding
path in advance between the source and destination in VANETs is very hard
even if all future movement of vehicles are known, to design an efficient
opportunistic routing algorithm in VANETs is a hard problem to solve.

Internet

Cluster of 
Vehicles

Multi -hop data 
transmission

Cellular BS
WiFi BS

Road 
Infrastructure

Fig. 1.1 An illustration of VANET, where vehicles can ‘‘talk’’ to roadside infrastructure such as
WiFi access points, traffic lights and speed limitation signs via V2I communications and to other
vehicles via V2V communications. In the figure, dashed arrow lines represent the data
transmission paths
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• Mobile sensing applications: aim to leverage the mobility of vehicles to collect
environmental information in a large area of field with only moderate cost for
system deployment compared with statically installed sensor networks. Due to
individual reading errors and sparse sensing data distribution, to gain an accu-
rate map of measurements in the field is very challenging. By advanced data
processing techniques such as data fusion among neighboring vehicles, it is
possible to know the true calibration of some sensors in the system and make
accurate estimates in locations even without any sensor readings.

• Intelligent Transportation System applications: aim to improve transport
outcomes such as transport safety, congestion control, travel reliability,
informed travel choices, environmental performance and network operation
resilience. Intelligent Transportation System (ITS) is not a new concept, which
have been studied since 1960s and widely implemented in the developed world
especially in the United States, Europe and Japan. Comparing with traditional
ITS implementation, the new information and communication technology such
as sensing technology and VANET present a set of relatively low-cost methods
for obtaining travel information along streets, highways, freeways, and other
transportation routes. In addition, new ITS applications such as active and
coordinative safety between vehicles continuously emerge which are enabled
with the new technology.

In the next section, we will introduce the most representative experimental
work on VANETs worldwide. For each work, we first describe its background and
research goals. We will introduce empirical studies on urban VANETs using real
trace data in Shanghai in the following chapters.

1.2 Representative Experimental Work Worldwide

1.2.1 MIT CarTel

The CarTel project at Massachusetts Institute of Technology (MIT) [3, 4] com-
bines mobile computing and sensing, wireless networking, and data-intensive
algorithms running on servers in the cloud to address the grand challenges to the
efficiency and the safety of road transportation. CarTel is a distributed, mobile
sensing and computing system using phones and custom-built on-board telematics
devices, which might be thought of as a ‘‘vehicular cyber-physical system’’.
CarTel’s research contributions include traffic mitigation, road surface monitoring
and hazard detection (the Pothole Patrol), vehicular networking, privacy protocols,
intermittently connected databases, and the design of multiple generations of in-
car hardware using only WiFi for connectivity. In this book, we put emphasis on
introducing the vehicular networking part in CarTel.

1.1 Introduction to Vehicular Ad-hoc Network 3



1.2.1.1 Testbed Setup

In CarTel, 27 cars with custom-made on-board devices form a running testbed, upon
which all software and applications are deployed. A typical on-board device consists
of a small yet powerful embedded computer, a commodity GPS unit, a miniPCI
WiFi card, and other sensors such as 3D accelerometer and camera. The embedded
computer has a 586-class processor running at 266 MHz with 128 MB of RAM and
1 GB (or more) of Flash, running Linux 2.6. The GPS unit is connected the computer
via USB interface. In addition, an OBD-to-serial adapter is used to allow the
embedded computer to access the internal computer of a car made after 1996.
Figure 1.2 illustrates the original and upgraded versions of the implementation.

1.2.1.2 Research and Experiments

• Cabernet: is a system for delivering data to and from moving vehicles using
open 802.11 (WiFi) access points encountered opportunistically during travel.
Using open WiFi access from the road can be challenging. Network connectivity
in Cabernet is both fleeting (access points are typically within range for a few
seconds) and intermittent (because the access points do not provide continuous
coverage), and suffers from high packet loss rates over the wireless channel. On
the positive side, WiFi data transfers, when available, can occur at broadband
speeds. In Cabernet, two new components [5] were proposed for improving
open WiFi data delivery to moving vehicles: The first, QuickWiFi, is a
streamlined client-side process to establish end-to-end connectivity, reducing
mean connection time to less than 400 ms, from over 10 s when using standard
wireless networking software. The second part, CTP, is a transport protocol that
distinguishes congestion on the wired portion of the path from losses over the
wireless link, resulting in a 2x throughput improvement over TCP. To charac-
terize the amount of open WiFi capacity available to vehicular users, Cabernet

Fig. 1.2 The original (left) and upgraded (right) versions of the implementation of MIT on-
board unit
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was deployed on a fleet of ten taxis in the Boston area. The long-term average
transfer rate achieved was approximately 38 MB/h per car (86 kbit/s), making
Cabernet a viable system for a number of non-interactive applications.

• CafNet (carry and forward network): is a delay-tolerant stack that enables
mobile data mulling and allows data to be sent across an intermittently con-
nected network [6]. CafNet delivers data between nodes even when there is no
synchronously connected network path between them. For example, these
protocols could be used to deliver data from sensor networks deployed in the
field to Internet servers without requiring anything other than short-range radio
connectivity on the sensors (or at the sensor gateway node). Different from
traditional automotive telematics systems that rely on cellular or satellite con-
nectivity, the CarTel embedded in-car device (i.e., when data is collected using
the OBD-connected hardware) should use wireless networks opportunistically.
It uses a combination of WiFi, Bluetooth, and cellular connectivity, using
whatever mode is available and working well at any time, but shields applica-
tions from the underlying details. Applications running on the mobile nodes and
the server use a simple API to communicate with each other. CarTel’s com-
munication protocols handle the variable and intermittent network connectivity.

• Wi-Fi Monitoring: is to map the proliferation of 802.11 access points in the
Boston metro area [7]. In this task, a measurement study carried out over 290
‘‘drive hours’’ over a few cars under typical driving conditions, in and around
the Boston metropolitan area. With a simple caching optimization to speed-up
IP address acquisition, it was found that for the experimental driving patterns the
median duration of link layer connectivity at vehicular speeds is 13 s, the
median connection upload bandwidth is 30 Kb/s, and that the mean duration
between successful associations to APs is 75 s. It was also found that connec-
tions were equally probable across a range of urban speeds (up to 60 km/h). The
end-to-end TCP upload experiments had a median throughput of about 30 KB/s,
which is consistent with typical uplink speeds of home broadband links in the
US. The median TCP connection is capable of uploading about 216 KB of data.
The conclusion is that grassroots Wi-Fi networks are viable for a variety of
applications, particularly ones that can tolerate intermittent connectivity.

1.2.2 UMass DieselNet

DieselNet [8] is a bus-based DTN testbed that was built from 2004 at University of
Massachusetts (UMass), Amherst, USA. The DieselNet operates daily from the
UMass Amherst campus and covers the surrounding county. Now DieselNet is part
of UMass GENI testbed, and it is open for public experiments.

1.2 Representative Experimental Work Worldwide 5



1.2.2.1 Testbed Setup

DieselNet currently consists of 35 buses each with a Diesel Brick, which is based
on a HaCom Open Brick computer (P6-compatible 577 MHz CPU, 256 MB
RAM, 40 GB hard drive, Linux OS). Figure. 1.3 shows a typical hardware con-
figuration deployed on a DieselNet bus. The brick is connected to three radios: an
802.11b Access Point (AP) to provide DHCP access to passengers and passersby, a
second USB-based 802.11b interface that constantly scans the surrounding area for
DHCP offers and other buses, and a longer-range MaxStream XTend 900 MHz
radio to connect to road-side device, called ‘‘throwboxes’’. Additionally, a GPS
device records times and locations. The custom software allows researchers to
push out application updates, take mobility, AP-to-bus connectivity, and bus-to-
bus throughput traces. Besides the embedded computers deployed on buses, in
DieselNet, stationary and battery-powered nodes with storage and processing are
also installed at road side to enhance the capacity of DTNs. Figure 1.4 illustrates
the internals of the throwbox prototype.

1.2.2.2 Research and Experiments

• DTN routing: Routing protocols for disruption-tolerant networks (DTNs) use a
variety of mechanisms, including discovering the meeting probabilities among
nodes, packet replication, and network coding. Implemented on DieselNet,
MaxProp [9], a protocol for effective routing of DTN messages, is based on
prioritizing both the schedule of packets transmitted to other peers and the
schedule of packets to be dropped. These priorities are based on the path
likelihoods to peers according to historical data and also on several comple-
mentary mechanisms, including acknowledgments, a head-start for new packets,
and lists of previous intermediaries. In contrast, RAPID [10], an ‘‘intentional’’
DTN routing protocol, was proposed that can optimize a specific routing metric
such as the worst-case delivery delay or the fraction of packets that are delivered
within a deadline. Specifically, in RAPID protocol, the DTN routing problem is

Fig. 1.3 A typical hardware
configuration deployed on a
DieselNet bus: an embedded
computer, 802.11b AP,
802.11b card, and GPS
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formulated as a resource allocation problem, where resources are allocated to
packets to optimize an administrator-specified routing metric. At each transfer
opportunity, a RAPID node replicates or allocates bandwidth resource to a set of
packets in its buffer, in order to optimize the given routing metric. Packets are
delivered through opportunistic replication, until a copy reaches the destination.
As DTNs are resource constrained networks in terms of transfer bandwidth,
energy, and storage, RAPID makes the allocation decision by first translating the
routing metric to a per-packet utility and the first packet to be replicated is the
one that provides the highest increase in utility per unit resource used. In
addition, to have a local view of the global network state, an in-band control
channel is used to exchange network state information among nodes.

• Network capacity enhancement: In VANET, data transmission relies on inter-
mittent contacts between mobile nodes using a store-carry-forward paradigm. To
enhance the capacity of the network, dedicated road-side ‘‘throwboxes’’ are
utilized to increase the opportunities and efficiency of vehicular contacts in
DieselNet [11,12]. The hardware of a throwbox uses a multi-tiered, multi-radio,
scalable, solar powered platform. The throwbox employs an approximate heu-
ristic for solving the NP-Hard problem of meeting an average power constraint
while maximizing the number of bytes forwarded by the throwbox. In DieselNet,
the effect of different types of infrastructure, e.g., disconnected relays, base
stations connected to a wired backbone network, and wireless mesh network, to
the performance of VANET is thoroughly studied [13]. Two key observations
were found: First, if the average packet delivery delay in a vehicular deployment
can be reduced by a factor of two by adding n base stations, the same reduction
requires 2n mesh nodes or 5n relays. Given the high cost of deploying base
stations, relays or mesh nodes can be a more cost-effective enhancement; second,
it was observed that adding small amount of infrastructure is vastly superior to
even a large number of mobile nodes capable of routing to one another, obviating
the need for mobile-to-mobile disruption tolerant routing schemes.

Fig. 1.4 The internals of the
throwbox prototype
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• WiFi connectivity: To investigate whether the ubiquity of WiFi can be leveraged
to provide cheap connectivity from moving vehicles for common applications
such as Web browsing and VoIP, a study of connection quality available to
vehicular WiFi clients based on measurements from DieselNet was conducted.
It was found that current WiFi handoff methods, in which clients communicate
with one base station at a time, lead to frequent disruptions in connectivity. In
addition, it was also found that clients can overcome many disruptions by
communicating with multiple base stations (BSes) simultaneously. These find-
ings lead to the development of ViFi [14], a protocol that opportunistically
exploits BS diversity to minimize disruptions and support interactive applica-
tions for mobile clients. In ViFi, a vehicle first designates one of the nearby
BSes as the anchor, who is responsible for the vehicle’s connection to the
Internet. It also designates other nearby BSes as auxiliary, who help to relay
traffic in the communication between the vehicle and the anchor BS. Specifi-
cally, in order to notify nearby BSes which BSes have been chosen to serve
either as the anchor or auxiliary BSes, the vehicle embeds the identity of the
current anchor and auxiliary BSes in the beacons that it broadcasts periodically.
When the vehicle transmits a packet p to the anchor, if the anchor receives p, it
broadcasts an ACK. If an auxiliary overhears p, but within a small time window
has not heard an ACK sent from the anchor, it probabilistically relays p. If the
anchor receives the relayed p and has not already sent an ACK, it broadcasts an
ACK. If the vehicle does not receive an ACK within a retransmission interval, it
retransmits p. In this way, the disruptions of Internet access can be minimized.
Verified through trace-driven simulations, ViFi doubles the number of suc-
cessful short TCP transfers and doubles the length of disruption-free VoIP
sessions compared to an existing WiFi-style handoff protocol.

• Mobility model study: To study the performance of routing protocols and
applications in VANET, it is of great importance to accurately characterize
transfer opportunities between vehicles. Based on the traces taken from Die-
selNet, contacts between buses were recorded as they travel their routes [15]. It
was found that the all-bus-pairs aggregated inter-contact times show no dis-
cernible pattern. However, the inter-contact times aggregated at a route level
exhibit periodic behavior. Based on analysis of the deterministic inter-meeting
times for bus pairs running on route pairs and consideration of the variability in
bus movement and the random failures to establish connections, route-level
models were constructed to capture the above behavior.

1.2.3 GM DSRC Fleet

The emergent IEEE 802.11 p-based Dedicated Short Range Communication
(DSRC) standard is one of the IEEE 802.11 standards customized for highly
mobile, severe-fading vehicular environments. DSRC-based Vehicle Safety
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Communications (VSC) systems have attracted great attention from the automo-
tive industry and government agencies because of their simplicity and low cost. As
a pioneer, the automotive company General Motor (GM) developed a fleet of three
vehicles, on which a vehicular communication system was mount.

1.2.3.1 Testbed Setup

This system consists of four components [16]: (1) DSRC-compatible Radio: Such a
radio is built upon the Atheros AR5000 chipset. The default values for trans-
mission power and data rate are 20 dBm and 6 Mbps, respectively. The radios
operate in the IEEE 802.11 p ‘Wave BSS (WBSS)’ mode. The RSSI sensitivity
level of successfully received packets is up to -94 dBm. The omni-directional
antenna connected to the DSRC radio is mounted on the vehicle roof. The gain of
antennas used in our systems is 0 dB; cables and connectors introduce 2 dB signal
attenuation. (2) GPS Receiver: The GPS receiver synchronizes to the clock of
satellites at a rate of 5 Hz. (3) DSRC Protocol Stack: The prototype system on
each vehicle sends out broadcast packets via its DSRC radio every 0.1 s. Each
packet is tagged with a vehicle ID and a unique packet sequence number.
(4) Vehicle Safety Communications (VSC) Applications: These VSC applications
include Stop or Slow Vehicle Advisor (VSA), Emergency Electronic Brake Light
(EEBL), Lane Change Advisor (LCA), and Cooperative Collision Warning
(CCW).

1.2.3.2 Research and Experiments

• DSRC measurements: In the experiment [16], a large volume of experimental
data was collected via a series of measurement campaigns using a fleet of three
vehicles equipped with the prototype systems. These measurements were con-
ducted in the Detroit metropolitan area, Michigan, from July 2005 to Sep 2007.
Five typical environments were considered: (1) urban freeway: eight-lane
freeway with a large number of walls, tunnels and overhead bridges, as well as
heavy vehicle traffic; (2) rural freeway: six-lane freeway with open lands, less
traffic than urban freeway; (3) rural road: two-lane street with heavy traffic;
(4) suburban road: six-lane suburban streets with light traffic; (5) open field: no
buildings and other vehicles. Through the experiment, several key observations
were found: first, the reliability of DSRC presents dominating Gray-zone
behavior (i.e., intermediate loss rate); second, the propagation environment has
major impact on DSCR characteristics; third, Doppler effect does not seem to
significantly impact DSRC characteristics; fourth, reduced transmission power
only generates minor degradation in DSRC reliability, which suggests a smaller
power (i.e., 15 dBm) rather than default value (20 dBm); fifth, default value of
6 Mbps is a reasonable data rate parameter; and last, both temporal and spatial
correlation of DSRC performance are weak in vehicular environments.
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1.2.4 Germany FleetNet Project

The project ‘‘FleetNet—Internet on the Road’’ (2000–2003) [17] was set up by a
consortium of six companies and three universities: DaimlerChrysler AG, Fra-
unhofer Institut für offene Kommunikationssysteme (FOKUS), NEC Europe Ltd.,
Robert Bosch GmbH, Siemens AG, TEMIC Speech Dialog Systems GmbH,
Universities of Hannover and Mannheim, and Technische Universität Hamburg-
Harburg and Braunschweig. The main objective of FleetNet was to develop and
demonstrate a platform for inter-vehicle communication systems. Appropriate
applications for demonstration were implemented to show the benefit of inter-
vehicle communication systems. A study on business cases and market introduc-
tion strategies complemented the technical objectives and the project results were
opened to appropriate international standardization bodies.

1.2.4.1 Testbed Setup

Ten Smart cars and a number of roadside stations act as a ‘‘real world’’ testbed.
These experimental vehicles are equipped with cabin mounted cameras, LCD
touch screens, and internal computers providing access to the car’s navigation
system and to its body electronics via a CAN bus interface.

1.2.4.2 Research and Experiments

• Routing and forwarding strategies: A forwarding method called ‘‘contention-
based forwarding’’ (CBF) [18–21] was designed, where the next hop in the
forwarding process is selected through a distributed contention process based on
the exact current positions of all neighbors. Similar with the medium access
control in local area networks such as WiFi, a timer is set for each neighboring
vehicle to contend the opportunity to forward a packet. Instead of randomly
selecting a timer, the time of a neighboring vehicle is set to a short value if the
corresponding vehicle is close to the destination of a packet. In this way, the
closer a neighboring vehicle is to the destination, the higher probability it will
win the contention for relaying the packet. Together with DaimlerChrysler AG,
a position-based router was implemented for inter-vehicle communications. To
evaluate the design of the router, a test network of 6 DaimlerChrysler Smart cars
was set up. All experimental cars are equipped with GPS receivers, IEEE 802.11
WLAN NICS with planar antennae and the custom router. The test network
allows global monitoring of the ad hoc network via GPRS. Performance eval-
uation of position-based routing with respect to vehicular networks was con-
ducted in both highway and city scenarios.
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1.2.5 Europe Network on Wheels (NOW) Project

NOW [22] is a German research project which is supported by Federal Ministry of
Education and Research, founded by Daimler AG, BMW AG, Volkswagen AG,
Fraunhofer Institute for Open Communication Systems, NEC Deutschland GmbH
and Siemens AG in 2004. Besides the partners the Universities of Mannheim,
Karlsruhe and Munich and the Carmeq GmbH co-operate within NOW. The main
objectives are to solve technical key questions on the communication protocols
and data security for car-to-car communications and to submit the results to the
standardization activities of the Car2Car Communication Consortium [23], which
is an initiative of major European car manufacturers and suppliers. Furthermore, a
test bed for functional tests and demonstrations is implemented which will be
developed further on toward a reference system for the Car2Car Communication
Consortium specifications.

1.2.5.1 System Implementation

The NOW project has implemented a software prototype of the developed system
covering radio, networking and applications. The radio subsystem implements
IEEE 802.11 physical and MAC layer based on commercial WLAN chip-sets and
the MADWIFI multi-mode software driver. For IEEE 802.11 p compatibility, the
driver is significantly enhanced, including extensions to operate at the protected
5.9 GHz frequency band, control of selected radio parameters on a per-packet
basis from the network layer and exchange of signaling data between the MAC and
upper protocol layers. The communication system is mainly developed in C for the
Linux operating system. Applications are implemented in Java/OSGI.

1.2.5.2 Research and Experiments

• Safety information dissemination: The NOW project has developed a hybrid
scheme of network-layer and application-layer forwarding [24–26]. The net-
work layer protocol provides a sender-oriented and Geo-addressed distribution
of data packets (a mechanism capable to efficiently distribute a message to all
nodes inside an area) based on traditional packet-switching concepts. Applica-
tions enable a receiver-oriented scheme for dissemination, in which every node
decides individually about information re-broadcasting. The latter approach
enables flexibility as well as aggregation and modification of the information
carried in the message payload. The combination of both schemes results in a
hybrid approach, which enables rapid distribution of data packets by Geocast
and adaptive dissemination of information.

1.2 Representative Experimental Work Worldwide 11



1.3 Empirical VANET Studies at SJTU

In this book, we will elaborate major VANET studies conducted at Shanghai Jiao
Tong University (SJTU) based on large-scale realistic vehicular traces. The
reminder of this book is organized as follows:

In Chap. 2, we first introduce the ShanghaiGrid (SG) project from which we
have collected GPS traces of more than 6,850 taxies and 3,620 buses. Based on
those traces, we study VANET topics ranging from realistic mobility model and
opportunistic data forwarding protocols to real-time vehicle tracking and traffic
and environment sensing applications. We then present the details of collecting
those data and main challenges in data processing.

In Chap. 3, we present the realistic mobility model study which aims to reveal
the fundamental characteristics of vehicular mobility in urban environments and to
establish simple yet effective mobility models for new routing algorithm design
and realistic simulations. Based on the comprehensive analysis on the distribution
of time intervals between two consecutive contacts between a pair of vehicles
(called inter-contact time or ICT), we find that vehicles can ‘‘meet’’ very fre-
quently with each other, which can greatly facilitate data communications. Spe-
cifically, the complementary cumulative distribution function (CCDF) of ICT
between the same pair of vehicles exhibits an exponential decay. Furthermore, we
also point out that the major reason for this phenomenon is caused by the layout of
road networks and popular places (called ‘‘traffic influxes’’) existing on the itin-
eraries of vehicles.

In Chap. 4, we describe two opportunistic data forwarding protocols, which
provide mechanisms for a vehicle to deliver a packet over the vehicular ad hoc
network utilizing the communication opportunities among neighboring vehicles.
Based on the real vehicular trace data collected in SG, the time and duration of
contacts as well as the social connections between any pair of experimental
vehicles are analyzed. We find that the ICT between a pair of vehicles has apparent
temporal correlation, which is utilized to design a new opportunistic data for-
warding algorithm. The core idea of this algorithm is to choose a better candidate
with a shorter expected contact time with the destination as the next data relay.
Furthermore, we also find that vehicles can form apparent social structures by
aggregating individual pairwise contacts. Inspired by this observation, we propose
an innovative data forwarding algorithm, which leverage both contact-level and
social-level vehicular mobility to improve the performance. With those algorithms,
the end-to-end delay and network traffic cost can be largely reduced whereas the
delivery ratio can be improved as well.

In Chap. 5, we present the real-time vehicle tracking service in the SG project,
which refers to tracking the current position of a vehicle in real time. In the system,
a vehicle attached with an active RFID tag or a WiFi wireless card can be captured
by local nodes (associated with several RFID readers or WiFi APs) largely
deployed as infrastructure. By enquiring these largely-distributed nodes, any
system-enabled vehicle can be localized and tracked in real time. The biggest
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challenge in implementing this service is to guarantee the quality of service in
terms of response time and meanwhile to minimize the network cost caused by
location information updating and query processing. To tackle this difficulty, a
novel distributed scheme, called HERO, is devised. In HERO, local nodes are
typically deployed at intersections and interconnected according to the geo-
graphical positions as a backbone network. As vehicles pass by, its location
information can be locally captured and stored. By organizing those local nodes
into a well-designed hierarchical structure, a query injected in the network from
any local node can be forwarded to the node which has the latest location infor-
mation of the vehicle within a given query latency requirement. In addition,
location information updating aroused by the movements of the target vehicle is
also restricted only within a limited area. In this way, HERO can achieve real-time
query response time and minimize overall network traffic as well.

In Chap. 6, we describe the urban traffic condition perception service in SG,
which refers to determine the traffic condition on urban surface roads based on
instant GPS speed reports collected from experimental vehicles. Due to concrete
jungles in the urban settings, the location information obtained from GPS reports
often contains errors. In addition, those traffic sensory data are very sparse in terms
of temporal and spatial distribution. How to accurately estimate traffic condition
based on the coarse data set is very challenging. To realize this service to the
public, an MSSA-based scheme is implemented, where the estimated traffic con-
dition on a certain road segment is further treated as a time series with missing
points. MSSA is used to fill up those missing points and remove ‘‘noise’’ part
contained in the data.

1.3 Empirical VANET Studies at SJTU 13
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Chapter 2
Dealing with Vehicular Traces

2.1 Introduction to the Shanghai Grid Project

Intelligent transportation systems (ITSs) [72–74] have been evolving rapidly in the
past two decades, leveraging advanced computing and communication technolo-
gies. ITSs help coordinate traffic condition, improve safety, reduce environmental
impact, and make efficient use of available resources. Shanghai, the largest
metropolis in China, covers an area of 5,800 km2 and has a large population of
18.7 million. The economy of Shanghai is soaring today and the growing traffic
has become a serious challenge. In response to the challenge and the needs of the
public, the Shanghai government has established the SG project cooperated with
SJTU since 2005, with the ambitious goal of building a metropolitan-scale traffic
information system. The goals of the project are twofold. First, it tries to make the
available transportation infrastructure to be used more efficiently. Second, it aims
to provide the public with a wide spectrum of ITS applications, ranging from real-
time traffic information, trip planning and optimal route selection, to congestion
avoidance and bus arrival prediction.

In this chapter, we first introduce three vehicular trace data sets involving tens
of thousands of public vehicles collected from the SG project and from Shenzhen,
another metropolis in south China. The reason that we collect these data is mainly
to better understand vehicular mobility and to conduct informed design of message
forwarding algorithms between vehicles. Then, we present the main challenges
encountered to process those data for future VANET studies.

2.2 Collecting Vehicular GPS Traces

In the SG project, each experimental vehicle is deployed with a GPS unit and a
GPRS wireless communication module. As such a vehicle runs along the roads in
the city, it periodically sends a GPS report back to a data center via a GPRS
channel. Due to the GPRS communication cost for data transmission, reports are
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usually sent at rather large intervals, typically once per minute. We have collected
three datasets consisting of GPS traces of buses and taxies from two cities in China:

Shanghai Taxies: We collected the GPS trace of taxies in Shanghai collected
between Feb 1 and Mar 3, 2007. We chose 2,109 taxies in the datasets which have
consecutive GPS reports on each day during the 31 days. The specific information
contained in such a report includes: ID, the longitude and latitude coordinates of
the current location, timestamp, moving speed, and heading direction. In addition,
the information contained in a taxi GPS report also reports whether passengers are
onboard. The granularity of reports is 1 min for taxies with passengers and about
15 s for vacant ones. Figure 2.1 illustrates an experimental taxi in Shanghai. In
Fig. 2.2, the geometry of destinations of all taxi deliveries on Shanghai map during
Feb of 2007 is shown, where every colored dot presents the average number of
destinations per taxi per day located in the corresponding 300 m 9 300 m square
area on the map.

Shanghai Buses: The trace consists of GPS reports sent from 2,501 buses
which serve on 199 routes and cover the main downtown area (within Neihuan
Viaducts about 120 km2) between Feb 19 and Mar 5, 2007. Figure 2.3 shows the
coverage of all experimental bus routes. A commuting bus periodically sends GPS
reports back to a backend data center via GPRS channel. The information con-
tained in a report is similar to that of taxies except that there are more fields
contained, such as whether the bus is arriving at a stop or a terminal is also sent.
Due to the GPRS communication cost for data transmission, reports are sent at a
granularity of around 1 min.

Fig. 2.1 A taxi with a commercial GPS device installed (highlighted in the inset), the location
and operational information thus can be periodically sent back via GPRS wireless channels
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Shenzhen Taxies: We also collected the GPS trace of taxies in Shenzhen in
October, 2009. The data format is similar to that of Shanghai taxi trace. We chose
8,291 taxies which continuously send GPS reports during the whole period. Taxies
in Shenzhen always send GPS reports on every 1 min. Figure 2.4 demonstrates the

  1
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>5 times

0 15 km

Fig. 2.2 The geometry of destinations of all taxi deliveries on Shanghai map during Feb 2007.
Every colored dot presents the average number of destinations per taxi per day located in the
corresponding 300 m 9 300 m square area on the map

Fig. 2.3 The distribution of
bus lines within the
downtown area of Shanghai
city, with 199 bus lines
denoted by red lines
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geographical distribution of GPS reports from all experimental taxies on October 1,
2009, where every colored dot presents the average number of reports per taxi per
day located in the corresponding 300 m 9 300 m square area on the map.

We choose taxies and buses to study for two reasons. First, taxies and buses
shows two distinct mobility patterns, namely, rather random and well scheduled,
respectively. Second, the privacy problem is less concerned since we use public
vehicles. As privacy preservation schemes progress and more mobility data of
private vehicles available, it is invaluable to study private vehicles in the future.
Key statistics of the traces are listed in Table 2.1.

2.3 Challenges and Issues in Data Analysis

To study VANETs in urban scenarios, it is ideal to collect GPS reports for a
sufficient long period of time from various types of vehicles 24 h a day with a
granularity measured in seconds. In practice, due to the deployment and com-
munication costs and privacy issues, we only collect GPS reports from public
vehicles, i.e., taxies and buses with a granularity measured in about 1 min. As a
result, the data sets are very sparse in terms of temporal and spatial distributions.

100

80

60
Fig. 2.4 The geographical
distribution of GPS reports
from all experimental taxies
in Shenzhen on Oct 1, 2009

Table 2.1 Comparison of three data sets

Data set Shanghai bus Shanghai taxi Shenzhen taxi

Number of vehicles 2,501 2,109 8,291
From date Feb 19, 2007 Feb 1, 2007 Oct 1, 2009
Duration (day) 15 31 31
Granularity (second) 60 15*, 60** 60
Number of contacts 1,229,380 22,053,178 23,968,860
Mean ICT (minute) 31.8 47.6 30.5

* Vacant
** Passengers onboard
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We first examine the geographic distribution of GPS data. For example, from
Fig. 2.2, it can be seen that most of the GPS samples are scattered in the downtown
area where taxies congregate more densely than in suburbs. The cumulative dis-
tribution functions (CDF) of sample density on each road are shown in Fig. 2.5.
The data are taken on a weekend, on a workday and for a whole week, respec-
tively. We observe an obvious Pareto distribution in which the ‘‘80-20 rule’’ [27]
stands (i.e., 20 % of the road segments owns 80 % of the data).

We then examine the distribution of taxi GPS data in time dimension. We are
interested in the probability distribution of the inter-report times, which refers to
the time intervals between any two consecutive reports received from a location
over time. Figure 2.6 shows the complementary cumulative distribution function
(CCDF) of inter-report times. It can be seen that the middle part of the CCDF is
almost linear in log–log scale, which indicates a power law. This means a location
may frequently has no sensory data for a long time. Figure 2.7 shows the CCDFs
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Fig. 2.5 CDFs of GPS
sample density at each road

Fig. 2.6 CCDF of inter-
report times
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of the proportion of time with no sensory data in a day in different observation
granularities. The time windows used to collect sensory reports are 1, 30 and
60 min, respectively. It shows that about 90 % of roads have no samples in 80 %
of the 1,440 min in a day. The fraction is about 50 % when counting the number of
road segments that are short of samples for 12 h in a day.

Besides the sparseness, the collected GPS trace data are also erroneous with
noise. In the city setting with dense high buildings and viaducts, the error of GPS
reports from taxies can be as large as 100 m. To tell which road a taxi is actually
monitoring, we need to recover each sample back on track. We deal with this
problem using our map-matching algorithm. More specifically, the algorithm
prefers those roads with minimum projection distance from the report and mini-
mum angle deviation between the heading direction of the taxi and the road. This
simple yet effective strategy works well in most situations and can gain very high
accuracy compared with real itineraries. In more complicated cases where the
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geographical distance between these two consecutive records could exceed thou-
sands of meters, we need to consider the mobile context of the taxi. The algorithm
examines several previous and successive reports to determine the most possible
road segment where the report issued. Our on-road experiment results show that
our map-matching algorithm can reach about 98 % accuracy with the left regarded
as an inevitable source of noise.

In addition, we also find that individual reports vary significantly even they are
collected from the same location at the same time. Figure 2.8 shows the CDF of
speed difference derived from reports at the same location at the same time. It can
be seen that the CDF increases slowly with a relatively long tail, which implies the
individual reports can vary largely. The derivation of this variance may be ascribed
to individual driving behavior. For example, a taxi may stop arbitrarily to pick up
or drop passengers. In other words, each sensory data report is associated with a
certain degree of noise. Despite these inaccuracies, the GPS trace data are very
valuable to study VANETs since they cover thousands of vehicles and last for
1 month.
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Chapter 3
Realistic Vehicular Mobility Models

3.1 Introduction to Mobility Models

In VANETs, vehicles equipped with wireless communication devices can transfer
data with each other (vehicle-to-vehicle communications) as well as with the
roadside infrastructure (vehicle-to-roadside communications). In order to suc-
cessfully transfer data from a vehicle to another, the vehicle needs to first wait
until it geographically meets other vehicles (within the communication range of
each other) for data-relay. Applications based on this type of data transfer will
strongly depend on vehicular mobility characteristics, especially on how often
such communication opportunities take place and on how long they last. In this
chapter, we focus on studying the metric called inter-contact time [28–30], which
denotes the time elapsed between two successive contacts of the same two vehi-
cles. Since data transfer arises in a store-carry-forward fashion, the inter-contact
time (ICT) of the two vehicles is a major component of the end-to-end delay, as it
presents how long it takes to encounter the other mobile vehicle to have any
chances to forward/relay the data for communications. Larger inter-contact time
results in larger end-to-end delay.

In the literature, bunches of studies have made their effort on revealing the
relationship between the underlying mobility models of nodes and the consequent
characteristics of the inter-contact time in MANETs. In general, these studies can
be classified into two categories: theoretical mobility models based and empirical
trace based.

3.1.1 Theoretical Mobility Models

Most of existing studies focus on theoretical models such as random walk mobility
models (RWM) [31–33], random waypoint mobility models (RWP) [34–36] and
random direction mobility models (RDM) [37].
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For example, in RWM, a mobile node moves from its current location to a new
location by randomly choosing a direction and speed in which to travel. The new
speed and direction are both chosen from pre-defined ranges, respectively. Each
movement in the RWM occurs in either a constant time interval or a constant
distance traveled, at the end of which a new direction and speed are calculated. If a
mobile node which moves according to this model reaches a simulation boundary, it
‘‘bounces’’ off the simulation border with an angle determined by the incoming
direction. The mobile node then continues along this new path. Many derivatives of
RWM have been developed including the 1-D, 2-D, 3-D, and n-D walks. The
Random Walk Mobility Model is a widely used mobility model, which is some-
times also referred to as Brownian motion. It is clear that RWM is a memoryless
mobility pattern because it retains no knowledge concerning its past locations and
speed values, which means the current speed and direction of a mobile node is
independent of its past speed and direction. This characteristic can generate unre-
alistic movements such as sudden stops and sharp turns. Similarly, in RWP, a
mobile node starts by staying in one location for a certain period of time (i.e., a
pause time). Once this time expires, the mobile node chooses a random destination
in the simulation area and a speed that is uniformly distributed between pre-defined
ranges. The mobile node then travels toward the newly chosen destination at the
selected speed. Upon arrival, the mobile node pauses for a specified time period
before starting the process again. Using RWP should notice the initial positions of
mobile nodes in a simulation. Randomly chosen positions could cause high vari-
ability of a mobile node in connectivity with neighboring mobile nodes [41].

A majority of research results have uncovered a common property of many
theoretical mobility models that the tail of the ICT distribution decays exponen-
tially. In other words, for these models, the ICT is light tailed. For example,
authors [33, 38, 39] draw this conclusion through numerical simulations based on
RWP mobility models. Furthermore, some theoretical results show that the first
and second moments of the inter-contact time are bounded above under Brownian
motion model on a sphere. In particular, authors in [40] rigorously prove that a
finite domain is one of the key aspects in creating the exponential ICT tail dis-
tribution. This is because finite boundaries actually force mobile node to move
only within a certain region and hence increase the meeting opportunities between
nodes. While theoretical mobility models facilitate problem analysis, they are far
beyond reality and not practical in designing networking protocols for real systems
and their performance analysis.

3.1.2 Empirical Mobility Models

In recent years, there has emerged more research work taking experimental study
on the characteristics of the inter-contact time. For example, some empirical
results [28–30] based on human mobility show that the tail distribution of the inter-
contact time is far from being exponential, but can be approximated or lower
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bounded by a power law. These results are based on real traces such as human
contacts while at conferences [30], campus WiFi login records [29, 42] and a
Bluetooth network containing hundreds of people in an office [30].

It is apparent that the mobility of vehicles is significantly different from that of
human beings in terms of speed, constraints of road transportation systems and
travel distance. Although these empirical results based on human mobility depict
another scene of the ICT distribution, the situation in vehicular environments is
still left unknown. There have been some pilot projects setting up to study
vehicular mobility. For example, DieselNet [15] at UMass consisting of 40 buses
studies the aggregated inter-contact time distribution at a granularity of bus route
and find a clear periodic structure in the inter-contact times between two bus
routes. For the lack of enough contact samples between two individual buses, the
bus trace data are not sufficient for studying the distribution of the inter-contact
time between two individual buses. In the RAPID routing protocol [43], it is
assumed that the distribution of bus inter-contact times is exponential to make
their problem tractable.

3.2 Empirical Vehicular Mobility Analysis

In order to have a better understanding of practical constraints in opportunistic
data transfer between vehicles, experiments involving thousands of vehicles over a
long time span of months are in pressing demand. In practice, the deployment cost
for such large-scale experiments would be enormous. In this chapter, we study the
vehicular mobility by analyzing the large volume of trace data that we have
described in Chap. 2. We are interested in how often transfer opportunities can
occur between vehicle pairs since it is the key factor that impacts the end-to-end
delay for data delivery in VANETs. We first describe the method to extract
contacts between each pair of experimental vehicles from the trace. Then we
present the inter-contact time characteristics embedded in the trace data. Finally,
we discuss the possible reasons behind our key observation on the vehicular ICT
distribution.

3.2.1 Extracting Inter-Contact Times

Ideally, all connection opportunities encountered 24 h a day, with a granularity
measured in seconds should be recorded in the data for study. Since we collect
GPS reports in discrete time, we use a sliding time window to check contacts
between a pair of taxies. Here we make the assumption that two vehicles would be
able to communicate (called a contact) if their locations reported within the time
window are within the communication range. For the example if Fig. 3.1, suppose
we have two real contacts C1 and C2 happening between vehicle v1 and v2. As v1
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and v2 keep sending reports, given a communication range, we can slide a time
window along the time axis to check contacts.

The above assumption, though, can introduce inaccuracies in the following two
cases.

First, if a relatively large time window is used, we may introduce false contacts
into consideration. This is because two taxies may have already run far away from
their reported locations. Therefore, the retrieved contact may never really exist.
For example, in Fig. 3.1, we may get a false contact C3

0 if a large time window t2
is used even though there is no real contact at all. The consequence of introducing
false contacts is that it increases the weight of small values of inter-contact times
in the distribution since these false contacts cut large ICTs into small pieces.

Second, if a small time window is used, we may omit real connection oppor-
tunities. This is because two taxies might indeed have a contact but did not send
out reports simultaneously. In this case, we may not capture this contact due to the
small size of the time window. This is the case of contact C2 as shown in Fig. 3.1.
The consequence of omitting real contacts is that it causes large values of ICTs
since two real small ICTs are now considered as a single huge one. Moreover,
using small time windows to check contacts can add the weight of small values
into the ICTs distribution. For example, in Fig. 3.1, we will get C1

0 and C2
0 rather

than the real one, C1, when we take t1 to check contacts. To eliminate this effect of
using a small time window, we calculate the correlation between two contacts with
a small ICT. Specifically, given the reported locations and speeds of each taxi, we
calculate the remaining contact time of the first contact as the time these two taxies
move along the same directions and at the same speeds before they are out of the
communication range. If the second contact is contained within the remaining
contact time of the first contact, we make a decision that these two contacts should
be merged into one. Vice versa, we can infer when the second contact started and
further check whether the first contact can be merged.

Despite these inaccuracies, the GPS trace data are very valuable to study vehicular
mobility models since they cover thousands of vehicles and last for one month. In
addition, as most of the GPS reports are sent at a relatively small period (48 s on
average), the deviation of the computed distance of two reported locations within
such a small time window from the actual distance between two taxies is small.

Real
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Resolved
contacts

v2 t1 t2 t3

C1'

C1 C2

C2' C3'

time

time

time

time

Fig. 3.1 Extract contacts from GPS reports of vehicle v1 and v2. Boxes in dotted line denote
sliding time windows of different granularities used to check contacts. Individual GPS reports are
presented by short arrow line segments
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We refer to ICT as the time elapsed between two successive contacts of the
same vehicles as defined in [28–30]. Specifically, the ICT is computed at the end
of each contact, as the time period between the end of this contact and the start of
the next contact between the same two vehicles. It should be noted we do not take
into consideration the ICT starting after the last contacts.

3.2.2 Identifying Exponential ICT Tail

We plot the ICT distribution for the selected trace data in Fig. 3.2. The distribution
of ICT is computed among all pairs of 2,109 Shanghai taxies during the whole
February in 2007. We get six different sets of ICTs by combining different
communication ranges and time window sizes used in the contact extraction. The
time windows are set to one second, thirty seconds and one minute, respectively,
accompanied with two communication ranges of 50 and 100 m. All plots describe
the tail distribution function, i.e., P{X [ t}, in linear-log scale.

The most interesting part in Fig. 3.2 is that all plots exhibit a very clear
exponential tail, i.e., P{X [ t} * e-bt [44]. This can be indicated by the fact that
all plots are almost straight lines with different negative slopes in linear-log scale,
from the very beginning of time and over a large range of timescale. This implies
that, to some extent, taxies can frequently meet with each other. Thus, data
delivery via vehicle-to-vehicle communications would experience smaller end-
to-end delay. Besides the exponential parts, we also notice that, gradually, all six
distributions start to deviate from the exponential decay and drop faster till the end.
This rapid cutoff is caused by the limited duration of the trace data, i.e., one month
in our experiment. The reason is that ICTs that last longer than the duration of the
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Fig. 3.2 Tail distribution of
ICT: data collected from
2,109 taxies in Shanghai city
during the whole February of
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trace data cannot be observed and those ones with very large values close to the
duration are less likely to be found. The effect of observation duration has also
been noted in Augustin Chaintreau et al.’s study based on human mobility [28].

To identify the exponent constant b, we perform the least-square regression
analysis to the extracted ICT. It should be noted that the cutoff part of data should
not be used for regression as they can be considered as artifacts to the tail dis-
tribution. More specifically, we separate the whole regression processing into two
steps. First, we need to identify the divide point from which the tail distribution
function stops exponential decay. This can be achieved by seeking for the point
from which the second derivatives (decay acceleration) of the log-scaled P{X [ t}
are nonzero. Then, we apply polynomial regression to the log-scaled P{X [ t}
over the range from the first point to the divide point. Figure 3.3 shows the
regression result on the lowest plot in Fig. 3.2.

3.2.3 Recognizing Traffic Influxes

The surprising finding of the exponential decay on the ICT tail distribution is in a
sharp contrast to several recent empirical results on the ICT based on extensive
human mobility traces [28–30]. These results indicate that the tail behavior of the
ICT can be approximated or lower bounded by a power law, i.e., P{X [ t} * t-a,
for some constant a[ 0. More spectacularly, it was shown that the power law
exponent a is normally less than one, making the expected end-to-end delay tend
to be infinite, independent of any forwarding algorithm, if the network only
contains a finite number of devices. We claim that the tail distribution of the ICT
based on vehicular mobility satisfies an exponential decay or a light tail. An
exponential decay means the tail distribution function decreases rapidly over this
range. For example, in the lowest plot in Fig. 3.2, about 45 % of ICTs are greater
than one day, and only 5 % are greater than one week.
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The discrepancy between human mobility and vehicular mobility described
above calls for answers to the following question: What is the key factor that
makes vehicles meet with each other frequently? The answer to this question is of
great importance since finding the essential reasons will provide fundamental
guidelines to many related studies in VANETs, such as capacity-delay trade-offs
and design and performance analysis of data forwarding algorithms based on
exponential ICT. Recently, authors in [40] prove that, in any RWP model and any
RWM model, the tail of the ICT between two independent mobile objects decays
at least exponentially fast as long as the boundary is finite. This result can be easily
understood because, in a finite region, while hitting on the boundary, a mobile
node changes its current status correspondingly according to the type of the
boundary. For example, if the boundary is ‘‘reflective’’, the node will be bounced
back into the region with a reflective moving direction and speed and hence
increases contact opportunities with other objects. The boundary effect, however,
is not the major reason in our case where vehicles rarely run out of the city.

By examining the geographical distribution of destinations of loaded taxies, we
find out that the destination distribution over the city is quite uneven. This is
shown in Fig. 2.2 where it can be seen there are many hot areas scattered in the
downtown area, which attracts a large amount of traffic. It can be seen there are
many hot areas scattered in the downtown area. The inset shows aggregated GPS
report distribution (destinations not involved). We call such an area a traffic influx
if traffic tends to converge around this area. The reason of traffic-influx-forming
can be very complicated in urban settings. For example, those areas of interest
such as large business/commercial centers or high-density residential districts are
very likely to be traffic influxes since they keep attracting people to gather. Fur-
thermore, in the road transportation systems, there are many major traffic junctions
connecting a high volume of traffic which may also have the same effect (shown in
the inset of Fig. 2.2). In addition, bad or inappropriate design of road networks
may also form another kind of traffic influxes where constant traffic congestion
occurs. Intuitively, a traffic influx has the effect of gathering vehicles from time to
time and hence enormously increases contact opportunities of vehicles.

With these findings, we make further remarks as follows. First, this implies that
most of the taxies perform deliveries only within the city. We argue that a taxi
spontaneously presents itself in popular areas most of the time rather than being
passively ‘‘reflected’’ back into these areas when hitting certain physical district/
city boundaries [40]. Therefore, boundary effect is not the major reason of gen-
erating the exponential tail. Second, even taxies which perform arbitrary deliveries
do have special mobility patterns as opposite to random mobility. A loaded taxi
has an explicit destination instead of randomly-picked one. Third, it is clear to see
that these destinations are densely congregated forming hot areas in the city. The
effect of hot areas is to gather vehicles all the time and hence can enormously
increase their contact opportunities.
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3.3 Modeling Urban Vehicular Mobility

In this section, we take a penetrating study on the impact of traffic influxes from an
analysis perspective. We first give some basic definitions and preliminaries related
to our analysis. Then we introduce previous theoretical results based on RWM
mobility models for the purpose of comparison. Last, we present our mobility
model and major theoretical results.

3.3.1 Definitions and Preliminaries

We consider two arbitrary vehicles v1 and v2, each of which moves according to
some mobility model in an infinitely large region X (i.e., X = R2). Let Vv1(t),
Vv2(t) [ X be the position of the vehicles v1 and v2 at time t, respectively. We
assume that Vv1(t) and Vv2(t) are independent and two vehicles can communicate
with each other whenever they are within the communication range Rc. Due to the
interference and signal loss of wireless links, two vehicles within communication
range may still not be able to perform real data transfer. Since we focus on the
characteristics of the tail behavior of the ICT, we study the potential communi-
cation opportunities between two vehicles and leave the successful data transfer
rate with no further discussion.

Definition 3.1 The ICT TI of vehicles v1 and v2 is defined as

TI , inf
t [ 0

t : Vv1ðtÞ � Vv2ðtÞk k�Rcf g ð3:1Þ

given that Vv1ð0Þ � Vv2ð0Þk k ¼ Rc and Vv1 0þð Þ � Vv2 0þð Þk k[ Rc. Here, �k k is
the two-dimensional Euclidian distance.

Let X be a random variable that has Gaussian distribution with mean l and
variance r2, i.e., X * N(l, r2).

If X�N lX; r
2
X

� �
and Y �N lY ; r

2
Y

� �
are two independent random Gaussian

distributed variables, we have

Property 3.1 The difference of X and Y is also Gaussian distributed,

U ¼ X � Y �N lX � lY ; r
2
X þ r2

Y

� �
ð3:2Þ

3.3.2 RWM Without Traffic Influx

For the sake of comparison, we examine the tail behavior of the ICT under a two-
dimensional discrete-time isotropic RWM mobility model [3, 12] with no traffic
influxes existing in the experimental region. In this model, at the beginning of each
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time slot t, a vehicle randomly selects a direction uniformly from [0, 2p] and
moves a random distance D which is chosen from (0, ?) at a random speed chosen
from pre-defined [vmin, vmax]. After it reaches the destination, it repeats the same
procedure and starts the next run. We introduce the following result:

Theorem 3.1 (Theorem 4 in [12]): Suppose that two independent vehicles v1 and
v2 move according to the two-dimensional isotropic random walk mobility model
described above. Then, the ICT TI of vehicles A and B is P{TI [ t} C C.t-1/2,
where C is a constant, when t is sufficiently large.

3.3.3 Mobility Model with Traffic Influx

With the constant observation of vehicle-gathering in urban environments, we
introduce a mobility model to characterize the gathering effect at a traffic influx.

In our model [45], a vehicle randomly walks in an infinitely large region.
During the process, it revisits a fixed location, called the traffic influx, at least once
within a given time period T. More specifically, at the beginning of time, a vehicle
randomly selects a direction uniformly from [0, 2p], a random distance D chosen
from (0, ?) and a speed randomly chosen from pre-defined [vmin, vmax]. Besides, it
also sets up a TIMER with the value of T. Then the vehicle starts to conduct
random walk until the TIMER has expired. In that case, the vehicle stops randomly
walking and heads for the traffic influx. Once it reaches the traffic influx, the
vehicle resets its time and repeats the whole process. We call T the vehicle’s
maximum periodicity with respect to the traffic influx. The magnitude of T thus
indicates how attractive this traffic influx is to this vehicle. A small T means the
vehicle very often appears at the traffic influx. As T increases to infinity, chances
are that the appearance of the vehicle at the traffic influx is prolonged. In this
model, each vehicle can take its own maximum periodicity. Figure 3.4 illustrates
the mobility model with traffic influx.

3.3.4 Analysis on ICT Under Mobility Model with Traffic
Influx

We present following assumption and lemma.

Assumption 3.1 At any time t, the mobility of each vehicle is independent, i.e., a
vehicle chooses its destinations and routes according to the mobility model and its
own preferences to the traffic influx.

Lemma 3.1 Given a specific maximum periodicity T of a vehicle, the region
where the vehicle moves can be upper bounded by a disk with a radius r = vmax.T,
where vmax is the maximum velocity of the vehicle.
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Proof Consider the extreme case where the vehicle starts from the traffic influx
and keeps moving without changing its direction. Since the vehicle is bound to
return to the traffic influx before its maximum periodicity T, the maximum dis-
tance the vehicle can run away from the traffic influx is vmax.T. In addition, because
the vehicle can choose any direction uniformly from [0, 2p], the reachable area
will be covered by a disk with the radius r = vmax.T. j

The effect of T on a vehicle is actually equal to putting a constraint on the
maximum area the vehicle can reach. Obviously, a larger T allows the vehicle to
move further in the region.

Lemma 3.2 Under the mobility model described above, the contact opportunities
of a vehicle can be lower bounded by any mobility model that yields independent
symmetric Gaussian location distribution of vehicles.

Proof Since a vehicle randomly selects a direction while performing random
walk, the probability density function (PDF) of the location distribution of the
vehicle is thus independent in independent in orthogonal directions and symmetric
as well. Moreover, with the existence of T, the vehicle presents itself more fre-
quently around the traffic influx, which makes the PDF yield a convex shape with
the highest probability appearing at the traffic influx. The PDF in x-axis is shown
as P(x) in Fig. 3.5.

XO-σ σ =n0·vmaxT

N(0,σ 2)

P(x)

a
b c

d

e f

gFig. 3.5 The contact
opportunities on the PDF
P(x) can be lower bounded by
the contact opportunities on a
Gaussian distribution N(0, r2)
with r = vmax.T

t2

t0
t1

X

Y

O

Fig. 3.4 A vehicle v1 moves according to the mobility model with traffic influx. The red dot
located at the origin denotes the traffic influx. At time t0, v1 sets up a timer and starts to randomly
walk. At time t2, due to the expiration of its timer, the vehicle terminates current random walk
and return to the traffic influx. Note that before the expiration of the timer, it is possible for v1 to
be present at the traffic influx with random walk (e.g., at time t1)
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We now prove that a mobility model yielding independent symmetric Gaussian
location distribution of vehicles will satisfy Lemma 3.2, as long as the peak of the
bell shape of the Gaussian is located at the traffic influx and the probability at the
peak is smaller than P(x = 0).

Since two vehicles constantly revisit the common traffic influx located at the
origin in Fig. 3.5, each of them presents their selves more frequently when they are
close to the traffic influx and therefore have more contact opportunities than when
they are far away from it. Therefore, the contact opportunities can be determined
by the area of P(x). Because the probability at the peak of the Gaussian is smaller
than P(x = 0), we have Sabe ? Scdf \ Sboc, where Sabe, Scdf and Sboc denote the
area of region abe, cdf and boc, respectively, as shown in Fig. 3.5. This is easy to
be verified since Sboc ? Sbcef = 1 (i.e., the cumulative density function of P(x) is
1) whereas Sabe ? Scdf ? Sbcef \ 1 (any truncated area of Gaussian PDF is less
than 1). This completes the proof. j

We now present our major result as follows:

Theorem 3.2 For any two arbitrary vehicles moving according to the mobility
model described above, there exists a constant c such that P{TI [ t} � e-ct for all
sufficiently large t as long as they have finite maximum periodicities.

Proof Suppose the maximum periodicity of vehicles v1 and v2 are T1 and T2,
respectively. According to Lemma 3.2, we arbitrarily choose a mobility model for
v1 that satisfies the condition of Lemma 3.2. The variances of the Gaussian

location can be expressed by r2
X1 ¼ r2

Y1 ¼ n1tmaxT1ð Þ2, where n1 is a positive
number. Similarly, the variances of the Gaussian location for v2 can be expressed

by r2
X2 ¼ r2

Y2 ¼ n2tmaxT2ð Þ2.

Let PK TI [ tf g be the probability that v1 never meets v2 until time t under
corresponding Gaussian distribution and PNfTI [ tg be the probability that v1

never meets v2 until time t under our mobility model. The condition described
above will guarantee PN TI [ tf g�PK TI [ tf g. Next we will prove that there
exists a constant c such that PKfTI [ tg ¼ e�ct.

Due to the independency and the same variances in each dimension, we can
express the PDF of Gaussian distribution in each dimension as follows:

fXðxÞ ¼
1
ffiffiffiffiffiffi
2p
p

r
exp � x2

2r2

� �
ð3:3Þ

fYðyÞ ¼
1
ffiffiffiffiffiffi
2p
p

r
exp � y2

2r2

� �
ð3:4Þ

Thus, the joint PDF f ðx; yÞ is

f ðx; yÞ ¼ f ðxÞf ðyÞ ¼ 1
2pr

exp � x2 þ y2

2r2

� �
: ð3:5Þ
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Note that the relative position of v2 with reference to v1 in each dimension is
also independent. With Property 3.1, we have

fX1�X2ðxÞ ¼
1

ffiffiffiffiffiffi
2p
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p exp � x2

2 � ðr2
1 þ r2

2Þ

� �
ð3:6Þ

and

fY1�Y2ðyÞ ¼
1

ffiffiffiffiffiffi
2p
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p exp � y2

2 � ðr2
1 þ r2

2Þ

� �
: ð3:7Þ

For clarity of writing, we drop the index symbol x1 � x2 and y1 � y2 simply
write the joint PDF as

f ðx; yÞ ¼ 1

2p � r2
1 þ r2

2

� � exp � x2 þ y2ð Þ
2 � ðr2

1 þ r2
2Þ

� �
ð3:8Þ

At any time t, the probability that v1 and v2 does not meet is the probability that
they are out of the communication range Rc. Let E denote the event that two

vehicles do not meet at any time t. Denote by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the distance between

the two vehicles at time t. We have

PN Ef g ¼ PN V1ðtÞ � V2ðtÞk k[ Rcf g

¼ 1

2p r2
1 þ r2

2

� �
ZZ

x2þy2 [ R2
c

exp � 1
2

x2 þ y2

ðr2
1 þ r2

2Þ

� �� �
dxdy

¼ 1
2p

Z2p

0

dh
Zþ1

Rc

r

r2
1 þ r2

2

� � exp � r2

2 � ðr2
1 þ r2

2Þ

� �
dr

¼ � exp � r2

2 � ðr2
1 þ r2

2Þ

� ������
þ1
Rc

:

¼ exp � R2
c

2 � ðr2
1 þ r2

2Þ

� �

Therefore, the ICT TI can be expressed as

TI [ tf g � \
t

0þ
E

The probability that the two vehicles meet at time t is equivalent to the prob-
ability that two vehicles never meet up to time t. Since in our model, the choice of
a vehicle at any time t is independent of its previous behavior, E does not depend

on t. Let g ¼ exp � R2
c

2� r2
1þr2

2ð Þ

� �
. Thus, we have
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PN TI [ tf g ¼ PN

\t

s¼0þ
E

( )

¼ gt ¼ e�c�t

where c ¼ R2
c

2� r2
1þr2

2ð Þ [ 0. Since PN TI [ tf g�PK TI [ tf g, we have PKfTI [ tg
� e�ct. We drop the index K and get

P TI [ tf g� e�ct ð3:9Þ

This completes the proof. j

Note that the exponent coefficient c of the tail distribution of the ICT depends
on both the communication range Rc and variance r1

2 and r2
2. Given a communi-

cation range, larger variances indicate smaller c. It is not difficult to understand
since the larger the variance, the gentler the shape of the PDF of Gaussian dis-
tribution of a vehicle’s locations will be. This will surely reduce the possibility that
two vehicles can ‘‘meet’’. However, since the maximum periodicities are finite, the
corresponding r1

2 and r2
2 are constant, which will not change the nature of the tail

distribution function of the ICT from being exponential.
As mentioned before, region boundary can form limitations to the motion of

mobile objects under RWP/RWM mobility models [40]. In essence, a traffic influx
has a similar effect as a physical boundary to mobile nodes. While boundary
restricts the motion of the node in space, a traffic influx puts a limitation in time
dimension. Within certain time period, the mobile node will spontaneously run for
or passively be ‘‘pulled’’ back towards the traffic influx. Thus, more contact
opportunities are added into the system. In real urban scenarios, it is often the case
that traffic influxes exist. For example, the underlying road networks by nature take
the effect of a huge traffic influx since vehicles have to flow in and out the traffic on
roads before getting anywhere. Therefore, the tail distribution of the ICT is at least
exponentially fast.

3.3.5 Cross Over from Exponential to Power Law

From the results in Sect. 3.3.4, we can see that the maximum periodicity with
regard to the traffic influx plays an essential role in generating the exponential tail
distribution of the ICT. As the maximum periodicity increases from a finite value
to infinity, the tail distribution of the ICT evolves from exponential decay to power
law decay. Then the question is: How large the maximum periodicity is sufficient to
be considered as ‘‘infinite’’? Given any large value of the maximum periodicity, as
long as our observation lasts long enough, we can always find an exponential tail
of the ICT. On the other hand, if the duration of the observation is short, the
chances of seeing a vehicle with a large maximum periodicity at the traffic influx
are slim. In this case, we are more likely to find a vehicle walking randomly in the
region and the consequent power low tail behavior of the ICT.
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According to Theorem 3.2, the probability that two vehicles do not meet until
time t is

P TI [ tf g� 1� ð1� gÞ½ �t

¼ 1� 1
1=ð1� gÞ

� 	1=ð1�gÞ�ð1�gÞt
� e�gðt;gÞ

where gðt; gÞ, ð1� gÞt ¼ 1� 1� exp � R2
c

2� r2
1ðtÞþr2

2ðtÞð Þ

� �� �� �
t.

If gðt; gÞ� ct or r2
1ðtÞ þ r2

2ðtÞ
� �

� R2
c

2 log 1=cð Þ, i.e., r2
1ðtÞ ¼ n1tmT1ð Þ2¼ O 1ð Þ and

r2
2ðtÞ ¼ n2tmT2ð Þ2¼ O 1ð Þ, we have PfTI [ tg� e�ct as expected. In this case,

both the maximum periodicity of v1 and v2 are finite and does not grow with
observation time t. Thus, vehicles are always confined to moving in certain region
and the frequency of their meeting is high; If gðt; gÞ� a log t, which means

r2
1ðtÞ þ r2

2ðtÞ
� �

� R2
c

log t=a log tð Þ. Since T * r(t), we now consider the interaction

among the maximum periodicity T1, T2 and the observation time t. There are two
cases depending on their expansion scales with time:

(1) max{T1, T2} grows much faster than t: Without loss of generality, we suppose
T1 = max{T1, T2}. Under this circumstance, T1 grows much faster than the

order of O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
log t=a log tð Þ

q
 �
. Thus, v1 tends to move more randomly in a broader

area. The changes for v1 to revisit the traffic influx are slim. This definitely
prolongs the ICT and the power-law distribution arises.

(2) Both T1 and T2 grow slower than t: both T1 and T2 grow much slower than the

order of O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
log t=a log tð Þ

q
 �
. The vehicles can be treated as moving in ‘‘bounded’’

regions under the limited observation time, which implies that they will fre-
quently revisit the traffic influx. This truly introduces an exponential ICT tail
distribution.

3.4 Model Evaluation

In this section, we conduct simulations and present the results to support our
theoretical conclusion. We first consider our mobility model on an infinitely large
region with/without traffic influxes. Moreover, we conduct a set of simulations to
demonstrate the impact of underlying road networks to the ICT distribution. In all
simulations, the speed of an arbitrary vehicle is chosen randomly from 40 to
80 km/h with a mean value of 60 km/h. The transmission range is set to 100 m.
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3.4.1 Impact of Maximum Periodicity

In this experiment, we generate 100 vehicles that run according to our mobility
model on a sufficiently large region with one traffic influx at the origin. For the
clarity of result analysis, we let all vehicles take equal maximum periodicities. As
mentioned before, the interaction between the timescale of the experiment and the
timescale of the maximum periodicity of vehicles with respect to the traffic influx
is essential in determining the tail distribution of the ICT. To clearly see this
interaction, we fix the experiment duration to one month and then increase the
maximum periodicity from half of a day to one month to see the possible different
types of tail distributions.

Figure 3.6 shows the tail distribution of the ICT between all pairs of vehicles on
a linear-log scale for our mobility model. It can be seen that the tail distribution
can be approximated by a line in the front part of the curve when the maximum
periodicity is set to 12 h and one day, respectively. This indicates an exponential
decay on the linear-log scale. As we take larger maximum periodicities, the tail
behavior of the ICT starts to evolve from exponential decay to power law decay.
This can be better observed from Fig. 3.7 where the scale is log–log. The tail
distribution can be approximated by a line when the maximum periodicity equals
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Fig. 3.6 Tail distribution of
the ICT for the described
mobility model under
different maximum
periodicities: half a day, one
day, one week and one
month. Figure is drawn on a
linear-log scale
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to one month. It is interesting to notice that, at the time scale of one week in this
experiment, the tail distribution first exhibits a power law distribution over a time
span of about two days from the beginning of time. It then follows an exponential-
like decay over a large range of timescale (excluding the fading range caused by
limited duration of the observation). Setting the maximum periodicity equal to one
week reaches a critical condition where the tail distribution turns from exponential
decay into power law decay.

3.4.2 Impact of Real Road Networks

Since urban vehicles always move on roads in the city, the road transportation
system can put various constraints to the mobility of these vehicles. To study the
impact of the real road networks to the tail distribution of the ICT, we contact a
simulation that involves 300 generated vehicles. A vehicle starts to perform ran-
dom walks on the road networks from the central area. It randomly chooses a
distance D and direction each time and runs for three days.

Figure 3.8 shows the destination distributions of all taxies. Since we take a
relatively short experiment time and set vehicles to start from the central area. The
majority of the vehicles have not reach the boundary of the city. Figure 3.9 shows
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Fig. 3.8 The destination and
trace distribution on Shanghai
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the tail distribution of the ICT with different settings of D. It can be seen that the
tail behavior follows an exponential decay even the destinations are randomly
chosen. It is because the road networks eventually have the effect of gathering
mobile vehicles on roads. This can also be recognized by the inset in Fig. 3.8
where major roads are most visited and have a large amount of traffic.

3.5 Summary

In this chapter, we have demonstrated that the ICTs of taxies have an exponential-
like tail distribution by mining the real trace data in Shanghai. To understand the
fundamental reason that generates such a tail behavior, we further re-examine the
data and have identified the impact of traffic influxes existing in most urban
environments by theoretical analysis. We rigorously prove that the tail distribution
of the ICT of any two vehicles follows an exponential decay as long as these
vehicles have at least one constant traffic influx involved in their normal activities.
Our results thus provide fundamental guidelines on design of new vehicular
mobility models in urban scenarios, new data forwarding protocols and their
performance analysis in VANETs.

With the theoretical and simulation results based on our mobility model, we are
highly confident to claim that two vehicles of any type can have the tail distri-
bution of the ICT at least exponentially fast as long as they have one or more
common traffic influxes in their normal commuting routines. In real urban envi-
ronments, there can be more complicated situations. For example, the schedule
scheme of traffic lights can have a great deal of impact on vehicular mobility. Two
passing vehicles may gain a contact opportunity while waiting for a green light.
Note that we do not claim that the traffic influxes in the urban environments are the
only factor that can generate the observed exponential tail distribution of the ICT.

There are still many aspects for us to investigate in the future. For example, in
more complicated scenarios, there can be multiple traffic influxes. The relationship
between the geographical distribution of these traffic influxes and the tail distri-
bution of ICT is uncertain and worth studying. Moreover, it is often assumed in the
literature that data transfers can be done instantaneously as soon as two vehicles
have a chance to meet. It is definitely not the case in reality where link quality
shows very high dynamics. The situation is even worse when consider the same
problem in vehicular environments because contacts between vehicles are usually
quite short due to high moving speeds and limited communication range. Thus, we
will investigate the ultimate end-to-end delay since it can be caused not only by
ICTs but also by retransmissions if the data transfer fails in a contact.
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Chapter 4
Opportunistic Routing Protocols

4.1 Introduction

In intermittently connected mobile ad hoc networks (MANETs) and delay tolerant
networks (DTNs), in order to successfully transfer data from a moving node to
another, the node has to first wait until it geographically ‘‘meets’’ other nodes
(contact happens) for data-relay. Therefore, data communications are opportunistic
in a store-carry-forward fashion, which constantly experiences large end-to-end
delays. Data forwarding in VANETs falls in this category. Fast data forwarding
which refers to minimizing the end-to-end delay and network traffic at the same
time in vehicular networks is the cornerstone of a wide variety of applications. For
example, real-time road traffic information can be obtained by exchanging local
traffic observations among vehicles.

Provisioning fast data forwarding in vehicular networks, however, is quite
challenging due to three reasons. First, even all future contacts are known, finding
the fastest path for a given data traffic load is NP-hard [43]. To make things worse,
due to the dynamic characteristics of the network, it is very hard to know future
communication opportunities between vehicles. With no such information, routing
decision made based on past contact statistics can hardly achieve the optimal.
Second, with the distributed nature of the network, a vehicle can only have partial
information of the network, which make a globally optimal solution is very hard, if
not impossible. Last, data communications are via wireless channels and therefore
the network resource is restrained, which makes solutions that flood the network
[43, 46] infeasible since they introduce prohibitive network traffic.

As communication opportunities are created by the mobility of vehicles, the
mobility characteristics of vehicles are central to forwarding algorithms and the
ultimate performance in terms of end-to-end delay, delivery ratio and network
traffic overhead. Based on the available knowledge about the movement of vehi-
cles, data forwarding algorithms in these networks can be divided into two basic
categories: non-knowledge-based and knowledge-based.

In the non-knowledge-based category, without requiring any information,
random walks [47, 48] can be used for data-relay. For a random walk, a vehicle in
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the network randomly selects a neighboring vehicle as the next hop to carry a
message. Using random walks generates very moderate network traffic but tends to
have very large end-to-end delay. By performing multiple walks, both delivery
ratio and end-to-end delay can be improved. An extreme case of this is epidemic
routing [43, 46], where a message is flooded throughout the network. If there is no
bandwidth restriction, using epidemic routing can achieve the minimum end-to-
end delay and maximum delivery ratio but generates unacceptable network
overhead at the same time. Techniques such as limiting the number of duplicated
copies of a message, setting a living timeout for packets and forwarding to selected
neighbors can be used to reduce the overhead of epidemic routing.

In the knowledge-based category, there are several methods available to esti-
mate the end-to-end path delay when the future movement of nodes is known
ahead of time. For example, S. Jain et al. [49] discuss the path selection algorithms
according to how much knowledge about the network topology and network traffic
workload being known. The path delay can be calculated as the sum of the
expected delay of each hop on this path. A recursive process is deployed in [50] to
calculate the minimum end-to-end delivery delay, assuming that the tail distri-
bution of inter-contact times (ICTs, referring to the time durations between two
consecutive contacts between the same pair of vehicles) is exponential and ICTs
are independent. In reality, however, it is often the case that information about the
future movement of vehicles is unavailable. A number of utility-based routing
schemes [51, 52] have been proposed for data forwarding based on node history
mobility information, such as the contact records, mobility patterns and the rate of
connectivity change. In these schemes, a utility function is defined and measured
for every other node in the network. If the current message carrier meets a vehicle
with a higher utility, the message is forwarded to this vehicle. Based on granularity
at which the underlying vehicular mobility is exploited, we divide existing
opportunistic forwarding schemes into following two subcategories:

Utilizing microscopic mobility: Algorithms residing in this subcategory
extensively investigate pairwise contact properties and their characteristics of
nodes to facility data forwarding. For example, in MaxProp [9], likelihood
(probability) that a node will encounter the destination of a packet is estimated and
used as the forwarding utility. A recursive process has been deployed in [50] to
calculate the minimum end-to-end delivery delay, assuming that the tail distri-
bution of ICTs is exponential and ICTs are independent. S. C. Nelson et al. have
proposed an encounter-based routing scheme [53] using the rate of encounter of a
node as message relay utility. Observing that successive ICTs have strong tem-
poral correlations, Markov chains [54, 69] have been used to predict future con-
tacts. In this category, a utility function is defined and measured for every other
node in the network. If the current message carrier meets a node with a higher
utility, the message is forwarded to this node. Algorithms in this category would be
very effective when delivering packets to those nodes with which a node has prior
contact knowledge.

Utilizing macroscopic mobility: In this subcategory, social structures of node
mobility are characterized by data forwarding algorithms. Pairwise contacts are
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aggregated to social graphs that reflect the regular social relationships between
nodes. For example, E. M. Daly et al. [55] have proposed a social based routing
scheme called SimBet, which assesses similarity and betweenness centrality
Packets are routed to most central nodes until a node with higher similarity is met.
Then the packet is routing within the community until the destination is reached.
P. Hui et al. [56] have proposed a similar social based data forwarding scheme
called Bubble Rap, where betweenness centrality is also used to find bridging
nodes and communities are explicitly identified by a distributed community
detection algorithm. J. Pujol et al. [57] have proposed a forwarding algorithm
called FairRoute leveraging two social processes called perceived interaction
strength and assortativity to distribute load more evenly among nodes in the
network. Recognizing the importance of capturing real social relationships to the
performance of data forwarding, T. Hossmann et al. [58] have proposed an online
algorithm to infer the optimal aggregation density.

Provisioning fast data forwarding in vehicular networks, however, is quite
challenging due to three reasons. First, due to the dynamic characteristics of the
network, it is very hard to know future contacts between vehicles. With no such
information, routing decision made based on past contact statistics can hardly
achieve the optimal. To make things worse, even all future contacts are known,
finding the fastest path for a given data traffic load is NP-hard [43]. Second, with
the distributed nature of the network, a vehicle can only have partial information of
the network, which make a globally optimal solution is very hard, if not impos-
sible. Last, data communications are via wireless channels and therefore the net-
work resource is restrained, which makes solutions like epidemic routing [43, 46]
infeasible since they introduce prohibitive network traffic.

In this chapter, we first present a contact-based data forwarding algorithm based
on microscopic mobility of vehicles [54]. Specifically, we analyze more than 45
million pairwise contacts resolved from our traces collected in Shanghai and
Shenzhen in China to characterize the contact interaction among vehicles. By
studying the distribution of ICTs, in addition to the exponential tail distribution,
we find that the layout of ICTs also demonstrates an apparent pattern: if a vehicle
meets another vehicle at certain time, the probability that the two vehicles meet
again at the same time in the following days is very high. With this observation,
we characterize the temporal correlation of ICTs and then capture those charac-
teristics with higher order Markov chain models. We then design an opportunistic
forwarding algorithm exploiting the temporal dependency of ICTs. In our algo-
rithm, a vehicle estimates the expected delay between a neighboring vehicle and
the destination of a message, based on their previous ICTs. If this vehicle has
smaller estimation, it forwards the message for data-relay. The goal of our algo-
rithm is twofold: first, we concern the delivery performance in vehicular networks,
trying to minimize the end-to-end delay and maximize the delivery ratio; second,
since vehicles communicate via wireless channels, we try to minimize the network
overhead for data transmission. Through extensive trace-driven simulations, our
algorithm can achieve comparable delivery performance as epidemic routing in
terms of end-to-end delay and delivery ratio with a very moderate network
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overhead. Compared with current message forwarding strategy based on the
delivery probability or the expected delay, our algorithm can dramatically increase
84 % delivery ratio and reduce 53 % end-to-end delay while generating similar
network traffic.

Then, we introduce a social-based routing scheme ZOOM [62] which elegantly
manages to capture both microscopic and macroscopic mobility of vehicles in an
integrated approach in order to achieve a better tradeoff between end-to-end delay
and network traffic cost. The design of ZOOM is based on two key observations
found by analyzing the traces. First, consecutive ICTs have strong temporal cor-
relations, which can be utilized to predict future contacts. Second, contact graphs
established by aggregating pairwise contacts represent clear social structures.
Inspired by these observations, we first train Markov chains to capture the tem-
poral correlations of pairwise contacts, based on which we infer future contact
opportunities. We then use centrality to measure the importance of a vehicle in the
contact graph. With mobility information in both levels, when two vehicles
encounter, the vehicle with shorter expected ICT with the destination will be
chosen as the next relay of a packet. If no such information available, the vehicle
which has larger network centrality will act as the next data relay. Extensive trace-
driven simulation results demonstrate the efficacy of ZOOM design. On average,
ZOOM can improve 30 % performance gain comparing to the state-of-art
algorithms.

4.2 Contact-Based Routing Protocol Design

Recently, there have been several studies on analyzing mobility characteristics
based on empirical trace data collected from urban areas [42, 59] and public
transportation systems [44, 60]. These studies mainly focus on the distribution of
ICTs, having the observation that vehicles in urban environments tend to meet
very frequently. They demonstrate the tail distribution of ICTs can decay expo-
nentially fast. Although the exponential distribution facilitates the problem anal-
ysis on the performance bound of routing algorithms, it is not clear how to design a
practical opportunistic forwarding algorithm utilizing the characteristics of ICTs?
We take a data-driven approach in designing and evaluating our opportunistic
forwarding algorithm in urban vehicular networks.

4.2.1 Statistics of ICTs

(1) Extraction of ICTs from Trace Data
Since GPS reports are sent in discrete time, usually on one minute, we use a
sliding time window to check contacts between a pair of taxies as introduced
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in our previous work [44, 45]. Here we make the assumption that two vehicles
would have a connection opportunity (called a contact) if their locations
reported within a given time window are within the communication range.
Although the inaccuracy may be introduced by this assumption and contact
extraction algorithm, the essential vehicular mobility characteristics are pre-
served and therefore the results are very valuable for study.
We refer to inter-contact time as the time elapsed between two successive
contacts of the same vehicles as defined in [28–30]. Specifically, the inter-
contact time is computed at the end of each contact, as the time period
between the end of this contact and the beginning of the next contact between
the same two vehicles. For example, in Fig. 4.1, inter-contact time d1 can be
computed as the starting time of contact C2 minus the end time of its previous
contact C1. Table 4.1 shows the statistics of ICTs extracted from three traces.

(2) ICT Distribution Characteristics
We apply the above contact extraction algorithm with a time window of one
minute and a communication range of 100 m to each pair of vehicles in all
three data sets, respectively (basic statistics are shown in Table 4.1). We plot
the tail distribution (CCDF) of inter-contact time over time in linear-log scale
in Fig. 4.2. The linear delay of all plots in linear-log scale indicates that the
tail distribution of inter-contact time between vehicles drops exponentially.
The reason that the ICT tail distribution of vehicles is exponential rather than
power law as found in human mobility [28] might be that traffic tends to
converge around certain areas in the urban settings, such as the underlying
topology of road networks and distribution of residential areas, shopping
centers and commercial zones, which enormously increases contact opportu-
nities of vehicles [44, 45]. The exponential distribution implies, to some
extent, vehicles meet each other in urban settings very frequently. While
exponential distribution is convenient for the problem analysis, we are athirst
for the answer to the following question: how to design a practical opportu-
nistic forwarding algorithm utilizing inter-contact time distribution charac-
teristics?
To answer the question, it is not enough knowing only the frequency of
connection opportunities but particularly the temporal layout or patterns
between each inter-contact time within the distribution. Therefore, we
examine the probability density function (PDF) of ICTs as shown in Fig. 4.3.
It is easy to notice an apparent pattern that the probability reaches local
maxima when the length of an inter-contact time equals an integral multiple of
one day. This indicates that if a vehicle meets another vehicle at certain time
the probability that the two vehicles meet again at the same time in the

d1 d2

time

(v1, v2)
dm

C1 C2 C3 Cm Cm+1

T

Fig. 4.1 An example of contacts and inter-contact times between a pair of vehicles v1 and v2
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Table 4.1 Comparison of three data sets

Data set Shanghai bus Shanghai taxi Shenzhen taxi

Number of vehicles 2,501 2,109 8,291
From date Feb 19, 2007 Feb 1, 2007 Oct 1, 2009
Duration (day) 15 31 31
Granularity (second) 60 15*, 60** 60
Number of contacts 1,229,380 22,053,178 23,968,860
Mean ICT (minute) 31.8 47.6 30.5

* vacant, ** passengers onboard
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following days is very high. The reason can be explained as follows. Buses can
constantly encounter with each other since they have dedicated routes and
schedules. Intuitively, taxies behave rather randomly and have higher mobility
than buses. Nevertheless, taxi drivers also have their own preferences in
choosing serving areas and path planning. Evidence shows that other vehicles
of different kinds in urban settings also demonstrate strong mobility patterns
during daily routines [63], which constitute regular connection opportunities.
In other words, temporal dependency of inter-contact time does exist between
two vehicles in urban vehicular networks.

4.2.2 Analyzing ICT Temporal Patterns

We examine two specific questions: (1) how historical inter-contact time infor-
mation is related to the current inter-contact time; and (2) how inter-contact time
patterns evolve over time and how much historical information we need to track to
capture the inter-contact time patterns over time.

4.2.2.1 Characterizing Temporal Correlations of Successive ICTs

We examine the correlation between ICTs by computing the marginal entropy of
ICTs between each pair of vehicles and the conditional entropy of ICTs between a
pair of vehicles given their previous M inter-contact times in all of the three data
sets.

Although an ICT can be infinitely long in time, due to the fast exponential
decay of inter-contact time tail distribution, most inter-contact times are less than a
relatively short period of time. For example, in Fig. 4.3, more than 90 % inter-
contact times are less than 6 days. Therefore, an inter-contact time T can be
specialized into a discrete finite value space as,

T 0 ¼ T =kb c; if T\T:
T=kb c; otherwise

�
ð4:1Þ

where T is the maximum inter-contact time, and k is the counting measure. In the
rest part of this chapter, without explicit specification, inter-contact times are
referred to as their specialized counterparts.

Let X be the random variable representing the inter-contact times between a
pair of vehicles. If we have observed N inter-contact times between this pair of
vehicles, these inter-contact times can be presented by a vector T ¼
t0; t1; . . .; tN�1ð Þ where ti 2 0; T=kb c½ �, 0� i�N � 1 denotes the ith inter-contact

time. Assume each of these inter-contact times appeared xj times in T,
0� j� T=kb c. Thus, the probability of the inter-contact time being j can be
computed as xj

�
N. Therefore, the entropy of T is:
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H Xð Þ ¼
XT=kb c

j¼0

xj

�
N

� �
log2

1

xj

�
N
: ð4:2Þ

For M ¼ 1 let X0 be the random variable for the immediately previous inter-
contact time between this pair of vehicles given the inter-contact time X. X0 and X
have the same distribution when N is large enough. The vector T can be written as
Q ¼ ti; tiþ1ð Þ : 0� i�N � 2f g. Therefore, the joint entropy of X0 and X can be
computed as:

H X0;Xð Þ¼
X

x0;xð Þ2Q

P x0; xð Þlog2
1

P x0; xð Þ; ð4:3Þ

where P x0; xð Þ is the number of times x0; xð Þ appearing in Q divided by the total
number of elements in Q. With H Xð Þ and H X0;Xð Þ, the conditional entropy of X
given X0 is:

H XjX0ð Þ ¼ H X0;Xð Þ � H X0ð Þ ¼ H X0;Xð Þ � H Xð Þ: ð4:4Þ

For M ¼ 2, let X00 denote the random variable representing the distribution of
the previous two ICTs given X. Similarly, the conditional entropy H XjX00ð Þ is:

H XjX00ð Þ ¼ H X00;Xð Þ � H X0ð Þ
¼ H X00;Xð Þ � H X0;Xð Þ; ð4:5Þ

The joint entropy H X00;Xð Þ can be calculated similarly.
Figure 4.4 shows the CDFs of the mean entropy and the mean conditional

entropy, for M = 1 and 2, over each pair of taxies in the Shanghai data set. It can
be seen that the conditional entropy for M = 1 is much smaller than the marginal
entropy, and that the conditional entropy for M = 2 is smaller than that for M = 1.
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This implies that the uncertainty about the inter-contact time decreases when
knowing the previous inter-contact times between the same pair of taxies.

We further examine the entropy and conditional entropy for vehicles in all data
sets. Figure 4.5 shows the results for marginal entropy and conditional entropy
when M = 1. It is clear to see that the conditional entropy is much smaller than the
marginal entropy for all types of vehicles. In addition, all entropy distributions are
very close. Buses have much smaller conditional entropy than taxies in Shanghai.
Therefore, although a pair of buses can have as many inter-contact times as a pair
of taxies do, the inter-contact times between buses are more correlated than those
between taxies. Interestingly, taxies in Shenzhen also have much smaller condi-
tional entropy than taxies in Shanghai. This suggests that taxies in Shanghai
operate more randomly with less interference of drivers than taxies in Shenzhen.

4.2.2.2 Evolution of ICT Patterns

In order to establish informed message forwarding strategy utilizing inter-contact
time temporal patterns, we divide time into short time slots and examine the
correlation between the distribution of inter-contact times between a pair of
vehicles in time slot t and that in time slot t-n, increasing n from one to a large
number. We use redundancy to quantify the correlation. Specifically, the inter-
contact times between this pair of vehicles in time slot t forms a time series
Tt ¼ n0; n1; . . .; n tj j�1

� �
, where tj j is the length of a time slot and ni is the number

of inter-contact times occurred at time i 0� i� tj j � 1ð Þ. We also have the time
series of inter-contact times in time slot t � n; Tt�n. We compute the mutual
information of Tt and Tt�n, I Tt; Tt�nð Þ via the joint entropy H Tt; Tt�nð Þ and the
marginal entropy H Ttð Þ and H Tt�nð Þ as follows:

I Tt;Tt�nð Þ ¼ H Ttð Þ þ H Tt�nð Þ � H Tt;Tt�nð Þ: ð4:6Þ
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We define the redundancy of Xr1 and Xr2 by

R Tt;Tt�nð Þ¼ I Tt;Tt�nð Þ
H Ttð Þ + H Tt�nð Þ : ð4:7Þ

We compute the mean redundancy averaged over all pairs of vehicles in
Shanghai bus data set from March 5, Shanghai taxi data set from March 3 and
Shenzhen taxi data set from October 31, respectively. Time is divided into time
slots of 4 h. Figure 4.6 shows the result for n = 1 to 84 (a period of 2 weeks). It
can be seen that the layout of inter-contact times in a period of time has higher
correlation with historical information when the time difference is a multiple of
one day for all types of vehicles. Buses have higher redundancy than taxies.
Therefore, the inter-contact times between buses are more predictable. Interest-
ingly, the redundancy with Shanghai taxies achieves higher values on even
numbers of days than on odd ones whereas the redundancy with Shenzhen taxies is
more homogeneous throughout the whole period of time, having larger variances.
This should reflect the different shift rules of taxies in these two cities. In
Shanghai, taxi drivers usually shift every 24 h so a taxi behaves very differently on
every day but very similarly on every other day. The case in Shenzhen, where
drivers shift twice a day (e.g., 7 am and 5 pm), is that a taxi behaves differently
during the daytime but similarly on every day.

To better understand how much history data should be considered in capturing
the inter-contact time patterns, we examine the redundancy between the layout of
inter-contact time in time slot t and the aggregated historical information from
t � 1 to t � n, i.e.,

Pn
i¼1 Tt�i. We plot the average redundancy over all pairs of

vehicles in the three data sets shown in Fig. 4.7. It is clear that the redundancy
increases until n reaches to about 3 weeks. This implies that information older than
3 weeks does not help in capturing inter-contact time temporal patterns.
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4.2.3 Opportunistic Forwarding Algorithm Design

The analysis based on empirical vehicular trace data in above suggests that it is
possible to predict when the next connection opportunity between a pair of
vehicles will probably occur based on their recent inter-contact times. This
enlightens the design of new opportunistic forwarding algorithms [54] in urban
vehicular networks. In this section, we first capture the inter-contact time temporal
patterns between each pair of vehicles using higher order Markov chain models.
Then, we describe our opportunistic forwarding strategy and discuss the algorithm
parameter configuration in terms of system performance and memory cost.

4.2.3.1 Markov Chain Model of k-th order

The class of finite-state Markov processes (Markov chain models) is rich enough to
capture a large variety of temporal dependencies. In Markov chain models, the
current state of the process depends only on a certain number of previous values of
the process, which is the order of the process. By (1), continuous values of inter-
contact times can be specialized into finite state space, S ¼ 0; 1; . . .; T=kb cf g.
Thus, we can establish a k-th order Markov chain to represent the temporal
dependency of inter-contact time between a pair of vehicles. The number of states

is T=kb c þ 1ð Þk and the number of conditional probabilities is T=kb c þ 2ð Þk.
More specifically, let xif gn

i¼1 be an observed sequence of inter-contact times
between this pair of vehicles. The k-order state transition probabilities of the
Markov chain can be estimated for all a 2 S and b 2 Sk, b ¼ b1; b2; . . .; bkð Þ as
follows. Let nb

�
a be the number of times that state b is followed by value a in the

sample sequence. Let nb
�

be the number of times that state b is seen and let pb
�

;a
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denote the estimation of the state transition probability from state b to state
b2; . . .; bk; að Þ. The maximum likelihood estimators of the state transition proba-

bilities of the k-th order Markov chain are

pb
�

;a¼
nb
�

a

.
nb
�
; if nb

�
[ 0

0; otherwise

(

ð4:8Þ

4.2.3.2 Opportunistic Forwarding Strategy

In order to acquire the knowledge of inter-contact patterns, a vehicle first collects
recent inter-contact times between itself and all other vehicles. Meantime, it
establishes a k-th order Markov chain for each interested vehicle in the network by
determining the state transition probabilities according to (9). As a new inter-
contact time comes, the vehicle also updates the corresponding Markov chain. It
then uses the established Markov chain model as guidance to conduct future
message forwarding. Specifically, when a vehicle v1 encounters vehicle v2, v1

examines all messages stored in the buffer of v2. Suppose vd is the destination of
such a message. Let bv1;vd

denote the current state in the k-th order Markov chain
between v1 and vd. The estimated delay of the next contact between v1 and vd, ev1;vd

delay

can be calculated as,

Ev1;vd

delay ¼
XT=kb c

a¼0

pb
�v1 ;vd

;a � a: ð4:9Þ

Vehicle v1 will act as the next relay for this message if one of the two following
cases happens: 1) v1 is the destination of this message, i.e., v1 = vd, and 2) v1 is a
better candidate for relaying this message if the estimated delay of the next contact
between v1 and vd is shorter than that between v2 and vd, i.e., Ev1;vd

delay\E
v2;vd
delay. After

transmitting the message to v1, v2 simply removes this message from its buffer.
Similarly, v2 will also check messages carried by v1 and relay messages if needed.

4.2.3.3 Algorithm Parameter Configuration

In our opportunistic forwarding algorithm, there are four key parameters that
impact the system performance, namely the maximum inter-contact time in con-
sideration T, the counting measure k, the order of Markov chain models k and the
length for learning stage. In addition, vehicles can have large but limited memory.

Given T, a small counting measure k will increase the number of states in the
Markov chain models, preserving more detailed information at a price of larger
memory consumption. On the other hand, if k equals T, there is only two states in
the Markov chain. Thus, a pair of vehicles can only judge the probability that the
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delay of their next connection is larger than T. This has less sense in helping
message forwarding. Intuitively, with more detailed information, vehicles can
predict more accurately about next communication opportunities. Therefore, there
is a tradeoff between memory cost and system performance. Given the state space
of a Markov chain model, simply increasing k will not help increase the number of
state transition probabilities. The order of Markov chain models k can be deter-
mined by conducting AIC tests [20]. Due to the limitation of space, we omit the
details.

Figure 4.8 shows an example of the average number of state transition prob-
abilities per pair of vehicles in Shanghai taxi trace data set. It can be seen that the
number of state transition probabilities reaches the maximum when k takes the
minimum value (i.e., 4 h in this example) and k equals six.

From the analysis in Sect. 4.2.2, it is clear that increasing the length of learning
stage will definitely help improving the accuracy of estimation for next connec-
tions. It also suggest that history information that is old than about 3 weeks will
not help. Note that all Markov chains are established along with the movement of
vehicles in real time. The performance of the proposed opportunistic forwarding
algorithm will gradually improve as more learning data becomes available. We
will further examine the effect of k, k and the length of learning stage through
trace-driven simulations in the next section.

4.2.4 Performance Evaluation

4.2.4.1 Methodology

In this section, we compare our opportunistic forwarding algorithm with several
alternative schemes:

Fig. 4.8 The memory cost
versus counting measure k
and the order of Markov
models k
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• Epidemic. In this scheme [46, 47], vehicles exchange every packet whenever
they experience a contact. If vehicles have infinite buffer size, using epidemic
routing will find the shortest path between the source and destination vehicles
and therefore has the shortest end-to-end delay. On the other hand, since there is
no control on data forwarding, it also generates a tremendously large volume of
network traffic, overwhelming limited wireless bandwidth.

• Minimum Expected Delay (MED). This scheme [49] utilizes the expected
delay metric to guide data forwarding. Expected delay is used to estimate the
expected delay between two vehicles v1 and v2 based on contact records. Given
the contact record shown in Fig. 4.1, expected delay can be calculated as

D v1; v2ð Þ ¼
Pm

i¼1
d2

i

2T . When conducting packet forwarding, the vehicle with the

minimum expected delay is chosen as the next hop.
• Maximum Delivery Probability (MDP). This scheme [9, 61] utilizes the

delivery probability metric to guide data forwarding. Delivery probability is
designed to reflect the contact frequency, i.e., how often two vehicles meet each
other. For example, if the contact record between vehicles v1 and v2 is shown in
Fig. 4.1, the delivery probability between vehicles v1 and v2 can be calculated

as P v1; v2ð Þ ¼ 1�
Pm

i¼1
di

T . Upon selecting a next-hop vehicle to forward a

packet, a vehicle prefers the neighbor with the maximum delivery probability.

We consider three important metrics to evaluate the performance of our algo-
rithm and the above schemes:

(1) Delivery ratio. It refers to the success ratio of the number of successfully
delivered packets to the total number of packets at the end of an experiment of
certain time.

(2) End-to-end delay. It refers to the delay for a packet to be received to its
destination. It can be calculated by accumulating every delay of each hop. We
only calculate end-to-end delay for successfully delivered packets.

(3) Network traffic per packet. It refers to the average network cost per packet,
calculated by dividing the total number of data forwarding by the number of
packets.

In the following simulations, we evaluate the performance of our opportunistic
forwarding algorithm in terms of the above metrics, using real trace data from
Shanghai taxies, Shenzhen taxies and Shanghai buses. From each data set, we
randomly choose 500 vehicles. We then extract contact records between each pair
of vehicles for all selected vehicles, using the algorithm described in Sect. 4.2.3.
We use the contact records in the first 3 weeks (one week for bus due to the limited
available data) as the learning stage for all alternative schemes and use the last
week for data transmission. At beginning of each experiment, we inject 100
packets using a Poisson packet generator with a mean interval of 10 s. For each
packet, the source and destination are randomly chosen among all vehicles in each
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data set. Here we assume that two vehicles can always successfully conduct all
data transmission when they have a contact.

4.2.4.2 Effect of Algorithm Parameters

We first examine the effects of protocol parameters to the network delivery per-
formance. The maximum inter-contact time T is set to be 6 days (90 % confidence
interval). We vary the counting measure k from 4 h to 6 days at an interval of 4 h
and vary the order of Markov chain k from one to 20 at an interval of one. For each
value of k and k, we run the experiment 50 times and measure the average results.

Figure 4.9 shows the end-to-end delay based on Shanghai taxi. The minimum
end-to-end delay can be achieved with the smallest k equal to four hours and
k equal to six in this case. It is clear that increasing k will result in larger end-to-
end delay. To some extent, increasing k will not reduce the end-to-end delay.
Figure 4.10 shows the delivery ratio as a function of k and k. It can be seen the
delivery ratio reaches the maximum with the smallest k and k equal to six. The
delivery ratio increases very fast as k increases in the beginning but after that it
starts to decrease gradually. When k varies from 4 h to 6 days, the delivery ratio
decreases. These results verify the conclusion described in Sect. 4.2.3.3. We also
check the effect of the configuration of k and k to the delivery performance on
Shanghai buses and Shenzhen Taxies. The result is similar, i.e., taking the smallest
k will get the best performance with k equal to five based on Shanghai bus data and
six based on Shenzhen Taxi data.

4.2.4.3 Effect of Learning Stage

In this simulation scenario, we examine how much history information is essential
for setting up our models. We apply a small k and the corresponding optimal

Fig. 4.9 The end-to-end
delay versus counting
measure k and the order of
Markov models k

4.2 Contact-Based Routing Protocol Design 55



configuration of k and gradually increase the time for learning. For example, in
Shanghai taxi trace data, we set k ¼ 30 min and k = 6 and use the trace in last
week, from Feb 25 to Mar. 3, for data transmission. We increase the time for
learning from one day (i.e., Feb. 24), 2 days (i.e., Feb. 23, 24) till 24 days (i.e.,
Feb. 1–24). For each training time, we run the experiment 50 times and measure
the average results.

Figure 4.11 shows the end-to-end delay as the length of learning stage grows. It
can be seen that, with more history information available, our algorithm can
dramatically reduce the average end-to-end delay from 53.62 to 22.87 h. When the
length of learning stage is larger than 19 days, the end-to-end delay hits a plateau
and stabilizes. This is consistent with our observation in Sect. 4.2.2.2 that history
information older than 3 weeks will not contribute more. Surprisingly, as the
learning time grows, both MED and the MDP schemes have larger end-to-end

Fig. 4.10 The delivery ratio
versus counting measure k
and the order of Markov
models k
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delay. Since these schemes are based on aggregated characteristics of inter-contact
times, they cannot fully utilize the temporal dependency of vehicular mobility. The
MED and the MDP schemes achieve the minimum end-to-end delay of 61.62 and
61.02 h, respectively, using one day for learning. The epidemic scheme has the
minimum end-to-end delay of 8.6 h.

We plot the delivery ratio as a function of learning time shown in Fig. 4.12. We
omit results from the epidemic scheme since it can always get a 100 % delivery
ratio in this setting. The Markov scheme can reach to a 96 % delivery ratio when
the length of learning stage is larger than 3 weeks. It can also delivery about 84 %
more packets, compared with the best performance of the MDP and the MED
schemes (53 and 52 %). Figure 4.13 shows the average network traffic per packet
generated in the network. It can be seen that it takes three more hops on average to
deliver a packet using the Markov scheme than using the MED and the MDP
schemes to achieve best performance. The epidemic scheme has the largest net-
work cost of 1.87 9 105 hops. In summary, our scheme can achieve comparable
delivery performance as the epidemic scheme with a conservative network cost.
We also examine the effect of learning stage to the network performance based on
Shenzhen taxi data and Shanghai bus data. Results are presented in Table 4.2.

4.2.4.4 Effect of Multiple Paths

In previous simulations, each packet follows only one path, i.e., at any time, at
most one copy of a packet exists in the network. In this simulation, we extend our
algorithm to allow multiple copies of a packet, thus to improve delivery perfor-
mance in terms of shorter delay and higher delivery ratio. We consider two
multiple path forwarding strategies:
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(1) Better Candidate. In this strategy, instead of removing a packet from its buffer
after message forwarding, a vehicle keeps a copy of a packet and can always
forward the packet to other candidate vehicles in the future;

(2) Ever-best Candidate. In this strategy, a vehicle also keeps a copy of a packet
but only transmits the packet to a candidate that has the ever-best delay
estimation among all previous candidates it has chosen.

We apply these two strategies to our Markov scheme, the MDP and the MED
schemes, and conduct experiments with the same configuration as that in the above
simulation except all available data in learning stage are used. The end-to-end
delay, delivery ratio and the network traffic per packet based on Shanghai taxi data
are shown in Figs. 4.14, 4.15 and 4.16, respectively. It can be seen that the pro-
posed scheme can achieve appealing delivery performance (22.87-hour end-to-end
delay and 96 % delivery ratio) even with one-path forwarding. By conducting
multiple path forwarding, the MED and MDP schemes can achieve smaller end-to-
end delay and larger deliver ratio but at a very high network cost.
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Table 4.2 Performance comparison of all schemes

Shenzhen
taxies

Min. end-
to-end
delay (h)

Max.
delivery
ratio (%)

Network
traffic
(hop)

Shanghai
buses

Min. end-
to-end
delay (h)

Max.
delivery
ratio (%)

Network
traffic
(hop)

Markov 23.68 83 3.34 Markov 34.12 95 2.33
MED 49.70 40 1.82 MED 74.90 53 1.47
MDP 48.81 41 2.04 MDP 74.29 53 1.47
Epidemic 3.34 100 1.25 9 105 Epidemic 11.67 100 2.06 9 105
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4.3 Social-Based Routing Protocols

By collecting and analyzing contacts between two vehicles, contact-based data
forwarding algorithms try to find predictive statistics about this pair of vehicles,
such as the frequency and the spatial-temporal distributions of contacts and ICTs
and then use such information to guide data forwarding. In general, contact-based
algorithms can be very efficient when forwarding packets between regularly
encountered nodes but less effective when no prior contact knowledge is available.
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Recently, social network analysis has been proposed as a general and powerful
tool to forward data in DTNs. By aggregating past observed pair wise contacts into
a social graph, data forwarding algorithms focusing on social-level mobility study
the network structure, which push packets towards nodes with more important
network positions. In general, social-based algorithms leverage the knowledge of
network structures to route packets. The rationale of algorithms in this category is
based on the ‘‘small world’’ [64] phenomenon in social networks. However, short
chains of acquaintances do not mean that the delay for delivering messages
between a pair of nodes is necessarily short. Furthermore, it is less efficient when
forwarding data between regularly-met vehicles.

In this section, we introduce an innovative data forwarding algorithm, called
ZOOM, which elegantly leverage both contact-level mobility and social-level
mobility to tackle those challenges in solving the fast data forwarding problem in
vehicular networks.

4.3.1 Macroscope Mobility of Social Relationship

Contacts of vehicles actually reflect the complicated social activities of human
beings, the characteristic macroscopic structures of human relationships may
create complex patterns of contacts, which cannot easily be observed or well
understood by only analyzing individual pairwise contacts. For example, people
meet ‘‘strangers’’ by chance, ‘‘friends’’ by intention or ‘‘familiar strangers’’
because of their similarity of mobility patterns. In this section, we examine the
vehicular mobility from a more macroscope perspective.
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4.3.1.1 Establishing Contact Graph

We establish a static and weighted contact graph G N;Eð Þ for each trace by
aggregating the entire sequence of contacts between a pair of vehicles. Each
vehicle i is a node of the graph, ni 2 N, and the edge eij 2 E represents node i and j
have certain acquaintance between them. The key to establishing a meaningful
contact graph is the metric used to aggregate contacts, which determines whether
two nodes share a link and the strength of this connection if exists. Various
metrics, such as the number of total contacts observed [56], the age of last contact
[65], and the contact frequency and total duration [56], have been used to derive
edge strengths. In our study, we use a sliding window to consecutively check the
ratio of time with contacts observed to the total period of a trace, called contact
ratio. There is an edge between two nodes in the contact graph if the contact ratio
is higher than a threshold and the weight on this edge takes the contact frequency
value. The main reason that we use this metric to aggregate contacts is to reduce
the influence of random (unexpected) contacts in vehicular networks and comprise
as many ‘‘regular’’ relationships as possible. Figure 4.17 illustrates the contact
graph established on Shanghai taxi trace with sliding window size of one day and
contact ratio equal to 60 %.

4.3.1.2 Revealing Social Structures

We study the social properties of the contact graph of each trace and examine the
degree distributions. The degree of a node in the contact graph is the number of

Fig. 4.17 Contact Graph of
Shanghai Taxi Trace
containing 1,226 nodes,
which is highly structured
with 56 communities
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edges incident on this node. We define pk to be the fraction of nodes in the contact
graph that have degree k and plot the complementary cumulative distribution
function (CCDF) Pk ¼

P1
k0¼k pk0 . Figure 4.18 shows the CCDF of vehicle degree

on all traces under semi-logarithmic scale. It is clear to see that all degree dis-
tributions have exponential tails,

Pk ¼
X1

k0¼k

pk0 �
X1

k0¼k

e�
k0
a � e�

k
a: ð4:10Þ

Similar degree distributions have been seen with different networks such as the
power grid and railway networks [66]. In contrast, random graphs, where each
edge is present or absent with equal probability, have binomial (Poisson in the
limit of large graph size) degree distributions.

We further check whether there are communities embedded in a contact graph.
A community is defined as a subset of nodes with stronger connections between
them than towards other nodes, which generally implies a social group. The
modularity [67] can be used to evaluate the partition of nodes to communities,
which is defined as

Q ¼ 1
2m

X

ij

X

r

Aij �
kikj

2m

� �
SirSjr; ð4:11Þ

where m is the total number of edges, Aij is the element of the adjacency matrix (if
there is an edge between node i and j, Aij ¼ 1; otherwise, Aij ¼ 0), ki and kj are the
degree of node i and j, respectively, and Sir ¼ 1 if node i belongs to group r and
zero otherwise. Finding the optimal community structure for a contact graph in
terms of maximal modularity is an NP-complete problem. We use the Louvain
algorithm [68] which iteratively moves each node to an existing community and
merges two communities if doing so can maximize the modularity. We choose this

Fig. 4.18 The CCDF of the
vehicle degree on all traces
under semi-logarithmic scale

62 4 Opportunistic Routing Protocols



algorithm because it has been reported to be fast and has good or better community
partition comparing with other algorithms on a different number of graphs [68].

The modularity and the number of found communities for all traces are listed in
Table 4.3. From the list, we have the following observations: (1) the modularity
values vary in traces but overall are quite high. This implies that urban vehicular
networks are highly structured rather than randomly connected Q ¼ 0ð Þ. High
modularity Q [ 0:3ð Þ can also be seen in other social and biological networks
[67]. (2) Buses have higher modularity than taxies. This is easy to understand since
buses have dedicated routes and schedules, which makes contacts constant and
stable.

4.3.2 Impact of Mobility on Routing Algorithms

In the store-carry-and-forward scenario, the performance of a particular opportu-
nistic forwarding algorithm heavily relies on its capability to accurately capture
the underlying mobility of vehicles. In this section, we discuss the impact of
different mobility scales to the performance of routing algorithms.

4.3.2.1 Algorithms Utilizing Contact-Level Mobility

By collecting and analyzing contacts between two vehicles, it is possible to obtain
detailed knowledge about this pair of vehicles such as the contact frequency [9]
and the expected delay [54, 69]. Such local knowledge can be used to determine
data-relays for a routing algorithm.

To illustrate the performance of algorithms utilizing contact-level mobility of
vehicles, we examine a greedy algorithm, called Future, in which all future
contacts between vehicles are known. In Future, a vehicle with messages always
chooses a neighboring vehicle which has the shortest delay with the destination.
We randomly select 1,000 pair of vehicles as the source and destination of 1,000
messages, using Shanghai taxi trace. Figure 4.19 shows the CDF of end-to-end
delay over all messages using Future and Epidemic routing [46, 47], where a
vehicle always forwards its messages to any vehicle it meets. It can be seen that
Future performs well but experiences larger end-to-end delay comparing to

Table 4.3 Comparison of there data sets

Data set Shanghai bus Shanghai taxi Shenzhen taxi

Number of vehicles 2,501 2,109 8,291
Duration (day) 15 31 31
Number of contacts 1,229,380 22,053,178 23,968,860
#Communities 29 56 43
Q 0.8733 0.8471 0.6230
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Epidemic routing. For example, above 90 % messages can be delivered within 6 h
using Epidemic routing whereas Future can only reach about 60 %.

The main reason for Future being sub-optimal is that, without global contact
information of other vehicles, Future may only find local optimal routing path.
Moreover, most vehicles, due to limited mobility, only have contacts with a small
portion of other vehicles. For example, Fig. 4.20 plots the CDF of the ratio of the
number of vehicles met by a vehicle to the total number of vehicles in all traces. It
can be seen that most Shanghai taxies can only ‘‘see’’ 10 % of all taxies. For
Shanghai buses, the proportion reduces to about 5 % due to the limitation of fixed
itineraries and schedules of buses. Comparing to Shanghai taxies, Shenzhen taxies
have higher proportion of encountered taxies. The reason seems to be that
Shanghai City has larger area than Shenzhen City (three times bigger). Given the
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same mobility of a taxi, Shenzhen taxies have more opportunities to meet other
taxies. Nevertheless, the proportion is still low (e.g., 80 % taxies only ‘‘see’’ 20 %
other taxies).

The consequence of limited view about the whole network is that when a
vehicle v1 is requested to deliver a message to vehicle vd, it is very likely that v1

has no knowledge about vd. To make things worse, when v1 encounters another
vehicle v2, very likely, v2 has no information about vd either. In that case, v1 has to
carry the message until it meets vd or another vehicle which knows vd. This will
increases the end-to-end delay.

In summary, data forwarding algorithms based on contact-level mobility are
effective when delivering packets among ‘‘familiar’’ vehicles with prior contact
knowledge but less efficient for ‘‘stranger’’ vehicles.

4.3.2.2 Algorithms Utilizing Social-Level Mobility

With contact graph and the social structure observed in the contact graph as
described in Sect. 4.3.1, a data forwarding algorithm can utilize the social features
of nodes or the network to facilitate data forwarding. For example, a greedy hill-
climbing procedure is conducted in the network, seeking for more ‘‘central’’ or
‘‘popular’’ nodes in the graph using social network analysis metrics (e.g., centrality
and similarity) as data carriers [55, 56]. The rationale of such data forwarding
algorithms is based on the ‘‘small world’’ phenomenon in social networks which
comes from the observation that individuals are often linked by a short chain of
acquaintances (e.g., ‘‘six degrees of separation’’ [64]).

In vehicular network scenario, however, the process of seeking for central
nodes as data-relays does not match the goal of the fast opportunistic forwarding
problem. A hop in the short paths in social networks may actually undergo a
tremendous delay, which is prohibitive for fast data forwarding. In the extreme
case, a vehicle can hold a message until it finally meets the destination of the
message, which is optimal in terms of the number of hops required to forward the
message but definitely not the optimal for minimizing the end-to-end delay. In
order to verify our argument, we also conduct an experiment using the same
setting as the one described in the above subsection. We evaluate the Sim-
Bet algorithm [55] with each node knowing its global social betweenness and
similarity values in the contact graph established from Shanghai taxi trace. In
SimBet algorithm, a neighboring vehicle is selected as the next relay if a weighted
betweenness and similarity utility regard to the destination increases. The CDF of
end-to-end delay is shown in Figure 4.19. We find that the overall end-to-end
delay is quite large. For example, it requires almost 3 days for 90 % messages to
be delivered.

The main reason for algorithms utilizing social-level mobility characteristics
experiencing large delay is that the social features of vehicles and the network is
based on long-term statistics of contacts, which discards the short-term dynamics
happening between each pair of vehicles. Specifically, due to the high mobility of
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vehicles, contacts between two vehicles evolve fast which makes the contact
aggregation hard to be accurate. For example, we divide a day into four time slots
of 6 h and distribute all contacts into respective time slots according to the time
when a contact happened. Let X be the random variable that represents the number
of contacts exists in a time slot. We then plot the CCDF of the ratio of the standard
deviation r Xð Þ to the mean value E Xð Þ for all pairs of vehicles in each trace in
Fig. 4.21. It can be seen that contacts occur quite uneven during a day. For
example, for Shenzhen taxies, the probability that the number of contacts between
a pair of vehicles can vary 60 % comparing to their average number of contacts in
a day is above 80 %.

Furthermore, without specific contact-level mobility characteristics, social-
based algorithms perform less efficient when routing messages among vehicles
with acquaintances. For example in Fig. 4.22, suppose that v1 has a packet for vd

and encounters v2 and v3 at the same time. If v3 is more ‘‘central’’ than v2 in the
network, v1 will forward the packet to v3 even if v2 will meet vd sooner than v3 (i.e.,
t1 \ t2).
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In summary, algorithms based on social-level mobility are effective especially
when delivering packets to those ‘‘stranger’’ vehicles but less effective due to the
lack of detailed contact-level mobility information.

4.3.3 Design of ZOOM

4.3.3.1 Design Overview

From the analysis above, an ideal opportunistic forwarding algorithm should take
both contact-level and social-level mobility into account. To this end, we design an
innovative opportunistic data forwarding algorithm, ZOOM, which elegantly
manages to capture two levels of vehicular mobility in an integrated approach. The
core idea of ZOOM is for each vehicle to locally maintain a list of recent contacts
with each other encountered vehicle. With the list of past contacts, a vehicle first
trains a k-order Markov chain for each other vehicle which can be used to predict
the next contact with that vehicle. In addition, it also assesses its position in the
network using ego betweenness centrality based on its ego contact graph aggre-
gated from all its contact lists. With the knowledge of the predicted future contact
and the ego betweenness, when two vehicles meet, a vehicle carrying a packet first
compares its predicted contact delay with the destination of the packet with that of
the other vehicle. The vehicle with shorter contact delay estimation will act as the
next data-relay. If both vehicles have no contact predictions with the destination,
the vehicle having more important position in the network is chosen to carry the
packet.

In the following subsections, we first describe our method to capture the con-
tact-level mobility using k-order Markov models to predict future contacts. Then
we present the techniques to establish social-level mobility by aggregating fast
evolving contacts and calculating the network position of vehicles using ego
betweenness. Finally, we describe the opportunistic forwarding strategy of ZOOM.

4.3.3.2 Predicting Contact-Level Mobility

With the strong temporal correlations of successive ICTs embedded in vehicular
mobility as described in Section III, we predict ICTs using Markov chains of k-th
order [54].

More specifically, let xif gn
i¼1 be an observed sequence of ICTs between this pair

of vehicles. The k-order state transition probabilities of the Markov chain can be
estimated for all a 2 S and b 2 Sk, b ¼ b1; b2; . . .; bkð Þ as follows. Let nb

�
a be the

number of times that state b is followed by value a in the sample sequence. Let nb
�

be the number of times that state b is seen and let pb
�

;a denote the estimation of the
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state transition probability from state b to state b2; . . .; bk; að Þ. The maximum
likelihood estimators of the state transition probabilities of the k-th order Markov
chain are

pb
�

;a ¼
nb
�

a

.
nb
�
; if nb

�
[ 0:

0; otherwise

(

ð4:12Þ

4.3.3.3 Establishing Social-Level Mobility

To utilize social-level mobility to facilitate opportunistic data forwarding in
vehicle networks, ZOOM has to deal with two challenges. One is to accurately
aggregate high-dynamic contacts so that the real social-level mobility can be
reflected in the contact graph. The other one is to accurately assess the importance
of an individual vehicle in the network without the global information.

(1) Aggregating Evolving Contacts
We use the aggregation method introduced in Subsection III C. We use 6 h as
the best sliding time window for contact aggregation as it is reported in [54]
that the redundancy of ICTs reaches the minimum when the time difference
between two small sets of consecutive ICTs equals to 6 h. This also implies
that the maximum mobility diversity can be observed within 6 h. Increasing
the size of the sliding window will reduce the mobility diversity which
degrades the accuracy of contact aggregation. It is important to note that
different and more sophisticated aggregation schemes are possible, such as
online algorithms [58]. Our goal here is to demonstrate that capturing social-
level mobility as a complementary counterpart of contact-level priors can
significantly improve the performance of opportunistic data forwarding.

(2) Calculating Centrality with Local Information
Centrality in graph theory and network analysis is a quantification of the
relative importance of a vertex in the graph. It is a nature measure of the
structural importance of a node in the network.
In ZOOM, we use betweenness [70] to measure the centrality of vehicles,
which refers to the extent to which a vehicle lies on the social paths linking
other vehicles. Therefore, a vehicle with a high betweenness has a capability
to facilitate interactions between the vehicles it links. With only local infor-
mation, we adopt the algorithm [71] to calculate the betweenness in ego
networks, which refers to a network consisting of a single vehicle (ego)
together with the vehicles (alters) the ego is connected to and all the links
among those vehicles. Although the betweenness in ego networks does not
correspond perfectly to the global betweenness, the ranking of vehicles are
identical in the network. Mathematically, we present the relationships between
an ego vehicle vi and its neighbors in the ego network by a m� m symmetric
matrix A,
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Aij ¼
hi;j; if hi;j [ 0
0; otherwise

�
: ð4:13Þ

where m is the number of neighbors and hi;j is the regularity ratio between vi and vj.
The ego betweenness of vi can be calculated as the sum of the reciprocals of
the entries of A2 1� A½ �i;j [71]. The ego betweenness of a vehicle is updated
upon each contact with other vehicles. Specifically, when vehicle v1 meets v2,
v2 sends a list of neighbors in its ego network to v1. Upon receiving the
neighbor list, v1 checks each neighbor in the list, vi; i 2 1; 2; . . .; l½ �; if vi is also
a neighbor of v1, then elements A2;i and Ai;2 are set to h2;i. If v2 is a newly
encountered vehicle, v1 will first enlarge Am�m to A mþ1ð Þ� mþ1ð Þ by inserting a
new row and a new column for v2. Then it performs the ego betweenness
calculation accordingly. Vehicle v2 conducts the same operations as v1 at the
same time.

4.3.3.4 Opportunistic Forwarding Strategy

In ZOOM, when vehicle v1 encounters v2, v2 will send a list of all its neighbors and
a list of destinations of packets it is currently carrying to v1. Vehicle v1 then update
the Markov chain and calculates its ego betweenness. For the destination vd of a
packet of v2, let bv1;vd

denote the current state in the k-th order Markov chain
between v1 and vd. The estimated delay of the next contact between v1 and vd,
Ev1;vd

delay can be calculated as,

Ev1;vd

delay ¼
XT=kb c

a¼0

pb
�v1 ;vd

;a � a: ð4:14Þ

Vehicle v1 will act as the next relay for this packet if one of the three following
cases happens: 1) v1 is the destination of this packet, i.e., v1 = vd; 2) v1 has a
shorter estimated delay of the next contact between v1 and vd than that between v2

and vd, i.e., Ev1;vd
delay\E

v2;vd
delay and 3) both v1 and v2 have no prior about vd and v1 has a

larger betweenness value than v2. After transmitting the packet to v1, v2 removes
this message from its buffer. Similarly, v2 conducts the same operations
accordingly.

4.4 Performance Evaluation

4.4.1 Methodology

In this section, we compare our opportunistic forwarding algorithm with several
alternative schemes:
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• Epidemic. In this scheme [46, 47], vehicles exchange every packet whenever
they experience a contact. If vehicles have infinite buffer size, using epidemic
routing will find the shortest path between the source and destination vehicles
and therefore has the shortest end-to-end delay. On the other hand, since there is
no control on data forwarding, it also generates a tremendously large volume of
network traffic, overwhelming limited wireless bandwidth.

• Markov. This scheme [54] establishes a kth order Markov chain to predict the
time when the next contact may occur between a pair of vehicles, utilizing the
temporal correlations of consecutive ICTs. A greedy strategy is taken in making
routing decisions where the neighboring vehicle with the least estimated
meeting time with the destination will be chosen as the next data relay.

• SimBet. This scheme [55] assesses similarity between nodes in a social graph to
detect nodes residing in the same community, and betweenness centrality to
identify bridging nodes which could carry a packet from one community to
another. Packets are routed to the most central nodes until a node with higher
similarity with the destination is met. Then the packet is forwarded within the
community until the destination is reached.

• Bubble Rap. This scheme [56] uses a similar approach as SimBet except that
communities here are explicitly identified by a detection algorithm.

We consider four important metrics to evaluate the performance of ZOOM and
the above schemes:

(1) Delivery ratio. It refers to the ratio of successfully delivered packets to the
total number of packets at the end of an experiment.

(2) End-to-end delay. It refers to the delay for a packet to be received at its
destination. We only calculate end-to-end delay for successfully delivered
packets.

(3) Network traffic per packet. It refers to the average network cost per packet,
calculated by dividing the total number of data forwarding hops by the total
number of packets.

(4) Packet utility. It refers to the average benefit in reducing the delivery delay by
each forwarding hop, calculated by dividing the total amount of time saved
(i.e., the time period starting since a packet is delivered and ending when the
experiment ends) for all packets to the total number of data forwarding hops.

In the following simulations, we evaluate the above metrics of ZOOM, using
real trace data of Shanghai buses for demonstration. We randomly choose 1,000
buses, and use the contact records of 3 weeks from Feb. 19 to 28, 2007 for the
initialization of all alternative schemes and use contact records of four and a half
days from 8 am on Mar. 1 to 5, 2007 for data forwarding experiments (the reason
that we set the experiment to start from 8 am in the morning is because most buses
are not in service at night.). At the beginning of each experiment, we inject 100
packets using a Poisson packet generator with a mean interval of 10 s. For each
packet, the source and destination are randomly chosen among all buses in the data

70 4 Opportunistic Routing Protocols



set. Here we make a general assumption that two vehicles can always successfully
conduct all data transmission when they have a contact. We run each experiment
50 times and get the average.

4.4.2 Performance Comparison

In this simulation scenario, we compare ZOOM with all other alternative for-
warding algorithms. For the sake of fairness, we adjust the contact aggregation
scale for the best delivery performance for SimBet and Bubble Rap. In this sim-
ulation setting, the optimal number of contacts for a pair of vehicles to have a link
in the contact graph is twenty.

Figure 4.23 plots the average delivery ratio as a function of experiment time. It
can be seen that ZOOM outperforms other algorithms except the epidemic routing.
As epidemic routing can always find the shortest path by aggressively spreading a
packet over the whole network, it also causes unacceptable network traffic. It can
be seen that ZOOM is capable of obtaining great delivery ratio gain in a very short
period of time. For instance, ZOOM can successfully deliver over 60 % packets
within 24 h while the ratio for Markov, SimBet and Bubble Rap is 35, 37 and
24 %, respectively. In addition, it is very interesting to see that, for all schemes,
the delivery ratio stabilizes and stops to increase when it is night, for example,
during the first night from the 14th hour (i.e., 10 pm on Mar. 1) to the 22th hour
(i.e., 6 am on Mar. 2), and the second night from the 38th hour (i.e., 10 pm on Mar.
2) to the 46th hour (i.e., 6 am on Mar. 3). The reason is that the data forwarding
process would suspend during the night as most buses are not in service at night
and would continue in daytime when buses are on duty.

Fig. 4.23 The average
delivery ratio versus the
experiment time
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Figures 4.24 and 4.25 plots the average end-to-end delay and network traffic as
a function of experiment time for all successfully delivered packets, respectively.
Note that, for comparison fairness, we only take into account those packets that
can be successfully delivered by all schemes. It is clear to see that, in general,
algorithms utilizing contact-level mobility can achieve very small delivery delay
comparing with social-level-mobility-based routing algorithms. Moreover, ZOOM
can achieve the minimum end-to-end delay (excluding the epidemic routing). It
can be seen that Markov generates the least network traffic and ZOOM introduces
slightly more traffic than Markov. Combining both the end-to-end delivery delay
and the network traffic, we argue that ZOOM can actively spend few more hops to
achieve far more gain in end-to-end delivery delay. In contrast, schemes based on
social-level mobility spend more hops but result in larger delays and, therefore,
have less network-cost-efficiency.

Fig. 4.24 The average
delivery delay versus the
experiment time

Fig. 4.25 The network
traffic versus the experiment
time
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In general, routing algorithms try to trade off between delivery delay and
network traffic cost. Short delivery delays usually imply large network traffic. To
better measure how efficient a routing algorithm can be, we evaluate all schemes
with the packet utility metric. Figure 4.26 plots the average packet utility as a
function of experiment time. It is clear that ZOOM has the highest packet utility
among all schemes. In summary, ZOOM is a very fast and cost-efficient oppor-
tunistic routing scheme under urban VANET settings.

4.5 Summary

In this chapter, we have first demonstrated that urban vehicles show strong tem-
poral dependency in terms of how they meet each other. Although our study based
on two specific types of public vehicles, namely taxies and buses, they are rep-
resentative with respect to mobility characteristics in urban settings. Buses have
dedicated routes and fix schedules which make their connection opportunities
more predictable. On the other hand, taxies with much random mobility still have
strong temporal correlation between every pairwise contact.

Then, we have presented an appealing contact-level opportunistic forwarding
algorithm using higher order Markov chains, which can significantly improves the
delivery ratio and reduce the end-to-end delay for data delivery. Furthermore, we
have proposed an opportunistic forwarding algorithm, ZOOM, which captures
both lower level mobility at pairwise contact scale and upper level mobility from
the VANET perspective. ZOOM uses locally collected contacts to predict the
future contact opportunities between vehicles. Moreover, the capability to predict
contacts is then utilized to reflect the social relation ties between vehicles. We
have demonstrated the efficacy of our algorithms through extensive trace-driven
simulations.

Fig. 4.26 The packet utility
versus the experiment time
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We will extend our work in two directions in the future. First, it is often
assumed in the literature that data transfers can be done instantaneously as soon as
two vehicles have a chance to meet. It is definitely not the case in reality since
wireless link quality is very dynamic. Thus, we will investigate the end-to-end
delay with limited wireless link bandwidth since the delay is influenced not only
by ICTs but also by retransmissions if the data transfer fails in a contact. Second,
we will validate our algorithm by conducting field tests and collecting trace data of
more types of vehicles.
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Chapter 5
Vehicle Tracking

5.1 Introduction

Among the others, online real-time vehicle tracking is a fundamental service in the
SG project, which refers to tracking the current position of a certain vehicle in real
time. A wide spectrum of compelling applications can be implemented on top of
this basic service. For example, authorized users will be able to track individual
vehicles that they are concerned with, such as their own or friends’ cars, public
buses and taxies. In particular, there exist several critical types of vehicles in the
city, which need to be located urgently, such as stolen cars, speeding cars,
ambulances and police cars. Besides these application scenarios, it is also an
indispensable building block underpinning many other high-level applications. For
example, in the bus arrival prediction application, the tracking service is used to
locate the nearest feasible bus.

However, real-time vehicle tracking in the metropolitan-scale system is very
challenging because of several rigorous requirements. First, users (or high-level
applications) often pose a real-time requirement on tracking a certain vehicle. That
is, any query for the vehicle must be answered within a certain bounded time.
Otherwise, the returned answer may become invalid or useless. For example, a
query tries to locate the current location of a stolen car. If the query fails to be
answered within a short time, the car could actually be far away from the returned
location because it may be moving at a high speed. Second, the system should be
scalable to support hundreds of thousands of vehicles. In addition, SG aims to
serve millions of users every day. The huge number of simultaneous queries is a
serious issue. In addition, as the Shanghai city is continuously expanding, the
system is required to be highly extensible to such expansion. Third, the system
should be robust to node failures. In such a large-scale distributed system con-
sisting of thousands of local nodes, system maintenance is not a trivial issue.

To realize this service, a centralized scheme is straightforward, where location
information of all vehicles is sent back to a centralized database and constantly
maintained. A user, who wants to track a vehicle, can send a query to the central
server. The server then processes the query and returns the location information of
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that vehicle to the user. However, it is infeasible for the metropolitan-scale system
due to the huge amount of vehicle data streams. For example, there are 22,413
crossroads in Shanghai. Even in 2001, the average number of vehicles running
across a crossroad per minute in daytime was up to 33 [77]. This produces in total
about 12 thousand events per second. Such a large volume of location updating
data can easily overwhelm the centralized server. Therefore, it necessitates effi-
cient designs of distributed solutions. As an alternative scheme, captured vehicle
information can be stored locally at distributed nodes. As a result, there is little
updating data as in the centralized scheme. Nevertheless, by this means, there is no
hint about the enquired vehicle for a query. To track the vehicle, an intuitive
scheme is to flood the query across the network which can always locate the
desired vehicle. However, flooding search incurs a large amount of network traffic
and hence is subject to poor scalability. To reduce query traffic, there is another
search scheme based on random walks, which introduces modest network traffic.
But, this scheme is limited by the problem of unbounded response latency of the
query. As a result, there is no existing successful solution, to the best of our
knowledge, to tracking vehicles in real time in a large-scale distributed system.

In this chapter, we propose a novel scheme Hierarchical Exponential Region
Organization (HERO) [75, 76] which satisfies the unique requirements of real-time
vehicle tracking in a metropolitan-scale distributed system. In SG, wireless access
points (APs) and RFID readers will be deployed throughout Shanghai. Exploiting
the pervasive deployment of these devices, location and status information of
vehicles can be actively captured and logged in a large number of distributed local
nodes. In essence, HERO connects local nodes into an overlay network matching
the underlying road network. A hierarchical structure over the overlay network is
constructed and dynamically maintained while the vehicle is moving along.
Exploiting the inherent spatiotemporal locality of vehicle movements, this hier-
archy enables the system to conservatively update location information of a
moving vehicle only in nearby nodes. The distinctive features of HERO are
twofold. First, it guarantees that any query, which can be injected anywhere in the
city, can meet the real-time constraint associated with each vehicle, by bounding
the maximum number of hops that the query is routed. Second, it significantly
reduces the communication overhead of both location updating and query routing,
and therefore is truly scalable to support hundreds of thousands of vehicles and
millions of system users. Moreover, HERO is a fully distributed light-weight
protocol extensible to the increasing scale of the system. In addition, it is robust to
node failures and able to tolerate inaccurate location readings.

The remainder of this chapter is structured as follows. Section 5.2 compares
HERO with related work. In Sect. 5.3, we introduce the infrastructure that will be
deployed in the SG project. Section 5.4 elaborates the design of HERO and pre-
sents theoretical analysis for the optimal configuration of the protocol parameters.
Several design issues that may be encountered in practice are discussed in Sect.
5.5. Section 5.6 describes our prototype implementation of the vehicle tracking
system realizing the HERO protocol. In Sect. 5.7, we introduce the trace-driven
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methodology that we use to evaluate the performance of HERO and present
simulation results. Finally, we present concluding remarks and outline the direc-
tions for future work in Sect. 5.8.

5.2 Related Tracking Approaches

Using GPS to localize and track vehicles is a straightforward solution. Several
crucial reasons prohibit this solution for vehicle tracking in cities like Shanghai.
First, with crowded high buildings squeezed along most of the narrow streets in the
city, it is very difficult for the GPS system to work accurately without any other
assistant devices. It is often the case that the reported GPS position of a vehicle can
be more than 100 m deviated from its actual location. To make things worse, a
large number of major roads are covered by viaducts which prevent satellites from
seeing the vehicles running under them. Second, the intervals of location infor-
mation reports can be notably long. Due to the GPRS communication cost for
transmitting the GPS location information back to the data centre, drivers prefer to
choose relatively large intervals. The typical value would be from one minute to
three minutes. Third, the expense of a GPS receiver as well as data communication
cost is quite high, which limits the wide deployment of this technology.

The Globe system [78] has constructed a static world-wide search tree for
mapping object identifiers to the locations of moving objects. It is not flexible to
expand or adjust the structure and may have the bottleneck problem near the root
of the directory tree structure. In [79], the authors have introduced a distributed
approach for load balance but they have not taken the number of system users into
consideration. In contrast, HERO needs no dedicated directory servers and
achieves good scalability and flexibility.

In database community, indexing techniques have been proposed for tracking
moving objects but they are based on the assumption of the existence of cen-
tralized databases [80–83]. Despite the large number of existing methods, there is
no applicable one for update-intensive applications, where it is infeasible to
continuously update the index and process queries at the same time [84]. HERO
does not need any centralized database and all routing information is distributed to
every node in the system.

In structured peer-to-peer (P2P) networks, various DHT schemes have been
proposed to map objects to peers in a decentralized way, thus enabling the system
to satisfy queries efficiently [85–88]. However, DHTs may cause large computa-
tion and traffic overhead for a large number of rapid updates of moving objects. In
unstructured P2P networks, the most typical query methods are based on flooding
[89]. Using flooding is not scalable. Several randomized approaches, such as
random walks [47, 48] and randomized gossip-based methods [90, 91] have been
introduced to distribute and locate objects. Random walks are resilient to node
failures but need sufficiently long walks before finding the results in a stable
network. Random gossip-based methods can retrieve global information with high
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probability after approximately logarithmic rounds but introduce large traffic.
Furthermore, none of these schemes provides real-time guarantees for queries.
HERO introduces minimal updating cost to guarantee the real-time constraints
desired by the applications.

5.3 System Description

As RFID technology continuously evolves, it has been widely used in tracking
various mobile objects, such as vehicles [92, 93]. The US government also enacts
the TREAD Act [94] which demands RFID tags to be planted in every new tire
before September 2007. The SG project exploits the promising RFID and local-
area wireless communication technologies. The infrastructure of SG, which is still
underway, is illustrated in Fig. 5.1. RFID readers and wireless APs will be
deployed throughout the urban area of Shanghai, typically installed at crossroads.
A local node is responsible for collecting data from several close RFID readers and
wireless APs within its own domain, and accepts queries from nearby users or
applications. A local node is basically a server which connects to a dedicated
underlying network for communication.

In SG, the vehicles’ information is gathered both actively and passively. In the
initial prototype of SG, a vehicle is captured passively using active RFID tech-
nology. An active RFID tag emits its ID at a fixed interval and has an effective

Fig. 5.1 The infrastructure of ShanghaiGrid; a small part of the Pudong District of Shanghai is
shown
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communication range of about 2–80 m. The battery can sustain the operation of an
active RFID tag for about 6 years [95]. A moving vehicle attached with an active
RFID tag can be captured if the emitted signal reaches some reader. Besides active
RFIDs, a vehicle can actively communicate with wireless APs as it passes by them.
A Cisco Aironet 1240AG access point working under IEEE 802.11 g has an
effective outdoor communication range of about 280 m at the transmission rate of
2 Mbps [96]. The vehicle can actively push important vehicle status information,
such as vacancy status, to local nodes.

Precisely speaking, we aim at providing real-time guarantee of tracking a
vehicle by bounding the maximum number of hops that a query could traverse in
the system. Since the provision of such a real-time service depends on the
underlying network for communication, a dedicated network such as an ATM can
be used which provides a reliable and predictable data transmission between any
two endpoints. With the bounded maximum number of transmission, such a sys-
tem for the purpose of tracking vehicles can guarantee rigid real-time require-
ments. In the initial prototype of SG, we connect local nodes to the wide-area
ATM network provided by Shanghai Telecom [97] through a dedicated connection
or a cheap ADSL connection.

5.4 Design of HERO

In this section, we first give an overview of the HERO protocol, introducing its
basic rational. Next, we delve into the conservative location updating based on the
assistance of a dynamically maintained hierarchy. Finally, we discuss the optimal
configuration of the protocol parameters of HERO.

5.4.1 Overview

To meet the rigid requirements in vehicle tracking in real time, we need to solve
two critical issues. First, the system should limit the maximum query response
time to guarantee the real-time constrains from applications. Second, the system
should minimize network traffic to support a large number of vehicles and queries
as well as the continuous extension of the network.

However, there is an intrinsic tradeoff between network traffic and query
response time in vehicle tracking. As mentioned earlier, by aggressively updating
location information of a vehicle to all the other nodes, the system provides
minimal query response time whereas introducing high updating network traffic
overhead. In contrast, the system suffers from long query response time if the
system does not perform any location updating. In general, more rigid real-time
requirement on tracking a vehicle implies higher network traffic overhead.

5.3 System Description 79



HERO elegantly manages to solve the two critical issues in an integrated way.
The core idea of HERO is to dynamically update location information of a moving
vehicle to all the nodes in the system in a controlled way. Generally, the nodes
closer to the vehicle are updated more frequently than those further from it and,
therefore, have more accurate information about the current location of the
vehicle. By this means, HERO effectively exploits the inherent spatiotemporal
locality of vehicle movements in an urban setting, and consequently reduces
location updating cost. Upon receiving a query, the node unlikely has the exact
information. However, it knows some other node which has more accurate
information about the vehicle. Thus, it forwards the query to that node. Following
an elaborately organized routing path, the query can eventually reach the desti-
nation node, which keeps the most updated information of the vehicle. The typical
latency between two nodes can be easily measured. Thus, by bounding the max-
imum number of hops that the query is routed, HERO can also meet the real-time
constraint for the vehicle.

The key to the design of HERO is how to realize the controlled location
updating while bounding the maximum number of hops a query is routed. To
accomplish this, HERO integrates four effective components:

Overlay construction: To exploit the locality of vehicles’ movements, HERO
organizes local nodes into an overlay network that matches the real underlying
road network in Shanghai (as depicted in Fig. 5.1, dashed lines present the overlay
connections of local nodes). There is a connection between two geographically
adjacent local nodes in the overlay network if there is a road between the two
corresponding regions. This overlay is easy to build and maintain, with each node
having to know its neighbors. Additional overlay connection may also be added
for two nodes that are geographically close to each other even if they are not
connected by a real road. Such connections enhance the reliability of the overlay
network when a local node has only one road connecting itself to other local nodes.

Hierarchy organization: For every vehicle, HERO divides local nodes into
different regions which constitute the hierarchy on the overlay network. The
regions are organized in the following way, as illustrated in Fig. 5.2. The first
region (R1) has the smallest size and covers the vehicle. For the example in
Fig. 5.2, R1 covers node e, which is closest to the vehicle and has the latest

Fig. 5.2 Illustration of
hierarchical regions and
query routing
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information about it. The second region (R2) has a larger size and covers R1. More
generally, a region (Ri) has a larger size than the immediate inner region (Ri-1)
and covers it.

Restricted location updating: When the vehicle is moving within R1, the
location updating involves only the small set of nodes in R1. When the vehicle is
moving out of R1, the location updating is extended to more regions. In this case,
part of the hierarchy needs to be re-organized. This reorganization aims to restrict
location updating in R1 as much as possible, thereby minimizing network traffic
cost for location updating.

Query Routing: With the hierarchy and restricted location updating, a region
always has more up-to-date location information of the vehicle than its outer
regions. In HERO, each node has a pointer pointing to a boundary node of its
immediate inner region. A query can be injected from any node in the system. For
example in Fig. 5.2, node a receives a query. Node a will forward the query to
b. The query will further be forwarded by nodes c and d, and eventually arrives at
e. Node e will return the location information directly back to node a. To restrict
the maximum number of hops that the query is routed, we limit the number of
regions that the hierarchy for the vehicle contains.

In the following subsections, we first describe the process of hierarchy ini-
tialization when a new vehicle is joining the system. Next, we describe the detailed
mechanism for restricted location updating while the vehicle is moving based on
the established hierarchy. Finally, the optimal configuration of design parameters
is discussed.

5.4.2 Hierarchy Initialization

The first node that captures a new vehicle triggers an initialization procedure to
establish the hierarchy for the vehicle. As the vehicle may move towards any
direction, a region is initially designed as a disk in the overlay network. Note that,
the deployment of local nodes is not necessary to be uniform in the city. They can
be more densely deployed where more refined tracking accuracy is required. We
will discuss more on this in Sect. 5.5. In the rest part of this chapter, without
explicit specification, distance is measured in terms of hops in the overlay network.
Each region Ri has a radius ri (in hops). A node, which has a distance d from the
first node, belongs to region Rk if this region is the smallest one that covers the
node. The radius rk of Rk is,

rk ¼ min
h

i¼1
fri; ri� dg; ð5:1Þ

where h is the maximum number of regions in the system. If d equals to certain ri,
1 B iB h, the node is on the boundary of Ri. Moreover, for query routing, every
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node maintains a pointer that points to a node which is on the boundary of the
immediate inner region. Let next-insider denote this pointer.

To establish next-insider pointers in the nodes, the first node initiates an
initialization packet which contains a router field for setting up these pointers and
a journey field for maintaining the distance that the packet has traversed. The first
node initializes router and journey to its own IP address and one, respec-
tively. Then the first node floods the initialization packet throughout the network.
Upon receiving the packet, a node first sets its next-insider to router
contained in the packet. Then it checks journey in the packet. If journey
equals to the radius of certain region ri, the node marks itself as a boundary node of
region Ri. It also modifies router in the packet to its own IP. Otherwise, it leaves
that field unchanged. Next, it increases journey in the packet by one and re-
broadcasts the packet to its neighbors. In addition, duplicated initialization packets
with larger journey are silently dropped. After the initialization procedure
terminates, the regions are centered at the first node and the hierarchy is estab-
lished (as illustrated in Fig. 5.2). Note that the structure of the hierarchy is dis-
tributed in all local nodes (the data structure for a node is shown in Table 5.1).
Therefore, the storage overhead for tracking the vehicle at a local node is very
small.

5.4.3 Restricted Location Updating

When a vehicle is moving in the city, its information is captured by the local nodes
that it passes by. When a node captures the vehicle (we call this node chaser), it
performs location updating, and maintains the hierarchy for the vehicle if neces-
sary. There are three cases. For presentation clarity, we define a node as a
boundary node of Ri if it is a most outer node within Ri. The nodes in Ri except
boundary nodes are interior nodes of Ri.

Case 1: the chaser is an interior node within R1. In this case, the hierarchy
for the vehicle remains unchanged. The chaser floods the location information of
the vehicle to all the other nodes in R1.

Case 2: the chaser is a boundary node of R1. In this case, it is possible that the
vehicle will move out of R1 shortly. For example in Fig. 5.3, node a is the current
chaser which is a boundary node of R1

0 (the dashed circle). When the vehicle
moves along the depicted direction, R1

0 will not cover the vehicle any more. Two
consequences follow. First, a future query cannot be routed to the chaser properly

Table 5.1 Data structures
used in the algorithm

Local node Init. packet Update packet

Boundary Router Router

Next-insider Journey Journey

Scale
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because the information on the boundary nodes of R1
0 is out-of-date. Second, to

enable the proper routing of a future query, the chaser has to flood the location
information of the vehicle to R2 every time, which will incur larger network traffic
overhead. Therefore, HERO needs to re-organize R1.

To this end, the chaser initiates an update packet in which its router and
journey is initialized to its own IP address and one, respectively, as in an ini-
tialization packet. The update packet includes an additional scale filed that is used
to indicate the area that the update packet should be propagated to. In this case, the
chaser floods the packet within R2 by letting the boundary nodes of R2 stop the
flooding. On the one hand, the new R1 is rebuilt from the current chaser within R2.
At the same time, location information is also updated in the new R1. On the other
hand, it updates nodes in R2 about the current position of the new R1.

There is a special situation during the reconstruction of R1, where the new R1 is
truncated by the boundary of R2. This happens when the chaser is close to the
boundary of R2 (e.g., node a in Fig. 5.3). In this situation, a boundary node of R2

receives an update packet whose journey is less than or equals to r1 (e.g., node b in
Fig. 5.3). As a result, this node sets itself as a boundary node of both R1 and R2.
We call such a node a common boundary node of R1 and R2. In this case, R1 is no
longer a disk because it is restricted in R2. But, this does not affect the operation of
our protocol.

Case 3: the chaser is a common boundary node of several regions R1, R2,
…, Rj (j [ 1). This is actually a more general situation of Case 2. This situation
results from constant reconstructions of regions as the vehicle is moving. In this
case, it is possible for the vehicle to move out of all the regions from R1 to Rj. The
system needs to re-organize regions from R1 to Rj. For example in Fig. 5.4, the
situation occurs if node b is the current chaser, where b is also a common boundary
node of R1

0 and R2
0 (the dashed circles).

Fig. 5.3 Reconstruction of
R1, node a is the chaser and is
a boundary node of the first
region (R1

0)

Fig. 5.4 Reconstruction of
R1 and R2, node b is the
chaser and also is a common
boundary node of the first and
second region (R1

0 and R2
0)
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To re-build regions from R1 to Rj, the chaser floods an update packet within
Rj+1. As a result, all regions from R1 to Rj are re-constructed within Rj+1. In
addition, the location information of the vehicle within Rj+1 is updated. Similar to
Case 2, there is also a special situation during the reconstruction of regions from
R1 to Rj, where several regions, say from Ri to Rj, might be truncated by some
boundary nodes of Rj+1. Such a boundary node of Rj+1 sets itself as the common
boundary node of regions Ri, Ri+1,…, Rj+1, (1 B iB j). For example in Fig. 5.4,
node c is a resulting common boundary node of R2 and R3.

Note that the hierarchy needs to be established only once at the time when the
vehicle is first introduced in the system. Afterwards, it is dynamically maintained
in a fully decentralized manner. Therefore, the storage overhead for tracking the
vehicle at each local node is small. HERO automatically reorganizes the hierarchy
to control the flooding for location updating to happen mostly in the first few
smallest regions. Using flooding for the controlled location updating and hierarchy
maintenance is robust and effective when the flooding scale is small [98]. In
addition, duplicated useless packets during the flooding are silently dropped which
also mitigates the network traffic for location updating. The efficacy of HERO
design can be examined more intensively by our prototype system implementation
and extensive simulations.

5.4.4 Protocol Analysis and Parameter Optimization

By far, a key question remaining unestablished is the configuration of the radii ri

(1 B i B h) in (5.1). To conveniently control the maximum number of regions in
the hierarchy and to restrain the location updating in small regions close to the
vehicle, HERO organizes the hierarchical regions with exponentially increasing
sizes.

More specifically, we introduce two protocol parameters: first radius r and
amplification factor k. The radius of the first region is r (i.e., r1 = r), and the radius
of Ri is ki-1r (if k is an integer). Figure 5.2 shows an example with r and k both
equal to 2. More generally, k can take any real number greater than one. Since the
radius of a region must be an integer in hops, we take the ceiling of ki-1r as the
radius of Ri and further make sure that a region is larger than its immediate inner
region. Then the radius of Ri is defined as,

r1 ¼ r;

ri ¼
r � ki�1
� �

; if ri�1\ r � ki�1
� �

;

ri�1 þ 2; otherwise:

(
ð5:2Þ

We are interested in the maximum number of hops that a query is routed, and
we have the following theorem.
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Theorem 1 Given a network with the network diameter (i.e., the maximum hop
distance between any pair of nodes) D hops, it takes at most logk D=rð Þd e hops for
a query to be answered.

Proof The worst case of a query, where it traverses the maximum number of hops,
occurs when the hierarchy is constructed from one end of the network diameter
and the query is injected at the other end of the diameter. In this case, according to
the definition of the exponential hierarchy, the maximum number of regions
contained in the network is logk D=rð Þd e. Since nodes in R1 always have the latest
location information, a query only needs to be routed to a boundary node of R1.
Thereby, a query takes at most logk D=rð Þd e � 1 hops to reach that boundary node.
It takes the boundary node one more forwarding hop to finally return the result
back to the node that initiates the query. This concludes the proof. j

We study the location updating overhead caused by the movements of a
vehicle. Since the patterns of the vehicles’ movements could be very different, we
analyze the updating overhead in the worst case where a vehicle moves straight. In
this case, the movement continuously breaks the maximum number of regions, and
therefore arouses the most significant updating overhead. We have the following
theorem.

Theorem 2 Suppose that the topology of a network is a disk, the maximum
network traffic overhead of location updating for a vehicle moving a distance of D
is g(D) = c(kD2 ? 2r(r-k-1)D-6r2), where D is the network diameter and c is a
constant coefficient.

Proof Figure 5.5 depicts the worst case of location updating among all possible
movements with a distance of D, where all constructed regions in the network need
to be reconstructed during the movement from node a to node b. For analysis
simplicity, we assume that k is an integer. With uniform deployment of local
nodes, the network traffic for flooding in Ri (denoted as Si) can be approximately
evaluated by the area of Ri. Let fi denote the updating overhead incurred as a
vehicle moves from the boundary of Ri-1 to the node immediately next to the
boundary of Ri, (i C 2). For example in Figure 5.6, the updating overhead intro-
duced when the vehicle moves from node a to node b is denoted as f1, and that
from node c to node d is denoted as f2. We have,

Fig. 5.5 Worst case of
location updating, when the
vehicle traverses the whole
network from node a to b
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f1 ¼ r � 1ð ÞS1 ¼ c0p r � 1ð Þr2

fi ¼ k � 1ð Þ � Si þ
Xi�1

j¼1

fj

 !

8
>><

>>:
; ð5:3Þ

where c0 is a constant coefficient. Let xm denote the updating overhead incurred as
the vehicle traverses the diameter of Rm from node a as shown in Fig. 5.5.

To formulate xm, we need to go through the whole process of the restricted
location updating when the vehicle moves from one end of Rm to the other.
Obviously, we can recursively express xm in terms of xm-1 and fi-1,

xm ¼ xm�1 þ 2ðk � 1ÞðSm þ fm�1Þ: ð5:4Þ

For example in Fig. 5.5 where k is 2, x2 (i.e., the updating overhead incurred
when the vehicle moves from node a to node g) consists of x1 (from node a to
node c), S2 (from node c to node d), f1 (from node d to node e), S2 (from node e to
node f) and f1 (from node f to node g).

Thus, with Eqs. (5.3) and (5.4), xm can be formulated as follows,

xm ¼ 2r � 1ð Þ � S1 þ 2 k � 1ð Þ
Xm

i¼2

Si þ
Xm�1

i¼1

Xi

j¼1

fj

 !

¼ c0p 2k � r2
m þ 2r r � k � 1ð Þrm � 3r2

� �
ð5:5Þ

Denote g(D) as the total updating traffic caused while the vehicle traverses the
network, and then g(D) = xh. Let c = c0p/2. This concludes the proof. j

We aim to meet the real-time constraint of a vehicle and meanwhile minimize
network traffic overhead. The typical latency between a pair of local nodes con-
nected using ATM connections can be measured. Let td denote the maximum delay
of a query between two adjacent nodes, and t0 denote the application real-time
constraint. We try to minimize the average updating overhead per hop, g(D)/D,
under the constraint logk D=rð Þd e B t0/td. The average is a function of r and k, and
let g(r, k) denote it. Then, we have,

gðr; kÞ ¼ g Dð Þ=D

¼ cðk � Dþ 2rðr � k � 1Þ � 6r2=DÞ
ð5:6Þ

Fig. 5.6 Example of
continuous reconstruction of
R1 during the movement from
node a to d
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To minimize the traffic overhead, let logk(D/r) ? 1 = t0/td, and g(r, k) can be
reduced to,

gðrÞ ¼ c D
td

t0�td � r�
td

t0�td D� 2rð Þ þ 2 1� 3
D

� �
r2 � 2r

� 	
: ð5:7Þ

Further, let the differentiation of g(r) equal to zero, dg(r)/dr = 0. Since it is
difficult to derive the exact r and k that produce the smallest network traffic
overhead, we develop numerical procedures to compute the approximately optimal
value of r and k. Figures 5.7 and 5.8 show the optimal values of r and k using
numerical computation, respectively, where td is set to 48 ms in the example. It
can be seen that the first radius of R1, where HERO tries to restrain the locating
updating, increases very slowly with the network scale.
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5.5 Design Issues

This section discusses some design issues that HERO may encounter in practice.
Scalability. HERO is designed to track hundreds of thousands of vehicles in a

metropolitan-scale system with a large number of users. Therefore, the system
scalability concern in terms of the number of vehicles, the number of users and the
number of local nodes is critical. With HERO, the system needs to maintain a
hierarchy for each vehicle. If every movement of a vehicle will introduce a lot of
location updating traffic into the system, the cost can be prohibitively expensive.
However, this is where HERO comes to help. HERO leverages the inherent
locality of vehicle movements and only updates a small number of nodes nearby
the vehicle. Therefore, the location updating cost should be small. We can also
notice that the query cost is modestly low, which is a logarithmic scale to the size
of the network. Moreover, each node in the system only needs to maintain the
information of several neighboring nodes. It is a light-weighted protocol to join
and leave the system. We will further investigate the scalability of HERO by
extensive trace-driven simulations in Sect. 5.7.

Resilience to unreliable data. It is possible that occasionally a vehicle is not
captured by an RFID reader (e.g., when the vehicle is moving too fast). In addition,
a local node may also fail from time to time. It is critical to the operations of
HERO if a boundary node misses a vehicle passing by. This inaccuracy can be
easily detected in the system. At any time, a node in region Ri (i C 2) should have
received an update packet from a boundary node of Ri-1 before the node itself
captures the vehicle. Otherwise, it is aware that the vehicle has escaped from Ri-1

and the corresponding updating process fails. To solve the problem, we let the
node which discovers this inaccuracy take the responsibility over as if it were a
boundary node of Ri-1 and triggers updating for the reorganization of regions from
R1 to Ri-1. Unless the node itself happens to be a boundary node of Ri, it performs
updating for the reorganization of regions from R1 to Ri instead.

Tracking accuracy. As a vehicle keeps moving, it may run out of the reading
range of an RFID reader while still has not entered the territories of others. This
causes the system have inaccurate vision about the current position of the vehicle
before the vehicle re-enters into the system. It also defines the resolution of
tracking accuracy of the system to be the uncovered distance between two adjacent
RFID readers. In more practical environments, this inaccuracy can be enlarged
when RFID readers fail to capture the vehicle as the vehicle passes. To refine the
tracking resolution, more RFID readers can be deployed in the system. In order to
reduce the cost, readers can be deployed more densely at those places where more
accurate location information of individual vehicles is required and less densely at
other places.

Node join and maintenance. In HERO, a single node failure can be discovered
in a short time. A local node can periodically check with its neighbors while
performing HERO protocol. An unavailable node is then reported to the system
administrator. To join the system for tracking vehicles, a new node (or a recovered
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node) only needs to contact its adjacent nodes. Then, for each vehicle, the node
configures its status the same as that of the neighbor which resides in the smallest
region among all neighbors in the hierarchy. Thereby, it knows its position in the
hierarchy for each vehicle and can perform location updating and query processing
properly.

Data replication. The tracking data of vehicles can be of great importance for
many applications. It is an important issue for the system to protect these data from
node failures and disasters, such as fires or earthquakes. HERO actually has the
implicit advantage of protecting important tracking data. Recall that tracking data
are replicated in the first region. It implies that the system is still able to track the
vehicle even when the chaser node becomes unavailable. If some vehicles are
particularly important and need additional protection of tracking data, we can
make r relatively large associated with the vehicle. By this means, more data can
be replicated in the first region organized for the vehicle.

5.6 Prototype Implementation

To validate the HERO design and prove its practical implementation, we have
built a prototype system in the campus to track experimental vehicles. This pro-
totype system contains 45 local nodes distributed in our campus. As shown in

0

0

100 m

100 yd

Fig. 5.9 The layout of the prototype implementation consisting of 45 nodes denoted by red spots
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Fig. 5.9, local nodes (denoted by red spots) are deployed at crossroads of main
roads. Every local node has an IEEE 802.11g wireless network interface con-
necting the local node to the campus Internet. Furthermore, the overlay network
formed by the local nodes is illustrated by the dashed lines in Fig. 5.9. An overlay
connection is established between two nodes if there is a road immediately con-
nects them.

In the prototype system, we employ an active RFID system using ‘‘Tag Talk
First’’ technology. Figure 5.10 shows a typical local node, which is associated with
a SP-D300 RFID reader [10] as well as an IEEE 802.11g wireless AP. The inset of
Figure 5.10 shows an active RFID tag (in highlighted area) attached to a vehicle.
The reader’s operating frequency is 2.4 GHz. It connects to the local node via a
RS-485 interface and has a data transfer rate of 1 Mbps. The reader has a con-
figurable operation range from 2 to 80 meters. Each reader can simultaneously
detect up to 200 tags in 800 ms. Each tag has a unique 64-bit ID. Its battery has a
life of 6 to 8 years. Tags send their unique ID signal in random with an average of
300 ms and can be detected at a high speed up to 125 miles per hour. Besides the
RFID system, wireless communication technology is also investigated in our
prototype implementation. The HERO protocol runs on Red Hat Fedora 5 and uses
POSIX.1 socket API to communicate with each other. UDP packets are adopted
for location updating and query routing. The size of all packets is 40 bytes, which
includes 20 bytes of the IP packet header, 8 bytes of the UPD packet header and 12
bytes of data.

With this prototype implementation, we conduct a variety of experiments. Since
we use the campus Internet as the underlying network, real-time guarantee seems
to be non-trivial because the jitter (end-to-end round-trip time) can vary largely.
To demonstrate this, we randomly choose two local nodes to measure the round-
trip time by ping. Figure 5.11 shows the measured round-trip time from June 27 to
June 30 in 2008. It can be seen that the round-trip time increases sharply from 7 to
11 pm at night. Moreover, the peak value can be almost four times larger than that
at daytime. Nevertheless, the round-trip time is much more stable during the
daytime. Thus, we choose to perform experiments with our prototype system from

Fig. 5.10 A local node with
a RFID reader and a wireless
AP; the highlight area in the
inset shows an active RFID
tag attached to a vehicle
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10 to 12 am on June 30 in 2008. We set the real-time constraint to 100 ms and take
the maximum transmission delay between two online nodes which is 18.05 ms.
Therefore, the resulting r and k are therefore configured to 3 and 1.278, respec-
tively. We let a van carrying an active RFID tag travel at 30 miles per hour along
the route as depicted by the dark arrows in Fig. 5.9. As the van enters an RFID
reader’s field and is captured by the reader, the associated node performs location
updating accordingly. During the journey which lasts about 4 min, we let each
node randomly generate one hundred of queries.

Among all the 4,500 queries, the maximum query latency is 90.45 ms, which is
strictly shorter than the required real-time constraint. We also notice that the
average query latency is about 47.93 ms. The network traffic for location updating
among all nodes adds up to 13.2 KB. In contrast, the network traffic for location
updating using broadcast on a spanning tree is about 28.8 KB. Since the maximum
routing hops of a query is bounded (i.e., 5 hops in this experiment), the network
traffic for query routing linearly increases with the number of queries in the
system.

The lesson from our prototype implementation is that, with appropriate con-
figuration of the protocol parameters, the query latency can be guaranteed to
satisfy the real-time constraint requirement in terms of the number of hops that a
message has to traverse. In addition, the overall network traffic overhead, intro-
duced by location updating and query routing, can well accommodate a large
number of queries. To further investigate the performance of HERO in a large-
scale setting, we conduct trace-driven simulations, which are detailed in the fol-
lowing section.

Fig. 5.11 The round-trip
time pinged from two nodes
randomly chosen from 45
nodes. The measurement is
taken from June 27 (Friday)
to June 30 in 2008 (Monday)
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5.7 Performance Evaluation

5.7.1 Methodology

In the simulations, the HERO protocol is implemented using ns2 [99]. Since we
connect local nodes to the metropolitan-scale ATM network provided by Shanghai
Telecom through cheap ADSL connections, the transmission delay between any
two local nodes is reliable. Therefore, we can construct the overlay network
topology by simply mapping the real complex road network of Shanghai where
local nodes are deployed on every crossroad. The typical link transmission delay
between two neighbor nodes in the overlay network is 48 ms, measured by ping
between two desktop PCs with 1 MB bandwidth ADSL connections. One of the
overlay topologies employed in our simulations is depicted in Fig. 5.12. The
topology containing 1,000 nodes (denoted by small hollow dots) covers the geo-
graphical downtown area of Shanghai. The dark line shows the network diameter
in the topology which is 55 hops. Upon the ATM network, we use UDP protocol
for communicate with the packet size being 40 bytes.

To investigate the impact of the vehicle moving patterns to the HERO design,
we use real GPS trace data of taxies which were obtained with GPS technology
from August 2006 to October 2006. Taxies can move more randomly and
extensively in the whole city and, therefore, have more sense to be considered. A
typical trace of a taxi in the downtown area of Shanghai through daytime (on Aug.
13, 2006) is shown by solid dots in Fig. 5.12. It can be seen that, when the taxi is
vacant, it cruises around within an area most the time seeking for passengers, as

Fig. 5.12 The topology of
the downtown area of
Shanghai with 1,000 nodes
deployed at crossroads of this
area
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shown by these solid dots in the circle areas in Fig. 5.12. This benefits our HERO
design best because most of the location updating can be perfectly restricted within
small regions. It can also be seen that, when the taxi has a delivery, it runs very fast
along the straightest path for its destination, as illustrated by those solid dots in the
ellipse areas in Fig. 5.12. HERO leverages restricted location updating strategy to
reduce network traffic while still keeping the whole system up-to-date.

We compare HERO with several alternative schemes:

• ST-Updating. In this scheme, whenever a node captures a vehicle, it updates
this information to all other nodes. To reduce the network traffic overhead of this
update, the system maintains a global spanning tree. Therefore, only N-1
update packets are introduced across the whole network for each update when
there are N nodes in the network. The strength of this scheme is that each node
can answer any query locally, providing minimal query response time.

• ST-Flooding. This scheme does not perform vehicle information update in the
network and hence no overhead is introduced for location updating. To search
for a vehicle, a query is flooded throughout the network. A global spanning tree
is used to broadcast the query to reduce the network traffic overhead.

• Ex-Flooding. This scheme does not perform vehicle information update either.
Without relying on a global spanning tree, it employs expanding flooding. The
query is flooded in the overlay network. At the beginning, the TTL of the query
is small. If this try is not successful, the query will be flooded again with an
increased TTL (plus 4 hops). This process is repeated until the vehicle is found.

• Random Walks. Similar to ST-Flooding and Ex-Flooding, this scheme does not
perform information update. To search for a vehicle, the query is carried out by
five simultaneous random walkers. A walker checks with the querying node
every 50 steps and terminates either if the querying node has already retrieved
the result or if the maximum number of steps 2,000 is reached.

• Chord. In this scheme, each local node joins an overlay network of a logical
ring [86]. With a series of indexing pointers maintained in each local node, each
local node can update and retrieve the location information of a vehicle within
log2 M on average, where M is the size of the logical ring. In our implemen-
tation, M is set to 232 which is moderate to support a large number of nodes and
vehicles in the system.

We propose two important metrics to evaluate the performance of HERO and
the above schemes:

(1) Maximum query latency (MQL). It refers to the maximum query response
time of a successful query. The intention of this metric is to check whether a
scheme can guarantee certain real-time requirements.

(2) Network traffic per query (MNT). It can be seen that if there were no query
then no location updating would need to be carried out at all. Therefore, to
answer a query, the system cost should involve two parts of network traffic,
i.e., for location updating and for routing query packets. We investigate the
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total communication cost per query, caused by any location updating as well
as query processing.

5.7.2 Effects of Protocol Parameters

We first examine the effects of protocol parameters on the system performance and
validate the theoretical analysis. We employ one hour extensive trace data of 100
taxies, randomly generate 105 queries for different vehicles during this hour and
demand any query to be answered within 500 ms. We vary r from 1 to 30 hops
with an increment of 1 hop, and vary k from 1.2 to 3 with an increment of 0.05. For
each pair of r and k, we repeat the experiment 10 times and present the average.

Figures 5.13 and 5.14 plot MQL among all the generated queries and MNT under
different configurations of r and k, respectively. It shows that MQL drops dra-
matically with increasing r and k. It can be seen that MNT increases with both
increasing r and increasing k. This is reasonable because either a greater r or a
greater k leads to a more aggressive updating strategy. At the extreme, if r equals
to D or r equals to one and k equals to D, HERO floods every location updating
throughout the whole network. In this experiment setting, according to the
numerical computations in Sect. 5.3, r and k should take 2 and 1.393, respectively.
The arrows in Figs. 5.12 and 5.13 show the corresponding positions. It is clear to
see that, with this configuration of r and k, HERO can actually guarantee any query
to satisfy the real-time requirement and meanwhile minimizing the network traffic
overhead per query.

Fig. 5.13 Maximum query
latency versus different
protocol parameters

94 5 Vehicle Tracking



5.7.3 Impact of Query Quantity

In this experiment, we investigate the impact of the query quantity on the system
performance. We take the same setting as the previous experiment. The protocol
parameter r and k are set to 2 and 1.393, respectively. We vary the total number of
queries from 103 to 105 with an increment of 400.

Among all queries, MQL of HERO is 480 ms which is strictly shorter than the
real-time constraint. In ST-Updating, MQL is about 14 ms which is for local
database operations. The other schemes cannot guarantee to satisfy the real-time
requirement. MQL of Chord, ST-Flooding and Ex-Flooding is 1,536, 5,232 and
14,120 ms, respectively. MQL of Random walk is about 105 ms due to the search
step limitation of 2,000. Figure 5.15 plots MNT with different number of queries
per vehicle. MNT of HERO is much less than that of other schemes. In addition, it
declines as the number of queries increases. It can be seen that, with this

Fig. 5.14 Network traffic per
query versus different
protocol parameters
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experiment setting, HERO has less query overhead than ST-Updating until the
number of queries for the same vehicle exceeds 41,400. It is very interesting to
find out that the number of queries decides whether ST-Updating or HERO is
preferable. However, we argue that it is impractical that a single vehicle would be
queried so tensely within one hour in a region with 1,000 nodes.

To further compare HERO with Chord, we conduct another experiment. We
take the same setting as the previous experiment except we distribute all the
queries in both uniform and non-uniform manners and collect the total incurred
network traffic. To non-uniformly distribute queries, we divide the whole network
into 10 areas and assign each area a different probability for a local node to
generate a query. For each probability configuration, we repeat the experiment 10
times. Figure 5.16 shows the total network traffic rate with different number of
queries. It can be seen the difference between the results of uniform distribution of
queries and non-uniform distribution of queries is very slight. We notice Chord has
incurred much more network traffic than HERO. This is because Chord takes on
average 16 hops to forward a query when the size of the logic ring is 232 while
HERO guarantees to route a query within a desired number of hops (i.e., 9 hops in
this experiment). HERO takes on average 5.28 hops to forward a query in this
setting.

5.7.4 Impact of Vehicle Quantity

In this experiment, we investigate the impact of the vehicle quantity on the system
performance. We use the same network topology and protocol parameter config-
uration. To gain enough trace data, we take trace data from different dates and treat
a taxi at two different dates as two separate taxies. In this way, we gain 20,000
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taxies traces of one hour extensive GPS data of 1,000 taxies from August 12 to
September 12 in 2006.

Figure 5.17 shows the network traffic rate with 4,000 thousand different taxies.
We can see different taxies have introduced different network traffic for location
updating. This is because different taxies have different moving patterns (for
example, a vacant taxi compared to an occupied one) and therefore the variance of
location updating cost can be large. Chord uses consistent hash to uniformly
distribute updating traffic among all local nodes, which is less influenced by dif-
ferent moving patterns. Beyond all the facts, we notice HERO has less average
updating traffic than Chord. This is because HERO fully leverages the inherent
locality of vehicle movements and tries to constrain updating traffic only within
nearby nodes. Moreover, we vary the total number of taxies from 500 to 3,000
with an increment of 500. Figure 5.18 plots the network traffic rate with different
number of vehicles in the system which further confirms our analysis. The average
network traffic for location updating of HERO is 47.4 Bps whereas that of Chord is
57.38 Bps. It can be seen HERO has less updating traffic than Chord and has good
scalability with the increasing number of vehicles.

5.7.5 Impact of Network Scale

To evaluate the impact of network scale, we conduct an experiment on multiple
topologies. We adopt one hour trace data of 100 vehicles, randomly generate 105

queries and set the real-time constraint to 500 ms. For each topology, we set r and
k according to particular numerical computation results.

In Fig. 5.19 we plot MQL over different number of nodes in the system. HERO
meets the real-time constraint under different network scales. MQL of ST-Flooding
increases from 5,232 ms in the 1,000-node topology up to 11,088 ms in the 3,000-

Fig. 5.17 Network traffic
rate versus individual
vehicles
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node topology. MQL of Ex-Flooding also increases from 14,120 to 31,056 ms.
Random walks can always reach the maximum number of search steps. Fig-
ure 5.20 plots MNT over different number of nodes. As the network scale increases,
the network traffic of HERO increases very slowly. The reason is that HERO can
constrain the updating traffic within a small region and has little influence on other
nodes which are far away from the vehicle in the network.
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5.7.6 Effect of Real-Time Constraint

We conduct an experiment to study the relationship between the network traffic
overhead per query and the real-time constraint in HERO. We use the same trace
data and randomly generated queries as the experiment described in Sect. 5.7.2.
We vary the real-time constraint from 50 to 500 ms. Figure 5.21 plots MNT over
different real-time constraints. MNT first drops rapidly in the beginning and tends to
increase slowly with the real-time constraint. This is because the network traffic
for routing queries takes more account into the overall network traffic as the real-
time constraint increases. This result is valuable for applications to select appro-
priate real-time constraints to satisfy their requirements while reducing the system
overhead.
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5.8 Summary

In this chapter, we have presented the real-time tracking protocol HERO for the
metropolitan-scale intelligent transportation system. Exploiting the locality of
vehicle movements in the urban area, HERO adaptively updates the locations of a
vehicle according to the innovative hierarchical structure. HERO significantly
reduces network traffic while still satisfying the real-time requirement. As a fully
distributed protocol, this protocol is highly scalable to the number of users, the
number of vehicles and the system scale as well. Prototype implementation and
comprehensive simulations based on the real road network and trace data of
vehicle movements demonstrate the efficacy of HERO.

This is an on-going research and system effort in tracking various vehicles in
the metropolitan-scale system. Following the current work, we have a lot of more
exciting yet challenging topics ahead. One of these topics is the privacy impli-
cations of tracking personal vehicles all the time. The government will guarantee
to protect individual privacy by authorizing legal individuals and corporations with
different privileges to access appropriate vehicles. Next, we will delve into
designing better location updating schemes such that update overhead can be
reduced as much as possible. Based on our realistic prototype test-bed, we will
validate our design and study its performance under real complex environments.
Improvements will be made based on the realistic studies before it comes to be
deployed in the large-scale SG system. Moreover, it is important to ensure the
security of chasers. If a malicious chaser does exist, the system may behave
abnormally and the system performance would be degraded. However, this chapter
focuses on the system design for real-time tracking. We will gradually incorporate
security measures into the system implementation in the future.
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Chapter 6
Traffic Condition Sensing Application

6.1 Introduction

One of the most important tasks in the SG project is to determine traffic condition
of the road networks. The significance of this task shows in two aspects. On one
hand, it provides the foundation for infrastructure construction planning as well as
design optimization of public transportation systems like bus network and metro
system. On the other hand, it provides the public with valuable information to plan
their travels and to reduce overhead on roads.

However, it is very challenging to determine traffic condition in a metropolis
like Shanghai. First, traffic condition is time-varying. Moreover, the changing of
traffic condition is often unpredictable as there are so many possible factors
influencing the traffic such as incidents, infrastructure construction, weather and
festivals. The provided information of traffic condition would be no use if the
system needs a long period of time to make the estimation. Second, it is hard to
determine traffic condition of the whole road networks. In Shanghai, there are
more than 22,413 intersections which connect about 33,290 road segments. It is
nontrivial to provide accurate traffic information on all of these road segments.

In industry, there are already a great number of efforts aiming to provide such
valuable traffic information. One simple solution would be using radio to broadcast
congestion information. In such a system, congestion can be detected by eyewit-
ness reports from commuters or news organizations. Such reports can be very
coarse-grained in terms of congestion locations and duration. Many ITSs have
deployed considerable sensors such as closed-circuit cameras and vehicle loop
detectors as infrastructure [100, 101]. Unfortunately, the coverage of these systems
is supremely limited due to the high deployment and maintenance costs. It is
practically infeasible to install traffic monitoring systems densely enough to cover
the entire road networks.

Instead, we propose a systematic approach, called SEER, to traffic perception
on a metropolitan scale. Our approach is made up of several components. First, we
define an expressive metric to reflect the traffic condition at a given site. It is not
straightforward to define a good traffic condition because there are no obvious
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criteria. We define a metric, transit velocity, as the maximum speed at which
vehicles can safely transit the site. Intuitively, a high transit velocity within the
speed limitation implies a good traffic condition. Second, we deploy a cost-
effective system of taxi traffic sensors. On each taxi, a GPS receiver is installed. It
periodically reports its instantaneous speed and location information to a data
center. Therefore, while moving around in the city, taxies act as mobile sensors
perceiving surrounding traffic condition. Third, with the availability of taxi sensory
data collected throughout the city, we propose an efficient algorithm which can
answer traffic condition queries at any site in the city at any time. In particular, it
can even make accurate prediction of traffic in a short period.

It is difficult to determine traffic condition by directly using the sensory data.
First, the taxi sensory data is erroneous. The GPS location data is often not
accurate, and the error can be as large as 100 m. As a result, it is difficult to map
such a sensor data back to the road map. Second, sensory data may vary from taxi
to taxi significantly even they are report at the same location and at the same time.
In other words, each sensory data report is associated with a certain degree of
noise. Third, the data is lossy and not uniformly distributed both in time and in
space. For example, there are 90 % of roads that do not have sensory data for more
than 80 % of all the 1,440 min in a day. The fraction would not be less than 50 %
when count the number of roads that are short for data for more than 12 h in a day.
In addition, we have observed that about 80 % sensory data are collected from
only about 20 % roads.

Fortunately, we have observed that there are strong correlations of traffic
condition over both time and space. By using conditional entropy and mutual
information, we find out that knowing the traffic condition in the past does help
determine the current traffic condition. Moreover, the traffic condition evolves in a
basic periodicity of 1 day. Along with the spatial dimension, we notice that the
traffic condition at a site has strong correlation with the traffic condition of a limit
number of other sites.

For making use of the natural spatio-temporal correlations, we employ multi-
channel singular spectrum analysis (MSSA) as an integral part of our solution.
MSSA is a nonparametric algorithm that can effectively eliminate noise from the
real signal in a time series. In our problem, the real traffic condition is our signal,
and each sensory report deviates from the real signal to a certain extent. Fur-
thermore, it provides the facility to recover signals in face of missing data.
However, there are two key questions need to be answered when using MSSA in
our problem. The first is how to determine the number of dimensions of the vector
space that MSSA embeds the time series into. We find the optimal parameters by
setting the number of dimensions to the basic periodicity of 1 day. The second is
how many channels are required for MSSA to estimate the traffic condition at a
site. By the spatial correlation analysis, we identify the minimum number of
channels and thus reduce the computation overhead in a great deal.

In the remainder of this chapter, we describe the characteristics of the taxi
sensory data in Sect. 6.2. Section 6.3 presents the spatial and temporal correlations
of traffic condition we have observed. We demonstrate utilizing MSSA to estimate
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traffic condition in Sect. 6.4. Section 6.5 describes the methodology to evaluate
the performance of SEER and presents the results. We have some discussion in
Sect. 6.6. Finally, we present concluding remarks and outline the directions for
future work in Sect. 6.7.

6.2 Characteristics of Taxi Sensory Data

Before we start to determine traffic condition based on taxi sensory data, it is
helpful to understand the unique characteristics of the data.

In the city setting with dense high buildings and viaducts, the GPS reports from
taxies can be very erroneous. The error of reported locations can be as large as
100 m. To tell which road a taxi is actually monitoring, we need to recover each
sample back on track. We deal with this problem using map-matching. To the best,
we can accurately recover about 90 % of the data with the left regarded as an
inevitable source of noise.

In addition, we also find that individual reports vary significantly even they are
collected from the same location at the same time. Figure 6.1 shows the cumu-
lative distribution function (CDF) of speed difference derived from reports at the
same location at the same time. It can be seen that the CDF increases slowly with a
relatively long tail, which implies the individual reports can vary largely. The
derivation of this variance may be ascribed to individual driving behaviour. For
example, a taxi may stop arbitrarily to pick up or drop passengers. In other words,
each sensory data report is associated with a certain degree of noise.

Further, we consider the spatial distribution of taxi sensory data. Figure 6.2
shows the number of samples on each road in a week from Dec 15 to Dec 22,
2006. Totally, there are 42,722 road segments covered by samples of 4,450 taxi
traces. It is clear to see that most of the GPS samples are scattered in the
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downtown area where taxies congregate more densely than in suburbs. The CDFs
of sample density on each road are shown in Fig. 6.3. The data are taken on a
weekend, on a workday and for a whole week, respectively. We observe an
obvious Pareto distribution in which the ‘‘80-20 rule’’ [102] stands (i.e., 20 % of
the road segments owns 80 % of the data).

Next, we concern the distribution of taxi sensory data in time. We are interested
in the probability distribution of the inter-report times, which refers to the time
intervals between any two consecutive reports received from a location over time.
Figure 6.4 shows the complementary cumulative distribution function (CCDF) of
inter-report times. It can be seen that the middle part of the CCDF is almost linear
in log–log scale, which indicates a power law. This means a location may fre-
quently has no sensory data for a long time. Figure 6.5 shows the CCDFs of the
proportion of time with no sensory data in a day in different observation granu-
larities. The time windows used to collect sensory reports are 1, 30 and 60 min,
respectively. It shows that about 90 % of roads have no samples in 80 % of the
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1,440 min in a day. The fraction is about 50 % when counting the number of road
segments that are short of samples for 12 h in a day.

In summary, there are three crucial characteristics of the taxi sensory data with
respect to using these data to determine traffic condition. First, the sensory data are
erroneous in terms of large location deviation. Second, individual driving behavior
introduces noise in the sensory data. Last, the distribution of the taxi sensory data
is very lossy and non-uniform in time and space.

6.3 Unveiling Spatio-Temporal Correlation

According to the above study, it is not feasible to directly derive traffic condition
simply from the trace data due to noise and the sparseness of sampling. In this
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section, we first model the problem. Then we examine the spatio-temporal cor-
relations of traffic condition.

6.3.1 Problem Modeling

Speaking of traffic condition, we are concerning about the transportation capability
of the road networks. It is not straightforward to define a good traffic condition
because there are no obvious criteria. We define a metric, transit velocity, as the
maximum speed at which vehicles can safely transit a location. Intuitively, a high
transit velocity within the speed limitation implies a good traffic condition.

Let four-tuples (id, location, time, speed) denote the GPS reports, where id is
the identifier of a taxi, location is the current coordinates of the taxi, time is the
report time and speed is the instantaneous speed of the taxi. We collect all the
reports from each taxi during a time window, denoted by T, and get the set of
sensory data, denoted by D. We say a road is covered if there is a report that is
issued from this road. Let R denote the set of roads that D has covered. With the
metric of transit velocity, we define our problem of traffic perception as: Given the
set of sensory data D, how to determine the transit velocity at any location in the
road set R at any time in the time window T?

There is no instant answer to this problem because of the innate characteristics
of the sensory data. Even there are sufficient reports obtained at the queried
location and time, it is hard to determine what the transit velocity is due to the
existence of noise. It can be more difficult to answer the problem when there are no
reports available.

In the following subsections, we first measure transit velocity using average
speed of reports. We then try to characterize the correlations of average speeds
over time and space.

6.3.2 Characterizing Temporal Traffic Correlations

To measure the transit velocity at location l at time t, we calculate the average
speed of reports which are obtained from a distance interval centered at l and a
time interval centered at t. We refer to the length of the distance interval and that
of the time interval as the calculation granularity, denoted by (Ds, Dt). With a
calculation granularity, we can establish a neighborhood of a location and divide
continuous time into separate time slots. Formally, the average speed at location
l at time t can be calculated as:
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TtðlÞ ¼
Pn

i¼1
vi=n if n�m

NaN otherwise
;

8
<

:
ð6:1Þ

where n is the total number of reports collected from the neighborhood of l in the
time slot of t, vi is the speed of the ith report and m is the minimum number of
reports to calculate the average. We set m larger than one (e.g., at least three
reports) to reduce the impact of individual driving behavior. If there is no sufficient
reports available, i.e. n \ m, the average speed is left blank with no value
assigned.

Let us look at a simple case where we relax the spatial calculation granularity
Ds. We consider average speeds on a road segment, which refers to the part
between two neighboring intersections of a road in one direction.

For ease of computation, we further discretize the continuous average speed
values into Q disjoint sub-intervals without losing generalization. We hereafter use
sub-intervals to represent corresponding average speeds. For example, if the
average speed value is 48 kmph and the speed values are separated by 10 kmph,
we say the average speed is 4 kmph.

In order to understand how traffic condition evolves over time, we need to
answer two specific questions, namely (1) how historical information is related to
the current traffic condition and (2) how much historical information are related to
determine the current traffic condition.

We first examine whether or not knowing the traffic condition on a road seg-
ment in the past can help us determine the current traffic condition on that road
segment. We do this by computing the entropy of average speeds on each road
segment and the conditional entropy of the average speed on a road segment given
previous M average speeds. Let X be the random variable representing the average
speeds on a road segment r. If we have observed the road segment for N time slots,
the time series of average speeds can be denoted by a vector Vr = (k0, k1, …, kN-1)
where ki 2 ½0; Q� 1�; 0� i�N � 1 is the average speed in time slot i. Assume
each of these Q average speeds appeared sj times in Vr, 0 B j B Q-1. Thus, the
probability of the average speed on the road segment being j can be computed as
sj/N. Therefore, the entropy of X is:

HðXÞ ¼
XQ�1

j¼0

ðsj=NÞ log2
1

sj=N
: ð6:2Þ

When M = 1, let X0 be the random variable for the immediately previous
average speed on the road segment given the average speed X. X0 and X have the
same distribution when N is large enough. The vector Vr can be written as
Wr = {(ki, ki+1) : 0 B iBN-2}. Therefore, the joint entropy of X0 and X can be
computed as:
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HðX0;XÞ ¼
X

ðx0;xÞ 2W

Pðx0; xÞ log2
1

Pðx0; xÞ; ð6:3Þ

where P(X0, X) is the number of times (x0, x) appears in Wr divided by the total
umber of elements in Wr. With H(X) and H(X0, X), the conditional entropy of
X given X0 is:

HðXjX0Þ ¼ HðX0;XÞ � HðX0Þ ¼ HðX0;XÞ � HðXÞ: ð6:4Þ

When M = 2, let X00 denote the random variable representing the distribution of
the previous two average speeds given X. Similarly, the conditional entropy
H(X |X00) is:

HðXjX00Þ ¼HðX00; XÞ � HðX00Þ
¼HðX00; XÞ � HðX0; XÞ;

ð6:5Þ

The joint entropy H(X00, X) can be calculated similarly. We can continue the
process and get the joint entropy when M is larger than two.

Figure 6.6 shows the CDFs of the mean entropy and the mean conditional
entropy, for M = 1, 2, and 3, over all road segments. It can be seen that the
conditional entropy when M = 1 is much smaller than the marginal entropy and
that the conditional entropy when M = 3 is smaller than that when M = 2 which is
smaller than when M = 1. This implies that the uncertainty about the average
speed decreases when the previous average speeds on the road segment are known.

To answer the second question, we examine the correlation between the average
speed in time slot t and that in time slot t - n and vary n from one to a large
number. Let Yn denote the random variable for the average speed in the previous
nth time slot given the average speed X. Then the condition entropy of X given Yn
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HðXjYnÞ ¼ HðYn;XÞ � HðYnÞ ¼ HðYn;XÞ � HðXÞ: ð6:6Þ

Figure 6.7 shows the conditional entropy for each time slot in previous week.
The average speeds are computed with temporal granularity of 15, 30 and 60 min,
respectively. In each case, we observe that the conditional entropy reaches a
minimum when the value of n is times of 24 h. This means that the uncertainty
about the average speed on a road segment is least when we know the average
speeds at the same time on past days. Easily, we can identify a periodicity of
1 day.

6.3.3 Characterizing Spatial Traffic Correlations

In this subsection, we examine whether or not knowing the traffic condition in the
neighborhood of a road segment can help us determine the traffic condition on that
road segment.

We quantify the correlation between average speeds on two different road
segments as follows. Recall that each road segment has a time series of average
speeds. Let Xr1 and Xr2 denote the random variables for the average speeds on road
segment r1 and r2, respectively. We can obtain the mutual information of Xr1 and
Xr2, I(Xr1, Xr2), via the joint entropy H(Xr1, Xr2) and the marginal entropy H(Xr1)
and H(Xr2) as follows:

IðXr1;Xr2Þ ¼ HðXr1Þ þ HðXr2Þ � HðXr1;Xr2Þ: ð6:7Þ

We define the redundancy of Xr1 and Xr2 by

RðXr1;Xr2Þ ¼
IðXr1;Xr2Þ

HðXr1Þ þ HðXr2Þ
: ð6:8Þ
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Figure 6.8 shows the mean redundancy for all road segments under three
temporal calculation granularities. It can be seen that the redundancy drops dra-
matically at certain number of road segments at all granularities. This implies that
the average speeds on a road segment are only related to a limit number of road
segments. Moreover, when the granularity decreases, this number also decreases
rapidly. This result is valuable when estimating average speeds leveraging spatial
correlations among different road segments. We only need to consider a modest
number of related road segments to estimate a road segment. Notice that these road
segments do not necessarily need to be geographically near from the road segment.

In summary, we make the following observations regarding traffic perception
using taxi sensory data:

• The sampling GPS data is rather lossy in terms of spatio-temporal distribution.
This results frequent gaps without sufficient samples available for estimating
traffic condition. We should have confidence to reconstruct the traffic condition
at missing points.

• There are various sources of noise involved. This may arise from the mea-
surement errors of GPS devices as well as from the inaccuracy of map-matching
algorithms, or from the individual driving behavior. Although we can reduce
this impact by aggregating multiple samples, there is impossible to remove all
the noise. We should have the capability to distinguish signal from noise.

• Traffic condition has apparent spatio-temporal correlations. We find out a basic
periodicity of 1 day. This periodicity has nothing to do with the calculation
granularity. Moreover, we find out that a road segment has much more corre-
lation with only a small number of road segments when the calculation gran-
ularity is small.

Fig. 6.8 Mean redundancy
over all road segments, sorted
in descending order
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6.4 MSSA Based Traffic Perception

In this section, we first give an overview of our traffic perception algorithm based
on multi-channel singular spectrum analysis (MSSA), introducing its basic
rational. Next, we give a brief review to MSSA. Then we describe the iterative
procedure used to estimate unknown traffic condition. Finally, we discuss the
optimal configuration of the algorithm parameters.

6.4.1 Overview

Based on our above observations, we hope to extract useful information from the
noisy time series of traffic condition and thus provide insight into the unknown
dynamics of the underlying transportation system that generated the series.

First, we leverage the capability of MSSA to distinguish signal from noise
contained in the traffic condition. MSSA takes advantage of both spatial and
temporal correlations and decomposes the original time series into trends, oscil-
latory patterns and noise. A number of heuristic methods have been devised for
signal-to-noise separation. With the trends and significant oscillatory patterns, we
can reconstruct the signal.

Second, we use an iterative algorithm to deal with missing points in the time
series. The algorithm iteratively produces estimates of unknown traffic condition
using MSSA. Then the new estimates are used to compute a self-consistent lag-
covariance matrix. The optimal window width and the minimal number of chan-
nels of MSSA are determined based on our observations on spatio-temporal
correlations.

6.4.2 MSSA Review

MSSA is an ingenious application of the Karhumen–Loève expansion for random
processes [103]. It provides qualitative and quantitative information about the
deterministic and stochastic parts of system behavior recorded in a stationary time
series even when the time series is short and noisy.

The MSSA method is data-adaptive and nonparametric based on embedding an
L-channel time series with N data points {Xl(t) : l = 1, …, L; t = 1, …, N} in a
vector space of dimension M. A multi-channel trajectory matrix ~X ¼
~X1; ~X2; � � � ; ~XL

� �
of X with M lagged copies can be formed by first augmenting

each channel:
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~Xl ¼

Xl;1 . . . Xl;M

Xl;2 . . . Xl;N 0þ1

� � �
Xl;N0 . . . Xl;N

0

BB@

1

CCA; 1� l� L ð6:9Þ

Thereafter, both spatial correlations between any two of L channels and tem-
poral correlations in each channel can be obtain by computing the grand covari-
ance matrix CX:

CX ¼
1
N 0

~X~Xt ¼ Cl;l0
� �

L�L
ð6:10Þ

By diagonalizing the LM � LM matrix CX, spectral information on the time
series can be obtained. The eigenvectors Ek, 1 B k B LM, of grand covariance
matrix CX are called temporal extended empirical orthogonal functions (EEOFs).
Each Ek consists of L consecutive M-long segments, with its elements denoted by
Ek

l;m. The eigenvalues kk of CX account for the partial variance of the original time
series Xl(t) in the direction of Ek. Corresponding to each EEOF, space–time
principal components (PCs) Ak can be computed as:

Ak
nðtÞ ¼

XM

m¼1

XL

l¼1

Xl; nþm�1Ek
l;m; ð6:11Þ

where n varies from 1 to N0.
Trends, oscillatory modes and noise contained in the entire time series can then

be reconstructed by using linear combinations of these PCs and EEOFs. Specifi-
cally, the kth reconstructed component (RC) at time n for channel l is:

Rk
l;n ¼

1
Mn

XUn

m¼Ln

Ak
n�mþ1Ek

l;m; ð6:12Þ

The values of the normalization factor Mn, as well as of the lower and upper
bound of summation Ln and Un can be determined as,

Mn; Ln;Un ¼
1; 1; n; 1� n�M � 1

M; 1; M; M� n�N 0

N � nþ 1; n� N þM; M; N 0 þ 1� n�N

8
><

>:
ð6:13Þ

Generally, there are two main problems in using MSSA. One is how to
determine the time window M (embedding dimension). The window size M should
be larger than the longest periodicity that we are interested in. The other one is to
determine what parts of the EEOFs are corresponding to significant oscillatory
models. An oscillatory mode can be characterized by a pair of nearly equal
eigenvalues and periodic eigenvectors that correspond to the same frequency.
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6.4.3 Dealing with Missing Data

We adopt an iterative procedure as proposed in [104, 105] to utilize spatio-tem-
poral correlations of traffic condition to estimate the missing points. Generally, this
procedure iteratively produces estimates of missing points, which are then used to
compute a self-consistent covariance matrix CX and its EEOFs Ek. In the proposed
methods, a brute-force cross-validation is required to optimize the window width
M and the number of EEOFs that corresponds to significant oscillatory modes.
Instead, we skip the cross-validation with confidence built on the foundation of our
observations on temporal correlation. In addition, we minimize the number of
channels required to reconstruct traffic condition based on our observation on
spatial correlation.

Specifically, we first calculate average speeds according to a given temporal
granularity. Points with no sufficient reports are regarded as missing points.

Then we set the window width of MSSA to the basic periodicity of one day. We
center each channel of the original average speeds by computing the unbiased
value of the mean and set the values of missing points to zero. A fraction of
average speeds is left out for the purpose of validation.

Next, we start the inner-loop iteration by computing the leading EEOF E1 and
estimate the missing points using only R1. Thus, we get a new time series with
missing points estimated by R1 and correct the mean. We then perform the MSSA
algorithm again on the new series. Each estimate of the missing points is tested
against the previous one until a convergence test is satisfied. Next, we perform
outer-loop iterations by adding a second EEOF E2 for estimation and repeat the
inner-loop iteration. For each outer-loop iteration, we test the root-mean-square
(RMS) deviation of the estimated average speeds with the reserved values. The
outer-loop iterations are stopped when the minimum RMS deviations is found.

Finally, we take the parameters, K* and M*, that minimize the RMS deviation as
the required optimum. To obtain the actual reconstruction, we repeat the inner and
outer-loop iterations, using K* and M*, but with all available average speeds being
included in the process.

6.4.4 Optimal Parameter Configuration

As described above, we establish the optimal window width of MSSA based on
our previous observations on temporal correlation. This decision can greatly
accelerate the search for the optimal set of MSSA parameters. Besides the window
width, we also minimize the number of channels needed to estimate average
speeds on a certain road segment. We do this by leverage the observation that a
road segment has much more correlation with only a small number of road seg-
ments when the calculation granularity is small. Therefore, it is not necessary to
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build up a large grand covariance matrix CX and enormously reduce the compu-
tation overhead.

In the next section, we validate our iterative estimation process and examine the
performance on using MSSA to determine traffic condition.

6.5 Performance Evalution

6.5.1 Methodology and Metric Design

In this section, we apply the MSSA-based traffic perception algorithm to the
sensory data collected from a region in the Pudong district from Dec 1 to Dec 31,
2006. Totally, there are totally 3,135 taxies involved in reporting traffic infor-
mation on 235 roads.

We define the RMS deviation of two vectors of average speeds V1 = [v1,1,
v1,2, …, v1,n] and V2 = [v2,1, v2,2, …, v2,n] as:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðv1;i � v2;iÞ2

n

s

ð6:14Þ

6.5.2 Impact of Window Width and MSSA Mode Quantity

In this experiment, we investigate the impact of the time window employed in the
iterative procedure on the performance of traffic perception. We set the temporal
granularity to 30 min, and calculate average speeds on each road segment. We
randomly choose 5 % of average speed results for validation and carry out the
iterative algorithm for 20 times for window widths of 24, 48 and 60. In each run of
the experiment, all of the 235 roads are employed as MSSA channels.

Figure 6.9 shows the mean RMS deviation as a function of the window width
M and the number of MSSA modes. We find out that the reconstruction error drops
rapidly as the number of regular oscillatory modes increases. Nevertheless, the
error gradually starts to increase as the number of MSSA modes keeps growing.
This can be easily understood because more PCs corresponding to noise has joined
the reconstruction. We also notice that the RMS deviation reaches the globally
minimum when the time window width is 48, which is 1 day in time. This result
validates our suggestion of using the basic periodicity found in traffic condition as
the optimum time window width in MSSA.
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6.5.3 Impact of Channel Quantity

In this experiment, we examine whether we can reduce the number of channels to
be used in MSSA to reconstruct traffic condition at a road segment. We randomly
choose 20 road segments for traffic perception. For each road segment, we rank all
road segments according to the redundancy calculated using the method mentioned
in Sect. 6.4. Then we gradually add the number of road segments to be involved in
the iterative algorithm. Different temporal granularities are used to calculate
average speeds.

Figure 6.10 shows the RMS deviation as a function of the number of road
segments involved. It can be seen that, in general, the reconstruction error deceases
as the number of road segments increases. Particular, when a small temporal
granularity is used, only a small number of road segments can help decrease the
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RMD error. We also notice there are slop breaks in the dash lines in Fig. 6.10 as
pointed out by the arrows. The reason may be that we only choose a small region
to conduct the experiment and omit some related road segments. In addition, we
can also find that using the road segments after the slope breaks does not provide
any more benefit but computation overhead. This result strongly agrees with our
analysis on spatial correlation of traffic condition.

6.5.4 Impact of Temporal Granularity

In the above experiment, we can find out that the reconstruction error increases
when the temporal granularity gets small. Reducing the granularity will cause
more missing points and low signal-to-noise ratio. As the amount of mission points
and noise increases, the significant PCs are ‘‘polluted’’ more, making it more
difficult to remove the noise contributions. Even in this case, we find that the
regular oscillatory modes can be determined correctly as long as the gap of
missing data is not larger than any significant spatio-temporal correlations of traffic
condition.

6.6 Discussion

In this chapter, the main coverage has focused on the innovation of a traffic
perception system using pervasive taxi traffic sensors. On the one hand, we have
put major efforts on establishing the prototype system of the taxi traffic sensors,
which has been proved to be cost effective and successfully laid the foundation for
our traffic perception algorithm. On the other hand, we have managed to extract
traffic condition information from loss sensory data which by nature is erroneous
and non-uniform. However, as a pioneering effort, the proposed approach is not
perfect. Several problems need to be further investigated in future.

Due to the discrete nature of sensory data of traffic reports from taxis, it is
impossible to acquire the exact sensor data at a given point. Thus, we have pro-
posed the approximating method by using sensor reports in the neighborhood. It is
worth more careful study on how much the neighborhood size could be. Note that
a larger neighborhood results in a larger set of sensor reports. Meanwhile, how-
ever, a sensor report further from the given point provides data of lower quality.
Given a certain scenario of traffic condition and density of sensory reports, we
believe there should be an optimal neighborhood size. Nevertheless, it is not trivial
to determine the optimal value.

It is apparent that we could derive better traffic condition information if more
sensory data were available. However, more sensory data also imply higher
investment on recruiting more taxis and conveying a larger volume of sensory data
back to the information center. In addition, it would introduce higher computation
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cost for processing raw data and executing the algorithm. Nevertheless, it is
important to study the tradeoff between the volume of sensory data and the ability
of answering queries on traffic condition. Such tradeoff study will allow us to
determine how much sensory data should be acquired given a certain use
requirement on query quality.

6.7 Summary

In this chapter, we have presented the systematic approach to perceiving metro-
politan traffic using a cost-effective system of taxi sensors. Although the raw
sensory data collected by taxis are error-prone and non-uniform, our MSSA based
algorithm can still effectively produce traffic condition of high quality. It also
solves the lossy problem of sensory data in the sense that a given location may
have a very limited number of sensor reports. As a result, this system overcomes
many of the limitations for existing approaches, such as high cost and require-
ments on manpower. This system can be quickly implemented and serve the
general public. The prototype system has been working and feeding valuable
traffic condition information to the Transport Office of Shanghai.

With SEER having much space to improve, we will carry on our research in
several directions. First, the problems discussed in the above subsection will be
carefully investigated and constant improvements will be made accordingly.
Second, we will expand our system to include a richer set of sensory data input, by
employing buses and volunteer cars. Moreover, we will also incorporate the dis-
tribution information of traffic lights in the city, which may have a non-negligible
impact on traffic condition.
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